Remove ALL_MSYMBOLS and ALL_OBJFILE_MSYMBOLS
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
195
196 static int lesseq_defined_than (struct symbol *, struct symbol *);
197
198 static int equiv_types (struct type *, struct type *);
199
200 static int is_name_suffix (const char *);
201
202 static int advance_wild_match (const char **, const char *, int);
203
204 static bool wild_match (const char *name, const char *patn);
205
206 static struct value *ada_coerce_ref (struct value *);
207
208 static LONGEST pos_atr (struct value *);
209
210 static struct value *value_pos_atr (struct type *, struct value *);
211
212 static struct value *value_val_atr (struct type *, struct value *);
213
214 static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217 static struct value *ada_search_struct_field (const char *, struct value *, int,
218 struct type *);
219
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223 static int find_struct_field (const char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226 static int ada_resolve_function (struct block_symbol *, int,
227 struct value **, int, const char *,
228 struct type *);
229
230 static int ada_is_direct_array_type (struct type *);
231
232 static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
234
235 static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238 static struct value *assign_aggregate (struct value *, struct value *,
239 struct expression *,
240 int *, enum noside);
241
242 static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247 static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253 static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264 static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
266
267 static struct type *ada_find_any_type (const char *name);
268
269 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
270 (const lookup_name_info &lookup_name);
271
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 static const char ada_completer_word_break_characters[] =
318 #ifdef VMS
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320 #else
321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
322 #endif
323
324 /* The name of the symbol to use to get the name of the main subprogram. */
325 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
326 = "__gnat_ada_main_program_name";
327
328 /* Limit on the number of warnings to raise per expression evaluation. */
329 static int warning_limit = 2;
330
331 /* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333 static int warnings_issued = 0;
334
335 static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337 };
338
339 static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341 };
342
343 /* Maintenance-related settings for this module. */
344
345 static struct cmd_list_element *maint_set_ada_cmdlist;
346 static struct cmd_list_element *maint_show_ada_cmdlist;
347
348 /* Implement the "maintenance set ada" (prefix) command. */
349
350 static void
351 maint_set_ada_cmd (const char *args, int from_tty)
352 {
353 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
354 gdb_stdout);
355 }
356
357 /* Implement the "maintenance show ada" (prefix) command. */
358
359 static void
360 maint_show_ada_cmd (const char *args, int from_tty)
361 {
362 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
363 }
364
365 /* The "maintenance ada set/show ignore-descriptive-type" value. */
366
367 static int ada_ignore_descriptive_types_p = 0;
368
369 /* Inferior-specific data. */
370
371 /* Per-inferior data for this module. */
372
373 struct ada_inferior_data
374 {
375 /* The ada__tags__type_specific_data type, which is used when decoding
376 tagged types. With older versions of GNAT, this type was directly
377 accessible through a component ("tsd") in the object tag. But this
378 is no longer the case, so we cache it for each inferior. */
379 struct type *tsd_type;
380
381 /* The exception_support_info data. This data is used to determine
382 how to implement support for Ada exception catchpoints in a given
383 inferior. */
384 const struct exception_support_info *exception_info;
385 };
386
387 /* Our key to this module's inferior data. */
388 static const struct inferior_data *ada_inferior_data;
389
390 /* A cleanup routine for our inferior data. */
391 static void
392 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
393 {
394 struct ada_inferior_data *data;
395
396 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
397 if (data != NULL)
398 xfree (data);
399 }
400
401 /* Return our inferior data for the given inferior (INF).
402
403 This function always returns a valid pointer to an allocated
404 ada_inferior_data structure. If INF's inferior data has not
405 been previously set, this functions creates a new one with all
406 fields set to zero, sets INF's inferior to it, and then returns
407 a pointer to that newly allocated ada_inferior_data. */
408
409 static struct ada_inferior_data *
410 get_ada_inferior_data (struct inferior *inf)
411 {
412 struct ada_inferior_data *data;
413
414 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
415 if (data == NULL)
416 {
417 data = XCNEW (struct ada_inferior_data);
418 set_inferior_data (inf, ada_inferior_data, data);
419 }
420
421 return data;
422 }
423
424 /* Perform all necessary cleanups regarding our module's inferior data
425 that is required after the inferior INF just exited. */
426
427 static void
428 ada_inferior_exit (struct inferior *inf)
429 {
430 ada_inferior_data_cleanup (inf, NULL);
431 set_inferior_data (inf, ada_inferior_data, NULL);
432 }
433
434
435 /* program-space-specific data. */
436
437 /* This module's per-program-space data. */
438 struct ada_pspace_data
439 {
440 /* The Ada symbol cache. */
441 struct ada_symbol_cache *sym_cache;
442 };
443
444 /* Key to our per-program-space data. */
445 static const struct program_space_data *ada_pspace_data_handle;
446
447 /* Return this module's data for the given program space (PSPACE).
448 If not is found, add a zero'ed one now.
449
450 This function always returns a valid object. */
451
452 static struct ada_pspace_data *
453 get_ada_pspace_data (struct program_space *pspace)
454 {
455 struct ada_pspace_data *data;
456
457 data = ((struct ada_pspace_data *)
458 program_space_data (pspace, ada_pspace_data_handle));
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466 }
467
468 /* The cleanup callback for this module's per-program-space data. */
469
470 static void
471 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472 {
473 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478 }
479
480 /* Utilities */
481
482 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
483 all typedef layers have been peeled. Otherwise, return TYPE.
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509 static struct type *
510 ada_typedef_target_type (struct type *type)
511 {
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515 }
516
517 /* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521 static const char *
522 ada_unqualified_name (const char *decoded_name)
523 {
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540 }
541
542 /* Return a string starting with '<', followed by STR, and '>'. */
543
544 static std::string
545 add_angle_brackets (const char *str)
546 {
547 return string_printf ("<%s>", str);
548 }
549
550 static const char *
551 ada_get_gdb_completer_word_break_characters (void)
552 {
553 return ada_completer_word_break_characters;
554 }
555
556 /* Print an array element index using the Ada syntax. */
557
558 static void
559 ada_print_array_index (struct value *index_value, struct ui_file *stream,
560 const struct value_print_options *options)
561 {
562 LA_VALUE_PRINT (index_value, stream, options);
563 fprintf_filtered (stream, " => ");
564 }
565
566 /* la_watch_location_expression for Ada. */
567
568 gdb::unique_xmalloc_ptr<char>
569 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
570 {
571 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
572 std::string name = type_to_string (type);
573 return gdb::unique_xmalloc_ptr<char>
574 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
575 }
576
577 /* Assuming VECT points to an array of *SIZE objects of size
578 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
579 updating *SIZE as necessary and returning the (new) array. */
580
581 void *
582 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
583 {
584 if (*size < min_size)
585 {
586 *size *= 2;
587 if (*size < min_size)
588 *size = min_size;
589 vect = xrealloc (vect, *size * element_size);
590 }
591 return vect;
592 }
593
594 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
595 suffix of FIELD_NAME beginning "___". */
596
597 static int
598 field_name_match (const char *field_name, const char *target)
599 {
600 int len = strlen (target);
601
602 return
603 (strncmp (field_name, target, len) == 0
604 && (field_name[len] == '\0'
605 || (startswith (field_name + len, "___")
606 && strcmp (field_name + strlen (field_name) - 6,
607 "___XVN") != 0)));
608 }
609
610
611 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
612 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
613 and return its index. This function also handles fields whose name
614 have ___ suffixes because the compiler sometimes alters their name
615 by adding such a suffix to represent fields with certain constraints.
616 If the field could not be found, return a negative number if
617 MAYBE_MISSING is set. Otherwise raise an error. */
618
619 int
620 ada_get_field_index (const struct type *type, const char *field_name,
621 int maybe_missing)
622 {
623 int fieldno;
624 struct type *struct_type = check_typedef ((struct type *) type);
625
626 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
627 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
628 return fieldno;
629
630 if (!maybe_missing)
631 error (_("Unable to find field %s in struct %s. Aborting"),
632 field_name, TYPE_NAME (struct_type));
633
634 return -1;
635 }
636
637 /* The length of the prefix of NAME prior to any "___" suffix. */
638
639 int
640 ada_name_prefix_len (const char *name)
641 {
642 if (name == NULL)
643 return 0;
644 else
645 {
646 const char *p = strstr (name, "___");
647
648 if (p == NULL)
649 return strlen (name);
650 else
651 return p - name;
652 }
653 }
654
655 /* Return non-zero if SUFFIX is a suffix of STR.
656 Return zero if STR is null. */
657
658 static int
659 is_suffix (const char *str, const char *suffix)
660 {
661 int len1, len2;
662
663 if (str == NULL)
664 return 0;
665 len1 = strlen (str);
666 len2 = strlen (suffix);
667 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
668 }
669
670 /* The contents of value VAL, treated as a value of type TYPE. The
671 result is an lval in memory if VAL is. */
672
673 static struct value *
674 coerce_unspec_val_to_type (struct value *val, struct type *type)
675 {
676 type = ada_check_typedef (type);
677 if (value_type (val) == type)
678 return val;
679 else
680 {
681 struct value *result;
682
683 /* Make sure that the object size is not unreasonable before
684 trying to allocate some memory for it. */
685 ada_ensure_varsize_limit (type);
686
687 if (value_lazy (val)
688 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
689 result = allocate_value_lazy (type);
690 else
691 {
692 result = allocate_value (type);
693 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
694 }
695 set_value_component_location (result, val);
696 set_value_bitsize (result, value_bitsize (val));
697 set_value_bitpos (result, value_bitpos (val));
698 set_value_address (result, value_address (val));
699 return result;
700 }
701 }
702
703 static const gdb_byte *
704 cond_offset_host (const gdb_byte *valaddr, long offset)
705 {
706 if (valaddr == NULL)
707 return NULL;
708 else
709 return valaddr + offset;
710 }
711
712 static CORE_ADDR
713 cond_offset_target (CORE_ADDR address, long offset)
714 {
715 if (address == 0)
716 return 0;
717 else
718 return address + offset;
719 }
720
721 /* Issue a warning (as for the definition of warning in utils.c, but
722 with exactly one argument rather than ...), unless the limit on the
723 number of warnings has passed during the evaluation of the current
724 expression. */
725
726 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
727 provided by "complaint". */
728 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
729
730 static void
731 lim_warning (const char *format, ...)
732 {
733 va_list args;
734
735 va_start (args, format);
736 warnings_issued += 1;
737 if (warnings_issued <= warning_limit)
738 vwarning (format, args);
739
740 va_end (args);
741 }
742
743 /* Issue an error if the size of an object of type T is unreasonable,
744 i.e. if it would be a bad idea to allocate a value of this type in
745 GDB. */
746
747 void
748 ada_ensure_varsize_limit (const struct type *type)
749 {
750 if (TYPE_LENGTH (type) > varsize_limit)
751 error (_("object size is larger than varsize-limit"));
752 }
753
754 /* Maximum value of a SIZE-byte signed integer type. */
755 static LONGEST
756 max_of_size (int size)
757 {
758 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
759
760 return top_bit | (top_bit - 1);
761 }
762
763 /* Minimum value of a SIZE-byte signed integer type. */
764 static LONGEST
765 min_of_size (int size)
766 {
767 return -max_of_size (size) - 1;
768 }
769
770 /* Maximum value of a SIZE-byte unsigned integer type. */
771 static ULONGEST
772 umax_of_size (int size)
773 {
774 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
775
776 return top_bit | (top_bit - 1);
777 }
778
779 /* Maximum value of integral type T, as a signed quantity. */
780 static LONGEST
781 max_of_type (struct type *t)
782 {
783 if (TYPE_UNSIGNED (t))
784 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
785 else
786 return max_of_size (TYPE_LENGTH (t));
787 }
788
789 /* Minimum value of integral type T, as a signed quantity. */
790 static LONGEST
791 min_of_type (struct type *t)
792 {
793 if (TYPE_UNSIGNED (t))
794 return 0;
795 else
796 return min_of_size (TYPE_LENGTH (t));
797 }
798
799 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
800 LONGEST
801 ada_discrete_type_high_bound (struct type *type)
802 {
803 type = resolve_dynamic_type (type, NULL, 0);
804 switch (TYPE_CODE (type))
805 {
806 case TYPE_CODE_RANGE:
807 return TYPE_HIGH_BOUND (type);
808 case TYPE_CODE_ENUM:
809 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
810 case TYPE_CODE_BOOL:
811 return 1;
812 case TYPE_CODE_CHAR:
813 case TYPE_CODE_INT:
814 return max_of_type (type);
815 default:
816 error (_("Unexpected type in ada_discrete_type_high_bound."));
817 }
818 }
819
820 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
821 LONGEST
822 ada_discrete_type_low_bound (struct type *type)
823 {
824 type = resolve_dynamic_type (type, NULL, 0);
825 switch (TYPE_CODE (type))
826 {
827 case TYPE_CODE_RANGE:
828 return TYPE_LOW_BOUND (type);
829 case TYPE_CODE_ENUM:
830 return TYPE_FIELD_ENUMVAL (type, 0);
831 case TYPE_CODE_BOOL:
832 return 0;
833 case TYPE_CODE_CHAR:
834 case TYPE_CODE_INT:
835 return min_of_type (type);
836 default:
837 error (_("Unexpected type in ada_discrete_type_low_bound."));
838 }
839 }
840
841 /* The identity on non-range types. For range types, the underlying
842 non-range scalar type. */
843
844 static struct type *
845 get_base_type (struct type *type)
846 {
847 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
848 {
849 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
850 return type;
851 type = TYPE_TARGET_TYPE (type);
852 }
853 return type;
854 }
855
856 /* Return a decoded version of the given VALUE. This means returning
857 a value whose type is obtained by applying all the GNAT-specific
858 encondings, making the resulting type a static but standard description
859 of the initial type. */
860
861 struct value *
862 ada_get_decoded_value (struct value *value)
863 {
864 struct type *type = ada_check_typedef (value_type (value));
865
866 if (ada_is_array_descriptor_type (type)
867 || (ada_is_constrained_packed_array_type (type)
868 && TYPE_CODE (type) != TYPE_CODE_PTR))
869 {
870 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
871 value = ada_coerce_to_simple_array_ptr (value);
872 else
873 value = ada_coerce_to_simple_array (value);
874 }
875 else
876 value = ada_to_fixed_value (value);
877
878 return value;
879 }
880
881 /* Same as ada_get_decoded_value, but with the given TYPE.
882 Because there is no associated actual value for this type,
883 the resulting type might be a best-effort approximation in
884 the case of dynamic types. */
885
886 struct type *
887 ada_get_decoded_type (struct type *type)
888 {
889 type = to_static_fixed_type (type);
890 if (ada_is_constrained_packed_array_type (type))
891 type = ada_coerce_to_simple_array_type (type);
892 return type;
893 }
894
895 \f
896
897 /* Language Selection */
898
899 /* If the main program is in Ada, return language_ada, otherwise return LANG
900 (the main program is in Ada iif the adainit symbol is found). */
901
902 enum language
903 ada_update_initial_language (enum language lang)
904 {
905 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
906 (struct objfile *) NULL).minsym != NULL)
907 return language_ada;
908
909 return lang;
910 }
911
912 /* If the main procedure is written in Ada, then return its name.
913 The result is good until the next call. Return NULL if the main
914 procedure doesn't appear to be in Ada. */
915
916 char *
917 ada_main_name (void)
918 {
919 struct bound_minimal_symbol msym;
920 static gdb::unique_xmalloc_ptr<char> main_program_name;
921
922 /* For Ada, the name of the main procedure is stored in a specific
923 string constant, generated by the binder. Look for that symbol,
924 extract its address, and then read that string. If we didn't find
925 that string, then most probably the main procedure is not written
926 in Ada. */
927 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
928
929 if (msym.minsym != NULL)
930 {
931 CORE_ADDR main_program_name_addr;
932 int err_code;
933
934 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
935 if (main_program_name_addr == 0)
936 error (_("Invalid address for Ada main program name."));
937
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name.get ();
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
984
985 static char *
986 ada_encode_1 (const char *decoded, bool throw_errors)
987 {
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
990 const char *p;
991 int k;
992
993 if (decoded == NULL)
994 return NULL;
995
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
998
999 k = 0;
1000 for (p = decoded; *p != '\0'; p += 1)
1001 {
1002 if (*p == '.')
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
1007 else if (*p == '"')
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1012 mapping->encoded != NULL
1013 && !startswith (p, mapping->decoded); mapping += 1)
1014 ;
1015 if (mapping->encoded == NULL)
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
1026 else
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
1031 }
1032
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
1035 }
1036
1037 /* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040 char *
1041 ada_encode (const char *decoded)
1042 {
1043 return ada_encode_1 (decoded, true);
1044 }
1045
1046 /* Return NAME folded to lower case, or, if surrounded by single
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
1050 char *
1051 ada_fold_name (const char *name)
1052 {
1053 static char *fold_buffer = NULL;
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1058
1059 if (name[0] == '\'')
1060 {
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
1063 }
1064 else
1065 {
1066 int i;
1067
1068 for (i = 0; i <= len; i += 1)
1069 fold_buffer[i] = tolower (name[i]);
1070 }
1071
1072 return fold_buffer;
1073 }
1074
1075 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077 static int
1078 is_lower_alphanum (const char c)
1079 {
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081 }
1082
1083 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
1090
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095 static void
1096 ada_remove_trailing_digits (const char *encoded, int *len)
1097 {
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
1101
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1109 *len = i - 2;
1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1111 *len = i - 1;
1112 }
1113 }
1114
1115 /* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118 static void
1119 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120 {
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
1126 the 'P' suffix. The second calls the first one after handling
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135 }
1136
1137 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139 static void
1140 ada_remove_Xbn_suffix (const char *encoded, int *len)
1141 {
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155 }
1156
1157 /* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
1160
1161 The resulting string is valid until the next call of ada_decode.
1162 If the string is unchanged by decoding, the original string pointer
1163 is returned. */
1164
1165 const char *
1166 ada_decode (const char *encoded)
1167 {
1168 int i, j;
1169 int len0;
1170 const char *p;
1171 char *decoded;
1172 int at_start_name;
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
1175
1176 /* With function descriptors on PPC64, the value of a symbol named
1177 ".FN", if it exists, is the entry point of the function "FN". */
1178 if (encoded[0] == '.')
1179 encoded += 1;
1180
1181 /* The name of the Ada main procedure starts with "_ada_".
1182 This prefix is not part of the decoded name, so skip this part
1183 if we see this prefix. */
1184 if (startswith (encoded, "_ada_"))
1185 encoded += 5;
1186
1187 /* If the name starts with '_', then it is not a properly encoded
1188 name, so do not attempt to decode it. Similarly, if the name
1189 starts with '<', the name should not be decoded. */
1190 if (encoded[0] == '_' || encoded[0] == '<')
1191 goto Suppress;
1192
1193 len0 = strlen (encoded);
1194
1195 ada_remove_trailing_digits (encoded, &len0);
1196 ada_remove_po_subprogram_suffix (encoded, &len0);
1197
1198 /* Remove the ___X.* suffix if present. Do not forget to verify that
1199 the suffix is located before the current "end" of ENCODED. We want
1200 to avoid re-matching parts of ENCODED that have previously been
1201 marked as discarded (by decrementing LEN0). */
1202 p = strstr (encoded, "___");
1203 if (p != NULL && p - encoded < len0 - 3)
1204 {
1205 if (p[3] == 'X')
1206 len0 = p - encoded;
1207 else
1208 goto Suppress;
1209 }
1210
1211 /* Remove any trailing TKB suffix. It tells us that this symbol
1212 is for the body of a task, but that information does not actually
1213 appear in the decoded name. */
1214
1215 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1216 len0 -= 3;
1217
1218 /* Remove any trailing TB suffix. The TB suffix is slightly different
1219 from the TKB suffix because it is used for non-anonymous task
1220 bodies. */
1221
1222 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1223 len0 -= 2;
1224
1225 /* Remove trailing "B" suffixes. */
1226 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1227
1228 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1229 len0 -= 1;
1230
1231 /* Make decoded big enough for possible expansion by operator name. */
1232
1233 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1234 decoded = decoding_buffer;
1235
1236 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1237
1238 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1239 {
1240 i = len0 - 2;
1241 while ((i >= 0 && isdigit (encoded[i]))
1242 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1243 i -= 1;
1244 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1245 len0 = i - 1;
1246 else if (encoded[i] == '$')
1247 len0 = i;
1248 }
1249
1250 /* The first few characters that are not alphabetic are not part
1251 of any encoding we use, so we can copy them over verbatim. */
1252
1253 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1254 decoded[j] = encoded[i];
1255
1256 at_start_name = 1;
1257 while (i < len0)
1258 {
1259 /* Is this a symbol function? */
1260 if (at_start_name && encoded[i] == 'O')
1261 {
1262 int k;
1263
1264 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1265 {
1266 int op_len = strlen (ada_opname_table[k].encoded);
1267 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1268 op_len - 1) == 0)
1269 && !isalnum (encoded[i + op_len]))
1270 {
1271 strcpy (decoded + j, ada_opname_table[k].decoded);
1272 at_start_name = 0;
1273 i += op_len;
1274 j += strlen (ada_opname_table[k].decoded);
1275 break;
1276 }
1277 }
1278 if (ada_opname_table[k].encoded != NULL)
1279 continue;
1280 }
1281 at_start_name = 0;
1282
1283 /* Replace "TK__" with "__", which will eventually be translated
1284 into "." (just below). */
1285
1286 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1287 i += 2;
1288
1289 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1290 be translated into "." (just below). These are internal names
1291 generated for anonymous blocks inside which our symbol is nested. */
1292
1293 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1294 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1295 && isdigit (encoded [i+4]))
1296 {
1297 int k = i + 5;
1298
1299 while (k < len0 && isdigit (encoded[k]))
1300 k++; /* Skip any extra digit. */
1301
1302 /* Double-check that the "__B_{DIGITS}+" sequence we found
1303 is indeed followed by "__". */
1304 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1305 i = k;
1306 }
1307
1308 /* Remove _E{DIGITS}+[sb] */
1309
1310 /* Just as for protected object subprograms, there are 2 categories
1311 of subprograms created by the compiler for each entry. The first
1312 one implements the actual entry code, and has a suffix following
1313 the convention above; the second one implements the barrier and
1314 uses the same convention as above, except that the 'E' is replaced
1315 by a 'B'.
1316
1317 Just as above, we do not decode the name of barrier functions
1318 to give the user a clue that the code he is debugging has been
1319 internally generated. */
1320
1321 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1322 && isdigit (encoded[i+2]))
1323 {
1324 int k = i + 3;
1325
1326 while (k < len0 && isdigit (encoded[k]))
1327 k++;
1328
1329 if (k < len0
1330 && (encoded[k] == 'b' || encoded[k] == 's'))
1331 {
1332 k++;
1333 /* Just as an extra precaution, make sure that if this
1334 suffix is followed by anything else, it is a '_'.
1335 Otherwise, we matched this sequence by accident. */
1336 if (k == len0
1337 || (k < len0 && encoded[k] == '_'))
1338 i = k;
1339 }
1340 }
1341
1342 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1343 the GNAT front-end in protected object subprograms. */
1344
1345 if (i < len0 + 3
1346 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1347 {
1348 /* Backtrack a bit up until we reach either the begining of
1349 the encoded name, or "__". Make sure that we only find
1350 digits or lowercase characters. */
1351 const char *ptr = encoded + i - 1;
1352
1353 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1354 ptr--;
1355 if (ptr < encoded
1356 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1357 i++;
1358 }
1359
1360 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1361 {
1362 /* This is a X[bn]* sequence not separated from the previous
1363 part of the name with a non-alpha-numeric character (in other
1364 words, immediately following an alpha-numeric character), then
1365 verify that it is placed at the end of the encoded name. If
1366 not, then the encoding is not valid and we should abort the
1367 decoding. Otherwise, just skip it, it is used in body-nested
1368 package names. */
1369 do
1370 i += 1;
1371 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1372 if (i < len0)
1373 goto Suppress;
1374 }
1375 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1376 {
1377 /* Replace '__' by '.'. */
1378 decoded[j] = '.';
1379 at_start_name = 1;
1380 i += 2;
1381 j += 1;
1382 }
1383 else
1384 {
1385 /* It's a character part of the decoded name, so just copy it
1386 over. */
1387 decoded[j] = encoded[i];
1388 i += 1;
1389 j += 1;
1390 }
1391 }
1392 decoded[j] = '\000';
1393
1394 /* Decoded names should never contain any uppercase character.
1395 Double-check this, and abort the decoding if we find one. */
1396
1397 for (i = 0; decoded[i] != '\0'; i += 1)
1398 if (isupper (decoded[i]) || decoded[i] == ' ')
1399 goto Suppress;
1400
1401 if (strcmp (decoded, encoded) == 0)
1402 return encoded;
1403 else
1404 return decoded;
1405
1406 Suppress:
1407 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1408 decoded = decoding_buffer;
1409 if (encoded[0] == '<')
1410 strcpy (decoded, encoded);
1411 else
1412 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1413 return decoded;
1414
1415 }
1416
1417 /* Table for keeping permanent unique copies of decoded names. Once
1418 allocated, names in this table are never released. While this is a
1419 storage leak, it should not be significant unless there are massive
1420 changes in the set of decoded names in successive versions of a
1421 symbol table loaded during a single session. */
1422 static struct htab *decoded_names_store;
1423
1424 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1425 in the language-specific part of GSYMBOL, if it has not been
1426 previously computed. Tries to save the decoded name in the same
1427 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1428 in any case, the decoded symbol has a lifetime at least that of
1429 GSYMBOL).
1430 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1431 const, but nevertheless modified to a semantically equivalent form
1432 when a decoded name is cached in it. */
1433
1434 const char *
1435 ada_decode_symbol (const struct general_symbol_info *arg)
1436 {
1437 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1438 const char **resultp =
1439 &gsymbol->language_specific.demangled_name;
1440
1441 if (!gsymbol->ada_mangled)
1442 {
1443 const char *decoded = ada_decode (gsymbol->name);
1444 struct obstack *obstack = gsymbol->language_specific.obstack;
1445
1446 gsymbol->ada_mangled = 1;
1447
1448 if (obstack != NULL)
1449 *resultp
1450 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1451 else
1452 {
1453 /* Sometimes, we can't find a corresponding objfile, in
1454 which case, we put the result on the heap. Since we only
1455 decode when needed, we hope this usually does not cause a
1456 significant memory leak (FIXME). */
1457
1458 char **slot = (char **) htab_find_slot (decoded_names_store,
1459 decoded, INSERT);
1460
1461 if (*slot == NULL)
1462 *slot = xstrdup (decoded);
1463 *resultp = *slot;
1464 }
1465 }
1466
1467 return *resultp;
1468 }
1469
1470 static char *
1471 ada_la_decode (const char *encoded, int options)
1472 {
1473 return xstrdup (ada_decode (encoded));
1474 }
1475
1476 /* Implement la_sniff_from_mangled_name for Ada. */
1477
1478 static int
1479 ada_sniff_from_mangled_name (const char *mangled, char **out)
1480 {
1481 const char *demangled = ada_decode (mangled);
1482
1483 *out = NULL;
1484
1485 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1486 {
1487 /* Set the gsymbol language to Ada, but still return 0.
1488 Two reasons for that:
1489
1490 1. For Ada, we prefer computing the symbol's decoded name
1491 on the fly rather than pre-compute it, in order to save
1492 memory (Ada projects are typically very large).
1493
1494 2. There are some areas in the definition of the GNAT
1495 encoding where, with a bit of bad luck, we might be able
1496 to decode a non-Ada symbol, generating an incorrect
1497 demangled name (Eg: names ending with "TB" for instance
1498 are identified as task bodies and so stripped from
1499 the decoded name returned).
1500
1501 Returning 1, here, but not setting *DEMANGLED, helps us get a
1502 little bit of the best of both worlds. Because we're last,
1503 we should not affect any of the other languages that were
1504 able to demangle the symbol before us; we get to correctly
1505 tag Ada symbols as such; and even if we incorrectly tagged a
1506 non-Ada symbol, which should be rare, any routing through the
1507 Ada language should be transparent (Ada tries to behave much
1508 like C/C++ with non-Ada symbols). */
1509 return 1;
1510 }
1511
1512 return 0;
1513 }
1514
1515 \f
1516
1517 /* Arrays */
1518
1519 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1520 generated by the GNAT compiler to describe the index type used
1521 for each dimension of an array, check whether it follows the latest
1522 known encoding. If not, fix it up to conform to the latest encoding.
1523 Otherwise, do nothing. This function also does nothing if
1524 INDEX_DESC_TYPE is NULL.
1525
1526 The GNAT encoding used to describle the array index type evolved a bit.
1527 Initially, the information would be provided through the name of each
1528 field of the structure type only, while the type of these fields was
1529 described as unspecified and irrelevant. The debugger was then expected
1530 to perform a global type lookup using the name of that field in order
1531 to get access to the full index type description. Because these global
1532 lookups can be very expensive, the encoding was later enhanced to make
1533 the global lookup unnecessary by defining the field type as being
1534 the full index type description.
1535
1536 The purpose of this routine is to allow us to support older versions
1537 of the compiler by detecting the use of the older encoding, and by
1538 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1539 we essentially replace each field's meaningless type by the associated
1540 index subtype). */
1541
1542 void
1543 ada_fixup_array_indexes_type (struct type *index_desc_type)
1544 {
1545 int i;
1546
1547 if (index_desc_type == NULL)
1548 return;
1549 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1550
1551 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1552 to check one field only, no need to check them all). If not, return
1553 now.
1554
1555 If our INDEX_DESC_TYPE was generated using the older encoding,
1556 the field type should be a meaningless integer type whose name
1557 is not equal to the field name. */
1558 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1559 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1560 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1561 return;
1562
1563 /* Fixup each field of INDEX_DESC_TYPE. */
1564 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1565 {
1566 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1567 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1568
1569 if (raw_type)
1570 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1571 }
1572 }
1573
1574 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1575
1576 static const char *bound_name[] = {
1577 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1578 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1579 };
1580
1581 /* Maximum number of array dimensions we are prepared to handle. */
1582
1583 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1584
1585
1586 /* The desc_* routines return primitive portions of array descriptors
1587 (fat pointers). */
1588
1589 /* The descriptor or array type, if any, indicated by TYPE; removes
1590 level of indirection, if needed. */
1591
1592 static struct type *
1593 desc_base_type (struct type *type)
1594 {
1595 if (type == NULL)
1596 return NULL;
1597 type = ada_check_typedef (type);
1598 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1599 type = ada_typedef_target_type (type);
1600
1601 if (type != NULL
1602 && (TYPE_CODE (type) == TYPE_CODE_PTR
1603 || TYPE_CODE (type) == TYPE_CODE_REF))
1604 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1605 else
1606 return type;
1607 }
1608
1609 /* True iff TYPE indicates a "thin" array pointer type. */
1610
1611 static int
1612 is_thin_pntr (struct type *type)
1613 {
1614 return
1615 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1616 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1617 }
1618
1619 /* The descriptor type for thin pointer type TYPE. */
1620
1621 static struct type *
1622 thin_descriptor_type (struct type *type)
1623 {
1624 struct type *base_type = desc_base_type (type);
1625
1626 if (base_type == NULL)
1627 return NULL;
1628 if (is_suffix (ada_type_name (base_type), "___XVE"))
1629 return base_type;
1630 else
1631 {
1632 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1633
1634 if (alt_type == NULL)
1635 return base_type;
1636 else
1637 return alt_type;
1638 }
1639 }
1640
1641 /* A pointer to the array data for thin-pointer value VAL. */
1642
1643 static struct value *
1644 thin_data_pntr (struct value *val)
1645 {
1646 struct type *type = ada_check_typedef (value_type (val));
1647 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1648
1649 data_type = lookup_pointer_type (data_type);
1650
1651 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1652 return value_cast (data_type, value_copy (val));
1653 else
1654 return value_from_longest (data_type, value_address (val));
1655 }
1656
1657 /* True iff TYPE indicates a "thick" array pointer type. */
1658
1659 static int
1660 is_thick_pntr (struct type *type)
1661 {
1662 type = desc_base_type (type);
1663 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1664 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1665 }
1666
1667 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1668 pointer to one, the type of its bounds data; otherwise, NULL. */
1669
1670 static struct type *
1671 desc_bounds_type (struct type *type)
1672 {
1673 struct type *r;
1674
1675 type = desc_base_type (type);
1676
1677 if (type == NULL)
1678 return NULL;
1679 else if (is_thin_pntr (type))
1680 {
1681 type = thin_descriptor_type (type);
1682 if (type == NULL)
1683 return NULL;
1684 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1685 if (r != NULL)
1686 return ada_check_typedef (r);
1687 }
1688 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1689 {
1690 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1691 if (r != NULL)
1692 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1693 }
1694 return NULL;
1695 }
1696
1697 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1698 one, a pointer to its bounds data. Otherwise NULL. */
1699
1700 static struct value *
1701 desc_bounds (struct value *arr)
1702 {
1703 struct type *type = ada_check_typedef (value_type (arr));
1704
1705 if (is_thin_pntr (type))
1706 {
1707 struct type *bounds_type =
1708 desc_bounds_type (thin_descriptor_type (type));
1709 LONGEST addr;
1710
1711 if (bounds_type == NULL)
1712 error (_("Bad GNAT array descriptor"));
1713
1714 /* NOTE: The following calculation is not really kosher, but
1715 since desc_type is an XVE-encoded type (and shouldn't be),
1716 the correct calculation is a real pain. FIXME (and fix GCC). */
1717 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1718 addr = value_as_long (arr);
1719 else
1720 addr = value_address (arr);
1721
1722 return
1723 value_from_longest (lookup_pointer_type (bounds_type),
1724 addr - TYPE_LENGTH (bounds_type));
1725 }
1726
1727 else if (is_thick_pntr (type))
1728 {
1729 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1730 _("Bad GNAT array descriptor"));
1731 struct type *p_bounds_type = value_type (p_bounds);
1732
1733 if (p_bounds_type
1734 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1735 {
1736 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1737
1738 if (TYPE_STUB (target_type))
1739 p_bounds = value_cast (lookup_pointer_type
1740 (ada_check_typedef (target_type)),
1741 p_bounds);
1742 }
1743 else
1744 error (_("Bad GNAT array descriptor"));
1745
1746 return p_bounds;
1747 }
1748 else
1749 return NULL;
1750 }
1751
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 position of the field containing the address of the bounds data. */
1754
1755 static int
1756 fat_pntr_bounds_bitpos (struct type *type)
1757 {
1758 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1759 }
1760
1761 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1762 size of the field containing the address of the bounds data. */
1763
1764 static int
1765 fat_pntr_bounds_bitsize (struct type *type)
1766 {
1767 type = desc_base_type (type);
1768
1769 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1770 return TYPE_FIELD_BITSIZE (type, 1);
1771 else
1772 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1773 }
1774
1775 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1776 pointer to one, the type of its array data (a array-with-no-bounds type);
1777 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1778 data. */
1779
1780 static struct type *
1781 desc_data_target_type (struct type *type)
1782 {
1783 type = desc_base_type (type);
1784
1785 /* NOTE: The following is bogus; see comment in desc_bounds. */
1786 if (is_thin_pntr (type))
1787 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1788 else if (is_thick_pntr (type))
1789 {
1790 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1791
1792 if (data_type
1793 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1794 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1795 }
1796
1797 return NULL;
1798 }
1799
1800 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1801 its array data. */
1802
1803 static struct value *
1804 desc_data (struct value *arr)
1805 {
1806 struct type *type = value_type (arr);
1807
1808 if (is_thin_pntr (type))
1809 return thin_data_pntr (arr);
1810 else if (is_thick_pntr (type))
1811 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1812 _("Bad GNAT array descriptor"));
1813 else
1814 return NULL;
1815 }
1816
1817
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 position of the field containing the address of the data. */
1820
1821 static int
1822 fat_pntr_data_bitpos (struct type *type)
1823 {
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1825 }
1826
1827 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1828 size of the field containing the address of the data. */
1829
1830 static int
1831 fat_pntr_data_bitsize (struct type *type)
1832 {
1833 type = desc_base_type (type);
1834
1835 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1836 return TYPE_FIELD_BITSIZE (type, 0);
1837 else
1838 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1839 }
1840
1841 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1842 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1843 bound, if WHICH is 1. The first bound is I=1. */
1844
1845 static struct value *
1846 desc_one_bound (struct value *bounds, int i, int which)
1847 {
1848 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1849 _("Bad GNAT array descriptor bounds"));
1850 }
1851
1852 /* If BOUNDS is an array-bounds structure type, return the bit position
1853 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1854 bound, if WHICH is 1. The first bound is I=1. */
1855
1856 static int
1857 desc_bound_bitpos (struct type *type, int i, int which)
1858 {
1859 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1860 }
1861
1862 /* If BOUNDS is an array-bounds structure type, return the bit field size
1863 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1864 bound, if WHICH is 1. The first bound is I=1. */
1865
1866 static int
1867 desc_bound_bitsize (struct type *type, int i, int which)
1868 {
1869 type = desc_base_type (type);
1870
1871 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1872 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1873 else
1874 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1875 }
1876
1877 /* If TYPE is the type of an array-bounds structure, the type of its
1878 Ith bound (numbering from 1). Otherwise, NULL. */
1879
1880 static struct type *
1881 desc_index_type (struct type *type, int i)
1882 {
1883 type = desc_base_type (type);
1884
1885 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1886 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1887 else
1888 return NULL;
1889 }
1890
1891 /* The number of index positions in the array-bounds type TYPE.
1892 Return 0 if TYPE is NULL. */
1893
1894 static int
1895 desc_arity (struct type *type)
1896 {
1897 type = desc_base_type (type);
1898
1899 if (type != NULL)
1900 return TYPE_NFIELDS (type) / 2;
1901 return 0;
1902 }
1903
1904 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1905 an array descriptor type (representing an unconstrained array
1906 type). */
1907
1908 static int
1909 ada_is_direct_array_type (struct type *type)
1910 {
1911 if (type == NULL)
1912 return 0;
1913 type = ada_check_typedef (type);
1914 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1915 || ada_is_array_descriptor_type (type));
1916 }
1917
1918 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1919 * to one. */
1920
1921 static int
1922 ada_is_array_type (struct type *type)
1923 {
1924 while (type != NULL
1925 && (TYPE_CODE (type) == TYPE_CODE_PTR
1926 || TYPE_CODE (type) == TYPE_CODE_REF))
1927 type = TYPE_TARGET_TYPE (type);
1928 return ada_is_direct_array_type (type);
1929 }
1930
1931 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1932
1933 int
1934 ada_is_simple_array_type (struct type *type)
1935 {
1936 if (type == NULL)
1937 return 0;
1938 type = ada_check_typedef (type);
1939 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1940 || (TYPE_CODE (type) == TYPE_CODE_PTR
1941 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1942 == TYPE_CODE_ARRAY));
1943 }
1944
1945 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1946
1947 int
1948 ada_is_array_descriptor_type (struct type *type)
1949 {
1950 struct type *data_type = desc_data_target_type (type);
1951
1952 if (type == NULL)
1953 return 0;
1954 type = ada_check_typedef (type);
1955 return (data_type != NULL
1956 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1957 && desc_arity (desc_bounds_type (type)) > 0);
1958 }
1959
1960 /* Non-zero iff type is a partially mal-formed GNAT array
1961 descriptor. FIXME: This is to compensate for some problems with
1962 debugging output from GNAT. Re-examine periodically to see if it
1963 is still needed. */
1964
1965 int
1966 ada_is_bogus_array_descriptor (struct type *type)
1967 {
1968 return
1969 type != NULL
1970 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1971 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1972 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1973 && !ada_is_array_descriptor_type (type);
1974 }
1975
1976
1977 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1978 (fat pointer) returns the type of the array data described---specifically,
1979 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1980 in from the descriptor; otherwise, they are left unspecified. If
1981 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1982 returns NULL. The result is simply the type of ARR if ARR is not
1983 a descriptor. */
1984 struct type *
1985 ada_type_of_array (struct value *arr, int bounds)
1986 {
1987 if (ada_is_constrained_packed_array_type (value_type (arr)))
1988 return decode_constrained_packed_array_type (value_type (arr));
1989
1990 if (!ada_is_array_descriptor_type (value_type (arr)))
1991 return value_type (arr);
1992
1993 if (!bounds)
1994 {
1995 struct type *array_type =
1996 ada_check_typedef (desc_data_target_type (value_type (arr)));
1997
1998 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1999 TYPE_FIELD_BITSIZE (array_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2001
2002 return array_type;
2003 }
2004 else
2005 {
2006 struct type *elt_type;
2007 int arity;
2008 struct value *descriptor;
2009
2010 elt_type = ada_array_element_type (value_type (arr), -1);
2011 arity = ada_array_arity (value_type (arr));
2012
2013 if (elt_type == NULL || arity == 0)
2014 return ada_check_typedef (value_type (arr));
2015
2016 descriptor = desc_bounds (arr);
2017 if (value_as_long (descriptor) == 0)
2018 return NULL;
2019 while (arity > 0)
2020 {
2021 struct type *range_type = alloc_type_copy (value_type (arr));
2022 struct type *array_type = alloc_type_copy (value_type (arr));
2023 struct value *low = desc_one_bound (descriptor, arity, 0);
2024 struct value *high = desc_one_bound (descriptor, arity, 1);
2025
2026 arity -= 1;
2027 create_static_range_type (range_type, value_type (low),
2028 longest_to_int (value_as_long (low)),
2029 longest_to_int (value_as_long (high)));
2030 elt_type = create_array_type (array_type, elt_type, range_type);
2031
2032 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2033 {
2034 /* We need to store the element packed bitsize, as well as
2035 recompute the array size, because it was previously
2036 computed based on the unpacked element size. */
2037 LONGEST lo = value_as_long (low);
2038 LONGEST hi = value_as_long (high);
2039
2040 TYPE_FIELD_BITSIZE (elt_type, 0) =
2041 decode_packed_array_bitsize (value_type (arr));
2042 /* If the array has no element, then the size is already
2043 zero, and does not need to be recomputed. */
2044 if (lo < hi)
2045 {
2046 int array_bitsize =
2047 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2048
2049 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2050 }
2051 }
2052 }
2053
2054 return lookup_pointer_type (elt_type);
2055 }
2056 }
2057
2058 /* If ARR does not represent an array, returns ARR unchanged.
2059 Otherwise, returns either a standard GDB array with bounds set
2060 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2061 GDB array. Returns NULL if ARR is a null fat pointer. */
2062
2063 struct value *
2064 ada_coerce_to_simple_array_ptr (struct value *arr)
2065 {
2066 if (ada_is_array_descriptor_type (value_type (arr)))
2067 {
2068 struct type *arrType = ada_type_of_array (arr, 1);
2069
2070 if (arrType == NULL)
2071 return NULL;
2072 return value_cast (arrType, value_copy (desc_data (arr)));
2073 }
2074 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2075 return decode_constrained_packed_array (arr);
2076 else
2077 return arr;
2078 }
2079
2080 /* If ARR does not represent an array, returns ARR unchanged.
2081 Otherwise, returns a standard GDB array describing ARR (which may
2082 be ARR itself if it already is in the proper form). */
2083
2084 struct value *
2085 ada_coerce_to_simple_array (struct value *arr)
2086 {
2087 if (ada_is_array_descriptor_type (value_type (arr)))
2088 {
2089 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2090
2091 if (arrVal == NULL)
2092 error (_("Bounds unavailable for null array pointer."));
2093 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2094 return value_ind (arrVal);
2095 }
2096 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2097 return decode_constrained_packed_array (arr);
2098 else
2099 return arr;
2100 }
2101
2102 /* If TYPE represents a GNAT array type, return it translated to an
2103 ordinary GDB array type (possibly with BITSIZE fields indicating
2104 packing). For other types, is the identity. */
2105
2106 struct type *
2107 ada_coerce_to_simple_array_type (struct type *type)
2108 {
2109 if (ada_is_constrained_packed_array_type (type))
2110 return decode_constrained_packed_array_type (type);
2111
2112 if (ada_is_array_descriptor_type (type))
2113 return ada_check_typedef (desc_data_target_type (type));
2114
2115 return type;
2116 }
2117
2118 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2119
2120 static int
2121 ada_is_packed_array_type (struct type *type)
2122 {
2123 if (type == NULL)
2124 return 0;
2125 type = desc_base_type (type);
2126 type = ada_check_typedef (type);
2127 return
2128 ada_type_name (type) != NULL
2129 && strstr (ada_type_name (type), "___XP") != NULL;
2130 }
2131
2132 /* Non-zero iff TYPE represents a standard GNAT constrained
2133 packed-array type. */
2134
2135 int
2136 ada_is_constrained_packed_array_type (struct type *type)
2137 {
2138 return ada_is_packed_array_type (type)
2139 && !ada_is_array_descriptor_type (type);
2140 }
2141
2142 /* Non-zero iff TYPE represents an array descriptor for a
2143 unconstrained packed-array type. */
2144
2145 static int
2146 ada_is_unconstrained_packed_array_type (struct type *type)
2147 {
2148 return ada_is_packed_array_type (type)
2149 && ada_is_array_descriptor_type (type);
2150 }
2151
2152 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2153 return the size of its elements in bits. */
2154
2155 static long
2156 decode_packed_array_bitsize (struct type *type)
2157 {
2158 const char *raw_name;
2159 const char *tail;
2160 long bits;
2161
2162 /* Access to arrays implemented as fat pointers are encoded as a typedef
2163 of the fat pointer type. We need the name of the fat pointer type
2164 to do the decoding, so strip the typedef layer. */
2165 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2166 type = ada_typedef_target_type (type);
2167
2168 raw_name = ada_type_name (ada_check_typedef (type));
2169 if (!raw_name)
2170 raw_name = ada_type_name (desc_base_type (type));
2171
2172 if (!raw_name)
2173 return 0;
2174
2175 tail = strstr (raw_name, "___XP");
2176 gdb_assert (tail != NULL);
2177
2178 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2179 {
2180 lim_warning
2181 (_("could not understand bit size information on packed array"));
2182 return 0;
2183 }
2184
2185 return bits;
2186 }
2187
2188 /* Given that TYPE is a standard GDB array type with all bounds filled
2189 in, and that the element size of its ultimate scalar constituents
2190 (that is, either its elements, or, if it is an array of arrays, its
2191 elements' elements, etc.) is *ELT_BITS, return an identical type,
2192 but with the bit sizes of its elements (and those of any
2193 constituent arrays) recorded in the BITSIZE components of its
2194 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2195 in bits.
2196
2197 Note that, for arrays whose index type has an XA encoding where
2198 a bound references a record discriminant, getting that discriminant,
2199 and therefore the actual value of that bound, is not possible
2200 because none of the given parameters gives us access to the record.
2201 This function assumes that it is OK in the context where it is being
2202 used to return an array whose bounds are still dynamic and where
2203 the length is arbitrary. */
2204
2205 static struct type *
2206 constrained_packed_array_type (struct type *type, long *elt_bits)
2207 {
2208 struct type *new_elt_type;
2209 struct type *new_type;
2210 struct type *index_type_desc;
2211 struct type *index_type;
2212 LONGEST low_bound, high_bound;
2213
2214 type = ada_check_typedef (type);
2215 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2216 return type;
2217
2218 index_type_desc = ada_find_parallel_type (type, "___XA");
2219 if (index_type_desc)
2220 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2221 NULL);
2222 else
2223 index_type = TYPE_INDEX_TYPE (type);
2224
2225 new_type = alloc_type_copy (type);
2226 new_elt_type =
2227 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2228 elt_bits);
2229 create_array_type (new_type, new_elt_type, index_type);
2230 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2231 TYPE_NAME (new_type) = ada_type_name (type);
2232
2233 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2234 && is_dynamic_type (check_typedef (index_type)))
2235 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2236 low_bound = high_bound = 0;
2237 if (high_bound < low_bound)
2238 *elt_bits = TYPE_LENGTH (new_type) = 0;
2239 else
2240 {
2241 *elt_bits *= (high_bound - low_bound + 1);
2242 TYPE_LENGTH (new_type) =
2243 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2244 }
2245
2246 TYPE_FIXED_INSTANCE (new_type) = 1;
2247 return new_type;
2248 }
2249
2250 /* The array type encoded by TYPE, where
2251 ada_is_constrained_packed_array_type (TYPE). */
2252
2253 static struct type *
2254 decode_constrained_packed_array_type (struct type *type)
2255 {
2256 const char *raw_name = ada_type_name (ada_check_typedef (type));
2257 char *name;
2258 const char *tail;
2259 struct type *shadow_type;
2260 long bits;
2261
2262 if (!raw_name)
2263 raw_name = ada_type_name (desc_base_type (type));
2264
2265 if (!raw_name)
2266 return NULL;
2267
2268 name = (char *) alloca (strlen (raw_name) + 1);
2269 tail = strstr (raw_name, "___XP");
2270 type = desc_base_type (type);
2271
2272 memcpy (name, raw_name, tail - raw_name);
2273 name[tail - raw_name] = '\000';
2274
2275 shadow_type = ada_find_parallel_type_with_name (type, name);
2276
2277 if (shadow_type == NULL)
2278 {
2279 lim_warning (_("could not find bounds information on packed array"));
2280 return NULL;
2281 }
2282 shadow_type = check_typedef (shadow_type);
2283
2284 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2285 {
2286 lim_warning (_("could not understand bounds "
2287 "information on packed array"));
2288 return NULL;
2289 }
2290
2291 bits = decode_packed_array_bitsize (type);
2292 return constrained_packed_array_type (shadow_type, &bits);
2293 }
2294
2295 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2296 array, returns a simple array that denotes that array. Its type is a
2297 standard GDB array type except that the BITSIZEs of the array
2298 target types are set to the number of bits in each element, and the
2299 type length is set appropriately. */
2300
2301 static struct value *
2302 decode_constrained_packed_array (struct value *arr)
2303 {
2304 struct type *type;
2305
2306 /* If our value is a pointer, then dereference it. Likewise if
2307 the value is a reference. Make sure that this operation does not
2308 cause the target type to be fixed, as this would indirectly cause
2309 this array to be decoded. The rest of the routine assumes that
2310 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2311 and "value_ind" routines to perform the dereferencing, as opposed
2312 to using "ada_coerce_ref" or "ada_value_ind". */
2313 arr = coerce_ref (arr);
2314 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2315 arr = value_ind (arr);
2316
2317 type = decode_constrained_packed_array_type (value_type (arr));
2318 if (type == NULL)
2319 {
2320 error (_("can't unpack array"));
2321 return NULL;
2322 }
2323
2324 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2325 && ada_is_modular_type (value_type (arr)))
2326 {
2327 /* This is a (right-justified) modular type representing a packed
2328 array with no wrapper. In order to interpret the value through
2329 the (left-justified) packed array type we just built, we must
2330 first left-justify it. */
2331 int bit_size, bit_pos;
2332 ULONGEST mod;
2333
2334 mod = ada_modulus (value_type (arr)) - 1;
2335 bit_size = 0;
2336 while (mod > 0)
2337 {
2338 bit_size += 1;
2339 mod >>= 1;
2340 }
2341 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2342 arr = ada_value_primitive_packed_val (arr, NULL,
2343 bit_pos / HOST_CHAR_BIT,
2344 bit_pos % HOST_CHAR_BIT,
2345 bit_size,
2346 type);
2347 }
2348
2349 return coerce_unspec_val_to_type (arr, type);
2350 }
2351
2352
2353 /* The value of the element of packed array ARR at the ARITY indices
2354 given in IND. ARR must be a simple array. */
2355
2356 static struct value *
2357 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2358 {
2359 int i;
2360 int bits, elt_off, bit_off;
2361 long elt_total_bit_offset;
2362 struct type *elt_type;
2363 struct value *v;
2364
2365 bits = 0;
2366 elt_total_bit_offset = 0;
2367 elt_type = ada_check_typedef (value_type (arr));
2368 for (i = 0; i < arity; i += 1)
2369 {
2370 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2371 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2372 error
2373 (_("attempt to do packed indexing of "
2374 "something other than a packed array"));
2375 else
2376 {
2377 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2378 LONGEST lowerbound, upperbound;
2379 LONGEST idx;
2380
2381 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2382 {
2383 lim_warning (_("don't know bounds of array"));
2384 lowerbound = upperbound = 0;
2385 }
2386
2387 idx = pos_atr (ind[i]);
2388 if (idx < lowerbound || idx > upperbound)
2389 lim_warning (_("packed array index %ld out of bounds"),
2390 (long) idx);
2391 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2392 elt_total_bit_offset += (idx - lowerbound) * bits;
2393 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2394 }
2395 }
2396 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2397 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2398
2399 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2400 bits, elt_type);
2401 return v;
2402 }
2403
2404 /* Non-zero iff TYPE includes negative integer values. */
2405
2406 static int
2407 has_negatives (struct type *type)
2408 {
2409 switch (TYPE_CODE (type))
2410 {
2411 default:
2412 return 0;
2413 case TYPE_CODE_INT:
2414 return !TYPE_UNSIGNED (type);
2415 case TYPE_CODE_RANGE:
2416 return TYPE_LOW_BOUND (type) < 0;
2417 }
2418 }
2419
2420 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2421 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2422 the unpacked buffer.
