symtab.h (SYMTAB_BLOCKVECTOR): Renamed from BLOCKVECTOR. All uses updated.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56
57 #include "psymtab.h"
58 #include "value.h"
59 #include "mi/mi-common.h"
60 #include "arch-utils.h"
61 #include "cli/cli-utils.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static struct type *desc_base_type (struct type *);
72
73 static struct type *desc_bounds_type (struct type *);
74
75 static struct value *desc_bounds (struct value *);
76
77 static int fat_pntr_bounds_bitpos (struct type *);
78
79 static int fat_pntr_bounds_bitsize (struct type *);
80
81 static struct type *desc_data_target_type (struct type *);
82
83 static struct value *desc_data (struct value *);
84
85 static int fat_pntr_data_bitpos (struct type *);
86
87 static int fat_pntr_data_bitsize (struct type *);
88
89 static struct value *desc_one_bound (struct value *, int, int);
90
91 static int desc_bound_bitpos (struct type *, int, int);
92
93 static int desc_bound_bitsize (struct type *, int, int);
94
95 static struct type *desc_index_type (struct type *, int);
96
97 static int desc_arity (struct type *);
98
99 static int ada_type_match (struct type *, struct type *, int);
100
101 static int ada_args_match (struct symbol *, struct value **, int);
102
103 static int full_match (const char *, const char *);
104
105 static struct value *make_array_descriptor (struct type *, struct value *);
106
107 static void ada_add_block_symbols (struct obstack *,
108 const struct block *, const char *,
109 domain_enum, struct objfile *, int);
110
111 static int is_nonfunction (struct ada_symbol_info *, int);
112
113 static void add_defn_to_vec (struct obstack *, struct symbol *,
114 const struct block *);
115
116 static int num_defns_collected (struct obstack *);
117
118 static struct ada_symbol_info *defns_collected (struct obstack *, int);
119
120 static struct value *resolve_subexp (struct expression **, int *, int,
121 struct type *);
122
123 static void replace_operator_with_call (struct expression **, int, int, int,
124 struct symbol *, const struct block *);
125
126 static int possible_user_operator_p (enum exp_opcode, struct value **);
127
128 static char *ada_op_name (enum exp_opcode);
129
130 static const char *ada_decoded_op_name (enum exp_opcode);
131
132 static int numeric_type_p (struct type *);
133
134 static int integer_type_p (struct type *);
135
136 static int scalar_type_p (struct type *);
137
138 static int discrete_type_p (struct type *);
139
140 static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145 static struct symbol *find_old_style_renaming_symbol (const char *,
146 const struct block *);
147
148 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
149 int, int, int *);
150
151 static struct value *evaluate_subexp_type (struct expression *, int *);
152
153 static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
156 static int is_dynamic_field (struct type *, int);
157
158 static struct type *to_fixed_variant_branch_type (struct type *,
159 const gdb_byte *,
160 CORE_ADDR, struct value *);
161
162 static struct type *to_fixed_array_type (struct type *, struct value *, int);
163
164 static struct type *to_fixed_range_type (struct type *, struct value *);
165
166 static struct type *to_static_fixed_type (struct type *);
167 static struct type *static_unwrap_type (struct type *type);
168
169 static struct value *unwrap_value (struct value *);
170
171 static struct type *constrained_packed_array_type (struct type *, long *);
172
173 static struct type *decode_constrained_packed_array_type (struct type *);
174
175 static long decode_packed_array_bitsize (struct type *);
176
177 static struct value *decode_constrained_packed_array (struct value *);
178
179 static int ada_is_packed_array_type (struct type *);
180
181 static int ada_is_unconstrained_packed_array_type (struct type *);
182
183 static struct value *value_subscript_packed (struct value *, int,
184 struct value **);
185
186 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
187
188 static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
190
191 static struct value *get_var_value (char *, char *);
192
193 static int lesseq_defined_than (struct symbol *, struct symbol *);
194
195 static int equiv_types (struct type *, struct type *);
196
197 static int is_name_suffix (const char *);
198
199 static int advance_wild_match (const char **, const char *, int);
200
201 static int wild_match (const char *, const char *);
202
203 static struct value *ada_coerce_ref (struct value *);
204
205 static LONGEST pos_atr (struct value *);
206
207 static struct value *value_pos_atr (struct type *, struct value *);
208
209 static struct value *value_val_atr (struct type *, struct value *);
210
211 static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
213
214 static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217 static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
220 static int find_struct_field (const char *, struct type *, int,
221 struct type **, int *, int *, int *, int *);
222
223 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
226 static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
230 static int ada_is_direct_array_type (struct type *);
231
232 static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
234
235 static void check_size (const struct type *);
236
237 static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240 static struct value *assign_aggregate (struct value *, struct value *,
241 struct expression *,
242 int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268
269 static struct type *ada_find_any_type (const char *name);
270 \f
271
272 /* The result of a symbol lookup to be stored in our symbol cache. */
273
274 struct cache_entry
275 {
276 /* The name used to perform the lookup. */
277 const char *name;
278 /* The namespace used during the lookup. */
279 domain_enum namespace;
280 /* The symbol returned by the lookup, or NULL if no matching symbol
281 was found. */
282 struct symbol *sym;
283 /* The block where the symbol was found, or NULL if no matching
284 symbol was found. */
285 const struct block *block;
286 /* A pointer to the next entry with the same hash. */
287 struct cache_entry *next;
288 };
289
290 /* The Ada symbol cache, used to store the result of Ada-mode symbol
291 lookups in the course of executing the user's commands.
292
293 The cache is implemented using a simple, fixed-sized hash.
294 The size is fixed on the grounds that there are not likely to be
295 all that many symbols looked up during any given session, regardless
296 of the size of the symbol table. If we decide to go to a resizable
297 table, let's just use the stuff from libiberty instead. */
298
299 #define HASH_SIZE 1009
300
301 struct ada_symbol_cache
302 {
303 /* An obstack used to store the entries in our cache. */
304 struct obstack cache_space;
305
306 /* The root of the hash table used to implement our symbol cache. */
307 struct cache_entry *root[HASH_SIZE];
308 };
309
310 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
311
312 /* Maximum-sized dynamic type. */
313 static unsigned int varsize_limit;
314
315 /* FIXME: brobecker/2003-09-17: No longer a const because it is
316 returned by a function that does not return a const char *. */
317 static char *ada_completer_word_break_characters =
318 #ifdef VMS
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320 #else
321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
322 #endif
323
324 /* The name of the symbol to use to get the name of the main subprogram. */
325 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
326 = "__gnat_ada_main_program_name";
327
328 /* Limit on the number of warnings to raise per expression evaluation. */
329 static int warning_limit = 2;
330
331 /* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333 static int warnings_issued = 0;
334
335 static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337 };
338
339 static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341 };
342
343 /* Space for allocating results of ada_lookup_symbol_list. */
344 static struct obstack symbol_list_obstack;
345
346 /* Maintenance-related settings for this module. */
347
348 static struct cmd_list_element *maint_set_ada_cmdlist;
349 static struct cmd_list_element *maint_show_ada_cmdlist;
350
351 /* Implement the "maintenance set ada" (prefix) command. */
352
353 static void
354 maint_set_ada_cmd (char *args, int from_tty)
355 {
356 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
357 gdb_stdout);
358 }
359
360 /* Implement the "maintenance show ada" (prefix) command. */
361
362 static void
363 maint_show_ada_cmd (char *args, int from_tty)
364 {
365 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
366 }
367
368 /* The "maintenance ada set/show ignore-descriptive-type" value. */
369
370 static int ada_ignore_descriptive_types_p = 0;
371
372 /* Inferior-specific data. */
373
374 /* Per-inferior data for this module. */
375
376 struct ada_inferior_data
377 {
378 /* The ada__tags__type_specific_data type, which is used when decoding
379 tagged types. With older versions of GNAT, this type was directly
380 accessible through a component ("tsd") in the object tag. But this
381 is no longer the case, so we cache it for each inferior. */
382 struct type *tsd_type;
383
384 /* The exception_support_info data. This data is used to determine
385 how to implement support for Ada exception catchpoints in a given
386 inferior. */
387 const struct exception_support_info *exception_info;
388 };
389
390 /* Our key to this module's inferior data. */
391 static const struct inferior_data *ada_inferior_data;
392
393 /* A cleanup routine for our inferior data. */
394 static void
395 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
396 {
397 struct ada_inferior_data *data;
398
399 data = inferior_data (inf, ada_inferior_data);
400 if (data != NULL)
401 xfree (data);
402 }
403
404 /* Return our inferior data for the given inferior (INF).
405
406 This function always returns a valid pointer to an allocated
407 ada_inferior_data structure. If INF's inferior data has not
408 been previously set, this functions creates a new one with all
409 fields set to zero, sets INF's inferior to it, and then returns
410 a pointer to that newly allocated ada_inferior_data. */
411
412 static struct ada_inferior_data *
413 get_ada_inferior_data (struct inferior *inf)
414 {
415 struct ada_inferior_data *data;
416
417 data = inferior_data (inf, ada_inferior_data);
418 if (data == NULL)
419 {
420 data = XCNEW (struct ada_inferior_data);
421 set_inferior_data (inf, ada_inferior_data, data);
422 }
423
424 return data;
425 }
426
427 /* Perform all necessary cleanups regarding our module's inferior data
428 that is required after the inferior INF just exited. */
429
430 static void
431 ada_inferior_exit (struct inferior *inf)
432 {
433 ada_inferior_data_cleanup (inf, NULL);
434 set_inferior_data (inf, ada_inferior_data, NULL);
435 }
436
437
438 /* program-space-specific data. */
439
440 /* This module's per-program-space data. */
441 struct ada_pspace_data
442 {
443 /* The Ada symbol cache. */
444 struct ada_symbol_cache *sym_cache;
445 };
446
447 /* Key to our per-program-space data. */
448 static const struct program_space_data *ada_pspace_data_handle;
449
450 /* Return this module's data for the given program space (PSPACE).
451 If not is found, add a zero'ed one now.
452
453 This function always returns a valid object. */
454
455 static struct ada_pspace_data *
456 get_ada_pspace_data (struct program_space *pspace)
457 {
458 struct ada_pspace_data *data;
459
460 data = program_space_data (pspace, ada_pspace_data_handle);
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468 }
469
470 /* The cleanup callback for this module's per-program-space data. */
471
472 static void
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474 {
475 struct ada_pspace_data *pspace_data = data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480 }
481
482 /* Utilities */
483
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511 static struct type *
512 ada_typedef_target_type (struct type *type)
513 {
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517 }
518
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523 static const char *
524 ada_unqualified_name (const char *decoded_name)
525 {
526 const char *result = strrchr (decoded_name, '.');
527
528 if (result != NULL)
529 result++; /* Skip the dot... */
530 else
531 result = decoded_name;
532
533 return result;
534 }
535
536 /* Return a string starting with '<', followed by STR, and '>'.
537 The result is good until the next call. */
538
539 static char *
540 add_angle_brackets (const char *str)
541 {
542 static char *result = NULL;
543
544 xfree (result);
545 result = xstrprintf ("<%s>", str);
546 return result;
547 }
548
549 static char *
550 ada_get_gdb_completer_word_break_characters (void)
551 {
552 return ada_completer_word_break_characters;
553 }
554
555 /* Print an array element index using the Ada syntax. */
556
557 static void
558 ada_print_array_index (struct value *index_value, struct ui_file *stream,
559 const struct value_print_options *options)
560 {
561 LA_VALUE_PRINT (index_value, stream, options);
562 fprintf_filtered (stream, " => ");
563 }
564
565 /* Assuming VECT points to an array of *SIZE objects of size
566 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
567 updating *SIZE as necessary and returning the (new) array. */
568
569 void *
570 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
571 {
572 if (*size < min_size)
573 {
574 *size *= 2;
575 if (*size < min_size)
576 *size = min_size;
577 vect = xrealloc (vect, *size * element_size);
578 }
579 return vect;
580 }
581
582 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
583 suffix of FIELD_NAME beginning "___". */
584
585 static int
586 field_name_match (const char *field_name, const char *target)
587 {
588 int len = strlen (target);
589
590 return
591 (strncmp (field_name, target, len) == 0
592 && (field_name[len] == '\0'
593 || (strncmp (field_name + len, "___", 3) == 0
594 && strcmp (field_name + strlen (field_name) - 6,
595 "___XVN") != 0)));
596 }
597
598
599 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
600 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
601 and return its index. This function also handles fields whose name
602 have ___ suffixes because the compiler sometimes alters their name
603 by adding such a suffix to represent fields with certain constraints.
604 If the field could not be found, return a negative number if
605 MAYBE_MISSING is set. Otherwise raise an error. */
606
607 int
608 ada_get_field_index (const struct type *type, const char *field_name,
609 int maybe_missing)
610 {
611 int fieldno;
612 struct type *struct_type = check_typedef ((struct type *) type);
613
614 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
615 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
616 return fieldno;
617
618 if (!maybe_missing)
619 error (_("Unable to find field %s in struct %s. Aborting"),
620 field_name, TYPE_NAME (struct_type));
621
622 return -1;
623 }
624
625 /* The length of the prefix of NAME prior to any "___" suffix. */
626
627 int
628 ada_name_prefix_len (const char *name)
629 {
630 if (name == NULL)
631 return 0;
632 else
633 {
634 const char *p = strstr (name, "___");
635
636 if (p == NULL)
637 return strlen (name);
638 else
639 return p - name;
640 }
641 }
642
643 /* Return non-zero if SUFFIX is a suffix of STR.
644 Return zero if STR is null. */
645
646 static int
647 is_suffix (const char *str, const char *suffix)
648 {
649 int len1, len2;
650
651 if (str == NULL)
652 return 0;
653 len1 = strlen (str);
654 len2 = strlen (suffix);
655 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
656 }
657
658 /* The contents of value VAL, treated as a value of type TYPE. The
659 result is an lval in memory if VAL is. */
660
661 static struct value *
662 coerce_unspec_val_to_type (struct value *val, struct type *type)
663 {
664 type = ada_check_typedef (type);
665 if (value_type (val) == type)
666 return val;
667 else
668 {
669 struct value *result;
670
671 /* Make sure that the object size is not unreasonable before
672 trying to allocate some memory for it. */
673 check_size (type);
674
675 if (value_lazy (val)
676 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
677 result = allocate_value_lazy (type);
678 else
679 {
680 result = allocate_value (type);
681 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
682 }
683 set_value_component_location (result, val);
684 set_value_bitsize (result, value_bitsize (val));
685 set_value_bitpos (result, value_bitpos (val));
686 set_value_address (result, value_address (val));
687 return result;
688 }
689 }
690
691 static const gdb_byte *
692 cond_offset_host (const gdb_byte *valaddr, long offset)
693 {
694 if (valaddr == NULL)
695 return NULL;
696 else
697 return valaddr + offset;
698 }
699
700 static CORE_ADDR
701 cond_offset_target (CORE_ADDR address, long offset)
702 {
703 if (address == 0)
704 return 0;
705 else
706 return address + offset;
707 }
708
709 /* Issue a warning (as for the definition of warning in utils.c, but
710 with exactly one argument rather than ...), unless the limit on the
711 number of warnings has passed during the evaluation of the current
712 expression. */
713
714 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
715 provided by "complaint". */
716 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
717
718 static void
719 lim_warning (const char *format, ...)
720 {
721 va_list args;
722
723 va_start (args, format);
724 warnings_issued += 1;
725 if (warnings_issued <= warning_limit)
726 vwarning (format, args);
727
728 va_end (args);
729 }
730
731 /* Issue an error if the size of an object of type T is unreasonable,
732 i.e. if it would be a bad idea to allocate a value of this type in
733 GDB. */
734
735 static void
736 check_size (const struct type *type)
737 {
738 if (TYPE_LENGTH (type) > varsize_limit)
739 error (_("object size is larger than varsize-limit"));
740 }
741
742 /* Maximum value of a SIZE-byte signed integer type. */
743 static LONGEST
744 max_of_size (int size)
745 {
746 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
747
748 return top_bit | (top_bit - 1);
749 }
750
751 /* Minimum value of a SIZE-byte signed integer type. */
752 static LONGEST
753 min_of_size (int size)
754 {
755 return -max_of_size (size) - 1;
756 }
757
758 /* Maximum value of a SIZE-byte unsigned integer type. */
759 static ULONGEST
760 umax_of_size (int size)
761 {
762 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
763
764 return top_bit | (top_bit - 1);
765 }
766
767 /* Maximum value of integral type T, as a signed quantity. */
768 static LONGEST
769 max_of_type (struct type *t)
770 {
771 if (TYPE_UNSIGNED (t))
772 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
773 else
774 return max_of_size (TYPE_LENGTH (t));
775 }
776
777 /* Minimum value of integral type T, as a signed quantity. */
778 static LONGEST
779 min_of_type (struct type *t)
780 {
781 if (TYPE_UNSIGNED (t))
782 return 0;
783 else
784 return min_of_size (TYPE_LENGTH (t));
785 }
786
787 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
788 LONGEST
789 ada_discrete_type_high_bound (struct type *type)
790 {
791 type = resolve_dynamic_type (type, 0);
792 switch (TYPE_CODE (type))
793 {
794 case TYPE_CODE_RANGE:
795 return TYPE_HIGH_BOUND (type);
796 case TYPE_CODE_ENUM:
797 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
798 case TYPE_CODE_BOOL:
799 return 1;
800 case TYPE_CODE_CHAR:
801 case TYPE_CODE_INT:
802 return max_of_type (type);
803 default:
804 error (_("Unexpected type in ada_discrete_type_high_bound."));
805 }
806 }
807
808 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
809 LONGEST
810 ada_discrete_type_low_bound (struct type *type)
811 {
812 type = resolve_dynamic_type (type, 0);
813 switch (TYPE_CODE (type))
814 {
815 case TYPE_CODE_RANGE:
816 return TYPE_LOW_BOUND (type);
817 case TYPE_CODE_ENUM:
818 return TYPE_FIELD_ENUMVAL (type, 0);
819 case TYPE_CODE_BOOL:
820 return 0;
821 case TYPE_CODE_CHAR:
822 case TYPE_CODE_INT:
823 return min_of_type (type);
824 default:
825 error (_("Unexpected type in ada_discrete_type_low_bound."));
826 }
827 }
828
829 /* The identity on non-range types. For range types, the underlying
830 non-range scalar type. */
831
832 static struct type *
833 get_base_type (struct type *type)
834 {
835 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
836 {
837 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
838 return type;
839 type = TYPE_TARGET_TYPE (type);
840 }
841 return type;
842 }
843
844 /* Return a decoded version of the given VALUE. This means returning
845 a value whose type is obtained by applying all the GNAT-specific
846 encondings, making the resulting type a static but standard description
847 of the initial type. */
848
849 struct value *
850 ada_get_decoded_value (struct value *value)
851 {
852 struct type *type = ada_check_typedef (value_type (value));
853
854 if (ada_is_array_descriptor_type (type)
855 || (ada_is_constrained_packed_array_type (type)
856 && TYPE_CODE (type) != TYPE_CODE_PTR))
857 {
858 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
859 value = ada_coerce_to_simple_array_ptr (value);
860 else
861 value = ada_coerce_to_simple_array (value);
862 }
863 else
864 value = ada_to_fixed_value (value);
865
866 return value;
867 }
868
869 /* Same as ada_get_decoded_value, but with the given TYPE.
870 Because there is no associated actual value for this type,
871 the resulting type might be a best-effort approximation in
872 the case of dynamic types. */
873
874 struct type *
875 ada_get_decoded_type (struct type *type)
876 {
877 type = to_static_fixed_type (type);
878 if (ada_is_constrained_packed_array_type (type))
879 type = ada_coerce_to_simple_array_type (type);
880 return type;
881 }
882
883 \f
884
885 /* Language Selection */
886
887 /* If the main program is in Ada, return language_ada, otherwise return LANG
888 (the main program is in Ada iif the adainit symbol is found). */
889
890 enum language
891 ada_update_initial_language (enum language lang)
892 {
893 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
894 (struct objfile *) NULL).minsym != NULL)
895 return language_ada;
896
897 return lang;
898 }
899
900 /* If the main procedure is written in Ada, then return its name.
901 The result is good until the next call. Return NULL if the main
902 procedure doesn't appear to be in Ada. */
903
904 char *
905 ada_main_name (void)
906 {
907 struct bound_minimal_symbol msym;
908 static char *main_program_name = NULL;
909
910 /* For Ada, the name of the main procedure is stored in a specific
911 string constant, generated by the binder. Look for that symbol,
912 extract its address, and then read that string. If we didn't find
913 that string, then most probably the main procedure is not written
914 in Ada. */
915 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
916
917 if (msym.minsym != NULL)
918 {
919 CORE_ADDR main_program_name_addr;
920 int err_code;
921
922 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
923 if (main_program_name_addr == 0)
924 error (_("Invalid address for Ada main program name."));
925
926 xfree (main_program_name);
927 target_read_string (main_program_name_addr, &main_program_name,
928 1024, &err_code);
929
930 if (err_code != 0)
931 return NULL;
932 return main_program_name;
933 }
934
935 /* The main procedure doesn't seem to be in Ada. */
936 return NULL;
937 }
938 \f
939 /* Symbols */
940
941 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
942 of NULLs. */
943
944 const struct ada_opname_map ada_opname_table[] = {
945 {"Oadd", "\"+\"", BINOP_ADD},
946 {"Osubtract", "\"-\"", BINOP_SUB},
947 {"Omultiply", "\"*\"", BINOP_MUL},
948 {"Odivide", "\"/\"", BINOP_DIV},
949 {"Omod", "\"mod\"", BINOP_MOD},
950 {"Orem", "\"rem\"", BINOP_REM},
951 {"Oexpon", "\"**\"", BINOP_EXP},
952 {"Olt", "\"<\"", BINOP_LESS},
953 {"Ole", "\"<=\"", BINOP_LEQ},
954 {"Ogt", "\">\"", BINOP_GTR},
955 {"Oge", "\">=\"", BINOP_GEQ},
956 {"Oeq", "\"=\"", BINOP_EQUAL},
957 {"One", "\"/=\"", BINOP_NOTEQUAL},
958 {"Oand", "\"and\"", BINOP_BITWISE_AND},
959 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
960 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
961 {"Oconcat", "\"&\"", BINOP_CONCAT},
962 {"Oabs", "\"abs\"", UNOP_ABS},
963 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
964 {"Oadd", "\"+\"", UNOP_PLUS},
965 {"Osubtract", "\"-\"", UNOP_NEG},
966 {NULL, NULL}
967 };
968
969 /* The "encoded" form of DECODED, according to GNAT conventions.
970 The result is valid until the next call to ada_encode. */
971
972 char *
973 ada_encode (const char *decoded)
974 {
975 static char *encoding_buffer = NULL;
976 static size_t encoding_buffer_size = 0;
977 const char *p;
978 int k;
979
980 if (decoded == NULL)
981 return NULL;
982
983 GROW_VECT (encoding_buffer, encoding_buffer_size,
984 2 * strlen (decoded) + 10);
985
986 k = 0;
987 for (p = decoded; *p != '\0'; p += 1)
988 {
989 if (*p == '.')
990 {
991 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
992 k += 2;
993 }
994 else if (*p == '"')
995 {
996 const struct ada_opname_map *mapping;
997
998 for (mapping = ada_opname_table;
999 mapping->encoded != NULL
1000 && strncmp (mapping->decoded, p,
1001 strlen (mapping->decoded)) != 0; mapping += 1)
1002 ;
1003 if (mapping->encoded == NULL)
1004 error (_("invalid Ada operator name: %s"), p);
1005 strcpy (encoding_buffer + k, mapping->encoded);
1006 k += strlen (mapping->encoded);
1007 break;
1008 }
1009 else
1010 {
1011 encoding_buffer[k] = *p;
1012 k += 1;
1013 }
1014 }
1015
1016 encoding_buffer[k] = '\0';
1017 return encoding_buffer;
1018 }
1019
1020 /* Return NAME folded to lower case, or, if surrounded by single
1021 quotes, unfolded, but with the quotes stripped away. Result good
1022 to next call. */
1023
1024 char *
1025 ada_fold_name (const char *name)
1026 {
1027 static char *fold_buffer = NULL;
1028 static size_t fold_buffer_size = 0;
1029
1030 int len = strlen (name);
1031 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1032
1033 if (name[0] == '\'')
1034 {
1035 strncpy (fold_buffer, name + 1, len - 2);
1036 fold_buffer[len - 2] = '\000';
1037 }
1038 else
1039 {
1040 int i;
1041
1042 for (i = 0; i <= len; i += 1)
1043 fold_buffer[i] = tolower (name[i]);
1044 }
1045
1046 return fold_buffer;
1047 }
1048
1049 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1050
1051 static int
1052 is_lower_alphanum (const char c)
1053 {
1054 return (isdigit (c) || (isalpha (c) && islower (c)));
1055 }
1056
1057 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1058 This function saves in LEN the length of that same symbol name but
1059 without either of these suffixes:
1060 . .{DIGIT}+
1061 . ${DIGIT}+
1062 . ___{DIGIT}+
1063 . __{DIGIT}+.
1064
1065 These are suffixes introduced by the compiler for entities such as
1066 nested subprogram for instance, in order to avoid name clashes.
1067 They do not serve any purpose for the debugger. */
1068
1069 static void
1070 ada_remove_trailing_digits (const char *encoded, int *len)
1071 {
1072 if (*len > 1 && isdigit (encoded[*len - 1]))
1073 {
1074 int i = *len - 2;
1075
1076 while (i > 0 && isdigit (encoded[i]))
1077 i--;
1078 if (i >= 0 && encoded[i] == '.')
1079 *len = i;
1080 else if (i >= 0 && encoded[i] == '$')
1081 *len = i;
1082 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1083 *len = i - 2;
1084 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1085 *len = i - 1;
1086 }
1087 }
1088
1089 /* Remove the suffix introduced by the compiler for protected object
1090 subprograms. */
1091
1092 static void
1093 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1094 {
1095 /* Remove trailing N. */
1096
1097 /* Protected entry subprograms are broken into two
1098 separate subprograms: The first one is unprotected, and has
1099 a 'N' suffix; the second is the protected version, and has
1100 the 'P' suffix. The second calls the first one after handling
1101 the protection. Since the P subprograms are internally generated,
1102 we leave these names undecoded, giving the user a clue that this
1103 entity is internal. */
1104
1105 if (*len > 1
1106 && encoded[*len - 1] == 'N'
1107 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1108 *len = *len - 1;
1109 }
1110
1111 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1112
1113 static void
1114 ada_remove_Xbn_suffix (const char *encoded, int *len)
1115 {
1116 int i = *len - 1;
1117
1118 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1119 i--;
1120
1121 if (encoded[i] != 'X')
1122 return;
1123
1124 if (i == 0)
1125 return;
1126
1127 if (isalnum (encoded[i-1]))
1128 *len = i;
1129 }
1130
1131 /* If ENCODED follows the GNAT entity encoding conventions, then return
1132 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1133 replaced by ENCODED.
1134
1135 The resulting string is valid until the next call of ada_decode.
1136 If the string is unchanged by decoding, the original string pointer
1137 is returned. */
1138
1139 const char *
1140 ada_decode (const char *encoded)
1141 {
1142 int i, j;
1143 int len0;
1144 const char *p;
1145 char *decoded;
1146 int at_start_name;
1147 static char *decoding_buffer = NULL;
1148 static size_t decoding_buffer_size = 0;
1149
1150 /* The name of the Ada main procedure starts with "_ada_".
1151 This prefix is not part of the decoded name, so skip this part
1152 if we see this prefix. */
1153 if (strncmp (encoded, "_ada_", 5) == 0)
1154 encoded += 5;
1155
1156 /* If the name starts with '_', then it is not a properly encoded
1157 name, so do not attempt to decode it. Similarly, if the name
1158 starts with '<', the name should not be decoded. */
1159 if (encoded[0] == '_' || encoded[0] == '<')
1160 goto Suppress;
1161
1162 len0 = strlen (encoded);
1163
1164 ada_remove_trailing_digits (encoded, &len0);
1165 ada_remove_po_subprogram_suffix (encoded, &len0);
1166
1167 /* Remove the ___X.* suffix if present. Do not forget to verify that
1168 the suffix is located before the current "end" of ENCODED. We want
1169 to avoid re-matching parts of ENCODED that have previously been
1170 marked as discarded (by decrementing LEN0). */
1171 p = strstr (encoded, "___");
1172 if (p != NULL && p - encoded < len0 - 3)
1173 {
1174 if (p[3] == 'X')
1175 len0 = p - encoded;
1176 else
1177 goto Suppress;
1178 }
1179
1180 /* Remove any trailing TKB suffix. It tells us that this symbol
1181 is for the body of a task, but that information does not actually
1182 appear in the decoded name. */
1183
1184 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1185 len0 -= 3;
1186
1187 /* Remove any trailing TB suffix. The TB suffix is slightly different
1188 from the TKB suffix because it is used for non-anonymous task
1189 bodies. */
1190
1191 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1192 len0 -= 2;
1193
1194 /* Remove trailing "B" suffixes. */
1195 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1196
1197 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1198 len0 -= 1;
1199
1200 /* Make decoded big enough for possible expansion by operator name. */
1201
1202 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1203 decoded = decoding_buffer;
1204
1205 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1206
1207 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1208 {
1209 i = len0 - 2;
1210 while ((i >= 0 && isdigit (encoded[i]))
1211 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1212 i -= 1;
1213 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1214 len0 = i - 1;
1215 else if (encoded[i] == '$')
1216 len0 = i;
1217 }
1218
1219 /* The first few characters that are not alphabetic are not part
1220 of any encoding we use, so we can copy them over verbatim. */
1221
1222 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1223 decoded[j] = encoded[i];
1224
1225 at_start_name = 1;
1226 while (i < len0)
1227 {
1228 /* Is this a symbol function? */
1229 if (at_start_name && encoded[i] == 'O')
1230 {
1231 int k;
1232
1233 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1234 {
1235 int op_len = strlen (ada_opname_table[k].encoded);
1236 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1237 op_len - 1) == 0)
1238 && !isalnum (encoded[i + op_len]))
1239 {
1240 strcpy (decoded + j, ada_opname_table[k].decoded);
1241 at_start_name = 0;
1242 i += op_len;
1243 j += strlen (ada_opname_table[k].decoded);
1244 break;
1245 }
1246 }
1247 if (ada_opname_table[k].encoded != NULL)
1248 continue;
1249 }
1250 at_start_name = 0;
1251
1252 /* Replace "TK__" with "__", which will eventually be translated
1253 into "." (just below). */
1254
1255 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1256 i += 2;
1257
1258 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1259 be translated into "." (just below). These are internal names
1260 generated for anonymous blocks inside which our symbol is nested. */
1261
1262 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1263 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1264 && isdigit (encoded [i+4]))
1265 {
1266 int k = i + 5;
1267
1268 while (k < len0 && isdigit (encoded[k]))
1269 k++; /* Skip any extra digit. */
1270
1271 /* Double-check that the "__B_{DIGITS}+" sequence we found
1272 is indeed followed by "__". */
1273 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1274 i = k;
1275 }
1276
1277 /* Remove _E{DIGITS}+[sb] */
1278
1279 /* Just as for protected object subprograms, there are 2 categories
1280 of subprograms created by the compiler for each entry. The first
1281 one implements the actual entry code, and has a suffix following
1282 the convention above; the second one implements the barrier and
1283 uses the same convention as above, except that the 'E' is replaced
1284 by a 'B'.
1285
1286 Just as above, we do not decode the name of barrier functions
1287 to give the user a clue that the code he is debugging has been
1288 internally generated. */
1289
1290 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1291 && isdigit (encoded[i+2]))
1292 {
1293 int k = i + 3;
1294
1295 while (k < len0 && isdigit (encoded[k]))
1296 k++;
1297
1298 if (k < len0
1299 && (encoded[k] == 'b' || encoded[k] == 's'))
1300 {
1301 k++;
1302 /* Just as an extra precaution, make sure that if this
1303 suffix is followed by anything else, it is a '_'.
1304 Otherwise, we matched this sequence by accident. */
1305 if (k == len0
1306 || (k < len0 && encoded[k] == '_'))
1307 i = k;
1308 }
1309 }
1310
1311 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1312 the GNAT front-end in protected object subprograms. */
1313
1314 if (i < len0 + 3
1315 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1316 {
1317 /* Backtrack a bit up until we reach either the begining of
1318 the encoded name, or "__". Make sure that we only find
1319 digits or lowercase characters. */
1320 const char *ptr = encoded + i - 1;
1321
1322 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1323 ptr--;
1324 if (ptr < encoded
1325 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1326 i++;
1327 }
1328
1329 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1330 {
1331 /* This is a X[bn]* sequence not separated from the previous
1332 part of the name with a non-alpha-numeric character (in other
1333 words, immediately following an alpha-numeric character), then
1334 verify that it is placed at the end of the encoded name. If
1335 not, then the encoding is not valid and we should abort the
1336 decoding. Otherwise, just skip it, it is used in body-nested
1337 package names. */
1338 do
1339 i += 1;
1340 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1341 if (i < len0)
1342 goto Suppress;
1343 }
1344 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1345 {
1346 /* Replace '__' by '.'. */
1347 decoded[j] = '.';
1348 at_start_name = 1;
1349 i += 2;
1350 j += 1;
1351 }
1352 else
1353 {
1354 /* It's a character part of the decoded name, so just copy it
1355 over. */
1356 decoded[j] = encoded[i];
1357 i += 1;
1358 j += 1;
1359 }
1360 }
1361 decoded[j] = '\000';
1362
1363 /* Decoded names should never contain any uppercase character.
1364 Double-check this, and abort the decoding if we find one. */
1365
1366 for (i = 0; decoded[i] != '\0'; i += 1)
1367 if (isupper (decoded[i]) || decoded[i] == ' ')
1368 goto Suppress;
1369
1370 if (strcmp (decoded, encoded) == 0)
1371 return encoded;
1372 else
1373 return decoded;
1374
1375 Suppress:
1376 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1377 decoded = decoding_buffer;
1378 if (encoded[0] == '<')
1379 strcpy (decoded, encoded);
1380 else
1381 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1382 return decoded;
1383
1384 }
1385
1386 /* Table for keeping permanent unique copies of decoded names. Once
1387 allocated, names in this table are never released. While this is a
1388 storage leak, it should not be significant unless there are massive
1389 changes in the set of decoded names in successive versions of a
1390 symbol table loaded during a single session. */
1391 static struct htab *decoded_names_store;
1392
1393 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1394 in the language-specific part of GSYMBOL, if it has not been
1395 previously computed. Tries to save the decoded name in the same
1396 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1397 in any case, the decoded symbol has a lifetime at least that of
1398 GSYMBOL).
1399 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1400 const, but nevertheless modified to a semantically equivalent form
1401 when a decoded name is cached in it. */
1402
1403 const char *
1404 ada_decode_symbol (const struct general_symbol_info *arg)
1405 {
1406 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1407 const char **resultp =
1408 &gsymbol->language_specific.mangled_lang.demangled_name;
1409
1410 if (!gsymbol->ada_mangled)
1411 {
1412 const char *decoded = ada_decode (gsymbol->name);
1413 struct obstack *obstack = gsymbol->language_specific.obstack;
1414
1415 gsymbol->ada_mangled = 1;
1416
1417 if (obstack != NULL)
1418 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1419 else
1420 {
1421 /* Sometimes, we can't find a corresponding objfile, in
1422 which case, we put the result on the heap. Since we only
1423 decode when needed, we hope this usually does not cause a
1424 significant memory leak (FIXME). */
1425
1426 char **slot = (char **) htab_find_slot (decoded_names_store,
1427 decoded, INSERT);
1428
1429 if (*slot == NULL)
1430 *slot = xstrdup (decoded);
1431 *resultp = *slot;
1432 }
1433 }
1434
1435 return *resultp;
1436 }
1437
1438 static char *
1439 ada_la_decode (const char *encoded, int options)
1440 {
1441 return xstrdup (ada_decode (encoded));
1442 }
1443
1444 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1445 suffixes that encode debugging information or leading _ada_ on
1446 SYM_NAME (see is_name_suffix commentary for the debugging
1447 information that is ignored). If WILD, then NAME need only match a
1448 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1449 either argument is NULL. */
1450
1451 static int
1452 match_name (const char *sym_name, const char *name, int wild)
1453 {
1454 if (sym_name == NULL || name == NULL)
1455 return 0;
1456 else if (wild)
1457 return wild_match (sym_name, name) == 0;
1458 else
1459 {
1460 int len_name = strlen (name);
1461
1462 return (strncmp (sym_name, name, len_name) == 0
1463 && is_name_suffix (sym_name + len_name))
1464 || (strncmp (sym_name, "_ada_", 5) == 0
1465 && strncmp (sym_name + 5, name, len_name) == 0
1466 && is_name_suffix (sym_name + len_name + 5));
1467 }
1468 }
1469 \f
1470
1471 /* Arrays */
1472
1473 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1474 generated by the GNAT compiler to describe the index type used
1475 for each dimension of an array, check whether it follows the latest
1476 known encoding. If not, fix it up to conform to the latest encoding.
1477 Otherwise, do nothing. This function also does nothing if
1478 INDEX_DESC_TYPE is NULL.
1479
1480 The GNAT encoding used to describle the array index type evolved a bit.
1481 Initially, the information would be provided through the name of each
1482 field of the structure type only, while the type of these fields was
1483 described as unspecified and irrelevant. The debugger was then expected
1484 to perform a global type lookup using the name of that field in order
1485 to get access to the full index type description. Because these global
1486 lookups can be very expensive, the encoding was later enhanced to make
1487 the global lookup unnecessary by defining the field type as being
1488 the full index type description.
1489
1490 The purpose of this routine is to allow us to support older versions
1491 of the compiler by detecting the use of the older encoding, and by
1492 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1493 we essentially replace each field's meaningless type by the associated
1494 index subtype). */
1495
1496 void
1497 ada_fixup_array_indexes_type (struct type *index_desc_type)
1498 {
1499 int i;
1500
1501 if (index_desc_type == NULL)
1502 return;
1503 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1504
1505 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1506 to check one field only, no need to check them all). If not, return
1507 now.
1508
1509 If our INDEX_DESC_TYPE was generated using the older encoding,
1510 the field type should be a meaningless integer type whose name
1511 is not equal to the field name. */
1512 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1513 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1514 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1515 return;
1516
1517 /* Fixup each field of INDEX_DESC_TYPE. */
1518 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1519 {
1520 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1521 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1522
1523 if (raw_type)
1524 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1525 }
1526 }
1527
1528 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1529
1530 static char *bound_name[] = {
1531 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1532 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1533 };
1534
1535 /* Maximum number of array dimensions we are prepared to handle. */
1536
1537 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1538
1539
1540 /* The desc_* routines return primitive portions of array descriptors
1541 (fat pointers). */
1542
1543 /* The descriptor or array type, if any, indicated by TYPE; removes
1544 level of indirection, if needed. */
1545
1546 static struct type *
1547 desc_base_type (struct type *type)
1548 {
1549 if (type == NULL)
1550 return NULL;
1551 type = ada_check_typedef (type);
1552 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1553 type = ada_typedef_target_type (type);
1554
1555 if (type != NULL
1556 && (TYPE_CODE (type) == TYPE_CODE_PTR
1557 || TYPE_CODE (type) == TYPE_CODE_REF))
1558 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1559 else
1560 return type;
1561 }
1562
1563 /* True iff TYPE indicates a "thin" array pointer type. */
1564
1565 static int
1566 is_thin_pntr (struct type *type)
1567 {
1568 return
1569 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1570 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1571 }
1572
1573 /* The descriptor type for thin pointer type TYPE. */
1574
1575 static struct type *
1576 thin_descriptor_type (struct type *type)
1577 {
1578 struct type *base_type = desc_base_type (type);
1579
1580 if (base_type == NULL)
1581 return NULL;
1582 if (is_suffix (ada_type_name (base_type), "___XVE"))
1583 return base_type;
1584 else
1585 {
1586 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1587
1588 if (alt_type == NULL)
1589 return base_type;
1590 else
1591 return alt_type;
1592 }
1593 }
1594
1595 /* A pointer to the array data for thin-pointer value VAL. */
1596
1597 static struct value *
1598 thin_data_pntr (struct value *val)
1599 {
1600 struct type *type = ada_check_typedef (value_type (val));
1601 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1602
1603 data_type = lookup_pointer_type (data_type);
1604
1605 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1606 return value_cast (data_type, value_copy (val));
1607 else
1608 return value_from_longest (data_type, value_address (val));
1609 }
1610
1611 /* True iff TYPE indicates a "thick" array pointer type. */
1612
1613 static int
1614 is_thick_pntr (struct type *type)
1615 {
1616 type = desc_base_type (type);
1617 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1618 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1619 }
1620
1621 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1622 pointer to one, the type of its bounds data; otherwise, NULL. */
1623
1624 static struct type *
1625 desc_bounds_type (struct type *type)
1626 {
1627 struct type *r;
1628
1629 type = desc_base_type (type);
1630
1631 if (type == NULL)
1632 return NULL;
1633 else if (is_thin_pntr (type))
1634 {
1635 type = thin_descriptor_type (type);
1636 if (type == NULL)
1637 return NULL;
1638 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1639 if (r != NULL)
1640 return ada_check_typedef (r);
1641 }
1642 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1643 {
1644 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1645 if (r != NULL)
1646 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1647 }
1648 return NULL;
1649 }
1650
1651 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1652 one, a pointer to its bounds data. Otherwise NULL. */
1653
1654 static struct value *
1655 desc_bounds (struct value *arr)
1656 {
1657 struct type *type = ada_check_typedef (value_type (arr));
1658
1659 if (is_thin_pntr (type))
1660 {
1661 struct type *bounds_type =
1662 desc_bounds_type (thin_descriptor_type (type));
1663 LONGEST addr;
1664
1665 if (bounds_type == NULL)
1666 error (_("Bad GNAT array descriptor"));
1667
1668 /* NOTE: The following calculation is not really kosher, but
1669 since desc_type is an XVE-encoded type (and shouldn't be),
1670 the correct calculation is a real pain. FIXME (and fix GCC). */
1671 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1672 addr = value_as_long (arr);
1673 else
1674 addr = value_address (arr);
1675
1676 return
1677 value_from_longest (lookup_pointer_type (bounds_type),
1678 addr - TYPE_LENGTH (bounds_type));
1679 }
1680
1681 else if (is_thick_pntr (type))
1682 {
1683 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1684 _("Bad GNAT array descriptor"));
1685 struct type *p_bounds_type = value_type (p_bounds);
1686
1687 if (p_bounds_type
1688 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1689 {
1690 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1691
1692 if (TYPE_STUB (target_type))
1693 p_bounds = value_cast (lookup_pointer_type
1694 (ada_check_typedef (target_type)),
1695 p_bounds);
1696 }
1697 else
1698 error (_("Bad GNAT array descriptor"));
1699
1700 return p_bounds;
1701 }
1702 else
1703 return NULL;
1704 }
1705
1706 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1707 position of the field containing the address of the bounds data. */
1708
1709 static int
1710 fat_pntr_bounds_bitpos (struct type *type)
1711 {
1712 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1713 }
1714
1715 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1716 size of the field containing the address of the bounds data. */
1717
1718 static int
1719 fat_pntr_bounds_bitsize (struct type *type)
1720 {
1721 type = desc_base_type (type);
1722
1723 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1724 return TYPE_FIELD_BITSIZE (type, 1);
1725 else
1726 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1727 }
1728
1729 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1730 pointer to one, the type of its array data (a array-with-no-bounds type);
1731 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1732 data. */
1733
1734 static struct type *
1735 desc_data_target_type (struct type *type)
1736 {
1737 type = desc_base_type (type);
1738
1739 /* NOTE: The following is bogus; see comment in desc_bounds. */
1740 if (is_thin_pntr (type))
1741 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1742 else if (is_thick_pntr (type))
1743 {
1744 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1745
1746 if (data_type
1747 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1748 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1749 }
1750
1751 return NULL;
1752 }
1753
1754 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1755 its array data. */
1756
1757 static struct value *
1758 desc_data (struct value *arr)
1759 {
1760 struct type *type = value_type (arr);
1761
1762 if (is_thin_pntr (type))
1763 return thin_data_pntr (arr);
1764 else if (is_thick_pntr (type))
1765 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1766 _("Bad GNAT array descriptor"));
1767 else
1768 return NULL;
1769 }
1770
1771
1772 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1773 position of the field containing the address of the data. */
1774
1775 static int
1776 fat_pntr_data_bitpos (struct type *type)
1777 {
1778 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1779 }
1780
1781 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1782 size of the field containing the address of the data. */
1783
1784 static int
1785 fat_pntr_data_bitsize (struct type *type)
1786 {
1787 type = desc_base_type (type);
1788
1789 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1790 return TYPE_FIELD_BITSIZE (type, 0);
1791 else
1792 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1793 }
1794
1795 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1796 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1797 bound, if WHICH is 1. The first bound is I=1. */
1798
1799 static struct value *
1800 desc_one_bound (struct value *bounds, int i, int which)
1801 {
1802 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1803 _("Bad GNAT array descriptor bounds"));
1804 }
1805
1806 /* If BOUNDS is an array-bounds structure type, return the bit position
1807 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1808 bound, if WHICH is 1. The first bound is I=1. */
1809
1810 static int
1811 desc_bound_bitpos (struct type *type, int i, int which)
1812 {
1813 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1814 }
1815
1816 /* If BOUNDS is an array-bounds structure type, return the bit field size
1817 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1818 bound, if WHICH is 1. The first bound is I=1. */
1819
1820 static int
1821 desc_bound_bitsize (struct type *type, int i, int which)
1822 {
1823 type = desc_base_type (type);
1824
1825 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1826 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1827 else
1828 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1829 }
1830
1831 /* If TYPE is the type of an array-bounds structure, the type of its
1832 Ith bound (numbering from 1). Otherwise, NULL. */
1833
1834 static struct type *
1835 desc_index_type (struct type *type, int i)
1836 {
1837 type = desc_base_type (type);
1838
1839 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1840 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1841 else
1842 return NULL;
1843 }
1844
1845 /* The number of index positions in the array-bounds type TYPE.
1846 Return 0 if TYPE is NULL. */
1847
1848 static int
1849 desc_arity (struct type *type)
1850 {
1851 type = desc_base_type (type);
1852
1853 if (type != NULL)
1854 return TYPE_NFIELDS (type) / 2;
1855 return 0;
1856 }
1857
1858 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1859 an array descriptor type (representing an unconstrained array
1860 type). */
1861
1862 static int
1863 ada_is_direct_array_type (struct type *type)
1864 {
1865 if (type == NULL)
1866 return 0;
1867 type = ada_check_typedef (type);
1868 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1869 || ada_is_array_descriptor_type (type));
1870 }
1871
1872 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1873 * to one. */
1874
1875 static int
1876 ada_is_array_type (struct type *type)
1877 {
1878 while (type != NULL
1879 && (TYPE_CODE (type) == TYPE_CODE_PTR
1880 || TYPE_CODE (type) == TYPE_CODE_REF))
1881 type = TYPE_TARGET_TYPE (type);
1882 return ada_is_direct_array_type (type);
1883 }
1884
1885 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1886
1887 int
1888 ada_is_simple_array_type (struct type *type)
1889 {
1890 if (type == NULL)
1891 return 0;
1892 type = ada_check_typedef (type);
1893 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1894 || (TYPE_CODE (type) == TYPE_CODE_PTR
1895 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1896 == TYPE_CODE_ARRAY));
1897 }
1898
1899 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1900
1901 int
1902 ada_is_array_descriptor_type (struct type *type)
1903 {
1904 struct type *data_type = desc_data_target_type (type);
1905
1906 if (type == NULL)
1907 return 0;
1908 type = ada_check_typedef (type);
1909 return (data_type != NULL
1910 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1911 && desc_arity (desc_bounds_type (type)) > 0);
1912 }
1913
1914 /* Non-zero iff type is a partially mal-formed GNAT array
1915 descriptor. FIXME: This is to compensate for some problems with
1916 debugging output from GNAT. Re-examine periodically to see if it
1917 is still needed. */
1918
1919 int
1920 ada_is_bogus_array_descriptor (struct type *type)
1921 {
1922 return
1923 type != NULL
1924 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1925 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1926 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1927 && !ada_is_array_descriptor_type (type);
1928 }
1929
1930
1931 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1932 (fat pointer) returns the type of the array data described---specifically,
1933 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1934 in from the descriptor; otherwise, they are left unspecified. If
1935 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1936 returns NULL. The result is simply the type of ARR if ARR is not
1937 a descriptor. */
1938 struct type *
1939 ada_type_of_array (struct value *arr, int bounds)
1940 {
1941 if (ada_is_constrained_packed_array_type (value_type (arr)))
1942 return decode_constrained_packed_array_type (value_type (arr));
1943
1944 if (!ada_is_array_descriptor_type (value_type (arr)))
1945 return value_type (arr);
1946
1947 if (!bounds)
1948 {
1949 struct type *array_type =
1950 ada_check_typedef (desc_data_target_type (value_type (arr)));
1951
1952 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1953 TYPE_FIELD_BITSIZE (array_type, 0) =
1954 decode_packed_array_bitsize (value_type (arr));
1955
1956 return array_type;
1957 }
1958 else
1959 {
1960 struct type *elt_type;
1961 int arity;
1962 struct value *descriptor;
1963
1964 elt_type = ada_array_element_type (value_type (arr), -1);
1965 arity = ada_array_arity (value_type (arr));
1966
1967 if (elt_type == NULL || arity == 0)
1968 return ada_check_typedef (value_type (arr));
1969
1970 descriptor = desc_bounds (arr);
1971 if (value_as_long (descriptor) == 0)
1972 return NULL;
1973 while (arity > 0)
1974 {
1975 struct type *range_type = alloc_type_copy (value_type (arr));
1976 struct type *array_type = alloc_type_copy (value_type (arr));
1977 struct value *low = desc_one_bound (descriptor, arity, 0);
1978 struct value *high = desc_one_bound (descriptor, arity, 1);
1979
1980 arity -= 1;
1981 create_static_range_type (range_type, value_type (low),
1982 longest_to_int (value_as_long (low)),
1983 longest_to_int (value_as_long (high)));
1984 elt_type = create_array_type (array_type, elt_type, range_type);
1985
1986 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1987 {
1988 /* We need to store the element packed bitsize, as well as
1989 recompute the array size, because it was previously
1990 computed based on the unpacked element size. */
1991 LONGEST lo = value_as_long (low);
1992 LONGEST hi = value_as_long (high);
1993
1994 TYPE_FIELD_BITSIZE (elt_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996 /* If the array has no element, then the size is already
1997 zero, and does not need to be recomputed. */
1998 if (lo < hi)
1999 {
2000 int array_bitsize =
2001 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2002
2003 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2004 }
2005 }
2006 }
2007
2008 return lookup_pointer_type (elt_type);
2009 }
2010 }
2011
2012 /* If ARR does not represent an array, returns ARR unchanged.
