Make tdesc_arch_data::arch_regs an std::vector
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
231 static int ada_resolve_function (struct block_symbol *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static int ada_is_direct_array_type (struct type *);
236
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *,
245 int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271
272 static struct type *ada_find_any_type (const char *name);
273
274 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
277 \f
278
279 /* The result of a symbol lookup to be stored in our symbol cache. */
280
281 struct cache_entry
282 {
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
286 domain_enum domain;
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295 };
296
297 /* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306 #define HASH_SIZE 1009
307
308 struct ada_symbol_cache
309 {
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315 };
316
317 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
318
319 /* Maximum-sized dynamic type. */
320 static unsigned int varsize_limit;
321
322 static const char ada_completer_word_break_characters[] =
323 #ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325 #else
326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
327 #endif
328
329 /* The name of the symbol to use to get the name of the main subprogram. */
330 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
331 = "__gnat_ada_main_program_name";
332
333 /* Limit on the number of warnings to raise per expression evaluation. */
334 static int warning_limit = 2;
335
336 /* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338 static int warnings_issued = 0;
339
340 static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342 };
343
344 static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346 };
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (const char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (const char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static const char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
984
985 static char *
986 ada_encode_1 (const char *decoded, bool throw_errors)
987 {
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
990 const char *p;
991 int k;
992
993 if (decoded == NULL)
994 return NULL;
995
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
998
999 k = 0;
1000 for (p = decoded; *p != '\0'; p += 1)
1001 {
1002 if (*p == '.')
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
1007 else if (*p == '"')
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1012 mapping->encoded != NULL
1013 && !startswith (p, mapping->decoded); mapping += 1)
1014 ;
1015 if (mapping->encoded == NULL)
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
1026 else
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
1031 }
1032
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
1035 }
1036
1037 /* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040 char *
1041 ada_encode (const char *decoded)
1042 {
1043 return ada_encode_1 (decoded, true);
1044 }
1045
1046 /* Return NAME folded to lower case, or, if surrounded by single
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
1050 char *
1051 ada_fold_name (const char *name)
1052 {
1053 static char *fold_buffer = NULL;
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1058
1059 if (name[0] == '\'')
1060 {
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
1063 }
1064 else
1065 {
1066 int i;
1067
1068 for (i = 0; i <= len; i += 1)
1069 fold_buffer[i] = tolower (name[i]);
1070 }
1071
1072 return fold_buffer;
1073 }
1074
1075 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077 static int
1078 is_lower_alphanum (const char c)
1079 {
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081 }
1082
1083 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
1090
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095 static void
1096 ada_remove_trailing_digits (const char *encoded, int *len)
1097 {
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
1101
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1109 *len = i - 2;
1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1111 *len = i - 1;
1112 }
1113 }
1114
1115 /* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118 static void
1119 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120 {
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
1126 the 'P' suffix. The second calls the first one after handling
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135 }
1136
1137 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139 static void
1140 ada_remove_Xbn_suffix (const char *encoded, int *len)
1141 {
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155 }
1156
1157 /* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
1160
1161 The resulting string is valid until the next call of ada_decode.
1162 If the string is unchanged by decoding, the original string pointer
1163 is returned. */
1164
1165 const char *
1166 ada_decode (const char *encoded)
1167 {
1168 int i, j;
1169 int len0;
1170 const char *p;
1171 char *decoded;
1172 int at_start_name;
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
1175
1176 /* The name of the Ada main procedure starts with "_ada_".
1177 This prefix is not part of the decoded name, so skip this part
1178 if we see this prefix. */
1179 if (startswith (encoded, "_ada_"))
1180 encoded += 5;
1181
1182 /* If the name starts with '_', then it is not a properly encoded
1183 name, so do not attempt to decode it. Similarly, if the name
1184 starts with '<', the name should not be decoded. */
1185 if (encoded[0] == '_' || encoded[0] == '<')
1186 goto Suppress;
1187
1188 len0 = strlen (encoded);
1189
1190 ada_remove_trailing_digits (encoded, &len0);
1191 ada_remove_po_subprogram_suffix (encoded, &len0);
1192
1193 /* Remove the ___X.* suffix if present. Do not forget to verify that
1194 the suffix is located before the current "end" of ENCODED. We want
1195 to avoid re-matching parts of ENCODED that have previously been
1196 marked as discarded (by decrementing LEN0). */
1197 p = strstr (encoded, "___");
1198 if (p != NULL && p - encoded < len0 - 3)
1199 {
1200 if (p[3] == 'X')
1201 len0 = p - encoded;
1202 else
1203 goto Suppress;
1204 }
1205
1206 /* Remove any trailing TKB suffix. It tells us that this symbol
1207 is for the body of a task, but that information does not actually
1208 appear in the decoded name. */
1209
1210 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1211 len0 -= 3;
1212
1213 /* Remove any trailing TB suffix. The TB suffix is slightly different
1214 from the TKB suffix because it is used for non-anonymous task
1215 bodies. */
1216
1217 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1218 len0 -= 2;
1219
1220 /* Remove trailing "B" suffixes. */
1221 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1222
1223 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1224 len0 -= 1;
1225
1226 /* Make decoded big enough for possible expansion by operator name. */
1227
1228 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1229 decoded = decoding_buffer;
1230
1231 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1232
1233 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1234 {
1235 i = len0 - 2;
1236 while ((i >= 0 && isdigit (encoded[i]))
1237 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1238 i -= 1;
1239 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1240 len0 = i - 1;
1241 else if (encoded[i] == '$')
1242 len0 = i;
1243 }
1244
1245 /* The first few characters that are not alphabetic are not part
1246 of any encoding we use, so we can copy them over verbatim. */
1247
1248 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1249 decoded[j] = encoded[i];
1250
1251 at_start_name = 1;
1252 while (i < len0)
1253 {
1254 /* Is this a symbol function? */
1255 if (at_start_name && encoded[i] == 'O')
1256 {
1257 int k;
1258
1259 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1260 {
1261 int op_len = strlen (ada_opname_table[k].encoded);
1262 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1263 op_len - 1) == 0)
1264 && !isalnum (encoded[i + op_len]))
1265 {
1266 strcpy (decoded + j, ada_opname_table[k].decoded);
1267 at_start_name = 0;
1268 i += op_len;
1269 j += strlen (ada_opname_table[k].decoded);
1270 break;
1271 }
1272 }
1273 if (ada_opname_table[k].encoded != NULL)
1274 continue;
1275 }
1276 at_start_name = 0;
1277
1278 /* Replace "TK__" with "__", which will eventually be translated
1279 into "." (just below). */
1280
1281 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1282 i += 2;
1283
1284 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1285 be translated into "." (just below). These are internal names
1286 generated for anonymous blocks inside which our symbol is nested. */
1287
1288 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1289 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1290 && isdigit (encoded [i+4]))
1291 {
1292 int k = i + 5;
1293
1294 while (k < len0 && isdigit (encoded[k]))
1295 k++; /* Skip any extra digit. */
1296
1297 /* Double-check that the "__B_{DIGITS}+" sequence we found
1298 is indeed followed by "__". */
1299 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1300 i = k;
1301 }
1302
1303 /* Remove _E{DIGITS}+[sb] */
1304
1305 /* Just as for protected object subprograms, there are 2 categories
1306 of subprograms created by the compiler for each entry. The first
1307 one implements the actual entry code, and has a suffix following
1308 the convention above; the second one implements the barrier and
1309 uses the same convention as above, except that the 'E' is replaced
1310 by a 'B'.
1311
1312 Just as above, we do not decode the name of barrier functions
1313 to give the user a clue that the code he is debugging has been
1314 internally generated. */
1315
1316 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1317 && isdigit (encoded[i+2]))
1318 {
1319 int k = i + 3;
1320
1321 while (k < len0 && isdigit (encoded[k]))
1322 k++;
1323
1324 if (k < len0
1325 && (encoded[k] == 'b' || encoded[k] == 's'))
1326 {
1327 k++;
1328 /* Just as an extra precaution, make sure that if this
1329 suffix is followed by anything else, it is a '_'.
1330 Otherwise, we matched this sequence by accident. */
1331 if (k == len0
1332 || (k < len0 && encoded[k] == '_'))
1333 i = k;
1334 }
1335 }
1336
1337 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1338 the GNAT front-end in protected object subprograms. */
1339
1340 if (i < len0 + 3
1341 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1342 {
1343 /* Backtrack a bit up until we reach either the begining of
1344 the encoded name, or "__". Make sure that we only find
1345 digits or lowercase characters. */
1346 const char *ptr = encoded + i - 1;
1347
1348 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1349 ptr--;
1350 if (ptr < encoded
1351 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1352 i++;
1353 }
1354
1355 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1356 {
1357 /* This is a X[bn]* sequence not separated from the previous
1358 part of the name with a non-alpha-numeric character (in other
1359 words, immediately following an alpha-numeric character), then
1360 verify that it is placed at the end of the encoded name. If
1361 not, then the encoding is not valid and we should abort the
1362 decoding. Otherwise, just skip it, it is used in body-nested
1363 package names. */
1364 do
1365 i += 1;
1366 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1367 if (i < len0)
1368 goto Suppress;
1369 }
1370 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1371 {
1372 /* Replace '__' by '.'. */
1373 decoded[j] = '.';
1374 at_start_name = 1;
1375 i += 2;
1376 j += 1;
1377 }
1378 else
1379 {
1380 /* It's a character part of the decoded name, so just copy it
1381 over. */
1382 decoded[j] = encoded[i];
1383 i += 1;
1384 j += 1;
1385 }
1386 }
1387 decoded[j] = '\000';
1388
1389 /* Decoded names should never contain any uppercase character.
1390 Double-check this, and abort the decoding if we find one. */
1391
1392 for (i = 0; decoded[i] != '\0'; i += 1)
1393 if (isupper (decoded[i]) || decoded[i] == ' ')
1394 goto Suppress;
1395
1396 if (strcmp (decoded, encoded) == 0)
1397 return encoded;
1398 else
1399 return decoded;
1400
1401 Suppress:
1402 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1403 decoded = decoding_buffer;
1404 if (encoded[0] == '<')
1405 strcpy (decoded, encoded);
1406 else
1407 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1408 return decoded;
1409
1410 }
1411
1412 /* Table for keeping permanent unique copies of decoded names. Once
1413 allocated, names in this table are never released. While this is a
1414 storage leak, it should not be significant unless there are massive
1415 changes in the set of decoded names in successive versions of a
1416 symbol table loaded during a single session. */
1417 static struct htab *decoded_names_store;
1418
1419 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1420 in the language-specific part of GSYMBOL, if it has not been
1421 previously computed. Tries to save the decoded name in the same
1422 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1423 in any case, the decoded symbol has a lifetime at least that of
1424 GSYMBOL).
1425 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1426 const, but nevertheless modified to a semantically equivalent form
1427 when a decoded name is cached in it. */
1428
1429 const char *
1430 ada_decode_symbol (const struct general_symbol_info *arg)
1431 {
1432 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1433 const char **resultp =
1434 &gsymbol->language_specific.demangled_name;
1435
1436 if (!gsymbol->ada_mangled)
1437 {
1438 const char *decoded = ada_decode (gsymbol->name);
1439 struct obstack *obstack = gsymbol->language_specific.obstack;
1440
1441 gsymbol->ada_mangled = 1;
1442
1443 if (obstack != NULL)
1444 *resultp
1445 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1446 else
1447 {
1448 /* Sometimes, we can't find a corresponding objfile, in
1449 which case, we put the result on the heap. Since we only
1450 decode when needed, we hope this usually does not cause a
1451 significant memory leak (FIXME). */
1452
1453 char **slot = (char **) htab_find_slot (decoded_names_store,
1454 decoded, INSERT);
1455
1456 if (*slot == NULL)
1457 *slot = xstrdup (decoded);
1458 *resultp = *slot;
1459 }
1460 }
1461
1462 return *resultp;
1463 }
1464
1465 static char *
1466 ada_la_decode (const char *encoded, int options)
1467 {
1468 return xstrdup (ada_decode (encoded));
1469 }
1470
1471 /* Implement la_sniff_from_mangled_name for Ada. */
1472
1473 static int
1474 ada_sniff_from_mangled_name (const char *mangled, char **out)
1475 {
1476 const char *demangled = ada_decode (mangled);
1477
1478 *out = NULL;
1479
1480 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1481 {
1482 /* Set the gsymbol language to Ada, but still return 0.
1483 Two reasons for that:
1484
1485 1. For Ada, we prefer computing the symbol's decoded name
1486 on the fly rather than pre-compute it, in order to save
1487 memory (Ada projects are typically very large).
1488
1489 2. There are some areas in the definition of the GNAT
1490 encoding where, with a bit of bad luck, we might be able
1491 to decode a non-Ada symbol, generating an incorrect
1492 demangled name (Eg: names ending with "TB" for instance
1493 are identified as task bodies and so stripped from
1494 the decoded name returned).
1495
1496 Returning 1, here, but not setting *DEMANGLED, helps us get a
1497 little bit of the best of both worlds. Because we're last,
1498 we should not affect any of the other languages that were
1499 able to demangle the symbol before us; we get to correctly
1500 tag Ada symbols as such; and even if we incorrectly tagged a
1501 non-Ada symbol, which should be rare, any routing through the
1502 Ada language should be transparent (Ada tries to behave much
1503 like C/C++ with non-Ada symbols). */
1504 return 1;
1505 }
1506
1507 return 0;
1508 }
1509
1510 \f
1511
1512 /* Arrays */
1513
1514 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1515 generated by the GNAT compiler to describe the index type used
1516 for each dimension of an array, check whether it follows the latest
1517 known encoding. If not, fix it up to conform to the latest encoding.
1518 Otherwise, do nothing. This function also does nothing if
1519 INDEX_DESC_TYPE is NULL.
1520
1521 The GNAT encoding used to describle the array index type evolved a bit.
1522 Initially, the information would be provided through the name of each
1523 field of the structure type only, while the type of these fields was
1524 described as unspecified and irrelevant. The debugger was then expected
1525 to perform a global type lookup using the name of that field in order
1526 to get access to the full index type description. Because these global
1527 lookups can be very expensive, the encoding was later enhanced to make
1528 the global lookup unnecessary by defining the field type as being
1529 the full index type description.
1530
1531 The purpose of this routine is to allow us to support older versions
1532 of the compiler by detecting the use of the older encoding, and by
1533 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1534 we essentially replace each field's meaningless type by the associated
1535 index subtype). */
1536
1537 void
1538 ada_fixup_array_indexes_type (struct type *index_desc_type)
1539 {
1540 int i;
1541
1542 if (index_desc_type == NULL)
1543 return;
1544 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1545
1546 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1547 to check one field only, no need to check them all). If not, return
1548 now.
1549
1550 If our INDEX_DESC_TYPE was generated using the older encoding,
1551 the field type should be a meaningless integer type whose name
1552 is not equal to the field name. */
1553 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1554 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1555 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1556 return;
1557
1558 /* Fixup each field of INDEX_DESC_TYPE. */
1559 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1560 {
1561 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1562 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1563
1564 if (raw_type)
1565 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1566 }
1567 }
1568
1569 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1570
1571 static const char *bound_name[] = {
1572 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1573 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1574 };
1575
1576 /* Maximum number of array dimensions we are prepared to handle. */
1577
1578 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1579
1580
1581 /* The desc_* routines return primitive portions of array descriptors
1582 (fat pointers). */
1583
1584 /* The descriptor or array type, if any, indicated by TYPE; removes
1585 level of indirection, if needed. */
1586
1587 static struct type *
1588 desc_base_type (struct type *type)
1589 {
1590 if (type == NULL)
1591 return NULL;
1592 type = ada_check_typedef (type);
1593 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1594 type = ada_typedef_target_type (type);
1595
1596 if (type != NULL
1597 && (TYPE_CODE (type) == TYPE_CODE_PTR
1598 || TYPE_CODE (type) == TYPE_CODE_REF))
1599 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1600 else
1601 return type;
1602 }
1603
1604 /* True iff TYPE indicates a "thin" array pointer type. */
1605
1606 static int
1607 is_thin_pntr (struct type *type)
1608 {
1609 return
1610 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1611 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1612 }
1613
1614 /* The descriptor type for thin pointer type TYPE. */
1615
1616 static struct type *
1617 thin_descriptor_type (struct type *type)
1618 {
1619 struct type *base_type = desc_base_type (type);
1620
1621 if (base_type == NULL)
1622 return NULL;
1623 if (is_suffix (ada_type_name (base_type), "___XVE"))
1624 return base_type;
1625 else
1626 {
1627 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1628
1629 if (alt_type == NULL)
1630 return base_type;
1631 else
1632 return alt_type;
1633 }
1634 }
1635
1636 /* A pointer to the array data for thin-pointer value VAL. */
1637
1638 static struct value *
1639 thin_data_pntr (struct value *val)
1640 {
1641 struct type *type = ada_check_typedef (value_type (val));
1642 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1643
1644 data_type = lookup_pointer_type (data_type);
1645
1646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1647 return value_cast (data_type, value_copy (val));
1648 else
1649 return value_from_longest (data_type, value_address (val));
1650 }
1651
1652 /* True iff TYPE indicates a "thick" array pointer type. */
1653
1654 static int
1655 is_thick_pntr (struct type *type)
1656 {
1657 type = desc_base_type (type);
1658 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1659 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1660 }
1661
1662 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1663 pointer to one, the type of its bounds data; otherwise, NULL. */
1664
1665 static struct type *
1666 desc_bounds_type (struct type *type)
1667 {
1668 struct type *r;
1669
1670 type = desc_base_type (type);
1671
1672 if (type == NULL)
1673 return NULL;
1674 else if (is_thin_pntr (type))
1675 {
1676 type = thin_descriptor_type (type);
1677 if (type == NULL)
1678 return NULL;
1679 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1680 if (r != NULL)
1681 return ada_check_typedef (r);
1682 }
1683 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1684 {
1685 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1686 if (r != NULL)
1687 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1688 }
1689 return NULL;
1690 }
1691
1692 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1693 one, a pointer to its bounds data. Otherwise NULL. */
1694
1695 static struct value *
1696 desc_bounds (struct value *arr)
1697 {
1698 struct type *type = ada_check_typedef (value_type (arr));
1699
1700 if (is_thin_pntr (type))
1701 {
1702 struct type *bounds_type =
1703 desc_bounds_type (thin_descriptor_type (type));
1704 LONGEST addr;
1705
1706 if (bounds_type == NULL)
1707 error (_("Bad GNAT array descriptor"));
1708
1709 /* NOTE: The following calculation is not really kosher, but
1710 since desc_type is an XVE-encoded type (and shouldn't be),
1711 the correct calculation is a real pain. FIXME (and fix GCC). */
1712 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1713 addr = value_as_long (arr);
1714 else
1715 addr = value_address (arr);
1716
1717 return
1718 value_from_longest (lookup_pointer_type (bounds_type),
1719 addr - TYPE_LENGTH (bounds_type));
1720 }
1721
1722 else if (is_thick_pntr (type))
1723 {
1724 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1725 _("Bad GNAT array descriptor"));
1726 struct type *p_bounds_type = value_type (p_bounds);
1727
1728 if (p_bounds_type
1729 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1730 {
1731 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1732
1733 if (TYPE_STUB (target_type))
1734 p_bounds = value_cast (lookup_pointer_type
1735 (ada_check_typedef (target_type)),
1736 p_bounds);
1737 }
1738 else
1739 error (_("Bad GNAT array descriptor"));
1740
1741 return p_bounds;
1742 }
1743 else
1744 return NULL;
1745 }
1746
1747 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1748 position of the field containing the address of the bounds data. */
1749
1750 static int
1751 fat_pntr_bounds_bitpos (struct type *type)
1752 {
1753 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1754 }
1755
1756 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 size of the field containing the address of the bounds data. */
1758
1759 static int
1760 fat_pntr_bounds_bitsize (struct type *type)
1761 {
1762 type = desc_base_type (type);
1763
1764 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1765 return TYPE_FIELD_BITSIZE (type, 1);
1766 else
1767 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1768 }
1769
1770 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1771 pointer to one, the type of its array data (a array-with-no-bounds type);
1772 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1773 data. */
1774
1775 static struct type *
1776 desc_data_target_type (struct type *type)
1777 {
1778 type = desc_base_type (type);
1779
1780 /* NOTE: The following is bogus; see comment in desc_bounds. */
1781 if (is_thin_pntr (type))
1782 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1783 else if (is_thick_pntr (type))
1784 {
1785 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1786
1787 if (data_type
1788 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1789 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1790 }
1791
1792 return NULL;
1793 }
1794
1795 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1796 its array data. */
1797
1798 static struct value *
1799 desc_data (struct value *arr)
1800 {
1801 struct type *type = value_type (arr);
1802
1803 if (is_thin_pntr (type))
1804 return thin_data_pntr (arr);
1805 else if (is_thick_pntr (type))
1806 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1807 _("Bad GNAT array descriptor"));
1808 else
1809 return NULL;
1810 }
1811
1812
1813 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1814 position of the field containing the address of the data. */
1815
1816 static int
1817 fat_pntr_data_bitpos (struct type *type)
1818 {
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1820 }
1821
1822 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1823 size of the field containing the address of the data. */
1824
1825 static int
1826 fat_pntr_data_bitsize (struct type *type)
1827 {
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 0);
1832 else
1833 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1834 }
1835
1836 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1837 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1838 bound, if WHICH is 1. The first bound is I=1. */
1839
1840 static struct value *
1841 desc_one_bound (struct value *bounds, int i, int which)
1842 {
1843 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1844 _("Bad GNAT array descriptor bounds"));
1845 }
1846
1847 /* If BOUNDS is an array-bounds structure type, return the bit position
1848 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1849 bound, if WHICH is 1. The first bound is I=1. */
1850
1851 static int
1852 desc_bound_bitpos (struct type *type, int i, int which)
1853 {
1854 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1855 }
1856
1857 /* If BOUNDS is an array-bounds structure type, return the bit field size
1858 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1859 bound, if WHICH is 1. The first bound is I=1. */
1860
1861 static int
1862 desc_bound_bitsize (struct type *type, int i, int which)
1863 {
1864 type = desc_base_type (type);
1865
1866 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1867 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1868 else
1869 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1870 }
1871
1872 /* If TYPE is the type of an array-bounds structure, the type of its
1873 Ith bound (numbering from 1). Otherwise, NULL. */
1874
1875 static struct type *
1876 desc_index_type (struct type *type, int i)
1877 {
1878 type = desc_base_type (type);
1879
1880 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1881 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1882 else
1883 return NULL;
1884 }
1885
1886 /* The number of index positions in the array-bounds type TYPE.
1887 Return 0 if TYPE is NULL. */
1888
1889 static int
1890 desc_arity (struct type *type)
1891 {
1892 type = desc_base_type (type);
1893
1894 if (type != NULL)
1895 return TYPE_NFIELDS (type) / 2;
1896 return 0;
1897 }
1898
1899 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1900 an array descriptor type (representing an unconstrained array
1901 type). */
1902
1903 static int
1904 ada_is_direct_array_type (struct type *type)
1905 {
1906 if (type == NULL)
1907 return 0;
1908 type = ada_check_typedef (type);
1909 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1910 || ada_is_array_descriptor_type (type));
1911 }
1912
1913 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1914 * to one. */
1915
1916 static int
1917 ada_is_array_type (struct type *type)
1918 {
1919 while (type != NULL
1920 && (TYPE_CODE (type) == TYPE_CODE_PTR
1921 || TYPE_CODE (type) == TYPE_CODE_REF))
1922 type = TYPE_TARGET_TYPE (type);
1923 return ada_is_direct_array_type (type);
1924 }
1925
1926 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1927
1928 int
1929 ada_is_simple_array_type (struct type *type)
1930 {
1931 if (type == NULL)
1932 return 0;
1933 type = ada_check_typedef (type);
1934 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1935 || (TYPE_CODE (type) == TYPE_CODE_PTR
1936 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1937 == TYPE_CODE_ARRAY));
1938 }
1939
1940 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1941
1942 int
1943 ada_is_array_descriptor_type (struct type *type)
1944 {
1945 struct type *data_type = desc_data_target_type (type);
1946
1947 if (type == NULL)
1948 return 0;
1949 type = ada_check_typedef (type);
1950 return (data_type != NULL
1951 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1952 && desc_arity (desc_bounds_type (type)) > 0);
1953 }
1954
1955 /* Non-zero iff type is a partially mal-formed GNAT array
1956 descriptor. FIXME: This is to compensate for some problems with
1957 debugging output from GNAT. Re-examine periodically to see if it
1958 is still needed. */
1959
1960 int
1961 ada_is_bogus_array_descriptor (struct type *type)
1962 {
1963 return
1964 type != NULL
1965 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1966 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1967 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1968 && !ada_is_array_descriptor_type (type);
1969 }
1970
1971
1972 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1973 (fat pointer) returns the type of the array data described---specifically,
1974 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1975 in from the descriptor; otherwise, they are left unspecified. If
1976 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1977 returns NULL. The result is simply the type of ARR if ARR is not
1978 a descriptor. */
1979 struct type *
1980 ada_type_of_array (struct value *arr, int bounds)
1981 {
1982 if (ada_is_constrained_packed_array_type (value_type (arr)))
1983 return decode_constrained_packed_array_type (value_type (arr));
1984
1985 if (!ada_is_array_descriptor_type (value_type (arr)))
1986 return value_type (arr);
1987
1988 if (!bounds)
1989 {
1990 struct type *array_type =
1991 ada_check_typedef (desc_data_target_type (value_type (arr)));
1992
1993 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1994 TYPE_FIELD_BITSIZE (array_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996
1997 return array_type;
1998 }
1999 else
2000 {
2001 struct type *elt_type;
2002 int arity;
2003 struct value *descriptor;
2004
2005 elt_type = ada_array_element_type (value_type (arr), -1);
2006 arity = ada_array_arity (value_type (arr));
2007
2008 if (elt_type == NULL || arity == 0)
2009 return ada_check_typedef (value_type (arr));
2010
2011 descriptor = desc_bounds (arr);
2012 if (value_as_long (descriptor) == 0)
2013 return NULL;
2014 while (arity > 0)
2015 {
2016 struct type *range_type = alloc_type_copy (value_type (arr));
2017 struct type *array_type = alloc_type_copy (value_type (arr));
2018 struct value *low = desc_one_bound (descriptor, arity, 0);
2019 struct value *high = desc_one_bound (descriptor, arity, 1);
2020
2021 arity -= 1;
2022 create_static_range_type (range_type, value_type (low),
2023 longest_to_int (value_as_long (low)),
2024 longest_to_int (value_as_long (high)));
2025 elt_type = create_array_type (array_type, elt_type, range_type);
2026
2027 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2028 {
2029 /* We need to store the element packed bitsize, as well as
2030 recompute the array size, because it was previously
2031 computed based on the unpacked element size. */
2032 LONGEST lo = value_as_long (low);
2033 LONGEST hi = value_as_long (high);
2034
2035 TYPE_FIELD_BITSIZE (elt_type, 0) =
2036 decode_packed_array_bitsize (value_type (arr));
2037 /* If the array has no element, then the size is already
2038 zero, and does not need to be recomputed. */
2039 if (lo < hi)
2040 {
2041 int array_bitsize =
2042 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2043
2044 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2045 }
2046 }
2047 }
2048
2049 return lookup_pointer_type (elt_type);
2050 }
2051 }
2052
2053 /* If ARR does not represent an array, returns ARR unchanged.
2054 Otherwise, returns either a standard GDB array with bounds set
2055 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2056 GDB array. Returns NULL if ARR is a null fat pointer. */
2057
2058 struct value *
2059 ada_coerce_to_simple_array_ptr (struct value *arr)
2060 {
2061 if (ada_is_array_descriptor_type (value_type (arr)))
2062 {
2063 struct type *arrType = ada_type_of_array (arr, 1);
2064
2065 if (arrType == NULL)
2066 return NULL;
2067 return value_cast (arrType, value_copy (desc_data (arr)));
2068 }
2069 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2070 return decode_constrained_packed_array (arr);
2071 else
2072 return arr;
2073 }
2074
2075 /* If ARR does not represent an array, returns ARR unchanged.
2076 Otherwise, returns a standard GDB array describing ARR (which may
2077 be ARR itself if it already is in the proper form). */
2078
2079 struct value *
2080 ada_coerce_to_simple_array (struct value *arr)
2081 {
2082 if (ada_is_array_descriptor_type (value_type (arr)))
2083 {
2084 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2085
2086 if (arrVal == NULL)
2087 error (_("Bounds unavailable for null array pointer."));
2088 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2089 return value_ind (arrVal);
2090 }
2091 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2092 return decode_constrained_packed_array (arr);
2093 else
2094 return arr;
2095 }
2096
2097 /* If TYPE represents a GNAT array type, return it translated to an
2098 ordinary GDB array type (possibly with BITSIZE fields indicating
2099 packing). For other types, is the identity. */
2100
2101 struct type *
2102 ada_coerce_to_simple_array_type (struct type *type)
2103 {
2104 if (ada_is_constrained_packed_array_type (type))
2105 return decode_constrained_packed_array_type (type);
2106
2107 if (ada_is_array_descriptor_type (type))
2108 return ada_check_typedef (desc_data_target_type (type));
2109
2110 return type;
2111 }
2112
2113 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2114
2115 static int
2116 ada_is_packed_array_type (struct type *type)
2117 {
2118 if (type == NULL)
2119 return 0;
2120 type = desc_base_type (type);
2121 type = ada_check_typedef (type);
2122 return
2123 ada_type_name (type) != NULL
2124 && strstr (ada_type_name (type), "___XP") != NULL;
2125 }
2126
2127 /* Non-zero iff TYPE represents a standard GNAT constrained
2128 packed-array type. */
2129
2130 int
2131 ada_is_constrained_packed_array_type (struct type *type)
2132 {
2133 return ada_is_packed_array_type (type)
2134 && !ada_is_array_descriptor_type (type);
2135 }
2136
2137 /* Non-zero iff TYPE represents an array descriptor for a
2138 unconstrained packed-array type. */
2139
2140 static int
2141 ada_is_unconstrained_packed_array_type (struct type *type)
2142 {
2143 return ada_is_packed_array_type (type)
2144 && ada_is_array_descriptor_type (type);
2145 }
2146
2147 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2148 return the size of its elements in bits. */
2149
2150 static long
2151 decode_packed_array_bitsize (struct type *type)
2152 {
2153 const char *raw_name;
2154 const char *tail;
2155 long bits;
2156
2157 /* Access to arrays implemented as fat pointers are encoded as a typedef
2158 of the fat pointer type. We need the name of the fat pointer type
2159 to do the decoding, so strip the typedef layer. */
2160 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2161 type = ada_typedef_target_type (type);
2162
2163 raw_name = ada_type_name (ada_check_typedef (type));
2164 if (!raw_name)
2165 raw_name = ada_type_name (desc_base_type (type));
2166
2167 if (!raw_name)
2168 return 0;
2169
2170 tail = strstr (raw_name, "___XP");
2171 gdb_assert (tail != NULL);
2172
2173 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2174 {
2175 lim_warning
2176 (_("could not understand bit size information on packed array"));
2177 return 0;
2178 }
2179
2180 return bits;
2181 }
2182
2183 /* Given that TYPE is a standard GDB array type with all bounds filled
2184 in, and that the element size of its ultimate scalar constituents
2185 (that is, either its elements, or, if it is an array of arrays, its
2186 elements' elements, etc.) is *ELT_BITS, return an identical type,
2187 but with the bit sizes of its elements (and those of any
2188 constituent arrays) recorded in the BITSIZE components of its
2189 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2190 in bits.
2191
2192 Note that, for arrays whose index type has an XA encoding where
2193 a bound references a record discriminant, getting that discriminant,
2194 and therefore the actual value of that bound, is not possible
2195 because none of the given parameters gives us access to the record.
2196 This function assumes that it is OK in the context where it is being
2197 used to return an array whose bounds are still dynamic and where
2198 the length is arbitrary. */
2199
2200 static struct type *
2201 constrained_packed_array_type (struct type *type, long *elt_bits)
2202 {
2203 struct type *new_elt_type;
2204 struct type *new_type;
2205 struct type *index_type_desc;
2206 struct type *index_type;
2207 LONGEST low_bound, high_bound;
2208
2209 type = ada_check_typedef (type);
2210 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2211 return type;
2212
2213 index_type_desc = ada_find_parallel_type (type, "___XA");
2214 if (index_type_desc)
2215 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2216 NULL);
2217 else
2218 index_type = TYPE_INDEX_TYPE (type);
2219
2220 new_type = alloc_type_copy (type);
2221 new_elt_type =
2222 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2223 elt_bits);
2224 create_array_type (new_type, new_elt_type, index_type);
2225 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2226 TYPE_NAME (new_type) = ada_type_name (type);
2227
2228 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2229 && is_dynamic_type (check_typedef (index_type)))
2230 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2231 low_bound = high_bound = 0;
2232 if (high_bound < low_bound)
2233 *elt_bits = TYPE_LENGTH (new_type) = 0;
2234 else
2235 {
2236 *elt_bits *= (high_bound - low_bound + 1);
2237 TYPE_LENGTH (new_type) =
2238 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2239 }
2240
2241 TYPE_FIXED_INSTANCE (new_type) = 1;
2242 return new_type;
2243 }
2244
2245 /* The array type encoded by TYPE, where
2246 ada_is_constrained_packed_array_type (TYPE). */
2247
2248 static struct type *
2249 decode_constrained_packed_array_type (struct type *type)
2250 {
2251 const char *raw_name = ada_type_name (ada_check_typedef (type));
2252 char *name;
2253 const char *tail;
2254 struct type *shadow_type;
2255 long bits;
2256
2257 if (!raw_name)
2258 raw_name = ada_type_name (desc_base_type (type));
2259
2260 if (!raw_name)
2261 return NULL;
2262
2263 name = (char *) alloca (strlen (raw_name) + 1);
2264 tail = strstr (raw_name, "___XP");
2265 type = desc_base_type (type);
2266
2267 memcpy (name, raw_name, tail - raw_name);
2268 name[tail - raw_name] = '\000';
2269
2270 shadow_type = ada_find_parallel_type_with_name (type, name);
2271
2272 if (shadow_type == NULL)
2273 {
2274 lim_warning (_("could not find bounds information on packed array"));
2275 return NULL;
2276 }
2277 shadow_type = check_typedef (shadow_type);
2278
2279 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2280 {
2281 lim_warning (_("could not understand bounds "
2282 "information on packed array"));
2283 return NULL;
2284 }
2285
2286 bits = decode_packed_array_bitsize (type);
2287 return constrained_packed_array_type (shadow_type, &bits);
2288 }
2289
2290 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2291 array, returns a simple array that denotes that array. Its type is a
2292 standard GDB array type except that the BITSIZEs of the array
2293 target types are set to the number of bits in each element, and the
2294 type length is set appropriately. */
2295
2296 static struct value *
2297 decode_constrained_packed_array (struct value *arr)
2298 {
2299 struct type *type;
2300
2301 /* If our value is a pointer, then dereference it. Likewise if
2302 the value is a reference. Make sure that this operation does not
2303 cause the target type to be fixed, as this would indirectly cause
2304 this array to be decoded. The rest of the routine assumes that
2305 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2306 and "value_ind" routines to perform the dereferencing, as opposed
2307 to using "ada_coerce_ref" or "ada_value_ind". */
2308 arr = coerce_ref (arr);
2309 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2310 arr = value_ind (arr);
2311
2312 type = decode_constrained_packed_array_type (value_type (arr));
2313 if (type == NULL)
2314 {
2315 error (_("can't unpack array"));
2316 return NULL;
2317 }
2318
2319 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2320 && ada_is_modular_type (value_type (arr)))
2321 {
2322 /* This is a (right-justified) modular type representing a packed
2323 array with no wrapper. In order to interpret the value through
2324 the (left-justified) packed array type we just built, we must
2325 first left-justify it. */
2326 int bit_size, bit_pos;
2327 ULONGEST mod;
2328
2329 mod = ada_modulus (value_type (arr)) - 1;
2330 bit_size = 0;
2331 while (mod > 0)
2332 {
2333 bit_size += 1;
2334 mod >>= 1;
2335 }
2336 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2337 arr = ada_value_primitive_packed_val (arr, NULL,
2338 bit_pos / HOST_CHAR_BIT,
2339 bit_pos % HOST_CHAR_BIT,
2340 bit_size,
2341 type);
2342 }
2343
2344 return coerce_unspec_val_to_type (arr, type);
2345 }
2346
2347
2348 /* The value of the element of packed array ARR at the ARITY indices
2349 given in IND. ARR must be a simple array. */
2350
2351 static struct value *
2352 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2353 {
2354 int i;
2355 int bits, elt_off, bit_off;
2356 long elt_total_bit_offset;
2357 struct type *elt_type;
2358 struct value *v;
2359
2360 bits = 0;
2361 elt_total_bit_offset = 0;
2362 elt_type = ada_check_typedef (value_type (arr));
2363 for (i = 0; i < arity; i += 1)
2364 {
2365 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2366 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2367 error
2368 (_("attempt to do packed indexing of "
2369 "something other than a packed array"));
2370 else
2371 {
2372 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2373 LONGEST lowerbound, upperbound;
2374 LONGEST idx;
2375
2376 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2377 {
2378 lim_warning (_("don't know bounds of array"));
2379 lowerbound = upperbound = 0;
2380 }
2381
2382 idx = pos_atr (ind[i]);
2383 if (idx < lowerbound || idx > upperbound)
2384 lim_warning (_("packed array index %ld out of bounds"),
2385 (long) idx);
2386 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2387 elt_total_bit_offset += (idx - lowerbound) * bits;
2388 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2389 }
2390 }
2391 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2392 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2393
2394 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2395 bits, elt_type);
2396 return v;
2397 }
2398
2399 /* Non-zero iff TYPE includes negative integer values. */
2400
2401 static int
2402 has_negatives (struct type *type)
2403 {
2404 switch (TYPE_CODE (type))
2405 {
2406 default:
2407 return 0;
2408 case TYPE_CODE_INT:
2409 return !TYPE_UNSIGNED (type);
2410 case TYPE_CODE_RANGE:
2411 return TYPE_LOW_BOUND (type) < 0;
2412 }
2413 }
2414
2415 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2416 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2417 the unpacked buffer.
2418
2419 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2420 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2421
2422 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2423 zero otherwise.
2424
2425 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2426
2427 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2428
2429 static void
2430 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2431 gdb_byte *unpacked, int unpacked_len,
2432 int is_big_endian, int is_signed_type,
2433 int is_scalar)
2434 {
2435 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 int src_idx; /* Index into the source area */
2437 int src_bytes_left; /* Number of source bytes left to process. */
2438 int srcBitsLeft; /* Number of source bits left to move */
2439 int unusedLS; /* Number of bits in next significant
2440 byte of source that are unused */
2441
2442 int unpacked_idx; /* Index into the unpacked buffer */
2443 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2444
2445 unsigned long accum; /* Staging area for bits being transferred */
2446 int accumSize; /* Number of meaningful bits in accum */
2447 unsigned char sign;
2448
2449 /* Transmit bytes from least to most significant; delta is the direction
2450 the indices move. */
2451 int delta = is_big_endian ? -1 : 1;
2452
2453 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2454 bits from SRC. .*/
2455 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2456 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2457 bit_size, unpacked_len);
2458
2459 srcBitsLeft = bit_size;
2460 src_bytes_left = src_len;
2461 unpacked_bytes_left = unpacked_len;
2462 sign = 0;
2463
2464 if (is_big_endian)
2465 {
2466 src_idx = src_len - 1;
2467 if (is_signed_type
2468 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2469 sign = ~0;
2470
2471 unusedLS =
2472 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2473 % HOST_CHAR_BIT;
2474
2475 if (is_scalar)
2476 {
2477 accumSize = 0;
2478 unpacked_idx = unpacked_len - 1;
2479 }
2480 else
2481 {
2482 /* Non-scalar values must be aligned at a byte boundary... */
2483 accumSize =
2484 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2485 /* ... And are placed at the beginning (most-significant) bytes
2486 of the target. */
2487 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2488 unpacked_bytes_left = unpacked_idx + 1;
2489 }
2490 }
2491 else
2492 {
2493 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2494
2495 src_idx = unpacked_idx = 0;
2496 unusedLS = bit_offset;
2497 accumSize = 0;
2498
2499 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2500 sign = ~0;
2501 }
2502
2503 accum = 0;
2504 while (src_bytes_left > 0)
2505 {
2506 /* Mask for removing bits of the next source byte that are not
2507 part of the value. */
2508 unsigned int unusedMSMask =
2509 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2510 1;
2511 /* Sign-extend bits for this byte. */
2512 unsigned int signMask = sign & ~unusedMSMask;
2513
2514 accum |=
2515 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2516 accumSize += HOST_CHAR_BIT - unusedLS;
2517 if (accumSize >= HOST_CHAR_BIT)
2518 {
2519 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
2522 unpacked_bytes_left -= 1;
2523 unpacked_idx += delta;
2524 }
2525 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2526 unusedLS = 0;
2527 src_bytes_left -= 1;
2528 src_idx += delta;
2529 }
2530 while (unpacked_bytes_left > 0)
2531 {
2532 accum |= sign << accumSize;
2533 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2534 accumSize -= HOST_CHAR_BIT;
2535 if (accumSize < 0)
2536 accumSize = 0;
2537 accum >>= HOST_CHAR_BIT;
2538 unpacked_bytes_left -= 1;
2539 unpacked_idx += delta;
2540 }
2541 }
2542
2543 /* Create a new value of type TYPE from the contents of OBJ starting
2544 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2545 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2546 assigning through the result will set the field fetched from.
2547 VALADDR is ignored unless OBJ is NULL, in which case,
2548 VALADDR+OFFSET must address the start of storage containing the
2549 packed value. The value returned in this case is never an lval.
2550 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2551
2552 struct value *
2553 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2554 long offset, int bit_offset, int bit_size,
2555 struct type *type)
2556 {
2557 struct value *v;
2558 const gdb_byte *src; /* First byte containing data to unpack */
2559 gdb_byte *unpacked;
2560 const int is_scalar = is_scalar_type (type);
2561 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2562 gdb::byte_vector staging;
2563
2564 type = ada_check_typedef (type);
2565
2566 if (obj == NULL)
2567 src = valaddr + offset;
2568 else
2569 src = value_contents (obj) + offset;
2570
2571 if (is_dynamic_type (type))
2572 {
2573 /* The length of TYPE might by dynamic, so we need to resolve
2574 TYPE in order to know its actual size, which we then use
2575 to create the contents buffer of the value we return.
2576 The difficulty is that the data containing our object is
2577 packed, and therefore maybe not at a byte boundary. So, what
2578 we do, is unpack the data into a byte-aligned buffer, and then
2579 use that buffer as our object's value for resolving the type. */
2580 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2581 staging.resize (staging_len);
2582
2583 ada_unpack_from_contents (src, bit_offset, bit_size,
2584 staging.data (), staging.size (),
2585 is_big_endian, has_negatives (type),
2586 is_scalar);
2587 type = resolve_dynamic_type (type, staging.data (), 0);
2588 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2589 {
2590 /* This happens when the length of the object is dynamic,
2591 and is actually smaller than the space reserved for it.
2592 For instance, in an array of variant records, the bit_size
2593 we're given is the array stride, which is constant and
2594 normally equal to the maximum size of its element.
2595 But, in reality, each element only actually spans a portion
2596 of that stride. */
2597 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2598 }
2599 }
2600
2601 if (obj == NULL)
2602 {
2603 v = allocate_value (type);
2604 src = valaddr + offset;
2605 }
2606 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2607 {
2608 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2609 gdb_byte *buf;
2610
2611 v = value_at (type, value_address (obj) + offset);
2612 buf = (gdb_byte *) alloca (src_len);
2613 read_memory (value_address (v), buf, src_len);
2614 src = buf;
2615 }
2616 else
2617 {
2618 v = allocate_value (type);
2619 src = value_contents (obj) + offset;
2620 }
2621
2622 if (obj != NULL)
2623 {
2624 long new_offset = offset;
2625
2626 set_value_component_location (v, obj);
2627 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2628 set_value_bitsize (v, bit_size);
2629 if (value_bitpos (v) >= HOST_CHAR_BIT)
2630 {
2631 ++new_offset;
2632 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2633 }
2634 set_value_offset (v, new_offset);
2635
2636 /* Also set the parent value. This is needed when trying to
2637 assign a new value (in inferior memory). */
2638 set_value_parent (v, obj);
2639 }
2640 else
2641 set_value_bitsize (v, bit_size);
2642 unpacked = value_contents_writeable (v);
2643
2644 if (bit_size == 0)
2645 {
2646 memset (unpacked, 0, TYPE_LENGTH (type));
2647 return v;
2648 }
2649
2650 if (staging.size () == TYPE_LENGTH (type))
2651 {
2652 /* Small short-cut: If we've unpacked the data into a buffer
2653 of the same size as TYPE's length, then we can reuse that,
2654 instead of doing the unpacking again. */
2655 memcpy (unpacked, staging.data (), staging.size ());
2656 }
2657 else
2658 ada_unpack_from_contents (src, bit_offset, bit_size,
2659 unpacked, TYPE_LENGTH (type),
2660 is_big_endian, has_negatives (type), is_scalar);
2661
2662 return v;
2663 }
2664
2665 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2666 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2667 not overlap. */
2668 static void
2669 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2670 int src_offset, int n, int bits_big_endian_p)
2671 {
2672 unsigned int accum, mask;
2673 int accum_bits, chunk_size;
2674
2675 target += targ_offset / HOST_CHAR_BIT;
2676 targ_offset %= HOST_CHAR_BIT;
2677 source += src_offset / HOST_CHAR_BIT;
2678 src_offset %= HOST_CHAR_BIT;
2679 if (bits_big_endian_p)
2680 {
2681 accum = (unsigned char) *source;
2682 source += 1;
2683 accum_bits = HOST_CHAR_BIT - src_offset;
2684
2685 while (n > 0)
2686 {
2687 int unused_right;
2688
2689 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2696 mask = ((1 << chunk_size) - 1) << unused_right;
2697 *target =
2698 (*target & ~mask)
2699 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2700 n -= chunk_size;
2701 accum_bits -= chunk_size;
2702 target += 1;
2703 targ_offset = 0;
2704 }
2705 }
2706 else
2707 {
2708 accum = (unsigned char) *source >> src_offset;
2709 source += 1;
2710 accum_bits = HOST_CHAR_BIT - src_offset;
2711
2712 while (n > 0)
2713 {
2714 accum = accum + ((unsigned char) *source << accum_bits);
2715 accum_bits += HOST_CHAR_BIT;
2716 source += 1;
2717 chunk_size = HOST_CHAR_BIT - targ_offset;
2718 if (chunk_size > n)
2719 chunk_size = n;
2720 mask = ((1 << chunk_size) - 1) << targ_offset;
2721 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2722 n -= chunk_size;
2723 accum_bits -= chunk_size;
2724 accum >>= chunk_size;
2725 target += 1;
2726 targ_offset = 0;
2727 }
2728 }
2729 }
2730
2731 /* Store the contents of FROMVAL into the location of TOVAL.