2423
2424 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2425 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2426
2427 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2428 zero otherwise.
2429
2430 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2431
2432 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2433
2434 static void
2435 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2436 gdb_byte *unpacked, int unpacked_len,
2437 int is_big_endian, int is_signed_type,
2438 int is_scalar)
2439 {
2440 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2441 int src_idx; /* Index into the source area */
2442 int src_bytes_left; /* Number of source bytes left to process. */
2443 int srcBitsLeft; /* Number of source bits left to move */
2444 int unusedLS; /* Number of bits in next significant
2445 byte of source that are unused */
2446
2447 int unpacked_idx; /* Index into the unpacked buffer */
2448 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2449
2450 unsigned long accum; /* Staging area for bits being transferred */
2451 int accumSize; /* Number of meaningful bits in accum */
2452 unsigned char sign;
2453
2454 /* Transmit bytes from least to most significant; delta is the direction
2455 the indices move. */
2456 int delta = is_big_endian ? -1 : 1;
2457
2458 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2459 bits from SRC. .*/
2460 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2461 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2462 bit_size, unpacked_len);
2463
2464 srcBitsLeft = bit_size;
2465 src_bytes_left = src_len;
2466 unpacked_bytes_left = unpacked_len;
2467 sign = 0;
2468
2469 if (is_big_endian)
2470 {
2471 src_idx = src_len - 1;
2472 if (is_signed_type
2473 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2474 sign = ~0;
2475
2476 unusedLS =
2477 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2478 % HOST_CHAR_BIT;
2479
2480 if (is_scalar)
2481 {
2482 accumSize = 0;
2483 unpacked_idx = unpacked_len - 1;
2484 }
2485 else
2486 {
2487 /* Non-scalar values must be aligned at a byte boundary... */
2488 accumSize =
2489 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2490 /* ... And are placed at the beginning (most-significant) bytes
2491 of the target. */
2492 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2493 unpacked_bytes_left = unpacked_idx + 1;
2494 }
2495 }
2496 else
2497 {
2498 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2499
2500 src_idx = unpacked_idx = 0;
2501 unusedLS = bit_offset;
2502 accumSize = 0;
2503
2504 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2505 sign = ~0;
2506 }
2507
2508 accum = 0;
2509 while (src_bytes_left > 0)
2510 {
2511 /* Mask for removing bits of the next source byte that are not
2512 part of the value. */
2513 unsigned int unusedMSMask =
2514 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2515 1;
2516 /* Sign-extend bits for this byte. */
2517 unsigned int signMask = sign & ~unusedMSMask;
2518
2519 accum |=
2520 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2521 accumSize += HOST_CHAR_BIT - unusedLS;
2522 if (accumSize >= HOST_CHAR_BIT)
2523 {
2524 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2525 accumSize -= HOST_CHAR_BIT;
2526 accum >>= HOST_CHAR_BIT;
2527 unpacked_bytes_left -= 1;
2528 unpacked_idx += delta;
2529 }
2530 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2531 unusedLS = 0;
2532 src_bytes_left -= 1;
2533 src_idx += delta;
2534 }
2535 while (unpacked_bytes_left > 0)
2536 {
2537 accum |= sign << accumSize;
2538 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2539 accumSize -= HOST_CHAR_BIT;
2540 if (accumSize < 0)
2541 accumSize = 0;
2542 accum >>= HOST_CHAR_BIT;
2543 unpacked_bytes_left -= 1;
2544 unpacked_idx += delta;
2545 }
2546 }
2547
2548 /* Create a new value of type TYPE from the contents of OBJ starting
2549 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2550 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2551 assigning through the result will set the field fetched from.
2552 VALADDR is ignored unless OBJ is NULL, in which case,
2553 VALADDR+OFFSET must address the start of storage containing the
2554 packed value. The value returned in this case is never an lval.
2555 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2556
2557 struct value *
2558 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2559 long offset, int bit_offset, int bit_size,
2560 struct type *type)
2561 {
2562 struct value *v;
2563 const gdb_byte *src; /* First byte containing data to unpack */
2564 gdb_byte *unpacked;
2565 const int is_scalar = is_scalar_type (type);
2566 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2567 gdb::byte_vector staging;
2568
2569 type = ada_check_typedef (type);
2570
2571 if (obj == NULL)
2572 src = valaddr + offset;
2573 else
2574 src = value_contents (obj) + offset;
2575
2576 if (is_dynamic_type (type))
2577 {
2578 /* The length of TYPE might by dynamic, so we need to resolve
2579 TYPE in order to know its actual size, which we then use
2580 to create the contents buffer of the value we return.
2581 The difficulty is that the data containing our object is
2582 packed, and therefore maybe not at a byte boundary. So, what
2583 we do, is unpack the data into a byte-aligned buffer, and then
2584 use that buffer as our object's value for resolving the type. */
2585 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2586 staging.resize (staging_len);
2587
2588 ada_unpack_from_contents (src, bit_offset, bit_size,
2589 staging.data (), staging.size (),
2590 is_big_endian, has_negatives (type),
2591 is_scalar);
2592 type = resolve_dynamic_type (type, staging.data (), 0);
2593 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2594 {
2595 /* This happens when the length of the object is dynamic,
2596 and is actually smaller than the space reserved for it.
2597 For instance, in an array of variant records, the bit_size
2598 we're given is the array stride, which is constant and
2599 normally equal to the maximum size of its element.
2600 But, in reality, each element only actually spans a portion
2601 of that stride. */
2602 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2603 }
2604 }
2605
2606 if (obj == NULL)
2607 {
2608 v = allocate_value (type);
2609 src = valaddr + offset;
2610 }
2611 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2612 {
2613 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2614 gdb_byte *buf;
2615
2616 v = value_at (type, value_address (obj) + offset);
2617 buf = (gdb_byte *) alloca (src_len);
2618 read_memory (value_address (v), buf, src_len);
2619 src = buf;
2620 }
2621 else
2622 {
2623 v = allocate_value (type);
2624 src = value_contents (obj) + offset;
2625 }
2626
2627 if (obj != NULL)
2628 {
2629 long new_offset = offset;
2630
2631 set_value_component_location (v, obj);
2632 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2633 set_value_bitsize (v, bit_size);
2634 if (value_bitpos (v) >= HOST_CHAR_BIT)
2635 {
2636 ++new_offset;
2637 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2638 }
2639 set_value_offset (v, new_offset);
2640
2641 /* Also set the parent value. This is needed when trying to
2642 assign a new value (in inferior memory). */
2643 set_value_parent (v, obj);
2644 }
2645 else
2646 set_value_bitsize (v, bit_size);
2647 unpacked = value_contents_writeable (v);
2648
2649 if (bit_size == 0)
2650 {
2651 memset (unpacked, 0, TYPE_LENGTH (type));
2652 return v;
2653 }
2654
2655 if (staging.size () == TYPE_LENGTH (type))
2656 {
2657 /* Small short-cut: If we've unpacked the data into a buffer
2658 of the same size as TYPE's length, then we can reuse that,
2659 instead of doing the unpacking again. */
2660 memcpy (unpacked, staging.data (), staging.size ());
2661 }
2662 else
2663 ada_unpack_from_contents (src, bit_offset, bit_size,
2664 unpacked, TYPE_LENGTH (type),
2665 is_big_endian, has_negatives (type), is_scalar);
2666
2667 return v;
2668 }
2669
2670 /* Store the contents of FROMVAL into the location of TOVAL.
2671 Return a new value with the location of TOVAL and contents of
2672 FROMVAL. Handles assignment into packed fields that have
2673 floating-point or non-scalar types. */
2674
2675 static struct value *
2676 ada_value_assign (struct value *toval, struct value *fromval)
2677 {
2678 struct type *type = value_type (toval);
2679 int bits = value_bitsize (toval);
2680
2681 toval = ada_coerce_ref (toval);
2682 fromval = ada_coerce_ref (fromval);
2683
2684 if (ada_is_direct_array_type (value_type (toval)))
2685 toval = ada_coerce_to_simple_array (toval);
2686 if (ada_is_direct_array_type (value_type (fromval)))
2687 fromval = ada_coerce_to_simple_array (fromval);
2688
2689 if (!deprecated_value_modifiable (toval))
2690 error (_("Left operand of assignment is not a modifiable lvalue."));
2691
2692 if (VALUE_LVAL (toval) == lval_memory
2693 && bits > 0
2694 && (TYPE_CODE (type) == TYPE_CODE_FLT
2695 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2696 {
2697 int len = (value_bitpos (toval)
2698 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2699 int from_size;
2700 gdb_byte *buffer = (gdb_byte *) alloca (len);
2701 struct value *val;
2702 CORE_ADDR to_addr = value_address (toval);
2703
2704 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2705 fromval = value_cast (type, fromval);
2706
2707 read_memory (to_addr, buffer, len);
2708 from_size = value_bitsize (fromval);
2709 if (from_size == 0)
2710 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2711 if (gdbarch_bits_big_endian (get_type_arch (type)))
2712 copy_bitwise (buffer, value_bitpos (toval),
2713 value_contents (fromval), from_size - bits, bits, 1);
2714 else
2715 copy_bitwise (buffer, value_bitpos (toval),
2716 value_contents (fromval), 0, bits, 0);
2717 write_memory_with_notification (to_addr, buffer, len);
2718
2719 val = value_copy (toval);
2720 memcpy (value_contents_raw (val), value_contents (fromval),
2721 TYPE_LENGTH (type));
2722 deprecated_set_value_type (val, type);
2723
2724 return val;
2725 }
2726
2727 return value_assign (toval, fromval);
2728 }
2729
2730
2731 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2732 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2733 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2734 COMPONENT, and not the inferior's memory. The current contents
2735 of COMPONENT are ignored.
2736
2737 Although not part of the initial design, this function also works
2738 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2739 had a null address, and COMPONENT had an address which is equal to
2740 its offset inside CONTAINER. */
2741
2742 static void
2743 value_assign_to_component (struct value *container, struct value *component,
2744 struct value *val)
2745 {
2746 LONGEST offset_in_container =
2747 (LONGEST) (value_address (component) - value_address (container));
2748 int bit_offset_in_container =
2749 value_bitpos (component) - value_bitpos (container);
2750 int bits;
2751
2752 val = value_cast (value_type (component), val);
2753
2754 if (value_bitsize (component) == 0)
2755 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2756 else
2757 bits = value_bitsize (component);
2758
2759 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2760 {
2761 int src_offset;
2762
2763 if (is_scalar_type (check_typedef (value_type (component))))
2764 src_offset
2765 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2766 else
2767 src_offset = 0;
2768 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2769 value_bitpos (container) + bit_offset_in_container,
2770 value_contents (val), src_offset, bits, 1);
2771 }
2772 else
2773 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2774 value_bitpos (container) + bit_offset_in_container,
2775 value_contents (val), 0, bits, 0);
2776 }
2777
2778 /* Determine if TYPE is an access to an unconstrained array. */
2779
2780 bool
2781 ada_is_access_to_unconstrained_array (struct type *type)
2782 {
2783 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2784 && is_thick_pntr (ada_typedef_target_type (type)));
2785 }
2786
2787 /* The value of the element of array ARR at the ARITY indices given in IND.
2788 ARR may be either a simple array, GNAT array descriptor, or pointer
2789 thereto. */
2790
2791 struct value *
2792 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2793 {
2794 int k;
2795 struct value *elt;
2796 struct type *elt_type;
2797
2798 elt = ada_coerce_to_simple_array (arr);
2799
2800 elt_type = ada_check_typedef (value_type (elt));
2801 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2802 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2803 return value_subscript_packed (elt, arity, ind);
2804
2805 for (k = 0; k < arity; k += 1)
2806 {
2807 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2808
2809 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2810 error (_("too many subscripts (%d expected)"), k);
2811
2812 elt = value_subscript (elt, pos_atr (ind[k]));
2813
2814 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2815 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2816 {
2817 /* The element is a typedef to an unconstrained array,
2818 except that the value_subscript call stripped the
2819 typedef layer. The typedef layer is GNAT's way to
2820 specify that the element is, at the source level, an
2821 access to the unconstrained array, rather than the
2822 unconstrained array. So, we need to restore that
2823 typedef layer, which we can do by forcing the element's
2824 type back to its original type. Otherwise, the returned
2825 value is going to be printed as the array, rather
2826 than as an access. Another symptom of the same issue
2827 would be that an expression trying to dereference the
2828 element would also be improperly rejected. */
2829 deprecated_set_value_type (elt, saved_elt_type);
2830 }
2831
2832 elt_type = ada_check_typedef (value_type (elt));
2833 }
2834
2835 return elt;
2836 }
2837
2838 /* Assuming ARR is a pointer to a GDB array, the value of the element
2839 of *ARR at the ARITY indices given in IND.
2840 Does not read the entire array into memory.
2841
2842 Note: Unlike what one would expect, this function is used instead of
2843 ada_value_subscript for basically all non-packed array types. The reason
2844 for this is that a side effect of doing our own pointer arithmetics instead
2845 of relying on value_subscript is that there is no implicit typedef peeling.
2846 This is important for arrays of array accesses, where it allows us to
2847 preserve the fact that the array's element is an array access, where the
2848 access part os encoded in a typedef layer. */
2849
2850 static struct value *
2851 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2852 {
2853 int k;
2854 struct value *array_ind = ada_value_ind (arr);
2855 struct type *type
2856 = check_typedef (value_enclosing_type (array_ind));
2857
2858 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2859 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2860 return value_subscript_packed (array_ind, arity, ind);
2861
2862 for (k = 0; k < arity; k += 1)
2863 {
2864 LONGEST lwb, upb;
2865 struct value *lwb_value;
2866
2867 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2868 error (_("too many subscripts (%d expected)"), k);
2869 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2870 value_copy (arr));
2871 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2872 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2873 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2874 type = TYPE_TARGET_TYPE (type);
2875 }
2876
2877 return value_ind (arr);
2878 }
2879
2880 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2881 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2882 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2883 this array is LOW, as per Ada rules. */
2884 static struct value *
2885 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2886 int low, int high)
2887 {
2888 struct type *type0 = ada_check_typedef (type);
2889 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2890 struct type *index_type
2891 = create_static_range_type (NULL, base_index_type, low, high);
2892 struct type *slice_type = create_array_type_with_stride
2893 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2894 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2895 TYPE_FIELD_BITSIZE (type0, 0));
2896 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2897 LONGEST base_low_pos, low_pos;
2898 CORE_ADDR base;
2899
2900 if (!discrete_position (base_index_type, low, &low_pos)
2901 || !discrete_position (base_index_type, base_low, &base_low_pos))
2902 {
2903 warning (_("unable to get positions in slice, use bounds instead"));
2904 low_pos = low;
2905 base_low_pos = base_low;
2906 }
2907
2908 base = value_as_address (array_ptr)
2909 + ((low_pos - base_low_pos)
2910 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2911 return value_at_lazy (slice_type, base);
2912 }
2913
2914
2915 static struct value *
2916 ada_value_slice (struct value *array, int low, int high)
2917 {
2918 struct type *type = ada_check_typedef (value_type (array));
2919 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2920 struct type *index_type
2921 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2922 struct type *slice_type = create_array_type_with_stride
2923 (NULL, TYPE_TARGET_TYPE (type), index_type,
2924 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2925 TYPE_FIELD_BITSIZE (type, 0));
2926 LONGEST low_pos, high_pos;
2927
2928 if (!discrete_position (base_index_type, low, &low_pos)
2929 || !discrete_position (base_index_type, high, &high_pos))
2930 {
2931 warning (_("unable to get positions in slice, use bounds instead"));
2932 low_pos = low;
2933 high_pos = high;
2934 }
2935
2936 return value_cast (slice_type,
2937 value_slice (array, low, high_pos - low_pos + 1));
2938 }
2939
2940 /* If type is a record type in the form of a standard GNAT array
2941 descriptor, returns the number of dimensions for type. If arr is a
2942 simple array, returns the number of "array of"s that prefix its
2943 type designation. Otherwise, returns 0. */
2944
2945 int
2946 ada_array_arity (struct type *type)
2947 {
2948 int arity;
2949
2950 if (type == NULL)
2951 return 0;
2952
2953 type = desc_base_type (type);
2954
2955 arity = 0;
2956 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2957 return desc_arity (desc_bounds_type (type));
2958 else
2959 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2960 {
2961 arity += 1;
2962 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2963 }
2964
2965 return arity;
2966 }
2967
2968 /* If TYPE is a record type in the form of a standard GNAT array
2969 descriptor or a simple array type, returns the element type for
2970 TYPE after indexing by NINDICES indices, or by all indices if
2971 NINDICES is -1. Otherwise, returns NULL. */
2972
2973 struct type *
2974 ada_array_element_type (struct type *type, int nindices)
2975 {
2976 type = desc_base_type (type);
2977
2978 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2979 {
2980 int k;
2981 struct type *p_array_type;
2982
2983 p_array_type = desc_data_target_type (type);
2984
2985 k = ada_array_arity (type);
2986 if (k == 0)
2987 return NULL;
2988
2989 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2990 if (nindices >= 0 && k > nindices)
2991 k = nindices;
2992 while (k > 0 && p_array_type != NULL)
2993 {
2994 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2995 k -= 1;
2996 }
2997 return p_array_type;
2998 }
2999 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3000 {
3001 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3002 {
3003 type = TYPE_TARGET_TYPE (type);
3004 nindices -= 1;
3005 }
3006 return type;
3007 }
3008
3009 return NULL;
3010 }
3011
3012 /* The type of nth index in arrays of given type (n numbering from 1).
3013 Does not examine memory. Throws an error if N is invalid or TYPE
3014 is not an array type. NAME is the name of the Ada attribute being
3015 evaluated ('range, 'first, 'last, or 'length); it is used in building
3016 the error message. */
3017
3018 static struct type *
3019 ada_index_type (struct type *type, int n, const char *name)
3020 {
3021 struct type *result_type;
3022
3023 type = desc_base_type (type);
3024
3025 if (n < 0 || n > ada_array_arity (type))
3026 error (_("invalid dimension number to '%s"), name);
3027
3028 if (ada_is_simple_array_type (type))
3029 {
3030 int i;
3031
3032 for (i = 1; i < n; i += 1)
3033 type = TYPE_TARGET_TYPE (type);
3034 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3035 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3036 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3037 perhaps stabsread.c would make more sense. */
3038 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3039 result_type = NULL;
3040 }
3041 else
3042 {
3043 result_type = desc_index_type (desc_bounds_type (type), n);
3044 if (result_type == NULL)
3045 error (_("attempt to take bound of something that is not an array"));
3046 }
3047
3048 return result_type;
3049 }
3050
3051 /* Given that arr is an array type, returns the lower bound of the
3052 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3053 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3054 array-descriptor type. It works for other arrays with bounds supplied
3055 by run-time quantities other than discriminants. */
3056
3057 static LONGEST
3058 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3059 {
3060 struct type *type, *index_type_desc, *index_type;
3061 int i;
3062
3063 gdb_assert (which == 0 || which == 1);
3064
3065 if (ada_is_constrained_packed_array_type (arr_type))
3066 arr_type = decode_constrained_packed_array_type (arr_type);
3067
3068 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3069 return (LONGEST) - which;
3070
3071 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3072 type = TYPE_TARGET_TYPE (arr_type);
3073 else
3074 type = arr_type;
3075
3076 if (TYPE_FIXED_INSTANCE (type))
3077 {
3078 /* The array has already been fixed, so we do not need to
3079 check the parallel ___XA type again. That encoding has
3080 already been applied, so ignore it now. */
3081 index_type_desc = NULL;
3082 }
3083 else
3084 {
3085 index_type_desc = ada_find_parallel_type (type, "___XA");
3086 ada_fixup_array_indexes_type (index_type_desc);
3087 }
3088
3089 if (index_type_desc != NULL)
3090 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3091 NULL);
3092 else
3093 {
3094 struct type *elt_type = check_typedef (type);
3095
3096 for (i = 1; i < n; i++)
3097 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3098
3099 index_type = TYPE_INDEX_TYPE (elt_type);
3100 }
3101
3102 return
3103 (LONGEST) (which == 0
3104 ? ada_discrete_type_low_bound (index_type)
3105 : ada_discrete_type_high_bound (index_type));
3106 }
3107
3108 /* Given that arr is an array value, returns the lower bound of the
3109 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3110 WHICH is 1. This routine will also work for arrays with bounds
3111 supplied by run-time quantities other than discriminants. */
3112
3113 static LONGEST
3114 ada_array_bound (struct value *arr, int n, int which)
3115 {
3116 struct type *arr_type;
3117
3118 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3119 arr = value_ind (arr);
3120 arr_type = value_enclosing_type (arr);
3121
3122 if (ada_is_constrained_packed_array_type (arr_type))
3123 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3124 else if (ada_is_simple_array_type (arr_type))
3125 return ada_array_bound_from_type (arr_type, n, which);
3126 else
3127 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3128 }
3129
3130 /* Given that arr is an array value, returns the length of the
3131 nth index. This routine will also work for arrays with bounds
3132 supplied by run-time quantities other than discriminants.
3133 Does not work for arrays indexed by enumeration types with representation
3134 clauses at the moment. */
3135
3136 static LONGEST
3137 ada_array_length (struct value *arr, int n)
3138 {
3139 struct type *arr_type, *index_type;
3140 int low, high;
3141
3142 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3143 arr = value_ind (arr);
3144 arr_type = value_enclosing_type (arr);
3145
3146 if (ada_is_constrained_packed_array_type (arr_type))
3147 return ada_array_length (decode_constrained_packed_array (arr), n);
3148
3149 if (ada_is_simple_array_type (arr_type))
3150 {
3151 low = ada_array_bound_from_type (arr_type, n, 0);
3152 high = ada_array_bound_from_type (arr_type, n, 1);
3153 }
3154 else
3155 {
3156 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3157 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3158 }
3159
3160 arr_type = check_typedef (arr_type);
3161 index_type = ada_index_type (arr_type, n, "length");
3162 if (index_type != NULL)
3163 {
3164 struct type *base_type;
3165 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3166 base_type = TYPE_TARGET_TYPE (index_type);
3167 else
3168 base_type = index_type;
3169
3170 low = pos_atr (value_from_longest (base_type, low));
3171 high = pos_atr (value_from_longest (base_type, high));
3172 }
3173 return high - low + 1;
3174 }
3175
3176 /* An empty array whose type is that of ARR_TYPE (an array type),
3177 with bounds LOW to LOW-1. */
3178
3179 static struct value *
3180 empty_array (struct type *arr_type, int low)
3181 {
3182 struct type *arr_type0 = ada_check_typedef (arr_type);
3183 struct type *index_type
3184 = create_static_range_type
3185 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3186 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3187
3188 return allocate_value (create_array_type (NULL, elt_type, index_type));
3189 }
3190 \f
3191
3192 /* Name resolution */
3193
3194 /* The "decoded" name for the user-definable Ada operator corresponding
3195 to OP. */
3196
3197 static const char *
3198 ada_decoded_op_name (enum exp_opcode op)
3199 {
3200 int i;
3201
3202 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3203 {
3204 if (ada_opname_table[i].op == op)
3205 return ada_opname_table[i].decoded;
3206 }
3207 error (_("Could not find operator name for opcode"));
3208 }
3209
3210
3211 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3212 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3213 undefined namespace) and converts operators that are
3214 user-defined into appropriate function calls. If CONTEXT_TYPE is
3215 non-null, it provides a preferred result type [at the moment, only
3216 type void has any effect---causing procedures to be preferred over
3217 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3218 return type is preferred. May change (expand) *EXP. */
3219
3220 static void
3221 resolve (expression_up *expp, int void_context_p)
3222 {
3223 struct type *context_type = NULL;
3224 int pc = 0;
3225
3226 if (void_context_p)
3227 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3228
3229 resolve_subexp (expp, &pc, 1, context_type);
3230 }
3231
3232 /* Resolve the operator of the subexpression beginning at
3233 position *POS of *EXPP. "Resolving" consists of replacing
3234 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3235 with their resolutions, replacing built-in operators with
3236 function calls to user-defined operators, where appropriate, and,
3237 when DEPROCEDURE_P is non-zero, converting function-valued variables
3238 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3239 are as in ada_resolve, above. */
3240
3241 static struct value *
3242 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3243 struct type *context_type)
3244 {
3245 int pc = *pos;
3246 int i;
3247 struct expression *exp; /* Convenience: == *expp. */
3248 enum exp_opcode op = (*expp)->elts[pc].opcode;
3249 struct value **argvec; /* Vector of operand types (alloca'ed). */
3250 int nargs; /* Number of operands. */
3251 int oplen;
3252
3253 argvec = NULL;
3254 nargs = 0;
3255 exp = expp->get ();
3256
3257 /* Pass one: resolve operands, saving their types and updating *pos,
3258 if needed. */
3259 switch (op)
3260 {
3261 case OP_FUNCALL:
3262 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3263 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3264 *pos += 7;
3265 else
3266 {
3267 *pos += 3;
3268 resolve_subexp (expp, pos, 0, NULL);
3269 }
3270 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3271 break;
3272
3273 case UNOP_ADDR:
3274 *pos += 1;
3275 resolve_subexp (expp, pos, 0, NULL);
3276 break;
3277
3278 case UNOP_QUAL:
3279 *pos += 3;
3280 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3281 break;
3282
3283 case OP_ATR_MODULUS:
3284 case OP_ATR_SIZE:
3285 case OP_ATR_TAG:
3286 case OP_ATR_FIRST:
3287 case OP_ATR_LAST:
3288 case OP_ATR_LENGTH:
3289 case OP_ATR_POS:
3290 case OP_ATR_VAL:
3291 case OP_ATR_MIN:
3292 case OP_ATR_MAX:
3293 case TERNOP_IN_RANGE:
3294 case BINOP_IN_BOUNDS:
3295 case UNOP_IN_RANGE:
3296 case OP_AGGREGATE:
3297 case OP_OTHERS:
3298 case OP_CHOICES:
3299 case OP_POSITIONAL:
3300 case OP_DISCRETE_RANGE:
3301 case OP_NAME:
3302 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3303 *pos += oplen;
3304 break;
3305
3306 case BINOP_ASSIGN:
3307 {
3308 struct value *arg1;
3309
3310 *pos += 1;
3311 arg1 = resolve_subexp (expp, pos, 0, NULL);
3312 if (arg1 == NULL)
3313 resolve_subexp (expp, pos, 1, NULL);
3314 else
3315 resolve_subexp (expp, pos, 1, value_type (arg1));
3316 break;
3317 }
3318
3319 case UNOP_CAST:
3320 *pos += 3;
3321 nargs = 1;
3322 break;
3323
3324 case BINOP_ADD:
3325 case BINOP_SUB:
3326 case BINOP_MUL:
3327 case BINOP_DIV:
3328 case BINOP_REM:
3329 case BINOP_MOD:
3330 case BINOP_EXP:
3331 case BINOP_CONCAT:
3332 case BINOP_LOGICAL_AND:
3333 case BINOP_LOGICAL_OR:
3334 case BINOP_BITWISE_AND:
3335 case BINOP_BITWISE_IOR:
3336 case BINOP_BITWISE_XOR:
3337
3338 case BINOP_EQUAL:
3339 case BINOP_NOTEQUAL:
3340 case BINOP_LESS:
3341 case BINOP_GTR:
3342 case BINOP_LEQ:
3343 case BINOP_GEQ:
3344
3345 case BINOP_REPEAT:
3346 case BINOP_SUBSCRIPT:
3347 case BINOP_COMMA:
3348 *pos += 1;
3349 nargs = 2;
3350 break;
3351
3352 case UNOP_NEG:
3353 case UNOP_PLUS:
3354 case UNOP_LOGICAL_NOT:
3355 case UNOP_ABS:
3356 case UNOP_IND:
3357 *pos += 1;
3358 nargs = 1;
3359 break;
3360
3361 case OP_LONG:
3362 case OP_FLOAT:
3363 case OP_VAR_VALUE:
3364 case OP_VAR_MSYM_VALUE:
3365 *pos += 4;
3366 break;
3367
3368 case OP_TYPE:
3369 case OP_BOOL:
3370 case OP_LAST:
3371 case OP_INTERNALVAR:
3372 *pos += 3;
3373 break;
3374
3375 case UNOP_MEMVAL:
3376 *pos += 3;
3377 nargs = 1;
3378 break;
3379
3380 case OP_REGISTER:
3381 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3382 break;
3383
3384 case STRUCTOP_STRUCT:
3385 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3386 nargs = 1;
3387 break;
3388
3389 case TERNOP_SLICE:
3390 *pos += 1;
3391 nargs = 3;
3392 break;
3393
3394 case OP_STRING:
3395 break;
3396
3397 default:
3398 error (_("Unexpected operator during name resolution"));
3399 }
3400
3401 argvec = XALLOCAVEC (struct value *, nargs + 1);
3402 for (i = 0; i < nargs; i += 1)
3403 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3404 argvec[i] = NULL;
3405 exp = expp->get ();
3406
3407 /* Pass two: perform any resolution on principal operator. */
3408 switch (op)
3409 {
3410 default:
3411 break;
3412
3413 case OP_VAR_VALUE:
3414 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3415 {
3416 std::vector<struct block_symbol> candidates;
3417 int n_candidates;
3418
3419 n_candidates =
3420 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3421 (exp->elts[pc + 2].symbol),
3422 exp->elts[pc + 1].block, VAR_DOMAIN,
3423 &candidates);
3424
3425 if (n_candidates > 1)
3426 {
3427 /* Types tend to get re-introduced locally, so if there
3428 are any local symbols that are not types, first filter
3429 out all types. */
3430 int j;
3431 for (j = 0; j < n_candidates; j += 1)
3432 switch (SYMBOL_CLASS (candidates[j].symbol))
3433 {
3434 case LOC_REGISTER:
3435 case LOC_ARG:
3436 case LOC_REF_ARG:
3437 case LOC_REGPARM_ADDR:
3438 case LOC_LOCAL:
3439 case LOC_COMPUTED:
3440 goto FoundNonType;
3441 default:
3442 break;
3443 }
3444 FoundNonType:
3445 if (j < n_candidates)
3446 {
3447 j = 0;
3448 while (j < n_candidates)
3449 {
3450 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3451 {
3452 candidates[j] = candidates[n_candidates - 1];
3453 n_candidates -= 1;
3454 }
3455 else
3456 j += 1;
3457 }
3458 }
3459 }
3460
3461 if (n_candidates == 0)
3462 error (_("No definition found for %s"),
3463 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3464 else if (n_candidates == 1)
3465 i = 0;
3466 else if (deprocedure_p
3467 && !is_nonfunction (candidates.data (), n_candidates))
3468 {
3469 i = ada_resolve_function
3470 (candidates.data (), n_candidates, NULL, 0,
3471 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3472 context_type);
3473 if (i < 0)
3474 error (_("Could not find a match for %s"),
3475 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3476 }
3477 else
3478 {
3479 printf_filtered (_("Multiple matches for %s\n"),
3480 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3481 user_select_syms (candidates.data (), n_candidates, 1);
3482 i = 0;
3483 }
3484
3485 exp->elts[pc + 1].block = candidates[i].block;
3486 exp->elts[pc + 2].symbol = candidates[i].symbol;
3487 innermost_block.update (candidates[i]);
3488 }
3489
3490 if (deprocedure_p
3491 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3492 == TYPE_CODE_FUNC))
3493 {
3494 replace_operator_with_call (expp, pc, 0, 4,
3495 exp->elts[pc + 2].symbol,
3496 exp->elts[pc + 1].block);
3497 exp = expp->get ();
3498 }
3499 break;
3500
3501 case OP_FUNCALL:
3502 {
3503 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3504 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3505 {
3506 std::vector<struct block_symbol> candidates;
3507 int n_candidates;
3508
3509 n_candidates =
3510 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3511 (exp->elts[pc + 5].symbol),
3512 exp->elts[pc + 4].block, VAR_DOMAIN,
3513 &candidates);
3514
3515 if (n_candidates == 1)
3516 i = 0;
3517 else
3518 {
3519 i = ada_resolve_function
3520 (candidates.data (), n_candidates,
3521 argvec, nargs,
3522 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3523 context_type);
3524 if (i < 0)
3525 error (_("Could not find a match for %s"),
3526 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3527 }
3528
3529 exp->elts[pc + 4].block = candidates[i].block;
3530 exp->elts[pc + 5].symbol = candidates[i].symbol;
3531 innermost_block.update (candidates[i]);
3532 }
3533 }
3534 break;
3535 case BINOP_ADD:
3536 case BINOP_SUB:
3537 case BINOP_MUL:
3538 case BINOP_DIV:
3539 case BINOP_REM:
3540 case BINOP_MOD:
3541 case BINOP_CONCAT:
3542 case BINOP_BITWISE_AND:
3543 case BINOP_BITWISE_IOR:
3544 case BINOP_BITWISE_XOR:
3545 case BINOP_EQUAL:
3546 case BINOP_NOTEQUAL:
3547 case BINOP_LESS:
3548 case BINOP_GTR:
3549 case BINOP_LEQ:
3550 case BINOP_GEQ:
3551 case BINOP_EXP:
3552 case UNOP_NEG:
3553 case UNOP_PLUS:
3554 case UNOP_LOGICAL_NOT:
3555 case UNOP_ABS:
3556 if (possible_user_operator_p (op, argvec))
3557 {
3558 std::vector<struct block_symbol> candidates;
3559 int n_candidates;
3560
3561 n_candidates =
3562 ada_lookup_symbol_list (ada_decoded_op_name (op),
3563 (struct block *) NULL, VAR_DOMAIN,
3564 &candidates);
3565
3566 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3567 nargs, ada_decoded_op_name (op), NULL);
3568 if (i < 0)
3569 break;
3570
3571 replace_operator_with_call (expp, pc, nargs, 1,
3572 candidates[i].symbol,
3573 candidates[i].block);
3574 exp = expp->get ();
3575 }
3576 break;
3577
3578 case OP_TYPE:
3579 case OP_REGISTER:
3580 return NULL;
3581 }
3582
3583 *pos = pc;
3584 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3585 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3586 exp->elts[pc + 1].objfile,
3587 exp->elts[pc + 2].msymbol);
3588 else
3589 return evaluate_subexp_type (exp, pos);
3590 }
3591
3592 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3593 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3594 a non-pointer. */
3595 /* The term "match" here is rather loose. The match is heuristic and
3596 liberal. */
3597
3598 static int
3599 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3600 {
3601 ftype = ada_check_typedef (ftype);
3602 atype = ada_check_typedef (atype);
3603
3604 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3605 ftype = TYPE_TARGET_TYPE (ftype);
3606 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3607 atype = TYPE_TARGET_TYPE (atype);
3608
3609 switch (TYPE_CODE (ftype))
3610 {
3611 default:
3612 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3613 case TYPE_CODE_PTR:
3614 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3615 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3616 TYPE_TARGET_TYPE (atype), 0);
3617 else
3618 return (may_deref
3619 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3620 case TYPE_CODE_INT:
3621 case TYPE_CODE_ENUM:
3622 case TYPE_CODE_RANGE:
3623 switch (TYPE_CODE (atype))
3624 {
3625 case TYPE_CODE_INT:
3626 case TYPE_CODE_ENUM:
3627 case TYPE_CODE_RANGE:
3628 return 1;
3629 default:
3630 return 0;
3631 }
3632
3633 case TYPE_CODE_ARRAY:
3634 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3635 || ada_is_array_descriptor_type (atype));
3636
3637 case TYPE_CODE_STRUCT:
3638 if (ada_is_array_descriptor_type (ftype))
3639 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3640 || ada_is_array_descriptor_type (atype));
3641 else
3642 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3643 && !ada_is_array_descriptor_type (atype));
3644
3645 case TYPE_CODE_UNION:
3646 case TYPE_CODE_FLT:
3647 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3648 }
3649 }
3650
3651 /* Return non-zero if the formals of FUNC "sufficiently match" the
3652 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3653 may also be an enumeral, in which case it is treated as a 0-
3654 argument function. */
3655
3656 static int
3657 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3658 {
3659 int i;
3660 struct type *func_type = SYMBOL_TYPE (func);
3661
3662 if (SYMBOL_CLASS (func) == LOC_CONST
3663 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3664 return (n_actuals == 0);
3665 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3666 return 0;
3667
3668 if (TYPE_NFIELDS (func_type) != n_actuals)
3669 return 0;
3670
3671 for (i = 0; i < n_actuals; i += 1)
3672 {
3673 if (actuals[i] == NULL)
3674 return 0;
3675 else
3676 {
3677 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3678 i));
3679 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3680
3681 if (!ada_type_match (ftype, atype, 1))
3682 return 0;
3683 }
3684 }
3685 return 1;
3686 }
3687
3688 /* False iff function type FUNC_TYPE definitely does not produce a value
3689 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3690 FUNC_TYPE is not a valid function type with a non-null return type
3691 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3692
3693 static int
3694 return_match (struct type *func_type, struct type *context_type)
3695 {
3696 struct type *return_type;
3697
3698 if (func_type == NULL)
3699 return 1;
3700
3701 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3702 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3703 else
3704 return_type = get_base_type (func_type);
3705 if (return_type == NULL)
3706 return 1;
3707
3708 context_type = get_base_type (context_type);
3709
3710 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3711 return context_type == NULL || return_type == context_type;
3712 else if (context_type == NULL)
3713 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3714 else
3715 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3716 }
3717
3718
3719 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3720 function (if any) that matches the types of the NARGS arguments in
3721 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3722 that returns that type, then eliminate matches that don't. If
3723 CONTEXT_TYPE is void and there is at least one match that does not
3724 return void, eliminate all matches that do.
3725
3726 Asks the user if there is more than one match remaining. Returns -1
3727 if there is no such symbol or none is selected. NAME is used
3728 solely for messages. May re-arrange and modify SYMS in
3729 the process; the index returned is for the modified vector. */
3730
3731 static int
3732 ada_resolve_function (struct block_symbol syms[],
3733 int nsyms, struct value **args, int nargs,
3734 const char *name, struct type *context_type)
3735 {
3736 int fallback;
3737 int k;
3738 int m; /* Number of hits */
3739
3740 m = 0;
3741 /* In the first pass of the loop, we only accept functions matching
3742 context_type. If none are found, we add a second pass of the loop
3743 where every function is accepted. */
3744 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3745 {
3746 for (k = 0; k < nsyms; k += 1)
3747 {
3748 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3749
3750 if (ada_args_match (syms[k].symbol, args, nargs)
3751 && (fallback || return_match (type, context_type)))
3752 {
3753 syms[m] = syms[k];
3754 m += 1;
3755 }
3756 }
3757 }
3758
3759 /* If we got multiple matches, ask the user which one to use. Don't do this
3760 interactive thing during completion, though, as the purpose of the
3761 completion is providing a list of all possible matches. Prompting the
3762 user to filter it down would be completely unexpected in this case. */
3763 if (m == 0)
3764 return -1;
3765 else if (m > 1 && !parse_completion)
3766 {
3767 printf_filtered (_("Multiple matches for %s\n"), name);
3768 user_select_syms (syms, m, 1);
3769 return 0;
3770 }
3771 return 0;
3772 }
3773
3774 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3775 in a listing of choices during disambiguation (see sort_choices, below).
3776 The idea is that overloadings of a subprogram name from the
3777 same package should sort in their source order. We settle for ordering
3778 such symbols by their trailing number (__N or $N). */
3779
3780 static int
3781 encoded_ordered_before (const char *N0, const char *N1)
3782 {
3783 if (N1 == NULL)
3784 return 0;
3785 else if (N0 == NULL)
3786 return 1;
3787 else
3788 {
3789 int k0, k1;
3790
3791 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3792 ;
3793 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3794 ;
3795 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3796 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3797 {
3798 int n0, n1;
3799
3800 n0 = k0;
3801 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3802 n0 -= 1;
3803 n1 = k1;
3804 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3805 n1 -= 1;
3806 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3807 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3808 }
3809 return (strcmp (N0, N1) < 0);
3810 }
3811 }
3812
3813 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3814 encoded names. */
3815
3816 static void
3817 sort_choices (struct block_symbol syms[], int nsyms)
3818 {
3819 int i;
3820
3821 for (i = 1; i < nsyms; i += 1)
3822 {
3823 struct block_symbol sym = syms[i];
3824 int j;
3825
3826 for (j = i - 1; j >= 0; j -= 1)
3827 {
3828 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3829 SYMBOL_LINKAGE_NAME (sym.symbol)))
3830 break;
3831 syms[j + 1] = syms[j];
3832 }
3833 syms[j + 1] = sym;
3834 }
3835 }
3836
3837 /* Whether GDB should display formals and return types for functions in the
3838 overloads selection menu. */
3839 static int print_signatures = 1;
3840
3841 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3842 all but functions, the signature is just the name of the symbol. For
3843 functions, this is the name of the function, the list of types for formals
3844 and the return type (if any). */
3845
3846 static void
3847 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3848 const struct type_print_options *flags)
3849 {
3850 struct type *type = SYMBOL_TYPE (sym);
3851
3852 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3853 if (!print_signatures
3854 || type == NULL
3855 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3856 return;
3857
3858 if (TYPE_NFIELDS (type) > 0)
3859 {
3860 int i;
3861
3862 fprintf_filtered (stream, " (");
3863 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3864 {
3865 if (i > 0)
3866 fprintf_filtered (stream, "; ");
3867 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3868 flags);
3869 }
3870 fprintf_filtered (stream, ")");
3871 }
3872 if (TYPE_TARGET_TYPE (type) != NULL
3873 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3874 {
3875 fprintf_filtered (stream, " return ");
3876 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3877 }
3878 }
3879
3880 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3881 by asking the user (if necessary), returning the number selected,
3882 and setting the first elements of SYMS items. Error if no symbols
3883 selected. */
3884
3885 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3886 to be re-integrated one of these days. */
3887
3888 int
3889 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3890 {
3891 int i;
3892 int *chosen = XALLOCAVEC (int , nsyms);
3893 int n_chosen;
3894 int first_choice = (max_results == 1) ? 1 : 2;
3895 const char *select_mode = multiple_symbols_select_mode ();
3896
3897 if (max_results < 1)
3898 error (_("Request to select 0 symbols!"));
3899 if (nsyms <= 1)
3900 return nsyms;
3901
3902 if (select_mode == multiple_symbols_cancel)
3903 error (_("\
3904 canceled because the command is ambiguous\n\
3905 See set/show multiple-symbol."));
3906
3907 /* If select_mode is "all", then return all possible symbols.
3908 Only do that if more than one symbol can be selected, of course.
3909 Otherwise, display the menu as usual. */
3910 if (select_mode == multiple_symbols_all && max_results > 1)
3911 return nsyms;
3912
3913 printf_unfiltered (_("[0] cancel\n"));
3914 if (max_results > 1)
3915 printf_unfiltered (_("[1] all\n"));
3916
3917 sort_choices (syms, nsyms);
3918
3919 for (i = 0; i < nsyms; i += 1)
3920 {
3921 if (syms[i].symbol == NULL)
3922 continue;
3923
3924 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3925 {
3926 struct symtab_and_line sal =
3927 find_function_start_sal (syms[i].symbol, 1);
3928
3929 printf_unfiltered ("[%d] ", i + first_choice);
3930 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3931 &type_print_raw_options);
3932 if (sal.symtab == NULL)
3933 printf_unfiltered (_(" at <no source file available>:%d\n"),
3934 sal.line);
3935 else
3936 printf_unfiltered (_(" at %s:%d\n"),
3937 symtab_to_filename_for_display (sal.symtab),
3938 sal.line);
3939 continue;
3940 }
3941 else
3942 {
3943 int is_enumeral =
3944 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3945 && SYMBOL_TYPE (syms[i].symbol) != NULL
3946 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3947 struct symtab *symtab = NULL;
3948
3949 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3950 symtab = symbol_symtab (syms[i].symbol);
3951
3952 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3953 {
3954 printf_unfiltered ("[%d] ", i + first_choice);
3955 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3956 &type_print_raw_options);
3957 printf_unfiltered (_(" at %s:%d\n"),
3958 symtab_to_filename_for_display (symtab),
3959 SYMBOL_LINE (syms[i].symbol));
3960 }
3961 else if (is_enumeral
3962 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3963 {
3964 printf_unfiltered (("[%d] "), i + first_choice);
3965 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3966 gdb_stdout, -1, 0, &type_print_raw_options);
3967 printf_unfiltered (_("'(%s) (enumeral)\n"),
3968 SYMBOL_PRINT_NAME (syms[i].symbol));
3969 }
3970 else
3971 {
3972 printf_unfiltered ("[%d] ", i + first_choice);
3973 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3974 &type_print_raw_options);
3975
3976 if (symtab != NULL)
3977 printf_unfiltered (is_enumeral
3978 ? _(" in %s (enumeral)\n")
3979 : _(" at %s:?\n"),
3980 symtab_to_filename_for_display (symtab));
3981 else
3982 printf_unfiltered (is_enumeral
3983 ? _(" (enumeral)\n")
3984 : _(" at ?\n"));
3985 }
3986 }
3987 }
3988
3989 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3990 "overload-choice");
3991
3992 for (i = 0; i < n_chosen; i += 1)
3993 syms[i] = syms[chosen[i]];
3994
3995 return n_chosen;
3996 }
3997
3998 /* Read and validate a set of numeric choices from the user in the
3999 range 0 .. N_CHOICES-1. Place the results in increasing
4000 order in CHOICES[0 .. N-1], and return N.
4001
4002 The user types choices as a sequence of numbers on one line
4003 separated by blanks, encoding them as follows:
4004
4005 + A choice of 0 means to cancel the selection, throwing an error.
4006 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4007 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4008
4009 The user is not allowed to choose more than MAX_RESULTS values.
4010
4011 ANNOTATION_SUFFIX, if present, is used to annotate the input
4012 prompts (for use with the -f switch). */
4013
4014 int
4015 get_selections (int *choices, int n_choices, int max_results,
4016 int is_all_choice, const char *annotation_suffix)
4017 {
4018 char *args;
4019 const char *prompt;
4020 int n_chosen;
4021 int first_choice = is_all_choice ? 2 : 1;
4022
4023 prompt = getenv ("PS2");
4024 if (prompt == NULL)
4025 prompt = "> ";
4026
4027 args = command_line_input (prompt, annotation_suffix);
4028
4029 if (args == NULL)
4030 error_no_arg (_("one or more choice numbers"));
4031
4032 n_chosen = 0;
4033
4034 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4035 order, as given in args. Choices are validated. */
4036 while (1)
4037 {
4038 char *args2;
4039 int choice, j;
4040
4041 args = skip_spaces (args);
4042 if (*args == '\0' && n_chosen == 0)
4043 error_no_arg (_("one or more choice numbers"));
4044 else if (*args == '\0')
4045 break;
4046
4047 choice = strtol (args, &args2, 10);
4048 if (args == args2 || choice < 0
4049 || choice > n_choices + first_choice - 1)
4050 error (_("Argument must be choice number"));
4051 args = args2;
4052
4053 if (choice == 0)
4054 error (_("cancelled"));
4055
4056 if (choice < first_choice)
4057 {
4058 n_chosen = n_choices;
4059 for (j = 0; j < n_choices; j += 1)
4060 choices[j] = j;
4061 break;
4062 }
4063 choice -= first_choice;
4064
4065 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4066 {
4067 }
4068
4069 if (j < 0 || choice != choices[j])
4070 {
4071 int k;
4072
4073 for (k = n_chosen - 1; k > j; k -= 1)
4074 choices[k + 1] = choices[k];
4075 choices[j + 1] = choice;
4076 n_chosen += 1;
4077 }
4078 }
4079
4080 if (n_chosen > max_results)
4081 error (_("Select no more than %d of the above"), max_results);
4082
4083 return n_chosen;
4084 }
4085
4086 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4087 on the function identified by SYM and BLOCK, and taking NARGS
4088 arguments. Update *EXPP as needed to hold more space. */
4089
4090 static void
4091 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4092 int oplen, struct symbol *sym,
4093 const struct block *block)
4094 {
4095 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4096 symbol, -oplen for operator being replaced). */
4097 struct expression *newexp = (struct expression *)
4098 xzalloc (sizeof (struct expression)
4099 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4100 struct expression *exp = expp->get ();
4101
4102 newexp->nelts = exp->nelts + 7 - oplen;
4103 newexp->language_defn = exp->language_defn;
4104 newexp->gdbarch = exp->gdbarch;
4105 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4106 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4107 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4108
4109 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4110 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4111
4112 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4113 newexp->elts[pc + 4].block = block;
4114 newexp->elts[pc + 5].symbol = sym;
4115
4116 expp->reset (newexp);
4117 }
4118
4119 /* Type-class predicates */
4120
4121 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4122 or FLOAT). */
4123
4124 static int
4125 numeric_type_p (struct type *type)
4126 {
4127 if (type == NULL)
4128 return 0;
4129 else
4130 {
4131 switch (TYPE_CODE (type))
4132 {
4133 case TYPE_CODE_INT:
4134 case TYPE_CODE_FLT:
4135 return 1;
4136 case TYPE_CODE_RANGE:
4137 return (type == TYPE_TARGET_TYPE (type)
4138 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4139 default:
4140 return 0;
4141 }
4142 }
4143 }
4144
4145 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4146
4147 static int
4148 integer_type_p (struct type *type)
4149 {
4150 if (type == NULL)
4151 return 0;
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4155 {
4156 case TYPE_CODE_INT:
4157 return 1;
4158 case TYPE_CODE_RANGE:
4159 return (type == TYPE_TARGET_TYPE (type)
4160 || integer_type_p (TYPE_TARGET_TYPE (type)));
4161 default:
4162 return 0;
4163 }
4164 }
4165 }
4166
4167 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4168
4169 static int
4170 scalar_type_p (struct type *type)
4171 {
4172 if (type == NULL)
4173 return 0;
4174 else
4175 {
4176 switch (TYPE_CODE (type))
4177 {
4178 case TYPE_CODE_INT:
4179 case TYPE_CODE_RANGE:
4180 case TYPE_CODE_ENUM:
4181 case TYPE_CODE_FLT:
4182 return 1;
4183 default:
4184 return 0;
4185 }
4186 }
4187 }
4188
4189 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4190
4191 static int
4192 discrete_type_p (struct type *type)
4193 {
4194 if (type == NULL)
4195 return 0;
4196 else
4197 {
4198 switch (TYPE_CODE (type))
4199 {
4200 case TYPE_CODE_INT:
4201 case TYPE_CODE_RANGE:
4202 case TYPE_CODE_ENUM:
4203 case TYPE_CODE_BOOL:
4204 return 1;
4205 default:
4206 return 0;
4207 }
4208 }
4209 }
4210
4211 /* Returns non-zero if OP with operands in the vector ARGS could be
4212 a user-defined function. Errs on the side of pre-defined operators
4213 (i.e., result 0). */
4214
4215 static int
4216 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4217 {
4218 struct type *type0 =
4219 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4220 struct type *type1 =
4221 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4222
4223 if (type0 == NULL)
4224 return 0;
4225
4226 switch (op)
4227 {
4228 default:
4229 return 0;
4230
4231 case BINOP_ADD:
4232 case BINOP_SUB:
4233 case BINOP_MUL:
4234 case BINOP_DIV:
4235 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4236
4237 case BINOP_REM:
4238 case BINOP_MOD:
4239 case BINOP_BITWISE_AND:
4240 case BINOP_BITWISE_IOR:
4241 case BINOP_BITWISE_XOR:
4242 return (!(integer_type_p (type0) && integer_type_p (type1)));
4243
4244 case BINOP_EQUAL:
4245 case BINOP_NOTEQUAL:
4246 case BINOP_LESS:
4247 case BINOP_GTR:
4248 case BINOP_LEQ:
4249 case BINOP_GEQ:
4250 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4251
4252 case BINOP_CONCAT:
4253 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4254
4255 case BINOP_EXP:
4256 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4257
4258 case UNOP_NEG:
4259 case UNOP_PLUS:
4260 case UNOP_LOGICAL_NOT:
4261 case UNOP_ABS:
4262 return (!numeric_type_p (type0));
4263
4264 }
4265 }
4266 \f
4267 /* Renaming */
4268
4269 /* NOTES:
4270
4271 1. In the following, we assume that a renaming type's name may
4272 have an ___XD suffix. It would be nice if this went away at some
4273 point.