2013 Otherwise, returns either a standard GDB array with bounds set
2014 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2015 GDB array. Returns NULL if ARR is a null fat pointer. */
2016
2017 struct value *
2018 ada_coerce_to_simple_array_ptr (struct value *arr)
2019 {
2020 if (ada_is_array_descriptor_type (value_type (arr)))
2021 {
2022 struct type *arrType = ada_type_of_array (arr, 1);
2023
2024 if (arrType == NULL)
2025 return NULL;
2026 return value_cast (arrType, value_copy (desc_data (arr)));
2027 }
2028 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2029 return decode_constrained_packed_array (arr);
2030 else
2031 return arr;
2032 }
2033
2034 /* If ARR does not represent an array, returns ARR unchanged.
2035 Otherwise, returns a standard GDB array describing ARR (which may
2036 be ARR itself if it already is in the proper form). */
2037
2038 struct value *
2039 ada_coerce_to_simple_array (struct value *arr)
2040 {
2041 if (ada_is_array_descriptor_type (value_type (arr)))
2042 {
2043 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2044
2045 if (arrVal == NULL)
2046 error (_("Bounds unavailable for null array pointer."));
2047 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
2048 return value_ind (arrVal);
2049 }
2050 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2051 return decode_constrained_packed_array (arr);
2052 else
2053 return arr;
2054 }
2055
2056 /* If TYPE represents a GNAT array type, return it translated to an
2057 ordinary GDB array type (possibly with BITSIZE fields indicating
2058 packing). For other types, is the identity. */
2059
2060 struct type *
2061 ada_coerce_to_simple_array_type (struct type *type)
2062 {
2063 if (ada_is_constrained_packed_array_type (type))
2064 return decode_constrained_packed_array_type (type);
2065
2066 if (ada_is_array_descriptor_type (type))
2067 return ada_check_typedef (desc_data_target_type (type));
2068
2069 return type;
2070 }
2071
2072 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2073
2074 static int
2075 ada_is_packed_array_type (struct type *type)
2076 {
2077 if (type == NULL)
2078 return 0;
2079 type = desc_base_type (type);
2080 type = ada_check_typedef (type);
2081 return
2082 ada_type_name (type) != NULL
2083 && strstr (ada_type_name (type), "___XP") != NULL;
2084 }
2085
2086 /* Non-zero iff TYPE represents a standard GNAT constrained
2087 packed-array type. */
2088
2089 int
2090 ada_is_constrained_packed_array_type (struct type *type)
2091 {
2092 return ada_is_packed_array_type (type)
2093 && !ada_is_array_descriptor_type (type);
2094 }
2095
2096 /* Non-zero iff TYPE represents an array descriptor for a
2097 unconstrained packed-array type. */
2098
2099 static int
2100 ada_is_unconstrained_packed_array_type (struct type *type)
2101 {
2102 return ada_is_packed_array_type (type)
2103 && ada_is_array_descriptor_type (type);
2104 }
2105
2106 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2107 return the size of its elements in bits. */
2108
2109 static long
2110 decode_packed_array_bitsize (struct type *type)
2111 {
2112 const char *raw_name;
2113 const char *tail;
2114 long bits;
2115
2116 /* Access to arrays implemented as fat pointers are encoded as a typedef
2117 of the fat pointer type. We need the name of the fat pointer type
2118 to do the decoding, so strip the typedef layer. */
2119 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2120 type = ada_typedef_target_type (type);
2121
2122 raw_name = ada_type_name (ada_check_typedef (type));
2123 if (!raw_name)
2124 raw_name = ada_type_name (desc_base_type (type));
2125
2126 if (!raw_name)
2127 return 0;
2128
2129 tail = strstr (raw_name, "___XP");
2130 gdb_assert (tail != NULL);
2131
2132 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2133 {
2134 lim_warning
2135 (_("could not understand bit size information on packed array"));
2136 return 0;
2137 }
2138
2139 return bits;
2140 }
2141
2142 /* Given that TYPE is a standard GDB array type with all bounds filled
2143 in, and that the element size of its ultimate scalar constituents
2144 (that is, either its elements, or, if it is an array of arrays, its
2145 elements' elements, etc.) is *ELT_BITS, return an identical type,
2146 but with the bit sizes of its elements (and those of any
2147 constituent arrays) recorded in the BITSIZE components of its
2148 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2149 in bits. */
2150
2151 static struct type *
2152 constrained_packed_array_type (struct type *type, long *elt_bits)
2153 {
2154 struct type *new_elt_type;
2155 struct type *new_type;
2156 struct type *index_type_desc;
2157 struct type *index_type;
2158 LONGEST low_bound, high_bound;
2159
2160 type = ada_check_typedef (type);
2161 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2162 return type;
2163
2164 index_type_desc = ada_find_parallel_type (type, "___XA");
2165 if (index_type_desc)
2166 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2167 NULL);
2168 else
2169 index_type = TYPE_INDEX_TYPE (type);
2170
2171 new_type = alloc_type_copy (type);
2172 new_elt_type =
2173 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2174 elt_bits);
2175 create_array_type (new_type, new_elt_type, index_type);
2176 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2177 TYPE_NAME (new_type) = ada_type_name (type);
2178
2179 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2180 low_bound = high_bound = 0;
2181 if (high_bound < low_bound)
2182 *elt_bits = TYPE_LENGTH (new_type) = 0;
2183 else
2184 {
2185 *elt_bits *= (high_bound - low_bound + 1);
2186 TYPE_LENGTH (new_type) =
2187 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2188 }
2189
2190 TYPE_FIXED_INSTANCE (new_type) = 1;
2191 return new_type;
2192 }
2193
2194 /* The array type encoded by TYPE, where
2195 ada_is_constrained_packed_array_type (TYPE). */
2196
2197 static struct type *
2198 decode_constrained_packed_array_type (struct type *type)
2199 {
2200 const char *raw_name = ada_type_name (ada_check_typedef (type));
2201 char *name;
2202 const char *tail;
2203 struct type *shadow_type;
2204 long bits;
2205
2206 if (!raw_name)
2207 raw_name = ada_type_name (desc_base_type (type));
2208
2209 if (!raw_name)
2210 return NULL;
2211
2212 name = (char *) alloca (strlen (raw_name) + 1);
2213 tail = strstr (raw_name, "___XP");
2214 type = desc_base_type (type);
2215
2216 memcpy (name, raw_name, tail - raw_name);
2217 name[tail - raw_name] = '\000';
2218
2219 shadow_type = ada_find_parallel_type_with_name (type, name);
2220
2221 if (shadow_type == NULL)
2222 {
2223 lim_warning (_("could not find bounds information on packed array"));
2224 return NULL;
2225 }
2226 CHECK_TYPEDEF (shadow_type);
2227
2228 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2229 {
2230 lim_warning (_("could not understand bounds "
2231 "information on packed array"));
2232 return NULL;
2233 }
2234
2235 bits = decode_packed_array_bitsize (type);
2236 return constrained_packed_array_type (shadow_type, &bits);
2237 }
2238
2239 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2240 array, returns a simple array that denotes that array. Its type is a
2241 standard GDB array type except that the BITSIZEs of the array
2242 target types are set to the number of bits in each element, and the
2243 type length is set appropriately. */
2244
2245 static struct value *
2246 decode_constrained_packed_array (struct value *arr)
2247 {
2248 struct type *type;
2249
2250 /* If our value is a pointer, then dereference it. Likewise if
2251 the value is a reference. Make sure that this operation does not
2252 cause the target type to be fixed, as this would indirectly cause
2253 this array to be decoded. The rest of the routine assumes that
2254 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2255 and "value_ind" routines to perform the dereferencing, as opposed
2256 to using "ada_coerce_ref" or "ada_value_ind". */
2257 arr = coerce_ref (arr);
2258 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2259 arr = value_ind (arr);
2260
2261 type = decode_constrained_packed_array_type (value_type (arr));
2262 if (type == NULL)
2263 {
2264 error (_("can't unpack array"));
2265 return NULL;
2266 }
2267
2268 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2269 && ada_is_modular_type (value_type (arr)))
2270 {
2271 /* This is a (right-justified) modular type representing a packed
2272 array with no wrapper. In order to interpret the value through
2273 the (left-justified) packed array type we just built, we must
2274 first left-justify it. */
2275 int bit_size, bit_pos;
2276 ULONGEST mod;
2277
2278 mod = ada_modulus (value_type (arr)) - 1;
2279 bit_size = 0;
2280 while (mod > 0)
2281 {
2282 bit_size += 1;
2283 mod >>= 1;
2284 }
2285 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2286 arr = ada_value_primitive_packed_val (arr, NULL,
2287 bit_pos / HOST_CHAR_BIT,
2288 bit_pos % HOST_CHAR_BIT,
2289 bit_size,
2290 type);
2291 }
2292
2293 return coerce_unspec_val_to_type (arr, type);
2294 }
2295
2296
2297 /* The value of the element of packed array ARR at the ARITY indices
2298 given in IND. ARR must be a simple array. */
2299
2300 static struct value *
2301 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2302 {
2303 int i;
2304 int bits, elt_off, bit_off;
2305 long elt_total_bit_offset;
2306 struct type *elt_type;
2307 struct value *v;
2308
2309 bits = 0;
2310 elt_total_bit_offset = 0;
2311 elt_type = ada_check_typedef (value_type (arr));
2312 for (i = 0; i < arity; i += 1)
2313 {
2314 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2315 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2316 error
2317 (_("attempt to do packed indexing of "
2318 "something other than a packed array"));
2319 else
2320 {
2321 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2322 LONGEST lowerbound, upperbound;
2323 LONGEST idx;
2324
2325 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2326 {
2327 lim_warning (_("don't know bounds of array"));
2328 lowerbound = upperbound = 0;
2329 }
2330
2331 idx = pos_atr (ind[i]);
2332 if (idx < lowerbound || idx > upperbound)
2333 lim_warning (_("packed array index %ld out of bounds"),
2334 (long) idx);
2335 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2336 elt_total_bit_offset += (idx - lowerbound) * bits;
2337 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2338 }
2339 }
2340 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2341 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2342
2343 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2344 bits, elt_type);
2345 return v;
2346 }
2347
2348 /* Non-zero iff TYPE includes negative integer values. */
2349
2350 static int
2351 has_negatives (struct type *type)
2352 {
2353 switch (TYPE_CODE (type))
2354 {
2355 default:
2356 return 0;
2357 case TYPE_CODE_INT:
2358 return !TYPE_UNSIGNED (type);
2359 case TYPE_CODE_RANGE:
2360 return TYPE_LOW_BOUND (type) < 0;
2361 }
2362 }
2363
2364
2365 /* Create a new value of type TYPE from the contents of OBJ starting
2366 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2367 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2368 assigning through the result will set the field fetched from.
2369 VALADDR is ignored unless OBJ is NULL, in which case,
2370 VALADDR+OFFSET must address the start of storage containing the
2371 packed value. The value returned in this case is never an lval.
2372 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2373
2374 struct value *
2375 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2376 long offset, int bit_offset, int bit_size,
2377 struct type *type)
2378 {
2379 struct value *v;
2380 int src, /* Index into the source area */
2381 targ, /* Index into the target area */
2382 srcBitsLeft, /* Number of source bits left to move */
2383 nsrc, ntarg, /* Number of source and target bytes */
2384 unusedLS, /* Number of bits in next significant
2385 byte of source that are unused */
2386 accumSize; /* Number of meaningful bits in accum */
2387 unsigned char *bytes; /* First byte containing data to unpack */
2388 unsigned char *unpacked;
2389 unsigned long accum; /* Staging area for bits being transferred */
2390 unsigned char sign;
2391 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2392 /* Transmit bytes from least to most significant; delta is the direction
2393 the indices move. */
2394 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2395
2396 type = ada_check_typedef (type);
2397
2398 if (obj == NULL)
2399 {
2400 v = allocate_value (type);
2401 bytes = (unsigned char *) (valaddr + offset);
2402 }
2403 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2404 {
2405 v = value_at (type, value_address (obj));
2406 type = value_type (v);
2407 bytes = (unsigned char *) alloca (len);
2408 read_memory (value_address (v) + offset, bytes, len);
2409 }
2410 else
2411 {
2412 v = allocate_value (type);
2413 bytes = (unsigned char *) value_contents (obj) + offset;
2414 }
2415
2416 if (obj != NULL)
2417 {
2418 long new_offset = offset;
2419
2420 set_value_component_location (v, obj);
2421 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2422 set_value_bitsize (v, bit_size);
2423 if (value_bitpos (v) >= HOST_CHAR_BIT)
2424 {
2425 ++new_offset;
2426 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2427 }
2428 set_value_offset (v, new_offset);
2429
2430 /* Also set the parent value. This is needed when trying to
2431 assign a new value (in inferior memory). */
2432 set_value_parent (v, obj);
2433 }
2434 else
2435 set_value_bitsize (v, bit_size);
2436 unpacked = (unsigned char *) value_contents (v);
2437
2438 srcBitsLeft = bit_size;
2439 nsrc = len;
2440 ntarg = TYPE_LENGTH (type);
2441 sign = 0;
2442 if (bit_size == 0)
2443 {
2444 memset (unpacked, 0, TYPE_LENGTH (type));
2445 return v;
2446 }
2447 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2448 {
2449 src = len - 1;
2450 if (has_negatives (type)
2451 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2452 sign = ~0;
2453
2454 unusedLS =
2455 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2456 % HOST_CHAR_BIT;
2457
2458 switch (TYPE_CODE (type))
2459 {
2460 case TYPE_CODE_ARRAY:
2461 case TYPE_CODE_UNION:
2462 case TYPE_CODE_STRUCT:
2463 /* Non-scalar values must be aligned at a byte boundary... */
2464 accumSize =
2465 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2466 /* ... And are placed at the beginning (most-significant) bytes
2467 of the target. */
2468 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2469 ntarg = targ + 1;
2470 break;
2471 default:
2472 accumSize = 0;
2473 targ = TYPE_LENGTH (type) - 1;
2474 break;
2475 }
2476 }
2477 else
2478 {
2479 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2480
2481 src = targ = 0;
2482 unusedLS = bit_offset;
2483 accumSize = 0;
2484
2485 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2486 sign = ~0;
2487 }
2488
2489 accum = 0;
2490 while (nsrc > 0)
2491 {
2492 /* Mask for removing bits of the next source byte that are not
2493 part of the value. */
2494 unsigned int unusedMSMask =
2495 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2496 1;
2497 /* Sign-extend bits for this byte. */
2498 unsigned int signMask = sign & ~unusedMSMask;
2499
2500 accum |=
2501 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2502 accumSize += HOST_CHAR_BIT - unusedLS;
2503 if (accumSize >= HOST_CHAR_BIT)
2504 {
2505 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2506 accumSize -= HOST_CHAR_BIT;
2507 accum >>= HOST_CHAR_BIT;
2508 ntarg -= 1;
2509 targ += delta;
2510 }
2511 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2512 unusedLS = 0;
2513 nsrc -= 1;
2514 src += delta;
2515 }
2516 while (ntarg > 0)
2517 {
2518 accum |= sign << accumSize;
2519 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
2522 ntarg -= 1;
2523 targ += delta;
2524 }
2525
2526 return v;
2527 }
2528
2529 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2530 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2531 not overlap. */
2532 static void
2533 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2534 int src_offset, int n, int bits_big_endian_p)
2535 {
2536 unsigned int accum, mask;
2537 int accum_bits, chunk_size;
2538
2539 target += targ_offset / HOST_CHAR_BIT;
2540 targ_offset %= HOST_CHAR_BIT;
2541 source += src_offset / HOST_CHAR_BIT;
2542 src_offset %= HOST_CHAR_BIT;
2543 if (bits_big_endian_p)
2544 {
2545 accum = (unsigned char) *source;
2546 source += 1;
2547 accum_bits = HOST_CHAR_BIT - src_offset;
2548
2549 while (n > 0)
2550 {
2551 int unused_right;
2552
2553 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2554 accum_bits += HOST_CHAR_BIT;
2555 source += 1;
2556 chunk_size = HOST_CHAR_BIT - targ_offset;
2557 if (chunk_size > n)
2558 chunk_size = n;
2559 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2560 mask = ((1 << chunk_size) - 1) << unused_right;
2561 *target =
2562 (*target & ~mask)
2563 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2564 n -= chunk_size;
2565 accum_bits -= chunk_size;
2566 target += 1;
2567 targ_offset = 0;
2568 }
2569 }
2570 else
2571 {
2572 accum = (unsigned char) *source >> src_offset;
2573 source += 1;
2574 accum_bits = HOST_CHAR_BIT - src_offset;
2575
2576 while (n > 0)
2577 {
2578 accum = accum + ((unsigned char) *source << accum_bits);
2579 accum_bits += HOST_CHAR_BIT;
2580 source += 1;
2581 chunk_size = HOST_CHAR_BIT - targ_offset;
2582 if (chunk_size > n)
2583 chunk_size = n;
2584 mask = ((1 << chunk_size) - 1) << targ_offset;
2585 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2586 n -= chunk_size;
2587 accum_bits -= chunk_size;
2588 accum >>= chunk_size;
2589 target += 1;
2590 targ_offset = 0;
2591 }
2592 }
2593 }
2594
2595 /* Store the contents of FROMVAL into the location of TOVAL.
2596 Return a new value with the location of TOVAL and contents of
2597 FROMVAL. Handles assignment into packed fields that have
2598 floating-point or non-scalar types. */
2599
2600 static struct value *
2601 ada_value_assign (struct value *toval, struct value *fromval)
2602 {
2603 struct type *type = value_type (toval);
2604 int bits = value_bitsize (toval);
2605
2606 toval = ada_coerce_ref (toval);
2607 fromval = ada_coerce_ref (fromval);
2608
2609 if (ada_is_direct_array_type (value_type (toval)))
2610 toval = ada_coerce_to_simple_array (toval);
2611 if (ada_is_direct_array_type (value_type (fromval)))
2612 fromval = ada_coerce_to_simple_array (fromval);
2613
2614 if (!deprecated_value_modifiable (toval))
2615 error (_("Left operand of assignment is not a modifiable lvalue."));
2616
2617 if (VALUE_LVAL (toval) == lval_memory
2618 && bits > 0
2619 && (TYPE_CODE (type) == TYPE_CODE_FLT
2620 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2621 {
2622 int len = (value_bitpos (toval)
2623 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2624 int from_size;
2625 gdb_byte *buffer = alloca (len);
2626 struct value *val;
2627 CORE_ADDR to_addr = value_address (toval);
2628
2629 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2630 fromval = value_cast (type, fromval);
2631
2632 read_memory (to_addr, buffer, len);
2633 from_size = value_bitsize (fromval);
2634 if (from_size == 0)
2635 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2636 if (gdbarch_bits_big_endian (get_type_arch (type)))
2637 move_bits (buffer, value_bitpos (toval),
2638 value_contents (fromval), from_size - bits, bits, 1);
2639 else
2640 move_bits (buffer, value_bitpos (toval),
2641 value_contents (fromval), 0, bits, 0);
2642 write_memory_with_notification (to_addr, buffer, len);
2643
2644 val = value_copy (toval);
2645 memcpy (value_contents_raw (val), value_contents (fromval),
2646 TYPE_LENGTH (type));
2647 deprecated_set_value_type (val, type);
2648
2649 return val;
2650 }
2651
2652 return value_assign (toval, fromval);
2653 }
2654
2655
2656 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2657 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2658 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2659 * COMPONENT, and not the inferior's memory. The current contents
2660 * of COMPONENT are ignored. */
2661 static void
2662 value_assign_to_component (struct value *container, struct value *component,
2663 struct value *val)
2664 {
2665 LONGEST offset_in_container =
2666 (LONGEST) (value_address (component) - value_address (container));
2667 int bit_offset_in_container =
2668 value_bitpos (component) - value_bitpos (container);
2669 int bits;
2670
2671 val = value_cast (value_type (component), val);
2672
2673 if (value_bitsize (component) == 0)
2674 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2675 else
2676 bits = value_bitsize (component);
2677
2678 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2679 move_bits (value_contents_writeable (container) + offset_in_container,
2680 value_bitpos (container) + bit_offset_in_container,
2681 value_contents (val),
2682 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2683 bits, 1);
2684 else
2685 move_bits (value_contents_writeable (container) + offset_in_container,
2686 value_bitpos (container) + bit_offset_in_container,
2687 value_contents (val), 0, bits, 0);
2688 }
2689
2690 /* The value of the element of array ARR at the ARITY indices given in IND.
2691 ARR may be either a simple array, GNAT array descriptor, or pointer
2692 thereto. */
2693
2694 struct value *
2695 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2696 {
2697 int k;
2698 struct value *elt;
2699 struct type *elt_type;
2700
2701 elt = ada_coerce_to_simple_array (arr);
2702
2703 elt_type = ada_check_typedef (value_type (elt));
2704 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2705 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2706 return value_subscript_packed (elt, arity, ind);
2707
2708 for (k = 0; k < arity; k += 1)
2709 {
2710 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2711 error (_("too many subscripts (%d expected)"), k);
2712 elt = value_subscript (elt, pos_atr (ind[k]));
2713 }
2714 return elt;
2715 }
2716
2717 /* Assuming ARR is a pointer to a GDB array, the value of the element
2718 of *ARR at the ARITY indices given in IND.
2719 Does not read the entire array into memory. */
2720
2721 static struct value *
2722 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2723 {
2724 int k;
2725 struct type *type
2726 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
2727
2728 for (k = 0; k < arity; k += 1)
2729 {
2730 LONGEST lwb, upb;
2731
2732 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2733 error (_("too many subscripts (%d expected)"), k);
2734 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2735 value_copy (arr));
2736 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2737 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2738 type = TYPE_TARGET_TYPE (type);
2739 }
2740
2741 return value_ind (arr);
2742 }
2743
2744 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2745 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2746 elements starting at index LOW. The lower bound of this array is LOW, as
2747 per Ada rules. */
2748 static struct value *
2749 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2750 int low, int high)
2751 {
2752 struct type *type0 = ada_check_typedef (type);
2753 CORE_ADDR base = value_as_address (array_ptr)
2754 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2755 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2756 struct type *index_type
2757 = create_static_range_type (NULL,
2758 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2759 low, high);
2760 struct type *slice_type =
2761 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2762
2763 return value_at_lazy (slice_type, base);
2764 }
2765
2766
2767 static struct value *
2768 ada_value_slice (struct value *array, int low, int high)
2769 {
2770 struct type *type = ada_check_typedef (value_type (array));
2771 struct type *index_type
2772 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2773 struct type *slice_type =
2774 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2775
2776 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2777 }
2778
2779 /* If type is a record type in the form of a standard GNAT array
2780 descriptor, returns the number of dimensions for type. If arr is a
2781 simple array, returns the number of "array of"s that prefix its
2782 type designation. Otherwise, returns 0. */
2783
2784 int
2785 ada_array_arity (struct type *type)
2786 {
2787 int arity;
2788
2789 if (type == NULL)
2790 return 0;
2791
2792 type = desc_base_type (type);
2793
2794 arity = 0;
2795 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2796 return desc_arity (desc_bounds_type (type));
2797 else
2798 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2799 {
2800 arity += 1;
2801 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2802 }
2803
2804 return arity;
2805 }
2806
2807 /* If TYPE is a record type in the form of a standard GNAT array
2808 descriptor or a simple array type, returns the element type for
2809 TYPE after indexing by NINDICES indices, or by all indices if
2810 NINDICES is -1. Otherwise, returns NULL. */
2811
2812 struct type *
2813 ada_array_element_type (struct type *type, int nindices)
2814 {
2815 type = desc_base_type (type);
2816
2817 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2818 {
2819 int k;
2820 struct type *p_array_type;
2821
2822 p_array_type = desc_data_target_type (type);
2823
2824 k = ada_array_arity (type);
2825 if (k == 0)
2826 return NULL;
2827
2828 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2829 if (nindices >= 0 && k > nindices)
2830 k = nindices;
2831 while (k > 0 && p_array_type != NULL)
2832 {
2833 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2834 k -= 1;
2835 }
2836 return p_array_type;
2837 }
2838 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2839 {
2840 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2841 {
2842 type = TYPE_TARGET_TYPE (type);
2843 nindices -= 1;
2844 }
2845 return type;
2846 }
2847
2848 return NULL;
2849 }
2850
2851 /* The type of nth index in arrays of given type (n numbering from 1).
2852 Does not examine memory. Throws an error if N is invalid or TYPE
2853 is not an array type. NAME is the name of the Ada attribute being
2854 evaluated ('range, 'first, 'last, or 'length); it is used in building
2855 the error message. */
2856
2857 static struct type *
2858 ada_index_type (struct type *type, int n, const char *name)
2859 {
2860 struct type *result_type;
2861
2862 type = desc_base_type (type);
2863
2864 if (n < 0 || n > ada_array_arity (type))
2865 error (_("invalid dimension number to '%s"), name);
2866
2867 if (ada_is_simple_array_type (type))
2868 {
2869 int i;
2870
2871 for (i = 1; i < n; i += 1)
2872 type = TYPE_TARGET_TYPE (type);
2873 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2874 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2875 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2876 perhaps stabsread.c would make more sense. */
2877 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2878 result_type = NULL;
2879 }
2880 else
2881 {
2882 result_type = desc_index_type (desc_bounds_type (type), n);
2883 if (result_type == NULL)
2884 error (_("attempt to take bound of something that is not an array"));
2885 }
2886
2887 return result_type;
2888 }
2889
2890 /* Given that arr is an array type, returns the lower bound of the
2891 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2892 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2893 array-descriptor type. It works for other arrays with bounds supplied
2894 by run-time quantities other than discriminants. */
2895
2896 static LONGEST
2897 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2898 {
2899 struct type *type, *index_type_desc, *index_type;
2900 int i;
2901
2902 gdb_assert (which == 0 || which == 1);
2903
2904 if (ada_is_constrained_packed_array_type (arr_type))
2905 arr_type = decode_constrained_packed_array_type (arr_type);
2906
2907 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2908 return (LONGEST) - which;
2909
2910 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2911 type = TYPE_TARGET_TYPE (arr_type);
2912 else
2913 type = arr_type;
2914
2915 index_type_desc = ada_find_parallel_type (type, "___XA");
2916 ada_fixup_array_indexes_type (index_type_desc);
2917 if (index_type_desc != NULL)
2918 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2919 NULL);
2920 else
2921 {
2922 struct type *elt_type = check_typedef (type);
2923
2924 for (i = 1; i < n; i++)
2925 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2926
2927 index_type = TYPE_INDEX_TYPE (elt_type);
2928 }
2929
2930 return
2931 (LONGEST) (which == 0
2932 ? ada_discrete_type_low_bound (index_type)
2933 : ada_discrete_type_high_bound (index_type));
2934 }
2935
2936 /* Given that arr is an array value, returns the lower bound of the
2937 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2938 WHICH is 1. This routine will also work for arrays with bounds
2939 supplied by run-time quantities other than discriminants. */
2940
2941 static LONGEST
2942 ada_array_bound (struct value *arr, int n, int which)
2943 {
2944 struct type *arr_type;
2945
2946 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2947 arr = value_ind (arr);
2948 arr_type = value_enclosing_type (arr);
2949
2950 if (ada_is_constrained_packed_array_type (arr_type))
2951 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2952 else if (ada_is_simple_array_type (arr_type))
2953 return ada_array_bound_from_type (arr_type, n, which);
2954 else
2955 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2956 }
2957
2958 /* Given that arr is an array value, returns the length of the
2959 nth index. This routine will also work for arrays with bounds
2960 supplied by run-time quantities other than discriminants.
2961 Does not work for arrays indexed by enumeration types with representation
2962 clauses at the moment. */
2963
2964 static LONGEST
2965 ada_array_length (struct value *arr, int n)
2966 {
2967 struct type *arr_type;
2968
2969 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2970 arr = value_ind (arr);
2971 arr_type = value_enclosing_type (arr);
2972
2973 if (ada_is_constrained_packed_array_type (arr_type))
2974 return ada_array_length (decode_constrained_packed_array (arr), n);
2975
2976 if (ada_is_simple_array_type (arr_type))
2977 return (ada_array_bound_from_type (arr_type, n, 1)
2978 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2979 else
2980 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2981 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2982 }
2983
2984 /* An empty array whose type is that of ARR_TYPE (an array type),
2985 with bounds LOW to LOW-1. */
2986
2987 static struct value *
2988 empty_array (struct type *arr_type, int low)
2989 {
2990 struct type *arr_type0 = ada_check_typedef (arr_type);
2991 struct type *index_type
2992 = create_static_range_type
2993 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
2994 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2995
2996 return allocate_value (create_array_type (NULL, elt_type, index_type));
2997 }
2998 \f
2999
3000 /* Name resolution */
3001
3002 /* The "decoded" name for the user-definable Ada operator corresponding
3003 to OP. */
3004
3005 static const char *
3006 ada_decoded_op_name (enum exp_opcode op)
3007 {
3008 int i;
3009
3010 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3011 {
3012 if (ada_opname_table[i].op == op)
3013 return ada_opname_table[i].decoded;
3014 }
3015 error (_("Could not find operator name for opcode"));
3016 }
3017
3018
3019 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3020 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3021 undefined namespace) and converts operators that are
3022 user-defined into appropriate function calls. If CONTEXT_TYPE is
3023 non-null, it provides a preferred result type [at the moment, only
3024 type void has any effect---causing procedures to be preferred over
3025 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3026 return type is preferred. May change (expand) *EXP. */
3027
3028 static void
3029 resolve (struct expression **expp, int void_context_p)
3030 {
3031 struct type *context_type = NULL;
3032 int pc = 0;
3033
3034 if (void_context_p)
3035 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3036
3037 resolve_subexp (expp, &pc, 1, context_type);
3038 }
3039
3040 /* Resolve the operator of the subexpression beginning at
3041 position *POS of *EXPP. "Resolving" consists of replacing
3042 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3043 with their resolutions, replacing built-in operators with
3044 function calls to user-defined operators, where appropriate, and,
3045 when DEPROCEDURE_P is non-zero, converting function-valued variables
3046 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3047 are as in ada_resolve, above. */
3048
3049 static struct value *
3050 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3051 struct type *context_type)
3052 {
3053 int pc = *pos;
3054 int i;
3055 struct expression *exp; /* Convenience: == *expp. */
3056 enum exp_opcode op = (*expp)->elts[pc].opcode;
3057 struct value **argvec; /* Vector of operand types (alloca'ed). */
3058 int nargs; /* Number of operands. */
3059 int oplen;
3060
3061 argvec = NULL;
3062 nargs = 0;
3063 exp = *expp;
3064
3065 /* Pass one: resolve operands, saving their types and updating *pos,
3066 if needed. */
3067 switch (op)
3068 {
3069 case OP_FUNCALL:
3070 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3071 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3072 *pos += 7;
3073 else
3074 {
3075 *pos += 3;
3076 resolve_subexp (expp, pos, 0, NULL);
3077 }
3078 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3079 break;
3080
3081 case UNOP_ADDR:
3082 *pos += 1;
3083 resolve_subexp (expp, pos, 0, NULL);
3084 break;
3085
3086 case UNOP_QUAL:
3087 *pos += 3;
3088 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3089 break;
3090
3091 case OP_ATR_MODULUS:
3092 case OP_ATR_SIZE:
3093 case OP_ATR_TAG:
3094 case OP_ATR_FIRST:
3095 case OP_ATR_LAST:
3096 case OP_ATR_LENGTH:
3097 case OP_ATR_POS:
3098 case OP_ATR_VAL:
3099 case OP_ATR_MIN:
3100 case OP_ATR_MAX:
3101 case TERNOP_IN_RANGE:
3102 case BINOP_IN_BOUNDS:
3103 case UNOP_IN_RANGE:
3104 case OP_AGGREGATE:
3105 case OP_OTHERS:
3106 case OP_CHOICES:
3107 case OP_POSITIONAL:
3108 case OP_DISCRETE_RANGE:
3109 case OP_NAME:
3110 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3111 *pos += oplen;
3112 break;
3113
3114 case BINOP_ASSIGN:
3115 {
3116 struct value *arg1;
3117
3118 *pos += 1;
3119 arg1 = resolve_subexp (expp, pos, 0, NULL);
3120 if (arg1 == NULL)
3121 resolve_subexp (expp, pos, 1, NULL);
3122 else
3123 resolve_subexp (expp, pos, 1, value_type (arg1));
3124 break;
3125 }
3126
3127 case UNOP_CAST:
3128 *pos += 3;
3129 nargs = 1;
3130 break;
3131
3132 case BINOP_ADD:
3133 case BINOP_SUB:
3134 case BINOP_MUL:
3135 case BINOP_DIV:
3136 case BINOP_REM:
3137 case BINOP_MOD:
3138 case BINOP_EXP:
3139 case BINOP_CONCAT:
3140 case BINOP_LOGICAL_AND:
3141 case BINOP_LOGICAL_OR:
3142 case BINOP_BITWISE_AND:
3143 case BINOP_BITWISE_IOR:
3144 case BINOP_BITWISE_XOR:
3145
3146 case BINOP_EQUAL:
3147 case BINOP_NOTEQUAL:
3148 case BINOP_LESS:
3149 case BINOP_GTR:
3150 case BINOP_LEQ:
3151 case BINOP_GEQ:
3152
3153 case BINOP_REPEAT:
3154 case BINOP_SUBSCRIPT:
3155 case BINOP_COMMA:
3156 *pos += 1;
3157 nargs = 2;
3158 break;
3159
3160 case UNOP_NEG:
3161 case UNOP_PLUS:
3162 case UNOP_LOGICAL_NOT:
3163 case UNOP_ABS:
3164 case UNOP_IND:
3165 *pos += 1;
3166 nargs = 1;
3167 break;
3168
3169 case OP_LONG:
3170 case OP_DOUBLE:
3171 case OP_VAR_VALUE:
3172 *pos += 4;
3173 break;
3174
3175 case OP_TYPE:
3176 case OP_BOOL:
3177 case OP_LAST:
3178 case OP_INTERNALVAR:
3179 *pos += 3;
3180 break;
3181
3182 case UNOP_MEMVAL:
3183 *pos += 3;
3184 nargs = 1;
3185 break;
3186
3187 case OP_REGISTER:
3188 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3189 break;
3190
3191 case STRUCTOP_STRUCT:
3192 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3193 nargs = 1;
3194 break;
3195
3196 case TERNOP_SLICE:
3197 *pos += 1;
3198 nargs = 3;
3199 break;
3200
3201 case OP_STRING:
3202 break;
3203
3204 default:
3205 error (_("Unexpected operator during name resolution"));
3206 }
3207
3208 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3209 for (i = 0; i < nargs; i += 1)
3210 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3211 argvec[i] = NULL;
3212 exp = *expp;
3213
3214 /* Pass two: perform any resolution on principal operator. */
3215 switch (op)
3216 {
3217 default:
3218 break;
3219
3220 case OP_VAR_VALUE:
3221 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3222 {
3223 struct ada_symbol_info *candidates;
3224 int n_candidates;
3225
3226 n_candidates =
3227 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3228 (exp->elts[pc + 2].symbol),
3229 exp->elts[pc + 1].block, VAR_DOMAIN,
3230 &candidates);
3231
3232 if (n_candidates > 1)
3233 {
3234 /* Types tend to get re-introduced locally, so if there
3235 are any local symbols that are not types, first filter
3236 out all types. */
3237 int j;
3238 for (j = 0; j < n_candidates; j += 1)
3239 switch (SYMBOL_CLASS (candidates[j].sym))
3240 {
3241 case LOC_REGISTER:
3242 case LOC_ARG:
3243 case LOC_REF_ARG:
3244 case LOC_REGPARM_ADDR:
3245 case LOC_LOCAL:
3246 case LOC_COMPUTED:
3247 goto FoundNonType;
3248 default:
3249 break;
3250 }
3251 FoundNonType:
3252 if (j < n_candidates)
3253 {
3254 j = 0;
3255 while (j < n_candidates)
3256 {
3257 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3258 {
3259 candidates[j] = candidates[n_candidates - 1];
3260 n_candidates -= 1;
3261 }
3262 else
3263 j += 1;
3264 }
3265 }
3266 }
3267
3268 if (n_candidates == 0)
3269 error (_("No definition found for %s"),
3270 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3271 else if (n_candidates == 1)
3272 i = 0;
3273 else if (deprocedure_p
3274 && !is_nonfunction (candidates, n_candidates))
3275 {
3276 i = ada_resolve_function
3277 (candidates, n_candidates, NULL, 0,
3278 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3279 context_type);
3280 if (i < 0)
3281 error (_("Could not find a match for %s"),
3282 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3283 }
3284 else
3285 {
3286 printf_filtered (_("Multiple matches for %s\n"),
3287 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3288 user_select_syms (candidates, n_candidates, 1);
3289 i = 0;
3290 }
3291
3292 exp->elts[pc + 1].block = candidates[i].block;
3293 exp->elts[pc + 2].symbol = candidates[i].sym;
3294 if (innermost_block == NULL
3295 || contained_in (candidates[i].block, innermost_block))
3296 innermost_block = candidates[i].block;
3297 }
3298
3299 if (deprocedure_p
3300 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3301 == TYPE_CODE_FUNC))
3302 {
3303 replace_operator_with_call (expp, pc, 0, 0,
3304 exp->elts[pc + 2].symbol,
3305 exp->elts[pc + 1].block);
3306 exp = *expp;
3307 }
3308 break;
3309
3310 case OP_FUNCALL:
3311 {
3312 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3313 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3314 {
3315 struct ada_symbol_info *candidates;
3316 int n_candidates;
3317
3318 n_candidates =
3319 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3320 (exp->elts[pc + 5].symbol),
3321 exp->elts[pc + 4].block, VAR_DOMAIN,
3322 &candidates);
3323 if (n_candidates == 1)
3324 i = 0;
3325 else
3326 {
3327 i = ada_resolve_function
3328 (candidates, n_candidates,
3329 argvec, nargs,
3330 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3331 context_type);
3332 if (i < 0)
3333 error (_("Could not find a match for %s"),
3334 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3335 }
3336
3337 exp->elts[pc + 4].block = candidates[i].block;
3338 exp->elts[pc + 5].symbol = candidates[i].sym;
3339 if (innermost_block == NULL
3340 || contained_in (candidates[i].block, innermost_block))
3341 innermost_block = candidates[i].block;
3342 }
3343 }
3344 break;
3345 case BINOP_ADD:
3346 case BINOP_SUB:
3347 case BINOP_MUL:
3348 case BINOP_DIV:
3349 case BINOP_REM:
3350 case BINOP_MOD:
3351 case BINOP_CONCAT:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
3355 case BINOP_EQUAL:
3356 case BINOP_NOTEQUAL:
3357 case BINOP_LESS:
3358 case BINOP_GTR:
3359 case BINOP_LEQ:
3360 case BINOP_GEQ:
3361 case BINOP_EXP:
3362 case UNOP_NEG:
3363 case UNOP_PLUS:
3364 case UNOP_LOGICAL_NOT:
3365 case UNOP_ABS:
3366 if (possible_user_operator_p (op, argvec))
3367 {
3368 struct ada_symbol_info *candidates;
3369 int n_candidates;
3370
3371 n_candidates =
3372 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3373 (struct block *) NULL, VAR_DOMAIN,
3374 &candidates);
3375 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3376 ada_decoded_op_name (op), NULL);
3377 if (i < 0)
3378 break;
3379
3380 replace_operator_with_call (expp, pc, nargs, 1,
3381 candidates[i].sym, candidates[i].block);
3382 exp = *expp;
3383 }
3384 break;
3385
3386 case OP_TYPE:
3387 case OP_REGISTER:
3388 return NULL;
3389 }
3390
3391 *pos = pc;
3392 return evaluate_subexp_type (exp, pos);
3393 }
3394
3395 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3396 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3397 a non-pointer. */
3398 /* The term "match" here is rather loose. The match is heuristic and
3399 liberal. */
3400
3401 static int
3402 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3403 {
3404 ftype = ada_check_typedef (ftype);
3405 atype = ada_check_typedef (atype);
3406
3407 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3408 ftype = TYPE_TARGET_TYPE (ftype);
3409 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3410 atype = TYPE_TARGET_TYPE (atype);
3411
3412 switch (TYPE_CODE (ftype))
3413 {
3414 default:
3415 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3416 case TYPE_CODE_PTR:
3417 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3418 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3419 TYPE_TARGET_TYPE (atype), 0);
3420 else
3421 return (may_deref
3422 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3423 case TYPE_CODE_INT:
3424 case TYPE_CODE_ENUM:
3425 case TYPE_CODE_RANGE:
3426 switch (TYPE_CODE (atype))
3427 {
3428 case TYPE_CODE_INT:
3429 case TYPE_CODE_ENUM:
3430 case TYPE_CODE_RANGE:
3431 return 1;
3432 default:
3433 return 0;
3434 }
3435
3436 case TYPE_CODE_ARRAY:
3437 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3438 || ada_is_array_descriptor_type (atype));
3439
3440 case TYPE_CODE_STRUCT:
3441 if (ada_is_array_descriptor_type (ftype))
3442 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3443 || ada_is_array_descriptor_type (atype));
3444 else
3445 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3446 && !ada_is_array_descriptor_type (atype));
3447
3448 case TYPE_CODE_UNION:
3449 case TYPE_CODE_FLT:
3450 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3451 }
3452 }
3453
3454 /* Return non-zero if the formals of FUNC "sufficiently match" the
3455 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3456 may also be an enumeral, in which case it is treated as a 0-
3457 argument function. */
3458
3459 static int
3460 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3461 {
3462 int i;
3463 struct type *func_type = SYMBOL_TYPE (func);
3464
3465 if (SYMBOL_CLASS (func) == LOC_CONST
3466 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3467 return (n_actuals == 0);
3468 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3469 return 0;
3470
3471 if (TYPE_NFIELDS (func_type) != n_actuals)
3472 return 0;
3473
3474 for (i = 0; i < n_actuals; i += 1)
3475 {
3476 if (actuals[i] == NULL)
3477 return 0;
3478 else
3479 {
3480 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3481 i));
3482 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3483
3484 if (!ada_type_match (ftype, atype, 1))
3485 return 0;
3486 }
3487 }
3488 return 1;
3489 }
3490
3491 /* False iff function type FUNC_TYPE definitely does not produce a value
3492 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3493 FUNC_TYPE is not a valid function type with a non-null return type
3494 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3495
3496 static int
3497 return_match (struct type *func_type, struct type *context_type)
3498 {
3499 struct type *return_type;
3500
3501 if (func_type == NULL)
3502 return 1;
3503
3504 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3505 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3506 else
3507 return_type = get_base_type (func_type);
3508 if (return_type == NULL)
3509 return 1;
3510
3511 context_type = get_base_type (context_type);
3512
3513 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3514 return context_type == NULL || return_type == context_type;
3515 else if (context_type == NULL)
3516 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3517 else
3518 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3519 }
3520
3521
3522 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3523 function (if any) that matches the types of the NARGS arguments in
3524 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3525 that returns that type, then eliminate matches that don't. If
3526 CONTEXT_TYPE is void and there is at least one match that does not
3527 return void, eliminate all matches that do.
3528
3529 Asks the user if there is more than one match remaining. Returns -1
3530 if there is no such symbol or none is selected. NAME is used
3531 solely for messages. May re-arrange and modify SYMS in
3532 the process; the index returned is for the modified vector. */
3533
3534 static int
3535 ada_resolve_function (struct ada_symbol_info syms[],
3536 int nsyms, struct value **args, int nargs,
3537 const char *name, struct type *context_type)
3538 {
3539 int fallback;
3540 int k;
3541 int m; /* Number of hits */
3542
3543 m = 0;
3544 /* In the first pass of the loop, we only accept functions matching
3545 context_type. If none are found, we add a second pass of the loop
3546 where every function is accepted. */
3547 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3548 {
3549 for (k = 0; k < nsyms; k += 1)
3550 {
3551 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3552
3553 if (ada_args_match (syms[k].sym, args, nargs)
3554 && (fallback || return_match (type, context_type)))
3555 {
3556 syms[m] = syms[k];
3557 m += 1;
3558 }
3559 }
3560 }
3561
3562 if (m == 0)
3563 return -1;
3564 else if (m > 1)
3565 {
3566 printf_filtered (_("Multiple matches for %s\n"), name);
3567 user_select_syms (syms, m, 1);
3568 return 0;
3569 }
3570 return 0;
3571 }
3572
3573 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3574 in a listing of choices during disambiguation (see sort_choices, below).
3575 The idea is that overloadings of a subprogram name from the
3576 same package should sort in their source order. We settle for ordering
3577 such symbols by their trailing number (__N or $N). */
3578
3579 static int
3580 encoded_ordered_before (const char *N0, const char *N1)
3581 {
3582 if (N1 == NULL)
3583 return 0;
3584 else if (N0 == NULL)
3585 return 1;
3586 else
3587 {
3588 int k0, k1;
3589
3590 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3591 ;
3592 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3593 ;
3594 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3595 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3596 {
3597 int n0, n1;
3598
3599 n0 = k0;
3600 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3601 n0 -= 1;
3602 n1 = k1;
3603 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3604 n1 -= 1;
3605 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3606 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3607 }
3608 return (strcmp (N0, N1) < 0);
3609 }
3610 }
3611
3612 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3613 encoded names. */
3614
3615 static void
3616 sort_choices (struct ada_symbol_info syms[], int nsyms)
3617 {
3618 int i;
3619
3620 for (i = 1; i < nsyms; i += 1)
3621 {
3622 struct ada_symbol_info sym = syms[i];
3623 int j;
3624
3625 for (j = i - 1; j >= 0; j -= 1)
3626 {
3627 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3628 SYMBOL_LINKAGE_NAME (sym.sym)))
3629 break;
3630 syms[j + 1] = syms[j];
3631 }
3632 syms[j + 1] = sym;
3633 }
3634 }
3635
3636 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3637 by asking the user (if necessary), returning the number selected,
3638 and setting the first elements of SYMS items. Error if no symbols
3639 selected. */
3640
3641 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3642 to be re-integrated one of these days. */
3643
3644 int
3645 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3646 {
3647 int i;
3648 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3649 int n_chosen;
3650 int first_choice = (max_results == 1) ? 1 : 2;
3651 const char *select_mode = multiple_symbols_select_mode ();
3652
3653 if (max_results < 1)
3654 error (_("Request to select 0 symbols!"));
3655 if (nsyms <= 1)
3656 return nsyms;
3657
3658 if (select_mode == multiple_symbols_cancel)
3659 error (_("\
3660 canceled because the command is ambiguous\n\
3661 See set/show multiple-symbol."));
3662
3663 /* If select_mode is "all", then return all possible symbols.