2732 Return a new value with the location of TOVAL and contents of
2733 FROMVAL. Handles assignment into packed fields that have
2734 floating-point or non-scalar types. */
2735
2736 static struct value *
2737 ada_value_assign (struct value *toval, struct value *fromval)
2738 {
2739 struct type *type = value_type (toval);
2740 int bits = value_bitsize (toval);
2741
2742 toval = ada_coerce_ref (toval);
2743 fromval = ada_coerce_ref (fromval);
2744
2745 if (ada_is_direct_array_type (value_type (toval)))
2746 toval = ada_coerce_to_simple_array (toval);
2747 if (ada_is_direct_array_type (value_type (fromval)))
2748 fromval = ada_coerce_to_simple_array (fromval);
2749
2750 if (!deprecated_value_modifiable (toval))
2751 error (_("Left operand of assignment is not a modifiable lvalue."));
2752
2753 if (VALUE_LVAL (toval) == lval_memory
2754 && bits > 0
2755 && (TYPE_CODE (type) == TYPE_CODE_FLT
2756 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2757 {
2758 int len = (value_bitpos (toval)
2759 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2760 int from_size;
2761 gdb_byte *buffer = (gdb_byte *) alloca (len);
2762 struct value *val;
2763 CORE_ADDR to_addr = value_address (toval);
2764
2765 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2766 fromval = value_cast (type, fromval);
2767
2768 read_memory (to_addr, buffer, len);
2769 from_size = value_bitsize (fromval);
2770 if (from_size == 0)
2771 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2772 if (gdbarch_bits_big_endian (get_type_arch (type)))
2773 move_bits (buffer, value_bitpos (toval),
2774 value_contents (fromval), from_size - bits, bits, 1);
2775 else
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), 0, bits, 0);
2778 write_memory_with_notification (to_addr, buffer, len);
2779
2780 val = value_copy (toval);
2781 memcpy (value_contents_raw (val), value_contents (fromval),
2782 TYPE_LENGTH (type));
2783 deprecated_set_value_type (val, type);
2784
2785 return val;
2786 }
2787
2788 return value_assign (toval, fromval);
2789 }
2790
2791
2792 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2793 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2794 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2795 COMPONENT, and not the inferior's memory. The current contents
2796 of COMPONENT are ignored.
2797
2798 Although not part of the initial design, this function also works
2799 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2800 had a null address, and COMPONENT had an address which is equal to
2801 its offset inside CONTAINER. */
2802
2803 static void
2804 value_assign_to_component (struct value *container, struct value *component,
2805 struct value *val)
2806 {
2807 LONGEST offset_in_container =
2808 (LONGEST) (value_address (component) - value_address (container));
2809 int bit_offset_in_container =
2810 value_bitpos (component) - value_bitpos (container);
2811 int bits;
2812
2813 val = value_cast (value_type (component), val);
2814
2815 if (value_bitsize (component) == 0)
2816 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2817 else
2818 bits = value_bitsize (component);
2819
2820 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2821 move_bits (value_contents_writeable (container) + offset_in_container,
2822 value_bitpos (container) + bit_offset_in_container,
2823 value_contents (val),
2824 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2825 bits, 1);
2826 else
2827 move_bits (value_contents_writeable (container) + offset_in_container,
2828 value_bitpos (container) + bit_offset_in_container,
2829 value_contents (val), 0, bits, 0);
2830 }
2831
2832 /* The value of the element of array ARR at the ARITY indices given in IND.
2833 ARR may be either a simple array, GNAT array descriptor, or pointer
2834 thereto. */
2835
2836 struct value *
2837 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2838 {
2839 int k;
2840 struct value *elt;
2841 struct type *elt_type;
2842
2843 elt = ada_coerce_to_simple_array (arr);
2844
2845 elt_type = ada_check_typedef (value_type (elt));
2846 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2847 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2848 return value_subscript_packed (elt, arity, ind);
2849
2850 for (k = 0; k < arity; k += 1)
2851 {
2852 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2853 error (_("too many subscripts (%d expected)"), k);
2854 elt = value_subscript (elt, pos_atr (ind[k]));
2855 }
2856 return elt;
2857 }
2858
2859 /* Assuming ARR is a pointer to a GDB array, the value of the element
2860 of *ARR at the ARITY indices given in IND.
2861 Does not read the entire array into memory.
2862
2863 Note: Unlike what one would expect, this function is used instead of
2864 ada_value_subscript for basically all non-packed array types. The reason
2865 for this is that a side effect of doing our own pointer arithmetics instead
2866 of relying on value_subscript is that there is no implicit typedef peeling.
2867 This is important for arrays of array accesses, where it allows us to
2868 preserve the fact that the array's element is an array access, where the
2869 access part os encoded in a typedef layer. */
2870
2871 static struct value *
2872 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2873 {
2874 int k;
2875 struct value *array_ind = ada_value_ind (arr);
2876 struct type *type
2877 = check_typedef (value_enclosing_type (array_ind));
2878
2879 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2880 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2881 return value_subscript_packed (array_ind, arity, ind);
2882
2883 for (k = 0; k < arity; k += 1)
2884 {
2885 LONGEST lwb, upb;
2886 struct value *lwb_value;
2887
2888 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2889 error (_("too many subscripts (%d expected)"), k);
2890 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2891 value_copy (arr));
2892 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2893 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2894 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2895 type = TYPE_TARGET_TYPE (type);
2896 }
2897
2898 return value_ind (arr);
2899 }
2900
2901 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2902 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2903 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2904 this array is LOW, as per Ada rules. */
2905 static struct value *
2906 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2907 int low, int high)
2908 {
2909 struct type *type0 = ada_check_typedef (type);
2910 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2911 struct type *index_type
2912 = create_static_range_type (NULL, base_index_type, low, high);
2913 struct type *slice_type =
2914 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2915 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2916 LONGEST base_low_pos, low_pos;
2917 CORE_ADDR base;
2918
2919 if (!discrete_position (base_index_type, low, &low_pos)
2920 || !discrete_position (base_index_type, base_low, &base_low_pos))
2921 {
2922 warning (_("unable to get positions in slice, use bounds instead"));
2923 low_pos = low;
2924 base_low_pos = base_low;
2925 }
2926
2927 base = value_as_address (array_ptr)
2928 + ((low_pos - base_low_pos)
2929 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2930 return value_at_lazy (slice_type, base);
2931 }
2932
2933
2934 static struct value *
2935 ada_value_slice (struct value *array, int low, int high)
2936 {
2937 struct type *type = ada_check_typedef (value_type (array));
2938 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2939 struct type *index_type
2940 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2941 struct type *slice_type =
2942 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2943 LONGEST low_pos, high_pos;
2944
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
2955 }
2956
2957 /* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
2960 type designation. Otherwise, returns 0. */
2961
2962 int
2963 ada_array_arity (struct type *type)
2964 {
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2974 return desc_arity (desc_bounds_type (type));
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2977 {
2978 arity += 1;
2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2980 }
2981
2982 return arity;
2983 }
2984
2985 /* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
2988 NINDICES is -1. Otherwise, returns NULL. */
2989
2990 struct type *
2991 ada_array_element_type (struct type *type, int nindices)
2992 {
2993 type = desc_base_type (type);
2994
2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2996 {
2997 int k;
2998 struct type *p_array_type;
2999
3000 p_array_type = desc_data_target_type (type);
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
3004 return NULL;
3005
3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3007 if (nindices >= 0 && k > nindices)
3008 k = nindices;
3009 while (k > 0 && p_array_type != NULL)
3010 {
3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3012 k -= 1;
3013 }
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
3023 return type;
3024 }
3025
3026 return NULL;
3027 }
3028
3029 /* The type of nth index in arrays of given type (n numbering from 1).
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
3034
3035 static struct type *
3036 ada_index_type (struct type *type, int n, const char *name)
3037 {
3038 struct type *result_type;
3039
3040 type = desc_base_type (type);
3041
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
3044
3045 if (ada_is_simple_array_type (type))
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
3050 type = TYPE_TARGET_TYPE (type);
3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3054 perhaps stabsread.c would make more sense. */
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
3057 }
3058 else
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
3066 }
3067
3068 /* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
3073
3074 static LONGEST
3075 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3076 {
3077 struct type *type, *index_type_desc, *index_type;
3078 int i;
3079
3080 gdb_assert (which == 0 || which == 1);
3081
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
3084
3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3086 return (LONGEST) - which;
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
3106 if (index_type_desc != NULL)
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
3109 else
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
3118
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
3123 }
3124
3125 /* Given that arr is an array value, returns the lower bound of the
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
3128 supplied by run-time quantities other than discriminants. */
3129
3130 static LONGEST
3131 ada_array_bound (struct value *arr, int n, int which)
3132 {
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
3138
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3141 else if (ada_is_simple_array_type (arr_type))
3142 return ada_array_bound_from_type (arr_type, n, which);
3143 else
3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3145 }
3146
3147 /* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
3152
3153 static LONGEST
3154 ada_array_length (struct value *arr, int n)
3155 {
3156 struct type *arr_type, *index_type;
3157 int low, high;
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
3162
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
3165
3166 if (ada_is_simple_array_type (arr_type))
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
3171 else
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
3177 arr_type = check_typedef (arr_type);
3178 index_type = TYPE_INDEX_TYPE (arr_type);
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
3191 }
3192
3193 /* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196 static struct value *
3197 empty_array (struct type *arr_type, int low)
3198 {
3199 struct type *arr_type0 = ada_check_typedef (arr_type);
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3204
3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
3206 }
3207 \f
3208
3209 /* Name resolution */
3210
3211 /* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
3213
3214 static const char *
3215 ada_decoded_op_name (enum exp_opcode op)
3216 {
3217 int i;
3218
3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3220 {
3221 if (ada_opname_table[i].op == op)
3222 return ada_opname_table[i].decoded;
3223 }
3224 error (_("Could not find operator name for opcode"));
3225 }
3226
3227
3228 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3235 return type is preferred. May change (expand) *EXP. */
3236
3237 static void
3238 resolve (struct expression **expp, int void_context_p)
3239 {
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
3247 }
3248
3249 /* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
3257
3258 static struct value *
3259 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3260 struct type *context_type)
3261 {
3262 int pc = *pos;
3263 int i;
3264 struct expression *exp; /* Convenience: == *expp. */
3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
3268 int oplen;
3269 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3270
3271 argvec = NULL;
3272 nargs = 0;
3273 exp = *expp;
3274
3275 /* Pass one: resolve operands, saving their types and updating *pos,
3276 if needed. */
3277 switch (op)
3278 {
3279 case OP_FUNCALL:
3280 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3281 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3282 *pos += 7;
3283 else
3284 {
3285 *pos += 3;
3286 resolve_subexp (expp, pos, 0, NULL);
3287 }
3288 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3289 break;
3290
3291 case UNOP_ADDR:
3292 *pos += 1;
3293 resolve_subexp (expp, pos, 0, NULL);
3294 break;
3295
3296 case UNOP_QUAL:
3297 *pos += 3;
3298 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3299 break;
3300
3301 case OP_ATR_MODULUS:
3302 case OP_ATR_SIZE:
3303 case OP_ATR_TAG:
3304 case OP_ATR_FIRST:
3305 case OP_ATR_LAST:
3306 case OP_ATR_LENGTH:
3307 case OP_ATR_POS:
3308 case OP_ATR_VAL:
3309 case OP_ATR_MIN:
3310 case OP_ATR_MAX:
3311 case TERNOP_IN_RANGE:
3312 case BINOP_IN_BOUNDS:
3313 case UNOP_IN_RANGE:
3314 case OP_AGGREGATE:
3315 case OP_OTHERS:
3316 case OP_CHOICES:
3317 case OP_POSITIONAL:
3318 case OP_DISCRETE_RANGE:
3319 case OP_NAME:
3320 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3321 *pos += oplen;
3322 break;
3323
3324 case BINOP_ASSIGN:
3325 {
3326 struct value *arg1;
3327
3328 *pos += 1;
3329 arg1 = resolve_subexp (expp, pos, 0, NULL);
3330 if (arg1 == NULL)
3331 resolve_subexp (expp, pos, 1, NULL);
3332 else
3333 resolve_subexp (expp, pos, 1, value_type (arg1));
3334 break;
3335 }
3336
3337 case UNOP_CAST:
3338 *pos += 3;
3339 nargs = 1;
3340 break;
3341
3342 case BINOP_ADD:
3343 case BINOP_SUB:
3344 case BINOP_MUL:
3345 case BINOP_DIV:
3346 case BINOP_REM:
3347 case BINOP_MOD:
3348 case BINOP_EXP:
3349 case BINOP_CONCAT:
3350 case BINOP_LOGICAL_AND:
3351 case BINOP_LOGICAL_OR:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
3355
3356 case BINOP_EQUAL:
3357 case BINOP_NOTEQUAL:
3358 case BINOP_LESS:
3359 case BINOP_GTR:
3360 case BINOP_LEQ:
3361 case BINOP_GEQ:
3362
3363 case BINOP_REPEAT:
3364 case BINOP_SUBSCRIPT:
3365 case BINOP_COMMA:
3366 *pos += 1;
3367 nargs = 2;
3368 break;
3369
3370 case UNOP_NEG:
3371 case UNOP_PLUS:
3372 case UNOP_LOGICAL_NOT:
3373 case UNOP_ABS:
3374 case UNOP_IND:
3375 *pos += 1;
3376 nargs = 1;
3377 break;
3378
3379 case OP_LONG:
3380 case OP_FLOAT:
3381 case OP_VAR_VALUE:
3382 case OP_VAR_MSYM_VALUE:
3383 *pos += 4;
3384 break;
3385
3386 case OP_TYPE:
3387 case OP_BOOL:
3388 case OP_LAST:
3389 case OP_INTERNALVAR:
3390 *pos += 3;
3391 break;
3392
3393 case UNOP_MEMVAL:
3394 *pos += 3;
3395 nargs = 1;
3396 break;
3397
3398 case OP_REGISTER:
3399 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3400 break;
3401
3402 case STRUCTOP_STRUCT:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 nargs = 1;
3405 break;
3406
3407 case TERNOP_SLICE:
3408 *pos += 1;
3409 nargs = 3;
3410 break;
3411
3412 case OP_STRING:
3413 break;
3414
3415 default:
3416 error (_("Unexpected operator during name resolution"));
3417 }
3418
3419 argvec = XALLOCAVEC (struct value *, nargs + 1);
3420 for (i = 0; i < nargs; i += 1)
3421 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3422 argvec[i] = NULL;
3423 exp = *expp;
3424
3425 /* Pass two: perform any resolution on principal operator. */
3426 switch (op)
3427 {
3428 default:
3429 break;
3430
3431 case OP_VAR_VALUE:
3432 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3433 {
3434 struct block_symbol *candidates;
3435 int n_candidates;
3436
3437 n_candidates =
3438 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3439 (exp->elts[pc + 2].symbol),
3440 exp->elts[pc + 1].block, VAR_DOMAIN,
3441 &candidates);
3442 make_cleanup (xfree, candidates);
3443
3444 if (n_candidates > 1)
3445 {
3446 /* Types tend to get re-introduced locally, so if there
3447 are any local symbols that are not types, first filter
3448 out all types. */
3449 int j;
3450 for (j = 0; j < n_candidates; j += 1)
3451 switch (SYMBOL_CLASS (candidates[j].symbol))
3452 {
3453 case LOC_REGISTER:
3454 case LOC_ARG:
3455 case LOC_REF_ARG:
3456 case LOC_REGPARM_ADDR:
3457 case LOC_LOCAL:
3458 case LOC_COMPUTED:
3459 goto FoundNonType;
3460 default:
3461 break;
3462 }
3463 FoundNonType:
3464 if (j < n_candidates)
3465 {
3466 j = 0;
3467 while (j < n_candidates)
3468 {
3469 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3470 {
3471 candidates[j] = candidates[n_candidates - 1];
3472 n_candidates -= 1;
3473 }
3474 else
3475 j += 1;
3476 }
3477 }
3478 }
3479
3480 if (n_candidates == 0)
3481 error (_("No definition found for %s"),
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 else if (n_candidates == 1)
3484 i = 0;
3485 else if (deprocedure_p
3486 && !is_nonfunction (candidates, n_candidates))
3487 {
3488 i = ada_resolve_function
3489 (candidates, n_candidates, NULL, 0,
3490 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3491 context_type);
3492 if (i < 0)
3493 error (_("Could not find a match for %s"),
3494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3495 }
3496 else
3497 {
3498 printf_filtered (_("Multiple matches for %s\n"),
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 user_select_syms (candidates, n_candidates, 1);
3501 i = 0;
3502 }
3503
3504 exp->elts[pc + 1].block = candidates[i].block;
3505 exp->elts[pc + 2].symbol = candidates[i].symbol;
3506 if (innermost_block == NULL
3507 || contained_in (candidates[i].block, innermost_block))
3508 innermost_block = candidates[i].block;
3509 }
3510
3511 if (deprocedure_p
3512 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3513 == TYPE_CODE_FUNC))
3514 {
3515 replace_operator_with_call (expp, pc, 0, 0,
3516 exp->elts[pc + 2].symbol,
3517 exp->elts[pc + 1].block);
3518 exp = *expp;
3519 }
3520 break;
3521
3522 case OP_FUNCALL:
3523 {
3524 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3525 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3526 {
3527 struct block_symbol *candidates;
3528 int n_candidates;
3529
3530 n_candidates =
3531 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3532 (exp->elts[pc + 5].symbol),
3533 exp->elts[pc + 4].block, VAR_DOMAIN,
3534 &candidates);
3535 make_cleanup (xfree, candidates);
3536
3537 if (n_candidates == 1)
3538 i = 0;
3539 else
3540 {
3541 i = ada_resolve_function
3542 (candidates, n_candidates,
3543 argvec, nargs,
3544 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3545 context_type);
3546 if (i < 0)
3547 error (_("Could not find a match for %s"),
3548 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3549 }
3550
3551 exp->elts[pc + 4].block = candidates[i].block;
3552 exp->elts[pc + 5].symbol = candidates[i].symbol;
3553 if (innermost_block == NULL
3554 || contained_in (candidates[i].block, innermost_block))
3555 innermost_block = candidates[i].block;
3556 }
3557 }
3558 break;
3559 case BINOP_ADD:
3560 case BINOP_SUB:
3561 case BINOP_MUL:
3562 case BINOP_DIV:
3563 case BINOP_REM:
3564 case BINOP_MOD:
3565 case BINOP_CONCAT:
3566 case BINOP_BITWISE_AND:
3567 case BINOP_BITWISE_IOR:
3568 case BINOP_BITWISE_XOR:
3569 case BINOP_EQUAL:
3570 case BINOP_NOTEQUAL:
3571 case BINOP_LESS:
3572 case BINOP_GTR:
3573 case BINOP_LEQ:
3574 case BINOP_GEQ:
3575 case BINOP_EXP:
3576 case UNOP_NEG:
3577 case UNOP_PLUS:
3578 case UNOP_LOGICAL_NOT:
3579 case UNOP_ABS:
3580 if (possible_user_operator_p (op, argvec))
3581 {
3582 struct block_symbol *candidates;
3583 int n_candidates;
3584
3585 n_candidates =
3586 ada_lookup_symbol_list (ada_decoded_op_name (op),
3587 (struct block *) NULL, VAR_DOMAIN,
3588 &candidates);
3589 make_cleanup (xfree, candidates);
3590
3591 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3592 ada_decoded_op_name (op), NULL);
3593 if (i < 0)
3594 break;
3595
3596 replace_operator_with_call (expp, pc, nargs, 1,
3597 candidates[i].symbol,
3598 candidates[i].block);
3599 exp = *expp;
3600 }
3601 break;
3602
3603 case OP_TYPE:
3604 case OP_REGISTER:
3605 do_cleanups (old_chain);
3606 return NULL;
3607 }
3608
3609 *pos = pc;
3610 do_cleanups (old_chain);
3611 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3612 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3613 exp->elts[pc + 1].objfile,
3614 exp->elts[pc + 2].msymbol);
3615 else
3616 return evaluate_subexp_type (exp, pos);
3617 }
3618
3619 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3621 a non-pointer. */
3622 /* The term "match" here is rather loose. The match is heuristic and
3623 liberal. */
3624
3625 static int
3626 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3627 {
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
3630
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3635
3636 switch (TYPE_CODE (ftype))
3637 {
3638 default:
3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3640 case TYPE_CODE_PTR:
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
3644 else
3645 return (may_deref
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
3651 {
3652 case TYPE_CODE_INT:
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3655 return 1;
3656 default:
3657 return 0;
3658 }
3659
3660 case TYPE_CODE_ARRAY:
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3663
3664 case TYPE_CODE_STRUCT:
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
3668 else
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
3671
3672 case TYPE_CODE_UNION:
3673 case TYPE_CODE_FLT:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3675 }
3676 }
3677
3678 /* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
3681 argument function. */
3682
3683 static int
3684 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3685 {
3686 int i;
3687 struct type *func_type = SYMBOL_TYPE (func);
3688
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3693 return 0;
3694
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3696 return 0;
3697
3698 for (i = 0; i < n_actuals; i += 1)
3699 {
3700 if (actuals[i] == NULL)
3701 return 0;
3702 else
3703 {
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3705 i));
3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3707
3708 if (!ada_type_match (ftype, atype, 1))
3709 return 0;
3710 }
3711 }
3712 return 1;
3713 }
3714
3715 /* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3719
3720 static int
3721 return_match (struct type *func_type, struct type *context_type)
3722 {
3723 struct type *return_type;
3724
3725 if (func_type == NULL)
3726 return 1;
3727
3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3730 else
3731 return_type = get_base_type (func_type);
3732 if (return_type == NULL)
3733 return 1;
3734
3735 context_type = get_base_type (context_type);
3736
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3741 else
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3743 }
3744
3745
3746 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3747 function (if any) that matches the types of the NARGS arguments in
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3752
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
3757
3758 static int
3759 ada_resolve_function (struct block_symbol syms[],
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
3762 {
3763 int fallback;
3764 int k;
3765 int m; /* Number of hits */
3766
3767 m = 0;
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3772 {
3773 for (k = 0; k < nsyms; k += 1)
3774 {
3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3776
3777 if (ada_args_match (syms[k].symbol, args, nargs)
3778 && (fallback || return_match (type, context_type)))
3779 {
3780 syms[m] = syms[k];
3781 m += 1;
3782 }
3783 }
3784 }
3785
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
3790 if (m == 0)
3791 return -1;
3792 else if (m > 1 && !parse_completion)
3793 {
3794 printf_filtered (_("Multiple matches for %s\n"), name);
3795 user_select_syms (syms, m, 1);
3796 return 0;
3797 }
3798 return 0;
3799 }
3800
3801 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3806
3807 static int
3808 encoded_ordered_before (const char *N0, const char *N1)
3809 {
3810 if (N1 == NULL)
3811 return 0;
3812 else if (N0 == NULL)
3813 return 1;
3814 else
3815 {
3816 int k0, k1;
3817
3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3819 ;
3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3821 ;
3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824 {
3825 int n0, n1;
3826
3827 n0 = k0;
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3829 n0 -= 1;
3830 n1 = k1;
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3832 n1 -= 1;
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3835 }
3836 return (strcmp (N0, N1) < 0);
3837 }
3838 }
3839
3840 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3841 encoded names. */
3842
3843 static void
3844 sort_choices (struct block_symbol syms[], int nsyms)
3845 {
3846 int i;
3847
3848 for (i = 1; i < nsyms; i += 1)
3849 {
3850 struct block_symbol sym = syms[i];
3851 int j;
3852
3853 for (j = i - 1; j >= 0; j -= 1)
3854 {
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
3857 break;
3858 syms[j + 1] = syms[j];
3859 }
3860 syms[j + 1] = sym;
3861 }
3862 }
3863
3864 /* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866 static int print_signatures = 1;
3867
3868 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3872
3873 static void
3874 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3876 {
3877 struct type *type = SYMBOL_TYPE (sym);
3878
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3881 || type == NULL
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3883 return;
3884
3885 if (TYPE_NFIELDS (type) > 0)
3886 {
3887 int i;
3888
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3891 {
3892 if (i > 0)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3895 flags);
3896 }
3897 fprintf_filtered (stream, ")");
3898 }
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3901 {
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3904 }
3905 }
3906
3907 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3910 selected. */
3911
3912 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3913 to be re-integrated one of these days. */
3914
3915 int
3916 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3917 {
3918 int i;
3919 int *chosen = XALLOCAVEC (int , nsyms);
3920 int n_chosen;
3921 int first_choice = (max_results == 1) ? 1 : 2;
3922 const char *select_mode = multiple_symbols_select_mode ();
3923
3924 if (max_results < 1)
3925 error (_("Request to select 0 symbols!"));
3926 if (nsyms <= 1)
3927 return nsyms;
3928
3929 if (select_mode == multiple_symbols_cancel)
3930 error (_("\
3931 canceled because the command is ambiguous\n\
3932 See set/show multiple-symbol."));
3933
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3938 return nsyms;
3939
3940 printf_unfiltered (_("[0] cancel\n"));
3941 if (max_results > 1)
3942 printf_unfiltered (_("[1] all\n"));
3943
3944 sort_choices (syms, nsyms);
3945
3946 for (i = 0; i < nsyms; i += 1)
3947 {
3948 if (syms[i].symbol == NULL)
3949 continue;
3950
3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3952 {
3953 struct symtab_and_line sal =
3954 find_function_start_sal (syms[i].symbol, 1);
3955
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
3959 if (sal.symtab == NULL)
3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
3961 sal.line);
3962 else
3963 printf_unfiltered (_(" at %s:%d\n"),
3964 symtab_to_filename_for_display (sal.symtab),
3965 sal.line);
3966 continue;
3967 }
3968 else
3969 {
3970 int is_enumeral =
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3974 struct symtab *symtab = NULL;
3975
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
3978
3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3980 {
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3987 }
3988 else if (is_enumeral
3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3990 {
3991 printf_unfiltered (("[%d] "), i + first_choice);
3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3993 gdb_stdout, -1, 0, &type_print_raw_options);
3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
3995 SYMBOL_PRINT_NAME (syms[i].symbol));
3996 }
3997 else
3998 {
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4002
4003 if (symtab != NULL)
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4006 : _(" at %s:?\n"),
4007 symtab_to_filename_for_display (symtab));
4008 else
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4011 : _(" at ?\n"));
4012 }
4013 }
4014 }
4015
4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4017 "overload-choice");
4018
4019 for (i = 0; i < n_chosen; i += 1)
4020 syms[i] = syms[chosen[i]];
4021
4022 return n_chosen;
4023 }
4024
4025 /* Read and validate a set of numeric choices from the user in the
4026 range 0 .. N_CHOICES-1. Place the results in increasing
4027 order in CHOICES[0 .. N-1], and return N.
4028
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4031
4032 + A choice of 0 means to cancel the selection, throwing an error.
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4035
4036 The user is not allowed to choose more than MAX_RESULTS values.
4037
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4039 prompts (for use with the -f switch). */
4040
4041 int
4042 get_selections (int *choices, int n_choices, int max_results,
4043 int is_all_choice, const char *annotation_suffix)
4044 {
4045 char *args;
4046 const char *prompt;
4047 int n_chosen;
4048 int first_choice = is_all_choice ? 2 : 1;
4049
4050 prompt = getenv ("PS2");
4051 if (prompt == NULL)
4052 prompt = "> ";
4053
4054 args = command_line_input (prompt, 0, annotation_suffix);
4055
4056 if (args == NULL)
4057 error_no_arg (_("one or more choice numbers"));
4058
4059 n_chosen = 0;
4060
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
4063 while (1)
4064 {
4065 char *args2;
4066 int choice, j;
4067
4068 args = skip_spaces (args);
4069 if (*args == '\0' && n_chosen == 0)
4070 error_no_arg (_("one or more choice numbers"));
4071 else if (*args == '\0')
4072 break;
4073
4074 choice = strtol (args, &args2, 10);
4075 if (args == args2 || choice < 0
4076 || choice > n_choices + first_choice - 1)
4077 error (_("Argument must be choice number"));
4078 args = args2;
4079
4080 if (choice == 0)
4081 error (_("cancelled"));
4082
4083 if (choice < first_choice)
4084 {
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4087 choices[j] = j;
4088 break;
4089 }
4090 choice -= first_choice;
4091
4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4093 {
4094 }
4095
4096 if (j < 0 || choice != choices[j])
4097 {
4098 int k;
4099
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4103 n_chosen += 1;
4104 }
4105 }
4106
4107 if (n_chosen > max_results)
4108 error (_("Select no more than %d of the above"), max_results);
4109
4110 return n_chosen;
4111 }
4112
4113 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
4116
4117 static void
4118 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4119 int oplen, struct symbol *sym,
4120 const struct block *block)
4121 {
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4123 symbol, -oplen for operator being replaced). */
4124 struct expression *newexp = (struct expression *)
4125 xzalloc (sizeof (struct expression)
4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4127 struct expression *exp = *expp;
4128
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
4131 newexp->gdbarch = exp->gdbarch;
4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4135
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4138
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4142
4143 *expp = newexp;
4144 xfree (exp);
4145 }
4146
4147 /* Type-class predicates */
4148
4149 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4150 or FLOAT). */
4151
4152 static int
4153 numeric_type_p (struct type *type)
4154 {
4155 if (type == NULL)
4156 return 0;
4157 else
4158 {
4159 switch (TYPE_CODE (type))
4160 {
4161 case TYPE_CODE_INT:
4162 case TYPE_CODE_FLT:
4163 return 1;
4164 case TYPE_CODE_RANGE:
4165 return (type == TYPE_TARGET_TYPE (type)
4166 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4167 default:
4168 return 0;
4169 }
4170 }
4171 }
4172
4173 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4174
4175 static int
4176 integer_type_p (struct type *type)
4177 {
4178 if (type == NULL)
4179 return 0;
4180 else
4181 {
4182 switch (TYPE_CODE (type))
4183 {
4184 case TYPE_CODE_INT:
4185 return 1;
4186 case TYPE_CODE_RANGE:
4187 return (type == TYPE_TARGET_TYPE (type)
4188 || integer_type_p (TYPE_TARGET_TYPE (type)));
4189 default:
4190 return 0;
4191 }
4192 }
4193 }
4194
4195 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4196
4197 static int
4198 scalar_type_p (struct type *type)
4199 {
4200 if (type == NULL)
4201 return 0;
4202 else
4203 {
4204 switch (TYPE_CODE (type))
4205 {
4206 case TYPE_CODE_INT:
4207 case TYPE_CODE_RANGE:
4208 case TYPE_CODE_ENUM:
4209 case TYPE_CODE_FLT:
4210 return 1;
4211 default:
4212 return 0;
4213 }
4214 }
4215 }
4216
4217 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4218
4219 static int
4220 discrete_type_p (struct type *type)
4221 {
4222 if (type == NULL)
4223 return 0;
4224 else
4225 {
4226 switch (TYPE_CODE (type))
4227 {
4228 case TYPE_CODE_INT:
4229 case TYPE_CODE_RANGE:
4230 case TYPE_CODE_ENUM:
4231 case TYPE_CODE_BOOL:
4232 return 1;
4233 default:
4234 return 0;
4235 }
4236 }
4237 }
4238
4239 /* Returns non-zero if OP with operands in the vector ARGS could be
4240 a user-defined function. Errs on the side of pre-defined operators
4241 (i.e., result 0). */
4242
4243 static int
4244 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4245 {
4246 struct type *type0 =
4247 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4248 struct type *type1 =
4249 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4250
4251 if (type0 == NULL)
4252 return 0;
4253
4254 switch (op)
4255 {
4256 default:
4257 return 0;
4258
4259 case BINOP_ADD:
4260 case BINOP_SUB:
4261 case BINOP_MUL:
4262 case BINOP_DIV:
4263 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4264
4265 case BINOP_REM:
4266 case BINOP_MOD:
4267 case BINOP_BITWISE_AND:
4268 case BINOP_BITWISE_IOR:
4269 case BINOP_BITWISE_XOR:
4270 return (!(integer_type_p (type0) && integer_type_p (type1)));
4271
4272 case BINOP_EQUAL:
4273 case BINOP_NOTEQUAL:
4274 case BINOP_LESS:
4275 case BINOP_GTR:
4276 case BINOP_LEQ:
4277 case BINOP_GEQ:
4278 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4279
4280 case BINOP_CONCAT:
4281 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4282
4283 case BINOP_EXP:
4284 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4285
4286 case UNOP_NEG:
4287 case UNOP_PLUS:
4288 case UNOP_LOGICAL_NOT:
4289 case UNOP_ABS:
4290 return (!numeric_type_p (type0));
4291
4292 }
4293 }
4294 \f
4295 /* Renaming */
4296
4297 /* NOTES:
4298
4299 1. In the following, we assume that a renaming type's name may
4300 have an ___XD suffix. It would be nice if this went away at some
4301 point.
4302 2. We handle both the (old) purely type-based representation of
4303 renamings and the (new) variable-based encoding. At some point,
4304 it is devoutly to be hoped that the former goes away
4305 (FIXME: hilfinger-2007-07-09).
4306 3. Subprogram renamings are not implemented, although the XRS
4307 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4308
4309 /* If SYM encodes a renaming,
4310
4311 <renaming> renames <renamed entity>,
4312
4313 sets *LEN to the length of the renamed entity's name,
4314 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4315 the string describing the subcomponent selected from the renamed
4316 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4317 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4318 are undefined). Otherwise, returns a value indicating the category
4319 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4320 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4321 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4322 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4323 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4324 may be NULL, in which case they are not assigned.
4325
4326 [Currently, however, GCC does not generate subprogram renamings.] */
4327
4328 enum ada_renaming_category
4329 ada_parse_renaming (struct symbol *sym,
4330 const char **renamed_entity, int *len,
4331 const char **renaming_expr)
4332 {
4333 enum ada_renaming_category kind;
4334 const char *info;
4335 const char *suffix;
4336
4337 if (sym == NULL)
4338 return ADA_NOT_RENAMING;
4339 switch (SYMBOL_CLASS (sym))
4340 {
4341 default:
4342 return ADA_NOT_RENAMING;
4343 case LOC_TYPEDEF:
4344 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4345 renamed_entity, len, renaming_expr);
4346 case LOC_LOCAL:
4347 case LOC_STATIC:
4348 case LOC_COMPUTED:
4349 case LOC_OPTIMIZED_OUT:
4350 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4351 if (info == NULL)
4352 return ADA_NOT_RENAMING;
4353 switch (info[5])
4354 {
4355 case '_':
4356 kind = ADA_OBJECT_RENAMING;
4357 info += 6;
4358 break;
4359 case 'E':
4360 kind = ADA_EXCEPTION_RENAMING;
4361 info += 7;
4362 break;
4363 case 'P':
4364 kind = ADA_PACKAGE_RENAMING;
4365 info += 7;
4366 break;
4367 case 'S':
4368 kind = ADA_SUBPROGRAM_RENAMING;
4369 info += 7;
4370 break;
4371 default:
4372 return ADA_NOT_RENAMING;
4373 }
4374 }
4375
4376 if (renamed_entity != NULL)
4377 *renamed_entity = info;
4378 suffix = strstr (info, "___XE");
4379 if (suffix == NULL || suffix == info)
4380 return ADA_NOT_RENAMING;
4381 if (len != NULL)
4382 *len = strlen (info) - strlen (suffix);
4383 suffix += 5;
4384 if (renaming_expr != NULL)
4385 *renaming_expr = suffix;
4386 return kind;
4387 }
4388
4389 /* Assuming TYPE encodes a renaming according to the old encoding in
4390 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4391 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4392 ADA_NOT_RENAMING otherwise. */
4393 static enum ada_renaming_category
4394 parse_old_style_renaming (struct type *type,
4395 const char **renamed_entity, int *len,
4396 const char **renaming_expr)
4397 {
4398 enum ada_renaming_category kind;
4399 const char *name;
4400 const char *info;
4401 const char *suffix;
4402
4403 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4404 || TYPE_NFIELDS (type) != 1)
4405 return ADA_NOT_RENAMING;
4406
4407 name = type_name_no_tag (type);
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410
4411 name = strstr (name, "___XR");
4412 if (name == NULL)
4413 return ADA_NOT_RENAMING;
4414 switch (name[5])
4415 {
4416 case '\0':
4417 case '_':
4418 kind = ADA_OBJECT_RENAMING;
4419 break;
4420 case 'E':
4421 kind = ADA_EXCEPTION_RENAMING;
4422 break;
4423 case 'P':
4424 kind = ADA_PACKAGE_RENAMING;
4425 break;
4426 case 'S':
4427 kind = ADA_SUBPROGRAM_RENAMING;
4428 break;
4429 default:
4430 return ADA_NOT_RENAMING;
4431 }
4432
4433 info = TYPE_FIELD_NAME (type, 0);
4434 if (info == NULL)
4435 return ADA_NOT_RENAMING;
4436 if (renamed_entity != NULL)
4437 *renamed_entity = info;
4438 suffix = strstr (info, "___XE");
4439 if (renaming_expr != NULL)
4440 *renaming_expr = suffix + 5;
4441 if (suffix == NULL || suffix == info)
4442 return ADA_NOT_RENAMING;
4443 if (len != NULL)
4444 *len = suffix - info;
4445 return kind;
4446 }
4447
4448 /* Compute the value of the given RENAMING_SYM, which is expected to
4449 be a symbol encoding a renaming expression. BLOCK is the block
4450 used to evaluate the renaming. */
4451
4452 static struct value *
4453 ada_read_renaming_var_value (struct symbol *renaming_sym,
4454 const struct block *block)
4455 {
4456 const char *sym_name;
4457
4458 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4459 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4460 return evaluate_expression (expr.get ());
4461 }
4462 \f
4463
4464 /* Evaluation: Function Calls */
4465
4466 /* Return an lvalue containing the value VAL. This is the identity on
4467 lvalues, and otherwise has the side-effect of allocating memory
4468 in the inferior where a copy of the value contents is copied. */
4469
4470 static struct value *
4471 ensure_lval (struct value *val)
4472 {
4473 if (VALUE_LVAL (val) == not_lval
4474 || VALUE_LVAL (val) == lval_internalvar)
4475 {
4476 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4477 const CORE_ADDR addr =
4478 value_as_long (value_allocate_space_in_inferior (len));
4479
4480 VALUE_LVAL (val) = lval_memory;
4481 set_value_address (val, addr);
4482 write_memory (addr, value_contents (val), len);
4483 }
4484
4485 return val;
4486 }
4487
4488 /* Return the value ACTUAL, converted to be an appropriate value for a
4489 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4490 allocating any necessary descriptors (fat pointers), or copies of
4491 values not residing in memory, updating it as needed. */
4492
4493 struct value *
4494 ada_convert_actual (struct value *actual, struct type *formal_type0)
4495 {
4496 struct type *actual_type = ada_check_typedef (value_type (actual));
4497 struct type *formal_type = ada_check_typedef (formal_type0);
4498 struct type *formal_target =
4499 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4500 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4501 struct type *actual_target =
4502 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4503 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4504
4505 if (ada_is_array_descriptor_type (formal_target)
4506 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4507 return make_array_descriptor (formal_type, actual);
4508 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4509 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4510 {
4511 struct value *result;
4512
4513 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4514 && ada_is_array_descriptor_type (actual_target))
4515 result = desc_data (actual);
4516 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4517 {
4518 if (VALUE_LVAL (actual) != lval_memory)
4519 {
4520 struct value *val;
4521
4522 actual_type = ada_check_typedef (value_type (actual));
4523 val = allocate_value (actual_type);
4524 memcpy ((char *) value_contents_raw (val),
4525 (char *) value_contents (actual),
4526 TYPE_LENGTH (actual_type));
4527 actual = ensure_lval (val);
4528 }
4529 result = value_addr (actual);
4530 }
4531 else
4532 return actual;
4533 return value_cast_pointers (formal_type, result, 0);
4534 }
4535 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4536 return ada_value_ind (actual);
4537 else if (ada_is_aligner_type (formal_type))
4538 {
4539 /* We need to turn this parameter into an aligner type
4540 as well. */
4541 struct value *aligner = allocate_value (formal_type);
4542 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4543
4544 value_assign_to_component (aligner, component, actual);
4545 return aligner;
4546 }
4547
4548 return actual;
4549 }
4550
4551 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4552 type TYPE. This is usually an inefficient no-op except on some targets
4553 (such as AVR) where the representation of a pointer and an address
4554 differs. */
4555
4556 static CORE_ADDR
4557 value_pointer (struct value *value, struct type *type)
4558 {
4559 struct gdbarch *gdbarch = get_type_arch (type);
4560 unsigned len = TYPE_LENGTH (type);
4561 gdb_byte *buf = (gdb_byte *) alloca (len);
4562 CORE_ADDR addr;
4563
4564 addr = value_address (value);
4565 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4566 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4567 return addr;
4568 }
4569
4570
4571 /* Push a descriptor of type TYPE for array value ARR on the stack at
4572 *SP, updating *SP to reflect the new descriptor. Return either
4573 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4574 to-descriptor type rather than a descriptor type), a struct value *
4575 representing a pointer to this descriptor. */
4576
4577 static struct value *
4578 make_array_descriptor (struct type *type, struct value *arr)
4579 {
4580 struct type *bounds_type = desc_bounds_type (type);
4581 struct type *desc_type = desc_base_type (type);
4582 struct value *descriptor = allocate_value (desc_type);
4583 struct value *bounds = allocate_value (bounds_type);
4584 int i;
4585
4586 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4587 i > 0; i -= 1)
4588 {
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 0),
4591 desc_bound_bitpos (bounds_type, i, 0),
4592 desc_bound_bitsize (bounds_type, i, 0));
4593 modify_field (value_type (bounds), value_contents_writeable (bounds),
4594 ada_array_bound (arr, i, 1),
4595 desc_bound_bitpos (bounds_type, i, 1),
4596 desc_bound_bitsize (bounds_type, i, 1));
4597 }
4598
4599 bounds = ensure_lval (bounds);
4600
4601 modify_field (value_type (descriptor),
4602 value_contents_writeable (descriptor),
4603 value_pointer (ensure_lval (arr),
4604 TYPE_FIELD_TYPE (desc_type, 0)),
4605 fat_pntr_data_bitpos (desc_type),
4606 fat_pntr_data_bitsize (desc_type));
4607
4608 modify_field (value_type (descriptor),
4609 value_contents_writeable (descriptor),
4610 value_pointer (bounds,
4611 TYPE_FIELD_TYPE (desc_type, 1)),
4612 fat_pntr_bounds_bitpos (desc_type),
4613 fat_pntr_bounds_bitsize (desc_type));
4614
4615 descriptor = ensure_lval (descriptor);
4616
4617 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4618 return value_addr (descriptor);
4619 else
4620 return descriptor;
4621 }
4622 \f
4623 /* Symbol Cache Module */
4624
4625 /* Performance measurements made as of 2010-01-15 indicate that
4626 this cache does bring some noticeable improvements. Depending
4627 on the type of entity being printed, the cache can make it as much
4628 as an order of magnitude faster than without it.
4629
4630 The descriptive type DWARF extension has significantly reduced
4631 the need for this cache, at least when DWARF is being used. However,
4632 even in this case, some expensive name-based symbol searches are still
4633 sometimes necessary - to find an XVZ variable, mostly. */
4634
4635 /* Initialize the contents of SYM_CACHE. */
4636
4637 static void
4638 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4639 {
4640 obstack_init (&sym_cache->cache_space);
4641 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4642 }
4643
4644 /* Free the memory used by SYM_CACHE. */
4645
4646 static void
4647 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4648 {
4649 obstack_free (&sym_cache->cache_space, NULL);
4650 xfree (sym_cache);
4651 }
4652
4653 /* Return the symbol cache associated to the given program space PSPACE.
4654 If not allocated for this PSPACE yet, allocate and initialize one. */
4655
4656 static struct ada_symbol_cache *
4657 ada_get_symbol_cache (struct program_space *pspace)
4658 {
4659 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4660
4661 if (pspace_data->sym_cache == NULL)
4662 {
4663 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4664 ada_init_symbol_cache (pspace_data->sym_cache);
4665 }
4666
4667 return pspace_data->sym_cache;
4668 }
4669
4670 /* Clear all entries from the symbol cache. */
4671
4672 static void
4673 ada_clear_symbol_cache (void)
4674 {
4675 struct ada_symbol_cache *sym_cache
4676 = ada_get_symbol_cache (current_program_space);
4677
4678 obstack_free (&sym_cache->cache_space, NULL);
4679 ada_init_symbol_cache (sym_cache);
4680 }
4681
4682 /* Search our cache for an entry matching NAME and DOMAIN.
4683 Return it if found, or NULL otherwise. */
4684
4685 static struct cache_entry **
4686 find_entry (const char *name, domain_enum domain)
4687 {
4688 struct ada_symbol_cache *sym_cache
4689 = ada_get_symbol_cache (current_program_space);
4690 int h = msymbol_hash (name) % HASH_SIZE;
4691 struct cache_entry **e;
4692
4693 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4694 {
4695 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4696 return e;
4697 }
4698 return NULL;
4699 }
4700
4701 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4702 Return 1 if found, 0 otherwise.
4703
4704 If an entry was found and SYM is not NULL, set *SYM to the entry's
4705 SYM. Same principle for BLOCK if not NULL. */
4706
4707 static int
4708 lookup_cached_symbol (const char *name, domain_enum domain,
4709 struct symbol **sym, const struct block **block)
4710 {
4711 struct cache_entry **e = find_entry (name, domain);
4712
4713 if (e == NULL)
4714 return 0;
4715 if (sym != NULL)
4716 *sym = (*e)->sym;
4717 if (block != NULL)
4718 *block = (*e)->block;
4719 return 1;
4720 }
4721
4722 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4723 in domain DOMAIN, save this result in our symbol cache. */
4724
4725 static void
4726 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4727 const struct block *block)
4728 {
4729 struct ada_symbol_cache *sym_cache
4730 = ada_get_symbol_cache (current_program_space);
4731 int h;
4732 char *copy;
4733 struct cache_entry *e;
4734
4735 /* Symbols for builtin types don't have a block.
4736 For now don't cache such symbols. */
4737 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4738 return;
4739
4740 /* If the symbol is a local symbol, then do not cache it, as a search
4741 for that symbol depends on the context. To determine whether
4742 the symbol is local or not, we check the block where we found it
4743 against the global and static blocks of its associated symtab. */
4744 if (sym
4745 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4746 GLOBAL_BLOCK) != block
4747 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4748 STATIC_BLOCK) != block)
4749 return;
4750
4751 h = msymbol_hash (name) % HASH_SIZE;
4752 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4753 sizeof (*e));
4754 e->next = sym_cache->root[h];
4755 sym_cache->root[h] = e;
4756 e->name = copy
4757 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4758 strcpy (copy, name);
4759 e->sym = sym;
4760 e->domain = domain;
4761 e->block = block;
4762 }
4763 \f
4764 /* Symbol Lookup */
4765
4766 /* Return the symbol name match type that should be used used when
4767 searching for all symbols matching LOOKUP_NAME.