4274 2. We handle both the (old) purely type-based representation of
4275 renamings and the (new) variable-based encoding. At some point,
4276 it is devoutly to be hoped that the former goes away
4277 (FIXME: hilfinger-2007-07-09).
4278 3. Subprogram renamings are not implemented, although the XRS
4279 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4280
4281 /* If SYM encodes a renaming,
4282
4283 <renaming> renames <renamed entity>,
4284
4285 sets *LEN to the length of the renamed entity's name,
4286 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4287 the string describing the subcomponent selected from the renamed
4288 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4289 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4290 are undefined). Otherwise, returns a value indicating the category
4291 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4292 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4293 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4294 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4295 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4296 may be NULL, in which case they are not assigned.
4297
4298 [Currently, however, GCC does not generate subprogram renamings.] */
4299
4300 enum ada_renaming_category
4301 ada_parse_renaming (struct symbol *sym,
4302 const char **renamed_entity, int *len,
4303 const char **renaming_expr)
4304 {
4305 enum ada_renaming_category kind;
4306 const char *info;
4307 const char *suffix;
4308
4309 if (sym == NULL)
4310 return ADA_NOT_RENAMING;
4311 switch (SYMBOL_CLASS (sym))
4312 {
4313 default:
4314 return ADA_NOT_RENAMING;
4315 case LOC_TYPEDEF:
4316 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4317 renamed_entity, len, renaming_expr);
4318 case LOC_LOCAL:
4319 case LOC_STATIC:
4320 case LOC_COMPUTED:
4321 case LOC_OPTIMIZED_OUT:
4322 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4323 if (info == NULL)
4324 return ADA_NOT_RENAMING;
4325 switch (info[5])
4326 {
4327 case '_':
4328 kind = ADA_OBJECT_RENAMING;
4329 info += 6;
4330 break;
4331 case 'E':
4332 kind = ADA_EXCEPTION_RENAMING;
4333 info += 7;
4334 break;
4335 case 'P':
4336 kind = ADA_PACKAGE_RENAMING;
4337 info += 7;
4338 break;
4339 case 'S':
4340 kind = ADA_SUBPROGRAM_RENAMING;
4341 info += 7;
4342 break;
4343 default:
4344 return ADA_NOT_RENAMING;
4345 }
4346 }
4347
4348 if (renamed_entity != NULL)
4349 *renamed_entity = info;
4350 suffix = strstr (info, "___XE");
4351 if (suffix == NULL || suffix == info)
4352 return ADA_NOT_RENAMING;
4353 if (len != NULL)
4354 *len = strlen (info) - strlen (suffix);
4355 suffix += 5;
4356 if (renaming_expr != NULL)
4357 *renaming_expr = suffix;
4358 return kind;
4359 }
4360
4361 /* Assuming TYPE encodes a renaming according to the old encoding in
4362 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4363 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4364 ADA_NOT_RENAMING otherwise. */
4365 static enum ada_renaming_category
4366 parse_old_style_renaming (struct type *type,
4367 const char **renamed_entity, int *len,
4368 const char **renaming_expr)
4369 {
4370 enum ada_renaming_category kind;
4371 const char *name;
4372 const char *info;
4373 const char *suffix;
4374
4375 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4376 || TYPE_NFIELDS (type) != 1)
4377 return ADA_NOT_RENAMING;
4378
4379 name = TYPE_NAME (type);
4380 if (name == NULL)
4381 return ADA_NOT_RENAMING;
4382
4383 name = strstr (name, "___XR");
4384 if (name == NULL)
4385 return ADA_NOT_RENAMING;
4386 switch (name[5])
4387 {
4388 case '\0':
4389 case '_':
4390 kind = ADA_OBJECT_RENAMING;
4391 break;
4392 case 'E':
4393 kind = ADA_EXCEPTION_RENAMING;
4394 break;
4395 case 'P':
4396 kind = ADA_PACKAGE_RENAMING;
4397 break;
4398 case 'S':
4399 kind = ADA_SUBPROGRAM_RENAMING;
4400 break;
4401 default:
4402 return ADA_NOT_RENAMING;
4403 }
4404
4405 info = TYPE_FIELD_NAME (type, 0);
4406 if (info == NULL)
4407 return ADA_NOT_RENAMING;
4408 if (renamed_entity != NULL)
4409 *renamed_entity = info;
4410 suffix = strstr (info, "___XE");
4411 if (renaming_expr != NULL)
4412 *renaming_expr = suffix + 5;
4413 if (suffix == NULL || suffix == info)
4414 return ADA_NOT_RENAMING;
4415 if (len != NULL)
4416 *len = suffix - info;
4417 return kind;
4418 }
4419
4420 /* Compute the value of the given RENAMING_SYM, which is expected to
4421 be a symbol encoding a renaming expression. BLOCK is the block
4422 used to evaluate the renaming. */
4423
4424 static struct value *
4425 ada_read_renaming_var_value (struct symbol *renaming_sym,
4426 const struct block *block)
4427 {
4428 const char *sym_name;
4429
4430 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4431 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4432 return evaluate_expression (expr.get ());
4433 }
4434 \f
4435
4436 /* Evaluation: Function Calls */
4437
4438 /* Return an lvalue containing the value VAL. This is the identity on
4439 lvalues, and otherwise has the side-effect of allocating memory
4440 in the inferior where a copy of the value contents is copied. */
4441
4442 static struct value *
4443 ensure_lval (struct value *val)
4444 {
4445 if (VALUE_LVAL (val) == not_lval
4446 || VALUE_LVAL (val) == lval_internalvar)
4447 {
4448 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4449 const CORE_ADDR addr =
4450 value_as_long (value_allocate_space_in_inferior (len));
4451
4452 VALUE_LVAL (val) = lval_memory;
4453 set_value_address (val, addr);
4454 write_memory (addr, value_contents (val), len);
4455 }
4456
4457 return val;
4458 }
4459
4460 /* Return the value ACTUAL, converted to be an appropriate value for a
4461 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4462 allocating any necessary descriptors (fat pointers), or copies of
4463 values not residing in memory, updating it as needed. */
4464
4465 struct value *
4466 ada_convert_actual (struct value *actual, struct type *formal_type0)
4467 {
4468 struct type *actual_type = ada_check_typedef (value_type (actual));
4469 struct type *formal_type = ada_check_typedef (formal_type0);
4470 struct type *formal_target =
4471 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4472 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4473 struct type *actual_target =
4474 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4475 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4476
4477 if (ada_is_array_descriptor_type (formal_target)
4478 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4479 return make_array_descriptor (formal_type, actual);
4480 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4481 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4482 {
4483 struct value *result;
4484
4485 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4486 && ada_is_array_descriptor_type (actual_target))
4487 result = desc_data (actual);
4488 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4489 {
4490 if (VALUE_LVAL (actual) != lval_memory)
4491 {
4492 struct value *val;
4493
4494 actual_type = ada_check_typedef (value_type (actual));
4495 val = allocate_value (actual_type);
4496 memcpy ((char *) value_contents_raw (val),
4497 (char *) value_contents (actual),
4498 TYPE_LENGTH (actual_type));
4499 actual = ensure_lval (val);
4500 }
4501 result = value_addr (actual);
4502 }
4503 else
4504 return actual;
4505 return value_cast_pointers (formal_type, result, 0);
4506 }
4507 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4508 return ada_value_ind (actual);
4509 else if (ada_is_aligner_type (formal_type))
4510 {
4511 /* We need to turn this parameter into an aligner type
4512 as well. */
4513 struct value *aligner = allocate_value (formal_type);
4514 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4515
4516 value_assign_to_component (aligner, component, actual);
4517 return aligner;
4518 }
4519
4520 return actual;
4521 }
4522
4523 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4524 type TYPE. This is usually an inefficient no-op except on some targets
4525 (such as AVR) where the representation of a pointer and an address
4526 differs. */
4527
4528 static CORE_ADDR
4529 value_pointer (struct value *value, struct type *type)
4530 {
4531 struct gdbarch *gdbarch = get_type_arch (type);
4532 unsigned len = TYPE_LENGTH (type);
4533 gdb_byte *buf = (gdb_byte *) alloca (len);
4534 CORE_ADDR addr;
4535
4536 addr = value_address (value);
4537 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4538 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4539 return addr;
4540 }
4541
4542
4543 /* Push a descriptor of type TYPE for array value ARR on the stack at
4544 *SP, updating *SP to reflect the new descriptor. Return either
4545 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4546 to-descriptor type rather than a descriptor type), a struct value *
4547 representing a pointer to this descriptor. */
4548
4549 static struct value *
4550 make_array_descriptor (struct type *type, struct value *arr)
4551 {
4552 struct type *bounds_type = desc_bounds_type (type);
4553 struct type *desc_type = desc_base_type (type);
4554 struct value *descriptor = allocate_value (desc_type);
4555 struct value *bounds = allocate_value (bounds_type);
4556 int i;
4557
4558 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4559 i > 0; i -= 1)
4560 {
4561 modify_field (value_type (bounds), value_contents_writeable (bounds),
4562 ada_array_bound (arr, i, 0),
4563 desc_bound_bitpos (bounds_type, i, 0),
4564 desc_bound_bitsize (bounds_type, i, 0));
4565 modify_field (value_type (bounds), value_contents_writeable (bounds),
4566 ada_array_bound (arr, i, 1),
4567 desc_bound_bitpos (bounds_type, i, 1),
4568 desc_bound_bitsize (bounds_type, i, 1));
4569 }
4570
4571 bounds = ensure_lval (bounds);
4572
4573 modify_field (value_type (descriptor),
4574 value_contents_writeable (descriptor),
4575 value_pointer (ensure_lval (arr),
4576 TYPE_FIELD_TYPE (desc_type, 0)),
4577 fat_pntr_data_bitpos (desc_type),
4578 fat_pntr_data_bitsize (desc_type));
4579
4580 modify_field (value_type (descriptor),
4581 value_contents_writeable (descriptor),
4582 value_pointer (bounds,
4583 TYPE_FIELD_TYPE (desc_type, 1)),
4584 fat_pntr_bounds_bitpos (desc_type),
4585 fat_pntr_bounds_bitsize (desc_type));
4586
4587 descriptor = ensure_lval (descriptor);
4588
4589 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4590 return value_addr (descriptor);
4591 else
4592 return descriptor;
4593 }
4594 \f
4595 /* Symbol Cache Module */
4596
4597 /* Performance measurements made as of 2010-01-15 indicate that
4598 this cache does bring some noticeable improvements. Depending
4599 on the type of entity being printed, the cache can make it as much
4600 as an order of magnitude faster than without it.
4601
4602 The descriptive type DWARF extension has significantly reduced
4603 the need for this cache, at least when DWARF is being used. However,
4604 even in this case, some expensive name-based symbol searches are still
4605 sometimes necessary - to find an XVZ variable, mostly. */
4606
4607 /* Initialize the contents of SYM_CACHE. */
4608
4609 static void
4610 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4611 {
4612 obstack_init (&sym_cache->cache_space);
4613 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4614 }
4615
4616 /* Free the memory used by SYM_CACHE. */
4617
4618 static void
4619 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4620 {
4621 obstack_free (&sym_cache->cache_space, NULL);
4622 xfree (sym_cache);
4623 }
4624
4625 /* Return the symbol cache associated to the given program space PSPACE.
4626 If not allocated for this PSPACE yet, allocate and initialize one. */
4627
4628 static struct ada_symbol_cache *
4629 ada_get_symbol_cache (struct program_space *pspace)
4630 {
4631 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4632
4633 if (pspace_data->sym_cache == NULL)
4634 {
4635 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4636 ada_init_symbol_cache (pspace_data->sym_cache);
4637 }
4638
4639 return pspace_data->sym_cache;
4640 }
4641
4642 /* Clear all entries from the symbol cache. */
4643
4644 static void
4645 ada_clear_symbol_cache (void)
4646 {
4647 struct ada_symbol_cache *sym_cache
4648 = ada_get_symbol_cache (current_program_space);
4649
4650 obstack_free (&sym_cache->cache_space, NULL);
4651 ada_init_symbol_cache (sym_cache);
4652 }
4653
4654 /* Search our cache for an entry matching NAME and DOMAIN.
4655 Return it if found, or NULL otherwise. */
4656
4657 static struct cache_entry **
4658 find_entry (const char *name, domain_enum domain)
4659 {
4660 struct ada_symbol_cache *sym_cache
4661 = ada_get_symbol_cache (current_program_space);
4662 int h = msymbol_hash (name) % HASH_SIZE;
4663 struct cache_entry **e;
4664
4665 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4666 {
4667 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4668 return e;
4669 }
4670 return NULL;
4671 }
4672
4673 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4674 Return 1 if found, 0 otherwise.
4675
4676 If an entry was found and SYM is not NULL, set *SYM to the entry's
4677 SYM. Same principle for BLOCK if not NULL. */
4678
4679 static int
4680 lookup_cached_symbol (const char *name, domain_enum domain,
4681 struct symbol **sym, const struct block **block)
4682 {
4683 struct cache_entry **e = find_entry (name, domain);
4684
4685 if (e == NULL)
4686 return 0;
4687 if (sym != NULL)
4688 *sym = (*e)->sym;
4689 if (block != NULL)
4690 *block = (*e)->block;
4691 return 1;
4692 }
4693
4694 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4695 in domain DOMAIN, save this result in our symbol cache. */
4696
4697 static void
4698 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4699 const struct block *block)
4700 {
4701 struct ada_symbol_cache *sym_cache
4702 = ada_get_symbol_cache (current_program_space);
4703 int h;
4704 char *copy;
4705 struct cache_entry *e;
4706
4707 /* Symbols for builtin types don't have a block.
4708 For now don't cache such symbols. */
4709 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4710 return;
4711
4712 /* If the symbol is a local symbol, then do not cache it, as a search
4713 for that symbol depends on the context. To determine whether
4714 the symbol is local or not, we check the block where we found it
4715 against the global and static blocks of its associated symtab. */
4716 if (sym
4717 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4718 GLOBAL_BLOCK) != block
4719 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4720 STATIC_BLOCK) != block)
4721 return;
4722
4723 h = msymbol_hash (name) % HASH_SIZE;
4724 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4725 e->next = sym_cache->root[h];
4726 sym_cache->root[h] = e;
4727 e->name = copy
4728 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4729 strcpy (copy, name);
4730 e->sym = sym;
4731 e->domain = domain;
4732 e->block = block;
4733 }
4734 \f
4735 /* Symbol Lookup */
4736
4737 /* Return the symbol name match type that should be used used when
4738 searching for all symbols matching LOOKUP_NAME.
4739
4740 LOOKUP_NAME is expected to be a symbol name after transformation
4741 for Ada lookups. */
4742
4743 static symbol_name_match_type
4744 name_match_type_from_name (const char *lookup_name)
4745 {
4746 return (strstr (lookup_name, "__") == NULL
4747 ? symbol_name_match_type::WILD
4748 : symbol_name_match_type::FULL);
4749 }
4750
4751 /* Return the result of a standard (literal, C-like) lookup of NAME in
4752 given DOMAIN, visible from lexical block BLOCK. */
4753
4754 static struct symbol *
4755 standard_lookup (const char *name, const struct block *block,
4756 domain_enum domain)
4757 {
4758 /* Initialize it just to avoid a GCC false warning. */
4759 struct block_symbol sym = {NULL, NULL};
4760
4761 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4762 return sym.symbol;
4763 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4764 cache_symbol (name, domain, sym.symbol, sym.block);
4765 return sym.symbol;
4766 }
4767
4768
4769 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4770 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4771 since they contend in overloading in the same way. */
4772 static int
4773 is_nonfunction (struct block_symbol syms[], int n)
4774 {
4775 int i;
4776
4777 for (i = 0; i < n; i += 1)
4778 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4779 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4780 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4781 return 1;
4782
4783 return 0;
4784 }
4785
4786 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4787 struct types. Otherwise, they may not. */
4788
4789 static int
4790 equiv_types (struct type *type0, struct type *type1)
4791 {
4792 if (type0 == type1)
4793 return 1;
4794 if (type0 == NULL || type1 == NULL
4795 || TYPE_CODE (type0) != TYPE_CODE (type1))
4796 return 0;
4797 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4798 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4799 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4800 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4801 return 1;
4802
4803 return 0;
4804 }
4805
4806 /* True iff SYM0 represents the same entity as SYM1, or one that is
4807 no more defined than that of SYM1. */
4808
4809 static int
4810 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4811 {
4812 if (sym0 == sym1)
4813 return 1;
4814 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4815 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4816 return 0;
4817
4818 switch (SYMBOL_CLASS (sym0))
4819 {
4820 case LOC_UNDEF:
4821 return 1;
4822 case LOC_TYPEDEF:
4823 {
4824 struct type *type0 = SYMBOL_TYPE (sym0);
4825 struct type *type1 = SYMBOL_TYPE (sym1);
4826 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4827 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4828 int len0 = strlen (name0);
4829
4830 return
4831 TYPE_CODE (type0) == TYPE_CODE (type1)
4832 && (equiv_types (type0, type1)
4833 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4834 && startswith (name1 + len0, "___XV")));
4835 }
4836 case LOC_CONST:
4837 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4838 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4839 default:
4840 return 0;
4841 }
4842 }
4843
4844 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4845 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4846
4847 static void
4848 add_defn_to_vec (struct obstack *obstackp,
4849 struct symbol *sym,
4850 const struct block *block)
4851 {
4852 int i;
4853 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4854
4855 /* Do not try to complete stub types, as the debugger is probably
4856 already scanning all symbols matching a certain name at the
4857 time when this function is called. Trying to replace the stub
4858 type by its associated full type will cause us to restart a scan
4859 which may lead to an infinite recursion. Instead, the client
4860 collecting the matching symbols will end up collecting several
4861 matches, with at least one of them complete. It can then filter
4862 out the stub ones if needed. */
4863
4864 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4865 {
4866 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4867 return;
4868 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4869 {
4870 prevDefns[i].symbol = sym;
4871 prevDefns[i].block = block;
4872 return;
4873 }
4874 }
4875
4876 {
4877 struct block_symbol info;
4878
4879 info.symbol = sym;
4880 info.block = block;
4881 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4882 }
4883 }
4884
4885 /* Number of block_symbol structures currently collected in current vector in
4886 OBSTACKP. */
4887
4888 static int
4889 num_defns_collected (struct obstack *obstackp)
4890 {
4891 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4892 }
4893
4894 /* Vector of block_symbol structures currently collected in current vector in
4895 OBSTACKP. If FINISH, close off the vector and return its final address. */
4896
4897 static struct block_symbol *
4898 defns_collected (struct obstack *obstackp, int finish)
4899 {
4900 if (finish)
4901 return (struct block_symbol *) obstack_finish (obstackp);
4902 else
4903 return (struct block_symbol *) obstack_base (obstackp);
4904 }
4905
4906 /* Return a bound minimal symbol matching NAME according to Ada
4907 decoding rules. Returns an invalid symbol if there is no such
4908 minimal symbol. Names prefixed with "standard__" are handled
4909 specially: "standard__" is first stripped off, and only static and
4910 global symbols are searched. */
4911
4912 struct bound_minimal_symbol
4913 ada_lookup_simple_minsym (const char *name)
4914 {
4915 struct bound_minimal_symbol result;
4916
4917 memset (&result, 0, sizeof (result));
4918
4919 symbol_name_match_type match_type = name_match_type_from_name (name);
4920 lookup_name_info lookup_name (name, match_type);
4921
4922 symbol_name_matcher_ftype *match_name
4923 = ada_get_symbol_name_matcher (lookup_name);
4924
4925 for (objfile *objfile : all_objfiles (current_program_space))
4926 {
4927 for (minimal_symbol *msymbol : objfile_msymbols (objfile))
4928 {
4929 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4930 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4931 {
4932 result.minsym = msymbol;
4933 result.objfile = objfile;
4934 break;
4935 }
4936 }
4937 }
4938
4939 return result;
4940 }
4941
4942 /* For all subprograms that statically enclose the subprogram of the
4943 selected frame, add symbols matching identifier NAME in DOMAIN
4944 and their blocks to the list of data in OBSTACKP, as for
4945 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4946 with a wildcard prefix. */
4947
4948 static void
4949 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4950 const lookup_name_info &lookup_name,
4951 domain_enum domain)
4952 {
4953 }
4954
4955 /* True if TYPE is definitely an artificial type supplied to a symbol
4956 for which no debugging information was given in the symbol file. */
4957
4958 static int
4959 is_nondebugging_type (struct type *type)
4960 {
4961 const char *name = ada_type_name (type);
4962
4963 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4964 }
4965
4966 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4967 that are deemed "identical" for practical purposes.
4968
4969 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4970 types and that their number of enumerals is identical (in other
4971 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4972
4973 static int
4974 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4975 {
4976 int i;
4977
4978 /* The heuristic we use here is fairly conservative. We consider
4979 that 2 enumerate types are identical if they have the same
4980 number of enumerals and that all enumerals have the same
4981 underlying value and name. */
4982
4983 /* All enums in the type should have an identical underlying value. */
4984 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4985 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4986 return 0;
4987
4988 /* All enumerals should also have the same name (modulo any numerical
4989 suffix). */
4990 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4991 {
4992 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4993 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4994 int len_1 = strlen (name_1);
4995 int len_2 = strlen (name_2);
4996
4997 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4998 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4999 if (len_1 != len_2
5000 || strncmp (TYPE_FIELD_NAME (type1, i),
5001 TYPE_FIELD_NAME (type2, i),
5002 len_1) != 0)
5003 return 0;
5004 }
5005
5006 return 1;
5007 }
5008
5009 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5010 that are deemed "identical" for practical purposes. Sometimes,
5011 enumerals are not strictly identical, but their types are so similar
5012 that they can be considered identical.
5013
5014 For instance, consider the following code:
5015
5016 type Color is (Black, Red, Green, Blue, White);
5017 type RGB_Color is new Color range Red .. Blue;
5018
5019 Type RGB_Color is a subrange of an implicit type which is a copy
5020 of type Color. If we call that implicit type RGB_ColorB ("B" is
5021 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5022 As a result, when an expression references any of the enumeral
5023 by name (Eg. "print green"), the expression is technically
5024 ambiguous and the user should be asked to disambiguate. But
5025 doing so would only hinder the user, since it wouldn't matter
5026 what choice he makes, the outcome would always be the same.
5027 So, for practical purposes, we consider them as the same. */
5028
5029 static int
5030 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5031 {
5032 int i;
5033
5034 /* Before performing a thorough comparison check of each type,
5035 we perform a series of inexpensive checks. We expect that these
5036 checks will quickly fail in the vast majority of cases, and thus
5037 help prevent the unnecessary use of a more expensive comparison.
5038 Said comparison also expects us to make some of these checks
5039 (see ada_identical_enum_types_p). */
5040
5041 /* Quick check: All symbols should have an enum type. */
5042 for (i = 0; i < syms.size (); i++)
5043 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5044 return 0;
5045
5046 /* Quick check: They should all have the same value. */
5047 for (i = 1; i < syms.size (); i++)
5048 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5049 return 0;
5050
5051 /* Quick check: They should all have the same number of enumerals. */
5052 for (i = 1; i < syms.size (); i++)
5053 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5054 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5055 return 0;
5056
5057 /* All the sanity checks passed, so we might have a set of
5058 identical enumeration types. Perform a more complete
5059 comparison of the type of each symbol. */
5060 for (i = 1; i < syms.size (); i++)
5061 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5062 SYMBOL_TYPE (syms[0].symbol)))
5063 return 0;
5064
5065 return 1;
5066 }
5067
5068 /* Remove any non-debugging symbols in SYMS that definitely
5069 duplicate other symbols in the list (The only case I know of where
5070 this happens is when object files containing stabs-in-ecoff are
5071 linked with files containing ordinary ecoff debugging symbols (or no
5072 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5073 Returns the number of items in the modified list. */
5074
5075 static int
5076 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5077 {
5078 int i, j;
5079
5080 /* We should never be called with less than 2 symbols, as there
5081 cannot be any extra symbol in that case. But it's easy to
5082 handle, since we have nothing to do in that case. */
5083 if (syms->size () < 2)
5084 return syms->size ();
5085
5086 i = 0;
5087 while (i < syms->size ())
5088 {
5089 int remove_p = 0;
5090
5091 /* If two symbols have the same name and one of them is a stub type,
5092 the get rid of the stub. */
5093
5094 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5095 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5096 {
5097 for (j = 0; j < syms->size (); j++)
5098 {
5099 if (j != i
5100 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5101 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5102 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5103 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5104 remove_p = 1;
5105 }
5106 }
5107
5108 /* Two symbols with the same name, same class and same address
5109 should be identical. */
5110
5111 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5112 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5113 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5114 {
5115 for (j = 0; j < syms->size (); j += 1)
5116 {
5117 if (i != j
5118 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5119 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5120 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5121 && SYMBOL_CLASS ((*syms)[i].symbol)
5122 == SYMBOL_CLASS ((*syms)[j].symbol)
5123 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5124 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5125 remove_p = 1;
5126 }
5127 }
5128
5129 if (remove_p)
5130 syms->erase (syms->begin () + i);
5131
5132 i += 1;
5133 }
5134
5135 /* If all the remaining symbols are identical enumerals, then
5136 just keep the first one and discard the rest.
5137
5138 Unlike what we did previously, we do not discard any entry
5139 unless they are ALL identical. This is because the symbol
5140 comparison is not a strict comparison, but rather a practical
5141 comparison. If all symbols are considered identical, then
5142 we can just go ahead and use the first one and discard the rest.
5143 But if we cannot reduce the list to a single element, we have
5144 to ask the user to disambiguate anyways. And if we have to
5145 present a multiple-choice menu, it's less confusing if the list
5146 isn't missing some choices that were identical and yet distinct. */
5147 if (symbols_are_identical_enums (*syms))
5148 syms->resize (1);
5149
5150 return syms->size ();
5151 }
5152
5153 /* Given a type that corresponds to a renaming entity, use the type name
5154 to extract the scope (package name or function name, fully qualified,
5155 and following the GNAT encoding convention) where this renaming has been
5156 defined. */
5157
5158 static std::string
5159 xget_renaming_scope (struct type *renaming_type)
5160 {
5161 /* The renaming types adhere to the following convention:
5162 <scope>__<rename>___<XR extension>.
5163 So, to extract the scope, we search for the "___XR" extension,
5164 and then backtrack until we find the first "__". */
5165
5166 const char *name = TYPE_NAME (renaming_type);
5167 const char *suffix = strstr (name, "___XR");
5168 const char *last;
5169
5170 /* Now, backtrack a bit until we find the first "__". Start looking
5171 at suffix - 3, as the <rename> part is at least one character long. */
5172
5173 for (last = suffix - 3; last > name; last--)
5174 if (last[0] == '_' && last[1] == '_')
5175 break;
5176
5177 /* Make a copy of scope and return it. */
5178 return std::string (name, last);
5179 }
5180
5181 /* Return nonzero if NAME corresponds to a package name. */
5182
5183 static int
5184 is_package_name (const char *name)
5185 {
5186 /* Here, We take advantage of the fact that no symbols are generated
5187 for packages, while symbols are generated for each function.
5188 So the condition for NAME represent a package becomes equivalent
5189 to NAME not existing in our list of symbols. There is only one
5190 small complication with library-level functions (see below). */
5191
5192 /* If it is a function that has not been defined at library level,
5193 then we should be able to look it up in the symbols. */
5194 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5195 return 0;
5196
5197 /* Library-level function names start with "_ada_". See if function
5198 "_ada_" followed by NAME can be found. */
5199
5200 /* Do a quick check that NAME does not contain "__", since library-level
5201 functions names cannot contain "__" in them. */
5202 if (strstr (name, "__") != NULL)
5203 return 0;
5204
5205 std::string fun_name = string_printf ("_ada_%s", name);
5206
5207 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5208 }
5209
5210 /* Return nonzero if SYM corresponds to a renaming entity that is
5211 not visible from FUNCTION_NAME. */
5212
5213 static int
5214 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5215 {
5216 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5217 return 0;
5218
5219 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5220
5221 /* If the rename has been defined in a package, then it is visible. */
5222 if (is_package_name (scope.c_str ()))
5223 return 0;
5224
5225 /* Check that the rename is in the current function scope by checking
5226 that its name starts with SCOPE. */
5227
5228 /* If the function name starts with "_ada_", it means that it is
5229 a library-level function. Strip this prefix before doing the
5230 comparison, as the encoding for the renaming does not contain
5231 this prefix. */
5232 if (startswith (function_name, "_ada_"))
5233 function_name += 5;
5234
5235 return !startswith (function_name, scope.c_str ());
5236 }
5237
5238 /* Remove entries from SYMS that corresponds to a renaming entity that
5239 is not visible from the function associated with CURRENT_BLOCK or
5240 that is superfluous due to the presence of more specific renaming
5241 information. Places surviving symbols in the initial entries of
5242 SYMS and returns the number of surviving symbols.
5243
5244 Rationale:
5245 First, in cases where an object renaming is implemented as a
5246 reference variable, GNAT may produce both the actual reference
5247 variable and the renaming encoding. In this case, we discard the
5248 latter.
5249
5250 Second, GNAT emits a type following a specified encoding for each renaming
5251 entity. Unfortunately, STABS currently does not support the definition
5252 of types that are local to a given lexical block, so all renamings types
5253 are emitted at library level. As a consequence, if an application
5254 contains two renaming entities using the same name, and a user tries to
5255 print the value of one of these entities, the result of the ada symbol
5256 lookup will also contain the wrong renaming type.
5257
5258 This function partially covers for this limitation by attempting to
5259 remove from the SYMS list renaming symbols that should be visible
5260 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5261 method with the current information available. The implementation
5262 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5263
5264 - When the user tries to print a rename in a function while there
5265 is another rename entity defined in a package: Normally, the
5266 rename in the function has precedence over the rename in the
5267 package, so the latter should be removed from the list. This is
5268 currently not the case.
5269
5270 - This function will incorrectly remove valid renames if
5271 the CURRENT_BLOCK corresponds to a function which symbol name
5272 has been changed by an "Export" pragma. As a consequence,
5273 the user will be unable to print such rename entities. */
5274
5275 static int
5276 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5277 const struct block *current_block)
5278 {
5279 struct symbol *current_function;
5280 const char *current_function_name;
5281 int i;
5282 int is_new_style_renaming;
5283
5284 /* If there is both a renaming foo___XR... encoded as a variable and
5285 a simple variable foo in the same block, discard the latter.
5286 First, zero out such symbols, then compress. */
5287 is_new_style_renaming = 0;
5288 for (i = 0; i < syms->size (); i += 1)
5289 {
5290 struct symbol *sym = (*syms)[i].symbol;
5291 const struct block *block = (*syms)[i].block;
5292 const char *name;
5293 const char *suffix;
5294
5295 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5296 continue;
5297 name = SYMBOL_LINKAGE_NAME (sym);
5298 suffix = strstr (name, "___XR");
5299
5300 if (suffix != NULL)
5301 {
5302 int name_len = suffix - name;
5303 int j;
5304
5305 is_new_style_renaming = 1;
5306 for (j = 0; j < syms->size (); j += 1)
5307 if (i != j && (*syms)[j].symbol != NULL
5308 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5309 name_len) == 0
5310 && block == (*syms)[j].block)
5311 (*syms)[j].symbol = NULL;
5312 }
5313 }
5314 if (is_new_style_renaming)
5315 {
5316 int j, k;
5317
5318 for (j = k = 0; j < syms->size (); j += 1)
5319 if ((*syms)[j].symbol != NULL)
5320 {
5321 (*syms)[k] = (*syms)[j];
5322 k += 1;
5323 }
5324 return k;
5325 }
5326
5327 /* Extract the function name associated to CURRENT_BLOCK.
5328 Abort if unable to do so. */
5329
5330 if (current_block == NULL)
5331 return syms->size ();
5332
5333 current_function = block_linkage_function (current_block);
5334 if (current_function == NULL)
5335 return syms->size ();
5336
5337 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5338 if (current_function_name == NULL)
5339 return syms->size ();
5340
5341 /* Check each of the symbols, and remove it from the list if it is
5342 a type corresponding to a renaming that is out of the scope of
5343 the current block. */
5344
5345 i = 0;
5346 while (i < syms->size ())
5347 {
5348 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5349 == ADA_OBJECT_RENAMING
5350 && old_renaming_is_invisible ((*syms)[i].symbol,
5351 current_function_name))
5352 syms->erase (syms->begin () + i);
5353 else
5354 i += 1;
5355 }
5356
5357 return syms->size ();
5358 }
5359
5360 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5361 whose name and domain match NAME and DOMAIN respectively.
5362 If no match was found, then extend the search to "enclosing"
5363 routines (in other words, if we're inside a nested function,
5364 search the symbols defined inside the enclosing functions).
5365 If WILD_MATCH_P is nonzero, perform the naming matching in
5366 "wild" mode (see function "wild_match" for more info).
5367
5368 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5369
5370 static void
5371 ada_add_local_symbols (struct obstack *obstackp,
5372 const lookup_name_info &lookup_name,
5373 const struct block *block, domain_enum domain)
5374 {
5375 int block_depth = 0;
5376
5377 while (block != NULL)
5378 {
5379 block_depth += 1;
5380 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5381
5382 /* If we found a non-function match, assume that's the one. */
5383 if (is_nonfunction (defns_collected (obstackp, 0),
5384 num_defns_collected (obstackp)))
5385 return;
5386
5387 block = BLOCK_SUPERBLOCK (block);
5388 }
5389
5390 /* If no luck so far, try to find NAME as a local symbol in some lexically
5391 enclosing subprogram. */
5392 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5393 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5394 }
5395
5396 /* An object of this type is used as the user_data argument when
5397 calling the map_matching_symbols method. */
5398
5399 struct match_data
5400 {
5401 struct objfile *objfile;
5402 struct obstack *obstackp;
5403 struct symbol *arg_sym;
5404 int found_sym;
5405 };
5406
5407 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5408 to a list of symbols. DATA0 is a pointer to a struct match_data *
5409 containing the obstack that collects the symbol list, the file that SYM
5410 must come from, a flag indicating whether a non-argument symbol has
5411 been found in the current block, and the last argument symbol
5412 passed in SYM within the current block (if any). When SYM is null,
5413 marking the end of a block, the argument symbol is added if no
5414 other has been found. */
5415
5416 static int
5417 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5418 {
5419 struct match_data *data = (struct match_data *) data0;
5420
5421 if (sym == NULL)
5422 {
5423 if (!data->found_sym && data->arg_sym != NULL)
5424 add_defn_to_vec (data->obstackp,
5425 fixup_symbol_section (data->arg_sym, data->objfile),
5426 block);
5427 data->found_sym = 0;
5428 data->arg_sym = NULL;
5429 }
5430 else
5431 {
5432 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5433 return 0;
5434 else if (SYMBOL_IS_ARGUMENT (sym))
5435 data->arg_sym = sym;
5436 else
5437 {
5438 data->found_sym = 1;
5439 add_defn_to_vec (data->obstackp,
5440 fixup_symbol_section (sym, data->objfile),
5441 block);
5442 }
5443 }
5444 return 0;
5445 }
5446
5447 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5448 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5449 symbols to OBSTACKP. Return whether we found such symbols. */
5450
5451 static int
5452 ada_add_block_renamings (struct obstack *obstackp,
5453 const struct block *block,
5454 const lookup_name_info &lookup_name,
5455 domain_enum domain)
5456 {
5457 struct using_direct *renaming;
5458 int defns_mark = num_defns_collected (obstackp);
5459
5460 symbol_name_matcher_ftype *name_match
5461 = ada_get_symbol_name_matcher (lookup_name);
5462
5463 for (renaming = block_using (block);
5464 renaming != NULL;
5465 renaming = renaming->next)
5466 {
5467 const char *r_name;
5468
5469 /* Avoid infinite recursions: skip this renaming if we are actually
5470 already traversing it.
5471
5472 Currently, symbol lookup in Ada don't use the namespace machinery from
5473 C++/Fortran support: skip namespace imports that use them. */
5474 if (renaming->searched
5475 || (renaming->import_src != NULL
5476 && renaming->import_src[0] != '\0')
5477 || (renaming->import_dest != NULL
5478 && renaming->import_dest[0] != '\0'))
5479 continue;
5480 renaming->searched = 1;
5481
5482 /* TODO: here, we perform another name-based symbol lookup, which can
5483 pull its own multiple overloads. In theory, we should be able to do
5484 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5485 not a simple name. But in order to do this, we would need to enhance
5486 the DWARF reader to associate a symbol to this renaming, instead of a
5487 name. So, for now, we do something simpler: re-use the C++/Fortran
5488 namespace machinery. */
5489 r_name = (renaming->alias != NULL
5490 ? renaming->alias
5491 : renaming->declaration);
5492 if (name_match (r_name, lookup_name, NULL))
5493 {
5494 lookup_name_info decl_lookup_name (renaming->declaration,
5495 lookup_name.match_type ());
5496 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5497 1, NULL);
5498 }
5499 renaming->searched = 0;
5500 }
5501 return num_defns_collected (obstackp) != defns_mark;
5502 }
5503
5504 /* Implements compare_names, but only applying the comparision using
5505 the given CASING. */
5506
5507 static int
5508 compare_names_with_case (const char *string1, const char *string2,
5509 enum case_sensitivity casing)
5510 {
5511 while (*string1 != '\0' && *string2 != '\0')
5512 {
5513 char c1, c2;
5514
5515 if (isspace (*string1) || isspace (*string2))
5516 return strcmp_iw_ordered (string1, string2);
5517
5518 if (casing == case_sensitive_off)
5519 {
5520 c1 = tolower (*string1);
5521 c2 = tolower (*string2);
5522 }
5523 else
5524 {
5525 c1 = *string1;
5526 c2 = *string2;
5527 }
5528 if (c1 != c2)
5529 break;
5530
5531 string1 += 1;
5532 string2 += 1;
5533 }
5534
5535 switch (*string1)
5536 {
5537 case '(':
5538 return strcmp_iw_ordered (string1, string2);
5539 case '_':
5540 if (*string2 == '\0')
5541 {
5542 if (is_name_suffix (string1))
5543 return 0;
5544 else
5545 return 1;
5546 }
5547 /* FALLTHROUGH */
5548 default:
5549 if (*string2 == '(')
5550 return strcmp_iw_ordered (string1, string2);
5551 else
5552 {
5553 if (casing == case_sensitive_off)
5554 return tolower (*string1) - tolower (*string2);
5555 else
5556 return *string1 - *string2;
5557 }
5558 }
5559 }
5560
5561 /* Compare STRING1 to STRING2, with results as for strcmp.
5562 Compatible with strcmp_iw_ordered in that...
5563
5564 strcmp_iw_ordered (STRING1, STRING2) <= 0
5565
5566 ... implies...
5567
5568 compare_names (STRING1, STRING2) <= 0
5569
5570 (they may differ as to what symbols compare equal). */
5571
5572 static int
5573 compare_names (const char *string1, const char *string2)
5574 {
5575 int result;
5576
5577 /* Similar to what strcmp_iw_ordered does, we need to perform
5578 a case-insensitive comparison first, and only resort to
5579 a second, case-sensitive, comparison if the first one was
5580 not sufficient to differentiate the two strings. */
5581
5582 result = compare_names_with_case (string1, string2, case_sensitive_off);
5583 if (result == 0)
5584 result = compare_names_with_case (string1, string2, case_sensitive_on);
5585
5586 return result;
5587 }
5588
5589 /* Convenience function to get at the Ada encoded lookup name for
5590 LOOKUP_NAME, as a C string. */
5591
5592 static const char *
5593 ada_lookup_name (const lookup_name_info &lookup_name)
5594 {
5595 return lookup_name.ada ().lookup_name ().c_str ();
5596 }
5597
5598 /* Add to OBSTACKP all non-local symbols whose name and domain match
5599 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5600 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5601 symbols otherwise. */
5602
5603 static void
5604 add_nonlocal_symbols (struct obstack *obstackp,
5605 const lookup_name_info &lookup_name,
5606 domain_enum domain, int global)
5607 {
5608 struct compunit_symtab *cu;
5609 struct match_data data;
5610
5611 memset (&data, 0, sizeof data);
5612 data.obstackp = obstackp;
5613
5614 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5615
5616 for (objfile *objfile : all_objfiles (current_program_space))
5617 {
5618 data.objfile = objfile;
5619
5620 if (is_wild_match)
5621 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5622 domain, global,
5623 aux_add_nonlocal_symbols, &data,
5624 symbol_name_match_type::WILD,
5625 NULL);
5626 else
5627 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5628 domain, global,
5629 aux_add_nonlocal_symbols, &data,
5630 symbol_name_match_type::FULL,
5631 compare_names);
5632
5633 ALL_OBJFILE_COMPUNITS (objfile, cu)
5634 {
5635 const struct block *global_block
5636 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5637
5638 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5639 domain))
5640 data.found_sym = 1;
5641 }
5642 }
5643
5644 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5645 {
5646 const char *name = ada_lookup_name (lookup_name);
5647 std::string name1 = std::string ("<_ada_") + name + '>';
5648
5649 for (objfile *objfile : all_objfiles (current_program_space))
5650 {
5651 data.objfile = objfile;
5652 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5653 domain, global,
5654 aux_add_nonlocal_symbols,
5655 &data,
5656 symbol_name_match_type::FULL,
5657 compare_names);
5658 }
5659 }
5660 }
5661
5662 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5663 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5664 returning the number of matches. Add these to OBSTACKP.
5665
5666 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5667 symbol match within the nest of blocks whose innermost member is BLOCK,
5668 is the one match returned (no other matches in that or
5669 enclosing blocks is returned). If there are any matches in or
5670 surrounding BLOCK, then these alone are returned.
5671
5672 Names prefixed with "standard__" are handled specially:
5673 "standard__" is first stripped off (by the lookup_name
5674 constructor), and only static and global symbols are searched.
5675
5676 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5677 to lookup global symbols. */
5678
5679 static void
5680 ada_add_all_symbols (struct obstack *obstackp,
5681 const struct block *block,
5682 const lookup_name_info &lookup_name,
5683 domain_enum domain,
5684 int full_search,
5685 int *made_global_lookup_p)
5686 {
5687 struct symbol *sym;
5688
5689 if (made_global_lookup_p)
5690 *made_global_lookup_p = 0;
5691
5692 /* Special case: If the user specifies a symbol name inside package
5693 Standard, do a non-wild matching of the symbol name without
5694 the "standard__" prefix. This was primarily introduced in order
5695 to allow the user to specifically access the standard exceptions
5696 using, for instance, Standard.Constraint_Error when Constraint_Error
5697 is ambiguous (due to the user defining its own Constraint_Error
5698 entity inside its program). */
5699 if (lookup_name.ada ().standard_p ())
5700 block = NULL;
5701
5702 /* Check the non-global symbols. If we have ANY match, then we're done. */
5703
5704 if (block != NULL)
5705 {
5706 if (full_search)
5707 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5708 else
5709 {
5710 /* In the !full_search case we're are being called by
5711 ada_iterate_over_symbols, and we don't want to search
5712 superblocks. */
5713 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5714 }
5715 if (num_defns_collected (obstackp) > 0 || !full_search)
5716 return;
5717 }
5718
5719 /* No non-global symbols found. Check our cache to see if we have
5720 already performed this search before. If we have, then return
5721 the same result. */
5722
5723 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5724 domain, &sym, &block))
5725 {
5726 if (sym != NULL)
5727 add_defn_to_vec (obstackp, sym, block);
5728 return;
5729 }
5730
5731 if (made_global_lookup_p)
5732 *made_global_lookup_p = 1;
5733
5734 /* Search symbols from all global blocks. */
5735
5736 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5737
5738 /* Now add symbols from all per-file blocks if we've gotten no hits
5739 (not strictly correct, but perhaps better than an error). */
5740
5741 if (num_defns_collected (obstackp) == 0)
5742 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5743 }
5744
5745 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5746 is non-zero, enclosing scope and in global scopes, returning the number of
5747 matches.
5748 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5749 found and the blocks and symbol tables (if any) in which they were
5750 found.
5751
5752 When full_search is non-zero, any non-function/non-enumeral
5753 symbol match within the nest of blocks whose innermost member is BLOCK,
5754 is the one match returned (no other matches in that or
5755 enclosing blocks is returned). If there are any matches in or
5756 surrounding BLOCK, then these alone are returned.
5757
5758 Names prefixed with "standard__" are handled specially: "standard__"
5759 is first stripped off, and only static and global symbols are searched. */
5760
5761 static int
5762 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5763 const struct block *block,
5764 domain_enum domain,
5765 std::vector<struct block_symbol> *results,
5766 int full_search)
5767 {
5768 int syms_from_global_search;
5769 int ndefns;
5770 auto_obstack obstack;
5771
5772 ada_add_all_symbols (&obstack, block, lookup_name,
5773 domain, full_search, &syms_from_global_search);
5774
5775 ndefns = num_defns_collected (&obstack);
5776
5777 struct block_symbol *base = defns_collected (&obstack, 1);
5778 for (int i = 0; i < ndefns; ++i)
5779 results->push_back (base[i]);
5780
5781 ndefns = remove_extra_symbols (results);
5782
5783 if (ndefns == 0 && full_search && syms_from_global_search)
5784 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5785
5786 if (ndefns == 1 && full_search && syms_from_global_search)
5787 cache_symbol (ada_lookup_name (lookup_name), domain,
5788 (*results)[0].symbol, (*results)[0].block);
5789
5790 ndefns = remove_irrelevant_renamings (results, block);
5791
5792 return ndefns;
5793 }
5794
5795 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5796 in global scopes, returning the number of matches, and filling *RESULTS
5797 with (SYM,BLOCK) tuples.
5798
5799 See ada_lookup_symbol_list_worker for further details. */
5800
5801 int
5802 ada_lookup_symbol_list (const char *name, const struct block *block,
5803 domain_enum domain,
5804 std::vector<struct block_symbol> *results)
5805 {
5806 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5807 lookup_name_info lookup_name (name, name_match_type);
5808
5809 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5810 }
5811
5812 /* Implementation of the la_iterate_over_symbols method. */
5813
5814 static void
5815 ada_iterate_over_symbols
5816 (const struct block *block, const lookup_name_info &name,
5817 domain_enum domain,
5818 gdb::function_view<symbol_found_callback_ftype> callback)
5819 {
5820 int ndefs, i;
5821 std::vector<struct block_symbol> results;
5822
5823 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5824
5825 for (i = 0; i < ndefs; ++i)
5826 {
5827 if (!callback (&results[i]))
5828 break;
5829 }
5830 }
5831
5832 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5833 to 1, but choosing the first symbol found if there are multiple
5834 choices.
5835
5836 The result is stored in *INFO, which must be non-NULL.
5837 If no match is found, INFO->SYM is set to NULL. */
5838
5839 void
5840 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5841 domain_enum domain,
5842 struct block_symbol *info)
5843 {
5844 /* Since we already have an encoded name, wrap it in '<>' to force a
5845 verbatim match. Otherwise, if the name happens to not look like
5846 an encoded name (because it doesn't include a "__"),
5847 ada_lookup_name_info would re-encode/fold it again, and that
5848 would e.g., incorrectly lowercase object renaming names like
5849 "R28b" -> "r28b". */
5850 std::string verbatim = std::string ("<") + name + '>';
5851
5852 gdb_assert (info != NULL);
5853 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5854 }
5855
5856 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5857 scope and in global scopes, or NULL if none. NAME is folded and
5858 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5859 choosing the first symbol if there are multiple choices.
5860 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5861
5862 struct block_symbol
5863 ada_lookup_symbol (const char *name, const struct block *block0,
5864 domain_enum domain, int *is_a_field_of_this)
5865 {
5866 if (is_a_field_of_this != NULL)
5867 *is_a_field_of_this = 0;
5868
5869 std::vector<struct block_symbol> candidates;
5870 int n_candidates;
5871
5872 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5873
5874 if (n_candidates == 0)
5875 return {};
5876
5877 block_symbol info = candidates[0];
5878 info.symbol = fixup_symbol_section (info.symbol, NULL);
5879 return info;
5880 }
5881
5882 static struct block_symbol
5883 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5884 const char *name,
5885 const struct block *block,
5886 const domain_enum domain)
5887 {
5888 struct block_symbol sym;
5889
5890 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5891 if (sym.symbol != NULL)
5892 return sym;
5893
5894 /* If we haven't found a match at this point, try the primitive
5895 types. In other languages, this search is performed before
5896 searching for global symbols in order to short-circuit that
5897 global-symbol search if it happens that the name corresponds
5898 to a primitive type. But we cannot do the same in Ada, because
5899 it is perfectly legitimate for a program to declare a type which
5900 has the same name as a standard type. If looking up a type in
5901 that situation, we have traditionally ignored the primitive type
5902 in favor of user-defined types. This is why, unlike most other
5903 languages, we search the primitive types this late and only after
5904 having searched the global symbols without success. */
5905
5906 if (domain == VAR_DOMAIN)
5907 {
5908 struct gdbarch *gdbarch;
5909
5910 if (block == NULL)
5911 gdbarch = target_gdbarch ();
5912 else
5913 gdbarch = block_gdbarch (block);
5914 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5915 if (sym.symbol != NULL)
5916 return sym;
5917 }
5918
5919 return (struct block_symbol) {NULL, NULL};
5920 }
5921
5922
5923 /* True iff STR is a possible encoded suffix of a normal Ada name
5924 that is to be ignored for matching purposes. Suffixes of parallel
5925 names (e.g., XVE) are not included here. Currently, the possible suffixes
5926 are given by any of the regular expressions:
5927
5928 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5929 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5930 TKB [subprogram suffix for task bodies]
5931 _E[0-9]+[bs]$ [protected object entry suffixes]
5932 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5933
5934 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5935 match is performed. This sequence is used to differentiate homonyms,
5936 is an optional part of a valid name suffix. */
5937
5938 static int
5939 is_name_suffix (const char *str)
5940 {
5941 int k;
5942 const char *matching;
5943 const int len = strlen (str);
5944
5945 /* Skip optional leading __[0-9]+. */
5946
5947 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5948 {
5949 str += 3;
5950 while (isdigit (str[0]))
5951 str += 1;
5952 }
5953
5954 /* [.$][0-9]+ */
5955
5956 if (str[0] == '.' || str[0] == '$')
5957 {
5958 matching = str + 1;
5959 while (isdigit (matching[0]))
5960 matching += 1;
5961 if (matching[0] == '\0')
5962 return 1;
5963 }
5964
5965 /* ___[0-9]+ */
5966
5967 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5968 {
5969 matching = str + 3;
5970 while (isdigit (matching[0]))
5971 matching += 1;
5972 if (matching[0] == '\0')
5973 return 1;
5974 }
5975
5976 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5977
5978 if (strcmp (str, "TKB") == 0)
5979 return 1;
5980
5981 #if 0
5982 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5983 with a N at the end. Unfortunately, the compiler uses the same
5984 convention for other internal types it creates. So treating
5985 all entity names that end with an "N" as a name suffix causes
5986 some regressions. For instance, consider the case of an enumerated
5987 type. To support the 'Image attribute, it creates an array whose
5988 name ends with N.
