ec066933b5321ca377160f3c092686759e635bde
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56
57 #include "psymtab.h"
58 #include "value.h"
59 #include "mi/mi-common.h"
60 #include "arch-utils.h"
61 #include "cli/cli-utils.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static struct type *desc_base_type (struct type *);
72
73 static struct type *desc_bounds_type (struct type *);
74
75 static struct value *desc_bounds (struct value *);
76
77 static int fat_pntr_bounds_bitpos (struct type *);
78
79 static int fat_pntr_bounds_bitsize (struct type *);
80
81 static struct type *desc_data_target_type (struct type *);
82
83 static struct value *desc_data (struct value *);
84
85 static int fat_pntr_data_bitpos (struct type *);
86
87 static int fat_pntr_data_bitsize (struct type *);
88
89 static struct value *desc_one_bound (struct value *, int, int);
90
91 static int desc_bound_bitpos (struct type *, int, int);
92
93 static int desc_bound_bitsize (struct type *, int, int);
94
95 static struct type *desc_index_type (struct type *, int);
96
97 static int desc_arity (struct type *);
98
99 static int ada_type_match (struct type *, struct type *, int);
100
101 static int ada_args_match (struct symbol *, struct value **, int);
102
103 static int full_match (const char *, const char *);
104
105 static struct value *make_array_descriptor (struct type *, struct value *);
106
107 static void ada_add_block_symbols (struct obstack *,
108 const struct block *, const char *,
109 domain_enum, struct objfile *, int);
110
111 static int is_nonfunction (struct ada_symbol_info *, int);
112
113 static void add_defn_to_vec (struct obstack *, struct symbol *,
114 const struct block *);
115
116 static int num_defns_collected (struct obstack *);
117
118 static struct ada_symbol_info *defns_collected (struct obstack *, int);
119
120 static struct value *resolve_subexp (struct expression **, int *, int,
121 struct type *);
122
123 static void replace_operator_with_call (struct expression **, int, int, int,
124 struct symbol *, const struct block *);
125
126 static int possible_user_operator_p (enum exp_opcode, struct value **);
127
128 static char *ada_op_name (enum exp_opcode);
129
130 static const char *ada_decoded_op_name (enum exp_opcode);
131
132 static int numeric_type_p (struct type *);
133
134 static int integer_type_p (struct type *);
135
136 static int scalar_type_p (struct type *);
137
138 static int discrete_type_p (struct type *);
139
140 static enum ada_renaming_category parse_old_style_renaming (struct type *,
141 const char **,
142 int *,
143 const char **);
144
145 static struct symbol *find_old_style_renaming_symbol (const char *,
146 const struct block *);
147
148 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
149 int, int, int *);
150
151 static struct value *evaluate_subexp_type (struct expression *, int *);
152
153 static struct type *ada_find_parallel_type_with_name (struct type *,
154 const char *);
155
156 static int is_dynamic_field (struct type *, int);
157
158 static struct type *to_fixed_variant_branch_type (struct type *,
159 const gdb_byte *,
160 CORE_ADDR, struct value *);
161
162 static struct type *to_fixed_array_type (struct type *, struct value *, int);
163
164 static struct type *to_fixed_range_type (struct type *, struct value *);
165
166 static struct type *to_static_fixed_type (struct type *);
167 static struct type *static_unwrap_type (struct type *type);
168
169 static struct value *unwrap_value (struct value *);
170
171 static struct type *constrained_packed_array_type (struct type *, long *);
172
173 static struct type *decode_constrained_packed_array_type (struct type *);
174
175 static long decode_packed_array_bitsize (struct type *);
176
177 static struct value *decode_constrained_packed_array (struct value *);
178
179 static int ada_is_packed_array_type (struct type *);
180
181 static int ada_is_unconstrained_packed_array_type (struct type *);
182
183 static struct value *value_subscript_packed (struct value *, int,
184 struct value **);
185
186 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
187
188 static struct value *coerce_unspec_val_to_type (struct value *,
189 struct type *);
190
191 static struct value *get_var_value (char *, char *);
192
193 static int lesseq_defined_than (struct symbol *, struct symbol *);
194
195 static int equiv_types (struct type *, struct type *);
196
197 static int is_name_suffix (const char *);
198
199 static int advance_wild_match (const char **, const char *, int);
200
201 static int wild_match (const char *, const char *);
202
203 static struct value *ada_coerce_ref (struct value *);
204
205 static LONGEST pos_atr (struct value *);
206
207 static struct value *value_pos_atr (struct type *, struct value *);
208
209 static struct value *value_val_atr (struct type *, struct value *);
210
211 static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
213
214 static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217 static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
220 static int find_struct_field (const char *, struct type *, int,
221 struct type **, int *, int *, int *, int *);
222
223 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
226 static int ada_resolve_function (struct ada_symbol_info *, int,
227 struct value **, int, const char *,
228 struct type *);
229
230 static int ada_is_direct_array_type (struct type *);
231
232 static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
234
235 static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238 static struct value *assign_aggregate (struct value *, struct value *,
239 struct expression *,
240 int *, enum noside);
241
242 static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247 static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253 static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264 static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
266
267 static struct type *ada_find_any_type (const char *name);
268 \f
269
270 /* The result of a symbol lookup to be stored in our symbol cache. */
271
272 struct cache_entry
273 {
274 /* The name used to perform the lookup. */
275 const char *name;
276 /* The namespace used during the lookup. */
277 domain_enum namespace;
278 /* The symbol returned by the lookup, or NULL if no matching symbol
279 was found. */
280 struct symbol *sym;
281 /* The block where the symbol was found, or NULL if no matching
282 symbol was found. */
283 const struct block *block;
284 /* A pointer to the next entry with the same hash. */
285 struct cache_entry *next;
286 };
287
288 /* The Ada symbol cache, used to store the result of Ada-mode symbol
289 lookups in the course of executing the user's commands.
290
291 The cache is implemented using a simple, fixed-sized hash.
292 The size is fixed on the grounds that there are not likely to be
293 all that many symbols looked up during any given session, regardless
294 of the size of the symbol table. If we decide to go to a resizable
295 table, let's just use the stuff from libiberty instead. */
296
297 #define HASH_SIZE 1009
298
299 struct ada_symbol_cache
300 {
301 /* An obstack used to store the entries in our cache. */
302 struct obstack cache_space;
303
304 /* The root of the hash table used to implement our symbol cache. */
305 struct cache_entry *root[HASH_SIZE];
306 };
307
308 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
309
310 /* Maximum-sized dynamic type. */
311 static unsigned int varsize_limit;
312
313 /* FIXME: brobecker/2003-09-17: No longer a const because it is
314 returned by a function that does not return a const char *. */
315 static char *ada_completer_word_break_characters =
316 #ifdef VMS
317 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
318 #else
319 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
320 #endif
321
322 /* The name of the symbol to use to get the name of the main subprogram. */
323 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
324 = "__gnat_ada_main_program_name";
325
326 /* Limit on the number of warnings to raise per expression evaluation. */
327 static int warning_limit = 2;
328
329 /* Number of warning messages issued; reset to 0 by cleanups after
330 expression evaluation. */
331 static int warnings_issued = 0;
332
333 static const char *known_runtime_file_name_patterns[] = {
334 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
335 };
336
337 static const char *known_auxiliary_function_name_patterns[] = {
338 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
339 };
340
341 /* Space for allocating results of ada_lookup_symbol_list. */
342 static struct obstack symbol_list_obstack;
343
344 /* Maintenance-related settings for this module. */
345
346 static struct cmd_list_element *maint_set_ada_cmdlist;
347 static struct cmd_list_element *maint_show_ada_cmdlist;
348
349 /* Implement the "maintenance set ada" (prefix) command. */
350
351 static void
352 maint_set_ada_cmd (char *args, int from_tty)
353 {
354 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
355 gdb_stdout);
356 }
357
358 /* Implement the "maintenance show ada" (prefix) command. */
359
360 static void
361 maint_show_ada_cmd (char *args, int from_tty)
362 {
363 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
364 }
365
366 /* The "maintenance ada set/show ignore-descriptive-type" value. */
367
368 static int ada_ignore_descriptive_types_p = 0;
369
370 /* Inferior-specific data. */
371
372 /* Per-inferior data for this module. */
373
374 struct ada_inferior_data
375 {
376 /* The ada__tags__type_specific_data type, which is used when decoding
377 tagged types. With older versions of GNAT, this type was directly
378 accessible through a component ("tsd") in the object tag. But this
379 is no longer the case, so we cache it for each inferior. */
380 struct type *tsd_type;
381
382 /* The exception_support_info data. This data is used to determine
383 how to implement support for Ada exception catchpoints in a given
384 inferior. */
385 const struct exception_support_info *exception_info;
386 };
387
388 /* Our key to this module's inferior data. */
389 static const struct inferior_data *ada_inferior_data;
390
391 /* A cleanup routine for our inferior data. */
392 static void
393 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
394 {
395 struct ada_inferior_data *data;
396
397 data = inferior_data (inf, ada_inferior_data);
398 if (data != NULL)
399 xfree (data);
400 }
401
402 /* Return our inferior data for the given inferior (INF).
403
404 This function always returns a valid pointer to an allocated
405 ada_inferior_data structure. If INF's inferior data has not
406 been previously set, this functions creates a new one with all
407 fields set to zero, sets INF's inferior to it, and then returns
408 a pointer to that newly allocated ada_inferior_data. */
409
410 static struct ada_inferior_data *
411 get_ada_inferior_data (struct inferior *inf)
412 {
413 struct ada_inferior_data *data;
414
415 data = inferior_data (inf, ada_inferior_data);
416 if (data == NULL)
417 {
418 data = XCNEW (struct ada_inferior_data);
419 set_inferior_data (inf, ada_inferior_data, data);
420 }
421
422 return data;
423 }
424
425 /* Perform all necessary cleanups regarding our module's inferior data
426 that is required after the inferior INF just exited. */
427
428 static void
429 ada_inferior_exit (struct inferior *inf)
430 {
431 ada_inferior_data_cleanup (inf, NULL);
432 set_inferior_data (inf, ada_inferior_data, NULL);
433 }
434
435
436 /* program-space-specific data. */
437
438 /* This module's per-program-space data. */
439 struct ada_pspace_data
440 {
441 /* The Ada symbol cache. */
442 struct ada_symbol_cache *sym_cache;
443 };
444
445 /* Key to our per-program-space data. */
446 static const struct program_space_data *ada_pspace_data_handle;
447
448 /* Return this module's data for the given program space (PSPACE).
449 If not is found, add a zero'ed one now.
450
451 This function always returns a valid object. */
452
453 static struct ada_pspace_data *
454 get_ada_pspace_data (struct program_space *pspace)
455 {
456 struct ada_pspace_data *data;
457
458 data = program_space_data (pspace, ada_pspace_data_handle);
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466 }
467
468 /* The cleanup callback for this module's per-program-space data. */
469
470 static void
471 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472 {
473 struct ada_pspace_data *pspace_data = data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478 }
479
480 /* Utilities */
481
482 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
483 all typedef layers have been peeled. Otherwise, return TYPE.
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509 static struct type *
510 ada_typedef_target_type (struct type *type)
511 {
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515 }
516
517 /* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521 static const char *
522 ada_unqualified_name (const char *decoded_name)
523 {
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540 }
541
542 /* Return a string starting with '<', followed by STR, and '>'.
543 The result is good until the next call. */
544
545 static char *
546 add_angle_brackets (const char *str)
547 {
548 static char *result = NULL;
549
550 xfree (result);
551 result = xstrprintf ("<%s>", str);
552 return result;
553 }
554
555 static char *
556 ada_get_gdb_completer_word_break_characters (void)
557 {
558 return ada_completer_word_break_characters;
559 }
560
561 /* Print an array element index using the Ada syntax. */
562
563 static void
564 ada_print_array_index (struct value *index_value, struct ui_file *stream,
565 const struct value_print_options *options)
566 {
567 LA_VALUE_PRINT (index_value, stream, options);
568 fprintf_filtered (stream, " => ");
569 }
570
571 /* Assuming VECT points to an array of *SIZE objects of size
572 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
573 updating *SIZE as necessary and returning the (new) array. */
574
575 void *
576 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
577 {
578 if (*size < min_size)
579 {
580 *size *= 2;
581 if (*size < min_size)
582 *size = min_size;
583 vect = xrealloc (vect, *size * element_size);
584 }
585 return vect;
586 }
587
588 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
589 suffix of FIELD_NAME beginning "___". */
590
591 static int
592 field_name_match (const char *field_name, const char *target)
593 {
594 int len = strlen (target);
595
596 return
597 (strncmp (field_name, target, len) == 0
598 && (field_name[len] == '\0'
599 || (strncmp (field_name + len, "___", 3) == 0
600 && strcmp (field_name + strlen (field_name) - 6,
601 "___XVN") != 0)));
602 }
603
604
605 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
606 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
607 and return its index. This function also handles fields whose name
608 have ___ suffixes because the compiler sometimes alters their name
609 by adding such a suffix to represent fields with certain constraints.
610 If the field could not be found, return a negative number if
611 MAYBE_MISSING is set. Otherwise raise an error. */
612
613 int
614 ada_get_field_index (const struct type *type, const char *field_name,
615 int maybe_missing)
616 {
617 int fieldno;
618 struct type *struct_type = check_typedef ((struct type *) type);
619
620 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
621 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
622 return fieldno;
623
624 if (!maybe_missing)
625 error (_("Unable to find field %s in struct %s. Aborting"),
626 field_name, TYPE_NAME (struct_type));
627
628 return -1;
629 }
630
631 /* The length of the prefix of NAME prior to any "___" suffix. */
632
633 int
634 ada_name_prefix_len (const char *name)
635 {
636 if (name == NULL)
637 return 0;
638 else
639 {
640 const char *p = strstr (name, "___");
641
642 if (p == NULL)
643 return strlen (name);
644 else
645 return p - name;
646 }
647 }
648
649 /* Return non-zero if SUFFIX is a suffix of STR.
650 Return zero if STR is null. */
651
652 static int
653 is_suffix (const char *str, const char *suffix)
654 {
655 int len1, len2;
656
657 if (str == NULL)
658 return 0;
659 len1 = strlen (str);
660 len2 = strlen (suffix);
661 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
662 }
663
664 /* The contents of value VAL, treated as a value of type TYPE. The
665 result is an lval in memory if VAL is. */
666
667 static struct value *
668 coerce_unspec_val_to_type (struct value *val, struct type *type)
669 {
670 type = ada_check_typedef (type);
671 if (value_type (val) == type)
672 return val;
673 else
674 {
675 struct value *result;
676
677 /* Make sure that the object size is not unreasonable before
678 trying to allocate some memory for it. */
679 ada_ensure_varsize_limit (type);
680
681 if (value_lazy (val)
682 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
683 result = allocate_value_lazy (type);
684 else
685 {
686 result = allocate_value (type);
687 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
688 }
689 set_value_component_location (result, val);
690 set_value_bitsize (result, value_bitsize (val));
691 set_value_bitpos (result, value_bitpos (val));
692 set_value_address (result, value_address (val));
693 return result;
694 }
695 }
696
697 static const gdb_byte *
698 cond_offset_host (const gdb_byte *valaddr, long offset)
699 {
700 if (valaddr == NULL)
701 return NULL;
702 else
703 return valaddr + offset;
704 }
705
706 static CORE_ADDR
707 cond_offset_target (CORE_ADDR address, long offset)
708 {
709 if (address == 0)
710 return 0;
711 else
712 return address + offset;
713 }
714
715 /* Issue a warning (as for the definition of warning in utils.c, but
716 with exactly one argument rather than ...), unless the limit on the
717 number of warnings has passed during the evaluation of the current
718 expression. */
719
720 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
721 provided by "complaint". */
722 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
723
724 static void
725 lim_warning (const char *format, ...)
726 {
727 va_list args;
728
729 va_start (args, format);
730 warnings_issued += 1;
731 if (warnings_issued <= warning_limit)
732 vwarning (format, args);
733
734 va_end (args);
735 }
736
737 /* Issue an error if the size of an object of type T is unreasonable,
738 i.e. if it would be a bad idea to allocate a value of this type in
739 GDB. */
740
741 void
742 ada_ensure_varsize_limit (const struct type *type)
743 {
744 if (TYPE_LENGTH (type) > varsize_limit)
745 error (_("object size is larger than varsize-limit"));
746 }
747
748 /* Maximum value of a SIZE-byte signed integer type. */
749 static LONGEST
750 max_of_size (int size)
751 {
752 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
753
754 return top_bit | (top_bit - 1);
755 }
756
757 /* Minimum value of a SIZE-byte signed integer type. */
758 static LONGEST
759 min_of_size (int size)
760 {
761 return -max_of_size (size) - 1;
762 }
763
764 /* Maximum value of a SIZE-byte unsigned integer type. */
765 static ULONGEST
766 umax_of_size (int size)
767 {
768 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
769
770 return top_bit | (top_bit - 1);
771 }
772
773 /* Maximum value of integral type T, as a signed quantity. */
774 static LONGEST
775 max_of_type (struct type *t)
776 {
777 if (TYPE_UNSIGNED (t))
778 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
779 else
780 return max_of_size (TYPE_LENGTH (t));
781 }
782
783 /* Minimum value of integral type T, as a signed quantity. */
784 static LONGEST
785 min_of_type (struct type *t)
786 {
787 if (TYPE_UNSIGNED (t))
788 return 0;
789 else
790 return min_of_size (TYPE_LENGTH (t));
791 }
792
793 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
794 LONGEST
795 ada_discrete_type_high_bound (struct type *type)
796 {
797 type = resolve_dynamic_type (type, 0);
798 switch (TYPE_CODE (type))
799 {
800 case TYPE_CODE_RANGE:
801 return TYPE_HIGH_BOUND (type);
802 case TYPE_CODE_ENUM:
803 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
804 case TYPE_CODE_BOOL:
805 return 1;
806 case TYPE_CODE_CHAR:
807 case TYPE_CODE_INT:
808 return max_of_type (type);
809 default:
810 error (_("Unexpected type in ada_discrete_type_high_bound."));
811 }
812 }
813
814 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
815 LONGEST
816 ada_discrete_type_low_bound (struct type *type)
817 {
818 type = resolve_dynamic_type (type, 0);
819 switch (TYPE_CODE (type))
820 {
821 case TYPE_CODE_RANGE:
822 return TYPE_LOW_BOUND (type);
823 case TYPE_CODE_ENUM:
824 return TYPE_FIELD_ENUMVAL (type, 0);
825 case TYPE_CODE_BOOL:
826 return 0;
827 case TYPE_CODE_CHAR:
828 case TYPE_CODE_INT:
829 return min_of_type (type);
830 default:
831 error (_("Unexpected type in ada_discrete_type_low_bound."));
832 }
833 }
834
835 /* The identity on non-range types. For range types, the underlying
836 non-range scalar type. */
837
838 static struct type *
839 get_base_type (struct type *type)
840 {
841 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
842 {
843 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
844 return type;
845 type = TYPE_TARGET_TYPE (type);
846 }
847 return type;
848 }
849
850 /* Return a decoded version of the given VALUE. This means returning
851 a value whose type is obtained by applying all the GNAT-specific
852 encondings, making the resulting type a static but standard description
853 of the initial type. */
854
855 struct value *
856 ada_get_decoded_value (struct value *value)
857 {
858 struct type *type = ada_check_typedef (value_type (value));
859
860 if (ada_is_array_descriptor_type (type)
861 || (ada_is_constrained_packed_array_type (type)
862 && TYPE_CODE (type) != TYPE_CODE_PTR))
863 {
864 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
865 value = ada_coerce_to_simple_array_ptr (value);
866 else
867 value = ada_coerce_to_simple_array (value);
868 }
869 else
870 value = ada_to_fixed_value (value);
871
872 return value;
873 }
874
875 /* Same as ada_get_decoded_value, but with the given TYPE.
876 Because there is no associated actual value for this type,
877 the resulting type might be a best-effort approximation in
878 the case of dynamic types. */
879
880 struct type *
881 ada_get_decoded_type (struct type *type)
882 {
883 type = to_static_fixed_type (type);
884 if (ada_is_constrained_packed_array_type (type))
885 type = ada_coerce_to_simple_array_type (type);
886 return type;
887 }
888
889 \f
890
891 /* Language Selection */
892
893 /* If the main program is in Ada, return language_ada, otherwise return LANG
894 (the main program is in Ada iif the adainit symbol is found). */
895
896 enum language
897 ada_update_initial_language (enum language lang)
898 {
899 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
900 (struct objfile *) NULL).minsym != NULL)
901 return language_ada;
902
903 return lang;
904 }
905
906 /* If the main procedure is written in Ada, then return its name.