3664 Only do that if more than one symbol can be selected, of course.
3665 Otherwise, display the menu as usual. */
3666 if (select_mode == multiple_symbols_all && max_results > 1)
3667 return nsyms;
3668
3669 printf_unfiltered (_("[0] cancel\n"));
3670 if (max_results > 1)
3671 printf_unfiltered (_("[1] all\n"));
3672
3673 sort_choices (syms, nsyms);
3674
3675 for (i = 0; i < nsyms; i += 1)
3676 {
3677 if (syms[i].sym == NULL)
3678 continue;
3679
3680 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3681 {
3682 struct symtab_and_line sal =
3683 find_function_start_sal (syms[i].sym, 1);
3684
3685 if (sal.symtab == NULL)
3686 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3687 i + first_choice,
3688 SYMBOL_PRINT_NAME (syms[i].sym),
3689 sal.line);
3690 else
3691 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3692 SYMBOL_PRINT_NAME (syms[i].sym),
3693 symtab_to_filename_for_display (sal.symtab),
3694 sal.line);
3695 continue;
3696 }
3697 else
3698 {
3699 int is_enumeral =
3700 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3701 && SYMBOL_TYPE (syms[i].sym) != NULL
3702 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3703 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3704
3705 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3706 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3707 i + first_choice,
3708 SYMBOL_PRINT_NAME (syms[i].sym),
3709 symtab_to_filename_for_display (symtab),
3710 SYMBOL_LINE (syms[i].sym));
3711 else if (is_enumeral
3712 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3713 {
3714 printf_unfiltered (("[%d] "), i + first_choice);
3715 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3716 gdb_stdout, -1, 0, &type_print_raw_options);
3717 printf_unfiltered (_("'(%s) (enumeral)\n"),
3718 SYMBOL_PRINT_NAME (syms[i].sym));
3719 }
3720 else if (symtab != NULL)
3721 printf_unfiltered (is_enumeral
3722 ? _("[%d] %s in %s (enumeral)\n")
3723 : _("[%d] %s at %s:?\n"),
3724 i + first_choice,
3725 SYMBOL_PRINT_NAME (syms[i].sym),
3726 symtab_to_filename_for_display (symtab));
3727 else
3728 printf_unfiltered (is_enumeral
3729 ? _("[%d] %s (enumeral)\n")
3730 : _("[%d] %s at ?\n"),
3731 i + first_choice,
3732 SYMBOL_PRINT_NAME (syms[i].sym));
3733 }
3734 }
3735
3736 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3737 "overload-choice");
3738
3739 for (i = 0; i < n_chosen; i += 1)
3740 syms[i] = syms[chosen[i]];
3741
3742 return n_chosen;
3743 }
3744
3745 /* Read and validate a set of numeric choices from the user in the
3746 range 0 .. N_CHOICES-1. Place the results in increasing
3747 order in CHOICES[0 .. N-1], and return N.
3748
3749 The user types choices as a sequence of numbers on one line
3750 separated by blanks, encoding them as follows:
3751
3752 + A choice of 0 means to cancel the selection, throwing an error.
3753 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3754 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3755
3756 The user is not allowed to choose more than MAX_RESULTS values.
3757
3758 ANNOTATION_SUFFIX, if present, is used to annotate the input
3759 prompts (for use with the -f switch). */
3760
3761 int
3762 get_selections (int *choices, int n_choices, int max_results,
3763 int is_all_choice, char *annotation_suffix)
3764 {
3765 char *args;
3766 char *prompt;
3767 int n_chosen;
3768 int first_choice = is_all_choice ? 2 : 1;
3769
3770 prompt = getenv ("PS2");
3771 if (prompt == NULL)
3772 prompt = "> ";
3773
3774 args = command_line_input (prompt, 0, annotation_suffix);
3775
3776 if (args == NULL)
3777 error_no_arg (_("one or more choice numbers"));
3778
3779 n_chosen = 0;
3780
3781 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3782 order, as given in args. Choices are validated. */
3783 while (1)
3784 {
3785 char *args2;
3786 int choice, j;
3787
3788 args = skip_spaces (args);
3789 if (*args == '\0' && n_chosen == 0)
3790 error_no_arg (_("one or more choice numbers"));
3791 else if (*args == '\0')
3792 break;
3793
3794 choice = strtol (args, &args2, 10);
3795 if (args == args2 || choice < 0
3796 || choice > n_choices + first_choice - 1)
3797 error (_("Argument must be choice number"));
3798 args = args2;
3799
3800 if (choice == 0)
3801 error (_("cancelled"));
3802
3803 if (choice < first_choice)
3804 {
3805 n_chosen = n_choices;
3806 for (j = 0; j < n_choices; j += 1)
3807 choices[j] = j;
3808 break;
3809 }
3810 choice -= first_choice;
3811
3812 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3813 {
3814 }
3815
3816 if (j < 0 || choice != choices[j])
3817 {
3818 int k;
3819
3820 for (k = n_chosen - 1; k > j; k -= 1)
3821 choices[k + 1] = choices[k];
3822 choices[j + 1] = choice;
3823 n_chosen += 1;
3824 }
3825 }
3826
3827 if (n_chosen > max_results)
3828 error (_("Select no more than %d of the above"), max_results);
3829
3830 return n_chosen;
3831 }
3832
3833 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3834 on the function identified by SYM and BLOCK, and taking NARGS
3835 arguments. Update *EXPP as needed to hold more space. */
3836
3837 static void
3838 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3839 int oplen, struct symbol *sym,
3840 const struct block *block)
3841 {
3842 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3843 symbol, -oplen for operator being replaced). */
3844 struct expression *newexp = (struct expression *)
3845 xzalloc (sizeof (struct expression)
3846 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3847 struct expression *exp = *expp;
3848
3849 newexp->nelts = exp->nelts + 7 - oplen;
3850 newexp->language_defn = exp->language_defn;
3851 newexp->gdbarch = exp->gdbarch;
3852 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3853 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3854 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3855
3856 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3857 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3858
3859 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3860 newexp->elts[pc + 4].block = block;
3861 newexp->elts[pc + 5].symbol = sym;
3862
3863 *expp = newexp;
3864 xfree (exp);
3865 }
3866
3867 /* Type-class predicates */
3868
3869 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3870 or FLOAT). */
3871
3872 static int
3873 numeric_type_p (struct type *type)
3874 {
3875 if (type == NULL)
3876 return 0;
3877 else
3878 {
3879 switch (TYPE_CODE (type))
3880 {
3881 case TYPE_CODE_INT:
3882 case TYPE_CODE_FLT:
3883 return 1;
3884 case TYPE_CODE_RANGE:
3885 return (type == TYPE_TARGET_TYPE (type)
3886 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3887 default:
3888 return 0;
3889 }
3890 }
3891 }
3892
3893 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3894
3895 static int
3896 integer_type_p (struct type *type)
3897 {
3898 if (type == NULL)
3899 return 0;
3900 else
3901 {
3902 switch (TYPE_CODE (type))
3903 {
3904 case TYPE_CODE_INT:
3905 return 1;
3906 case TYPE_CODE_RANGE:
3907 return (type == TYPE_TARGET_TYPE (type)
3908 || integer_type_p (TYPE_TARGET_TYPE (type)));
3909 default:
3910 return 0;
3911 }
3912 }
3913 }
3914
3915 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3916
3917 static int
3918 scalar_type_p (struct type *type)
3919 {
3920 if (type == NULL)
3921 return 0;
3922 else
3923 {
3924 switch (TYPE_CODE (type))
3925 {
3926 case TYPE_CODE_INT:
3927 case TYPE_CODE_RANGE:
3928 case TYPE_CODE_ENUM:
3929 case TYPE_CODE_FLT:
3930 return 1;
3931 default:
3932 return 0;
3933 }
3934 }
3935 }
3936
3937 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3938
3939 static int
3940 discrete_type_p (struct type *type)
3941 {
3942 if (type == NULL)
3943 return 0;
3944 else
3945 {
3946 switch (TYPE_CODE (type))
3947 {
3948 case TYPE_CODE_INT:
3949 case TYPE_CODE_RANGE:
3950 case TYPE_CODE_ENUM:
3951 case TYPE_CODE_BOOL:
3952 return 1;
3953 default:
3954 return 0;
3955 }
3956 }
3957 }
3958
3959 /* Returns non-zero if OP with operands in the vector ARGS could be
3960 a user-defined function. Errs on the side of pre-defined operators
3961 (i.e., result 0). */
3962
3963 static int
3964 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3965 {
3966 struct type *type0 =
3967 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3968 struct type *type1 =
3969 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3970
3971 if (type0 == NULL)
3972 return 0;
3973
3974 switch (op)
3975 {
3976 default:
3977 return 0;
3978
3979 case BINOP_ADD:
3980 case BINOP_SUB:
3981 case BINOP_MUL:
3982 case BINOP_DIV:
3983 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3984
3985 case BINOP_REM:
3986 case BINOP_MOD:
3987 case BINOP_BITWISE_AND:
3988 case BINOP_BITWISE_IOR:
3989 case BINOP_BITWISE_XOR:
3990 return (!(integer_type_p (type0) && integer_type_p (type1)));
3991
3992 case BINOP_EQUAL:
3993 case BINOP_NOTEQUAL:
3994 case BINOP_LESS:
3995 case BINOP_GTR:
3996 case BINOP_LEQ:
3997 case BINOP_GEQ:
3998 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3999
4000 case BINOP_CONCAT:
4001 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4002
4003 case BINOP_EXP:
4004 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4005
4006 case UNOP_NEG:
4007 case UNOP_PLUS:
4008 case UNOP_LOGICAL_NOT:
4009 case UNOP_ABS:
4010 return (!numeric_type_p (type0));
4011
4012 }
4013 }
4014 \f
4015 /* Renaming */
4016
4017 /* NOTES:
4018
4019 1. In the following, we assume that a renaming type's name may
4020 have an ___XD suffix. It would be nice if this went away at some
4021 point.
4022 2. We handle both the (old) purely type-based representation of
4023 renamings and the (new) variable-based encoding. At some point,
4024 it is devoutly to be hoped that the former goes away
4025 (FIXME: hilfinger-2007-07-09).
4026 3. Subprogram renamings are not implemented, although the XRS
4027 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4028
4029 /* If SYM encodes a renaming,
4030
4031 <renaming> renames <renamed entity>,
4032
4033 sets *LEN to the length of the renamed entity's name,
4034 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4035 the string describing the subcomponent selected from the renamed
4036 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4037 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4038 are undefined). Otherwise, returns a value indicating the category
4039 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4040 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4041 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4042 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4043 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4044 may be NULL, in which case they are not assigned.
4045
4046 [Currently, however, GCC does not generate subprogram renamings.] */
4047
4048 enum ada_renaming_category
4049 ada_parse_renaming (struct symbol *sym,
4050 const char **renamed_entity, int *len,
4051 const char **renaming_expr)
4052 {
4053 enum ada_renaming_category kind;
4054 const char *info;
4055 const char *suffix;
4056
4057 if (sym == NULL)
4058 return ADA_NOT_RENAMING;
4059 switch (SYMBOL_CLASS (sym))
4060 {
4061 default:
4062 return ADA_NOT_RENAMING;
4063 case LOC_TYPEDEF:
4064 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4065 renamed_entity, len, renaming_expr);
4066 case LOC_LOCAL:
4067 case LOC_STATIC:
4068 case LOC_COMPUTED:
4069 case LOC_OPTIMIZED_OUT:
4070 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4071 if (info == NULL)
4072 return ADA_NOT_RENAMING;
4073 switch (info[5])
4074 {
4075 case '_':
4076 kind = ADA_OBJECT_RENAMING;
4077 info += 6;
4078 break;
4079 case 'E':
4080 kind = ADA_EXCEPTION_RENAMING;
4081 info += 7;
4082 break;
4083 case 'P':
4084 kind = ADA_PACKAGE_RENAMING;
4085 info += 7;
4086 break;
4087 case 'S':
4088 kind = ADA_SUBPROGRAM_RENAMING;
4089 info += 7;
4090 break;
4091 default:
4092 return ADA_NOT_RENAMING;
4093 }
4094 }
4095
4096 if (renamed_entity != NULL)
4097 *renamed_entity = info;
4098 suffix = strstr (info, "___XE");
4099 if (suffix == NULL || suffix == info)
4100 return ADA_NOT_RENAMING;
4101 if (len != NULL)
4102 *len = strlen (info) - strlen (suffix);
4103 suffix += 5;
4104 if (renaming_expr != NULL)
4105 *renaming_expr = suffix;
4106 return kind;
4107 }
4108
4109 /* Assuming TYPE encodes a renaming according to the old encoding in
4110 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4111 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4112 ADA_NOT_RENAMING otherwise. */
4113 static enum ada_renaming_category
4114 parse_old_style_renaming (struct type *type,
4115 const char **renamed_entity, int *len,
4116 const char **renaming_expr)
4117 {
4118 enum ada_renaming_category kind;
4119 const char *name;
4120 const char *info;
4121 const char *suffix;
4122
4123 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4124 || TYPE_NFIELDS (type) != 1)
4125 return ADA_NOT_RENAMING;
4126
4127 name = type_name_no_tag (type);
4128 if (name == NULL)
4129 return ADA_NOT_RENAMING;
4130
4131 name = strstr (name, "___XR");
4132 if (name == NULL)
4133 return ADA_NOT_RENAMING;
4134 switch (name[5])
4135 {
4136 case '\0':
4137 case '_':
4138 kind = ADA_OBJECT_RENAMING;
4139 break;
4140 case 'E':
4141 kind = ADA_EXCEPTION_RENAMING;
4142 break;
4143 case 'P':
4144 kind = ADA_PACKAGE_RENAMING;
4145 break;
4146 case 'S':
4147 kind = ADA_SUBPROGRAM_RENAMING;
4148 break;
4149 default:
4150 return ADA_NOT_RENAMING;
4151 }
4152
4153 info = TYPE_FIELD_NAME (type, 0);
4154 if (info == NULL)
4155 return ADA_NOT_RENAMING;
4156 if (renamed_entity != NULL)
4157 *renamed_entity = info;
4158 suffix = strstr (info, "___XE");
4159 if (renaming_expr != NULL)
4160 *renaming_expr = suffix + 5;
4161 if (suffix == NULL || suffix == info)
4162 return ADA_NOT_RENAMING;
4163 if (len != NULL)
4164 *len = suffix - info;
4165 return kind;
4166 }
4167
4168 /* Compute the value of the given RENAMING_SYM, which is expected to
4169 be a symbol encoding a renaming expression. BLOCK is the block
4170 used to evaluate the renaming. */
4171
4172 static struct value *
4173 ada_read_renaming_var_value (struct symbol *renaming_sym,
4174 const struct block *block)
4175 {
4176 const char *sym_name;
4177 struct expression *expr;
4178 struct value *value;
4179 struct cleanup *old_chain = NULL;
4180
4181 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4182 expr = parse_exp_1 (&sym_name, 0, block, 0);
4183 old_chain = make_cleanup (free_current_contents, &expr);
4184 value = evaluate_expression (expr);
4185
4186 do_cleanups (old_chain);
4187 return value;
4188 }
4189 \f
4190
4191 /* Evaluation: Function Calls */
4192
4193 /* Return an lvalue containing the value VAL. This is the identity on
4194 lvalues, and otherwise has the side-effect of allocating memory
4195 in the inferior where a copy of the value contents is copied. */
4196
4197 static struct value *
4198 ensure_lval (struct value *val)
4199 {
4200 if (VALUE_LVAL (val) == not_lval
4201 || VALUE_LVAL (val) == lval_internalvar)
4202 {
4203 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4204 const CORE_ADDR addr =
4205 value_as_long (value_allocate_space_in_inferior (len));
4206
4207 set_value_address (val, addr);
4208 VALUE_LVAL (val) = lval_memory;
4209 write_memory (addr, value_contents (val), len);
4210 }
4211
4212 return val;
4213 }
4214
4215 /* Return the value ACTUAL, converted to be an appropriate value for a
4216 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4217 allocating any necessary descriptors (fat pointers), or copies of
4218 values not residing in memory, updating it as needed. */
4219
4220 struct value *
4221 ada_convert_actual (struct value *actual, struct type *formal_type0)
4222 {
4223 struct type *actual_type = ada_check_typedef (value_type (actual));
4224 struct type *formal_type = ada_check_typedef (formal_type0);
4225 struct type *formal_target =
4226 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4227 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4228 struct type *actual_target =
4229 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4230 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4231
4232 if (ada_is_array_descriptor_type (formal_target)
4233 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4234 return make_array_descriptor (formal_type, actual);
4235 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4236 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4237 {
4238 struct value *result;
4239
4240 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4241 && ada_is_array_descriptor_type (actual_target))
4242 result = desc_data (actual);
4243 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4244 {
4245 if (VALUE_LVAL (actual) != lval_memory)
4246 {
4247 struct value *val;
4248
4249 actual_type = ada_check_typedef (value_type (actual));
4250 val = allocate_value (actual_type);
4251 memcpy ((char *) value_contents_raw (val),
4252 (char *) value_contents (actual),
4253 TYPE_LENGTH (actual_type));
4254 actual = ensure_lval (val);
4255 }
4256 result = value_addr (actual);
4257 }
4258 else
4259 return actual;
4260 return value_cast_pointers (formal_type, result, 0);
4261 }
4262 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4263 return ada_value_ind (actual);
4264
4265 return actual;
4266 }
4267
4268 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4269 type TYPE. This is usually an inefficient no-op except on some targets
4270 (such as AVR) where the representation of a pointer and an address
4271 differs. */
4272
4273 static CORE_ADDR
4274 value_pointer (struct value *value, struct type *type)
4275 {
4276 struct gdbarch *gdbarch = get_type_arch (type);
4277 unsigned len = TYPE_LENGTH (type);
4278 gdb_byte *buf = alloca (len);
4279 CORE_ADDR addr;
4280
4281 addr = value_address (value);
4282 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4283 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4284 return addr;
4285 }
4286
4287
4288 /* Push a descriptor of type TYPE for array value ARR on the stack at
4289 *SP, updating *SP to reflect the new descriptor. Return either
4290 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4291 to-descriptor type rather than a descriptor type), a struct value *
4292 representing a pointer to this descriptor. */
4293
4294 static struct value *
4295 make_array_descriptor (struct type *type, struct value *arr)
4296 {
4297 struct type *bounds_type = desc_bounds_type (type);
4298 struct type *desc_type = desc_base_type (type);
4299 struct value *descriptor = allocate_value (desc_type);
4300 struct value *bounds = allocate_value (bounds_type);
4301 int i;
4302
4303 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4304 i > 0; i -= 1)
4305 {
4306 modify_field (value_type (bounds), value_contents_writeable (bounds),
4307 ada_array_bound (arr, i, 0),
4308 desc_bound_bitpos (bounds_type, i, 0),
4309 desc_bound_bitsize (bounds_type, i, 0));
4310 modify_field (value_type (bounds), value_contents_writeable (bounds),
4311 ada_array_bound (arr, i, 1),
4312 desc_bound_bitpos (bounds_type, i, 1),
4313 desc_bound_bitsize (bounds_type, i, 1));
4314 }
4315
4316 bounds = ensure_lval (bounds);
4317
4318 modify_field (value_type (descriptor),
4319 value_contents_writeable (descriptor),
4320 value_pointer (ensure_lval (arr),
4321 TYPE_FIELD_TYPE (desc_type, 0)),
4322 fat_pntr_data_bitpos (desc_type),
4323 fat_pntr_data_bitsize (desc_type));
4324
4325 modify_field (value_type (descriptor),
4326 value_contents_writeable (descriptor),
4327 value_pointer (bounds,
4328 TYPE_FIELD_TYPE (desc_type, 1)),
4329 fat_pntr_bounds_bitpos (desc_type),
4330 fat_pntr_bounds_bitsize (desc_type));
4331
4332 descriptor = ensure_lval (descriptor);
4333
4334 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4335 return value_addr (descriptor);
4336 else
4337 return descriptor;
4338 }
4339 \f
4340 /* Symbol Cache Module */
4341
4342 /* Performance measurements made as of 2010-01-15 indicate that
4343 this cache does bring some noticeable improvements. Depending
4344 on the type of entity being printed, the cache can make it as much
4345 as an order of magnitude faster than without it.
4346
4347 The descriptive type DWARF extension has significantly reduced
4348 the need for this cache, at least when DWARF is being used. However,
4349 even in this case, some expensive name-based symbol searches are still
4350 sometimes necessary - to find an XVZ variable, mostly. */
4351
4352 /* Initialize the contents of SYM_CACHE. */
4353
4354 static void
4355 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4356 {
4357 obstack_init (&sym_cache->cache_space);
4358 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4359 }
4360
4361 /* Free the memory used by SYM_CACHE. */
4362
4363 static void
4364 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4365 {
4366 obstack_free (&sym_cache->cache_space, NULL);
4367 xfree (sym_cache);
4368 }
4369
4370 /* Return the symbol cache associated to the given program space PSPACE.
4371 If not allocated for this PSPACE yet, allocate and initialize one. */
4372
4373 static struct ada_symbol_cache *
4374 ada_get_symbol_cache (struct program_space *pspace)
4375 {
4376 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4377 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4378
4379 if (sym_cache == NULL)
4380 {
4381 sym_cache = XCNEW (struct ada_symbol_cache);
4382 ada_init_symbol_cache (sym_cache);
4383 }
4384
4385 return sym_cache;
4386 }
4387
4388 /* Clear all entries from the symbol cache. */
4389
4390 static void
4391 ada_clear_symbol_cache (void)
4392 {
4393 struct ada_symbol_cache *sym_cache
4394 = ada_get_symbol_cache (current_program_space);
4395
4396 obstack_free (&sym_cache->cache_space, NULL);
4397 ada_init_symbol_cache (sym_cache);
4398 }
4399
4400 /* Search our cache for an entry matching NAME and NAMESPACE.
4401 Return it if found, or NULL otherwise. */
4402
4403 static struct cache_entry **
4404 find_entry (const char *name, domain_enum namespace)
4405 {
4406 struct ada_symbol_cache *sym_cache
4407 = ada_get_symbol_cache (current_program_space);
4408 int h = msymbol_hash (name) % HASH_SIZE;
4409 struct cache_entry **e;
4410
4411 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4412 {
4413 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4414 return e;
4415 }
4416 return NULL;
4417 }
4418
4419 /* Search the symbol cache for an entry matching NAME and NAMESPACE.
4420 Return 1 if found, 0 otherwise.
4421
4422 If an entry was found and SYM is not NULL, set *SYM to the entry's
4423 SYM. Same principle for BLOCK if not NULL. */
4424
4425 static int
4426 lookup_cached_symbol (const char *name, domain_enum namespace,
4427 struct symbol **sym, const struct block **block)
4428 {
4429 struct cache_entry **e = find_entry (name, namespace);
4430
4431 if (e == NULL)
4432 return 0;
4433 if (sym != NULL)
4434 *sym = (*e)->sym;
4435 if (block != NULL)
4436 *block = (*e)->block;
4437 return 1;
4438 }
4439
4440 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4441 in domain NAMESPACE, save this result in our symbol cache. */
4442
4443 static void
4444 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4445 const struct block *block)
4446 {
4447 struct ada_symbol_cache *sym_cache
4448 = ada_get_symbol_cache (current_program_space);
4449 int h;
4450 char *copy;
4451 struct cache_entry *e;
4452
4453 /* If the symbol is a local symbol, then do not cache it, as a search
4454 for that symbol depends on the context. To determine whether
4455 the symbol is local or not, we check the block where we found it
4456 against the global and static blocks of its associated symtab. */
4457 if (sym
4458 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (sym->symtab),
4459 GLOBAL_BLOCK) != block
4460 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (sym->symtab),
4461 STATIC_BLOCK) != block)
4462 return;
4463
4464 h = msymbol_hash (name) % HASH_SIZE;
4465 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4466 sizeof (*e));
4467 e->next = sym_cache->root[h];
4468 sym_cache->root[h] = e;
4469 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4470 strcpy (copy, name);
4471 e->sym = sym;
4472 e->namespace = namespace;
4473 e->block = block;
4474 }
4475 \f
4476 /* Symbol Lookup */
4477
4478 /* Return nonzero if wild matching should be used when searching for
4479 all symbols matching LOOKUP_NAME.
4480
4481 LOOKUP_NAME is expected to be a symbol name after transformation
4482 for Ada lookups (see ada_name_for_lookup). */
4483
4484 static int
4485 should_use_wild_match (const char *lookup_name)
4486 {
4487 return (strstr (lookup_name, "__") == NULL);
4488 }
4489
4490 /* Return the result of a standard (literal, C-like) lookup of NAME in
4491 given DOMAIN, visible from lexical block BLOCK. */
4492
4493 static struct symbol *
4494 standard_lookup (const char *name, const struct block *block,
4495 domain_enum domain)
4496 {
4497 /* Initialize it just to avoid a GCC false warning. */
4498 struct symbol *sym = NULL;
4499
4500 if (lookup_cached_symbol (name, domain, &sym, NULL))
4501 return sym;
4502 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4503 cache_symbol (name, domain, sym, block_found);
4504 return sym;
4505 }
4506
4507
4508 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4509 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4510 since they contend in overloading in the same way. */
4511 static int
4512 is_nonfunction (struct ada_symbol_info syms[], int n)
4513 {
4514 int i;
4515
4516 for (i = 0; i < n; i += 1)
4517 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4518 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4519 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4520 return 1;
4521
4522 return 0;
4523 }
4524
4525 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4526 struct types. Otherwise, they may not. */
4527
4528 static int
4529 equiv_types (struct type *type0, struct type *type1)
4530 {
4531 if (type0 == type1)
4532 return 1;
4533 if (type0 == NULL || type1 == NULL
4534 || TYPE_CODE (type0) != TYPE_CODE (type1))
4535 return 0;
4536 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4537 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4538 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4539 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4540 return 1;
4541
4542 return 0;
4543 }
4544
4545 /* True iff SYM0 represents the same entity as SYM1, or one that is
4546 no more defined than that of SYM1. */
4547
4548 static int
4549 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4550 {
4551 if (sym0 == sym1)
4552 return 1;
4553 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4554 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4555 return 0;
4556
4557 switch (SYMBOL_CLASS (sym0))
4558 {
4559 case LOC_UNDEF:
4560 return 1;
4561 case LOC_TYPEDEF:
4562 {
4563 struct type *type0 = SYMBOL_TYPE (sym0);
4564 struct type *type1 = SYMBOL_TYPE (sym1);
4565 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4566 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4567 int len0 = strlen (name0);
4568
4569 return
4570 TYPE_CODE (type0) == TYPE_CODE (type1)
4571 && (equiv_types (type0, type1)
4572 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4573 && strncmp (name1 + len0, "___XV", 5) == 0));
4574 }
4575 case LOC_CONST:
4576 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4577 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4578 default:
4579 return 0;
4580 }
4581 }
4582
4583 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4584 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4585
4586 static void
4587 add_defn_to_vec (struct obstack *obstackp,
4588 struct symbol *sym,
4589 const struct block *block)
4590 {
4591 int i;
4592 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4593
4594 /* Do not try to complete stub types, as the debugger is probably
4595 already scanning all symbols matching a certain name at the
4596 time when this function is called. Trying to replace the stub
4597 type by its associated full type will cause us to restart a scan
4598 which may lead to an infinite recursion. Instead, the client
4599 collecting the matching symbols will end up collecting several
4600 matches, with at least one of them complete. It can then filter
4601 out the stub ones if needed. */
4602
4603 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4604 {
4605 if (lesseq_defined_than (sym, prevDefns[i].sym))
4606 return;
4607 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4608 {
4609 prevDefns[i].sym = sym;
4610 prevDefns[i].block = block;
4611 return;
4612 }
4613 }
4614
4615 {
4616 struct ada_symbol_info info;
4617
4618 info.sym = sym;
4619 info.block = block;
4620 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4621 }
4622 }
4623
4624 /* Number of ada_symbol_info structures currently collected in
4625 current vector in *OBSTACKP. */
4626
4627 static int
4628 num_defns_collected (struct obstack *obstackp)
4629 {
4630 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4631 }
4632
4633 /* Vector of ada_symbol_info structures currently collected in current
4634 vector in *OBSTACKP. If FINISH, close off the vector and return
4635 its final address. */
4636
4637 static struct ada_symbol_info *
4638 defns_collected (struct obstack *obstackp, int finish)
4639 {
4640 if (finish)
4641 return obstack_finish (obstackp);
4642 else
4643 return (struct ada_symbol_info *) obstack_base (obstackp);
4644 }
4645
4646 /* Return a bound minimal symbol matching NAME according to Ada
4647 decoding rules. Returns an invalid symbol if there is no such
4648 minimal symbol. Names prefixed with "standard__" are handled
4649 specially: "standard__" is first stripped off, and only static and
4650 global symbols are searched. */
4651
4652 struct bound_minimal_symbol
4653 ada_lookup_simple_minsym (const char *name)
4654 {
4655 struct bound_minimal_symbol result;
4656 struct objfile *objfile;
4657 struct minimal_symbol *msymbol;
4658 const int wild_match_p = should_use_wild_match (name);
4659
4660 memset (&result, 0, sizeof (result));
4661
4662 /* Special case: If the user specifies a symbol name inside package
4663 Standard, do a non-wild matching of the symbol name without
4664 the "standard__" prefix. This was primarily introduced in order
4665 to allow the user to specifically access the standard exceptions
4666 using, for instance, Standard.Constraint_Error when Constraint_Error
4667 is ambiguous (due to the user defining its own Constraint_Error
4668 entity inside its program). */
4669 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4670 name += sizeof ("standard__") - 1;
4671
4672 ALL_MSYMBOLS (objfile, msymbol)
4673 {
4674 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4675 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4676 {
4677 result.minsym = msymbol;
4678 result.objfile = objfile;
4679 break;
4680 }
4681 }
4682
4683 return result;
4684 }
4685
4686 /* For all subprograms that statically enclose the subprogram of the
4687 selected frame, add symbols matching identifier NAME in DOMAIN
4688 and their blocks to the list of data in OBSTACKP, as for
4689 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4690 with a wildcard prefix. */
4691
4692 static void
4693 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4694 const char *name, domain_enum namespace,
4695 int wild_match_p)
4696 {
4697 }
4698
4699 /* True if TYPE is definitely an artificial type supplied to a symbol
4700 for which no debugging information was given in the symbol file. */
4701
4702 static int
4703 is_nondebugging_type (struct type *type)
4704 {
4705 const char *name = ada_type_name (type);
4706
4707 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4708 }
4709
4710 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4711 that are deemed "identical" for practical purposes.
4712
4713 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4714 types and that their number of enumerals is identical (in other
4715 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4716
4717 static int
4718 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4719 {
4720 int i;
4721
4722 /* The heuristic we use here is fairly conservative. We consider
4723 that 2 enumerate types are identical if they have the same
4724 number of enumerals and that all enumerals have the same
4725 underlying value and name. */
4726
4727 /* All enums in the type should have an identical underlying value. */
4728 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4729 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4730 return 0;
4731
4732 /* All enumerals should also have the same name (modulo any numerical
4733 suffix). */
4734 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4735 {
4736 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4737 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4738 int len_1 = strlen (name_1);
4739 int len_2 = strlen (name_2);
4740
4741 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4742 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4743 if (len_1 != len_2
4744 || strncmp (TYPE_FIELD_NAME (type1, i),
4745 TYPE_FIELD_NAME (type2, i),
4746 len_1) != 0)
4747 return 0;
4748 }
4749
4750 return 1;
4751 }
4752
4753 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4754 that are deemed "identical" for practical purposes. Sometimes,
4755 enumerals are not strictly identical, but their types are so similar
4756 that they can be considered identical.
4757
4758 For instance, consider the following code:
4759
4760 type Color is (Black, Red, Green, Blue, White);
4761 type RGB_Color is new Color range Red .. Blue;
4762
4763 Type RGB_Color is a subrange of an implicit type which is a copy
4764 of type Color. If we call that implicit type RGB_ColorB ("B" is
4765 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4766 As a result, when an expression references any of the enumeral
4767 by name (Eg. "print green"), the expression is technically
4768 ambiguous and the user should be asked to disambiguate. But
4769 doing so would only hinder the user, since it wouldn't matter
4770 what choice he makes, the outcome would always be the same.
4771 So, for practical purposes, we consider them as the same. */
4772
4773 static int
4774 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4775 {
4776 int i;
4777
4778 /* Before performing a thorough comparison check of each type,
4779 we perform a series of inexpensive checks. We expect that these
4780 checks will quickly fail in the vast majority of cases, and thus
4781 help prevent the unnecessary use of a more expensive comparison.
4782 Said comparison also expects us to make some of these checks
4783 (see ada_identical_enum_types_p). */
4784
4785 /* Quick check: All symbols should have an enum type. */
4786 for (i = 0; i < nsyms; i++)
4787 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4788 return 0;
4789
4790 /* Quick check: They should all have the same value. */
4791 for (i = 1; i < nsyms; i++)
4792 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4793 return 0;
4794
4795 /* Quick check: They should all have the same number of enumerals. */
4796 for (i = 1; i < nsyms; i++)
4797 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4798 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4799 return 0;
4800
4801 /* All the sanity checks passed, so we might have a set of
4802 identical enumeration types. Perform a more complete
4803 comparison of the type of each symbol. */
4804 for (i = 1; i < nsyms; i++)
4805 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4806 SYMBOL_TYPE (syms[0].sym)))
4807 return 0;
4808
4809 return 1;
4810 }
4811
4812 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4813 duplicate other symbols in the list (The only case I know of where
4814 this happens is when object files containing stabs-in-ecoff are
4815 linked with files containing ordinary ecoff debugging symbols (or no
4816 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4817 Returns the number of items in the modified list. */
4818
4819 static int
4820 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4821 {
4822 int i, j;
4823
4824 /* We should never be called with less than 2 symbols, as there
4825 cannot be any extra symbol in that case. But it's easy to
4826 handle, since we have nothing to do in that case. */
4827 if (nsyms < 2)
4828 return nsyms;
4829
4830 i = 0;
4831 while (i < nsyms)
4832 {
4833 int remove_p = 0;
4834
4835 /* If two symbols have the same name and one of them is a stub type,
4836 the get rid of the stub. */
4837
4838 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4839 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4840 {
4841 for (j = 0; j < nsyms; j++)
4842 {
4843 if (j != i
4844 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4845 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4846 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4847 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4848 remove_p = 1;
4849 }
4850 }
4851
4852 /* Two symbols with the same name, same class and same address
4853 should be identical. */
4854
4855 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4856 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4857 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4858 {
4859 for (j = 0; j < nsyms; j += 1)
4860 {
4861 if (i != j
4862 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4863 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4864 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4865 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4866 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4867 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4868 remove_p = 1;
4869 }
4870 }
4871
4872 if (remove_p)
4873 {
4874 for (j = i + 1; j < nsyms; j += 1)
4875 syms[j - 1] = syms[j];
4876 nsyms -= 1;
4877 }
4878
4879 i += 1;
4880 }
4881
4882 /* If all the remaining symbols are identical enumerals, then
4883 just keep the first one and discard the rest.
4884
4885 Unlike what we did previously, we do not discard any entry
4886 unless they are ALL identical. This is because the symbol
4887 comparison is not a strict comparison, but rather a practical
4888 comparison. If all symbols are considered identical, then
4889 we can just go ahead and use the first one and discard the rest.
4890 But if we cannot reduce the list to a single element, we have
4891 to ask the user to disambiguate anyways. And if we have to
4892 present a multiple-choice menu, it's less confusing if the list
4893 isn't missing some choices that were identical and yet distinct. */
4894 if (symbols_are_identical_enums (syms, nsyms))
4895 nsyms = 1;
4896
4897 return nsyms;
4898 }
4899
4900 /* Given a type that corresponds to a renaming entity, use the type name
4901 to extract the scope (package name or function name, fully qualified,
4902 and following the GNAT encoding convention) where this renaming has been
4903 defined. The string returned needs to be deallocated after use. */
4904
4905 static char *
4906 xget_renaming_scope (struct type *renaming_type)
4907 {
4908 /* The renaming types adhere to the following convention:
4909 <scope>__<rename>___<XR extension>.
4910 So, to extract the scope, we search for the "___XR" extension,
4911 and then backtrack until we find the first "__". */
4912
4913 const char *name = type_name_no_tag (renaming_type);
4914 char *suffix = strstr (name, "___XR");
4915 char *last;
4916 int scope_len;
4917 char *scope;
4918
4919 /* Now, backtrack a bit until we find the first "__". Start looking
4920 at suffix - 3, as the <rename> part is at least one character long. */
4921
4922 for (last = suffix - 3; last > name; last--)
4923 if (last[0] == '_' && last[1] == '_')
4924 break;
4925
4926 /* Make a copy of scope and return it. */
4927
4928 scope_len = last - name;
4929 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4930
4931 strncpy (scope, name, scope_len);
4932 scope[scope_len] = '\0';
4933
4934 return scope;
4935 }
4936
4937 /* Return nonzero if NAME corresponds to a package name. */
4938
4939 static int
4940 is_package_name (const char *name)
4941 {
4942 /* Here, We take advantage of the fact that no symbols are generated
4943 for packages, while symbols are generated for each function.
4944 So the condition for NAME represent a package becomes equivalent
4945 to NAME not existing in our list of symbols. There is only one
4946 small complication with library-level functions (see below). */
4947
4948 char *fun_name;
4949
4950 /* If it is a function that has not been defined at library level,
4951 then we should be able to look it up in the symbols. */
4952 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4953 return 0;
4954
4955 /* Library-level function names start with "_ada_". See if function
4956 "_ada_" followed by NAME can be found. */
4957
4958 /* Do a quick check that NAME does not contain "__", since library-level
4959 functions names cannot contain "__" in them. */
4960 if (strstr (name, "__") != NULL)
4961 return 0;
4962
4963 fun_name = xstrprintf ("_ada_%s", name);
4964
4965 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4966 }
4967
4968 /* Return nonzero if SYM corresponds to a renaming entity that is
4969 not visible from FUNCTION_NAME. */
4970
4971 static int
4972 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4973 {
4974 char *scope;
4975 struct cleanup *old_chain;
4976
4977 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4978 return 0;
4979
4980 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4981 old_chain = make_cleanup (xfree, scope);
4982
4983 /* If the rename has been defined in a package, then it is visible. */
4984 if (is_package_name (scope))
4985 {
4986 do_cleanups (old_chain);
4987 return 0;
4988 }
4989
4990 /* Check that the rename is in the current function scope by checking
4991 that its name starts with SCOPE. */
4992
4993 /* If the function name starts with "_ada_", it means that it is
4994 a library-level function. Strip this prefix before doing the
4995 comparison, as the encoding for the renaming does not contain
4996 this prefix. */
4997 if (strncmp (function_name, "_ada_", 5) == 0)
4998 function_name += 5;
4999
5000 {
5001 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5002
5003 do_cleanups (old_chain);
5004 return is_invisible;
5005 }
5006 }
5007
5008 /* Remove entries from SYMS that corresponds to a renaming entity that
5009 is not visible from the function associated with CURRENT_BLOCK or
5010 that is superfluous due to the presence of more specific renaming
5011 information. Places surviving symbols in the initial entries of
5012 SYMS and returns the number of surviving symbols.
5013
5014 Rationale:
5015 First, in cases where an object renaming is implemented as a
5016 reference variable, GNAT may produce both the actual reference
5017 variable and the renaming encoding. In this case, we discard the
5018 latter.
5019
5020 Second, GNAT emits a type following a specified encoding for each renaming
5021 entity. Unfortunately, STABS currently does not support the definition
5022 of types that are local to a given lexical block, so all renamings types
5023 are emitted at library level. As a consequence, if an application
5024 contains two renaming entities using the same name, and a user tries to
5025 print the value of one of these entities, the result of the ada symbol
5026 lookup will also contain the wrong renaming type.
5027
5028 This function partially covers for this limitation by attempting to
5029 remove from the SYMS list renaming symbols that should be visible
5030 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5031 method with the current information available. The implementation
5032 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5033
5034 - When the user tries to print a rename in a function while there
5035 is another rename entity defined in a package: Normally, the
5036 rename in the function has precedence over the rename in the
5037 package, so the latter should be removed from the list. This is
5038 currently not the case.
5039
5040 - This function will incorrectly remove valid renames if
5041 the CURRENT_BLOCK corresponds to a function which symbol name
5042 has been changed by an "Export" pragma. As a consequence,
5043 the user will be unable to print such rename entities. */
5044
5045 static int
5046 remove_irrelevant_renamings (struct ada_symbol_info *syms,
5047 int nsyms, const struct block *current_block)
5048 {
5049 struct symbol *current_function;
5050 const char *current_function_name;
5051 int i;
5052 int is_new_style_renaming;
5053
5054 /* If there is both a renaming foo___XR... encoded as a variable and
5055 a simple variable foo in the same block, discard the latter.
5056 First, zero out such symbols, then compress. */
5057 is_new_style_renaming = 0;
5058 for (i = 0; i < nsyms; i += 1)
5059 {
5060 struct symbol *sym = syms[i].sym;
5061 const struct block *block = syms[i].block;
5062 const char *name;
5063 const char *suffix;
5064
5065 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5066 continue;
5067 name = SYMBOL_LINKAGE_NAME (sym);
5068 suffix = strstr (name, "___XR");
5069
5070 if (suffix != NULL)
5071 {
5072 int name_len = suffix - name;
5073 int j;
5074
5075 is_new_style_renaming = 1;
5076 for (j = 0; j < nsyms; j += 1)
5077 if (i != j && syms[j].sym != NULL
5078 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5079 name_len) == 0
5080 && block == syms[j].block)
5081 syms[j].sym = NULL;
5082 }
5083 }
5084 if (is_new_style_renaming)
5085 {
5086 int j, k;
5087
5088 for (j = k = 0; j < nsyms; j += 1)
5089 if (syms[j].sym != NULL)
5090 {
5091 syms[k] = syms[j];
5092 k += 1;
5093 }
5094 return k;
5095 }
5096
5097 /* Extract the function name associated to CURRENT_BLOCK.
5098 Abort if unable to do so. */
5099
5100 if (current_block == NULL)
5101 return nsyms;
5102
5103 current_function = block_linkage_function (current_block);
5104 if (current_function == NULL)
5105 return nsyms;
5106
5107 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5108 if (current_function_name == NULL)
5109 return nsyms;
5110
5111 /* Check each of the symbols, and remove it from the list if it is
5112 a type corresponding to a renaming that is out of the scope of
5113 the current block. */
5114
5115 i = 0;
5116 while (i < nsyms)
5117 {
5118 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5119 == ADA_OBJECT_RENAMING
5120 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5121 {
5122 int j;
5123
5124 for (j = i + 1; j < nsyms; j += 1)
5125 syms[j - 1] = syms[j];
5126 nsyms -= 1;
5127 }
5128 else
5129 i += 1;
5130 }
5131
5132 return nsyms;
5133 }
5134
5135 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5136 whose name and domain match NAME and DOMAIN respectively.
5137 If no match was found, then extend the search to "enclosing"
5138 routines (in other words, if we're inside a nested function,
5139 search the symbols defined inside the enclosing functions).
5140 If WILD_MATCH_P is nonzero, perform the naming matching in
5141 "wild" mode (see function "wild_match" for more info).
5142
5143 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5144
5145 static void
5146 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5147 const struct block *block, domain_enum domain,
5148 int wild_match_p)
5149 {
5150 int block_depth = 0;
5151
5152 while (block != NULL)
5153 {
5154 block_depth += 1;
5155 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5156 wild_match_p);
5157
5158 /* If we found a non-function match, assume that's the one. */
5159 if (is_nonfunction (defns_collected (obstackp, 0),
5160 num_defns_collected (obstackp)))
5161 return;
5162
5163 block = BLOCK_SUPERBLOCK (block);
5164 }
5165
5166 /* If no luck so far, try to find NAME as a local symbol in some lexically
5167 enclosing subprogram. */
5168 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5169 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5170 }
5171
5172 /* An object of this type is used as the user_data argument when
5173 calling the map_matching_symbols method. */
5174
5175 struct match_data
5176 {
5177 struct objfile *objfile;
5178 struct obstack *obstackp;
5179 struct symbol *arg_sym;
5180 int found_sym;
5181 };
5182
5183 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5184 to a list of symbols. DATA0 is a pointer to a struct match_data *
5185 containing the obstack that collects the symbol list, the file that SYM
5186 must come from, a flag indicating whether a non-argument symbol has
5187 been found in the current block, and the last argument symbol
5188 passed in SYM within the current block (if any). When SYM is null,
5189 marking the end of a block, the argument symbol is added if no
5190 other has been found. */
5191
5192 static int
5193 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5194 {
5195 struct match_data *data = (struct match_data *) data0;
5196
5197 if (sym == NULL)
5198 {
5199 if (!data->found_sym && data->arg_sym != NULL)
5200 add_defn_to_vec (data->obstackp,
5201 fixup_symbol_section (data->arg_sym, data->objfile),
5202 block);
5203 data->found_sym = 0;
5204 data->arg_sym = NULL;
5205 }
5206 else
5207 {
5208 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5209 return 0;
5210 else if (SYMBOL_IS_ARGUMENT (sym))
5211 data->arg_sym = sym;
5212 else
5213 {
5214 data->found_sym = 1;
5215 add_defn_to_vec (data->obstackp,
5216 fixup_symbol_section (sym, data->objfile),
5217 block);
5218 }
5219 }
5220 return 0;
5221 }
5222
5223 /* Implements compare_names, but only applying the comparision using
5224 the given CASING. */
5225
5226 static int
5227 compare_names_with_case (const char *string1, const char *string2,
5228 enum case_sensitivity casing)
5229 {
5230 while (*string1 != '\0' && *string2 != '\0')
5231 {
5232 char c1, c2;
5233
5234 if (isspace (*string1) || isspace (*string2))
5235 return strcmp_iw_ordered (string1, string2);
5236
5237 if (casing == case_sensitive_off)
5238 {
5239 c1 = tolower (*string1);
5240 c2 = tolower (*string2);
5241 }
5242 else
5243 {
5244 c1 = *string1;
5245 c2 = *string2;
5246 }
5247 if (c1 != c2)
5248 break;
5249
5250 string1 += 1;
5251 string2 += 1;
5252 }
5253
5254 switch (*string1)
5255 {
5256 case '(':
5257 return strcmp_iw_ordered (string1, string2);
5258 case '_':
5259 if (*string2 == '\0')
5260 {
5261 if (is_name_suffix (string1))
5262 return 0;
5263 else
5264 return 1;
5265 }
5266 /* FALLTHROUGH */
5267 default:
5268 if (*string2 == '(')
5269 return strcmp_iw_ordered (string1, string2);
5270 else
5271 {
5272 if (casing == case_sensitive_off)
5273 return tolower (*string1) - tolower (*string2);
5274 else
5275 return *string1 - *string2;
5276 }
5277 }
5278 }
5279
5280 /* Compare STRING1 to STRING2, with results as for strcmp.
5281 Compatible with strcmp_iw_ordered in that...
5282
5283 strcmp_iw_ordered (STRING1, STRING2) <= 0
5284
5285 ... implies...
5286
5287 compare_names (STRING1, STRING2) <= 0
5288
5289 (they may differ as to what symbols compare equal). */
5290
5291 static int
5292 compare_names (const char *string1, const char *string2)
5293 {
5294 int result;
5295
5296 /* Similar to what strcmp_iw_ordered does, we need to perform
5297 a case-insensitive comparison first, and only resort to
5298 a second, case-sensitive, comparison if the first one was
5299 not sufficient to differentiate the two strings. */
5300
5301 result = compare_names_with_case (string1, string2, case_sensitive_off);
5302 if (result == 0)
5303 result = compare_names_with_case (string1, string2, case_sensitive_on);
5304
5305 return result;
5306 }
5307
5308 /* Add to OBSTACKP all non-local symbols whose name and domain match
5309 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5310 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5311
5312 static void
5313 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5314 domain_enum domain, int global,
5315 int is_wild_match)
5316 {
5317 struct objfile *objfile;
5318 struct match_data data;
5319
5320 memset (&data, 0, sizeof data);
5321 data.obstackp = obstackp;
5322
5323 ALL_OBJFILES (objfile)
5324 {
5325 data.objfile = objfile;
5326
5327 if (is_wild_match)
5328 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5329 aux_add_nonlocal_symbols, &data,
5330 wild_match, NULL);
5331 else
5332 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5333 aux_add_nonlocal_symbols, &data,
5334 full_match, compare_names);
5335 }
5336
5337 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5338 {
5339 ALL_OBJFILES (objfile)
5340 {
5341 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5342 strcpy (name1, "_ada_");
5343 strcpy (name1 + sizeof ("_ada_") - 1, name);
5344 data.objfile = objfile;
5345 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5346 global,
5347 aux_add_nonlocal_symbols,
5348 &data,
5349 full_match, compare_names);
5350 }
5351 }
5352 }
5353
5354 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5355 non-zero, enclosing scope and in global scopes, returning the number of
5356 matches.
5357 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5358 indicating the symbols found and the blocks and symbol tables (if
5359 any) in which they were found. This vector is transient---good only to
5360 the next call of ada_lookup_symbol_list.
5361
5362 When full_search is non-zero, any non-function/non-enumeral
5363 symbol match within the nest of blocks whose innermost member is BLOCK0,
5364 is the one match returned (no other matches in that or
5365 enclosing blocks is returned). If there are any matches in or
5366 surrounding BLOCK0, then these alone are returned.