4768
4769 LOOKUP_NAME is expected to be a symbol name after transformation
4770 for Ada lookups (see ada_name_for_lookup). */
4771
4772 static symbol_name_match_type
4773 name_match_type_from_name (const char *lookup_name)
4774 {
4775 return (strstr (lookup_name, "__") == NULL
4776 ? symbol_name_match_type::WILD
4777 : symbol_name_match_type::FULL);
4778 }
4779
4780 /* Return the result of a standard (literal, C-like) lookup of NAME in
4781 given DOMAIN, visible from lexical block BLOCK. */
4782
4783 static struct symbol *
4784 standard_lookup (const char *name, const struct block *block,
4785 domain_enum domain)
4786 {
4787 /* Initialize it just to avoid a GCC false warning. */
4788 struct block_symbol sym = {NULL, NULL};
4789
4790 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4791 return sym.symbol;
4792 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4793 cache_symbol (name, domain, sym.symbol, sym.block);
4794 return sym.symbol;
4795 }
4796
4797
4798 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4799 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4800 since they contend in overloading in the same way. */
4801 static int
4802 is_nonfunction (struct block_symbol syms[], int n)
4803 {
4804 int i;
4805
4806 for (i = 0; i < n; i += 1)
4807 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4808 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4809 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4810 return 1;
4811
4812 return 0;
4813 }
4814
4815 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4816 struct types. Otherwise, they may not. */
4817
4818 static int
4819 equiv_types (struct type *type0, struct type *type1)
4820 {
4821 if (type0 == type1)
4822 return 1;
4823 if (type0 == NULL || type1 == NULL
4824 || TYPE_CODE (type0) != TYPE_CODE (type1))
4825 return 0;
4826 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4827 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4828 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4829 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4830 return 1;
4831
4832 return 0;
4833 }
4834
4835 /* True iff SYM0 represents the same entity as SYM1, or one that is
4836 no more defined than that of SYM1. */
4837
4838 static int
4839 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4840 {
4841 if (sym0 == sym1)
4842 return 1;
4843 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4844 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4845 return 0;
4846
4847 switch (SYMBOL_CLASS (sym0))
4848 {
4849 case LOC_UNDEF:
4850 return 1;
4851 case LOC_TYPEDEF:
4852 {
4853 struct type *type0 = SYMBOL_TYPE (sym0);
4854 struct type *type1 = SYMBOL_TYPE (sym1);
4855 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4856 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4857 int len0 = strlen (name0);
4858
4859 return
4860 TYPE_CODE (type0) == TYPE_CODE (type1)
4861 && (equiv_types (type0, type1)
4862 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4863 && startswith (name1 + len0, "___XV")));
4864 }
4865 case LOC_CONST:
4866 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4867 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4868 default:
4869 return 0;
4870 }
4871 }
4872
4873 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4874 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4875
4876 static void
4877 add_defn_to_vec (struct obstack *obstackp,
4878 struct symbol *sym,
4879 const struct block *block)
4880 {
4881 int i;
4882 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4883
4884 /* Do not try to complete stub types, as the debugger is probably
4885 already scanning all symbols matching a certain name at the
4886 time when this function is called. Trying to replace the stub
4887 type by its associated full type will cause us to restart a scan
4888 which may lead to an infinite recursion. Instead, the client
4889 collecting the matching symbols will end up collecting several
4890 matches, with at least one of them complete. It can then filter
4891 out the stub ones if needed. */
4892
4893 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4894 {
4895 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4896 return;
4897 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4898 {
4899 prevDefns[i].symbol = sym;
4900 prevDefns[i].block = block;
4901 return;
4902 }
4903 }
4904
4905 {
4906 struct block_symbol info;
4907
4908 info.symbol = sym;
4909 info.block = block;
4910 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4911 }
4912 }
4913
4914 /* Number of block_symbol structures currently collected in current vector in
4915 OBSTACKP. */
4916
4917 static int
4918 num_defns_collected (struct obstack *obstackp)
4919 {
4920 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4921 }
4922
4923 /* Vector of block_symbol structures currently collected in current vector in
4924 OBSTACKP. If FINISH, close off the vector and return its final address. */
4925
4926 static struct block_symbol *
4927 defns_collected (struct obstack *obstackp, int finish)
4928 {
4929 if (finish)
4930 return (struct block_symbol *) obstack_finish (obstackp);
4931 else
4932 return (struct block_symbol *) obstack_base (obstackp);
4933 }
4934
4935 /* Return a bound minimal symbol matching NAME according to Ada
4936 decoding rules. Returns an invalid symbol if there is no such
4937 minimal symbol. Names prefixed with "standard__" are handled
4938 specially: "standard__" is first stripped off, and only static and
4939 global symbols are searched. */
4940
4941 struct bound_minimal_symbol
4942 ada_lookup_simple_minsym (const char *name)
4943 {
4944 struct bound_minimal_symbol result;
4945 struct objfile *objfile;
4946 struct minimal_symbol *msymbol;
4947
4948 memset (&result, 0, sizeof (result));
4949
4950 symbol_name_match_type match_type = name_match_type_from_name (name);
4951 lookup_name_info lookup_name (name, match_type);
4952
4953 symbol_name_matcher_ftype *match_name
4954 = ada_get_symbol_name_matcher (lookup_name);
4955
4956 ALL_MSYMBOLS (objfile, msymbol)
4957 {
4958 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4959 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4960 {
4961 result.minsym = msymbol;
4962 result.objfile = objfile;
4963 break;
4964 }
4965 }
4966
4967 return result;
4968 }
4969
4970 /* For all subprograms that statically enclose the subprogram of the
4971 selected frame, add symbols matching identifier NAME in DOMAIN
4972 and their blocks to the list of data in OBSTACKP, as for
4973 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4974 with a wildcard prefix. */
4975
4976 static void
4977 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4978 const lookup_name_info &lookup_name,
4979 domain_enum domain)
4980 {
4981 }
4982
4983 /* True if TYPE is definitely an artificial type supplied to a symbol
4984 for which no debugging information was given in the symbol file. */
4985
4986 static int
4987 is_nondebugging_type (struct type *type)
4988 {
4989 const char *name = ada_type_name (type);
4990
4991 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4992 }
4993
4994 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4995 that are deemed "identical" for practical purposes.
4996
4997 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4998 types and that their number of enumerals is identical (in other
4999 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5000
5001 static int
5002 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5003 {
5004 int i;
5005
5006 /* The heuristic we use here is fairly conservative. We consider
5007 that 2 enumerate types are identical if they have the same
5008 number of enumerals and that all enumerals have the same
5009 underlying value and name. */
5010
5011 /* All enums in the type should have an identical underlying value. */
5012 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5013 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5014 return 0;
5015
5016 /* All enumerals should also have the same name (modulo any numerical
5017 suffix). */
5018 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5019 {
5020 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5021 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5022 int len_1 = strlen (name_1);
5023 int len_2 = strlen (name_2);
5024
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5026 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5027 if (len_1 != len_2
5028 || strncmp (TYPE_FIELD_NAME (type1, i),
5029 TYPE_FIELD_NAME (type2, i),
5030 len_1) != 0)
5031 return 0;
5032 }
5033
5034 return 1;
5035 }
5036
5037 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5038 that are deemed "identical" for practical purposes. Sometimes,
5039 enumerals are not strictly identical, but their types are so similar
5040 that they can be considered identical.
5041
5042 For instance, consider the following code:
5043
5044 type Color is (Black, Red, Green, Blue, White);
5045 type RGB_Color is new Color range Red .. Blue;
5046
5047 Type RGB_Color is a subrange of an implicit type which is a copy
5048 of type Color. If we call that implicit type RGB_ColorB ("B" is
5049 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5050 As a result, when an expression references any of the enumeral
5051 by name (Eg. "print green"), the expression is technically
5052 ambiguous and the user should be asked to disambiguate. But
5053 doing so would only hinder the user, since it wouldn't matter
5054 what choice he makes, the outcome would always be the same.
5055 So, for practical purposes, we consider them as the same. */
5056
5057 static int
5058 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5059 {
5060 int i;
5061
5062 /* Before performing a thorough comparison check of each type,
5063 we perform a series of inexpensive checks. We expect that these
5064 checks will quickly fail in the vast majority of cases, and thus
5065 help prevent the unnecessary use of a more expensive comparison.
5066 Said comparison also expects us to make some of these checks
5067 (see ada_identical_enum_types_p). */
5068
5069 /* Quick check: All symbols should have an enum type. */
5070 for (i = 0; i < nsyms; i++)
5071 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5072 return 0;
5073
5074 /* Quick check: They should all have the same value. */
5075 for (i = 1; i < nsyms; i++)
5076 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5077 return 0;
5078
5079 /* Quick check: They should all have the same number of enumerals. */
5080 for (i = 1; i < nsyms; i++)
5081 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5082 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5083 return 0;
5084
5085 /* All the sanity checks passed, so we might have a set of
5086 identical enumeration types. Perform a more complete
5087 comparison of the type of each symbol. */
5088 for (i = 1; i < nsyms; i++)
5089 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5090 SYMBOL_TYPE (syms[0].symbol)))
5091 return 0;
5092
5093 return 1;
5094 }
5095
5096 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5097 duplicate other symbols in the list (The only case I know of where
5098 this happens is when object files containing stabs-in-ecoff are
5099 linked with files containing ordinary ecoff debugging symbols (or no
5100 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5101 Returns the number of items in the modified list. */
5102
5103 static int
5104 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5105 {
5106 int i, j;
5107
5108 /* We should never be called with less than 2 symbols, as there
5109 cannot be any extra symbol in that case. But it's easy to
5110 handle, since we have nothing to do in that case. */
5111 if (nsyms < 2)
5112 return nsyms;
5113
5114 i = 0;
5115 while (i < nsyms)
5116 {
5117 int remove_p = 0;
5118
5119 /* If two symbols have the same name and one of them is a stub type,
5120 the get rid of the stub. */
5121
5122 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5123 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5124 {
5125 for (j = 0; j < nsyms; j++)
5126 {
5127 if (j != i
5128 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5129 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5130 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5131 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5132 remove_p = 1;
5133 }
5134 }
5135
5136 /* Two symbols with the same name, same class and same address
5137 should be identical. */
5138
5139 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5140 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5141 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5142 {
5143 for (j = 0; j < nsyms; j += 1)
5144 {
5145 if (i != j
5146 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5147 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5148 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5149 && SYMBOL_CLASS (syms[i].symbol)
5150 == SYMBOL_CLASS (syms[j].symbol)
5151 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5152 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5153 remove_p = 1;
5154 }
5155 }
5156
5157 if (remove_p)
5158 {
5159 for (j = i + 1; j < nsyms; j += 1)
5160 syms[j - 1] = syms[j];
5161 nsyms -= 1;
5162 }
5163
5164 i += 1;
5165 }
5166
5167 /* If all the remaining symbols are identical enumerals, then
5168 just keep the first one and discard the rest.
5169
5170 Unlike what we did previously, we do not discard any entry
5171 unless they are ALL identical. This is because the symbol
5172 comparison is not a strict comparison, but rather a practical
5173 comparison. If all symbols are considered identical, then
5174 we can just go ahead and use the first one and discard the rest.
5175 But if we cannot reduce the list to a single element, we have
5176 to ask the user to disambiguate anyways. And if we have to
5177 present a multiple-choice menu, it's less confusing if the list
5178 isn't missing some choices that were identical and yet distinct. */
5179 if (symbols_are_identical_enums (syms, nsyms))
5180 nsyms = 1;
5181
5182 return nsyms;
5183 }
5184
5185 /* Given a type that corresponds to a renaming entity, use the type name
5186 to extract the scope (package name or function name, fully qualified,
5187 and following the GNAT encoding convention) where this renaming has been
5188 defined. The string returned needs to be deallocated after use. */
5189
5190 static char *
5191 xget_renaming_scope (struct type *renaming_type)
5192 {
5193 /* The renaming types adhere to the following convention:
5194 <scope>__<rename>___<XR extension>.
5195 So, to extract the scope, we search for the "___XR" extension,
5196 and then backtrack until we find the first "__". */
5197
5198 const char *name = type_name_no_tag (renaming_type);
5199 const char *suffix = strstr (name, "___XR");
5200 const char *last;
5201 int scope_len;
5202 char *scope;
5203
5204 /* Now, backtrack a bit until we find the first "__". Start looking
5205 at suffix - 3, as the <rename> part is at least one character long. */
5206
5207 for (last = suffix - 3; last > name; last--)
5208 if (last[0] == '_' && last[1] == '_')
5209 break;
5210
5211 /* Make a copy of scope and return it. */
5212
5213 scope_len = last - name;
5214 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5215
5216 strncpy (scope, name, scope_len);
5217 scope[scope_len] = '\0';
5218
5219 return scope;
5220 }
5221
5222 /* Return nonzero if NAME corresponds to a package name. */
5223
5224 static int
5225 is_package_name (const char *name)
5226 {
5227 /* Here, We take advantage of the fact that no symbols are generated
5228 for packages, while symbols are generated for each function.
5229 So the condition for NAME represent a package becomes equivalent
5230 to NAME not existing in our list of symbols. There is only one
5231 small complication with library-level functions (see below). */
5232
5233 char *fun_name;
5234
5235 /* If it is a function that has not been defined at library level,
5236 then we should be able to look it up in the symbols. */
5237 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5238 return 0;
5239
5240 /* Library-level function names start with "_ada_". See if function
5241 "_ada_" followed by NAME can be found. */
5242
5243 /* Do a quick check that NAME does not contain "__", since library-level
5244 functions names cannot contain "__" in them. */
5245 if (strstr (name, "__") != NULL)
5246 return 0;
5247
5248 fun_name = xstrprintf ("_ada_%s", name);
5249
5250 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5251 }
5252
5253 /* Return nonzero if SYM corresponds to a renaming entity that is
5254 not visible from FUNCTION_NAME. */
5255
5256 static int
5257 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5258 {
5259 char *scope;
5260 struct cleanup *old_chain;
5261
5262 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5263 return 0;
5264
5265 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5266 old_chain = make_cleanup (xfree, scope);
5267
5268 /* If the rename has been defined in a package, then it is visible. */
5269 if (is_package_name (scope))
5270 {
5271 do_cleanups (old_chain);
5272 return 0;
5273 }
5274
5275 /* Check that the rename is in the current function scope by checking
5276 that its name starts with SCOPE. */
5277
5278 /* If the function name starts with "_ada_", it means that it is
5279 a library-level function. Strip this prefix before doing the
5280 comparison, as the encoding for the renaming does not contain
5281 this prefix. */
5282 if (startswith (function_name, "_ada_"))
5283 function_name += 5;
5284
5285 {
5286 int is_invisible = !startswith (function_name, scope);
5287
5288 do_cleanups (old_chain);
5289 return is_invisible;
5290 }
5291 }
5292
5293 /* Remove entries from SYMS that corresponds to a renaming entity that
5294 is not visible from the function associated with CURRENT_BLOCK or
5295 that is superfluous due to the presence of more specific renaming
5296 information. Places surviving symbols in the initial entries of
5297 SYMS and returns the number of surviving symbols.
5298
5299 Rationale:
5300 First, in cases where an object renaming is implemented as a
5301 reference variable, GNAT may produce both the actual reference
5302 variable and the renaming encoding. In this case, we discard the
5303 latter.
5304
5305 Second, GNAT emits a type following a specified encoding for each renaming
5306 entity. Unfortunately, STABS currently does not support the definition
5307 of types that are local to a given lexical block, so all renamings types
5308 are emitted at library level. As a consequence, if an application
5309 contains two renaming entities using the same name, and a user tries to
5310 print the value of one of these entities, the result of the ada symbol
5311 lookup will also contain the wrong renaming type.
5312
5313 This function partially covers for this limitation by attempting to
5314 remove from the SYMS list renaming symbols that should be visible
5315 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5316 method with the current information available. The implementation
5317 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5318
5319 - When the user tries to print a rename in a function while there
5320 is another rename entity defined in a package: Normally, the
5321 rename in the function has precedence over the rename in the
5322 package, so the latter should be removed from the list. This is
5323 currently not the case.
5324
5325 - This function will incorrectly remove valid renames if
5326 the CURRENT_BLOCK corresponds to a function which symbol name
5327 has been changed by an "Export" pragma. As a consequence,
5328 the user will be unable to print such rename entities. */
5329
5330 static int
5331 remove_irrelevant_renamings (struct block_symbol *syms,
5332 int nsyms, const struct block *current_block)
5333 {
5334 struct symbol *current_function;
5335 const char *current_function_name;
5336 int i;
5337 int is_new_style_renaming;
5338
5339 /* If there is both a renaming foo___XR... encoded as a variable and
5340 a simple variable foo in the same block, discard the latter.
5341 First, zero out such symbols, then compress. */
5342 is_new_style_renaming = 0;
5343 for (i = 0; i < nsyms; i += 1)
5344 {
5345 struct symbol *sym = syms[i].symbol;
5346 const struct block *block = syms[i].block;
5347 const char *name;
5348 const char *suffix;
5349
5350 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5351 continue;
5352 name = SYMBOL_LINKAGE_NAME (sym);
5353 suffix = strstr (name, "___XR");
5354
5355 if (suffix != NULL)
5356 {
5357 int name_len = suffix - name;
5358 int j;
5359
5360 is_new_style_renaming = 1;
5361 for (j = 0; j < nsyms; j += 1)
5362 if (i != j && syms[j].symbol != NULL
5363 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5364 name_len) == 0
5365 && block == syms[j].block)
5366 syms[j].symbol = NULL;
5367 }
5368 }
5369 if (is_new_style_renaming)
5370 {
5371 int j, k;
5372
5373 for (j = k = 0; j < nsyms; j += 1)
5374 if (syms[j].symbol != NULL)
5375 {
5376 syms[k] = syms[j];
5377 k += 1;
5378 }
5379 return k;
5380 }
5381
5382 /* Extract the function name associated to CURRENT_BLOCK.
5383 Abort if unable to do so. */
5384
5385 if (current_block == NULL)
5386 return nsyms;
5387
5388 current_function = block_linkage_function (current_block);
5389 if (current_function == NULL)
5390 return nsyms;
5391
5392 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5393 if (current_function_name == NULL)
5394 return nsyms;
5395
5396 /* Check each of the symbols, and remove it from the list if it is
5397 a type corresponding to a renaming that is out of the scope of
5398 the current block. */
5399
5400 i = 0;
5401 while (i < nsyms)
5402 {
5403 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5404 == ADA_OBJECT_RENAMING
5405 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5406 {
5407 int j;
5408
5409 for (j = i + 1; j < nsyms; j += 1)
5410 syms[j - 1] = syms[j];
5411 nsyms -= 1;
5412 }
5413 else
5414 i += 1;
5415 }
5416
5417 return nsyms;
5418 }
5419
5420 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5421 whose name and domain match NAME and DOMAIN respectively.
5422 If no match was found, then extend the search to "enclosing"
5423 routines (in other words, if we're inside a nested function,
5424 search the symbols defined inside the enclosing functions).
5425 If WILD_MATCH_P is nonzero, perform the naming matching in
5426 "wild" mode (see function "wild_match" for more info).
5427
5428 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5429
5430 static void
5431 ada_add_local_symbols (struct obstack *obstackp,
5432 const lookup_name_info &lookup_name,
5433 const struct block *block, domain_enum domain)
5434 {
5435 int block_depth = 0;
5436
5437 while (block != NULL)
5438 {
5439 block_depth += 1;
5440 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5441
5442 /* If we found a non-function match, assume that's the one. */
5443 if (is_nonfunction (defns_collected (obstackp, 0),
5444 num_defns_collected (obstackp)))
5445 return;
5446
5447 block = BLOCK_SUPERBLOCK (block);
5448 }
5449
5450 /* If no luck so far, try to find NAME as a local symbol in some lexically
5451 enclosing subprogram. */
5452 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5453 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5454 }
5455
5456 /* An object of this type is used as the user_data argument when
5457 calling the map_matching_symbols method. */
5458
5459 struct match_data
5460 {
5461 struct objfile *objfile;
5462 struct obstack *obstackp;
5463 struct symbol *arg_sym;
5464 int found_sym;
5465 };
5466
5467 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5468 to a list of symbols. DATA0 is a pointer to a struct match_data *
5469 containing the obstack that collects the symbol list, the file that SYM
5470 must come from, a flag indicating whether a non-argument symbol has
5471 been found in the current block, and the last argument symbol
5472 passed in SYM within the current block (if any). When SYM is null,
5473 marking the end of a block, the argument symbol is added if no
5474 other has been found. */
5475
5476 static int
5477 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5478 {
5479 struct match_data *data = (struct match_data *) data0;
5480
5481 if (sym == NULL)
5482 {
5483 if (!data->found_sym && data->arg_sym != NULL)
5484 add_defn_to_vec (data->obstackp,
5485 fixup_symbol_section (data->arg_sym, data->objfile),
5486 block);
5487 data->found_sym = 0;
5488 data->arg_sym = NULL;
5489 }
5490 else
5491 {
5492 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5493 return 0;
5494 else if (SYMBOL_IS_ARGUMENT (sym))
5495 data->arg_sym = sym;
5496 else
5497 {
5498 data->found_sym = 1;
5499 add_defn_to_vec (data->obstackp,
5500 fixup_symbol_section (sym, data->objfile),
5501 block);
5502 }
5503 }
5504 return 0;
5505 }
5506
5507 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5508 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5509 symbols to OBSTACKP. Return whether we found such symbols. */
5510
5511 static int
5512 ada_add_block_renamings (struct obstack *obstackp,
5513 const struct block *block,
5514 const lookup_name_info &lookup_name,
5515 domain_enum domain)
5516 {
5517 struct using_direct *renaming;
5518 int defns_mark = num_defns_collected (obstackp);
5519
5520 symbol_name_matcher_ftype *name_match
5521 = ada_get_symbol_name_matcher (lookup_name);
5522
5523 for (renaming = block_using (block);
5524 renaming != NULL;
5525 renaming = renaming->next)
5526 {
5527 const char *r_name;
5528
5529 /* Avoid infinite recursions: skip this renaming if we are actually
5530 already traversing it.
5531
5532 Currently, symbol lookup in Ada don't use the namespace machinery from
5533 C++/Fortran support: skip namespace imports that use them. */
5534 if (renaming->searched
5535 || (renaming->import_src != NULL
5536 && renaming->import_src[0] != '\0')
5537 || (renaming->import_dest != NULL
5538 && renaming->import_dest[0] != '\0'))
5539 continue;
5540 renaming->searched = 1;
5541
5542 /* TODO: here, we perform another name-based symbol lookup, which can
5543 pull its own multiple overloads. In theory, we should be able to do
5544 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5545 not a simple name. But in order to do this, we would need to enhance
5546 the DWARF reader to associate a symbol to this renaming, instead of a
5547 name. So, for now, we do something simpler: re-use the C++/Fortran
5548 namespace machinery. */
5549 r_name = (renaming->alias != NULL
5550 ? renaming->alias
5551 : renaming->declaration);
5552 if (name_match (r_name, lookup_name, NULL))
5553 {
5554 lookup_name_info decl_lookup_name (renaming->declaration,
5555 lookup_name.match_type ());
5556 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5557 1, NULL);
5558 }
5559 renaming->searched = 0;
5560 }
5561 return num_defns_collected (obstackp) != defns_mark;
5562 }
5563
5564 /* Implements compare_names, but only applying the comparision using
5565 the given CASING. */
5566
5567 static int
5568 compare_names_with_case (const char *string1, const char *string2,
5569 enum case_sensitivity casing)
5570 {
5571 while (*string1 != '\0' && *string2 != '\0')
5572 {
5573 char c1, c2;
5574
5575 if (isspace (*string1) || isspace (*string2))
5576 return strcmp_iw_ordered (string1, string2);
5577
5578 if (casing == case_sensitive_off)
5579 {
5580 c1 = tolower (*string1);
5581 c2 = tolower (*string2);
5582 }
5583 else
5584 {
5585 c1 = *string1;
5586 c2 = *string2;
5587 }
5588 if (c1 != c2)
5589 break;
5590
5591 string1 += 1;
5592 string2 += 1;
5593 }
5594
5595 switch (*string1)
5596 {
5597 case '(':
5598 return strcmp_iw_ordered (string1, string2);
5599 case '_':
5600 if (*string2 == '\0')
5601 {
5602 if (is_name_suffix (string1))
5603 return 0;
5604 else
5605 return 1;
5606 }
5607 /* FALLTHROUGH */
5608 default:
5609 if (*string2 == '(')
5610 return strcmp_iw_ordered (string1, string2);
5611 else
5612 {
5613 if (casing == case_sensitive_off)
5614 return tolower (*string1) - tolower (*string2);
5615 else
5616 return *string1 - *string2;
5617 }
5618 }
5619 }
5620
5621 /* Compare STRING1 to STRING2, with results as for strcmp.
5622 Compatible with strcmp_iw_ordered in that...
5623
5624 strcmp_iw_ordered (STRING1, STRING2) <= 0
5625
5626 ... implies...
5627
5628 compare_names (STRING1, STRING2) <= 0
5629
5630 (they may differ as to what symbols compare equal). */
5631
5632 static int
5633 compare_names (const char *string1, const char *string2)
5634 {
5635 int result;
5636
5637 /* Similar to what strcmp_iw_ordered does, we need to perform
5638 a case-insensitive comparison first, and only resort to
5639 a second, case-sensitive, comparison if the first one was
5640 not sufficient to differentiate the two strings. */
5641
5642 result = compare_names_with_case (string1, string2, case_sensitive_off);
5643 if (result == 0)
5644 result = compare_names_with_case (string1, string2, case_sensitive_on);
5645
5646 return result;
5647 }
5648
5649 /* Convenience function to get at the Ada encoded lookup name for
5650 LOOKUP_NAME, as a C string. */
5651
5652 static const char *
5653 ada_lookup_name (const lookup_name_info &lookup_name)
5654 {
5655 return lookup_name.ada ().lookup_name ().c_str ();
5656 }
5657
5658 /* Add to OBSTACKP all non-local symbols whose name and domain match
5659 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5660 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5661 symbols otherwise. */
5662
5663 static void
5664 add_nonlocal_symbols (struct obstack *obstackp,
5665 const lookup_name_info &lookup_name,
5666 domain_enum domain, int global)
5667 {
5668 struct objfile *objfile;
5669 struct compunit_symtab *cu;
5670 struct match_data data;
5671
5672 memset (&data, 0, sizeof data);
5673 data.obstackp = obstackp;
5674
5675 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5676
5677 ALL_OBJFILES (objfile)
5678 {
5679 data.objfile = objfile;
5680
5681 if (is_wild_match)
5682 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5683 domain, global,
5684 aux_add_nonlocal_symbols, &data,
5685 symbol_name_match_type::WILD,
5686 NULL);
5687 else
5688 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5689 domain, global,
5690 aux_add_nonlocal_symbols, &data,
5691 symbol_name_match_type::FULL,
5692 compare_names);
5693
5694 ALL_OBJFILE_COMPUNITS (objfile, cu)
5695 {
5696 const struct block *global_block
5697 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5698
5699 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5700 domain))
5701 data.found_sym = 1;
5702 }
5703 }
5704
5705 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5706 {
5707 const char *name = ada_lookup_name (lookup_name);
5708 std::string name1 = std::string ("<_ada_") + name + '>';
5709
5710 ALL_OBJFILES (objfile)
5711 {
5712 data.objfile = objfile;
5713 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5714 domain, global,
5715 aux_add_nonlocal_symbols,
5716 &data,
5717 symbol_name_match_type::FULL,
5718 compare_names);
5719 }
5720 }
5721 }
5722
5723 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5724 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5725 returning the number of matches. Add these to OBSTACKP.
5726
5727 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5728 symbol match within the nest of blocks whose innermost member is BLOCK,
5729 is the one match returned (no other matches in that or
5730 enclosing blocks is returned). If there are any matches in or
5731 surrounding BLOCK, then these alone are returned.
5732
5733 Names prefixed with "standard__" are handled specially:
5734 "standard__" is first stripped off (by the lookup_name
5735 constructor), and only static and global symbols are searched.
5736
5737 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5738 to lookup global symbols. */
5739
5740 static void
5741 ada_add_all_symbols (struct obstack *obstackp,
5742 const struct block *block,
5743 const lookup_name_info &lookup_name,
5744 domain_enum domain,
5745 int full_search,
5746 int *made_global_lookup_p)
5747 {
5748 struct symbol *sym;
5749
5750 if (made_global_lookup_p)
5751 *made_global_lookup_p = 0;
5752
5753 /* Special case: If the user specifies a symbol name inside package
5754 Standard, do a non-wild matching of the symbol name without
5755 the "standard__" prefix. This was primarily introduced in order
5756 to allow the user to specifically access the standard exceptions
5757 using, for instance, Standard.Constraint_Error when Constraint_Error
5758 is ambiguous (due to the user defining its own Constraint_Error
5759 entity inside its program). */
5760 if (lookup_name.ada ().standard_p ())
5761 block = NULL;
5762
5763 /* Check the non-global symbols. If we have ANY match, then we're done. */
5764
5765 if (block != NULL)
5766 {
5767 if (full_search)
5768 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5769 else
5770 {
5771 /* In the !full_search case we're are being called by
5772 ada_iterate_over_symbols, and we don't want to search
5773 superblocks. */
5774 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5775 }
5776 if (num_defns_collected (obstackp) > 0 || !full_search)
5777 return;
5778 }
5779
5780 /* No non-global symbols found. Check our cache to see if we have
5781 already performed this search before. If we have, then return
5782 the same result. */
5783
5784 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5785 domain, &sym, &block))
5786 {
5787 if (sym != NULL)
5788 add_defn_to_vec (obstackp, sym, block);
5789 return;
5790 }
5791
5792 if (made_global_lookup_p)
5793 *made_global_lookup_p = 1;
5794
5795 /* Search symbols from all global blocks. */
5796
5797 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5798
5799 /* Now add symbols from all per-file blocks if we've gotten no hits
5800 (not strictly correct, but perhaps better than an error). */
5801
5802 if (num_defns_collected (obstackp) == 0)
5803 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5804 }
5805
5806 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5807 is non-zero, enclosing scope and in global scopes, returning the number of
5808 matches.
5809 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
5810 indicating the symbols found and the blocks and symbol tables (if
5811 any) in which they were found. This vector should be freed when
5812 no longer useful.
5813
5814 When full_search is non-zero, any non-function/non-enumeral
5815 symbol match within the nest of blocks whose innermost member is BLOCK,
5816 is the one match returned (no other matches in that or
5817 enclosing blocks is returned). If there are any matches in or
5818 surrounding BLOCK, then these alone are returned.
5819
5820 Names prefixed with "standard__" are handled specially: "standard__"
5821 is first stripped off, and only static and global symbols are searched. */
5822
5823 static int
5824 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5825 const struct block *block,
5826 domain_enum domain,
5827 struct block_symbol **results,
5828 int full_search)
5829 {
5830 int syms_from_global_search;
5831 int ndefns;
5832 int results_size;
5833 auto_obstack obstack;
5834
5835 ada_add_all_symbols (&obstack, block, lookup_name,
5836 domain, full_search, &syms_from_global_search);
5837
5838 ndefns = num_defns_collected (&obstack);
5839
5840 results_size = obstack_object_size (&obstack);
5841 *results = (struct block_symbol *) malloc (results_size);
5842 memcpy (*results, defns_collected (&obstack, 1), results_size);
5843
5844 ndefns = remove_extra_symbols (*results, ndefns);
5845
5846 if (ndefns == 0 && full_search && syms_from_global_search)
5847 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5848
5849 if (ndefns == 1 && full_search && syms_from_global_search)
5850 cache_symbol (ada_lookup_name (lookup_name), domain,
5851 (*results)[0].symbol, (*results)[0].block);
5852
5853 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5854
5855 return ndefns;
5856 }
5857
5858 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5859 in global scopes, returning the number of matches, and setting *RESULTS
5860 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5861 vector should be freed when no longer useful.
5862
5863 See ada_lookup_symbol_list_worker for further details. */
5864
5865 int
5866 ada_lookup_symbol_list (const char *name, const struct block *block,
5867 domain_enum domain, struct block_symbol **results)
5868 {
5869 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5870 lookup_name_info lookup_name (name, name_match_type);
5871
5872 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5873 }
5874
5875 /* Implementation of the la_iterate_over_symbols method. */
5876
5877 static void
5878 ada_iterate_over_symbols
5879 (const struct block *block, const lookup_name_info &name,
5880 domain_enum domain,
5881 gdb::function_view<symbol_found_callback_ftype> callback)
5882 {
5883 int ndefs, i;
5884 struct block_symbol *results;
5885 struct cleanup *old_chain;
5886
5887 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5888 old_chain = make_cleanup (xfree, results);
5889
5890 for (i = 0; i < ndefs; ++i)
5891 {
5892 if (!callback (results[i].symbol))
5893 break;
5894 }
5895
5896 do_cleanups (old_chain);
5897 }
5898
5899 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5900 to 1, but choosing the first symbol found if there are multiple
5901 choices.
5902
5903 The result is stored in *INFO, which must be non-NULL.
5904 If no match is found, INFO->SYM is set to NULL. */
5905
5906 void
5907 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5908 domain_enum domain,
5909 struct block_symbol *info)
5910 {
5911 struct block_symbol *candidates;
5912 int n_candidates;
5913 struct cleanup *old_chain;
5914
5915 /* Since we already have an encoded name, wrap it in '<>' to force a
5916 verbatim match. Otherwise, if the name happens to not look like
5917 an encoded name (because it doesn't include a "__"),
5918 ada_lookup_name_info would re-encode/fold it again, and that
5919 would e.g., incorrectly lowercase object renaming names like
5920 "R28b" -> "r28b". */
5921 std::string verbatim = std::string ("<") + name + '>';
5922
5923 gdb_assert (info != NULL);
5924 memset (info, 0, sizeof (struct block_symbol));
5925
5926 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5927 domain, &candidates);
5928 old_chain = make_cleanup (xfree, candidates);
5929
5930 if (n_candidates == 0)
5931 {
5932 do_cleanups (old_chain);
5933 return;
5934 }
5935
5936 *info = candidates[0];
5937 info->symbol = fixup_symbol_section (info->symbol, NULL);
5938
5939 do_cleanups (old_chain);
5940 }
5941
5942 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5943 scope and in global scopes, or NULL if none. NAME is folded and
5944 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5945 choosing the first symbol if there are multiple choices.
5946 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5947
5948 struct block_symbol
5949 ada_lookup_symbol (const char *name, const struct block *block0,
5950 domain_enum domain, int *is_a_field_of_this)
5951 {
5952 struct block_symbol info;
5953
5954 if (is_a_field_of_this != NULL)
5955 *is_a_field_of_this = 0;
5956
5957 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5958 block0, domain, &info);
5959 return info;
5960 }
5961
5962 static struct block_symbol
5963 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5964 const char *name,
5965 const struct block *block,
5966 const domain_enum domain)
5967 {
5968 struct block_symbol sym;
5969
5970 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5971 if (sym.symbol != NULL)
5972 return sym;
5973
5974 /* If we haven't found a match at this point, try the primitive
5975 types. In other languages, this search is performed before
5976 searching for global symbols in order to short-circuit that
5977 global-symbol search if it happens that the name corresponds
5978 to a primitive type. But we cannot do the same in Ada, because
5979 it is perfectly legitimate for a program to declare a type which
5980 has the same name as a standard type. If looking up a type in
5981 that situation, we have traditionally ignored the primitive type
5982 in favor of user-defined types. This is why, unlike most other
5983 languages, we search the primitive types this late and only after
5984 having searched the global symbols without success. */
5985
5986 if (domain == VAR_DOMAIN)
5987 {
5988 struct gdbarch *gdbarch;
5989
5990 if (block == NULL)
5991 gdbarch = target_gdbarch ();
5992 else
5993 gdbarch = block_gdbarch (block);
5994 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5995 if (sym.symbol != NULL)
5996 return sym;
5997 }
5998
5999 return (struct block_symbol) {NULL, NULL};
6000 }
6001
6002
6003 /* True iff STR is a possible encoded suffix of a normal Ada name
6004 that is to be ignored for matching purposes. Suffixes of parallel
6005 names (e.g., XVE) are not included here. Currently, the possible suffixes
6006 are given by any of the regular expressions:
6007
6008 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
6009 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
6010 TKB [subprogram suffix for task bodies]
6011 _E[0-9]+[bs]$ [protected object entry suffixes]
6012 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
6013
6014 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6015 match is performed. This sequence is used to differentiate homonyms,
6016 is an optional part of a valid name suffix. */
6017
6018 static int
6019 is_name_suffix (const char *str)
6020 {
6021 int k;
6022 const char *matching;
6023 const int len = strlen (str);
6024
6025 /* Skip optional leading __[0-9]+. */
6026
6027 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6028 {
6029 str += 3;
6030 while (isdigit (str[0]))
6031 str += 1;
6032 }
6033
6034 /* [.$][0-9]+ */
6035
6036 if (str[0] == '.' || str[0] == '$')
6037 {
6038 matching = str + 1;
6039 while (isdigit (matching[0]))
6040 matching += 1;
6041 if (matching[0] == '\0')
6042 return 1;
6043 }
6044
6045 /* ___[0-9]+ */
6046
6047 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6048 {
6049 matching = str + 3;
6050 while (isdigit (matching[0]))
6051 matching += 1;
6052 if (matching[0] == '\0')
6053 return 1;
6054 }
6055
6056 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6057
6058 if (strcmp (str, "TKB") == 0)
6059 return 1;
6060
6061 #if 0
6062 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6063 with a N at the end. Unfortunately, the compiler uses the same
6064 convention for other internal types it creates. So treating
6065 all entity names that end with an "N" as a name suffix causes
6066 some regressions. For instance, consider the case of an enumerated
6067 type. To support the 'Image attribute, it creates an array whose
6068 name ends with N.
6069 Having a single character like this as a suffix carrying some
6070 information is a bit risky. Perhaps we should change the encoding
6071 to be something like "_N" instead. In the meantime, do not do
6072 the following check. */
6073 /* Protected Object Subprograms */
6074 if (len == 1 && str [0] == 'N')
6075 return 1;
6076 #endif
6077
6078 /* _E[0-9]+[bs]$ */
6079 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6080 {
6081 matching = str + 3;
6082 while (isdigit (matching[0]))
6083 matching += 1;
6084 if ((matching[0] == 'b' || matching[0] == 's')
6085 && matching [1] == '\0')
6086 return 1;
6087 }
6088
6089 /* ??? We should not modify STR directly, as we are doing below. This
6090 is fine in this case, but may become problematic later if we find
6091 that this alternative did not work, and want to try matching
6092 another one from the begining of STR. Since we modified it, we
6093 won't be able to find the begining of the string anymore! */
6094 if (str[0] == 'X')
6095 {
6096 str += 1;
6097 while (str[0] != '_' && str[0] != '\0')
6098 {
6099 if (str[0] != 'n' && str[0] != 'b')
6100 return 0;
6101 str += 1;
6102 }
6103 }
6104
6105 if (str[0] == '\000')
6106 return 1;
6107
6108 if (str[0] == '_')
6109 {
6110 if (str[1] != '_' || str[2] == '\000')
6111 return 0;
6112 if (str[2] == '_')
6113 {
6114 if (strcmp (str + 3, "JM") == 0)
6115 return 1;
6116 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6117 the LJM suffix in favor of the JM one. But we will
6118 still accept LJM as a valid suffix for a reasonable
6119 amount of time, just to allow ourselves to debug programs
6120 compiled using an older version of GNAT. */
6121 if (strcmp (str + 3, "LJM") == 0)
6122 return 1;
6123 if (str[3] != 'X')
6124 return 0;
6125 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6126 || str[4] == 'U' || str[4] == 'P')
6127 return 1;
6128 if (str[4] == 'R' && str[5] != 'T')
6129 return 1;
6130 return 0;
6131 }
6132 if (!isdigit (str[2]))
6133 return 0;
6134 for (k = 3; str[k] != '\0'; k += 1)
6135 if (!isdigit (str[k]) && str[k] != '_')
6136 return 0;
6137 return 1;
6138 }
6139 if (str[0] == '$' && isdigit (str[1]))
6140 {
6141 for (k = 2; str[k] != '\0'; k += 1)
6142 if (!isdigit (str[k]) && str[k] != '_')
6143 return 0;
6144 return 1;
6145 }
6146 return 0;
6147 }
6148
6149 /* Return non-zero if the string starting at NAME and ending before
6150 NAME_END contains no capital letters. */
6151
6152 static int
6153 is_valid_name_for_wild_match (const char *name0)
6154 {
6155 const char *decoded_name = ada_decode (name0);
6156 int i;
6157
6158 /* If the decoded name starts with an angle bracket, it means that
6159 NAME0 does not follow the GNAT encoding format. It should then
6160 not be allowed as a possible wild match. */
6161 if (decoded_name[0] == '<')
6162 return 0;
6163
6164 for (i=0; decoded_name[i] != '\0'; i++)
6165 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6166 return 0;
6167
6168 return 1;
6169 }
6170
6171 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6172 that could start a simple name. Assumes that *NAMEP points into
6173 the string beginning at NAME0. */
6174
6175 static int
6176 advance_wild_match (const char **namep, const char *name0, int target0)
6177 {
6178 const char *name = *namep;
6179
6180 while (1)
6181 {
6182 int t0, t1;
6183
6184 t0 = *name;
6185 if (t0 == '_')
6186 {
6187 t1 = name[1];
6188 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6189 {
6190 name += 1;
6191 if (name == name0 + 5 && startswith (name0, "_ada"))
6192 break;
6193 else
6194 name += 1;
6195 }
6196 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6197 || name[2] == target0))
6198 {
6199 name += 2;
6200 break;
6201 }
6202 else
6203 return 0;
6204 }
6205 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6206 name += 1;
6207 else
6208 return 0;
6209 }
6210
6211 *namep = name;
6212 return 1;
6213 }
6214
6215 /* Return true iff NAME encodes a name of the form prefix.PATN.
6216 Ignores any informational suffixes of NAME (i.e., for which
6217 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6218 simple name. */
6219
6220 static bool
6221 wild_match (const char *name, const char *patn)
6222 {
6223 const char *p;
6224 const char *name0 = name;
6225
6226 while (1)
6227 {
6228 const char *match = name;
6229
6230 if (*name == *patn)
6231 {
6232 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6233 if (*p != *name)
6234 break;
6235 if (*p == '\0' && is_name_suffix (name))
6236 return match == name0 || is_valid_name_for_wild_match (name0);
6237
6238 if (name[-1] == '_')
6239 name -= 1;
6240 }
6241 if (!advance_wild_match (&name, name0, *patn))
6242 return false;
6243 }
6244 }
6245
6246 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6247 any trailing suffixes that encode debugging information or leading
6248 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6249 information that is ignored). */
6250
6251 static bool
6252 full_match (const char *sym_name, const char *search_name)
6253 {
6254 size_t search_name_len = strlen (search_name);
6255
6256 if (strncmp (sym_name, search_name, search_name_len) == 0
6257 && is_name_suffix (sym_name + search_name_len))
6258 return true;
6259
6260 if (startswith (sym_name, "_ada_")
6261 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6262 && is_name_suffix (sym_name + search_name_len + 5))
6263 return true;
6264
6265 return false;
6266 }
6267
6268 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6269 *defn_symbols, updating the list of symbols in OBSTACKP (if
6270 necessary). OBJFILE is the section containing BLOCK. */
6271
6272 static void
6273 ada_add_block_symbols (struct obstack *obstackp,
6274 const struct block *block,
6275 const lookup_name_info &lookup_name,
6276 domain_enum domain, struct objfile *objfile)
6277 {
6278 struct block_iterator iter;
6279 /* A matching argument symbol, if any. */
6280 struct symbol *arg_sym;
6281 /* Set true when we find a matching non-argument symbol. */
6282 int found_sym;
6283 struct symbol *sym;
6284
6285 arg_sym = NULL;
6286 found_sym = 0;
6287 for (sym = block_iter_match_first (block, lookup_name, &iter);
6288 sym != NULL;
6289 sym = block_iter_match_next (lookup_name, &iter))
6290 {
6291 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6292 SYMBOL_DOMAIN (sym), domain))
6293 {
6294 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6295 {
6296 if (SYMBOL_IS_ARGUMENT (sym))
6297 arg_sym = sym;
6298 else
6299 {
6300 found_sym = 1;
6301 add_defn_to_vec (obstackp,
6302 fixup_symbol_section (sym, objfile),
6303 block);
6304 }
6305 }
6306 }
6307 }
6308
6309 /* Handle renamings. */
6310
6311 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6312 found_sym = 1;
6313
6314 if (!found_sym && arg_sym != NULL)
6315 {
6316 add_defn_to_vec (obstackp,
6317 fixup_symbol_section (arg_sym, objfile),
6318 block);
6319 }
6320
6321 if (!lookup_name.ada ().wild_match_p ())
6322 {
6323 arg_sym = NULL;
6324 found_sym = 0;
6325 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6326 const char *name = ada_lookup_name.c_str ();
6327 size_t name_len = ada_lookup_name.size ();
6328
6329 ALL_BLOCK_SYMBOLS (block, iter, sym)
6330 {
6331 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6332 SYMBOL_DOMAIN (sym), domain))
6333 {
6334 int cmp;
6335
6336 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6337 if (cmp == 0)
6338 {
6339 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6340 if (cmp == 0)
6341 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6342 name_len);
6343 }
6344
6345 if (cmp == 0
6346 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6347 {
6348 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6349 {
6350 if (SYMBOL_IS_ARGUMENT (sym))
6351 arg_sym = sym;
6352 else
6353 {
6354 found_sym = 1;
6355 add_defn_to_vec (obstackp,
6356 fixup_symbol_section (sym, objfile),
6357 block);
6358 }
6359 }
6360 }
6361 }
6362 }
6363
6364 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6365 They aren't parameters, right? */
6366 if (!found_sym && arg_sym != NULL)
6367 {
6368 add_defn_to_vec (obstackp,
6369 fixup_symbol_section (arg_sym, objfile),
6370 block);
6371 }
6372 }
6373 }
6374 \f
6375
6376 /* Symbol Completion */
6377
6378 /* See symtab.h. */
6379
6380 bool
6381 ada_lookup_name_info::matches
6382 (const char *sym_name,
6383 symbol_name_match_type match_type,
6384 completion_match_result *comp_match_res) const
6385 {
6386 bool match = false;
6387 const char *text = m_encoded_name.c_str ();
6388 size_t text_len = m_encoded_name.size ();
6389
6390 /* First, test against the fully qualified name of the symbol. */
6391
6392 if (strncmp (sym_name, text, text_len) == 0)
6393 match = true;
6394
6395 if (match && !m_encoded_p)
6396 {
6397 /* One needed check before declaring a positive match is to verify
6398 that iff we are doing a verbatim match, the decoded version
6399 of the symbol name starts with '<'. Otherwise, this symbol name
6400 is not a suitable completion. */
6401 const char *sym_name_copy = sym_name;
6402 bool has_angle_bracket;
6403
6404 sym_name = ada_decode (sym_name);
6405 has_angle_bracket = (sym_name[0] == '<');
6406 match = (has_angle_bracket == m_verbatim_p);
6407 sym_name = sym_name_copy;
6408 }
6409
6410 if (match && !m_verbatim_p)
6411 {
6412 /* When doing non-verbatim match, another check that needs to
6413 be done is to verify that the potentially matching symbol name
6414 does not include capital letters, because the ada-mode would
6415 not be able to understand these symbol names without the
6416 angle bracket notation. */
6417 const char *tmp;
6418
6419 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6420 if (*tmp != '\0')
6421 match = false;
6422 }
6423
6424 /* Second: Try wild matching... */
6425
6426 if (!match && m_wild_match_p)
6427 {
6428 /* Since we are doing wild matching, this means that TEXT
6429 may represent an unqualified symbol name. We therefore must
6430 also compare TEXT against the unqualified name of the symbol. */
6431 sym_name = ada_unqualified_name (ada_decode (sym_name));
6432
6433 if (strncmp (sym_name, text, text_len) == 0)
6434 match = true;
6435 }
6436
6437 /* Finally: If we found a match, prepare the result to return. */
6438
6439 if (!match)
6440 return false;
6441
6442 if (comp_match_res != NULL)
6443 {
6444 std::string &match_str = comp_match_res->match.storage ();
6445
6446 if (!m_encoded_p)
6447 match_str = ada_decode (sym_name);
6448 else
6449 {
6450 if (m_verbatim_p)
6451 match_str = add_angle_brackets (sym_name);
6452 else
6453 match_str = sym_name;
6454
6455 }
6456
6457 comp_match_res->set_match (match_str.c_str ());
6458 }
6459
6460 return true;
6461 }
6462
6463 /* Add the list of possible symbol names completing TEXT to TRACKER.