907 The result is good until the next call. Return NULL if the main
908 procedure doesn't appear to be in Ada. */
909
910 char *
911 ada_main_name (void)
912 {
913 struct bound_minimal_symbol msym;
914 static char *main_program_name = NULL;
915
916 /* For Ada, the name of the main procedure is stored in a specific
917 string constant, generated by the binder. Look for that symbol,
918 extract its address, and then read that string. If we didn't find
919 that string, then most probably the main procedure is not written
920 in Ada. */
921 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
922
923 if (msym.minsym != NULL)
924 {
925 CORE_ADDR main_program_name_addr;
926 int err_code;
927
928 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
929 if (main_program_name_addr == 0)
930 error (_("Invalid address for Ada main program name."));
931
932 xfree (main_program_name);
933 target_read_string (main_program_name_addr, &main_program_name,
934 1024, &err_code);
935
936 if (err_code != 0)
937 return NULL;
938 return main_program_name;
939 }
940
941 /* The main procedure doesn't seem to be in Ada. */
942 return NULL;
943 }
944 \f
945 /* Symbols */
946
947 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
948 of NULLs. */
949
950 const struct ada_opname_map ada_opname_table[] = {
951 {"Oadd", "\"+\"", BINOP_ADD},
952 {"Osubtract", "\"-\"", BINOP_SUB},
953 {"Omultiply", "\"*\"", BINOP_MUL},
954 {"Odivide", "\"/\"", BINOP_DIV},
955 {"Omod", "\"mod\"", BINOP_MOD},
956 {"Orem", "\"rem\"", BINOP_REM},
957 {"Oexpon", "\"**\"", BINOP_EXP},
958 {"Olt", "\"<\"", BINOP_LESS},
959 {"Ole", "\"<=\"", BINOP_LEQ},
960 {"Ogt", "\">\"", BINOP_GTR},
961 {"Oge", "\">=\"", BINOP_GEQ},
962 {"Oeq", "\"=\"", BINOP_EQUAL},
963 {"One", "\"/=\"", BINOP_NOTEQUAL},
964 {"Oand", "\"and\"", BINOP_BITWISE_AND},
965 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
966 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
967 {"Oconcat", "\"&\"", BINOP_CONCAT},
968 {"Oabs", "\"abs\"", UNOP_ABS},
969 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
970 {"Oadd", "\"+\"", UNOP_PLUS},
971 {"Osubtract", "\"-\"", UNOP_NEG},
972 {NULL, NULL}
973 };
974
975 /* The "encoded" form of DECODED, according to GNAT conventions.
976 The result is valid until the next call to ada_encode. */
977
978 char *
979 ada_encode (const char *decoded)
980 {
981 static char *encoding_buffer = NULL;
982 static size_t encoding_buffer_size = 0;
983 const char *p;
984 int k;
985
986 if (decoded == NULL)
987 return NULL;
988
989 GROW_VECT (encoding_buffer, encoding_buffer_size,
990 2 * strlen (decoded) + 10);
991
992 k = 0;
993 for (p = decoded; *p != '\0'; p += 1)
994 {
995 if (*p == '.')
996 {
997 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
998 k += 2;
999 }
1000 else if (*p == '"')
1001 {
1002 const struct ada_opname_map *mapping;
1003
1004 for (mapping = ada_opname_table;
1005 mapping->encoded != NULL
1006 && strncmp (mapping->decoded, p,
1007 strlen (mapping->decoded)) != 0; mapping += 1)
1008 ;
1009 if (mapping->encoded == NULL)
1010 error (_("invalid Ada operator name: %s"), p);
1011 strcpy (encoding_buffer + k, mapping->encoded);
1012 k += strlen (mapping->encoded);
1013 break;
1014 }
1015 else
1016 {
1017 encoding_buffer[k] = *p;
1018 k += 1;
1019 }
1020 }
1021
1022 encoding_buffer[k] = '\0';
1023 return encoding_buffer;
1024 }
1025
1026 /* Return NAME folded to lower case, or, if surrounded by single
1027 quotes, unfolded, but with the quotes stripped away. Result good
1028 to next call. */
1029
1030 char *
1031 ada_fold_name (const char *name)
1032 {
1033 static char *fold_buffer = NULL;
1034 static size_t fold_buffer_size = 0;
1035
1036 int len = strlen (name);
1037 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1038
1039 if (name[0] == '\'')
1040 {
1041 strncpy (fold_buffer, name + 1, len - 2);
1042 fold_buffer[len - 2] = '\000';
1043 }
1044 else
1045 {
1046 int i;
1047
1048 for (i = 0; i <= len; i += 1)
1049 fold_buffer[i] = tolower (name[i]);
1050 }
1051
1052 return fold_buffer;
1053 }
1054
1055 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1056
1057 static int
1058 is_lower_alphanum (const char c)
1059 {
1060 return (isdigit (c) || (isalpha (c) && islower (c)));
1061 }
1062
1063 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1064 This function saves in LEN the length of that same symbol name but
1065 without either of these suffixes:
1066 . .{DIGIT}+
1067 . ${DIGIT}+
1068 . ___{DIGIT}+
1069 . __{DIGIT}+.
1070
1071 These are suffixes introduced by the compiler for entities such as
1072 nested subprogram for instance, in order to avoid name clashes.
1073 They do not serve any purpose for the debugger. */
1074
1075 static void
1076 ada_remove_trailing_digits (const char *encoded, int *len)
1077 {
1078 if (*len > 1 && isdigit (encoded[*len - 1]))
1079 {
1080 int i = *len - 2;
1081
1082 while (i > 0 && isdigit (encoded[i]))
1083 i--;
1084 if (i >= 0 && encoded[i] == '.')
1085 *len = i;
1086 else if (i >= 0 && encoded[i] == '$')
1087 *len = i;
1088 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1089 *len = i - 2;
1090 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1091 *len = i - 1;
1092 }
1093 }
1094
1095 /* Remove the suffix introduced by the compiler for protected object
1096 subprograms. */
1097
1098 static void
1099 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1100 {
1101 /* Remove trailing N. */
1102
1103 /* Protected entry subprograms are broken into two
1104 separate subprograms: The first one is unprotected, and has
1105 a 'N' suffix; the second is the protected version, and has
1106 the 'P' suffix. The second calls the first one after handling
1107 the protection. Since the P subprograms are internally generated,
1108 we leave these names undecoded, giving the user a clue that this
1109 entity is internal. */
1110
1111 if (*len > 1
1112 && encoded[*len - 1] == 'N'
1113 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1114 *len = *len - 1;
1115 }
1116
1117 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1118
1119 static void
1120 ada_remove_Xbn_suffix (const char *encoded, int *len)
1121 {
1122 int i = *len - 1;
1123
1124 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1125 i--;
1126
1127 if (encoded[i] != 'X')
1128 return;
1129
1130 if (i == 0)
1131 return;
1132
1133 if (isalnum (encoded[i-1]))
1134 *len = i;
1135 }
1136
1137 /* If ENCODED follows the GNAT entity encoding conventions, then return
1138 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1139 replaced by ENCODED.
1140
1141 The resulting string is valid until the next call of ada_decode.
1142 If the string is unchanged by decoding, the original string pointer
1143 is returned. */
1144
1145 const char *
1146 ada_decode (const char *encoded)
1147 {
1148 int i, j;
1149 int len0;
1150 const char *p;
1151 char *decoded;
1152 int at_start_name;
1153 static char *decoding_buffer = NULL;
1154 static size_t decoding_buffer_size = 0;
1155
1156 /* The name of the Ada main procedure starts with "_ada_".
1157 This prefix is not part of the decoded name, so skip this part
1158 if we see this prefix. */
1159 if (strncmp (encoded, "_ada_", 5) == 0)
1160 encoded += 5;
1161
1162 /* If the name starts with '_', then it is not a properly encoded
1163 name, so do not attempt to decode it. Similarly, if the name
1164 starts with '<', the name should not be decoded. */
1165 if (encoded[0] == '_' || encoded[0] == '<')
1166 goto Suppress;
1167
1168 len0 = strlen (encoded);
1169
1170 ada_remove_trailing_digits (encoded, &len0);
1171 ada_remove_po_subprogram_suffix (encoded, &len0);
1172
1173 /* Remove the ___X.* suffix if present. Do not forget to verify that
1174 the suffix is located before the current "end" of ENCODED. We want
1175 to avoid re-matching parts of ENCODED that have previously been
1176 marked as discarded (by decrementing LEN0). */
1177 p = strstr (encoded, "___");
1178 if (p != NULL && p - encoded < len0 - 3)
1179 {
1180 if (p[3] == 'X')
1181 len0 = p - encoded;
1182 else
1183 goto Suppress;
1184 }
1185
1186 /* Remove any trailing TKB suffix. It tells us that this symbol
1187 is for the body of a task, but that information does not actually
1188 appear in the decoded name. */
1189
1190 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1191 len0 -= 3;
1192
1193 /* Remove any trailing TB suffix. The TB suffix is slightly different
1194 from the TKB suffix because it is used for non-anonymous task
1195 bodies. */
1196
1197 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1198 len0 -= 2;
1199
1200 /* Remove trailing "B" suffixes. */
1201 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1202
1203 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1204 len0 -= 1;
1205
1206 /* Make decoded big enough for possible expansion by operator name. */
1207
1208 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1209 decoded = decoding_buffer;
1210
1211 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1212
1213 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1214 {
1215 i = len0 - 2;
1216 while ((i >= 0 && isdigit (encoded[i]))
1217 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1218 i -= 1;
1219 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1220 len0 = i - 1;
1221 else if (encoded[i] == '$')
1222 len0 = i;
1223 }
1224
1225 /* The first few characters that are not alphabetic are not part
1226 of any encoding we use, so we can copy them over verbatim. */
1227
1228 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1229 decoded[j] = encoded[i];
1230
1231 at_start_name = 1;
1232 while (i < len0)
1233 {
1234 /* Is this a symbol function? */
1235 if (at_start_name && encoded[i] == 'O')
1236 {
1237 int k;
1238
1239 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1240 {
1241 int op_len = strlen (ada_opname_table[k].encoded);
1242 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1243 op_len - 1) == 0)
1244 && !isalnum (encoded[i + op_len]))
1245 {
1246 strcpy (decoded + j, ada_opname_table[k].decoded);
1247 at_start_name = 0;
1248 i += op_len;
1249 j += strlen (ada_opname_table[k].decoded);
1250 break;
1251 }
1252 }
1253 if (ada_opname_table[k].encoded != NULL)
1254 continue;
1255 }
1256 at_start_name = 0;
1257
1258 /* Replace "TK__" with "__", which will eventually be translated
1259 into "." (just below). */
1260
1261 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1262 i += 2;
1263
1264 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1265 be translated into "." (just below). These are internal names
1266 generated for anonymous blocks inside which our symbol is nested. */
1267
1268 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1269 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1270 && isdigit (encoded [i+4]))
1271 {
1272 int k = i + 5;
1273
1274 while (k < len0 && isdigit (encoded[k]))
1275 k++; /* Skip any extra digit. */
1276
1277 /* Double-check that the "__B_{DIGITS}+" sequence we found
1278 is indeed followed by "__". */
1279 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1280 i = k;
1281 }
1282
1283 /* Remove _E{DIGITS}+[sb] */
1284
1285 /* Just as for protected object subprograms, there are 2 categories
1286 of subprograms created by the compiler for each entry. The first
1287 one implements the actual entry code, and has a suffix following
1288 the convention above; the second one implements the barrier and
1289 uses the same convention as above, except that the 'E' is replaced
1290 by a 'B'.
1291
1292 Just as above, we do not decode the name of barrier functions
1293 to give the user a clue that the code he is debugging has been
1294 internally generated. */
1295
1296 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1297 && isdigit (encoded[i+2]))
1298 {
1299 int k = i + 3;
1300
1301 while (k < len0 && isdigit (encoded[k]))
1302 k++;
1303
1304 if (k < len0
1305 && (encoded[k] == 'b' || encoded[k] == 's'))
1306 {
1307 k++;
1308 /* Just as an extra precaution, make sure that if this
1309 suffix is followed by anything else, it is a '_'.
1310 Otherwise, we matched this sequence by accident. */
1311 if (k == len0
1312 || (k < len0 && encoded[k] == '_'))
1313 i = k;
1314 }
1315 }
1316
1317 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1318 the GNAT front-end in protected object subprograms. */
1319
1320 if (i < len0 + 3
1321 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1322 {
1323 /* Backtrack a bit up until we reach either the begining of
1324 the encoded name, or "__". Make sure that we only find
1325 digits or lowercase characters. */
1326 const char *ptr = encoded + i - 1;
1327
1328 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1329 ptr--;
1330 if (ptr < encoded
1331 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1332 i++;
1333 }
1334
1335 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1336 {
1337 /* This is a X[bn]* sequence not separated from the previous
1338 part of the name with a non-alpha-numeric character (in other
1339 words, immediately following an alpha-numeric character), then
1340 verify that it is placed at the end of the encoded name. If
1341 not, then the encoding is not valid and we should abort the
1342 decoding. Otherwise, just skip it, it is used in body-nested
1343 package names. */
1344 do
1345 i += 1;
1346 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1347 if (i < len0)
1348 goto Suppress;
1349 }
1350 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1351 {
1352 /* Replace '__' by '.'. */
1353 decoded[j] = '.';
1354 at_start_name = 1;
1355 i += 2;
1356 j += 1;
1357 }
1358 else
1359 {
1360 /* It's a character part of the decoded name, so just copy it
1361 over. */
1362 decoded[j] = encoded[i];
1363 i += 1;
1364 j += 1;
1365 }
1366 }
1367 decoded[j] = '\000';
1368
1369 /* Decoded names should never contain any uppercase character.
1370 Double-check this, and abort the decoding if we find one. */
1371
1372 for (i = 0; decoded[i] != '\0'; i += 1)
1373 if (isupper (decoded[i]) || decoded[i] == ' ')
1374 goto Suppress;
1375
1376 if (strcmp (decoded, encoded) == 0)
1377 return encoded;
1378 else
1379 return decoded;
1380
1381 Suppress:
1382 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1383 decoded = decoding_buffer;
1384 if (encoded[0] == '<')
1385 strcpy (decoded, encoded);
1386 else
1387 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1388 return decoded;
1389
1390 }
1391
1392 /* Table for keeping permanent unique copies of decoded names. Once
1393 allocated, names in this table are never released. While this is a
1394 storage leak, it should not be significant unless there are massive
1395 changes in the set of decoded names in successive versions of a
1396 symbol table loaded during a single session. */
1397 static struct htab *decoded_names_store;
1398
1399 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1400 in the language-specific part of GSYMBOL, if it has not been
1401 previously computed. Tries to save the decoded name in the same
1402 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1403 in any case, the decoded symbol has a lifetime at least that of
1404 GSYMBOL).
1405 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1406 const, but nevertheless modified to a semantically equivalent form
1407 when a decoded name is cached in it. */
1408
1409 const char *
1410 ada_decode_symbol (const struct general_symbol_info *arg)
1411 {
1412 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1413 const char **resultp =
1414 &gsymbol->language_specific.mangled_lang.demangled_name;
1415
1416 if (!gsymbol->ada_mangled)
1417 {
1418 const char *decoded = ada_decode (gsymbol->name);
1419 struct obstack *obstack = gsymbol->language_specific.obstack;
1420
1421 gsymbol->ada_mangled = 1;
1422
1423 if (obstack != NULL)
1424 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1425 else
1426 {
1427 /* Sometimes, we can't find a corresponding objfile, in
1428 which case, we put the result on the heap. Since we only
1429 decode when needed, we hope this usually does not cause a
1430 significant memory leak (FIXME). */
1431
1432 char **slot = (char **) htab_find_slot (decoded_names_store,
1433 decoded, INSERT);
1434
1435 if (*slot == NULL)
1436 *slot = xstrdup (decoded);
1437 *resultp = *slot;
1438 }
1439 }
1440
1441 return *resultp;
1442 }
1443
1444 static char *
1445 ada_la_decode (const char *encoded, int options)
1446 {
1447 return xstrdup (ada_decode (encoded));
1448 }
1449
1450 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1451 suffixes that encode debugging information or leading _ada_ on
1452 SYM_NAME (see is_name_suffix commentary for the debugging
1453 information that is ignored). If WILD, then NAME need only match a
1454 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1455 either argument is NULL. */
1456
1457 static int
1458 match_name (const char *sym_name, const char *name, int wild)
1459 {
1460 if (sym_name == NULL || name == NULL)
1461 return 0;
1462 else if (wild)
1463 return wild_match (sym_name, name) == 0;
1464 else
1465 {
1466 int len_name = strlen (name);
1467
1468 return (strncmp (sym_name, name, len_name) == 0
1469 && is_name_suffix (sym_name + len_name))
1470 || (strncmp (sym_name, "_ada_", 5) == 0
1471 && strncmp (sym_name + 5, name, len_name) == 0
1472 && is_name_suffix (sym_name + len_name + 5));
1473 }
1474 }
1475 \f
1476
1477 /* Arrays */
1478
1479 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1480 generated by the GNAT compiler to describe the index type used
1481 for each dimension of an array, check whether it follows the latest
1482 known encoding. If not, fix it up to conform to the latest encoding.
1483 Otherwise, do nothing. This function also does nothing if
1484 INDEX_DESC_TYPE is NULL.
1485
1486 The GNAT encoding used to describle the array index type evolved a bit.
1487 Initially, the information would be provided through the name of each
1488 field of the structure type only, while the type of these fields was
1489 described as unspecified and irrelevant. The debugger was then expected
1490 to perform a global type lookup using the name of that field in order
1491 to get access to the full index type description. Because these global
1492 lookups can be very expensive, the encoding was later enhanced to make
1493 the global lookup unnecessary by defining the field type as being
1494 the full index type description.
1495
1496 The purpose of this routine is to allow us to support older versions
1497 of the compiler by detecting the use of the older encoding, and by
1498 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1499 we essentially replace each field's meaningless type by the associated
1500 index subtype). */
1501
1502 void
1503 ada_fixup_array_indexes_type (struct type *index_desc_type)
1504 {
1505 int i;
1506
1507 if (index_desc_type == NULL)
1508 return;
1509 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1510
1511 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1512 to check one field only, no need to check them all). If not, return
1513 now.
1514
1515 If our INDEX_DESC_TYPE was generated using the older encoding,
1516 the field type should be a meaningless integer type whose name
1517 is not equal to the field name. */
1518 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1519 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1520 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1521 return;
1522
1523 /* Fixup each field of INDEX_DESC_TYPE. */
1524 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1525 {
1526 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1527 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1528
1529 if (raw_type)
1530 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1531 }
1532 }
1533
1534 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1535
1536 static char *bound_name[] = {
1537 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1538 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1539 };
1540
1541 /* Maximum number of array dimensions we are prepared to handle. */
1542
1543 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1544
1545
1546 /* The desc_* routines return primitive portions of array descriptors
1547 (fat pointers). */
1548
1549 /* The descriptor or array type, if any, indicated by TYPE; removes
1550 level of indirection, if needed. */
1551
1552 static struct type *
1553 desc_base_type (struct type *type)
1554 {
1555 if (type == NULL)
1556 return NULL;
1557 type = ada_check_typedef (type);
1558 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1559 type = ada_typedef_target_type (type);
1560
1561 if (type != NULL
1562 && (TYPE_CODE (type) == TYPE_CODE_PTR
1563 || TYPE_CODE (type) == TYPE_CODE_REF))
1564 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1565 else
1566 return type;
1567 }
1568
1569 /* True iff TYPE indicates a "thin" array pointer type. */
1570
1571 static int
1572 is_thin_pntr (struct type *type)
1573 {
1574 return
1575 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1576 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1577 }
1578
1579 /* The descriptor type for thin pointer type TYPE. */
1580
1581 static struct type *
1582 thin_descriptor_type (struct type *type)
1583 {
1584 struct type *base_type = desc_base_type (type);
1585
1586 if (base_type == NULL)
1587 return NULL;
1588 if (is_suffix (ada_type_name (base_type), "___XVE"))
1589 return base_type;
1590 else
1591 {
1592 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1593
1594 if (alt_type == NULL)
1595 return base_type;
1596 else
1597 return alt_type;
1598 }
1599 }
1600
1601 /* A pointer to the array data for thin-pointer value VAL. */
1602
1603 static struct value *
1604 thin_data_pntr (struct value *val)
1605 {
1606 struct type *type = ada_check_typedef (value_type (val));
1607 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1608
1609 data_type = lookup_pointer_type (data_type);
1610
1611 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1612 return value_cast (data_type, value_copy (val));
1613 else
1614 return value_from_longest (data_type, value_address (val));
1615 }
1616
1617 /* True iff TYPE indicates a "thick" array pointer type. */
1618
1619 static int
1620 is_thick_pntr (struct type *type)
1621 {
1622 type = desc_base_type (type);
1623 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1624 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1625 }
1626
1627 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1628 pointer to one, the type of its bounds data; otherwise, NULL. */
1629
1630 static struct type *
1631 desc_bounds_type (struct type *type)
1632 {
1633 struct type *r;
1634
1635 type = desc_base_type (type);
1636
1637 if (type == NULL)
1638 return NULL;
1639 else if (is_thin_pntr (type))
1640 {
1641 type = thin_descriptor_type (type);
1642 if (type == NULL)
1643 return NULL;
1644 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1645 if (r != NULL)
1646 return ada_check_typedef (r);
1647 }
1648 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1649 {
1650 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1651 if (r != NULL)
1652 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1653 }
1654 return NULL;
1655 }
1656
1657 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1658 one, a pointer to its bounds data. Otherwise NULL. */
1659
1660 static struct value *
1661 desc_bounds (struct value *arr)
1662 {
1663 struct type *type = ada_check_typedef (value_type (arr));
1664
1665 if (is_thin_pntr (type))
1666 {
1667 struct type *bounds_type =
1668 desc_bounds_type (thin_descriptor_type (type));
1669 LONGEST addr;
1670
1671 if (bounds_type == NULL)
1672 error (_("Bad GNAT array descriptor"));
1673
1674 /* NOTE: The following calculation is not really kosher, but
1675 since desc_type is an XVE-encoded type (and shouldn't be),
1676 the correct calculation is a real pain. FIXME (and fix GCC). */
1677 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1678 addr = value_as_long (arr);
1679 else
1680 addr = value_address (arr);
1681
1682 return
1683 value_from_longest (lookup_pointer_type (bounds_type),
1684 addr - TYPE_LENGTH (bounds_type));
1685 }
1686
1687 else if (is_thick_pntr (type))
1688 {
1689 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1690 _("Bad GNAT array descriptor"));
1691 struct type *p_bounds_type = value_type (p_bounds);
1692
1693 if (p_bounds_type
1694 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1695 {
1696 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1697
1698 if (TYPE_STUB (target_type))
1699 p_bounds = value_cast (lookup_pointer_type
1700 (ada_check_typedef (target_type)),
1701 p_bounds);
1702 }
1703 else
1704 error (_("Bad GNAT array descriptor"));
1705
1706 return p_bounds;
1707 }
1708 else
1709 return NULL;
1710 }
1711
1712 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1713 position of the field containing the address of the bounds data. */
1714
1715 static int
1716 fat_pntr_bounds_bitpos (struct type *type)
1717 {
1718 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1719 }
1720
1721 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1722 size of the field containing the address of the bounds data. */
1723
1724 static int
1725 fat_pntr_bounds_bitsize (struct type *type)
1726 {
1727 type = desc_base_type (type);
1728
1729 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1730 return TYPE_FIELD_BITSIZE (type, 1);
1731 else
1732 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1733 }
1734
1735 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1736 pointer to one, the type of its array data (a array-with-no-bounds type);
1737 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1738 data. */
1739
1740 static struct type *
1741 desc_data_target_type (struct type *type)
1742 {
1743 type = desc_base_type (type);
1744
1745 /* NOTE: The following is bogus; see comment in desc_bounds. */
1746 if (is_thin_pntr (type))
1747 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1748 else if (is_thick_pntr (type))
1749 {
1750 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1751
1752 if (data_type
1753 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1754 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1755 }
1756
1757 return NULL;
1758 }
1759
1760 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1761 its array data. */
1762
1763 static struct value *
1764 desc_data (struct value *arr)
1765 {
1766 struct type *type = value_type (arr);
1767
1768 if (is_thin_pntr (type))
1769 return thin_data_pntr (arr);
1770 else if (is_thick_pntr (type))
1771 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1772 _("Bad GNAT array descriptor"));
1773 else
1774 return NULL;
1775 }
1776
1777
1778 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1779 position of the field containing the address of the data. */
1780
1781 static int
1782 fat_pntr_data_bitpos (struct type *type)
1783 {
1784 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1785 }
1786
1787 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1788 size of the field containing the address of the data. */
1789
1790 static int
1791 fat_pntr_data_bitsize (struct type *type)
1792 {
1793 type = desc_base_type (type);
1794
1795 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1796 return TYPE_FIELD_BITSIZE (type, 0);
1797 else
1798 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1799 }
1800
1801 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1802 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1803 bound, if WHICH is 1. The first bound is I=1. */
1804
1805 static struct value *
1806 desc_one_bound (struct value *bounds, int i, int which)
1807 {
1808 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1809 _("Bad GNAT array descriptor bounds"));
1810 }
1811
1812 /* If BOUNDS is an array-bounds structure type, return the bit position
1813 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1814 bound, if WHICH is 1. The first bound is I=1. */
1815
1816 static int
1817 desc_bound_bitpos (struct type *type, int i, int which)
1818 {
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1820 }
1821
1822 /* If BOUNDS is an array-bounds structure type, return the bit field size
1823 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1824 bound, if WHICH is 1. The first bound is I=1. */
1825
1826 static int
1827 desc_bound_bitsize (struct type *type, int i, int which)
1828 {
1829 type = desc_base_type (type);
1830
1831 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1832 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1833 else
1834 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1835 }
1836
1837 /* If TYPE is the type of an array-bounds structure, the type of its
1838 Ith bound (numbering from 1). Otherwise, NULL. */
1839
1840 static struct type *
1841 desc_index_type (struct type *type, int i)
1842 {
1843 type = desc_base_type (type);
1844
1845 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1846 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1847 else
1848 return NULL;
1849 }
1850
1851 /* The number of index positions in the array-bounds type TYPE.