5367
5368 Names prefixed with "standard__" are handled specially: "standard__"
5369 is first stripped off, and only static and global symbols are searched. */
5370
5371 static int
5372 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5373 domain_enum namespace,
5374 struct ada_symbol_info **results,
5375 int full_search)
5376 {
5377 struct symbol *sym;
5378 const struct block *block;
5379 const char *name;
5380 const int wild_match_p = should_use_wild_match (name0);
5381 int cacheIfUnique;
5382 int ndefns;
5383
5384 obstack_free (&symbol_list_obstack, NULL);
5385 obstack_init (&symbol_list_obstack);
5386
5387 cacheIfUnique = 0;
5388
5389 /* Search specified block and its superiors. */
5390
5391 name = name0;
5392 block = block0;
5393
5394 /* Special case: If the user specifies a symbol name inside package
5395 Standard, do a non-wild matching of the symbol name without
5396 the "standard__" prefix. This was primarily introduced in order
5397 to allow the user to specifically access the standard exceptions
5398 using, for instance, Standard.Constraint_Error when Constraint_Error
5399 is ambiguous (due to the user defining its own Constraint_Error
5400 entity inside its program). */
5401 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5402 {
5403 block = NULL;
5404 name = name0 + sizeof ("standard__") - 1;
5405 }
5406
5407 /* Check the non-global symbols. If we have ANY match, then we're done. */
5408
5409 if (block != NULL)
5410 {
5411 if (full_search)
5412 {
5413 ada_add_local_symbols (&symbol_list_obstack, name, block,
5414 namespace, wild_match_p);
5415 }
5416 else
5417 {
5418 /* In the !full_search case we're are being called by
5419 ada_iterate_over_symbols, and we don't want to search
5420 superblocks. */
5421 ada_add_block_symbols (&symbol_list_obstack, block, name,
5422 namespace, NULL, wild_match_p);
5423 }
5424 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5425 goto done;
5426 }
5427
5428 /* No non-global symbols found. Check our cache to see if we have
5429 already performed this search before. If we have, then return
5430 the same result. */
5431
5432 cacheIfUnique = 1;
5433 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5434 {
5435 if (sym != NULL)
5436 add_defn_to_vec (&symbol_list_obstack, sym, block);
5437 goto done;
5438 }
5439
5440 /* Search symbols from all global blocks. */
5441
5442 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5443 wild_match_p);
5444
5445 /* Now add symbols from all per-file blocks if we've gotten no hits
5446 (not strictly correct, but perhaps better than an error). */
5447
5448 if (num_defns_collected (&symbol_list_obstack) == 0)
5449 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5450 wild_match_p);
5451
5452 done:
5453 ndefns = num_defns_collected (&symbol_list_obstack);
5454 *results = defns_collected (&symbol_list_obstack, 1);
5455
5456 ndefns = remove_extra_symbols (*results, ndefns);
5457
5458 if (ndefns == 0 && full_search)
5459 cache_symbol (name0, namespace, NULL, NULL);
5460
5461 if (ndefns == 1 && full_search && cacheIfUnique)
5462 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5463
5464 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5465
5466 return ndefns;
5467 }
5468
5469 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5470 in global scopes, returning the number of matches, and setting *RESULTS
5471 to a vector of (SYM,BLOCK) tuples.
5472 See ada_lookup_symbol_list_worker for further details. */
5473
5474 int
5475 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5476 domain_enum domain, struct ada_symbol_info **results)
5477 {
5478 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5479 }
5480
5481 /* Implementation of the la_iterate_over_symbols method. */
5482
5483 static void
5484 ada_iterate_over_symbols (const struct block *block,
5485 const char *name, domain_enum domain,
5486 symbol_found_callback_ftype *callback,
5487 void *data)
5488 {
5489 int ndefs, i;
5490 struct ada_symbol_info *results;
5491
5492 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5493 for (i = 0; i < ndefs; ++i)
5494 {
5495 if (! (*callback) (results[i].sym, data))
5496 break;
5497 }
5498 }
5499
5500 /* If NAME is the name of an entity, return a string that should
5501 be used to look that entity up in Ada units. This string should
5502 be deallocated after use using xfree.
5503
5504 NAME can have any form that the "break" or "print" commands might
5505 recognize. In other words, it does not have to be the "natural"
5506 name, or the "encoded" name. */
5507
5508 char *
5509 ada_name_for_lookup (const char *name)
5510 {
5511 char *canon;
5512 int nlen = strlen (name);
5513
5514 if (name[0] == '<' && name[nlen - 1] == '>')
5515 {
5516 canon = xmalloc (nlen - 1);
5517 memcpy (canon, name + 1, nlen - 2);
5518 canon[nlen - 2] = '\0';
5519 }
5520 else
5521 canon = xstrdup (ada_encode (ada_fold_name (name)));
5522 return canon;
5523 }
5524
5525 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5526 to 1, but choosing the first symbol found if there are multiple
5527 choices.
5528
5529 The result is stored in *INFO, which must be non-NULL.
5530 If no match is found, INFO->SYM is set to NULL. */
5531
5532 void
5533 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5534 domain_enum namespace,
5535 struct ada_symbol_info *info)
5536 {
5537 struct ada_symbol_info *candidates;
5538 int n_candidates;
5539
5540 gdb_assert (info != NULL);
5541 memset (info, 0, sizeof (struct ada_symbol_info));
5542
5543 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5544 if (n_candidates == 0)
5545 return;
5546
5547 *info = candidates[0];
5548 info->sym = fixup_symbol_section (info->sym, NULL);
5549 }
5550
5551 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5552 scope and in global scopes, or NULL if none. NAME is folded and
5553 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5554 choosing the first symbol if there are multiple choices.
5555 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5556
5557 struct symbol *
5558 ada_lookup_symbol (const char *name, const struct block *block0,
5559 domain_enum namespace, int *is_a_field_of_this)
5560 {
5561 struct ada_symbol_info info;
5562
5563 if (is_a_field_of_this != NULL)
5564 *is_a_field_of_this = 0;
5565
5566 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5567 block0, namespace, &info);
5568 return info.sym;
5569 }
5570
5571 static struct symbol *
5572 ada_lookup_symbol_nonlocal (const char *name,
5573 const struct block *block,
5574 const domain_enum domain)
5575 {
5576 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5577 }
5578
5579
5580 /* True iff STR is a possible encoded suffix of a normal Ada name
5581 that is to be ignored for matching purposes. Suffixes of parallel
5582 names (e.g., XVE) are not included here. Currently, the possible suffixes
5583 are given by any of the regular expressions:
5584
5585 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5586 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5587 TKB [subprogram suffix for task bodies]
5588 _E[0-9]+[bs]$ [protected object entry suffixes]
5589 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5590
5591 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5592 match is performed. This sequence is used to differentiate homonyms,
5593 is an optional part of a valid name suffix. */
5594
5595 static int
5596 is_name_suffix (const char *str)
5597 {
5598 int k;
5599 const char *matching;
5600 const int len = strlen (str);
5601
5602 /* Skip optional leading __[0-9]+. */
5603
5604 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5605 {
5606 str += 3;
5607 while (isdigit (str[0]))
5608 str += 1;
5609 }
5610
5611 /* [.$][0-9]+ */
5612
5613 if (str[0] == '.' || str[0] == '$')
5614 {
5615 matching = str + 1;
5616 while (isdigit (matching[0]))
5617 matching += 1;
5618 if (matching[0] == '\0')
5619 return 1;
5620 }
5621
5622 /* ___[0-9]+ */
5623
5624 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5625 {
5626 matching = str + 3;
5627 while (isdigit (matching[0]))
5628 matching += 1;
5629 if (matching[0] == '\0')
5630 return 1;
5631 }
5632
5633 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5634
5635 if (strcmp (str, "TKB") == 0)
5636 return 1;
5637
5638 #if 0
5639 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5640 with a N at the end. Unfortunately, the compiler uses the same
5641 convention for other internal types it creates. So treating
5642 all entity names that end with an "N" as a name suffix causes
5643 some regressions. For instance, consider the case of an enumerated
5644 type. To support the 'Image attribute, it creates an array whose
5645 name ends with N.
5646 Having a single character like this as a suffix carrying some
5647 information is a bit risky. Perhaps we should change the encoding
5648 to be something like "_N" instead. In the meantime, do not do
5649 the following check. */
5650 /* Protected Object Subprograms */
5651 if (len == 1 && str [0] == 'N')
5652 return 1;
5653 #endif
5654
5655 /* _E[0-9]+[bs]$ */
5656 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5657 {
5658 matching = str + 3;
5659 while (isdigit (matching[0]))
5660 matching += 1;
5661 if ((matching[0] == 'b' || matching[0] == 's')
5662 && matching [1] == '\0')
5663 return 1;
5664 }
5665
5666 /* ??? We should not modify STR directly, as we are doing below. This
5667 is fine in this case, but may become problematic later if we find
5668 that this alternative did not work, and want to try matching
5669 another one from the begining of STR. Since we modified it, we
5670 won't be able to find the begining of the string anymore! */
5671 if (str[0] == 'X')
5672 {
5673 str += 1;
5674 while (str[0] != '_' && str[0] != '\0')
5675 {
5676 if (str[0] != 'n' && str[0] != 'b')
5677 return 0;
5678 str += 1;
5679 }
5680 }
5681
5682 if (str[0] == '\000')
5683 return 1;
5684
5685 if (str[0] == '_')
5686 {
5687 if (str[1] != '_' || str[2] == '\000')
5688 return 0;
5689 if (str[2] == '_')
5690 {
5691 if (strcmp (str + 3, "JM") == 0)
5692 return 1;
5693 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5694 the LJM suffix in favor of the JM one. But we will
5695 still accept LJM as a valid suffix for a reasonable
5696 amount of time, just to allow ourselves to debug programs
5697 compiled using an older version of GNAT. */
5698 if (strcmp (str + 3, "LJM") == 0)
5699 return 1;
5700 if (str[3] != 'X')
5701 return 0;
5702 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5703 || str[4] == 'U' || str[4] == 'P')
5704 return 1;
5705 if (str[4] == 'R' && str[5] != 'T')
5706 return 1;
5707 return 0;
5708 }
5709 if (!isdigit (str[2]))
5710 return 0;
5711 for (k = 3; str[k] != '\0'; k += 1)
5712 if (!isdigit (str[k]) && str[k] != '_')
5713 return 0;
5714 return 1;
5715 }
5716 if (str[0] == '$' && isdigit (str[1]))
5717 {
5718 for (k = 2; str[k] != '\0'; k += 1)
5719 if (!isdigit (str[k]) && str[k] != '_')
5720 return 0;
5721 return 1;
5722 }
5723 return 0;
5724 }
5725
5726 /* Return non-zero if the string starting at NAME and ending before
5727 NAME_END contains no capital letters. */
5728
5729 static int
5730 is_valid_name_for_wild_match (const char *name0)
5731 {
5732 const char *decoded_name = ada_decode (name0);
5733 int i;
5734
5735 /* If the decoded name starts with an angle bracket, it means that
5736 NAME0 does not follow the GNAT encoding format. It should then
5737 not be allowed as a possible wild match. */
5738 if (decoded_name[0] == '<')
5739 return 0;
5740
5741 for (i=0; decoded_name[i] != '\0'; i++)
5742 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5743 return 0;
5744
5745 return 1;
5746 }
5747
5748 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5749 that could start a simple name. Assumes that *NAMEP points into
5750 the string beginning at NAME0. */
5751
5752 static int
5753 advance_wild_match (const char **namep, const char *name0, int target0)
5754 {
5755 const char *name = *namep;
5756
5757 while (1)
5758 {
5759 int t0, t1;
5760
5761 t0 = *name;
5762 if (t0 == '_')
5763 {
5764 t1 = name[1];
5765 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5766 {
5767 name += 1;
5768 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5769 break;
5770 else
5771 name += 1;
5772 }
5773 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5774 || name[2] == target0))
5775 {
5776 name += 2;
5777 break;
5778 }
5779 else
5780 return 0;
5781 }
5782 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5783 name += 1;
5784 else
5785 return 0;
5786 }
5787
5788 *namep = name;
5789 return 1;
5790 }
5791
5792 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5793 informational suffixes of NAME (i.e., for which is_name_suffix is
5794 true). Assumes that PATN is a lower-cased Ada simple name. */
5795
5796 static int
5797 wild_match (const char *name, const char *patn)
5798 {
5799 const char *p;
5800 const char *name0 = name;
5801
5802 while (1)
5803 {
5804 const char *match = name;
5805
5806 if (*name == *patn)
5807 {
5808 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5809 if (*p != *name)
5810 break;
5811 if (*p == '\0' && is_name_suffix (name))
5812 return match != name0 && !is_valid_name_for_wild_match (name0);
5813
5814 if (name[-1] == '_')
5815 name -= 1;
5816 }
5817 if (!advance_wild_match (&name, name0, *patn))
5818 return 1;
5819 }
5820 }
5821
5822 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5823 informational suffix. */
5824
5825 static int
5826 full_match (const char *sym_name, const char *search_name)
5827 {
5828 return !match_name (sym_name, search_name, 0);
5829 }
5830
5831
5832 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5833 vector *defn_symbols, updating the list of symbols in OBSTACKP
5834 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5835 OBJFILE is the section containing BLOCK. */
5836
5837 static void
5838 ada_add_block_symbols (struct obstack *obstackp,
5839 const struct block *block, const char *name,
5840 domain_enum domain, struct objfile *objfile,
5841 int wild)
5842 {
5843 struct block_iterator iter;
5844 int name_len = strlen (name);
5845 /* A matching argument symbol, if any. */
5846 struct symbol *arg_sym;
5847 /* Set true when we find a matching non-argument symbol. */
5848 int found_sym;
5849 struct symbol *sym;
5850
5851 arg_sym = NULL;
5852 found_sym = 0;
5853 if (wild)
5854 {
5855 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5856 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5857 {
5858 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5859 SYMBOL_DOMAIN (sym), domain)
5860 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5861 {
5862 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5863 continue;
5864 else if (SYMBOL_IS_ARGUMENT (sym))
5865 arg_sym = sym;
5866 else
5867 {
5868 found_sym = 1;
5869 add_defn_to_vec (obstackp,
5870 fixup_symbol_section (sym, objfile),
5871 block);
5872 }
5873 }
5874 }
5875 }
5876 else
5877 {
5878 for (sym = block_iter_match_first (block, name, full_match, &iter);
5879 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5880 {
5881 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5882 SYMBOL_DOMAIN (sym), domain))
5883 {
5884 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5885 {
5886 if (SYMBOL_IS_ARGUMENT (sym))
5887 arg_sym = sym;
5888 else
5889 {
5890 found_sym = 1;
5891 add_defn_to_vec (obstackp,
5892 fixup_symbol_section (sym, objfile),
5893 block);
5894 }
5895 }
5896 }
5897 }
5898 }
5899
5900 if (!found_sym && arg_sym != NULL)
5901 {
5902 add_defn_to_vec (obstackp,
5903 fixup_symbol_section (arg_sym, objfile),
5904 block);
5905 }
5906
5907 if (!wild)
5908 {
5909 arg_sym = NULL;
5910 found_sym = 0;
5911
5912 ALL_BLOCK_SYMBOLS (block, iter, sym)
5913 {
5914 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5915 SYMBOL_DOMAIN (sym), domain))
5916 {
5917 int cmp;
5918
5919 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5920 if (cmp == 0)
5921 {
5922 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5923 if (cmp == 0)
5924 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5925 name_len);
5926 }
5927
5928 if (cmp == 0
5929 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5930 {
5931 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5932 {
5933 if (SYMBOL_IS_ARGUMENT (sym))
5934 arg_sym = sym;
5935 else
5936 {
5937 found_sym = 1;
5938 add_defn_to_vec (obstackp,
5939 fixup_symbol_section (sym, objfile),
5940 block);
5941 }
5942 }
5943 }
5944 }
5945 }
5946
5947 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5948 They aren't parameters, right? */
5949 if (!found_sym && arg_sym != NULL)
5950 {
5951 add_defn_to_vec (obstackp,
5952 fixup_symbol_section (arg_sym, objfile),
5953 block);
5954 }
5955 }
5956 }
5957 \f
5958
5959 /* Symbol Completion */
5960
5961 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5962 name in a form that's appropriate for the completion. The result
5963 does not need to be deallocated, but is only good until the next call.
5964
5965 TEXT_LEN is equal to the length of TEXT.
5966 Perform a wild match if WILD_MATCH_P is set.
5967 ENCODED_P should be set if TEXT represents the start of a symbol name
5968 in its encoded form. */
5969
5970 static const char *
5971 symbol_completion_match (const char *sym_name,
5972 const char *text, int text_len,
5973 int wild_match_p, int encoded_p)
5974 {
5975 const int verbatim_match = (text[0] == '<');
5976 int match = 0;
5977
5978 if (verbatim_match)
5979 {
5980 /* Strip the leading angle bracket. */
5981 text = text + 1;
5982 text_len--;
5983 }
5984
5985 /* First, test against the fully qualified name of the symbol. */
5986
5987 if (strncmp (sym_name, text, text_len) == 0)
5988 match = 1;
5989
5990 if (match && !encoded_p)
5991 {
5992 /* One needed check before declaring a positive match is to verify
5993 that iff we are doing a verbatim match, the decoded version
5994 of the symbol name starts with '<'. Otherwise, this symbol name
5995 is not a suitable completion. */
5996 const char *sym_name_copy = sym_name;
5997 int has_angle_bracket;
5998
5999 sym_name = ada_decode (sym_name);
6000 has_angle_bracket = (sym_name[0] == '<');
6001 match = (has_angle_bracket == verbatim_match);
6002 sym_name = sym_name_copy;
6003 }
6004
6005 if (match && !verbatim_match)
6006 {
6007 /* When doing non-verbatim match, another check that needs to
6008 be done is to verify that the potentially matching symbol name
6009 does not include capital letters, because the ada-mode would
6010 not be able to understand these symbol names without the
6011 angle bracket notation. */
6012 const char *tmp;
6013
6014 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6015 if (*tmp != '\0')
6016 match = 0;
6017 }
6018
6019 /* Second: Try wild matching... */
6020
6021 if (!match && wild_match_p)
6022 {
6023 /* Since we are doing wild matching, this means that TEXT
6024 may represent an unqualified symbol name. We therefore must
6025 also compare TEXT against the unqualified name of the symbol. */
6026 sym_name = ada_unqualified_name (ada_decode (sym_name));
6027
6028 if (strncmp (sym_name, text, text_len) == 0)
6029 match = 1;
6030 }
6031
6032 /* Finally: If we found a mach, prepare the result to return. */
6033
6034 if (!match)
6035 return NULL;
6036
6037 if (verbatim_match)
6038 sym_name = add_angle_brackets (sym_name);
6039
6040 if (!encoded_p)
6041 sym_name = ada_decode (sym_name);
6042
6043 return sym_name;
6044 }
6045
6046 /* A companion function to ada_make_symbol_completion_list().
6047 Check if SYM_NAME represents a symbol which name would be suitable
6048 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6049 it is appended at the end of the given string vector SV.
6050
6051 ORIG_TEXT is the string original string from the user command
6052 that needs to be completed. WORD is the entire command on which
6053 completion should be performed. These two parameters are used to
6054 determine which part of the symbol name should be added to the
6055 completion vector.
6056 if WILD_MATCH_P is set, then wild matching is performed.
6057 ENCODED_P should be set if TEXT represents a symbol name in its
6058 encoded formed (in which case the completion should also be
6059 encoded). */
6060
6061 static void
6062 symbol_completion_add (VEC(char_ptr) **sv,
6063 const char *sym_name,
6064 const char *text, int text_len,
6065 const char *orig_text, const char *word,
6066 int wild_match_p, int encoded_p)
6067 {
6068 const char *match = symbol_completion_match (sym_name, text, text_len,
6069 wild_match_p, encoded_p);
6070 char *completion;
6071
6072 if (match == NULL)
6073 return;
6074
6075 /* We found a match, so add the appropriate completion to the given
6076 string vector. */
6077
6078 if (word == orig_text)
6079 {
6080 completion = xmalloc (strlen (match) + 5);
6081 strcpy (completion, match);
6082 }
6083 else if (word > orig_text)
6084 {
6085 /* Return some portion of sym_name. */
6086 completion = xmalloc (strlen (match) + 5);
6087 strcpy (completion, match + (word - orig_text));
6088 }
6089 else
6090 {
6091 /* Return some of ORIG_TEXT plus sym_name. */
6092 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6093 strncpy (completion, word, orig_text - word);
6094 completion[orig_text - word] = '\0';
6095 strcat (completion, match);
6096 }
6097
6098 VEC_safe_push (char_ptr, *sv, completion);
6099 }
6100
6101 /* An object of this type is passed as the user_data argument to the
6102 expand_symtabs_matching method. */
6103 struct add_partial_datum
6104 {
6105 VEC(char_ptr) **completions;
6106 const char *text;
6107 int text_len;
6108 const char *text0;
6109 const char *word;
6110 int wild_match;
6111 int encoded;
6112 };
6113
6114 /* A callback for expand_symtabs_matching. */
6115
6116 static int
6117 ada_complete_symbol_matcher (const char *name, void *user_data)
6118 {
6119 struct add_partial_datum *data = user_data;
6120
6121 return symbol_completion_match (name, data->text, data->text_len,
6122 data->wild_match, data->encoded) != NULL;
6123 }
6124
6125 /* Return a list of possible symbol names completing TEXT0. WORD is
6126 the entire command on which completion is made. */
6127
6128 static VEC (char_ptr) *
6129 ada_make_symbol_completion_list (const char *text0, const char *word,
6130 enum type_code code)
6131 {
6132 char *text;
6133 int text_len;
6134 int wild_match_p;
6135 int encoded_p;
6136 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6137 struct symbol *sym;
6138 struct symtab *s;
6139 struct minimal_symbol *msymbol;
6140 struct objfile *objfile;
6141 const struct block *b, *surrounding_static_block = 0;
6142 int i;
6143 struct block_iterator iter;
6144 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6145
6146 gdb_assert (code == TYPE_CODE_UNDEF);
6147
6148 if (text0[0] == '<')
6149 {
6150 text = xstrdup (text0);
6151 make_cleanup (xfree, text);
6152 text_len = strlen (text);
6153 wild_match_p = 0;
6154 encoded_p = 1;
6155 }
6156 else
6157 {
6158 text = xstrdup (ada_encode (text0));
6159 make_cleanup (xfree, text);
6160 text_len = strlen (text);
6161 for (i = 0; i < text_len; i++)
6162 text[i] = tolower (text[i]);
6163
6164 encoded_p = (strstr (text0, "__") != NULL);
6165 /* If the name contains a ".", then the user is entering a fully
6166 qualified entity name, and the match must not be done in wild
6167 mode. Similarly, if the user wants to complete what looks like
6168 an encoded name, the match must not be done in wild mode. */
6169 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6170 }
6171
6172 /* First, look at the partial symtab symbols. */
6173 {
6174 struct add_partial_datum data;
6175
6176 data.completions = &completions;
6177 data.text = text;
6178 data.text_len = text_len;
6179 data.text0 = text0;
6180 data.word = word;
6181 data.wild_match = wild_match_p;
6182 data.encoded = encoded_p;
6183 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6184 &data);
6185 }
6186
6187 /* At this point scan through the misc symbol vectors and add each
6188 symbol you find to the list. Eventually we want to ignore
6189 anything that isn't a text symbol (everything else will be
6190 handled by the psymtab code above). */
6191
6192 ALL_MSYMBOLS (objfile, msymbol)
6193 {
6194 QUIT;
6195 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6196 text, text_len, text0, word, wild_match_p,
6197 encoded_p);
6198 }
6199
6200 /* Search upwards from currently selected frame (so that we can
6201 complete on local vars. */
6202
6203 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6204 {
6205 if (!BLOCK_SUPERBLOCK (b))
6206 surrounding_static_block = b; /* For elmin of dups */
6207
6208 ALL_BLOCK_SYMBOLS (b, iter, sym)
6209 {
6210 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6211 text, text_len, text0, word,
6212 wild_match_p, encoded_p);
6213 }
6214 }
6215
6216 /* Go through the symtabs and check the externs and statics for
6217 symbols which match.
6218 Non-primary symtabs share the block vector with their primary symtabs
6219 so we use ALL_PRIMARY_SYMTABS here instead of ALL_SYMTABS. */
6220
6221 ALL_PRIMARY_SYMTABS (objfile, s)
6222 {
6223 QUIT;
6224 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
6225 ALL_BLOCK_SYMBOLS (b, iter, sym)
6226 {
6227 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6228 text, text_len, text0, word,
6229 wild_match_p, encoded_p);
6230 }
6231 }
6232
6233 ALL_PRIMARY_SYMTABS (objfile, s)
6234 {
6235 QUIT;
6236 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
6237 /* Don't do this block twice. */
6238 if (b == surrounding_static_block)
6239 continue;
6240 ALL_BLOCK_SYMBOLS (b, iter, sym)
6241 {
6242 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6243 text, text_len, text0, word,
6244 wild_match_p, encoded_p);
6245 }
6246 }
6247
6248 do_cleanups (old_chain);
6249 return completions;
6250 }
6251
6252 /* Field Access */
6253
6254 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6255 for tagged types. */
6256
6257 static int
6258 ada_is_dispatch_table_ptr_type (struct type *type)
6259 {
6260 const char *name;
6261
6262 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6263 return 0;
6264
6265 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6266 if (name == NULL)
6267 return 0;
6268
6269 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6270 }
6271
6272 /* Return non-zero if TYPE is an interface tag. */
6273
6274 static int
6275 ada_is_interface_tag (struct type *type)
6276 {
6277 const char *name = TYPE_NAME (type);
6278
6279 if (name == NULL)
6280 return 0;
6281
6282 return (strcmp (name, "ada__tags__interface_tag") == 0);
6283 }
6284
6285 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6286 to be invisible to users. */
6287
6288 int
6289 ada_is_ignored_field (struct type *type, int field_num)
6290 {
6291 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6292 return 1;
6293
6294 /* Check the name of that field. */
6295 {
6296 const char *name = TYPE_FIELD_NAME (type, field_num);
6297
6298 /* Anonymous field names should not be printed.
6299 brobecker/2007-02-20: I don't think this can actually happen
6300 but we don't want to print the value of annonymous fields anyway. */
6301 if (name == NULL)
6302 return 1;
6303
6304 /* Normally, fields whose name start with an underscore ("_")
6305 are fields that have been internally generated by the compiler,
6306 and thus should not be printed. The "_parent" field is special,
6307 however: This is a field internally generated by the compiler
6308 for tagged types, and it contains the components inherited from
6309 the parent type. This field should not be printed as is, but
6310 should not be ignored either. */
6311 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6312 return 1;
6313 }
6314
6315 /* If this is the dispatch table of a tagged type or an interface tag,
6316 then ignore. */
6317 if (ada_is_tagged_type (type, 1)
6318 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6319 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6320 return 1;
6321
6322 /* Not a special field, so it should not be ignored. */
6323 return 0;
6324 }
6325
6326 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6327 pointer or reference type whose ultimate target has a tag field. */
6328
6329 int
6330 ada_is_tagged_type (struct type *type, int refok)
6331 {
6332 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6333 }
6334
6335 /* True iff TYPE represents the type of X'Tag */
6336
6337 int
6338 ada_is_tag_type (struct type *type)
6339 {
6340 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6341 return 0;
6342 else
6343 {
6344 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6345
6346 return (name != NULL
6347 && strcmp (name, "ada__tags__dispatch_table") == 0);
6348 }
6349 }
6350
6351 /* The type of the tag on VAL. */
6352
6353 struct type *
6354 ada_tag_type (struct value *val)
6355 {
6356 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6357 }
6358
6359 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6360 retired at Ada 05). */
6361
6362 static int
6363 is_ada95_tag (struct value *tag)
6364 {
6365 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6366 }
6367
6368 /* The value of the tag on VAL. */
6369
6370 struct value *
6371 ada_value_tag (struct value *val)
6372 {
6373 return ada_value_struct_elt (val, "_tag", 0);
6374 }
6375
6376 /* The value of the tag on the object of type TYPE whose contents are
6377 saved at VALADDR, if it is non-null, or is at memory address
6378 ADDRESS. */
6379
6380 static struct value *
6381 value_tag_from_contents_and_address (struct type *type,
6382 const gdb_byte *valaddr,
6383 CORE_ADDR address)
6384 {
6385 int tag_byte_offset;
6386 struct type *tag_type;
6387
6388 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6389 NULL, NULL, NULL))
6390 {
6391 const gdb_byte *valaddr1 = ((valaddr == NULL)
6392 ? NULL
6393 : valaddr + tag_byte_offset);
6394 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6395
6396 return value_from_contents_and_address (tag_type, valaddr1, address1);
6397 }
6398 return NULL;
6399 }
6400
6401 static struct type *
6402 type_from_tag (struct value *tag)
6403 {
6404 const char *type_name = ada_tag_name (tag);
6405
6406 if (type_name != NULL)
6407 return ada_find_any_type (ada_encode (type_name));
6408 return NULL;
6409 }
6410
6411 /* Given a value OBJ of a tagged type, return a value of this
6412 type at the base address of the object. The base address, as
6413 defined in Ada.Tags, it is the address of the primary tag of
6414 the object, and therefore where the field values of its full
6415 view can be fetched. */
6416
6417 struct value *
6418 ada_tag_value_at_base_address (struct value *obj)
6419 {
6420 volatile struct gdb_exception e;
6421 struct value *val;
6422 LONGEST offset_to_top = 0;
6423 struct type *ptr_type, *obj_type;
6424 struct value *tag;
6425 CORE_ADDR base_address;
6426
6427 obj_type = value_type (obj);
6428
6429 /* It is the responsability of the caller to deref pointers. */
6430
6431 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6432 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6433 return obj;
6434
6435 tag = ada_value_tag (obj);
6436 if (!tag)
6437 return obj;
6438
6439 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6440
6441 if (is_ada95_tag (tag))
6442 return obj;
6443
6444 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6445 ptr_type = lookup_pointer_type (ptr_type);
6446 val = value_cast (ptr_type, tag);
6447 if (!val)
6448 return obj;
6449
6450 /* It is perfectly possible that an exception be raised while
6451 trying to determine the base address, just like for the tag;
6452 see ada_tag_name for more details. We do not print the error
6453 message for the same reason. */
6454
6455 TRY_CATCH (e, RETURN_MASK_ERROR)
6456 {
6457 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6458 }
6459
6460 if (e.reason < 0)
6461 return obj;
6462
6463 /* If offset is null, nothing to do. */
6464
6465 if (offset_to_top == 0)
6466 return obj;
6467
6468 /* -1 is a special case in Ada.Tags; however, what should be done
6469 is not quite clear from the documentation. So do nothing for
6470 now. */
6471
6472 if (offset_to_top == -1)
6473 return obj;
6474
6475 base_address = value_address (obj) - offset_to_top;
6476 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6477
6478 /* Make sure that we have a proper tag at the new address.
6479 Otherwise, offset_to_top is bogus (which can happen when
6480 the object is not initialized yet). */
6481
6482 if (!tag)
6483 return obj;
6484
6485 obj_type = type_from_tag (tag);
6486
6487 if (!obj_type)
6488 return obj;
6489
6490 return value_from_contents_and_address (obj_type, NULL, base_address);
6491 }
6492
6493 /* Return the "ada__tags__type_specific_data" type. */
6494
6495 static struct type *
6496 ada_get_tsd_type (struct inferior *inf)
6497 {
6498 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6499
6500 if (data->tsd_type == 0)
6501 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6502 return data->tsd_type;
6503 }
6504
6505 /* Return the TSD (type-specific data) associated to the given TAG.
6506 TAG is assumed to be the tag of a tagged-type entity.
6507
6508 May return NULL if we are unable to get the TSD. */
6509
6510 static struct value *
6511 ada_get_tsd_from_tag (struct value *tag)
6512 {
6513 struct value *val;
6514 struct type *type;
6515
6516 /* First option: The TSD is simply stored as a field of our TAG.
6517 Only older versions of GNAT would use this format, but we have
6518 to test it first, because there are no visible markers for
6519 the current approach except the absence of that field. */
6520
6521 val = ada_value_struct_elt (tag, "tsd", 1);
6522 if (val)
6523 return val;
6524
6525 /* Try the second representation for the dispatch table (in which
6526 there is no explicit 'tsd' field in the referent of the tag pointer,
6527 and instead the tsd pointer is stored just before the dispatch
6528 table. */
6529
6530 type = ada_get_tsd_type (current_inferior());
6531 if (type == NULL)
6532 return NULL;
6533 type = lookup_pointer_type (lookup_pointer_type (type));
6534 val = value_cast (type, tag);
6535 if (val == NULL)
6536 return NULL;
6537 return value_ind (value_ptradd (val, -1));
6538 }
6539
6540 /* Given the TSD of a tag (type-specific data), return a string
6541 containing the name of the associated type.
6542
6543 The returned value is good until the next call. May return NULL
6544 if we are unable to determine the tag name. */
6545
6546 static char *
6547 ada_tag_name_from_tsd (struct value *tsd)
6548 {
6549 static char name[1024];
6550 char *p;
6551 struct value *val;
6552
6553 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6554 if (val == NULL)
6555 return NULL;
6556 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6557 for (p = name; *p != '\0'; p += 1)
6558 if (isalpha (*p))
6559 *p = tolower (*p);
6560 return name;
6561 }
6562
6563 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6564 a C string.
6565
6566 Return NULL if the TAG is not an Ada tag, or if we were unable to
6567 determine the name of that tag. The result is good until the next
6568 call. */
6569
6570 const char *
6571 ada_tag_name (struct value *tag)
6572 {
6573 volatile struct gdb_exception e;
6574 char *name = NULL;
6575
6576 if (!ada_is_tag_type (value_type (tag)))
6577 return NULL;
6578
6579 /* It is perfectly possible that an exception be raised while trying
6580 to determine the TAG's name, even under normal circumstances:
6581 The associated variable may be uninitialized or corrupted, for
6582 instance. We do not let any exception propagate past this point.
6583 instead we return NULL.
6584
6585 We also do not print the error message either (which often is very
6586 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6587 the caller print a more meaningful message if necessary. */
6588 TRY_CATCH (e, RETURN_MASK_ERROR)
6589 {
6590 struct value *tsd = ada_get_tsd_from_tag (tag);
6591
6592 if (tsd != NULL)
6593 name = ada_tag_name_from_tsd (tsd);
6594 }
6595
6596 return name;
6597 }
6598
6599 /* The parent type of TYPE, or NULL if none. */
6600
6601 struct type *
6602 ada_parent_type (struct type *type)
6603 {
6604 int i;
6605
6606 type = ada_check_typedef (type);
6607
6608 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6609 return NULL;
6610
6611 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6612 if (ada_is_parent_field (type, i))
6613 {
6614 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6615
6616 /* If the _parent field is a pointer, then dereference it. */
6617 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6618 parent_type = TYPE_TARGET_TYPE (parent_type);
6619 /* If there is a parallel XVS type, get the actual base type. */
6620 parent_type = ada_get_base_type (parent_type);
6621
6622 return ada_check_typedef (parent_type);
6623 }
6624
6625 return NULL;
6626 }
6627
6628 /* True iff field number FIELD_NUM of structure type TYPE contains the
6629 parent-type (inherited) fields of a derived type. Assumes TYPE is
6630 a structure type with at least FIELD_NUM+1 fields. */
6631
6632 int
6633 ada_is_parent_field (struct type *type, int field_num)
6634 {
6635 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6636
6637 return (name != NULL
6638 && (strncmp (name, "PARENT", 6) == 0
6639 || strncmp (name, "_parent", 7) == 0));
6640 }
6641
6642 /* True iff field number FIELD_NUM of structure type TYPE is a
6643 transparent wrapper field (which should be silently traversed when doing
6644 field selection and flattened when printing). Assumes TYPE is a
6645 structure type with at least FIELD_NUM+1 fields. Such fields are always
6646 structures. */
6647
6648 int
6649 ada_is_wrapper_field (struct type *type, int field_num)
6650 {
6651 const char *name = TYPE_FIELD_NAME (type, field_num);
6652
6653 return (name != NULL
6654 && (strncmp (name, "PARENT", 6) == 0
6655 || strcmp (name, "REP") == 0
6656 || strncmp (name, "_parent", 7) == 0
6657 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6658 }
6659
6660 /* True iff field number FIELD_NUM of structure or union type TYPE
6661 is a variant wrapper. Assumes TYPE is a structure type with at least
6662 FIELD_NUM+1 fields. */
6663
6664 int
6665 ada_is_variant_part (struct type *type, int field_num)
6666 {
6667 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6668
6669 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6670 || (is_dynamic_field (type, field_num)
6671 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6672 == TYPE_CODE_UNION)));
6673 }
6674
6675 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6676 whose discriminants are contained in the record type OUTER_TYPE,
6677 returns the type of the controlling discriminant for the variant.
6678 May return NULL if the type could not be found. */
6679
6680 struct type *
6681 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6682 {
6683 char *name = ada_variant_discrim_name (var_type);
6684
6685 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6686 }
6687
6688 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6689 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6690 represents a 'when others' clause; otherwise 0. */
6691
6692 int
6693 ada_is_others_clause (struct type *type, int field_num)
6694 {
6695 const char *name = TYPE_FIELD_NAME (type, field_num);
6696
6697 return (name != NULL && name[0] == 'O');
6698 }
6699
6700 /* Assuming that TYPE0 is the type of the variant part of a record,
6701 returns the name of the discriminant controlling the variant.
6702 The value is valid until the next call to ada_variant_discrim_name. */
6703
6704 char *
6705 ada_variant_discrim_name (struct type *type0)
6706 {
6707 static char *result = NULL;
6708 static size_t result_len = 0;
6709 struct type *type;
6710 const char *name;
6711 const char *discrim_end;
6712 const char *discrim_start;
6713
6714 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6715 type = TYPE_TARGET_TYPE (type0);
6716 else
6717 type = type0;
6718
6719 name = ada_type_name (type);
6720
6721 if (name == NULL || name[0] == '\000')
6722 return "";
6723
6724 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6725 discrim_end -= 1)
6726 {
6727 if (strncmp (discrim_end, "___XVN", 6) == 0)
6728 break;
6729 }
6730 if (discrim_end == name)
6731 return "";
6732
6733 for (discrim_start = discrim_end; discrim_start != name + 3;
6734 discrim_start -= 1)
6735 {
6736 if (discrim_start == name + 1)
6737 return "";
6738 if ((discrim_start > name + 3
6739 && strncmp (discrim_start - 3, "___", 3) == 0)
6740 || discrim_start[-1] == '.')
6741 break;
6742 }
6743
6744 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6745 strncpy (result, discrim_start, discrim_end - discrim_start);
6746 result[discrim_end - discrim_start] = '\0';
6747 return result;
6748 }
6749
6750 /* Scan STR for a subtype-encoded number, beginning at position K.
6751 Put the position of the character just past the number scanned in
6752 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6753 Return 1 if there was a valid number at the given position, and 0
6754 otherwise. A "subtype-encoded" number consists of the absolute value
6755 in decimal, followed by the letter 'm' to indicate a negative number.
6756 Assumes 0m does not occur. */
6757
6758 int
6759 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6760 {
6761 ULONGEST RU;
6762
6763 if (!isdigit (str[k]))
6764 return 0;
6765
6766 /* Do it the hard way so as not to make any assumption about
6767 the relationship of unsigned long (%lu scan format code) and
6768 LONGEST. */
6769 RU = 0;
6770 while (isdigit (str[k]))
6771 {
6772 RU = RU * 10 + (str[k] - '0');
6773 k += 1;
6774 }
6775
6776 if (str[k] == 'm')
6777 {
6778 if (R != NULL)
6779 *R = (-(LONGEST) (RU - 1)) - 1;
6780 k += 1;
6781 }
6782 else if (R != NULL)
6783 *R = (LONGEST) RU;
6784
6785 /* NOTE on the above: Technically, C does not say what the results of
6786 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6787 number representable as a LONGEST (although either would probably work
6788 in most implementations). When RU>0, the locution in the then branch
6789 above is always equivalent to the negative of RU. */
6790
6791 if (new_k != NULL)
6792 *new_k = k;
6793 return 1;
6794 }
6795
6796 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6797 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6798 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6799
6800 int
6801 ada_in_variant (LONGEST val, struct type *type, int field_num)
6802 {
6803 const char *name = TYPE_FIELD_NAME (type, field_num);
6804 int p;
6805
6806 p = 0;
6807 while (1)
6808 {
6809 switch (name[p])
6810 {
6811 case '\0':
6812 return 0;
6813 case 'S':
6814 {
6815 LONGEST W;
6816
6817 if (!ada_scan_number (name, p + 1, &W, &p))
6818 return 0;
6819 if (val == W)
6820 return 1;
6821 break;
6822 }
6823 case 'R':
6824 {
6825 LONGEST L, U;
6826
6827 if (!ada_scan_number (name, p + 1, &L, &p)
6828 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6829 return 0;
6830 if (val >= L && val <= U)
6831 return 1;
6832 break;
6833 }
6834 case 'O':
6835 return 1;
6836 default:
6837 return 0;
6838 }
6839 }
6840 }
6841
6842 /* FIXME: Lots of redundancy below. Try to consolidate. */
6843
6844 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6845 ARG_TYPE, extract and return the value of one of its (non-static)
6846 fields. FIELDNO says which field. Differs from value_primitive_field
6847 only in that it can handle packed values of arbitrary type. */
6848
6849 static struct value *
6850 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6851 struct type *arg_type)
6852 {
6853 struct type *type;
6854
6855 arg_type = ada_check_typedef (arg_type);
6856 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6857
6858 /* Handle packed fields. */
6859
6860 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6861 {
6862 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6863 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6864
6865 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6866 offset + bit_pos / 8,
6867 bit_pos % 8, bit_size, type);
6868 }
6869 else
6870 return value_primitive_field (arg1, offset, fieldno, arg_type);
6871 }
6872
6873 /* Find field with name NAME in object of type TYPE. If found,
6874 set the following for each argument that is non-null:
6875 - *FIELD_TYPE_P to the field's type;
6876 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6877 an object of that type;
6878 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6879 - *BIT_SIZE_P to its size in bits if the field is packed, and
6880 0 otherwise;
6881 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6882 fields up to but not including the desired field, or by the total
6883 number of fields if not found. A NULL value of NAME never
6884 matches; the function just counts visible fields in this case.
6885
6886 Returns 1 if found, 0 otherwise. */
6887
6888 static int
6889 find_struct_field (const char *name, struct type *type, int offset,
6890 struct type **field_type_p,
6891 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6892 int *index_p)
6893 {
6894 int i;
6895
6896 type = ada_check_typedef (type);
6897
6898 if (field_type_p != NULL)
6899 *field_type_p = NULL;
6900 if (byte_offset_p != NULL)
6901 *byte_offset_p = 0;
6902 if (bit_offset_p != NULL)
6903 *bit_offset_p = 0;
6904 if (bit_size_p != NULL)
6905 *bit_size_p = 0;
6906
6907 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6908 {
6909 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6910 int fld_offset = offset + bit_pos / 8;
6911 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6912
6913 if (t_field_name == NULL)
6914 continue;
6915
6916 else if (name != NULL && field_name_match (t_field_name, name))
6917 {
6918 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6919
6920 if (field_type_p != NULL)
6921 *field_type_p = TYPE_FIELD_TYPE (type, i);
6922 if (byte_offset_p != NULL)
6923 *byte_offset_p = fld_offset;
6924 if (bit_offset_p != NULL)
6925 *bit_offset_p = bit_pos % 8;
6926 if (bit_size_p != NULL)
6927 *bit_size_p = bit_size;
6928 return 1;
6929 }
6930 else if (ada_is_wrapper_field (type, i))
6931 {
6932 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6933 field_type_p, byte_offset_p, bit_offset_p,
6934 bit_size_p, index_p))
6935 return 1;
6936 }
6937 else if (ada_is_variant_part (type, i))
6938 {
6939 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6940 fixed type?? */
6941 int j;
6942 struct type *field_type
6943 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6944
6945 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6946 {
6947 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6948 fld_offset
6949 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6950 field_type_p, byte_offset_p,
6951 bit_offset_p, bit_size_p, index_p))
6952 return 1;
6953 }
6954 }
6955 else if (index_p != NULL)
6956 *index_p += 1;
6957 }
6958 return 0;
6959 }
6960
6961 /* Number of user-visible fields in record type TYPE. */
6962
6963 static int
6964 num_visible_fields (struct type *type)
6965 {
6966 int n;
6967
6968 n = 0;
6969 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6970 return n;
6971 }
6972
6973 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6974 and search in it assuming it has (class) type TYPE.
6975 If found, return value, else return NULL.
6976
6977 Searches recursively through wrapper fields (e.g., '_parent'). */
6978
6979 static struct value *
6980 ada_search_struct_field (char *name, struct value *arg, int offset,
6981 struct type *type)
6982 {
6983 int i;
6984
6985 type = ada_check_typedef (type);
6986 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6987 {
6988 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6989
6990 if (t_field_name == NULL)
6991 continue;
6992
6993 else if (field_name_match (t_field_name, name))
6994 return ada_value_primitive_field (arg, offset, i, type);
6995
6996 else if (ada_is_wrapper_field (type, i))
6997 {
6998 struct value *v = /* Do not let indent join lines here. */
6999 ada_search_struct_field (name, arg,
7000 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7001 TYPE_FIELD_TYPE (type, i));
7002
7003 if (v != NULL)
7004 return v;
7005 }
7006
7007 else if (ada_is_variant_part (type, i))
7008 {
7009 /* PNH: Do we ever get here? See find_struct_field. */
7010 int j;
7011 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7012 i));
7013 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7014
7015 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7016 {
7017 struct value *v = ada_search_struct_field /* Force line
7018 break. */
7019 (name, arg,
7020 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7021 TYPE_FIELD_TYPE (field_type, j));
7022
7023 if (v != NULL)
7024 return v;
7025 }
7026 }
7027 }
7028 return NULL;
7029 }
7030
7031 static struct value *ada_index_struct_field_1 (int *, struct value *,
7032 int, struct type *);
7033
7034
7035 /* Return field #INDEX in ARG, where the index is that returned by
7036 * find_struct_field through its INDEX_P argument. Adjust the address
7037 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7038 * If found, return value, else return NULL. */
7039
7040 static struct value *
7041 ada_index_struct_field (int index, struct value *arg, int offset,
7042 struct type *type)
7043 {
7044 return ada_index_struct_field_1 (&index, arg, offset, type);
7045 }
7046
7047
7048 /* Auxiliary function for ada_index_struct_field. Like
7049 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7050 * *INDEX_P. */
7051
7052 static struct value *
7053 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7054 struct type *type)
7055 {
7056 int i;
7057 type = ada_check_typedef (type);
7058
7059 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7060 {
7061 if (TYPE_FIELD_NAME (type, i) == NULL)
7062 continue;
7063 else if (ada_is_wrapper_field (type, i))
7064 {
7065 struct value *v = /* Do not let indent join lines here. */
7066 ada_index_struct_field_1 (index_p, arg,
7067 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7068 TYPE_FIELD_TYPE (type, i));
7069
7070 if (v != NULL)
7071 return v;
7072 }
7073
7074 else if (ada_is_variant_part (type, i))
7075 {
7076 /* PNH: Do we ever get here? See ada_search_struct_field,
7077 find_struct_field. */
7078 error (_("Cannot assign this kind of variant record"));
7079 }
7080 else if (*index_p == 0)
7081 return ada_value_primitive_field (arg, offset, i, type);
7082 else
7083 *index_p -= 1;
7084 }
7085 return NULL;
7086 }
7087
7088 /* Given ARG, a value of type (pointer or reference to a)*
7089 structure/union, extract the component named NAME from the ultimate
7090 target structure/union and return it as a value with its
7091 appropriate type.
7092
7093 The routine searches for NAME among all members of the structure itself
7094 and (recursively) among all members of any wrapper members
7095 (e.g., '_parent').
7096
7097 If NO_ERR, then simply return NULL in case of error, rather than
7098 calling error. */
7099
7100 struct value *
7101 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7102 {
7103 struct type *t, *t1;
7104 struct value *v;
7105
7106 v = NULL;
7107 t1 = t = ada_check_typedef (value_type (arg));
7108 if (TYPE_CODE (t) == TYPE_CODE_REF)
7109 {
7110 t1 = TYPE_TARGET_TYPE (t);
7111 if (t1 == NULL)
7112 goto BadValue;
7113 t1 = ada_check_typedef (t1);
7114 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7115 {
7116 arg = coerce_ref (arg);
7117 t = t1;
7118 }
7119 }
7120
7121 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7122 {
7123 t1 = TYPE_TARGET_TYPE (t);
7124 if (t1 == NULL)
7125 goto BadValue;
7126 t1 = ada_check_typedef (t1);
7127 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7128 {
7129 arg = value_ind (arg);
7130 t = t1;
7131 }
7132 else
7133 break;
7134 }
7135
7136 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7137 goto BadValue;
7138
7139 if (t1 == t)
7140 v = ada_search_struct_field (name, arg, 0, t);
7141 else
7142 {
7143 int bit_offset, bit_size, byte_offset;
7144 struct type *field_type;
7145 CORE_ADDR address;
7146
7147 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7148 address = value_address (ada_value_ind (arg));
7149 else
7150 address = value_address (ada_coerce_ref (arg));
7151
7152 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7153 if (find_struct_field (name, t1, 0,
7154 &field_type, &byte_offset, &bit_offset,
7155 &bit_size, NULL))
7156 {
7157 if (bit_size != 0)
7158 {
7159 if (TYPE_CODE (t) == TYPE_CODE_REF)
7160 arg = ada_coerce_ref (arg);
7161 else
7162 arg = ada_value_ind (arg);
7163 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7164 bit_offset, bit_size,
7165 field_type);
7166 }
7167 else
7168 v = value_at_lazy (field_type, address + byte_offset);
7169 }
7170 }
7171
7172 if (v != NULL || no_err)
7173 return v;
7174 else
7175 error (_("There is no member named %s."), name);
7176
7177 BadValue:
7178 if (no_err)
7179 return NULL;
7180 else
7181 error (_("Attempt to extract a component of "
7182 "a value that is not a record."));
7183 }
7184
7185 /* Given a type TYPE, look up the type of the component of type named NAME.
7186 If DISPP is non-null, add its byte displacement from the beginning of a
7187 structure (pointed to by a value) of type TYPE to *DISPP (does not
7188 work for packed fields).
7189
7190 Matches any field whose name has NAME as a prefix, possibly
7191 followed by "___".