6464 WORD is the entire command on which completion is made. */
6465
6466 static void
6467 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6468 complete_symbol_mode mode,
6469 symbol_name_match_type name_match_type,
6470 const char *text, const char *word,
6471 enum type_code code)
6472 {
6473 struct symbol *sym;
6474 struct compunit_symtab *s;
6475 struct minimal_symbol *msymbol;
6476 struct objfile *objfile;
6477 const struct block *b, *surrounding_static_block = 0;
6478 struct block_iterator iter;
6479 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6480
6481 gdb_assert (code == TYPE_CODE_UNDEF);
6482
6483 lookup_name_info lookup_name (text, name_match_type, true);
6484
6485 /* First, look at the partial symtab symbols. */
6486 expand_symtabs_matching (NULL,
6487 lookup_name,
6488 NULL,
6489 NULL,
6490 ALL_DOMAIN);
6491
6492 /* At this point scan through the misc symbol vectors and add each
6493 symbol you find to the list. Eventually we want to ignore
6494 anything that isn't a text symbol (everything else will be
6495 handled by the psymtab code above). */
6496
6497 ALL_MSYMBOLS (objfile, msymbol)
6498 {
6499 QUIT;
6500
6501 if (completion_skip_symbol (mode, msymbol))
6502 continue;
6503
6504 completion_list_add_name (tracker,
6505 MSYMBOL_LANGUAGE (msymbol),
6506 MSYMBOL_LINKAGE_NAME (msymbol),
6507 lookup_name, text, word);
6508 }
6509
6510 /* Search upwards from currently selected frame (so that we can
6511 complete on local vars. */
6512
6513 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6514 {
6515 if (!BLOCK_SUPERBLOCK (b))
6516 surrounding_static_block = b; /* For elmin of dups */
6517
6518 ALL_BLOCK_SYMBOLS (b, iter, sym)
6519 {
6520 if (completion_skip_symbol (mode, sym))
6521 continue;
6522
6523 completion_list_add_name (tracker,
6524 SYMBOL_LANGUAGE (sym),
6525 SYMBOL_LINKAGE_NAME (sym),
6526 lookup_name, text, word);
6527 }
6528 }
6529
6530 /* Go through the symtabs and check the externs and statics for
6531 symbols which match. */
6532
6533 ALL_COMPUNITS (objfile, s)
6534 {
6535 QUIT;
6536 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6537 ALL_BLOCK_SYMBOLS (b, iter, sym)
6538 {
6539 if (completion_skip_symbol (mode, sym))
6540 continue;
6541
6542 completion_list_add_name (tracker,
6543 SYMBOL_LANGUAGE (sym),
6544 SYMBOL_LINKAGE_NAME (sym),
6545 lookup_name, text, word);
6546 }
6547 }
6548
6549 ALL_COMPUNITS (objfile, s)
6550 {
6551 QUIT;
6552 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6553 /* Don't do this block twice. */
6554 if (b == surrounding_static_block)
6555 continue;
6556 ALL_BLOCK_SYMBOLS (b, iter, sym)
6557 {
6558 if (completion_skip_symbol (mode, sym))
6559 continue;
6560
6561 completion_list_add_name (tracker,
6562 SYMBOL_LANGUAGE (sym),
6563 SYMBOL_LINKAGE_NAME (sym),
6564 lookup_name, text, word);
6565 }
6566 }
6567
6568 do_cleanups (old_chain);
6569 }
6570
6571 /* Field Access */
6572
6573 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6574 for tagged types. */
6575
6576 static int
6577 ada_is_dispatch_table_ptr_type (struct type *type)
6578 {
6579 const char *name;
6580
6581 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6582 return 0;
6583
6584 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6585 if (name == NULL)
6586 return 0;
6587
6588 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6589 }
6590
6591 /* Return non-zero if TYPE is an interface tag. */
6592
6593 static int
6594 ada_is_interface_tag (struct type *type)
6595 {
6596 const char *name = TYPE_NAME (type);
6597
6598 if (name == NULL)
6599 return 0;
6600
6601 return (strcmp (name, "ada__tags__interface_tag") == 0);
6602 }
6603
6604 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6605 to be invisible to users. */
6606
6607 int
6608 ada_is_ignored_field (struct type *type, int field_num)
6609 {
6610 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6611 return 1;
6612
6613 /* Check the name of that field. */
6614 {
6615 const char *name = TYPE_FIELD_NAME (type, field_num);
6616
6617 /* Anonymous field names should not be printed.
6618 brobecker/2007-02-20: I don't think this can actually happen
6619 but we don't want to print the value of annonymous fields anyway. */
6620 if (name == NULL)
6621 return 1;
6622
6623 /* Normally, fields whose name start with an underscore ("_")
6624 are fields that have been internally generated by the compiler,
6625 and thus should not be printed. The "_parent" field is special,
6626 however: This is a field internally generated by the compiler
6627 for tagged types, and it contains the components inherited from
6628 the parent type. This field should not be printed as is, but
6629 should not be ignored either. */
6630 if (name[0] == '_' && !startswith (name, "_parent"))
6631 return 1;
6632 }
6633
6634 /* If this is the dispatch table of a tagged type or an interface tag,
6635 then ignore. */
6636 if (ada_is_tagged_type (type, 1)
6637 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6638 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6639 return 1;
6640
6641 /* Not a special field, so it should not be ignored. */
6642 return 0;
6643 }
6644
6645 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6646 pointer or reference type whose ultimate target has a tag field. */
6647
6648 int
6649 ada_is_tagged_type (struct type *type, int refok)
6650 {
6651 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6652 }
6653
6654 /* True iff TYPE represents the type of X'Tag */
6655
6656 int
6657 ada_is_tag_type (struct type *type)
6658 {
6659 type = ada_check_typedef (type);
6660
6661 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6662 return 0;
6663 else
6664 {
6665 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6666
6667 return (name != NULL
6668 && strcmp (name, "ada__tags__dispatch_table") == 0);
6669 }
6670 }
6671
6672 /* The type of the tag on VAL. */
6673
6674 struct type *
6675 ada_tag_type (struct value *val)
6676 {
6677 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6678 }
6679
6680 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6681 retired at Ada 05). */
6682
6683 static int
6684 is_ada95_tag (struct value *tag)
6685 {
6686 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6687 }
6688
6689 /* The value of the tag on VAL. */
6690
6691 struct value *
6692 ada_value_tag (struct value *val)
6693 {
6694 return ada_value_struct_elt (val, "_tag", 0);
6695 }
6696
6697 /* The value of the tag on the object of type TYPE whose contents are
6698 saved at VALADDR, if it is non-null, or is at memory address
6699 ADDRESS. */
6700
6701 static struct value *
6702 value_tag_from_contents_and_address (struct type *type,
6703 const gdb_byte *valaddr,
6704 CORE_ADDR address)
6705 {
6706 int tag_byte_offset;
6707 struct type *tag_type;
6708
6709 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6710 NULL, NULL, NULL))
6711 {
6712 const gdb_byte *valaddr1 = ((valaddr == NULL)
6713 ? NULL
6714 : valaddr + tag_byte_offset);
6715 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6716
6717 return value_from_contents_and_address (tag_type, valaddr1, address1);
6718 }
6719 return NULL;
6720 }
6721
6722 static struct type *
6723 type_from_tag (struct value *tag)
6724 {
6725 const char *type_name = ada_tag_name (tag);
6726
6727 if (type_name != NULL)
6728 return ada_find_any_type (ada_encode (type_name));
6729 return NULL;
6730 }
6731
6732 /* Given a value OBJ of a tagged type, return a value of this
6733 type at the base address of the object. The base address, as
6734 defined in Ada.Tags, it is the address of the primary tag of
6735 the object, and therefore where the field values of its full
6736 view can be fetched. */
6737
6738 struct value *
6739 ada_tag_value_at_base_address (struct value *obj)
6740 {
6741 struct value *val;
6742 LONGEST offset_to_top = 0;
6743 struct type *ptr_type, *obj_type;
6744 struct value *tag;
6745 CORE_ADDR base_address;
6746
6747 obj_type = value_type (obj);
6748
6749 /* It is the responsability of the caller to deref pointers. */
6750
6751 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6752 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6753 return obj;
6754
6755 tag = ada_value_tag (obj);
6756 if (!tag)
6757 return obj;
6758
6759 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6760
6761 if (is_ada95_tag (tag))
6762 return obj;
6763
6764 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6765 ptr_type = lookup_pointer_type (ptr_type);
6766 val = value_cast (ptr_type, tag);
6767 if (!val)
6768 return obj;
6769
6770 /* It is perfectly possible that an exception be raised while
6771 trying to determine the base address, just like for the tag;
6772 see ada_tag_name for more details. We do not print the error
6773 message for the same reason. */
6774
6775 TRY
6776 {
6777 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6778 }
6779
6780 CATCH (e, RETURN_MASK_ERROR)
6781 {
6782 return obj;
6783 }
6784 END_CATCH
6785
6786 /* If offset is null, nothing to do. */
6787
6788 if (offset_to_top == 0)
6789 return obj;
6790
6791 /* -1 is a special case in Ada.Tags; however, what should be done
6792 is not quite clear from the documentation. So do nothing for
6793 now. */
6794
6795 if (offset_to_top == -1)
6796 return obj;
6797
6798 base_address = value_address (obj) - offset_to_top;
6799 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6800
6801 /* Make sure that we have a proper tag at the new address.
6802 Otherwise, offset_to_top is bogus (which can happen when
6803 the object is not initialized yet). */
6804
6805 if (!tag)
6806 return obj;
6807
6808 obj_type = type_from_tag (tag);
6809
6810 if (!obj_type)
6811 return obj;
6812
6813 return value_from_contents_and_address (obj_type, NULL, base_address);
6814 }
6815
6816 /* Return the "ada__tags__type_specific_data" type. */
6817
6818 static struct type *
6819 ada_get_tsd_type (struct inferior *inf)
6820 {
6821 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6822
6823 if (data->tsd_type == 0)
6824 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6825 return data->tsd_type;
6826 }
6827
6828 /* Return the TSD (type-specific data) associated to the given TAG.
6829 TAG is assumed to be the tag of a tagged-type entity.
6830
6831 May return NULL if we are unable to get the TSD. */
6832
6833 static struct value *
6834 ada_get_tsd_from_tag (struct value *tag)
6835 {
6836 struct value *val;
6837 struct type *type;
6838
6839 /* First option: The TSD is simply stored as a field of our TAG.
6840 Only older versions of GNAT would use this format, but we have
6841 to test it first, because there are no visible markers for
6842 the current approach except the absence of that field. */
6843
6844 val = ada_value_struct_elt (tag, "tsd", 1);
6845 if (val)
6846 return val;
6847
6848 /* Try the second representation for the dispatch table (in which
6849 there is no explicit 'tsd' field in the referent of the tag pointer,
6850 and instead the tsd pointer is stored just before the dispatch
6851 table. */
6852
6853 type = ada_get_tsd_type (current_inferior());
6854 if (type == NULL)
6855 return NULL;
6856 type = lookup_pointer_type (lookup_pointer_type (type));
6857 val = value_cast (type, tag);
6858 if (val == NULL)
6859 return NULL;
6860 return value_ind (value_ptradd (val, -1));
6861 }
6862
6863 /* Given the TSD of a tag (type-specific data), return a string
6864 containing the name of the associated type.
6865
6866 The returned value is good until the next call. May return NULL
6867 if we are unable to determine the tag name. */
6868
6869 static char *
6870 ada_tag_name_from_tsd (struct value *tsd)
6871 {
6872 static char name[1024];
6873 char *p;
6874 struct value *val;
6875
6876 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6877 if (val == NULL)
6878 return NULL;
6879 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6880 for (p = name; *p != '\0'; p += 1)
6881 if (isalpha (*p))
6882 *p = tolower (*p);
6883 return name;
6884 }
6885
6886 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6887 a C string.
6888
6889 Return NULL if the TAG is not an Ada tag, or if we were unable to
6890 determine the name of that tag. The result is good until the next
6891 call. */
6892
6893 const char *
6894 ada_tag_name (struct value *tag)
6895 {
6896 char *name = NULL;
6897
6898 if (!ada_is_tag_type (value_type (tag)))
6899 return NULL;
6900
6901 /* It is perfectly possible that an exception be raised while trying
6902 to determine the TAG's name, even under normal circumstances:
6903 The associated variable may be uninitialized or corrupted, for
6904 instance. We do not let any exception propagate past this point.
6905 instead we return NULL.
6906
6907 We also do not print the error message either (which often is very
6908 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6909 the caller print a more meaningful message if necessary. */
6910 TRY
6911 {
6912 struct value *tsd = ada_get_tsd_from_tag (tag);
6913
6914 if (tsd != NULL)
6915 name = ada_tag_name_from_tsd (tsd);
6916 }
6917 CATCH (e, RETURN_MASK_ERROR)
6918 {
6919 }
6920 END_CATCH
6921
6922 return name;
6923 }
6924
6925 /* The parent type of TYPE, or NULL if none. */
6926
6927 struct type *
6928 ada_parent_type (struct type *type)
6929 {
6930 int i;
6931
6932 type = ada_check_typedef (type);
6933
6934 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6935 return NULL;
6936
6937 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6938 if (ada_is_parent_field (type, i))
6939 {
6940 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6941
6942 /* If the _parent field is a pointer, then dereference it. */
6943 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6944 parent_type = TYPE_TARGET_TYPE (parent_type);
6945 /* If there is a parallel XVS type, get the actual base type. */
6946 parent_type = ada_get_base_type (parent_type);
6947
6948 return ada_check_typedef (parent_type);
6949 }
6950
6951 return NULL;
6952 }
6953
6954 /* True iff field number FIELD_NUM of structure type TYPE contains the
6955 parent-type (inherited) fields of a derived type. Assumes TYPE is
6956 a structure type with at least FIELD_NUM+1 fields. */
6957
6958 int
6959 ada_is_parent_field (struct type *type, int field_num)
6960 {
6961 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6962
6963 return (name != NULL
6964 && (startswith (name, "PARENT")
6965 || startswith (name, "_parent")));
6966 }
6967
6968 /* True iff field number FIELD_NUM of structure type TYPE is a
6969 transparent wrapper field (which should be silently traversed when doing
6970 field selection and flattened when printing). Assumes TYPE is a
6971 structure type with at least FIELD_NUM+1 fields. Such fields are always
6972 structures. */
6973
6974 int
6975 ada_is_wrapper_field (struct type *type, int field_num)
6976 {
6977 const char *name = TYPE_FIELD_NAME (type, field_num);
6978
6979 if (name != NULL && strcmp (name, "RETVAL") == 0)
6980 {
6981 /* This happens in functions with "out" or "in out" parameters
6982 which are passed by copy. For such functions, GNAT describes
6983 the function's return type as being a struct where the return
6984 value is in a field called RETVAL, and where the other "out"
6985 or "in out" parameters are fields of that struct. This is not
6986 a wrapper. */
6987 return 0;
6988 }
6989
6990 return (name != NULL
6991 && (startswith (name, "PARENT")
6992 || strcmp (name, "REP") == 0
6993 || startswith (name, "_parent")
6994 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6995 }
6996
6997 /* True iff field number FIELD_NUM of structure or union type TYPE
6998 is a variant wrapper. Assumes TYPE is a structure type with at least
6999 FIELD_NUM+1 fields. */
7000
7001 int
7002 ada_is_variant_part (struct type *type, int field_num)
7003 {
7004 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7005
7006 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7007 || (is_dynamic_field (type, field_num)
7008 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7009 == TYPE_CODE_UNION)));
7010 }
7011
7012 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7013 whose discriminants are contained in the record type OUTER_TYPE,
7014 returns the type of the controlling discriminant for the variant.
7015 May return NULL if the type could not be found. */
7016
7017 struct type *
7018 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7019 {
7020 const char *name = ada_variant_discrim_name (var_type);
7021
7022 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7023 }
7024
7025 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7026 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7027 represents a 'when others' clause; otherwise 0. */
7028
7029 int
7030 ada_is_others_clause (struct type *type, int field_num)
7031 {
7032 const char *name = TYPE_FIELD_NAME (type, field_num);
7033
7034 return (name != NULL && name[0] == 'O');
7035 }
7036
7037 /* Assuming that TYPE0 is the type of the variant part of a record,
7038 returns the name of the discriminant controlling the variant.
7039 The value is valid until the next call to ada_variant_discrim_name. */
7040
7041 const char *
7042 ada_variant_discrim_name (struct type *type0)
7043 {
7044 static char *result = NULL;
7045 static size_t result_len = 0;
7046 struct type *type;
7047 const char *name;
7048 const char *discrim_end;
7049 const char *discrim_start;
7050
7051 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7052 type = TYPE_TARGET_TYPE (type0);
7053 else
7054 type = type0;
7055
7056 name = ada_type_name (type);
7057
7058 if (name == NULL || name[0] == '\000')
7059 return "";
7060
7061 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7062 discrim_end -= 1)
7063 {
7064 if (startswith (discrim_end, "___XVN"))
7065 break;
7066 }
7067 if (discrim_end == name)
7068 return "";
7069
7070 for (discrim_start = discrim_end; discrim_start != name + 3;
7071 discrim_start -= 1)
7072 {
7073 if (discrim_start == name + 1)
7074 return "";
7075 if ((discrim_start > name + 3
7076 && startswith (discrim_start - 3, "___"))
7077 || discrim_start[-1] == '.')
7078 break;
7079 }
7080
7081 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7082 strncpy (result, discrim_start, discrim_end - discrim_start);
7083 result[discrim_end - discrim_start] = '\0';
7084 return result;
7085 }
7086
7087 /* Scan STR for a subtype-encoded number, beginning at position K.
7088 Put the position of the character just past the number scanned in
7089 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7090 Return 1 if there was a valid number at the given position, and 0
7091 otherwise. A "subtype-encoded" number consists of the absolute value
7092 in decimal, followed by the letter 'm' to indicate a negative number.
7093 Assumes 0m does not occur. */
7094
7095 int
7096 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7097 {
7098 ULONGEST RU;
7099
7100 if (!isdigit (str[k]))
7101 return 0;
7102
7103 /* Do it the hard way so as not to make any assumption about
7104 the relationship of unsigned long (%lu scan format code) and
7105 LONGEST. */
7106 RU = 0;
7107 while (isdigit (str[k]))
7108 {
7109 RU = RU * 10 + (str[k] - '0');
7110 k += 1;
7111 }
7112
7113 if (str[k] == 'm')
7114 {
7115 if (R != NULL)
7116 *R = (-(LONGEST) (RU - 1)) - 1;
7117 k += 1;
7118 }
7119 else if (R != NULL)
7120 *R = (LONGEST) RU;
7121
7122 /* NOTE on the above: Technically, C does not say what the results of
7123 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7124 number representable as a LONGEST (although either would probably work
7125 in most implementations). When RU>0, the locution in the then branch
7126 above is always equivalent to the negative of RU. */
7127
7128 if (new_k != NULL)
7129 *new_k = k;
7130 return 1;
7131 }
7132
7133 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7134 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7135 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7136
7137 int
7138 ada_in_variant (LONGEST val, struct type *type, int field_num)
7139 {
7140 const char *name = TYPE_FIELD_NAME (type, field_num);
7141 int p;
7142
7143 p = 0;
7144 while (1)
7145 {
7146 switch (name[p])
7147 {
7148 case '\0':
7149 return 0;
7150 case 'S':
7151 {
7152 LONGEST W;
7153
7154 if (!ada_scan_number (name, p + 1, &W, &p))
7155 return 0;
7156 if (val == W)
7157 return 1;
7158 break;
7159 }
7160 case 'R':
7161 {
7162 LONGEST L, U;
7163
7164 if (!ada_scan_number (name, p + 1, &L, &p)
7165 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7166 return 0;
7167 if (val >= L && val <= U)
7168 return 1;
7169 break;
7170 }
7171 case 'O':
7172 return 1;
7173 default:
7174 return 0;
7175 }
7176 }
7177 }
7178
7179 /* FIXME: Lots of redundancy below. Try to consolidate. */
7180
7181 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7182 ARG_TYPE, extract and return the value of one of its (non-static)
7183 fields. FIELDNO says which field. Differs from value_primitive_field
7184 only in that it can handle packed values of arbitrary type. */
7185
7186 static struct value *
7187 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7188 struct type *arg_type)
7189 {
7190 struct type *type;
7191
7192 arg_type = ada_check_typedef (arg_type);
7193 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7194
7195 /* Handle packed fields. */
7196
7197 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7198 {
7199 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7200 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7201
7202 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7203 offset + bit_pos / 8,
7204 bit_pos % 8, bit_size, type);
7205 }
7206 else
7207 return value_primitive_field (arg1, offset, fieldno, arg_type);
7208 }
7209
7210 /* Find field with name NAME in object of type TYPE. If found,
7211 set the following for each argument that is non-null:
7212 - *FIELD_TYPE_P to the field's type;
7213 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7214 an object of that type;
7215 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7216 - *BIT_SIZE_P to its size in bits if the field is packed, and
7217 0 otherwise;
7218 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7219 fields up to but not including the desired field, or by the total
7220 number of fields if not found. A NULL value of NAME never
7221 matches; the function just counts visible fields in this case.
7222
7223 Returns 1 if found, 0 otherwise. */
7224
7225 static int
7226 find_struct_field (const char *name, struct type *type, int offset,
7227 struct type **field_type_p,
7228 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7229 int *index_p)
7230 {
7231 int i;
7232
7233 type = ada_check_typedef (type);
7234
7235 if (field_type_p != NULL)
7236 *field_type_p = NULL;
7237 if (byte_offset_p != NULL)
7238 *byte_offset_p = 0;
7239 if (bit_offset_p != NULL)
7240 *bit_offset_p = 0;
7241 if (bit_size_p != NULL)
7242 *bit_size_p = 0;
7243
7244 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7245 {
7246 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7247 int fld_offset = offset + bit_pos / 8;
7248 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7249
7250 if (t_field_name == NULL)
7251 continue;
7252
7253 else if (name != NULL && field_name_match (t_field_name, name))
7254 {
7255 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7256
7257 if (field_type_p != NULL)
7258 *field_type_p = TYPE_FIELD_TYPE (type, i);
7259 if (byte_offset_p != NULL)
7260 *byte_offset_p = fld_offset;
7261 if (bit_offset_p != NULL)
7262 *bit_offset_p = bit_pos % 8;
7263 if (bit_size_p != NULL)
7264 *bit_size_p = bit_size;
7265 return 1;
7266 }
7267 else if (ada_is_wrapper_field (type, i))
7268 {
7269 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7270 field_type_p, byte_offset_p, bit_offset_p,
7271 bit_size_p, index_p))
7272 return 1;
7273 }
7274 else if (ada_is_variant_part (type, i))
7275 {
7276 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7277 fixed type?? */
7278 int j;
7279 struct type *field_type
7280 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7281
7282 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7283 {
7284 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7285 fld_offset
7286 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7287 field_type_p, byte_offset_p,
7288 bit_offset_p, bit_size_p, index_p))
7289 return 1;
7290 }
7291 }
7292 else if (index_p != NULL)
7293 *index_p += 1;
7294 }
7295 return 0;
7296 }
7297
7298 /* Number of user-visible fields in record type TYPE. */
7299
7300 static int
7301 num_visible_fields (struct type *type)
7302 {
7303 int n;
7304
7305 n = 0;
7306 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7307 return n;
7308 }
7309
7310 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7311 and search in it assuming it has (class) type TYPE.
7312 If found, return value, else return NULL.
7313
7314 Searches recursively through wrapper fields (e.g., '_parent'). */
7315
7316 static struct value *
7317 ada_search_struct_field (const char *name, struct value *arg, int offset,
7318 struct type *type)
7319 {
7320 int i;
7321
7322 type = ada_check_typedef (type);
7323 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7324 {
7325 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7326
7327 if (t_field_name == NULL)
7328 continue;
7329
7330 else if (field_name_match (t_field_name, name))
7331 return ada_value_primitive_field (arg, offset, i, type);
7332
7333 else if (ada_is_wrapper_field (type, i))
7334 {
7335 struct value *v = /* Do not let indent join lines here. */
7336 ada_search_struct_field (name, arg,
7337 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7338 TYPE_FIELD_TYPE (type, i));
7339
7340 if (v != NULL)
7341 return v;
7342 }
7343
7344 else if (ada_is_variant_part (type, i))
7345 {
7346 /* PNH: Do we ever get here? See find_struct_field. */
7347 int j;
7348 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7349 i));
7350 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7351
7352 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7353 {
7354 struct value *v = ada_search_struct_field /* Force line
7355 break. */
7356 (name, arg,
7357 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7358 TYPE_FIELD_TYPE (field_type, j));
7359
7360 if (v != NULL)
7361 return v;
7362 }
7363 }
7364 }
7365 return NULL;
7366 }
7367
7368 static struct value *ada_index_struct_field_1 (int *, struct value *,
7369 int, struct type *);
7370
7371
7372 /* Return field #INDEX in ARG, where the index is that returned by
7373 * find_struct_field through its INDEX_P argument. Adjust the address
7374 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7375 * If found, return value, else return NULL. */
7376
7377 static struct value *
7378 ada_index_struct_field (int index, struct value *arg, int offset,
7379 struct type *type)
7380 {
7381 return ada_index_struct_field_1 (&index, arg, offset, type);
7382 }
7383
7384
7385 /* Auxiliary function for ada_index_struct_field. Like
7386 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7387 * *INDEX_P. */
7388
7389 static struct value *
7390 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7391 struct type *type)
7392 {
7393 int i;
7394 type = ada_check_typedef (type);
7395
7396 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7397 {
7398 if (TYPE_FIELD_NAME (type, i) == NULL)
7399 continue;
7400 else if (ada_is_wrapper_field (type, i))
7401 {
7402 struct value *v = /* Do not let indent join lines here. */
7403 ada_index_struct_field_1 (index_p, arg,
7404 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7405 TYPE_FIELD_TYPE (type, i));
7406
7407 if (v != NULL)
7408 return v;
7409 }
7410
7411 else if (ada_is_variant_part (type, i))
7412 {
7413 /* PNH: Do we ever get here? See ada_search_struct_field,
7414 find_struct_field. */
7415 error (_("Cannot assign this kind of variant record"));
7416 }
7417 else if (*index_p == 0)
7418 return ada_value_primitive_field (arg, offset, i, type);
7419 else
7420 *index_p -= 1;
7421 }
7422 return NULL;
7423 }
7424
7425 /* Given ARG, a value of type (pointer or reference to a)*
7426 structure/union, extract the component named NAME from the ultimate
7427 target structure/union and return it as a value with its
7428 appropriate type.
7429
7430 The routine searches for NAME among all members of the structure itself
7431 and (recursively) among all members of any wrapper members
7432 (e.g., '_parent').
7433
7434 If NO_ERR, then simply return NULL in case of error, rather than
7435 calling error. */
7436
7437 struct value *
7438 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7439 {
7440 struct type *t, *t1;
7441 struct value *v;
7442
7443 v = NULL;
7444 t1 = t = ada_check_typedef (value_type (arg));
7445 if (TYPE_CODE (t) == TYPE_CODE_REF)
7446 {
7447 t1 = TYPE_TARGET_TYPE (t);
7448 if (t1 == NULL)
7449 goto BadValue;
7450 t1 = ada_check_typedef (t1);
7451 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7452 {
7453 arg = coerce_ref (arg);
7454 t = t1;
7455 }
7456 }
7457
7458 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7459 {
7460 t1 = TYPE_TARGET_TYPE (t);
7461 if (t1 == NULL)
7462 goto BadValue;
7463 t1 = ada_check_typedef (t1);
7464 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7465 {
7466 arg = value_ind (arg);
7467 t = t1;
7468 }
7469 else
7470 break;
7471 }
7472
7473 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7474 goto BadValue;
7475
7476 if (t1 == t)
7477 v = ada_search_struct_field (name, arg, 0, t);
7478 else
7479 {
7480 int bit_offset, bit_size, byte_offset;
7481 struct type *field_type;
7482 CORE_ADDR address;
7483
7484 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7485 address = value_address (ada_value_ind (arg));
7486 else
7487 address = value_address (ada_coerce_ref (arg));
7488
7489 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7490 if (find_struct_field (name, t1, 0,
7491 &field_type, &byte_offset, &bit_offset,
7492 &bit_size, NULL))
7493 {
7494 if (bit_size != 0)
7495 {
7496 if (TYPE_CODE (t) == TYPE_CODE_REF)
7497 arg = ada_coerce_ref (arg);
7498 else
7499 arg = ada_value_ind (arg);
7500 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7501 bit_offset, bit_size,
7502 field_type);
7503 }
7504 else
7505 v = value_at_lazy (field_type, address + byte_offset);
7506 }
7507 }
7508
7509 if (v != NULL || no_err)
7510 return v;
7511 else
7512 error (_("There is no member named %s."), name);
7513
7514 BadValue:
7515 if (no_err)
7516 return NULL;
7517 else
7518 error (_("Attempt to extract a component of "
7519 "a value that is not a record."));
7520 }
7521
7522 /* Return a string representation of type TYPE. */
7523
7524 static std::string
7525 type_as_string (struct type *type)
7526 {
7527 string_file tmp_stream;
7528
7529 type_print (type, "", &tmp_stream, -1);
7530
7531 return std::move (tmp_stream.string ());
7532 }
7533
7534 /* Given a type TYPE, look up the type of the component of type named NAME.
7535 If DISPP is non-null, add its byte displacement from the beginning of a
7536 structure (pointed to by a value) of type TYPE to *DISPP (does not
7537 work for packed fields).
7538
7539 Matches any field whose name has NAME as a prefix, possibly
7540 followed by "___".
7541
7542 TYPE can be either a struct or union. If REFOK, TYPE may also
7543 be a (pointer or reference)+ to a struct or union, and the
7544 ultimate target type will be searched.
7545
7546 Looks recursively into variant clauses and parent types.
7547
7548 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7549 TYPE is not a type of the right kind. */
7550
7551 static struct type *
7552 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7553 int noerr)
7554 {
7555 int i;
7556
7557 if (name == NULL)
7558 goto BadName;
7559
7560 if (refok && type != NULL)
7561 while (1)
7562 {
7563 type = ada_check_typedef (type);
7564 if (TYPE_CODE (type) != TYPE_CODE_PTR
7565 && TYPE_CODE (type) != TYPE_CODE_REF)
7566 break;
7567 type = TYPE_TARGET_TYPE (type);
7568 }
7569
7570 if (type == NULL
7571 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7572 && TYPE_CODE (type) != TYPE_CODE_UNION))
7573 {
7574 if (noerr)
7575 return NULL;
7576
7577 error (_("Type %s is not a structure or union type"),
7578 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7579 }
7580
7581 type = to_static_fixed_type (type);
7582
7583 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7584 {
7585 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7586 struct type *t;
7587
7588 if (t_field_name == NULL)
7589 continue;
7590
7591 else if (field_name_match (t_field_name, name))
7592 return TYPE_FIELD_TYPE (type, i);
7593
7594 else if (ada_is_wrapper_field (type, i))
7595 {
7596 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7597 0, 1);
7598 if (t != NULL)
7599 return t;
7600 }
7601
7602 else if (ada_is_variant_part (type, i))
7603 {
7604 int j;
7605 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7606 i));
7607
7608 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7609 {
7610 /* FIXME pnh 2008/01/26: We check for a field that is
7611 NOT wrapped in a struct, since the compiler sometimes
7612 generates these for unchecked variant types. Revisit
7613 if the compiler changes this practice. */
7614 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7615
7616 if (v_field_name != NULL
7617 && field_name_match (v_field_name, name))
7618 t = TYPE_FIELD_TYPE (field_type, j);
7619 else
7620 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7621 j),
7622 name, 0, 1);
7623
7624 if (t != NULL)
7625 return t;
7626 }
7627 }
7628
7629 }
7630
7631 BadName:
7632 if (!noerr)
7633 {
7634 const char *name_str = name != NULL ? name : _("<null>");
7635
7636 error (_("Type %s has no component named %s"),
7637 type_as_string (type).c_str (), name_str);
7638 }
7639
7640 return NULL;
7641 }
7642
7643 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7644 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7645 represents an unchecked union (that is, the variant part of a
7646 record that is named in an Unchecked_Union pragma). */
7647
7648 static int
7649 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7650 {
7651 const char *discrim_name = ada_variant_discrim_name (var_type);
7652
7653 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7654 }
7655
7656
7657 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7658 within a value of type OUTER_TYPE that is stored in GDB at
7659 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7660 numbering from 0) is applicable. Returns -1 if none are. */
7661
7662 int
7663 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7664 const gdb_byte *outer_valaddr)
7665 {
7666 int others_clause;
7667 int i;
7668 const char *discrim_name = ada_variant_discrim_name (var_type);
7669 struct value *outer;
7670 struct value *discrim;
7671 LONGEST discrim_val;
7672
7673 /* Using plain value_from_contents_and_address here causes problems
7674 because we will end up trying to resolve a type that is currently
7675 being constructed. */
7676 outer = value_from_contents_and_address_unresolved (outer_type,
7677 outer_valaddr, 0);
7678 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7679 if (discrim == NULL)
7680 return -1;
7681 discrim_val = value_as_long (discrim);
7682
7683 others_clause = -1;
7684 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7685 {
7686 if (ada_is_others_clause (var_type, i))
7687 others_clause = i;
7688 else if (ada_in_variant (discrim_val, var_type, i))
7689 return i;
7690 }
7691
7692 return others_clause;
7693 }
7694 \f
7695
7696
7697 /* Dynamic-Sized Records */
7698
7699 /* Strategy: The type ostensibly attached to a value with dynamic size
7700 (i.e., a size that is not statically recorded in the debugging
7701 data) does not accurately reflect the size or layout of the value.
7702 Our strategy is to convert these values to values with accurate,
7703 conventional types that are constructed on the fly. */
7704
7705 /* There is a subtle and tricky problem here. In general, we cannot
7706 determine the size of dynamic records without its data. However,
7707 the 'struct value' data structure, which GDB uses to represent
7708 quantities in the inferior process (the target), requires the size
7709 of the type at the time of its allocation in order to reserve space
7710 for GDB's internal copy of the data. That's why the
7711 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7712 rather than struct value*s.
7713
7714 However, GDB's internal history variables ($1, $2, etc.) are
7715 struct value*s containing internal copies of the data that are not, in
7716 general, the same as the data at their corresponding addresses in
7717 the target. Fortunately, the types we give to these values are all
7718 conventional, fixed-size types (as per the strategy described
7719 above), so that we don't usually have to perform the
7720 'to_fixed_xxx_type' conversions to look at their values.
7721 Unfortunately, there is one exception: if one of the internal
7722 history variables is an array whose elements are unconstrained
7723 records, then we will need to create distinct fixed types for each
7724 element selected. */
7725
7726 /* The upshot of all of this is that many routines take a (type, host
7727 address, target address) triple as arguments to represent a value.
7728 The host address, if non-null, is supposed to contain an internal
7729 copy of the relevant data; otherwise, the program is to consult the
7730 target at the target address. */
7731
7732 /* Assuming that VAL0 represents a pointer value, the result of
7733 dereferencing it. Differs from value_ind in its treatment of
7734 dynamic-sized types. */
7735
7736 struct value *
7737 ada_value_ind (struct value *val0)
7738 {
7739 struct value *val = value_ind (val0);
7740
7741 if (ada_is_tagged_type (value_type (val), 0))
7742 val = ada_tag_value_at_base_address (val);
7743
7744 return ada_to_fixed_value (val);
7745 }
7746
7747 /* The value resulting from dereferencing any "reference to"
7748 qualifiers on VAL0. */
7749
7750 static struct value *
7751 ada_coerce_ref (struct value *val0)
7752 {
7753 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7754 {
7755 struct value *val = val0;
7756
7757 val = coerce_ref (val);
7758
7759 if (ada_is_tagged_type (value_type (val), 0))
7760 val = ada_tag_value_at_base_address (val);
7761
7762 return ada_to_fixed_value (val);
7763 }
7764 else
7765 return val0;
7766 }
7767
7768 /* Return OFF rounded upward if necessary to a multiple of
7769 ALIGNMENT (a power of 2). */
7770
7771 static unsigned int
7772 align_value (unsigned int off, unsigned int alignment)
7773 {
7774 return (off + alignment - 1) & ~(alignment - 1);
7775 }
7776
7777 /* Return the bit alignment required for field #F of template type TYPE. */
7778
7779 static unsigned int
7780 field_alignment (struct type *type, int f)
7781 {
7782 const char *name = TYPE_FIELD_NAME (type, f);
7783 int len;
7784 int align_offset;
7785
7786 /* The field name should never be null, unless the debugging information
7787 is somehow malformed. In this case, we assume the field does not
7788 require any alignment. */
7789 if (name == NULL)
7790 return 1;
7791
7792 len = strlen (name);
7793
7794 if (!isdigit (name[len - 1]))
7795 return 1;
7796
7797 if (isdigit (name[len - 2]))
7798 align_offset = len - 2;
7799 else
7800 align_offset = len - 1;
7801
7802 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7803 return TARGET_CHAR_BIT;
7804
7805 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7806 }
7807
7808 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7809
7810 static struct symbol *
7811 ada_find_any_type_symbol (const char *name)
7812 {
7813 struct symbol *sym;
7814
7815 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7816 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7817 return sym;
7818
7819 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7820 return sym;
7821 }
7822
7823 /* Find a type named NAME. Ignores ambiguity. This routine will look
7824 solely for types defined by debug info, it will not search the GDB
7825 primitive types. */
7826
7827 static struct type *
7828 ada_find_any_type (const char *name)
7829 {
7830 struct symbol *sym = ada_find_any_type_symbol (name);
7831
7832 if (sym != NULL)
7833 return SYMBOL_TYPE (sym);
7834
7835 return NULL;
7836 }
7837
7838 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7839 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7840 symbol, in which case it is returned. Otherwise, this looks for
7841 symbols whose name is that of NAME_SYM suffixed with "___XR".
7842 Return symbol if found, and NULL otherwise. */
7843
7844 struct symbol *
7845 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7846 {
7847 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7848 struct symbol *sym;
7849
7850 if (strstr (name, "___XR") != NULL)
7851 return name_sym;
7852
7853 sym = find_old_style_renaming_symbol (name, block);
7854
7855 if (sym != NULL)
7856 return sym;
7857
7858 /* Not right yet. FIXME pnh 7/20/2007. */
7859 sym = ada_find_any_type_symbol (name);
7860 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7861 return sym;
7862 else
7863 return NULL;
7864 }
7865
7866 static struct symbol *
7867 find_old_style_renaming_symbol (const char *name, const struct block *block)
7868 {
7869 const struct symbol *function_sym = block_linkage_function (block);
7870 char *rename;
7871
7872 if (function_sym != NULL)
7873 {
7874 /* If the symbol is defined inside a function, NAME is not fully
7875 qualified. This means we need to prepend the function name
7876 as well as adding the ``___XR'' suffix to build the name of
7877 the associated renaming symbol. */
7878 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7879 /* Function names sometimes contain suffixes used
7880 for instance to qualify nested subprograms. When building
7881 the XR type name, we need to make sure that this suffix is
7882 not included. So do not include any suffix in the function
7883 name length below. */
7884 int function_name_len = ada_name_prefix_len (function_name);
7885 const int rename_len = function_name_len + 2 /* "__" */
7886 + strlen (name) + 6 /* "___XR\0" */ ;
7887
7888 /* Strip the suffix if necessary. */
7889 ada_remove_trailing_digits (function_name, &function_name_len);
7890 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7891 ada_remove_Xbn_suffix (function_name, &function_name_len);
7892
7893 /* Library-level functions are a special case, as GNAT adds
7894 a ``_ada_'' prefix to the function name to avoid namespace
7895 pollution. However, the renaming symbols themselves do not
7896 have this prefix, so we need to skip this prefix if present. */
7897 if (function_name_len > 5 /* "_ada_" */
7898 && strstr (function_name, "_ada_") == function_name)
7899 {
7900 function_name += 5;
7901 function_name_len -= 5;
7902 }
7903
7904 rename = (char *) alloca (rename_len * sizeof (char));
7905 strncpy (rename, function_name, function_name_len);
7906 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7907 "__%s___XR", name);
7908 }
7909 else
7910 {
7911 const int rename_len = strlen (name) + 6;
7912
7913 rename = (char *) alloca (rename_len * sizeof (char));
7914 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7915 }
7916
7917 return ada_find_any_type_symbol (rename);
7918 }
7919
7920 /* Because of GNAT encoding conventions, several GDB symbols may match a
7921 given type name. If the type denoted by TYPE0 is to be preferred to
7922 that of TYPE1 for purposes of type printing, return non-zero;
7923 otherwise return 0. */
7924
7925 int
7926 ada_prefer_type (struct type *type0, struct type *type1)
7927 {
7928 if (type1 == NULL)
7929 return 1;
7930 else if (type0 == NULL)
7931 return 0;
7932 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7933 return 1;
7934 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7935 return 0;
7936 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7937 return 1;
7938 else if (ada_is_constrained_packed_array_type (type0))
7939 return 1;
7940 else if (ada_is_array_descriptor_type (type0)
7941 && !ada_is_array_descriptor_type (type1))
7942 return 1;
7943 else
7944 {
7945 const char *type0_name = type_name_no_tag (type0);
7946 const char *type1_name = type_name_no_tag (type1);
7947
7948 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7949 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7950 return 1;
7951 }
7952 return 0;
7953 }
7954
7955 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7956 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7957
7958 const char *
7959 ada_type_name (struct type *type)
7960 {
7961 if (type == NULL)
7962 return NULL;
7963 else if (TYPE_NAME (type) != NULL)
7964 return TYPE_NAME (type);
7965 else
7966 return TYPE_TAG_NAME (type);
7967 }
7968
7969 /* Search the list of "descriptive" types associated to TYPE for a type
7970 whose name is NAME. */
7971
7972 static struct type *
7973 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7974 {
7975 struct type *result, *tmp;
7976
7977 if (ada_ignore_descriptive_types_p)
7978 return NULL;
7979
7980 /* If there no descriptive-type info, then there is no parallel type
7981 to be found. */
7982 if (!HAVE_GNAT_AUX_INFO (type))
7983 return NULL;
7984
7985 result = TYPE_DESCRIPTIVE_TYPE (type);
7986 while (result != NULL)
7987 {
7988 const char *result_name = ada_type_name (result);
7989
7990 if (result_name == NULL)
7991 {
7992 warning (_("unexpected null name on descriptive type"));
7993 return NULL;
7994 }
7995
7996 /* If the names match, stop. */
7997 if (strcmp (result_name, name) == 0)
7998 break;
7999
8000 /* Otherwise, look at the next item on the list, if any. */
8001 if (HAVE_GNAT_AUX_INFO (result))
8002 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8003 else
8004 tmp = NULL;
8005
8006 /* If not found either, try after having resolved the typedef. */
8007 if (tmp != NULL)
8008 result = tmp;
8009 else
8010 {
8011 result = check_typedef (result);
8012 if (HAVE_GNAT_AUX_INFO (result))
8013 result = TYPE_DESCRIPTIVE_TYPE (result);
8014 else
8015 result = NULL;
8016 }
8017 }
8018
8019 /* If we didn't find a match, see whether this is a packed array. With
8020 older compilers, the descriptive type information is either absent or
8021 irrelevant when it comes to packed arrays so the above lookup fails.
8022 Fall back to using a parallel lookup by name in this case. */
8023 if (result == NULL && ada_is_constrained_packed_array_type (type))
8024 return ada_find_any_type (name);
8025
8026 return result;
8027 }
8028
8029 /* Find a parallel type to TYPE with the specified NAME, using the
8030 descriptive type taken from the debugging information, if available,
8031 and otherwise using the (slower) name-based method. */
8032
8033 static struct type *
8034 ada_find_parallel_type_with_name (struct type *type, const char *name)
8035 {
8036 struct type *result = NULL;
8037
8038 if (HAVE_GNAT_AUX_INFO (type))
8039 result = find_parallel_type_by_descriptive_type (type, name);
8040 else
8041 result = ada_find_any_type (name);
8042
8043 return result;
8044 }
8045
8046 /* Same as above, but specify the name of the parallel type by appending
8047 SUFFIX to the name of TYPE. */
8048
8049 struct type *
8050 ada_find_parallel_type (struct type *type, const char *suffix)
8051 {
8052 char *name;
8053 const char *type_name = ada_type_name (type);
8054 int len;
8055
8056 if (type_name == NULL)
8057 return NULL;
8058
8059 len = strlen (type_name);
8060
8061 name = (char *) alloca (len + strlen (suffix) + 1);
8062
8063 strcpy (name, type_name);
8064 strcpy (name + len, suffix);
8065
8066 return ada_find_parallel_type_with_name (type, name);
8067 }
8068
8069 /* If TYPE is a variable-size record type, return the corresponding template
8070 type describing its fields. Otherwise, return NULL. */
8071
8072 static struct type *
8073 dynamic_template_type (struct type *type)
8074 {
8075 type = ada_check_typedef (type);
8076
8077 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8078 || ada_type_name (type) == NULL)
8079 return NULL;
8080 else
8081 {
8082 int len = strlen (ada_type_name (type));
8083
8084 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8085 return type;
8086 else
8087 return ada_find_parallel_type (type, "___XVE");
8088 }
8089 }
8090
8091 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8092 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8093
8094 static int
8095 is_dynamic_field (struct type *templ_type, int field_num)
8096 {
8097 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8098
8099 return name != NULL
8100 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8101 && strstr (name, "___XVL") != NULL;
8102 }
8103
8104 /* The index of the variant field of TYPE, or -1 if TYPE does not
8105 represent a variant record type. */
8106
8107 static int
8108 variant_field_index (struct type *type)
8109 {
8110 int f;
8111
8112 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8113 return -1;
8114
8115 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8116 {
8117 if (ada_is_variant_part (type, f))
8118 return f;
8119 }
8120 return -1;
8121 }
8122
8123 /* A record type with no fields. */
8124
8125 static struct type *
8126 empty_record (struct type *templ)
8127 {
8128 struct type *type = alloc_type_copy (templ);
8129
8130 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8131 TYPE_NFIELDS (type) = 0;
8132 TYPE_FIELDS (type) = NULL;
8133 INIT_CPLUS_SPECIFIC (type);
8134 TYPE_NAME (type) = "<empty>";
8135 TYPE_TAG_NAME (type) = NULL;
8136 TYPE_LENGTH (type) = 0;
8137 return type;
8138 }
8139
8140 /* An ordinary record type (with fixed-length fields) that describes
8141 the value of type TYPE at VALADDR or ADDRESS (see comments at
8142 the beginning of this section) VAL according to GNAT conventions.