1852 Return 0 if TYPE is NULL. */
1853
1854 static int
1855 desc_arity (struct type *type)
1856 {
1857 type = desc_base_type (type);
1858
1859 if (type != NULL)
1860 return TYPE_NFIELDS (type) / 2;
1861 return 0;
1862 }
1863
1864 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1865 an array descriptor type (representing an unconstrained array
1866 type). */
1867
1868 static int
1869 ada_is_direct_array_type (struct type *type)
1870 {
1871 if (type == NULL)
1872 return 0;
1873 type = ada_check_typedef (type);
1874 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1875 || ada_is_array_descriptor_type (type));
1876 }
1877
1878 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1879 * to one. */
1880
1881 static int
1882 ada_is_array_type (struct type *type)
1883 {
1884 while (type != NULL
1885 && (TYPE_CODE (type) == TYPE_CODE_PTR
1886 || TYPE_CODE (type) == TYPE_CODE_REF))
1887 type = TYPE_TARGET_TYPE (type);
1888 return ada_is_direct_array_type (type);
1889 }
1890
1891 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1892
1893 int
1894 ada_is_simple_array_type (struct type *type)
1895 {
1896 if (type == NULL)
1897 return 0;
1898 type = ada_check_typedef (type);
1899 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1900 || (TYPE_CODE (type) == TYPE_CODE_PTR
1901 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1902 == TYPE_CODE_ARRAY));
1903 }
1904
1905 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1906
1907 int
1908 ada_is_array_descriptor_type (struct type *type)
1909 {
1910 struct type *data_type = desc_data_target_type (type);
1911
1912 if (type == NULL)
1913 return 0;
1914 type = ada_check_typedef (type);
1915 return (data_type != NULL
1916 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1917 && desc_arity (desc_bounds_type (type)) > 0);
1918 }
1919
1920 /* Non-zero iff type is a partially mal-formed GNAT array
1921 descriptor. FIXME: This is to compensate for some problems with
1922 debugging output from GNAT. Re-examine periodically to see if it
1923 is still needed. */
1924
1925 int
1926 ada_is_bogus_array_descriptor (struct type *type)
1927 {
1928 return
1929 type != NULL
1930 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1931 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1932 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1933 && !ada_is_array_descriptor_type (type);
1934 }
1935
1936
1937 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1938 (fat pointer) returns the type of the array data described---specifically,
1939 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1940 in from the descriptor; otherwise, they are left unspecified. If
1941 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1942 returns NULL. The result is simply the type of ARR if ARR is not
1943 a descriptor. */
1944 struct type *
1945 ada_type_of_array (struct value *arr, int bounds)
1946 {
1947 if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array_type (value_type (arr));
1949
1950 if (!ada_is_array_descriptor_type (value_type (arr)))
1951 return value_type (arr);
1952
1953 if (!bounds)
1954 {
1955 struct type *array_type =
1956 ada_check_typedef (desc_data_target_type (value_type (arr)));
1957
1958 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1959 TYPE_FIELD_BITSIZE (array_type, 0) =
1960 decode_packed_array_bitsize (value_type (arr));
1961
1962 return array_type;
1963 }
1964 else
1965 {
1966 struct type *elt_type;
1967 int arity;
1968 struct value *descriptor;
1969
1970 elt_type = ada_array_element_type (value_type (arr), -1);
1971 arity = ada_array_arity (value_type (arr));
1972
1973 if (elt_type == NULL || arity == 0)
1974 return ada_check_typedef (value_type (arr));
1975
1976 descriptor = desc_bounds (arr);
1977 if (value_as_long (descriptor) == 0)
1978 return NULL;
1979 while (arity > 0)
1980 {
1981 struct type *range_type = alloc_type_copy (value_type (arr));
1982 struct type *array_type = alloc_type_copy (value_type (arr));
1983 struct value *low = desc_one_bound (descriptor, arity, 0);
1984 struct value *high = desc_one_bound (descriptor, arity, 1);
1985
1986 arity -= 1;
1987 create_static_range_type (range_type, value_type (low),
1988 longest_to_int (value_as_long (low)),
1989 longest_to_int (value_as_long (high)));
1990 elt_type = create_array_type (array_type, elt_type, range_type);
1991
1992 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1993 {
1994 /* We need to store the element packed bitsize, as well as
1995 recompute the array size, because it was previously
1996 computed based on the unpacked element size. */
1997 LONGEST lo = value_as_long (low);
1998 LONGEST hi = value_as_long (high);
1999
2000 TYPE_FIELD_BITSIZE (elt_type, 0) =
2001 decode_packed_array_bitsize (value_type (arr));
2002 /* If the array has no element, then the size is already
2003 zero, and does not need to be recomputed. */
2004 if (lo < hi)
2005 {
2006 int array_bitsize =
2007 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2008
2009 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2010 }
2011 }
2012 }
2013
2014 return lookup_pointer_type (elt_type);
2015 }
2016 }
2017
2018 /* If ARR does not represent an array, returns ARR unchanged.
2019 Otherwise, returns either a standard GDB array with bounds set
2020 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2021 GDB array. Returns NULL if ARR is a null fat pointer. */
2022
2023 struct value *
2024 ada_coerce_to_simple_array_ptr (struct value *arr)
2025 {
2026 if (ada_is_array_descriptor_type (value_type (arr)))
2027 {
2028 struct type *arrType = ada_type_of_array (arr, 1);
2029
2030 if (arrType == NULL)
2031 return NULL;
2032 return value_cast (arrType, value_copy (desc_data (arr)));
2033 }
2034 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2035 return decode_constrained_packed_array (arr);
2036 else
2037 return arr;
2038 }
2039
2040 /* If ARR does not represent an array, returns ARR unchanged.
2041 Otherwise, returns a standard GDB array describing ARR (which may
2042 be ARR itself if it already is in the proper form). */
2043
2044 struct value *
2045 ada_coerce_to_simple_array (struct value *arr)
2046 {
2047 if (ada_is_array_descriptor_type (value_type (arr)))
2048 {
2049 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2050
2051 if (arrVal == NULL)
2052 error (_("Bounds unavailable for null array pointer."));
2053 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2054 return value_ind (arrVal);
2055 }
2056 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2057 return decode_constrained_packed_array (arr);
2058 else
2059 return arr;
2060 }
2061
2062 /* If TYPE represents a GNAT array type, return it translated to an
2063 ordinary GDB array type (possibly with BITSIZE fields indicating
2064 packing). For other types, is the identity. */
2065
2066 struct type *
2067 ada_coerce_to_simple_array_type (struct type *type)
2068 {
2069 if (ada_is_constrained_packed_array_type (type))
2070 return decode_constrained_packed_array_type (type);
2071
2072 if (ada_is_array_descriptor_type (type))
2073 return ada_check_typedef (desc_data_target_type (type));
2074
2075 return type;
2076 }
2077
2078 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2079
2080 static int
2081 ada_is_packed_array_type (struct type *type)
2082 {
2083 if (type == NULL)
2084 return 0;
2085 type = desc_base_type (type);
2086 type = ada_check_typedef (type);
2087 return
2088 ada_type_name (type) != NULL
2089 && strstr (ada_type_name (type), "___XP") != NULL;
2090 }
2091
2092 /* Non-zero iff TYPE represents a standard GNAT constrained
2093 packed-array type. */
2094
2095 int
2096 ada_is_constrained_packed_array_type (struct type *type)
2097 {
2098 return ada_is_packed_array_type (type)
2099 && !ada_is_array_descriptor_type (type);
2100 }
2101
2102 /* Non-zero iff TYPE represents an array descriptor for a
2103 unconstrained packed-array type. */
2104
2105 static int
2106 ada_is_unconstrained_packed_array_type (struct type *type)
2107 {
2108 return ada_is_packed_array_type (type)
2109 && ada_is_array_descriptor_type (type);
2110 }
2111
2112 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2113 return the size of its elements in bits. */
2114
2115 static long
2116 decode_packed_array_bitsize (struct type *type)
2117 {
2118 const char *raw_name;
2119 const char *tail;
2120 long bits;
2121
2122 /* Access to arrays implemented as fat pointers are encoded as a typedef
2123 of the fat pointer type. We need the name of the fat pointer type
2124 to do the decoding, so strip the typedef layer. */
2125 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2126 type = ada_typedef_target_type (type);
2127
2128 raw_name = ada_type_name (ada_check_typedef (type));
2129 if (!raw_name)
2130 raw_name = ada_type_name (desc_base_type (type));
2131
2132 if (!raw_name)
2133 return 0;
2134
2135 tail = strstr (raw_name, "___XP");
2136 gdb_assert (tail != NULL);
2137
2138 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2139 {
2140 lim_warning
2141 (_("could not understand bit size information on packed array"));
2142 return 0;
2143 }
2144
2145 return bits;
2146 }
2147
2148 /* Given that TYPE is a standard GDB array type with all bounds filled
2149 in, and that the element size of its ultimate scalar constituents
2150 (that is, either its elements, or, if it is an array of arrays, its
2151 elements' elements, etc.) is *ELT_BITS, return an identical type,
2152 but with the bit sizes of its elements (and those of any
2153 constituent arrays) recorded in the BITSIZE components of its
2154 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2155 in bits.
2156
2157 Note that, for arrays whose index type has an XA encoding where
2158 a bound references a record discriminant, getting that discriminant,
2159 and therefore the actual value of that bound, is not possible
2160 because none of the given parameters gives us access to the record.
2161 This function assumes that it is OK in the context where it is being
2162 used to return an array whose bounds are still dynamic and where
2163 the length is arbitrary. */
2164
2165 static struct type *
2166 constrained_packed_array_type (struct type *type, long *elt_bits)
2167 {
2168 struct type *new_elt_type;
2169 struct type *new_type;
2170 struct type *index_type_desc;
2171 struct type *index_type;
2172 LONGEST low_bound, high_bound;
2173
2174 type = ada_check_typedef (type);
2175 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2176 return type;
2177
2178 index_type_desc = ada_find_parallel_type (type, "___XA");
2179 if (index_type_desc)
2180 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2181 NULL);
2182 else
2183 index_type = TYPE_INDEX_TYPE (type);
2184
2185 new_type = alloc_type_copy (type);
2186 new_elt_type =
2187 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2188 elt_bits);
2189 create_array_type (new_type, new_elt_type, index_type);
2190 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2191 TYPE_NAME (new_type) = ada_type_name (type);
2192
2193 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2194 && is_dynamic_type (check_typedef (index_type)))
2195 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2196 low_bound = high_bound = 0;
2197 if (high_bound < low_bound)
2198 *elt_bits = TYPE_LENGTH (new_type) = 0;
2199 else
2200 {
2201 *elt_bits *= (high_bound - low_bound + 1);
2202 TYPE_LENGTH (new_type) =
2203 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2204 }
2205
2206 TYPE_FIXED_INSTANCE (new_type) = 1;
2207 return new_type;
2208 }
2209
2210 /* The array type encoded by TYPE, where
2211 ada_is_constrained_packed_array_type (TYPE). */
2212
2213 static struct type *
2214 decode_constrained_packed_array_type (struct type *type)
2215 {
2216 const char *raw_name = ada_type_name (ada_check_typedef (type));
2217 char *name;
2218 const char *tail;
2219 struct type *shadow_type;
2220 long bits;
2221
2222 if (!raw_name)
2223 raw_name = ada_type_name (desc_base_type (type));
2224
2225 if (!raw_name)
2226 return NULL;
2227
2228 name = (char *) alloca (strlen (raw_name) + 1);
2229 tail = strstr (raw_name, "___XP");
2230 type = desc_base_type (type);
2231
2232 memcpy (name, raw_name, tail - raw_name);
2233 name[tail - raw_name] = '\000';
2234
2235 shadow_type = ada_find_parallel_type_with_name (type, name);
2236
2237 if (shadow_type == NULL)
2238 {
2239 lim_warning (_("could not find bounds information on packed array"));
2240 return NULL;
2241 }
2242 CHECK_TYPEDEF (shadow_type);
2243
2244 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2245 {
2246 lim_warning (_("could not understand bounds "
2247 "information on packed array"));
2248 return NULL;
2249 }
2250
2251 bits = decode_packed_array_bitsize (type);
2252 return constrained_packed_array_type (shadow_type, &bits);
2253 }
2254
2255 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2256 array, returns a simple array that denotes that array. Its type is a
2257 standard GDB array type except that the BITSIZEs of the array
2258 target types are set to the number of bits in each element, and the
2259 type length is set appropriately. */
2260
2261 static struct value *
2262 decode_constrained_packed_array (struct value *arr)
2263 {
2264 struct type *type;
2265
2266 /* If our value is a pointer, then dereference it. Likewise if
2267 the value is a reference. Make sure that this operation does not
2268 cause the target type to be fixed, as this would indirectly cause
2269 this array to be decoded. The rest of the routine assumes that
2270 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2271 and "value_ind" routines to perform the dereferencing, as opposed
2272 to using "ada_coerce_ref" or "ada_value_ind". */
2273 arr = coerce_ref (arr);
2274 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2275 arr = value_ind (arr);
2276
2277 type = decode_constrained_packed_array_type (value_type (arr));
2278 if (type == NULL)
2279 {
2280 error (_("can't unpack array"));
2281 return NULL;
2282 }
2283
2284 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2285 && ada_is_modular_type (value_type (arr)))
2286 {
2287 /* This is a (right-justified) modular type representing a packed
2288 array with no wrapper. In order to interpret the value through
2289 the (left-justified) packed array type we just built, we must
2290 first left-justify it. */
2291 int bit_size, bit_pos;
2292 ULONGEST mod;
2293
2294 mod = ada_modulus (value_type (arr)) - 1;
2295 bit_size = 0;
2296 while (mod > 0)
2297 {
2298 bit_size += 1;
2299 mod >>= 1;
2300 }
2301 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2302 arr = ada_value_primitive_packed_val (arr, NULL,
2303 bit_pos / HOST_CHAR_BIT,
2304 bit_pos % HOST_CHAR_BIT,
2305 bit_size,
2306 type);
2307 }
2308
2309 return coerce_unspec_val_to_type (arr, type);
2310 }
2311
2312
2313 /* The value of the element of packed array ARR at the ARITY indices
2314 given in IND. ARR must be a simple array. */
2315
2316 static struct value *
2317 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2318 {
2319 int i;
2320 int bits, elt_off, bit_off;
2321 long elt_total_bit_offset;
2322 struct type *elt_type;
2323 struct value *v;
2324
2325 bits = 0;
2326 elt_total_bit_offset = 0;
2327 elt_type = ada_check_typedef (value_type (arr));
2328 for (i = 0; i < arity; i += 1)
2329 {
2330 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2331 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2332 error
2333 (_("attempt to do packed indexing of "
2334 "something other than a packed array"));
2335 else
2336 {
2337 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2338 LONGEST lowerbound, upperbound;
2339 LONGEST idx;
2340
2341 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2342 {
2343 lim_warning (_("don't know bounds of array"));
2344 lowerbound = upperbound = 0;
2345 }
2346
2347 idx = pos_atr (ind[i]);
2348 if (idx < lowerbound || idx > upperbound)
2349 lim_warning (_("packed array index %ld out of bounds"),
2350 (long) idx);
2351 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2352 elt_total_bit_offset += (idx - lowerbound) * bits;
2353 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2354 }
2355 }
2356 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2357 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2358
2359 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2360 bits, elt_type);
2361 return v;
2362 }
2363
2364 /* Non-zero iff TYPE includes negative integer values. */
2365
2366 static int
2367 has_negatives (struct type *type)
2368 {
2369 switch (TYPE_CODE (type))
2370 {
2371 default:
2372 return 0;
2373 case TYPE_CODE_INT:
2374 return !TYPE_UNSIGNED (type);
2375 case TYPE_CODE_RANGE:
2376 return TYPE_LOW_BOUND (type) < 0;
2377 }
2378 }
2379
2380
2381 /* Create a new value of type TYPE from the contents of OBJ starting
2382 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2383 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2384 assigning through the result will set the field fetched from.
2385 VALADDR is ignored unless OBJ is NULL, in which case,
2386 VALADDR+OFFSET must address the start of storage containing the
2387 packed value. The value returned in this case is never an lval.