5989 Having a single character like this as a suffix carrying some
5990 information is a bit risky. Perhaps we should change the encoding
5991 to be something like "_N" instead. In the meantime, do not do
5992 the following check. */
5993 /* Protected Object Subprograms */
5994 if (len == 1 && str [0] == 'N')
5995 return 1;
5996 #endif
5997
5998 /* _E[0-9]+[bs]$ */
5999 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6000 {
6001 matching = str + 3;
6002 while (isdigit (matching[0]))
6003 matching += 1;
6004 if ((matching[0] == 'b' || matching[0] == 's')
6005 && matching [1] == '\0')
6006 return 1;
6007 }
6008
6009 /* ??? We should not modify STR directly, as we are doing below. This
6010 is fine in this case, but may become problematic later if we find
6011 that this alternative did not work, and want to try matching
6012 another one from the begining of STR. Since we modified it, we
6013 won't be able to find the begining of the string anymore! */
6014 if (str[0] == 'X')
6015 {
6016 str += 1;
6017 while (str[0] != '_' && str[0] != '\0')
6018 {
6019 if (str[0] != 'n' && str[0] != 'b')
6020 return 0;
6021 str += 1;
6022 }
6023 }
6024
6025 if (str[0] == '\000')
6026 return 1;
6027
6028 if (str[0] == '_')
6029 {
6030 if (str[1] != '_' || str[2] == '\000')
6031 return 0;
6032 if (str[2] == '_')
6033 {
6034 if (strcmp (str + 3, "JM") == 0)
6035 return 1;
6036 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6037 the LJM suffix in favor of the JM one. But we will
6038 still accept LJM as a valid suffix for a reasonable
6039 amount of time, just to allow ourselves to debug programs
6040 compiled using an older version of GNAT. */
6041 if (strcmp (str + 3, "LJM") == 0)
6042 return 1;
6043 if (str[3] != 'X')
6044 return 0;
6045 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6046 || str[4] == 'U' || str[4] == 'P')
6047 return 1;
6048 if (str[4] == 'R' && str[5] != 'T')
6049 return 1;
6050 return 0;
6051 }
6052 if (!isdigit (str[2]))
6053 return 0;
6054 for (k = 3; str[k] != '\0'; k += 1)
6055 if (!isdigit (str[k]) && str[k] != '_')
6056 return 0;
6057 return 1;
6058 }
6059 if (str[0] == '$' && isdigit (str[1]))
6060 {
6061 for (k = 2; str[k] != '\0'; k += 1)
6062 if (!isdigit (str[k]) && str[k] != '_')
6063 return 0;
6064 return 1;
6065 }
6066 return 0;
6067 }
6068
6069 /* Return non-zero if the string starting at NAME and ending before
6070 NAME_END contains no capital letters. */
6071
6072 static int
6073 is_valid_name_for_wild_match (const char *name0)
6074 {
6075 const char *decoded_name = ada_decode (name0);
6076 int i;
6077
6078 /* If the decoded name starts with an angle bracket, it means that
6079 NAME0 does not follow the GNAT encoding format. It should then
6080 not be allowed as a possible wild match. */
6081 if (decoded_name[0] == '<')
6082 return 0;
6083
6084 for (i=0; decoded_name[i] != '\0'; i++)
6085 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6086 return 0;
6087
6088 return 1;
6089 }
6090
6091 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6092 that could start a simple name. Assumes that *NAMEP points into
6093 the string beginning at NAME0. */
6094
6095 static int
6096 advance_wild_match (const char **namep, const char *name0, int target0)
6097 {
6098 const char *name = *namep;
6099
6100 while (1)
6101 {
6102 int t0, t1;
6103
6104 t0 = *name;
6105 if (t0 == '_')
6106 {
6107 t1 = name[1];
6108 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6109 {
6110 name += 1;
6111 if (name == name0 + 5 && startswith (name0, "_ada"))
6112 break;
6113 else
6114 name += 1;
6115 }
6116 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6117 || name[2] == target0))
6118 {
6119 name += 2;
6120 break;
6121 }
6122 else
6123 return 0;
6124 }
6125 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6126 name += 1;
6127 else
6128 return 0;
6129 }
6130
6131 *namep = name;
6132 return 1;
6133 }
6134
6135 /* Return true iff NAME encodes a name of the form prefix.PATN.
6136 Ignores any informational suffixes of NAME (i.e., for which
6137 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6138 simple name. */
6139
6140 static bool
6141 wild_match (const char *name, const char *patn)
6142 {
6143 const char *p;
6144 const char *name0 = name;
6145
6146 while (1)
6147 {
6148 const char *match = name;
6149
6150 if (*name == *patn)
6151 {
6152 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6153 if (*p != *name)
6154 break;
6155 if (*p == '\0' && is_name_suffix (name))
6156 return match == name0 || is_valid_name_for_wild_match (name0);
6157
6158 if (name[-1] == '_')
6159 name -= 1;
6160 }
6161 if (!advance_wild_match (&name, name0, *patn))
6162 return false;
6163 }
6164 }
6165
6166 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6167 any trailing suffixes that encode debugging information or leading
6168 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6169 information that is ignored). */
6170
6171 static bool
6172 full_match (const char *sym_name, const char *search_name)
6173 {
6174 size_t search_name_len = strlen (search_name);
6175
6176 if (strncmp (sym_name, search_name, search_name_len) == 0
6177 && is_name_suffix (sym_name + search_name_len))
6178 return true;
6179
6180 if (startswith (sym_name, "_ada_")
6181 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6182 && is_name_suffix (sym_name + search_name_len + 5))
6183 return true;
6184
6185 return false;
6186 }
6187
6188 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6189 *defn_symbols, updating the list of symbols in OBSTACKP (if
6190 necessary). OBJFILE is the section containing BLOCK. */
6191
6192 static void
6193 ada_add_block_symbols (struct obstack *obstackp,
6194 const struct block *block,
6195 const lookup_name_info &lookup_name,
6196 domain_enum domain, struct objfile *objfile)
6197 {
6198 struct block_iterator iter;
6199 /* A matching argument symbol, if any. */
6200 struct symbol *arg_sym;
6201 /* Set true when we find a matching non-argument symbol. */
6202 int found_sym;
6203 struct symbol *sym;
6204
6205 arg_sym = NULL;
6206 found_sym = 0;
6207 for (sym = block_iter_match_first (block, lookup_name, &iter);
6208 sym != NULL;
6209 sym = block_iter_match_next (lookup_name, &iter))
6210 {
6211 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6212 SYMBOL_DOMAIN (sym), domain))
6213 {
6214 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6215 {
6216 if (SYMBOL_IS_ARGUMENT (sym))
6217 arg_sym = sym;
6218 else
6219 {
6220 found_sym = 1;
6221 add_defn_to_vec (obstackp,
6222 fixup_symbol_section (sym, objfile),
6223 block);
6224 }
6225 }
6226 }
6227 }
6228
6229 /* Handle renamings. */
6230
6231 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6232 found_sym = 1;
6233
6234 if (!found_sym && arg_sym != NULL)
6235 {
6236 add_defn_to_vec (obstackp,
6237 fixup_symbol_section (arg_sym, objfile),
6238 block);
6239 }
6240
6241 if (!lookup_name.ada ().wild_match_p ())
6242 {
6243 arg_sym = NULL;
6244 found_sym = 0;
6245 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6246 const char *name = ada_lookup_name.c_str ();
6247 size_t name_len = ada_lookup_name.size ();
6248
6249 ALL_BLOCK_SYMBOLS (block, iter, sym)
6250 {
6251 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6252 SYMBOL_DOMAIN (sym), domain))
6253 {
6254 int cmp;
6255
6256 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6257 if (cmp == 0)
6258 {
6259 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6260 if (cmp == 0)
6261 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6262 name_len);
6263 }
6264
6265 if (cmp == 0
6266 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6267 {
6268 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6269 {
6270 if (SYMBOL_IS_ARGUMENT (sym))
6271 arg_sym = sym;
6272 else
6273 {
6274 found_sym = 1;
6275 add_defn_to_vec (obstackp,
6276 fixup_symbol_section (sym, objfile),
6277 block);
6278 }
6279 }
6280 }
6281 }
6282 }
6283
6284 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6285 They aren't parameters, right? */
6286 if (!found_sym && arg_sym != NULL)
6287 {
6288 add_defn_to_vec (obstackp,
6289 fixup_symbol_section (arg_sym, objfile),
6290 block);
6291 }
6292 }
6293 }
6294 \f
6295
6296 /* Symbol Completion */
6297
6298 /* See symtab.h. */
6299
6300 bool
6301 ada_lookup_name_info::matches
6302 (const char *sym_name,
6303 symbol_name_match_type match_type,
6304 completion_match_result *comp_match_res) const
6305 {
6306 bool match = false;
6307 const char *text = m_encoded_name.c_str ();
6308 size_t text_len = m_encoded_name.size ();
6309
6310 /* First, test against the fully qualified name of the symbol. */
6311
6312 if (strncmp (sym_name, text, text_len) == 0)
6313 match = true;
6314
6315 if (match && !m_encoded_p)
6316 {
6317 /* One needed check before declaring a positive match is to verify
6318 that iff we are doing a verbatim match, the decoded version
6319 of the symbol name starts with '<'. Otherwise, this symbol name
6320 is not a suitable completion. */
6321 const char *sym_name_copy = sym_name;
6322 bool has_angle_bracket;
6323
6324 sym_name = ada_decode (sym_name);
6325 has_angle_bracket = (sym_name[0] == '<');
6326 match = (has_angle_bracket == m_verbatim_p);
6327 sym_name = sym_name_copy;
6328 }
6329
6330 if (match && !m_verbatim_p)
6331 {
6332 /* When doing non-verbatim match, another check that needs to
6333 be done is to verify that the potentially matching symbol name
6334 does not include capital letters, because the ada-mode would
6335 not be able to understand these symbol names without the
6336 angle bracket notation. */
6337 const char *tmp;
6338
6339 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6340 if (*tmp != '\0')
6341 match = false;
6342 }
6343
6344 /* Second: Try wild matching... */
6345
6346 if (!match && m_wild_match_p)
6347 {
6348 /* Since we are doing wild matching, this means that TEXT
6349 may represent an unqualified symbol name. We therefore must
6350 also compare TEXT against the unqualified name of the symbol. */
6351 sym_name = ada_unqualified_name (ada_decode (sym_name));
6352
6353 if (strncmp (sym_name, text, text_len) == 0)
6354 match = true;
6355 }
6356
6357 /* Finally: If we found a match, prepare the result to return. */
6358
6359 if (!match)
6360 return false;
6361
6362 if (comp_match_res != NULL)
6363 {
6364 std::string &match_str = comp_match_res->match.storage ();
6365
6366 if (!m_encoded_p)
6367 match_str = ada_decode (sym_name);
6368 else
6369 {
6370 if (m_verbatim_p)
6371 match_str = add_angle_brackets (sym_name);
6372 else
6373 match_str = sym_name;
6374
6375 }
6376
6377 comp_match_res->set_match (match_str.c_str ());
6378 }
6379
6380 return true;
6381 }
6382
6383 /* Add the list of possible symbol names completing TEXT to TRACKER.
6384 WORD is the entire command on which completion is made. */
6385
6386 static void
6387 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6388 complete_symbol_mode mode,
6389 symbol_name_match_type name_match_type,
6390 const char *text, const char *word,
6391 enum type_code code)
6392 {
6393 struct symbol *sym;
6394 struct compunit_symtab *s;
6395 const struct block *b, *surrounding_static_block = 0;
6396 struct block_iterator iter;
6397
6398 gdb_assert (code == TYPE_CODE_UNDEF);
6399
6400 lookup_name_info lookup_name (text, name_match_type, true);
6401
6402 /* First, look at the partial symtab symbols. */
6403 expand_symtabs_matching (NULL,
6404 lookup_name,
6405 NULL,
6406 NULL,
6407 ALL_DOMAIN);
6408
6409 /* At this point scan through the misc symbol vectors and add each
6410 symbol you find to the list. Eventually we want to ignore
6411 anything that isn't a text symbol (everything else will be
6412 handled by the psymtab code above). */
6413
6414 for (objfile *objfile : all_objfiles (current_program_space))
6415 {
6416 for (minimal_symbol *msymbol : objfile_msymbols (objfile))
6417 {
6418 QUIT;
6419
6420 if (completion_skip_symbol (mode, msymbol))
6421 continue;
6422
6423 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6424
6425 /* Ada minimal symbols won't have their language set to Ada. If
6426 we let completion_list_add_name compare using the
6427 default/C-like matcher, then when completing e.g., symbols in a
6428 package named "pck", we'd match internal Ada symbols like
6429 "pckS", which are invalid in an Ada expression, unless you wrap
6430 them in '<' '>' to request a verbatim match.
6431
6432 Unfortunately, some Ada encoded names successfully demangle as
6433 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6434 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6435 with the wrong language set. Paper over that issue here. */
6436 if (symbol_language == language_auto
6437 || symbol_language == language_cplus)
6438 symbol_language = language_ada;
6439
6440 completion_list_add_name (tracker,
6441 symbol_language,
6442 MSYMBOL_LINKAGE_NAME (msymbol),
6443 lookup_name, text, word);
6444 }
6445 }
6446
6447 /* Search upwards from currently selected frame (so that we can
6448 complete on local vars. */
6449
6450 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6451 {
6452 if (!BLOCK_SUPERBLOCK (b))
6453 surrounding_static_block = b; /* For elmin of dups */
6454
6455 ALL_BLOCK_SYMBOLS (b, iter, sym)
6456 {
6457 if (completion_skip_symbol (mode, sym))
6458 continue;
6459
6460 completion_list_add_name (tracker,
6461 SYMBOL_LANGUAGE (sym),
6462 SYMBOL_LINKAGE_NAME (sym),
6463 lookup_name, text, word);
6464 }
6465 }
6466
6467 /* Go through the symtabs and check the externs and statics for
6468 symbols which match. */
6469
6470 struct objfile *objfile;
6471 ALL_COMPUNITS (objfile, s)
6472 {
6473 QUIT;
6474 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6475 ALL_BLOCK_SYMBOLS (b, iter, sym)
6476 {
6477 if (completion_skip_symbol (mode, sym))
6478 continue;
6479
6480 completion_list_add_name (tracker,
6481 SYMBOL_LANGUAGE (sym),
6482 SYMBOL_LINKAGE_NAME (sym),
6483 lookup_name, text, word);
6484 }
6485 }
6486
6487 ALL_COMPUNITS (objfile, s)
6488 {
6489 QUIT;
6490 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6491 /* Don't do this block twice. */
6492 if (b == surrounding_static_block)
6493 continue;
6494 ALL_BLOCK_SYMBOLS (b, iter, sym)
6495 {
6496 if (completion_skip_symbol (mode, sym))
6497 continue;
6498
6499 completion_list_add_name (tracker,
6500 SYMBOL_LANGUAGE (sym),
6501 SYMBOL_LINKAGE_NAME (sym),
6502 lookup_name, text, word);
6503 }
6504 }
6505 }
6506
6507 /* Field Access */
6508
6509 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6510 for tagged types. */
6511
6512 static int
6513 ada_is_dispatch_table_ptr_type (struct type *type)
6514 {
6515 const char *name;
6516
6517 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6518 return 0;
6519
6520 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6521 if (name == NULL)
6522 return 0;
6523
6524 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6525 }
6526
6527 /* Return non-zero if TYPE is an interface tag. */
6528
6529 static int
6530 ada_is_interface_tag (struct type *type)
6531 {
6532 const char *name = TYPE_NAME (type);
6533
6534 if (name == NULL)
6535 return 0;
6536
6537 return (strcmp (name, "ada__tags__interface_tag") == 0);
6538 }
6539
6540 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6541 to be invisible to users. */
6542
6543 int
6544 ada_is_ignored_field (struct type *type, int field_num)
6545 {
6546 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6547 return 1;
6548
6549 /* Check the name of that field. */
6550 {
6551 const char *name = TYPE_FIELD_NAME (type, field_num);
6552
6553 /* Anonymous field names should not be printed.
6554 brobecker/2007-02-20: I don't think this can actually happen
6555 but we don't want to print the value of annonymous fields anyway. */
6556 if (name == NULL)
6557 return 1;
6558
6559 /* Normally, fields whose name start with an underscore ("_")
6560 are fields that have been internally generated by the compiler,
6561 and thus should not be printed. The "_parent" field is special,
6562 however: This is a field internally generated by the compiler
6563 for tagged types, and it contains the components inherited from
6564 the parent type. This field should not be printed as is, but
6565 should not be ignored either. */
6566 if (name[0] == '_' && !startswith (name, "_parent"))
6567 return 1;
6568 }
6569
6570 /* If this is the dispatch table of a tagged type or an interface tag,
6571 then ignore. */
6572 if (ada_is_tagged_type (type, 1)
6573 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6574 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6575 return 1;
6576
6577 /* Not a special field, so it should not be ignored. */
6578 return 0;
6579 }
6580
6581 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6582 pointer or reference type whose ultimate target has a tag field. */
6583
6584 int
6585 ada_is_tagged_type (struct type *type, int refok)
6586 {
6587 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6588 }
6589
6590 /* True iff TYPE represents the type of X'Tag */
6591
6592 int
6593 ada_is_tag_type (struct type *type)
6594 {
6595 type = ada_check_typedef (type);
6596
6597 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6598 return 0;
6599 else
6600 {
6601 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6602
6603 return (name != NULL
6604 && strcmp (name, "ada__tags__dispatch_table") == 0);
6605 }
6606 }
6607
6608 /* The type of the tag on VAL. */
6609
6610 struct type *
6611 ada_tag_type (struct value *val)
6612 {
6613 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6614 }
6615
6616 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6617 retired at Ada 05). */
6618
6619 static int
6620 is_ada95_tag (struct value *tag)
6621 {
6622 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6623 }
6624
6625 /* The value of the tag on VAL. */
6626
6627 struct value *
6628 ada_value_tag (struct value *val)
6629 {
6630 return ada_value_struct_elt (val, "_tag", 0);
6631 }
6632
6633 /* The value of the tag on the object of type TYPE whose contents are
6634 saved at VALADDR, if it is non-null, or is at memory address
6635 ADDRESS. */
6636
6637 static struct value *
6638 value_tag_from_contents_and_address (struct type *type,
6639 const gdb_byte *valaddr,
6640 CORE_ADDR address)
6641 {
6642 int tag_byte_offset;
6643 struct type *tag_type;
6644
6645 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6646 NULL, NULL, NULL))
6647 {
6648 const gdb_byte *valaddr1 = ((valaddr == NULL)
6649 ? NULL
6650 : valaddr + tag_byte_offset);
6651 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6652
6653 return value_from_contents_and_address (tag_type, valaddr1, address1);
6654 }
6655 return NULL;
6656 }
6657
6658 static struct type *
6659 type_from_tag (struct value *tag)
6660 {
6661 const char *type_name = ada_tag_name (tag);
6662
6663 if (type_name != NULL)
6664 return ada_find_any_type (ada_encode (type_name));
6665 return NULL;
6666 }
6667
6668 /* Given a value OBJ of a tagged type, return a value of this
6669 type at the base address of the object. The base address, as
6670 defined in Ada.Tags, it is the address of the primary tag of
6671 the object, and therefore where the field values of its full
6672 view can be fetched. */
6673
6674 struct value *
6675 ada_tag_value_at_base_address (struct value *obj)
6676 {
6677 struct value *val;
6678 LONGEST offset_to_top = 0;
6679 struct type *ptr_type, *obj_type;
6680 struct value *tag;
6681 CORE_ADDR base_address;
6682
6683 obj_type = value_type (obj);
6684
6685 /* It is the responsability of the caller to deref pointers. */
6686
6687 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6688 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6689 return obj;
6690
6691 tag = ada_value_tag (obj);
6692 if (!tag)
6693 return obj;
6694
6695 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6696
6697 if (is_ada95_tag (tag))
6698 return obj;
6699
6700 ptr_type = language_lookup_primitive_type
6701 (language_def (language_ada), target_gdbarch(), "storage_offset");
6702 ptr_type = lookup_pointer_type (ptr_type);
6703 val = value_cast (ptr_type, tag);
6704 if (!val)
6705 return obj;
6706
6707 /* It is perfectly possible that an exception be raised while
6708 trying to determine the base address, just like for the tag;
6709 see ada_tag_name for more details. We do not print the error
6710 message for the same reason. */
6711
6712 TRY
6713 {
6714 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6715 }
6716
6717 CATCH (e, RETURN_MASK_ERROR)
6718 {
6719 return obj;
6720 }
6721 END_CATCH
6722
6723 /* If offset is null, nothing to do. */
6724
6725 if (offset_to_top == 0)
6726 return obj;
6727
6728 /* -1 is a special case in Ada.Tags; however, what should be done
6729 is not quite clear from the documentation. So do nothing for
6730 now. */
6731
6732 if (offset_to_top == -1)
6733 return obj;
6734
6735 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6736 from the base address. This was however incompatible with
6737 C++ dispatch table: C++ uses a *negative* value to *add*
6738 to the base address. Ada's convention has therefore been
6739 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6740 use the same convention. Here, we support both cases by
6741 checking the sign of OFFSET_TO_TOP. */
6742
6743 if (offset_to_top > 0)
6744 offset_to_top = -offset_to_top;
6745
6746 base_address = value_address (obj) + offset_to_top;
6747 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6748
6749 /* Make sure that we have a proper tag at the new address.
6750 Otherwise, offset_to_top is bogus (which can happen when
6751 the object is not initialized yet). */
6752
6753 if (!tag)
6754 return obj;
6755
6756 obj_type = type_from_tag (tag);
6757
6758 if (!obj_type)
6759 return obj;
6760
6761 return value_from_contents_and_address (obj_type, NULL, base_address);
6762 }
6763
6764 /* Return the "ada__tags__type_specific_data" type. */
6765
6766 static struct type *
6767 ada_get_tsd_type (struct inferior *inf)
6768 {
6769 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6770
6771 if (data->tsd_type == 0)
6772 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6773 return data->tsd_type;
6774 }
6775
6776 /* Return the TSD (type-specific data) associated to the given TAG.
6777 TAG is assumed to be the tag of a tagged-type entity.
6778
6779 May return NULL if we are unable to get the TSD. */
6780
6781 static struct value *
6782 ada_get_tsd_from_tag (struct value *tag)
6783 {
6784 struct value *val;
6785 struct type *type;
6786
6787 /* First option: The TSD is simply stored as a field of our TAG.
6788 Only older versions of GNAT would use this format, but we have
6789 to test it first, because there are no visible markers for
6790 the current approach except the absence of that field. */
6791
6792 val = ada_value_struct_elt (tag, "tsd", 1);
6793 if (val)
6794 return val;
6795
6796 /* Try the second representation for the dispatch table (in which
6797 there is no explicit 'tsd' field in the referent of the tag pointer,
6798 and instead the tsd pointer is stored just before the dispatch
6799 table. */
6800
6801 type = ada_get_tsd_type (current_inferior());
6802 if (type == NULL)
6803 return NULL;
6804 type = lookup_pointer_type (lookup_pointer_type (type));
6805 val = value_cast (type, tag);
6806 if (val == NULL)
6807 return NULL;
6808 return value_ind (value_ptradd (val, -1));
6809 }
6810
6811 /* Given the TSD of a tag (type-specific data), return a string
6812 containing the name of the associated type.
6813
6814 The returned value is good until the next call. May return NULL
6815 if we are unable to determine the tag name. */
6816
6817 static char *
6818 ada_tag_name_from_tsd (struct value *tsd)
6819 {
6820 static char name[1024];
6821 char *p;
6822 struct value *val;
6823
6824 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6825 if (val == NULL)
6826 return NULL;
6827 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6828 for (p = name; *p != '\0'; p += 1)
6829 if (isalpha (*p))
6830 *p = tolower (*p);
6831 return name;
6832 }
6833
6834 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6835 a C string.
6836
6837 Return NULL if the TAG is not an Ada tag, or if we were unable to
6838 determine the name of that tag. The result is good until the next
6839 call. */
6840
6841 const char *
6842 ada_tag_name (struct value *tag)
6843 {
6844 char *name = NULL;
6845
6846 if (!ada_is_tag_type (value_type (tag)))
6847 return NULL;
6848
6849 /* It is perfectly possible that an exception be raised while trying
6850 to determine the TAG's name, even under normal circumstances:
6851 The associated variable may be uninitialized or corrupted, for
6852 instance. We do not let any exception propagate past this point.
6853 instead we return NULL.
6854
6855 We also do not print the error message either (which often is very
6856 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6857 the caller print a more meaningful message if necessary. */
6858 TRY
6859 {
6860 struct value *tsd = ada_get_tsd_from_tag (tag);
6861
6862 if (tsd != NULL)
6863 name = ada_tag_name_from_tsd (tsd);
6864 }
6865 CATCH (e, RETURN_MASK_ERROR)
6866 {
6867 }
6868 END_CATCH
6869
6870 return name;
6871 }
6872
6873 /* The parent type of TYPE, or NULL if none. */
6874
6875 struct type *
6876 ada_parent_type (struct type *type)
6877 {
6878 int i;
6879
6880 type = ada_check_typedef (type);
6881
6882 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6883 return NULL;
6884
6885 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6886 if (ada_is_parent_field (type, i))
6887 {
6888 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6889
6890 /* If the _parent field is a pointer, then dereference it. */
6891 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6892 parent_type = TYPE_TARGET_TYPE (parent_type);
6893 /* If there is a parallel XVS type, get the actual base type. */
6894 parent_type = ada_get_base_type (parent_type);
6895
6896 return ada_check_typedef (parent_type);
6897 }
6898
6899 return NULL;
6900 }
6901
6902 /* True iff field number FIELD_NUM of structure type TYPE contains the
6903 parent-type (inherited) fields of a derived type. Assumes TYPE is
6904 a structure type with at least FIELD_NUM+1 fields. */
6905
6906 int
6907 ada_is_parent_field (struct type *type, int field_num)
6908 {
6909 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6910
6911 return (name != NULL
6912 && (startswith (name, "PARENT")
6913 || startswith (name, "_parent")));
6914 }
6915
6916 /* True iff field number FIELD_NUM of structure type TYPE is a
6917 transparent wrapper field (which should be silently traversed when doing
6918 field selection and flattened when printing). Assumes TYPE is a
6919 structure type with at least FIELD_NUM+1 fields. Such fields are always
6920 structures. */
6921
6922 int
6923 ada_is_wrapper_field (struct type *type, int field_num)
6924 {
6925 const char *name = TYPE_FIELD_NAME (type, field_num);
6926
6927 if (name != NULL && strcmp (name, "RETVAL") == 0)
6928 {
6929 /* This happens in functions with "out" or "in out" parameters
6930 which are passed by copy. For such functions, GNAT describes
6931 the function's return type as being a struct where the return
6932 value is in a field called RETVAL, and where the other "out"
6933 or "in out" parameters are fields of that struct. This is not
6934 a wrapper. */
6935 return 0;
6936 }
6937
6938 return (name != NULL
6939 && (startswith (name, "PARENT")
6940 || strcmp (name, "REP") == 0
6941 || startswith (name, "_parent")
6942 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6943 }
6944
6945 /* True iff field number FIELD_NUM of structure or union type TYPE
6946 is a variant wrapper. Assumes TYPE is a structure type with at least
6947 FIELD_NUM+1 fields. */
6948
6949 int
6950 ada_is_variant_part (struct type *type, int field_num)
6951 {
6952 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6953
6954 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6955 || (is_dynamic_field (type, field_num)
6956 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6957 == TYPE_CODE_UNION)));
6958 }
6959
6960 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6961 whose discriminants are contained in the record type OUTER_TYPE,
6962 returns the type of the controlling discriminant for the variant.
6963 May return NULL if the type could not be found. */
6964
6965 struct type *
6966 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6967 {
6968 const char *name = ada_variant_discrim_name (var_type);
6969
6970 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6971 }
6972
6973 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6974 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6975 represents a 'when others' clause; otherwise 0. */
6976
6977 int
6978 ada_is_others_clause (struct type *type, int field_num)
6979 {
6980 const char *name = TYPE_FIELD_NAME (type, field_num);
6981
6982 return (name != NULL && name[0] == 'O');
6983 }
6984
6985 /* Assuming that TYPE0 is the type of the variant part of a record,
6986 returns the name of the discriminant controlling the variant.
6987 The value is valid until the next call to ada_variant_discrim_name. */
6988
6989 const char *
6990 ada_variant_discrim_name (struct type *type0)
6991 {
6992 static char *result = NULL;
6993 static size_t result_len = 0;
6994 struct type *type;
6995 const char *name;
6996 const char *discrim_end;
6997 const char *discrim_start;
6998
6999 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7000 type = TYPE_TARGET_TYPE (type0);
7001 else
7002 type = type0;
7003
7004 name = ada_type_name (type);
7005
7006 if (name == NULL || name[0] == '\000')
7007 return "";
7008
7009 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7010 discrim_end -= 1)
7011 {
7012 if (startswith (discrim_end, "___XVN"))
7013 break;
7014 }
7015 if (discrim_end == name)
7016 return "";
7017
7018 for (discrim_start = discrim_end; discrim_start != name + 3;
7019 discrim_start -= 1)
7020 {
7021 if (discrim_start == name + 1)
7022 return "";
7023 if ((discrim_start > name + 3
7024 && startswith (discrim_start - 3, "___"))
7025 || discrim_start[-1] == '.')
7026 break;
7027 }
7028
7029 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7030 strncpy (result, discrim_start, discrim_end - discrim_start);
7031 result[discrim_end - discrim_start] = '\0';
7032 return result;
7033 }
7034
7035 /* Scan STR for a subtype-encoded number, beginning at position K.
7036 Put the position of the character just past the number scanned in
7037 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7038 Return 1 if there was a valid number at the given position, and 0
7039 otherwise. A "subtype-encoded" number consists of the absolute value
7040 in decimal, followed by the letter 'm' to indicate a negative number.
7041 Assumes 0m does not occur. */
7042
7043 int
7044 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7045 {
7046 ULONGEST RU;
7047
7048 if (!isdigit (str[k]))
7049 return 0;
7050
7051 /* Do it the hard way so as not to make any assumption about
7052 the relationship of unsigned long (%lu scan format code) and
7053 LONGEST. */
7054 RU = 0;
7055 while (isdigit (str[k]))
7056 {
7057 RU = RU * 10 + (str[k] - '0');
7058 k += 1;
7059 }
7060
7061 if (str[k] == 'm')
7062 {
7063 if (R != NULL)
7064 *R = (-(LONGEST) (RU - 1)) - 1;
7065 k += 1;
7066 }
7067 else if (R != NULL)
7068 *R = (LONGEST) RU;
7069
7070 /* NOTE on the above: Technically, C does not say what the results of
7071 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7072 number representable as a LONGEST (although either would probably work
7073 in most implementations). When RU>0, the locution in the then branch
7074 above is always equivalent to the negative of RU. */
7075
7076 if (new_k != NULL)
7077 *new_k = k;
7078 return 1;
7079 }
7080
7081 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7082 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7083 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7084
7085 int
7086 ada_in_variant (LONGEST val, struct type *type, int field_num)
7087 {
7088 const char *name = TYPE_FIELD_NAME (type, field_num);
7089 int p;
7090
7091 p = 0;
7092 while (1)
7093 {
7094 switch (name[p])
7095 {
7096 case '\0':
7097 return 0;
7098 case 'S':
7099 {
7100 LONGEST W;
7101
7102 if (!ada_scan_number (name, p + 1, &W, &p))
7103 return 0;
7104 if (val == W)
7105 return 1;
7106 break;
7107 }
7108 case 'R':
7109 {
7110 LONGEST L, U;
7111
7112 if (!ada_scan_number (name, p + 1, &L, &p)
7113 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7114 return 0;
7115 if (val >= L && val <= U)
7116 return 1;
7117 break;
7118 }
7119 case 'O':
7120 return 1;
7121 default:
7122 return 0;
7123 }
7124 }
7125 }
7126
7127 /* FIXME: Lots of redundancy below. Try to consolidate. */
7128
7129 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7130 ARG_TYPE, extract and return the value of one of its (non-static)
7131 fields. FIELDNO says which field. Differs from value_primitive_field
7132 only in that it can handle packed values of arbitrary type. */
7133
7134 static struct value *
7135 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7136 struct type *arg_type)
7137 {
7138 struct type *type;
7139
7140 arg_type = ada_check_typedef (arg_type);
7141 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7142
7143 /* Handle packed fields. */
7144
7145 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7146 {
7147 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7148 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7149
7150 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7151 offset + bit_pos / 8,
7152 bit_pos % 8, bit_size, type);
7153 }
7154 else
7155 return value_primitive_field (arg1, offset, fieldno, arg_type);
7156 }
7157
7158 /* Find field with name NAME in object of type TYPE. If found,
7159 set the following for each argument that is non-null:
7160 - *FIELD_TYPE_P to the field's type;
7161 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7162 an object of that type;
7163 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7164 - *BIT_SIZE_P to its size in bits if the field is packed, and
7165 0 otherwise;
7166 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7167 fields up to but not including the desired field, or by the total
7168 number of fields if not found. A NULL value of NAME never
7169 matches; the function just counts visible fields in this case.
7170
7171 Notice that we need to handle when a tagged record hierarchy
7172 has some components with the same name, like in this scenario:
7173
7174 type Top_T is tagged record
7175 N : Integer := 1;
7176 U : Integer := 974;
7177 A : Integer := 48;
7178 end record;
7179
7180 type Middle_T is new Top.Top_T with record
7181 N : Character := 'a';
7182 C : Integer := 3;
7183 end record;
7184
7185 type Bottom_T is new Middle.Middle_T with record
7186 N : Float := 4.0;
7187 C : Character := '5';
7188 X : Integer := 6;
7189 A : Character := 'J';
7190 end record;
7191
7192 Let's say we now have a variable declared and initialized as follow:
7193
7194 TC : Top_A := new Bottom_T;
7195
7196 And then we use this variable to call this function
7197
7198 procedure Assign (Obj: in out Top_T; TV : Integer);
7199
7200 as follow:
7201
7202 Assign (Top_T (B), 12);
7203
7204 Now, we're in the debugger, and we're inside that procedure
7205 then and we want to print the value of obj.c:
7206
7207 Usually, the tagged record or one of the parent type owns the
7208 component to print and there's no issue but in this particular
7209 case, what does it mean to ask for Obj.C? Since the actual
7210 type for object is type Bottom_T, it could mean two things: type
7211 component C from the Middle_T view, but also component C from
7212 Bottom_T. So in that "undefined" case, when the component is
7213 not found in the non-resolved type (which includes all the
7214 components of the parent type), then resolve it and see if we
7215 get better luck once expanded.
7216
7217 In the case of homonyms in the derived tagged type, we don't
7218 guaranty anything, and pick the one that's easiest for us
7219 to program.
7220
7221 Returns 1 if found, 0 otherwise. */
7222
7223 static int
7224 find_struct_field (const char *name, struct type *type, int offset,
7225 struct type **field_type_p,
7226 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7227 int *index_p)
7228 {
7229 int i;
7230 int parent_offset = -1;
7231
7232 type = ada_check_typedef (type);
7233
7234 if (field_type_p != NULL)
7235 *field_type_p = NULL;
7236 if (byte_offset_p != NULL)
7237 *byte_offset_p = 0;
7238 if (bit_offset_p != NULL)
7239 *bit_offset_p = 0;
7240 if (bit_size_p != NULL)
7241 *bit_size_p = 0;
7242
7243 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7244 {
7245 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7246 int fld_offset = offset + bit_pos / 8;
7247 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7248
7249 if (t_field_name == NULL)
7250 continue;
7251
7252 else if (ada_is_parent_field (type, i))
7253 {
7254 /* This is a field pointing us to the parent type of a tagged
7255 type. As hinted in this function's documentation, we give
7256 preference to fields in the current record first, so what
7257 we do here is just record the index of this field before
7258 we skip it. If it turns out we couldn't find our field
7259 in the current record, then we'll get back to it and search
7260 inside it whether the field might exist in the parent. */
7261
7262 parent_offset = i;
7263 continue;
7264 }
7265
7266 else if (name != NULL && field_name_match (t_field_name, name))
7267 {
7268 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7269
7270 if (field_type_p != NULL)
7271 *field_type_p = TYPE_FIELD_TYPE (type, i);
7272 if (byte_offset_p != NULL)
7273 *byte_offset_p = fld_offset;
7274 if (bit_offset_p != NULL)
7275 *bit_offset_p = bit_pos % 8;
7276 if (bit_size_p != NULL)
7277 *bit_size_p = bit_size;
7278 return 1;
7279 }
7280 else if (ada_is_wrapper_field (type, i))
7281 {
7282 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7283 field_type_p, byte_offset_p, bit_offset_p,
7284 bit_size_p, index_p))
7285 return 1;
7286 }
7287 else if (ada_is_variant_part (type, i))
7288 {
7289 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7290 fixed type?? */
7291 int j;
7292 struct type *field_type
7293 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7294
7295 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7296 {
7297 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7298 fld_offset
7299 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7300 field_type_p, byte_offset_p,
7301 bit_offset_p, bit_size_p, index_p))
7302 return 1;
7303 }
7304 }
7305 else if (index_p != NULL)
7306 *index_p += 1;
7307 }
7308
7309 /* Field not found so far. If this is a tagged type which
7310 has a parent, try finding that field in the parent now. */
7311
7312 if (parent_offset != -1)
7313 {
7314 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7315 int fld_offset = offset + bit_pos / 8;
7316
7317 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7318 fld_offset, field_type_p, byte_offset_p,
7319 bit_offset_p, bit_size_p, index_p))
7320 return 1;
7321 }
7322
7323 return 0;
7324 }
7325
7326 /* Number of user-visible fields in record type TYPE. */
7327
7328 static int
7329 num_visible_fields (struct type *type)
7330 {
7331 int n;
7332
7333 n = 0;
7334 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7335 return n;
7336 }
7337
7338 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7339 and search in it assuming it has (class) type TYPE.
7340 If found, return value, else return NULL.
7341
7342 Searches recursively through wrapper fields (e.g., '_parent').
7343
7344 In the case of homonyms in the tagged types, please refer to the
7345 long explanation in find_struct_field's function documentation. */
7346
7347 static struct value *
7348 ada_search_struct_field (const char *name, struct value *arg, int offset,
7349 struct type *type)
7350 {
7351 int i;
7352 int parent_offset = -1;
7353
7354 type = ada_check_typedef (type);
7355 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7356 {
7357 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7358
7359 if (t_field_name == NULL)
7360 continue;
7361
7362 else if (ada_is_parent_field (type, i))
7363 {
7364 /* This is a field pointing us to the parent type of a tagged
7365 type. As hinted in this function's documentation, we give
7366 preference to fields in the current record first, so what
7367 we do here is just record the index of this field before
7368 we skip it. If it turns out we couldn't find our field
7369 in the current record, then we'll get back to it and search
7370 inside it whether the field might exist in the parent. */
7371
7372 parent_offset = i;
7373 continue;
7374 }
7375
7376 else if (field_name_match (t_field_name, name))
7377 return ada_value_primitive_field (arg, offset, i, type);
7378
7379 else if (ada_is_wrapper_field (type, i))
7380 {
7381 struct value *v = /* Do not let indent join lines here. */
7382 ada_search_struct_field (name, arg,
7383 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7384 TYPE_FIELD_TYPE (type, i));
7385
7386 if (v != NULL)
7387 return v;
7388 }
7389
7390 else if (ada_is_variant_part (type, i))
7391 {
7392 /* PNH: Do we ever get here? See find_struct_field. */
7393 int j;
7394 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7395 i));
7396 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7397
7398 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7399 {
7400 struct value *v = ada_search_struct_field /* Force line
7401 break. */
7402 (name, arg,
7403 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7404 TYPE_FIELD_TYPE (field_type, j));
7405
7406 if (v != NULL)
7407 return v;
7408 }
7409 }
7410 }
7411
7412 /* Field not found so far. If this is a tagged type which
7413 has a parent, try finding that field in the parent now. */
7414
7415 if (parent_offset != -1)
7416 {
7417 struct value *v = ada_search_struct_field (
7418 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7419 TYPE_FIELD_TYPE (type, parent_offset));
7420
7421 if (v != NULL)
7422 return v;
7423 }
7424
7425 return NULL;
7426 }
7427
7428 static struct value *ada_index_struct_field_1 (int *, struct value *,
7429 int, struct type *);
7430
7431
7432 /* Return field #INDEX in ARG, where the index is that returned by
7433 * find_struct_field through its INDEX_P argument. Adjust the address
7434 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7435 * If found, return value, else return NULL. */
7436
7437 static struct value *
7438 ada_index_struct_field (int index, struct value *arg, int offset,
7439 struct type *type)
7440 {
7441 return ada_index_struct_field_1 (&index, arg, offset, type);
7442 }
7443
7444
7445 /* Auxiliary function for ada_index_struct_field. Like
7446 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7447 * *INDEX_P. */
7448
7449 static struct value *
7450 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7451 struct type *type)
7452 {
7453 int i;
7454 type = ada_check_typedef (type);
7455
7456 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7457 {
7458 if (TYPE_FIELD_NAME (type, i) == NULL)
7459 continue;
7460 else if (ada_is_wrapper_field (type, i))
7461 {
7462 struct value *v = /* Do not let indent join lines here. */
7463 ada_index_struct_field_1 (index_p, arg,
7464 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7465 TYPE_FIELD_TYPE (type, i));
7466
7467 if (v != NULL)
7468 return v;
7469 }
7470
7471 else if (ada_is_variant_part (type, i))
7472 {
7473 /* PNH: Do we ever get here? See ada_search_struct_field,
7474 find_struct_field. */
7475 error (_("Cannot assign this kind of variant record"));
7476 }
7477 else if (*index_p == 0)
7478 return ada_value_primitive_field (arg, offset, i, type);
7479 else
7480 *index_p -= 1;
7481 }
7482 return NULL;
7483 }
7484
7485 /* Given ARG, a value of type (pointer or reference to a)*
7486 structure/union, extract the component named NAME from the ultimate
7487 target structure/union and return it as a value with its
7488 appropriate type.
7489
7490 The routine searches for NAME among all members of the structure itself
7491 and (recursively) among all members of any wrapper members
7492 (e.g., '_parent').
7493
7494 If NO_ERR, then simply return NULL in case of error, rather than
7495 calling error. */
7496
7497 struct value *
7498 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7499 {
7500 struct type *t, *t1;
7501 struct value *v;
7502 int check_tag;
7503
7504 v = NULL;
7505 t1 = t = ada_check_typedef (value_type (arg));
7506 if (TYPE_CODE (t) == TYPE_CODE_REF)
7507 {
7508 t1 = TYPE_TARGET_TYPE (t);
7509 if (t1 == NULL)
7510 goto BadValue;
7511 t1 = ada_check_typedef (t1);
7512 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7513 {
7514 arg = coerce_ref (arg);
7515 t = t1;
7516 }
7517 }
7518
7519 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7520 {
7521 t1 = TYPE_TARGET_TYPE (t);
7522 if (t1 == NULL)
7523 goto BadValue;
7524 t1 = ada_check_typedef (t1);
7525 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7526 {
7527 arg = value_ind (arg);
7528 t = t1;
7529 }
7530 else
7531 break;
7532 }
7533
7534 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7535 goto BadValue;
7536
7537 if (t1 == t)
7538 v = ada_search_struct_field (name, arg, 0, t);
7539 else
7540 {
7541 int bit_offset, bit_size, byte_offset;
7542 struct type *field_type;
7543 CORE_ADDR address;
7544
7545 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7546 address = value_address (ada_value_ind (arg));
7547 else
7548 address = value_address (ada_coerce_ref (arg));
7549
7550 /* Check to see if this is a tagged type. We also need to handle
7551 the case where the type is a reference to a tagged type, but
7552 we have to be careful to exclude pointers to tagged types.
7553 The latter should be shown as usual (as a pointer), whereas
7554 a reference should mostly be transparent to the user. */
7555
7556 if (ada_is_tagged_type (t1, 0)
7557 || (TYPE_CODE (t1) == TYPE_CODE_REF
7558 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7559 {
7560 /* We first try to find the searched field in the current type.
7561 If not found then let's look in the fixed type. */
7562
7563 if (!find_struct_field (name, t1, 0,
7564 &field_type, &byte_offset, &bit_offset,
7565 &bit_size, NULL))
7566 check_tag = 1;
7567 else
7568 check_tag = 0;
7569 }
7570 else
7571 check_tag = 0;
7572
7573 /* Convert to fixed type in all cases, so that we have proper
7574 offsets to each field in unconstrained record types. */
7575 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7576 address, NULL, check_tag);
7577
7578 if (find_struct_field (name, t1, 0,
7579 &field_type, &byte_offset, &bit_offset,
7580 &bit_size, NULL))
7581 {
7582 if (bit_size != 0)
7583 {
7584 if (TYPE_CODE (t) == TYPE_CODE_REF)
7585 arg = ada_coerce_ref (arg);
7586 else
7587 arg = ada_value_ind (arg);
7588 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7589 bit_offset, bit_size,
7590 field_type);
7591 }
7592 else
7593 v = value_at_lazy (field_type, address + byte_offset);
7594 }
7595 }
7596
7597 if (v != NULL || no_err)
7598 return v;
7599 else
7600 error (_("There is no member named %s."), name);
7601
7602 BadValue:
7603 if (no_err)
7604 return NULL;
7605 else
7606 error (_("Attempt to extract a component of "
7607 "a value that is not a record."));
7608 }
7609
7610 /* Return a string representation of type TYPE. */
7611
7612 static std::string
7613 type_as_string (struct type *type)
7614 {
7615 string_file tmp_stream;
7616
7617 type_print (type, "", &tmp_stream, -1);
7618
7619 return std::move (tmp_stream.string ());
7620 }
7621
7622 /* Given a type TYPE, look up the type of the component of type named NAME.
7623 If DISPP is non-null, add its byte displacement from the beginning of a
7624 structure (pointed to by a value) of type TYPE to *DISPP (does not
7625 work for packed fields).
7626
7627 Matches any field whose name has NAME as a prefix, possibly
7628 followed by "___".
7629
7630 TYPE can be either a struct or union. If REFOK, TYPE may also
7631 be a (pointer or reference)+ to a struct or union, and the
7632 ultimate target type will be searched.
7633
7634 Looks recursively into variant clauses and parent types.
7635
7636 In the case of homonyms in the tagged types, please refer to the
7637 long explanation in find_struct_field's function documentation.
7638
7639 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7640 TYPE is not a type of the right kind. */
7641
7642 static struct type *
7643 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7644 int noerr)
7645 {
7646 int i;
7647 int parent_offset = -1;
7648
7649 if (name == NULL)
7650 goto BadName;
7651
7652 if (refok && type != NULL)
7653 while (1)
7654 {
7655 type = ada_check_typedef (type);
7656 if (TYPE_CODE (type) != TYPE_CODE_PTR
7657 && TYPE_CODE (type) != TYPE_CODE_REF)
7658 break;
7659 type = TYPE_TARGET_TYPE (type);
7660 }
7661
7662 if (type == NULL
7663 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7664 && TYPE_CODE (type) != TYPE_CODE_UNION))
7665 {
7666 if (noerr)
7667 return NULL;
7668
7669 error (_("Type %s is not a structure or union type"),
7670 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7671 }
7672
7673 type = to_static_fixed_type (type);
7674
7675 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7676 {
7677 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7678 struct type *t;
7679
7680 if (t_field_name == NULL)
7681 continue;
7682
7683 else if (ada_is_parent_field (type, i))
7684 {
7685 /* This is a field pointing us to the parent type of a tagged
7686 type. As hinted in this function's documentation, we give
7687 preference to fields in the current record first, so what
7688 we do here is just record the index of this field before
7689 we skip it. If it turns out we couldn't find our field
7690 in the current record, then we'll get back to it and search
7691 inside it whether the field might exist in the parent. */
7692
7693 parent_offset = i;
7694 continue;
7695 }
7696
7697 else if (field_name_match (t_field_name, name))
7698 return TYPE_FIELD_TYPE (type, i);
7699
7700 else if (ada_is_wrapper_field (type, i))
7701 {
7702 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7703 0, 1);
7704 if (t != NULL)
7705 return t;
7706 }
7707
7708 else if (ada_is_variant_part (type, i))
7709 {
7710 int j;
7711 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7712 i));
7713
7714 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7715 {
7716 /* FIXME pnh 2008/01/26: We check for a field that is
7717 NOT wrapped in a struct, since the compiler sometimes
7718 generates these for unchecked variant types. Revisit
7719 if the compiler changes this practice. */
7720 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7721
7722 if (v_field_name != NULL
7723 && field_name_match (v_field_name, name))
7724 t = TYPE_FIELD_TYPE (field_type, j);
7725 else
7726 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7727 j),
7728 name, 0, 1);
7729
7730 if (t != NULL)
7731 return t;
7732 }
7733 }
7734
7735 }
7736
7737 /* Field not found so far. If this is a tagged type which
7738 has a parent, try finding that field in the parent now. */
7739
7740 if (parent_offset != -1)
7741 {
7742 struct type *t;
7743
7744 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7745 name, 0, 1);
7746 if (t != NULL)
7747 return t;
7748 }
7749
7750 BadName:
7751 if (!noerr)
7752 {
7753 const char *name_str = name != NULL ? name : _("<null>");
7754
7755 error (_("Type %s has no component named %s"),
7756 type_as_string (type).c_str (), name_str);
7757 }
7758
7759 return NULL;
7760 }
7761
7762 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7763 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7764 represents an unchecked union (that is, the variant part of a
7765 record that is named in an Unchecked_Union pragma). */
7766
7767 static int
7768 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7769 {
7770 const char *discrim_name = ada_variant_discrim_name (var_type);
7771
7772 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7773 }
7774
7775
7776 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7777 within a value of type OUTER_TYPE that is stored in GDB at
7778 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7779 numbering from 0) is applicable. Returns -1 if none are. */
7780
7781 int
7782 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7783 const gdb_byte *outer_valaddr)
7784 {
7785 int others_clause;
7786 int i;
7787 const char *discrim_name = ada_variant_discrim_name (var_type);
7788 struct value *outer;
7789 struct value *discrim;
7790 LONGEST discrim_val;
7791
7792 /* Using plain value_from_contents_and_address here causes problems
7793 because we will end up trying to resolve a type that is currently
7794 being constructed. */
7795 outer = value_from_contents_and_address_unresolved (outer_type,
7796 outer_valaddr, 0);
7797 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7798 if (discrim == NULL)
7799 return -1;
7800 discrim_val = value_as_long (discrim);
7801
7802 others_clause = -1;
7803 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7804 {
7805 if (ada_is_others_clause (var_type, i))
7806 others_clause = i;
7807 else if (ada_in_variant (discrim_val, var_type, i))
7808 return i;
7809 }
7810
7811 return others_clause;
7812 }
7813 \f
7814
7815
7816 /* Dynamic-Sized Records */
7817
7818 /* Strategy: The type ostensibly attached to a value with dynamic size
7819 (i.e., a size that is not statically recorded in the debugging
7820 data) does not accurately reflect the size or layout of the value.