8143 DVAL0 should describe the (portion of a) record that contains any
8144 necessary discriminants. It should be NULL if value_type (VAL) is
8145 an outer-level type (i.e., as opposed to a branch of a variant.) A
8146 variant field (unless unchecked) is replaced by a particular branch
8147 of the variant.
8148
8149 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8150 length are not statically known are discarded. As a consequence,
8151 VALADDR, ADDRESS and DVAL0 are ignored.
8152
8153 NOTE: Limitations: For now, we assume that dynamic fields and
8154 variants occupy whole numbers of bytes. However, they need not be
8155 byte-aligned. */
8156
8157 struct type *
8158 ada_template_to_fixed_record_type_1 (struct type *type,
8159 const gdb_byte *valaddr,
8160 CORE_ADDR address, struct value *dval0,
8161 int keep_dynamic_fields)
8162 {
8163 struct value *mark = value_mark ();
8164 struct value *dval;
8165 struct type *rtype;
8166 int nfields, bit_len;
8167 int variant_field;
8168 long off;
8169 int fld_bit_len;
8170 int f;
8171
8172 /* Compute the number of fields in this record type that are going
8173 to be processed: unless keep_dynamic_fields, this includes only
8174 fields whose position and length are static will be processed. */
8175 if (keep_dynamic_fields)
8176 nfields = TYPE_NFIELDS (type);
8177 else
8178 {
8179 nfields = 0;
8180 while (nfields < TYPE_NFIELDS (type)
8181 && !ada_is_variant_part (type, nfields)
8182 && !is_dynamic_field (type, nfields))
8183 nfields++;
8184 }
8185
8186 rtype = alloc_type_copy (type);
8187 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8188 INIT_CPLUS_SPECIFIC (rtype);
8189 TYPE_NFIELDS (rtype) = nfields;
8190 TYPE_FIELDS (rtype) = (struct field *)
8191 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8192 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8193 TYPE_NAME (rtype) = ada_type_name (type);
8194 TYPE_TAG_NAME (rtype) = NULL;
8195 TYPE_FIXED_INSTANCE (rtype) = 1;
8196
8197 off = 0;
8198 bit_len = 0;
8199 variant_field = -1;
8200
8201 for (f = 0; f < nfields; f += 1)
8202 {
8203 off = align_value (off, field_alignment (type, f))
8204 + TYPE_FIELD_BITPOS (type, f);
8205 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8206 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8207
8208 if (ada_is_variant_part (type, f))
8209 {
8210 variant_field = f;
8211 fld_bit_len = 0;
8212 }
8213 else if (is_dynamic_field (type, f))
8214 {
8215 const gdb_byte *field_valaddr = valaddr;
8216 CORE_ADDR field_address = address;
8217 struct type *field_type =
8218 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8219
8220 if (dval0 == NULL)
8221 {
8222 /* rtype's length is computed based on the run-time
8223 value of discriminants. If the discriminants are not
8224 initialized, the type size may be completely bogus and
8225 GDB may fail to allocate a value for it. So check the
8226 size first before creating the value. */
8227 ada_ensure_varsize_limit (rtype);
8228 /* Using plain value_from_contents_and_address here
8229 causes problems because we will end up trying to
8230 resolve a type that is currently being
8231 constructed. */
8232 dval = value_from_contents_and_address_unresolved (rtype,
8233 valaddr,
8234 address);
8235 rtype = value_type (dval);
8236 }
8237 else
8238 dval = dval0;
8239
8240 /* If the type referenced by this field is an aligner type, we need
8241 to unwrap that aligner type, because its size might not be set.
8242 Keeping the aligner type would cause us to compute the wrong
8243 size for this field, impacting the offset of the all the fields
8244 that follow this one. */
8245 if (ada_is_aligner_type (field_type))
8246 {
8247 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8248
8249 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8250 field_address = cond_offset_target (field_address, field_offset);
8251 field_type = ada_aligned_type (field_type);
8252 }
8253
8254 field_valaddr = cond_offset_host (field_valaddr,
8255 off / TARGET_CHAR_BIT);
8256 field_address = cond_offset_target (field_address,
8257 off / TARGET_CHAR_BIT);
8258
8259 /* Get the fixed type of the field. Note that, in this case,
8260 we do not want to get the real type out of the tag: if
8261 the current field is the parent part of a tagged record,
8262 we will get the tag of the object. Clearly wrong: the real
8263 type of the parent is not the real type of the child. We
8264 would end up in an infinite loop. */
8265 field_type = ada_get_base_type (field_type);
8266 field_type = ada_to_fixed_type (field_type, field_valaddr,
8267 field_address, dval, 0);
8268 /* If the field size is already larger than the maximum
8269 object size, then the record itself will necessarily
8270 be larger than the maximum object size. We need to make
8271 this check now, because the size might be so ridiculously
8272 large (due to an uninitialized variable in the inferior)
8273 that it would cause an overflow when adding it to the
8274 record size. */
8275 ada_ensure_varsize_limit (field_type);
8276
8277 TYPE_FIELD_TYPE (rtype, f) = field_type;
8278 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8279 /* The multiplication can potentially overflow. But because
8280 the field length has been size-checked just above, and
8281 assuming that the maximum size is a reasonable value,
8282 an overflow should not happen in practice. So rather than
8283 adding overflow recovery code to this already complex code,
8284 we just assume that it's not going to happen. */
8285 fld_bit_len =
8286 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8287 }
8288 else
8289 {
8290 /* Note: If this field's type is a typedef, it is important
8291 to preserve the typedef layer.
8292
8293 Otherwise, we might be transforming a typedef to a fat
8294 pointer (encoding a pointer to an unconstrained array),
8295 into a basic fat pointer (encoding an unconstrained
8296 array). As both types are implemented using the same
8297 structure, the typedef is the only clue which allows us
8298 to distinguish between the two options. Stripping it
8299 would prevent us from printing this field appropriately. */
8300 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8301 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8302 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8303 fld_bit_len =
8304 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8305 else
8306 {
8307 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8308
8309 /* We need to be careful of typedefs when computing
8310 the length of our field. If this is a typedef,
8311 get the length of the target type, not the length
8312 of the typedef. */
8313 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8314 field_type = ada_typedef_target_type (field_type);
8315
8316 fld_bit_len =
8317 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8318 }
8319 }
8320 if (off + fld_bit_len > bit_len)
8321 bit_len = off + fld_bit_len;
8322 off += fld_bit_len;
8323 TYPE_LENGTH (rtype) =
8324 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8325 }
8326
8327 /* We handle the variant part, if any, at the end because of certain
8328 odd cases in which it is re-ordered so as NOT to be the last field of
8329 the record. This can happen in the presence of representation
8330 clauses. */
8331 if (variant_field >= 0)
8332 {
8333 struct type *branch_type;
8334
8335 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8336
8337 if (dval0 == NULL)
8338 {
8339 /* Using plain value_from_contents_and_address here causes
8340 problems because we will end up trying to resolve a type
8341 that is currently being constructed. */
8342 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8343 address);
8344 rtype = value_type (dval);
8345 }
8346 else
8347 dval = dval0;
8348
8349 branch_type =
8350 to_fixed_variant_branch_type
8351 (TYPE_FIELD_TYPE (type, variant_field),
8352 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8353 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8354 if (branch_type == NULL)
8355 {
8356 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8357 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8358 TYPE_NFIELDS (rtype) -= 1;
8359 }
8360 else
8361 {
8362 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8363 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8364 fld_bit_len =
8365 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8366 TARGET_CHAR_BIT;
8367 if (off + fld_bit_len > bit_len)
8368 bit_len = off + fld_bit_len;
8369 TYPE_LENGTH (rtype) =
8370 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8371 }
8372 }
8373
8374 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8375 should contain the alignment of that record, which should be a strictly
8376 positive value. If null or negative, then something is wrong, most
8377 probably in the debug info. In that case, we don't round up the size
8378 of the resulting type. If this record is not part of another structure,
8379 the current RTYPE length might be good enough for our purposes. */
8380 if (TYPE_LENGTH (type) <= 0)
8381 {
8382 if (TYPE_NAME (rtype))
8383 warning (_("Invalid type size for `%s' detected: %d."),
8384 TYPE_NAME (rtype), TYPE_LENGTH (type));
8385 else
8386 warning (_("Invalid type size for <unnamed> detected: %d."),
8387 TYPE_LENGTH (type));
8388 }
8389 else
8390 {
8391 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8392 TYPE_LENGTH (type));
8393 }
8394
8395 value_free_to_mark (mark);
8396 if (TYPE_LENGTH (rtype) > varsize_limit)
8397 error (_("record type with dynamic size is larger than varsize-limit"));
8398 return rtype;
8399 }
8400
8401 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8402 of 1. */
8403
8404 static struct type *
8405 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8406 CORE_ADDR address, struct value *dval0)
8407 {
8408 return ada_template_to_fixed_record_type_1 (type, valaddr,
8409 address, dval0, 1);
8410 }
8411
8412 /* An ordinary record type in which ___XVL-convention fields and
8413 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8414 static approximations, containing all possible fields. Uses
8415 no runtime values. Useless for use in values, but that's OK,
8416 since the results are used only for type determinations. Works on both
8417 structs and unions. Representation note: to save space, we memorize
8418 the result of this function in the TYPE_TARGET_TYPE of the
8419 template type. */
8420
8421 static struct type *
8422 template_to_static_fixed_type (struct type *type0)
8423 {
8424 struct type *type;
8425 int nfields;
8426 int f;
8427
8428 /* No need no do anything if the input type is already fixed. */
8429 if (TYPE_FIXED_INSTANCE (type0))
8430 return type0;
8431
8432 /* Likewise if we already have computed the static approximation. */
8433 if (TYPE_TARGET_TYPE (type0) != NULL)
8434 return TYPE_TARGET_TYPE (type0);
8435
8436 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8437 type = type0;
8438 nfields = TYPE_NFIELDS (type0);
8439
8440 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8441 recompute all over next time. */
8442 TYPE_TARGET_TYPE (type0) = type;
8443
8444 for (f = 0; f < nfields; f += 1)
8445 {
8446 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8447 struct type *new_type;
8448
8449 if (is_dynamic_field (type0, f))
8450 {
8451 field_type = ada_check_typedef (field_type);
8452 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8453 }
8454 else
8455 new_type = static_unwrap_type (field_type);
8456
8457 if (new_type != field_type)
8458 {
8459 /* Clone TYPE0 only the first time we get a new field type. */
8460 if (type == type0)
8461 {
8462 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8463 TYPE_CODE (type) = TYPE_CODE (type0);
8464 INIT_CPLUS_SPECIFIC (type);
8465 TYPE_NFIELDS (type) = nfields;
8466 TYPE_FIELDS (type) = (struct field *)
8467 TYPE_ALLOC (type, nfields * sizeof (struct field));
8468 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8469 sizeof (struct field) * nfields);
8470 TYPE_NAME (type) = ada_type_name (type0);
8471 TYPE_TAG_NAME (type) = NULL;
8472 TYPE_FIXED_INSTANCE (type) = 1;
8473 TYPE_LENGTH (type) = 0;
8474 }
8475 TYPE_FIELD_TYPE (type, f) = new_type;
8476 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8477 }
8478 }
8479
8480 return type;
8481 }
8482
8483 /* Given an object of type TYPE whose contents are at VALADDR and
8484 whose address in memory is ADDRESS, returns a revision of TYPE,
8485 which should be a non-dynamic-sized record, in which the variant
8486 part, if any, is replaced with the appropriate branch. Looks
8487 for discriminant values in DVAL0, which can be NULL if the record
8488 contains the necessary discriminant values. */
8489
8490 static struct type *
8491 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8492 CORE_ADDR address, struct value *dval0)
8493 {
8494 struct value *mark = value_mark ();
8495 struct value *dval;
8496 struct type *rtype;
8497 struct type *branch_type;
8498 int nfields = TYPE_NFIELDS (type);
8499 int variant_field = variant_field_index (type);
8500
8501 if (variant_field == -1)
8502 return type;
8503
8504 if (dval0 == NULL)
8505 {
8506 dval = value_from_contents_and_address (type, valaddr, address);
8507 type = value_type (dval);
8508 }
8509 else
8510 dval = dval0;
8511
8512 rtype = alloc_type_copy (type);
8513 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8514 INIT_CPLUS_SPECIFIC (rtype);
8515 TYPE_NFIELDS (rtype) = nfields;
8516 TYPE_FIELDS (rtype) =
8517 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8518 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8519 sizeof (struct field) * nfields);
8520 TYPE_NAME (rtype) = ada_type_name (type);
8521 TYPE_TAG_NAME (rtype) = NULL;
8522 TYPE_FIXED_INSTANCE (rtype) = 1;
8523 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8524
8525 branch_type = to_fixed_variant_branch_type
8526 (TYPE_FIELD_TYPE (type, variant_field),
8527 cond_offset_host (valaddr,
8528 TYPE_FIELD_BITPOS (type, variant_field)
8529 / TARGET_CHAR_BIT),
8530 cond_offset_target (address,
8531 TYPE_FIELD_BITPOS (type, variant_field)
8532 / TARGET_CHAR_BIT), dval);
8533 if (branch_type == NULL)
8534 {
8535 int f;
8536
8537 for (f = variant_field + 1; f < nfields; f += 1)
8538 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8539 TYPE_NFIELDS (rtype) -= 1;
8540 }
8541 else
8542 {
8543 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8544 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8545 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8546 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8547 }
8548 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8549
8550 value_free_to_mark (mark);
8551 return rtype;
8552 }
8553
8554 /* An ordinary record type (with fixed-length fields) that describes
8555 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8556 beginning of this section]. Any necessary discriminants' values
8557 should be in DVAL, a record value; it may be NULL if the object
8558 at ADDR itself contains any necessary discriminant values.
8559 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8560 values from the record are needed. Except in the case that DVAL,
8561 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8562 unchecked) is replaced by a particular branch of the variant.
8563
8564 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8565 is questionable and may be removed. It can arise during the
8566 processing of an unconstrained-array-of-record type where all the
8567 variant branches have exactly the same size. This is because in
8568 such cases, the compiler does not bother to use the XVS convention
8569 when encoding the record. I am currently dubious of this
8570 shortcut and suspect the compiler should be altered. FIXME. */
8571
8572 static struct type *
8573 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8574 CORE_ADDR address, struct value *dval)
8575 {
8576 struct type *templ_type;
8577
8578 if (TYPE_FIXED_INSTANCE (type0))
8579 return type0;
8580
8581 templ_type = dynamic_template_type (type0);
8582
8583 if (templ_type != NULL)
8584 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8585 else if (variant_field_index (type0) >= 0)
8586 {
8587 if (dval == NULL && valaddr == NULL && address == 0)
8588 return type0;
8589 return to_record_with_fixed_variant_part (type0, valaddr, address,
8590 dval);
8591 }
8592 else
8593 {
8594 TYPE_FIXED_INSTANCE (type0) = 1;
8595 return type0;
8596 }
8597
8598 }
8599
8600 /* An ordinary record type (with fixed-length fields) that describes
8601 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8602 union type. Any necessary discriminants' values should be in DVAL,
8603 a record value. That is, this routine selects the appropriate
8604 branch of the union at ADDR according to the discriminant value
8605 indicated in the union's type name. Returns VAR_TYPE0 itself if
8606 it represents a variant subject to a pragma Unchecked_Union. */
8607
8608 static struct type *
8609 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8610 CORE_ADDR address, struct value *dval)
8611 {
8612 int which;
8613 struct type *templ_type;
8614 struct type *var_type;
8615
8616 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8617 var_type = TYPE_TARGET_TYPE (var_type0);
8618 else
8619 var_type = var_type0;
8620
8621 templ_type = ada_find_parallel_type (var_type, "___XVU");
8622
8623 if (templ_type != NULL)
8624 var_type = templ_type;
8625
8626 if (is_unchecked_variant (var_type, value_type (dval)))
8627 return var_type0;
8628 which =
8629 ada_which_variant_applies (var_type,
8630 value_type (dval), value_contents (dval));
8631
8632 if (which < 0)
8633 return empty_record (var_type);
8634 else if (is_dynamic_field (var_type, which))
8635 return to_fixed_record_type
8636 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8637 valaddr, address, dval);
8638 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8639 return
8640 to_fixed_record_type
8641 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8642 else
8643 return TYPE_FIELD_TYPE (var_type, which);
8644 }
8645
8646 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8647 ENCODING_TYPE, a type following the GNAT conventions for discrete
8648 type encodings, only carries redundant information. */
8649
8650 static int
8651 ada_is_redundant_range_encoding (struct type *range_type,
8652 struct type *encoding_type)
8653 {
8654 const char *bounds_str;
8655 int n;
8656 LONGEST lo, hi;
8657
8658 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8659
8660 if (TYPE_CODE (get_base_type (range_type))
8661 != TYPE_CODE (get_base_type (encoding_type)))
8662 {
8663 /* The compiler probably used a simple base type to describe
8664 the range type instead of the range's actual base type,
8665 expecting us to get the real base type from the encoding
8666 anyway. In this situation, the encoding cannot be ignored
8667 as redundant. */
8668 return 0;
8669 }
8670
8671 if (is_dynamic_type (range_type))
8672 return 0;
8673
8674 if (TYPE_NAME (encoding_type) == NULL)
8675 return 0;
8676
8677 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8678 if (bounds_str == NULL)
8679 return 0;
8680
8681 n = 8; /* Skip "___XDLU_". */
8682 if (!ada_scan_number (bounds_str, n, &lo, &n))
8683 return 0;
8684 if (TYPE_LOW_BOUND (range_type) != lo)
8685 return 0;
8686
8687 n += 2; /* Skip the "__" separator between the two bounds. */
8688 if (!ada_scan_number (bounds_str, n, &hi, &n))
8689 return 0;
8690 if (TYPE_HIGH_BOUND (range_type) != hi)
8691 return 0;
8692
8693 return 1;
8694 }
8695
8696 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8697 a type following the GNAT encoding for describing array type
8698 indices, only carries redundant information. */
8699
8700 static int
8701 ada_is_redundant_index_type_desc (struct type *array_type,
8702 struct type *desc_type)
8703 {
8704 struct type *this_layer = check_typedef (array_type);
8705 int i;
8706
8707 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8708 {
8709 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8710 TYPE_FIELD_TYPE (desc_type, i)))
8711 return 0;
8712 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8713 }
8714
8715 return 1;
8716 }
8717
8718 /* Assuming that TYPE0 is an array type describing the type of a value
8719 at ADDR, and that DVAL describes a record containing any
8720 discriminants used in TYPE0, returns a type for the value that
8721 contains no dynamic components (that is, no components whose sizes
8722 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8723 true, gives an error message if the resulting type's size is over
8724 varsize_limit. */
8725
8726 static struct type *
8727 to_fixed_array_type (struct type *type0, struct value *dval,
8728 int ignore_too_big)
8729 {
8730 struct type *index_type_desc;
8731 struct type *result;
8732 int constrained_packed_array_p;
8733 static const char *xa_suffix = "___XA";
8734
8735 type0 = ada_check_typedef (type0);
8736 if (TYPE_FIXED_INSTANCE (type0))
8737 return type0;
8738
8739 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8740 if (constrained_packed_array_p)
8741 type0 = decode_constrained_packed_array_type (type0);
8742
8743 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8744
8745 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8746 encoding suffixed with 'P' may still be generated. If so,
8747 it should be used to find the XA type. */
8748
8749 if (index_type_desc == NULL)
8750 {
8751 const char *type_name = ada_type_name (type0);
8752
8753 if (type_name != NULL)
8754 {
8755 const int len = strlen (type_name);
8756 char *name = (char *) alloca (len + strlen (xa_suffix));
8757
8758 if (type_name[len - 1] == 'P')
8759 {
8760 strcpy (name, type_name);
8761 strcpy (name + len - 1, xa_suffix);
8762 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8763 }
8764 }
8765 }
8766
8767 ada_fixup_array_indexes_type (index_type_desc);
8768 if (index_type_desc != NULL
8769 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8770 {
8771 /* Ignore this ___XA parallel type, as it does not bring any
8772 useful information. This allows us to avoid creating fixed
8773 versions of the array's index types, which would be identical
8774 to the original ones. This, in turn, can also help avoid
8775 the creation of fixed versions of the array itself. */
8776 index_type_desc = NULL;
8777 }
8778
8779 if (index_type_desc == NULL)
8780 {
8781 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8782
8783 /* NOTE: elt_type---the fixed version of elt_type0---should never
8784 depend on the contents of the array in properly constructed
8785 debugging data. */
8786 /* Create a fixed version of the array element type.
8787 We're not providing the address of an element here,
8788 and thus the actual object value cannot be inspected to do
8789 the conversion. This should not be a problem, since arrays of
8790 unconstrained objects are not allowed. In particular, all
8791 the elements of an array of a tagged type should all be of
8792 the same type specified in the debugging info. No need to
8793 consult the object tag. */
8794 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8795
8796 /* Make sure we always create a new array type when dealing with
8797 packed array types, since we're going to fix-up the array
8798 type length and element bitsize a little further down. */
8799 if (elt_type0 == elt_type && !constrained_packed_array_p)
8800 result = type0;
8801 else
8802 result = create_array_type (alloc_type_copy (type0),
8803 elt_type, TYPE_INDEX_TYPE (type0));
8804 }
8805 else
8806 {
8807 int i;
8808 struct type *elt_type0;
8809
8810 elt_type0 = type0;
8811 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8812 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8813
8814 /* NOTE: result---the fixed version of elt_type0---should never
8815 depend on the contents of the array in properly constructed
8816 debugging data. */
8817 /* Create a fixed version of the array element type.
8818 We're not providing the address of an element here,
8819 and thus the actual object value cannot be inspected to do
8820 the conversion. This should not be a problem, since arrays of
8821 unconstrained objects are not allowed. In particular, all
8822 the elements of an array of a tagged type should all be of
8823 the same type specified in the debugging info. No need to
8824 consult the object tag. */
8825 result =
8826 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8827
8828 elt_type0 = type0;
8829 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8830 {
8831 struct type *range_type =
8832 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8833
8834 result = create_array_type (alloc_type_copy (elt_type0),
8835 result, range_type);
8836 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8837 }
8838 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8839 error (_("array type with dynamic size is larger than varsize-limit"));
8840 }
8841
8842 /* We want to preserve the type name. This can be useful when
8843 trying to get the type name of a value that has already been
8844 printed (for instance, if the user did "print VAR; whatis $". */
8845 TYPE_NAME (result) = TYPE_NAME (type0);
8846
8847 if (constrained_packed_array_p)
8848 {
8849 /* So far, the resulting type has been created as if the original
8850 type was a regular (non-packed) array type. As a result, the
8851 bitsize of the array elements needs to be set again, and the array
8852 length needs to be recomputed based on that bitsize. */
8853 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8854 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8855
8856 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8857 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8858 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8859 TYPE_LENGTH (result)++;
8860 }
8861
8862 TYPE_FIXED_INSTANCE (result) = 1;
8863 return result;
8864 }
8865
8866
8867 /* A standard type (containing no dynamically sized components)
8868 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8869 DVAL describes a record containing any discriminants used in TYPE0,
8870 and may be NULL if there are none, or if the object of type TYPE at
8871 ADDRESS or in VALADDR contains these discriminants.
8872
8873 If CHECK_TAG is not null, in the case of tagged types, this function
8874 attempts to locate the object's tag and use it to compute the actual
8875 type. However, when ADDRESS is null, we cannot use it to determine the
8876 location of the tag, and therefore compute the tagged type's actual type.
8877 So we return the tagged type without consulting the tag. */
8878
8879 static struct type *
8880 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8881 CORE_ADDR address, struct value *dval, int check_tag)
8882 {
8883 type = ada_check_typedef (type);
8884 switch (TYPE_CODE (type))
8885 {
8886 default:
8887 return type;
8888 case TYPE_CODE_STRUCT:
8889 {
8890 struct type *static_type = to_static_fixed_type (type);
8891 struct type *fixed_record_type =
8892 to_fixed_record_type (type, valaddr, address, NULL);
8893
8894 /* If STATIC_TYPE is a tagged type and we know the object's address,
8895 then we can determine its tag, and compute the object's actual
8896 type from there. Note that we have to use the fixed record
8897 type (the parent part of the record may have dynamic fields
8898 and the way the location of _tag is expressed may depend on
8899 them). */
8900
8901 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8902 {
8903 struct value *tag =
8904 value_tag_from_contents_and_address
8905 (fixed_record_type,
8906 valaddr,
8907 address);
8908 struct type *real_type = type_from_tag (tag);
8909 struct value *obj =
8910 value_from_contents_and_address (fixed_record_type,
8911 valaddr,
8912 address);
8913 fixed_record_type = value_type (obj);
8914 if (real_type != NULL)
8915 return to_fixed_record_type
8916 (real_type, NULL,
8917 value_address (ada_tag_value_at_base_address (obj)), NULL);
8918 }
8919
8920 /* Check to see if there is a parallel ___XVZ variable.
8921 If there is, then it provides the actual size of our type. */
8922 else if (ada_type_name (fixed_record_type) != NULL)
8923 {
8924 const char *name = ada_type_name (fixed_record_type);
8925 char *xvz_name
8926 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8927 LONGEST size;
8928
8929 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8930 if (get_int_var_value (xvz_name, size)
8931 && TYPE_LENGTH (fixed_record_type) != size)
8932 {
8933 fixed_record_type = copy_type (fixed_record_type);
8934 TYPE_LENGTH (fixed_record_type) = size;
8935
8936 /* The FIXED_RECORD_TYPE may have be a stub. We have
8937 observed this when the debugging info is STABS, and
8938 apparently it is something that is hard to fix.
8939
8940 In practice, we don't need the actual type definition
8941 at all, because the presence of the XVZ variable allows us
8942 to assume that there must be a XVS type as well, which we
8943 should be able to use later, when we need the actual type
8944 definition.
8945
8946 In the meantime, pretend that the "fixed" type we are
8947 returning is NOT a stub, because this can cause trouble
8948 when using this type to create new types targeting it.
8949 Indeed, the associated creation routines often check
8950 whether the target type is a stub and will try to replace
8951 it, thus using a type with the wrong size. This, in turn,
8952 might cause the new type to have the wrong size too.
8953 Consider the case of an array, for instance, where the size
8954 of the array is computed from the number of elements in
8955 our array multiplied by the size of its element. */
8956 TYPE_STUB (fixed_record_type) = 0;
8957 }
8958 }
8959 return fixed_record_type;
8960 }
8961 case TYPE_CODE_ARRAY:
8962 return to_fixed_array_type (type, dval, 1);
8963 case TYPE_CODE_UNION:
8964 if (dval == NULL)
8965 return type;
8966 else
8967 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8968 }
8969 }
8970
8971 /* The same as ada_to_fixed_type_1, except that it preserves the type
8972 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8973
8974 The typedef layer needs be preserved in order to differentiate between
8975 arrays and array pointers when both types are implemented using the same
8976 fat pointer. In the array pointer case, the pointer is encoded as
8977 a typedef of the pointer type. For instance, considering:
8978
8979 type String_Access is access String;
8980 S1 : String_Access := null;
8981
8982 To the debugger, S1 is defined as a typedef of type String. But
8983 to the user, it is a pointer. So if the user tries to print S1,
8984 we should not dereference the array, but print the array address
8985 instead.
8986
8987 If we didn't preserve the typedef layer, we would lose the fact that
8988 the type is to be presented as a pointer (needs de-reference before
8989 being printed). And we would also use the source-level type name. */
8990
8991 struct type *
8992 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8993 CORE_ADDR address, struct value *dval, int check_tag)
8994
8995 {
8996 struct type *fixed_type =
8997 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8998
8999 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9000 then preserve the typedef layer.
9001
9002 Implementation note: We can only check the main-type portion of
9003 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9004 from TYPE now returns a type that has the same instance flags
9005 as TYPE. For instance, if TYPE is a "typedef const", and its
9006 target type is a "struct", then the typedef elimination will return
9007 a "const" version of the target type. See check_typedef for more
9008 details about how the typedef layer elimination is done.
9009
9010 brobecker/2010-11-19: It seems to me that the only case where it is
9011 useful to preserve the typedef layer is when dealing with fat pointers.
9012 Perhaps, we could add a check for that and preserve the typedef layer
9013 only in that situation. But this seems unecessary so far, probably
9014 because we call check_typedef/ada_check_typedef pretty much everywhere.
9015 */
9016 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9017 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9018 == TYPE_MAIN_TYPE (fixed_type)))
9019 return type;
9020
9021 return fixed_type;
9022 }
9023
9024 /* A standard (static-sized) type corresponding as well as possible to
9025 TYPE0, but based on no runtime data. */
9026
9027 static struct type *
9028 to_static_fixed_type (struct type *type0)
9029 {
9030 struct type *type;
9031
9032 if (type0 == NULL)
9033 return NULL;
9034
9035 if (TYPE_FIXED_INSTANCE (type0))
9036 return type0;
9037
9038 type0 = ada_check_typedef (type0);
9039
9040 switch (TYPE_CODE (type0))
9041 {
9042 default:
9043 return type0;
9044 case TYPE_CODE_STRUCT:
9045 type = dynamic_template_type (type0);
9046 if (type != NULL)
9047 return template_to_static_fixed_type (type);
9048 else
9049 return template_to_static_fixed_type (type0);
9050 case TYPE_CODE_UNION:
9051 type = ada_find_parallel_type (type0, "___XVU");
9052 if (type != NULL)
9053 return template_to_static_fixed_type (type);
9054 else
9055 return template_to_static_fixed_type (type0);
9056 }
9057 }
9058
9059 /* A static approximation of TYPE with all type wrappers removed. */
9060
9061 static struct type *
9062 static_unwrap_type (struct type *type)
9063 {
9064 if (ada_is_aligner_type (type))
9065 {
9066 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9067 if (ada_type_name (type1) == NULL)
9068 TYPE_NAME (type1) = ada_type_name (type);
9069
9070 return static_unwrap_type (type1);
9071 }
9072 else
9073 {
9074 struct type *raw_real_type = ada_get_base_type (type);
9075
9076 if (raw_real_type == type)
9077 return type;
9078 else
9079 return to_static_fixed_type (raw_real_type);
9080 }
9081 }
9082
9083 /* In some cases, incomplete and private types require
9084 cross-references that are not resolved as records (for example,
9085 type Foo;
9086 type FooP is access Foo;
9087 V: FooP;
9088 type Foo is array ...;
9089 ). In these cases, since there is no mechanism for producing
9090 cross-references to such types, we instead substitute for FooP a
9091 stub enumeration type that is nowhere resolved, and whose tag is
9092 the name of the actual type. Call these types "non-record stubs". */
9093
9094 /* A type equivalent to TYPE that is not a non-record stub, if one
9095 exists, otherwise TYPE. */
9096
9097 struct type *
9098 ada_check_typedef (struct type *type)
9099 {
9100 if (type == NULL)
9101 return NULL;
9102
9103 /* If our type is a typedef type of a fat pointer, then we're done.
9104 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9105 what allows us to distinguish between fat pointers that represent
9106 array types, and fat pointers that represent array access types
9107 (in both cases, the compiler implements them as fat pointers). */
9108 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9109 && is_thick_pntr (ada_typedef_target_type (type)))
9110 return type;
9111
9112 type = check_typedef (type);
9113 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9114 || !TYPE_STUB (type)
9115 || TYPE_TAG_NAME (type) == NULL)
9116 return type;
9117 else
9118 {
9119 const char *name = TYPE_TAG_NAME (type);
9120 struct type *type1 = ada_find_any_type (name);
9121
9122 if (type1 == NULL)
9123 return type;
9124
9125 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9126 stubs pointing to arrays, as we don't create symbols for array
9127 types, only for the typedef-to-array types). If that's the case,
9128 strip the typedef layer. */
9129 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9130 type1 = ada_check_typedef (type1);
9131
9132 return type1;
9133 }
9134 }
9135
9136 /* A value representing the data at VALADDR/ADDRESS as described by
9137 type TYPE0, but with a standard (static-sized) type that correctly
9138 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9139 type, then return VAL0 [this feature is simply to avoid redundant
9140 creation of struct values]. */
9141
9142 static struct value *
9143 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9144 struct value *val0)
9145 {
9146 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9147
9148 if (type == type0 && val0 != NULL)
9149 return val0;
9150 else
9151 return value_from_contents_and_address (type, 0, address);
9152 }
9153
9154 /* A value representing VAL, but with a standard (static-sized) type
9155 that correctly describes it. Does not necessarily create a new
9156 value. */
9157
9158 struct value *
9159 ada_to_fixed_value (struct value *val)
9160 {
9161 val = unwrap_value (val);
9162 val = ada_to_fixed_value_create (value_type (val),
9163 value_address (val),
9164 val);
9165 return val;
9166 }
9167 \f
9168
9169 /* Attributes */
9170
9171 /* Table mapping attribute numbers to names.
9172 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9173
9174 static const char *attribute_names[] = {
9175 "<?>",
9176
9177 "first",
9178 "last",
9179 "length",
9180 "image",
9181 "max",
9182 "min",
9183 "modulus",
9184 "pos",
9185 "size",
9186 "tag",
9187 "val",
9188 0
9189 };
9190
9191 const char *
9192 ada_attribute_name (enum exp_opcode n)
9193 {
9194 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9195 return attribute_names[n - OP_ATR_FIRST + 1];
9196 else
9197 return attribute_names[0];
9198 }
9199
9200 /* Evaluate the 'POS attribute applied to ARG. */
9201
9202 static LONGEST
9203 pos_atr (struct value *arg)
9204 {
9205 struct value *val = coerce_ref (arg);
9206 struct type *type = value_type (val);
9207 LONGEST result;
9208
9209 if (!discrete_type_p (type))
9210 error (_("'POS only defined on discrete types"));
9211
9212 if (!discrete_position (type, value_as_long (val), &result))
9213 error (_("enumeration value is invalid: can't find 'POS"));
9214
9215 return result;
9216 }
9217
9218 static struct value *
9219 value_pos_atr (struct type *type, struct value *arg)
9220 {
9221 return value_from_longest (type, pos_atr (arg));
9222 }
9223
9224 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9225
9226 static struct value *
9227 value_val_atr (struct type *type, struct value *arg)
9228 {
9229 if (!discrete_type_p (type))
9230 error (_("'VAL only defined on discrete types"));
9231 if (!integer_type_p (value_type (arg)))
9232 error (_("'VAL requires integral argument"));
9233
9234 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9235 {
9236 long pos = value_as_long (arg);
9237
9238 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9239 error (_("argument to 'VAL out of range"));
9240 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9241 }
9242 else
9243 return value_from_longest (type, value_as_long (arg));
9244 }
9245 \f
9246
9247 /* Evaluation */
9248
9249 /* True if TYPE appears to be an Ada character type.
9250 [At the moment, this is true only for Character and Wide_Character;
9251 It is a heuristic test that could stand improvement]. */
9252
9253 int
9254 ada_is_character_type (struct type *type)
9255 {
9256 const char *name;
9257
9258 /* If the type code says it's a character, then assume it really is,
9259 and don't check any further. */
9260 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9261 return 1;
9262
9263 /* Otherwise, assume it's a character type iff it is a discrete type
9264 with a known character type name. */
9265 name = ada_type_name (type);
9266 return (name != NULL
9267 && (TYPE_CODE (type) == TYPE_CODE_INT
9268 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9269 && (strcmp (name, "character") == 0
9270 || strcmp (name, "wide_character") == 0
9271 || strcmp (name, "wide_wide_character") == 0
9272 || strcmp (name, "unsigned char") == 0));
9273 }
9274
9275 /* True if TYPE appears to be an Ada string type. */
9276
9277 int
9278 ada_is_string_type (struct type *type)
9279 {
9280 type = ada_check_typedef (type);
9281 if (type != NULL
9282 && TYPE_CODE (type) != TYPE_CODE_PTR
9283 && (ada_is_simple_array_type (type)
9284 || ada_is_array_descriptor_type (type))
9285 && ada_array_arity (type) == 1)
9286 {
9287 struct type *elttype = ada_array_element_type (type, 1);
9288
9289 return ada_is_character_type (elttype);
9290 }
9291 else
9292 return 0;
9293 }
9294
9295 /* The compiler sometimes provides a parallel XVS type for a given
9296 PAD type. Normally, it is safe to follow the PAD type directly,
9297 but older versions of the compiler have a bug that causes the offset
9298 of its "F" field to be wrong. Following that field in that case
9299 would lead to incorrect results, but this can be worked around
9300 by ignoring the PAD type and using the associated XVS type instead.
9301
9302 Set to True if the debugger should trust the contents of PAD types.
9303 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9304 static int trust_pad_over_xvs = 1;
9305
9306 /* True if TYPE is a struct type introduced by the compiler to force the
9307 alignment of a value. Such types have a single field with a
9308 distinctive name. */
9309
9310 int
9311 ada_is_aligner_type (struct type *type)
9312 {
9313 type = ada_check_typedef (type);
9314
9315 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9316 return 0;
9317
9318 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9319 && TYPE_NFIELDS (type) == 1
9320 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9321 }
9322
9323 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9324 the parallel type. */
9325
9326 struct type *
9327 ada_get_base_type (struct type *raw_type)
9328 {
9329 struct type *real_type_namer;
9330 struct type *raw_real_type;
9331
9332 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9333 return raw_type;
9334
9335 if (ada_is_aligner_type (raw_type))
9336 /* The encoding specifies that we should always use the aligner type.
9337 So, even if this aligner type has an associated XVS type, we should
9338 simply ignore it.
9339
9340 According to the compiler gurus, an XVS type parallel to an aligner
9341 type may exist because of a stabs limitation. In stabs, aligner
9342 types are empty because the field has a variable-sized type, and
9343 thus cannot actually be used as an aligner type. As a result,
9344 we need the associated parallel XVS type to decode the type.
9345 Since the policy in the compiler is to not change the internal
9346 representation based on the debugging info format, we sometimes
9347 end up having a redundant XVS type parallel to the aligner type. */
9348 return raw_type;
9349
9350 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9351 if (real_type_namer == NULL
9352 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9353 || TYPE_NFIELDS (real_type_namer) != 1)
9354 return raw_type;
9355
9356 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9357 {
9358 /* This is an older encoding form where the base type needs to be
9359 looked up by name. We prefer the newer enconding because it is
9360 more efficient. */
9361 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9362 if (raw_real_type == NULL)
9363 return raw_type;
9364 else
9365 return raw_real_type;
9366 }
9367
9368 /* The field in our XVS type is a reference to the base type. */
9369 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9370 }
9371
9372 /* The type of value designated by TYPE, with all aligners removed. */
9373
9374 struct type *
9375 ada_aligned_type (struct type *type)
9376 {
9377 if (ada_is_aligner_type (type))
9378 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9379 else
9380 return ada_get_base_type (type);
9381 }
9382
9383
9384 /* The address of the aligned value in an object at address VALADDR
9385 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9386
9387 const gdb_byte *
9388 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9389 {
9390 if (ada_is_aligner_type (type))
9391 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9392 valaddr +
9393 TYPE_FIELD_BITPOS (type,
9394 0) / TARGET_CHAR_BIT);
9395 else
9396 return valaddr;
9397 }
9398
9399
9400
9401 /* The printed representation of an enumeration literal with encoded
9402 name NAME. The value is good to the next call of ada_enum_name. */
9403 const char *
9404 ada_enum_name (const char *name)
9405 {
9406 static char *result;
9407 static size_t result_len = 0;
9408 const char *tmp;
9409
9410 /* First, unqualify the enumeration name:
9411 1. Search for the last '.' character. If we find one, then skip
9412 all the preceding characters, the unqualified name starts
9413 right after that dot.