2388 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2389
2390 struct value *
2391 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2392 long offset, int bit_offset, int bit_size,
2393 struct type *type)
2394 {
2395 struct value *v;
2396 int src, /* Index into the source area */
2397 targ, /* Index into the target area */
2398 srcBitsLeft, /* Number of source bits left to move */
2399 nsrc, ntarg, /* Number of source and target bytes */
2400 unusedLS, /* Number of bits in next significant
2401 byte of source that are unused */
2402 accumSize; /* Number of meaningful bits in accum */
2403 unsigned char *bytes; /* First byte containing data to unpack */
2404 unsigned char *unpacked;
2405 unsigned long accum; /* Staging area for bits being transferred */
2406 unsigned char sign;
2407 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2408 /* Transmit bytes from least to most significant; delta is the direction
2409 the indices move. */
2410 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2411
2412 type = ada_check_typedef (type);
2413
2414 if (obj == NULL)
2415 {
2416 v = allocate_value (type);
2417 bytes = (unsigned char *) (valaddr + offset);
2418 }
2419 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2420 {
2421 v = value_at (type, value_address (obj));
2422 type = value_type (v);
2423 bytes = (unsigned char *) alloca (len);
2424 read_memory (value_address (v) + offset, bytes, len);
2425 }
2426 else
2427 {
2428 v = allocate_value (type);
2429 bytes = (unsigned char *) value_contents (obj) + offset;
2430 }
2431
2432 if (obj != NULL)
2433 {
2434 long new_offset = offset;
2435
2436 set_value_component_location (v, obj);
2437 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2438 set_value_bitsize (v, bit_size);
2439 if (value_bitpos (v) >= HOST_CHAR_BIT)
2440 {
2441 ++new_offset;
2442 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2443 }
2444 set_value_offset (v, new_offset);
2445
2446 /* Also set the parent value. This is needed when trying to
2447 assign a new value (in inferior memory). */
2448 set_value_parent (v, obj);
2449 }
2450 else
2451 set_value_bitsize (v, bit_size);
2452 unpacked = (unsigned char *) value_contents (v);
2453
2454 srcBitsLeft = bit_size;
2455 nsrc = len;
2456 ntarg = TYPE_LENGTH (type);
2457 sign = 0;
2458 if (bit_size == 0)
2459 {
2460 memset (unpacked, 0, TYPE_LENGTH (type));
2461 return v;
2462 }
2463 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2464 {
2465 src = len - 1;
2466 if (has_negatives (type)
2467 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2468 sign = ~0;
2469
2470 unusedLS =
2471 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2472 % HOST_CHAR_BIT;
2473
2474 switch (TYPE_CODE (type))
2475 {
2476 case TYPE_CODE_ARRAY:
2477 case TYPE_CODE_UNION:
2478 case TYPE_CODE_STRUCT:
2479 /* Non-scalar values must be aligned at a byte boundary... */
2480 accumSize =
2481 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2482 /* ... And are placed at the beginning (most-significant) bytes
2483 of the target. */
2484 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2485 ntarg = targ + 1;
2486 break;
2487 default:
2488 accumSize = 0;
2489 targ = TYPE_LENGTH (type) - 1;
2490 break;
2491 }
2492 }
2493 else
2494 {
2495 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2496
2497 src = targ = 0;
2498 unusedLS = bit_offset;
2499 accumSize = 0;
2500
2501 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2502 sign = ~0;
2503 }
2504
2505 accum = 0;
2506 while (nsrc > 0)
2507 {
2508 /* Mask for removing bits of the next source byte that are not
2509 part of the value. */
2510 unsigned int unusedMSMask =
2511 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2512 1;
2513 /* Sign-extend bits for this byte. */
2514 unsigned int signMask = sign & ~unusedMSMask;
2515
2516 accum |=
2517 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2518 accumSize += HOST_CHAR_BIT - unusedLS;
2519 if (accumSize >= HOST_CHAR_BIT)
2520 {
2521 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2522 accumSize -= HOST_CHAR_BIT;
2523 accum >>= HOST_CHAR_BIT;
2524 ntarg -= 1;
2525 targ += delta;
2526 }
2527 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2528 unusedLS = 0;
2529 nsrc -= 1;
2530 src += delta;
2531 }
2532 while (ntarg > 0)
2533 {
2534 accum |= sign << accumSize;
2535 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2536 accumSize -= HOST_CHAR_BIT;
2537 accum >>= HOST_CHAR_BIT;
2538 ntarg -= 1;
2539 targ += delta;
2540 }
2541
2542 return v;
2543 }
2544
2545 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2546 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2547 not overlap. */
2548 static void
2549 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2550 int src_offset, int n, int bits_big_endian_p)
2551 {
2552 unsigned int accum, mask;
2553 int accum_bits, chunk_size;
2554
2555 target += targ_offset / HOST_CHAR_BIT;
2556 targ_offset %= HOST_CHAR_BIT;
2557 source += src_offset / HOST_CHAR_BIT;
2558 src_offset %= HOST_CHAR_BIT;
2559 if (bits_big_endian_p)
2560 {
2561 accum = (unsigned char) *source;
2562 source += 1;
2563 accum_bits = HOST_CHAR_BIT - src_offset;
2564
2565 while (n > 0)
2566 {
2567 int unused_right;
2568
2569 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2570 accum_bits += HOST_CHAR_BIT;
2571 source += 1;
2572 chunk_size = HOST_CHAR_BIT - targ_offset;
2573 if (chunk_size > n)
2574 chunk_size = n;
2575 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2576 mask = ((1 << chunk_size) - 1) << unused_right;
2577 *target =
2578 (*target & ~mask)
2579 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2580 n -= chunk_size;
2581 accum_bits -= chunk_size;
2582 target += 1;
2583 targ_offset = 0;
2584 }
2585 }
2586 else
2587 {
2588 accum = (unsigned char) *source >> src_offset;
2589 source += 1;
2590 accum_bits = HOST_CHAR_BIT - src_offset;
2591
2592 while (n > 0)
2593 {
2594 accum = accum + ((unsigned char) *source << accum_bits);
2595 accum_bits += HOST_CHAR_BIT;
2596 source += 1;
2597 chunk_size = HOST_CHAR_BIT - targ_offset;
2598 if (chunk_size > n)
2599 chunk_size = n;
2600 mask = ((1 << chunk_size) - 1) << targ_offset;
2601 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2602 n -= chunk_size;
2603 accum_bits -= chunk_size;
2604 accum >>= chunk_size;
2605 target += 1;
2606 targ_offset = 0;
2607 }
2608 }
2609 }
2610
2611 /* Store the contents of FROMVAL into the location of TOVAL.
2612 Return a new value with the location of TOVAL and contents of
2613 FROMVAL. Handles assignment into packed fields that have
2614 floating-point or non-scalar types. */
2615
2616 static struct value *
2617 ada_value_assign (struct value *toval, struct value *fromval)
2618 {
2619 struct type *type = value_type (toval);
2620 int bits = value_bitsize (toval);
2621
2622 toval = ada_coerce_ref (toval);
2623 fromval = ada_coerce_ref (fromval);
2624
2625 if (ada_is_direct_array_type (value_type (toval)))
2626 toval = ada_coerce_to_simple_array (toval);
2627 if (ada_is_direct_array_type (value_type (fromval)))
2628 fromval = ada_coerce_to_simple_array (fromval);
2629
2630 if (!deprecated_value_modifiable (toval))
2631 error (_("Left operand of assignment is not a modifiable lvalue."));
2632
2633 if (VALUE_LVAL (toval) == lval_memory
2634 && bits > 0
2635 && (TYPE_CODE (type) == TYPE_CODE_FLT
2636 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2637 {
2638 int len = (value_bitpos (toval)
2639 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2640 int from_size;
2641 gdb_byte *buffer = alloca (len);
2642 struct value *val;
2643 CORE_ADDR to_addr = value_address (toval);
2644
2645 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2646 fromval = value_cast (type, fromval);
2647
2648 read_memory (to_addr, buffer, len);
2649 from_size = value_bitsize (fromval);
2650 if (from_size == 0)
2651 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2652 if (gdbarch_bits_big_endian (get_type_arch (type)))
2653 move_bits (buffer, value_bitpos (toval),
2654 value_contents (fromval), from_size - bits, bits, 1);
2655 else
2656 move_bits (buffer, value_bitpos (toval),
2657 value_contents (fromval), 0, bits, 0);
2658 write_memory_with_notification (to_addr, buffer, len);
2659
2660 val = value_copy (toval);
2661 memcpy (value_contents_raw (val), value_contents (fromval),
2662 TYPE_LENGTH (type));
2663 deprecated_set_value_type (val, type);
2664
2665 return val;
2666 }
2667
2668 return value_assign (toval, fromval);
2669 }
2670
2671
2672 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2673 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2674 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2675 * COMPONENT, and not the inferior's memory. The current contents
2676 * of COMPONENT are ignored. */
2677 static void
2678 value_assign_to_component (struct value *container, struct value *component,
2679 struct value *val)
2680 {
2681 LONGEST offset_in_container =
2682 (LONGEST) (value_address (component) - value_address (container));
2683 int bit_offset_in_container =
2684 value_bitpos (component) - value_bitpos (container);
2685 int bits;
2686
2687 val = value_cast (value_type (component), val);
2688
2689 if (value_bitsize (component) == 0)
2690 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2691 else
2692 bits = value_bitsize (component);
2693
2694 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2695 move_bits (value_contents_writeable (container) + offset_in_container,
2696 value_bitpos (container) + bit_offset_in_container,
2697 value_contents (val),
2698 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2699 bits, 1);
2700 else
2701 move_bits (value_contents_writeable (container) + offset_in_container,
2702 value_bitpos (container) + bit_offset_in_container,
2703 value_contents (val), 0, bits, 0);
2704 }
2705
2706 /* The value of the element of array ARR at the ARITY indices given in IND.
2707 ARR may be either a simple array, GNAT array descriptor, or pointer
2708 thereto. */
2709
2710 struct value *
2711 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2712 {
2713 int k;
2714 struct value *elt;
2715 struct type *elt_type;
2716
2717 elt = ada_coerce_to_simple_array (arr);
2718
2719 elt_type = ada_check_typedef (value_type (elt));
2720 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2721 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2722 return value_subscript_packed (elt, arity, ind);
2723
2724 for (k = 0; k < arity; k += 1)
2725 {
2726 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2727 error (_("too many subscripts (%d expected)"), k);
2728 elt = value_subscript (elt, pos_atr (ind[k]));
2729 }
2730 return elt;
2731 }
2732
2733 /* Assuming ARR is a pointer to a GDB array, the value of the element
2734 of *ARR at the ARITY indices given in IND.
2735 Does not read the entire array into memory. */
2736
2737 static struct value *
2738 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2739 {
2740 int k;
2741 struct type *type
2742 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
2743
2744 for (k = 0; k < arity; k += 1)
2745 {
2746 LONGEST lwb, upb;
2747
2748 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2749 error (_("too many subscripts (%d expected)"), k);
2750 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2751 value_copy (arr));
2752 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2753 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2754 type = TYPE_TARGET_TYPE (type);
2755 }
2756
2757 return value_ind (arr);
2758 }
2759
2760 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2761 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2762 elements starting at index LOW. The lower bound of this array is LOW, as
2763 per Ada rules. */
2764 static struct value *
2765 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2766 int low, int high)
2767 {
2768 struct type *type0 = ada_check_typedef (type);
2769 CORE_ADDR base = value_as_address (array_ptr)
2770 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2771 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2772 struct type *index_type
2773 = create_static_range_type (NULL,
2774 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2775 low, high);
2776 struct type *slice_type =
2777 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2778
2779 return value_at_lazy (slice_type, base);
2780 }
2781
2782
2783 static struct value *
2784 ada_value_slice (struct value *array, int low, int high)
2785 {
2786 struct type *type = ada_check_typedef (value_type (array));
2787 struct type *index_type
2788 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2789 struct type *slice_type =
2790 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2791
2792 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2793 }
2794
2795 /* If type is a record type in the form of a standard GNAT array
2796 descriptor, returns the number of dimensions for type. If arr is a
2797 simple array, returns the number of "array of"s that prefix its
2798 type designation. Otherwise, returns 0. */
2799
2800 int
2801 ada_array_arity (struct type *type)
2802 {
2803 int arity;
2804
2805 if (type == NULL)
2806 return 0;
2807
2808 type = desc_base_type (type);
2809
2810 arity = 0;
2811 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2812 return desc_arity (desc_bounds_type (type));
2813 else
2814 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2815 {
2816 arity += 1;
2817 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2818 }
2819
2820 return arity;
2821 }
2822
2823 /* If TYPE is a record type in the form of a standard GNAT array
2824 descriptor or a simple array type, returns the element type for
2825 TYPE after indexing by NINDICES indices, or by all indices if
2826 NINDICES is -1. Otherwise, returns NULL. */
2827
2828 struct type *
2829 ada_array_element_type (struct type *type, int nindices)
2830 {
2831 type = desc_base_type (type);
2832
2833 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2834 {
2835 int k;
2836 struct type *p_array_type;
2837
2838 p_array_type = desc_data_target_type (type);
2839
2840 k = ada_array_arity (type);
2841 if (k == 0)
2842 return NULL;
2843
2844 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2845 if (nindices >= 0 && k > nindices)
2846 k = nindices;
2847 while (k > 0 && p_array_type != NULL)
2848 {
2849 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2850 k -= 1;
2851 }
2852 return p_array_type;
2853 }
2854 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2855 {
2856 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2857 {
2858 type = TYPE_TARGET_TYPE (type);
2859 nindices -= 1;
2860 }
2861 return type;
2862 }
2863
2864 return NULL;
2865 }
2866
2867 /* The type of nth index in arrays of given type (n numbering from 1).
2868 Does not examine memory. Throws an error if N is invalid or TYPE
2869 is not an array type. NAME is the name of the Ada attribute being
2870 evaluated ('range, 'first, 'last, or 'length); it is used in building
2871 the error message. */
2872
2873 static struct type *
2874 ada_index_type (struct type *type, int n, const char *name)
2875 {
2876 struct type *result_type;
2877
2878 type = desc_base_type (type);
2879
2880 if (n < 0 || n > ada_array_arity (type))
2881 error (_("invalid dimension number to '%s"), name);
2882
2883 if (ada_is_simple_array_type (type))
2884 {
2885 int i;
2886
2887 for (i = 1; i < n; i += 1)
2888 type = TYPE_TARGET_TYPE (type);
2889 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2890 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2891 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2892 perhaps stabsread.c would make more sense. */
2893 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2894 result_type = NULL;
2895 }
2896 else
2897 {
2898 result_type = desc_index_type (desc_bounds_type (type), n);
2899 if (result_type == NULL)
2900 error (_("attempt to take bound of something that is not an array"));
2901 }
2902
2903 return result_type;
2904 }
2905
2906 /* Given that arr is an array type, returns the lower bound of the
2907 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2908 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2909 array-descriptor type. It works for other arrays with bounds supplied
2910 by run-time quantities other than discriminants. */
2911
2912 static LONGEST
2913 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2914 {
2915 struct type *type, *index_type_desc, *index_type;
2916 int i;
2917
2918 gdb_assert (which == 0 || which == 1);
2919
2920 if (ada_is_constrained_packed_array_type (arr_type))
2921 arr_type = decode_constrained_packed_array_type (arr_type);
2922
2923 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2924 return (LONGEST) - which;
2925
2926 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2927 type = TYPE_TARGET_TYPE (arr_type);
2928 else
2929 type = arr_type;
2930
2931 index_type_desc = ada_find_parallel_type (type, "___XA");
2932 ada_fixup_array_indexes_type (index_type_desc);
2933 if (index_type_desc != NULL)
2934 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2935 NULL);
2936 else
2937 {
2938 struct type *elt_type = check_typedef (type);
2939
2940 for (i = 1; i < n; i++)
2941 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2942
2943 index_type = TYPE_INDEX_TYPE (elt_type);
2944 }
2945
2946 return
2947 (LONGEST) (which == 0
2948 ? ada_discrete_type_low_bound (index_type)
2949 : ada_discrete_type_high_bound (index_type));
2950 }
2951
2952 /* Given that arr is an array value, returns the lower bound of the
2953 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2954 WHICH is 1. This routine will also work for arrays with bounds
2955 supplied by run-time quantities other than discriminants. */
2956
2957 static LONGEST
2958 ada_array_bound (struct value *arr, int n, int which)
2959 {
2960 struct type *arr_type;
2961
2962 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2963 arr = value_ind (arr);
2964 arr_type = value_enclosing_type (arr);
2965
2966 if (ada_is_constrained_packed_array_type (arr_type))
2967 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2968 else if (ada_is_simple_array_type (arr_type))
2969 return ada_array_bound_from_type (arr_type, n, which);
2970 else
2971 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2972 }
2973
2974 /* Given that arr is an array value, returns the length of the
2975 nth index. This routine will also work for arrays with bounds
2976 supplied by run-time quantities other than discriminants.
2977 Does not work for arrays indexed by enumeration types with representation
2978 clauses at the moment. */
2979
2980 static LONGEST
2981 ada_array_length (struct value *arr, int n)
2982 {
2983 struct type *arr_type;
2984
2985 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2986 arr = value_ind (arr);
2987 arr_type = value_enclosing_type (arr);
2988
2989 if (ada_is_constrained_packed_array_type (arr_type))
2990 return ada_array_length (decode_constrained_packed_array (arr), n);
2991
2992 if (ada_is_simple_array_type (arr_type))
2993 return (ada_array_bound_from_type (arr_type, n, 1)
2994 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2995 else
2996 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2997 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2998 }
2999
3000 /* An empty array whose type is that of ARR_TYPE (an array type),
3001 with bounds LOW to LOW-1. */
3002
3003 static struct value *
3004 empty_array (struct type *arr_type, int low)
3005 {
3006 struct type *arr_type0 = ada_check_typedef (arr_type);
3007 struct type *index_type
3008 = create_static_range_type
3009 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3010 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3011
3012 return allocate_value (create_array_type (NULL, elt_type, index_type));
3013 }
3014 \f
3015
3016 /* Name resolution */
3017
3018 /* The "decoded" name for the user-definable Ada operator corresponding
3019 to OP. */
3020
3021 static const char *
3022 ada_decoded_op_name (enum exp_opcode op)
3023 {
3024 int i;
3025
3026 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3027 {
3028 if (ada_opname_table[i].op == op)
3029 return ada_opname_table[i].decoded;
3030 }
3031 error (_("Could not find operator name for opcode"));
3032 }
3033
3034
3035 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3036 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3037 undefined namespace) and converts operators that are
3038 user-defined into appropriate function calls. If CONTEXT_TYPE is
3039 non-null, it provides a preferred result type [at the moment, only
3040 type void has any effect---causing procedures to be preferred over
3041 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3042 return type is preferred. May change (expand) *EXP. */
3043
3044 static void
3045 resolve (struct expression **expp, int void_context_p)
3046 {
3047 struct type *context_type = NULL;
3048 int pc = 0;
3049
3050 if (void_context_p)
3051 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3052
3053 resolve_subexp (expp, &pc, 1, context_type);
3054 }
3055
3056 /* Resolve the operator of the subexpression beginning at
3057 position *POS of *EXPP. "Resolving" consists of replacing
3058 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3059 with their resolutions, replacing built-in operators with
3060 function calls to user-defined operators, where appropriate, and,
3061 when DEPROCEDURE_P is non-zero, converting function-valued variables
3062 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3063 are as in ada_resolve, above. */
3064
3065 static struct value *
3066 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3067 struct type *context_type)
3068 {
3069 int pc = *pos;
3070 int i;
3071 struct expression *exp; /* Convenience: == *expp. */
3072 enum exp_opcode op = (*expp)->elts[pc].opcode;
3073 struct value **argvec; /* Vector of operand types (alloca'ed). */
3074 int nargs; /* Number of operands. */
3075 int oplen;
3076
3077 argvec = NULL;
3078 nargs = 0;
3079 exp = *expp;
3080
3081 /* Pass one: resolve operands, saving their types and updating *pos,
3082 if needed. */
3083 switch (op)
3084 {
3085 case OP_FUNCALL:
3086 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3087 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3088 *pos += 7;
3089 else
3090 {
3091 *pos += 3;
3092 resolve_subexp (expp, pos, 0, NULL);
3093 }
3094 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3095 break;
3096
3097 case UNOP_ADDR:
3098 *pos += 1;
3099 resolve_subexp (expp, pos, 0, NULL);
3100 break;
3101
3102 case UNOP_QUAL:
3103 *pos += 3;
3104 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3105 break;
3106
3107 case OP_ATR_MODULUS:
3108 case OP_ATR_SIZE:
3109 case OP_ATR_TAG:
3110 case OP_ATR_FIRST:
3111 case OP_ATR_LAST:
3112 case OP_ATR_LENGTH:
3113 case OP_ATR_POS:
3114 case OP_ATR_VAL:
3115 case OP_ATR_MIN:
3116 case OP_ATR_MAX:
3117 case TERNOP_IN_RANGE:
3118 case BINOP_IN_BOUNDS:
3119 case UNOP_IN_RANGE:
3120 case OP_AGGREGATE:
3121 case OP_OTHERS:
3122 case OP_CHOICES:
3123 case OP_POSITIONAL:
3124 case OP_DISCRETE_RANGE:
3125 case OP_NAME:
3126 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3127 *pos += oplen;
3128 break;
3129
3130 case BINOP_ASSIGN:
3131 {
3132 struct value *arg1;
3133
3134 *pos += 1;
3135 arg1 = resolve_subexp (expp, pos, 0, NULL);
3136 if (arg1 == NULL)
3137 resolve_subexp (expp, pos, 1, NULL);
3138 else
3139 resolve_subexp (expp, pos, 1, value_type (arg1));
3140 break;
3141 }
3142
3143 case UNOP_CAST:
3144 *pos += 3;
3145 nargs = 1;
3146 break;
3147
3148 case BINOP_ADD:
3149 case BINOP_SUB:
3150 case BINOP_MUL:
3151 case BINOP_DIV:
3152 case BINOP_REM:
3153 case BINOP_MOD:
3154 case BINOP_EXP:
3155 case BINOP_CONCAT:
3156 case BINOP_LOGICAL_AND:
3157 case BINOP_LOGICAL_OR:
3158 case BINOP_BITWISE_AND:
3159 case BINOP_BITWISE_IOR:
3160 case BINOP_BITWISE_XOR:
3161
3162 case BINOP_EQUAL:
3163 case BINOP_NOTEQUAL:
3164 case BINOP_LESS:
3165 case BINOP_GTR:
3166 case BINOP_LEQ:
3167 case BINOP_GEQ:
3168
3169 case BINOP_REPEAT:
3170 case BINOP_SUBSCRIPT:
3171 case BINOP_COMMA:
3172 *pos += 1;
3173 nargs = 2;
3174 break;
3175
3176 case UNOP_NEG:
3177 case UNOP_PLUS:
3178 case UNOP_LOGICAL_NOT:
3179 case UNOP_ABS:
3180 case UNOP_IND:
3181 *pos += 1;
3182 nargs = 1;
3183 break;
3184
3185 case OP_LONG:
3186 case OP_DOUBLE:
3187 case OP_VAR_VALUE:
3188 *pos += 4;
3189 break;
3190
3191 case OP_TYPE:
3192 case OP_BOOL:
3193 case OP_LAST:
3194 case OP_INTERNALVAR:
3195 *pos += 3;
3196 break;
3197
3198 case UNOP_MEMVAL:
3199 *pos += 3;
3200 nargs = 1;
3201 break;
3202
3203 case OP_REGISTER:
3204 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3205 break;
3206
3207 case STRUCTOP_STRUCT:
3208 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3209 nargs = 1;
3210 break;
3211
3212 case TERNOP_SLICE:
3213 *pos += 1;
3214 nargs = 3;
3215 break;
3216
3217 case OP_STRING:
3218 break;
3219
3220 default:
3221 error (_("Unexpected operator during name resolution"));
3222 }
3223
3224 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3225 for (i = 0; i < nargs; i += 1)
3226 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3227 argvec[i] = NULL;
3228 exp = *expp;
3229
3230 /* Pass two: perform any resolution on principal operator. */
3231 switch (op)
3232 {
3233 default:
3234 break;
3235
3236 case OP_VAR_VALUE:
3237 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3238 {
3239 struct ada_symbol_info *candidates;
3240 int n_candidates;
3241
3242 n_candidates =
3243 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3244 (exp->elts[pc + 2].symbol),
3245 exp->elts[pc + 1].block, VAR_DOMAIN,
3246 &candidates);
3247
3248 if (n_candidates > 1)
3249 {
3250 /* Types tend to get re-introduced locally, so if there
3251 are any local symbols that are not types, first filter
3252 out all types. */
3253 int j;
3254 for (j = 0; j < n_candidates; j += 1)
3255 switch (SYMBOL_CLASS (candidates[j].sym))
3256 {
3257 case LOC_REGISTER:
3258 case LOC_ARG:
3259 case LOC_REF_ARG:
3260 case LOC_REGPARM_ADDR:
3261 case LOC_LOCAL:
3262 case LOC_COMPUTED:
3263 goto FoundNonType;
3264 default:
3265 break;
3266 }
3267 FoundNonType:
3268 if (j < n_candidates)
3269 {
3270 j = 0;
3271 while (j < n_candidates)
3272 {
3273 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3274 {
3275 candidates[j] = candidates[n_candidates - 1];
3276 n_candidates -= 1;
3277 }
3278 else
3279 j += 1;
3280 }
3281 }
3282 }
3283
3284 if (n_candidates == 0)
3285 error (_("No definition found for %s"),
3286 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3287 else if (n_candidates == 1)
3288 i = 0;
3289 else if (deprocedure_p
3290 && !is_nonfunction (candidates, n_candidates))
3291 {
3292 i = ada_resolve_function
3293 (candidates, n_candidates, NULL, 0,
3294 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3295 context_type);
3296 if (i < 0)
3297 error (_("Could not find a match for %s"),
3298 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3299 }
3300 else
3301 {
3302 printf_filtered (_("Multiple matches for %s\n"),
3303 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3304 user_select_syms (candidates, n_candidates, 1);
3305 i = 0;
3306 }
3307
3308 exp->elts[pc + 1].block = candidates[i].block;
3309 exp->elts[pc + 2].symbol = candidates[i].sym;
3310 if (innermost_block == NULL
3311 || contained_in (candidates[i].block, innermost_block))
3312 innermost_block = candidates[i].block;
3313 }
3314
3315 if (deprocedure_p
3316 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3317 == TYPE_CODE_FUNC))
3318 {
3319 replace_operator_with_call (expp, pc, 0, 0,
3320 exp->elts[pc + 2].symbol,
3321 exp->elts[pc + 1].block);
3322 exp = *expp;
3323 }
3324 break;
3325
3326 case OP_FUNCALL:
3327 {
3328 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3329 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3330 {
3331 struct ada_symbol_info *candidates;
3332 int n_candidates;
3333
3334 n_candidates =
3335 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3336 (exp->elts[pc + 5].symbol),
3337 exp->elts[pc + 4].block, VAR_DOMAIN,
3338 &candidates);
3339 if (n_candidates == 1)
3340 i = 0;
3341 else
3342 {
3343 i = ada_resolve_function
3344 (candidates, n_candidates,
3345 argvec, nargs,
3346 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3347 context_type);
3348 if (i < 0)
3349 error (_("Could not find a match for %s"),
3350 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3351 }
3352
3353 exp->elts[pc + 4].block = candidates[i].block;
3354 exp->elts[pc + 5].symbol = candidates[i].sym;
3355 if (innermost_block == NULL
3356 || contained_in (candidates[i].block, innermost_block))
3357 innermost_block = candidates[i].block;
3358 }
3359 }
3360 break;
3361 case BINOP_ADD:
3362 case BINOP_SUB:
3363 case BINOP_MUL:
3364 case BINOP_DIV:
3365 case BINOP_REM:
3366 case BINOP_MOD:
3367 case BINOP_CONCAT:
3368 case BINOP_BITWISE_AND:
3369 case BINOP_BITWISE_IOR:
3370 case BINOP_BITWISE_XOR:
3371 case BINOP_EQUAL:
3372 case BINOP_NOTEQUAL:
3373 case BINOP_LESS:
3374 case BINOP_GTR:
3375 case BINOP_LEQ:
3376 case BINOP_GEQ:
3377 case BINOP_EXP:
3378 case UNOP_NEG:
3379 case UNOP_PLUS:
3380 case UNOP_LOGICAL_NOT:
3381 case UNOP_ABS:
3382 if (possible_user_operator_p (op, argvec))
3383 {
3384 struct ada_symbol_info *candidates;
3385 int n_candidates;
3386
3387 n_candidates =
3388 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3389 (struct block *) NULL, VAR_DOMAIN,
3390 &candidates);
3391 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3392 ada_decoded_op_name (op), NULL);
3393 if (i < 0)
3394 break;
3395
3396 replace_operator_with_call (expp, pc, nargs, 1,
3397 candidates[i].sym, candidates[i].block);
3398 exp = *expp;
3399 }
3400 break;
3401
3402 case OP_TYPE:
3403 case OP_REGISTER:
3404 return NULL;
3405 }
3406
3407 *pos = pc;
3408 return evaluate_subexp_type (exp, pos);
3409 }
3410
3411 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3412 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3413 a non-pointer. */
3414 /* The term "match" here is rather loose. The match is heuristic and
3415 liberal. */
3416
3417 static int
3418 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3419 {
3420 ftype = ada_check_typedef (ftype);
3421 atype = ada_check_typedef (atype);
3422
3423 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3424 ftype = TYPE_TARGET_TYPE (ftype);
3425 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3426 atype = TYPE_TARGET_TYPE (atype);
3427
3428 switch (TYPE_CODE (ftype))
3429 {
3430 default:
3431 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3432 case TYPE_CODE_PTR:
3433 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3434 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3435 TYPE_TARGET_TYPE (atype), 0);
3436 else
3437 return (may_deref
3438 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3439 case TYPE_CODE_INT:
3440 case TYPE_CODE_ENUM:
3441 case TYPE_CODE_RANGE:
3442 switch (TYPE_CODE (atype))
3443 {
3444 case TYPE_CODE_INT:
3445 case TYPE_CODE_ENUM:
3446 case TYPE_CODE_RANGE:
3447 return 1;
3448 default:
3449 return 0;
3450 }
3451
3452 case TYPE_CODE_ARRAY:
3453 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3454 || ada_is_array_descriptor_type (atype));
3455
3456 case TYPE_CODE_STRUCT:
3457 if (ada_is_array_descriptor_type (ftype))
3458 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3459 || ada_is_array_descriptor_type (atype));
3460 else
3461 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3462 && !ada_is_array_descriptor_type (atype));
3463
3464 case TYPE_CODE_UNION:
3465 case TYPE_CODE_FLT:
3466 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3467 }
3468 }
3469
3470 /* Return non-zero if the formals of FUNC "sufficiently match" the
3471 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3472 may also be an enumeral, in which case it is treated as a 0-
3473 argument function. */
3474
3475 static int
3476 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3477 {
3478 int i;
3479 struct type *func_type = SYMBOL_TYPE (func);
3480
3481 if (SYMBOL_CLASS (func) == LOC_CONST
3482 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3483 return (n_actuals == 0);
3484 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3485 return 0;
3486
3487 if (TYPE_NFIELDS (func_type) != n_actuals)
3488 return 0;
3489
3490 for (i = 0; i < n_actuals; i += 1)
3491 {
3492 if (actuals[i] == NULL)
3493 return 0;
3494 else
3495 {
3496 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3497 i));
3498 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3499
3500 if (!ada_type_match (ftype, atype, 1))
3501 return 0;
3502 }
3503 }
3504 return 1;
3505 }
3506
3507 /* False iff function type FUNC_TYPE definitely does not produce a value
3508 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3509 FUNC_TYPE is not a valid function type with a non-null return type
3510 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3511
3512 static int
3513 return_match (struct type *func_type, struct type *context_type)
3514 {
3515 struct type *return_type;
3516
3517 if (func_type == NULL)
3518 return 1;
3519
3520 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3521 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3522 else
3523 return_type = get_base_type (func_type);
3524 if (return_type == NULL)
3525 return 1;
3526
3527 context_type = get_base_type (context_type);
3528
3529 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3530 return context_type == NULL || return_type == context_type;
3531 else if (context_type == NULL)
3532 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3533 else
3534 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3535 }
3536
3537
3538 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3539 function (if any) that matches the types of the NARGS arguments in
3540 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3541 that returns that type, then eliminate matches that don't. If
3542 CONTEXT_TYPE is void and there is at least one match that does not
3543 return void, eliminate all matches that do.
3544
3545 Asks the user if there is more than one match remaining. Returns -1
3546 if there is no such symbol or none is selected. NAME is used
3547 solely for messages. May re-arrange and modify SYMS in
3548 the process; the index returned is for the modified vector. */
3549
3550 static int
3551 ada_resolve_function (struct ada_symbol_info syms[],
3552 int nsyms, struct value **args, int nargs,
3553 const char *name, struct type *context_type)
3554 {
3555 int fallback;
3556 int k;
3557 int m; /* Number of hits */
3558
3559 m = 0;
3560 /* In the first pass of the loop, we only accept functions matching
3561 context_type. If none are found, we add a second pass of the loop
3562 where every function is accepted. */
3563 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3564 {
3565 for (k = 0; k < nsyms; k += 1)
3566 {
3567 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3568
3569 if (ada_args_match (syms[k].sym, args, nargs)
3570 && (fallback || return_match (type, context_type)))
3571 {
3572 syms[m] = syms[k];
3573 m += 1;
3574 }
3575 }
3576 }
3577
3578 if (m == 0)
3579 return -1;
3580 else if (m > 1)
3581 {
3582 printf_filtered (_("Multiple matches for %s\n"), name);
3583 user_select_syms (syms, m, 1);
3584 return 0;
3585 }
3586 return 0;
3587 }
3588
3589 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3590 in a listing of choices during disambiguation (see sort_choices, below).
3591 The idea is that overloadings of a subprogram name from the
3592 same package should sort in their source order. We settle for ordering
3593 such symbols by their trailing number (__N or $N). */
3594
3595 static int
3596 encoded_ordered_before (const char *N0, const char *N1)
3597 {
3598 if (N1 == NULL)
3599 return 0;
3600 else if (N0 == NULL)
3601 return 1;
3602 else
3603 {
3604 int k0, k1;
3605
3606 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3607 ;
3608 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3609 ;
3610 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3611 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3612 {
3613 int n0, n1;
3614
3615 n0 = k0;
3616 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3617 n0 -= 1;
3618 n1 = k1;
3619 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3620 n1 -= 1;
3621 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3622 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3623 }
3624 return (strcmp (N0, N1) < 0);
3625 }
3626 }
3627
3628 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3629 encoded names. */
3630
3631 static void
3632 sort_choices (struct ada_symbol_info syms[], int nsyms)
3633 {
3634 int i;
3635
3636 for (i = 1; i < nsyms; i += 1)
3637 {
3638 struct ada_symbol_info sym = syms[i];
3639 int j;
3640
3641 for (j = i - 1; j >= 0; j -= 1)
3642 {
3643 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3644 SYMBOL_LINKAGE_NAME (sym.sym)))
3645 break;
3646 syms[j + 1] = syms[j];
3647 }
3648 syms[j + 1] = sym;
3649 }
3650 }
3651
3652 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3653 by asking the user (if necessary), returning the number selected,
3654 and setting the first elements of SYMS items. Error if no symbols
3655 selected. */
3656
3657 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3658 to be re-integrated one of these days. */
3659
3660 int
3661 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3662 {
3663 int i;
3664 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3665 int n_chosen;
3666 int first_choice = (max_results == 1) ? 1 : 2;
3667 const char *select_mode = multiple_symbols_select_mode ();
3668
3669 if (max_results < 1)
3670 error (_("Request to select 0 symbols!"));
3671 if (nsyms <= 1)
3672 return nsyms;
3673
3674 if (select_mode == multiple_symbols_cancel)
3675 error (_("\
3676 canceled because the command is ambiguous\n\
3677 See set/show multiple-symbol."));
3678
3679 /* If select_mode is "all", then return all possible symbols.
3680 Only do that if more than one symbol can be selected, of course.
3681 Otherwise, display the menu as usual. */
3682 if (select_mode == multiple_symbols_all && max_results > 1)
3683 return nsyms;
3684
3685 printf_unfiltered (_("[0] cancel\n"));
3686 if (max_results > 1)
3687 printf_unfiltered (_("[1] all\n"));
3688
3689 sort_choices (syms, nsyms);
3690
3691 for (i = 0; i < nsyms; i += 1)
3692 {
3693 if (syms[i].sym == NULL)
3694 continue;
3695
3696 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3697 {
3698 struct symtab_and_line sal =
3699 find_function_start_sal (syms[i].sym, 1);
3700
3701 if (sal.symtab == NULL)
3702 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3703 i + first_choice,
3704 SYMBOL_PRINT_NAME (syms[i].sym),
3705 sal.line);
3706 else
3707 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3708 SYMBOL_PRINT_NAME (syms[i].sym),
3709 symtab_to_filename_for_display (sal.symtab),
3710 sal.line);
3711 continue;
3712 }
3713 else
3714 {
3715 int is_enumeral =
3716 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3717 && SYMBOL_TYPE (syms[i].sym) != NULL
3718 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3719 struct symtab *symtab = NULL;
3720
3721 if (SYMBOL_OBJFILE_OWNED (syms[i].sym))
3722 symtab = symbol_symtab (syms[i].sym);
3723
3724 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3725 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3726 i + first_choice,
3727 SYMBOL_PRINT_NAME (syms[i].sym),
3728 symtab_to_filename_for_display (symtab),
3729 SYMBOL_LINE (syms[i].sym));
3730 else if (is_enumeral
3731 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3732 {
3733 printf_unfiltered (("[%d] "), i + first_choice);
3734 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3735 gdb_stdout, -1, 0, &type_print_raw_options);
3736 printf_unfiltered (_("'(%s) (enumeral)\n"),
3737 SYMBOL_PRINT_NAME (syms[i].sym));
3738 }
3739 else if (symtab != NULL)
3740 printf_unfiltered (is_enumeral
3741 ? _("[%d] %s in %s (enumeral)\n")
3742 : _("[%d] %s at %s:?\n"),
3743 i + first_choice,
3744 SYMBOL_PRINT_NAME (syms[i].sym),
3745 symtab_to_filename_for_display (symtab));
3746 else
3747 printf_unfiltered (is_enumeral
3748 ? _("[%d] %s (enumeral)\n")
3749 : _("[%d] %s at ?\n"),
3750 i + first_choice,
3751 SYMBOL_PRINT_NAME (syms[i].sym));
3752 }
3753 }
3754
3755 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3756 "overload-choice");
3757
3758 for (i = 0; i < n_chosen; i += 1)
3759 syms[i] = syms[chosen[i]];
3760
3761 return n_chosen;
3762 }
3763
3764 /* Read and validate a set of numeric choices from the user in the
3765 range 0 .. N_CHOICES-1. Place the results in increasing
3766 order in CHOICES[0 .. N-1], and return N.
3767
3768 The user types choices as a sequence of numbers on one line
3769 separated by blanks, encoding them as follows:
3770
3771 + A choice of 0 means to cancel the selection, throwing an error.
3772 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3773 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3774
3775 The user is not allowed to choose more than MAX_RESULTS values.
3776
3777 ANNOTATION_SUFFIX, if present, is used to annotate the input
3778 prompts (for use with the -f switch). */
3779
3780 int
3781 get_selections (int *choices, int n_choices, int max_results,
3782 int is_all_choice, char *annotation_suffix)
3783 {
3784 char *args;
3785 char *prompt;
3786 int n_chosen;
3787 int first_choice = is_all_choice ? 2 : 1;
3788
3789 prompt = getenv ("PS2");
3790 if (prompt == NULL)
3791 prompt = "> ";
3792
3793 args = command_line_input (prompt, 0, annotation_suffix);
3794
3795 if (args == NULL)
3796 error_no_arg (_("one or more choice numbers"));
3797
3798 n_chosen = 0;
3799
3800 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3801 order, as given in args. Choices are validated. */
3802 while (1)
3803 {
3804 char *args2;
3805 int choice, j;
3806
3807 args = skip_spaces (args);
3808 if (*args == '\0' && n_chosen == 0)
3809 error_no_arg (_("one or more choice numbers"));
3810 else if (*args == '\0')
3811 break;
3812
3813 choice = strtol (args, &args2, 10);
3814 if (args == args2 || choice < 0
3815 || choice > n_choices + first_choice - 1)
3816 error (_("Argument must be choice number"));
3817 args = args2;
3818
3819 if (choice == 0)
3820 error (_("cancelled"));
3821
3822 if (choice < first_choice)
3823 {
3824 n_chosen = n_choices;
3825 for (j = 0; j < n_choices; j += 1)
3826 choices[j] = j;
3827 break;
3828 }
3829 choice -= first_choice;
3830
3831 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3832 {
3833 }
3834
3835 if (j < 0 || choice != choices[j])
3836 {
3837 int k;
3838
3839 for (k = n_chosen - 1; k > j; k -= 1)
3840 choices[k + 1] = choices[k];
3841 choices[j + 1] = choice;
3842 n_chosen += 1;
3843 }
3844 }
3845
3846 if (n_chosen > max_results)
3847 error (_("Select no more than %d of the above"), max_results);
3848
3849 return n_chosen;
3850 }
3851
3852 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3853 on the function identified by SYM and BLOCK, and taking NARGS
3854 arguments. Update *EXPP as needed to hold more space. */
3855
3856 static void
3857 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3858 int oplen, struct symbol *sym,
3859 const struct block *block)
3860 {
3861 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3862 symbol, -oplen for operator being replaced). */
3863 struct expression *newexp = (struct expression *)
3864 xzalloc (sizeof (struct expression)
3865 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3866 struct expression *exp = *expp;
3867
3868 newexp->nelts = exp->nelts + 7 - oplen;
3869 newexp->language_defn = exp->language_defn;
3870 newexp->gdbarch = exp->gdbarch;
3871 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3872 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3873 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3874
3875 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3876 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3877
3878 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3879 newexp->elts[pc + 4].block = block;
3880 newexp->elts[pc + 5].symbol = sym;
3881
3882 *expp = newexp;
3883 xfree (exp);
3884 }
3885
3886 /* Type-class predicates */
3887
3888 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3889 or FLOAT). */
3890
3891 static int
3892 numeric_type_p (struct type *type)
3893 {
3894 if (type == NULL)
3895 return 0;
3896 else
3897 {
3898 switch (TYPE_CODE (type))
3899 {
3900 case TYPE_CODE_INT:
3901 case TYPE_CODE_FLT:
3902 return 1;
3903 case TYPE_CODE_RANGE:
3904 return (type == TYPE_TARGET_TYPE (type)
3905 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3906 default:
3907 return 0;
3908 }
3909 }
3910 }
3911
3912 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3913
3914 static int
3915 integer_type_p (struct type *type)
3916 {
3917 if (type == NULL)
3918 return 0;
3919 else
3920 {
3921 switch (TYPE_CODE (type))
3922 {
3923 case TYPE_CODE_INT:
3924 return 1;
3925 case TYPE_CODE_RANGE:
3926 return (type == TYPE_TARGET_TYPE (type)
3927 || integer_type_p (TYPE_TARGET_TYPE (type)));
3928 default:
3929 return 0;
3930 }
3931 }
3932 }
3933
3934 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3935
3936 static int
3937 scalar_type_p (struct type *type)
3938 {
3939 if (type == NULL)
3940 return 0;
3941 else
3942 {
3943 switch (TYPE_CODE (type))
3944 {
3945 case TYPE_CODE_INT:
3946 case TYPE_CODE_RANGE:
3947 case TYPE_CODE_ENUM:
3948 case TYPE_CODE_FLT:
3949 return 1;
3950 default:
3951 return 0;
3952 }
3953 }
3954 }
3955
3956 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3957
3958 static int
3959 discrete_type_p (struct type *type)
3960 {
3961 if (type == NULL)
3962 return 0;
3963 else
3964 {
3965 switch (TYPE_CODE (type))
3966 {
3967 case TYPE_CODE_INT:
3968 case TYPE_CODE_RANGE:
3969 case TYPE_CODE_ENUM:
3970 case TYPE_CODE_BOOL:
3971 return 1;
3972 default:
3973 return 0;
3974 }
3975 }
3976 }
3977
3978 /* Returns non-zero if OP with operands in the vector ARGS could be
3979 a user-defined function. Errs on the side of pre-defined operators
3980 (i.e., result 0). */
3981
3982 static int
3983 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3984 {
3985 struct type *type0 =
3986 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3987 struct type *type1 =
3988 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3989
3990 if (type0 == NULL)
3991 return 0;
3992
3993 switch (op)
3994 {
3995 default:
3996 return 0;
3997
3998 case BINOP_ADD:
3999 case BINOP_SUB:
4000 case BINOP_MUL:
4001 case BINOP_DIV:
4002 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4003
4004 case BINOP_REM:
4005 case BINOP_MOD:
4006 case BINOP_BITWISE_AND:
4007 case BINOP_BITWISE_IOR:
4008 case BINOP_BITWISE_XOR:
4009 return (!(integer_type_p (type0) && integer_type_p (type1)));
4010
4011 case BINOP_EQUAL:
4012 case BINOP_NOTEQUAL:
4013 case BINOP_LESS:
4014 case BINOP_GTR:
4015 case BINOP_LEQ:
4016 case BINOP_GEQ:
4017 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4018
4019 case BINOP_CONCAT:
4020 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4021
4022 case BINOP_EXP:
4023 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4024
4025 case UNOP_NEG:
4026 case UNOP_PLUS:
4027 case UNOP_LOGICAL_NOT:
4028 case UNOP_ABS:
4029 return (!numeric_type_p (type0));
4030
4031 }
4032 }
4033 \f
4034 /* Renaming */
4035
4036 /* NOTES:
4037
4038 1. In the following, we assume that a renaming type's name may
4039 have an ___XD suffix. It would be nice if this went away at some
4040 point.