7821 Our strategy is to convert these values to values with accurate,
7822 conventional types that are constructed on the fly. */
7823
7824 /* There is a subtle and tricky problem here. In general, we cannot
7825 determine the size of dynamic records without its data. However,
7826 the 'struct value' data structure, which GDB uses to represent
7827 quantities in the inferior process (the target), requires the size
7828 of the type at the time of its allocation in order to reserve space
7829 for GDB's internal copy of the data. That's why the
7830 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7831 rather than struct value*s.
7832
7833 However, GDB's internal history variables ($1, $2, etc.) are
7834 struct value*s containing internal copies of the data that are not, in
7835 general, the same as the data at their corresponding addresses in
7836 the target. Fortunately, the types we give to these values are all
7837 conventional, fixed-size types (as per the strategy described
7838 above), so that we don't usually have to perform the
7839 'to_fixed_xxx_type' conversions to look at their values.
7840 Unfortunately, there is one exception: if one of the internal
7841 history variables is an array whose elements are unconstrained
7842 records, then we will need to create distinct fixed types for each
7843 element selected. */
7844
7845 /* The upshot of all of this is that many routines take a (type, host
7846 address, target address) triple as arguments to represent a value.
7847 The host address, if non-null, is supposed to contain an internal
7848 copy of the relevant data; otherwise, the program is to consult the
7849 target at the target address. */
7850
7851 /* Assuming that VAL0 represents a pointer value, the result of
7852 dereferencing it. Differs from value_ind in its treatment of
7853 dynamic-sized types. */
7854
7855 struct value *
7856 ada_value_ind (struct value *val0)
7857 {
7858 struct value *val = value_ind (val0);
7859
7860 if (ada_is_tagged_type (value_type (val), 0))
7861 val = ada_tag_value_at_base_address (val);
7862
7863 return ada_to_fixed_value (val);
7864 }
7865
7866 /* The value resulting from dereferencing any "reference to"
7867 qualifiers on VAL0. */
7868
7869 static struct value *
7870 ada_coerce_ref (struct value *val0)
7871 {
7872 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7873 {
7874 struct value *val = val0;
7875
7876 val = coerce_ref (val);
7877
7878 if (ada_is_tagged_type (value_type (val), 0))
7879 val = ada_tag_value_at_base_address (val);
7880
7881 return ada_to_fixed_value (val);
7882 }
7883 else
7884 return val0;
7885 }
7886
7887 /* Return OFF rounded upward if necessary to a multiple of
7888 ALIGNMENT (a power of 2). */
7889
7890 static unsigned int
7891 align_value (unsigned int off, unsigned int alignment)
7892 {
7893 return (off + alignment - 1) & ~(alignment - 1);
7894 }
7895
7896 /* Return the bit alignment required for field #F of template type TYPE. */
7897
7898 static unsigned int
7899 field_alignment (struct type *type, int f)
7900 {
7901 const char *name = TYPE_FIELD_NAME (type, f);
7902 int len;
7903 int align_offset;
7904
7905 /* The field name should never be null, unless the debugging information
7906 is somehow malformed. In this case, we assume the field does not
7907 require any alignment. */
7908 if (name == NULL)
7909 return 1;
7910
7911 len = strlen (name);
7912
7913 if (!isdigit (name[len - 1]))
7914 return 1;
7915
7916 if (isdigit (name[len - 2]))
7917 align_offset = len - 2;
7918 else
7919 align_offset = len - 1;
7920
7921 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7922 return TARGET_CHAR_BIT;
7923
7924 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7925 }
7926
7927 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7928
7929 static struct symbol *
7930 ada_find_any_type_symbol (const char *name)
7931 {
7932 struct symbol *sym;
7933
7934 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7935 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7936 return sym;
7937
7938 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7939 return sym;
7940 }
7941
7942 /* Find a type named NAME. Ignores ambiguity. This routine will look
7943 solely for types defined by debug info, it will not search the GDB
7944 primitive types. */
7945
7946 static struct type *
7947 ada_find_any_type (const char *name)
7948 {
7949 struct symbol *sym = ada_find_any_type_symbol (name);
7950
7951 if (sym != NULL)
7952 return SYMBOL_TYPE (sym);
7953
7954 return NULL;
7955 }
7956
7957 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7958 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7959 symbol, in which case it is returned. Otherwise, this looks for
7960 symbols whose name is that of NAME_SYM suffixed with "___XR".
7961 Return symbol if found, and NULL otherwise. */
7962
7963 struct symbol *
7964 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7965 {
7966 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7967 struct symbol *sym;
7968
7969 if (strstr (name, "___XR") != NULL)
7970 return name_sym;
7971
7972 sym = find_old_style_renaming_symbol (name, block);
7973
7974 if (sym != NULL)
7975 return sym;
7976
7977 /* Not right yet. FIXME pnh 7/20/2007. */
7978 sym = ada_find_any_type_symbol (name);
7979 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7980 return sym;
7981 else
7982 return NULL;
7983 }
7984
7985 static struct symbol *
7986 find_old_style_renaming_symbol (const char *name, const struct block *block)
7987 {
7988 const struct symbol *function_sym = block_linkage_function (block);
7989 char *rename;
7990
7991 if (function_sym != NULL)
7992 {
7993 /* If the symbol is defined inside a function, NAME is not fully
7994 qualified. This means we need to prepend the function name
7995 as well as adding the ``___XR'' suffix to build the name of
7996 the associated renaming symbol. */
7997 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7998 /* Function names sometimes contain suffixes used
7999 for instance to qualify nested subprograms. When building
8000 the XR type name, we need to make sure that this suffix is
8001 not included. So do not include any suffix in the function
8002 name length below. */
8003 int function_name_len = ada_name_prefix_len (function_name);
8004 const int rename_len = function_name_len + 2 /* "__" */
8005 + strlen (name) + 6 /* "___XR\0" */ ;
8006
8007 /* Strip the suffix if necessary. */
8008 ada_remove_trailing_digits (function_name, &function_name_len);
8009 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8010 ada_remove_Xbn_suffix (function_name, &function_name_len);
8011
8012 /* Library-level functions are a special case, as GNAT adds
8013 a ``_ada_'' prefix to the function name to avoid namespace
8014 pollution. However, the renaming symbols themselves do not
8015 have this prefix, so we need to skip this prefix if present. */
8016 if (function_name_len > 5 /* "_ada_" */
8017 && strstr (function_name, "_ada_") == function_name)
8018 {
8019 function_name += 5;
8020 function_name_len -= 5;
8021 }
8022
8023 rename = (char *) alloca (rename_len * sizeof (char));
8024 strncpy (rename, function_name, function_name_len);
8025 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8026 "__%s___XR", name);
8027 }
8028 else
8029 {
8030 const int rename_len = strlen (name) + 6;
8031
8032 rename = (char *) alloca (rename_len * sizeof (char));
8033 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8034 }
8035
8036 return ada_find_any_type_symbol (rename);
8037 }
8038
8039 /* Because of GNAT encoding conventions, several GDB symbols may match a
8040 given type name. If the type denoted by TYPE0 is to be preferred to
8041 that of TYPE1 for purposes of type printing, return non-zero;
8042 otherwise return 0. */
8043
8044 int
8045 ada_prefer_type (struct type *type0, struct type *type1)
8046 {
8047 if (type1 == NULL)
8048 return 1;
8049 else if (type0 == NULL)
8050 return 0;
8051 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8052 return 1;
8053 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8054 return 0;
8055 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8056 return 1;
8057 else if (ada_is_constrained_packed_array_type (type0))
8058 return 1;
8059 else if (ada_is_array_descriptor_type (type0)
8060 && !ada_is_array_descriptor_type (type1))
8061 return 1;
8062 else
8063 {
8064 const char *type0_name = TYPE_NAME (type0);
8065 const char *type1_name = TYPE_NAME (type1);
8066
8067 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8068 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8069 return 1;
8070 }
8071 return 0;
8072 }
8073
8074 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8075 null. */
8076
8077 const char *
8078 ada_type_name (struct type *type)
8079 {
8080 if (type == NULL)
8081 return NULL;
8082 return TYPE_NAME (type);
8083 }
8084
8085 /* Search the list of "descriptive" types associated to TYPE for a type
8086 whose name is NAME. */
8087
8088 static struct type *
8089 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8090 {
8091 struct type *result, *tmp;
8092
8093 if (ada_ignore_descriptive_types_p)
8094 return NULL;
8095
8096 /* If there no descriptive-type info, then there is no parallel type
8097 to be found. */
8098 if (!HAVE_GNAT_AUX_INFO (type))
8099 return NULL;
8100
8101 result = TYPE_DESCRIPTIVE_TYPE (type);
8102 while (result != NULL)
8103 {
8104 const char *result_name = ada_type_name (result);
8105
8106 if (result_name == NULL)
8107 {
8108 warning (_("unexpected null name on descriptive type"));
8109 return NULL;
8110 }
8111
8112 /* If the names match, stop. */
8113 if (strcmp (result_name, name) == 0)
8114 break;
8115
8116 /* Otherwise, look at the next item on the list, if any. */
8117 if (HAVE_GNAT_AUX_INFO (result))
8118 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8119 else
8120 tmp = NULL;
8121
8122 /* If not found either, try after having resolved the typedef. */
8123 if (tmp != NULL)
8124 result = tmp;
8125 else
8126 {
8127 result = check_typedef (result);
8128 if (HAVE_GNAT_AUX_INFO (result))
8129 result = TYPE_DESCRIPTIVE_TYPE (result);
8130 else
8131 result = NULL;
8132 }
8133 }
8134
8135 /* If we didn't find a match, see whether this is a packed array. With
8136 older compilers, the descriptive type information is either absent or
8137 irrelevant when it comes to packed arrays so the above lookup fails.
8138 Fall back to using a parallel lookup by name in this case. */
8139 if (result == NULL && ada_is_constrained_packed_array_type (type))
8140 return ada_find_any_type (name);
8141
8142 return result;
8143 }
8144
8145 /* Find a parallel type to TYPE with the specified NAME, using the
8146 descriptive type taken from the debugging information, if available,
8147 and otherwise using the (slower) name-based method. */
8148
8149 static struct type *
8150 ada_find_parallel_type_with_name (struct type *type, const char *name)
8151 {
8152 struct type *result = NULL;
8153
8154 if (HAVE_GNAT_AUX_INFO (type))
8155 result = find_parallel_type_by_descriptive_type (type, name);
8156 else
8157 result = ada_find_any_type (name);
8158
8159 return result;
8160 }
8161
8162 /* Same as above, but specify the name of the parallel type by appending
8163 SUFFIX to the name of TYPE. */
8164
8165 struct type *
8166 ada_find_parallel_type (struct type *type, const char *suffix)
8167 {
8168 char *name;
8169 const char *type_name = ada_type_name (type);
8170 int len;
8171
8172 if (type_name == NULL)
8173 return NULL;
8174
8175 len = strlen (type_name);
8176
8177 name = (char *) alloca (len + strlen (suffix) + 1);
8178
8179 strcpy (name, type_name);
8180 strcpy (name + len, suffix);
8181
8182 return ada_find_parallel_type_with_name (type, name);
8183 }
8184
8185 /* If TYPE is a variable-size record type, return the corresponding template
8186 type describing its fields. Otherwise, return NULL. */
8187
8188 static struct type *
8189 dynamic_template_type (struct type *type)
8190 {
8191 type = ada_check_typedef (type);
8192
8193 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8194 || ada_type_name (type) == NULL)
8195 return NULL;
8196 else
8197 {
8198 int len = strlen (ada_type_name (type));
8199
8200 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8201 return type;
8202 else
8203 return ada_find_parallel_type (type, "___XVE");
8204 }
8205 }
8206
8207 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8208 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8209
8210 static int
8211 is_dynamic_field (struct type *templ_type, int field_num)
8212 {
8213 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8214
8215 return name != NULL
8216 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8217 && strstr (name, "___XVL") != NULL;
8218 }
8219
8220 /* The index of the variant field of TYPE, or -1 if TYPE does not
8221 represent a variant record type. */
8222
8223 static int
8224 variant_field_index (struct type *type)
8225 {
8226 int f;
8227
8228 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8229 return -1;
8230
8231 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8232 {
8233 if (ada_is_variant_part (type, f))
8234 return f;
8235 }
8236 return -1;
8237 }
8238
8239 /* A record type with no fields. */
8240
8241 static struct type *
8242 empty_record (struct type *templ)
8243 {
8244 struct type *type = alloc_type_copy (templ);
8245
8246 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8247 TYPE_NFIELDS (type) = 0;
8248 TYPE_FIELDS (type) = NULL;
8249 INIT_CPLUS_SPECIFIC (type);
8250 TYPE_NAME (type) = "<empty>";
8251 TYPE_LENGTH (type) = 0;
8252 return type;
8253 }
8254
8255 /* An ordinary record type (with fixed-length fields) that describes
8256 the value of type TYPE at VALADDR or ADDRESS (see comments at
8257 the beginning of this section) VAL according to GNAT conventions.
8258 DVAL0 should describe the (portion of a) record that contains any
8259 necessary discriminants. It should be NULL if value_type (VAL) is
8260 an outer-level type (i.e., as opposed to a branch of a variant.) A
8261 variant field (unless unchecked) is replaced by a particular branch
8262 of the variant.
8263
8264 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8265 length are not statically known are discarded. As a consequence,
8266 VALADDR, ADDRESS and DVAL0 are ignored.
8267
8268 NOTE: Limitations: For now, we assume that dynamic fields and
8269 variants occupy whole numbers of bytes. However, they need not be
8270 byte-aligned. */
8271
8272 struct type *
8273 ada_template_to_fixed_record_type_1 (struct type *type,
8274 const gdb_byte *valaddr,
8275 CORE_ADDR address, struct value *dval0,
8276 int keep_dynamic_fields)
8277 {
8278 struct value *mark = value_mark ();
8279 struct value *dval;
8280 struct type *rtype;
8281 int nfields, bit_len;
8282 int variant_field;
8283 long off;
8284 int fld_bit_len;
8285 int f;
8286
8287 /* Compute the number of fields in this record type that are going
8288 to be processed: unless keep_dynamic_fields, this includes only
8289 fields whose position and length are static will be processed. */
8290 if (keep_dynamic_fields)
8291 nfields = TYPE_NFIELDS (type);
8292 else
8293 {
8294 nfields = 0;
8295 while (nfields < TYPE_NFIELDS (type)
8296 && !ada_is_variant_part (type, nfields)
8297 && !is_dynamic_field (type, nfields))
8298 nfields++;
8299 }
8300
8301 rtype = alloc_type_copy (type);
8302 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8303 INIT_CPLUS_SPECIFIC (rtype);
8304 TYPE_NFIELDS (rtype) = nfields;
8305 TYPE_FIELDS (rtype) = (struct field *)
8306 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8307 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8308 TYPE_NAME (rtype) = ada_type_name (type);
8309 TYPE_FIXED_INSTANCE (rtype) = 1;
8310
8311 off = 0;
8312 bit_len = 0;
8313 variant_field = -1;
8314
8315 for (f = 0; f < nfields; f += 1)
8316 {
8317 off = align_value (off, field_alignment (type, f))
8318 + TYPE_FIELD_BITPOS (type, f);
8319 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8320 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8321
8322 if (ada_is_variant_part (type, f))
8323 {
8324 variant_field = f;
8325 fld_bit_len = 0;
8326 }
8327 else if (is_dynamic_field (type, f))
8328 {
8329 const gdb_byte *field_valaddr = valaddr;
8330 CORE_ADDR field_address = address;
8331 struct type *field_type =
8332 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8333
8334 if (dval0 == NULL)
8335 {
8336 /* rtype's length is computed based on the run-time
8337 value of discriminants. If the discriminants are not
8338 initialized, the type size may be completely bogus and
8339 GDB may fail to allocate a value for it. So check the
8340 size first before creating the value. */
8341 ada_ensure_varsize_limit (rtype);
8342 /* Using plain value_from_contents_and_address here
8343 causes problems because we will end up trying to
8344 resolve a type that is currently being
8345 constructed. */
8346 dval = value_from_contents_and_address_unresolved (rtype,
8347 valaddr,
8348 address);
8349 rtype = value_type (dval);
8350 }
8351 else
8352 dval = dval0;
8353
8354 /* If the type referenced by this field is an aligner type, we need
8355 to unwrap that aligner type, because its size might not be set.
8356 Keeping the aligner type would cause us to compute the wrong
8357 size for this field, impacting the offset of the all the fields
8358 that follow this one. */
8359 if (ada_is_aligner_type (field_type))
8360 {
8361 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8362
8363 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8364 field_address = cond_offset_target (field_address, field_offset);
8365 field_type = ada_aligned_type (field_type);
8366 }
8367
8368 field_valaddr = cond_offset_host (field_valaddr,
8369 off / TARGET_CHAR_BIT);
8370 field_address = cond_offset_target (field_address,
8371 off / TARGET_CHAR_BIT);
8372
8373 /* Get the fixed type of the field. Note that, in this case,
8374 we do not want to get the real type out of the tag: if
8375 the current field is the parent part of a tagged record,
8376 we will get the tag of the object. Clearly wrong: the real
8377 type of the parent is not the real type of the child. We
8378 would end up in an infinite loop. */
8379 field_type = ada_get_base_type (field_type);
8380 field_type = ada_to_fixed_type (field_type, field_valaddr,
8381 field_address, dval, 0);
8382 /* If the field size is already larger than the maximum
8383 object size, then the record itself will necessarily
8384 be larger than the maximum object size. We need to make
8385 this check now, because the size might be so ridiculously
8386 large (due to an uninitialized variable in the inferior)
8387 that it would cause an overflow when adding it to the
8388 record size. */
8389 ada_ensure_varsize_limit (field_type);
8390
8391 TYPE_FIELD_TYPE (rtype, f) = field_type;
8392 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8393 /* The multiplication can potentially overflow. But because
8394 the field length has been size-checked just above, and
8395 assuming that the maximum size is a reasonable value,
8396 an overflow should not happen in practice. So rather than
8397 adding overflow recovery code to this already complex code,
8398 we just assume that it's not going to happen. */
8399 fld_bit_len =
8400 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8401 }
8402 else
8403 {
8404 /* Note: If this field's type is a typedef, it is important
8405 to preserve the typedef layer.
8406
8407 Otherwise, we might be transforming a typedef to a fat
8408 pointer (encoding a pointer to an unconstrained array),
8409 into a basic fat pointer (encoding an unconstrained
8410 array). As both types are implemented using the same
8411 structure, the typedef is the only clue which allows us
8412 to distinguish between the two options. Stripping it
8413 would prevent us from printing this field appropriately. */
8414 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8415 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8416 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8417 fld_bit_len =
8418 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8419 else
8420 {
8421 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8422
8423 /* We need to be careful of typedefs when computing
8424 the length of our field. If this is a typedef,
8425 get the length of the target type, not the length
8426 of the typedef. */
8427 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8428 field_type = ada_typedef_target_type (field_type);
8429
8430 fld_bit_len =
8431 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8432 }
8433 }
8434 if (off + fld_bit_len > bit_len)
8435 bit_len = off + fld_bit_len;
8436 off += fld_bit_len;
8437 TYPE_LENGTH (rtype) =
8438 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8439 }
8440
8441 /* We handle the variant part, if any, at the end because of certain
8442 odd cases in which it is re-ordered so as NOT to be the last field of
8443 the record. This can happen in the presence of representation
8444 clauses. */
8445 if (variant_field >= 0)
8446 {
8447 struct type *branch_type;
8448
8449 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8450
8451 if (dval0 == NULL)
8452 {
8453 /* Using plain value_from_contents_and_address here causes
8454 problems because we will end up trying to resolve a type
8455 that is currently being constructed. */
8456 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8457 address);
8458 rtype = value_type (dval);
8459 }
8460 else
8461 dval = dval0;
8462
8463 branch_type =
8464 to_fixed_variant_branch_type
8465 (TYPE_FIELD_TYPE (type, variant_field),
8466 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8467 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8468 if (branch_type == NULL)
8469 {
8470 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8471 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8472 TYPE_NFIELDS (rtype) -= 1;
8473 }
8474 else
8475 {
8476 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8477 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8478 fld_bit_len =
8479 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8480 TARGET_CHAR_BIT;
8481 if (off + fld_bit_len > bit_len)
8482 bit_len = off + fld_bit_len;
8483 TYPE_LENGTH (rtype) =
8484 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8485 }
8486 }
8487
8488 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8489 should contain the alignment of that record, which should be a strictly
8490 positive value. If null or negative, then something is wrong, most
8491 probably in the debug info. In that case, we don't round up the size
8492 of the resulting type. If this record is not part of another structure,
8493 the current RTYPE length might be good enough for our purposes. */
8494 if (TYPE_LENGTH (type) <= 0)
8495 {
8496 if (TYPE_NAME (rtype))
8497 warning (_("Invalid type size for `%s' detected: %d."),
8498 TYPE_NAME (rtype), TYPE_LENGTH (type));
8499 else
8500 warning (_("Invalid type size for <unnamed> detected: %d."),
8501 TYPE_LENGTH (type));
8502 }
8503 else
8504 {
8505 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8506 TYPE_LENGTH (type));
8507 }
8508
8509 value_free_to_mark (mark);
8510 if (TYPE_LENGTH (rtype) > varsize_limit)
8511 error (_("record type with dynamic size is larger than varsize-limit"));
8512 return rtype;
8513 }
8514
8515 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8516 of 1. */
8517
8518 static struct type *
8519 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8520 CORE_ADDR address, struct value *dval0)
8521 {
8522 return ada_template_to_fixed_record_type_1 (type, valaddr,
8523 address, dval0, 1);
8524 }
8525
8526 /* An ordinary record type in which ___XVL-convention fields and
8527 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8528 static approximations, containing all possible fields. Uses
8529 no runtime values. Useless for use in values, but that's OK,
8530 since the results are used only for type determinations. Works on both
8531 structs and unions. Representation note: to save space, we memorize
8532 the result of this function in the TYPE_TARGET_TYPE of the
8533 template type. */
8534
8535 static struct type *
8536 template_to_static_fixed_type (struct type *type0)
8537 {
8538 struct type *type;
8539 int nfields;
8540 int f;
8541
8542 /* No need no do anything if the input type is already fixed. */
8543 if (TYPE_FIXED_INSTANCE (type0))
8544 return type0;
8545
8546 /* Likewise if we already have computed the static approximation. */
8547 if (TYPE_TARGET_TYPE (type0) != NULL)
8548 return TYPE_TARGET_TYPE (type0);
8549
8550 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8551 type = type0;
8552 nfields = TYPE_NFIELDS (type0);
8553
8554 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8555 recompute all over next time. */
8556 TYPE_TARGET_TYPE (type0) = type;
8557
8558 for (f = 0; f < nfields; f += 1)
8559 {
8560 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8561 struct type *new_type;
8562
8563 if (is_dynamic_field (type0, f))
8564 {
8565 field_type = ada_check_typedef (field_type);
8566 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8567 }
8568 else
8569 new_type = static_unwrap_type (field_type);
8570
8571 if (new_type != field_type)
8572 {
8573 /* Clone TYPE0 only the first time we get a new field type. */
8574 if (type == type0)
8575 {
8576 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8577 TYPE_CODE (type) = TYPE_CODE (type0);
8578 INIT_CPLUS_SPECIFIC (type);
8579 TYPE_NFIELDS (type) = nfields;
8580 TYPE_FIELDS (type) = (struct field *)
8581 TYPE_ALLOC (type, nfields * sizeof (struct field));
8582 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8583 sizeof (struct field) * nfields);
8584 TYPE_NAME (type) = ada_type_name (type0);
8585 TYPE_FIXED_INSTANCE (type) = 1;
8586 TYPE_LENGTH (type) = 0;
8587 }
8588 TYPE_FIELD_TYPE (type, f) = new_type;
8589 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8590 }
8591 }
8592
8593 return type;
8594 }
8595
8596 /* Given an object of type TYPE whose contents are at VALADDR and
8597 whose address in memory is ADDRESS, returns a revision of TYPE,
8598 which should be a non-dynamic-sized record, in which the variant
8599 part, if any, is replaced with the appropriate branch. Looks
8600 for discriminant values in DVAL0, which can be NULL if the record
8601 contains the necessary discriminant values. */
8602
8603 static struct type *
8604 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8605 CORE_ADDR address, struct value *dval0)
8606 {
8607 struct value *mark = value_mark ();
8608 struct value *dval;
8609 struct type *rtype;
8610 struct type *branch_type;
8611 int nfields = TYPE_NFIELDS (type);
8612 int variant_field = variant_field_index (type);
8613
8614 if (variant_field == -1)
8615 return type;
8616
8617 if (dval0 == NULL)
8618 {
8619 dval = value_from_contents_and_address (type, valaddr, address);
8620 type = value_type (dval);
8621 }
8622 else
8623 dval = dval0;
8624
8625 rtype = alloc_type_copy (type);
8626 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8627 INIT_CPLUS_SPECIFIC (rtype);
8628 TYPE_NFIELDS (rtype) = nfields;
8629 TYPE_FIELDS (rtype) =
8630 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8631 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8632 sizeof (struct field) * nfields);
8633 TYPE_NAME (rtype) = ada_type_name (type);
8634 TYPE_FIXED_INSTANCE (rtype) = 1;
8635 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8636
8637 branch_type = to_fixed_variant_branch_type
8638 (TYPE_FIELD_TYPE (type, variant_field),
8639 cond_offset_host (valaddr,
8640 TYPE_FIELD_BITPOS (type, variant_field)
8641 / TARGET_CHAR_BIT),
8642 cond_offset_target (address,
8643 TYPE_FIELD_BITPOS (type, variant_field)
8644 / TARGET_CHAR_BIT), dval);
8645 if (branch_type == NULL)
8646 {
8647 int f;
8648
8649 for (f = variant_field + 1; f < nfields; f += 1)
8650 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8651 TYPE_NFIELDS (rtype) -= 1;
8652 }
8653 else
8654 {
8655 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8656 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8657 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8658 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8659 }
8660 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8661
8662 value_free_to_mark (mark);
8663 return rtype;
8664 }
8665
8666 /* An ordinary record type (with fixed-length fields) that describes
8667 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8668 beginning of this section]. Any necessary discriminants' values
8669 should be in DVAL, a record value; it may be NULL if the object
8670 at ADDR itself contains any necessary discriminant values.
8671 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8672 values from the record are needed. Except in the case that DVAL,
8673 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8674 unchecked) is replaced by a particular branch of the variant.
8675
8676 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8677 is questionable and may be removed. It can arise during the
8678 processing of an unconstrained-array-of-record type where all the
8679 variant branches have exactly the same size. This is because in
8680 such cases, the compiler does not bother to use the XVS convention
8681 when encoding the record. I am currently dubious of this
8682 shortcut and suspect the compiler should be altered. FIXME. */
8683
8684 static struct type *
8685 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8686 CORE_ADDR address, struct value *dval)
8687 {
8688 struct type *templ_type;
8689
8690 if (TYPE_FIXED_INSTANCE (type0))
8691 return type0;
8692
8693 templ_type = dynamic_template_type (type0);
8694
8695 if (templ_type != NULL)
8696 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8697 else if (variant_field_index (type0) >= 0)
8698 {
8699 if (dval == NULL && valaddr == NULL && address == 0)
8700 return type0;
8701 return to_record_with_fixed_variant_part (type0, valaddr, address,
8702 dval);
8703 }
8704 else
8705 {
8706 TYPE_FIXED_INSTANCE (type0) = 1;
8707 return type0;
8708 }
8709
8710 }
8711
8712 /* An ordinary record type (with fixed-length fields) that describes
8713 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8714 union type. Any necessary discriminants' values should be in DVAL,
8715 a record value. That is, this routine selects the appropriate
8716 branch of the union at ADDR according to the discriminant value
8717 indicated in the union's type name. Returns VAR_TYPE0 itself if
8718 it represents a variant subject to a pragma Unchecked_Union. */
8719
8720 static struct type *
8721 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8722 CORE_ADDR address, struct value *dval)
8723 {
8724 int which;
8725 struct type *templ_type;
8726 struct type *var_type;
8727
8728 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8729 var_type = TYPE_TARGET_TYPE (var_type0);
8730 else
8731 var_type = var_type0;
8732
8733 templ_type = ada_find_parallel_type (var_type, "___XVU");
8734
8735 if (templ_type != NULL)
8736 var_type = templ_type;
8737
8738 if (is_unchecked_variant (var_type, value_type (dval)))
8739 return var_type0;
8740 which =
8741 ada_which_variant_applies (var_type,
8742 value_type (dval), value_contents (dval));
8743
8744 if (which < 0)
8745 return empty_record (var_type);
8746 else if (is_dynamic_field (var_type, which))
8747 return to_fixed_record_type
8748 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8749 valaddr, address, dval);
8750 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8751 return
8752 to_fixed_record_type
8753 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8754 else
8755 return TYPE_FIELD_TYPE (var_type, which);
8756 }
8757
8758 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8759 ENCODING_TYPE, a type following the GNAT conventions for discrete
8760 type encodings, only carries redundant information. */
8761
8762 static int
8763 ada_is_redundant_range_encoding (struct type *range_type,
8764 struct type *encoding_type)
8765 {
8766 const char *bounds_str;
8767 int n;
8768 LONGEST lo, hi;
8769
8770 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8771
8772 if (TYPE_CODE (get_base_type (range_type))
8773 != TYPE_CODE (get_base_type (encoding_type)))
8774 {
8775 /* The compiler probably used a simple base type to describe
8776 the range type instead of the range's actual base type,
8777 expecting us to get the real base type from the encoding
8778 anyway. In this situation, the encoding cannot be ignored
8779 as redundant. */
8780 return 0;
8781 }
8782
8783 if (is_dynamic_type (range_type))
8784 return 0;
8785
8786 if (TYPE_NAME (encoding_type) == NULL)
8787 return 0;
8788
8789 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8790 if (bounds_str == NULL)
8791 return 0;
8792
8793 n = 8; /* Skip "___XDLU_". */
8794 if (!ada_scan_number (bounds_str, n, &lo, &n))
8795 return 0;
8796 if (TYPE_LOW_BOUND (range_type) != lo)
8797 return 0;
8798
8799 n += 2; /* Skip the "__" separator between the two bounds. */
8800 if (!ada_scan_number (bounds_str, n, &hi, &n))
8801 return 0;
8802 if (TYPE_HIGH_BOUND (range_type) != hi)
8803 return 0;
8804
8805 return 1;
8806 }
8807
8808 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8809 a type following the GNAT encoding for describing array type
8810 indices, only carries redundant information. */
8811
8812 static int
8813 ada_is_redundant_index_type_desc (struct type *array_type,
8814 struct type *desc_type)
8815 {
8816 struct type *this_layer = check_typedef (array_type);
8817 int i;
8818
8819 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8820 {
8821 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8822 TYPE_FIELD_TYPE (desc_type, i)))
8823 return 0;
8824 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8825 }
8826
8827 return 1;
8828 }
8829
8830 /* Assuming that TYPE0 is an array type describing the type of a value
8831 at ADDR, and that DVAL describes a record containing any
8832 discriminants used in TYPE0, returns a type for the value that
8833 contains no dynamic components (that is, no components whose sizes
8834 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8835 true, gives an error message if the resulting type's size is over
8836 varsize_limit. */
8837
8838 static struct type *
8839 to_fixed_array_type (struct type *type0, struct value *dval,
8840 int ignore_too_big)
8841 {
8842 struct type *index_type_desc;
8843 struct type *result;
8844 int constrained_packed_array_p;
8845 static const char *xa_suffix = "___XA";
8846
8847 type0 = ada_check_typedef (type0);
8848 if (TYPE_FIXED_INSTANCE (type0))
8849 return type0;
8850
8851 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8852 if (constrained_packed_array_p)
8853 type0 = decode_constrained_packed_array_type (type0);
8854
8855 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8856
8857 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8858 encoding suffixed with 'P' may still be generated. If so,
8859 it should be used to find the XA type. */
8860
8861 if (index_type_desc == NULL)
8862 {
8863 const char *type_name = ada_type_name (type0);
8864
8865 if (type_name != NULL)
8866 {
8867 const int len = strlen (type_name);
8868 char *name = (char *) alloca (len + strlen (xa_suffix));
8869
8870 if (type_name[len - 1] == 'P')
8871 {
8872 strcpy (name, type_name);
8873 strcpy (name + len - 1, xa_suffix);
8874 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8875 }
8876 }
8877 }
8878
8879 ada_fixup_array_indexes_type (index_type_desc);
8880 if (index_type_desc != NULL
8881 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8882 {
8883 /* Ignore this ___XA parallel type, as it does not bring any
8884 useful information. This allows us to avoid creating fixed
8885 versions of the array's index types, which would be identical
8886 to the original ones. This, in turn, can also help avoid
8887 the creation of fixed versions of the array itself. */
8888 index_type_desc = NULL;
8889 }
8890
8891 if (index_type_desc == NULL)
8892 {
8893 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8894
8895 /* NOTE: elt_type---the fixed version of elt_type0---should never
8896 depend on the contents of the array in properly constructed
8897 debugging data. */
8898 /* Create a fixed version of the array element type.
8899 We're not providing the address of an element here,
8900 and thus the actual object value cannot be inspected to do
8901 the conversion. This should not be a problem, since arrays of
8902 unconstrained objects are not allowed. In particular, all
8903 the elements of an array of a tagged type should all be of
8904 the same type specified in the debugging info. No need to
8905 consult the object tag. */
8906 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8907
8908 /* Make sure we always create a new array type when dealing with
8909 packed array types, since we're going to fix-up the array
8910 type length and element bitsize a little further down. */
8911 if (elt_type0 == elt_type && !constrained_packed_array_p)
8912 result = type0;
8913 else
8914 result = create_array_type (alloc_type_copy (type0),
8915 elt_type, TYPE_INDEX_TYPE (type0));
8916 }
8917 else
8918 {
8919 int i;
8920 struct type *elt_type0;
8921
8922 elt_type0 = type0;
8923 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8924 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8925
8926 /* NOTE: result---the fixed version of elt_type0---should never
8927 depend on the contents of the array in properly constructed
8928 debugging data. */
8929 /* Create a fixed version of the array element type.
8930 We're not providing the address of an element here,
8931 and thus the actual object value cannot be inspected to do
8932 the conversion. This should not be a problem, since arrays of
8933 unconstrained objects are not allowed. In particular, all
8934 the elements of an array of a tagged type should all be of
8935 the same type specified in the debugging info. No need to
8936 consult the object tag. */
8937 result =
8938 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8939
8940 elt_type0 = type0;
8941 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8942 {
8943 struct type *range_type =
8944 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8945
8946 result = create_array_type (alloc_type_copy (elt_type0),
8947 result, range_type);
8948 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8949 }
8950 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8951 error (_("array type with dynamic size is larger than varsize-limit"));
8952 }
8953
8954 /* We want to preserve the type name. This can be useful when
8955 trying to get the type name of a value that has already been
8956 printed (for instance, if the user did "print VAR; whatis $". */
8957 TYPE_NAME (result) = TYPE_NAME (type0);
8958
8959 if (constrained_packed_array_p)
8960 {
8961 /* So far, the resulting type has been created as if the original
8962 type was a regular (non-packed) array type. As a result, the
8963 bitsize of the array elements needs to be set again, and the array
8964 length needs to be recomputed based on that bitsize. */
8965 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8966 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8967
8968 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8969 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8970 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8971 TYPE_LENGTH (result)++;
8972 }
8973
8974 TYPE_FIXED_INSTANCE (result) = 1;
8975 return result;
8976 }
8977
8978
8979 /* A standard type (containing no dynamically sized components)
8980 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8981 DVAL describes a record containing any discriminants used in TYPE0,
8982 and may be NULL if there are none, or if the object of type TYPE at
8983 ADDRESS or in VALADDR contains these discriminants.
8984
8985 If CHECK_TAG is not null, in the case of tagged types, this function
8986 attempts to locate the object's tag and use it to compute the actual
8987 type. However, when ADDRESS is null, we cannot use it to determine the
8988 location of the tag, and therefore compute the tagged type's actual type.
8989 So we return the tagged type without consulting the tag. */
8990
8991 static struct type *
8992 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8993 CORE_ADDR address, struct value *dval, int check_tag)
8994 {
8995 type = ada_check_typedef (type);
8996 switch (TYPE_CODE (type))
8997 {
8998 default:
8999 return type;
9000 case TYPE_CODE_STRUCT:
9001 {
9002 struct type *static_type = to_static_fixed_type (type);
9003 struct type *fixed_record_type =
9004 to_fixed_record_type (type, valaddr, address, NULL);
9005
9006 /* If STATIC_TYPE is a tagged type and we know the object's address,
9007 then we can determine its tag, and compute the object's actual
9008 type from there. Note that we have to use the fixed record
9009 type (the parent part of the record may have dynamic fields
9010 and the way the location of _tag is expressed may depend on
9011 them). */
9012
9013 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9014 {
9015 struct value *tag =
9016 value_tag_from_contents_and_address
9017 (fixed_record_type,
9018 valaddr,
9019 address);
9020 struct type *real_type = type_from_tag (tag);
9021 struct value *obj =
9022 value_from_contents_and_address (fixed_record_type,
9023 valaddr,
9024 address);
9025 fixed_record_type = value_type (obj);
9026 if (real_type != NULL)
9027 return to_fixed_record_type
9028 (real_type, NULL,
9029 value_address (ada_tag_value_at_base_address (obj)), NULL);
9030 }
9031
9032 /* Check to see if there is a parallel ___XVZ variable.
9033 If there is, then it provides the actual size of our type. */
9034 else if (ada_type_name (fixed_record_type) != NULL)
9035 {
9036 const char *name = ada_type_name (fixed_record_type);
9037 char *xvz_name
9038 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9039 bool xvz_found = false;
9040 LONGEST size;
9041
9042 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9043 TRY
9044 {
9045 xvz_found = get_int_var_value (xvz_name, size);
9046 }
9047 CATCH (except, RETURN_MASK_ERROR)
9048 {
9049 /* We found the variable, but somehow failed to read
9050 its value. Rethrow the same error, but with a little
9051 bit more information, to help the user understand
9052 what went wrong (Eg: the variable might have been
9053 optimized out). */
9054 throw_error (except.error,
9055 _("unable to read value of %s (%s)"),
9056 xvz_name, except.message);
9057 }
9058 END_CATCH
9059
9060 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9061 {
9062 fixed_record_type = copy_type (fixed_record_type);
9063 TYPE_LENGTH (fixed_record_type) = size;
9064
9065 /* The FIXED_RECORD_TYPE may have be a stub. We have
9066 observed this when the debugging info is STABS, and
9067 apparently it is something that is hard to fix.
9068
9069 In practice, we don't need the actual type definition
9070 at all, because the presence of the XVZ variable allows us
9071 to assume that there must be a XVS type as well, which we
9072 should be able to use later, when we need the actual type
9073 definition.
9074
9075 In the meantime, pretend that the "fixed" type we are
9076 returning is NOT a stub, because this can cause trouble
9077 when using this type to create new types targeting it.
9078 Indeed, the associated creation routines often check
9079 whether the target type is a stub and will try to replace
9080 it, thus using a type with the wrong size. This, in turn,
9081 might cause the new type to have the wrong size too.
9082 Consider the case of an array, for instance, where the size
9083 of the array is computed from the number of elements in
9084 our array multiplied by the size of its element. */
9085 TYPE_STUB (fixed_record_type) = 0;
9086 }
9087 }
9088 return fixed_record_type;
9089 }
9090 case TYPE_CODE_ARRAY:
9091 return to_fixed_array_type (type, dval, 1);
9092 case TYPE_CODE_UNION:
9093 if (dval == NULL)
9094 return type;
9095 else
9096 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9097 }
9098 }
9099
9100 /* The same as ada_to_fixed_type_1, except that it preserves the type
9101 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9102
9103 The typedef layer needs be preserved in order to differentiate between
9104 arrays and array pointers when both types are implemented using the same
9105 fat pointer. In the array pointer case, the pointer is encoded as
9106 a typedef of the pointer type. For instance, considering:
9107
9108 type String_Access is access String;
9109 S1 : String_Access := null;
9110
9111 To the debugger, S1 is defined as a typedef of type String. But
9112 to the user, it is a pointer. So if the user tries to print S1,
9113 we should not dereference the array, but print the array address
9114 instead.
9115
9116 If we didn't preserve the typedef layer, we would lose the fact that
9117 the type is to be presented as a pointer (needs de-reference before
9118 being printed). And we would also use the source-level type name. */
9119
9120 struct type *
9121 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9122 CORE_ADDR address, struct value *dval, int check_tag)
9123
9124 {
9125 struct type *fixed_type =
9126 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9127
9128 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9129 then preserve the typedef layer.
9130
9131 Implementation note: We can only check the main-type portion of
9132 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9133 from TYPE now returns a type that has the same instance flags
9134 as TYPE. For instance, if TYPE is a "typedef const", and its
9135 target type is a "struct", then the typedef elimination will return
9136 a "const" version of the target type. See check_typedef for more
9137 details about how the typedef layer elimination is done.
9138
9139 brobecker/2010-11-19: It seems to me that the only case where it is
9140 useful to preserve the typedef layer is when dealing with fat pointers.
9141 Perhaps, we could add a check for that and preserve the typedef layer
9142 only in that situation. But this seems unecessary so far, probably
9143 because we call check_typedef/ada_check_typedef pretty much everywhere.
9144 */
9145 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9146 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9147 == TYPE_MAIN_TYPE (fixed_type)))
9148 return type;
9149
9150 return fixed_type;
9151 }
9152
9153 /* A standard (static-sized) type corresponding as well as possible to
9154 TYPE0, but based on no runtime data. */
9155
9156 static struct type *
9157 to_static_fixed_type (struct type *type0)
9158 {
9159 struct type *type;
9160
9161 if (type0 == NULL)
9162 return NULL;
9163
9164 if (TYPE_FIXED_INSTANCE (type0))
9165 return type0;
9166
9167 type0 = ada_check_typedef (type0);
9168
9169 switch (TYPE_CODE (type0))
9170 {
9171 default:
9172 return type0;
9173 case TYPE_CODE_STRUCT:
9174 type = dynamic_template_type (type0);
9175 if (type != NULL)
9176 return template_to_static_fixed_type (type);
9177 else
9178 return template_to_static_fixed_type (type0);
9179 case TYPE_CODE_UNION:
9180 type = ada_find_parallel_type (type0, "___XVU");
9181 if (type != NULL)
9182 return template_to_static_fixed_type (type);
9183 else
9184 return template_to_static_fixed_type (type0);
9185 }
9186 }
9187
9188 /* A static approximation of TYPE with all type wrappers removed. */
9189
9190 static struct type *
9191 static_unwrap_type (struct type *type)
9192 {
9193 if (ada_is_aligner_type (type))
9194 {
9195 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9196 if (ada_type_name (type1) == NULL)
9197 TYPE_NAME (type1) = ada_type_name (type);
9198
9199 return static_unwrap_type (type1);
9200 }
9201 else
9202 {
9203 struct type *raw_real_type = ada_get_base_type (type);
9204
9205 if (raw_real_type == type)
9206 return type;
9207 else
9208 return to_static_fixed_type (raw_real_type);
9209 }
9210 }
9211
9212 /* In some cases, incomplete and private types require
9213 cross-references that are not resolved as records (for example,
9214 type Foo;
9215 type FooP is access Foo;
9216 V: FooP;
9217 type Foo is array ...;
9218 ). In these cases, since there is no mechanism for producing
9219 cross-references to such types, we instead substitute for FooP a
9220 stub enumeration type that is nowhere resolved, and whose tag is
9221 the name of the actual type. Call these types "non-record stubs". */
9222
9223 /* A type equivalent to TYPE that is not a non-record stub, if one
9224 exists, otherwise TYPE. */
9225
9226 struct type *
9227 ada_check_typedef (struct type *type)
9228 {
9229 if (type == NULL)
9230 return NULL;
9231
9232 /* If our type is an access to an unconstrained array, which is encoded
9233 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9234 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9235 what allows us to distinguish between fat pointers that represent
9236 array types, and fat pointers that represent array access types
9237 (in both cases, the compiler implements them as fat pointers). */
9238 if (ada_is_access_to_unconstrained_array (type))
9239 return type;
9240
9241 type = check_typedef (type);
9242 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9243 || !TYPE_STUB (type)
9244 || TYPE_NAME (type) == NULL)
9245 return type;
9246 else
9247 {
9248 const char *name = TYPE_NAME (type);
9249 struct type *type1 = ada_find_any_type (name);
9250
9251 if (type1 == NULL)
9252 return type;
9253
9254 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9255 stubs pointing to arrays, as we don't create symbols for array
9256 types, only for the typedef-to-array types). If that's the case,
9257 strip the typedef layer. */
9258 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9259 type1 = ada_check_typedef (type1);
9260
9261 return type1;
9262 }
9263 }
9264
9265 /* A value representing the data at VALADDR/ADDRESS as described by
9266 type TYPE0, but with a standard (static-sized) type that correctly
9267 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9268 type, then return VAL0 [this feature is simply to avoid redundant
9269 creation of struct values]. */
9270
9271 static struct value *
9272 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9273 struct value *val0)
9274 {
9275 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9276
9277 if (type == type0 && val0 != NULL)
9278 return val0;
9279
9280 if (VALUE_LVAL (val0) != lval_memory)
9281 {
9282 /* Our value does not live in memory; it could be a convenience
9283 variable, for instance. Create a not_lval value using val0's
9284 contents. */
9285 return value_from_contents (type, value_contents (val0));
9286 }
9287
9288 return value_from_contents_and_address (type, 0, address);
9289 }
9290
9291 /* A value representing VAL, but with a standard (static-sized) type
9292 that correctly describes it. Does not necessarily create a new
9293 value. */
9294
9295 struct value *
9296 ada_to_fixed_value (struct value *val)
9297 {
9298 val = unwrap_value (val);
9299 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9300 return val;
9301 }
9302 \f
9303
9304 /* Attributes */
9305
9306 /* Table mapping attribute numbers to names.
9307 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9308
9309 static const char *attribute_names[] = {
9310 "<?>",
9311
9312 "first",
9313 "last",
9314 "length",
9315 "image",
9316 "max",
9317 "min",
9318 "modulus",
9319 "pos",
9320 "size",
9321 "tag",
9322 "val",
9323 0
9324 };
9325
9326 const char *
9327 ada_attribute_name (enum exp_opcode n)
9328 {
9329 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9330 return attribute_names[n - OP_ATR_FIRST + 1];
9331 else
9332 return attribute_names[0];
9333 }
9334
9335 /* Evaluate the 'POS attribute applied to ARG. */
9336
9337 static LONGEST
9338 pos_atr (struct value *arg)
9339 {
9340 struct value *val = coerce_ref (arg);
9341 struct type *type = value_type (val);
9342 LONGEST result;
9343
9344 if (!discrete_type_p (type))
9345 error (_("'POS only defined on discrete types"));
9346
9347 if (!discrete_position (type, value_as_long (val), &result))
9348 error (_("enumeration value is invalid: can't find 'POS"));
9349
9350 return result;
9351 }
9352
9353 static struct value *
9354 value_pos_atr (struct type *type, struct value *arg)
9355 {
9356 return value_from_longest (type, pos_atr (arg));
9357 }
9358
9359 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9360
9361 static struct value *
9362 value_val_atr (struct type *type, struct value *arg)
9363 {
9364 if (!discrete_type_p (type))
9365 error (_("'VAL only defined on discrete types"));
9366 if (!integer_type_p (value_type (arg)))
9367 error (_("'VAL requires integral argument"));
9368
9369 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9370 {
9371 long pos = value_as_long (arg);
9372
9373 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9374 error (_("argument to 'VAL out of range"));
9375 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9376 }
9377 else
9378 return value_from_longest (type, value_as_long (arg));
9379 }
9380 \f
9381
9382 /* Evaluation */
9383
9384 /* True if TYPE appears to be an Ada character type.
9385 [At the moment, this is true only for Character and Wide_Character;
9386 It is a heuristic test that could stand improvement]. */
9387
9388 int
9389 ada_is_character_type (struct type *type)
9390 {
9391 const char *name;
9392
9393 /* If the type code says it's a character, then assume it really is,
9394 and don't check any further. */
9395 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9396 return 1;
9397
9398 /* Otherwise, assume it's a character type iff it is a discrete type
9399 with a known character type name. */
9400 name = ada_type_name (type);
9401 return (name != NULL
9402 && (TYPE_CODE (type) == TYPE_CODE_INT
9403 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9404 && (strcmp (name, "character") == 0
9405 || strcmp (name, "wide_character") == 0
9406 || strcmp (name, "wide_wide_character") == 0
9407 || strcmp (name, "unsigned char") == 0));
9408 }
9409
9410 /* True if TYPE appears to be an Ada string type. */
9411
9412 int
9413 ada_is_string_type (struct type *type)
9414 {
9415 type = ada_check_typedef (type);
9416 if (type != NULL
9417 && TYPE_CODE (type) != TYPE_CODE_PTR
9418 && (ada_is_simple_array_type (type)
9419 || ada_is_array_descriptor_type (type))
9420 && ada_array_arity (type) == 1)
9421 {
9422 struct type *elttype = ada_array_element_type (type, 1);
9423
9424 return ada_is_character_type (elttype);
9425 }
9426 else
9427 return 0;
9428 }
9429
9430 /* The compiler sometimes provides a parallel XVS type for a given
9431 PAD type. Normally, it is safe to follow the PAD type directly,
9432 but older versions of the compiler have a bug that causes the offset
9433 of its "F" field to be wrong. Following that field in that case
9434 would lead to incorrect results, but this can be worked around
9435 by ignoring the PAD type and using the associated XVS type instead.
9436
9437 Set to True if the debugger should trust the contents of PAD types.
9438 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9439 static int trust_pad_over_xvs = 1;
9440
9441 /* True if TYPE is a struct type introduced by the compiler to force the
9442 alignment of a value. Such types have a single field with a
9443 distinctive name. */
9444
9445 int
9446 ada_is_aligner_type (struct type *type)
9447 {
9448 type = ada_check_typedef (type);
9449
9450 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9451 return 0;
9452
9453 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9454 && TYPE_NFIELDS (type) == 1
9455 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9456 }
9457
9458 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9459 the parallel type. */
9460
9461 struct type *
9462 ada_get_base_type (struct type *raw_type)
9463 {
9464 struct type *real_type_namer;
9465 struct type *raw_real_type;
9466
9467 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9468 return raw_type;
9469
9470 if (ada_is_aligner_type (raw_type))
9471 /* The encoding specifies that we should always use the aligner type.