7192
7193 TYPE can be either a struct or union. If REFOK, TYPE may also
7194 be a (pointer or reference)+ to a struct or union, and the
7195 ultimate target type will be searched.
7196
7197 Looks recursively into variant clauses and parent types.
7198
7199 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7200 TYPE is not a type of the right kind. */
7201
7202 static struct type *
7203 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7204 int noerr, int *dispp)
7205 {
7206 int i;
7207
7208 if (name == NULL)
7209 goto BadName;
7210
7211 if (refok && type != NULL)
7212 while (1)
7213 {
7214 type = ada_check_typedef (type);
7215 if (TYPE_CODE (type) != TYPE_CODE_PTR
7216 && TYPE_CODE (type) != TYPE_CODE_REF)
7217 break;
7218 type = TYPE_TARGET_TYPE (type);
7219 }
7220
7221 if (type == NULL
7222 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7223 && TYPE_CODE (type) != TYPE_CODE_UNION))
7224 {
7225 if (noerr)
7226 return NULL;
7227 else
7228 {
7229 target_terminal_ours ();
7230 gdb_flush (gdb_stdout);
7231 if (type == NULL)
7232 error (_("Type (null) is not a structure or union type"));
7233 else
7234 {
7235 /* XXX: type_sprint */
7236 fprintf_unfiltered (gdb_stderr, _("Type "));
7237 type_print (type, "", gdb_stderr, -1);
7238 error (_(" is not a structure or union type"));
7239 }
7240 }
7241 }
7242
7243 type = to_static_fixed_type (type);
7244
7245 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7246 {
7247 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7248 struct type *t;
7249 int disp;
7250
7251 if (t_field_name == NULL)
7252 continue;
7253
7254 else if (field_name_match (t_field_name, name))
7255 {
7256 if (dispp != NULL)
7257 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7258 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7259 }
7260
7261 else if (ada_is_wrapper_field (type, i))
7262 {
7263 disp = 0;
7264 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7265 0, 1, &disp);
7266 if (t != NULL)
7267 {
7268 if (dispp != NULL)
7269 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7270 return t;
7271 }
7272 }
7273
7274 else if (ada_is_variant_part (type, i))
7275 {
7276 int j;
7277 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7278 i));
7279
7280 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7281 {
7282 /* FIXME pnh 2008/01/26: We check for a field that is
7283 NOT wrapped in a struct, since the compiler sometimes
7284 generates these for unchecked variant types. Revisit
7285 if the compiler changes this practice. */
7286 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7287 disp = 0;
7288 if (v_field_name != NULL
7289 && field_name_match (v_field_name, name))
7290 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7291 else
7292 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7293 j),
7294 name, 0, 1, &disp);
7295
7296 if (t != NULL)
7297 {
7298 if (dispp != NULL)
7299 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7300 return t;
7301 }
7302 }
7303 }
7304
7305 }
7306
7307 BadName:
7308 if (!noerr)
7309 {
7310 target_terminal_ours ();
7311 gdb_flush (gdb_stdout);
7312 if (name == NULL)
7313 {
7314 /* XXX: type_sprint */
7315 fprintf_unfiltered (gdb_stderr, _("Type "));
7316 type_print (type, "", gdb_stderr, -1);
7317 error (_(" has no component named <null>"));
7318 }
7319 else
7320 {
7321 /* XXX: type_sprint */
7322 fprintf_unfiltered (gdb_stderr, _("Type "));
7323 type_print (type, "", gdb_stderr, -1);
7324 error (_(" has no component named %s"), name);
7325 }
7326 }
7327
7328 return NULL;
7329 }
7330
7331 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7332 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7333 represents an unchecked union (that is, the variant part of a
7334 record that is named in an Unchecked_Union pragma). */
7335
7336 static int
7337 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7338 {
7339 char *discrim_name = ada_variant_discrim_name (var_type);
7340
7341 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7342 == NULL);
7343 }
7344
7345
7346 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7347 within a value of type OUTER_TYPE that is stored in GDB at
7348 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7349 numbering from 0) is applicable. Returns -1 if none are. */
7350
7351 int
7352 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7353 const gdb_byte *outer_valaddr)
7354 {
7355 int others_clause;
7356 int i;
7357 char *discrim_name = ada_variant_discrim_name (var_type);
7358 struct value *outer;
7359 struct value *discrim;
7360 LONGEST discrim_val;
7361
7362 /* Using plain value_from_contents_and_address here causes problems
7363 because we will end up trying to resolve a type that is currently
7364 being constructed. */
7365 outer = value_from_contents_and_address_unresolved (outer_type,
7366 outer_valaddr, 0);
7367 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7368 if (discrim == NULL)
7369 return -1;
7370 discrim_val = value_as_long (discrim);
7371
7372 others_clause = -1;
7373 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7374 {
7375 if (ada_is_others_clause (var_type, i))
7376 others_clause = i;
7377 else if (ada_in_variant (discrim_val, var_type, i))
7378 return i;
7379 }
7380
7381 return others_clause;
7382 }
7383 \f
7384
7385
7386 /* Dynamic-Sized Records */
7387
7388 /* Strategy: The type ostensibly attached to a value with dynamic size
7389 (i.e., a size that is not statically recorded in the debugging
7390 data) does not accurately reflect the size or layout of the value.
7391 Our strategy is to convert these values to values with accurate,
7392 conventional types that are constructed on the fly. */
7393
7394 /* There is a subtle and tricky problem here. In general, we cannot
7395 determine the size of dynamic records without its data. However,
7396 the 'struct value' data structure, which GDB uses to represent
7397 quantities in the inferior process (the target), requires the size
7398 of the type at the time of its allocation in order to reserve space
7399 for GDB's internal copy of the data. That's why the
7400 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7401 rather than struct value*s.
7402
7403 However, GDB's internal history variables ($1, $2, etc.) are
7404 struct value*s containing internal copies of the data that are not, in
7405 general, the same as the data at their corresponding addresses in
7406 the target. Fortunately, the types we give to these values are all
7407 conventional, fixed-size types (as per the strategy described
7408 above), so that we don't usually have to perform the
7409 'to_fixed_xxx_type' conversions to look at their values.
7410 Unfortunately, there is one exception: if one of the internal
7411 history variables is an array whose elements are unconstrained
7412 records, then we will need to create distinct fixed types for each
7413 element selected. */
7414
7415 /* The upshot of all of this is that many routines take a (type, host
7416 address, target address) triple as arguments to represent a value.
7417 The host address, if non-null, is supposed to contain an internal
7418 copy of the relevant data; otherwise, the program is to consult the
7419 target at the target address. */
7420
7421 /* Assuming that VAL0 represents a pointer value, the result of
7422 dereferencing it. Differs from value_ind in its treatment of
7423 dynamic-sized types. */
7424
7425 struct value *
7426 ada_value_ind (struct value *val0)
7427 {
7428 struct value *val = value_ind (val0);
7429
7430 if (ada_is_tagged_type (value_type (val), 0))
7431 val = ada_tag_value_at_base_address (val);
7432
7433 return ada_to_fixed_value (val);
7434 }
7435
7436 /* The value resulting from dereferencing any "reference to"
7437 qualifiers on VAL0. */
7438
7439 static struct value *
7440 ada_coerce_ref (struct value *val0)
7441 {
7442 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7443 {
7444 struct value *val = val0;
7445
7446 val = coerce_ref (val);
7447
7448 if (ada_is_tagged_type (value_type (val), 0))
7449 val = ada_tag_value_at_base_address (val);
7450
7451 return ada_to_fixed_value (val);
7452 }
7453 else
7454 return val0;
7455 }
7456
7457 /* Return OFF rounded upward if necessary to a multiple of
7458 ALIGNMENT (a power of 2). */
7459
7460 static unsigned int
7461 align_value (unsigned int off, unsigned int alignment)
7462 {
7463 return (off + alignment - 1) & ~(alignment - 1);
7464 }
7465
7466 /* Return the bit alignment required for field #F of template type TYPE. */
7467
7468 static unsigned int
7469 field_alignment (struct type *type, int f)
7470 {
7471 const char *name = TYPE_FIELD_NAME (type, f);
7472 int len;
7473 int align_offset;
7474
7475 /* The field name should never be null, unless the debugging information
7476 is somehow malformed. In this case, we assume the field does not
7477 require any alignment. */
7478 if (name == NULL)
7479 return 1;
7480
7481 len = strlen (name);
7482
7483 if (!isdigit (name[len - 1]))
7484 return 1;
7485
7486 if (isdigit (name[len - 2]))
7487 align_offset = len - 2;
7488 else
7489 align_offset = len - 1;
7490
7491 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7492 return TARGET_CHAR_BIT;
7493
7494 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7495 }
7496
7497 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7498
7499 static struct symbol *
7500 ada_find_any_type_symbol (const char *name)
7501 {
7502 struct symbol *sym;
7503
7504 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7505 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7506 return sym;
7507
7508 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7509 return sym;
7510 }
7511
7512 /* Find a type named NAME. Ignores ambiguity. This routine will look
7513 solely for types defined by debug info, it will not search the GDB
7514 primitive types. */
7515
7516 static struct type *
7517 ada_find_any_type (const char *name)
7518 {
7519 struct symbol *sym = ada_find_any_type_symbol (name);
7520
7521 if (sym != NULL)
7522 return SYMBOL_TYPE (sym);
7523
7524 return NULL;
7525 }
7526
7527 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7528 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7529 symbol, in which case it is returned. Otherwise, this looks for
7530 symbols whose name is that of NAME_SYM suffixed with "___XR".
7531 Return symbol if found, and NULL otherwise. */
7532
7533 struct symbol *
7534 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7535 {
7536 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7537 struct symbol *sym;
7538
7539 if (strstr (name, "___XR") != NULL)
7540 return name_sym;
7541
7542 sym = find_old_style_renaming_symbol (name, block);
7543
7544 if (sym != NULL)
7545 return sym;
7546
7547 /* Not right yet. FIXME pnh 7/20/2007. */
7548 sym = ada_find_any_type_symbol (name);
7549 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7550 return sym;
7551 else
7552 return NULL;
7553 }
7554
7555 static struct symbol *
7556 find_old_style_renaming_symbol (const char *name, const struct block *block)
7557 {
7558 const struct symbol *function_sym = block_linkage_function (block);
7559 char *rename;
7560
7561 if (function_sym != NULL)
7562 {
7563 /* If the symbol is defined inside a function, NAME is not fully
7564 qualified. This means we need to prepend the function name
7565 as well as adding the ``___XR'' suffix to build the name of
7566 the associated renaming symbol. */
7567 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7568 /* Function names sometimes contain suffixes used
7569 for instance to qualify nested subprograms. When building
7570 the XR type name, we need to make sure that this suffix is
7571 not included. So do not include any suffix in the function
7572 name length below. */
7573 int function_name_len = ada_name_prefix_len (function_name);
7574 const int rename_len = function_name_len + 2 /* "__" */
7575 + strlen (name) + 6 /* "___XR\0" */ ;
7576
7577 /* Strip the suffix if necessary. */
7578 ada_remove_trailing_digits (function_name, &function_name_len);
7579 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7580 ada_remove_Xbn_suffix (function_name, &function_name_len);
7581
7582 /* Library-level functions are a special case, as GNAT adds
7583 a ``_ada_'' prefix to the function name to avoid namespace
7584 pollution. However, the renaming symbols themselves do not
7585 have this prefix, so we need to skip this prefix if present. */
7586 if (function_name_len > 5 /* "_ada_" */
7587 && strstr (function_name, "_ada_") == function_name)
7588 {
7589 function_name += 5;
7590 function_name_len -= 5;
7591 }
7592
7593 rename = (char *) alloca (rename_len * sizeof (char));
7594 strncpy (rename, function_name, function_name_len);
7595 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7596 "__%s___XR", name);
7597 }
7598 else
7599 {
7600 const int rename_len = strlen (name) + 6;
7601
7602 rename = (char *) alloca (rename_len * sizeof (char));
7603 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7604 }
7605
7606 return ada_find_any_type_symbol (rename);
7607 }
7608
7609 /* Because of GNAT encoding conventions, several GDB symbols may match a
7610 given type name. If the type denoted by TYPE0 is to be preferred to
7611 that of TYPE1 for purposes of type printing, return non-zero;
7612 otherwise return 0. */
7613
7614 int
7615 ada_prefer_type (struct type *type0, struct type *type1)
7616 {
7617 if (type1 == NULL)
7618 return 1;
7619 else if (type0 == NULL)
7620 return 0;
7621 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7622 return 1;
7623 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7624 return 0;
7625 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7626 return 1;
7627 else if (ada_is_constrained_packed_array_type (type0))
7628 return 1;
7629 else if (ada_is_array_descriptor_type (type0)
7630 && !ada_is_array_descriptor_type (type1))
7631 return 1;
7632 else
7633 {
7634 const char *type0_name = type_name_no_tag (type0);
7635 const char *type1_name = type_name_no_tag (type1);
7636
7637 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7638 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7639 return 1;
7640 }
7641 return 0;
7642 }
7643
7644 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7645 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7646
7647 const char *
7648 ada_type_name (struct type *type)
7649 {
7650 if (type == NULL)
7651 return NULL;
7652 else if (TYPE_NAME (type) != NULL)
7653 return TYPE_NAME (type);
7654 else
7655 return TYPE_TAG_NAME (type);
7656 }
7657
7658 /* Search the list of "descriptive" types associated to TYPE for a type
7659 whose name is NAME. */
7660
7661 static struct type *
7662 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7663 {
7664 struct type *result;
7665
7666 if (ada_ignore_descriptive_types_p)
7667 return NULL;
7668
7669 /* If there no descriptive-type info, then there is no parallel type
7670 to be found. */
7671 if (!HAVE_GNAT_AUX_INFO (type))
7672 return NULL;
7673
7674 result = TYPE_DESCRIPTIVE_TYPE (type);
7675 while (result != NULL)
7676 {
7677 const char *result_name = ada_type_name (result);
7678
7679 if (result_name == NULL)
7680 {
7681 warning (_("unexpected null name on descriptive type"));
7682 return NULL;
7683 }
7684
7685 /* If the names match, stop. */
7686 if (strcmp (result_name, name) == 0)
7687 break;
7688
7689 /* Otherwise, look at the next item on the list, if any. */
7690 if (HAVE_GNAT_AUX_INFO (result))
7691 result = TYPE_DESCRIPTIVE_TYPE (result);
7692 else
7693 result = NULL;
7694 }
7695
7696 /* If we didn't find a match, see whether this is a packed array. With
7697 older compilers, the descriptive type information is either absent or
7698 irrelevant when it comes to packed arrays so the above lookup fails.
7699 Fall back to using a parallel lookup by name in this case. */
7700 if (result == NULL && ada_is_constrained_packed_array_type (type))
7701 return ada_find_any_type (name);
7702
7703 return result;
7704 }
7705
7706 /* Find a parallel type to TYPE with the specified NAME, using the
7707 descriptive type taken from the debugging information, if available,
7708 and otherwise using the (slower) name-based method. */
7709
7710 static struct type *
7711 ada_find_parallel_type_with_name (struct type *type, const char *name)
7712 {
7713 struct type *result = NULL;
7714
7715 if (HAVE_GNAT_AUX_INFO (type))
7716 result = find_parallel_type_by_descriptive_type (type, name);
7717 else
7718 result = ada_find_any_type (name);
7719
7720 return result;
7721 }
7722
7723 /* Same as above, but specify the name of the parallel type by appending
7724 SUFFIX to the name of TYPE. */
7725
7726 struct type *
7727 ada_find_parallel_type (struct type *type, const char *suffix)
7728 {
7729 char *name;
7730 const char *typename = ada_type_name (type);
7731 int len;
7732
7733 if (typename == NULL)
7734 return NULL;
7735
7736 len = strlen (typename);
7737
7738 name = (char *) alloca (len + strlen (suffix) + 1);
7739
7740 strcpy (name, typename);
7741 strcpy (name + len, suffix);
7742
7743 return ada_find_parallel_type_with_name (type, name);
7744 }
7745
7746 /* If TYPE is a variable-size record type, return the corresponding template
7747 type describing its fields. Otherwise, return NULL. */
7748
7749 static struct type *
7750 dynamic_template_type (struct type *type)
7751 {
7752 type = ada_check_typedef (type);
7753
7754 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7755 || ada_type_name (type) == NULL)
7756 return NULL;
7757 else
7758 {
7759 int len = strlen (ada_type_name (type));
7760
7761 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7762 return type;
7763 else
7764 return ada_find_parallel_type (type, "___XVE");
7765 }
7766 }
7767
7768 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7769 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7770
7771 static int
7772 is_dynamic_field (struct type *templ_type, int field_num)
7773 {
7774 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7775
7776 return name != NULL
7777 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7778 && strstr (name, "___XVL") != NULL;
7779 }
7780
7781 /* The index of the variant field of TYPE, or -1 if TYPE does not
7782 represent a variant record type. */
7783
7784 static int
7785 variant_field_index (struct type *type)
7786 {
7787 int f;
7788
7789 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7790 return -1;
7791
7792 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7793 {
7794 if (ada_is_variant_part (type, f))
7795 return f;
7796 }
7797 return -1;
7798 }
7799
7800 /* A record type with no fields. */
7801
7802 static struct type *
7803 empty_record (struct type *template)
7804 {
7805 struct type *type = alloc_type_copy (template);
7806
7807 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7808 TYPE_NFIELDS (type) = 0;
7809 TYPE_FIELDS (type) = NULL;
7810 INIT_CPLUS_SPECIFIC (type);
7811 TYPE_NAME (type) = "<empty>";
7812 TYPE_TAG_NAME (type) = NULL;
7813 TYPE_LENGTH (type) = 0;
7814 return type;
7815 }
7816
7817 /* An ordinary record type (with fixed-length fields) that describes
7818 the value of type TYPE at VALADDR or ADDRESS (see comments at
7819 the beginning of this section) VAL according to GNAT conventions.
7820 DVAL0 should describe the (portion of a) record that contains any
7821 necessary discriminants. It should be NULL if value_type (VAL) is
7822 an outer-level type (i.e., as opposed to a branch of a variant.) A
7823 variant field (unless unchecked) is replaced by a particular branch
7824 of the variant.
7825
7826 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7827 length are not statically known are discarded. As a consequence,
7828 VALADDR, ADDRESS and DVAL0 are ignored.
7829
7830 NOTE: Limitations: For now, we assume that dynamic fields and
7831 variants occupy whole numbers of bytes. However, they need not be
7832 byte-aligned. */
7833
7834 struct type *
7835 ada_template_to_fixed_record_type_1 (struct type *type,
7836 const gdb_byte *valaddr,
7837 CORE_ADDR address, struct value *dval0,
7838 int keep_dynamic_fields)
7839 {
7840 struct value *mark = value_mark ();
7841 struct value *dval;
7842 struct type *rtype;
7843 int nfields, bit_len;
7844 int variant_field;
7845 long off;
7846 int fld_bit_len;
7847 int f;
7848
7849 /* Compute the number of fields in this record type that are going
7850 to be processed: unless keep_dynamic_fields, this includes only
7851 fields whose position and length are static will be processed. */
7852 if (keep_dynamic_fields)
7853 nfields = TYPE_NFIELDS (type);
7854 else
7855 {
7856 nfields = 0;
7857 while (nfields < TYPE_NFIELDS (type)
7858 && !ada_is_variant_part (type, nfields)
7859 && !is_dynamic_field (type, nfields))
7860 nfields++;
7861 }
7862
7863 rtype = alloc_type_copy (type);
7864 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7865 INIT_CPLUS_SPECIFIC (rtype);
7866 TYPE_NFIELDS (rtype) = nfields;
7867 TYPE_FIELDS (rtype) = (struct field *)
7868 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7869 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7870 TYPE_NAME (rtype) = ada_type_name (type);
7871 TYPE_TAG_NAME (rtype) = NULL;
7872 TYPE_FIXED_INSTANCE (rtype) = 1;
7873
7874 off = 0;
7875 bit_len = 0;
7876 variant_field = -1;
7877
7878 for (f = 0; f < nfields; f += 1)
7879 {
7880 off = align_value (off, field_alignment (type, f))
7881 + TYPE_FIELD_BITPOS (type, f);
7882 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7883 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7884
7885 if (ada_is_variant_part (type, f))
7886 {
7887 variant_field = f;
7888 fld_bit_len = 0;
7889 }
7890 else if (is_dynamic_field (type, f))
7891 {
7892 const gdb_byte *field_valaddr = valaddr;
7893 CORE_ADDR field_address = address;
7894 struct type *field_type =
7895 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7896
7897 if (dval0 == NULL)
7898 {
7899 /* rtype's length is computed based on the run-time
7900 value of discriminants. If the discriminants are not
7901 initialized, the type size may be completely bogus and
7902 GDB may fail to allocate a value for it. So check the
7903 size first before creating the value. */
7904 check_size (rtype);
7905 /* Using plain value_from_contents_and_address here
7906 causes problems because we will end up trying to
7907 resolve a type that is currently being
7908 constructed. */
7909 dval = value_from_contents_and_address_unresolved (rtype,
7910 valaddr,
7911 address);
7912 rtype = value_type (dval);
7913 }
7914 else
7915 dval = dval0;
7916
7917 /* If the type referenced by this field is an aligner type, we need
7918 to unwrap that aligner type, because its size might not be set.
7919 Keeping the aligner type would cause us to compute the wrong
7920 size for this field, impacting the offset of the all the fields
7921 that follow this one. */
7922 if (ada_is_aligner_type (field_type))
7923 {
7924 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7925
7926 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7927 field_address = cond_offset_target (field_address, field_offset);
7928 field_type = ada_aligned_type (field_type);
7929 }
7930
7931 field_valaddr = cond_offset_host (field_valaddr,
7932 off / TARGET_CHAR_BIT);
7933 field_address = cond_offset_target (field_address,
7934 off / TARGET_CHAR_BIT);
7935
7936 /* Get the fixed type of the field. Note that, in this case,
7937 we do not want to get the real type out of the tag: if
7938 the current field is the parent part of a tagged record,
7939 we will get the tag of the object. Clearly wrong: the real
7940 type of the parent is not the real type of the child. We
7941 would end up in an infinite loop. */
7942 field_type = ada_get_base_type (field_type);
7943 field_type = ada_to_fixed_type (field_type, field_valaddr,
7944 field_address, dval, 0);
7945 /* If the field size is already larger than the maximum
7946 object size, then the record itself will necessarily
7947 be larger than the maximum object size. We need to make
7948 this check now, because the size might be so ridiculously
7949 large (due to an uninitialized variable in the inferior)
7950 that it would cause an overflow when adding it to the
7951 record size. */
7952 check_size (field_type);
7953
7954 TYPE_FIELD_TYPE (rtype, f) = field_type;
7955 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7956 /* The multiplication can potentially overflow. But because
7957 the field length has been size-checked just above, and
7958 assuming that the maximum size is a reasonable value,
7959 an overflow should not happen in practice. So rather than
7960 adding overflow recovery code to this already complex code,
7961 we just assume that it's not going to happen. */
7962 fld_bit_len =
7963 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7964 }
7965 else
7966 {
7967 /* Note: If this field's type is a typedef, it is important
7968 to preserve the typedef layer.
7969
7970 Otherwise, we might be transforming a typedef to a fat
7971 pointer (encoding a pointer to an unconstrained array),
7972 into a basic fat pointer (encoding an unconstrained
7973 array). As both types are implemented using the same
7974 structure, the typedef is the only clue which allows us
7975 to distinguish between the two options. Stripping it
7976 would prevent us from printing this field appropriately. */
7977 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7978 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7979 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7980 fld_bit_len =
7981 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7982 else
7983 {
7984 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7985
7986 /* We need to be careful of typedefs when computing
7987 the length of our field. If this is a typedef,
7988 get the length of the target type, not the length
7989 of the typedef. */
7990 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7991 field_type = ada_typedef_target_type (field_type);
7992
7993 fld_bit_len =
7994 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7995 }
7996 }
7997 if (off + fld_bit_len > bit_len)
7998 bit_len = off + fld_bit_len;
7999 off += fld_bit_len;
8000 TYPE_LENGTH (rtype) =
8001 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8002 }
8003
8004 /* We handle the variant part, if any, at the end because of certain
8005 odd cases in which it is re-ordered so as NOT to be the last field of
8006 the record. This can happen in the presence of representation
8007 clauses. */
8008 if (variant_field >= 0)
8009 {
8010 struct type *branch_type;
8011
8012 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8013
8014 if (dval0 == NULL)
8015 {
8016 /* Using plain value_from_contents_and_address here causes
8017 problems because we will end up trying to resolve a type
8018 that is currently being constructed. */
8019 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8020 address);
8021 rtype = value_type (dval);
8022 }
8023 else
8024 dval = dval0;
8025
8026 branch_type =
8027 to_fixed_variant_branch_type
8028 (TYPE_FIELD_TYPE (type, variant_field),
8029 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8030 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8031 if (branch_type == NULL)
8032 {
8033 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8034 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8035 TYPE_NFIELDS (rtype) -= 1;
8036 }
8037 else
8038 {
8039 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8040 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8041 fld_bit_len =
8042 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8043 TARGET_CHAR_BIT;
8044 if (off + fld_bit_len > bit_len)
8045 bit_len = off + fld_bit_len;
8046 TYPE_LENGTH (rtype) =
8047 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8048 }
8049 }
8050
8051 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8052 should contain the alignment of that record, which should be a strictly
8053 positive value. If null or negative, then something is wrong, most
8054 probably in the debug info. In that case, we don't round up the size
8055 of the resulting type. If this record is not part of another structure,
8056 the current RTYPE length might be good enough for our purposes. */
8057 if (TYPE_LENGTH (type) <= 0)
8058 {
8059 if (TYPE_NAME (rtype))
8060 warning (_("Invalid type size for `%s' detected: %d."),
8061 TYPE_NAME (rtype), TYPE_LENGTH (type));
8062 else
8063 warning (_("Invalid type size for <unnamed> detected: %d."),
8064 TYPE_LENGTH (type));
8065 }
8066 else
8067 {
8068 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8069 TYPE_LENGTH (type));
8070 }
8071
8072 value_free_to_mark (mark);
8073 if (TYPE_LENGTH (rtype) > varsize_limit)
8074 error (_("record type with dynamic size is larger than varsize-limit"));
8075 return rtype;
8076 }
8077
8078 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8079 of 1. */
8080
8081 static struct type *
8082 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8083 CORE_ADDR address, struct value *dval0)
8084 {
8085 return ada_template_to_fixed_record_type_1 (type, valaddr,
8086 address, dval0, 1);
8087 }
8088
8089 /* An ordinary record type in which ___XVL-convention fields and
8090 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8091 static approximations, containing all possible fields. Uses
8092 no runtime values. Useless for use in values, but that's OK,
8093 since the results are used only for type determinations. Works on both
8094 structs and unions. Representation note: to save space, we memorize
8095 the result of this function in the TYPE_TARGET_TYPE of the
8096 template type. */
8097
8098 static struct type *
8099 template_to_static_fixed_type (struct type *type0)
8100 {
8101 struct type *type;
8102 int nfields;
8103 int f;
8104
8105 if (TYPE_TARGET_TYPE (type0) != NULL)
8106 return TYPE_TARGET_TYPE (type0);
8107
8108 nfields = TYPE_NFIELDS (type0);
8109 type = type0;
8110
8111 for (f = 0; f < nfields; f += 1)
8112 {
8113 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
8114 struct type *new_type;
8115
8116 if (is_dynamic_field (type0, f))
8117 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8118 else
8119 new_type = static_unwrap_type (field_type);
8120 if (type == type0 && new_type != field_type)
8121 {
8122 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8123 TYPE_CODE (type) = TYPE_CODE (type0);
8124 INIT_CPLUS_SPECIFIC (type);
8125 TYPE_NFIELDS (type) = nfields;
8126 TYPE_FIELDS (type) = (struct field *)
8127 TYPE_ALLOC (type, nfields * sizeof (struct field));
8128 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8129 sizeof (struct field) * nfields);
8130 TYPE_NAME (type) = ada_type_name (type0);
8131 TYPE_TAG_NAME (type) = NULL;
8132 TYPE_FIXED_INSTANCE (type) = 1;
8133 TYPE_LENGTH (type) = 0;
8134 }
8135 TYPE_FIELD_TYPE (type, f) = new_type;
8136 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8137 }
8138 return type;
8139 }
8140
8141 /* Given an object of type TYPE whose contents are at VALADDR and
8142 whose address in memory is ADDRESS, returns a revision of TYPE,
8143 which should be a non-dynamic-sized record, in which the variant
8144 part, if any, is replaced with the appropriate branch. Looks
8145 for discriminant values in DVAL0, which can be NULL if the record
8146 contains the necessary discriminant values. */
8147
8148 static struct type *
8149 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8150 CORE_ADDR address, struct value *dval0)
8151 {
8152 struct value *mark = value_mark ();
8153 struct value *dval;
8154 struct type *rtype;
8155 struct type *branch_type;
8156 int nfields = TYPE_NFIELDS (type);
8157 int variant_field = variant_field_index (type);
8158
8159 if (variant_field == -1)
8160 return type;
8161
8162 if (dval0 == NULL)
8163 {
8164 dval = value_from_contents_and_address (type, valaddr, address);
8165 type = value_type (dval);
8166 }
8167 else
8168 dval = dval0;
8169
8170 rtype = alloc_type_copy (type);
8171 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8172 INIT_CPLUS_SPECIFIC (rtype);
8173 TYPE_NFIELDS (rtype) = nfields;
8174 TYPE_FIELDS (rtype) =
8175 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8176 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8177 sizeof (struct field) * nfields);
8178 TYPE_NAME (rtype) = ada_type_name (type);
8179 TYPE_TAG_NAME (rtype) = NULL;
8180 TYPE_FIXED_INSTANCE (rtype) = 1;
8181 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8182
8183 branch_type = to_fixed_variant_branch_type
8184 (TYPE_FIELD_TYPE (type, variant_field),
8185 cond_offset_host (valaddr,
8186 TYPE_FIELD_BITPOS (type, variant_field)
8187 / TARGET_CHAR_BIT),
8188 cond_offset_target (address,
8189 TYPE_FIELD_BITPOS (type, variant_field)
8190 / TARGET_CHAR_BIT), dval);
8191 if (branch_type == NULL)
8192 {
8193 int f;
8194
8195 for (f = variant_field + 1; f < nfields; f += 1)
8196 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8197 TYPE_NFIELDS (rtype) -= 1;
8198 }
8199 else
8200 {
8201 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8202 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8203 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8204 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8205 }
8206 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8207
8208 value_free_to_mark (mark);
8209 return rtype;
8210 }
8211
8212 /* An ordinary record type (with fixed-length fields) that describes
8213 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8214 beginning of this section]. Any necessary discriminants' values
8215 should be in DVAL, a record value; it may be NULL if the object
8216 at ADDR itself contains any necessary discriminant values.
8217 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8218 values from the record are needed. Except in the case that DVAL,
8219 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8220 unchecked) is replaced by a particular branch of the variant.
8221
8222 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8223 is questionable and may be removed. It can arise during the
8224 processing of an unconstrained-array-of-record type where all the
8225 variant branches have exactly the same size. This is because in
8226 such cases, the compiler does not bother to use the XVS convention
8227 when encoding the record. I am currently dubious of this
8228 shortcut and suspect the compiler should be altered. FIXME. */
8229
8230 static struct type *
8231 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8232 CORE_ADDR address, struct value *dval)
8233 {
8234 struct type *templ_type;
8235
8236 if (TYPE_FIXED_INSTANCE (type0))
8237 return type0;
8238
8239 templ_type = dynamic_template_type (type0);
8240
8241 if (templ_type != NULL)
8242 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8243 else if (variant_field_index (type0) >= 0)
8244 {
8245 if (dval == NULL && valaddr == NULL && address == 0)
8246 return type0;
8247 return to_record_with_fixed_variant_part (type0, valaddr, address,
8248 dval);
8249 }
8250 else
8251 {
8252 TYPE_FIXED_INSTANCE (type0) = 1;
8253 return type0;
8254 }
8255
8256 }
8257
8258 /* An ordinary record type (with fixed-length fields) that describes
8259 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8260 union type. Any necessary discriminants' values should be in DVAL,
8261 a record value. That is, this routine selects the appropriate
8262 branch of the union at ADDR according to the discriminant value
8263 indicated in the union's type name. Returns VAR_TYPE0 itself if
8264 it represents a variant subject to a pragma Unchecked_Union. */
8265
8266 static struct type *
8267 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8268 CORE_ADDR address, struct value *dval)
8269 {
8270 int which;
8271 struct type *templ_type;
8272 struct type *var_type;
8273
8274 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8275 var_type = TYPE_TARGET_TYPE (var_type0);
8276 else
8277 var_type = var_type0;
8278
8279 templ_type = ada_find_parallel_type (var_type, "___XVU");
8280
8281 if (templ_type != NULL)
8282 var_type = templ_type;
8283
8284 if (is_unchecked_variant (var_type, value_type (dval)))
8285 return var_type0;
8286 which =
8287 ada_which_variant_applies (var_type,
8288 value_type (dval), value_contents (dval));
8289
8290 if (which < 0)
8291 return empty_record (var_type);
8292 else if (is_dynamic_field (var_type, which))
8293 return to_fixed_record_type
8294 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8295 valaddr, address, dval);
8296 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8297 return
8298 to_fixed_record_type
8299 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8300 else
8301 return TYPE_FIELD_TYPE (var_type, which);
8302 }
8303
8304 /* Assuming that TYPE0 is an array type describing the type of a value
8305 at ADDR, and that DVAL describes a record containing any
8306 discriminants used in TYPE0, returns a type for the value that
8307 contains no dynamic components (that is, no components whose sizes
8308 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8309 true, gives an error message if the resulting type's size is over
8310 varsize_limit. */
8311
8312 static struct type *
8313 to_fixed_array_type (struct type *type0, struct value *dval,
8314 int ignore_too_big)
8315 {
8316 struct type *index_type_desc;
8317 struct type *result;
8318 int constrained_packed_array_p;
8319
8320 type0 = ada_check_typedef (type0);
8321 if (TYPE_FIXED_INSTANCE (type0))
8322 return type0;
8323
8324 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8325 if (constrained_packed_array_p)
8326 type0 = decode_constrained_packed_array_type (type0);
8327
8328 index_type_desc = ada_find_parallel_type (type0, "___XA");
8329 ada_fixup_array_indexes_type (index_type_desc);
8330 if (index_type_desc == NULL)
8331 {
8332 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8333
8334 /* NOTE: elt_type---the fixed version of elt_type0---should never
8335 depend on the contents of the array in properly constructed
8336 debugging data. */
8337 /* Create a fixed version of the array element type.
8338 We're not providing the address of an element here,
8339 and thus the actual object value cannot be inspected to do
8340 the conversion. This should not be a problem, since arrays of
8341 unconstrained objects are not allowed. In particular, all
8342 the elements of an array of a tagged type should all be of
8343 the same type specified in the debugging info. No need to
8344 consult the object tag. */
8345 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8346
8347 /* Make sure we always create a new array type when dealing with
8348 packed array types, since we're going to fix-up the array
8349 type length and element bitsize a little further down. */
8350 if (elt_type0 == elt_type && !constrained_packed_array_p)
8351 result = type0;
8352 else
8353 result = create_array_type (alloc_type_copy (type0),
8354 elt_type, TYPE_INDEX_TYPE (type0));
8355 }
8356 else
8357 {
8358 int i;
8359 struct type *elt_type0;
8360
8361 elt_type0 = type0;
8362 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8363 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8364
8365 /* NOTE: result---the fixed version of elt_type0---should never
8366 depend on the contents of the array in properly constructed
8367 debugging data. */
8368 /* Create a fixed version of the array element type.
8369 We're not providing the address of an element here,
8370 and thus the actual object value cannot be inspected to do
8371 the conversion. This should not be a problem, since arrays of
8372 unconstrained objects are not allowed. In particular, all
8373 the elements of an array of a tagged type should all be of
8374 the same type specified in the debugging info. No need to
8375 consult the object tag. */
8376 result =
8377 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8378
8379 elt_type0 = type0;
8380 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8381 {
8382 struct type *range_type =
8383 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8384
8385 result = create_array_type (alloc_type_copy (elt_type0),
8386 result, range_type);
8387 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8388 }
8389 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8390 error (_("array type with dynamic size is larger than varsize-limit"));
8391 }
8392
8393 /* We want to preserve the type name. This can be useful when
8394 trying to get the type name of a value that has already been
8395 printed (for instance, if the user did "print VAR; whatis $". */
8396 TYPE_NAME (result) = TYPE_NAME (type0);
8397
8398 if (constrained_packed_array_p)
8399 {
8400 /* So far, the resulting type has been created as if the original
8401 type was a regular (non-packed) array type. As a result, the
8402 bitsize of the array elements needs to be set again, and the array
8403 length needs to be recomputed based on that bitsize. */
8404 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8405 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8406
8407 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8408 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8409 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8410 TYPE_LENGTH (result)++;
8411 }
8412
8413 TYPE_FIXED_INSTANCE (result) = 1;
8414 return result;
8415 }
8416
8417
8418 /* A standard type (containing no dynamically sized components)
8419 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8420 DVAL describes a record containing any discriminants used in TYPE0,
8421 and may be NULL if there are none, or if the object of type TYPE at
8422 ADDRESS or in VALADDR contains these discriminants.
8423
8424 If CHECK_TAG is not null, in the case of tagged types, this function
8425 attempts to locate the object's tag and use it to compute the actual
8426 type. However, when ADDRESS is null, we cannot use it to determine the
8427 location of the tag, and therefore compute the tagged type's actual type.
8428 So we return the tagged type without consulting the tag. */
8429
8430 static struct type *
8431 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8432 CORE_ADDR address, struct value *dval, int check_tag)
8433 {
8434 type = ada_check_typedef (type);
8435 switch (TYPE_CODE (type))
8436 {
8437 default:
8438 return type;
8439 case TYPE_CODE_STRUCT:
8440 {
8441 struct type *static_type = to_static_fixed_type (type);
8442 struct type *fixed_record_type =
8443 to_fixed_record_type (type, valaddr, address, NULL);
8444
8445 /* If STATIC_TYPE is a tagged type and we know the object's address,
8446 then we can determine its tag, and compute the object's actual
8447 type from there. Note that we have to use the fixed record
8448 type (the parent part of the record may have dynamic fields
8449 and the way the location of _tag is expressed may depend on
8450 them). */
8451
8452 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8453 {
8454 struct value *tag =
8455 value_tag_from_contents_and_address
8456 (fixed_record_type,
8457 valaddr,
8458 address);
8459 struct type *real_type = type_from_tag (tag);
8460 struct value *obj =
8461 value_from_contents_and_address (fixed_record_type,
8462 valaddr,
8463 address);
8464 fixed_record_type = value_type (obj);
8465 if (real_type != NULL)
8466 return to_fixed_record_type
8467 (real_type, NULL,
8468 value_address (ada_tag_value_at_base_address (obj)), NULL);
8469 }
8470
8471 /* Check to see if there is a parallel ___XVZ variable.
8472 If there is, then it provides the actual size of our type. */
8473 else if (ada_type_name (fixed_record_type) != NULL)
8474 {
8475 const char *name = ada_type_name (fixed_record_type);
8476 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8477 int xvz_found = 0;
8478 LONGEST size;
8479
8480 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8481 size = get_int_var_value (xvz_name, &xvz_found);
8482 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8483 {
8484 fixed_record_type = copy_type (fixed_record_type);
8485 TYPE_LENGTH (fixed_record_type) = size;
8486
8487 /* The FIXED_RECORD_TYPE may have be a stub. We have
8488 observed this when the debugging info is STABS, and
8489 apparently it is something that is hard to fix.
8490
8491 In practice, we don't need the actual type definition
8492 at all, because the presence of the XVZ variable allows us
8493 to assume that there must be a XVS type as well, which we
8494 should be able to use later, when we need the actual type
8495 definition.
8496
8497 In the meantime, pretend that the "fixed" type we are
8498 returning is NOT a stub, because this can cause trouble
8499 when using this type to create new types targeting it.
8500 Indeed, the associated creation routines often check
8501 whether the target type is a stub and will try to replace
8502 it, thus using a type with the wrong size. This, in turn,
8503 might cause the new type to have the wrong size too.
8504 Consider the case of an array, for instance, where the size
8505 of the array is computed from the number of elements in
8506 our array multiplied by the size of its element. */
8507 TYPE_STUB (fixed_record_type) = 0;
8508 }
8509 }
8510 return fixed_record_type;
8511 }
8512 case TYPE_CODE_ARRAY:
8513 return to_fixed_array_type (type, dval, 1);
8514 case TYPE_CODE_UNION:
8515 if (dval == NULL)
8516 return type;
8517 else
8518 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8519 }
8520 }
8521
8522 /* The same as ada_to_fixed_type_1, except that it preserves the type
8523 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8524
8525 The typedef layer needs be preserved in order to differentiate between
8526 arrays and array pointers when both types are implemented using the same
8527 fat pointer. In the array pointer case, the pointer is encoded as
8528 a typedef of the pointer type. For instance, considering:
8529
8530 type String_Access is access String;
8531 S1 : String_Access := null;
8532
8533 To the debugger, S1 is defined as a typedef of type String. But
8534 to the user, it is a pointer. So if the user tries to print S1,
8535 we should not dereference the array, but print the array address
8536 instead.
8537
8538 If we didn't preserve the typedef layer, we would lose the fact that
8539 the type is to be presented as a pointer (needs de-reference before
8540 being printed). And we would also use the source-level type name. */
8541
8542 struct type *
8543 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8544 CORE_ADDR address, struct value *dval, int check_tag)
8545
8546 {
8547 struct type *fixed_type =
8548 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8549
8550 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8551 then preserve the typedef layer.
8552
8553 Implementation note: We can only check the main-type portion of
8554 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8555 from TYPE now returns a type that has the same instance flags
8556 as TYPE. For instance, if TYPE is a "typedef const", and its
8557 target type is a "struct", then the typedef elimination will return
8558 a "const" version of the target type. See check_typedef for more
8559 details about how the typedef layer elimination is done.
8560
8561 brobecker/2010-11-19: It seems to me that the only case where it is
8562 useful to preserve the typedef layer is when dealing with fat pointers.
8563 Perhaps, we could add a check for that and preserve the typedef layer
8564 only in that situation. But this seems unecessary so far, probably
8565 because we call check_typedef/ada_check_typedef pretty much everywhere.
8566 */
8567 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8568 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8569 == TYPE_MAIN_TYPE (fixed_type)))
8570 return type;
8571
8572 return fixed_type;
8573 }
8574
8575 /* A standard (static-sized) type corresponding as well as possible to
8576 TYPE0, but based on no runtime data. */
8577
8578 static struct type *
8579 to_static_fixed_type (struct type *type0)
8580 {
8581 struct type *type;
8582
8583 if (type0 == NULL)
8584 return NULL;
8585
8586 if (TYPE_FIXED_INSTANCE (type0))
8587 return type0;
8588
8589 type0 = ada_check_typedef (type0);
8590
8591 switch (TYPE_CODE (type0))
8592 {
8593 default:
8594 return type0;
8595 case TYPE_CODE_STRUCT:
8596 type = dynamic_template_type (type0);
8597 if (type != NULL)
8598 return template_to_static_fixed_type (type);
8599 else
8600 return template_to_static_fixed_type (type0);
8601 case TYPE_CODE_UNION:
8602 type = ada_find_parallel_type (type0, "___XVU");
8603 if (type != NULL)
8604 return template_to_static_fixed_type (type);
8605 else
8606 return template_to_static_fixed_type (type0);
8607 }
8608 }
8609
8610 /* A static approximation of TYPE with all type wrappers removed. */
8611
8612 static struct type *
8613 static_unwrap_type (struct type *type)
8614 {
8615 if (ada_is_aligner_type (type))
8616 {
8617 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8618 if (ada_type_name (type1) == NULL)
8619 TYPE_NAME (type1) = ada_type_name (type);
8620
8621 return static_unwrap_type (type1);
8622 }
8623 else
8624 {
8625 struct type *raw_real_type = ada_get_base_type (type);
8626
8627 if (raw_real_type == type)
8628 return type;
8629 else
8630 return to_static_fixed_type (raw_real_type);
8631 }
8632 }
8633
8634 /* In some cases, incomplete and private types require
8635 cross-references that are not resolved as records (for example,
8636 type Foo;
8637 type FooP is access Foo;
8638 V: FooP;
8639 type Foo is array ...;
8640 ). In these cases, since there is no mechanism for producing
8641 cross-references to such types, we instead substitute for FooP a
8642 stub enumeration type that is nowhere resolved, and whose tag is
8643 the name of the actual type. Call these types "non-record stubs". */
8644
8645 /* A type equivalent to TYPE that is not a non-record stub, if one
8646 exists, otherwise TYPE. */
8647
8648 struct type *
8649 ada_check_typedef (struct type *type)
8650 {
8651 if (type == NULL)
8652 return NULL;
8653
8654 /* If our type is a typedef type of a fat pointer, then we're done.
8655 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8656 what allows us to distinguish between fat pointers that represent
8657 array types, and fat pointers that represent array access types
8658 (in both cases, the compiler implements them as fat pointers). */
8659 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8660 && is_thick_pntr (ada_typedef_target_type (type)))
8661 return type;
8662
8663 CHECK_TYPEDEF (type);
8664 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8665 || !TYPE_STUB (type)
8666 || TYPE_TAG_NAME (type) == NULL)
8667 return type;
8668 else
8669 {
8670 const char *name = TYPE_TAG_NAME (type);
8671 struct type *type1 = ada_find_any_type (name);
8672
8673 if (type1 == NULL)
8674 return type;
8675
8676 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8677 stubs pointing to arrays, as we don't create symbols for array
8678 types, only for the typedef-to-array types). If that's the case,
8679 strip the typedef layer. */
8680 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8681 type1 = ada_check_typedef (type1);
8682
8683 return type1;
8684 }
8685 }
8686
8687 /* A value representing the data at VALADDR/ADDRESS as described by
8688 type TYPE0, but with a standard (static-sized) type that correctly
8689 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8690 type, then return VAL0 [this feature is simply to avoid redundant
8691 creation of struct values]. */
8692
8693 static struct value *
8694 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8695 struct value *val0)
8696 {
8697 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8698
8699 if (type == type0 && val0 != NULL)
8700 return val0;
8701 else
8702 return value_from_contents_and_address (type, 0, address);
8703 }
8704
8705 /* A value representing VAL, but with a standard (static-sized) type
8706 that correctly describes it. Does not necessarily create a new
8707 value. */
8708
8709 struct value *
8710 ada_to_fixed_value (struct value *val)
8711 {
8712 val = unwrap_value (val);
8713 val = ada_to_fixed_value_create (value_type (val),
8714 value_address (val),
8715 val);
8716 return val;
8717 }
8718 \f
8719
8720 /* Attributes */
8721
8722 /* Table mapping attribute numbers to names.
8723 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8724
8725 static const char *attribute_names[] = {
8726 "<?>",
8727
8728 "first",
8729 "last",
8730 "length",
8731 "image",
8732 "max",
8733 "min",
8734 "modulus",
8735 "pos",
8736 "size",
8737 "tag",
8738 "val",
8739 0
8740 };
8741
8742 const char *
8743 ada_attribute_name (enum exp_opcode n)
8744 {
8745 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8746 return attribute_names[n - OP_ATR_FIRST + 1];
8747 else
8748 return attribute_names[0];
8749 }
8750
8751 /* Evaluate the 'POS attribute applied to ARG. */
8752
8753 static LONGEST
8754 pos_atr (struct value *arg)
8755 {
8756 struct value *val = coerce_ref (arg);
8757 struct type *type = value_type (val);
8758
8759 if (!discrete_type_p (type))
8760 error (_("'POS only defined on discrete types"));
8761
8762 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8763 {
8764 int i;
8765 LONGEST v = value_as_long (val);
8766
8767 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8768 {
8769 if (v == TYPE_FIELD_ENUMVAL (type, i))
8770 return i;
8771 }
8772 error (_("enumeration value is invalid: can't find 'POS"));
8773 }
8774 else
8775 return value_as_long (val);
8776 }
8777
8778 static struct value *
8779 value_pos_atr (struct type *type, struct value *arg)
8780 {
8781 return value_from_longest (type, pos_atr (arg));
8782 }
8783
8784 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8785
8786 static struct value *
8787 value_val_atr (struct type *type, struct value *arg)
8788 {
8789 if (!discrete_type_p (type))
8790 error (_("'VAL only defined on discrete types"));
8791 if (!integer_type_p (value_type (arg)))
8792 error (_("'VAL requires integral argument"));
8793
8794 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8795 {
8796 long pos = value_as_long (arg);
8797
8798 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8799 error (_("argument to 'VAL out of range"));
8800 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8801 }
8802 else
8803 return value_from_longest (type, value_as_long (arg));
8804 }
8805 \f
8806
8807 /* Evaluation */
8808
8809 /* True if TYPE appears to be an Ada character type.