4041 2. We handle both the (old) purely type-based representation of
4042 renamings and the (new) variable-based encoding. At some point,
4043 it is devoutly to be hoped that the former goes away
4044 (FIXME: hilfinger-2007-07-09).
4045 3. Subprogram renamings are not implemented, although the XRS
4046 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4047
4048 /* If SYM encodes a renaming,
4049
4050 <renaming> renames <renamed entity>,
4051
4052 sets *LEN to the length of the renamed entity's name,
4053 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4054 the string describing the subcomponent selected from the renamed
4055 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4056 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4057 are undefined). Otherwise, returns a value indicating the category
4058 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4059 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4060 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4061 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4062 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4063 may be NULL, in which case they are not assigned.
4064
4065 [Currently, however, GCC does not generate subprogram renamings.] */
4066
4067 enum ada_renaming_category
4068 ada_parse_renaming (struct symbol *sym,
4069 const char **renamed_entity, int *len,
4070 const char **renaming_expr)
4071 {
4072 enum ada_renaming_category kind;
4073 const char *info;
4074 const char *suffix;
4075
4076 if (sym == NULL)
4077 return ADA_NOT_RENAMING;
4078 switch (SYMBOL_CLASS (sym))
4079 {
4080 default:
4081 return ADA_NOT_RENAMING;
4082 case LOC_TYPEDEF:
4083 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4084 renamed_entity, len, renaming_expr);
4085 case LOC_LOCAL:
4086 case LOC_STATIC:
4087 case LOC_COMPUTED:
4088 case LOC_OPTIMIZED_OUT:
4089 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4090 if (info == NULL)
4091 return ADA_NOT_RENAMING;
4092 switch (info[5])
4093 {
4094 case '_':
4095 kind = ADA_OBJECT_RENAMING;
4096 info += 6;
4097 break;
4098 case 'E':
4099 kind = ADA_EXCEPTION_RENAMING;
4100 info += 7;
4101 break;
4102 case 'P':
4103 kind = ADA_PACKAGE_RENAMING;
4104 info += 7;
4105 break;
4106 case 'S':
4107 kind = ADA_SUBPROGRAM_RENAMING;
4108 info += 7;
4109 break;
4110 default:
4111 return ADA_NOT_RENAMING;
4112 }
4113 }
4114
4115 if (renamed_entity != NULL)
4116 *renamed_entity = info;
4117 suffix = strstr (info, "___XE");
4118 if (suffix == NULL || suffix == info)
4119 return ADA_NOT_RENAMING;
4120 if (len != NULL)
4121 *len = strlen (info) - strlen (suffix);
4122 suffix += 5;
4123 if (renaming_expr != NULL)
4124 *renaming_expr = suffix;
4125 return kind;
4126 }
4127
4128 /* Assuming TYPE encodes a renaming according to the old encoding in
4129 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4130 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4131 ADA_NOT_RENAMING otherwise. */
4132 static enum ada_renaming_category
4133 parse_old_style_renaming (struct type *type,
4134 const char **renamed_entity, int *len,
4135 const char **renaming_expr)
4136 {
4137 enum ada_renaming_category kind;
4138 const char *name;
4139 const char *info;
4140 const char *suffix;
4141
4142 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4143 || TYPE_NFIELDS (type) != 1)
4144 return ADA_NOT_RENAMING;
4145
4146 name = type_name_no_tag (type);
4147 if (name == NULL)
4148 return ADA_NOT_RENAMING;
4149
4150 name = strstr (name, "___XR");
4151 if (name == NULL)
4152 return ADA_NOT_RENAMING;
4153 switch (name[5])
4154 {
4155 case '\0':
4156 case '_':
4157 kind = ADA_OBJECT_RENAMING;
4158 break;
4159 case 'E':
4160 kind = ADA_EXCEPTION_RENAMING;
4161 break;
4162 case 'P':
4163 kind = ADA_PACKAGE_RENAMING;
4164 break;
4165 case 'S':
4166 kind = ADA_SUBPROGRAM_RENAMING;
4167 break;
4168 default:
4169 return ADA_NOT_RENAMING;
4170 }
4171
4172 info = TYPE_FIELD_NAME (type, 0);
4173 if (info == NULL)
4174 return ADA_NOT_RENAMING;
4175 if (renamed_entity != NULL)
4176 *renamed_entity = info;
4177 suffix = strstr (info, "___XE");
4178 if (renaming_expr != NULL)
4179 *renaming_expr = suffix + 5;
4180 if (suffix == NULL || suffix == info)
4181 return ADA_NOT_RENAMING;
4182 if (len != NULL)
4183 *len = suffix - info;
4184 return kind;
4185 }
4186
4187 /* Compute the value of the given RENAMING_SYM, which is expected to
4188 be a symbol encoding a renaming expression. BLOCK is the block
4189 used to evaluate the renaming. */
4190
4191 static struct value *
4192 ada_read_renaming_var_value (struct symbol *renaming_sym,
4193 const struct block *block)
4194 {
4195 const char *sym_name;
4196 struct expression *expr;
4197 struct value *value;
4198 struct cleanup *old_chain = NULL;
4199
4200 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4201 expr = parse_exp_1 (&sym_name, 0, block, 0);
4202 old_chain = make_cleanup (free_current_contents, &expr);
4203 value = evaluate_expression (expr);
4204
4205 do_cleanups (old_chain);
4206 return value;
4207 }
4208 \f
4209
4210 /* Evaluation: Function Calls */
4211
4212 /* Return an lvalue containing the value VAL. This is the identity on
4213 lvalues, and otherwise has the side-effect of allocating memory
4214 in the inferior where a copy of the value contents is copied. */
4215
4216 static struct value *
4217 ensure_lval (struct value *val)
4218 {
4219 if (VALUE_LVAL (val) == not_lval
4220 || VALUE_LVAL (val) == lval_internalvar)
4221 {
4222 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4223 const CORE_ADDR addr =
4224 value_as_long (value_allocate_space_in_inferior (len));
4225
4226 set_value_address (val, addr);
4227 VALUE_LVAL (val) = lval_memory;
4228 write_memory (addr, value_contents (val), len);
4229 }
4230
4231 return val;
4232 }
4233
4234 /* Return the value ACTUAL, converted to be an appropriate value for a
4235 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4236 allocating any necessary descriptors (fat pointers), or copies of
4237 values not residing in memory, updating it as needed. */
4238
4239 struct value *
4240 ada_convert_actual (struct value *actual, struct type *formal_type0)
4241 {
4242 struct type *actual_type = ada_check_typedef (value_type (actual));
4243 struct type *formal_type = ada_check_typedef (formal_type0);
4244 struct type *formal_target =
4245 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4246 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4247 struct type *actual_target =
4248 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4249 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4250
4251 if (ada_is_array_descriptor_type (formal_target)
4252 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4253 return make_array_descriptor (formal_type, actual);
4254 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4255 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4256 {
4257 struct value *result;
4258
4259 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4260 && ada_is_array_descriptor_type (actual_target))
4261 result = desc_data (actual);
4262 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4263 {
4264 if (VALUE_LVAL (actual) != lval_memory)
4265 {
4266 struct value *val;
4267
4268 actual_type = ada_check_typedef (value_type (actual));
4269 val = allocate_value (actual_type);
4270 memcpy ((char *) value_contents_raw (val),
4271 (char *) value_contents (actual),
4272 TYPE_LENGTH (actual_type));
4273 actual = ensure_lval (val);
4274 }
4275 result = value_addr (actual);
4276 }
4277 else
4278 return actual;
4279 return value_cast_pointers (formal_type, result, 0);
4280 }
4281 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4282 return ada_value_ind (actual);
4283
4284 return actual;
4285 }
4286
4287 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4288 type TYPE. This is usually an inefficient no-op except on some targets
4289 (such as AVR) where the representation of a pointer and an address
4290 differs. */
4291
4292 static CORE_ADDR
4293 value_pointer (struct value *value, struct type *type)
4294 {
4295 struct gdbarch *gdbarch = get_type_arch (type);
4296 unsigned len = TYPE_LENGTH (type);
4297 gdb_byte *buf = alloca (len);
4298 CORE_ADDR addr;
4299
4300 addr = value_address (value);
4301 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4302 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4303 return addr;
4304 }
4305
4306
4307 /* Push a descriptor of type TYPE for array value ARR on the stack at
4308 *SP, updating *SP to reflect the new descriptor. Return either
4309 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4310 to-descriptor type rather than a descriptor type), a struct value *
4311 representing a pointer to this descriptor. */
4312
4313 static struct value *
4314 make_array_descriptor (struct type *type, struct value *arr)
4315 {
4316 struct type *bounds_type = desc_bounds_type (type);
4317 struct type *desc_type = desc_base_type (type);
4318 struct value *descriptor = allocate_value (desc_type);
4319 struct value *bounds = allocate_value (bounds_type);
4320 int i;
4321
4322 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4323 i > 0; i -= 1)
4324 {
4325 modify_field (value_type (bounds), value_contents_writeable (bounds),
4326 ada_array_bound (arr, i, 0),
4327 desc_bound_bitpos (bounds_type, i, 0),
4328 desc_bound_bitsize (bounds_type, i, 0));
4329 modify_field (value_type (bounds), value_contents_writeable (bounds),
4330 ada_array_bound (arr, i, 1),
4331 desc_bound_bitpos (bounds_type, i, 1),
4332 desc_bound_bitsize (bounds_type, i, 1));
4333 }
4334
4335 bounds = ensure_lval (bounds);
4336
4337 modify_field (value_type (descriptor),
4338 value_contents_writeable (descriptor),
4339 value_pointer (ensure_lval (arr),
4340 TYPE_FIELD_TYPE (desc_type, 0)),
4341 fat_pntr_data_bitpos (desc_type),
4342 fat_pntr_data_bitsize (desc_type));
4343
4344 modify_field (value_type (descriptor),
4345 value_contents_writeable (descriptor),
4346 value_pointer (bounds,
4347 TYPE_FIELD_TYPE (desc_type, 1)),
4348 fat_pntr_bounds_bitpos (desc_type),
4349 fat_pntr_bounds_bitsize (desc_type));
4350
4351 descriptor = ensure_lval (descriptor);
4352
4353 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4354 return value_addr (descriptor);
4355 else
4356 return descriptor;
4357 }
4358 \f
4359 /* Symbol Cache Module */
4360
4361 /* Performance measurements made as of 2010-01-15 indicate that
4362 this cache does bring some noticeable improvements. Depending
4363 on the type of entity being printed, the cache can make it as much
4364 as an order of magnitude faster than without it.
4365
4366 The descriptive type DWARF extension has significantly reduced
4367 the need for this cache, at least when DWARF is being used. However,
4368 even in this case, some expensive name-based symbol searches are still
4369 sometimes necessary - to find an XVZ variable, mostly. */
4370
4371 /* Initialize the contents of SYM_CACHE. */
4372
4373 static void
4374 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4375 {
4376 obstack_init (&sym_cache->cache_space);
4377 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4378 }
4379
4380 /* Free the memory used by SYM_CACHE. */
4381
4382 static void
4383 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4384 {
4385 obstack_free (&sym_cache->cache_space, NULL);
4386 xfree (sym_cache);
4387 }
4388
4389 /* Return the symbol cache associated to the given program space PSPACE.
4390 If not allocated for this PSPACE yet, allocate and initialize one. */
4391
4392 static struct ada_symbol_cache *
4393 ada_get_symbol_cache (struct program_space *pspace)
4394 {
4395 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4396 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4397
4398 if (sym_cache == NULL)
4399 {
4400 sym_cache = XCNEW (struct ada_symbol_cache);
4401 ada_init_symbol_cache (sym_cache);
4402 }
4403
4404 return sym_cache;
4405 }
4406
4407 /* Clear all entries from the symbol cache. */
4408
4409 static void
4410 ada_clear_symbol_cache (void)
4411 {
4412 struct ada_symbol_cache *sym_cache
4413 = ada_get_symbol_cache (current_program_space);
4414
4415 obstack_free (&sym_cache->cache_space, NULL);
4416 ada_init_symbol_cache (sym_cache);
4417 }
4418
4419 /* Search our cache for an entry matching NAME and NAMESPACE.
4420 Return it if found, or NULL otherwise. */
4421
4422 static struct cache_entry **
4423 find_entry (const char *name, domain_enum namespace)
4424 {
4425 struct ada_symbol_cache *sym_cache
4426 = ada_get_symbol_cache (current_program_space);
4427 int h = msymbol_hash (name) % HASH_SIZE;
4428 struct cache_entry **e;
4429
4430 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4431 {
4432 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4433 return e;
4434 }
4435 return NULL;
4436 }
4437
4438 /* Search the symbol cache for an entry matching NAME and NAMESPACE.
4439 Return 1 if found, 0 otherwise.
4440
4441 If an entry was found and SYM is not NULL, set *SYM to the entry's
4442 SYM. Same principle for BLOCK if not NULL. */
4443
4444 static int
4445 lookup_cached_symbol (const char *name, domain_enum namespace,
4446 struct symbol **sym, const struct block **block)
4447 {
4448 struct cache_entry **e = find_entry (name, namespace);
4449
4450 if (e == NULL)
4451 return 0;
4452 if (sym != NULL)
4453 *sym = (*e)->sym;
4454 if (block != NULL)
4455 *block = (*e)->block;
4456 return 1;
4457 }
4458
4459 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4460 in domain NAMESPACE, save this result in our symbol cache. */
4461
4462 static void
4463 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4464 const struct block *block)
4465 {
4466 struct ada_symbol_cache *sym_cache
4467 = ada_get_symbol_cache (current_program_space);
4468 int h;
4469 char *copy;
4470 struct cache_entry *e;
4471
4472 /* Symbols for builtin types don't have a block.
4473 For now don't cache such symbols. */
4474 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4475 return;
4476
4477 /* If the symbol is a local symbol, then do not cache it, as a search
4478 for that symbol depends on the context. To determine whether
4479 the symbol is local or not, we check the block where we found it
4480 against the global and static blocks of its associated symtab. */
4481 if (sym
4482 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4483 GLOBAL_BLOCK) != block
4484 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4485 STATIC_BLOCK) != block)
4486 return;
4487
4488 h = msymbol_hash (name) % HASH_SIZE;
4489 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4490 sizeof (*e));
4491 e->next = sym_cache->root[h];
4492 sym_cache->root[h] = e;
4493 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4494 strcpy (copy, name);
4495 e->sym = sym;
4496 e->namespace = namespace;
4497 e->block = block;
4498 }
4499 \f
4500 /* Symbol Lookup */
4501
4502 /* Return nonzero if wild matching should be used when searching for
4503 all symbols matching LOOKUP_NAME.
4504
4505 LOOKUP_NAME is expected to be a symbol name after transformation
4506 for Ada lookups (see ada_name_for_lookup). */
4507
4508 static int
4509 should_use_wild_match (const char *lookup_name)
4510 {
4511 return (strstr (lookup_name, "__") == NULL);
4512 }
4513
4514 /* Return the result of a standard (literal, C-like) lookup of NAME in
4515 given DOMAIN, visible from lexical block BLOCK. */
4516
4517 static struct symbol *
4518 standard_lookup (const char *name, const struct block *block,
4519 domain_enum domain)
4520 {
4521 /* Initialize it just to avoid a GCC false warning. */
4522 struct symbol *sym = NULL;
4523
4524 if (lookup_cached_symbol (name, domain, &sym, NULL))
4525 return sym;
4526 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4527 cache_symbol (name, domain, sym, block_found);
4528 return sym;
4529 }
4530
4531
4532 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4533 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4534 since they contend in overloading in the same way. */
4535 static int
4536 is_nonfunction (struct ada_symbol_info syms[], int n)
4537 {
4538 int i;
4539
4540 for (i = 0; i < n; i += 1)
4541 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4542 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4543 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4544 return 1;
4545
4546 return 0;
4547 }
4548
4549 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4550 struct types. Otherwise, they may not. */
4551
4552 static int
4553 equiv_types (struct type *type0, struct type *type1)
4554 {
4555 if (type0 == type1)
4556 return 1;
4557 if (type0 == NULL || type1 == NULL
4558 || TYPE_CODE (type0) != TYPE_CODE (type1))
4559 return 0;
4560 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4561 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4562 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4563 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4564 return 1;
4565
4566 return 0;
4567 }
4568
4569 /* True iff SYM0 represents the same entity as SYM1, or one that is
4570 no more defined than that of SYM1. */
4571
4572 static int
4573 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4574 {
4575 if (sym0 == sym1)
4576 return 1;
4577 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4578 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4579 return 0;
4580
4581 switch (SYMBOL_CLASS (sym0))
4582 {
4583 case LOC_UNDEF:
4584 return 1;
4585 case LOC_TYPEDEF:
4586 {
4587 struct type *type0 = SYMBOL_TYPE (sym0);
4588 struct type *type1 = SYMBOL_TYPE (sym1);
4589 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4590 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4591 int len0 = strlen (name0);
4592
4593 return
4594 TYPE_CODE (type0) == TYPE_CODE (type1)
4595 && (equiv_types (type0, type1)
4596 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4597 && strncmp (name1 + len0, "___XV", 5) == 0));
4598 }
4599 case LOC_CONST:
4600 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4601 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4602 default:
4603 return 0;
4604 }
4605 }
4606
4607 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4608 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4609
4610 static void
4611 add_defn_to_vec (struct obstack *obstackp,
4612 struct symbol *sym,
4613 const struct block *block)
4614 {
4615 int i;
4616 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4617
4618 /* Do not try to complete stub types, as the debugger is probably
4619 already scanning all symbols matching a certain name at the
4620 time when this function is called. Trying to replace the stub
4621 type by its associated full type will cause us to restart a scan
4622 which may lead to an infinite recursion. Instead, the client
4623 collecting the matching symbols will end up collecting several
4624 matches, with at least one of them complete. It can then filter
4625 out the stub ones if needed. */
4626
4627 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4628 {
4629 if (lesseq_defined_than (sym, prevDefns[i].sym))
4630 return;
4631 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4632 {
4633 prevDefns[i].sym = sym;
4634 prevDefns[i].block = block;
4635 return;
4636 }
4637 }
4638
4639 {
4640 struct ada_symbol_info info;
4641
4642 info.sym = sym;
4643 info.block = block;
4644 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4645 }
4646 }
4647
4648 /* Number of ada_symbol_info structures currently collected in
4649 current vector in *OBSTACKP. */
4650
4651 static int
4652 num_defns_collected (struct obstack *obstackp)
4653 {
4654 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4655 }
4656
4657 /* Vector of ada_symbol_info structures currently collected in current
4658 vector in *OBSTACKP. If FINISH, close off the vector and return
4659 its final address. */
4660
4661 static struct ada_symbol_info *
4662 defns_collected (struct obstack *obstackp, int finish)
4663 {
4664 if (finish)
4665 return obstack_finish (obstackp);
4666 else
4667 return (struct ada_symbol_info *) obstack_base (obstackp);
4668 }
4669
4670 /* Return a bound minimal symbol matching NAME according to Ada
4671 decoding rules. Returns an invalid symbol if there is no such
4672 minimal symbol. Names prefixed with "standard__" are handled
4673 specially: "standard__" is first stripped off, and only static and
4674 global symbols are searched. */
4675
4676 struct bound_minimal_symbol
4677 ada_lookup_simple_minsym (const char *name)
4678 {
4679 struct bound_minimal_symbol result;
4680 struct objfile *objfile;
4681 struct minimal_symbol *msymbol;
4682 const int wild_match_p = should_use_wild_match (name);
4683
4684 memset (&result, 0, sizeof (result));
4685
4686 /* Special case: If the user specifies a symbol name inside package
4687 Standard, do a non-wild matching of the symbol name without
4688 the "standard__" prefix. This was primarily introduced in order
4689 to allow the user to specifically access the standard exceptions
4690 using, for instance, Standard.Constraint_Error when Constraint_Error
4691 is ambiguous (due to the user defining its own Constraint_Error
4692 entity inside its program). */
4693 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4694 name += sizeof ("standard__") - 1;
4695
4696 ALL_MSYMBOLS (objfile, msymbol)
4697 {
4698 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4699 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4700 {
4701 result.minsym = msymbol;
4702 result.objfile = objfile;
4703 break;
4704 }
4705 }
4706
4707 return result;
4708 }
4709
4710 /* For all subprograms that statically enclose the subprogram of the
4711 selected frame, add symbols matching identifier NAME in DOMAIN
4712 and their blocks to the list of data in OBSTACKP, as for
4713 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4714 with a wildcard prefix. */
4715
4716 static void
4717 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4718 const char *name, domain_enum namespace,
4719 int wild_match_p)
4720 {
4721 }
4722
4723 /* True if TYPE is definitely an artificial type supplied to a symbol
4724 for which no debugging information was given in the symbol file. */
4725
4726 static int
4727 is_nondebugging_type (struct type *type)
4728 {
4729 const char *name = ada_type_name (type);
4730
4731 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4732 }
4733
4734 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4735 that are deemed "identical" for practical purposes.