9472 So, even if this aligner type has an associated XVS type, we should
9473 simply ignore it.
9474
9475 According to the compiler gurus, an XVS type parallel to an aligner
9476 type may exist because of a stabs limitation. In stabs, aligner
9477 types are empty because the field has a variable-sized type, and
9478 thus cannot actually be used as an aligner type. As a result,
9479 we need the associated parallel XVS type to decode the type.
9480 Since the policy in the compiler is to not change the internal
9481 representation based on the debugging info format, we sometimes
9482 end up having a redundant XVS type parallel to the aligner type. */
9483 return raw_type;
9484
9485 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9486 if (real_type_namer == NULL
9487 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9488 || TYPE_NFIELDS (real_type_namer) != 1)
9489 return raw_type;
9490
9491 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9492 {
9493 /* This is an older encoding form where the base type needs to be
9494 looked up by name. We prefer the newer enconding because it is
9495 more efficient. */
9496 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9497 if (raw_real_type == NULL)
9498 return raw_type;
9499 else
9500 return raw_real_type;
9501 }
9502
9503 /* The field in our XVS type is a reference to the base type. */
9504 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9505 }
9506
9507 /* The type of value designated by TYPE, with all aligners removed. */
9508
9509 struct type *
9510 ada_aligned_type (struct type *type)
9511 {
9512 if (ada_is_aligner_type (type))
9513 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9514 else
9515 return ada_get_base_type (type);
9516 }
9517
9518
9519 /* The address of the aligned value in an object at address VALADDR
9520 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9521
9522 const gdb_byte *
9523 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9524 {
9525 if (ada_is_aligner_type (type))
9526 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9527 valaddr +
9528 TYPE_FIELD_BITPOS (type,
9529 0) / TARGET_CHAR_BIT);
9530 else
9531 return valaddr;
9532 }
9533
9534
9535
9536 /* The printed representation of an enumeration literal with encoded
9537 name NAME. The value is good to the next call of ada_enum_name. */
9538 const char *
9539 ada_enum_name (const char *name)
9540 {
9541 static char *result;
9542 static size_t result_len = 0;
9543 const char *tmp;
9544
9545 /* First, unqualify the enumeration name:
9546 1. Search for the last '.' character. If we find one, then skip
9547 all the preceding characters, the unqualified name starts
9548 right after that dot.
9549 2. Otherwise, we may be debugging on a target where the compiler
9550 translates dots into "__". Search forward for double underscores,
9551 but stop searching when we hit an overloading suffix, which is
9552 of the form "__" followed by digits. */
9553
9554 tmp = strrchr (name, '.');
9555 if (tmp != NULL)
9556 name = tmp + 1;
9557 else
9558 {
9559 while ((tmp = strstr (name, "__")) != NULL)
9560 {
9561 if (isdigit (tmp[2]))
9562 break;
9563 else
9564 name = tmp + 2;
9565 }
9566 }
9567
9568 if (name[0] == 'Q')
9569 {
9570 int v;
9571
9572 if (name[1] == 'U' || name[1] == 'W')
9573 {
9574 if (sscanf (name + 2, "%x", &v) != 1)
9575 return name;
9576 }
9577 else
9578 return name;
9579
9580 GROW_VECT (result, result_len, 16);
9581 if (isascii (v) && isprint (v))
9582 xsnprintf (result, result_len, "'%c'", v);
9583 else if (name[1] == 'U')
9584 xsnprintf (result, result_len, "[\"%02x\"]", v);
9585 else
9586 xsnprintf (result, result_len, "[\"%04x\"]", v);
9587
9588 return result;
9589 }
9590 else
9591 {
9592 tmp = strstr (name, "__");
9593 if (tmp == NULL)
9594 tmp = strstr (name, "$");
9595 if (tmp != NULL)
9596 {
9597 GROW_VECT (result, result_len, tmp - name + 1);
9598 strncpy (result, name, tmp - name);
9599 result[tmp - name] = '\0';
9600 return result;
9601 }
9602
9603 return name;
9604 }
9605 }
9606
9607 /* Evaluate the subexpression of EXP starting at *POS as for
9608 evaluate_type, updating *POS to point just past the evaluated
9609 expression. */
9610
9611 static struct value *
9612 evaluate_subexp_type (struct expression *exp, int *pos)
9613 {
9614 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9615 }
9616
9617 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9618 value it wraps. */
9619
9620 static struct value *
9621 unwrap_value (struct value *val)
9622 {
9623 struct type *type = ada_check_typedef (value_type (val));
9624
9625 if (ada_is_aligner_type (type))
9626 {
9627 struct value *v = ada_value_struct_elt (val, "F", 0);
9628 struct type *val_type = ada_check_typedef (value_type (v));
9629
9630 if (ada_type_name (val_type) == NULL)
9631 TYPE_NAME (val_type) = ada_type_name (type);
9632
9633 return unwrap_value (v);
9634 }
9635 else
9636 {
9637 struct type *raw_real_type =
9638 ada_check_typedef (ada_get_base_type (type));
9639
9640 /* If there is no parallel XVS or XVE type, then the value is
9641 already unwrapped. Return it without further modification. */
9642 if ((type == raw_real_type)
9643 && ada_find_parallel_type (type, "___XVE") == NULL)
9644 return val;
9645
9646 return
9647 coerce_unspec_val_to_type
9648 (val, ada_to_fixed_type (raw_real_type, 0,
9649 value_address (val),
9650 NULL, 1));
9651 }
9652 }
9653
9654 static struct value *
9655 cast_from_fixed (struct type *type, struct value *arg)
9656 {
9657 struct value *scale = ada_scaling_factor (value_type (arg));
9658 arg = value_cast (value_type (scale), arg);
9659
9660 arg = value_binop (arg, scale, BINOP_MUL);
9661 return value_cast (type, arg);
9662 }
9663
9664 static struct value *
9665 cast_to_fixed (struct type *type, struct value *arg)
9666 {
9667 if (type == value_type (arg))
9668 return arg;
9669
9670 struct value *scale = ada_scaling_factor (type);
9671 if (ada_is_fixed_point_type (value_type (arg)))
9672 arg = cast_from_fixed (value_type (scale), arg);
9673 else
9674 arg = value_cast (value_type (scale), arg);
9675
9676 arg = value_binop (arg, scale, BINOP_DIV);
9677 return value_cast (type, arg);
9678 }
9679
9680 /* Given two array types T1 and T2, return nonzero iff both arrays
9681 contain the same number of elements. */
9682
9683 static int
9684 ada_same_array_size_p (struct type *t1, struct type *t2)
9685 {
9686 LONGEST lo1, hi1, lo2, hi2;
9687
9688 /* Get the array bounds in order to verify that the size of
9689 the two arrays match. */
9690 if (!get_array_bounds (t1, &lo1, &hi1)
9691 || !get_array_bounds (t2, &lo2, &hi2))
9692 error (_("unable to determine array bounds"));
9693
9694 /* To make things easier for size comparison, normalize a bit
9695 the case of empty arrays by making sure that the difference
9696 between upper bound and lower bound is always -1. */
9697 if (lo1 > hi1)
9698 hi1 = lo1 - 1;
9699 if (lo2 > hi2)
9700 hi2 = lo2 - 1;
9701
9702 return (hi1 - lo1 == hi2 - lo2);
9703 }
9704
9705 /* Assuming that VAL is an array of integrals, and TYPE represents
9706 an array with the same number of elements, but with wider integral
9707 elements, return an array "casted" to TYPE. In practice, this
9708 means that the returned array is built by casting each element
9709 of the original array into TYPE's (wider) element type. */
9710
9711 static struct value *
9712 ada_promote_array_of_integrals (struct type *type, struct value *val)
9713 {
9714 struct type *elt_type = TYPE_TARGET_TYPE (type);
9715 LONGEST lo, hi;
9716 struct value *res;
9717 LONGEST i;
9718
9719 /* Verify that both val and type are arrays of scalars, and
9720 that the size of val's elements is smaller than the size
9721 of type's element. */
9722 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9723 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9724 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9725 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9726 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9727 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9728
9729 if (!get_array_bounds (type, &lo, &hi))
9730 error (_("unable to determine array bounds"));
9731
9732 res = allocate_value (type);
9733
9734 /* Promote each array element. */
9735 for (i = 0; i < hi - lo + 1; i++)
9736 {
9737 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9738
9739 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9740 value_contents_all (elt), TYPE_LENGTH (elt_type));
9741 }
9742
9743 return res;
9744 }
9745
9746 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9747 return the converted value. */
9748
9749 static struct value *
9750 coerce_for_assign (struct type *type, struct value *val)
9751 {
9752 struct type *type2 = value_type (val);
9753
9754 if (type == type2)
9755 return val;
9756
9757 type2 = ada_check_typedef (type2);
9758 type = ada_check_typedef (type);
9759
9760 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9761 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9762 {
9763 val = ada_value_ind (val);
9764 type2 = value_type (val);
9765 }
9766
9767 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9768 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9769 {
9770 if (!ada_same_array_size_p (type, type2))
9771 error (_("cannot assign arrays of different length"));
9772
9773 if (is_integral_type (TYPE_TARGET_TYPE (type))
9774 && is_integral_type (TYPE_TARGET_TYPE (type2))
9775 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9776 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9777 {
9778 /* Allow implicit promotion of the array elements to
9779 a wider type. */
9780 return ada_promote_array_of_integrals (type, val);
9781 }
9782
9783 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9784 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9785 error (_("Incompatible types in assignment"));
9786 deprecated_set_value_type (val, type);
9787 }
9788 return val;
9789 }
9790
9791 static struct value *
9792 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9793 {
9794 struct value *val;
9795 struct type *type1, *type2;
9796 LONGEST v, v1, v2;
9797
9798 arg1 = coerce_ref (arg1);
9799 arg2 = coerce_ref (arg2);
9800 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9801 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9802
9803 if (TYPE_CODE (type1) != TYPE_CODE_INT
9804 || TYPE_CODE (type2) != TYPE_CODE_INT)
9805 return value_binop (arg1, arg2, op);
9806
9807 switch (op)
9808 {
9809 case BINOP_MOD:
9810 case BINOP_DIV:
9811 case BINOP_REM:
9812 break;
9813 default:
9814 return value_binop (arg1, arg2, op);
9815 }
9816
9817 v2 = value_as_long (arg2);
9818 if (v2 == 0)
9819 error (_("second operand of %s must not be zero."), op_string (op));
9820
9821 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9822 return value_binop (arg1, arg2, op);
9823
9824 v1 = value_as_long (arg1);
9825 switch (op)
9826 {
9827 case BINOP_DIV:
9828 v = v1 / v2;
9829 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9830 v += v > 0 ? -1 : 1;
9831 break;
9832 case BINOP_REM:
9833 v = v1 % v2;
9834 if (v * v1 < 0)
9835 v -= v2;
9836 break;
9837 default:
9838 /* Should not reach this point. */
9839 v = 0;
9840 }
9841
9842 val = allocate_value (type1);
9843 store_unsigned_integer (value_contents_raw (val),
9844 TYPE_LENGTH (value_type (val)),
9845 gdbarch_byte_order (get_type_arch (type1)), v);
9846 return val;
9847 }
9848
9849 static int
9850 ada_value_equal (struct value *arg1, struct value *arg2)
9851 {
9852 if (ada_is_direct_array_type (value_type (arg1))
9853 || ada_is_direct_array_type (value_type (arg2)))
9854 {
9855 struct type *arg1_type, *arg2_type;
9856
9857 /* Automatically dereference any array reference before
9858 we attempt to perform the comparison. */
9859 arg1 = ada_coerce_ref (arg1);
9860 arg2 = ada_coerce_ref (arg2);
9861
9862 arg1 = ada_coerce_to_simple_array (arg1);
9863 arg2 = ada_coerce_to_simple_array (arg2);
9864
9865 arg1_type = ada_check_typedef (value_type (arg1));
9866 arg2_type = ada_check_typedef (value_type (arg2));
9867
9868 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9869 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9870 error (_("Attempt to compare array with non-array"));
9871 /* FIXME: The following works only for types whose
9872 representations use all bits (no padding or undefined bits)
9873 and do not have user-defined equality. */
9874 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9875 && memcmp (value_contents (arg1), value_contents (arg2),
9876 TYPE_LENGTH (arg1_type)) == 0);
9877 }
9878 return value_equal (arg1, arg2);
9879 }
9880
9881 /* Total number of component associations in the aggregate starting at
9882 index PC in EXP. Assumes that index PC is the start of an
9883 OP_AGGREGATE. */
9884
9885 static int
9886 num_component_specs (struct expression *exp, int pc)
9887 {
9888 int n, m, i;
9889
9890 m = exp->elts[pc + 1].longconst;
9891 pc += 3;
9892 n = 0;
9893 for (i = 0; i < m; i += 1)
9894 {
9895 switch (exp->elts[pc].opcode)
9896 {
9897 default:
9898 n += 1;
9899 break;
9900 case OP_CHOICES:
9901 n += exp->elts[pc + 1].longconst;
9902 break;
9903 }
9904 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9905 }
9906 return n;
9907 }
9908
9909 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9910 component of LHS (a simple array or a record), updating *POS past
9911 the expression, assuming that LHS is contained in CONTAINER. Does
9912 not modify the inferior's memory, nor does it modify LHS (unless
9913 LHS == CONTAINER). */
9914
9915 static void
9916 assign_component (struct value *container, struct value *lhs, LONGEST index,
9917 struct expression *exp, int *pos)
9918 {
9919 struct value *mark = value_mark ();
9920 struct value *elt;
9921 struct type *lhs_type = check_typedef (value_type (lhs));
9922
9923 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9924 {
9925 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9926 struct value *index_val = value_from_longest (index_type, index);
9927
9928 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9929 }
9930 else
9931 {
9932 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9933 elt = ada_to_fixed_value (elt);
9934 }
9935
9936 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9937 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9938 else
9939 value_assign_to_component (container, elt,
9940 ada_evaluate_subexp (NULL, exp, pos,
9941 EVAL_NORMAL));
9942
9943 value_free_to_mark (mark);
9944 }
9945
9946 /* Assuming that LHS represents an lvalue having a record or array
9947 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9948 of that aggregate's value to LHS, advancing *POS past the
9949 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9950 lvalue containing LHS (possibly LHS itself). Does not modify
9951 the inferior's memory, nor does it modify the contents of
9952 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9953
9954 static struct value *
9955 assign_aggregate (struct value *container,
9956 struct value *lhs, struct expression *exp,
9957 int *pos, enum noside noside)
9958 {
9959 struct type *lhs_type;
9960 int n = exp->elts[*pos+1].longconst;
9961 LONGEST low_index, high_index;
9962 int num_specs;
9963 LONGEST *indices;
9964 int max_indices, num_indices;
9965 int i;
9966
9967 *pos += 3;
9968 if (noside != EVAL_NORMAL)
9969 {
9970 for (i = 0; i < n; i += 1)
9971 ada_evaluate_subexp (NULL, exp, pos, noside);
9972 return container;
9973 }
9974
9975 container = ada_coerce_ref (container);
9976 if (ada_is_direct_array_type (value_type (container)))
9977 container = ada_coerce_to_simple_array (container);
9978 lhs = ada_coerce_ref (lhs);
9979 if (!deprecated_value_modifiable (lhs))
9980 error (_("Left operand of assignment is not a modifiable lvalue."));
9981
9982 lhs_type = check_typedef (value_type (lhs));
9983 if (ada_is_direct_array_type (lhs_type))
9984 {
9985 lhs = ada_coerce_to_simple_array (lhs);
9986 lhs_type = check_typedef (value_type (lhs));
9987 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9988 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9989 }
9990 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9991 {
9992 low_index = 0;
9993 high_index = num_visible_fields (lhs_type) - 1;
9994 }
9995 else
9996 error (_("Left-hand side must be array or record."));
9997
9998 num_specs = num_component_specs (exp, *pos - 3);
9999 max_indices = 4 * num_specs + 4;
10000 indices = XALLOCAVEC (LONGEST, max_indices);
10001 indices[0] = indices[1] = low_index - 1;
10002 indices[2] = indices[3] = high_index + 1;
10003 num_indices = 4;
10004
10005 for (i = 0; i < n; i += 1)
10006 {
10007 switch (exp->elts[*pos].opcode)
10008 {
10009 case OP_CHOICES:
10010 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10011 &num_indices, max_indices,
10012 low_index, high_index);
10013 break;
10014 case OP_POSITIONAL:
10015 aggregate_assign_positional (container, lhs, exp, pos, indices,
10016 &num_indices, max_indices,
10017 low_index, high_index);
10018 break;
10019 case OP_OTHERS:
10020 if (i != n-1)
10021 error (_("Misplaced 'others' clause"));
10022 aggregate_assign_others (container, lhs, exp, pos, indices,
10023 num_indices, low_index, high_index);
10024 break;
10025 default:
10026 error (_("Internal error: bad aggregate clause"));
10027 }
10028 }
10029
10030 return container;
10031 }
10032
10033 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10034 construct at *POS, updating *POS past the construct, given that
10035 the positions are relative to lower bound LOW, where HIGH is the
10036 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10037 updating *NUM_INDICES as needed. CONTAINER is as for
10038 assign_aggregate. */
10039 static void
10040 aggregate_assign_positional (struct value *container,
10041 struct value *lhs, struct expression *exp,
10042 int *pos, LONGEST *indices, int *num_indices,
10043 int max_indices, LONGEST low, LONGEST high)
10044 {
10045 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10046
10047 if (ind - 1 == high)
10048 warning (_("Extra components in aggregate ignored."));
10049 if (ind <= high)
10050 {
10051 add_component_interval (ind, ind, indices, num_indices, max_indices);
10052 *pos += 3;
10053 assign_component (container, lhs, ind, exp, pos);
10054 }
10055 else
10056 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10057 }
10058
10059 /* Assign into the components of LHS indexed by the OP_CHOICES
10060 construct at *POS, updating *POS past the construct, given that
10061 the allowable indices are LOW..HIGH. Record the indices assigned
10062 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10063 needed. CONTAINER is as for assign_aggregate. */
10064 static void
10065 aggregate_assign_from_choices (struct value *container,
10066 struct value *lhs, struct expression *exp,
10067 int *pos, LONGEST *indices, int *num_indices,
10068 int max_indices, LONGEST low, LONGEST high)
10069 {
10070 int j;
10071 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10072 int choice_pos, expr_pc;
10073 int is_array = ada_is_direct_array_type (value_type (lhs));
10074
10075 choice_pos = *pos += 3;
10076
10077 for (j = 0; j < n_choices; j += 1)
10078 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10079 expr_pc = *pos;
10080 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10081
10082 for (j = 0; j < n_choices; j += 1)
10083 {
10084 LONGEST lower, upper;
10085 enum exp_opcode op = exp->elts[choice_pos].opcode;
10086
10087 if (op == OP_DISCRETE_RANGE)
10088 {
10089 choice_pos += 1;
10090 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10091 EVAL_NORMAL));
10092 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10093 EVAL_NORMAL));
10094 }
10095 else if (is_array)
10096 {
10097 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10098 EVAL_NORMAL));
10099 upper = lower;
10100 }
10101 else
10102 {
10103 int ind;
10104 const char *name;
10105
10106 switch (op)
10107 {
10108 case OP_NAME:
10109 name = &exp->elts[choice_pos + 2].string;
10110 break;
10111 case OP_VAR_VALUE:
10112 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10113 break;
10114 default:
10115 error (_("Invalid record component association."));
10116 }
10117 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10118 ind = 0;
10119 if (! find_struct_field (name, value_type (lhs), 0,
10120 NULL, NULL, NULL, NULL, &ind))
10121 error (_("Unknown component name: %s."), name);
10122 lower = upper = ind;
10123 }
10124
10125 if (lower <= upper && (lower < low || upper > high))
10126 error (_("Index in component association out of bounds."));
10127
10128 add_component_interval (lower, upper, indices, num_indices,
10129 max_indices);
10130 while (lower <= upper)
10131 {
10132 int pos1;
10133
10134 pos1 = expr_pc;
10135 assign_component (container, lhs, lower, exp, &pos1);
10136 lower += 1;
10137 }
10138 }
10139 }
10140
10141 /* Assign the value of the expression in the OP_OTHERS construct in
10142 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10143 have not been previously assigned. The index intervals already assigned
10144 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10145 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10146 static void
10147 aggregate_assign_others (struct value *container,
10148 struct value *lhs, struct expression *exp,
10149 int *pos, LONGEST *indices, int num_indices,
10150 LONGEST low, LONGEST high)
10151 {
10152 int i;
10153 int expr_pc = *pos + 1;
10154
10155 for (i = 0; i < num_indices - 2; i += 2)
10156 {
10157 LONGEST ind;
10158
10159 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10160 {
10161 int localpos;
10162
10163 localpos = expr_pc;
10164 assign_component (container, lhs, ind, exp, &localpos);
10165 }
10166 }
10167 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10168 }
10169
10170 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10171 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10172 modifying *SIZE as needed. It is an error if *SIZE exceeds
10173 MAX_SIZE. The resulting intervals do not overlap. */
10174 static void
10175 add_component_interval (LONGEST low, LONGEST high,
10176 LONGEST* indices, int *size, int max_size)
10177 {
10178 int i, j;
10179
10180 for (i = 0; i < *size; i += 2) {
10181 if (high >= indices[i] && low <= indices[i + 1])
10182 {
10183 int kh;
10184
10185 for (kh = i + 2; kh < *size; kh += 2)
10186 if (high < indices[kh])
10187 break;
10188 if (low < indices[i])
10189 indices[i] = low;
10190 indices[i + 1] = indices[kh - 1];
10191 if (high > indices[i + 1])
10192 indices[i + 1] = high;
10193 memcpy (indices + i + 2, indices + kh, *size - kh);
10194 *size -= kh - i - 2;
10195 return;
10196 }
10197 else if (high < indices[i])
10198 break;
10199 }
10200
10201 if (*size == max_size)
10202 error (_("Internal error: miscounted aggregate components."));
10203 *size += 2;
10204 for (j = *size-1; j >= i+2; j -= 1)
10205 indices[j] = indices[j - 2];
10206 indices[i] = low;
10207 indices[i + 1] = high;
10208 }
10209
10210 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10211 is different. */
10212
10213 static struct value *
10214 ada_value_cast (struct type *type, struct value *arg2)
10215 {
10216 if (type == ada_check_typedef (value_type (arg2)))
10217 return arg2;
10218
10219 if (ada_is_fixed_point_type (type))
10220 return cast_to_fixed (type, arg2);
10221
10222 if (ada_is_fixed_point_type (value_type (arg2)))
10223 return cast_from_fixed (type, arg2);
10224
10225 return value_cast (type, arg2);
10226 }
10227
10228 /* Evaluating Ada expressions, and printing their result.
10229 ------------------------------------------------------
10230
10231 1. Introduction:
10232 ----------------
10233
10234 We usually evaluate an Ada expression in order to print its value.
10235 We also evaluate an expression in order to print its type, which
10236 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10237 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10238 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10239 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10240 similar.
10241
10242 Evaluating expressions is a little more complicated for Ada entities
10243 than it is for entities in languages such as C. The main reason for
10244 this is that Ada provides types whose definition might be dynamic.
10245 One example of such types is variant records. Or another example
10246 would be an array whose bounds can only be known at run time.
10247
10248 The following description is a general guide as to what should be
10249 done (and what should NOT be done) in order to evaluate an expression
10250 involving such types, and when. This does not cover how the semantic
10251 information is encoded by GNAT as this is covered separatly. For the
10252 document used as the reference for the GNAT encoding, see exp_dbug.ads
10253 in the GNAT sources.
10254
10255 Ideally, we should embed each part of this description next to its
10256 associated code. Unfortunately, the amount of code is so vast right
10257 now that it's hard to see whether the code handling a particular
10258 situation might be duplicated or not. One day, when the code is
10259 cleaned up, this guide might become redundant with the comments
10260 inserted in the code, and we might want to remove it.
10261
10262 2. ``Fixing'' an Entity, the Simple Case:
10263 -----------------------------------------
10264
10265 When evaluating Ada expressions, the tricky issue is that they may
10266 reference entities whose type contents and size are not statically
10267 known. Consider for instance a variant record:
10268
10269 type Rec (Empty : Boolean := True) is record
10270 case Empty is
10271 when True => null;
10272 when False => Value : Integer;
10273 end case;
10274 end record;
10275 Yes : Rec := (Empty => False, Value => 1);
10276 No : Rec := (empty => True);
10277
10278 The size and contents of that record depends on the value of the
10279 descriminant (Rec.Empty). At this point, neither the debugging
10280 information nor the associated type structure in GDB are able to
10281 express such dynamic types. So what the debugger does is to create
10282 "fixed" versions of the type that applies to the specific object.
10283 We also informally refer to this opperation as "fixing" an object,
10284 which means creating its associated fixed type.
10285
10286 Example: when printing the value of variable "Yes" above, its fixed
10287 type would look like this:
10288
10289 type Rec is record
10290 Empty : Boolean;
10291 Value : Integer;
10292 end record;
10293
10294 On the other hand, if we printed the value of "No", its fixed type
10295 would become:
10296
10297 type Rec is record
10298 Empty : Boolean;
10299 end record;
10300
10301 Things become a little more complicated when trying to fix an entity
10302 with a dynamic type that directly contains another dynamic type,
10303 such as an array of variant records, for instance. There are
10304 two possible cases: Arrays, and records.
10305
10306 3. ``Fixing'' Arrays:
10307 ---------------------
10308
10309 The type structure in GDB describes an array in terms of its bounds,
10310 and the type of its elements. By design, all elements in the array
10311 have the same type and we cannot represent an array of variant elements
10312 using the current type structure in GDB. When fixing an array,
10313 we cannot fix the array element, as we would potentially need one
10314 fixed type per element of the array. As a result, the best we can do
10315 when fixing an array is to produce an array whose bounds and size
10316 are correct (allowing us to read it from memory), but without having
10317 touched its element type. Fixing each element will be done later,
10318 when (if) necessary.
10319
10320 Arrays are a little simpler to handle than records, because the same
10321 amount of memory is allocated for each element of the array, even if
10322 the amount of space actually used by each element differs from element
10323 to element. Consider for instance the following array of type Rec:
10324
10325 type Rec_Array is array (1 .. 2) of Rec;
10326
10327 The actual amount of memory occupied by each element might be different
10328 from element to element, depending on the value of their discriminant.
10329 But the amount of space reserved for each element in the array remains
10330 fixed regardless. So we simply need to compute that size using
10331 the debugging information available, from which we can then determine
10332 the array size (we multiply the number of elements of the array by
10333 the size of each element).
10334
10335 The simplest case is when we have an array of a constrained element
10336 type. For instance, consider the following type declarations:
10337
10338 type Bounded_String (Max_Size : Integer) is
10339 Length : Integer;
10340 Buffer : String (1 .. Max_Size);
10341 end record;
10342 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10343
10344 In this case, the compiler describes the array as an array of
10345 variable-size elements (identified by its XVS suffix) for which
10346 the size can be read in the parallel XVZ variable.
10347
10348 In the case of an array of an unconstrained element type, the compiler
10349 wraps the array element inside a private PAD type. This type should not
10350 be shown to the user, and must be "unwrap"'ed before printing. Note
10351 that we also use the adjective "aligner" in our code to designate
10352 these wrapper types.
10353
10354 In some cases, the size allocated for each element is statically
10355 known. In that case, the PAD type already has the correct size,
10356 and the array element should remain unfixed.
10357
10358 But there are cases when this size is not statically known.
10359 For instance, assuming that "Five" is an integer variable:
10360
10361 type Dynamic is array (1 .. Five) of Integer;
10362 type Wrapper (Has_Length : Boolean := False) is record
10363 Data : Dynamic;
10364 case Has_Length is
10365 when True => Length : Integer;
10366 when False => null;
10367 end case;
10368 end record;
10369 type Wrapper_Array is array (1 .. 2) of Wrapper;
10370
10371 Hello : Wrapper_Array := (others => (Has_Length => True,
10372 Data => (others => 17),
10373 Length => 1));
10374
10375
10376 The debugging info would describe variable Hello as being an
10377 array of a PAD type. The size of that PAD type is not statically
10378 known, but can be determined using a parallel XVZ variable.
10379 In that case, a copy of the PAD type with the correct size should
10380 be used for the fixed array.
10381
10382 3. ``Fixing'' record type objects:
10383 ----------------------------------
10384
10385 Things are slightly different from arrays in the case of dynamic
10386 record types. In this case, in order to compute the associated
10387 fixed type, we need to determine the size and offset of each of
10388 its components. This, in turn, requires us to compute the fixed
10389 type of each of these components.
10390
10391 Consider for instance the example:
10392
10393 type Bounded_String (Max_Size : Natural) is record
10394 Str : String (1 .. Max_Size);
10395 Length : Natural;
10396 end record;
10397 My_String : Bounded_String (Max_Size => 10);
10398
10399 In that case, the position of field "Length" depends on the size
10400 of field Str, which itself depends on the value of the Max_Size
10401 discriminant. In order to fix the type of variable My_String,
10402 we need to fix the type of field Str. Therefore, fixing a variant
10403 record requires us to fix each of its components.
10404
10405 However, if a component does not have a dynamic size, the component
10406 should not be fixed. In particular, fields that use a PAD type
10407 should not fixed. Here is an example where this might happen
10408 (assuming type Rec above):
10409
10410 type Container (Big : Boolean) is record
10411 First : Rec;
10412 After : Integer;
10413 case Big is
10414 when True => Another : Integer;
10415 when False => null;
10416 end case;
10417 end record;
10418 My_Container : Container := (Big => False,
10419 First => (Empty => True),
10420 After => 42);
10421
10422 In that example, the compiler creates a PAD type for component First,
10423 whose size is constant, and then positions the component After just
10424 right after it. The offset of component After is therefore constant
10425 in this case.
10426
10427 The debugger computes the position of each field based on an algorithm
10428 that uses, among other things, the actual position and size of the field
10429 preceding it. Let's now imagine that the user is trying to print
10430 the value of My_Container. If the type fixing was recursive, we would
10431 end up computing the offset of field After based on the size of the
10432 fixed version of field First. And since in our example First has
10433 only one actual field, the size of the fixed type is actually smaller
10434 than the amount of space allocated to that field, and thus we would
10435 compute the wrong offset of field After.
10436
10437 To make things more complicated, we need to watch out for dynamic
10438 components of variant records (identified by the ___XVL suffix in
10439 the component name). Even if the target type is a PAD type, the size
10440 of that type might not be statically known. So the PAD type needs
10441 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10442 we might end up with the wrong size for our component. This can be
10443 observed with the following type declarations:
10444
10445 type Octal is new Integer range 0 .. 7;
10446 type Octal_Array is array (Positive range <>) of Octal;
10447 pragma Pack (Octal_Array);
10448
10449 type Octal_Buffer (Size : Positive) is record
10450 Buffer : Octal_Array (1 .. Size);
10451 Length : Integer;
10452 end record;
10453
10454 In that case, Buffer is a PAD type whose size is unset and needs
10455 to be computed by fixing the unwrapped type.
10456
10457 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10458 ----------------------------------------------------------
10459
10460 Lastly, when should the sub-elements of an entity that remained unfixed
10461 thus far, be actually fixed?
10462
10463 The answer is: Only when referencing that element. For instance
10464 when selecting one component of a record, this specific component
10465 should be fixed at that point in time. Or when printing the value
10466 of a record, each component should be fixed before its value gets
10467 printed. Similarly for arrays, the element of the array should be
10468 fixed when printing each element of the array, or when extracting
10469 one element out of that array. On the other hand, fixing should
10470 not be performed on the elements when taking a slice of an array!
10471
10472 Note that one of the side effects of miscomputing the offset and
10473 size of each field is that we end up also miscomputing the size
10474 of the containing type. This can have adverse results when computing
10475 the value of an entity. GDB fetches the value of an entity based
10476 on the size of its type, and thus a wrong size causes GDB to fetch
10477 the wrong amount of memory. In the case where the computed size is
10478 too small, GDB fetches too little data to print the value of our
10479 entity. Results in this case are unpredictable, as we usually read
10480 past the buffer containing the data =:-o. */
10481
10482 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10483 for that subexpression cast to TO_TYPE. Advance *POS over the
10484 subexpression. */
10485
10486 static value *
10487 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10488 enum noside noside, struct type *to_type)
10489 {
10490 int pc = *pos;
10491
10492 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10493 || exp->elts[pc].opcode == OP_VAR_VALUE)
10494 {
10495 (*pos) += 4;
10496
10497 value *val;
10498 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10499 {
10500 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10501 return value_zero (to_type, not_lval);
10502
10503 val = evaluate_var_msym_value (noside,
10504 exp->elts[pc + 1].objfile,
10505 exp->elts[pc + 2].msymbol);
10506 }
10507 else
10508 val = evaluate_var_value (noside,
10509 exp->elts[pc + 1].block,
10510 exp->elts[pc + 2].symbol);
10511
10512 if (noside == EVAL_SKIP)
10513 return eval_skip_value (exp);
10514
10515 val = ada_value_cast (to_type, val);
10516
10517 /* Follow the Ada language semantics that do not allow taking
10518 an address of the result of a cast (view conversion in Ada). */
10519 if (VALUE_LVAL (val) == lval_memory)
10520 {
10521 if (value_lazy (val))
10522 value_fetch_lazy (val);
10523 VALUE_LVAL (val) = not_lval;
10524 }
10525 return val;
10526 }
10527
10528 value *val = evaluate_subexp (to_type, exp, pos, noside);
10529 if (noside == EVAL_SKIP)
10530 return eval_skip_value (exp);
10531 return ada_value_cast (to_type, val);
10532 }
10533
10534 /* Implement the evaluate_exp routine in the exp_descriptor structure
10535 for the Ada language. */
10536
10537 static struct value *
10538 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10539 int *pos, enum noside noside)
10540 {
10541 enum exp_opcode op;
10542 int tem;
10543 int pc;
10544 int preeval_pos;
10545 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10546 struct type *type;
10547 int nargs, oplen;
10548 struct value **argvec;
10549
10550 pc = *pos;
10551 *pos += 1;
10552 op = exp->elts[pc].opcode;
10553
10554 switch (op)
10555 {
10556 default:
10557 *pos -= 1;
10558 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10559
10560 if (noside == EVAL_NORMAL)
10561 arg1 = unwrap_value (arg1);
10562
10563 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10564 then we need to perform the conversion manually, because
10565 evaluate_subexp_standard doesn't do it. This conversion is
10566 necessary in Ada because the different kinds of float/fixed
10567 types in Ada have different representations.
10568
10569 Similarly, we need to perform the conversion from OP_LONG
10570 ourselves. */
10571 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10572 arg1 = ada_value_cast (expect_type, arg1);
10573
10574 return arg1;
10575
10576 case OP_STRING:
10577 {
10578 struct value *result;
10579
10580 *pos -= 1;
10581 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10582 /* The result type will have code OP_STRING, bashed there from
10583 OP_ARRAY. Bash it back. */
10584 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10585 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10586 return result;
10587 }
10588
10589 case UNOP_CAST:
10590 (*pos) += 2;
10591 type = exp->elts[pc + 1].type;
10592 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10593
10594 case UNOP_QUAL:
10595 (*pos) += 2;
10596 type = exp->elts[pc + 1].type;
10597 return ada_evaluate_subexp (type, exp, pos, noside);
10598
10599 case BINOP_ASSIGN:
10600 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10601 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10602 {
10603 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10604 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10605 return arg1;
10606 return ada_value_assign (arg1, arg1);
10607 }
10608 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10609 except if the lhs of our assignment is a convenience variable.
10610 In the case of assigning to a convenience variable, the lhs
10611 should be exactly the result of the evaluation of the rhs. */
10612 type = value_type (arg1);
10613 if (VALUE_LVAL (arg1) == lval_internalvar)
10614 type = NULL;
10615 arg2 = evaluate_subexp (type, exp, pos, noside);
10616 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10617 return arg1;
10618 if (ada_is_fixed_point_type (value_type (arg1)))
10619 arg2 = cast_to_fixed (value_type (arg1), arg2);
10620 else if (ada_is_fixed_point_type (value_type (arg2)))
10621 error
10622 (_("Fixed-point values must be assigned to fixed-point variables"));
10623 else
10624 arg2 = coerce_for_assign (value_type (arg1), arg2);
10625 return ada_value_assign (arg1, arg2);
10626
10627 case BINOP_ADD:
10628 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10629 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10630 if (noside == EVAL_SKIP)
10631 goto nosideret;
10632 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10633 return (value_from_longest
10634 (value_type (arg1),
10635 value_as_long (arg1) + value_as_long (arg2)));
10636 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10637 return (value_from_longest
10638 (value_type (arg2),
10639 value_as_long (arg1) + value_as_long (arg2)));
10640 if ((ada_is_fixed_point_type (value_type (arg1))
10641 || ada_is_fixed_point_type (value_type (arg2)))
10642 && value_type (arg1) != value_type (arg2))
10643 error (_("Operands of fixed-point addition must have the same type"));
10644 /* Do the addition, and cast the result to the type of the first
10645 argument. We cannot cast the result to a reference type, so if
10646 ARG1 is a reference type, find its underlying type. */
10647 type = value_type (arg1);
10648 while (TYPE_CODE (type) == TYPE_CODE_REF)
10649 type = TYPE_TARGET_TYPE (type);
10650 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10651 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10652
10653 case BINOP_SUB:
10654 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10655 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10656 if (noside == EVAL_SKIP)
10657 goto nosideret;
10658 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10659 return (value_from_longest
10660 (value_type (arg1),
10661 value_as_long (arg1) - value_as_long (arg2)));
10662 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10663 return (value_from_longest
10664 (value_type (arg2),
10665 value_as_long (arg1) - value_as_long (arg2)));
10666 if ((ada_is_fixed_point_type (value_type (arg1))
10667 || ada_is_fixed_point_type (value_type (arg2)))
10668 && value_type (arg1) != value_type (arg2))
10669 error (_("Operands of fixed-point subtraction "
10670 "must have the same type"));
10671 /* Do the substraction, and cast the result to the type of the first
10672 argument. We cannot cast the result to a reference type, so if
10673 ARG1 is a reference type, find its underlying type. */
10674 type = value_type (arg1);
10675 while (TYPE_CODE (type) == TYPE_CODE_REF)
10676 type = TYPE_TARGET_TYPE (type);
10677 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10678 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10679
10680 case BINOP_MUL:
10681 case BINOP_DIV:
10682 case BINOP_REM:
10683 case BINOP_MOD:
10684 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10685 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10686 if (noside == EVAL_SKIP)
10687 goto nosideret;
10688 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10689 {
10690 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10691 return value_zero (value_type (arg1), not_lval);
10692 }
10693 else
10694 {
10695 type = builtin_type (exp->gdbarch)->builtin_double;
10696 if (ada_is_fixed_point_type (value_type (arg1)))
10697 arg1 = cast_from_fixed (type, arg1);
10698 if (ada_is_fixed_point_type (value_type (arg2)))
10699 arg2 = cast_from_fixed (type, arg2);
10700 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10701 return ada_value_binop (arg1, arg2, op);
10702 }
10703
10704 case BINOP_EQUAL:
10705 case BINOP_NOTEQUAL:
10706 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10707 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10708 if (noside == EVAL_SKIP)
10709 goto nosideret;
10710 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10711 tem = 0;
10712 else
10713 {
10714 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10715 tem = ada_value_equal (arg1, arg2);
10716 }
10717 if (op == BINOP_NOTEQUAL)
10718 tem = !tem;
10719 type = language_bool_type (exp->language_defn, exp->gdbarch);
10720 return value_from_longest (type, (LONGEST) tem);
10721
10722 case UNOP_NEG:
10723 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10724 if (noside == EVAL_SKIP)
10725 goto nosideret;
10726 else if (ada_is_fixed_point_type (value_type (arg1)))
10727 return value_cast (value_type (arg1), value_neg (arg1));
10728 else
10729 {
10730 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10731 return value_neg (arg1);
10732 }
10733
10734 case BINOP_LOGICAL_AND:
10735 case BINOP_LOGICAL_OR:
10736 case UNOP_LOGICAL_NOT:
10737 {
10738 struct value *val;
10739
10740 *pos -= 1;
10741 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10742 type = language_bool_type (exp->language_defn, exp->gdbarch);
10743 return value_cast (type, val);
10744 }
10745
10746 case BINOP_BITWISE_AND:
10747 case BINOP_BITWISE_IOR:
10748 case BINOP_BITWISE_XOR:
10749 {
10750 struct value *val;
10751
10752 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10753 *pos = pc;
10754 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10755
10756 return value_cast (value_type (arg1), val);
10757 }
10758
10759 case OP_VAR_VALUE:
10760 *pos -= 1;
10761
10762 if (noside == EVAL_SKIP)
10763 {
10764 *pos += 4;
10765 goto nosideret;
10766 }
10767
10768 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10769 /* Only encountered when an unresolved symbol occurs in a
10770 context other than a function call, in which case, it is
10771 invalid. */
10772 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10773 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10774
10775 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10776 {
10777 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10778 /* Check to see if this is a tagged type. We also need to handle
10779 the case where the type is a reference to a tagged type, but
10780 we have to be careful to exclude pointers to tagged types.
10781 The latter should be shown as usual (as a pointer), whereas
10782 a reference should mostly be transparent to the user. */
10783 if (ada_is_tagged_type (type, 0)
10784 || (TYPE_CODE (type) == TYPE_CODE_REF
10785 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10786 {
10787 /* Tagged types are a little special in the fact that the real
10788 type is dynamic and can only be determined by inspecting the
10789 object's tag. This means that we need to get the object's
10790 value first (EVAL_NORMAL) and then extract the actual object
10791 type from its tag.
10792
10793 Note that we cannot skip the final step where we extract
10794 the object type from its tag, because the EVAL_NORMAL phase
10795 results in dynamic components being resolved into fixed ones.
10796 This can cause problems when trying to print the type
10797 description of tagged types whose parent has a dynamic size:
10798 We use the type name of the "_parent" component in order
10799 to print the name of the ancestor type in the type description.
10800 If that component had a dynamic size, the resolution into
10801 a fixed type would result in the loss of that type name,
10802 thus preventing us from printing the name of the ancestor
10803 type in the type description. */
10804 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10805
10806 if (TYPE_CODE (type) != TYPE_CODE_REF)
10807 {
10808 struct type *actual_type;
10809
10810 actual_type = type_from_tag (ada_value_tag (arg1));
10811 if (actual_type == NULL)
10812 /* If, for some reason, we were unable to determine
10813 the actual type from the tag, then use the static
10814 approximation that we just computed as a fallback.
10815 This can happen if the debugging information is
10816 incomplete, for instance. */
10817 actual_type = type;
10818 return value_zero (actual_type, not_lval);
10819 }
10820 else
10821 {
10822 /* In the case of a ref, ada_coerce_ref takes care
10823 of determining the actual type. But the evaluation
10824 should return a ref as it should be valid to ask
10825 for its address; so rebuild a ref after coerce. */
10826 arg1 = ada_coerce_ref (arg1);
10827 return value_ref (arg1, TYPE_CODE_REF);
10828 }
10829 }
10830
10831 /* Records and unions for which GNAT encodings have been
10832 generated need to be statically fixed as well.
10833 Otherwise, non-static fixing produces a type where
10834 all dynamic properties are removed, which prevents "ptype"
10835 from being able to completely describe the type.