9414 2. Otherwise, we may be debugging on a target where the compiler
9415 translates dots into "__". Search forward for double underscores,
9416 but stop searching when we hit an overloading suffix, which is
9417 of the form "__" followed by digits. */
9418
9419 tmp = strrchr (name, '.');
9420 if (tmp != NULL)
9421 name = tmp + 1;
9422 else
9423 {
9424 while ((tmp = strstr (name, "__")) != NULL)
9425 {
9426 if (isdigit (tmp[2]))
9427 break;
9428 else
9429 name = tmp + 2;
9430 }
9431 }
9432
9433 if (name[0] == 'Q')
9434 {
9435 int v;
9436
9437 if (name[1] == 'U' || name[1] == 'W')
9438 {
9439 if (sscanf (name + 2, "%x", &v) != 1)
9440 return name;
9441 }
9442 else
9443 return name;
9444
9445 GROW_VECT (result, result_len, 16);
9446 if (isascii (v) && isprint (v))
9447 xsnprintf (result, result_len, "'%c'", v);
9448 else if (name[1] == 'U')
9449 xsnprintf (result, result_len, "[\"%02x\"]", v);
9450 else
9451 xsnprintf (result, result_len, "[\"%04x\"]", v);
9452
9453 return result;
9454 }
9455 else
9456 {
9457 tmp = strstr (name, "__");
9458 if (tmp == NULL)
9459 tmp = strstr (name, "$");
9460 if (tmp != NULL)
9461 {
9462 GROW_VECT (result, result_len, tmp - name + 1);
9463 strncpy (result, name, tmp - name);
9464 result[tmp - name] = '\0';
9465 return result;
9466 }
9467
9468 return name;
9469 }
9470 }
9471
9472 /* Evaluate the subexpression of EXP starting at *POS as for
9473 evaluate_type, updating *POS to point just past the evaluated
9474 expression. */
9475
9476 static struct value *
9477 evaluate_subexp_type (struct expression *exp, int *pos)
9478 {
9479 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9480 }
9481
9482 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9483 value it wraps. */
9484
9485 static struct value *
9486 unwrap_value (struct value *val)
9487 {
9488 struct type *type = ada_check_typedef (value_type (val));
9489
9490 if (ada_is_aligner_type (type))
9491 {
9492 struct value *v = ada_value_struct_elt (val, "F", 0);
9493 struct type *val_type = ada_check_typedef (value_type (v));
9494
9495 if (ada_type_name (val_type) == NULL)
9496 TYPE_NAME (val_type) = ada_type_name (type);
9497
9498 return unwrap_value (v);
9499 }
9500 else
9501 {
9502 struct type *raw_real_type =
9503 ada_check_typedef (ada_get_base_type (type));
9504
9505 /* If there is no parallel XVS or XVE type, then the value is
9506 already unwrapped. Return it without further modification. */
9507 if ((type == raw_real_type)
9508 && ada_find_parallel_type (type, "___XVE") == NULL)
9509 return val;
9510
9511 return
9512 coerce_unspec_val_to_type
9513 (val, ada_to_fixed_type (raw_real_type, 0,
9514 value_address (val),
9515 NULL, 1));
9516 }
9517 }
9518
9519 static struct value *
9520 cast_from_fixed (struct type *type, struct value *arg)
9521 {
9522 struct value *scale = ada_scaling_factor (value_type (arg));
9523 arg = value_cast (value_type (scale), arg);
9524
9525 arg = value_binop (arg, scale, BINOP_MUL);
9526 return value_cast (type, arg);
9527 }
9528
9529 static struct value *
9530 cast_to_fixed (struct type *type, struct value *arg)
9531 {
9532 if (type == value_type (arg))
9533 return arg;
9534
9535 struct value *scale = ada_scaling_factor (type);
9536 if (ada_is_fixed_point_type (value_type (arg)))
9537 arg = cast_from_fixed (value_type (scale), arg);
9538 else
9539 arg = value_cast (value_type (scale), arg);
9540
9541 arg = value_binop (arg, scale, BINOP_DIV);
9542 return value_cast (type, arg);
9543 }
9544
9545 /* Given two array types T1 and T2, return nonzero iff both arrays
9546 contain the same number of elements. */
9547
9548 static int
9549 ada_same_array_size_p (struct type *t1, struct type *t2)
9550 {
9551 LONGEST lo1, hi1, lo2, hi2;
9552
9553 /* Get the array bounds in order to verify that the size of
9554 the two arrays match. */
9555 if (!get_array_bounds (t1, &lo1, &hi1)
9556 || !get_array_bounds (t2, &lo2, &hi2))
9557 error (_("unable to determine array bounds"));
9558
9559 /* To make things easier for size comparison, normalize a bit
9560 the case of empty arrays by making sure that the difference
9561 between upper bound and lower bound is always -1. */
9562 if (lo1 > hi1)
9563 hi1 = lo1 - 1;
9564 if (lo2 > hi2)
9565 hi2 = lo2 - 1;
9566
9567 return (hi1 - lo1 == hi2 - lo2);
9568 }
9569
9570 /* Assuming that VAL is an array of integrals, and TYPE represents
9571 an array with the same number of elements, but with wider integral
9572 elements, return an array "casted" to TYPE. In practice, this
9573 means that the returned array is built by casting each element
9574 of the original array into TYPE's (wider) element type. */
9575
9576 static struct value *
9577 ada_promote_array_of_integrals (struct type *type, struct value *val)
9578 {
9579 struct type *elt_type = TYPE_TARGET_TYPE (type);
9580 LONGEST lo, hi;
9581 struct value *res;
9582 LONGEST i;
9583
9584 /* Verify that both val and type are arrays of scalars, and
9585 that the size of val's elements is smaller than the size
9586 of type's element. */
9587 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9588 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9589 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9590 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9591 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9592 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9593
9594 if (!get_array_bounds (type, &lo, &hi))
9595 error (_("unable to determine array bounds"));
9596
9597 res = allocate_value (type);
9598
9599 /* Promote each array element. */
9600 for (i = 0; i < hi - lo + 1; i++)
9601 {
9602 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9603
9604 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9605 value_contents_all (elt), TYPE_LENGTH (elt_type));
9606 }
9607
9608 return res;
9609 }
9610
9611 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9612 return the converted value. */
9613
9614 static struct value *
9615 coerce_for_assign (struct type *type, struct value *val)
9616 {
9617 struct type *type2 = value_type (val);
9618
9619 if (type == type2)
9620 return val;
9621
9622 type2 = ada_check_typedef (type2);
9623 type = ada_check_typedef (type);
9624
9625 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9626 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9627 {
9628 val = ada_value_ind (val);
9629 type2 = value_type (val);
9630 }
9631
9632 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9633 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9634 {
9635 if (!ada_same_array_size_p (type, type2))
9636 error (_("cannot assign arrays of different length"));
9637
9638 if (is_integral_type (TYPE_TARGET_TYPE (type))
9639 && is_integral_type (TYPE_TARGET_TYPE (type2))
9640 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9641 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9642 {
9643 /* Allow implicit promotion of the array elements to
9644 a wider type. */
9645 return ada_promote_array_of_integrals (type, val);
9646 }
9647
9648 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9649 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9650 error (_("Incompatible types in assignment"));
9651 deprecated_set_value_type (val, type);
9652 }
9653 return val;
9654 }
9655
9656 static struct value *
9657 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9658 {
9659 struct value *val;
9660 struct type *type1, *type2;
9661 LONGEST v, v1, v2;
9662
9663 arg1 = coerce_ref (arg1);
9664 arg2 = coerce_ref (arg2);
9665 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9666 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9667
9668 if (TYPE_CODE (type1) != TYPE_CODE_INT
9669 || TYPE_CODE (type2) != TYPE_CODE_INT)
9670 return value_binop (arg1, arg2, op);
9671
9672 switch (op)
9673 {
9674 case BINOP_MOD:
9675 case BINOP_DIV:
9676 case BINOP_REM:
9677 break;
9678 default:
9679 return value_binop (arg1, arg2, op);
9680 }
9681
9682 v2 = value_as_long (arg2);
9683 if (v2 == 0)
9684 error (_("second operand of %s must not be zero."), op_string (op));
9685
9686 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9687 return value_binop (arg1, arg2, op);
9688
9689 v1 = value_as_long (arg1);
9690 switch (op)
9691 {
9692 case BINOP_DIV:
9693 v = v1 / v2;
9694 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9695 v += v > 0 ? -1 : 1;
9696 break;
9697 case BINOP_REM:
9698 v = v1 % v2;
9699 if (v * v1 < 0)
9700 v -= v2;
9701 break;
9702 default:
9703 /* Should not reach this point. */
9704 v = 0;
9705 }
9706
9707 val = allocate_value (type1);
9708 store_unsigned_integer (value_contents_raw (val),
9709 TYPE_LENGTH (value_type (val)),
9710 gdbarch_byte_order (get_type_arch (type1)), v);
9711 return val;
9712 }
9713
9714 static int
9715 ada_value_equal (struct value *arg1, struct value *arg2)
9716 {
9717 if (ada_is_direct_array_type (value_type (arg1))
9718 || ada_is_direct_array_type (value_type (arg2)))
9719 {
9720 /* Automatically dereference any array reference before
9721 we attempt to perform the comparison. */
9722 arg1 = ada_coerce_ref (arg1);
9723 arg2 = ada_coerce_ref (arg2);
9724
9725 arg1 = ada_coerce_to_simple_array (arg1);
9726 arg2 = ada_coerce_to_simple_array (arg2);
9727 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9728 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9729 error (_("Attempt to compare array with non-array"));
9730 /* FIXME: The following works only for types whose
9731 representations use all bits (no padding or undefined bits)
9732 and do not have user-defined equality. */
9733 return
9734 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9735 && memcmp (value_contents (arg1), value_contents (arg2),
9736 TYPE_LENGTH (value_type (arg1))) == 0;
9737 }
9738 return value_equal (arg1, arg2);
9739 }
9740
9741 /* Total number of component associations in the aggregate starting at
9742 index PC in EXP. Assumes that index PC is the start of an
9743 OP_AGGREGATE. */
9744
9745 static int
9746 num_component_specs (struct expression *exp, int pc)
9747 {
9748 int n, m, i;
9749
9750 m = exp->elts[pc + 1].longconst;
9751 pc += 3;
9752 n = 0;
9753 for (i = 0; i < m; i += 1)
9754 {
9755 switch (exp->elts[pc].opcode)
9756 {
9757 default:
9758 n += 1;
9759 break;
9760 case OP_CHOICES:
9761 n += exp->elts[pc + 1].longconst;
9762 break;
9763 }
9764 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9765 }
9766 return n;
9767 }
9768
9769 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9770 component of LHS (a simple array or a record), updating *POS past
9771 the expression, assuming that LHS is contained in CONTAINER. Does
9772 not modify the inferior's memory, nor does it modify LHS (unless
9773 LHS == CONTAINER). */
9774
9775 static void
9776 assign_component (struct value *container, struct value *lhs, LONGEST index,
9777 struct expression *exp, int *pos)
9778 {
9779 struct value *mark = value_mark ();
9780 struct value *elt;
9781
9782 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9783 {
9784 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9785 struct value *index_val = value_from_longest (index_type, index);
9786
9787 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9788 }
9789 else
9790 {
9791 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9792 elt = ada_to_fixed_value (elt);
9793 }
9794
9795 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9796 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9797 else
9798 value_assign_to_component (container, elt,
9799 ada_evaluate_subexp (NULL, exp, pos,
9800 EVAL_NORMAL));
9801
9802 value_free_to_mark (mark);
9803 }
9804
9805 /* Assuming that LHS represents an lvalue having a record or array
9806 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9807 of that aggregate's value to LHS, advancing *POS past the
9808 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9809 lvalue containing LHS (possibly LHS itself). Does not modify
9810 the inferior's memory, nor does it modify the contents of
9811 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9812
9813 static struct value *
9814 assign_aggregate (struct value *container,
9815 struct value *lhs, struct expression *exp,
9816 int *pos, enum noside noside)
9817 {
9818 struct type *lhs_type;
9819 int n = exp->elts[*pos+1].longconst;
9820 LONGEST low_index, high_index;
9821 int num_specs;
9822 LONGEST *indices;
9823 int max_indices, num_indices;
9824 int i;
9825
9826 *pos += 3;
9827 if (noside != EVAL_NORMAL)
9828 {
9829 for (i = 0; i < n; i += 1)
9830 ada_evaluate_subexp (NULL, exp, pos, noside);
9831 return container;
9832 }
9833
9834 container = ada_coerce_ref (container);
9835 if (ada_is_direct_array_type (value_type (container)))
9836 container = ada_coerce_to_simple_array (container);
9837 lhs = ada_coerce_ref (lhs);
9838 if (!deprecated_value_modifiable (lhs))
9839 error (_("Left operand of assignment is not a modifiable lvalue."));
9840
9841 lhs_type = value_type (lhs);
9842 if (ada_is_direct_array_type (lhs_type))
9843 {
9844 lhs = ada_coerce_to_simple_array (lhs);
9845 lhs_type = value_type (lhs);
9846 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9847 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9848 }
9849 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9850 {
9851 low_index = 0;
9852 high_index = num_visible_fields (lhs_type) - 1;
9853 }
9854 else
9855 error (_("Left-hand side must be array or record."));
9856
9857 num_specs = num_component_specs (exp, *pos - 3);
9858 max_indices = 4 * num_specs + 4;
9859 indices = XALLOCAVEC (LONGEST, max_indices);
9860 indices[0] = indices[1] = low_index - 1;
9861 indices[2] = indices[3] = high_index + 1;
9862 num_indices = 4;
9863
9864 for (i = 0; i < n; i += 1)
9865 {
9866 switch (exp->elts[*pos].opcode)
9867 {
9868 case OP_CHOICES:
9869 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9870 &num_indices, max_indices,
9871 low_index, high_index);
9872 break;
9873 case OP_POSITIONAL:
9874 aggregate_assign_positional (container, lhs, exp, pos, indices,
9875 &num_indices, max_indices,
9876 low_index, high_index);
9877 break;
9878 case OP_OTHERS:
9879 if (i != n-1)
9880 error (_("Misplaced 'others' clause"));
9881 aggregate_assign_others (container, lhs, exp, pos, indices,
9882 num_indices, low_index, high_index);
9883 break;
9884 default:
9885 error (_("Internal error: bad aggregate clause"));
9886 }
9887 }
9888
9889 return container;
9890 }
9891
9892 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9893 construct at *POS, updating *POS past the construct, given that
9894 the positions are relative to lower bound LOW, where HIGH is the
9895 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9896 updating *NUM_INDICES as needed. CONTAINER is as for
9897 assign_aggregate. */
9898 static void
9899 aggregate_assign_positional (struct value *container,
9900 struct value *lhs, struct expression *exp,
9901 int *pos, LONGEST *indices, int *num_indices,
9902 int max_indices, LONGEST low, LONGEST high)
9903 {
9904 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9905
9906 if (ind - 1 == high)
9907 warning (_("Extra components in aggregate ignored."));
9908 if (ind <= high)
9909 {
9910 add_component_interval (ind, ind, indices, num_indices, max_indices);
9911 *pos += 3;
9912 assign_component (container, lhs, ind, exp, pos);
9913 }
9914 else
9915 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9916 }
9917
9918 /* Assign into the components of LHS indexed by the OP_CHOICES
9919 construct at *POS, updating *POS past the construct, given that
9920 the allowable indices are LOW..HIGH. Record the indices assigned
9921 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9922 needed. CONTAINER is as for assign_aggregate. */
9923 static void
9924 aggregate_assign_from_choices (struct value *container,
9925 struct value *lhs, struct expression *exp,
9926 int *pos, LONGEST *indices, int *num_indices,
9927 int max_indices, LONGEST low, LONGEST high)
9928 {
9929 int j;
9930 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9931 int choice_pos, expr_pc;
9932 int is_array = ada_is_direct_array_type (value_type (lhs));
9933
9934 choice_pos = *pos += 3;
9935
9936 for (j = 0; j < n_choices; j += 1)
9937 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9938 expr_pc = *pos;
9939 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9940
9941 for (j = 0; j < n_choices; j += 1)
9942 {
9943 LONGEST lower, upper;
9944 enum exp_opcode op = exp->elts[choice_pos].opcode;
9945
9946 if (op == OP_DISCRETE_RANGE)
9947 {
9948 choice_pos += 1;
9949 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9950 EVAL_NORMAL));
9951 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9952 EVAL_NORMAL));
9953 }
9954 else if (is_array)
9955 {
9956 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9957 EVAL_NORMAL));
9958 upper = lower;
9959 }
9960 else
9961 {
9962 int ind;
9963 const char *name;
9964
9965 switch (op)
9966 {
9967 case OP_NAME:
9968 name = &exp->elts[choice_pos + 2].string;
9969 break;
9970 case OP_VAR_VALUE:
9971 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9972 break;
9973 default:
9974 error (_("Invalid record component association."));
9975 }
9976 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9977 ind = 0;
9978 if (! find_struct_field (name, value_type (lhs), 0,
9979 NULL, NULL, NULL, NULL, &ind))
9980 error (_("Unknown component name: %s."), name);
9981 lower = upper = ind;
9982 }
9983
9984 if (lower <= upper && (lower < low || upper > high))
9985 error (_("Index in component association out of bounds."));
9986
9987 add_component_interval (lower, upper, indices, num_indices,
9988 max_indices);
9989 while (lower <= upper)
9990 {
9991 int pos1;
9992
9993 pos1 = expr_pc;
9994 assign_component (container, lhs, lower, exp, &pos1);
9995 lower += 1;
9996 }
9997 }
9998 }
9999
10000 /* Assign the value of the expression in the OP_OTHERS construct in
10001 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10002 have not been previously assigned. The index intervals already assigned
10003 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10004 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10005 static void
10006 aggregate_assign_others (struct value *container,
10007 struct value *lhs, struct expression *exp,
10008 int *pos, LONGEST *indices, int num_indices,
10009 LONGEST low, LONGEST high)
10010 {
10011 int i;
10012 int expr_pc = *pos + 1;
10013
10014 for (i = 0; i < num_indices - 2; i += 2)
10015 {
10016 LONGEST ind;
10017
10018 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10019 {
10020 int localpos;
10021
10022 localpos = expr_pc;
10023 assign_component (container, lhs, ind, exp, &localpos);
10024 }
10025 }
10026 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10027 }
10028
10029 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10030 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10031 modifying *SIZE as needed. It is an error if *SIZE exceeds
10032 MAX_SIZE. The resulting intervals do not overlap. */
10033 static void
10034 add_component_interval (LONGEST low, LONGEST high,
10035 LONGEST* indices, int *size, int max_size)
10036 {
10037 int i, j;
10038
10039 for (i = 0; i < *size; i += 2) {
10040 if (high >= indices[i] && low <= indices[i + 1])
10041 {
10042 int kh;
10043
10044 for (kh = i + 2; kh < *size; kh += 2)
10045 if (high < indices[kh])
10046 break;
10047 if (low < indices[i])
10048 indices[i] = low;
10049 indices[i + 1] = indices[kh - 1];
10050 if (high > indices[i + 1])
10051 indices[i + 1] = high;
10052 memcpy (indices + i + 2, indices + kh, *size - kh);
10053 *size -= kh - i - 2;
10054 return;
10055 }
10056 else if (high < indices[i])
10057 break;
10058 }
10059
10060 if (*size == max_size)
10061 error (_("Internal error: miscounted aggregate components."));
10062 *size += 2;
10063 for (j = *size-1; j >= i+2; j -= 1)
10064 indices[j] = indices[j - 2];
10065 indices[i] = low;
10066 indices[i + 1] = high;
10067 }
10068
10069 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10070 is different. */
10071
10072 static struct value *
10073 ada_value_cast (struct type *type, struct value *arg2)
10074 {
10075 if (type == ada_check_typedef (value_type (arg2)))
10076 return arg2;
10077
10078 if (ada_is_fixed_point_type (type))
10079 return (cast_to_fixed (type, arg2));
10080
10081 if (ada_is_fixed_point_type (value_type (arg2)))
10082 return cast_from_fixed (type, arg2);
10083
10084 return value_cast (type, arg2);
10085 }
10086
10087 /* Evaluating Ada expressions, and printing their result.
10088 ------------------------------------------------------
10089
10090 1. Introduction:
10091 ----------------
10092
10093 We usually evaluate an Ada expression in order to print its value.
10094 We also evaluate an expression in order to print its type, which
10095 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10096 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10097 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10098 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10099 similar.
10100
10101 Evaluating expressions is a little more complicated for Ada entities
10102 than it is for entities in languages such as C. The main reason for
10103 this is that Ada provides types whose definition might be dynamic.
10104 One example of such types is variant records. Or another example
10105 would be an array whose bounds can only be known at run time.
10106
10107 The following description is a general guide as to what should be
10108 done (and what should NOT be done) in order to evaluate an expression
10109 involving such types, and when. This does not cover how the semantic
10110 information is encoded by GNAT as this is covered separatly. For the
10111 document used as the reference for the GNAT encoding, see exp_dbug.ads
10112 in the GNAT sources.
10113
10114 Ideally, we should embed each part of this description next to its
10115 associated code. Unfortunately, the amount of code is so vast right
10116 now that it's hard to see whether the code handling a particular
10117 situation might be duplicated or not. One day, when the code is
10118 cleaned up, this guide might become redundant with the comments
10119 inserted in the code, and we might want to remove it.
10120
10121 2. ``Fixing'' an Entity, the Simple Case:
10122 -----------------------------------------
10123
10124 When evaluating Ada expressions, the tricky issue is that they may
10125 reference entities whose type contents and size are not statically
10126 known. Consider for instance a variant record:
10127
10128 type Rec (Empty : Boolean := True) is record
10129 case Empty is
10130 when True => null;
10131 when False => Value : Integer;
10132 end case;
10133 end record;
10134 Yes : Rec := (Empty => False, Value => 1);
10135 No : Rec := (empty => True);
10136
10137 The size and contents of that record depends on the value of the
10138 descriminant (Rec.Empty). At this point, neither the debugging
10139 information nor the associated type structure in GDB are able to
10140 express such dynamic types. So what the debugger does is to create
10141 "fixed" versions of the type that applies to the specific object.
10142 We also informally refer to this opperation as "fixing" an object,
10143 which means creating its associated fixed type.
10144
10145 Example: when printing the value of variable "Yes" above, its fixed
10146 type would look like this:
10147
10148 type Rec is record
10149 Empty : Boolean;
10150 Value : Integer;
10151 end record;
10152
10153 On the other hand, if we printed the value of "No", its fixed type
10154 would become:
10155
10156 type Rec is record
10157 Empty : Boolean;
10158 end record;
10159
10160 Things become a little more complicated when trying to fix an entity
10161 with a dynamic type that directly contains another dynamic type,
10162 such as an array of variant records, for instance. There are
10163 two possible cases: Arrays, and records.
10164
10165 3. ``Fixing'' Arrays:
10166 ---------------------
10167
10168 The type structure in GDB describes an array in terms of its bounds,
10169 and the type of its elements. By design, all elements in the array
10170 have the same type and we cannot represent an array of variant elements
10171 using the current type structure in GDB. When fixing an array,
10172 we cannot fix the array element, as we would potentially need one
10173 fixed type per element of the array. As a result, the best we can do
10174 when fixing an array is to produce an array whose bounds and size
10175 are correct (allowing us to read it from memory), but without having
10176 touched its element type. Fixing each element will be done later,
10177 when (if) necessary.
10178
10179 Arrays are a little simpler to handle than records, because the same
10180 amount of memory is allocated for each element of the array, even if
10181 the amount of space actually used by each element differs from element
10182 to element. Consider for instance the following array of type Rec:
10183
10184 type Rec_Array is array (1 .. 2) of Rec;
10185
10186 The actual amount of memory occupied by each element might be different
10187 from element to element, depending on the value of their discriminant.
10188 But the amount of space reserved for each element in the array remains
10189 fixed regardless. So we simply need to compute that size using
10190 the debugging information available, from which we can then determine
10191 the array size (we multiply the number of elements of the array by
10192 the size of each element).
10193
10194 The simplest case is when we have an array of a constrained element
10195 type. For instance, consider the following type declarations:
10196
10197 type Bounded_String (Max_Size : Integer) is
10198 Length : Integer;
10199 Buffer : String (1 .. Max_Size);
10200 end record;
10201 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10202
10203 In this case, the compiler describes the array as an array of
10204 variable-size elements (identified by its XVS suffix) for which
10205 the size can be read in the parallel XVZ variable.
10206
10207 In the case of an array of an unconstrained element type, the compiler
10208 wraps the array element inside a private PAD type. This type should not
10209 be shown to the user, and must be "unwrap"'ed before printing. Note
10210 that we also use the adjective "aligner" in our code to designate
10211 these wrapper types.
10212
10213 In some cases, the size allocated for each element is statically
10214 known. In that case, the PAD type already has the correct size,
10215 and the array element should remain unfixed.
10216
10217 But there are cases when this size is not statically known.
10218 For instance, assuming that "Five" is an integer variable:
10219
10220 type Dynamic is array (1 .. Five) of Integer;
10221 type Wrapper (Has_Length : Boolean := False) is record
10222 Data : Dynamic;
10223 case Has_Length is
10224 when True => Length : Integer;
10225 when False => null;
10226 end case;
10227 end record;
10228 type Wrapper_Array is array (1 .. 2) of Wrapper;
10229
10230 Hello : Wrapper_Array := (others => (Has_Length => True,
10231 Data => (others => 17),
10232 Length => 1));
10233
10234
10235 The debugging info would describe variable Hello as being an
10236 array of a PAD type. The size of that PAD type is not statically
10237 known, but can be determined using a parallel XVZ variable.
10238 In that case, a copy of the PAD type with the correct size should
10239 be used for the fixed array.
10240
10241 3. ``Fixing'' record type objects:
10242 ----------------------------------
10243
10244 Things are slightly different from arrays in the case of dynamic
10245 record types. In this case, in order to compute the associated
10246 fixed type, we need to determine the size and offset of each of
10247 its components. This, in turn, requires us to compute the fixed
10248 type of each of these components.
10249
10250 Consider for instance the example:
10251
10252 type Bounded_String (Max_Size : Natural) is record
10253 Str : String (1 .. Max_Size);
10254 Length : Natural;
10255 end record;
10256 My_String : Bounded_String (Max_Size => 10);
10257
10258 In that case, the position of field "Length" depends on the size
10259 of field Str, which itself depends on the value of the Max_Size
10260 discriminant. In order to fix the type of variable My_String,
10261 we need to fix the type of field Str. Therefore, fixing a variant
10262 record requires us to fix each of its components.
10263
10264 However, if a component does not have a dynamic size, the component
10265 should not be fixed. In particular, fields that use a PAD type
10266 should not fixed. Here is an example where this might happen
10267 (assuming type Rec above):
10268
10269 type Container (Big : Boolean) is record
10270 First : Rec;
10271 After : Integer;
10272 case Big is
10273 when True => Another : Integer;
10274 when False => null;
10275 end case;
10276 end record;
10277 My_Container : Container := (Big => False,
10278 First => (Empty => True),
10279 After => 42);
10280
10281 In that example, the compiler creates a PAD type for component First,
10282 whose size is constant, and then positions the component After just
10283 right after it. The offset of component After is therefore constant
10284 in this case.
10285
10286 The debugger computes the position of each field based on an algorithm
10287 that uses, among other things, the actual position and size of the field
10288 preceding it. Let's now imagine that the user is trying to print
10289 the value of My_Container. If the type fixing was recursive, we would
10290 end up computing the offset of field After based on the size of the
10291 fixed version of field First. And since in our example First has
10292 only one actual field, the size of the fixed type is actually smaller
10293 than the amount of space allocated to that field, and thus we would
10294 compute the wrong offset of field After.
10295
10296 To make things more complicated, we need to watch out for dynamic
10297 components of variant records (identified by the ___XVL suffix in
10298 the component name). Even if the target type is a PAD type, the size
10299 of that type might not be statically known. So the PAD type needs
10300 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10301 we might end up with the wrong size for our component. This can be
10302 observed with the following type declarations:
10303
10304 type Octal is new Integer range 0 .. 7;
10305 type Octal_Array is array (Positive range <>) of Octal;
10306 pragma Pack (Octal_Array);
10307
10308 type Octal_Buffer (Size : Positive) is record
10309 Buffer : Octal_Array (1 .. Size);
10310 Length : Integer;
10311 end record;
10312
10313 In that case, Buffer is a PAD type whose size is unset and needs
10314 to be computed by fixing the unwrapped type.
10315
10316 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10317 ----------------------------------------------------------
10318
10319 Lastly, when should the sub-elements of an entity that remained unfixed
10320 thus far, be actually fixed?
10321
10322 The answer is: Only when referencing that element. For instance
10323 when selecting one component of a record, this specific component
10324 should be fixed at that point in time. Or when printing the value
10325 of a record, each component should be fixed before its value gets
10326 printed. Similarly for arrays, the element of the array should be
10327 fixed when printing each element of the array, or when extracting
10328 one element out of that array. On the other hand, fixing should
10329 not be performed on the elements when taking a slice of an array!
10330
10331 Note that one of the side effects of miscomputing the offset and
10332 size of each field is that we end up also miscomputing the size
10333 of the containing type. This can have adverse results when computing
10334 the value of an entity. GDB fetches the value of an entity based
10335 on the size of its type, and thus a wrong size causes GDB to fetch
10336 the wrong amount of memory. In the case where the computed size is
10337 too small, GDB fetches too little data to print the value of our
10338 entity. Results in this case are unpredictable, as we usually read
10339 past the buffer containing the data =:-o. */
10340
10341 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10342 for that subexpression cast to TO_TYPE. Advance *POS over the
10343 subexpression. */
10344
10345 static value *
10346 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10347 enum noside noside, struct type *to_type)
10348 {
10349 int pc = *pos;
10350
10351 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10352 || exp->elts[pc].opcode == OP_VAR_VALUE)
10353 {
10354 (*pos) += 4;
10355
10356 value *val;
10357 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10358 {
10359 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10360 return value_zero (to_type, not_lval);
10361
10362 val = evaluate_var_msym_value (noside,
10363 exp->elts[pc + 1].objfile,
10364 exp->elts[pc + 2].msymbol);
10365 }
10366 else
10367 val = evaluate_var_value (noside,
10368 exp->elts[pc + 1].block,
10369 exp->elts[pc + 2].symbol);
10370
10371 if (noside == EVAL_SKIP)
10372 return eval_skip_value (exp);
10373
10374 val = ada_value_cast (to_type, val);
10375
10376 /* Follow the Ada language semantics that do not allow taking
10377 an address of the result of a cast (view conversion in Ada). */
10378 if (VALUE_LVAL (val) == lval_memory)
10379 {
10380 if (value_lazy (val))
10381 value_fetch_lazy (val);
10382 VALUE_LVAL (val) = not_lval;
10383 }
10384 return val;
10385 }
10386
10387 value *val = evaluate_subexp (to_type, exp, pos, noside);
10388 if (noside == EVAL_SKIP)
10389 return eval_skip_value (exp);
10390 return ada_value_cast (to_type, val);
10391 }
10392
10393 /* Implement the evaluate_exp routine in the exp_descriptor structure
10394 for the Ada language. */
10395
10396 static struct value *
10397 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10398 int *pos, enum noside noside)
10399 {
10400 enum exp_opcode op;
10401 int tem;
10402 int pc;
10403 int preeval_pos;
10404 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10405 struct type *type;
10406 int nargs, oplen;
10407 struct value **argvec;
10408
10409 pc = *pos;
10410 *pos += 1;
10411 op = exp->elts[pc].opcode;
10412
10413 switch (op)
10414 {
10415 default:
10416 *pos -= 1;
10417 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10418
10419 if (noside == EVAL_NORMAL)
10420 arg1 = unwrap_value (arg1);
10421
10422 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10423 then we need to perform the conversion manually, because
10424 evaluate_subexp_standard doesn't do it. This conversion is
10425 necessary in Ada because the different kinds of float/fixed
10426 types in Ada have different representations.
10427
10428 Similarly, we need to perform the conversion from OP_LONG
10429 ourselves. */
10430 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10431 arg1 = ada_value_cast (expect_type, arg1);
10432
10433 return arg1;
10434
10435 case OP_STRING:
10436 {
10437 struct value *result;
10438
10439 *pos -= 1;
10440 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10441 /* The result type will have code OP_STRING, bashed there from
10442 OP_ARRAY. Bash it back. */
10443 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10444 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10445 return result;
10446 }
10447
10448 case UNOP_CAST:
10449 (*pos) += 2;
10450 type = exp->elts[pc + 1].type;
10451 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10452
10453 case UNOP_QUAL:
10454 (*pos) += 2;
10455 type = exp->elts[pc + 1].type;
10456 return ada_evaluate_subexp (type, exp, pos, noside);
10457
10458 case BINOP_ASSIGN:
10459 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10460 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10461 {
10462 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10463 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10464 return arg1;
10465 return ada_value_assign (arg1, arg1);
10466 }
10467 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10468 except if the lhs of our assignment is a convenience variable.
10469 In the case of assigning to a convenience variable, the lhs
10470 should be exactly the result of the evaluation of the rhs. */
10471 type = value_type (arg1);
10472 if (VALUE_LVAL (arg1) == lval_internalvar)
10473 type = NULL;
10474 arg2 = evaluate_subexp (type, exp, pos, noside);
10475 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10476 return arg1;
10477 if (ada_is_fixed_point_type (value_type (arg1)))
10478 arg2 = cast_to_fixed (value_type (arg1), arg2);
10479 else if (ada_is_fixed_point_type (value_type (arg2)))
10480 error
10481 (_("Fixed-point values must be assigned to fixed-point variables"));
10482 else
10483 arg2 = coerce_for_assign (value_type (arg1), arg2);
10484 return ada_value_assign (arg1, arg2);
10485
10486 case BINOP_ADD:
10487 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10488 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10489 if (noside == EVAL_SKIP)
10490 goto nosideret;
10491 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10492 return (value_from_longest
10493 (value_type (arg1),
10494 value_as_long (arg1) + value_as_long (arg2)));
10495 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10496 return (value_from_longest
10497 (value_type (arg2),
10498 value_as_long (arg1) + value_as_long (arg2)));
10499 if ((ada_is_fixed_point_type (value_type (arg1))
10500 || ada_is_fixed_point_type (value_type (arg2)))
10501 && value_type (arg1) != value_type (arg2))
10502 error (_("Operands of fixed-point addition must have the same type"));
10503 /* Do the addition, and cast the result to the type of the first
10504 argument. We cannot cast the result to a reference type, so if
10505 ARG1 is a reference type, find its underlying type. */
10506 type = value_type (arg1);
10507 while (TYPE_CODE (type) == TYPE_CODE_REF)
10508 type = TYPE_TARGET_TYPE (type);
10509 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10510 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10511
10512 case BINOP_SUB:
10513 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10514 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10515 if (noside == EVAL_SKIP)
10516 goto nosideret;
10517 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10518 return (value_from_longest
10519 (value_type (arg1),
10520 value_as_long (arg1) - value_as_long (arg2)));
10521 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10522 return (value_from_longest
10523 (value_type (arg2),
10524 value_as_long (arg1) - value_as_long (arg2)));
10525 if ((ada_is_fixed_point_type (value_type (arg1))
10526 || ada_is_fixed_point_type (value_type (arg2)))
10527 && value_type (arg1) != value_type (arg2))
10528 error (_("Operands of fixed-point subtraction "
10529 "must have the same type"));
10530 /* Do the substraction, and cast the result to the type of the first
10531 argument. We cannot cast the result to a reference type, so if
10532 ARG1 is a reference type, find its underlying type. */
10533 type = value_type (arg1);
10534 while (TYPE_CODE (type) == TYPE_CODE_REF)
10535 type = TYPE_TARGET_TYPE (type);
10536 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10537 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10538
10539 case BINOP_MUL:
10540 case BINOP_DIV:
10541 case BINOP_REM:
10542 case BINOP_MOD:
10543 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10544 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10545 if (noside == EVAL_SKIP)
10546 goto nosideret;
10547 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10548 {
10549 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10550 return value_zero (value_type (arg1), not_lval);
10551 }
10552 else
10553 {
10554 type = builtin_type (exp->gdbarch)->builtin_double;
10555 if (ada_is_fixed_point_type (value_type (arg1)))
10556 arg1 = cast_from_fixed (type, arg1);
10557 if (ada_is_fixed_point_type (value_type (arg2)))
10558 arg2 = cast_from_fixed (type, arg2);
10559 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10560 return ada_value_binop (arg1, arg2, op);
10561 }
10562
10563 case BINOP_EQUAL:
10564 case BINOP_NOTEQUAL:
10565 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10566 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10567 if (noside == EVAL_SKIP)
10568 goto nosideret;
10569 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10570 tem = 0;
10571 else
10572 {
10573 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10574 tem = ada_value_equal (arg1, arg2);
10575 }
10576 if (op == BINOP_NOTEQUAL)
10577 tem = !tem;
10578 type = language_bool_type (exp->language_defn, exp->gdbarch);
10579 return value_from_longest (type, (LONGEST) tem);
10580
10581 case UNOP_NEG:
10582 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10583 if (noside == EVAL_SKIP)
10584 goto nosideret;
10585 else if (ada_is_fixed_point_type (value_type (arg1)))
10586 return value_cast (value_type (arg1), value_neg (arg1));
10587 else
10588 {
10589 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10590 return value_neg (arg1);
10591 }
10592
10593 case BINOP_LOGICAL_AND:
10594 case BINOP_LOGICAL_OR:
10595 case UNOP_LOGICAL_NOT:
10596 {
10597 struct value *val;
10598
10599 *pos -= 1;
10600 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10601 type = language_bool_type (exp->language_defn, exp->gdbarch);
10602 return value_cast (type, val);
10603 }
10604
10605 case BINOP_BITWISE_AND:
10606 case BINOP_BITWISE_IOR:
10607 case BINOP_BITWISE_XOR:
10608 {
10609 struct value *val;
10610
10611 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10612 *pos = pc;
10613 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10614
10615 return value_cast (value_type (arg1), val);
10616 }
10617
10618 case OP_VAR_VALUE:
10619 *pos -= 1;
10620
10621 if (noside == EVAL_SKIP)
10622 {
10623 *pos += 4;
10624 goto nosideret;
10625 }
10626
10627 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10628 /* Only encountered when an unresolved symbol occurs in a
10629 context other than a function call, in which case, it is
10630 invalid. */
10631 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10632 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10633
10634 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10635 {
10636 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10637 /* Check to see if this is a tagged type. We also need to handle
10638 the case where the type is a reference to a tagged type, but
10639 we have to be careful to exclude pointers to tagged types.
10640 The latter should be shown as usual (as a pointer), whereas
10641 a reference should mostly be transparent to the user. */
10642 if (ada_is_tagged_type (type, 0)
10643 || (TYPE_CODE (type) == TYPE_CODE_REF
10644 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10645 {
10646 /* Tagged types are a little special in the fact that the real
10647 type is dynamic and can only be determined by inspecting the
10648 object's tag. This means that we need to get the object's
10649 value first (EVAL_NORMAL) and then extract the actual object
10650 type from its tag.
10651
10652 Note that we cannot skip the final step where we extract
10653 the object type from its tag, because the EVAL_NORMAL phase
10654 results in dynamic components being resolved into fixed ones.
10655 This can cause problems when trying to print the type
10656 description of tagged types whose parent has a dynamic size:
10657 We use the type name of the "_parent" component in order
10658 to print the name of the ancestor type in the type description.
10659 If that component had a dynamic size, the resolution into
10660 a fixed type would result in the loss of that type name,
10661 thus preventing us from printing the name of the ancestor
10662 type in the type description. */
10663 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10664
10665 if (TYPE_CODE (type) != TYPE_CODE_REF)
10666 {
10667 struct type *actual_type;
10668
10669 actual_type = type_from_tag (ada_value_tag (arg1));
10670 if (actual_type == NULL)
10671 /* If, for some reason, we were unable to determine
10672 the actual type from the tag, then use the static
10673 approximation that we just computed as a fallback.
10674 This can happen if the debugging information is
10675 incomplete, for instance. */
10676 actual_type = type;
10677 return value_zero (actual_type, not_lval);
10678 }
10679 else
10680 {
10681 /* In the case of a ref, ada_coerce_ref takes care
10682 of determining the actual type. But the evaluation
10683 should return a ref as it should be valid to ask
10684 for its address; so rebuild a ref after coerce. */
10685 arg1 = ada_coerce_ref (arg1);
10686 return value_ref (arg1, TYPE_CODE_REF);
10687 }
10688 }
10689
10690 /* Records and unions for which GNAT encodings have been
10691 generated need to be statically fixed as well.
10692 Otherwise, non-static fixing produces a type where
10693 all dynamic properties are removed, which prevents "ptype"
10694 from being able to completely describe the type.
10695 For instance, a case statement in a variant record would be
10696 replaced by the relevant components based on the actual
10697 value of the discriminants. */
10698 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10699 && dynamic_template_type (type) != NULL)
10700 || (TYPE_CODE (type) == TYPE_CODE_UNION
10701 && ada_find_parallel_type (type, "___XVU") != NULL))
10702 {
10703 *pos += 4;
10704 return value_zero (to_static_fixed_type (type), not_lval);
10705 }
10706 }
10707
10708 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10709 return ada_to_fixed_value (arg1);
10710
10711 case OP_FUNCALL:
10712 (*pos) += 2;
10713
10714 /* Allocate arg vector, including space for the function to be
10715 called in argvec[0] and a terminating NULL. */
10716 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10717 argvec = XALLOCAVEC (struct value *, nargs + 2);
10718
10719 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10720 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10721 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10722 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10723 else
10724 {
10725 for (tem = 0; tem <= nargs; tem += 1)
10726 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10727 argvec[tem] = 0;
10728
10729 if (noside == EVAL_SKIP)
10730 goto nosideret;
10731 }
10732
10733 if (ada_is_constrained_packed_array_type
10734 (desc_base_type (value_type (argvec[0]))))
10735 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10736 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10737 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10738 /* This is a packed array that has already been fixed, and
10739 therefore already coerced to a simple array. Nothing further
10740 to do. */
10741 ;
10742 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10743 {
10744 /* Make sure we dereference references so that all the code below
10745 feels like it's really handling the referenced value. Wrapping
10746 types (for alignment) may be there, so make sure we strip them as
10747 well. */
10748 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10749 }
10750 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10751 && VALUE_LVAL (argvec[0]) == lval_memory)
10752 argvec[0] = value_addr (argvec[0]);
10753
10754 type = ada_check_typedef (value_type (argvec[0]));
10755
10756 /* Ada allows us to implicitly dereference arrays when subscripting
10757 them. So, if this is an array typedef (encoding use for array
10758 access types encoded as fat pointers), strip it now. */
10759 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10760 type = ada_typedef_target_type (type);
10761
10762 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10763 {
10764 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10765 {
10766 case TYPE_CODE_FUNC:
10767 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10768 break;
10769 case TYPE_CODE_ARRAY:
10770 break;
10771 case TYPE_CODE_STRUCT:
10772 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10773 argvec[0] = ada_value_ind (argvec[0]);
10774 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10775 break;
10776 default:
10777 error (_("cannot subscript or call something of type `%s'"),
10778 ada_type_name (value_type (argvec[0])));
10779 break;
10780 }
10781 }
10782
10783 switch (TYPE_CODE (type))
10784 {
10785 case TYPE_CODE_FUNC:
10786 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10787 {
10788 if (TYPE_TARGET_TYPE (type) == NULL)
10789 error_call_unknown_return_type (NULL);
10790 return allocate_value (TYPE_TARGET_TYPE (type));
10791 }
10792 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10793 case TYPE_CODE_INTERNAL_FUNCTION:
10794 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10795 /* We don't know anything about what the internal
10796 function might return, but we have to return
10797 something. */
10798 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10799 not_lval);
10800 else
10801 return call_internal_function (exp->gdbarch, exp->language_defn,
10802 argvec[0], nargs, argvec + 1);
10803
10804 case TYPE_CODE_STRUCT:
10805 {
10806 int arity;
10807
10808 arity = ada_array_arity (type);
10809 type = ada_array_element_type (type, nargs);
10810 if (type == NULL)
10811 error (_("cannot subscript or call a record"));
10812 if (arity != nargs)
10813 error (_("wrong number of subscripts; expecting %d"), arity);
10814 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10815 return value_zero (ada_aligned_type (type), lval_memory);
10816 return
10817 unwrap_value (ada_value_subscript
10818 (argvec[0], nargs, argvec + 1));
10819 }
10820 case TYPE_CODE_ARRAY:
10821 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10822 {
10823 type = ada_array_element_type (type, nargs);
10824 if (type == NULL)
10825 error (_("element type of array unknown"));
10826 else
10827 return value_zero (ada_aligned_type (type), lval_memory);
10828 }
10829 return
10830 unwrap_value (ada_value_subscript
10831 (ada_coerce_to_simple_array (argvec[0]),
10832 nargs, argvec + 1));
10833 case TYPE_CODE_PTR: /* Pointer to array */
10834 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10835 {
10836 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10837 type = ada_array_element_type (type, nargs);
10838 if (type == NULL)
10839 error (_("element type of array unknown"));
10840 else
10841 return value_zero (ada_aligned_type (type), lval_memory);
10842 }
10843 return
10844 unwrap_value (ada_value_ptr_subscript (argvec[0],
10845 nargs, argvec + 1));
10846
10847 default:
10848 error (_("Attempt to index or call something other than an "
10849 "array or function"));
10850 }
10851
10852 case TERNOP_SLICE:
10853 {
10854 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10855 struct value *low_bound_val =
10856 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10857 struct value *high_bound_val =
10858 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10859 LONGEST low_bound;
10860 LONGEST high_bound;
10861
10862 low_bound_val = coerce_ref (low_bound_val);
10863 high_bound_val = coerce_ref (high_bound_val);
10864 low_bound = value_as_long (low_bound_val);
10865 high_bound = value_as_long (high_bound_val);
10866
10867 if (noside == EVAL_SKIP)
10868 goto nosideret;
10869
10870 /* If this is a reference to an aligner type, then remove all
10871 the aligners. */
10872 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10873 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10874 TYPE_TARGET_TYPE (value_type (array)) =
10875 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10876
10877 if (ada_is_constrained_packed_array_type (value_type (array)))
10878 error (_("cannot slice a packed array"));
10879
10880 /* If this is a reference to an array or an array lvalue,
10881 convert to a pointer. */
10882 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10883 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10884 && VALUE_LVAL (array) == lval_memory))
10885 array = value_addr (array);
10886
10887 if (noside == EVAL_AVOID_SIDE_EFFECTS
10888 && ada_is_array_descriptor_type (ada_check_typedef
10889 (value_type (array))))
10890 return empty_array (ada_type_of_array (array, 0), low_bound);
10891
10892 array = ada_coerce_to_simple_array_ptr (array);
10893
10894 /* If we have more than one level of pointer indirection,
10895 dereference the value until we get only one level. */
10896 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10897 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10898 == TYPE_CODE_PTR))
10899 array = value_ind (array);
10900
10901 /* Make sure we really do have an array type before going further,
10902 to avoid a SEGV when trying to get the index type or the target
10903 type later down the road if the debug info generated by
10904 the compiler is incorrect or incomplete. */
10905 if (!ada_is_simple_array_type (value_type (array)))
10906 error (_("cannot take slice of non-array"));
10907
10908 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10909 == TYPE_CODE_PTR)
10910 {
10911 struct type *type0 = ada_check_typedef (value_type (array));
10912
10913 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10914 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10915 else
10916 {
10917 struct type *arr_type0 =
10918 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10919
10920 return ada_value_slice_from_ptr (array, arr_type0,
10921 longest_to_int (low_bound),
10922 longest_to_int (high_bound));
10923 }
10924 }
10925 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10926 return array;
10927 else if (high_bound < low_bound)
10928 return empty_array (value_type (array), low_bound);
10929 else
10930 return ada_value_slice (array, longest_to_int (low_bound),
10931 longest_to_int (high_bound));
10932 }
10933
10934 case UNOP_IN_RANGE:
10935 (*pos) += 2;
10936 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10937 type = check_typedef (exp->elts[pc + 1].type);
10938
10939 if (noside == EVAL_SKIP)
10940 goto nosideret;
10941
10942 switch (TYPE_CODE (type))
10943 {
10944 default:
10945 lim_warning (_("Membership test incompletely implemented; "
10946 "always returns true"));
10947 type = language_bool_type (exp->language_defn, exp->gdbarch);
10948 return value_from_longest (type, (LONGEST) 1);
10949
10950 case TYPE_CODE_RANGE:
10951 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10952 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10953 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10954 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10955 type = language_bool_type (exp->language_defn, exp->gdbarch);
10956 return
10957 value_from_longest (type,
10958 (value_less (arg1, arg3)
10959 || value_equal (arg1, arg3))
10960 && (value_less (arg2, arg1)
10961 || value_equal (arg2, arg1)));
10962 }
10963
10964 case BINOP_IN_BOUNDS:
10965 (*pos) += 2;
10966 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10967 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10968
10969 if (noside == EVAL_SKIP)
10970 goto nosideret;
10971
10972 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10973 {
10974 type = language_bool_type (exp->language_defn, exp->gdbarch);
10975 return value_zero (type, not_lval);
10976 }
10977
10978 tem = longest_to_int (exp->elts[pc + 1].longconst);
10979
10980 type = ada_index_type (value_type (arg2), tem, "range");
10981 if (!type)
10982 type = value_type (arg1);
10983
10984 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10985 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10986
10987 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10988 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10989 type = language_bool_type (exp->language_defn, exp->gdbarch);
10990 return
10991 value_from_longest (type,
10992 (value_less (arg1, arg3)
10993 || value_equal (arg1, arg3))
10994 && (value_less (arg2, arg1)
10995 || value_equal (arg2, arg1)));
10996
10997 case TERNOP_IN_RANGE:
10998 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10999 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11000 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11001
11002 if (noside == EVAL_SKIP)
11003 goto nosideret;
11004
11005 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11006 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11007 type = language_bool_type (exp->language_defn, exp->gdbarch);
11008 return
11009 value_from_longest (type,
11010 (value_less (arg1, arg3)
11011 || value_equal (arg1, arg3))
11012 && (value_less (arg2, arg1)
11013 || value_equal (arg2, arg1)));
11014
11015 case OP_ATR_FIRST:
11016 case OP_ATR_LAST:
11017 case OP_ATR_LENGTH:
11018 {
11019 struct type *type_arg;
11020
11021 if (exp->elts[*pos].opcode == OP_TYPE)
11022 {
11023 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11024 arg1 = NULL;
11025 type_arg = check_typedef (exp->elts[pc + 2].type);
11026 }
11027 else
11028 {
11029 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11030 type_arg = NULL;
11031 }
11032
11033 if (exp->elts[*pos].opcode != OP_LONG)
11034 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11035 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11036 *pos += 4;
11037
11038 if (noside == EVAL_SKIP)
11039 goto nosideret;
11040
11041 if (type_arg == NULL)
11042 {
11043 arg1 = ada_coerce_ref (arg1);
11044
11045 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11046 arg1 = ada_coerce_to_simple_array (arg1);
11047
11048 if (op == OP_ATR_LENGTH)
11049 type = builtin_type (exp->gdbarch)->builtin_int;
11050 else
11051 {
11052 type = ada_index_type (value_type (arg1), tem,
11053 ada_attribute_name (op));
11054 if (type == NULL)
11055 type = builtin_type (exp->gdbarch)->builtin_int;
11056 }
11057
11058 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11059 return allocate_value (type);
11060
11061 switch (op)
11062 {
11063 default: /* Should never happen. */
11064 error (_("unexpected attribute encountered"));
11065 case OP_ATR_FIRST:
11066 return value_from_longest
11067 (type, ada_array_bound (arg1, tem, 0));
11068 case OP_ATR_LAST:
11069 return value_from_longest
11070 (type, ada_array_bound (arg1, tem, 1));
11071 case OP_ATR_LENGTH:
11072 return value_from_longest
11073 (type, ada_array_length (arg1, tem));
11074 }
11075 }
11076 else if (discrete_type_p (type_arg))
11077 {
11078 struct type *range_type;
11079 const char *name = ada_type_name (type_arg);
11080
11081 range_type = NULL;
11082 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11083 range_type = to_fixed_range_type (type_arg, NULL);
11084 if (range_type == NULL)
11085 range_type = type_arg;
11086 switch (op)
11087 {
11088 default:
11089 error (_("unexpected attribute encountered"));
11090 case OP_ATR_FIRST:
11091 return value_from_longest
11092 (range_type, ada_discrete_type_low_bound (range_type));
11093 case OP_ATR_LAST:
11094 return value_from_longest
11095 (range_type, ada_discrete_type_high_bound (range_type));
11096 case OP_ATR_LENGTH:
11097 error (_("the 'length attribute applies only to array types"));
11098 }
11099 }
11100 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11101 error (_("unimplemented type attribute"));
11102 else
11103 {
11104 LONGEST low, high;
11105
11106 if (ada_is_constrained_packed_array_type (type_arg))
11107 type_arg = decode_constrained_packed_array_type (type_arg);
11108
11109 if (op == OP_ATR_LENGTH)
11110 type = builtin_type (exp->gdbarch)->builtin_int;
11111 else
11112 {
11113 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11114 if (type == NULL)
11115 type = builtin_type (exp->gdbarch)->builtin_int;
11116 }
11117
11118 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11119 return allocate_value (type);
11120
11121 switch (op)
11122 {
11123 default:
11124 error (_("unexpected attribute encountered"));
11125 case OP_ATR_FIRST:
11126 low = ada_array_bound_from_type (type_arg, tem, 0);
11127 return value_from_longest (type, low);
11128 case OP_ATR_LAST:
11129 high = ada_array_bound_from_type (type_arg, tem, 1);
11130 return value_from_longest (type, high);
11131 case OP_ATR_LENGTH:
11132 low = ada_array_bound_from_type (type_arg, tem, 0);
11133 high = ada_array_bound_from_type (type_arg, tem, 1);
11134 return value_from_longest (type, high - low + 1);
11135 }
11136 }
11137 }
11138
11139 case OP_ATR_TAG:
11140 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11141 if (noside == EVAL_SKIP)
11142 goto nosideret;
11143
11144 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11145 return value_zero (ada_tag_type (arg1), not_lval);
11146
11147 return ada_value_tag (arg1);
11148
11149 case OP_ATR_MIN:
11150 case OP_ATR_MAX:
11151 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11152 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11153 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11154 if (noside == EVAL_SKIP)
11155 goto nosideret;
11156 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11157 return value_zero (value_type (arg1), not_lval);
11158 else
11159 {
11160 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11161 return value_binop (arg1, arg2,
11162 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11163 }
11164
11165 case OP_ATR_MODULUS:
11166 {
11167 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11168
11169 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11170 if (noside == EVAL_SKIP)
11171 goto nosideret;
11172
11173 if (!ada_is_modular_type (type_arg))
11174 error (_("'modulus must be applied to modular type"));
11175
11176 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11177 ada_modulus (type_arg));
11178 }
11179
11180
11181 case OP_ATR_POS:
11182 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11183 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11184 if (noside == EVAL_SKIP)
11185 goto nosideret;
11186 type = builtin_type (exp->gdbarch)->builtin_int;
11187 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11188 return value_zero (type, not_lval);
11189 else
11190 return value_pos_atr (type, arg1);
11191
11192 case OP_ATR_SIZE:
11193 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11194 type = value_type (arg1);
11195
11196 /* If the argument is a reference, then dereference its type, since
11197 the user is really asking for the size of the actual object,
11198 not the size of the pointer. */
11199 if (TYPE_CODE (type) == TYPE_CODE_REF)
11200 type = TYPE_TARGET_TYPE (type);
11201
11202 if (noside == EVAL_SKIP)
11203 goto nosideret;
11204 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11205 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11206 else
11207 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11208 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11209
11210 case OP_ATR_VAL:
11211 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11212 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11213 type = exp->elts[pc + 2].type;
11214 if (noside == EVAL_SKIP)
11215 goto nosideret;
11216 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11217 return value_zero (type, not_lval);
11218 else
11219 return value_val_atr (type, arg1);
11220
11221 case BINOP_EXP:
11222 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11223 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11224 if (noside == EVAL_SKIP)
11225 goto nosideret;
11226 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11227 return value_zero (value_type (arg1), not_lval);
11228 else
11229 {
11230 /* For integer exponentiation operations,
11231 only promote the first argument. */
11232 if (is_integral_type (value_type (arg2)))
11233 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11234 else
11235 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11236
11237 return value_binop (arg1, arg2, op);
11238 }
11239
11240 case UNOP_PLUS:
11241 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11242 if (noside == EVAL_SKIP)
11243 goto nosideret;
11244 else
11245 return arg1;
11246
11247 case UNOP_ABS:
11248 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11249 if (noside == EVAL_SKIP)
11250 goto nosideret;
11251 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11252 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11253 return value_neg (arg1);
11254 else
11255 return arg1;
11256
11257 case UNOP_IND:
11258 preeval_pos = *pos;
11259 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11260 if (noside == EVAL_SKIP)
11261 goto nosideret;
11262 type = ada_check_typedef (value_type (arg1));
11263 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11264 {
11265 if (ada_is_array_descriptor_type (type))
11266 /* GDB allows dereferencing GNAT array descriptors. */
11267 {
11268 struct type *arrType = ada_type_of_array (arg1, 0);
11269
11270 if (arrType == NULL)
11271 error (_("Attempt to dereference null array pointer."));
11272 return value_at_lazy (arrType, 0);
11273 }
11274 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11275 || TYPE_CODE (type) == TYPE_CODE_REF
11276 /* In C you can dereference an array to get the 1st elt. */
11277 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11278 {
11279 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11280 only be determined by inspecting the object's tag.