4736
4737 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4738 types and that their number of enumerals is identical (in other
4739 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4740
4741 static int
4742 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4743 {
4744 int i;
4745
4746 /* The heuristic we use here is fairly conservative. We consider
4747 that 2 enumerate types are identical if they have the same
4748 number of enumerals and that all enumerals have the same
4749 underlying value and name. */
4750
4751 /* All enums in the type should have an identical underlying value. */
4752 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4753 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4754 return 0;
4755
4756 /* All enumerals should also have the same name (modulo any numerical
4757 suffix). */
4758 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4759 {
4760 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4761 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4762 int len_1 = strlen (name_1);
4763 int len_2 = strlen (name_2);
4764
4765 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4766 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4767 if (len_1 != len_2
4768 || strncmp (TYPE_FIELD_NAME (type1, i),
4769 TYPE_FIELD_NAME (type2, i),
4770 len_1) != 0)
4771 return 0;
4772 }
4773
4774 return 1;
4775 }
4776
4777 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4778 that are deemed "identical" for practical purposes. Sometimes,
4779 enumerals are not strictly identical, but their types are so similar
4780 that they can be considered identical.
4781
4782 For instance, consider the following code:
4783
4784 type Color is (Black, Red, Green, Blue, White);
4785 type RGB_Color is new Color range Red .. Blue;
4786
4787 Type RGB_Color is a subrange of an implicit type which is a copy
4788 of type Color. If we call that implicit type RGB_ColorB ("B" is
4789 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4790 As a result, when an expression references any of the enumeral
4791 by name (Eg. "print green"), the expression is technically
4792 ambiguous and the user should be asked to disambiguate. But
4793 doing so would only hinder the user, since it wouldn't matter
4794 what choice he makes, the outcome would always be the same.
4795 So, for practical purposes, we consider them as the same. */
4796
4797 static int
4798 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4799 {
4800 int i;
4801
4802 /* Before performing a thorough comparison check of each type,
4803 we perform a series of inexpensive checks. We expect that these
4804 checks will quickly fail in the vast majority of cases, and thus
4805 help prevent the unnecessary use of a more expensive comparison.
4806 Said comparison also expects us to make some of these checks
4807 (see ada_identical_enum_types_p). */
4808
4809 /* Quick check: All symbols should have an enum type. */
4810 for (i = 0; i < nsyms; i++)
4811 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4812 return 0;
4813
4814 /* Quick check: They should all have the same value. */
4815 for (i = 1; i < nsyms; i++)
4816 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4817 return 0;
4818
4819 /* Quick check: They should all have the same number of enumerals. */
4820 for (i = 1; i < nsyms; i++)
4821 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4822 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4823 return 0;
4824
4825 /* All the sanity checks passed, so we might have a set of
4826 identical enumeration types. Perform a more complete
4827 comparison of the type of each symbol. */
4828 for (i = 1; i < nsyms; i++)
4829 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4830 SYMBOL_TYPE (syms[0].sym)))
4831 return 0;
4832
4833 return 1;
4834 }
4835
4836 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4837 duplicate other symbols in the list (The only case I know of where
4838 this happens is when object files containing stabs-in-ecoff are
4839 linked with files containing ordinary ecoff debugging symbols (or no
4840 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4841 Returns the number of items in the modified list. */
4842
4843 static int
4844 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4845 {
4846 int i, j;
4847
4848 /* We should never be called with less than 2 symbols, as there
4849 cannot be any extra symbol in that case. But it's easy to
4850 handle, since we have nothing to do in that case. */
4851 if (nsyms < 2)
4852 return nsyms;
4853
4854 i = 0;
4855 while (i < nsyms)
4856 {
4857 int remove_p = 0;
4858
4859 /* If two symbols have the same name and one of them is a stub type,
4860 the get rid of the stub. */
4861
4862 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4863 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4864 {
4865 for (j = 0; j < nsyms; j++)
4866 {
4867 if (j != i
4868 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4869 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4870 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4871 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4872 remove_p = 1;
4873 }
4874 }
4875
4876 /* Two symbols with the same name, same class and same address
4877 should be identical. */
4878
4879 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4880 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4881 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4882 {
4883 for (j = 0; j < nsyms; j += 1)
4884 {
4885 if (i != j
4886 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4887 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4888 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4889 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4890 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4891 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4892 remove_p = 1;
4893 }
4894 }
4895
4896 if (remove_p)
4897 {
4898 for (j = i + 1; j < nsyms; j += 1)
4899 syms[j - 1] = syms[j];
4900 nsyms -= 1;
4901 }
4902
4903 i += 1;
4904 }
4905
4906 /* If all the remaining symbols are identical enumerals, then
4907 just keep the first one and discard the rest.
4908
4909 Unlike what we did previously, we do not discard any entry
4910 unless they are ALL identical. This is because the symbol
4911 comparison is not a strict comparison, but rather a practical
4912 comparison. If all symbols are considered identical, then
4913 we can just go ahead and use the first one and discard the rest.
4914 But if we cannot reduce the list to a single element, we have
4915 to ask the user to disambiguate anyways. And if we have to
4916 present a multiple-choice menu, it's less confusing if the list
4917 isn't missing some choices that were identical and yet distinct. */
4918 if (symbols_are_identical_enums (syms, nsyms))
4919 nsyms = 1;
4920
4921 return nsyms;
4922 }
4923
4924 /* Given a type that corresponds to a renaming entity, use the type name
4925 to extract the scope (package name or function name, fully qualified,
4926 and following the GNAT encoding convention) where this renaming has been
4927 defined. The string returned needs to be deallocated after use. */
4928
4929 static char *
4930 xget_renaming_scope (struct type *renaming_type)
4931 {
4932 /* The renaming types adhere to the following convention:
4933 <scope>__<rename>___<XR extension>.
4934 So, to extract the scope, we search for the "___XR" extension,
4935 and then backtrack until we find the first "__". */
4936
4937 const char *name = type_name_no_tag (renaming_type);
4938 char *suffix = strstr (name, "___XR");
4939 char *last;
4940 int scope_len;
4941 char *scope;
4942
4943 /* Now, backtrack a bit until we find the first "__". Start looking
4944 at suffix - 3, as the <rename> part is at least one character long. */
4945
4946 for (last = suffix - 3; last > name; last--)
4947 if (last[0] == '_' && last[1] == '_')
4948 break;
4949
4950 /* Make a copy of scope and return it. */
4951
4952 scope_len = last - name;
4953 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4954
4955 strncpy (scope, name, scope_len);
4956 scope[scope_len] = '\0';
4957
4958 return scope;
4959 }
4960
4961 /* Return nonzero if NAME corresponds to a package name. */
4962
4963 static int
4964 is_package_name (const char *name)
4965 {
4966 /* Here, We take advantage of the fact that no symbols are generated
4967 for packages, while symbols are generated for each function.
4968 So the condition for NAME represent a package becomes equivalent
4969 to NAME not existing in our list of symbols. There is only one
4970 small complication with library-level functions (see below). */
4971
4972 char *fun_name;
4973
4974 /* If it is a function that has not been defined at library level,
4975 then we should be able to look it up in the symbols. */
4976 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4977 return 0;
4978
4979 /* Library-level function names start with "_ada_". See if function
4980 "_ada_" followed by NAME can be found. */
4981
4982 /* Do a quick check that NAME does not contain "__", since library-level
4983 functions names cannot contain "__" in them. */
4984 if (strstr (name, "__") != NULL)
4985 return 0;
4986
4987 fun_name = xstrprintf ("_ada_%s", name);
4988
4989 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4990 }
4991
4992 /* Return nonzero if SYM corresponds to a renaming entity that is
4993 not visible from FUNCTION_NAME. */
4994
4995 static int
4996 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4997 {
4998 char *scope;
4999 struct cleanup *old_chain;
5000
5001 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5002 return 0;
5003
5004 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5005 old_chain = make_cleanup (xfree, scope);
5006
5007 /* If the rename has been defined in a package, then it is visible. */
5008 if (is_package_name (scope))
5009 {
5010 do_cleanups (old_chain);
5011 return 0;
5012 }
5013
5014 /* Check that the rename is in the current function scope by checking
5015 that its name starts with SCOPE. */
5016
5017 /* If the function name starts with "_ada_", it means that it is
5018 a library-level function. Strip this prefix before doing the
5019 comparison, as the encoding for the renaming does not contain
5020 this prefix. */
5021 if (strncmp (function_name, "_ada_", 5) == 0)
5022 function_name += 5;
5023
5024 {
5025 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
5026
5027 do_cleanups (old_chain);
5028 return is_invisible;
5029 }
5030 }
5031
5032 /* Remove entries from SYMS that corresponds to a renaming entity that
5033 is not visible from the function associated with CURRENT_BLOCK or
5034 that is superfluous due to the presence of more specific renaming
5035 information. Places surviving symbols in the initial entries of
5036 SYMS and returns the number of surviving symbols.
5037
5038 Rationale:
5039 First, in cases where an object renaming is implemented as a
5040 reference variable, GNAT may produce both the actual reference
5041 variable and the renaming encoding. In this case, we discard the
5042 latter.
5043
5044 Second, GNAT emits a type following a specified encoding for each renaming
5045 entity. Unfortunately, STABS currently does not support the definition
5046 of types that are local to a given lexical block, so all renamings types
5047 are emitted at library level. As a consequence, if an application
5048 contains two renaming entities using the same name, and a user tries to
5049 print the value of one of these entities, the result of the ada symbol
5050 lookup will also contain the wrong renaming type.
5051
5052 This function partially covers for this limitation by attempting to
5053 remove from the SYMS list renaming symbols that should be visible
5054 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5055 method with the current information available. The implementation
5056 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5057
5058 - When the user tries to print a rename in a function while there
5059 is another rename entity defined in a package: Normally, the
5060 rename in the function has precedence over the rename in the
5061 package, so the latter should be removed from the list. This is
5062 currently not the case.
5063
5064 - This function will incorrectly remove valid renames if
5065 the CURRENT_BLOCK corresponds to a function which symbol name
5066 has been changed by an "Export" pragma. As a consequence,
5067 the user will be unable to print such rename entities. */
5068
5069 static int
5070 remove_irrelevant_renamings (struct ada_symbol_info *syms,
5071 int nsyms, const struct block *current_block)
5072 {
5073 struct symbol *current_function;
5074 const char *current_function_name;
5075 int i;
5076 int is_new_style_renaming;
5077
5078 /* If there is both a renaming foo___XR... encoded as a variable and
5079 a simple variable foo in the same block, discard the latter.
5080 First, zero out such symbols, then compress. */
5081 is_new_style_renaming = 0;
5082 for (i = 0; i < nsyms; i += 1)
5083 {
5084 struct symbol *sym = syms[i].sym;
5085 const struct block *block = syms[i].block;
5086 const char *name;
5087 const char *suffix;
5088
5089 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5090 continue;
5091 name = SYMBOL_LINKAGE_NAME (sym);
5092 suffix = strstr (name, "___XR");
5093
5094 if (suffix != NULL)
5095 {
5096 int name_len = suffix - name;
5097 int j;
5098
5099 is_new_style_renaming = 1;
5100 for (j = 0; j < nsyms; j += 1)
5101 if (i != j && syms[j].sym != NULL
5102 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5103 name_len) == 0
5104 && block == syms[j].block)
5105 syms[j].sym = NULL;
5106 }
5107 }
5108 if (is_new_style_renaming)
5109 {
5110 int j, k;
5111
5112 for (j = k = 0; j < nsyms; j += 1)
5113 if (syms[j].sym != NULL)
5114 {
5115 syms[k] = syms[j];
5116 k += 1;
5117 }
5118 return k;
5119 }
5120
5121 /* Extract the function name associated to CURRENT_BLOCK.
5122 Abort if unable to do so. */
5123
5124 if (current_block == NULL)
5125 return nsyms;
5126
5127 current_function = block_linkage_function (current_block);
5128 if (current_function == NULL)
5129 return nsyms;
5130
5131 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5132 if (current_function_name == NULL)
5133 return nsyms;
5134
5135 /* Check each of the symbols, and remove it from the list if it is
5136 a type corresponding to a renaming that is out of the scope of
5137 the current block. */
5138
5139 i = 0;
5140 while (i < nsyms)
5141 {
5142 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5143 == ADA_OBJECT_RENAMING
5144 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5145 {
5146 int j;
5147
5148 for (j = i + 1; j < nsyms; j += 1)
5149 syms[j - 1] = syms[j];
5150 nsyms -= 1;
5151 }
5152 else
5153 i += 1;
5154 }
5155
5156 return nsyms;
5157 }
5158
5159 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5160 whose name and domain match NAME and DOMAIN respectively.
5161 If no match was found, then extend the search to "enclosing"
5162 routines (in other words, if we're inside a nested function,
5163 search the symbols defined inside the enclosing functions).
5164 If WILD_MATCH_P is nonzero, perform the naming matching in
5165 "wild" mode (see function "wild_match" for more info).
5166
5167 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5168
5169 static void
5170 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5171 const struct block *block, domain_enum domain,
5172 int wild_match_p)
5173 {
5174 int block_depth = 0;
5175
5176 while (block != NULL)
5177 {
5178 block_depth += 1;
5179 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5180 wild_match_p);
5181
5182 /* If we found a non-function match, assume that's the one. */
5183 if (is_nonfunction (defns_collected (obstackp, 0),
5184 num_defns_collected (obstackp)))
5185 return;
5186
5187 block = BLOCK_SUPERBLOCK (block);
5188 }
5189
5190 /* If no luck so far, try to find NAME as a local symbol in some lexically
5191 enclosing subprogram. */
5192 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5193 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5194 }
5195
5196 /* An object of this type is used as the user_data argument when
5197 calling the map_matching_symbols method. */
5198
5199 struct match_data
5200 {
5201 struct objfile *objfile;
5202 struct obstack *obstackp;
5203 struct symbol *arg_sym;
5204 int found_sym;
5205 };
5206
5207 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5208 to a list of symbols. DATA0 is a pointer to a struct match_data *
5209 containing the obstack that collects the symbol list, the file that SYM
5210 must come from, a flag indicating whether a non-argument symbol has
5211 been found in the current block, and the last argument symbol
5212 passed in SYM within the current block (if any). When SYM is null,
5213 marking the end of a block, the argument symbol is added if no
5214 other has been found. */
5215
5216 static int
5217 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5218 {
5219 struct match_data *data = (struct match_data *) data0;
5220
5221 if (sym == NULL)
5222 {
5223 if (!data->found_sym && data->arg_sym != NULL)
5224 add_defn_to_vec (data->obstackp,
5225 fixup_symbol_section (data->arg_sym, data->objfile),
5226 block);
5227 data->found_sym = 0;
5228 data->arg_sym = NULL;
5229 }
5230 else
5231 {
5232 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5233 return 0;
5234 else if (SYMBOL_IS_ARGUMENT (sym))
5235 data->arg_sym = sym;
5236 else
5237 {
5238 data->found_sym = 1;
5239 add_defn_to_vec (data->obstackp,
5240 fixup_symbol_section (sym, data->objfile),
5241 block);
5242 }
5243 }
5244 return 0;
5245 }
5246
5247 /* Implements compare_names, but only applying the comparision using
5248 the given CASING. */
5249
5250 static int
5251 compare_names_with_case (const char *string1, const char *string2,
5252 enum case_sensitivity casing)
5253 {
5254 while (*string1 != '\0' && *string2 != '\0')
5255 {
5256 char c1, c2;
5257
5258 if (isspace (*string1) || isspace (*string2))
5259 return strcmp_iw_ordered (string1, string2);
5260
5261 if (casing == case_sensitive_off)
5262 {
5263 c1 = tolower (*string1);
5264 c2 = tolower (*string2);
5265 }
5266 else
5267 {
5268 c1 = *string1;
5269 c2 = *string2;
5270 }
5271 if (c1 != c2)
5272 break;
5273
5274 string1 += 1;
5275 string2 += 1;
5276 }
5277
5278 switch (*string1)
5279 {
5280 case '(':
5281 return strcmp_iw_ordered (string1, string2);
5282 case '_':
5283 if (*string2 == '\0')
5284 {
5285 if (is_name_suffix (string1))
5286 return 0;
5287 else
5288 return 1;
5289 }
5290 /* FALLTHROUGH */
5291 default:
5292 if (*string2 == '(')
5293 return strcmp_iw_ordered (string1, string2);
5294 else
5295 {
5296 if (casing == case_sensitive_off)
5297 return tolower (*string1) - tolower (*string2);
5298 else
5299 return *string1 - *string2;
5300 }
5301 }
5302 }
5303
5304 /* Compare STRING1 to STRING2, with results as for strcmp.
5305 Compatible with strcmp_iw_ordered in that...
5306
5307 strcmp_iw_ordered (STRING1, STRING2) <= 0
5308
5309 ... implies...
5310
5311 compare_names (STRING1, STRING2) <= 0
5312
5313 (they may differ as to what symbols compare equal). */
5314
5315 static int
5316 compare_names (const char *string1, const char *string2)
5317 {
5318 int result;
5319
5320 /* Similar to what strcmp_iw_ordered does, we need to perform
5321 a case-insensitive comparison first, and only resort to
5322 a second, case-sensitive, comparison if the first one was
5323 not sufficient to differentiate the two strings. */
5324
5325 result = compare_names_with_case (string1, string2, case_sensitive_off);
5326 if (result == 0)
5327 result = compare_names_with_case (string1, string2, case_sensitive_on);
5328
5329 return result;
5330 }
5331
5332 /* Add to OBSTACKP all non-local symbols whose name and domain match
5333 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5334 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5335
5336 static void
5337 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5338 domain_enum domain, int global,
5339 int is_wild_match)
5340 {
5341 struct objfile *objfile;
5342 struct match_data data;
5343
5344 memset (&data, 0, sizeof data);
5345 data.obstackp = obstackp;
5346
5347 ALL_OBJFILES (objfile)
5348 {
5349 data.objfile = objfile;
5350
5351 if (is_wild_match)
5352 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5353 aux_add_nonlocal_symbols, &data,
5354 wild_match, NULL);
5355 else
5356 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5357 aux_add_nonlocal_symbols, &data,
5358 full_match, compare_names);
5359 }
5360
5361 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5362 {
5363 ALL_OBJFILES (objfile)
5364 {
5365 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5366 strcpy (name1, "_ada_");
5367 strcpy (name1 + sizeof ("_ada_") - 1, name);
5368 data.objfile = objfile;
5369 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5370 global,
5371 aux_add_nonlocal_symbols,
5372 &data,
5373 full_match, compare_names);
5374 }
5375 }
5376 }
5377
5378 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5379 non-zero, enclosing scope and in global scopes, returning the number of
5380 matches.
5381 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5382 indicating the symbols found and the blocks and symbol tables (if
5383 any) in which they were found. This vector is transient---good only to
5384 the next call of ada_lookup_symbol_list.
5385
5386 When full_search is non-zero, any non-function/non-enumeral
5387 symbol match within the nest of blocks whose innermost member is BLOCK0,
5388 is the one match returned (no other matches in that or
5389 enclosing blocks is returned). If there are any matches in or
5390 surrounding BLOCK0, then these alone are returned.
5391
5392 Names prefixed with "standard__" are handled specially: "standard__"
5393 is first stripped off, and only static and global symbols are searched. */
5394
5395 static int
5396 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5397 domain_enum namespace,
5398 struct ada_symbol_info **results,
5399 int full_search)
5400 {
5401 struct symbol *sym;
5402 const struct block *block;
5403 const char *name;
5404 const int wild_match_p = should_use_wild_match (name0);
5405 int cacheIfUnique;
5406 int ndefns;
5407
5408 obstack_free (&symbol_list_obstack, NULL);
5409 obstack_init (&symbol_list_obstack);
5410
5411 cacheIfUnique = 0;
5412
5413 /* Search specified block and its superiors. */
5414
5415 name = name0;
5416 block = block0;
5417
5418 /* Special case: If the user specifies a symbol name inside package
5419 Standard, do a non-wild matching of the symbol name without
5420 the "standard__" prefix. This was primarily introduced in order
5421 to allow the user to specifically access the standard exceptions
5422 using, for instance, Standard.Constraint_Error when Constraint_Error
5423 is ambiguous (due to the user defining its own Constraint_Error
5424 entity inside its program). */
5425 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5426 {
5427 block = NULL;
5428 name = name0 + sizeof ("standard__") - 1;
5429 }
5430
5431 /* Check the non-global symbols. If we have ANY match, then we're done. */
5432
5433 if (block != NULL)
5434 {
5435 if (full_search)
5436 {
5437 ada_add_local_symbols (&symbol_list_obstack, name, block,
5438 namespace, wild_match_p);
5439 }
5440 else
5441 {
5442 /* In the !full_search case we're are being called by
5443 ada_iterate_over_symbols, and we don't want to search
5444 superblocks. */
5445 ada_add_block_symbols (&symbol_list_obstack, block, name,
5446 namespace, NULL, wild_match_p);
5447 }
5448 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5449 goto done;
5450 }
5451
5452 /* No non-global symbols found. Check our cache to see if we have
5453 already performed this search before. If we have, then return
5454 the same result. */
5455
5456 cacheIfUnique = 1;
5457 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5458 {
5459 if (sym != NULL)
5460 add_defn_to_vec (&symbol_list_obstack, sym, block);
5461 goto done;
5462 }
5463
5464 /* Search symbols from all global blocks. */
5465
5466 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5467 wild_match_p);
5468
5469 /* Now add symbols from all per-file blocks if we've gotten no hits
5470 (not strictly correct, but perhaps better than an error). */
5471
5472 if (num_defns_collected (&symbol_list_obstack) == 0)
5473 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5474 wild_match_p);
5475
5476 done:
5477 ndefns = num_defns_collected (&symbol_list_obstack);
5478 *results = defns_collected (&symbol_list_obstack, 1);
5479
5480 ndefns = remove_extra_symbols (*results, ndefns);
5481
5482 if (ndefns == 0 && full_search)
5483 cache_symbol (name0, namespace, NULL, NULL);
5484
5485 if (ndefns == 1 && full_search && cacheIfUnique)
5486 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5487
5488 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5489
5490 return ndefns;
5491 }
5492
5493 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5494 in global scopes, returning the number of matches, and setting *RESULTS
5495 to a vector of (SYM,BLOCK) tuples.