8810 [At the moment, this is true only for Character and Wide_Character;
8811 It is a heuristic test that could stand improvement]. */
8812
8813 int
8814 ada_is_character_type (struct type *type)
8815 {
8816 const char *name;
8817
8818 /* If the type code says it's a character, then assume it really is,
8819 and don't check any further. */
8820 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8821 return 1;
8822
8823 /* Otherwise, assume it's a character type iff it is a discrete type
8824 with a known character type name. */
8825 name = ada_type_name (type);
8826 return (name != NULL
8827 && (TYPE_CODE (type) == TYPE_CODE_INT
8828 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8829 && (strcmp (name, "character") == 0
8830 || strcmp (name, "wide_character") == 0
8831 || strcmp (name, "wide_wide_character") == 0
8832 || strcmp (name, "unsigned char") == 0));
8833 }
8834
8835 /* True if TYPE appears to be an Ada string type. */
8836
8837 int
8838 ada_is_string_type (struct type *type)
8839 {
8840 type = ada_check_typedef (type);
8841 if (type != NULL
8842 && TYPE_CODE (type) != TYPE_CODE_PTR
8843 && (ada_is_simple_array_type (type)
8844 || ada_is_array_descriptor_type (type))
8845 && ada_array_arity (type) == 1)
8846 {
8847 struct type *elttype = ada_array_element_type (type, 1);
8848
8849 return ada_is_character_type (elttype);
8850 }
8851 else
8852 return 0;
8853 }
8854
8855 /* The compiler sometimes provides a parallel XVS type for a given
8856 PAD type. Normally, it is safe to follow the PAD type directly,
8857 but older versions of the compiler have a bug that causes the offset
8858 of its "F" field to be wrong. Following that field in that case
8859 would lead to incorrect results, but this can be worked around
8860 by ignoring the PAD type and using the associated XVS type instead.
8861
8862 Set to True if the debugger should trust the contents of PAD types.
8863 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8864 static int trust_pad_over_xvs = 1;
8865
8866 /* True if TYPE is a struct type introduced by the compiler to force the
8867 alignment of a value. Such types have a single field with a
8868 distinctive name. */
8869
8870 int
8871 ada_is_aligner_type (struct type *type)
8872 {
8873 type = ada_check_typedef (type);
8874
8875 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8876 return 0;
8877
8878 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8879 && TYPE_NFIELDS (type) == 1
8880 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8881 }
8882
8883 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8884 the parallel type. */
8885
8886 struct type *
8887 ada_get_base_type (struct type *raw_type)
8888 {
8889 struct type *real_type_namer;
8890 struct type *raw_real_type;
8891
8892 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8893 return raw_type;
8894
8895 if (ada_is_aligner_type (raw_type))
8896 /* The encoding specifies that we should always use the aligner type.
8897 So, even if this aligner type has an associated XVS type, we should
8898 simply ignore it.
8899
8900 According to the compiler gurus, an XVS type parallel to an aligner
8901 type may exist because of a stabs limitation. In stabs, aligner
8902 types are empty because the field has a variable-sized type, and
8903 thus cannot actually be used as an aligner type. As a result,
8904 we need the associated parallel XVS type to decode the type.
8905 Since the policy in the compiler is to not change the internal
8906 representation based on the debugging info format, we sometimes
8907 end up having a redundant XVS type parallel to the aligner type. */
8908 return raw_type;
8909
8910 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8911 if (real_type_namer == NULL
8912 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8913 || TYPE_NFIELDS (real_type_namer) != 1)
8914 return raw_type;
8915
8916 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8917 {
8918 /* This is an older encoding form where the base type needs to be
8919 looked up by name. We prefer the newer enconding because it is
8920 more efficient. */
8921 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8922 if (raw_real_type == NULL)
8923 return raw_type;
8924 else
8925 return raw_real_type;
8926 }
8927
8928 /* The field in our XVS type is a reference to the base type. */
8929 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8930 }
8931
8932 /* The type of value designated by TYPE, with all aligners removed. */
8933
8934 struct type *
8935 ada_aligned_type (struct type *type)
8936 {
8937 if (ada_is_aligner_type (type))
8938 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8939 else
8940 return ada_get_base_type (type);
8941 }
8942
8943
8944 /* The address of the aligned value in an object at address VALADDR
8945 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8946
8947 const gdb_byte *
8948 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8949 {
8950 if (ada_is_aligner_type (type))
8951 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8952 valaddr +
8953 TYPE_FIELD_BITPOS (type,
8954 0) / TARGET_CHAR_BIT);
8955 else
8956 return valaddr;
8957 }
8958
8959
8960
8961 /* The printed representation of an enumeration literal with encoded
8962 name NAME. The value is good to the next call of ada_enum_name. */
8963 const char *
8964 ada_enum_name (const char *name)
8965 {
8966 static char *result;
8967 static size_t result_len = 0;
8968 char *tmp;
8969
8970 /* First, unqualify the enumeration name:
8971 1. Search for the last '.' character. If we find one, then skip
8972 all the preceding characters, the unqualified name starts
8973 right after that dot.
8974 2. Otherwise, we may be debugging on a target where the compiler
8975 translates dots into "__". Search forward for double underscores,
8976 but stop searching when we hit an overloading suffix, which is
8977 of the form "__" followed by digits. */
8978
8979 tmp = strrchr (name, '.');
8980 if (tmp != NULL)
8981 name = tmp + 1;
8982 else
8983 {
8984 while ((tmp = strstr (name, "__")) != NULL)
8985 {
8986 if (isdigit (tmp[2]))
8987 break;
8988 else
8989 name = tmp + 2;
8990 }
8991 }
8992
8993 if (name[0] == 'Q')
8994 {
8995 int v;
8996
8997 if (name[1] == 'U' || name[1] == 'W')
8998 {
8999 if (sscanf (name + 2, "%x", &v) != 1)
9000 return name;
9001 }
9002 else
9003 return name;
9004
9005 GROW_VECT (result, result_len, 16);
9006 if (isascii (v) && isprint (v))
9007 xsnprintf (result, result_len, "'%c'", v);
9008 else if (name[1] == 'U')
9009 xsnprintf (result, result_len, "[\"%02x\"]", v);
9010 else
9011 xsnprintf (result, result_len, "[\"%04x\"]", v);
9012
9013 return result;
9014 }
9015 else
9016 {
9017 tmp = strstr (name, "__");
9018 if (tmp == NULL)
9019 tmp = strstr (name, "$");
9020 if (tmp != NULL)
9021 {
9022 GROW_VECT (result, result_len, tmp - name + 1);
9023 strncpy (result, name, tmp - name);
9024 result[tmp - name] = '\0';
9025 return result;
9026 }
9027
9028 return name;
9029 }
9030 }
9031
9032 /* Evaluate the subexpression of EXP starting at *POS as for
9033 evaluate_type, updating *POS to point just past the evaluated
9034 expression. */
9035
9036 static struct value *
9037 evaluate_subexp_type (struct expression *exp, int *pos)
9038 {
9039 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9040 }
9041
9042 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9043 value it wraps. */
9044
9045 static struct value *
9046 unwrap_value (struct value *val)
9047 {
9048 struct type *type = ada_check_typedef (value_type (val));
9049
9050 if (ada_is_aligner_type (type))
9051 {
9052 struct value *v = ada_value_struct_elt (val, "F", 0);
9053 struct type *val_type = ada_check_typedef (value_type (v));
9054
9055 if (ada_type_name (val_type) == NULL)
9056 TYPE_NAME (val_type) = ada_type_name (type);
9057
9058 return unwrap_value (v);
9059 }
9060 else
9061 {
9062 struct type *raw_real_type =
9063 ada_check_typedef (ada_get_base_type (type));
9064
9065 /* If there is no parallel XVS or XVE type, then the value is
9066 already unwrapped. Return it without further modification. */
9067 if ((type == raw_real_type)
9068 && ada_find_parallel_type (type, "___XVE") == NULL)
9069 return val;
9070
9071 return
9072 coerce_unspec_val_to_type
9073 (val, ada_to_fixed_type (raw_real_type, 0,
9074 value_address (val),
9075 NULL, 1));
9076 }
9077 }
9078
9079 static struct value *
9080 cast_to_fixed (struct type *type, struct value *arg)
9081 {
9082 LONGEST val;
9083
9084 if (type == value_type (arg))
9085 return arg;
9086 else if (ada_is_fixed_point_type (value_type (arg)))
9087 val = ada_float_to_fixed (type,
9088 ada_fixed_to_float (value_type (arg),
9089 value_as_long (arg)));
9090 else
9091 {
9092 DOUBLEST argd = value_as_double (arg);
9093
9094 val = ada_float_to_fixed (type, argd);
9095 }
9096
9097 return value_from_longest (type, val);
9098 }
9099
9100 static struct value *
9101 cast_from_fixed (struct type *type, struct value *arg)
9102 {
9103 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9104 value_as_long (arg));
9105
9106 return value_from_double (type, val);
9107 }
9108
9109 /* Given two array types T1 and T2, return nonzero iff both arrays
9110 contain the same number of elements. */
9111
9112 static int
9113 ada_same_array_size_p (struct type *t1, struct type *t2)
9114 {
9115 LONGEST lo1, hi1, lo2, hi2;
9116
9117 /* Get the array bounds in order to verify that the size of
9118 the two arrays match. */
9119 if (!get_array_bounds (t1, &lo1, &hi1)
9120 || !get_array_bounds (t2, &lo2, &hi2))
9121 error (_("unable to determine array bounds"));
9122
9123 /* To make things easier for size comparison, normalize a bit
9124 the case of empty arrays by making sure that the difference
9125 between upper bound and lower bound is always -1. */
9126 if (lo1 > hi1)
9127 hi1 = lo1 - 1;
9128 if (lo2 > hi2)
9129 hi2 = lo2 - 1;
9130
9131 return (hi1 - lo1 == hi2 - lo2);
9132 }
9133
9134 /* Assuming that VAL is an array of integrals, and TYPE represents
9135 an array with the same number of elements, but with wider integral
9136 elements, return an array "casted" to TYPE. In practice, this
9137 means that the returned array is built by casting each element
9138 of the original array into TYPE's (wider) element type. */
9139
9140 static struct value *
9141 ada_promote_array_of_integrals (struct type *type, struct value *val)
9142 {
9143 struct type *elt_type = TYPE_TARGET_TYPE (type);
9144 LONGEST lo, hi;
9145 struct value *res;
9146 LONGEST i;
9147
9148 /* Verify that both val and type are arrays of scalars, and
9149 that the size of val's elements is smaller than the size
9150 of type's element. */
9151 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9152 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9153 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9154 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9155 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9156 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9157
9158 if (!get_array_bounds (type, &lo, &hi))
9159 error (_("unable to determine array bounds"));
9160
9161 res = allocate_value (type);
9162
9163 /* Promote each array element. */
9164 for (i = 0; i < hi - lo + 1; i++)
9165 {
9166 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9167
9168 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9169 value_contents_all (elt), TYPE_LENGTH (elt_type));
9170 }
9171
9172 return res;
9173 }
9174
9175 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9176 return the converted value. */
9177
9178 static struct value *
9179 coerce_for_assign (struct type *type, struct value *val)
9180 {
9181 struct type *type2 = value_type (val);
9182
9183 if (type == type2)
9184 return val;
9185
9186 type2 = ada_check_typedef (type2);
9187 type = ada_check_typedef (type);
9188
9189 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9190 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9191 {
9192 val = ada_value_ind (val);
9193 type2 = value_type (val);
9194 }
9195
9196 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9197 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9198 {
9199 if (!ada_same_array_size_p (type, type2))
9200 error (_("cannot assign arrays of different length"));
9201
9202 if (is_integral_type (TYPE_TARGET_TYPE (type))
9203 && is_integral_type (TYPE_TARGET_TYPE (type2))
9204 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9205 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9206 {
9207 /* Allow implicit promotion of the array elements to
9208 a wider type. */
9209 return ada_promote_array_of_integrals (type, val);
9210 }
9211
9212 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9213 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9214 error (_("Incompatible types in assignment"));
9215 deprecated_set_value_type (val, type);
9216 }
9217 return val;
9218 }
9219
9220 static struct value *
9221 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9222 {
9223 struct value *val;
9224 struct type *type1, *type2;
9225 LONGEST v, v1, v2;
9226
9227 arg1 = coerce_ref (arg1);
9228 arg2 = coerce_ref (arg2);
9229 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9230 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9231
9232 if (TYPE_CODE (type1) != TYPE_CODE_INT
9233 || TYPE_CODE (type2) != TYPE_CODE_INT)
9234 return value_binop (arg1, arg2, op);
9235
9236 switch (op)
9237 {
9238 case BINOP_MOD:
9239 case BINOP_DIV:
9240 case BINOP_REM:
9241 break;
9242 default:
9243 return value_binop (arg1, arg2, op);
9244 }
9245
9246 v2 = value_as_long (arg2);
9247 if (v2 == 0)
9248 error (_("second operand of %s must not be zero."), op_string (op));
9249
9250 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9251 return value_binop (arg1, arg2, op);
9252
9253 v1 = value_as_long (arg1);
9254 switch (op)
9255 {
9256 case BINOP_DIV:
9257 v = v1 / v2;
9258 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9259 v += v > 0 ? -1 : 1;
9260 break;
9261 case BINOP_REM:
9262 v = v1 % v2;
9263 if (v * v1 < 0)
9264 v -= v2;
9265 break;
9266 default:
9267 /* Should not reach this point. */
9268 v = 0;
9269 }
9270
9271 val = allocate_value (type1);
9272 store_unsigned_integer (value_contents_raw (val),
9273 TYPE_LENGTH (value_type (val)),
9274 gdbarch_byte_order (get_type_arch (type1)), v);
9275 return val;
9276 }
9277
9278 static int
9279 ada_value_equal (struct value *arg1, struct value *arg2)
9280 {
9281 if (ada_is_direct_array_type (value_type (arg1))
9282 || ada_is_direct_array_type (value_type (arg2)))
9283 {
9284 /* Automatically dereference any array reference before
9285 we attempt to perform the comparison. */
9286 arg1 = ada_coerce_ref (arg1);
9287 arg2 = ada_coerce_ref (arg2);
9288
9289 arg1 = ada_coerce_to_simple_array (arg1);
9290 arg2 = ada_coerce_to_simple_array (arg2);
9291 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9292 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9293 error (_("Attempt to compare array with non-array"));
9294 /* FIXME: The following works only for types whose
9295 representations use all bits (no padding or undefined bits)
9296 and do not have user-defined equality. */
9297 return
9298 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9299 && memcmp (value_contents (arg1), value_contents (arg2),
9300 TYPE_LENGTH (value_type (arg1))) == 0;
9301 }
9302 return value_equal (arg1, arg2);
9303 }
9304
9305 /* Total number of component associations in the aggregate starting at
9306 index PC in EXP. Assumes that index PC is the start of an
9307 OP_AGGREGATE. */
9308
9309 static int
9310 num_component_specs (struct expression *exp, int pc)
9311 {
9312 int n, m, i;
9313
9314 m = exp->elts[pc + 1].longconst;
9315 pc += 3;
9316 n = 0;
9317 for (i = 0; i < m; i += 1)
9318 {
9319 switch (exp->elts[pc].opcode)
9320 {
9321 default:
9322 n += 1;
9323 break;
9324 case OP_CHOICES:
9325 n += exp->elts[pc + 1].longconst;
9326 break;
9327 }
9328 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9329 }
9330 return n;
9331 }
9332
9333 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9334 component of LHS (a simple array or a record), updating *POS past
9335 the expression, assuming that LHS is contained in CONTAINER. Does
9336 not modify the inferior's memory, nor does it modify LHS (unless
9337 LHS == CONTAINER). */
9338
9339 static void
9340 assign_component (struct value *container, struct value *lhs, LONGEST index,
9341 struct expression *exp, int *pos)
9342 {
9343 struct value *mark = value_mark ();
9344 struct value *elt;
9345
9346 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9347 {
9348 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9349 struct value *index_val = value_from_longest (index_type, index);
9350
9351 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9352 }
9353 else
9354 {
9355 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9356 elt = ada_to_fixed_value (elt);
9357 }
9358
9359 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9360 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9361 else
9362 value_assign_to_component (container, elt,
9363 ada_evaluate_subexp (NULL, exp, pos,
9364 EVAL_NORMAL));
9365
9366 value_free_to_mark (mark);
9367 }
9368
9369 /* Assuming that LHS represents an lvalue having a record or array
9370 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9371 of that aggregate's value to LHS, advancing *POS past the
9372 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9373 lvalue containing LHS (possibly LHS itself). Does not modify
9374 the inferior's memory, nor does it modify the contents of
9375 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9376
9377 static struct value *
9378 assign_aggregate (struct value *container,
9379 struct value *lhs, struct expression *exp,
9380 int *pos, enum noside noside)
9381 {
9382 struct type *lhs_type;
9383 int n = exp->elts[*pos+1].longconst;
9384 LONGEST low_index, high_index;
9385 int num_specs;
9386 LONGEST *indices;
9387 int max_indices, num_indices;
9388 int i;
9389
9390 *pos += 3;
9391 if (noside != EVAL_NORMAL)
9392 {
9393 for (i = 0; i < n; i += 1)
9394 ada_evaluate_subexp (NULL, exp, pos, noside);
9395 return container;
9396 }
9397
9398 container = ada_coerce_ref (container);
9399 if (ada_is_direct_array_type (value_type (container)))
9400 container = ada_coerce_to_simple_array (container);
9401 lhs = ada_coerce_ref (lhs);
9402 if (!deprecated_value_modifiable (lhs))
9403 error (_("Left operand of assignment is not a modifiable lvalue."));
9404
9405 lhs_type = value_type (lhs);
9406 if (ada_is_direct_array_type (lhs_type))
9407 {
9408 lhs = ada_coerce_to_simple_array (lhs);
9409 lhs_type = value_type (lhs);
9410 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9411 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9412 }
9413 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9414 {
9415 low_index = 0;
9416 high_index = num_visible_fields (lhs_type) - 1;
9417 }
9418 else
9419 error (_("Left-hand side must be array or record."));
9420
9421 num_specs = num_component_specs (exp, *pos - 3);
9422 max_indices = 4 * num_specs + 4;
9423 indices = alloca (max_indices * sizeof (indices[0]));
9424 indices[0] = indices[1] = low_index - 1;
9425 indices[2] = indices[3] = high_index + 1;
9426 num_indices = 4;
9427
9428 for (i = 0; i < n; i += 1)
9429 {
9430 switch (exp->elts[*pos].opcode)
9431 {
9432 case OP_CHOICES:
9433 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9434 &num_indices, max_indices,
9435 low_index, high_index);
9436 break;
9437 case OP_POSITIONAL:
9438 aggregate_assign_positional (container, lhs, exp, pos, indices,
9439 &num_indices, max_indices,
9440 low_index, high_index);
9441 break;
9442 case OP_OTHERS:
9443 if (i != n-1)
9444 error (_("Misplaced 'others' clause"));
9445 aggregate_assign_others (container, lhs, exp, pos, indices,
9446 num_indices, low_index, high_index);
9447 break;
9448 default:
9449 error (_("Internal error: bad aggregate clause"));
9450 }
9451 }
9452
9453 return container;
9454 }
9455
9456 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9457 construct at *POS, updating *POS past the construct, given that
9458 the positions are relative to lower bound LOW, where HIGH is the
9459 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9460 updating *NUM_INDICES as needed. CONTAINER is as for
9461 assign_aggregate. */
9462 static void
9463 aggregate_assign_positional (struct value *container,
9464 struct value *lhs, struct expression *exp,
9465 int *pos, LONGEST *indices, int *num_indices,
9466 int max_indices, LONGEST low, LONGEST high)
9467 {
9468 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9469
9470 if (ind - 1 == high)
9471 warning (_("Extra components in aggregate ignored."));
9472 if (ind <= high)
9473 {
9474 add_component_interval (ind, ind, indices, num_indices, max_indices);
9475 *pos += 3;
9476 assign_component (container, lhs, ind, exp, pos);
9477 }
9478 else
9479 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9480 }
9481
9482 /* Assign into the components of LHS indexed by the OP_CHOICES
9483 construct at *POS, updating *POS past the construct, given that
9484 the allowable indices are LOW..HIGH. Record the indices assigned
9485 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9486 needed. CONTAINER is as for assign_aggregate. */
9487 static void
9488 aggregate_assign_from_choices (struct value *container,
9489 struct value *lhs, struct expression *exp,
9490 int *pos, LONGEST *indices, int *num_indices,
9491 int max_indices, LONGEST low, LONGEST high)
9492 {
9493 int j;
9494 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9495 int choice_pos, expr_pc;
9496 int is_array = ada_is_direct_array_type (value_type (lhs));
9497
9498 choice_pos = *pos += 3;
9499
9500 for (j = 0; j < n_choices; j += 1)
9501 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9502 expr_pc = *pos;
9503 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9504
9505 for (j = 0; j < n_choices; j += 1)
9506 {
9507 LONGEST lower, upper;
9508 enum exp_opcode op = exp->elts[choice_pos].opcode;
9509
9510 if (op == OP_DISCRETE_RANGE)
9511 {
9512 choice_pos += 1;
9513 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9514 EVAL_NORMAL));
9515 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9516 EVAL_NORMAL));
9517 }
9518 else if (is_array)
9519 {
9520 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9521 EVAL_NORMAL));
9522 upper = lower;
9523 }
9524 else
9525 {
9526 int ind;
9527 const char *name;
9528
9529 switch (op)
9530 {
9531 case OP_NAME:
9532 name = &exp->elts[choice_pos + 2].string;
9533 break;
9534 case OP_VAR_VALUE:
9535 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9536 break;
9537 default:
9538 error (_("Invalid record component association."));
9539 }
9540 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9541 ind = 0;
9542 if (! find_struct_field (name, value_type (lhs), 0,
9543 NULL, NULL, NULL, NULL, &ind))
9544 error (_("Unknown component name: %s."), name);
9545 lower = upper = ind;
9546 }
9547
9548 if (lower <= upper && (lower < low || upper > high))
9549 error (_("Index in component association out of bounds."));
9550
9551 add_component_interval (lower, upper, indices, num_indices,
9552 max_indices);
9553 while (lower <= upper)
9554 {
9555 int pos1;
9556
9557 pos1 = expr_pc;
9558 assign_component (container, lhs, lower, exp, &pos1);
9559 lower += 1;
9560 }
9561 }
9562 }
9563
9564 /* Assign the value of the expression in the OP_OTHERS construct in
9565 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9566 have not been previously assigned. The index intervals already assigned
9567 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9568 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9569 static void
9570 aggregate_assign_others (struct value *container,
9571 struct value *lhs, struct expression *exp,
9572 int *pos, LONGEST *indices, int num_indices,
9573 LONGEST low, LONGEST high)
9574 {
9575 int i;
9576 int expr_pc = *pos + 1;
9577
9578 for (i = 0; i < num_indices - 2; i += 2)
9579 {
9580 LONGEST ind;
9581
9582 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9583 {
9584 int localpos;
9585
9586 localpos = expr_pc;
9587 assign_component (container, lhs, ind, exp, &localpos);
9588 }
9589 }
9590 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9591 }
9592
9593 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9594 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9595 modifying *SIZE as needed. It is an error if *SIZE exceeds
9596 MAX_SIZE. The resulting intervals do not overlap. */
9597 static void
9598 add_component_interval (LONGEST low, LONGEST high,
9599 LONGEST* indices, int *size, int max_size)
9600 {
9601 int i, j;
9602
9603 for (i = 0; i < *size; i += 2) {
9604 if (high >= indices[i] && low <= indices[i + 1])
9605 {
9606 int kh;
9607
9608 for (kh = i + 2; kh < *size; kh += 2)
9609 if (high < indices[kh])
9610 break;
9611 if (low < indices[i])
9612 indices[i] = low;
9613 indices[i + 1] = indices[kh - 1];
9614 if (high > indices[i + 1])
9615 indices[i + 1] = high;
9616 memcpy (indices + i + 2, indices + kh, *size - kh);
9617 *size -= kh - i - 2;
9618 return;
9619 }
9620 else if (high < indices[i])
9621 break;
9622 }
9623
9624 if (*size == max_size)
9625 error (_("Internal error: miscounted aggregate components."));
9626 *size += 2;
9627 for (j = *size-1; j >= i+2; j -= 1)
9628 indices[j] = indices[j - 2];
9629 indices[i] = low;
9630 indices[i + 1] = high;
9631 }
9632
9633 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9634 is different. */
9635
9636 static struct value *
9637 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9638 {
9639 if (type == ada_check_typedef (value_type (arg2)))
9640 return arg2;
9641
9642 if (ada_is_fixed_point_type (type))
9643 return (cast_to_fixed (type, arg2));
9644
9645 if (ada_is_fixed_point_type (value_type (arg2)))
9646 return cast_from_fixed (type, arg2);
9647
9648 return value_cast (type, arg2);
9649 }
9650
9651 /* Evaluating Ada expressions, and printing their result.
9652 ------------------------------------------------------
9653
9654 1. Introduction:
9655 ----------------
9656
9657 We usually evaluate an Ada expression in order to print its value.
9658 We also evaluate an expression in order to print its type, which
9659 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9660 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9661 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9662 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9663 similar.
9664
9665 Evaluating expressions is a little more complicated for Ada entities
9666 than it is for entities in languages such as C. The main reason for
9667 this is that Ada provides types whose definition might be dynamic.
9668 One example of such types is variant records. Or another example
9669 would be an array whose bounds can only be known at run time.
9670
9671 The following description is a general guide as to what should be
9672 done (and what should NOT be done) in order to evaluate an expression
9673 involving such types, and when. This does not cover how the semantic
9674 information is encoded by GNAT as this is covered separatly. For the
9675 document used as the reference for the GNAT encoding, see exp_dbug.ads
9676 in the GNAT sources.
9677
9678 Ideally, we should embed each part of this description next to its
9679 associated code. Unfortunately, the amount of code is so vast right
9680 now that it's hard to see whether the code handling a particular
9681 situation might be duplicated or not. One day, when the code is
9682 cleaned up, this guide might become redundant with the comments
9683 inserted in the code, and we might want to remove it.
9684
9685 2. ``Fixing'' an Entity, the Simple Case:
9686 -----------------------------------------
9687
9688 When evaluating Ada expressions, the tricky issue is that they may
9689 reference entities whose type contents and size are not statically
9690 known. Consider for instance a variant record:
9691
9692 type Rec (Empty : Boolean := True) is record
9693 case Empty is
9694 when True => null;
9695 when False => Value : Integer;
9696 end case;
9697 end record;
9698 Yes : Rec := (Empty => False, Value => 1);
9699 No : Rec := (empty => True);
9700
9701 The size and contents of that record depends on the value of the
9702 descriminant (Rec.Empty). At this point, neither the debugging
9703 information nor the associated type structure in GDB are able to
9704 express such dynamic types. So what the debugger does is to create
9705 "fixed" versions of the type that applies to the specific object.
9706 We also informally refer to this opperation as "fixing" an object,
9707 which means creating its associated fixed type.
9708
9709 Example: when printing the value of variable "Yes" above, its fixed
9710 type would look like this:
9711
9712 type Rec is record
9713 Empty : Boolean;
9714 Value : Integer;
9715 end record;
9716
9717 On the other hand, if we printed the value of "No", its fixed type
9718 would become:
9719
9720 type Rec is record
9721 Empty : Boolean;
9722 end record;
9723
9724 Things become a little more complicated when trying to fix an entity
9725 with a dynamic type that directly contains another dynamic type,
9726 such as an array of variant records, for instance. There are
9727 two possible cases: Arrays, and records.
9728
9729 3. ``Fixing'' Arrays:
9730 ---------------------
9731
9732 The type structure in GDB describes an array in terms of its bounds,
9733 and the type of its elements. By design, all elements in the array
9734 have the same type and we cannot represent an array of variant elements
9735 using the current type structure in GDB. When fixing an array,
9736 we cannot fix the array element, as we would potentially need one
9737 fixed type per element of the array. As a result, the best we can do
9738 when fixing an array is to produce an array whose bounds and size
9739 are correct (allowing us to read it from memory), but without having
9740 touched its element type. Fixing each element will be done later,
9741 when (if) necessary.
9742
9743 Arrays are a little simpler to handle than records, because the same
9744 amount of memory is allocated for each element of the array, even if
9745 the amount of space actually used by each element differs from element
9746 to element. Consider for instance the following array of type Rec:
9747
9748 type Rec_Array is array (1 .. 2) of Rec;
9749
9750 The actual amount of memory occupied by each element might be different
9751 from element to element, depending on the value of their discriminant.
9752 But the amount of space reserved for each element in the array remains
9753 fixed regardless. So we simply need to compute that size using
9754 the debugging information available, from which we can then determine
9755 the array size (we multiply the number of elements of the array by
9756 the size of each element).
9757
9758 The simplest case is when we have an array of a constrained element
9759 type. For instance, consider the following type declarations:
9760
9761 type Bounded_String (Max_Size : Integer) is
9762 Length : Integer;
9763 Buffer : String (1 .. Max_Size);
9764 end record;
9765 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9766
9767 In this case, the compiler describes the array as an array of
9768 variable-size elements (identified by its XVS suffix) for which
9769 the size can be read in the parallel XVZ variable.
9770
9771 In the case of an array of an unconstrained element type, the compiler
9772 wraps the array element inside a private PAD type. This type should not
9773 be shown to the user, and must be "unwrap"'ed before printing. Note
9774 that we also use the adjective "aligner" in our code to designate
9775 these wrapper types.
9776
9777 In some cases, the size allocated for each element is statically
9778 known. In that case, the PAD type already has the correct size,
9779 and the array element should remain unfixed.
9780
9781 But there are cases when this size is not statically known.
9782 For instance, assuming that "Five" is an integer variable:
9783
9784 type Dynamic is array (1 .. Five) of Integer;
9785 type Wrapper (Has_Length : Boolean := False) is record
9786 Data : Dynamic;
9787 case Has_Length is
9788 when True => Length : Integer;
9789 when False => null;
9790 end case;
9791 end record;
9792 type Wrapper_Array is array (1 .. 2) of Wrapper;
9793
9794 Hello : Wrapper_Array := (others => (Has_Length => True,
9795 Data => (others => 17),
9796 Length => 1));
9797
9798
9799 The debugging info would describe variable Hello as being an
9800 array of a PAD type. The size of that PAD type is not statically
9801 known, but can be determined using a parallel XVZ variable.
9802 In that case, a copy of the PAD type with the correct size should
9803 be used for the fixed array.
9804
9805 3. ``Fixing'' record type objects:
9806 ----------------------------------
9807
9808 Things are slightly different from arrays in the case of dynamic
9809 record types. In this case, in order to compute the associated
9810 fixed type, we need to determine the size and offset of each of
9811 its components. This, in turn, requires us to compute the fixed
9812 type of each of these components.
9813
9814 Consider for instance the example:
9815
9816 type Bounded_String (Max_Size : Natural) is record
9817 Str : String (1 .. Max_Size);
9818 Length : Natural;
9819 end record;
9820 My_String : Bounded_String (Max_Size => 10);
9821
9822 In that case, the position of field "Length" depends on the size
9823 of field Str, which itself depends on the value of the Max_Size
9824 discriminant. In order to fix the type of variable My_String,
9825 we need to fix the type of field Str. Therefore, fixing a variant
9826 record requires us to fix each of its components.
9827
9828 However, if a component does not have a dynamic size, the component
9829 should not be fixed. In particular, fields that use a PAD type
9830 should not fixed. Here is an example where this might happen
9831 (assuming type Rec above):
9832
9833 type Container (Big : Boolean) is record
9834 First : Rec;
9835 After : Integer;
9836 case Big is
9837 when True => Another : Integer;
9838 when False => null;
9839 end case;
9840 end record;
9841 My_Container : Container := (Big => False,
9842 First => (Empty => True),
9843 After => 42);
9844
9845 In that example, the compiler creates a PAD type for component First,
9846 whose size is constant, and then positions the component After just
9847 right after it. The offset of component After is therefore constant
9848 in this case.
9849
9850 The debugger computes the position of each field based on an algorithm
9851 that uses, among other things, the actual position and size of the field
9852 preceding it. Let's now imagine that the user is trying to print
9853 the value of My_Container. If the type fixing was recursive, we would
9854 end up computing the offset of field After based on the size of the
9855 fixed version of field First. And since in our example First has
9856 only one actual field, the size of the fixed type is actually smaller
9857 than the amount of space allocated to that field, and thus we would
9858 compute the wrong offset of field After.
9859
9860 To make things more complicated, we need to watch out for dynamic
9861 components of variant records (identified by the ___XVL suffix in
9862 the component name). Even if the target type is a PAD type, the size
9863 of that type might not be statically known. So the PAD type needs
9864 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9865 we might end up with the wrong size for our component. This can be
9866 observed with the following type declarations:
9867
9868 type Octal is new Integer range 0 .. 7;
9869 type Octal_Array is array (Positive range <>) of Octal;
9870 pragma Pack (Octal_Array);
9871
9872 type Octal_Buffer (Size : Positive) is record
9873 Buffer : Octal_Array (1 .. Size);
9874 Length : Integer;
9875 end record;
9876
9877 In that case, Buffer is a PAD type whose size is unset and needs
9878 to be computed by fixing the unwrapped type.
9879
9880 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9881 ----------------------------------------------------------
9882
9883 Lastly, when should the sub-elements of an entity that remained unfixed
9884 thus far, be actually fixed?
9885
9886 The answer is: Only when referencing that element. For instance
9887 when selecting one component of a record, this specific component
9888 should be fixed at that point in time. Or when printing the value
9889 of a record, each component should be fixed before its value gets
9890 printed. Similarly for arrays, the element of the array should be
9891 fixed when printing each element of the array, or when extracting
9892 one element out of that array. On the other hand, fixing should
9893 not be performed on the elements when taking a slice of an array!
9894
9895 Note that one of the side-effects of miscomputing the offset and
9896 size of each field is that we end up also miscomputing the size
9897 of the containing type. This can have adverse results when computing
9898 the value of an entity. GDB fetches the value of an entity based
9899 on the size of its type, and thus a wrong size causes GDB to fetch
9900 the wrong amount of memory. In the case where the computed size is
9901 too small, GDB fetches too little data to print the value of our
9902 entiry. Results in this case as unpredicatble, as we usually read
9903 past the buffer containing the data =:-o. */
9904
9905 /* Implement the evaluate_exp routine in the exp_descriptor structure
9906 for the Ada language. */
9907
9908 static struct value *
9909 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9910 int *pos, enum noside noside)
9911 {
9912 enum exp_opcode op;
9913 int tem;
9914 int pc;
9915 int preeval_pos;
9916 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9917 struct type *type;
9918 int nargs, oplen;
9919 struct value **argvec;
9920
9921 pc = *pos;
9922 *pos += 1;
9923 op = exp->elts[pc].opcode;
9924
9925 switch (op)
9926 {
9927 default:
9928 *pos -= 1;
9929 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9930
9931 if (noside == EVAL_NORMAL)
9932 arg1 = unwrap_value (arg1);
9933
9934 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9935 then we need to perform the conversion manually, because
9936 evaluate_subexp_standard doesn't do it. This conversion is
9937 necessary in Ada because the different kinds of float/fixed
9938 types in Ada have different representations.
9939
9940 Similarly, we need to perform the conversion from OP_LONG
9941 ourselves. */
9942 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9943 arg1 = ada_value_cast (expect_type, arg1, noside);
9944
9945 return arg1;
9946
9947 case OP_STRING:
9948 {
9949 struct value *result;
9950
9951 *pos -= 1;
9952 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9953 /* The result type will have code OP_STRING, bashed there from
9954 OP_ARRAY. Bash it back. */
9955 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9956 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9957 return result;
9958 }
9959
9960 case UNOP_CAST:
9961 (*pos) += 2;
9962 type = exp->elts[pc + 1].type;
9963 arg1 = evaluate_subexp (type, exp, pos, noside);
9964 if (noside == EVAL_SKIP)
9965 goto nosideret;
9966 arg1 = ada_value_cast (type, arg1, noside);
9967 return arg1;
9968
9969 case UNOP_QUAL:
9970 (*pos) += 2;
9971 type = exp->elts[pc + 1].type;
9972 return ada_evaluate_subexp (type, exp, pos, noside);
9973
9974 case BINOP_ASSIGN:
9975 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9976 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9977 {
9978 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9979 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9980 return arg1;
9981 return ada_value_assign (arg1, arg1);
9982 }
9983 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9984 except if the lhs of our assignment is a convenience variable.
9985 In the case of assigning to a convenience variable, the lhs
9986 should be exactly the result of the evaluation of the rhs. */
9987 type = value_type (arg1);
9988 if (VALUE_LVAL (arg1) == lval_internalvar)
9989 type = NULL;
9990 arg2 = evaluate_subexp (type, exp, pos, noside);
9991 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9992 return arg1;
9993 if (ada_is_fixed_point_type (value_type (arg1)))
9994 arg2 = cast_to_fixed (value_type (arg1), arg2);
9995 else if (ada_is_fixed_point_type (value_type (arg2)))
9996 error
9997 (_("Fixed-point values must be assigned to fixed-point variables"));
9998 else
9999 arg2 = coerce_for_assign (value_type (arg1), arg2);
10000 return ada_value_assign (arg1, arg2);
10001
10002 case BINOP_ADD:
10003 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10004 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10005 if (noside == EVAL_SKIP)
10006 goto nosideret;
10007 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10008 return (value_from_longest
10009 (value_type (arg1),
10010 value_as_long (arg1) + value_as_long (arg2)));
10011 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10012 return (value_from_longest
10013 (value_type (arg2),
10014 value_as_long (arg1) + value_as_long (arg2)));
10015 if ((ada_is_fixed_point_type (value_type (arg1))
10016 || ada_is_fixed_point_type (value_type (arg2)))
10017 && value_type (arg1) != value_type (arg2))
10018 error (_("Operands of fixed-point addition must have the same type"));
10019 /* Do the addition, and cast the result to the type of the first
10020 argument. We cannot cast the result to a reference type, so if
10021 ARG1 is a reference type, find its underlying type. */
10022 type = value_type (arg1);
10023 while (TYPE_CODE (type) == TYPE_CODE_REF)
10024 type = TYPE_TARGET_TYPE (type);
10025 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10026 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10027
10028 case BINOP_SUB:
10029 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10030 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10031 if (noside == EVAL_SKIP)
10032 goto nosideret;
10033 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10034 return (value_from_longest
10035 (value_type (arg1),
10036 value_as_long (arg1) - value_as_long (arg2)));
10037 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10038 return (value_from_longest
10039 (value_type (arg2),
10040 value_as_long (arg1) - value_as_long (arg2)));
10041 if ((ada_is_fixed_point_type (value_type (arg1))
10042 || ada_is_fixed_point_type (value_type (arg2)))
10043 && value_type (arg1) != value_type (arg2))
10044 error (_("Operands of fixed-point subtraction "
10045 "must have the same type"));
10046 /* Do the substraction, and cast the result to the type of the first
10047 argument. We cannot cast the result to a reference type, so if
10048 ARG1 is a reference type, find its underlying type. */
10049 type = value_type (arg1);
10050 while (TYPE_CODE (type) == TYPE_CODE_REF)
10051 type = TYPE_TARGET_TYPE (type);
10052 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10053 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10054
10055 case BINOP_MUL:
10056 case BINOP_DIV:
10057 case BINOP_REM:
10058 case BINOP_MOD:
10059 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10060 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10061 if (noside == EVAL_SKIP)
10062 goto nosideret;
10063 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10064 {
10065 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10066 return value_zero (value_type (arg1), not_lval);
10067 }
10068 else
10069 {
10070 type = builtin_type (exp->gdbarch)->builtin_double;
10071 if (ada_is_fixed_point_type (value_type (arg1)))
10072 arg1 = cast_from_fixed (type, arg1);
10073 if (ada_is_fixed_point_type (value_type (arg2)))
10074 arg2 = cast_from_fixed (type, arg2);
10075 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10076 return ada_value_binop (arg1, arg2, op);
10077 }
10078
10079 case BINOP_EQUAL:
10080 case BINOP_NOTEQUAL:
10081 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10082 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10083 if (noside == EVAL_SKIP)
10084 goto nosideret;
10085 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10086 tem = 0;
10087 else
10088 {
10089 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10090 tem = ada_value_equal (arg1, arg2);
10091 }
10092 if (op == BINOP_NOTEQUAL)
10093 tem = !tem;
10094 type = language_bool_type (exp->language_defn, exp->gdbarch);
10095 return value_from_longest (type, (LONGEST) tem);
10096
10097 case UNOP_NEG:
10098 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10099 if (noside == EVAL_SKIP)
10100 goto nosideret;
10101 else if (ada_is_fixed_point_type (value_type (arg1)))
10102 return value_cast (value_type (arg1), value_neg (arg1));
10103 else
10104 {
10105 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10106 return value_neg (arg1);
10107 }
10108
10109 case BINOP_LOGICAL_AND:
10110 case BINOP_LOGICAL_OR:
10111 case UNOP_LOGICAL_NOT:
10112 {
10113 struct value *val;
10114
10115 *pos -= 1;
10116 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10117 type = language_bool_type (exp->language_defn, exp->gdbarch);
10118 return value_cast (type, val);
10119 }
10120
10121 case BINOP_BITWISE_AND:
10122 case BINOP_BITWISE_IOR:
10123 case BINOP_BITWISE_XOR:
10124 {
10125 struct value *val;
10126
10127 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10128 *pos = pc;
10129 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10130
10131 return value_cast (value_type (arg1), val);
10132 }
10133
10134 case OP_VAR_VALUE:
10135 *pos -= 1;
10136
10137 if (noside == EVAL_SKIP)
10138 {
10139 *pos += 4;
10140 goto nosideret;
10141 }
10142
10143 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10144 /* Only encountered when an unresolved symbol occurs in a
10145 context other than a function call, in which case, it is
10146 invalid. */
10147 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10148 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10149
10150 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10151 {
10152 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10153 /* Check to see if this is a tagged type. We also need to handle
10154 the case where the type is a reference to a tagged type, but
10155 we have to be careful to exclude pointers to tagged types.
10156 The latter should be shown as usual (as a pointer), whereas
10157 a reference should mostly be transparent to the user. */
10158 if (ada_is_tagged_type (type, 0)
10159 || (TYPE_CODE (type) == TYPE_CODE_REF
10160 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10161 {
10162 /* Tagged types are a little special in the fact that the real
10163 type is dynamic and can only be determined by inspecting the
10164 object's tag. This means that we need to get the object's
10165 value first (EVAL_NORMAL) and then extract the actual object
10166 type from its tag.
10167
10168 Note that we cannot skip the final step where we extract
10169 the object type from its tag, because the EVAL_NORMAL phase
10170 results in dynamic components being resolved into fixed ones.
10171 This can cause problems when trying to print the type
10172 description of tagged types whose parent has a dynamic size:
10173 We use the type name of the "_parent" component in order
10174 to print the name of the ancestor type in the type description.
10175 If that component had a dynamic size, the resolution into
10176 a fixed type would result in the loss of that type name,
10177 thus preventing us from printing the name of the ancestor
10178 type in the type description. */
10179 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10180
10181 if (TYPE_CODE (type) != TYPE_CODE_REF)
10182 {
10183 struct type *actual_type;
10184
10185 actual_type = type_from_tag (ada_value_tag (arg1));
10186 if (actual_type == NULL)
10187 /* If, for some reason, we were unable to determine
10188 the actual type from the tag, then use the static
10189 approximation that we just computed as a fallback.
10190 This can happen if the debugging information is
10191 incomplete, for instance. */
10192 actual_type = type;
10193 return value_zero (actual_type, not_lval);
10194 }
10195 else
10196 {
10197 /* In the case of a ref, ada_coerce_ref takes care
10198 of determining the actual type. But the evaluation
10199 should return a ref as it should be valid to ask
10200 for its address; so rebuild a ref after coerce. */
10201 arg1 = ada_coerce_ref (arg1);
10202 return value_ref (arg1);
10203 }
10204 }
10205
10206 /* Records and unions for which GNAT encodings have been
10207 generated need to be statically fixed as well.
10208 Otherwise, non-static fixing produces a type where
10209 all dynamic properties are removed, which prevents "ptype"
10210 from being able to completely describe the type.