10836 For instance, a case statement in a variant record would be
10837 replaced by the relevant components based on the actual
10838 value of the discriminants. */
10839 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10840 && dynamic_template_type (type) != NULL)
10841 || (TYPE_CODE (type) == TYPE_CODE_UNION
10842 && ada_find_parallel_type (type, "___XVU") != NULL))
10843 {
10844 *pos += 4;
10845 return value_zero (to_static_fixed_type (type), not_lval);
10846 }
10847 }
10848
10849 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10850 return ada_to_fixed_value (arg1);
10851
10852 case OP_FUNCALL:
10853 (*pos) += 2;
10854
10855 /* Allocate arg vector, including space for the function to be
10856 called in argvec[0] and a terminating NULL. */
10857 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10858 argvec = XALLOCAVEC (struct value *, nargs + 2);
10859
10860 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10861 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10862 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10863 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10864 else
10865 {
10866 for (tem = 0; tem <= nargs; tem += 1)
10867 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10868 argvec[tem] = 0;
10869
10870 if (noside == EVAL_SKIP)
10871 goto nosideret;
10872 }
10873
10874 if (ada_is_constrained_packed_array_type
10875 (desc_base_type (value_type (argvec[0]))))
10876 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10877 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10878 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10879 /* This is a packed array that has already been fixed, and
10880 therefore already coerced to a simple array. Nothing further
10881 to do. */
10882 ;
10883 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10884 {
10885 /* Make sure we dereference references so that all the code below
10886 feels like it's really handling the referenced value. Wrapping
10887 types (for alignment) may be there, so make sure we strip them as
10888 well. */
10889 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10890 }
10891 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10892 && VALUE_LVAL (argvec[0]) == lval_memory)
10893 argvec[0] = value_addr (argvec[0]);
10894
10895 type = ada_check_typedef (value_type (argvec[0]));
10896
10897 /* Ada allows us to implicitly dereference arrays when subscripting
10898 them. So, if this is an array typedef (encoding use for array
10899 access types encoded as fat pointers), strip it now. */
10900 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10901 type = ada_typedef_target_type (type);
10902
10903 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10904 {
10905 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10906 {
10907 case TYPE_CODE_FUNC:
10908 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10909 break;
10910 case TYPE_CODE_ARRAY:
10911 break;
10912 case TYPE_CODE_STRUCT:
10913 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10914 argvec[0] = ada_value_ind (argvec[0]);
10915 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10916 break;
10917 default:
10918 error (_("cannot subscript or call something of type `%s'"),
10919 ada_type_name (value_type (argvec[0])));
10920 break;
10921 }
10922 }
10923
10924 switch (TYPE_CODE (type))
10925 {
10926 case TYPE_CODE_FUNC:
10927 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10928 {
10929 if (TYPE_TARGET_TYPE (type) == NULL)
10930 error_call_unknown_return_type (NULL);
10931 return allocate_value (TYPE_TARGET_TYPE (type));
10932 }
10933 return call_function_by_hand (argvec[0], NULL,
10934 gdb::make_array_view (argvec + 1,
10935 nargs));
10936 case TYPE_CODE_INTERNAL_FUNCTION:
10937 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10938 /* We don't know anything about what the internal
10939 function might return, but we have to return
10940 something. */
10941 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10942 not_lval);
10943 else
10944 return call_internal_function (exp->gdbarch, exp->language_defn,
10945 argvec[0], nargs, argvec + 1);
10946
10947 case TYPE_CODE_STRUCT:
10948 {
10949 int arity;
10950
10951 arity = ada_array_arity (type);
10952 type = ada_array_element_type (type, nargs);
10953 if (type == NULL)
10954 error (_("cannot subscript or call a record"));
10955 if (arity != nargs)
10956 error (_("wrong number of subscripts; expecting %d"), arity);
10957 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10958 return value_zero (ada_aligned_type (type), lval_memory);
10959 return
10960 unwrap_value (ada_value_subscript
10961 (argvec[0], nargs, argvec + 1));
10962 }
10963 case TYPE_CODE_ARRAY:
10964 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10965 {
10966 type = ada_array_element_type (type, nargs);
10967 if (type == NULL)
10968 error (_("element type of array unknown"));
10969 else
10970 return value_zero (ada_aligned_type (type), lval_memory);
10971 }
10972 return
10973 unwrap_value (ada_value_subscript
10974 (ada_coerce_to_simple_array (argvec[0]),
10975 nargs, argvec + 1));
10976 case TYPE_CODE_PTR: /* Pointer to array */
10977 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10978 {
10979 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10980 type = ada_array_element_type (type, nargs);
10981 if (type == NULL)
10982 error (_("element type of array unknown"));
10983 else
10984 return value_zero (ada_aligned_type (type), lval_memory);
10985 }
10986 return
10987 unwrap_value (ada_value_ptr_subscript (argvec[0],
10988 nargs, argvec + 1));
10989
10990 default:
10991 error (_("Attempt to index or call something other than an "
10992 "array or function"));
10993 }
10994
10995 case TERNOP_SLICE:
10996 {
10997 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10998 struct value *low_bound_val =
10999 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11000 struct value *high_bound_val =
11001 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11002 LONGEST low_bound;
11003 LONGEST high_bound;
11004
11005 low_bound_val = coerce_ref (low_bound_val);
11006 high_bound_val = coerce_ref (high_bound_val);
11007 low_bound = value_as_long (low_bound_val);
11008 high_bound = value_as_long (high_bound_val);
11009
11010 if (noside == EVAL_SKIP)
11011 goto nosideret;
11012
11013 /* If this is a reference to an aligner type, then remove all
11014 the aligners. */
11015 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11016 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11017 TYPE_TARGET_TYPE (value_type (array)) =
11018 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11019
11020 if (ada_is_constrained_packed_array_type (value_type (array)))
11021 error (_("cannot slice a packed array"));
11022
11023 /* If this is a reference to an array or an array lvalue,
11024 convert to a pointer. */
11025 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11026 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11027 && VALUE_LVAL (array) == lval_memory))
11028 array = value_addr (array);
11029
11030 if (noside == EVAL_AVOID_SIDE_EFFECTS
11031 && ada_is_array_descriptor_type (ada_check_typedef
11032 (value_type (array))))
11033 return empty_array (ada_type_of_array (array, 0), low_bound);
11034
11035 array = ada_coerce_to_simple_array_ptr (array);
11036
11037 /* If we have more than one level of pointer indirection,
11038 dereference the value until we get only one level. */
11039 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11040 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11041 == TYPE_CODE_PTR))
11042 array = value_ind (array);
11043
11044 /* Make sure we really do have an array type before going further,
11045 to avoid a SEGV when trying to get the index type or the target
11046 type later down the road if the debug info generated by
11047 the compiler is incorrect or incomplete. */
11048 if (!ada_is_simple_array_type (value_type (array)))
11049 error (_("cannot take slice of non-array"));
11050
11051 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11052 == TYPE_CODE_PTR)
11053 {
11054 struct type *type0 = ada_check_typedef (value_type (array));
11055
11056 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11057 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11058 else
11059 {
11060 struct type *arr_type0 =
11061 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11062
11063 return ada_value_slice_from_ptr (array, arr_type0,
11064 longest_to_int (low_bound),
11065 longest_to_int (high_bound));
11066 }
11067 }
11068 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11069 return array;
11070 else if (high_bound < low_bound)
11071 return empty_array (value_type (array), low_bound);
11072 else
11073 return ada_value_slice (array, longest_to_int (low_bound),
11074 longest_to_int (high_bound));
11075 }
11076
11077 case UNOP_IN_RANGE:
11078 (*pos) += 2;
11079 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11080 type = check_typedef (exp->elts[pc + 1].type);
11081
11082 if (noside == EVAL_SKIP)
11083 goto nosideret;
11084
11085 switch (TYPE_CODE (type))
11086 {
11087 default:
11088 lim_warning (_("Membership test incompletely implemented; "
11089 "always returns true"));
11090 type = language_bool_type (exp->language_defn, exp->gdbarch);
11091 return value_from_longest (type, (LONGEST) 1);
11092
11093 case TYPE_CODE_RANGE:
11094 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11095 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11096 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11097 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11098 type = language_bool_type (exp->language_defn, exp->gdbarch);
11099 return
11100 value_from_longest (type,
11101 (value_less (arg1, arg3)
11102 || value_equal (arg1, arg3))
11103 && (value_less (arg2, arg1)
11104 || value_equal (arg2, arg1)));
11105 }
11106
11107 case BINOP_IN_BOUNDS:
11108 (*pos) += 2;
11109 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11110 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11111
11112 if (noside == EVAL_SKIP)
11113 goto nosideret;
11114
11115 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11116 {
11117 type = language_bool_type (exp->language_defn, exp->gdbarch);
11118 return value_zero (type, not_lval);
11119 }
11120
11121 tem = longest_to_int (exp->elts[pc + 1].longconst);
11122
11123 type = ada_index_type (value_type (arg2), tem, "range");
11124 if (!type)
11125 type = value_type (arg1);
11126
11127 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11128 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11129
11130 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11131 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11132 type = language_bool_type (exp->language_defn, exp->gdbarch);
11133 return
11134 value_from_longest (type,
11135 (value_less (arg1, arg3)
11136 || value_equal (arg1, arg3))
11137 && (value_less (arg2, arg1)
11138 || value_equal (arg2, arg1)));
11139
11140 case TERNOP_IN_RANGE:
11141 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11142 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11143 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11144
11145 if (noside == EVAL_SKIP)
11146 goto nosideret;
11147
11148 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11149 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11150 type = language_bool_type (exp->language_defn, exp->gdbarch);
11151 return
11152 value_from_longest (type,
11153 (value_less (arg1, arg3)
11154 || value_equal (arg1, arg3))
11155 && (value_less (arg2, arg1)
11156 || value_equal (arg2, arg1)));
11157
11158 case OP_ATR_FIRST:
11159 case OP_ATR_LAST:
11160 case OP_ATR_LENGTH:
11161 {
11162 struct type *type_arg;
11163
11164 if (exp->elts[*pos].opcode == OP_TYPE)
11165 {
11166 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11167 arg1 = NULL;
11168 type_arg = check_typedef (exp->elts[pc + 2].type);
11169 }
11170 else
11171 {
11172 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11173 type_arg = NULL;
11174 }
11175
11176 if (exp->elts[*pos].opcode != OP_LONG)
11177 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11178 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11179 *pos += 4;
11180
11181 if (noside == EVAL_SKIP)
11182 goto nosideret;
11183
11184 if (type_arg == NULL)
11185 {
11186 arg1 = ada_coerce_ref (arg1);
11187
11188 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11189 arg1 = ada_coerce_to_simple_array (arg1);
11190
11191 if (op == OP_ATR_LENGTH)
11192 type = builtin_type (exp->gdbarch)->builtin_int;
11193 else
11194 {
11195 type = ada_index_type (value_type (arg1), tem,
11196 ada_attribute_name (op));
11197 if (type == NULL)
11198 type = builtin_type (exp->gdbarch)->builtin_int;
11199 }
11200
11201 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11202 return allocate_value (type);
11203
11204 switch (op)
11205 {
11206 default: /* Should never happen. */
11207 error (_("unexpected attribute encountered"));
11208 case OP_ATR_FIRST:
11209 return value_from_longest
11210 (type, ada_array_bound (arg1, tem, 0));
11211 case OP_ATR_LAST:
11212 return value_from_longest
11213 (type, ada_array_bound (arg1, tem, 1));
11214 case OP_ATR_LENGTH:
11215 return value_from_longest
11216 (type, ada_array_length (arg1, tem));
11217 }
11218 }
11219 else if (discrete_type_p (type_arg))
11220 {
11221 struct type *range_type;
11222 const char *name = ada_type_name (type_arg);
11223
11224 range_type = NULL;
11225 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11226 range_type = to_fixed_range_type (type_arg, NULL);
11227 if (range_type == NULL)
11228 range_type = type_arg;
11229 switch (op)
11230 {
11231 default:
11232 error (_("unexpected attribute encountered"));
11233 case OP_ATR_FIRST:
11234 return value_from_longest
11235 (range_type, ada_discrete_type_low_bound (range_type));
11236 case OP_ATR_LAST:
11237 return value_from_longest
11238 (range_type, ada_discrete_type_high_bound (range_type));
11239 case OP_ATR_LENGTH:
11240 error (_("the 'length attribute applies only to array types"));
11241 }
11242 }
11243 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11244 error (_("unimplemented type attribute"));
11245 else
11246 {
11247 LONGEST low, high;
11248
11249 if (ada_is_constrained_packed_array_type (type_arg))
11250 type_arg = decode_constrained_packed_array_type (type_arg);
11251
11252 if (op == OP_ATR_LENGTH)
11253 type = builtin_type (exp->gdbarch)->builtin_int;
11254 else
11255 {
11256 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11257 if (type == NULL)
11258 type = builtin_type (exp->gdbarch)->builtin_int;
11259 }
11260
11261 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11262 return allocate_value (type);
11263
11264 switch (op)
11265 {
11266 default:
11267 error (_("unexpected attribute encountered"));
11268 case OP_ATR_FIRST:
11269 low = ada_array_bound_from_type (type_arg, tem, 0);
11270 return value_from_longest (type, low);
11271 case OP_ATR_LAST:
11272 high = ada_array_bound_from_type (type_arg, tem, 1);
11273 return value_from_longest (type, high);
11274 case OP_ATR_LENGTH:
11275 low = ada_array_bound_from_type (type_arg, tem, 0);
11276 high = ada_array_bound_from_type (type_arg, tem, 1);
11277 return value_from_longest (type, high - low + 1);
11278 }
11279 }
11280 }
11281
11282 case OP_ATR_TAG:
11283 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11284 if (noside == EVAL_SKIP)
11285 goto nosideret;
11286
11287 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11288 return value_zero (ada_tag_type (arg1), not_lval);
11289
11290 return ada_value_tag (arg1);
11291
11292 case OP_ATR_MIN:
11293 case OP_ATR_MAX:
11294 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11295 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11296 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11297 if (noside == EVAL_SKIP)
11298 goto nosideret;
11299 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11300 return value_zero (value_type (arg1), not_lval);
11301 else
11302 {
11303 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11304 return value_binop (arg1, arg2,
11305 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11306 }
11307
11308 case OP_ATR_MODULUS:
11309 {
11310 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11311
11312 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11313 if (noside == EVAL_SKIP)
11314 goto nosideret;
11315
11316 if (!ada_is_modular_type (type_arg))
11317 error (_("'modulus must be applied to modular type"));
11318
11319 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11320 ada_modulus (type_arg));
11321 }
11322
11323
11324 case OP_ATR_POS:
11325 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11326 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11327 if (noside == EVAL_SKIP)
11328 goto nosideret;
11329 type = builtin_type (exp->gdbarch)->builtin_int;
11330 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11331 return value_zero (type, not_lval);
11332 else
11333 return value_pos_atr (type, arg1);
11334
11335 case OP_ATR_SIZE:
11336 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11337 type = value_type (arg1);
11338
11339 /* If the argument is a reference, then dereference its type, since
11340 the user is really asking for the size of the actual object,
11341 not the size of the pointer. */
11342 if (TYPE_CODE (type) == TYPE_CODE_REF)
11343 type = TYPE_TARGET_TYPE (type);
11344
11345 if (noside == EVAL_SKIP)
11346 goto nosideret;
11347 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11348 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11349 else
11350 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11351 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11352
11353 case OP_ATR_VAL:
11354 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11355 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11356 type = exp->elts[pc + 2].type;
11357 if (noside == EVAL_SKIP)
11358 goto nosideret;
11359 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11360 return value_zero (type, not_lval);
11361 else
11362 return value_val_atr (type, arg1);
11363
11364 case BINOP_EXP:
11365 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11366 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11367 if (noside == EVAL_SKIP)
11368 goto nosideret;
11369 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11370 return value_zero (value_type (arg1), not_lval);
11371 else
11372 {
11373 /* For integer exponentiation operations,
11374 only promote the first argument. */
11375 if (is_integral_type (value_type (arg2)))
11376 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11377 else
11378 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11379
11380 return value_binop (arg1, arg2, op);
11381 }
11382
11383 case UNOP_PLUS:
11384 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11385 if (noside == EVAL_SKIP)
11386 goto nosideret;
11387 else
11388 return arg1;
11389
11390 case UNOP_ABS:
11391 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11392 if (noside == EVAL_SKIP)
11393 goto nosideret;
11394 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11395 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11396 return value_neg (arg1);
11397 else
11398 return arg1;
11399
11400 case UNOP_IND:
11401 preeval_pos = *pos;
11402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11403 if (noside == EVAL_SKIP)
11404 goto nosideret;
11405 type = ada_check_typedef (value_type (arg1));
11406 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11407 {
11408 if (ada_is_array_descriptor_type (type))
11409 /* GDB allows dereferencing GNAT array descriptors. */
11410 {
11411 struct type *arrType = ada_type_of_array (arg1, 0);
11412
11413 if (arrType == NULL)
11414 error (_("Attempt to dereference null array pointer."));
11415 return value_at_lazy (arrType, 0);
11416 }
11417 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11418 || TYPE_CODE (type) == TYPE_CODE_REF
11419 /* In C you can dereference an array to get the 1st elt. */
11420 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11421 {
11422 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11423 only be determined by inspecting the object's tag.
11424 This means that we need to evaluate completely the
11425 expression in order to get its type. */
11426
11427 if ((TYPE_CODE (type) == TYPE_CODE_REF
11428 || TYPE_CODE (type) == TYPE_CODE_PTR)
11429 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11430 {
11431 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11432 EVAL_NORMAL);
11433 type = value_type (ada_value_ind (arg1));
11434 }
11435 else
11436 {
11437 type = to_static_fixed_type
11438 (ada_aligned_type
11439 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11440 }
11441 ada_ensure_varsize_limit (type);
11442 return value_zero (type, lval_memory);
11443 }
11444 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11445 {
11446 /* GDB allows dereferencing an int. */
11447 if (expect_type == NULL)
11448 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11449 lval_memory);
11450 else
11451 {
11452 expect_type =
11453 to_static_fixed_type (ada_aligned_type (expect_type));
11454 return value_zero (expect_type, lval_memory);
11455 }
11456 }
11457 else
11458 error (_("Attempt to take contents of a non-pointer value."));
11459 }
11460 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11461 type = ada_check_typedef (value_type (arg1));
11462
11463 if (TYPE_CODE (type) == TYPE_CODE_INT)
11464 /* GDB allows dereferencing an int. If we were given
11465 the expect_type, then use that as the target type.
11466 Otherwise, assume that the target type is an int. */
11467 {
11468 if (expect_type != NULL)
11469 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11470 arg1));
11471 else
11472 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11473 (CORE_ADDR) value_as_address (arg1));
11474 }
11475
11476 if (ada_is_array_descriptor_type (type))
11477 /* GDB allows dereferencing GNAT array descriptors. */
11478 return ada_coerce_to_simple_array (arg1);
11479 else
11480 return ada_value_ind (arg1);
11481
11482 case STRUCTOP_STRUCT:
11483 tem = longest_to_int (exp->elts[pc + 1].longconst);
11484 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11485 preeval_pos = *pos;
11486 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11487 if (noside == EVAL_SKIP)
11488 goto nosideret;
11489 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11490 {
11491 struct type *type1 = value_type (arg1);
11492
11493 if (ada_is_tagged_type (type1, 1))
11494 {
11495 type = ada_lookup_struct_elt_type (type1,
11496 &exp->elts[pc + 2].string,
11497 1, 1);
11498
11499 /* If the field is not found, check if it exists in the
11500 extension of this object's type. This means that we
11501 need to evaluate completely the expression. */
11502
11503 if (type == NULL)
11504 {
11505 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11506 EVAL_NORMAL);
11507 arg1 = ada_value_struct_elt (arg1,
11508 &exp->elts[pc + 2].string,
11509 0);
11510 arg1 = unwrap_value (arg1);
11511 type = value_type (ada_to_fixed_value (arg1));
11512 }
11513 }
11514 else
11515 type =
11516 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11517 0);
11518
11519 return value_zero (ada_aligned_type (type), lval_memory);
11520 }
11521 else
11522 {
11523 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11524 arg1 = unwrap_value (arg1);
11525 return ada_to_fixed_value (arg1);
11526 }
11527
11528 case OP_TYPE:
11529 /* The value is not supposed to be used. This is here to make it
11530 easier to accommodate expressions that contain types. */
11531 (*pos) += 2;
11532 if (noside == EVAL_SKIP)
11533 goto nosideret;
11534 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11535 return allocate_value (exp->elts[pc + 1].type);
11536 else
11537 error (_("Attempt to use a type name as an expression"));
11538
11539 case OP_AGGREGATE:
11540 case OP_CHOICES:
11541 case OP_OTHERS:
11542 case OP_DISCRETE_RANGE:
11543 case OP_POSITIONAL:
11544 case OP_NAME:
11545 if (noside == EVAL_NORMAL)
11546 switch (op)
11547 {
11548 case OP_NAME:
11549 error (_("Undefined name, ambiguous name, or renaming used in "
11550 "component association: %s."), &exp->elts[pc+2].string);
11551 case OP_AGGREGATE:
11552 error (_("Aggregates only allowed on the right of an assignment"));
11553 default:
11554 internal_error (__FILE__, __LINE__,
11555 _("aggregate apparently mangled"));
11556 }
11557
11558 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11559 *pos += oplen - 1;
11560 for (tem = 0; tem < nargs; tem += 1)
11561 ada_evaluate_subexp (NULL, exp, pos, noside);
11562 goto nosideret;
11563 }
11564
11565 nosideret:
11566 return eval_skip_value (exp);
11567 }
11568 \f
11569
11570 /* Fixed point */
11571
11572 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11573 type name that encodes the 'small and 'delta information.
11574 Otherwise, return NULL. */
11575
11576 static const char *
11577 fixed_type_info (struct type *type)
11578 {
11579 const char *name = ada_type_name (type);
11580 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11581
11582 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11583 {
11584 const char *tail = strstr (name, "___XF_");
11585
11586 if (tail == NULL)
11587 return NULL;
11588 else
11589 return tail + 5;
11590 }
11591 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11592 return fixed_type_info (TYPE_TARGET_TYPE (type));
11593 else
11594 return NULL;
11595 }
11596
11597 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11598
11599 int
11600 ada_is_fixed_point_type (struct type *type)
11601 {
11602 return fixed_type_info (type) != NULL;
11603 }
11604
11605 /* Return non-zero iff TYPE represents a System.Address type. */
11606
11607 int
11608 ada_is_system_address_type (struct type *type)
11609 {
11610 return (TYPE_NAME (type)
11611 && strcmp (TYPE_NAME (type), "system__address") == 0);
11612 }
11613
11614 /* Assuming that TYPE is the representation of an Ada fixed-point
11615 type, return the target floating-point type to be used to represent
11616 of this type during internal computation. */
11617
11618 static struct type *
11619 ada_scaling_type (struct type *type)
11620 {
11621 return builtin_type (get_type_arch (type))->builtin_long_double;
11622 }
11623
11624 /* Assuming that TYPE is the representation of an Ada fixed-point
11625 type, return its delta, or NULL if the type is malformed and the
11626 delta cannot be determined. */
11627
11628 struct value *
11629 ada_delta (struct type *type)
11630 {
11631 const char *encoding = fixed_type_info (type);
11632 struct type *scale_type = ada_scaling_type (type);
11633
11634 long long num, den;
11635
11636 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11637 return nullptr;
11638 else
11639 return value_binop (value_from_longest (scale_type, num),
11640 value_from_longest (scale_type, den), BINOP_DIV);
11641 }
11642
11643 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11644 factor ('SMALL value) associated with the type. */
11645
11646 struct value *
11647 ada_scaling_factor (struct type *type)
11648 {
11649 const char *encoding = fixed_type_info (type);
11650 struct type *scale_type = ada_scaling_type (type);
11651
11652 long long num0, den0, num1, den1;
11653 int n;
11654
11655 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11656 &num0, &den0, &num1, &den1);
11657
11658 if (n < 2)
11659 return value_from_longest (scale_type, 1);
11660 else if (n == 4)
11661 return value_binop (value_from_longest (scale_type, num1),
11662 value_from_longest (scale_type, den1), BINOP_DIV);
11663 else
11664 return value_binop (value_from_longest (scale_type, num0),
11665 value_from_longest (scale_type, den0), BINOP_DIV);
11666 }
11667
11668 \f
11669
11670 /* Range types */
11671
11672 /* Scan STR beginning at position K for a discriminant name, and
11673 return the value of that discriminant field of DVAL in *PX. If
11674 PNEW_K is not null, put the position of the character beyond the
11675 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11676 not alter *PX and *PNEW_K if unsuccessful. */
11677
11678 static int
11679 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11680 int *pnew_k)
11681 {
11682 static char *bound_buffer = NULL;
11683 static size_t bound_buffer_len = 0;
11684 const char *pstart, *pend, *bound;
11685 struct value *bound_val;
11686
11687 if (dval == NULL || str == NULL || str[k] == '\0')
11688 return 0;
11689
11690 pstart = str + k;
11691 pend = strstr (pstart, "__");
11692 if (pend == NULL)
11693 {
11694 bound = pstart;
11695 k += strlen (bound);
11696 }
11697 else
11698 {
11699 int len = pend - pstart;
11700
11701 /* Strip __ and beyond. */
11702 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11703 strncpy (bound_buffer, pstart, len);
11704 bound_buffer[len] = '\0';
11705
11706 bound = bound_buffer;
11707 k = pend - str;
11708 }
11709
11710 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11711 if (bound_val == NULL)
11712 return 0;
11713
11714 *px = value_as_long (bound_val);
11715 if (pnew_k != NULL)
11716 *pnew_k = k;
11717 return 1;
11718 }
11719
11720 /* Value of variable named NAME in the current environment. If
11721 no such variable found, then if ERR_MSG is null, returns 0, and
11722 otherwise causes an error with message ERR_MSG. */
11723
11724 static struct value *
11725 get_var_value (const char *name, const char *err_msg)
11726 {
11727 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11728
11729 std::vector<struct block_symbol> syms;
11730 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11731 get_selected_block (0),
11732 VAR_DOMAIN, &syms, 1);
11733
11734 if (nsyms != 1)
11735 {
11736 if (err_msg == NULL)
11737 return 0;
11738 else
11739 error (("%s"), err_msg);
11740 }
11741
11742 return value_of_variable (syms[0].symbol, syms[0].block);
11743 }
11744
11745 /* Value of integer variable named NAME in the current environment.
11746 If no such variable is found, returns false. Otherwise, sets VALUE
11747 to the variable's value and returns true. */
11748
11749 bool
11750 get_int_var_value (const char *name, LONGEST &value)
11751 {
11752 struct value *var_val = get_var_value (name, 0);
11753
11754 if (var_val == 0)
11755 return false;
11756
11757 value = value_as_long (var_val);
11758 return true;
11759 }
11760
11761
11762 /* Return a range type whose base type is that of the range type named
11763 NAME in the current environment, and whose bounds are calculated
11764 from NAME according to the GNAT range encoding conventions.
11765 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11766 corresponding range type from debug information; fall back to using it
11767 if symbol lookup fails. If a new type must be created, allocate it
11768 like ORIG_TYPE was. The bounds information, in general, is encoded
11769 in NAME, the base type given in the named range type. */
11770
11771 static struct type *
11772 to_fixed_range_type (struct type *raw_type, struct value *dval)
11773 {
11774 const char *name;
11775 struct type *base_type;
11776 const char *subtype_info;
11777
11778 gdb_assert (raw_type != NULL);
11779 gdb_assert (TYPE_NAME (raw_type) != NULL);
11780
11781 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11782 base_type = TYPE_TARGET_TYPE (raw_type);
11783 else
11784 base_type = raw_type;
11785
11786 name = TYPE_NAME (raw_type);
11787 subtype_info = strstr (name, "___XD");
11788 if (subtype_info == NULL)
11789 {
11790 LONGEST L = ada_discrete_type_low_bound (raw_type);
11791 LONGEST U = ada_discrete_type_high_bound (raw_type);
11792
11793 if (L < INT_MIN || U > INT_MAX)
11794 return raw_type;
11795 else
11796 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11797 L, U);
11798 }
11799 else
11800 {
11801 static char *name_buf = NULL;
11802 static size_t name_len = 0;
11803 int prefix_len = subtype_info - name;
11804 LONGEST L, U;
11805 struct type *type;
11806 const char *bounds_str;
11807 int n;
11808
11809 GROW_VECT (name_buf, name_len, prefix_len + 5);
11810 strncpy (name_buf, name, prefix_len);
11811 name_buf[prefix_len] = '\0';
11812
11813 subtype_info += 5;
11814 bounds_str = strchr (subtype_info, '_');
11815 n = 1;
11816
11817 if (*subtype_info == 'L')
11818 {
11819 if (!ada_scan_number (bounds_str, n, &L, &n)
11820 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11821 return raw_type;
11822 if (bounds_str[n] == '_')
11823 n += 2;
11824 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11825 n += 1;
11826 subtype_info += 1;
11827 }
11828 else
11829 {
11830 strcpy (name_buf + prefix_len, "___L");
11831 if (!get_int_var_value (name_buf, L))
11832 {
11833 lim_warning (_("Unknown lower bound, using 1."));
11834 L = 1;
11835 }
11836 }
11837
11838 if (*subtype_info == 'U')
11839 {
11840 if (!ada_scan_number (bounds_str, n, &U, &n)
11841 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11842 return raw_type;
11843 }
11844 else
11845 {
11846 strcpy (name_buf + prefix_len, "___U");
11847 if (!get_int_var_value (name_buf, U))
11848 {
11849 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11850 U = L;
11851 }
11852 }
11853
11854 type = create_static_range_type (alloc_type_copy (raw_type),
11855 base_type, L, U);
11856 /* create_static_range_type alters the resulting type's length
11857 to match the size of the base_type, which is not what we want.
11858 Set it back to the original range type's length. */
11859 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11860 TYPE_NAME (type) = name;
11861 return type;
11862 }
11863 }
11864
11865 /* True iff NAME is the name of a range type. */
11866
11867 int
11868 ada_is_range_type_name (const char *name)
11869 {
11870 return (name != NULL && strstr (name, "___XD"));
11871 }
11872 \f
11873
11874 /* Modular types */
11875
11876 /* True iff TYPE is an Ada modular type. */
11877
11878 int
11879 ada_is_modular_type (struct type *type)
11880 {
11881 struct type *subranged_type = get_base_type (type);
11882
11883 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11884 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11885 && TYPE_UNSIGNED (subranged_type));
11886 }
11887
11888 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11889
11890 ULONGEST
11891 ada_modulus (struct type *type)
11892 {
11893 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11894 }
11895 \f
11896
11897 /* Ada exception catchpoint support:
11898 ---------------------------------
11899
11900 We support 3 kinds of exception catchpoints:
11901 . catchpoints on Ada exceptions
11902 . catchpoints on unhandled Ada exceptions
11903 . catchpoints on failed assertions
11904
11905 Exceptions raised during failed assertions, or unhandled exceptions
11906 could perfectly be caught with the general catchpoint on Ada exceptions.
11907 However, we can easily differentiate these two special cases, and having
11908 the option to distinguish these two cases from the rest can be useful
11909 to zero-in on certain situations.
11910
11911 Exception catchpoints are a specialized form of breakpoint,
11912 since they rely on inserting breakpoints inside known routines
11913 of the GNAT runtime. The implementation therefore uses a standard
11914 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11915 of breakpoint_ops.
11916
11917 Support in the runtime for exception catchpoints have been changed
11918 a few times already, and these changes affect the implementation
11919 of these catchpoints. In order to be able to support several
11920 variants of the runtime, we use a sniffer that will determine
11921 the runtime variant used by the program being debugged. */
11922
11923 /* Ada's standard exceptions.
11924
11925 The Ada 83 standard also defined Numeric_Error. But there so many
11926 situations where it was unclear from the Ada 83 Reference Manual
11927 (RM) whether Constraint_Error or Numeric_Error should be raised,
11928 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11929 Interpretation saying that anytime the RM says that Numeric_Error
11930 should be raised, the implementation may raise Constraint_Error.
11931 Ada 95 went one step further and pretty much removed Numeric_Error
11932 from the list of standard exceptions (it made it a renaming of
11933 Constraint_Error, to help preserve compatibility when compiling
11934 an Ada83 compiler). As such, we do not include Numeric_Error from
11935 this list of standard exceptions. */
11936
11937 static const char *standard_exc[] = {
11938 "constraint_error",
11939 "program_error",
11940 "storage_error",
11941 "tasking_error"
11942 };
11943
11944 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11945
11946 /* A structure that describes how to support exception catchpoints
11947 for a given executable. */
11948
11949 struct exception_support_info
11950 {
11951 /* The name of the symbol to break on in order to insert
11952 a catchpoint on exceptions. */
11953 const char *catch_exception_sym;
11954
11955 /* The name of the symbol to break on in order to insert
11956 a catchpoint on unhandled exceptions. */
11957 const char *catch_exception_unhandled_sym;
11958
11959 /* The name of the symbol to break on in order to insert
11960 a catchpoint on failed assertions. */
11961 const char *catch_assert_sym;
11962
11963 /* The name of the symbol to break on in order to insert
11964 a catchpoint on exception handling. */
11965 const char *catch_handlers_sym;
11966
11967 /* Assuming that the inferior just triggered an unhandled exception
11968 catchpoint, this function is responsible for returning the address
11969 in inferior memory where the name of that exception is stored.
11970 Return zero if the address could not be computed. */
11971 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11972 };
11973
11974 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11975 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11976
11977 /* The following exception support info structure describes how to
11978 implement exception catchpoints with the latest version of the
11979 Ada runtime (as of 2007-03-06). */
11980
11981 static const struct exception_support_info default_exception_support_info =
11982 {
11983 "__gnat_debug_raise_exception", /* catch_exception_sym */
11984 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11985 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11986 "__gnat_begin_handler", /* catch_handlers_sym */
11987 ada_unhandled_exception_name_addr
11988 };
11989
11990 /* The following exception support info structure describes how to
11991 implement exception catchpoints with a slightly older version
11992 of the Ada runtime. */
11993
11994 static const struct exception_support_info exception_support_info_fallback =
11995 {
11996 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11997 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11998 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11999 "__gnat_begin_handler", /* catch_handlers_sym */
12000 ada_unhandled_exception_name_addr_from_raise
12001 };
12002
12003 /* Return nonzero if we can detect the exception support routines
12004 described in EINFO.
12005
12006 This function errors out if an abnormal situation is detected
12007 (for instance, if we find the exception support routines, but
12008 that support is found to be incomplete). */
12009
12010 static int
12011 ada_has_this_exception_support (const struct exception_support_info *einfo)
12012 {
12013 struct symbol *sym;
12014
12015 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12016 that should be compiled with debugging information. As a result, we
12017 expect to find that symbol in the symtabs. */
12018
12019 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12020 if (sym == NULL)
12021 {
12022 /* Perhaps we did not find our symbol because the Ada runtime was
12023 compiled without debugging info, or simply stripped of it.
12024 It happens on some GNU/Linux distributions for instance, where
12025 users have to install a separate debug package in order to get
12026 the runtime's debugging info. In that situation, let the user
12027 know why we cannot insert an Ada exception catchpoint.
12028
12029 Note: Just for the purpose of inserting our Ada exception
12030 catchpoint, we could rely purely on the associated minimal symbol.
12031 But we would be operating in degraded mode anyway, since we are
12032 still lacking the debugging info needed later on to extract
12033 the name of the exception being raised (this name is printed in
12034 the catchpoint message, and is also used when trying to catch
12035 a specific exception). We do not handle this case for now. */
12036 struct bound_minimal_symbol msym
12037 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12038
12039 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12040 error (_("Your Ada runtime appears to be missing some debugging "
12041 "information.\nCannot insert Ada exception catchpoint "
12042 "in this configuration."));
12043
12044 return 0;
12045 }
12046
12047 /* Make sure that the symbol we found corresponds to a function. */
12048
12049 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12050 error (_("Symbol \"%s\" is not a function (class = %d)"),
12051 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12052
12053 return 1;
12054 }
12055
12056 /* Inspect the Ada runtime and determine which exception info structure
12057 should be used to provide support for exception catchpoints.
12058
12059 This function will always set the per-inferior exception_info,
12060 or raise an error. */
12061
12062 static void
12063 ada_exception_support_info_sniffer (void)
12064 {
12065 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12066
12067 /* If the exception info is already known, then no need to recompute it. */
12068 if (data->exception_info != NULL)
12069 return;
12070
12071 /* Check the latest (default) exception support info. */
12072 if (ada_has_this_exception_support (&default_exception_support_info))
12073 {
12074 data->exception_info = &default_exception_support_info;
12075 return;
12076 }
12077
12078 /* Try our fallback exception suport info. */
12079 if (ada_has_this_exception_support (&exception_support_info_fallback))
12080 {
12081 data->exception_info = &exception_support_info_fallback;
12082 return;
12083 }
12084
12085 /* Sometimes, it is normal for us to not be able to find the routine
12086 we are looking for. This happens when the program is linked with
12087 the shared version of the GNAT runtime, and the program has not been
12088 started yet. Inform the user of these two possible causes if
12089 applicable. */
12090
12091 if (ada_update_initial_language (language_unknown) != language_ada)
12092 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12093
12094 /* If the symbol does not exist, then check that the program is
12095 already started, to make sure that shared libraries have been
12096 loaded. If it is not started, this may mean that the symbol is
12097 in a shared library. */
12098
12099 if (inferior_ptid.pid () == 0)
12100 error (_("Unable to insert catchpoint. Try to start the program first."));
12101
12102 /* At this point, we know that we are debugging an Ada program and
12103 that the inferior has been started, but we still are not able to
12104 find the run-time symbols. That can mean that we are in
12105 configurable run time mode, or that a-except as been optimized
12106 out by the linker... In any case, at this point it is not worth
12107 supporting this feature. */
12108
12109 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12110 }
12111
12112 /* True iff FRAME is very likely to be that of a function that is
12113 part of the runtime system. This is all very heuristic, but is
12114 intended to be used as advice as to what frames are uninteresting
12115 to most users. */
12116
12117 static int
12118 is_known_support_routine (struct frame_info *frame)
12119 {
12120 enum language func_lang;
12121 int i;
12122 const char *fullname;
12123
12124 /* If this code does not have any debugging information (no symtab),
12125 This cannot be any user code. */
12126
12127 symtab_and_line sal = find_frame_sal (frame);
12128 if (sal.symtab == NULL)
12129 return 1;
12130
12131 /* If there is a symtab, but the associated source file cannot be
12132 located, then assume this is not user code: Selecting a frame
12133 for which we cannot display the code would not be very helpful
12134 for the user. This should also take care of case such as VxWorks
12135 where the kernel has some debugging info provided for a few units. */
12136
12137 fullname = symtab_to_fullname (sal.symtab);
12138 if (access (fullname, R_OK) != 0)
12139 return 1;
12140
12141 /* Check the unit filename againt the Ada runtime file naming.
12142 We also check the name of the objfile against the name of some
12143 known system libraries that sometimes come with debugging info
12144 too. */
12145
12146 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12147 {
12148 re_comp (known_runtime_file_name_patterns[i]);
12149 if (re_exec (lbasename (sal.symtab->filename)))
12150 return 1;
12151 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12152 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12153 return 1;
12154 }
12155
12156 /* Check whether the function is a GNAT-generated entity. */
12157
12158 gdb::unique_xmalloc_ptr<char> func_name
12159 = find_frame_funname (frame, &func_lang, NULL);
12160 if (func_name == NULL)
12161 return 1;
12162
12163 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12164 {
12165 re_comp (known_auxiliary_function_name_patterns[i]);
12166 if (re_exec (func_name.get ()))
12167 return 1;
12168 }
12169
12170 return 0;
12171 }
12172
12173 /* Find the first frame that contains debugging information and that is not
12174 part of the Ada run-time, starting from FI and moving upward. */
12175
12176 void
12177 ada_find_printable_frame (struct frame_info *fi)
12178 {
12179 for (; fi != NULL; fi = get_prev_frame (fi))
12180 {
12181 if (!is_known_support_routine (fi))
12182 {
12183 select_frame (fi);
12184 break;
12185 }
12186 }
12187
12188 }
12189
12190 /* Assuming that the inferior just triggered an unhandled exception
12191 catchpoint, return the address in inferior memory where the name
12192 of the exception is stored.
12193
12194 Return zero if the address could not be computed. */
12195
12196 static CORE_ADDR
12197 ada_unhandled_exception_name_addr (void)
12198 {
12199 return parse_and_eval_address ("e.full_name");
12200 }
12201
12202 /* Same as ada_unhandled_exception_name_addr, except that this function
12203 should be used when the inferior uses an older version of the runtime,
12204 where the exception name needs to be extracted from a specific frame
12205 several frames up in the callstack. */
12206
12207 static CORE_ADDR
12208 ada_unhandled_exception_name_addr_from_raise (void)
12209 {
12210 int frame_level;
12211 struct frame_info *fi;
12212 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12213
12214 /* To determine the name of this exception, we need to select
12215 the frame corresponding to RAISE_SYM_NAME. This frame is
12216 at least 3 levels up, so we simply skip the first 3 frames
12217 without checking the name of their associated function. */
12218 fi = get_current_frame ();
12219 for (frame_level = 0; frame_level < 3; frame_level += 1)
12220 if (fi != NULL)
12221 fi = get_prev_frame (fi);
12222
12223 while (fi != NULL)
12224 {
12225 enum language func_lang;
12226
12227 gdb::unique_xmalloc_ptr<char> func_name
12228 = find_frame_funname (fi, &func_lang, NULL);
12229 if (func_name != NULL)
12230 {
12231 if (strcmp (func_name.get (),
12232 data->exception_info->catch_exception_sym) == 0)
12233 break; /* We found the frame we were looking for... */
12234 }
12235 fi = get_prev_frame (fi);
12236 }
12237
12238 if (fi == NULL)
12239 return 0;
12240
12241 select_frame (fi);
12242 return parse_and_eval_address ("id.full_name");
12243 }
12244
12245 /* Assuming the inferior just triggered an Ada exception catchpoint
12246 (of any type), return the address in inferior memory where the name
12247 of the exception is stored, if applicable.
12248
12249 Assumes the selected frame is the current frame.
12250
12251 Return zero if the address could not be computed, or if not relevant. */
12252
12253 static CORE_ADDR
12254 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12255 struct breakpoint *b)
12256 {
12257 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12258
12259 switch (ex)
12260 {
12261 case ada_catch_exception:
12262 return (parse_and_eval_address ("e.full_name"));
12263 break;
12264
12265 case ada_catch_exception_unhandled:
12266 return data->exception_info->unhandled_exception_name_addr ();
12267 break;
12268
12269 case ada_catch_handlers:
12270 return 0; /* The runtimes does not provide access to the exception
12271 name. */
12272 break;
12273
12274 case ada_catch_assert:
12275 return 0; /* Exception name is not relevant in this case. */
12276 break;
12277
12278 default:
12279 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12280 break;
12281 }
12282
12283 return 0; /* Should never be reached. */
12284 }
12285
12286 /* Assuming the inferior is stopped at an exception catchpoint,
12287 return the message which was associated to the exception, if
12288 available. Return NULL if the message could not be retrieved.
12289
12290 Note: The exception message can be associated to an exception
12291 either through the use of the Raise_Exception function, or
12292 more simply (Ada 2005 and later), via:
12293
12294 raise Exception_Name with "exception message";
12295
12296 */
12297
12298 static gdb::unique_xmalloc_ptr<char>
12299 ada_exception_message_1 (void)
12300 {
12301 struct value *e_msg_val;
12302 int e_msg_len;
12303
12304 /* For runtimes that support this feature, the exception message
12305 is passed as an unbounded string argument called "message". */
12306 e_msg_val = parse_and_eval ("message");
12307 if (e_msg_val == NULL)
12308 return NULL; /* Exception message not supported. */
12309
12310 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12311 gdb_assert (e_msg_val != NULL);
12312 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12313
12314 /* If the message string is empty, then treat it as if there was
12315 no exception message. */
12316 if (e_msg_len <= 0)
12317 return NULL;
12318
12319 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12320 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12321 e_msg.get ()[e_msg_len] = '\0';
12322
12323 return e_msg;
12324 }
12325
12326 /* Same as ada_exception_message_1, except that all exceptions are
12327 contained here (returning NULL instead). */
12328
12329 static gdb::unique_xmalloc_ptr<char>
12330 ada_exception_message (void)
12331 {
12332 gdb::unique_xmalloc_ptr<char> e_msg;
12333
12334 TRY
12335 {
12336 e_msg = ada_exception_message_1 ();
12337 }
12338 CATCH (e, RETURN_MASK_ERROR)
12339 {
12340 e_msg.reset (nullptr);
12341 }
12342 END_CATCH
12343
12344 return e_msg;
12345 }
12346
12347 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12348 any error that ada_exception_name_addr_1 might cause to be thrown.
12349 When an error is intercepted, a warning with the error message is printed,
12350 and zero is returned. */
12351
12352 static CORE_ADDR
12353 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12354 struct breakpoint *b)
12355 {
12356 CORE_ADDR result = 0;
12357
12358 TRY
12359 {
12360 result = ada_exception_name_addr_1 (ex, b);
12361 }
12362
12363 CATCH (e, RETURN_MASK_ERROR)
12364 {
12365 warning (_("failed to get exception name: %s"), e.message);
12366 return 0;
12367 }
12368 END_CATCH
12369
12370 return result;
12371 }
12372
12373 static std::string ada_exception_catchpoint_cond_string
12374 (const char *excep_string,
12375 enum ada_exception_catchpoint_kind ex);
12376
12377 /* Ada catchpoints.
12378
12379 In the case of catchpoints on Ada exceptions, the catchpoint will
12380 stop the target on every exception the program throws. When a user
12381 specifies the name of a specific exception, we translate this
12382 request into a condition expression (in text form), and then parse
12383 it into an expression stored in each of the catchpoint's locations.
12384 We then use this condition to check whether the exception that was
12385 raised is the one the user is interested in. If not, then the
12386 target is resumed again. We store the name of the requested
12387 exception, in order to be able to re-set the condition expression
12388 when symbols change. */
12389
12390 /* An instance of this type is used to represent an Ada catchpoint
12391 breakpoint location. */
12392
12393 class ada_catchpoint_location : public bp_location
12394 {
12395 public:
12396 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12397 : bp_location (ops, owner)
12398 {}
12399
12400 /* The condition that checks whether the exception that was raised
12401 is the specific exception the user specified on catchpoint
12402 creation. */
12403 expression_up excep_cond_expr;
12404 };
12405
12406 /* Implement the DTOR method in the bp_location_ops structure for all
12407 Ada exception catchpoint kinds. */
12408
12409 static void
12410 ada_catchpoint_location_dtor (struct bp_location *bl)
12411 {
12412 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12413
12414 al->excep_cond_expr.reset ();
12415 }
12416
12417 /* The vtable to be used in Ada catchpoint locations. */
12418
12419 static const struct bp_location_ops ada_catchpoint_location_ops =
12420 {
12421 ada_catchpoint_location_dtor
12422 };
12423
12424 /* An instance of this type is used to represent an Ada catchpoint. */
12425
12426 struct ada_catchpoint : public breakpoint
12427 {
12428 /* The name of the specific exception the user specified. */
12429 std::string excep_string;
12430 };
12431
12432 /* Parse the exception condition string in the context of each of the
12433 catchpoint's locations, and store them for later evaluation. */
12434
12435 static void
12436 create_excep_cond_exprs (struct ada_catchpoint *c,
12437 enum ada_exception_catchpoint_kind ex)
12438 {
12439 struct bp_location *bl;
12440
12441 /* Nothing to do if there's no specific exception to catch. */
12442 if (c->excep_string.empty ())
12443 return;
12444
12445 /* Same if there are no locations... */
12446 if (c->loc == NULL)
12447 return;
12448
12449 /* Compute the condition expression in text form, from the specific
12450 expection we want to catch. */
12451 std::string cond_string
12452 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12453
12454 /* Iterate over all the catchpoint's locations, and parse an
12455 expression for each. */
12456 for (bl = c->loc; bl != NULL; bl = bl->next)
12457 {
12458 struct ada_catchpoint_location *ada_loc
12459 = (struct ada_catchpoint_location *) bl;
12460 expression_up exp;
12461
12462 if (!bl->shlib_disabled)
12463 {
12464 const char *s;
12465
12466 s = cond_string.c_str ();
12467 TRY
12468 {
12469 exp = parse_exp_1 (&s, bl->address,
12470 block_for_pc (bl->address),
12471 0);
12472 }
12473 CATCH (e, RETURN_MASK_ERROR)
12474 {
12475 warning (_("failed to reevaluate internal exception condition "
12476 "for catchpoint %d: %s"),
12477 c->number, e.message);
12478 }
12479 END_CATCH
12480 }
12481
12482 ada_loc->excep_cond_expr = std::move (exp);
12483 }
12484 }
12485
12486 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12487 structure for all exception catchpoint kinds. */
12488
12489 static struct bp_location *
12490 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12491 struct breakpoint *self)
12492 {
12493 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12494 }
12495
12496 /* Implement the RE_SET method in the breakpoint_ops structure for all
12497 exception catchpoint kinds. */
12498
12499 static void
12500 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12501 {
12502 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12503
12504 /* Call the base class's method. This updates the catchpoint's
12505 locations. */
12506 bkpt_breakpoint_ops.re_set (b);
12507
12508 /* Reparse the exception conditional expressions. One for each
12509 location. */
12510 create_excep_cond_exprs (c, ex);
12511 }
12512
12513 /* Returns true if we should stop for this breakpoint hit. If the
12514 user specified a specific exception, we only want to cause a stop
12515 if the program thrown that exception. */
12516
12517 static int
12518 should_stop_exception (const struct bp_location *bl)
12519 {
12520 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12521 const struct ada_catchpoint_location *ada_loc
12522 = (const struct ada_catchpoint_location *) bl;
12523 int stop;
12524
12525 /* With no specific exception, should always stop. */
12526 if (c->excep_string.empty ())
12527 return 1;
12528
12529 if (ada_loc->excep_cond_expr == NULL)
12530 {
12531 /* We will have a NULL expression if back when we were creating
12532 the expressions, this location's had failed to parse. */
12533 return 1;
12534 }
12535
12536 stop = 1;
12537 TRY
12538 {
12539 struct value *mark;
12540
12541 mark = value_mark ();
12542 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12543 value_free_to_mark (mark);
12544 }
12545 CATCH (ex, RETURN_MASK_ALL)
12546 {
12547 exception_fprintf (gdb_stderr, ex,
12548 _("Error in testing exception condition:\n"));
12549 }
12550 END_CATCH
12551
12552 return stop;
12553 }
12554
12555 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12556 for all exception catchpoint kinds. */
12557
12558 static void
12559 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12560 {
12561 bs->stop = should_stop_exception (bs->bp_location_at);
12562 }
12563
12564 /* Implement the PRINT_IT method in the breakpoint_ops structure
12565 for all exception catchpoint kinds. */
12566
12567 static enum print_stop_action
12568 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12569 {
12570 struct ui_out *uiout = current_uiout;
12571 struct breakpoint *b = bs->breakpoint_at;
12572
12573 annotate_catchpoint (b->number);
12574
12575 if (uiout->is_mi_like_p ())
12576 {
12577 uiout->field_string ("reason",
12578 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12579 uiout->field_string ("disp", bpdisp_text (b->disposition));
12580 }
12581
12582 uiout->text (b->disposition == disp_del
12583 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12584 uiout->field_int ("bkptno", b->number);
12585 uiout->text (", ");
12586
12587 /* ada_exception_name_addr relies on the selected frame being the
12588 current frame. Need to do this here because this function may be
12589 called more than once when printing a stop, and below, we'll
12590 select the first frame past the Ada run-time (see
12591 ada_find_printable_frame). */
12592 select_frame (get_current_frame ());
12593
12594 switch (ex)
12595 {
12596 case ada_catch_exception:
12597 case ada_catch_exception_unhandled:
12598 case ada_catch_handlers:
12599 {
12600 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12601 char exception_name[256];
12602
12603 if (addr != 0)
12604 {
12605 read_memory (addr, (gdb_byte *) exception_name,
12606 sizeof (exception_name) - 1);
12607 exception_name [sizeof (exception_name) - 1] = '\0';
12608 }
12609 else
12610 {
12611 /* For some reason, we were unable to read the exception
12612 name. This could happen if the Runtime was compiled
12613 without debugging info, for instance. In that case,
12614 just replace the exception name by the generic string
12615 "exception" - it will read as "an exception" in the
12616 notification we are about to print. */
12617 memcpy (exception_name, "exception", sizeof ("exception"));
12618 }
12619 /* In the case of unhandled exception breakpoints, we print
12620 the exception name as "unhandled EXCEPTION_NAME", to make
12621 it clearer to the user which kind of catchpoint just got
12622 hit. We used ui_out_text to make sure that this extra
12623 info does not pollute the exception name in the MI case. */
12624 if (ex == ada_catch_exception_unhandled)
12625 uiout->text ("unhandled ");
12626 uiout->field_string ("exception-name", exception_name);
12627 }
12628 break;
12629 case ada_catch_assert:
12630 /* In this case, the name of the exception is not really
12631 important. Just print "failed assertion" to make it clearer
12632 that his program just hit an assertion-failure catchpoint.
12633 We used ui_out_text because this info does not belong in
12634 the MI output. */
12635 uiout->text ("failed assertion");
12636 break;
12637 }
12638
12639 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12640 if (exception_message != NULL)
12641 {
12642 uiout->text (" (");
12643 uiout->field_string ("exception-message", exception_message.get ());
12644 uiout->text (")");
12645 }
12646
12647 uiout->text (" at ");
12648 ada_find_printable_frame (get_current_frame ());
12649
12650 return PRINT_SRC_AND_LOC;
12651 }
12652
12653 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12654 for all exception catchpoint kinds. */
12655
12656 static void
12657 print_one_exception (enum ada_exception_catchpoint_kind ex,
12658 struct breakpoint *b, struct bp_location **last_loc)
12659 {
12660 struct ui_out *uiout = current_uiout;
12661 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12662 struct value_print_options opts;
12663
12664 get_user_print_options (&opts);
12665 if (opts.addressprint)
12666 {
12667 annotate_field (4);
12668 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12669 }
12670
12671 annotate_field (5);
12672 *last_loc = b->loc;
12673 switch (ex)
12674 {
12675 case ada_catch_exception:
12676 if (!c->excep_string.empty ())
12677 {
12678 std::string msg = string_printf (_("`%s' Ada exception"),
12679 c->excep_string.c_str ());
12680
12681 uiout->field_string ("what", msg);
12682 }
12683 else
12684 uiout->field_string ("what", "all Ada exceptions");
12685
12686 break;
12687
12688 case ada_catch_exception_unhandled:
12689 uiout->field_string ("what", "unhandled Ada exceptions");
12690 break;
12691
12692 case ada_catch_handlers:
12693 if (!c->excep_string.empty ())
12694 {
12695 uiout->field_fmt ("what",
12696 _("`%s' Ada exception handlers"),
12697 c->excep_string.c_str ());
12698 }
12699 else
12700 uiout->field_string ("what", "all Ada exceptions handlers");
12701 break;
12702
12703 case ada_catch_assert:
12704 uiout->field_string ("what", "failed Ada assertions");
12705 break;
12706
12707 default:
12708 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12709 break;
12710 }
12711 }
12712
12713 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12714 for all exception catchpoint kinds. */
12715
12716 static void
12717 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12718 struct breakpoint *b)
12719 {
12720 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12721 struct ui_out *uiout = current_uiout;
12722
12723 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12724 : _("Catchpoint "));
12725 uiout->field_int ("bkptno", b->number);
12726 uiout->text (": ");
12727
12728 switch (ex)
12729 {
12730 case ada_catch_exception:
12731 if (!c->excep_string.empty ())
12732 {
12733 std::string info = string_printf (_("`%s' Ada exception"),
12734 c->excep_string.c_str ());
12735 uiout->text (info.c_str ());
12736 }
12737 else
12738 uiout->text (_("all Ada exceptions"));
12739 break;
12740
12741 case ada_catch_exception_unhandled:
12742 uiout->text (_("unhandled Ada exceptions"));
12743 break;
12744
12745 case ada_catch_handlers:
12746 if (!c->excep_string.empty ())
12747 {
12748 std::string info
12749 = string_printf (_("`%s' Ada exception handlers"),
12750 c->excep_string.c_str ());
12751 uiout->text (info.c_str ());
12752 }
12753 else
12754 uiout->text (_("all Ada exceptions handlers"));
12755 break;
12756
12757 case ada_catch_assert:
12758 uiout->text (_("failed Ada assertions"));
12759 break;
12760
12761 default:
12762 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12763 break;
12764 }
12765 }
12766
12767 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12768 for all exception catchpoint kinds. */
12769
12770 static void
12771 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12772 struct breakpoint *b, struct ui_file *fp)
12773 {
12774 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12775
12776 switch (ex)
12777 {
12778 case ada_catch_exception:
12779 fprintf_filtered (fp, "catch exception");
12780 if (!c->excep_string.empty ())
12781 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12782 break;
12783
12784 case ada_catch_exception_unhandled:
12785 fprintf_filtered (fp, "catch exception unhandled");
12786 break;
12787
12788 case ada_catch_handlers:
12789 fprintf_filtered (fp, "catch handlers");
12790 break;
12791
12792 case ada_catch_assert:
12793 fprintf_filtered (fp, "catch assert");
12794 break;
12795
12796 default:
12797 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12798 }
12799 print_recreate_thread (b, fp);
12800 }
12801
12802 /* Virtual table for "catch exception" breakpoints. */
12803
12804 static struct bp_location *
12805 allocate_location_catch_exception (struct breakpoint *self)
12806 {
12807 return allocate_location_exception (ada_catch_exception, self);
12808 }
12809
12810 static void
12811 re_set_catch_exception (struct breakpoint *b)
12812 {
12813 re_set_exception (ada_catch_exception, b);
12814 }
12815
12816 static void
12817 check_status_catch_exception (bpstat bs)
12818 {
12819 check_status_exception (ada_catch_exception, bs);
12820 }
12821
12822 static enum print_stop_action
12823 print_it_catch_exception (bpstat bs)
12824 {
12825 return print_it_exception (ada_catch_exception, bs);
12826 }
12827
12828 static void
12829 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12830 {
12831 print_one_exception (ada_catch_exception, b, last_loc);
12832 }
12833
12834 static void
12835 print_mention_catch_exception (struct breakpoint *b)
12836 {
12837 print_mention_exception (ada_catch_exception, b);
12838 }
12839
12840 static void
12841 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12842 {
12843 print_recreate_exception (ada_catch_exception, b, fp);
12844 }
12845
12846 static struct breakpoint_ops catch_exception_breakpoint_ops;
12847
12848 /* Virtual table for "catch exception unhandled" breakpoints. */
12849
12850 static struct bp_location *
12851 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12852 {
12853 return allocate_location_exception (ada_catch_exception_unhandled, self);
12854 }
12855
12856 static void
12857 re_set_catch_exception_unhandled (struct breakpoint *b)
12858 {
12859 re_set_exception (ada_catch_exception_unhandled, b);
12860 }
12861
12862 static void
12863 check_status_catch_exception_unhandled (bpstat bs)
12864 {
12865 check_status_exception (ada_catch_exception_unhandled, bs);
12866 }
12867
12868 static enum print_stop_action
12869 print_it_catch_exception_unhandled (bpstat bs)
12870 {
12871 return print_it_exception (ada_catch_exception_unhandled, bs);
12872 }
12873
12874 static void
12875 print_one_catch_exception_unhandled (struct breakpoint *b,
12876 struct bp_location **last_loc)
12877 {
12878 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12879 }
12880
12881 static void
12882 print_mention_catch_exception_unhandled (struct breakpoint *b)
12883 {
12884 print_mention_exception (ada_catch_exception_unhandled, b);
12885 }
12886
12887 static void
12888 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12889 struct ui_file *fp)
12890 {
12891 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12892 }
12893
12894 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12895
12896 /* Virtual table for "catch assert" breakpoints. */
12897
12898 static struct bp_location *
12899 allocate_location_catch_assert (struct breakpoint *self)
12900 {
12901 return allocate_location_exception (ada_catch_assert, self);
12902 }
12903
12904 static void
12905 re_set_catch_assert (struct breakpoint *b)
12906 {
12907 re_set_exception (ada_catch_assert, b);
12908 }
12909
12910 static void
12911 check_status_catch_assert (bpstat bs)
12912 {
12913 check_status_exception (ada_catch_assert, bs);
12914 }
12915
12916 static enum print_stop_action
12917 print_it_catch_assert (bpstat bs)
12918 {
12919 return print_it_exception (ada_catch_assert, bs);
12920 }
12921
12922 static void
12923 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12924 {
12925 print_one_exception (ada_catch_assert, b, last_loc);
12926 }
12927
12928 static void
12929 print_mention_catch_assert (struct breakpoint *b)
12930 {
12931 print_mention_exception (ada_catch_assert, b);
12932 }
12933
12934 static void
12935 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12936 {
12937 print_recreate_exception (ada_catch_assert, b, fp);
12938 }
12939
12940 static struct breakpoint_ops catch_assert_breakpoint_ops;
12941
12942 /* Virtual table for "catch handlers" breakpoints. */
12943
12944 static struct bp_location *
12945 allocate_location_catch_handlers (struct breakpoint *self)
12946 {
12947 return allocate_location_exception (ada_catch_handlers, self);
12948 }
12949
12950 static void
12951 re_set_catch_handlers (struct breakpoint *b)
12952 {
12953 re_set_exception (ada_catch_handlers, b);
12954 }
12955
12956 static void
12957 check_status_catch_handlers (bpstat bs)
12958 {
12959 check_status_exception (ada_catch_handlers, bs);
12960 }
12961
12962 static enum print_stop_action
12963 print_it_catch_handlers (bpstat bs)
12964 {
12965 return print_it_exception (ada_catch_handlers, bs);
12966 }
12967
12968 static void
12969 print_one_catch_handlers (struct breakpoint *b,
12970 struct bp_location **last_loc)
12971 {
12972 print_one_exception (ada_catch_handlers, b, last_loc);
12973 }
12974
12975 static void
12976 print_mention_catch_handlers (struct breakpoint *b)
12977 {
12978 print_mention_exception (ada_catch_handlers, b);
12979 }
12980
12981 static void
12982 print_recreate_catch_handlers (struct breakpoint *b,
12983 struct ui_file *fp)
12984 {
12985 print_recreate_exception (ada_catch_handlers, b, fp);
12986 }
12987
12988 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12989
12990 /* Split the arguments specified in a "catch exception" command.