11281 This means that we need to evaluate completely the
11282 expression in order to get its type. */
11283
11284 if ((TYPE_CODE (type) == TYPE_CODE_REF
11285 || TYPE_CODE (type) == TYPE_CODE_PTR)
11286 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11287 {
11288 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11289 EVAL_NORMAL);
11290 type = value_type (ada_value_ind (arg1));
11291 }
11292 else
11293 {
11294 type = to_static_fixed_type
11295 (ada_aligned_type
11296 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11297 }
11298 ada_ensure_varsize_limit (type);
11299 return value_zero (type, lval_memory);
11300 }
11301 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11302 {
11303 /* GDB allows dereferencing an int. */
11304 if (expect_type == NULL)
11305 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11306 lval_memory);
11307 else
11308 {
11309 expect_type =
11310 to_static_fixed_type (ada_aligned_type (expect_type));
11311 return value_zero (expect_type, lval_memory);
11312 }
11313 }
11314 else
11315 error (_("Attempt to take contents of a non-pointer value."));
11316 }
11317 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11318 type = ada_check_typedef (value_type (arg1));
11319
11320 if (TYPE_CODE (type) == TYPE_CODE_INT)
11321 /* GDB allows dereferencing an int. If we were given
11322 the expect_type, then use that as the target type.
11323 Otherwise, assume that the target type is an int. */
11324 {
11325 if (expect_type != NULL)
11326 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11327 arg1));
11328 else
11329 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11330 (CORE_ADDR) value_as_address (arg1));
11331 }
11332
11333 if (ada_is_array_descriptor_type (type))
11334 /* GDB allows dereferencing GNAT array descriptors. */
11335 return ada_coerce_to_simple_array (arg1);
11336 else
11337 return ada_value_ind (arg1);
11338
11339 case STRUCTOP_STRUCT:
11340 tem = longest_to_int (exp->elts[pc + 1].longconst);
11341 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11342 preeval_pos = *pos;
11343 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11344 if (noside == EVAL_SKIP)
11345 goto nosideret;
11346 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11347 {
11348 struct type *type1 = value_type (arg1);
11349
11350 if (ada_is_tagged_type (type1, 1))
11351 {
11352 type = ada_lookup_struct_elt_type (type1,
11353 &exp->elts[pc + 2].string,
11354 1, 1);
11355
11356 /* If the field is not found, check if it exists in the
11357 extension of this object's type. This means that we
11358 need to evaluate completely the expression. */
11359
11360 if (type == NULL)
11361 {
11362 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11363 EVAL_NORMAL);
11364 arg1 = ada_value_struct_elt (arg1,
11365 &exp->elts[pc + 2].string,
11366 0);
11367 arg1 = unwrap_value (arg1);
11368 type = value_type (ada_to_fixed_value (arg1));
11369 }
11370 }
11371 else
11372 type =
11373 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11374 0);
11375
11376 return value_zero (ada_aligned_type (type), lval_memory);
11377 }
11378 else
11379 {
11380 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11381 arg1 = unwrap_value (arg1);
11382 return ada_to_fixed_value (arg1);
11383 }
11384
11385 case OP_TYPE:
11386 /* The value is not supposed to be used. This is here to make it
11387 easier to accommodate expressions that contain types. */
11388 (*pos) += 2;
11389 if (noside == EVAL_SKIP)
11390 goto nosideret;
11391 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11392 return allocate_value (exp->elts[pc + 1].type);
11393 else
11394 error (_("Attempt to use a type name as an expression"));
11395
11396 case OP_AGGREGATE:
11397 case OP_CHOICES:
11398 case OP_OTHERS:
11399 case OP_DISCRETE_RANGE:
11400 case OP_POSITIONAL:
11401 case OP_NAME:
11402 if (noside == EVAL_NORMAL)
11403 switch (op)
11404 {
11405 case OP_NAME:
11406 error (_("Undefined name, ambiguous name, or renaming used in "
11407 "component association: %s."), &exp->elts[pc+2].string);
11408 case OP_AGGREGATE:
11409 error (_("Aggregates only allowed on the right of an assignment"));
11410 default:
11411 internal_error (__FILE__, __LINE__,
11412 _("aggregate apparently mangled"));
11413 }
11414
11415 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11416 *pos += oplen - 1;
11417 for (tem = 0; tem < nargs; tem += 1)
11418 ada_evaluate_subexp (NULL, exp, pos, noside);
11419 goto nosideret;
11420 }
11421
11422 nosideret:
11423 return eval_skip_value (exp);
11424 }
11425 \f
11426
11427 /* Fixed point */
11428
11429 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11430 type name that encodes the 'small and 'delta information.
11431 Otherwise, return NULL. */
11432
11433 static const char *
11434 fixed_type_info (struct type *type)
11435 {
11436 const char *name = ada_type_name (type);
11437 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11438
11439 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11440 {
11441 const char *tail = strstr (name, "___XF_");
11442
11443 if (tail == NULL)
11444 return NULL;
11445 else
11446 return tail + 5;
11447 }
11448 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11449 return fixed_type_info (TYPE_TARGET_TYPE (type));
11450 else
11451 return NULL;
11452 }
11453
11454 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11455
11456 int
11457 ada_is_fixed_point_type (struct type *type)
11458 {
11459 return fixed_type_info (type) != NULL;
11460 }
11461
11462 /* Return non-zero iff TYPE represents a System.Address type. */
11463
11464 int
11465 ada_is_system_address_type (struct type *type)
11466 {
11467 return (TYPE_NAME (type)
11468 && strcmp (TYPE_NAME (type), "system__address") == 0);
11469 }
11470
11471 /* Assuming that TYPE is the representation of an Ada fixed-point
11472 type, return the target floating-point type to be used to represent
11473 of this type during internal computation. */
11474
11475 static struct type *
11476 ada_scaling_type (struct type *type)
11477 {
11478 return builtin_type (get_type_arch (type))->builtin_long_double;
11479 }
11480
11481 /* Assuming that TYPE is the representation of an Ada fixed-point
11482 type, return its delta, or NULL if the type is malformed and the
11483 delta cannot be determined. */
11484
11485 struct value *
11486 ada_delta (struct type *type)
11487 {
11488 const char *encoding = fixed_type_info (type);
11489 struct type *scale_type = ada_scaling_type (type);
11490
11491 long long num, den;
11492
11493 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11494 return nullptr;
11495 else
11496 return value_binop (value_from_longest (scale_type, num),
11497 value_from_longest (scale_type, den), BINOP_DIV);
11498 }
11499
11500 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11501 factor ('SMALL value) associated with the type. */
11502
11503 struct value *
11504 ada_scaling_factor (struct type *type)
11505 {
11506 const char *encoding = fixed_type_info (type);
11507 struct type *scale_type = ada_scaling_type (type);
11508
11509 long long num0, den0, num1, den1;
11510 int n;
11511
11512 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11513 &num0, &den0, &num1, &den1);
11514
11515 if (n < 2)
11516 return value_from_longest (scale_type, 1);
11517 else if (n == 4)
11518 return value_binop (value_from_longest (scale_type, num1),
11519 value_from_longest (scale_type, den1), BINOP_DIV);
11520 else
11521 return value_binop (value_from_longest (scale_type, num0),
11522 value_from_longest (scale_type, den0), BINOP_DIV);
11523 }
11524
11525 \f
11526
11527 /* Range types */
11528
11529 /* Scan STR beginning at position K for a discriminant name, and
11530 return the value of that discriminant field of DVAL in *PX. If
11531 PNEW_K is not null, put the position of the character beyond the
11532 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11533 not alter *PX and *PNEW_K if unsuccessful. */
11534
11535 static int
11536 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11537 int *pnew_k)
11538 {
11539 static char *bound_buffer = NULL;
11540 static size_t bound_buffer_len = 0;
11541 const char *pstart, *pend, *bound;
11542 struct value *bound_val;
11543
11544 if (dval == NULL || str == NULL || str[k] == '\0')
11545 return 0;
11546
11547 pstart = str + k;
11548 pend = strstr (pstart, "__");
11549 if (pend == NULL)
11550 {
11551 bound = pstart;
11552 k += strlen (bound);
11553 }
11554 else
11555 {
11556 int len = pend - pstart;
11557
11558 /* Strip __ and beyond. */
11559 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11560 strncpy (bound_buffer, pstart, len);
11561 bound_buffer[len] = '\0';
11562
11563 bound = bound_buffer;
11564 k = pend - str;
11565 }
11566
11567 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11568 if (bound_val == NULL)
11569 return 0;
11570
11571 *px = value_as_long (bound_val);
11572 if (pnew_k != NULL)
11573 *pnew_k = k;
11574 return 1;
11575 }
11576
11577 /* Value of variable named NAME in the current environment. If
11578 no such variable found, then if ERR_MSG is null, returns 0, and
11579 otherwise causes an error with message ERR_MSG. */
11580
11581 static struct value *
11582 get_var_value (const char *name, const char *err_msg)
11583 {
11584 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11585
11586 struct block_symbol *syms;
11587 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11588 get_selected_block (0),
11589 VAR_DOMAIN, &syms, 1);
11590 struct cleanup *old_chain = make_cleanup (xfree, syms);
11591
11592 if (nsyms != 1)
11593 {
11594 do_cleanups (old_chain);
11595 if (err_msg == NULL)
11596 return 0;
11597 else
11598 error (("%s"), err_msg);
11599 }
11600
11601 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11602 do_cleanups (old_chain);
11603 return result;
11604 }
11605
11606 /* Value of integer variable named NAME in the current environment.
11607 If no such variable is found, returns false. Otherwise, sets VALUE
11608 to the variable's value and returns true. */
11609
11610 bool
11611 get_int_var_value (const char *name, LONGEST &value)
11612 {
11613 struct value *var_val = get_var_value (name, 0);
11614
11615 if (var_val == 0)
11616 return false;
11617
11618 value = value_as_long (var_val);
11619 return true;
11620 }
11621
11622
11623 /* Return a range type whose base type is that of the range type named
11624 NAME in the current environment, and whose bounds are calculated
11625 from NAME according to the GNAT range encoding conventions.
11626 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11627 corresponding range type from debug information; fall back to using it
11628 if symbol lookup fails. If a new type must be created, allocate it
11629 like ORIG_TYPE was. The bounds information, in general, is encoded
11630 in NAME, the base type given in the named range type. */
11631
11632 static struct type *
11633 to_fixed_range_type (struct type *raw_type, struct value *dval)
11634 {
11635 const char *name;
11636 struct type *base_type;
11637 const char *subtype_info;
11638
11639 gdb_assert (raw_type != NULL);
11640 gdb_assert (TYPE_NAME (raw_type) != NULL);
11641
11642 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11643 base_type = TYPE_TARGET_TYPE (raw_type);
11644 else
11645 base_type = raw_type;
11646
11647 name = TYPE_NAME (raw_type);
11648 subtype_info = strstr (name, "___XD");
11649 if (subtype_info == NULL)
11650 {
11651 LONGEST L = ada_discrete_type_low_bound (raw_type);
11652 LONGEST U = ada_discrete_type_high_bound (raw_type);
11653
11654 if (L < INT_MIN || U > INT_MAX)
11655 return raw_type;
11656 else
11657 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11658 L, U);
11659 }
11660 else
11661 {
11662 static char *name_buf = NULL;
11663 static size_t name_len = 0;
11664 int prefix_len = subtype_info - name;
11665 LONGEST L, U;
11666 struct type *type;
11667 const char *bounds_str;
11668 int n;
11669
11670 GROW_VECT (name_buf, name_len, prefix_len + 5);
11671 strncpy (name_buf, name, prefix_len);
11672 name_buf[prefix_len] = '\0';
11673
11674 subtype_info += 5;
11675 bounds_str = strchr (subtype_info, '_');
11676 n = 1;
11677
11678 if (*subtype_info == 'L')
11679 {
11680 if (!ada_scan_number (bounds_str, n, &L, &n)
11681 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11682 return raw_type;
11683 if (bounds_str[n] == '_')
11684 n += 2;
11685 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11686 n += 1;
11687 subtype_info += 1;
11688 }
11689 else
11690 {
11691 strcpy (name_buf + prefix_len, "___L");
11692 if (!get_int_var_value (name_buf, L))
11693 {
11694 lim_warning (_("Unknown lower bound, using 1."));
11695 L = 1;
11696 }
11697 }
11698
11699 if (*subtype_info == 'U')
11700 {
11701 if (!ada_scan_number (bounds_str, n, &U, &n)
11702 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11703 return raw_type;
11704 }
11705 else
11706 {
11707 strcpy (name_buf + prefix_len, "___U");
11708 if (!get_int_var_value (name_buf, U))
11709 {
11710 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11711 U = L;
11712 }
11713 }
11714
11715 type = create_static_range_type (alloc_type_copy (raw_type),
11716 base_type, L, U);
11717 /* create_static_range_type alters the resulting type's length
11718 to match the size of the base_type, which is not what we want.
11719 Set it back to the original range type's length. */
11720 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11721 TYPE_NAME (type) = name;
11722 return type;
11723 }
11724 }
11725
11726 /* True iff NAME is the name of a range type. */
11727
11728 int
11729 ada_is_range_type_name (const char *name)
11730 {
11731 return (name != NULL && strstr (name, "___XD"));
11732 }
11733 \f
11734
11735 /* Modular types */
11736
11737 /* True iff TYPE is an Ada modular type. */
11738
11739 int
11740 ada_is_modular_type (struct type *type)
11741 {
11742 struct type *subranged_type = get_base_type (type);
11743
11744 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11745 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11746 && TYPE_UNSIGNED (subranged_type));
11747 }
11748
11749 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11750
11751 ULONGEST
11752 ada_modulus (struct type *type)
11753 {
11754 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11755 }
11756 \f
11757
11758 /* Ada exception catchpoint support:
11759 ---------------------------------
11760
11761 We support 3 kinds of exception catchpoints:
11762 . catchpoints on Ada exceptions
11763 . catchpoints on unhandled Ada exceptions
11764 . catchpoints on failed assertions
11765
11766 Exceptions raised during failed assertions, or unhandled exceptions
11767 could perfectly be caught with the general catchpoint on Ada exceptions.
11768 However, we can easily differentiate these two special cases, and having
11769 the option to distinguish these two cases from the rest can be useful
11770 to zero-in on certain situations.
11771
11772 Exception catchpoints are a specialized form of breakpoint,
11773 since they rely on inserting breakpoints inside known routines
11774 of the GNAT runtime. The implementation therefore uses a standard
11775 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11776 of breakpoint_ops.
11777
11778 Support in the runtime for exception catchpoints have been changed
11779 a few times already, and these changes affect the implementation
11780 of these catchpoints. In order to be able to support several
11781 variants of the runtime, we use a sniffer that will determine
11782 the runtime variant used by the program being debugged. */
11783
11784 /* Ada's standard exceptions.
11785
11786 The Ada 83 standard also defined Numeric_Error. But there so many
11787 situations where it was unclear from the Ada 83 Reference Manual
11788 (RM) whether Constraint_Error or Numeric_Error should be raised,
11789 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11790 Interpretation saying that anytime the RM says that Numeric_Error
11791 should be raised, the implementation may raise Constraint_Error.
11792 Ada 95 went one step further and pretty much removed Numeric_Error
11793 from the list of standard exceptions (it made it a renaming of
11794 Constraint_Error, to help preserve compatibility when compiling
11795 an Ada83 compiler). As such, we do not include Numeric_Error from
11796 this list of standard exceptions. */
11797
11798 static const char *standard_exc[] = {
11799 "constraint_error",
11800 "program_error",
11801 "storage_error",
11802 "tasking_error"
11803 };
11804
11805 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11806
11807 /* A structure that describes how to support exception catchpoints
11808 for a given executable. */
11809
11810 struct exception_support_info
11811 {
11812 /* The name of the symbol to break on in order to insert
11813 a catchpoint on exceptions. */
11814 const char *catch_exception_sym;
11815
11816 /* The name of the symbol to break on in order to insert
11817 a catchpoint on unhandled exceptions. */
11818 const char *catch_exception_unhandled_sym;
11819
11820 /* The name of the symbol to break on in order to insert
11821 a catchpoint on failed assertions. */
11822 const char *catch_assert_sym;
11823
11824 /* Assuming that the inferior just triggered an unhandled exception
11825 catchpoint, this function is responsible for returning the address
11826 in inferior memory where the name of that exception is stored.
11827 Return zero if the address could not be computed. */
11828 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11829 };
11830
11831 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11832 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11833
11834 /* The following exception support info structure describes how to
11835 implement exception catchpoints with the latest version of the
11836 Ada runtime (as of 2007-03-06). */
11837
11838 static const struct exception_support_info default_exception_support_info =
11839 {
11840 "__gnat_debug_raise_exception", /* catch_exception_sym */
11841 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11842 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11843 ada_unhandled_exception_name_addr
11844 };
11845
11846 /* The following exception support info structure describes how to
11847 implement exception catchpoints with a slightly older version
11848 of the Ada runtime. */
11849
11850 static const struct exception_support_info exception_support_info_fallback =
11851 {
11852 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11853 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11854 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11855 ada_unhandled_exception_name_addr_from_raise
11856 };
11857
11858 /* Return nonzero if we can detect the exception support routines
11859 described in EINFO.
11860
11861 This function errors out if an abnormal situation is detected
11862 (for instance, if we find the exception support routines, but
11863 that support is found to be incomplete). */
11864
11865 static int
11866 ada_has_this_exception_support (const struct exception_support_info *einfo)
11867 {
11868 struct symbol *sym;
11869
11870 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11871 that should be compiled with debugging information. As a result, we
11872 expect to find that symbol in the symtabs. */
11873
11874 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11875 if (sym == NULL)
11876 {
11877 /* Perhaps we did not find our symbol because the Ada runtime was
11878 compiled without debugging info, or simply stripped of it.
11879 It happens on some GNU/Linux distributions for instance, where
11880 users have to install a separate debug package in order to get
11881 the runtime's debugging info. In that situation, let the user
11882 know why we cannot insert an Ada exception catchpoint.
11883
11884 Note: Just for the purpose of inserting our Ada exception
11885 catchpoint, we could rely purely on the associated minimal symbol.
11886 But we would be operating in degraded mode anyway, since we are
11887 still lacking the debugging info needed later on to extract
11888 the name of the exception being raised (this name is printed in
11889 the catchpoint message, and is also used when trying to catch
11890 a specific exception). We do not handle this case for now. */
11891 struct bound_minimal_symbol msym
11892 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11893
11894 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11895 error (_("Your Ada runtime appears to be missing some debugging "
11896 "information.\nCannot insert Ada exception catchpoint "
11897 "in this configuration."));
11898
11899 return 0;
11900 }
11901
11902 /* Make sure that the symbol we found corresponds to a function. */
11903
11904 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11905 error (_("Symbol \"%s\" is not a function (class = %d)"),
11906 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11907
11908 return 1;
11909 }
11910
11911 /* Inspect the Ada runtime and determine which exception info structure
11912 should be used to provide support for exception catchpoints.
11913
11914 This function will always set the per-inferior exception_info,
11915 or raise an error. */
11916
11917 static void
11918 ada_exception_support_info_sniffer (void)
11919 {
11920 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11921
11922 /* If the exception info is already known, then no need to recompute it. */
11923 if (data->exception_info != NULL)
11924 return;
11925
11926 /* Check the latest (default) exception support info. */
11927 if (ada_has_this_exception_support (&default_exception_support_info))
11928 {
11929 data->exception_info = &default_exception_support_info;
11930 return;
11931 }
11932
11933 /* Try our fallback exception suport info. */
11934 if (ada_has_this_exception_support (&exception_support_info_fallback))
11935 {
11936 data->exception_info = &exception_support_info_fallback;
11937 return;
11938 }
11939
11940 /* Sometimes, it is normal for us to not be able to find the routine
11941 we are looking for. This happens when the program is linked with
11942 the shared version of the GNAT runtime, and the program has not been
11943 started yet. Inform the user of these two possible causes if
11944 applicable. */
11945
11946 if (ada_update_initial_language (language_unknown) != language_ada)
11947 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11948
11949 /* If the symbol does not exist, then check that the program is
11950 already started, to make sure that shared libraries have been
11951 loaded. If it is not started, this may mean that the symbol is
11952 in a shared library. */
11953
11954 if (ptid_get_pid (inferior_ptid) == 0)
11955 error (_("Unable to insert catchpoint. Try to start the program first."));
11956
11957 /* At this point, we know that we are debugging an Ada program and
11958 that the inferior has been started, but we still are not able to
11959 find the run-time symbols. That can mean that we are in
11960 configurable run time mode, or that a-except as been optimized
11961 out by the linker... In any case, at this point it is not worth
11962 supporting this feature. */
11963
11964 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11965 }
11966
11967 /* True iff FRAME is very likely to be that of a function that is
11968 part of the runtime system. This is all very heuristic, but is
11969 intended to be used as advice as to what frames are uninteresting
11970 to most users. */
11971
11972 static int
11973 is_known_support_routine (struct frame_info *frame)
11974 {
11975 enum language func_lang;
11976 int i;
11977 const char *fullname;
11978
11979 /* If this code does not have any debugging information (no symtab),
11980 This cannot be any user code. */
11981
11982 symtab_and_line sal = find_frame_sal (frame);
11983 if (sal.symtab == NULL)
11984 return 1;
11985
11986 /* If there is a symtab, but the associated source file cannot be
11987 located, then assume this is not user code: Selecting a frame
11988 for which we cannot display the code would not be very helpful
11989 for the user. This should also take care of case such as VxWorks
11990 where the kernel has some debugging info provided for a few units. */
11991
11992 fullname = symtab_to_fullname (sal.symtab);
11993 if (access (fullname, R_OK) != 0)
11994 return 1;
11995
11996 /* Check the unit filename againt the Ada runtime file naming.
11997 We also check the name of the objfile against the name of some
11998 known system libraries that sometimes come with debugging info
11999 too. */
12000
12001 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12002 {
12003 re_comp (known_runtime_file_name_patterns[i]);
12004 if (re_exec (lbasename (sal.symtab->filename)))
12005 return 1;
12006 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12007 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12008 return 1;
12009 }
12010
12011 /* Check whether the function is a GNAT-generated entity. */
12012
12013 gdb::unique_xmalloc_ptr<char> func_name
12014 = find_frame_funname (frame, &func_lang, NULL);
12015 if (func_name == NULL)
12016 return 1;
12017
12018 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12019 {
12020 re_comp (known_auxiliary_function_name_patterns[i]);
12021 if (re_exec (func_name.get ()))
12022 return 1;
12023 }
12024
12025 return 0;
12026 }
12027
12028 /* Find the first frame that contains debugging information and that is not
12029 part of the Ada run-time, starting from FI and moving upward. */
12030
12031 void
12032 ada_find_printable_frame (struct frame_info *fi)
12033 {
12034 for (; fi != NULL; fi = get_prev_frame (fi))
12035 {
12036 if (!is_known_support_routine (fi))
12037 {
12038 select_frame (fi);
12039 break;
12040 }
12041 }
12042
12043 }
12044
12045 /* Assuming that the inferior just triggered an unhandled exception
12046 catchpoint, return the address in inferior memory where the name
12047 of the exception is stored.
12048
12049 Return zero if the address could not be computed. */
12050
12051 static CORE_ADDR
12052 ada_unhandled_exception_name_addr (void)
12053 {
12054 return parse_and_eval_address ("e.full_name");
12055 }
12056
12057 /* Same as ada_unhandled_exception_name_addr, except that this function
12058 should be used when the inferior uses an older version of the runtime,
12059 where the exception name needs to be extracted from a specific frame
12060 several frames up in the callstack. */
12061
12062 static CORE_ADDR
12063 ada_unhandled_exception_name_addr_from_raise (void)
12064 {
12065 int frame_level;
12066 struct frame_info *fi;
12067 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12068
12069 /* To determine the name of this exception, we need to select
12070 the frame corresponding to RAISE_SYM_NAME. This frame is
12071 at least 3 levels up, so we simply skip the first 3 frames
12072 without checking the name of their associated function. */
12073 fi = get_current_frame ();
12074 for (frame_level = 0; frame_level < 3; frame_level += 1)
12075 if (fi != NULL)
12076 fi = get_prev_frame (fi);
12077
12078 while (fi != NULL)
12079 {
12080 enum language func_lang;
12081
12082 gdb::unique_xmalloc_ptr<char> func_name
12083 = find_frame_funname (fi, &func_lang, NULL);
12084 if (func_name != NULL)
12085 {
12086 if (strcmp (func_name.get (),
12087 data->exception_info->catch_exception_sym) == 0)
12088 break; /* We found the frame we were looking for... */
12089 fi = get_prev_frame (fi);
12090 }
12091 }
12092
12093 if (fi == NULL)
12094 return 0;
12095
12096 select_frame (fi);
12097 return parse_and_eval_address ("id.full_name");
12098 }
12099
12100 /* Assuming the inferior just triggered an Ada exception catchpoint
12101 (of any type), return the address in inferior memory where the name
12102 of the exception is stored, if applicable.
12103
12104 Assumes the selected frame is the current frame.
12105
12106 Return zero if the address could not be computed, or if not relevant. */
12107
12108 static CORE_ADDR
12109 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12110 struct breakpoint *b)
12111 {
12112 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12113
12114 switch (ex)
12115 {
12116 case ada_catch_exception:
12117 return (parse_and_eval_address ("e.full_name"));
12118 break;
12119
12120 case ada_catch_exception_unhandled:
12121 return data->exception_info->unhandled_exception_name_addr ();
12122 break;
12123
12124 case ada_catch_assert:
12125 return 0; /* Exception name is not relevant in this case. */
12126 break;
12127
12128 default:
12129 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12130 break;
12131 }
12132
12133 return 0; /* Should never be reached. */
12134 }
12135
12136 /* Assuming the inferior is stopped at an exception catchpoint,
12137 return the message which was associated to the exception, if
12138 available. Return NULL if the message could not be retrieved.
12139
12140 The caller must xfree the string after use.
12141
12142 Note: The exception message can be associated to an exception
12143 either through the use of the Raise_Exception function, or
12144 more simply (Ada 2005 and later), via:
12145
12146 raise Exception_Name with "exception message";
12147
12148 */
12149
12150 static char *
12151 ada_exception_message_1 (void)
12152 {
12153 struct value *e_msg_val;
12154 char *e_msg = NULL;
12155 int e_msg_len;
12156 struct cleanup *cleanups;
12157
12158 /* For runtimes that support this feature, the exception message
12159 is passed as an unbounded string argument called "message". */
12160 e_msg_val = parse_and_eval ("message");
12161 if (e_msg_val == NULL)
12162 return NULL; /* Exception message not supported. */
12163
12164 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12165 gdb_assert (e_msg_val != NULL);
12166 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12167
12168 /* If the message string is empty, then treat it as if there was
12169 no exception message. */
12170 if (e_msg_len <= 0)
12171 return NULL;
12172
12173 e_msg = (char *) xmalloc (e_msg_len + 1);
12174 cleanups = make_cleanup (xfree, e_msg);
12175 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12176 e_msg[e_msg_len] = '\0';
12177
12178 discard_cleanups (cleanups);
12179 return e_msg;
12180 }
12181
12182 /* Same as ada_exception_message_1, except that all exceptions are
12183 contained here (returning NULL instead). */
12184
12185 static char *
12186 ada_exception_message (void)
12187 {
12188 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12189
12190 TRY
12191 {
12192 e_msg = ada_exception_message_1 ();
12193 }
12194 CATCH (e, RETURN_MASK_ERROR)
12195 {
12196 e_msg = NULL;
12197 }
12198 END_CATCH
12199
12200 return e_msg;
12201 }
12202
12203 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12204 any error that ada_exception_name_addr_1 might cause to be thrown.
12205 When an error is intercepted, a warning with the error message is printed,
12206 and zero is returned. */
12207
12208 static CORE_ADDR
12209 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12210 struct breakpoint *b)
12211 {
12212 CORE_ADDR result = 0;
12213
12214 TRY
12215 {
12216 result = ada_exception_name_addr_1 (ex, b);
12217 }
12218
12219 CATCH (e, RETURN_MASK_ERROR)
12220 {
12221 warning (_("failed to get exception name: %s"), e.message);
12222 return 0;
12223 }
12224 END_CATCH
12225
12226 return result;
12227 }
12228
12229 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12230
12231 /* Ada catchpoints.
12232
12233 In the case of catchpoints on Ada exceptions, the catchpoint will
12234 stop the target on every exception the program throws. When a user
12235 specifies the name of a specific exception, we translate this
12236 request into a condition expression (in text form), and then parse
12237 it into an expression stored in each of the catchpoint's locations.
12238 We then use this condition to check whether the exception that was
12239 raised is the one the user is interested in. If not, then the
12240 target is resumed again. We store the name of the requested
12241 exception, in order to be able to re-set the condition expression
12242 when symbols change. */
12243
12244 /* An instance of this type is used to represent an Ada catchpoint
12245 breakpoint location. */
12246
12247 class ada_catchpoint_location : public bp_location
12248 {
12249 public:
12250 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12251 : bp_location (ops, owner)
12252 {}
12253
12254 /* The condition that checks whether the exception that was raised
12255 is the specific exception the user specified on catchpoint
12256 creation. */
12257 expression_up excep_cond_expr;
12258 };
12259
12260 /* Implement the DTOR method in the bp_location_ops structure for all
12261 Ada exception catchpoint kinds. */
12262
12263 static void
12264 ada_catchpoint_location_dtor (struct bp_location *bl)
12265 {
12266 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12267
12268 al->excep_cond_expr.reset ();
12269 }
12270
12271 /* The vtable to be used in Ada catchpoint locations. */
12272
12273 static const struct bp_location_ops ada_catchpoint_location_ops =
12274 {
12275 ada_catchpoint_location_dtor
12276 };
12277
12278 /* An instance of this type is used to represent an Ada catchpoint. */
12279
12280 struct ada_catchpoint : public breakpoint
12281 {
12282 ~ada_catchpoint () override;
12283
12284 /* The name of the specific exception the user specified. */
12285 char *excep_string;
12286 };
12287
12288 /* Parse the exception condition string in the context of each of the
12289 catchpoint's locations, and store them for later evaluation. */
12290
12291 static void
12292 create_excep_cond_exprs (struct ada_catchpoint *c)
12293 {
12294 struct cleanup *old_chain;
12295 struct bp_location *bl;
12296 char *cond_string;
12297
12298 /* Nothing to do if there's no specific exception to catch. */
12299 if (c->excep_string == NULL)
12300 return;
12301
12302 /* Same if there are no locations... */
12303 if (c->loc == NULL)
12304 return;
12305
12306 /* Compute the condition expression in text form, from the specific
12307 expection we want to catch. */
12308 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12309 old_chain = make_cleanup (xfree, cond_string);
12310
12311 /* Iterate over all the catchpoint's locations, and parse an
12312 expression for each. */
12313 for (bl = c->loc; bl != NULL; bl = bl->next)
12314 {
12315 struct ada_catchpoint_location *ada_loc
12316 = (struct ada_catchpoint_location *) bl;
12317 expression_up exp;
12318
12319 if (!bl->shlib_disabled)
12320 {
12321 const char *s;
12322
12323 s = cond_string;
12324 TRY
12325 {
12326 exp = parse_exp_1 (&s, bl->address,
12327 block_for_pc (bl->address),
12328 0);
12329 }
12330 CATCH (e, RETURN_MASK_ERROR)
12331 {
12332 warning (_("failed to reevaluate internal exception condition "
12333 "for catchpoint %d: %s"),
12334 c->number, e.message);
12335 }
12336 END_CATCH
12337 }
12338
12339 ada_loc->excep_cond_expr = std::move (exp);
12340 }
12341
12342 do_cleanups (old_chain);
12343 }
12344
12345 /* ada_catchpoint destructor. */
12346
12347 ada_catchpoint::~ada_catchpoint ()
12348 {
12349 xfree (this->excep_string);
12350 }
12351
12352 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12353 structure for all exception catchpoint kinds. */
12354
12355 static struct bp_location *
12356 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12357 struct breakpoint *self)
12358 {
12359 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12360 }
12361
12362 /* Implement the RE_SET method in the breakpoint_ops structure for all
12363 exception catchpoint kinds. */
12364
12365 static void
12366 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12367 {
12368 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12369
12370 /* Call the base class's method. This updates the catchpoint's
12371 locations. */
12372 bkpt_breakpoint_ops.re_set (b);
12373
12374 /* Reparse the exception conditional expressions. One for each
12375 location. */
12376 create_excep_cond_exprs (c);
12377 }
12378
12379 /* Returns true if we should stop for this breakpoint hit. If the
12380 user specified a specific exception, we only want to cause a stop
12381 if the program thrown that exception. */
12382
12383 static int
12384 should_stop_exception (const struct bp_location *bl)
12385 {
12386 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12387 const struct ada_catchpoint_location *ada_loc
12388 = (const struct ada_catchpoint_location *) bl;
12389 int stop;
12390
12391 /* With no specific exception, should always stop. */
12392 if (c->excep_string == NULL)
12393 return 1;
12394
12395 if (ada_loc->excep_cond_expr == NULL)
12396 {
12397 /* We will have a NULL expression if back when we were creating
12398 the expressions, this location's had failed to parse. */
12399 return 1;
12400 }
12401
12402 stop = 1;
12403 TRY
12404 {
12405 struct value *mark;
12406
12407 mark = value_mark ();
12408 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12409 value_free_to_mark (mark);
12410 }
12411 CATCH (ex, RETURN_MASK_ALL)
12412 {
12413 exception_fprintf (gdb_stderr, ex,
12414 _("Error in testing exception condition:\n"));
12415 }
12416 END_CATCH
12417
12418 return stop;
12419 }
12420
12421 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12422 for all exception catchpoint kinds. */
12423
12424 static void
12425 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12426 {
12427 bs->stop = should_stop_exception (bs->bp_location_at);
12428 }
12429
12430 /* Implement the PRINT_IT method in the breakpoint_ops structure
12431 for all exception catchpoint kinds. */
12432
12433 static enum print_stop_action
12434 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12435 {
12436 struct ui_out *uiout = current_uiout;
12437 struct breakpoint *b = bs->breakpoint_at;
12438 char *exception_message;
12439
12440 annotate_catchpoint (b->number);
12441
12442 if (uiout->is_mi_like_p ())
12443 {
12444 uiout->field_string ("reason",
12445 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12446 uiout->field_string ("disp", bpdisp_text (b->disposition));
12447 }
12448
12449 uiout->text (b->disposition == disp_del
12450 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12451 uiout->field_int ("bkptno", b->number);
12452 uiout->text (", ");
12453
12454 /* ada_exception_name_addr relies on the selected frame being the
12455 current frame. Need to do this here because this function may be
12456 called more than once when printing a stop, and below, we'll
12457 select the first frame past the Ada run-time (see
12458 ada_find_printable_frame). */
12459 select_frame (get_current_frame ());
12460
12461 switch (ex)
12462 {
12463 case ada_catch_exception:
12464 case ada_catch_exception_unhandled:
12465 {
12466 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12467 char exception_name[256];
12468
12469 if (addr != 0)
12470 {
12471 read_memory (addr, (gdb_byte *) exception_name,
12472 sizeof (exception_name) - 1);
12473 exception_name [sizeof (exception_name) - 1] = '\0';
12474 }
12475 else
12476 {
12477 /* For some reason, we were unable to read the exception
12478 name. This could happen if the Runtime was compiled
12479 without debugging info, for instance. In that case,
12480 just replace the exception name by the generic string
12481 "exception" - it will read as "an exception" in the
12482 notification we are about to print. */
12483 memcpy (exception_name, "exception", sizeof ("exception"));
12484 }
12485 /* In the case of unhandled exception breakpoints, we print
12486 the exception name as "unhandled EXCEPTION_NAME", to make
12487 it clearer to the user which kind of catchpoint just got
12488 hit. We used ui_out_text to make sure that this extra
12489 info does not pollute the exception name in the MI case. */
12490 if (ex == ada_catch_exception_unhandled)
12491 uiout->text ("unhandled ");
12492 uiout->field_string ("exception-name", exception_name);
12493 }
12494 break;
12495 case ada_catch_assert:
12496 /* In this case, the name of the exception is not really
12497 important. Just print "failed assertion" to make it clearer
12498 that his program just hit an assertion-failure catchpoint.
12499 We used ui_out_text because this info does not belong in
12500 the MI output. */
12501 uiout->text ("failed assertion");
12502 break;
12503 }
12504
12505 exception_message = ada_exception_message ();
12506 if (exception_message != NULL)
12507 {
12508 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12509
12510 uiout->text (" (");
12511 uiout->field_string ("exception-message", exception_message);
12512 uiout->text (")");
12513
12514 do_cleanups (cleanups);
12515 }
12516
12517 uiout->text (" at ");
12518 ada_find_printable_frame (get_current_frame ());
12519
12520 return PRINT_SRC_AND_LOC;
12521 }
12522
12523 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12524 for all exception catchpoint kinds. */
12525
12526 static void
12527 print_one_exception (enum ada_exception_catchpoint_kind ex,
12528 struct breakpoint *b, struct bp_location **last_loc)
12529 {
12530 struct ui_out *uiout = current_uiout;
12531 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12532 struct value_print_options opts;
12533
12534 get_user_print_options (&opts);
12535 if (opts.addressprint)
12536 {
12537 annotate_field (4);
12538 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12539 }
12540
12541 annotate_field (5);
12542 *last_loc = b->loc;
12543 switch (ex)
12544 {
12545 case ada_catch_exception:
12546 if (c->excep_string != NULL)
12547 {
12548 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12549
12550 uiout->field_string ("what", msg);
12551 xfree (msg);
12552 }
12553 else
12554 uiout->field_string ("what", "all Ada exceptions");
12555
12556 break;
12557
12558 case ada_catch_exception_unhandled:
12559 uiout->field_string ("what", "unhandled Ada exceptions");
12560 break;
12561
12562 case ada_catch_assert:
12563 uiout->field_string ("what", "failed Ada assertions");
12564 break;
12565
12566 default:
12567 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12568 break;
12569 }
12570 }
12571
12572 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12573 for all exception catchpoint kinds. */
12574
12575 static void
12576 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12577 struct breakpoint *b)
12578 {
12579 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12580 struct ui_out *uiout = current_uiout;
12581
12582 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12583 : _("Catchpoint "));
12584 uiout->field_int ("bkptno", b->number);
12585 uiout->text (": ");
12586
12587 switch (ex)
12588 {
12589 case ada_catch_exception:
12590 if (c->excep_string != NULL)
12591 {
12592 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12593 struct cleanup *old_chain = make_cleanup (xfree, info);
12594
12595 uiout->text (info);
12596 do_cleanups (old_chain);
12597 }
12598 else
12599 uiout->text (_("all Ada exceptions"));
12600 break;
12601
12602 case ada_catch_exception_unhandled:
12603 uiout->text (_("unhandled Ada exceptions"));
12604 break;
12605
12606 case ada_catch_assert:
12607 uiout->text (_("failed Ada assertions"));
12608 break;
12609
12610 default:
12611 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12612 break;
12613 }
12614 }
12615
12616 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12617 for all exception catchpoint kinds. */
12618
12619 static void
12620 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12621 struct breakpoint *b, struct ui_file *fp)
12622 {
12623 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12624
12625 switch (ex)
12626 {
12627 case ada_catch_exception:
12628 fprintf_filtered (fp, "catch exception");
12629 if (c->excep_string != NULL)
12630 fprintf_filtered (fp, " %s", c->excep_string);
12631 break;
12632
12633 case ada_catch_exception_unhandled:
12634 fprintf_filtered (fp, "catch exception unhandled");
12635 break;
12636
12637 case ada_catch_assert:
12638 fprintf_filtered (fp, "catch assert");
12639 break;
12640
12641 default:
12642 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12643 }
12644 print_recreate_thread (b, fp);
12645 }
12646
12647 /* Virtual table for "catch exception" breakpoints. */
12648
12649 static struct bp_location *
12650 allocate_location_catch_exception (struct breakpoint *self)
12651 {
12652 return allocate_location_exception (ada_catch_exception, self);
12653 }
12654
12655 static void
12656 re_set_catch_exception (struct breakpoint *b)
12657 {
12658 re_set_exception (ada_catch_exception, b);
12659 }
12660
12661 static void
12662 check_status_catch_exception (bpstat bs)
12663 {
12664 check_status_exception (ada_catch_exception, bs);
12665 }
12666
12667 static enum print_stop_action
12668 print_it_catch_exception (bpstat bs)
12669 {
12670 return print_it_exception (ada_catch_exception, bs);
12671 }
12672
12673 static void
12674 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12675 {
12676 print_one_exception (ada_catch_exception, b, last_loc);
12677 }
12678
12679 static void
12680 print_mention_catch_exception (struct breakpoint *b)
12681 {
12682 print_mention_exception (ada_catch_exception, b);
12683 }
12684
12685 static void
12686 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12687 {
12688 print_recreate_exception (ada_catch_exception, b, fp);
12689 }
12690
12691 static struct breakpoint_ops catch_exception_breakpoint_ops;
12692
12693 /* Virtual table for "catch exception unhandled" breakpoints. */
12694
12695 static struct bp_location *
12696 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12697 {
12698 return allocate_location_exception (ada_catch_exception_unhandled, self);
12699 }
12700
12701 static void
12702 re_set_catch_exception_unhandled (struct breakpoint *b)
12703 {
12704 re_set_exception (ada_catch_exception_unhandled, b);
12705 }
12706
12707 static void
12708 check_status_catch_exception_unhandled (bpstat bs)
12709 {
12710 check_status_exception (ada_catch_exception_unhandled, bs);
12711 }
12712
12713 static enum print_stop_action
12714 print_it_catch_exception_unhandled (bpstat bs)
12715 {
12716 return print_it_exception (ada_catch_exception_unhandled, bs);
12717 }
12718
12719 static void
12720 print_one_catch_exception_unhandled (struct breakpoint *b,
12721 struct bp_location **last_loc)
12722 {
12723 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12724 }
12725
12726 static void
12727 print_mention_catch_exception_unhandled (struct breakpoint *b)
12728 {
12729 print_mention_exception (ada_catch_exception_unhandled, b);
12730 }
12731
12732 static void
12733 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12734 struct ui_file *fp)
12735 {
12736 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12737 }
12738
12739 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12740
12741 /* Virtual table for "catch assert" breakpoints. */
12742
12743 static struct bp_location *
12744 allocate_location_catch_assert (struct breakpoint *self)
12745 {
12746 return allocate_location_exception (ada_catch_assert, self);
12747 }
12748
12749 static void
12750 re_set_catch_assert (struct breakpoint *b)
12751 {
12752 re_set_exception (ada_catch_assert, b);
12753 }
12754
12755 static void
12756 check_status_catch_assert (bpstat bs)
12757 {
12758 check_status_exception (ada_catch_assert, bs);
12759 }
12760
12761 static enum print_stop_action
12762 print_it_catch_assert (bpstat bs)
12763 {
12764 return print_it_exception (ada_catch_assert, bs);
12765 }
12766
12767 static void
12768 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12769 {
12770 print_one_exception (ada_catch_assert, b, last_loc);
12771 }
12772
12773 static void
12774 print_mention_catch_assert (struct breakpoint *b)
12775 {
12776 print_mention_exception (ada_catch_assert, b);
12777 }
12778
12779 static void
12780 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12781 {
12782 print_recreate_exception (ada_catch_assert, b, fp);
12783 }
12784
12785 static struct breakpoint_ops catch_assert_breakpoint_ops;
12786
12787 /* Return a newly allocated copy of the first space-separated token
12788 in ARGSP, and then adjust ARGSP to point immediately after that
12789 token.