10211 For instance, a case statement in a variant record would be
10212 replaced by the relevant components based on the actual
10213 value of the discriminants. */
10214 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10215 && dynamic_template_type (type) != NULL)
10216 || (TYPE_CODE (type) == TYPE_CODE_UNION
10217 && ada_find_parallel_type (type, "___XVU") != NULL))
10218 {
10219 *pos += 4;
10220 return value_zero (to_static_fixed_type (type), not_lval);
10221 }
10222 }
10223
10224 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10225 return ada_to_fixed_value (arg1);
10226
10227 case OP_FUNCALL:
10228 (*pos) += 2;
10229
10230 /* Allocate arg vector, including space for the function to be
10231 called in argvec[0] and a terminating NULL. */
10232 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10233 argvec =
10234 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10235
10236 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10237 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10238 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10239 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10240 else
10241 {
10242 for (tem = 0; tem <= nargs; tem += 1)
10243 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10244 argvec[tem] = 0;
10245
10246 if (noside == EVAL_SKIP)
10247 goto nosideret;
10248 }
10249
10250 if (ada_is_constrained_packed_array_type
10251 (desc_base_type (value_type (argvec[0]))))
10252 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10253 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10254 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10255 /* This is a packed array that has already been fixed, and
10256 therefore already coerced to a simple array. Nothing further
10257 to do. */
10258 ;
10259 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10260 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10261 && VALUE_LVAL (argvec[0]) == lval_memory))
10262 argvec[0] = value_addr (argvec[0]);
10263
10264 type = ada_check_typedef (value_type (argvec[0]));
10265
10266 /* Ada allows us to implicitly dereference arrays when subscripting
10267 them. So, if this is an array typedef (encoding use for array
10268 access types encoded as fat pointers), strip it now. */
10269 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10270 type = ada_typedef_target_type (type);
10271
10272 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10273 {
10274 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10275 {
10276 case TYPE_CODE_FUNC:
10277 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10278 break;
10279 case TYPE_CODE_ARRAY:
10280 break;
10281 case TYPE_CODE_STRUCT:
10282 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10283 argvec[0] = ada_value_ind (argvec[0]);
10284 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10285 break;
10286 default:
10287 error (_("cannot subscript or call something of type `%s'"),
10288 ada_type_name (value_type (argvec[0])));
10289 break;
10290 }
10291 }
10292
10293 switch (TYPE_CODE (type))
10294 {
10295 case TYPE_CODE_FUNC:
10296 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10297 {
10298 struct type *rtype = TYPE_TARGET_TYPE (type);
10299
10300 if (TYPE_GNU_IFUNC (type))
10301 return allocate_value (TYPE_TARGET_TYPE (rtype));
10302 return allocate_value (rtype);
10303 }
10304 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10305 case TYPE_CODE_INTERNAL_FUNCTION:
10306 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10307 /* We don't know anything about what the internal
10308 function might return, but we have to return
10309 something. */
10310 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10311 not_lval);
10312 else
10313 return call_internal_function (exp->gdbarch, exp->language_defn,
10314 argvec[0], nargs, argvec + 1);
10315
10316 case TYPE_CODE_STRUCT:
10317 {
10318 int arity;
10319
10320 arity = ada_array_arity (type);
10321 type = ada_array_element_type (type, nargs);
10322 if (type == NULL)
10323 error (_("cannot subscript or call a record"));
10324 if (arity != nargs)
10325 error (_("wrong number of subscripts; expecting %d"), arity);
10326 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10327 return value_zero (ada_aligned_type (type), lval_memory);
10328 return
10329 unwrap_value (ada_value_subscript
10330 (argvec[0], nargs, argvec + 1));
10331 }
10332 case TYPE_CODE_ARRAY:
10333 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10334 {
10335 type = ada_array_element_type (type, nargs);
10336 if (type == NULL)
10337 error (_("element type of array unknown"));
10338 else
10339 return value_zero (ada_aligned_type (type), lval_memory);
10340 }
10341 return
10342 unwrap_value (ada_value_subscript
10343 (ada_coerce_to_simple_array (argvec[0]),
10344 nargs, argvec + 1));
10345 case TYPE_CODE_PTR: /* Pointer to array */
10346 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10347 {
10348 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10349 type = ada_array_element_type (type, nargs);
10350 if (type == NULL)
10351 error (_("element type of array unknown"));
10352 else
10353 return value_zero (ada_aligned_type (type), lval_memory);
10354 }
10355 return
10356 unwrap_value (ada_value_ptr_subscript (argvec[0],
10357 nargs, argvec + 1));
10358
10359 default:
10360 error (_("Attempt to index or call something other than an "
10361 "array or function"));
10362 }
10363
10364 case TERNOP_SLICE:
10365 {
10366 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10367 struct value *low_bound_val =
10368 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10369 struct value *high_bound_val =
10370 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10371 LONGEST low_bound;
10372 LONGEST high_bound;
10373
10374 low_bound_val = coerce_ref (low_bound_val);
10375 high_bound_val = coerce_ref (high_bound_val);
10376 low_bound = pos_atr (low_bound_val);
10377 high_bound = pos_atr (high_bound_val);
10378
10379 if (noside == EVAL_SKIP)
10380 goto nosideret;
10381
10382 /* If this is a reference to an aligner type, then remove all
10383 the aligners. */
10384 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10385 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10386 TYPE_TARGET_TYPE (value_type (array)) =
10387 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10388
10389 if (ada_is_constrained_packed_array_type (value_type (array)))
10390 error (_("cannot slice a packed array"));
10391
10392 /* If this is a reference to an array or an array lvalue,
10393 convert to a pointer. */
10394 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10395 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10396 && VALUE_LVAL (array) == lval_memory))
10397 array = value_addr (array);
10398
10399 if (noside == EVAL_AVOID_SIDE_EFFECTS
10400 && ada_is_array_descriptor_type (ada_check_typedef
10401 (value_type (array))))
10402 return empty_array (ada_type_of_array (array, 0), low_bound);
10403
10404 array = ada_coerce_to_simple_array_ptr (array);
10405
10406 /* If we have more than one level of pointer indirection,
10407 dereference the value until we get only one level. */
10408 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10409 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10410 == TYPE_CODE_PTR))
10411 array = value_ind (array);
10412
10413 /* Make sure we really do have an array type before going further,
10414 to avoid a SEGV when trying to get the index type or the target
10415 type later down the road if the debug info generated by
10416 the compiler is incorrect or incomplete. */
10417 if (!ada_is_simple_array_type (value_type (array)))
10418 error (_("cannot take slice of non-array"));
10419
10420 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10421 == TYPE_CODE_PTR)
10422 {
10423 struct type *type0 = ada_check_typedef (value_type (array));
10424
10425 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10426 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10427 else
10428 {
10429 struct type *arr_type0 =
10430 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10431
10432 return ada_value_slice_from_ptr (array, arr_type0,
10433 longest_to_int (low_bound),
10434 longest_to_int (high_bound));
10435 }
10436 }
10437 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10438 return array;
10439 else if (high_bound < low_bound)
10440 return empty_array (value_type (array), low_bound);
10441 else
10442 return ada_value_slice (array, longest_to_int (low_bound),
10443 longest_to_int (high_bound));
10444 }
10445
10446 case UNOP_IN_RANGE:
10447 (*pos) += 2;
10448 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10449 type = check_typedef (exp->elts[pc + 1].type);
10450
10451 if (noside == EVAL_SKIP)
10452 goto nosideret;
10453
10454 switch (TYPE_CODE (type))
10455 {
10456 default:
10457 lim_warning (_("Membership test incompletely implemented; "
10458 "always returns true"));
10459 type = language_bool_type (exp->language_defn, exp->gdbarch);
10460 return value_from_longest (type, (LONGEST) 1);
10461
10462 case TYPE_CODE_RANGE:
10463 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10464 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10465 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10466 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10467 type = language_bool_type (exp->language_defn, exp->gdbarch);
10468 return
10469 value_from_longest (type,
10470 (value_less (arg1, arg3)
10471 || value_equal (arg1, arg3))
10472 && (value_less (arg2, arg1)
10473 || value_equal (arg2, arg1)));
10474 }
10475
10476 case BINOP_IN_BOUNDS:
10477 (*pos) += 2;
10478 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10479 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10480
10481 if (noside == EVAL_SKIP)
10482 goto nosideret;
10483
10484 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10485 {
10486 type = language_bool_type (exp->language_defn, exp->gdbarch);
10487 return value_zero (type, not_lval);
10488 }
10489
10490 tem = longest_to_int (exp->elts[pc + 1].longconst);
10491
10492 type = ada_index_type (value_type (arg2), tem, "range");
10493 if (!type)
10494 type = value_type (arg1);
10495
10496 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10497 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10498
10499 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10500 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10501 type = language_bool_type (exp->language_defn, exp->gdbarch);
10502 return
10503 value_from_longest (type,
10504 (value_less (arg1, arg3)
10505 || value_equal (arg1, arg3))
10506 && (value_less (arg2, arg1)
10507 || value_equal (arg2, arg1)));
10508
10509 case TERNOP_IN_RANGE:
10510 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10511 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10512 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10513
10514 if (noside == EVAL_SKIP)
10515 goto nosideret;
10516
10517 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10518 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10519 type = language_bool_type (exp->language_defn, exp->gdbarch);
10520 return
10521 value_from_longest (type,
10522 (value_less (arg1, arg3)
10523 || value_equal (arg1, arg3))
10524 && (value_less (arg2, arg1)
10525 || value_equal (arg2, arg1)));
10526
10527 case OP_ATR_FIRST:
10528 case OP_ATR_LAST:
10529 case OP_ATR_LENGTH:
10530 {
10531 struct type *type_arg;
10532
10533 if (exp->elts[*pos].opcode == OP_TYPE)
10534 {
10535 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10536 arg1 = NULL;
10537 type_arg = check_typedef (exp->elts[pc + 2].type);
10538 }
10539 else
10540 {
10541 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10542 type_arg = NULL;
10543 }
10544
10545 if (exp->elts[*pos].opcode != OP_LONG)
10546 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10547 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10548 *pos += 4;
10549
10550 if (noside == EVAL_SKIP)
10551 goto nosideret;
10552
10553 if (type_arg == NULL)
10554 {
10555 arg1 = ada_coerce_ref (arg1);
10556
10557 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10558 arg1 = ada_coerce_to_simple_array (arg1);
10559
10560 if (op == OP_ATR_LENGTH)
10561 type = builtin_type (exp->gdbarch)->builtin_int;
10562 else
10563 {
10564 type = ada_index_type (value_type (arg1), tem,
10565 ada_attribute_name (op));
10566 if (type == NULL)
10567 type = builtin_type (exp->gdbarch)->builtin_int;
10568 }
10569
10570 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10571 return allocate_value (type);
10572
10573 switch (op)
10574 {
10575 default: /* Should never happen. */
10576 error (_("unexpected attribute encountered"));
10577 case OP_ATR_FIRST:
10578 return value_from_longest
10579 (type, ada_array_bound (arg1, tem, 0));
10580 case OP_ATR_LAST:
10581 return value_from_longest
10582 (type, ada_array_bound (arg1, tem, 1));
10583 case OP_ATR_LENGTH:
10584 return value_from_longest
10585 (type, ada_array_length (arg1, tem));
10586 }
10587 }
10588 else if (discrete_type_p (type_arg))
10589 {
10590 struct type *range_type;
10591 const char *name = ada_type_name (type_arg);
10592
10593 range_type = NULL;
10594 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10595 range_type = to_fixed_range_type (type_arg, NULL);
10596 if (range_type == NULL)
10597 range_type = type_arg;
10598 switch (op)
10599 {
10600 default:
10601 error (_("unexpected attribute encountered"));
10602 case OP_ATR_FIRST:
10603 return value_from_longest
10604 (range_type, ada_discrete_type_low_bound (range_type));
10605 case OP_ATR_LAST:
10606 return value_from_longest
10607 (range_type, ada_discrete_type_high_bound (range_type));
10608 case OP_ATR_LENGTH:
10609 error (_("the 'length attribute applies only to array types"));
10610 }
10611 }
10612 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10613 error (_("unimplemented type attribute"));
10614 else
10615 {
10616 LONGEST low, high;
10617
10618 if (ada_is_constrained_packed_array_type (type_arg))
10619 type_arg = decode_constrained_packed_array_type (type_arg);
10620
10621 if (op == OP_ATR_LENGTH)
10622 type = builtin_type (exp->gdbarch)->builtin_int;
10623 else
10624 {
10625 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10626 if (type == NULL)
10627 type = builtin_type (exp->gdbarch)->builtin_int;
10628 }
10629
10630 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10631 return allocate_value (type);
10632
10633 switch (op)
10634 {
10635 default:
10636 error (_("unexpected attribute encountered"));
10637 case OP_ATR_FIRST:
10638 low = ada_array_bound_from_type (type_arg, tem, 0);
10639 return value_from_longest (type, low);
10640 case OP_ATR_LAST:
10641 high = ada_array_bound_from_type (type_arg, tem, 1);
10642 return value_from_longest (type, high);
10643 case OP_ATR_LENGTH:
10644 low = ada_array_bound_from_type (type_arg, tem, 0);
10645 high = ada_array_bound_from_type (type_arg, tem, 1);
10646 return value_from_longest (type, high - low + 1);
10647 }
10648 }
10649 }
10650
10651 case OP_ATR_TAG:
10652 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10653 if (noside == EVAL_SKIP)
10654 goto nosideret;
10655
10656 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10657 return value_zero (ada_tag_type (arg1), not_lval);
10658
10659 return ada_value_tag (arg1);
10660
10661 case OP_ATR_MIN:
10662 case OP_ATR_MAX:
10663 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10664 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10665 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10666 if (noside == EVAL_SKIP)
10667 goto nosideret;
10668 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10669 return value_zero (value_type (arg1), not_lval);
10670 else
10671 {
10672 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10673 return value_binop (arg1, arg2,
10674 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10675 }
10676
10677 case OP_ATR_MODULUS:
10678 {
10679 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10680
10681 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10682 if (noside == EVAL_SKIP)
10683 goto nosideret;
10684
10685 if (!ada_is_modular_type (type_arg))
10686 error (_("'modulus must be applied to modular type"));
10687
10688 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10689 ada_modulus (type_arg));
10690 }
10691
10692
10693 case OP_ATR_POS:
10694 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10695 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10696 if (noside == EVAL_SKIP)
10697 goto nosideret;
10698 type = builtin_type (exp->gdbarch)->builtin_int;
10699 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10700 return value_zero (type, not_lval);
10701 else
10702 return value_pos_atr (type, arg1);
10703
10704 case OP_ATR_SIZE:
10705 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10706 type = value_type (arg1);
10707
10708 /* If the argument is a reference, then dereference its type, since
10709 the user is really asking for the size of the actual object,
10710 not the size of the pointer. */
10711 if (TYPE_CODE (type) == TYPE_CODE_REF)
10712 type = TYPE_TARGET_TYPE (type);
10713
10714 if (noside == EVAL_SKIP)
10715 goto nosideret;
10716 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10717 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10718 else
10719 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10720 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10721
10722 case OP_ATR_VAL:
10723 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10724 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10725 type = exp->elts[pc + 2].type;
10726 if (noside == EVAL_SKIP)
10727 goto nosideret;
10728 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10729 return value_zero (type, not_lval);
10730 else
10731 return value_val_atr (type, arg1);
10732
10733 case BINOP_EXP:
10734 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10735 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10736 if (noside == EVAL_SKIP)
10737 goto nosideret;
10738 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10739 return value_zero (value_type (arg1), not_lval);
10740 else
10741 {
10742 /* For integer exponentiation operations,
10743 only promote the first argument. */
10744 if (is_integral_type (value_type (arg2)))
10745 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10746 else
10747 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10748
10749 return value_binop (arg1, arg2, op);
10750 }
10751
10752 case UNOP_PLUS:
10753 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10754 if (noside == EVAL_SKIP)
10755 goto nosideret;
10756 else
10757 return arg1;
10758
10759 case UNOP_ABS:
10760 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10761 if (noside == EVAL_SKIP)
10762 goto nosideret;
10763 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10764 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10765 return value_neg (arg1);
10766 else
10767 return arg1;
10768
10769 case UNOP_IND:
10770 preeval_pos = *pos;
10771 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10772 if (noside == EVAL_SKIP)
10773 goto nosideret;
10774 type = ada_check_typedef (value_type (arg1));
10775 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10776 {
10777 if (ada_is_array_descriptor_type (type))
10778 /* GDB allows dereferencing GNAT array descriptors. */
10779 {
10780 struct type *arrType = ada_type_of_array (arg1, 0);
10781
10782 if (arrType == NULL)
10783 error (_("Attempt to dereference null array pointer."));
10784 return value_at_lazy (arrType, 0);
10785 }
10786 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10787 || TYPE_CODE (type) == TYPE_CODE_REF
10788 /* In C you can dereference an array to get the 1st elt. */
10789 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10790 {
10791 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10792 only be determined by inspecting the object's tag.
10793 This means that we need to evaluate completely the
10794 expression in order to get its type. */
10795
10796 if ((TYPE_CODE (type) == TYPE_CODE_REF
10797 || TYPE_CODE (type) == TYPE_CODE_PTR)
10798 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10799 {
10800 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10801 EVAL_NORMAL);
10802 type = value_type (ada_value_ind (arg1));
10803 }
10804 else
10805 {
10806 type = to_static_fixed_type
10807 (ada_aligned_type
10808 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10809 }
10810 check_size (type);
10811 return value_zero (type, lval_memory);
10812 }
10813 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10814 {
10815 /* GDB allows dereferencing an int. */
10816 if (expect_type == NULL)
10817 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10818 lval_memory);
10819 else
10820 {
10821 expect_type =
10822 to_static_fixed_type (ada_aligned_type (expect_type));
10823 return value_zero (expect_type, lval_memory);
10824 }
10825 }
10826 else
10827 error (_("Attempt to take contents of a non-pointer value."));
10828 }
10829 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10830 type = ada_check_typedef (value_type (arg1));
10831
10832 if (TYPE_CODE (type) == TYPE_CODE_INT)
10833 /* GDB allows dereferencing an int. If we were given
10834 the expect_type, then use that as the target type.
10835 Otherwise, assume that the target type is an int. */
10836 {
10837 if (expect_type != NULL)
10838 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10839 arg1));
10840 else
10841 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10842 (CORE_ADDR) value_as_address (arg1));
10843 }
10844
10845 if (ada_is_array_descriptor_type (type))
10846 /* GDB allows dereferencing GNAT array descriptors. */
10847 return ada_coerce_to_simple_array (arg1);
10848 else
10849 return ada_value_ind (arg1);
10850
10851 case STRUCTOP_STRUCT:
10852 tem = longest_to_int (exp->elts[pc + 1].longconst);
10853 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10854 preeval_pos = *pos;
10855 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10856 if (noside == EVAL_SKIP)
10857 goto nosideret;
10858 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10859 {
10860 struct type *type1 = value_type (arg1);
10861
10862 if (ada_is_tagged_type (type1, 1))
10863 {
10864 type = ada_lookup_struct_elt_type (type1,
10865 &exp->elts[pc + 2].string,
10866 1, 1, NULL);
10867
10868 /* If the field is not found, check if it exists in the
10869 extension of this object's type. This means that we
10870 need to evaluate completely the expression. */
10871
10872 if (type == NULL)
10873 {
10874 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10875 EVAL_NORMAL);
10876 arg1 = ada_value_struct_elt (arg1,
10877 &exp->elts[pc + 2].string,
10878 0);
10879 arg1 = unwrap_value (arg1);
10880 type = value_type (ada_to_fixed_value (arg1));
10881 }
10882 }
10883 else
10884 type =
10885 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10886 0, NULL);
10887
10888 return value_zero (ada_aligned_type (type), lval_memory);
10889 }
10890 else
10891 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10892 arg1 = unwrap_value (arg1);
10893 return ada_to_fixed_value (arg1);
10894
10895 case OP_TYPE:
10896 /* The value is not supposed to be used. This is here to make it
10897 easier to accommodate expressions that contain types. */
10898 (*pos) += 2;
10899 if (noside == EVAL_SKIP)
10900 goto nosideret;
10901 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10902 return allocate_value (exp->elts[pc + 1].type);
10903 else
10904 error (_("Attempt to use a type name as an expression"));
10905
10906 case OP_AGGREGATE:
10907 case OP_CHOICES:
10908 case OP_OTHERS:
10909 case OP_DISCRETE_RANGE:
10910 case OP_POSITIONAL:
10911 case OP_NAME:
10912 if (noside == EVAL_NORMAL)
10913 switch (op)
10914 {
10915 case OP_NAME:
10916 error (_("Undefined name, ambiguous name, or renaming used in "
10917 "component association: %s."), &exp->elts[pc+2].string);
10918 case OP_AGGREGATE:
10919 error (_("Aggregates only allowed on the right of an assignment"));
10920 default:
10921 internal_error (__FILE__, __LINE__,
10922 _("aggregate apparently mangled"));
10923 }
10924
10925 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10926 *pos += oplen - 1;
10927 for (tem = 0; tem < nargs; tem += 1)
10928 ada_evaluate_subexp (NULL, exp, pos, noside);
10929 goto nosideret;
10930 }
10931
10932 nosideret:
10933 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10934 }
10935 \f
10936
10937 /* Fixed point */
10938
10939 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10940 type name that encodes the 'small and 'delta information.
10941 Otherwise, return NULL. */
10942
10943 static const char *
10944 fixed_type_info (struct type *type)
10945 {
10946 const char *name = ada_type_name (type);
10947 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10948
10949 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10950 {
10951 const char *tail = strstr (name, "___XF_");
10952
10953 if (tail == NULL)
10954 return NULL;
10955 else
10956 return tail + 5;
10957 }
10958 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10959 return fixed_type_info (TYPE_TARGET_TYPE (type));
10960 else
10961 return NULL;
10962 }
10963
10964 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10965
10966 int
10967 ada_is_fixed_point_type (struct type *type)
10968 {
10969 return fixed_type_info (type) != NULL;
10970 }
10971
10972 /* Return non-zero iff TYPE represents a System.Address type. */
10973
10974 int
10975 ada_is_system_address_type (struct type *type)
10976 {
10977 return (TYPE_NAME (type)
10978 && strcmp (TYPE_NAME (type), "system__address") == 0);
10979 }
10980
10981 /* Assuming that TYPE is the representation of an Ada fixed-point
10982 type, return its delta, or -1 if the type is malformed and the
10983 delta cannot be determined. */
10984
10985 DOUBLEST
10986 ada_delta (struct type *type)
10987 {
10988 const char *encoding = fixed_type_info (type);
10989 DOUBLEST num, den;
10990
10991 /* Strictly speaking, num and den are encoded as integer. However,
10992 they may not fit into a long, and they will have to be converted
10993 to DOUBLEST anyway. So scan them as DOUBLEST. */
10994 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10995 &num, &den) < 2)
10996 return -1.0;
10997 else
10998 return num / den;
10999 }
11000
11001 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11002 factor ('SMALL value) associated with the type. */
11003
11004 static DOUBLEST
11005 scaling_factor (struct type *type)
11006 {
11007 const char *encoding = fixed_type_info (type);
11008 DOUBLEST num0, den0, num1, den1;
11009 int n;
11010
11011 /* Strictly speaking, num's and den's are encoded as integer. However,
11012 they may not fit into a long, and they will have to be converted
11013 to DOUBLEST anyway. So scan them as DOUBLEST. */
11014 n = sscanf (encoding,
11015 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11016 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11017 &num0, &den0, &num1, &den1);
11018
11019 if (n < 2)
11020 return 1.0;
11021 else if (n == 4)
11022 return num1 / den1;
11023 else
11024 return num0 / den0;
11025 }
11026
11027
11028 /* Assuming that X is the representation of a value of fixed-point
11029 type TYPE, return its floating-point equivalent. */
11030
11031 DOUBLEST
11032 ada_fixed_to_float (struct type *type, LONGEST x)
11033 {
11034 return (DOUBLEST) x *scaling_factor (type);
11035 }
11036
11037 /* The representation of a fixed-point value of type TYPE
11038 corresponding to the value X. */
11039
11040 LONGEST
11041 ada_float_to_fixed (struct type *type, DOUBLEST x)
11042 {
11043 return (LONGEST) (x / scaling_factor (type) + 0.5);
11044 }
11045
11046 \f
11047
11048 /* Range types */
11049
11050 /* Scan STR beginning at position K for a discriminant name, and
11051 return the value of that discriminant field of DVAL in *PX. If
11052 PNEW_K is not null, put the position of the character beyond the
11053 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11054 not alter *PX and *PNEW_K if unsuccessful. */
11055
11056 static int
11057 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11058 int *pnew_k)
11059 {
11060 static char *bound_buffer = NULL;
11061 static size_t bound_buffer_len = 0;
11062 char *bound;
11063 char *pend;
11064 struct value *bound_val;
11065
11066 if (dval == NULL || str == NULL || str[k] == '\0')
11067 return 0;
11068
11069 pend = strstr (str + k, "__");
11070 if (pend == NULL)
11071 {
11072 bound = str + k;
11073 k += strlen (bound);
11074 }
11075 else
11076 {
11077 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11078 bound = bound_buffer;
11079 strncpy (bound_buffer, str + k, pend - (str + k));
11080 bound[pend - (str + k)] = '\0';
11081 k = pend - str;
11082 }
11083
11084 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11085 if (bound_val == NULL)
11086 return 0;
11087
11088 *px = value_as_long (bound_val);
11089 if (pnew_k != NULL)
11090 *pnew_k = k;
11091 return 1;
11092 }
11093
11094 /* Value of variable named NAME in the current environment. If
11095 no such variable found, then if ERR_MSG is null, returns 0, and
11096 otherwise causes an error with message ERR_MSG. */
11097
11098 static struct value *
11099 get_var_value (char *name, char *err_msg)
11100 {
11101 struct ada_symbol_info *syms;
11102 int nsyms;
11103
11104 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11105 &syms);
11106
11107 if (nsyms != 1)
11108 {
11109 if (err_msg == NULL)
11110 return 0;
11111 else
11112 error (("%s"), err_msg);
11113 }
11114
11115 return value_of_variable (syms[0].sym, syms[0].block);
11116 }
11117
11118 /* Value of integer variable named NAME in the current environment. If
11119 no such variable found, returns 0, and sets *FLAG to 0. If
11120 successful, sets *FLAG to 1. */
11121
11122 LONGEST
11123 get_int_var_value (char *name, int *flag)
11124 {
11125 struct value *var_val = get_var_value (name, 0);
11126
11127 if (var_val == 0)
11128 {
11129 if (flag != NULL)
11130 *flag = 0;
11131 return 0;
11132 }
11133 else
11134 {
11135 if (flag != NULL)
11136 *flag = 1;
11137 return value_as_long (var_val);
11138 }
11139 }
11140
11141
11142 /* Return a range type whose base type is that of the range type named
11143 NAME in the current environment, and whose bounds are calculated
11144 from NAME according to the GNAT range encoding conventions.
11145 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11146 corresponding range type from debug information; fall back to using it
11147 if symbol lookup fails. If a new type must be created, allocate it
11148 like ORIG_TYPE was. The bounds information, in general, is encoded
11149 in NAME, the base type given in the named range type. */
11150
11151 static struct type *
11152 to_fixed_range_type (struct type *raw_type, struct value *dval)
11153 {
11154 const char *name;
11155 struct type *base_type;
11156 char *subtype_info;
11157
11158 gdb_assert (raw_type != NULL);
11159 gdb_assert (TYPE_NAME (raw_type) != NULL);
11160
11161 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11162 base_type = TYPE_TARGET_TYPE (raw_type);
11163 else
11164 base_type = raw_type;
11165
11166 name = TYPE_NAME (raw_type);
11167 subtype_info = strstr (name, "___XD");
11168 if (subtype_info == NULL)
11169 {
11170 LONGEST L = ada_discrete_type_low_bound (raw_type);
11171 LONGEST U = ada_discrete_type_high_bound (raw_type);
11172
11173 if (L < INT_MIN || U > INT_MAX)
11174 return raw_type;
11175 else
11176 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11177 L, U);
11178 }
11179 else
11180 {
11181 static char *name_buf = NULL;
11182 static size_t name_len = 0;
11183 int prefix_len = subtype_info - name;
11184 LONGEST L, U;
11185 struct type *type;
11186 char *bounds_str;
11187 int n;
11188
11189 GROW_VECT (name_buf, name_len, prefix_len + 5);
11190 strncpy (name_buf, name, prefix_len);
11191 name_buf[prefix_len] = '\0';
11192
11193 subtype_info += 5;
11194 bounds_str = strchr (subtype_info, '_');
11195 n = 1;
11196
11197 if (*subtype_info == 'L')
11198 {
11199 if (!ada_scan_number (bounds_str, n, &L, &n)
11200 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11201 return raw_type;
11202 if (bounds_str[n] == '_')
11203 n += 2;
11204 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11205 n += 1;
11206 subtype_info += 1;
11207 }
11208 else
11209 {
11210 int ok;
11211
11212 strcpy (name_buf + prefix_len, "___L");
11213 L = get_int_var_value (name_buf, &ok);
11214 if (!ok)
11215 {
11216 lim_warning (_("Unknown lower bound, using 1."));
11217 L = 1;
11218 }
11219 }
11220
11221 if (*subtype_info == 'U')
11222 {
11223 if (!ada_scan_number (bounds_str, n, &U, &n)
11224 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11225 return raw_type;
11226 }
11227 else
11228 {
11229 int ok;
11230
11231 strcpy (name_buf + prefix_len, "___U");
11232 U = get_int_var_value (name_buf, &ok);
11233 if (!ok)
11234 {
11235 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11236 U = L;
11237 }
11238 }
11239
11240 type = create_static_range_type (alloc_type_copy (raw_type),
11241 base_type, L, U);
11242 TYPE_NAME (type) = name;
11243 return type;
11244 }
11245 }
11246
11247 /* True iff NAME is the name of a range type. */
11248
11249 int
11250 ada_is_range_type_name (const char *name)
11251 {
11252 return (name != NULL && strstr (name, "___XD"));
11253 }
11254 \f
11255
11256 /* Modular types */
11257
11258 /* True iff TYPE is an Ada modular type. */
11259
11260 int
11261 ada_is_modular_type (struct type *type)
11262 {
11263 struct type *subranged_type = get_base_type (type);
11264
11265 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11266 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11267 && TYPE_UNSIGNED (subranged_type));
11268 }
11269
11270 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11271
11272 ULONGEST
11273 ada_modulus (struct type *type)
11274 {
11275 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11276 }
11277 \f
11278
11279 /* Ada exception catchpoint support:
11280 ---------------------------------
11281
11282 We support 3 kinds of exception catchpoints:
11283 . catchpoints on Ada exceptions
11284 . catchpoints on unhandled Ada exceptions
11285 . catchpoints on failed assertions
11286
11287 Exceptions raised during failed assertions, or unhandled exceptions
11288 could perfectly be caught with the general catchpoint on Ada exceptions.
11289 However, we can easily differentiate these two special cases, and having
11290 the option to distinguish these two cases from the rest can be useful
11291 to zero-in on certain situations.
11292
11293 Exception catchpoints are a specialized form of breakpoint,
11294 since they rely on inserting breakpoints inside known routines
11295 of the GNAT runtime. The implementation therefore uses a standard
11296 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11297 of breakpoint_ops.
11298
11299 Support in the runtime for exception catchpoints have been changed
11300 a few times already, and these changes affect the implementation
11301 of these catchpoints. In order to be able to support several
11302 variants of the runtime, we use a sniffer that will determine
11303 the runtime variant used by the program being debugged. */
11304
11305 /* Ada's standard exceptions.
11306
11307 The Ada 83 standard also defined Numeric_Error. But there so many
11308 situations where it was unclear from the Ada 83 Reference Manual
11309 (RM) whether Constraint_Error or Numeric_Error should be raised,
11310 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11311 Interpretation saying that anytime the RM says that Numeric_Error
11312 should be raised, the implementation may raise Constraint_Error.
11313 Ada 95 went one step further and pretty much removed Numeric_Error
11314 from the list of standard exceptions (it made it a renaming of
11315 Constraint_Error, to help preserve compatibility when compiling
11316 an Ada83 compiler). As such, we do not include Numeric_Error from
11317 this list of standard exceptions. */
11318
11319 static char *standard_exc[] = {
11320 "constraint_error",
11321 "program_error",
11322 "storage_error",
11323 "tasking_error"
11324 };
11325
11326 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11327
11328 /* A structure that describes how to support exception catchpoints
11329 for a given executable. */
11330
11331 struct exception_support_info
11332 {
11333 /* The name of the symbol to break on in order to insert
11334 a catchpoint on exceptions. */
11335 const char *catch_exception_sym;
11336
11337 /* The name of the symbol to break on in order to insert
11338 a catchpoint on unhandled exceptions. */
11339 const char *catch_exception_unhandled_sym;
11340
11341 /* The name of the symbol to break on in order to insert
11342 a catchpoint on failed assertions. */
11343 const char *catch_assert_sym;
11344
11345 /* Assuming that the inferior just triggered an unhandled exception
11346 catchpoint, this function is responsible for returning the address
11347 in inferior memory where the name of that exception is stored.
11348 Return zero if the address could not be computed. */
11349 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11350 };
11351
11352 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11353 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11354
11355 /* The following exception support info structure describes how to
11356 implement exception catchpoints with the latest version of the
11357 Ada runtime (as of 2007-03-06). */
11358
11359 static const struct exception_support_info default_exception_support_info =
11360 {
11361 "__gnat_debug_raise_exception", /* catch_exception_sym */
11362 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11363 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11364 ada_unhandled_exception_name_addr
11365 };
11366
11367 /* The following exception support info structure describes how to
11368 implement exception catchpoints with a slightly older version
11369 of the Ada runtime. */
11370
11371 static const struct exception_support_info exception_support_info_fallback =
11372 {
11373 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11374 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11375 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11376 ada_unhandled_exception_name_addr_from_raise
11377 };
11378
11379 /* Return nonzero if we can detect the exception support routines
11380 described in EINFO.
11381
11382 This function errors out if an abnormal situation is detected
11383 (for instance, if we find the exception support routines, but
11384 that support is found to be incomplete). */
11385
11386 static int
11387 ada_has_this_exception_support (const struct exception_support_info *einfo)
11388 {
11389 struct symbol *sym;
11390
11391 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11392 that should be compiled with debugging information. As a result, we
11393 expect to find that symbol in the symtabs. */
11394
11395 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11396 if (sym == NULL)
11397 {
11398 /* Perhaps we did not find our symbol because the Ada runtime was
11399 compiled without debugging info, or simply stripped of it.
11400 It happens on some GNU/Linux distributions for instance, where
11401 users have to install a separate debug package in order to get
11402 the runtime's debugging info. In that situation, let the user
11403 know why we cannot insert an Ada exception catchpoint.
11404
11405 Note: Just for the purpose of inserting our Ada exception
11406 catchpoint, we could rely purely on the associated minimal symbol.
11407 But we would be operating in degraded mode anyway, since we are
11408 still lacking the debugging info needed later on to extract
11409 the name of the exception being raised (this name is printed in
11410 the catchpoint message, and is also used when trying to catch
11411 a specific exception). We do not handle this case for now. */
11412 struct bound_minimal_symbol msym
11413 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11414
11415 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11416 error (_("Your Ada runtime appears to be missing some debugging "
11417 "information.\nCannot insert Ada exception catchpoint "
11418 "in this configuration."));
11419
11420 return 0;
11421 }
11422
11423 /* Make sure that the symbol we found corresponds to a function. */
11424
11425 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11426 error (_("Symbol \"%s\" is not a function (class = %d)"),
11427 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11428
11429 return 1;
11430 }
11431
11432 /* Inspect the Ada runtime and determine which exception info structure
11433 should be used to provide support for exception catchpoints.
11434
11435 This function will always set the per-inferior exception_info,
11436 or raise an error. */
11437
11438 static void
11439 ada_exception_support_info_sniffer (void)
11440 {
11441 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11442
11443 /* If the exception info is already known, then no need to recompute it. */
11444 if (data->exception_info != NULL)
11445 return;
11446
11447 /* Check the latest (default) exception support info. */
11448 if (ada_has_this_exception_support (&default_exception_support_info))
11449 {
11450 data->exception_info = &default_exception_support_info;
11451 return;
11452 }
11453
11454 /* Try our fallback exception suport info. */
11455 if (ada_has_this_exception_support (&exception_support_info_fallback))
11456 {
11457 data->exception_info = &exception_support_info_fallback;
11458 return;
11459 }
11460
11461 /* Sometimes, it is normal for us to not be able to find the routine
11462 we are looking for. This happens when the program is linked with
11463 the shared version of the GNAT runtime, and the program has not been
11464 started yet. Inform the user of these two possible causes if
11465 applicable. */
11466
11467 if (ada_update_initial_language (language_unknown) != language_ada)
11468 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11469
11470 /* If the symbol does not exist, then check that the program is
11471 already started, to make sure that shared libraries have been
11472 loaded. If it is not started, this may mean that the symbol is
11473 in a shared library. */
11474
11475 if (ptid_get_pid (inferior_ptid) == 0)
11476 error (_("Unable to insert catchpoint. Try to start the program first."));
11477
11478 /* At this point, we know that we are debugging an Ada program and
11479 that the inferior has been started, but we still are not able to
11480 find the run-time symbols. That can mean that we are in
11481 configurable run time mode, or that a-except as been optimized
11482 out by the linker... In any case, at this point it is not worth
11483 supporting this feature. */
11484
11485 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11486 }
11487
11488 /* True iff FRAME is very likely to be that of a function that is
11489 part of the runtime system. This is all very heuristic, but is
11490 intended to be used as advice as to what frames are uninteresting
11491 to most users. */
11492
11493 static int
11494 is_known_support_routine (struct frame_info *frame)
11495 {
11496 struct symtab_and_line sal;
11497 char *func_name;
11498 enum language func_lang;
11499 int i;
11500 const char *fullname;
11501
11502 /* If this code does not have any debugging information (no symtab),
11503 This cannot be any user code. */
11504
11505 find_frame_sal (frame, &sal);
11506 if (sal.symtab == NULL)
11507 return 1;
11508
11509 /* If there is a symtab, but the associated source file cannot be
11510 located, then assume this is not user code: Selecting a frame
11511 for which we cannot display the code would not be very helpful
11512 for the user. This should also take care of case such as VxWorks
11513 where the kernel has some debugging info provided for a few units. */
11514
11515 fullname = symtab_to_fullname (sal.symtab);
11516 if (access (fullname, R_OK) != 0)
11517 return 1;
11518
11519 /* Check the unit filename againt the Ada runtime file naming.
11520 We also check the name of the objfile against the name of some
11521 known system libraries that sometimes come with debugging info
11522 too. */
11523
11524 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11525 {
11526 re_comp (known_runtime_file_name_patterns[i]);
11527 if (re_exec (lbasename (sal.symtab->filename)))
11528 return 1;
11529 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11530 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11531 return 1;
11532 }
11533
11534 /* Check whether the function is a GNAT-generated entity. */
11535
11536 find_frame_funname (frame, &func_name, &func_lang, NULL);
11537 if (func_name == NULL)
11538 return 1;
11539
11540 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11541 {
11542 re_comp (known_auxiliary_function_name_patterns[i]);
11543 if (re_exec (func_name))
11544 {
11545 xfree (func_name);
11546 return 1;
11547 }
11548 }
11549
11550 xfree (func_name);
11551 return 0;
11552 }
11553
11554 /* Find the first frame that contains debugging information and that is not
11555 part of the Ada run-time, starting from FI and moving upward. */
11556
11557 void
11558 ada_find_printable_frame (struct frame_info *fi)
11559 {
11560 for (; fi != NULL; fi = get_prev_frame (fi))
11561 {
11562 if (!is_known_support_routine (fi))
11563 {
11564 select_frame (fi);
11565 break;
11566 }
11567 }
11568
11569 }
11570
11571 /* Assuming that the inferior just triggered an unhandled exception
11572 catchpoint, return the address in inferior memory where the name
11573 of the exception is stored.
11574
11575 Return zero if the address could not be computed. */
11576
11577 static CORE_ADDR
11578 ada_unhandled_exception_name_addr (void)
11579 {
11580 return parse_and_eval_address ("e.full_name");
11581 }
11582
11583 /* Same as ada_unhandled_exception_name_addr, except that this function
11584 should be used when the inferior uses an older version of the runtime,
11585 where the exception name needs to be extracted from a specific frame
11586 several frames up in the callstack. */
11587
11588 static CORE_ADDR
11589 ada_unhandled_exception_name_addr_from_raise (void)
11590 {
11591 int frame_level;
11592 struct frame_info *fi;
11593 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11594 struct cleanup *old_chain;
11595
11596 /* To determine the name of this exception, we need to select
11597 the frame corresponding to RAISE_SYM_NAME. This frame is
11598 at least 3 levels up, so we simply skip the first 3 frames
11599 without checking the name of their associated function. */
11600 fi = get_current_frame ();
11601 for (frame_level = 0; frame_level < 3; frame_level += 1)
11602 if (fi != NULL)
11603 fi = get_prev_frame (fi);
11604
11605 old_chain = make_cleanup (null_cleanup, NULL);
11606 while (fi != NULL)
11607 {
11608 char *func_name;
11609 enum language func_lang;
11610
11611 find_frame_funname (fi, &func_name, &func_lang, NULL);
11612 if (func_name != NULL)
11613 {
11614 make_cleanup (xfree, func_name);
11615
11616 if (strcmp (func_name,
11617 data->exception_info->catch_exception_sym) == 0)
11618 break; /* We found the frame we were looking for... */
11619 fi = get_prev_frame (fi);
11620 }
11621 }
11622 do_cleanups (old_chain);
11623
11624 if (fi == NULL)
11625 return 0;
11626
11627 select_frame (fi);
11628 return parse_and_eval_address ("id.full_name");
11629 }
11630
11631 /* Assuming the inferior just triggered an Ada exception catchpoint
11632 (of any type), return the address in inferior memory where the name
11633 of the exception is stored, if applicable.
11634
11635 Return zero if the address could not be computed, or if not relevant. */
11636
11637 static CORE_ADDR
11638 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11639 struct breakpoint *b)
11640 {
11641 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11642
11643 switch (ex)
11644 {
11645 case ada_catch_exception:
11646 return (parse_and_eval_address ("e.full_name"));
11647 break;
11648
11649 case ada_catch_exception_unhandled:
11650 return data->exception_info->unhandled_exception_name_addr ();
11651 break;
11652
11653 case ada_catch_assert:
11654 return 0; /* Exception name is not relevant in this case. */
11655 break;
11656
11657 default:
11658 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11659 break;
11660 }
11661
11662 return 0; /* Should never be reached. */
11663 }
11664
11665 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11666 any error that ada_exception_name_addr_1 might cause to be thrown.
11667 When an error is intercepted, a warning with the error message is printed,
11668 and zero is returned. */
11669
11670 static CORE_ADDR
11671 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11672 struct breakpoint *b)
11673 {
11674 volatile struct gdb_exception e;
11675 CORE_ADDR result = 0;
11676
11677 TRY_CATCH (e, RETURN_MASK_ERROR)
11678 {
11679 result = ada_exception_name_addr_1 (ex, b);
11680 }
11681
11682 if (e.reason < 0)
11683 {
11684 warning (_("failed to get exception name: %s"), e.message);
11685 return 0;
11686 }
11687
11688 return result;
11689 }
11690
11691 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11692
11693 /* Ada catchpoints.
11694
11695 In the case of catchpoints on Ada exceptions, the catchpoint will
11696 stop the target on every exception the program throws. When a user
11697 specifies the name of a specific exception, we translate this
11698 request into a condition expression (in text form), and then parse
11699 it into an expression stored in each of the catchpoint's locations.
11700 We then use this condition to check whether the exception that was
11701 raised is the one the user is interested in. If not, then the
11702 target is resumed again. We store the name of the requested
11703 exception, in order to be able to re-set the condition expression
11704 when symbols change. */
11705
11706 /* An instance of this type is used to represent an Ada catchpoint
11707 breakpoint location. It includes a "struct bp_location" as a kind
11708 of base class; users downcast to "struct bp_location *" when
11709 needed. */
11710
11711 struct ada_catchpoint_location
11712 {
11713 /* The base class. */
11714 struct bp_location base;
11715
11716 /* The condition that checks whether the exception that was raised
11717 is the specific exception the user specified on catchpoint
11718 creation. */
11719 struct expression *excep_cond_expr;
11720 };
11721
11722 /* Implement the DTOR method in the bp_location_ops structure for all
11723 Ada exception catchpoint kinds. */
11724
11725 static void
11726 ada_catchpoint_location_dtor (struct bp_location *bl)
11727 {
11728 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11729
11730 xfree (al->excep_cond_expr);
11731 }
11732
11733 /* The vtable to be used in Ada catchpoint locations. */
11734
11735 static const struct bp_location_ops ada_catchpoint_location_ops =
11736 {
11737 ada_catchpoint_location_dtor
11738 };
11739
11740 /* An instance of this type is used to represent an Ada catchpoint.
11741 It includes a "struct breakpoint" as a kind of base class; users
11742 downcast to "struct breakpoint *" when needed. */
11743
11744 struct ada_catchpoint
11745 {
11746 /* The base class. */
11747 struct breakpoint base;
11748
11749 /* The name of the specific exception the user specified. */
11750 char *excep_string;
11751 };
11752
11753 /* Parse the exception condition string in the context of each of the
11754 catchpoint's locations, and store them for later evaluation. */
11755
11756 static void
11757 create_excep_cond_exprs (struct ada_catchpoint *c)
11758 {
11759 struct cleanup *old_chain;
11760 struct bp_location *bl;
11761 char *cond_string;
11762
11763 /* Nothing to do if there's no specific exception to catch. */
11764 if (c->excep_string == NULL)
11765 return;
11766
11767 /* Same if there are no locations... */
11768 if (c->base.loc == NULL)
11769 return;
11770
11771 /* Compute the condition expression in text form, from the specific
11772 expection we want to catch. */
11773 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11774 old_chain = make_cleanup (xfree, cond_string);
11775
11776 /* Iterate over all the catchpoint's locations, and parse an
11777 expression for each. */
11778 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11779 {
11780 struct ada_catchpoint_location *ada_loc
11781 = (struct ada_catchpoint_location *) bl;
11782 struct expression *exp = NULL;
11783
11784 if (!bl->shlib_disabled)
11785 {
11786 volatile struct gdb_exception e;
11787 const char *s;
11788
11789 s = cond_string;
11790 TRY_CATCH (e, RETURN_MASK_ERROR)
11791 {
11792 exp = parse_exp_1 (&s, bl->address,
11793 block_for_pc (bl->address), 0);
11794 }
11795 if (e.reason < 0)
11796 {
11797 warning (_("failed to reevaluate internal exception condition "
11798 "for catchpoint %d: %s"),
11799 c->base.number, e.message);
11800 /* There is a bug in GCC on sparc-solaris when building with
11801 optimization which causes EXP to change unexpectedly
11802 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11803 The problem should be fixed starting with GCC 4.9.
11804 In the meantime, work around it by forcing EXP back
11805 to NULL. */
11806 exp = NULL;
11807 }
11808 }
11809
11810 ada_loc->excep_cond_expr = exp;
11811 }
11812
11813 do_cleanups (old_chain);
11814 }
11815
11816 /* Implement the DTOR method in the breakpoint_ops structure for all
11817 exception catchpoint kinds. */
11818
11819 static void
11820 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11821 {
11822 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11823
11824 xfree (c->excep_string);
11825
11826 bkpt_breakpoint_ops.dtor (b);
11827 }
11828
11829 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11830 structure for all exception catchpoint kinds. */
11831
11832 static struct bp_location *
11833 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11834 struct breakpoint *self)
11835 {
11836 struct ada_catchpoint_location *loc;
11837
11838 loc = XNEW (struct ada_catchpoint_location);
11839 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11840 loc->excep_cond_expr = NULL;
11841 return &loc->base;
11842 }
11843
11844 /* Implement the RE_SET method in the breakpoint_ops structure for all
11845 exception catchpoint kinds. */
11846
11847 static void
11848 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11849 {
11850 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11851
11852 /* Call the base class's method. This updates the catchpoint's
11853 locations. */
11854 bkpt_breakpoint_ops.re_set (b);
11855
11856 /* Reparse the exception conditional expressions. One for each
11857 location. */
11858 create_excep_cond_exprs (c);
11859 }
11860
11861 /* Returns true if we should stop for this breakpoint hit. If the
11862 user specified a specific exception, we only want to cause a stop
11863 if the program thrown that exception. */
11864
11865 static int
11866 should_stop_exception (const struct bp_location *bl)
11867 {
11868 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11869 const struct ada_catchpoint_location *ada_loc
11870 = (const struct ada_catchpoint_location *) bl;
11871 volatile struct gdb_exception ex;
11872 int stop;
11873
11874 /* With no specific exception, should always stop. */
11875 if (c->excep_string == NULL)
11876 return 1;
11877
11878 if (ada_loc->excep_cond_expr == NULL)
11879 {
11880 /* We will have a NULL expression if back when we were creating
11881 the expressions, this location's had failed to parse. */
11882 return 1;
11883 }
11884
11885 stop = 1;
11886 TRY_CATCH (ex, RETURN_MASK_ALL)
11887 {
11888 struct value *mark;
11889
11890 mark = value_mark ();
11891 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11892 value_free_to_mark (mark);
11893 }
11894 if (ex.reason < 0)
11895 exception_fprintf (gdb_stderr, ex,
11896 _("Error in testing exception condition:\n"));
11897 return stop;
11898 }
11899
11900 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11901 for all exception catchpoint kinds. */
11902
11903 static void
11904 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11905 {
11906 bs->stop = should_stop_exception (bs->bp_location_at);
11907 }
11908
11909 /* Implement the PRINT_IT method in the breakpoint_ops structure
11910 for all exception catchpoint kinds. */
11911
11912 static enum print_stop_action
11913 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11914 {
11915 struct ui_out *uiout = current_uiout;
11916 struct breakpoint *b = bs->breakpoint_at;
11917
11918 annotate_catchpoint (b->number);
11919
11920 if (ui_out_is_mi_like_p (uiout))
11921 {
11922 ui_out_field_string (uiout, "reason",
11923 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11924 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11925 }
11926
11927 ui_out_text (uiout,
11928 b->disposition == disp_del ? "\nTemporary catchpoint "
11929 : "\nCatchpoint ");
11930 ui_out_field_int (uiout, "bkptno", b->number);
11931 ui_out_text (uiout, ", ");
11932
11933 switch (ex)
11934 {
11935 case ada_catch_exception:
11936 case ada_catch_exception_unhandled:
11937 {
11938 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11939 char exception_name[256];
11940
11941 if (addr != 0)
11942 {
11943 read_memory (addr, (gdb_byte *) exception_name,
11944 sizeof (exception_name) - 1);
11945 exception_name [sizeof (exception_name) - 1] = '\0';
11946 }
11947 else
11948 {
11949 /* For some reason, we were unable to read the exception
11950 name. This could happen if the Runtime was compiled
11951 without debugging info, for instance. In that case,
11952 just replace the exception name by the generic string
11953 "exception" - it will read as "an exception" in the
11954 notification we are about to print. */
11955 memcpy (exception_name, "exception", sizeof ("exception"));
11956 }
11957 /* In the case of unhandled exception breakpoints, we print
11958 the exception name as "unhandled EXCEPTION_NAME", to make
11959 it clearer to the user which kind of catchpoint just got
11960 hit. We used ui_out_text to make sure that this extra
11961 info does not pollute the exception name in the MI case. */
11962 if (ex == ada_catch_exception_unhandled)
11963 ui_out_text (uiout, "unhandled ");
11964 ui_out_field_string (uiout, "exception-name", exception_name);
11965 }
11966 break;
11967 case ada_catch_assert:
11968 /* In this case, the name of the exception is not really
11969 important. Just print "failed assertion" to make it clearer
11970 that his program just hit an assertion-failure catchpoint.