12991 Set EX to the appropriate catchpoint type.
12992 Set EXCEP_STRING to the name of the specific exception if
12993 specified by the user.
12994 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12995 "catch handlers" command. False otherwise.
12996 If a condition is found at the end of the arguments, the condition
12997 expression is stored in COND_STRING (memory must be deallocated
12998 after use). Otherwise COND_STRING is set to NULL. */
12999
13000 static void
13001 catch_ada_exception_command_split (const char *args,
13002 bool is_catch_handlers_cmd,
13003 enum ada_exception_catchpoint_kind *ex,
13004 std::string *excep_string,
13005 std::string *cond_string)
13006 {
13007 std::string exception_name;
13008
13009 exception_name = extract_arg (&args);
13010 if (exception_name == "if")
13011 {
13012 /* This is not an exception name; this is the start of a condition
13013 expression for a catchpoint on all exceptions. So, "un-get"
13014 this token, and set exception_name to NULL. */
13015 exception_name.clear ();
13016 args -= 2;
13017 }
13018
13019 /* Check to see if we have a condition. */
13020
13021 args = skip_spaces (args);
13022 if (startswith (args, "if")
13023 && (isspace (args[2]) || args[2] == '\0'))
13024 {
13025 args += 2;
13026 args = skip_spaces (args);
13027
13028 if (args[0] == '\0')
13029 error (_("Condition missing after `if' keyword"));
13030 *cond_string = args;
13031
13032 args += strlen (args);
13033 }
13034
13035 /* Check that we do not have any more arguments. Anything else
13036 is unexpected. */
13037
13038 if (args[0] != '\0')
13039 error (_("Junk at end of expression"));
13040
13041 if (is_catch_handlers_cmd)
13042 {
13043 /* Catch handling of exceptions. */
13044 *ex = ada_catch_handlers;
13045 *excep_string = exception_name;
13046 }
13047 else if (exception_name.empty ())
13048 {
13049 /* Catch all exceptions. */
13050 *ex = ada_catch_exception;
13051 excep_string->clear ();
13052 }
13053 else if (exception_name == "unhandled")
13054 {
13055 /* Catch unhandled exceptions. */
13056 *ex = ada_catch_exception_unhandled;
13057 excep_string->clear ();
13058 }
13059 else
13060 {
13061 /* Catch a specific exception. */
13062 *ex = ada_catch_exception;
13063 *excep_string = exception_name;
13064 }
13065 }
13066
13067 /* Return the name of the symbol on which we should break in order to
13068 implement a catchpoint of the EX kind. */
13069
13070 static const char *
13071 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13072 {
13073 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13074
13075 gdb_assert (data->exception_info != NULL);
13076
13077 switch (ex)
13078 {
13079 case ada_catch_exception:
13080 return (data->exception_info->catch_exception_sym);
13081 break;
13082 case ada_catch_exception_unhandled:
13083 return (data->exception_info->catch_exception_unhandled_sym);
13084 break;
13085 case ada_catch_assert:
13086 return (data->exception_info->catch_assert_sym);
13087 break;
13088 case ada_catch_handlers:
13089 return (data->exception_info->catch_handlers_sym);
13090 break;
13091 default:
13092 internal_error (__FILE__, __LINE__,
13093 _("unexpected catchpoint kind (%d)"), ex);
13094 }
13095 }
13096
13097 /* Return the breakpoint ops "virtual table" used for catchpoints
13098 of the EX kind. */
13099
13100 static const struct breakpoint_ops *
13101 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13102 {
13103 switch (ex)
13104 {
13105 case ada_catch_exception:
13106 return (&catch_exception_breakpoint_ops);
13107 break;
13108 case ada_catch_exception_unhandled:
13109 return (&catch_exception_unhandled_breakpoint_ops);
13110 break;
13111 case ada_catch_assert:
13112 return (&catch_assert_breakpoint_ops);
13113 break;
13114 case ada_catch_handlers:
13115 return (&catch_handlers_breakpoint_ops);
13116 break;
13117 default:
13118 internal_error (__FILE__, __LINE__,
13119 _("unexpected catchpoint kind (%d)"), ex);
13120 }
13121 }
13122
13123 /* Return the condition that will be used to match the current exception
13124 being raised with the exception that the user wants to catch. This
13125 assumes that this condition is used when the inferior just triggered
13126 an exception catchpoint.
13127 EX: the type of catchpoints used for catching Ada exceptions. */
13128
13129 static std::string
13130 ada_exception_catchpoint_cond_string (const char *excep_string,
13131 enum ada_exception_catchpoint_kind ex)
13132 {
13133 int i;
13134 bool is_standard_exc = false;
13135 std::string result;
13136
13137 if (ex == ada_catch_handlers)
13138 {
13139 /* For exception handlers catchpoints, the condition string does
13140 not use the same parameter as for the other exceptions. */
13141 result = ("long_integer (GNAT_GCC_exception_Access"
13142 "(gcc_exception).all.occurrence.id)");
13143 }
13144 else
13145 result = "long_integer (e)";
13146
13147 /* The standard exceptions are a special case. They are defined in
13148 runtime units that have been compiled without debugging info; if
13149 EXCEP_STRING is the not-fully-qualified name of a standard
13150 exception (e.g. "constraint_error") then, during the evaluation
13151 of the condition expression, the symbol lookup on this name would
13152 *not* return this standard exception. The catchpoint condition
13153 may then be set only on user-defined exceptions which have the
13154 same not-fully-qualified name (e.g. my_package.constraint_error).
13155
13156 To avoid this unexcepted behavior, these standard exceptions are
13157 systematically prefixed by "standard". This means that "catch
13158 exception constraint_error" is rewritten into "catch exception
13159 standard.constraint_error".
13160
13161 If an exception named contraint_error is defined in another package of
13162 the inferior program, then the only way to specify this exception as a
13163 breakpoint condition is to use its fully-qualified named:
13164 e.g. my_package.constraint_error. */
13165
13166 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13167 {
13168 if (strcmp (standard_exc [i], excep_string) == 0)
13169 {
13170 is_standard_exc = true;
13171 break;
13172 }
13173 }
13174
13175 result += " = ";
13176
13177 if (is_standard_exc)
13178 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13179 else
13180 string_appendf (result, "long_integer (&%s)", excep_string);
13181
13182 return result;
13183 }
13184
13185 /* Return the symtab_and_line that should be used to insert an exception
13186 catchpoint of the TYPE kind.
13187
13188 ADDR_STRING returns the name of the function where the real
13189 breakpoint that implements the catchpoints is set, depending on the
13190 type of catchpoint we need to create. */
13191
13192 static struct symtab_and_line
13193 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13194 const char **addr_string, const struct breakpoint_ops **ops)
13195 {
13196 const char *sym_name;
13197 struct symbol *sym;
13198
13199 /* First, find out which exception support info to use. */
13200 ada_exception_support_info_sniffer ();
13201
13202 /* Then lookup the function on which we will break in order to catch
13203 the Ada exceptions requested by the user. */
13204 sym_name = ada_exception_sym_name (ex);
13205 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13206
13207 if (sym == NULL)
13208 error (_("Catchpoint symbol not found: %s"), sym_name);
13209
13210 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13211 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13212
13213 /* Set ADDR_STRING. */
13214 *addr_string = xstrdup (sym_name);
13215
13216 /* Set OPS. */
13217 *ops = ada_exception_breakpoint_ops (ex);
13218
13219 return find_function_start_sal (sym, 1);
13220 }
13221
13222 /* Create an Ada exception catchpoint.
13223
13224 EX_KIND is the kind of exception catchpoint to be created.
13225
13226 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13227 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13228 of the exception to which this catchpoint applies.
13229
13230 COND_STRING, if not empty, is the catchpoint condition.
13231
13232 TEMPFLAG, if nonzero, means that the underlying breakpoint
13233 should be temporary.
13234
13235 FROM_TTY is the usual argument passed to all commands implementations. */
13236
13237 void
13238 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13239 enum ada_exception_catchpoint_kind ex_kind,
13240 const std::string &excep_string,
13241 const std::string &cond_string,
13242 int tempflag,
13243 int disabled,
13244 int from_tty)
13245 {
13246 const char *addr_string = NULL;
13247 const struct breakpoint_ops *ops = NULL;
13248 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13249
13250 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13251 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13252 ops, tempflag, disabled, from_tty);
13253 c->excep_string = excep_string;
13254 create_excep_cond_exprs (c.get (), ex_kind);
13255 if (!cond_string.empty ())
13256 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13257 install_breakpoint (0, std::move (c), 1);
13258 }
13259
13260 /* Implement the "catch exception" command. */
13261
13262 static void
13263 catch_ada_exception_command (const char *arg_entry, int from_tty,
13264 struct cmd_list_element *command)
13265 {
13266 const char *arg = arg_entry;
13267 struct gdbarch *gdbarch = get_current_arch ();
13268 int tempflag;
13269 enum ada_exception_catchpoint_kind ex_kind;
13270 std::string excep_string;
13271 std::string cond_string;
13272
13273 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13274
13275 if (!arg)
13276 arg = "";
13277 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13278 &cond_string);
13279 create_ada_exception_catchpoint (gdbarch, ex_kind,
13280 excep_string, cond_string,
13281 tempflag, 1 /* enabled */,
13282 from_tty);
13283 }
13284
13285 /* Implement the "catch handlers" command. */
13286
13287 static void
13288 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13289 struct cmd_list_element *command)
13290 {
13291 const char *arg = arg_entry;
13292 struct gdbarch *gdbarch = get_current_arch ();
13293 int tempflag;
13294 enum ada_exception_catchpoint_kind ex_kind;
13295 std::string excep_string;
13296 std::string cond_string;
13297
13298 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13299
13300 if (!arg)
13301 arg = "";
13302 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13303 &cond_string);
13304 create_ada_exception_catchpoint (gdbarch, ex_kind,
13305 excep_string, cond_string,
13306 tempflag, 1 /* enabled */,
13307 from_tty);
13308 }
13309
13310 /* Split the arguments specified in a "catch assert" command.
13311
13312 ARGS contains the command's arguments (or the empty string if
13313 no arguments were passed).
13314
13315 If ARGS contains a condition, set COND_STRING to that condition
13316 (the memory needs to be deallocated after use). */
13317
13318 static void
13319 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13320 {
13321 args = skip_spaces (args);
13322
13323 /* Check whether a condition was provided. */
13324 if (startswith (args, "if")
13325 && (isspace (args[2]) || args[2] == '\0'))
13326 {
13327 args += 2;
13328 args = skip_spaces (args);
13329 if (args[0] == '\0')
13330 error (_("condition missing after `if' keyword"));
13331 cond_string.assign (args);
13332 }
13333
13334 /* Otherwise, there should be no other argument at the end of
13335 the command. */
13336 else if (args[0] != '\0')
13337 error (_("Junk at end of arguments."));
13338 }
13339
13340 /* Implement the "catch assert" command. */
13341
13342 static void
13343 catch_assert_command (const char *arg_entry, int from_tty,
13344 struct cmd_list_element *command)
13345 {
13346 const char *arg = arg_entry;
13347 struct gdbarch *gdbarch = get_current_arch ();
13348 int tempflag;
13349 std::string cond_string;
13350
13351 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13352
13353 if (!arg)
13354 arg = "";
13355 catch_ada_assert_command_split (arg, cond_string);
13356 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13357 "", cond_string,
13358 tempflag, 1 /* enabled */,
13359 from_tty);
13360 }
13361
13362 /* Return non-zero if the symbol SYM is an Ada exception object. */
13363
13364 static int
13365 ada_is_exception_sym (struct symbol *sym)
13366 {
13367 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13368
13369 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13370 && SYMBOL_CLASS (sym) != LOC_BLOCK
13371 && SYMBOL_CLASS (sym) != LOC_CONST
13372 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13373 && type_name != NULL && strcmp (type_name, "exception") == 0);
13374 }
13375
13376 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13377 Ada exception object. This matches all exceptions except the ones
13378 defined by the Ada language. */
13379
13380 static int
13381 ada_is_non_standard_exception_sym (struct symbol *sym)
13382 {
13383 int i;
13384
13385 if (!ada_is_exception_sym (sym))
13386 return 0;
13387
13388 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13389 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13390 return 0; /* A standard exception. */
13391
13392 /* Numeric_Error is also a standard exception, so exclude it.
13393 See the STANDARD_EXC description for more details as to why
13394 this exception is not listed in that array. */
13395 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13396 return 0;
13397
13398 return 1;
13399 }
13400
13401 /* A helper function for std::sort, comparing two struct ada_exc_info
13402 objects.
13403
13404 The comparison is determined first by exception name, and then
13405 by exception address. */
13406
13407 bool
13408 ada_exc_info::operator< (const ada_exc_info &other) const
13409 {
13410 int result;
13411
13412 result = strcmp (name, other.name);
13413 if (result < 0)
13414 return true;
13415 if (result == 0 && addr < other.addr)
13416 return true;
13417 return false;
13418 }
13419
13420 bool
13421 ada_exc_info::operator== (const ada_exc_info &other) const
13422 {
13423 return addr == other.addr && strcmp (name, other.name) == 0;
13424 }
13425
13426 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13427 routine, but keeping the first SKIP elements untouched.
13428
13429 All duplicates are also removed. */
13430
13431 static void
13432 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13433 int skip)
13434 {
13435 std::sort (exceptions->begin () + skip, exceptions->end ());
13436 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13437 exceptions->end ());
13438 }
13439
13440 /* Add all exceptions defined by the Ada standard whose name match
13441 a regular expression.
13442
13443 If PREG is not NULL, then this regexp_t object is used to
13444 perform the symbol name matching. Otherwise, no name-based
13445 filtering is performed.
13446
13447 EXCEPTIONS is a vector of exceptions to which matching exceptions
13448 gets pushed. */
13449
13450 static void
13451 ada_add_standard_exceptions (compiled_regex *preg,
13452 std::vector<ada_exc_info> *exceptions)
13453 {
13454 int i;
13455
13456 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13457 {
13458 if (preg == NULL
13459 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13460 {
13461 struct bound_minimal_symbol msymbol
13462 = ada_lookup_simple_minsym (standard_exc[i]);
13463
13464 if (msymbol.minsym != NULL)
13465 {
13466 struct ada_exc_info info
13467 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13468
13469 exceptions->push_back (info);
13470 }
13471 }
13472 }
13473 }
13474
13475 /* Add all Ada exceptions defined locally and accessible from the given
13476 FRAME.
13477
13478 If PREG is not NULL, then this regexp_t object is used to
13479 perform the symbol name matching. Otherwise, no name-based
13480 filtering is performed.
13481
13482 EXCEPTIONS is a vector of exceptions to which matching exceptions
13483 gets pushed. */
13484
13485 static void
13486 ada_add_exceptions_from_frame (compiled_regex *preg,
13487 struct frame_info *frame,
13488 std::vector<ada_exc_info> *exceptions)
13489 {
13490 const struct block *block = get_frame_block (frame, 0);
13491
13492 while (block != 0)
13493 {
13494 struct block_iterator iter;
13495 struct symbol *sym;
13496
13497 ALL_BLOCK_SYMBOLS (block, iter, sym)
13498 {
13499 switch (SYMBOL_CLASS (sym))
13500 {
13501 case LOC_TYPEDEF:
13502 case LOC_BLOCK:
13503 case LOC_CONST:
13504 break;
13505 default:
13506 if (ada_is_exception_sym (sym))
13507 {
13508 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13509 SYMBOL_VALUE_ADDRESS (sym)};
13510
13511 exceptions->push_back (info);
13512 }
13513 }
13514 }
13515 if (BLOCK_FUNCTION (block) != NULL)
13516 break;
13517 block = BLOCK_SUPERBLOCK (block);
13518 }
13519 }
13520
13521 /* Return true if NAME matches PREG or if PREG is NULL. */
13522
13523 static bool
13524 name_matches_regex (const char *name, compiled_regex *preg)
13525 {
13526 return (preg == NULL
13527 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13528 }
13529
13530 /* Add all exceptions defined globally whose name name match
13531 a regular expression, excluding standard exceptions.
13532
13533 The reason we exclude standard exceptions is that they need
13534 to be handled separately: Standard exceptions are defined inside
13535 a runtime unit which is normally not compiled with debugging info,
13536 and thus usually do not show up in our symbol search. However,
13537 if the unit was in fact built with debugging info, we need to
13538 exclude them because they would duplicate the entry we found
13539 during the special loop that specifically searches for those
13540 standard exceptions.
13541
13542 If PREG is not NULL, then this regexp_t object is used to
13543 perform the symbol name matching. Otherwise, no name-based
13544 filtering is performed.
13545
13546 EXCEPTIONS is a vector of exceptions to which matching exceptions
13547 gets pushed. */
13548
13549 static void
13550 ada_add_global_exceptions (compiled_regex *preg,
13551 std::vector<ada_exc_info> *exceptions)
13552 {
13553 struct objfile *objfile;
13554 struct compunit_symtab *s;
13555
13556 /* In Ada, the symbol "search name" is a linkage name, whereas the
13557 regular expression used to do the matching refers to the natural
13558 name. So match against the decoded name. */
13559 expand_symtabs_matching (NULL,
13560 lookup_name_info::match_any (),
13561 [&] (const char *search_name)
13562 {
13563 const char *decoded = ada_decode (search_name);
13564 return name_matches_regex (decoded, preg);
13565 },
13566 NULL,
13567 VARIABLES_DOMAIN);
13568
13569 ALL_COMPUNITS (objfile, s)
13570 {
13571 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13572 int i;
13573
13574 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13575 {
13576 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13577 struct block_iterator iter;
13578 struct symbol *sym;
13579
13580 ALL_BLOCK_SYMBOLS (b, iter, sym)
13581 if (ada_is_non_standard_exception_sym (sym)
13582 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13583 {
13584 struct ada_exc_info info
13585 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13586
13587 exceptions->push_back (info);
13588 }
13589 }
13590 }
13591 }
13592
13593 /* Implements ada_exceptions_list with the regular expression passed
13594 as a regex_t, rather than a string.
13595
13596 If not NULL, PREG is used to filter out exceptions whose names
13597 do not match. Otherwise, all exceptions are listed. */
13598
13599 static std::vector<ada_exc_info>
13600 ada_exceptions_list_1 (compiled_regex *preg)
13601 {
13602 std::vector<ada_exc_info> result;
13603 int prev_len;
13604
13605 /* First, list the known standard exceptions. These exceptions
13606 need to be handled separately, as they are usually defined in
13607 runtime units that have been compiled without debugging info. */
13608
13609 ada_add_standard_exceptions (preg, &result);
13610
13611 /* Next, find all exceptions whose scope is local and accessible
13612 from the currently selected frame. */
13613
13614 if (has_stack_frames ())
13615 {
13616 prev_len = result.size ();
13617 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13618 &result);
13619 if (result.size () > prev_len)
13620 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13621 }
13622
13623 /* Add all exceptions whose scope is global. */
13624
13625 prev_len = result.size ();
13626 ada_add_global_exceptions (preg, &result);
13627 if (result.size () > prev_len)
13628 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13629
13630 return result;
13631 }
13632
13633 /* Return a vector of ada_exc_info.
13634
13635 If REGEXP is NULL, all exceptions are included in the result.
13636 Otherwise, it should contain a valid regular expression,
13637 and only the exceptions whose names match that regular expression
13638 are included in the result.
13639
13640 The exceptions are sorted in the following order:
13641 - Standard exceptions (defined by the Ada language), in
13642 alphabetical order;
13643 - Exceptions only visible from the current frame, in
13644 alphabetical order;
13645 - Exceptions whose scope is global, in alphabetical order. */
13646
13647 std::vector<ada_exc_info>
13648 ada_exceptions_list (const char *regexp)
13649 {
13650 if (regexp == NULL)
13651 return ada_exceptions_list_1 (NULL);
13652
13653 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13654 return ada_exceptions_list_1 (&reg);
13655 }
13656
13657 /* Implement the "info exceptions" command. */
13658
13659 static void
13660 info_exceptions_command (const char *regexp, int from_tty)
13661 {
13662 struct gdbarch *gdbarch = get_current_arch ();
13663
13664 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13665
13666 if (regexp != NULL)
13667 printf_filtered
13668 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13669 else
13670 printf_filtered (_("All defined Ada exceptions:\n"));
13671
13672 for (const ada_exc_info &info : exceptions)
13673 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13674 }
13675
13676 /* Operators */
13677 /* Information about operators given special treatment in functions
13678 below. */
13679 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13680
13681 #define ADA_OPERATORS \
13682 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13683 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13684 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13685 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13686 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13687 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13688 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13689 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13690 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13691 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13692 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13693 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13694 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13695 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13696 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13697 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13698 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13699 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13700 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13701
13702 static void
13703 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13704 int *argsp)
13705 {
13706 switch (exp->elts[pc - 1].opcode)
13707 {
13708 default:
13709 operator_length_standard (exp, pc, oplenp, argsp);
13710 break;
13711
13712 #define OP_DEFN(op, len, args, binop) \
13713 case op: *oplenp = len; *argsp = args; break;
13714 ADA_OPERATORS;
13715 #undef OP_DEFN
13716
13717 case OP_AGGREGATE:
13718 *oplenp = 3;
13719 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13720 break;
13721
13722 case OP_CHOICES:
13723 *oplenp = 3;
13724 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13725 break;
13726 }
13727 }
13728
13729 /* Implementation of the exp_descriptor method operator_check. */
13730
13731 static int
13732 ada_operator_check (struct expression *exp, int pos,
13733 int (*objfile_func) (struct objfile *objfile, void *data),
13734 void *data)
13735 {
13736 const union exp_element *const elts = exp->elts;
13737 struct type *type = NULL;
13738
13739 switch (elts[pos].opcode)
13740 {
13741 case UNOP_IN_RANGE:
13742 case UNOP_QUAL:
13743 type = elts[pos + 1].type;
13744 break;
13745
13746 default:
13747 return operator_check_standard (exp, pos, objfile_func, data);
13748 }
13749
13750 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13751
13752 if (type && TYPE_OBJFILE (type)
13753 && (*objfile_func) (TYPE_OBJFILE (type), data))
13754 return 1;
13755
13756 return 0;
13757 }
13758
13759 static const char *
13760 ada_op_name (enum exp_opcode opcode)
13761 {
13762 switch (opcode)
13763 {
13764 default:
13765 return op_name_standard (opcode);
13766
13767 #define OP_DEFN(op, len, args, binop) case op: return #op;
13768 ADA_OPERATORS;
13769 #undef OP_DEFN
13770
13771 case OP_AGGREGATE:
13772 return "OP_AGGREGATE";
13773 case OP_CHOICES:
13774 return "OP_CHOICES";
13775 case OP_NAME:
13776 return "OP_NAME";
13777 }
13778 }
13779
13780 /* As for operator_length, but assumes PC is pointing at the first
13781 element of the operator, and gives meaningful results only for the
13782 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13783
13784 static void
13785 ada_forward_operator_length (struct expression *exp, int pc,
13786 int *oplenp, int *argsp)
13787 {
13788 switch (exp->elts[pc].opcode)
13789 {
13790 default:
13791 *oplenp = *argsp = 0;
13792 break;
13793
13794 #define OP_DEFN(op, len, args, binop) \
13795 case op: *oplenp = len; *argsp = args; break;
13796 ADA_OPERATORS;
13797 #undef OP_DEFN
13798
13799 case OP_AGGREGATE:
13800 *oplenp = 3;
13801 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13802 break;
13803
13804 case OP_CHOICES:
13805 *oplenp = 3;
13806 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13807 break;
13808
13809 case OP_STRING:
13810 case OP_NAME:
13811 {
13812 int len = longest_to_int (exp->elts[pc + 1].longconst);
13813
13814 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13815 *argsp = 0;
13816 break;
13817 }
13818 }
13819 }
13820
13821 static int
13822 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13823 {
13824 enum exp_opcode op = exp->elts[elt].opcode;
13825 int oplen, nargs;
13826 int pc = elt;
13827 int i;
13828
13829 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13830
13831 switch (op)
13832 {
13833 /* Ada attributes ('Foo). */
13834 case OP_ATR_FIRST:
13835 case OP_ATR_LAST:
13836 case OP_ATR_LENGTH:
13837 case OP_ATR_IMAGE:
13838 case OP_ATR_MAX:
13839 case OP_ATR_MIN:
13840 case OP_ATR_MODULUS:
13841 case OP_ATR_POS:
13842 case OP_ATR_SIZE:
13843 case OP_ATR_TAG:
13844 case OP_ATR_VAL:
13845 break;
13846
13847 case UNOP_IN_RANGE:
13848 case UNOP_QUAL:
13849 /* XXX: gdb_sprint_host_address, type_sprint */
13850 fprintf_filtered (stream, _("Type @"));
13851 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13852 fprintf_filtered (stream, " (");
13853 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13854 fprintf_filtered (stream, ")");
13855 break;
13856 case BINOP_IN_BOUNDS:
13857 fprintf_filtered (stream, " (%d)",
13858 longest_to_int (exp->elts[pc + 2].longconst));
13859 break;
13860 case TERNOP_IN_RANGE:
13861 break;
13862
13863 case OP_AGGREGATE:
13864 case OP_OTHERS:
13865 case OP_DISCRETE_RANGE:
13866 case OP_POSITIONAL:
13867 case OP_CHOICES:
13868 break;
13869
13870 case OP_NAME:
13871 case OP_STRING:
13872 {
13873 char *name = &exp->elts[elt + 2].string;
13874 int len = longest_to_int (exp->elts[elt + 1].longconst);
13875
13876 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13877 break;
13878 }
13879
13880 default:
13881 return dump_subexp_body_standard (exp, stream, elt);
13882 }
13883
13884 elt += oplen;
13885 for (i = 0; i < nargs; i += 1)
13886 elt = dump_subexp (exp, stream, elt);
13887
13888 return elt;
13889 }
13890
13891 /* The Ada extension of print_subexp (q.v.). */
13892
13893 static void
13894 ada_print_subexp (struct expression *exp, int *pos,
13895 struct ui_file *stream, enum precedence prec)
13896 {
13897 int oplen, nargs, i;
13898 int pc = *pos;
13899 enum exp_opcode op = exp->elts[pc].opcode;
13900
13901 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13902
13903 *pos += oplen;
13904 switch (op)
13905 {
13906 default:
13907 *pos -= oplen;
13908 print_subexp_standard (exp, pos, stream, prec);
13909 return;
13910
13911 case OP_VAR_VALUE:
13912 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13913 return;
13914
13915 case BINOP_IN_BOUNDS:
13916 /* XXX: sprint_subexp */
13917 print_subexp (exp, pos, stream, PREC_SUFFIX);
13918 fputs_filtered (" in ", stream);
13919 print_subexp (exp, pos, stream, PREC_SUFFIX);
13920 fputs_filtered ("'range", stream);
13921 if (exp->elts[pc + 1].longconst > 1)
13922 fprintf_filtered (stream, "(%ld)",
13923 (long) exp->elts[pc + 1].longconst);
13924 return;
13925
13926 case TERNOP_IN_RANGE:
13927 if (prec >= PREC_EQUAL)
13928 fputs_filtered ("(", stream);
13929 /* XXX: sprint_subexp */
13930 print_subexp (exp, pos, stream, PREC_SUFFIX);
13931 fputs_filtered (" in ", stream);
13932 print_subexp (exp, pos, stream, PREC_EQUAL);
13933 fputs_filtered (" .. ", stream);
13934 print_subexp (exp, pos, stream, PREC_EQUAL);
13935 if (prec >= PREC_EQUAL)
13936 fputs_filtered (")", stream);
13937 return;
13938
13939 case OP_ATR_FIRST:
13940 case OP_ATR_LAST:
13941 case OP_ATR_LENGTH:
13942 case OP_ATR_IMAGE:
13943 case OP_ATR_MAX:
13944 case OP_ATR_MIN:
13945 case OP_ATR_MODULUS:
13946 case OP_ATR_POS:
13947 case OP_ATR_SIZE:
13948 case OP_ATR_TAG:
13949 case OP_ATR_VAL:
13950 if (exp->elts[*pos].opcode == OP_TYPE)
13951 {
13952 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13953 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13954 &type_print_raw_options);
13955 *pos += 3;
13956 }
13957 else
13958 print_subexp (exp, pos, stream, PREC_SUFFIX);
13959 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13960 if (nargs > 1)
13961 {
13962 int tem;
13963
13964 for (tem = 1; tem < nargs; tem += 1)
13965 {
13966 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13967 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13968 }
13969 fputs_filtered (")", stream);
13970 }
13971 return;
13972
13973 case UNOP_QUAL:
13974 type_print (exp->elts[pc + 1].type, "", stream, 0);
13975 fputs_filtered ("'(", stream);
13976 print_subexp (exp, pos, stream, PREC_PREFIX);
13977 fputs_filtered (")", stream);
13978 return;
13979
13980 case UNOP_IN_RANGE:
13981 /* XXX: sprint_subexp */
13982 print_subexp (exp, pos, stream, PREC_SUFFIX);
13983 fputs_filtered (" in ", stream);
13984 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13985 &type_print_raw_options);
13986 return;
13987
13988 case OP_DISCRETE_RANGE:
13989 print_subexp (exp, pos, stream, PREC_SUFFIX);
13990 fputs_filtered ("..", stream);
13991 print_subexp (exp, pos, stream, PREC_SUFFIX);
13992 return;
13993
13994 case OP_OTHERS:
13995 fputs_filtered ("others => ", stream);
13996 print_subexp (exp, pos, stream, PREC_SUFFIX);
13997 return;
13998
13999 case OP_CHOICES:
14000 for (i = 0; i < nargs-1; i += 1)
14001 {
14002 if (i > 0)
14003 fputs_filtered ("|", stream);
14004 print_subexp (exp, pos, stream, PREC_SUFFIX);
14005 }
14006 fputs_filtered (" => ", stream);
14007 print_subexp (exp, pos, stream, PREC_SUFFIX);
14008 return;
14009
14010 case OP_POSITIONAL:
14011 print_subexp (exp, pos, stream, PREC_SUFFIX);
14012 return;
14013
14014 case OP_AGGREGATE:
14015 fputs_filtered ("(", stream);
14016 for (i = 0; i < nargs; i += 1)
14017 {
14018 if (i > 0)
14019 fputs_filtered (", ", stream);
14020 print_subexp (exp, pos, stream, PREC_SUFFIX);
14021 }
14022 fputs_filtered (")", stream);
14023 return;
14024 }
14025 }
14026
14027 /* Table mapping opcodes into strings for printing operators
14028 and precedences of the operators. */
14029
14030 static const struct op_print ada_op_print_tab[] = {
14031 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14032 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14033 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14034 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14035 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14036 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14037 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14038 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14039 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14040 {">=", BINOP_GEQ, PREC_ORDER, 0},
14041 {">", BINOP_GTR, PREC_ORDER, 0},
14042 {"<", BINOP_LESS, PREC_ORDER, 0},
14043 {">>", BINOP_RSH, PREC_SHIFT, 0},
14044 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14045 {"+", BINOP_ADD, PREC_ADD, 0},
14046 {"-", BINOP_SUB, PREC_ADD, 0},
14047 {"&", BINOP_CONCAT, PREC_ADD, 0},
14048 {"*", BINOP_MUL, PREC_MUL, 0},
14049 {"/", BINOP_DIV, PREC_MUL, 0},
14050 {"rem", BINOP_REM, PREC_MUL, 0},
14051 {"mod", BINOP_MOD, PREC_MUL, 0},
14052 {"**", BINOP_EXP, PREC_REPEAT, 0},
14053 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14054 {"-", UNOP_NEG, PREC_PREFIX, 0},
14055 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14056 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14057 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14058 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14059 {".all", UNOP_IND, PREC_SUFFIX, 1},
14060 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14061 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14062 {NULL, OP_NULL, PREC_SUFFIX, 0}
14063 };
14064 \f
14065 enum ada_primitive_types {
14066 ada_primitive_type_int,
14067 ada_primitive_type_long,
14068 ada_primitive_type_short,
14069 ada_primitive_type_char,
14070 ada_primitive_type_float,
14071 ada_primitive_type_double,
14072 ada_primitive_type_void,
14073 ada_primitive_type_long_long,
14074 ada_primitive_type_long_double,
14075 ada_primitive_type_natural,
14076 ada_primitive_type_positive,
14077 ada_primitive_type_system_address,
14078 ada_primitive_type_storage_offset,
14079 nr_ada_primitive_types
14080 };
14081
14082 static void
14083 ada_language_arch_info (struct gdbarch *gdbarch,
14084 struct language_arch_info *lai)
14085 {
14086 const struct builtin_type *builtin = builtin_type (gdbarch);
14087
14088 lai->primitive_type_vector
14089 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14090 struct type *);
14091
14092 lai->primitive_type_vector [ada_primitive_type_int]
14093 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14094 0, "integer");
14095 lai->primitive_type_vector [ada_primitive_type_long]
14096 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14097 0, "long_integer");
14098 lai->primitive_type_vector [ada_primitive_type_short]
14099 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14100 0, "short_integer");
14101 lai->string_char_type
14102 = lai->primitive_type_vector [ada_primitive_type_char]
14103 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14104 lai->primitive_type_vector [ada_primitive_type_float]
14105 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14106 "float", gdbarch_float_format (gdbarch));
14107 lai->primitive_type_vector [ada_primitive_type_double]
14108 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14109 "long_float", gdbarch_double_format (gdbarch));
14110 lai->primitive_type_vector [ada_primitive_type_long_long]
14111 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14112 0, "long_long_integer");
14113 lai->primitive_type_vector [ada_primitive_type_long_double]
14114 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14115 "long_long_float", gdbarch_long_double_format (gdbarch));
14116 lai->primitive_type_vector [ada_primitive_type_natural]
14117 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14118 0, "natural");
14119 lai->primitive_type_vector [ada_primitive_type_positive]
14120 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14121 0, "positive");
14122 lai->primitive_type_vector [ada_primitive_type_void]
14123 = builtin->builtin_void;
14124
14125 lai->primitive_type_vector [ada_primitive_type_system_address]
14126 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14127 "void"));
14128 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14129 = "system__address";
14130
14131 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14132 type. This is a signed integral type whose size is the same as
14133 the size of addresses. */
14134 {
14135 unsigned int addr_length = TYPE_LENGTH
14136 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14137
14138 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14139 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14140 "storage_offset");
14141 }
14142
14143 lai->bool_type_symbol = NULL;
14144 lai->bool_type_default = builtin->builtin_bool;
14145 }
14146 \f
14147 /* Language vector */
14148
14149 /* Not really used, but needed in the ada_language_defn. */
14150
14151 static void
14152 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14153 {
14154 ada_emit_char (c, type, stream, quoter, 1);
14155 }
14156
14157 static int
14158 parse (struct parser_state *ps)
14159 {
14160 warnings_issued = 0;
14161 return ada_parse (ps);
14162 }
14163
14164 static const struct exp_descriptor ada_exp_descriptor = {
14165 ada_print_subexp,
14166 ada_operator_length,
14167 ada_operator_check,
14168 ada_op_name,
14169 ada_dump_subexp_body,
14170 ada_evaluate_subexp
14171 };
14172
14173 /* symbol_name_matcher_ftype adapter for wild_match. */
14174
14175 static bool
14176 do_wild_match (const char *symbol_search_name,
14177 const lookup_name_info &lookup_name,
14178 completion_match_result *comp_match_res)
14179 {
14180 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14181 }
14182
14183 /* symbol_name_matcher_ftype adapter for full_match. */
14184
14185 static bool
14186 do_full_match (const char *symbol_search_name,
14187 const lookup_name_info &lookup_name,
14188 completion_match_result *comp_match_res)
14189 {
14190 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14191 }
14192
14193 /* Build the Ada lookup name for LOOKUP_NAME. */
14194
14195 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14196 {
14197 const std::string &user_name = lookup_name.name ();
14198
14199 if (user_name[0] == '<')
14200 {
14201 if (user_name.back () == '>')
14202 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14203 else
14204 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14205 m_encoded_p = true;
14206 m_verbatim_p = true;
14207 m_wild_match_p = false;
14208 m_standard_p = false;
14209 }
14210 else
14211 {
14212 m_verbatim_p = false;
14213
14214 m_encoded_p = user_name.find ("__") != std::string::npos;
14215
14216 if (!m_encoded_p)
14217 {
14218 const char *folded = ada_fold_name (user_name.c_str ());
14219 const char *encoded = ada_encode_1 (folded, false);
14220 if (encoded != NULL)
14221 m_encoded_name = encoded;
14222 else
14223 m_encoded_name = user_name;
14224 }
14225 else
14226 m_encoded_name = user_name;
14227
14228 /* Handle the 'package Standard' special case. See description
14229 of m_standard_p. */
14230 if (startswith (m_encoded_name.c_str (), "standard__"))
14231 {
14232 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14233 m_standard_p = true;
14234 }
14235 else
14236 m_standard_p = false;
14237
14238 /* If the name contains a ".", then the user is entering a fully
14239 qualified entity name, and the match must not be done in wild
14240 mode. Similarly, if the user wants to complete what looks
14241 like an encoded name, the match must not be done in wild
14242 mode. Also, in the standard__ special case always do
14243 non-wild matching. */
14244 m_wild_match_p
14245 = (lookup_name.match_type () != symbol_name_match_type::FULL
14246 && !m_encoded_p
14247 && !m_standard_p
14248 && user_name.find ('.') == std::string::npos);
14249 }
14250 }
14251
14252 /* symbol_name_matcher_ftype method for Ada. This only handles
14253 completion mode. */
14254
14255 static bool
14256 ada_symbol_name_matches (const char *symbol_search_name,
14257 const lookup_name_info &lookup_name,
14258 completion_match_result *comp_match_res)
14259 {
14260 return lookup_name.ada ().matches (symbol_search_name,
14261 lookup_name.match_type (),
14262 comp_match_res);
14263 }
14264
14265 /* A name matcher that matches the symbol name exactly, with
14266 strcmp. */
14267
14268 static bool
14269 literal_symbol_name_matcher (const char *symbol_search_name,
14270 const lookup_name_info &lookup_name,
14271 completion_match_result *comp_match_res)
14272 {
14273 const std::string &name = lookup_name.name ();
14274
14275 int cmp = (lookup_name.completion_mode ()
14276 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14277 : strcmp (symbol_search_name, name.c_str ()));
14278 if (cmp == 0)
14279 {
14280 if (comp_match_res != NULL)
14281 comp_match_res->set_match (symbol_search_name);
14282 return true;
14283 }
14284 else
14285 return false;
14286 }
14287
14288 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14289 Ada. */
14290
14291 static symbol_name_matcher_ftype *
14292 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14293 {
14294 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14295 return literal_symbol_name_matcher;
14296
14297 if (lookup_name.completion_mode ())
14298 return ada_symbol_name_matches;
14299 else
14300 {
14301 if (lookup_name.ada ().wild_match_p ())
14302 return do_wild_match;
14303 else
14304 return do_full_match;
14305 }
14306 }
14307
14308 /* Implement the "la_read_var_value" language_defn method for Ada. */
14309
14310 static struct value *
14311 ada_read_var_value (struct symbol *var, const struct block *var_block,
14312 struct frame_info *frame)
14313 {
14314 const struct block *frame_block = NULL;
14315 struct symbol *renaming_sym = NULL;
14316
14317 /* The only case where default_read_var_value is not sufficient
14318 is when VAR is a renaming... */
14319 if (frame)
14320 frame_block = get_frame_block (frame, NULL);
14321 if (frame_block)
14322 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14323 if (renaming_sym != NULL)
14324 return ada_read_renaming_var_value (renaming_sym, frame_block);
14325
14326 /* This is a typical case where we expect the default_read_var_value
14327 function to work. */
14328 return default_read_var_value (var, var_block, frame);
14329 }
14330
14331 static const char *ada_extensions[] =
14332 {
14333 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14334 };
14335
14336 extern const struct language_defn ada_language_defn = {
14337 "ada", /* Language name */
14338 "Ada",
14339 language_ada,
14340 range_check_off,
14341 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14342 that's not quite what this means. */
14343 array_row_major,
14344 macro_expansion_no,
14345 ada_extensions,
14346 &ada_exp_descriptor,
14347 parse,
14348 resolve,
14349 ada_printchar, /* Print a character constant */
14350 ada_printstr, /* Function to print string constant */
14351 emit_char, /* Function to print single char (not used) */
14352 ada_print_type, /* Print a type using appropriate syntax */
14353 ada_print_typedef, /* Print a typedef using appropriate syntax */
14354 ada_val_print, /* Print a value using appropriate syntax */
14355 ada_value_print, /* Print a top-level value */
14356 ada_read_var_value, /* la_read_var_value */
14357 NULL, /* Language specific skip_trampoline */
14358 NULL, /* name_of_this */
14359 true, /* la_store_sym_names_in_linkage_form_p */
14360 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14361 basic_lookup_transparent_type, /* lookup_transparent_type */
14362 ada_la_decode, /* Language specific symbol demangler */
14363 ada_sniff_from_mangled_name,
14364 NULL, /* Language specific
14365 class_name_from_physname */
14366 ada_op_print_tab, /* expression operators for printing */
14367 0, /* c-style arrays */
14368 1, /* String lower bound */
14369 ada_get_gdb_completer_word_break_characters,
14370 ada_collect_symbol_completion_matches,
14371 ada_language_arch_info,
14372 ada_print_array_index,
14373 default_pass_by_reference,
14374 c_get_string,
14375 ada_watch_location_expression,
14376 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14377 ada_iterate_over_symbols,
14378 default_search_name_hash,
14379 &ada_varobj_ops,
14380 NULL,
14381 NULL,
14382 LANG_MAGIC
14383 };
14384
14385 /* Command-list for the "set/show ada" prefix command. */
14386 static struct cmd_list_element *set_ada_list;
14387 static struct cmd_list_element *show_ada_list;
14388
14389 /* Implement the "set ada" prefix command. */
14390
14391 static void
14392 set_ada_command (const char *arg, int from_tty)
14393 {
14394 printf_unfiltered (_(\
14395 "\"set ada\" must be followed by the name of a setting.\n"));
14396 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14397 }
14398
14399 /* Implement the "show ada" prefix command. */
14400
14401 static void
14402 show_ada_command (const char *args, int from_tty)
14403 {
14404 cmd_show_list (show_ada_list, from_tty, "");
14405 }
14406
14407 static void
14408 initialize_ada_catchpoint_ops (void)
14409 {
14410 struct breakpoint_ops *ops;
14411
14412 initialize_breakpoint_ops ();
14413
14414 ops = &catch_exception_breakpoint_ops;
14415 *ops = bkpt_breakpoint_ops;
14416 ops->allocate_location = allocate_location_catch_exception;
14417 ops->re_set = re_set_catch_exception;
14418 ops->check_status = check_status_catch_exception;
14419 ops->print_it = print_it_catch_exception;
14420 ops->print_one = print_one_catch_exception;
14421 ops->print_mention = print_mention_catch_exception;
14422 ops->print_recreate = print_recreate_catch_exception;
14423
14424 ops = &catch_exception_unhandled_breakpoint_ops;
14425 *ops = bkpt_breakpoint_ops;
14426 ops->allocate_location = allocate_location_catch_exception_unhandled;
14427 ops->re_set = re_set_catch_exception_unhandled;
14428 ops->check_status = check_status_catch_exception_unhandled;
14429 ops->print_it = print_it_catch_exception_unhandled;
14430 ops->print_one = print_one_catch_exception_unhandled;
14431 ops->print_mention = print_mention_catch_exception_unhandled;
14432 ops->print_recreate = print_recreate_catch_exception_unhandled;
14433
14434 ops = &catch_assert_breakpoint_ops;
14435 *ops = bkpt_breakpoint_ops;
14436 ops->allocate_location = allocate_location_catch_assert;
14437 ops->re_set = re_set_catch_assert;
14438 ops->check_status = check_status_catch_assert;
14439 ops->print_it = print_it_catch_assert;
14440 ops->print_one = print_one_catch_assert;
14441 ops->print_mention = print_mention_catch_assert;
14442 ops->print_recreate = print_recreate_catch_assert;
14443
14444 ops = &catch_handlers_breakpoint_ops;
14445 *ops = bkpt_breakpoint_ops;
14446 ops->allocate_location = allocate_location_catch_handlers;
14447 ops->re_set = re_set_catch_handlers;
14448 ops->check_status = check_status_catch_handlers;
14449 ops->print_it = print_it_catch_handlers;
14450 ops->print_one = print_one_catch_handlers;
14451 ops->print_mention = print_mention_catch_handlers;
14452 ops->print_recreate = print_recreate_catch_handlers;
14453 }
14454
14455 /* This module's 'new_objfile' observer. */
14456
14457 static void
14458 ada_new_objfile_observer (struct objfile *objfile)
14459 {
14460 ada_clear_symbol_cache ();
14461 }
14462
14463 /* This module's 'free_objfile' observer. */
14464
14465 static void
14466 ada_free_objfile_observer (struct objfile *objfile)
14467 {
14468 ada_clear_symbol_cache ();
14469 }
14470
14471 void
14472 _initialize_ada_language (void)
14473 {
14474 initialize_ada_catchpoint_ops ();
14475
14476 add_prefix_cmd ("ada", no_class, set_ada_command,
14477 _("Prefix command for changing Ada-specific settings"),
14478 &set_ada_list, "set ada ", 0, &setlist);
14479
14480 add_prefix_cmd ("ada", no_class, show_ada_command,
14481 _("Generic command for showing Ada-specific settings."),
14482 &show_ada_list, "show ada ", 0, &showlist);
14483
14484 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14485 &trust_pad_over_xvs, _("\
14486 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14487 Show whether an optimization trusting PAD types over XVS types is activated"),
14488 _("\
14489 This is related to the encoding used by the GNAT compiler. The debugger\n\
14490 should normally trust the contents of PAD types, but certain older versions\n\
14491 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14492 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14493 work around this bug. It is always safe to turn this option \"off\", but\n\
14494 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14495 this option to \"off\" unless necessary."),
14496 NULL, NULL, &set_ada_list, &show_ada_list);
14497
14498 add_setshow_boolean_cmd ("print-signatures", class_vars,
14499 &print_signatures, _("\
14500 Enable or disable the output of formal and return types for functions in the \
14501 overloads selection menu"), _("\
14502 Show whether the output of formal and return types for functions in the \
14503 overloads selection menu is activated"),
14504 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14505
14506 add_catch_command ("exception", _("\
14507 Catch Ada exceptions, when raised.\n\
14508 With an argument, catch only exceptions with the given name."),
14509 catch_ada_exception_command,
14510 NULL,
14511 CATCH_PERMANENT,
14512 CATCH_TEMPORARY);
14513
14514 add_catch_command ("handlers", _("\
14515 Catch Ada exceptions, when handled.\n\
14516 With an argument, catch only exceptions with the given name."),
14517 catch_ada_handlers_command,
14518 NULL,
14519 CATCH_PERMANENT,
14520 CATCH_TEMPORARY);
14521 add_catch_command ("assert", _("\
14522 Catch failed Ada assertions, when raised.\n\
14523 With an argument, catch only exceptions with the given name."),
14524 catch_assert_command,
14525 NULL,
14526 CATCH_PERMANENT,
14527 CATCH_TEMPORARY);
14528
14529 varsize_limit = 65536;
14530 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14531 &varsize_limit, _("\
14532 Set the maximum number of bytes allowed in a variable-size object."), _("\
14533 Show the maximum number of bytes allowed in a variable-size object."), _("\
14534 Attempts to access an object whose size is not a compile-time constant\n\
14535 and exceeds this limit will cause an error."),
14536 NULL, NULL, &setlist, &showlist);
14537
14538 add_info ("exceptions", info_exceptions_command,
14539 _("\
14540 List all Ada exception names.\n\
14541 If a regular expression is passed as an argument, only those matching\n\
14542 the regular expression are listed."));
14543
14544 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14545 _("Set Ada maintenance-related variables."),
14546 &maint_set_ada_cmdlist, "maintenance set ada ",
14547 0/*allow-unknown*/, &maintenance_set_cmdlist);
14548
14549 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14550 _("Show Ada maintenance-related variables"),
14551 &maint_show_ada_cmdlist, "maintenance show ada ",
14552 0/*allow-unknown*/, &maintenance_show_cmdlist);
14553
14554 add_setshow_boolean_cmd
14555 ("ignore-descriptive-types", class_maintenance,
14556 &ada_ignore_descriptive_types_p,
14557 _("Set whether descriptive types generated by GNAT should be ignored."),
14558 _("Show whether descriptive types generated by GNAT should be ignored."),
14559 _("\
14560 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14561 DWARF attribute."),
14562 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14563
14564 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14565 NULL, xcalloc, xfree);
14566
14567 /* The ada-lang observers. */
14568 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14569 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14570 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14571
14572 /* Setup various context-specific data. */
14573 ada_inferior_data
14574 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14575 ada_pspace_data_handle
14576 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14577 }
This page took 0.347377 seconds and 4 git commands to generate.