12790
12791 Return NULL if ARGPS does not contain any more tokens. */
12792
12793 static char *
12794 ada_get_next_arg (const char **argsp)
12795 {
12796 const char *args = *argsp;
12797 const char *end;
12798 char *result;
12799
12800 args = skip_spaces (args);
12801 if (args[0] == '\0')
12802 return NULL; /* No more arguments. */
12803
12804 /* Find the end of the current argument. */
12805
12806 end = skip_to_space (args);
12807
12808 /* Adjust ARGSP to point to the start of the next argument. */
12809
12810 *argsp = end;
12811
12812 /* Make a copy of the current argument and return it. */
12813
12814 result = (char *) xmalloc (end - args + 1);
12815 strncpy (result, args, end - args);
12816 result[end - args] = '\0';
12817
12818 return result;
12819 }
12820
12821 /* Split the arguments specified in a "catch exception" command.
12822 Set EX to the appropriate catchpoint type.
12823 Set EXCEP_STRING to the name of the specific exception if
12824 specified by the user.
12825 If a condition is found at the end of the arguments, the condition
12826 expression is stored in COND_STRING (memory must be deallocated
12827 after use). Otherwise COND_STRING is set to NULL. */
12828
12829 static void
12830 catch_ada_exception_command_split (const char *args,
12831 enum ada_exception_catchpoint_kind *ex,
12832 char **excep_string,
12833 char **cond_string)
12834 {
12835 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12836 char *exception_name;
12837 char *cond = NULL;
12838
12839 exception_name = ada_get_next_arg (&args);
12840 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12841 {
12842 /* This is not an exception name; this is the start of a condition
12843 expression for a catchpoint on all exceptions. So, "un-get"
12844 this token, and set exception_name to NULL. */
12845 xfree (exception_name);
12846 exception_name = NULL;
12847 args -= 2;
12848 }
12849 make_cleanup (xfree, exception_name);
12850
12851 /* Check to see if we have a condition. */
12852
12853 args = skip_spaces (args);
12854 if (startswith (args, "if")
12855 && (isspace (args[2]) || args[2] == '\0'))
12856 {
12857 args += 2;
12858 args = skip_spaces (args);
12859
12860 if (args[0] == '\0')
12861 error (_("Condition missing after `if' keyword"));
12862 cond = xstrdup (args);
12863 make_cleanup (xfree, cond);
12864
12865 args += strlen (args);
12866 }
12867
12868 /* Check that we do not have any more arguments. Anything else
12869 is unexpected. */
12870
12871 if (args[0] != '\0')
12872 error (_("Junk at end of expression"));
12873
12874 discard_cleanups (old_chain);
12875
12876 if (exception_name == NULL)
12877 {
12878 /* Catch all exceptions. */
12879 *ex = ada_catch_exception;
12880 *excep_string = NULL;
12881 }
12882 else if (strcmp (exception_name, "unhandled") == 0)
12883 {
12884 /* Catch unhandled exceptions. */
12885 *ex = ada_catch_exception_unhandled;
12886 *excep_string = NULL;
12887 }
12888 else
12889 {
12890 /* Catch a specific exception. */
12891 *ex = ada_catch_exception;
12892 *excep_string = exception_name;
12893 }
12894 *cond_string = cond;
12895 }
12896
12897 /* Return the name of the symbol on which we should break in order to
12898 implement a catchpoint of the EX kind. */
12899
12900 static const char *
12901 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12902 {
12903 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12904
12905 gdb_assert (data->exception_info != NULL);
12906
12907 switch (ex)
12908 {
12909 case ada_catch_exception:
12910 return (data->exception_info->catch_exception_sym);
12911 break;
12912 case ada_catch_exception_unhandled:
12913 return (data->exception_info->catch_exception_unhandled_sym);
12914 break;
12915 case ada_catch_assert:
12916 return (data->exception_info->catch_assert_sym);
12917 break;
12918 default:
12919 internal_error (__FILE__, __LINE__,
12920 _("unexpected catchpoint kind (%d)"), ex);
12921 }
12922 }
12923
12924 /* Return the breakpoint ops "virtual table" used for catchpoints
12925 of the EX kind. */
12926
12927 static const struct breakpoint_ops *
12928 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12929 {
12930 switch (ex)
12931 {
12932 case ada_catch_exception:
12933 return (&catch_exception_breakpoint_ops);
12934 break;
12935 case ada_catch_exception_unhandled:
12936 return (&catch_exception_unhandled_breakpoint_ops);
12937 break;
12938 case ada_catch_assert:
12939 return (&catch_assert_breakpoint_ops);
12940 break;
12941 default:
12942 internal_error (__FILE__, __LINE__,
12943 _("unexpected catchpoint kind (%d)"), ex);
12944 }
12945 }
12946
12947 /* Return the condition that will be used to match the current exception
12948 being raised with the exception that the user wants to catch. This
12949 assumes that this condition is used when the inferior just triggered
12950 an exception catchpoint.
12951
12952 The string returned is a newly allocated string that needs to be
12953 deallocated later. */
12954
12955 static char *
12956 ada_exception_catchpoint_cond_string (const char *excep_string)
12957 {
12958 int i;
12959
12960 /* The standard exceptions are a special case. They are defined in
12961 runtime units that have been compiled without debugging info; if
12962 EXCEP_STRING is the not-fully-qualified name of a standard
12963 exception (e.g. "constraint_error") then, during the evaluation
12964 of the condition expression, the symbol lookup on this name would
12965 *not* return this standard exception. The catchpoint condition
12966 may then be set only on user-defined exceptions which have the
12967 same not-fully-qualified name (e.g. my_package.constraint_error).
12968
12969 To avoid this unexcepted behavior, these standard exceptions are
12970 systematically prefixed by "standard". This means that "catch
12971 exception constraint_error" is rewritten into "catch exception
12972 standard.constraint_error".
12973
12974 If an exception named contraint_error is defined in another package of
12975 the inferior program, then the only way to specify this exception as a
12976 breakpoint condition is to use its fully-qualified named:
12977 e.g. my_package.constraint_error. */
12978
12979 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12980 {
12981 if (strcmp (standard_exc [i], excep_string) == 0)
12982 {
12983 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12984 excep_string);
12985 }
12986 }
12987 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12988 }
12989
12990 /* Return the symtab_and_line that should be used to insert an exception
12991 catchpoint of the TYPE kind.
12992
12993 EXCEP_STRING should contain the name of a specific exception that
12994 the catchpoint should catch, or NULL otherwise.
12995
12996 ADDR_STRING returns the name of the function where the real
12997 breakpoint that implements the catchpoints is set, depending on the
12998 type of catchpoint we need to create. */
12999
13000 static struct symtab_and_line
13001 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13002 const char **addr_string, const struct breakpoint_ops **ops)
13003 {
13004 const char *sym_name;
13005 struct symbol *sym;
13006
13007 /* First, find out which exception support info to use. */
13008 ada_exception_support_info_sniffer ();
13009
13010 /* Then lookup the function on which we will break in order to catch
13011 the Ada exceptions requested by the user. */
13012 sym_name = ada_exception_sym_name (ex);
13013 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13014
13015 /* We can assume that SYM is not NULL at this stage. If the symbol
13016 did not exist, ada_exception_support_info_sniffer would have
13017 raised an exception.
13018
13019 Also, ada_exception_support_info_sniffer should have already
13020 verified that SYM is a function symbol. */
13021 gdb_assert (sym != NULL);
13022 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13023
13024 /* Set ADDR_STRING. */
13025 *addr_string = xstrdup (sym_name);
13026
13027 /* Set OPS. */
13028 *ops = ada_exception_breakpoint_ops (ex);
13029
13030 return find_function_start_sal (sym, 1);
13031 }
13032
13033 /* Create an Ada exception catchpoint.
13034
13035 EX_KIND is the kind of exception catchpoint to be created.
13036
13037 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13038 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13039 of the exception to which this catchpoint applies. When not NULL,
13040 the string must be allocated on the heap, and its deallocation
13041 is no longer the responsibility of the caller.
13042
13043 COND_STRING, if not NULL, is the catchpoint condition. This string
13044 must be allocated on the heap, and its deallocation is no longer
13045 the responsibility of the caller.
13046
13047 TEMPFLAG, if nonzero, means that the underlying breakpoint
13048 should be temporary.
13049
13050 FROM_TTY is the usual argument passed to all commands implementations. */
13051
13052 void
13053 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13054 enum ada_exception_catchpoint_kind ex_kind,
13055 char *excep_string,
13056 char *cond_string,
13057 int tempflag,
13058 int disabled,
13059 int from_tty)
13060 {
13061 const char *addr_string = NULL;
13062 const struct breakpoint_ops *ops = NULL;
13063 struct symtab_and_line sal
13064 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13065
13066 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13067 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13068 ops, tempflag, disabled, from_tty);
13069 c->excep_string = excep_string;
13070 create_excep_cond_exprs (c.get ());
13071 if (cond_string != NULL)
13072 set_breakpoint_condition (c.get (), cond_string, from_tty);
13073 install_breakpoint (0, std::move (c), 1);
13074 }
13075
13076 /* Implement the "catch exception" command. */
13077
13078 static void
13079 catch_ada_exception_command (const char *arg_entry, int from_tty,
13080 struct cmd_list_element *command)
13081 {
13082 const char *arg = arg_entry;
13083 struct gdbarch *gdbarch = get_current_arch ();
13084 int tempflag;
13085 enum ada_exception_catchpoint_kind ex_kind;
13086 char *excep_string = NULL;
13087 char *cond_string = NULL;
13088
13089 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13090
13091 if (!arg)
13092 arg = "";
13093 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13094 &cond_string);
13095 create_ada_exception_catchpoint (gdbarch, ex_kind,
13096 excep_string, cond_string,
13097 tempflag, 1 /* enabled */,
13098 from_tty);
13099 }
13100
13101 /* Split the arguments specified in a "catch assert" command.
13102
13103 ARGS contains the command's arguments (or the empty string if
13104 no arguments were passed).
13105
13106 If ARGS contains a condition, set COND_STRING to that condition
13107 (the memory needs to be deallocated after use). */
13108
13109 static void
13110 catch_ada_assert_command_split (const char *args, char **cond_string)
13111 {
13112 args = skip_spaces (args);
13113
13114 /* Check whether a condition was provided. */
13115 if (startswith (args, "if")
13116 && (isspace (args[2]) || args[2] == '\0'))
13117 {
13118 args += 2;
13119 args = skip_spaces (args);
13120 if (args[0] == '\0')
13121 error (_("condition missing after `if' keyword"));
13122 *cond_string = xstrdup (args);
13123 }
13124
13125 /* Otherwise, there should be no other argument at the end of
13126 the command. */
13127 else if (args[0] != '\0')
13128 error (_("Junk at end of arguments."));
13129 }
13130
13131 /* Implement the "catch assert" command. */
13132
13133 static void
13134 catch_assert_command (const char *arg_entry, int from_tty,
13135 struct cmd_list_element *command)
13136 {
13137 const char *arg = arg_entry;
13138 struct gdbarch *gdbarch = get_current_arch ();
13139 int tempflag;
13140 char *cond_string = NULL;
13141
13142 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13143
13144 if (!arg)
13145 arg = "";
13146 catch_ada_assert_command_split (arg, &cond_string);
13147 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13148 NULL, cond_string,
13149 tempflag, 1 /* enabled */,
13150 from_tty);
13151 }
13152
13153 /* Return non-zero if the symbol SYM is an Ada exception object. */
13154
13155 static int
13156 ada_is_exception_sym (struct symbol *sym)
13157 {
13158 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13159
13160 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13161 && SYMBOL_CLASS (sym) != LOC_BLOCK
13162 && SYMBOL_CLASS (sym) != LOC_CONST
13163 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13164 && type_name != NULL && strcmp (type_name, "exception") == 0);
13165 }
13166
13167 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13168 Ada exception object. This matches all exceptions except the ones
13169 defined by the Ada language. */
13170
13171 static int
13172 ada_is_non_standard_exception_sym (struct symbol *sym)
13173 {
13174 int i;
13175
13176 if (!ada_is_exception_sym (sym))
13177 return 0;
13178
13179 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13180 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13181 return 0; /* A standard exception. */
13182
13183 /* Numeric_Error is also a standard exception, so exclude it.
13184 See the STANDARD_EXC description for more details as to why
13185 this exception is not listed in that array. */
13186 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13187 return 0;
13188
13189 return 1;
13190 }
13191
13192 /* A helper function for std::sort, comparing two struct ada_exc_info
13193 objects.
13194
13195 The comparison is determined first by exception name, and then
13196 by exception address. */
13197
13198 bool
13199 ada_exc_info::operator< (const ada_exc_info &other) const
13200 {
13201 int result;
13202
13203 result = strcmp (name, other.name);
13204 if (result < 0)
13205 return true;
13206 if (result == 0 && addr < other.addr)
13207 return true;
13208 return false;
13209 }
13210
13211 bool
13212 ada_exc_info::operator== (const ada_exc_info &other) const
13213 {
13214 return addr == other.addr && strcmp (name, other.name) == 0;
13215 }
13216
13217 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13218 routine, but keeping the first SKIP elements untouched.
13219
13220 All duplicates are also removed. */
13221
13222 static void
13223 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13224 int skip)
13225 {
13226 std::sort (exceptions->begin () + skip, exceptions->end ());
13227 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13228 exceptions->end ());
13229 }
13230
13231 /* Add all exceptions defined by the Ada standard whose name match
13232 a regular expression.
13233
13234 If PREG is not NULL, then this regexp_t object is used to
13235 perform the symbol name matching. Otherwise, no name-based
13236 filtering is performed.
13237
13238 EXCEPTIONS is a vector of exceptions to which matching exceptions
13239 gets pushed. */
13240
13241 static void
13242 ada_add_standard_exceptions (compiled_regex *preg,
13243 std::vector<ada_exc_info> *exceptions)
13244 {
13245 int i;
13246
13247 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13248 {
13249 if (preg == NULL
13250 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13251 {
13252 struct bound_minimal_symbol msymbol
13253 = ada_lookup_simple_minsym (standard_exc[i]);
13254
13255 if (msymbol.minsym != NULL)
13256 {
13257 struct ada_exc_info info
13258 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13259
13260 exceptions->push_back (info);
13261 }
13262 }
13263 }
13264 }
13265
13266 /* Add all Ada exceptions defined locally and accessible from the given
13267 FRAME.
13268
13269 If PREG is not NULL, then this regexp_t object is used to
13270 perform the symbol name matching. Otherwise, no name-based
13271 filtering is performed.
13272
13273 EXCEPTIONS is a vector of exceptions to which matching exceptions
13274 gets pushed. */
13275
13276 static void
13277 ada_add_exceptions_from_frame (compiled_regex *preg,
13278 struct frame_info *frame,
13279 std::vector<ada_exc_info> *exceptions)
13280 {
13281 const struct block *block = get_frame_block (frame, 0);
13282
13283 while (block != 0)
13284 {
13285 struct block_iterator iter;
13286 struct symbol *sym;
13287
13288 ALL_BLOCK_SYMBOLS (block, iter, sym)
13289 {
13290 switch (SYMBOL_CLASS (sym))
13291 {
13292 case LOC_TYPEDEF:
13293 case LOC_BLOCK:
13294 case LOC_CONST:
13295 break;
13296 default:
13297 if (ada_is_exception_sym (sym))
13298 {
13299 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13300 SYMBOL_VALUE_ADDRESS (sym)};
13301
13302 exceptions->push_back (info);
13303 }
13304 }
13305 }
13306 if (BLOCK_FUNCTION (block) != NULL)
13307 break;
13308 block = BLOCK_SUPERBLOCK (block);
13309 }
13310 }
13311
13312 /* Return true if NAME matches PREG or if PREG is NULL. */
13313
13314 static bool
13315 name_matches_regex (const char *name, compiled_regex *preg)
13316 {
13317 return (preg == NULL
13318 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13319 }
13320
13321 /* Add all exceptions defined globally whose name name match
13322 a regular expression, excluding standard exceptions.
13323
13324 The reason we exclude standard exceptions is that they need
13325 to be handled separately: Standard exceptions are defined inside
13326 a runtime unit which is normally not compiled with debugging info,
13327 and thus usually do not show up in our symbol search. However,
13328 if the unit was in fact built with debugging info, we need to
13329 exclude them because they would duplicate the entry we found
13330 during the special loop that specifically searches for those
13331 standard exceptions.
13332
13333 If PREG is not NULL, then this regexp_t object is used to
13334 perform the symbol name matching. Otherwise, no name-based
13335 filtering is performed.
13336
13337 EXCEPTIONS is a vector of exceptions to which matching exceptions
13338 gets pushed. */
13339
13340 static void
13341 ada_add_global_exceptions (compiled_regex *preg,
13342 std::vector<ada_exc_info> *exceptions)
13343 {
13344 struct objfile *objfile;
13345 struct compunit_symtab *s;
13346
13347 /* In Ada, the symbol "search name" is a linkage name, whereas the
13348 regular expression used to do the matching refers to the natural
13349 name. So match against the decoded name. */
13350 expand_symtabs_matching (NULL,
13351 lookup_name_info::match_any (),
13352 [&] (const char *search_name)
13353 {
13354 const char *decoded = ada_decode (search_name);
13355 return name_matches_regex (decoded, preg);
13356 },
13357 NULL,
13358 VARIABLES_DOMAIN);
13359
13360 ALL_COMPUNITS (objfile, s)
13361 {
13362 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13363 int i;
13364
13365 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13366 {
13367 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13368 struct block_iterator iter;
13369 struct symbol *sym;
13370
13371 ALL_BLOCK_SYMBOLS (b, iter, sym)
13372 if (ada_is_non_standard_exception_sym (sym)
13373 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13374 {
13375 struct ada_exc_info info
13376 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13377
13378 exceptions->push_back (info);
13379 }
13380 }
13381 }
13382 }
13383
13384 /* Implements ada_exceptions_list with the regular expression passed
13385 as a regex_t, rather than a string.
13386
13387 If not NULL, PREG is used to filter out exceptions whose names
13388 do not match. Otherwise, all exceptions are listed. */
13389
13390 static std::vector<ada_exc_info>
13391 ada_exceptions_list_1 (compiled_regex *preg)
13392 {
13393 std::vector<ada_exc_info> result;
13394 int prev_len;
13395
13396 /* First, list the known standard exceptions. These exceptions
13397 need to be handled separately, as they are usually defined in
13398 runtime units that have been compiled without debugging info. */
13399
13400 ada_add_standard_exceptions (preg, &result);
13401
13402 /* Next, find all exceptions whose scope is local and accessible
13403 from the currently selected frame. */
13404
13405 if (has_stack_frames ())
13406 {
13407 prev_len = result.size ();
13408 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13409 &result);
13410 if (result.size () > prev_len)
13411 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13412 }
13413
13414 /* Add all exceptions whose scope is global. */
13415
13416 prev_len = result.size ();
13417 ada_add_global_exceptions (preg, &result);
13418 if (result.size () > prev_len)
13419 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13420
13421 return result;
13422 }
13423
13424 /* Return a vector of ada_exc_info.
13425
13426 If REGEXP is NULL, all exceptions are included in the result.
13427 Otherwise, it should contain a valid regular expression,
13428 and only the exceptions whose names match that regular expression
13429 are included in the result.
13430
13431 The exceptions are sorted in the following order:
13432 - Standard exceptions (defined by the Ada language), in
13433 alphabetical order;
13434 - Exceptions only visible from the current frame, in
13435 alphabetical order;
13436 - Exceptions whose scope is global, in alphabetical order. */
13437
13438 std::vector<ada_exc_info>
13439 ada_exceptions_list (const char *regexp)
13440 {
13441 if (regexp == NULL)
13442 return ada_exceptions_list_1 (NULL);
13443
13444 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13445 return ada_exceptions_list_1 (&reg);
13446 }
13447
13448 /* Implement the "info exceptions" command. */
13449
13450 static void
13451 info_exceptions_command (const char *regexp, int from_tty)
13452 {
13453 struct gdbarch *gdbarch = get_current_arch ();
13454
13455 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13456
13457 if (regexp != NULL)
13458 printf_filtered
13459 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13460 else
13461 printf_filtered (_("All defined Ada exceptions:\n"));
13462
13463 for (const ada_exc_info &info : exceptions)
13464 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13465 }
13466
13467 /* Operators */
13468 /* Information about operators given special treatment in functions
13469 below. */
13470 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13471
13472 #define ADA_OPERATORS \
13473 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13474 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13475 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13476 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13477 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13478 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13479 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13480 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13481 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13482 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13483 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13484 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13485 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13486 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13487 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13488 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13489 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13490 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13491 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13492
13493 static void
13494 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13495 int *argsp)
13496 {
13497 switch (exp->elts[pc - 1].opcode)
13498 {
13499 default:
13500 operator_length_standard (exp, pc, oplenp, argsp);
13501 break;
13502
13503 #define OP_DEFN(op, len, args, binop) \
13504 case op: *oplenp = len; *argsp = args; break;
13505 ADA_OPERATORS;
13506 #undef OP_DEFN
13507
13508 case OP_AGGREGATE:
13509 *oplenp = 3;
13510 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13511 break;
13512
13513 case OP_CHOICES:
13514 *oplenp = 3;
13515 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13516 break;
13517 }
13518 }
13519
13520 /* Implementation of the exp_descriptor method operator_check. */
13521
13522 static int
13523 ada_operator_check (struct expression *exp, int pos,
13524 int (*objfile_func) (struct objfile *objfile, void *data),
13525 void *data)
13526 {
13527 const union exp_element *const elts = exp->elts;
13528 struct type *type = NULL;
13529
13530 switch (elts[pos].opcode)
13531 {
13532 case UNOP_IN_RANGE:
13533 case UNOP_QUAL:
13534 type = elts[pos + 1].type;
13535 break;
13536
13537 default:
13538 return operator_check_standard (exp, pos, objfile_func, data);
13539 }
13540
13541 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13542
13543 if (type && TYPE_OBJFILE (type)
13544 && (*objfile_func) (TYPE_OBJFILE (type), data))
13545 return 1;
13546
13547 return 0;
13548 }
13549
13550 static const char *
13551 ada_op_name (enum exp_opcode opcode)
13552 {
13553 switch (opcode)
13554 {
13555 default:
13556 return op_name_standard (opcode);
13557
13558 #define OP_DEFN(op, len, args, binop) case op: return #op;
13559 ADA_OPERATORS;
13560 #undef OP_DEFN
13561
13562 case OP_AGGREGATE:
13563 return "OP_AGGREGATE";
13564 case OP_CHOICES:
13565 return "OP_CHOICES";
13566 case OP_NAME:
13567 return "OP_NAME";
13568 }
13569 }
13570
13571 /* As for operator_length, but assumes PC is pointing at the first
13572 element of the operator, and gives meaningful results only for the
13573 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13574
13575 static void
13576 ada_forward_operator_length (struct expression *exp, int pc,
13577 int *oplenp, int *argsp)
13578 {
13579 switch (exp->elts[pc].opcode)
13580 {
13581 default:
13582 *oplenp = *argsp = 0;
13583 break;
13584
13585 #define OP_DEFN(op, len, args, binop) \
13586 case op: *oplenp = len; *argsp = args; break;
13587 ADA_OPERATORS;
13588 #undef OP_DEFN
13589
13590 case OP_AGGREGATE:
13591 *oplenp = 3;
13592 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13593 break;
13594
13595 case OP_CHOICES:
13596 *oplenp = 3;
13597 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13598 break;
13599
13600 case OP_STRING:
13601 case OP_NAME:
13602 {
13603 int len = longest_to_int (exp->elts[pc + 1].longconst);
13604
13605 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13606 *argsp = 0;
13607 break;
13608 }
13609 }
13610 }
13611
13612 static int
13613 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13614 {
13615 enum exp_opcode op = exp->elts[elt].opcode;
13616 int oplen, nargs;
13617 int pc = elt;
13618 int i;
13619
13620 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13621
13622 switch (op)
13623 {
13624 /* Ada attributes ('Foo). */
13625 case OP_ATR_FIRST:
13626 case OP_ATR_LAST:
13627 case OP_ATR_LENGTH:
13628 case OP_ATR_IMAGE:
13629 case OP_ATR_MAX:
13630 case OP_ATR_MIN:
13631 case OP_ATR_MODULUS:
13632 case OP_ATR_POS:
13633 case OP_ATR_SIZE:
13634 case OP_ATR_TAG:
13635 case OP_ATR_VAL:
13636 break;
13637
13638 case UNOP_IN_RANGE:
13639 case UNOP_QUAL:
13640 /* XXX: gdb_sprint_host_address, type_sprint */
13641 fprintf_filtered (stream, _("Type @"));
13642 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13643 fprintf_filtered (stream, " (");
13644 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13645 fprintf_filtered (stream, ")");
13646 break;
13647 case BINOP_IN_BOUNDS:
13648 fprintf_filtered (stream, " (%d)",
13649 longest_to_int (exp->elts[pc + 2].longconst));
13650 break;
13651 case TERNOP_IN_RANGE:
13652 break;
13653
13654 case OP_AGGREGATE:
13655 case OP_OTHERS:
13656 case OP_DISCRETE_RANGE:
13657 case OP_POSITIONAL:
13658 case OP_CHOICES:
13659 break;
13660
13661 case OP_NAME:
13662 case OP_STRING:
13663 {
13664 char *name = &exp->elts[elt + 2].string;
13665 int len = longest_to_int (exp->elts[elt + 1].longconst);
13666
13667 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13668 break;
13669 }
13670
13671 default:
13672 return dump_subexp_body_standard (exp, stream, elt);
13673 }
13674
13675 elt += oplen;
13676 for (i = 0; i < nargs; i += 1)
13677 elt = dump_subexp (exp, stream, elt);
13678
13679 return elt;
13680 }
13681
13682 /* The Ada extension of print_subexp (q.v.). */
13683
13684 static void
13685 ada_print_subexp (struct expression *exp, int *pos,
13686 struct ui_file *stream, enum precedence prec)
13687 {
13688 int oplen, nargs, i;
13689 int pc = *pos;
13690 enum exp_opcode op = exp->elts[pc].opcode;
13691
13692 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13693
13694 *pos += oplen;
13695 switch (op)
13696 {
13697 default:
13698 *pos -= oplen;
13699 print_subexp_standard (exp, pos, stream, prec);
13700 return;
13701
13702 case OP_VAR_VALUE:
13703 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13704 return;
13705
13706 case BINOP_IN_BOUNDS:
13707 /* XXX: sprint_subexp */
13708 print_subexp (exp, pos, stream, PREC_SUFFIX);
13709 fputs_filtered (" in ", stream);
13710 print_subexp (exp, pos, stream, PREC_SUFFIX);
13711 fputs_filtered ("'range", stream);
13712 if (exp->elts[pc + 1].longconst > 1)
13713 fprintf_filtered (stream, "(%ld)",
13714 (long) exp->elts[pc + 1].longconst);
13715 return;
13716
13717 case TERNOP_IN_RANGE:
13718 if (prec >= PREC_EQUAL)
13719 fputs_filtered ("(", stream);
13720 /* XXX: sprint_subexp */
13721 print_subexp (exp, pos, stream, PREC_SUFFIX);
13722 fputs_filtered (" in ", stream);
13723 print_subexp (exp, pos, stream, PREC_EQUAL);
13724 fputs_filtered (" .. ", stream);
13725 print_subexp (exp, pos, stream, PREC_EQUAL);
13726 if (prec >= PREC_EQUAL)
13727 fputs_filtered (")", stream);
13728 return;
13729
13730 case OP_ATR_FIRST:
13731 case OP_ATR_LAST:
13732 case OP_ATR_LENGTH:
13733 case OP_ATR_IMAGE:
13734 case OP_ATR_MAX:
13735 case OP_ATR_MIN:
13736 case OP_ATR_MODULUS:
13737 case OP_ATR_POS:
13738 case OP_ATR_SIZE:
13739 case OP_ATR_TAG:
13740 case OP_ATR_VAL:
13741 if (exp->elts[*pos].opcode == OP_TYPE)
13742 {
13743 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13744 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13745 &type_print_raw_options);
13746 *pos += 3;
13747 }
13748 else
13749 print_subexp (exp, pos, stream, PREC_SUFFIX);
13750 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13751 if (nargs > 1)
13752 {
13753 int tem;
13754
13755 for (tem = 1; tem < nargs; tem += 1)
13756 {
13757 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13758 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13759 }
13760 fputs_filtered (")", stream);
13761 }
13762 return;
13763
13764 case UNOP_QUAL:
13765 type_print (exp->elts[pc + 1].type, "", stream, 0);
13766 fputs_filtered ("'(", stream);
13767 print_subexp (exp, pos, stream, PREC_PREFIX);
13768 fputs_filtered (")", stream);
13769 return;
13770
13771 case UNOP_IN_RANGE:
13772 /* XXX: sprint_subexp */
13773 print_subexp (exp, pos, stream, PREC_SUFFIX);
13774 fputs_filtered (" in ", stream);
13775 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13776 &type_print_raw_options);
13777 return;
13778
13779 case OP_DISCRETE_RANGE:
13780 print_subexp (exp, pos, stream, PREC_SUFFIX);
13781 fputs_filtered ("..", stream);
13782 print_subexp (exp, pos, stream, PREC_SUFFIX);
13783 return;
13784
13785 case OP_OTHERS:
13786 fputs_filtered ("others => ", stream);
13787 print_subexp (exp, pos, stream, PREC_SUFFIX);
13788 return;
13789
13790 case OP_CHOICES:
13791 for (i = 0; i < nargs-1; i += 1)
13792 {
13793 if (i > 0)
13794 fputs_filtered ("|", stream);
13795 print_subexp (exp, pos, stream, PREC_SUFFIX);
13796 }
13797 fputs_filtered (" => ", stream);
13798 print_subexp (exp, pos, stream, PREC_SUFFIX);
13799 return;
13800
13801 case OP_POSITIONAL:
13802 print_subexp (exp, pos, stream, PREC_SUFFIX);
13803 return;
13804
13805 case OP_AGGREGATE:
13806 fputs_filtered ("(", stream);
13807 for (i = 0; i < nargs; i += 1)
13808 {
13809 if (i > 0)
13810 fputs_filtered (", ", stream);
13811 print_subexp (exp, pos, stream, PREC_SUFFIX);
13812 }
13813 fputs_filtered (")", stream);
13814 return;
13815 }
13816 }
13817
13818 /* Table mapping opcodes into strings for printing operators
13819 and precedences of the operators. */
13820
13821 static const struct op_print ada_op_print_tab[] = {
13822 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13823 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13824 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13825 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13826 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13827 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13828 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13829 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13830 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13831 {">=", BINOP_GEQ, PREC_ORDER, 0},
13832 {">", BINOP_GTR, PREC_ORDER, 0},
13833 {"<", BINOP_LESS, PREC_ORDER, 0},
13834 {">>", BINOP_RSH, PREC_SHIFT, 0},
13835 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13836 {"+", BINOP_ADD, PREC_ADD, 0},
13837 {"-", BINOP_SUB, PREC_ADD, 0},
13838 {"&", BINOP_CONCAT, PREC_ADD, 0},
13839 {"*", BINOP_MUL, PREC_MUL, 0},
13840 {"/", BINOP_DIV, PREC_MUL, 0},
13841 {"rem", BINOP_REM, PREC_MUL, 0},
13842 {"mod", BINOP_MOD, PREC_MUL, 0},
13843 {"**", BINOP_EXP, PREC_REPEAT, 0},
13844 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13845 {"-", UNOP_NEG, PREC_PREFIX, 0},
13846 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13847 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13848 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13849 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13850 {".all", UNOP_IND, PREC_SUFFIX, 1},
13851 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13852 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13853 {NULL, OP_NULL, PREC_SUFFIX, 0}
13854 };
13855 \f
13856 enum ada_primitive_types {
13857 ada_primitive_type_int,
13858 ada_primitive_type_long,
13859 ada_primitive_type_short,
13860 ada_primitive_type_char,
13861 ada_primitive_type_float,
13862 ada_primitive_type_double,
13863 ada_primitive_type_void,
13864 ada_primitive_type_long_long,
13865 ada_primitive_type_long_double,
13866 ada_primitive_type_natural,
13867 ada_primitive_type_positive,
13868 ada_primitive_type_system_address,
13869 nr_ada_primitive_types
13870 };
13871
13872 static void
13873 ada_language_arch_info (struct gdbarch *gdbarch,
13874 struct language_arch_info *lai)
13875 {
13876 const struct builtin_type *builtin = builtin_type (gdbarch);
13877
13878 lai->primitive_type_vector
13879 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13880 struct type *);
13881
13882 lai->primitive_type_vector [ada_primitive_type_int]
13883 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13884 0, "integer");
13885 lai->primitive_type_vector [ada_primitive_type_long]
13886 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13887 0, "long_integer");
13888 lai->primitive_type_vector [ada_primitive_type_short]
13889 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13890 0, "short_integer");
13891 lai->string_char_type
13892 = lai->primitive_type_vector [ada_primitive_type_char]
13893 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13894 lai->primitive_type_vector [ada_primitive_type_float]
13895 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13896 "float", gdbarch_float_format (gdbarch));
13897 lai->primitive_type_vector [ada_primitive_type_double]
13898 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13899 "long_float", gdbarch_double_format (gdbarch));
13900 lai->primitive_type_vector [ada_primitive_type_long_long]
13901 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13902 0, "long_long_integer");
13903 lai->primitive_type_vector [ada_primitive_type_long_double]
13904 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13905 "long_long_float", gdbarch_long_double_format (gdbarch));
13906 lai->primitive_type_vector [ada_primitive_type_natural]
13907 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13908 0, "natural");
13909 lai->primitive_type_vector [ada_primitive_type_positive]
13910 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13911 0, "positive");
13912 lai->primitive_type_vector [ada_primitive_type_void]
13913 = builtin->builtin_void;
13914
13915 lai->primitive_type_vector [ada_primitive_type_system_address]
13916 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13917 "void"));
13918 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13919 = "system__address";
13920
13921 lai->bool_type_symbol = NULL;
13922 lai->bool_type_default = builtin->builtin_bool;
13923 }
13924 \f
13925 /* Language vector */
13926
13927 /* Not really used, but needed in the ada_language_defn. */
13928
13929 static void
13930 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13931 {
13932 ada_emit_char (c, type, stream, quoter, 1);
13933 }
13934
13935 static int
13936 parse (struct parser_state *ps)
13937 {
13938 warnings_issued = 0;
13939 return ada_parse (ps);
13940 }
13941
13942 static const struct exp_descriptor ada_exp_descriptor = {
13943 ada_print_subexp,
13944 ada_operator_length,
13945 ada_operator_check,
13946 ada_op_name,
13947 ada_dump_subexp_body,
13948 ada_evaluate_subexp
13949 };
13950
13951 /* symbol_name_matcher_ftype adapter for wild_match. */
13952
13953 static bool
13954 do_wild_match (const char *symbol_search_name,
13955 const lookup_name_info &lookup_name,
13956 completion_match_result *comp_match_res)
13957 {
13958 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13959 }
13960
13961 /* symbol_name_matcher_ftype adapter for full_match. */
13962
13963 static bool
13964 do_full_match (const char *symbol_search_name,
13965 const lookup_name_info &lookup_name,
13966 completion_match_result *comp_match_res)
13967 {
13968 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13969 }
13970
13971 /* Build the Ada lookup name for LOOKUP_NAME. */
13972
13973 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13974 {
13975 const std::string &user_name = lookup_name.name ();
13976
13977 if (user_name[0] == '<')
13978 {
13979 if (user_name.back () == '>')
13980 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13981 else
13982 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13983 m_encoded_p = true;
13984 m_verbatim_p = true;
13985 m_wild_match_p = false;
13986 m_standard_p = false;
13987 }
13988 else
13989 {
13990 m_verbatim_p = false;
13991
13992 m_encoded_p = user_name.find ("__") != std::string::npos;
13993
13994 if (!m_encoded_p)
13995 {
13996 const char *folded = ada_fold_name (user_name.c_str ());
13997 const char *encoded = ada_encode_1 (folded, false);
13998 if (encoded != NULL)
13999 m_encoded_name = encoded;
14000 else
14001 m_encoded_name = user_name;
14002 }
14003 else
14004 m_encoded_name = user_name;
14005
14006 /* Handle the 'package Standard' special case. See description
14007 of m_standard_p. */
14008 if (startswith (m_encoded_name.c_str (), "standard__"))
14009 {
14010 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14011 m_standard_p = true;
14012 }
14013 else
14014 m_standard_p = false;
14015
14016 /* If the name contains a ".", then the user is entering a fully
14017 qualified entity name, and the match must not be done in wild
14018 mode. Similarly, if the user wants to complete what looks
14019 like an encoded name, the match must not be done in wild
14020 mode. Also, in the standard__ special case always do
14021 non-wild matching. */
14022 m_wild_match_p
14023 = (lookup_name.match_type () != symbol_name_match_type::FULL
14024 && !m_encoded_p
14025 && !m_standard_p
14026 && user_name.find ('.') == std::string::npos);
14027 }
14028 }
14029
14030 /* symbol_name_matcher_ftype method for Ada. This only handles
14031 completion mode. */
14032
14033 static bool
14034 ada_symbol_name_matches (const char *symbol_search_name,
14035 const lookup_name_info &lookup_name,
14036 completion_match_result *comp_match_res)
14037 {
14038 return lookup_name.ada ().matches (symbol_search_name,
14039 lookup_name.match_type (),
14040 comp_match_res);
14041 }
14042
14043 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14044 Ada. */
14045
14046 static symbol_name_matcher_ftype *
14047 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14048 {
14049 if (lookup_name.completion_mode ())
14050 return ada_symbol_name_matches;
14051 else
14052 {
14053 if (lookup_name.ada ().wild_match_p ())
14054 return do_wild_match;
14055 else
14056 return do_full_match;
14057 }
14058 }
14059
14060 /* Implement the "la_read_var_value" language_defn method for Ada. */
14061
14062 static struct value *
14063 ada_read_var_value (struct symbol *var, const struct block *var_block,
14064 struct frame_info *frame)
14065 {
14066 const struct block *frame_block = NULL;
14067 struct symbol *renaming_sym = NULL;
14068
14069 /* The only case where default_read_var_value is not sufficient
14070 is when VAR is a renaming... */
14071 if (frame)
14072 frame_block = get_frame_block (frame, NULL);
14073 if (frame_block)
14074 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14075 if (renaming_sym != NULL)
14076 return ada_read_renaming_var_value (renaming_sym, frame_block);
14077
14078 /* This is a typical case where we expect the default_read_var_value
14079 function to work. */
14080 return default_read_var_value (var, var_block, frame);
14081 }
14082
14083 static const char *ada_extensions[] =
14084 {
14085 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14086 };
14087
14088 extern const struct language_defn ada_language_defn = {
14089 "ada", /* Language name */
14090 "Ada",
14091 language_ada,
14092 range_check_off,
14093 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14094 that's not quite what this means. */
14095 array_row_major,
14096 macro_expansion_no,
14097 ada_extensions,
14098 &ada_exp_descriptor,
14099 parse,
14100 ada_yyerror,
14101 resolve,
14102 ada_printchar, /* Print a character constant */
14103 ada_printstr, /* Function to print string constant */
14104 emit_char, /* Function to print single char (not used) */
14105 ada_print_type, /* Print a type using appropriate syntax */
14106 ada_print_typedef, /* Print a typedef using appropriate syntax */
14107 ada_val_print, /* Print a value using appropriate syntax */
14108 ada_value_print, /* Print a top-level value */
14109 ada_read_var_value, /* la_read_var_value */
14110 NULL, /* Language specific skip_trampoline */
14111 NULL, /* name_of_this */
14112 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14113 basic_lookup_transparent_type, /* lookup_transparent_type */
14114 ada_la_decode, /* Language specific symbol demangler */
14115 ada_sniff_from_mangled_name,
14116 NULL, /* Language specific
14117 class_name_from_physname */
14118 ada_op_print_tab, /* expression operators for printing */
14119 0, /* c-style arrays */
14120 1, /* String lower bound */
14121 ada_get_gdb_completer_word_break_characters,
14122 ada_collect_symbol_completion_matches,
14123 ada_language_arch_info,
14124 ada_print_array_index,
14125 default_pass_by_reference,
14126 c_get_string,
14127 c_watch_location_expression,
14128 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14129 ada_iterate_over_symbols,
14130 default_search_name_hash,
14131 &ada_varobj_ops,
14132 NULL,
14133 NULL,
14134 LANG_MAGIC
14135 };
14136
14137 /* Command-list for the "set/show ada" prefix command. */
14138 static struct cmd_list_element *set_ada_list;
14139 static struct cmd_list_element *show_ada_list;
14140
14141 /* Implement the "set ada" prefix command. */
14142
14143 static void
14144 set_ada_command (const char *arg, int from_tty)
14145 {
14146 printf_unfiltered (_(\
14147 "\"set ada\" must be followed by the name of a setting.\n"));
14148 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14149 }
14150
14151 /* Implement the "show ada" prefix command. */
14152
14153 static void
14154 show_ada_command (const char *args, int from_tty)
14155 {
14156 cmd_show_list (show_ada_list, from_tty, "");
14157 }
14158
14159 static void
14160 initialize_ada_catchpoint_ops (void)
14161 {
14162 struct breakpoint_ops *ops;
14163
14164 initialize_breakpoint_ops ();
14165
14166 ops = &catch_exception_breakpoint_ops;
14167 *ops = bkpt_breakpoint_ops;
14168 ops->allocate_location = allocate_location_catch_exception;
14169 ops->re_set = re_set_catch_exception;
14170 ops->check_status = check_status_catch_exception;
14171 ops->print_it = print_it_catch_exception;
14172 ops->print_one = print_one_catch_exception;
14173 ops->print_mention = print_mention_catch_exception;
14174 ops->print_recreate = print_recreate_catch_exception;
14175
14176 ops = &catch_exception_unhandled_breakpoint_ops;
14177 *ops = bkpt_breakpoint_ops;
14178 ops->allocate_location = allocate_location_catch_exception_unhandled;
14179 ops->re_set = re_set_catch_exception_unhandled;
14180 ops->check_status = check_status_catch_exception_unhandled;
14181 ops->print_it = print_it_catch_exception_unhandled;
14182 ops->print_one = print_one_catch_exception_unhandled;
14183 ops->print_mention = print_mention_catch_exception_unhandled;
14184 ops->print_recreate = print_recreate_catch_exception_unhandled;
14185
14186 ops = &catch_assert_breakpoint_ops;
14187 *ops = bkpt_breakpoint_ops;
14188 ops->allocate_location = allocate_location_catch_assert;
14189 ops->re_set = re_set_catch_assert;
14190 ops->check_status = check_status_catch_assert;
14191 ops->print_it = print_it_catch_assert;
14192 ops->print_one = print_one_catch_assert;
14193 ops->print_mention = print_mention_catch_assert;
14194 ops->print_recreate = print_recreate_catch_assert;
14195 }
14196
14197 /* This module's 'new_objfile' observer. */
14198
14199 static void
14200 ada_new_objfile_observer (struct objfile *objfile)
14201 {
14202 ada_clear_symbol_cache ();
14203 }
14204
14205 /* This module's 'free_objfile' observer. */
14206
14207 static void
14208 ada_free_objfile_observer (struct objfile *objfile)
14209 {
14210 ada_clear_symbol_cache ();
14211 }
14212
14213 void
14214 _initialize_ada_language (void)
14215 {
14216 initialize_ada_catchpoint_ops ();
14217
14218 add_prefix_cmd ("ada", no_class, set_ada_command,
14219 _("Prefix command for changing Ada-specfic settings"),
14220 &set_ada_list, "set ada ", 0, &setlist);
14221
14222 add_prefix_cmd ("ada", no_class, show_ada_command,
14223 _("Generic command for showing Ada-specific settings."),
14224 &show_ada_list, "show ada ", 0, &showlist);
14225
14226 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14227 &trust_pad_over_xvs, _("\
14228 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14229 Show whether an optimization trusting PAD types over XVS types is activated"),
14230 _("\
14231 This is related to the encoding used by the GNAT compiler. The debugger\n\
14232 should normally trust the contents of PAD types, but certain older versions\n\
14233 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14234 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14235 work around this bug. It is always safe to turn this option \"off\", but\n\
14236 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14237 this option to \"off\" unless necessary."),
14238 NULL, NULL, &set_ada_list, &show_ada_list);
14239
14240 add_setshow_boolean_cmd ("print-signatures", class_vars,
14241 &print_signatures, _("\
14242 Enable or disable the output of formal and return types for functions in the \
14243 overloads selection menu"), _("\
14244 Show whether the output of formal and return types for functions in the \
14245 overloads selection menu is activated"),
14246 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14247
14248 add_catch_command ("exception", _("\
14249 Catch Ada exceptions, when raised.\n\
14250 With an argument, catch only exceptions with the given name."),
14251 catch_ada_exception_command,
14252 NULL,
14253 CATCH_PERMANENT,
14254 CATCH_TEMPORARY);
14255 add_catch_command ("assert", _("\
14256 Catch failed Ada assertions, when raised.\n\
14257 With an argument, catch only exceptions with the given name."),
14258 catch_assert_command,
14259 NULL,
14260 CATCH_PERMANENT,
14261 CATCH_TEMPORARY);
14262
14263 varsize_limit = 65536;
14264
14265 add_info ("exceptions", info_exceptions_command,
14266 _("\
14267 List all Ada exception names.\n\
14268 If a regular expression is passed as an argument, only those matching\n\
14269 the regular expression are listed."));
14270
14271 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14272 _("Set Ada maintenance-related variables."),
14273 &maint_set_ada_cmdlist, "maintenance set ada ",
14274 0/*allow-unknown*/, &maintenance_set_cmdlist);
14275
14276 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14277 _("Show Ada maintenance-related variables"),
14278 &maint_show_ada_cmdlist, "maintenance show ada ",
14279 0/*allow-unknown*/, &maintenance_show_cmdlist);
14280
14281 add_setshow_boolean_cmd
14282 ("ignore-descriptive-types", class_maintenance,
14283 &ada_ignore_descriptive_types_p,
14284 _("Set whether descriptive types generated by GNAT should be ignored."),
14285 _("Show whether descriptive types generated by GNAT should be ignored."),
14286 _("\
14287 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14288 DWARF attribute."),
14289 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14290
14291 decoded_names_store = htab_create_alloc
14292 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14293 NULL, xcalloc, xfree);
14294
14295 /* The ada-lang observers. */
14296 observer_attach_new_objfile (ada_new_objfile_observer);
14297 observer_attach_free_objfile (ada_free_objfile_observer);
14298 observer_attach_inferior_exit (ada_inferior_exit);
14299
14300 /* Setup various context-specific data. */
14301 ada_inferior_data
14302 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14303 ada_pspace_data_handle
14304 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14305 }
This page took 0.334183 seconds and 4 git commands to generate.