11971 We used ui_out_text because this info does not belong in
11972 the MI output. */
11973 ui_out_text (uiout, "failed assertion");
11974 break;
11975 }
11976 ui_out_text (uiout, " at ");
11977 ada_find_printable_frame (get_current_frame ());
11978
11979 return PRINT_SRC_AND_LOC;
11980 }
11981
11982 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11983 for all exception catchpoint kinds. */
11984
11985 static void
11986 print_one_exception (enum ada_exception_catchpoint_kind ex,
11987 struct breakpoint *b, struct bp_location **last_loc)
11988 {
11989 struct ui_out *uiout = current_uiout;
11990 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11991 struct value_print_options opts;
11992
11993 get_user_print_options (&opts);
11994 if (opts.addressprint)
11995 {
11996 annotate_field (4);
11997 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11998 }
11999
12000 annotate_field (5);
12001 *last_loc = b->loc;
12002 switch (ex)
12003 {
12004 case ada_catch_exception:
12005 if (c->excep_string != NULL)
12006 {
12007 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12008
12009 ui_out_field_string (uiout, "what", msg);
12010 xfree (msg);
12011 }
12012 else
12013 ui_out_field_string (uiout, "what", "all Ada exceptions");
12014
12015 break;
12016
12017 case ada_catch_exception_unhandled:
12018 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12019 break;
12020
12021 case ada_catch_assert:
12022 ui_out_field_string (uiout, "what", "failed Ada assertions");
12023 break;
12024
12025 default:
12026 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12027 break;
12028 }
12029 }
12030
12031 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12032 for all exception catchpoint kinds. */
12033
12034 static void
12035 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12036 struct breakpoint *b)
12037 {
12038 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12039 struct ui_out *uiout = current_uiout;
12040
12041 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12042 : _("Catchpoint "));
12043 ui_out_field_int (uiout, "bkptno", b->number);
12044 ui_out_text (uiout, ": ");
12045
12046 switch (ex)
12047 {
12048 case ada_catch_exception:
12049 if (c->excep_string != NULL)
12050 {
12051 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12052 struct cleanup *old_chain = make_cleanup (xfree, info);
12053
12054 ui_out_text (uiout, info);
12055 do_cleanups (old_chain);
12056 }
12057 else
12058 ui_out_text (uiout, _("all Ada exceptions"));
12059 break;
12060
12061 case ada_catch_exception_unhandled:
12062 ui_out_text (uiout, _("unhandled Ada exceptions"));
12063 break;
12064
12065 case ada_catch_assert:
12066 ui_out_text (uiout, _("failed Ada assertions"));
12067 break;
12068
12069 default:
12070 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12071 break;
12072 }
12073 }
12074
12075 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12076 for all exception catchpoint kinds. */
12077
12078 static void
12079 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12080 struct breakpoint *b, struct ui_file *fp)
12081 {
12082 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12083
12084 switch (ex)
12085 {
12086 case ada_catch_exception:
12087 fprintf_filtered (fp, "catch exception");
12088 if (c->excep_string != NULL)
12089 fprintf_filtered (fp, " %s", c->excep_string);
12090 break;
12091
12092 case ada_catch_exception_unhandled:
12093 fprintf_filtered (fp, "catch exception unhandled");
12094 break;
12095
12096 case ada_catch_assert:
12097 fprintf_filtered (fp, "catch assert");
12098 break;
12099
12100 default:
12101 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12102 }
12103 print_recreate_thread (b, fp);
12104 }
12105
12106 /* Virtual table for "catch exception" breakpoints. */
12107
12108 static void
12109 dtor_catch_exception (struct breakpoint *b)
12110 {
12111 dtor_exception (ada_catch_exception, b);
12112 }
12113
12114 static struct bp_location *
12115 allocate_location_catch_exception (struct breakpoint *self)
12116 {
12117 return allocate_location_exception (ada_catch_exception, self);
12118 }
12119
12120 static void
12121 re_set_catch_exception (struct breakpoint *b)
12122 {
12123 re_set_exception (ada_catch_exception, b);
12124 }
12125
12126 static void
12127 check_status_catch_exception (bpstat bs)
12128 {
12129 check_status_exception (ada_catch_exception, bs);
12130 }
12131
12132 static enum print_stop_action
12133 print_it_catch_exception (bpstat bs)
12134 {
12135 return print_it_exception (ada_catch_exception, bs);
12136 }
12137
12138 static void
12139 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12140 {
12141 print_one_exception (ada_catch_exception, b, last_loc);
12142 }
12143
12144 static void
12145 print_mention_catch_exception (struct breakpoint *b)
12146 {
12147 print_mention_exception (ada_catch_exception, b);
12148 }
12149
12150 static void
12151 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12152 {
12153 print_recreate_exception (ada_catch_exception, b, fp);
12154 }
12155
12156 static struct breakpoint_ops catch_exception_breakpoint_ops;
12157
12158 /* Virtual table for "catch exception unhandled" breakpoints. */
12159
12160 static void
12161 dtor_catch_exception_unhandled (struct breakpoint *b)
12162 {
12163 dtor_exception (ada_catch_exception_unhandled, b);
12164 }
12165
12166 static struct bp_location *
12167 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12168 {
12169 return allocate_location_exception (ada_catch_exception_unhandled, self);
12170 }
12171
12172 static void
12173 re_set_catch_exception_unhandled (struct breakpoint *b)
12174 {
12175 re_set_exception (ada_catch_exception_unhandled, b);
12176 }
12177
12178 static void
12179 check_status_catch_exception_unhandled (bpstat bs)
12180 {
12181 check_status_exception (ada_catch_exception_unhandled, bs);
12182 }
12183
12184 static enum print_stop_action
12185 print_it_catch_exception_unhandled (bpstat bs)
12186 {
12187 return print_it_exception (ada_catch_exception_unhandled, bs);
12188 }
12189
12190 static void
12191 print_one_catch_exception_unhandled (struct breakpoint *b,
12192 struct bp_location **last_loc)
12193 {
12194 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12195 }
12196
12197 static void
12198 print_mention_catch_exception_unhandled (struct breakpoint *b)
12199 {
12200 print_mention_exception (ada_catch_exception_unhandled, b);
12201 }
12202
12203 static void
12204 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12205 struct ui_file *fp)
12206 {
12207 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12208 }
12209
12210 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12211
12212 /* Virtual table for "catch assert" breakpoints. */
12213
12214 static void
12215 dtor_catch_assert (struct breakpoint *b)
12216 {
12217 dtor_exception (ada_catch_assert, b);
12218 }
12219
12220 static struct bp_location *
12221 allocate_location_catch_assert (struct breakpoint *self)
12222 {
12223 return allocate_location_exception (ada_catch_assert, self);
12224 }
12225
12226 static void
12227 re_set_catch_assert (struct breakpoint *b)
12228 {
12229 re_set_exception (ada_catch_assert, b);
12230 }
12231
12232 static void
12233 check_status_catch_assert (bpstat bs)
12234 {
12235 check_status_exception (ada_catch_assert, bs);
12236 }
12237
12238 static enum print_stop_action
12239 print_it_catch_assert (bpstat bs)
12240 {
12241 return print_it_exception (ada_catch_assert, bs);
12242 }
12243
12244 static void
12245 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12246 {
12247 print_one_exception (ada_catch_assert, b, last_loc);
12248 }
12249
12250 static void
12251 print_mention_catch_assert (struct breakpoint *b)
12252 {
12253 print_mention_exception (ada_catch_assert, b);
12254 }
12255
12256 static void
12257 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12258 {
12259 print_recreate_exception (ada_catch_assert, b, fp);
12260 }
12261
12262 static struct breakpoint_ops catch_assert_breakpoint_ops;
12263
12264 /* Return a newly allocated copy of the first space-separated token
12265 in ARGSP, and then adjust ARGSP to point immediately after that
12266 token.
12267
12268 Return NULL if ARGPS does not contain any more tokens. */
12269
12270 static char *
12271 ada_get_next_arg (char **argsp)
12272 {
12273 char *args = *argsp;
12274 char *end;
12275 char *result;
12276
12277 args = skip_spaces (args);
12278 if (args[0] == '\0')
12279 return NULL; /* No more arguments. */
12280
12281 /* Find the end of the current argument. */
12282
12283 end = skip_to_space (args);
12284
12285 /* Adjust ARGSP to point to the start of the next argument. */
12286
12287 *argsp = end;
12288
12289 /* Make a copy of the current argument and return it. */
12290
12291 result = xmalloc (end - args + 1);
12292 strncpy (result, args, end - args);
12293 result[end - args] = '\0';
12294
12295 return result;
12296 }
12297
12298 /* Split the arguments specified in a "catch exception" command.
12299 Set EX to the appropriate catchpoint type.
12300 Set EXCEP_STRING to the name of the specific exception if
12301 specified by the user.
12302 If a condition is found at the end of the arguments, the condition
12303 expression is stored in COND_STRING (memory must be deallocated
12304 after use). Otherwise COND_STRING is set to NULL. */
12305
12306 static void
12307 catch_ada_exception_command_split (char *args,
12308 enum ada_exception_catchpoint_kind *ex,
12309 char **excep_string,
12310 char **cond_string)
12311 {
12312 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12313 char *exception_name;
12314 char *cond = NULL;
12315
12316 exception_name = ada_get_next_arg (&args);
12317 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12318 {
12319 /* This is not an exception name; this is the start of a condition
12320 expression for a catchpoint on all exceptions. So, "un-get"
12321 this token, and set exception_name to NULL. */
12322 xfree (exception_name);
12323 exception_name = NULL;
12324 args -= 2;
12325 }
12326 make_cleanup (xfree, exception_name);
12327
12328 /* Check to see if we have a condition. */
12329
12330 args = skip_spaces (args);
12331 if (strncmp (args, "if", 2) == 0
12332 && (isspace (args[2]) || args[2] == '\0'))
12333 {
12334 args += 2;
12335 args = skip_spaces (args);
12336
12337 if (args[0] == '\0')
12338 error (_("Condition missing after `if' keyword"));
12339 cond = xstrdup (args);
12340 make_cleanup (xfree, cond);
12341
12342 args += strlen (args);
12343 }
12344
12345 /* Check that we do not have any more arguments. Anything else
12346 is unexpected. */
12347
12348 if (args[0] != '\0')
12349 error (_("Junk at end of expression"));
12350
12351 discard_cleanups (old_chain);
12352
12353 if (exception_name == NULL)
12354 {
12355 /* Catch all exceptions. */
12356 *ex = ada_catch_exception;
12357 *excep_string = NULL;
12358 }
12359 else if (strcmp (exception_name, "unhandled") == 0)
12360 {
12361 /* Catch unhandled exceptions. */
12362 *ex = ada_catch_exception_unhandled;
12363 *excep_string = NULL;
12364 }
12365 else
12366 {
12367 /* Catch a specific exception. */
12368 *ex = ada_catch_exception;
12369 *excep_string = exception_name;
12370 }
12371 *cond_string = cond;
12372 }
12373
12374 /* Return the name of the symbol on which we should break in order to
12375 implement a catchpoint of the EX kind. */
12376
12377 static const char *
12378 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12379 {
12380 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12381
12382 gdb_assert (data->exception_info != NULL);
12383
12384 switch (ex)
12385 {
12386 case ada_catch_exception:
12387 return (data->exception_info->catch_exception_sym);
12388 break;
12389 case ada_catch_exception_unhandled:
12390 return (data->exception_info->catch_exception_unhandled_sym);
12391 break;
12392 case ada_catch_assert:
12393 return (data->exception_info->catch_assert_sym);
12394 break;
12395 default:
12396 internal_error (__FILE__, __LINE__,
12397 _("unexpected catchpoint kind (%d)"), ex);
12398 }
12399 }
12400
12401 /* Return the breakpoint ops "virtual table" used for catchpoints
12402 of the EX kind. */
12403
12404 static const struct breakpoint_ops *
12405 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12406 {
12407 switch (ex)
12408 {
12409 case ada_catch_exception:
12410 return (&catch_exception_breakpoint_ops);
12411 break;
12412 case ada_catch_exception_unhandled:
12413 return (&catch_exception_unhandled_breakpoint_ops);
12414 break;
12415 case ada_catch_assert:
12416 return (&catch_assert_breakpoint_ops);
12417 break;
12418 default:
12419 internal_error (__FILE__, __LINE__,
12420 _("unexpected catchpoint kind (%d)"), ex);
12421 }
12422 }
12423
12424 /* Return the condition that will be used to match the current exception
12425 being raised with the exception that the user wants to catch. This
12426 assumes that this condition is used when the inferior just triggered
12427 an exception catchpoint.
12428
12429 The string returned is a newly allocated string that needs to be
12430 deallocated later. */
12431
12432 static char *
12433 ada_exception_catchpoint_cond_string (const char *excep_string)
12434 {
12435 int i;
12436
12437 /* The standard exceptions are a special case. They are defined in
12438 runtime units that have been compiled without debugging info; if
12439 EXCEP_STRING is the not-fully-qualified name of a standard
12440 exception (e.g. "constraint_error") then, during the evaluation
12441 of the condition expression, the symbol lookup on this name would
12442 *not* return this standard exception. The catchpoint condition
12443 may then be set only on user-defined exceptions which have the
12444 same not-fully-qualified name (e.g. my_package.constraint_error).
12445
12446 To avoid this unexcepted behavior, these standard exceptions are
12447 systematically prefixed by "standard". This means that "catch
12448 exception constraint_error" is rewritten into "catch exception
12449 standard.constraint_error".
12450
12451 If an exception named contraint_error is defined in another package of
12452 the inferior program, then the only way to specify this exception as a
12453 breakpoint condition is to use its fully-qualified named:
12454 e.g. my_package.constraint_error. */
12455
12456 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12457 {
12458 if (strcmp (standard_exc [i], excep_string) == 0)
12459 {
12460 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12461 excep_string);
12462 }
12463 }
12464 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12465 }
12466
12467 /* Return the symtab_and_line that should be used to insert an exception
12468 catchpoint of the TYPE kind.
12469
12470 EXCEP_STRING should contain the name of a specific exception that
12471 the catchpoint should catch, or NULL otherwise.
12472
12473 ADDR_STRING returns the name of the function where the real
12474 breakpoint that implements the catchpoints is set, depending on the
12475 type of catchpoint we need to create. */
12476
12477 static struct symtab_and_line
12478 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12479 char **addr_string, const struct breakpoint_ops **ops)
12480 {
12481 const char *sym_name;
12482 struct symbol *sym;
12483
12484 /* First, find out which exception support info to use. */
12485 ada_exception_support_info_sniffer ();
12486
12487 /* Then lookup the function on which we will break in order to catch
12488 the Ada exceptions requested by the user. */
12489 sym_name = ada_exception_sym_name (ex);
12490 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12491
12492 /* We can assume that SYM is not NULL at this stage. If the symbol
12493 did not exist, ada_exception_support_info_sniffer would have
12494 raised an exception.
12495
12496 Also, ada_exception_support_info_sniffer should have already
12497 verified that SYM is a function symbol. */
12498 gdb_assert (sym != NULL);
12499 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12500
12501 /* Set ADDR_STRING. */
12502 *addr_string = xstrdup (sym_name);
12503
12504 /* Set OPS. */
12505 *ops = ada_exception_breakpoint_ops (ex);
12506
12507 return find_function_start_sal (sym, 1);
12508 }
12509
12510 /* Create an Ada exception catchpoint.
12511
12512 EX_KIND is the kind of exception catchpoint to be created.
12513
12514 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12515 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12516 of the exception to which this catchpoint applies. When not NULL,
12517 the string must be allocated on the heap, and its deallocation
12518 is no longer the responsibility of the caller.
12519
12520 COND_STRING, if not NULL, is the catchpoint condition. This string
12521 must be allocated on the heap, and its deallocation is no longer
12522 the responsibility of the caller.
12523
12524 TEMPFLAG, if nonzero, means that the underlying breakpoint
12525 should be temporary.
12526
12527 FROM_TTY is the usual argument passed to all commands implementations. */
12528
12529 void
12530 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12531 enum ada_exception_catchpoint_kind ex_kind,
12532 char *excep_string,
12533 char *cond_string,
12534 int tempflag,
12535 int disabled,
12536 int from_tty)
12537 {
12538 struct ada_catchpoint *c;
12539 char *addr_string = NULL;
12540 const struct breakpoint_ops *ops = NULL;
12541 struct symtab_and_line sal
12542 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12543
12544 c = XNEW (struct ada_catchpoint);
12545 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12546 ops, tempflag, disabled, from_tty);
12547 c->excep_string = excep_string;
12548 create_excep_cond_exprs (c);
12549 if (cond_string != NULL)
12550 set_breakpoint_condition (&c->base, cond_string, from_tty);
12551 install_breakpoint (0, &c->base, 1);
12552 }
12553
12554 /* Implement the "catch exception" command. */
12555
12556 static void
12557 catch_ada_exception_command (char *arg, int from_tty,
12558 struct cmd_list_element *command)
12559 {
12560 struct gdbarch *gdbarch = get_current_arch ();
12561 int tempflag;
12562 enum ada_exception_catchpoint_kind ex_kind;
12563 char *excep_string = NULL;
12564 char *cond_string = NULL;
12565
12566 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12567
12568 if (!arg)
12569 arg = "";
12570 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12571 &cond_string);
12572 create_ada_exception_catchpoint (gdbarch, ex_kind,
12573 excep_string, cond_string,
12574 tempflag, 1 /* enabled */,
12575 from_tty);
12576 }
12577
12578 /* Split the arguments specified in a "catch assert" command.
12579
12580 ARGS contains the command's arguments (or the empty string if
12581 no arguments were passed).
12582
12583 If ARGS contains a condition, set COND_STRING to that condition
12584 (the memory needs to be deallocated after use). */
12585
12586 static void
12587 catch_ada_assert_command_split (char *args, char **cond_string)
12588 {
12589 args = skip_spaces (args);
12590
12591 /* Check whether a condition was provided. */
12592 if (strncmp (args, "if", 2) == 0
12593 && (isspace (args[2]) || args[2] == '\0'))
12594 {
12595 args += 2;
12596 args = skip_spaces (args);
12597 if (args[0] == '\0')
12598 error (_("condition missing after `if' keyword"));
12599 *cond_string = xstrdup (args);
12600 }
12601
12602 /* Otherwise, there should be no other argument at the end of
12603 the command. */
12604 else if (args[0] != '\0')
12605 error (_("Junk at end of arguments."));
12606 }
12607
12608 /* Implement the "catch assert" command. */
12609
12610 static void
12611 catch_assert_command (char *arg, int from_tty,
12612 struct cmd_list_element *command)
12613 {
12614 struct gdbarch *gdbarch = get_current_arch ();
12615 int tempflag;
12616 char *cond_string = NULL;
12617
12618 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12619
12620 if (!arg)
12621 arg = "";
12622 catch_ada_assert_command_split (arg, &cond_string);
12623 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12624 NULL, cond_string,
12625 tempflag, 1 /* enabled */,
12626 from_tty);
12627 }
12628
12629 /* Return non-zero if the symbol SYM is an Ada exception object. */
12630
12631 static int
12632 ada_is_exception_sym (struct symbol *sym)
12633 {
12634 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12635
12636 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12637 && SYMBOL_CLASS (sym) != LOC_BLOCK
12638 && SYMBOL_CLASS (sym) != LOC_CONST
12639 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12640 && type_name != NULL && strcmp (type_name, "exception") == 0);
12641 }
12642
12643 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12644 Ada exception object. This matches all exceptions except the ones
12645 defined by the Ada language. */
12646
12647 static int
12648 ada_is_non_standard_exception_sym (struct symbol *sym)
12649 {
12650 int i;
12651
12652 if (!ada_is_exception_sym (sym))
12653 return 0;
12654
12655 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12656 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12657 return 0; /* A standard exception. */
12658
12659 /* Numeric_Error is also a standard exception, so exclude it.
12660 See the STANDARD_EXC description for more details as to why
12661 this exception is not listed in that array. */
12662 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12663 return 0;
12664
12665 return 1;
12666 }
12667
12668 /* A helper function for qsort, comparing two struct ada_exc_info
12669 objects.
12670
12671 The comparison is determined first by exception name, and then
12672 by exception address. */
12673
12674 static int
12675 compare_ada_exception_info (const void *a, const void *b)
12676 {
12677 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12678 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12679 int result;
12680
12681 result = strcmp (exc_a->name, exc_b->name);
12682 if (result != 0)
12683 return result;
12684
12685 if (exc_a->addr < exc_b->addr)
12686 return -1;
12687 if (exc_a->addr > exc_b->addr)
12688 return 1;
12689
12690 return 0;
12691 }
12692
12693 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12694 routine, but keeping the first SKIP elements untouched.
12695
12696 All duplicates are also removed. */
12697
12698 static void
12699 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12700 int skip)
12701 {
12702 struct ada_exc_info *to_sort
12703 = VEC_address (ada_exc_info, *exceptions) + skip;
12704 int to_sort_len
12705 = VEC_length (ada_exc_info, *exceptions) - skip;
12706 int i, j;
12707
12708 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12709 compare_ada_exception_info);
12710
12711 for (i = 1, j = 1; i < to_sort_len; i++)
12712 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12713 to_sort[j++] = to_sort[i];
12714 to_sort_len = j;
12715 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12716 }
12717
12718 /* A function intended as the "name_matcher" callback in the struct
12719 quick_symbol_functions' expand_symtabs_matching method.
12720
12721 SEARCH_NAME is the symbol's search name.
12722
12723 If USER_DATA is not NULL, it is a pointer to a regext_t object
12724 used to match the symbol (by natural name). Otherwise, when USER_DATA
12725 is null, no filtering is performed, and all symbols are a positive
12726 match. */
12727
12728 static int
12729 ada_exc_search_name_matches (const char *search_name, void *user_data)
12730 {
12731 regex_t *preg = user_data;
12732
12733 if (preg == NULL)
12734 return 1;
12735
12736 /* In Ada, the symbol "search name" is a linkage name, whereas
12737 the regular expression used to do the matching refers to
12738 the natural name. So match against the decoded name. */
12739 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12740 }
12741
12742 /* Add all exceptions defined by the Ada standard whose name match
12743 a regular expression.
12744
12745 If PREG is not NULL, then this regexp_t object is used to
12746 perform the symbol name matching. Otherwise, no name-based
12747 filtering is performed.
12748
12749 EXCEPTIONS is a vector of exceptions to which matching exceptions
12750 gets pushed. */
12751
12752 static void
12753 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12754 {
12755 int i;
12756
12757 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12758 {
12759 if (preg == NULL
12760 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12761 {
12762 struct bound_minimal_symbol msymbol
12763 = ada_lookup_simple_minsym (standard_exc[i]);
12764
12765 if (msymbol.minsym != NULL)
12766 {
12767 struct ada_exc_info info
12768 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12769
12770 VEC_safe_push (ada_exc_info, *exceptions, &info);
12771 }
12772 }
12773 }
12774 }
12775
12776 /* Add all Ada exceptions defined locally and accessible from the given
12777 FRAME.
12778
12779 If PREG is not NULL, then this regexp_t object is used to
12780 perform the symbol name matching. Otherwise, no name-based
12781 filtering is performed.
12782
12783 EXCEPTIONS is a vector of exceptions to which matching exceptions
12784 gets pushed. */
12785
12786 static void
12787 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12788 VEC(ada_exc_info) **exceptions)
12789 {
12790 const struct block *block = get_frame_block (frame, 0);
12791
12792 while (block != 0)
12793 {
12794 struct block_iterator iter;
12795 struct symbol *sym;
12796
12797 ALL_BLOCK_SYMBOLS (block, iter, sym)
12798 {
12799 switch (SYMBOL_CLASS (sym))
12800 {
12801 case LOC_TYPEDEF:
12802 case LOC_BLOCK:
12803 case LOC_CONST:
12804 break;
12805 default:
12806 if (ada_is_exception_sym (sym))
12807 {
12808 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12809 SYMBOL_VALUE_ADDRESS (sym)};
12810
12811 VEC_safe_push (ada_exc_info, *exceptions, &info);
12812 }
12813 }
12814 }
12815 if (BLOCK_FUNCTION (block) != NULL)
12816 break;
12817 block = BLOCK_SUPERBLOCK (block);
12818 }
12819 }
12820
12821 /* Add all exceptions defined globally whose name name match
12822 a regular expression, excluding standard exceptions.
12823
12824 The reason we exclude standard exceptions is that they need
12825 to be handled separately: Standard exceptions are defined inside
12826 a runtime unit which is normally not compiled with debugging info,
12827 and thus usually do not show up in our symbol search. However,
12828 if the unit was in fact built with debugging info, we need to
12829 exclude them because they would duplicate the entry we found
12830 during the special loop that specifically searches for those
12831 standard exceptions.
12832
12833 If PREG is not NULL, then this regexp_t object is used to
12834 perform the symbol name matching. Otherwise, no name-based
12835 filtering is performed.
12836
12837 EXCEPTIONS is a vector of exceptions to which matching exceptions
12838 gets pushed. */
12839
12840 static void
12841 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12842 {
12843 struct objfile *objfile;
12844 struct symtab *s;
12845
12846 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12847 VARIABLES_DOMAIN, preg);
12848
12849 ALL_PRIMARY_SYMTABS (objfile, s)
12850 {
12851 const struct blockvector *bv = SYMTAB_BLOCKVECTOR (s);
12852 int i;
12853
12854 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12855 {
12856 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12857 struct block_iterator iter;
12858 struct symbol *sym;
12859
12860 ALL_BLOCK_SYMBOLS (b, iter, sym)
12861 if (ada_is_non_standard_exception_sym (sym)
12862 && (preg == NULL
12863 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12864 0, NULL, 0) == 0))
12865 {
12866 struct ada_exc_info info
12867 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12868
12869 VEC_safe_push (ada_exc_info, *exceptions, &info);
12870 }
12871 }
12872 }
12873 }
12874
12875 /* Implements ada_exceptions_list with the regular expression passed
12876 as a regex_t, rather than a string.
12877
12878 If not NULL, PREG is used to filter out exceptions whose names
12879 do not match. Otherwise, all exceptions are listed. */
12880
12881 static VEC(ada_exc_info) *
12882 ada_exceptions_list_1 (regex_t *preg)
12883 {
12884 VEC(ada_exc_info) *result = NULL;
12885 struct cleanup *old_chain
12886 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12887 int prev_len;
12888
12889 /* First, list the known standard exceptions. These exceptions
12890 need to be handled separately, as they are usually defined in
12891 runtime units that have been compiled without debugging info. */
12892
12893 ada_add_standard_exceptions (preg, &result);
12894
12895 /* Next, find all exceptions whose scope is local and accessible
12896 from the currently selected frame. */
12897
12898 if (has_stack_frames ())
12899 {
12900 prev_len = VEC_length (ada_exc_info, result);
12901 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12902 &result);
12903 if (VEC_length (ada_exc_info, result) > prev_len)
12904 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12905 }
12906
12907 /* Add all exceptions whose scope is global. */
12908
12909 prev_len = VEC_length (ada_exc_info, result);
12910 ada_add_global_exceptions (preg, &result);
12911 if (VEC_length (ada_exc_info, result) > prev_len)
12912 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12913
12914 discard_cleanups (old_chain);
12915 return result;
12916 }
12917
12918 /* Return a vector of ada_exc_info.
12919
12920 If REGEXP is NULL, all exceptions are included in the result.
12921 Otherwise, it should contain a valid regular expression,
12922 and only the exceptions whose names match that regular expression
12923 are included in the result.
12924
12925 The exceptions are sorted in the following order:
12926 - Standard exceptions (defined by the Ada language), in
12927 alphabetical order;
12928 - Exceptions only visible from the current frame, in
12929 alphabetical order;
12930 - Exceptions whose scope is global, in alphabetical order. */
12931
12932 VEC(ada_exc_info) *
12933 ada_exceptions_list (const char *regexp)
12934 {
12935 VEC(ada_exc_info) *result = NULL;
12936 struct cleanup *old_chain = NULL;
12937 regex_t reg;
12938
12939 if (regexp != NULL)
12940 old_chain = compile_rx_or_error (&reg, regexp,
12941 _("invalid regular expression"));
12942
12943 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12944
12945 if (old_chain != NULL)
12946 do_cleanups (old_chain);
12947 return result;
12948 }
12949
12950 /* Implement the "info exceptions" command. */
12951
12952 static void
12953 info_exceptions_command (char *regexp, int from_tty)
12954 {
12955 VEC(ada_exc_info) *exceptions;
12956 struct cleanup *cleanup;
12957 struct gdbarch *gdbarch = get_current_arch ();
12958 int ix;
12959 struct ada_exc_info *info;
12960
12961 exceptions = ada_exceptions_list (regexp);
12962 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12963
12964 if (regexp != NULL)
12965 printf_filtered
12966 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12967 else
12968 printf_filtered (_("All defined Ada exceptions:\n"));
12969
12970 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12971 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12972
12973 do_cleanups (cleanup);
12974 }
12975
12976 /* Operators */
12977 /* Information about operators given special treatment in functions
12978 below. */
12979 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12980
12981 #define ADA_OPERATORS \
12982 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12983 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12984 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12985 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12986 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12987 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12988 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12989 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12990 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12991 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12992 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12993 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12994 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12995 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12996 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12997 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12998 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12999 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13000 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13001
13002 static void
13003 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13004 int *argsp)
13005 {
13006 switch (exp->elts[pc - 1].opcode)
13007 {
13008 default:
13009 operator_length_standard (exp, pc, oplenp, argsp);
13010 break;
13011
13012 #define OP_DEFN(op, len, args, binop) \
13013 case op: *oplenp = len; *argsp = args; break;
13014 ADA_OPERATORS;
13015 #undef OP_DEFN
13016
13017 case OP_AGGREGATE:
13018 *oplenp = 3;
13019 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13020 break;
13021
13022 case OP_CHOICES:
13023 *oplenp = 3;
13024 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13025 break;
13026 }
13027 }
13028
13029 /* Implementation of the exp_descriptor method operator_check. */
13030
13031 static int
13032 ada_operator_check (struct expression *exp, int pos,
13033 int (*objfile_func) (struct objfile *objfile, void *data),
13034 void *data)
13035 {
13036 const union exp_element *const elts = exp->elts;
13037 struct type *type = NULL;
13038
13039 switch (elts[pos].opcode)
13040 {
13041 case UNOP_IN_RANGE:
13042 case UNOP_QUAL:
13043 type = elts[pos + 1].type;
13044 break;
13045
13046 default:
13047 return operator_check_standard (exp, pos, objfile_func, data);
13048 }
13049
13050 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13051
13052 if (type && TYPE_OBJFILE (type)
13053 && (*objfile_func) (TYPE_OBJFILE (type), data))
13054 return 1;
13055
13056 return 0;
13057 }
13058
13059 static char *
13060 ada_op_name (enum exp_opcode opcode)
13061 {
13062 switch (opcode)
13063 {
13064 default:
13065 return op_name_standard (opcode);
13066
13067 #define OP_DEFN(op, len, args, binop) case op: return #op;
13068 ADA_OPERATORS;
13069 #undef OP_DEFN
13070
13071 case OP_AGGREGATE:
13072 return "OP_AGGREGATE";
13073 case OP_CHOICES:
13074 return "OP_CHOICES";
13075 case OP_NAME:
13076 return "OP_NAME";
13077 }
13078 }
13079
13080 /* As for operator_length, but assumes PC is pointing at the first
13081 element of the operator, and gives meaningful results only for the
13082 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13083
13084 static void
13085 ada_forward_operator_length (struct expression *exp, int pc,
13086 int *oplenp, int *argsp)
13087 {
13088 switch (exp->elts[pc].opcode)
13089 {
13090 default:
13091 *oplenp = *argsp = 0;
13092 break;
13093
13094 #define OP_DEFN(op, len, args, binop) \
13095 case op: *oplenp = len; *argsp = args; break;
13096 ADA_OPERATORS;
13097 #undef OP_DEFN
13098
13099 case OP_AGGREGATE:
13100 *oplenp = 3;
13101 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13102 break;
13103
13104 case OP_CHOICES:
13105 *oplenp = 3;
13106 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13107 break;
13108
13109 case OP_STRING:
13110 case OP_NAME:
13111 {
13112 int len = longest_to_int (exp->elts[pc + 1].longconst);
13113
13114 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13115 *argsp = 0;
13116 break;
13117 }
13118 }
13119 }
13120
13121 static int
13122 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13123 {
13124 enum exp_opcode op = exp->elts[elt].opcode;
13125 int oplen, nargs;
13126 int pc = elt;
13127 int i;
13128
13129 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13130
13131 switch (op)
13132 {
13133 /* Ada attributes ('Foo). */
13134 case OP_ATR_FIRST:
13135 case OP_ATR_LAST:
13136 case OP_ATR_LENGTH:
13137 case OP_ATR_IMAGE:
13138 case OP_ATR_MAX:
13139 case OP_ATR_MIN:
13140 case OP_ATR_MODULUS:
13141 case OP_ATR_POS:
13142 case OP_ATR_SIZE:
13143 case OP_ATR_TAG:
13144 case OP_ATR_VAL:
13145 break;
13146
13147 case UNOP_IN_RANGE:
13148 case UNOP_QUAL:
13149 /* XXX: gdb_sprint_host_address, type_sprint */
13150 fprintf_filtered (stream, _("Type @"));
13151 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13152 fprintf_filtered (stream, " (");
13153 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13154 fprintf_filtered (stream, ")");
13155 break;
13156 case BINOP_IN_BOUNDS:
13157 fprintf_filtered (stream, " (%d)",
13158 longest_to_int (exp->elts[pc + 2].longconst));
13159 break;
13160 case TERNOP_IN_RANGE:
13161 break;
13162
13163 case OP_AGGREGATE:
13164 case OP_OTHERS:
13165 case OP_DISCRETE_RANGE:
13166 case OP_POSITIONAL:
13167 case OP_CHOICES:
13168 break;
13169
13170 case OP_NAME:
13171 case OP_STRING:
13172 {
13173 char *name = &exp->elts[elt + 2].string;
13174 int len = longest_to_int (exp->elts[elt + 1].longconst);
13175
13176 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13177 break;
13178 }
13179
13180 default:
13181 return dump_subexp_body_standard (exp, stream, elt);
13182 }
13183
13184 elt += oplen;
13185 for (i = 0; i < nargs; i += 1)
13186 elt = dump_subexp (exp, stream, elt);
13187
13188 return elt;
13189 }
13190
13191 /* The Ada extension of print_subexp (q.v.). */
13192
13193 static void
13194 ada_print_subexp (struct expression *exp, int *pos,
13195 struct ui_file *stream, enum precedence prec)
13196 {
13197 int oplen, nargs, i;
13198 int pc = *pos;
13199 enum exp_opcode op = exp->elts[pc].opcode;
13200
13201 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13202
13203 *pos += oplen;
13204 switch (op)
13205 {
13206 default:
13207 *pos -= oplen;
13208 print_subexp_standard (exp, pos, stream, prec);
13209 return;
13210
13211 case OP_VAR_VALUE:
13212 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13213 return;
13214
13215 case BINOP_IN_BOUNDS:
13216 /* XXX: sprint_subexp */
13217 print_subexp (exp, pos, stream, PREC_SUFFIX);
13218 fputs_filtered (" in ", stream);
13219 print_subexp (exp, pos, stream, PREC_SUFFIX);
13220 fputs_filtered ("'range", stream);
13221 if (exp->elts[pc + 1].longconst > 1)
13222 fprintf_filtered (stream, "(%ld)",
13223 (long) exp->elts[pc + 1].longconst);
13224 return;
13225
13226 case TERNOP_IN_RANGE:
13227 if (prec >= PREC_EQUAL)
13228 fputs_filtered ("(", stream);
13229 /* XXX: sprint_subexp */
13230 print_subexp (exp, pos, stream, PREC_SUFFIX);
13231 fputs_filtered (" in ", stream);
13232 print_subexp (exp, pos, stream, PREC_EQUAL);
13233 fputs_filtered (" .. ", stream);
13234 print_subexp (exp, pos, stream, PREC_EQUAL);
13235 if (prec >= PREC_EQUAL)
13236 fputs_filtered (")", stream);
13237 return;
13238
13239 case OP_ATR_FIRST:
13240 case OP_ATR_LAST:
13241 case OP_ATR_LENGTH:
13242 case OP_ATR_IMAGE:
13243 case OP_ATR_MAX:
13244 case OP_ATR_MIN:
13245 case OP_ATR_MODULUS:
13246 case OP_ATR_POS:
13247 case OP_ATR_SIZE:
13248 case OP_ATR_TAG:
13249 case OP_ATR_VAL:
13250 if (exp->elts[*pos].opcode == OP_TYPE)
13251 {
13252 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13253 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13254 &type_print_raw_options);
13255 *pos += 3;
13256 }
13257 else
13258 print_subexp (exp, pos, stream, PREC_SUFFIX);
13259 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13260 if (nargs > 1)
13261 {
13262 int tem;
13263
13264 for (tem = 1; tem < nargs; tem += 1)
13265 {
13266 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13267 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13268 }
13269 fputs_filtered (")", stream);
13270 }
13271 return;
13272
13273 case UNOP_QUAL:
13274 type_print (exp->elts[pc + 1].type, "", stream, 0);
13275 fputs_filtered ("'(", stream);
13276 print_subexp (exp, pos, stream, PREC_PREFIX);
13277 fputs_filtered (")", stream);
13278 return;
13279
13280 case UNOP_IN_RANGE:
13281 /* XXX: sprint_subexp */
13282 print_subexp (exp, pos, stream, PREC_SUFFIX);
13283 fputs_filtered (" in ", stream);
13284 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13285 &type_print_raw_options);
13286 return;
13287
13288 case OP_DISCRETE_RANGE:
13289 print_subexp (exp, pos, stream, PREC_SUFFIX);
13290 fputs_filtered ("..", stream);
13291 print_subexp (exp, pos, stream, PREC_SUFFIX);
13292 return;
13293
13294 case OP_OTHERS:
13295 fputs_filtered ("others => ", stream);
13296 print_subexp (exp, pos, stream, PREC_SUFFIX);
13297 return;
13298
13299 case OP_CHOICES:
13300 for (i = 0; i < nargs-1; i += 1)
13301 {
13302 if (i > 0)
13303 fputs_filtered ("|", stream);
13304 print_subexp (exp, pos, stream, PREC_SUFFIX);
13305 }
13306 fputs_filtered (" => ", stream);
13307 print_subexp (exp, pos, stream, PREC_SUFFIX);
13308 return;
13309
13310 case OP_POSITIONAL:
13311 print_subexp (exp, pos, stream, PREC_SUFFIX);
13312 return;
13313
13314 case OP_AGGREGATE:
13315 fputs_filtered ("(", stream);
13316 for (i = 0; i < nargs; i += 1)
13317 {
13318 if (i > 0)
13319 fputs_filtered (", ", stream);
13320 print_subexp (exp, pos, stream, PREC_SUFFIX);
13321 }
13322 fputs_filtered (")", stream);
13323 return;
13324 }
13325 }
13326
13327 /* Table mapping opcodes into strings for printing operators
13328 and precedences of the operators. */
13329
13330 static const struct op_print ada_op_print_tab[] = {
13331 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13332 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13333 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13334 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13335 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13336 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13337 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13338 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13339 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13340 {">=", BINOP_GEQ, PREC_ORDER, 0},
13341 {">", BINOP_GTR, PREC_ORDER, 0},
13342 {"<", BINOP_LESS, PREC_ORDER, 0},
13343 {">>", BINOP_RSH, PREC_SHIFT, 0},
13344 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13345 {"+", BINOP_ADD, PREC_ADD, 0},
13346 {"-", BINOP_SUB, PREC_ADD, 0},
13347 {"&", BINOP_CONCAT, PREC_ADD, 0},
13348 {"*", BINOP_MUL, PREC_MUL, 0},
13349 {"/", BINOP_DIV, PREC_MUL, 0},
13350 {"rem", BINOP_REM, PREC_MUL, 0},
13351 {"mod", BINOP_MOD, PREC_MUL, 0},
13352 {"**", BINOP_EXP, PREC_REPEAT, 0},
13353 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13354 {"-", UNOP_NEG, PREC_PREFIX, 0},
13355 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13356 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13357 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13358 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13359 {".all", UNOP_IND, PREC_SUFFIX, 1},
13360 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13361 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13362 {NULL, 0, 0, 0}
13363 };
13364 \f
13365 enum ada_primitive_types {
13366 ada_primitive_type_int,
13367 ada_primitive_type_long,
13368 ada_primitive_type_short,
13369 ada_primitive_type_char,
13370 ada_primitive_type_float,
13371 ada_primitive_type_double,
13372 ada_primitive_type_void,
13373 ada_primitive_type_long_long,
13374 ada_primitive_type_long_double,
13375 ada_primitive_type_natural,
13376 ada_primitive_type_positive,
13377 ada_primitive_type_system_address,
13378 nr_ada_primitive_types
13379 };
13380
13381 static void
13382 ada_language_arch_info (struct gdbarch *gdbarch,
13383 struct language_arch_info *lai)
13384 {
13385 const struct builtin_type *builtin = builtin_type (gdbarch);
13386
13387 lai->primitive_type_vector
13388 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13389 struct type *);
13390
13391 lai->primitive_type_vector [ada_primitive_type_int]
13392 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13393 0, "integer");
13394 lai->primitive_type_vector [ada_primitive_type_long]
13395 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13396 0, "long_integer");
13397 lai->primitive_type_vector [ada_primitive_type_short]
13398 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13399 0, "short_integer");
13400 lai->string_char_type
13401 = lai->primitive_type_vector [ada_primitive_type_char]
13402 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13403 lai->primitive_type_vector [ada_primitive_type_float]
13404 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13405 "float", NULL);
13406 lai->primitive_type_vector [ada_primitive_type_double]
13407 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13408 "long_float", NULL);
13409 lai->primitive_type_vector [ada_primitive_type_long_long]
13410 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13411 0, "long_long_integer");
13412 lai->primitive_type_vector [ada_primitive_type_long_double]
13413 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13414 "long_long_float", NULL);
13415 lai->primitive_type_vector [ada_primitive_type_natural]
13416 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13417 0, "natural");
13418 lai->primitive_type_vector [ada_primitive_type_positive]
13419 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13420 0, "positive");
13421 lai->primitive_type_vector [ada_primitive_type_void]
13422 = builtin->builtin_void;
13423
13424 lai->primitive_type_vector [ada_primitive_type_system_address]
13425 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13426 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13427 = "system__address";
13428
13429 lai->bool_type_symbol = NULL;
13430 lai->bool_type_default = builtin->builtin_bool;
13431 }
13432 \f
13433 /* Language vector */
13434
13435 /* Not really used, but needed in the ada_language_defn. */
13436
13437 static void
13438 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13439 {
13440 ada_emit_char (c, type, stream, quoter, 1);
13441 }
13442
13443 static int
13444 parse (struct parser_state *ps)
13445 {
13446 warnings_issued = 0;
13447 return ada_parse (ps);
13448 }
13449
13450 static const struct exp_descriptor ada_exp_descriptor = {
13451 ada_print_subexp,
13452 ada_operator_length,
13453 ada_operator_check,
13454 ada_op_name,
13455 ada_dump_subexp_body,
13456 ada_evaluate_subexp
13457 };
13458
13459 /* Implement the "la_get_symbol_name_cmp" language_defn method
13460 for Ada. */
13461
13462 static symbol_name_cmp_ftype
13463 ada_get_symbol_name_cmp (const char *lookup_name)
13464 {
13465 if (should_use_wild_match (lookup_name))
13466 return wild_match;
13467 else
13468 return compare_names;
13469 }
13470
13471 /* Implement the "la_read_var_value" language_defn method for Ada. */
13472
13473 static struct value *
13474 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13475 {
13476 const struct block *frame_block = NULL;
13477 struct symbol *renaming_sym = NULL;
13478
13479 /* The only case where default_read_var_value is not sufficient
13480 is when VAR is a renaming... */
13481 if (frame)
13482 frame_block = get_frame_block (frame, NULL);
13483 if (frame_block)
13484 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13485 if (renaming_sym != NULL)
13486 return ada_read_renaming_var_value (renaming_sym, frame_block);
13487
13488 /* This is a typical case where we expect the default_read_var_value
13489 function to work. */
13490 return default_read_var_value (var, frame);
13491 }
13492
13493 const struct language_defn ada_language_defn = {
13494 "ada", /* Language name */
13495 "Ada",
13496 language_ada,
13497 range_check_off,
13498 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13499 that's not quite what this means. */
13500 array_row_major,
13501 macro_expansion_no,
13502 &ada_exp_descriptor,
13503 parse,
13504 ada_error,
13505 resolve,
13506 ada_printchar, /* Print a character constant */
13507 ada_printstr, /* Function to print string constant */
13508 emit_char, /* Function to print single char (not used) */
13509 ada_print_type, /* Print a type using appropriate syntax */
13510 ada_print_typedef, /* Print a typedef using appropriate syntax */
13511 ada_val_print, /* Print a value using appropriate syntax */
13512 ada_value_print, /* Print a top-level value */
13513 ada_read_var_value, /* la_read_var_value */
13514 NULL, /* Language specific skip_trampoline */
13515 NULL, /* name_of_this */
13516 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13517 basic_lookup_transparent_type, /* lookup_transparent_type */
13518 ada_la_decode, /* Language specific symbol demangler */
13519 NULL, /* Language specific
13520 class_name_from_physname */
13521 ada_op_print_tab, /* expression operators for printing */
13522 0, /* c-style arrays */
13523 1, /* String lower bound */
13524 ada_get_gdb_completer_word_break_characters,
13525 ada_make_symbol_completion_list,
13526 ada_language_arch_info,
13527 ada_print_array_index,
13528 default_pass_by_reference,
13529 c_get_string,
13530 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13531 ada_iterate_over_symbols,
13532 &ada_varobj_ops,
13533 LANG_MAGIC
13534 };
13535
13536 /* Provide a prototype to silence -Wmissing-prototypes. */
13537 extern initialize_file_ftype _initialize_ada_language;
13538
13539 /* Command-list for the "set/show ada" prefix command. */
13540 static struct cmd_list_element *set_ada_list;
13541 static struct cmd_list_element *show_ada_list;
13542
13543 /* Implement the "set ada" prefix command. */
13544
13545 static void
13546 set_ada_command (char *arg, int from_tty)
13547 {
13548 printf_unfiltered (_(\
13549 "\"set ada\" must be followed by the name of a setting.\n"));
13550 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13551 }
13552
13553 /* Implement the "show ada" prefix command. */
13554
13555 static void
13556 show_ada_command (char *args, int from_tty)
13557 {
13558 cmd_show_list (show_ada_list, from_tty, "");
13559 }
13560
13561 static void
13562 initialize_ada_catchpoint_ops (void)
13563 {
13564 struct breakpoint_ops *ops;
13565
13566 initialize_breakpoint_ops ();
13567
13568 ops = &catch_exception_breakpoint_ops;
13569 *ops = bkpt_breakpoint_ops;
13570 ops->dtor = dtor_catch_exception;
13571 ops->allocate_location = allocate_location_catch_exception;
13572 ops->re_set = re_set_catch_exception;
13573 ops->check_status = check_status_catch_exception;
13574 ops->print_it = print_it_catch_exception;
13575 ops->print_one = print_one_catch_exception;
13576 ops->print_mention = print_mention_catch_exception;
13577 ops->print_recreate = print_recreate_catch_exception;
13578
13579 ops = &catch_exception_unhandled_breakpoint_ops;
13580 *ops = bkpt_breakpoint_ops;
13581 ops->dtor = dtor_catch_exception_unhandled;
13582 ops->allocate_location = allocate_location_catch_exception_unhandled;
13583 ops->re_set = re_set_catch_exception_unhandled;
13584 ops->check_status = check_status_catch_exception_unhandled;
13585 ops->print_it = print_it_catch_exception_unhandled;
13586 ops->print_one = print_one_catch_exception_unhandled;
13587 ops->print_mention = print_mention_catch_exception_unhandled;
13588 ops->print_recreate = print_recreate_catch_exception_unhandled;
13589
13590 ops = &catch_assert_breakpoint_ops;
13591 *ops = bkpt_breakpoint_ops;
13592 ops->dtor = dtor_catch_assert;
13593 ops->allocate_location = allocate_location_catch_assert;
13594 ops->re_set = re_set_catch_assert;
13595 ops->check_status = check_status_catch_assert;
13596 ops->print_it = print_it_catch_assert;
13597 ops->print_one = print_one_catch_assert;
13598 ops->print_mention = print_mention_catch_assert;
13599 ops->print_recreate = print_recreate_catch_assert;
13600 }
13601
13602 /* This module's 'new_objfile' observer. */
13603
13604 static void
13605 ada_new_objfile_observer (struct objfile *objfile)
13606 {
13607 ada_clear_symbol_cache ();
13608 }
13609
13610 /* This module's 'free_objfile' observer. */
13611
13612 static void
13613 ada_free_objfile_observer (struct objfile *objfile)
13614 {
13615 ada_clear_symbol_cache ();
13616 }
13617
13618 void
13619 _initialize_ada_language (void)
13620 {
13621 add_language (&ada_language_defn);
13622
13623 initialize_ada_catchpoint_ops ();
13624
13625 add_prefix_cmd ("ada", no_class, set_ada_command,
13626 _("Prefix command for changing Ada-specfic settings"),
13627 &set_ada_list, "set ada ", 0, &setlist);
13628
13629 add_prefix_cmd ("ada", no_class, show_ada_command,
13630 _("Generic command for showing Ada-specific settings."),
13631 &show_ada_list, "show ada ", 0, &showlist);
13632
13633 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13634 &trust_pad_over_xvs, _("\
13635 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13636 Show whether an optimization trusting PAD types over XVS types is activated"),
13637 _("\
13638 This is related to the encoding used by the GNAT compiler. The debugger\n\
13639 should normally trust the contents of PAD types, but certain older versions\n\
13640 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13641 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13642 work around this bug. It is always safe to turn this option \"off\", but\n\
13643 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13644 this option to \"off\" unless necessary."),
13645 NULL, NULL, &set_ada_list, &show_ada_list);
13646
13647 add_catch_command ("exception", _("\
13648 Catch Ada exceptions, when raised.\n\
13649 With an argument, catch only exceptions with the given name."),
13650 catch_ada_exception_command,
13651 NULL,
13652 CATCH_PERMANENT,
13653 CATCH_TEMPORARY);
13654 add_catch_command ("assert", _("\
13655 Catch failed Ada assertions, when raised.\n\
13656 With an argument, catch only exceptions with the given name."),
13657 catch_assert_command,
13658 NULL,
13659 CATCH_PERMANENT,
13660 CATCH_TEMPORARY);
13661
13662 varsize_limit = 65536;
13663
13664 add_info ("exceptions", info_exceptions_command,
13665 _("\
13666 List all Ada exception names.\n\
13667 If a regular expression is passed as an argument, only those matching\n\
13668 the regular expression are listed."));
13669
13670 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13671 _("Set Ada maintenance-related variables."),
13672 &maint_set_ada_cmdlist, "maintenance set ada ",
13673 0/*allow-unknown*/, &maintenance_set_cmdlist);
13674
13675 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13676 _("Show Ada maintenance-related variables"),
13677 &maint_show_ada_cmdlist, "maintenance show ada ",
13678 0/*allow-unknown*/, &maintenance_show_cmdlist);
13679
13680 add_setshow_boolean_cmd
13681 ("ignore-descriptive-types", class_maintenance,
13682 &ada_ignore_descriptive_types_p,
13683 _("Set whether descriptive types generated by GNAT should be ignored."),
13684 _("Show whether descriptive types generated by GNAT should be ignored."),
13685 _("\
13686 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13687 DWARF attribute."),
13688 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13689
13690 obstack_init (&symbol_list_obstack);
13691
13692 decoded_names_store = htab_create_alloc
13693 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13694 NULL, xcalloc, xfree);
13695
13696 /* The ada-lang observers. */
13697 observer_attach_new_objfile (ada_new_objfile_observer);
13698 observer_attach_free_objfile (ada_free_objfile_observer);
13699 observer_attach_inferior_exit (ada_inferior_exit);
13700
13701 /* Setup various context-specific data. */
13702 ada_inferior_data
13703 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13704 ada_pspace_data_handle
13705 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13706 }
This page took 0.346417 seconds and 4 git commands to generate.