5496 See ada_lookup_symbol_list_worker for further details. */
5497
5498 int
5499 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5500 domain_enum domain, struct ada_symbol_info **results)
5501 {
5502 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5503 }
5504
5505 /* Implementation of the la_iterate_over_symbols method. */
5506
5507 static void
5508 ada_iterate_over_symbols (const struct block *block,
5509 const char *name, domain_enum domain,
5510 symbol_found_callback_ftype *callback,
5511 void *data)
5512 {
5513 int ndefs, i;
5514 struct ada_symbol_info *results;
5515
5516 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5517 for (i = 0; i < ndefs; ++i)
5518 {
5519 if (! (*callback) (results[i].sym, data))
5520 break;
5521 }
5522 }
5523
5524 /* If NAME is the name of an entity, return a string that should
5525 be used to look that entity up in Ada units. This string should
5526 be deallocated after use using xfree.
5527
5528 NAME can have any form that the "break" or "print" commands might
5529 recognize. In other words, it does not have to be the "natural"
5530 name, or the "encoded" name. */
5531
5532 char *
5533 ada_name_for_lookup (const char *name)
5534 {
5535 char *canon;
5536 int nlen = strlen (name);
5537
5538 if (name[0] == '<' && name[nlen - 1] == '>')
5539 {
5540 canon = xmalloc (nlen - 1);
5541 memcpy (canon, name + 1, nlen - 2);
5542 canon[nlen - 2] = '\0';
5543 }
5544 else
5545 canon = xstrdup (ada_encode (ada_fold_name (name)));
5546 return canon;
5547 }
5548
5549 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5550 to 1, but choosing the first symbol found if there are multiple
5551 choices.
5552
5553 The result is stored in *INFO, which must be non-NULL.
5554 If no match is found, INFO->SYM is set to NULL. */
5555
5556 void
5557 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5558 domain_enum namespace,
5559 struct ada_symbol_info *info)
5560 {
5561 struct ada_symbol_info *candidates;
5562 int n_candidates;
5563
5564 gdb_assert (info != NULL);
5565 memset (info, 0, sizeof (struct ada_symbol_info));
5566
5567 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5568 if (n_candidates == 0)
5569 return;
5570
5571 *info = candidates[0];
5572 info->sym = fixup_symbol_section (info->sym, NULL);
5573 }
5574
5575 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5576 scope and in global scopes, or NULL if none. NAME is folded and
5577 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5578 choosing the first symbol if there are multiple choices.
5579 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5580
5581 struct symbol *
5582 ada_lookup_symbol (const char *name, const struct block *block0,
5583 domain_enum namespace, int *is_a_field_of_this)
5584 {
5585 struct ada_symbol_info info;
5586
5587 if (is_a_field_of_this != NULL)
5588 *is_a_field_of_this = 0;
5589
5590 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5591 block0, namespace, &info);
5592 return info.sym;
5593 }
5594
5595 static struct symbol *
5596 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5597 const char *name,
5598 const struct block *block,
5599 const domain_enum domain)
5600 {
5601 struct symbol *sym;
5602
5603 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5604 if (sym != NULL)
5605 return sym;
5606
5607 /* If we haven't found a match at this point, try the primitive
5608 types. In other languages, this search is performed before
5609 searching for global symbols in order to short-circuit that
5610 global-symbol search if it happens that the name corresponds
5611 to a primitive type. But we cannot do the same in Ada, because
5612 it is perfectly legitimate for a program to declare a type which
5613 has the same name as a standard type. If looking up a type in
5614 that situation, we have traditionally ignored the primitive type
5615 in favor of user-defined types. This is why, unlike most other
5616 languages, we search the primitive types this late and only after
5617 having searched the global symbols without success. */
5618
5619 if (domain == VAR_DOMAIN)
5620 {
5621 struct gdbarch *gdbarch;
5622
5623 if (block == NULL)
5624 gdbarch = target_gdbarch ();
5625 else
5626 gdbarch = block_gdbarch (block);
5627 sym = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5628 if (sym != NULL)
5629 return sym;
5630 }
5631
5632 return NULL;
5633 }
5634
5635
5636 /* True iff STR is a possible encoded suffix of a normal Ada name
5637 that is to be ignored for matching purposes. Suffixes of parallel
5638 names (e.g., XVE) are not included here. Currently, the possible suffixes
5639 are given by any of the regular expressions:
5640
5641 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5642 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5643 TKB [subprogram suffix for task bodies]
5644 _E[0-9]+[bs]$ [protected object entry suffixes]
5645 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5646
5647 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5648 match is performed. This sequence is used to differentiate homonyms,
5649 is an optional part of a valid name suffix. */
5650
5651 static int
5652 is_name_suffix (const char *str)
5653 {
5654 int k;
5655 const char *matching;
5656 const int len = strlen (str);
5657
5658 /* Skip optional leading __[0-9]+. */
5659
5660 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5661 {
5662 str += 3;
5663 while (isdigit (str[0]))
5664 str += 1;
5665 }
5666
5667 /* [.$][0-9]+ */
5668
5669 if (str[0] == '.' || str[0] == '$')
5670 {
5671 matching = str + 1;
5672 while (isdigit (matching[0]))
5673 matching += 1;
5674 if (matching[0] == '\0')
5675 return 1;
5676 }
5677
5678 /* ___[0-9]+ */
5679
5680 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5681 {
5682 matching = str + 3;
5683 while (isdigit (matching[0]))
5684 matching += 1;
5685 if (matching[0] == '\0')
5686 return 1;
5687 }
5688
5689 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5690
5691 if (strcmp (str, "TKB") == 0)
5692 return 1;
5693
5694 #if 0
5695 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5696 with a N at the end. Unfortunately, the compiler uses the same
5697 convention for other internal types it creates. So treating
5698 all entity names that end with an "N" as a name suffix causes
5699 some regressions. For instance, consider the case of an enumerated
5700 type. To support the 'Image attribute, it creates an array whose
5701 name ends with N.
5702 Having a single character like this as a suffix carrying some
5703 information is a bit risky. Perhaps we should change the encoding
5704 to be something like "_N" instead. In the meantime, do not do
5705 the following check. */
5706 /* Protected Object Subprograms */
5707 if (len == 1 && str [0] == 'N')
5708 return 1;
5709 #endif
5710
5711 /* _E[0-9]+[bs]$ */
5712 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5713 {
5714 matching = str + 3;
5715 while (isdigit (matching[0]))
5716 matching += 1;
5717 if ((matching[0] == 'b' || matching[0] == 's')
5718 && matching [1] == '\0')
5719 return 1;
5720 }
5721
5722 /* ??? We should not modify STR directly, as we are doing below. This
5723 is fine in this case, but may become problematic later if we find
5724 that this alternative did not work, and want to try matching
5725 another one from the begining of STR. Since we modified it, we
5726 won't be able to find the begining of the string anymore! */
5727 if (str[0] == 'X')
5728 {
5729 str += 1;
5730 while (str[0] != '_' && str[0] != '\0')
5731 {
5732 if (str[0] != 'n' && str[0] != 'b')
5733 return 0;
5734 str += 1;
5735 }
5736 }
5737
5738 if (str[0] == '\000')
5739 return 1;
5740
5741 if (str[0] == '_')
5742 {
5743 if (str[1] != '_' || str[2] == '\000')
5744 return 0;
5745 if (str[2] == '_')
5746 {
5747 if (strcmp (str + 3, "JM") == 0)
5748 return 1;
5749 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5750 the LJM suffix in favor of the JM one. But we will
5751 still accept LJM as a valid suffix for a reasonable
5752 amount of time, just to allow ourselves to debug programs
5753 compiled using an older version of GNAT. */
5754 if (strcmp (str + 3, "LJM") == 0)
5755 return 1;
5756 if (str[3] != 'X')
5757 return 0;
5758 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5759 || str[4] == 'U' || str[4] == 'P')
5760 return 1;
5761 if (str[4] == 'R' && str[5] != 'T')
5762 return 1;
5763 return 0;
5764 }
5765 if (!isdigit (str[2]))
5766 return 0;
5767 for (k = 3; str[k] != '\0'; k += 1)
5768 if (!isdigit (str[k]) && str[k] != '_')
5769 return 0;
5770 return 1;
5771 }
5772 if (str[0] == '$' && isdigit (str[1]))
5773 {
5774 for (k = 2; str[k] != '\0'; k += 1)
5775 if (!isdigit (str[k]) && str[k] != '_')
5776 return 0;
5777 return 1;
5778 }
5779 return 0;
5780 }
5781
5782 /* Return non-zero if the string starting at NAME and ending before
5783 NAME_END contains no capital letters. */
5784
5785 static int
5786 is_valid_name_for_wild_match (const char *name0)
5787 {
5788 const char *decoded_name = ada_decode (name0);
5789 int i;
5790
5791 /* If the decoded name starts with an angle bracket, it means that
5792 NAME0 does not follow the GNAT encoding format. It should then
5793 not be allowed as a possible wild match. */
5794 if (decoded_name[0] == '<')
5795 return 0;
5796
5797 for (i=0; decoded_name[i] != '\0'; i++)
5798 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5799 return 0;
5800
5801 return 1;
5802 }
5803
5804 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5805 that could start a simple name. Assumes that *NAMEP points into
5806 the string beginning at NAME0. */
5807
5808 static int
5809 advance_wild_match (const char **namep, const char *name0, int target0)
5810 {
5811 const char *name = *namep;
5812
5813 while (1)
5814 {
5815 int t0, t1;
5816
5817 t0 = *name;
5818 if (t0 == '_')
5819 {
5820 t1 = name[1];
5821 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5822 {
5823 name += 1;
5824 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5825 break;
5826 else
5827 name += 1;
5828 }
5829 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5830 || name[2] == target0))
5831 {
5832 name += 2;
5833 break;
5834 }
5835 else
5836 return 0;
5837 }
5838 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5839 name += 1;
5840 else
5841 return 0;
5842 }
5843
5844 *namep = name;
5845 return 1;
5846 }
5847
5848 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5849 informational suffixes of NAME (i.e., for which is_name_suffix is
5850 true). Assumes that PATN is a lower-cased Ada simple name. */
5851
5852 static int
5853 wild_match (const char *name, const char *patn)
5854 {
5855 const char *p;
5856 const char *name0 = name;
5857
5858 while (1)
5859 {
5860 const char *match = name;
5861
5862 if (*name == *patn)
5863 {
5864 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5865 if (*p != *name)
5866 break;
5867 if (*p == '\0' && is_name_suffix (name))
5868 return match != name0 && !is_valid_name_for_wild_match (name0);
5869
5870 if (name[-1] == '_')
5871 name -= 1;
5872 }
5873 if (!advance_wild_match (&name, name0, *patn))
5874 return 1;
5875 }
5876 }
5877
5878 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5879 informational suffix. */
5880
5881 static int
5882 full_match (const char *sym_name, const char *search_name)
5883 {
5884 return !match_name (sym_name, search_name, 0);
5885 }
5886
5887
5888 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5889 vector *defn_symbols, updating the list of symbols in OBSTACKP
5890 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5891 OBJFILE is the section containing BLOCK. */
5892
5893 static void
5894 ada_add_block_symbols (struct obstack *obstackp,
5895 const struct block *block, const char *name,
5896 domain_enum domain, struct objfile *objfile,
5897 int wild)
5898 {
5899 struct block_iterator iter;
5900 int name_len = strlen (name);
5901 /* A matching argument symbol, if any. */
5902 struct symbol *arg_sym;
5903 /* Set true when we find a matching non-argument symbol. */
5904 int found_sym;
5905 struct symbol *sym;
5906
5907 arg_sym = NULL;
5908 found_sym = 0;
5909 if (wild)
5910 {
5911 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5912 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5913 {
5914 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5915 SYMBOL_DOMAIN (sym), domain)
5916 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5917 {
5918 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5919 continue;
5920 else if (SYMBOL_IS_ARGUMENT (sym))
5921 arg_sym = sym;
5922 else
5923 {
5924 found_sym = 1;
5925 add_defn_to_vec (obstackp,
5926 fixup_symbol_section (sym, objfile),
5927 block);
5928 }
5929 }
5930 }
5931 }
5932 else
5933 {
5934 for (sym = block_iter_match_first (block, name, full_match, &iter);
5935 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5936 {
5937 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5938 SYMBOL_DOMAIN (sym), domain))
5939 {
5940 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5941 {
5942 if (SYMBOL_IS_ARGUMENT (sym))
5943 arg_sym = sym;
5944 else
5945 {
5946 found_sym = 1;
5947 add_defn_to_vec (obstackp,
5948 fixup_symbol_section (sym, objfile),
5949 block);
5950 }
5951 }
5952 }
5953 }
5954 }
5955
5956 if (!found_sym && arg_sym != NULL)
5957 {
5958 add_defn_to_vec (obstackp,
5959 fixup_symbol_section (arg_sym, objfile),
5960 block);
5961 }
5962
5963 if (!wild)
5964 {
5965 arg_sym = NULL;
5966 found_sym = 0;
5967
5968 ALL_BLOCK_SYMBOLS (block, iter, sym)
5969 {
5970 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5971 SYMBOL_DOMAIN (sym), domain))
5972 {
5973 int cmp;
5974
5975 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5976 if (cmp == 0)
5977 {
5978 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5979 if (cmp == 0)
5980 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5981 name_len);
5982 }
5983
5984 if (cmp == 0
5985 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5986 {
5987 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5988 {
5989 if (SYMBOL_IS_ARGUMENT (sym))
5990 arg_sym = sym;
5991 else
5992 {
5993 found_sym = 1;
5994 add_defn_to_vec (obstackp,
5995 fixup_symbol_section (sym, objfile),
5996 block);
5997 }
5998 }
5999 }
6000 }
6001 }
6002
6003 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6004 They aren't parameters, right? */
6005 if (!found_sym && arg_sym != NULL)
6006 {
6007 add_defn_to_vec (obstackp,
6008 fixup_symbol_section (arg_sym, objfile),
6009 block);
6010 }
6011 }
6012 }
6013 \f
6014
6015 /* Symbol Completion */
6016
6017 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6018 name in a form that's appropriate for the completion. The result
6019 does not need to be deallocated, but is only good until the next call.
6020
6021 TEXT_LEN is equal to the length of TEXT.
6022 Perform a wild match if WILD_MATCH_P is set.
6023 ENCODED_P should be set if TEXT represents the start of a symbol name
6024 in its encoded form. */
6025
6026 static const char *
6027 symbol_completion_match (const char *sym_name,
6028 const char *text, int text_len,
6029 int wild_match_p, int encoded_p)
6030 {
6031 const int verbatim_match = (text[0] == '<');
6032 int match = 0;
6033
6034 if (verbatim_match)
6035 {
6036 /* Strip the leading angle bracket. */
6037 text = text + 1;
6038 text_len--;
6039 }
6040
6041 /* First, test against the fully qualified name of the symbol. */
6042
6043 if (strncmp (sym_name, text, text_len) == 0)
6044 match = 1;
6045
6046 if (match && !encoded_p)
6047 {
6048 /* One needed check before declaring a positive match is to verify
6049 that iff we are doing a verbatim match, the decoded version
6050 of the symbol name starts with '<'. Otherwise, this symbol name
6051 is not a suitable completion. */
6052 const char *sym_name_copy = sym_name;
6053 int has_angle_bracket;
6054
6055 sym_name = ada_decode (sym_name);
6056 has_angle_bracket = (sym_name[0] == '<');
6057 match = (has_angle_bracket == verbatim_match);
6058 sym_name = sym_name_copy;
6059 }
6060
6061 if (match && !verbatim_match)
6062 {
6063 /* When doing non-verbatim match, another check that needs to
6064 be done is to verify that the potentially matching symbol name
6065 does not include capital letters, because the ada-mode would
6066 not be able to understand these symbol names without the
6067 angle bracket notation. */
6068 const char *tmp;
6069
6070 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6071 if (*tmp != '\0')
6072 match = 0;
6073 }
6074
6075 /* Second: Try wild matching... */
6076
6077 if (!match && wild_match_p)
6078 {
6079 /* Since we are doing wild matching, this means that TEXT
6080 may represent an unqualified symbol name. We therefore must
6081 also compare TEXT against the unqualified name of the symbol. */
6082 sym_name = ada_unqualified_name (ada_decode (sym_name));
6083
6084 if (strncmp (sym_name, text, text_len) == 0)
6085 match = 1;
6086 }
6087
6088 /* Finally: If we found a mach, prepare the result to return. */
6089
6090 if (!match)
6091 return NULL;
6092
6093 if (verbatim_match)
6094 sym_name = add_angle_brackets (sym_name);
6095
6096 if (!encoded_p)
6097 sym_name = ada_decode (sym_name);
6098
6099 return sym_name;
6100 }
6101
6102 /* A companion function to ada_make_symbol_completion_list().
6103 Check if SYM_NAME represents a symbol which name would be suitable
6104 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6105 it is appended at the end of the given string vector SV.
6106
6107 ORIG_TEXT is the string original string from the user command
6108 that needs to be completed. WORD is the entire command on which
6109 completion should be performed. These two parameters are used to
6110 determine which part of the symbol name should be added to the
6111 completion vector.
6112 if WILD_MATCH_P is set, then wild matching is performed.
6113 ENCODED_P should be set if TEXT represents a symbol name in its
6114 encoded formed (in which case the completion should also be
6115 encoded). */
6116
6117 static void
6118 symbol_completion_add (VEC(char_ptr) **sv,
6119 const char *sym_name,
6120 const char *text, int text_len,
6121 const char *orig_text, const char *word,
6122 int wild_match_p, int encoded_p)
6123 {
6124 const char *match = symbol_completion_match (sym_name, text, text_len,
6125 wild_match_p, encoded_p);
6126 char *completion;
6127
6128 if (match == NULL)
6129 return;
6130
6131 /* We found a match, so add the appropriate completion to the given
6132 string vector. */
6133
6134 if (word == orig_text)
6135 {
6136 completion = xmalloc (strlen (match) + 5);
6137 strcpy (completion, match);
6138 }
6139 else if (word > orig_text)
6140 {
6141 /* Return some portion of sym_name. */
6142 completion = xmalloc (strlen (match) + 5);
6143 strcpy (completion, match + (word - orig_text));
6144 }
6145 else
6146 {
6147 /* Return some of ORIG_TEXT plus sym_name. */
6148 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6149 strncpy (completion, word, orig_text - word);
6150 completion[orig_text - word] = '\0';
6151 strcat (completion, match);
6152 }
6153
6154 VEC_safe_push (char_ptr, *sv, completion);
6155 }
6156
6157 /* An object of this type is passed as the user_data argument to the
6158 expand_symtabs_matching method. */
6159 struct add_partial_datum
6160 {
6161 VEC(char_ptr) **completions;
6162 const char *text;
6163 int text_len;
6164 const char *text0;
6165 const char *word;
6166 int wild_match;
6167 int encoded;
6168 };
6169
6170 /* A callback for expand_symtabs_matching. */
6171
6172 static int
6173 ada_complete_symbol_matcher (const char *name, void *user_data)
6174 {
6175 struct add_partial_datum *data = user_data;
6176
6177 return symbol_completion_match (name, data->text, data->text_len,
6178 data->wild_match, data->encoded) != NULL;
6179 }
6180
6181 /* Return a list of possible symbol names completing TEXT0. WORD is
6182 the entire command on which completion is made. */
6183
6184 static VEC (char_ptr) *
6185 ada_make_symbol_completion_list (const char *text0, const char *word,
6186 enum type_code code)
6187 {
6188 char *text;
6189 int text_len;
6190 int wild_match_p;
6191 int encoded_p;
6192 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6193 struct symbol *sym;
6194 struct compunit_symtab *s;
6195 struct minimal_symbol *msymbol;
6196 struct objfile *objfile;
6197 const struct block *b, *surrounding_static_block = 0;
6198 int i;
6199 struct block_iterator iter;
6200 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6201
6202 gdb_assert (code == TYPE_CODE_UNDEF);
6203
6204 if (text0[0] == '<')
6205 {
6206 text = xstrdup (text0);
6207 make_cleanup (xfree, text);
6208 text_len = strlen (text);
6209 wild_match_p = 0;
6210 encoded_p = 1;
6211 }
6212 else
6213 {
6214 text = xstrdup (ada_encode (text0));
6215 make_cleanup (xfree, text);
6216 text_len = strlen (text);
6217 for (i = 0; i < text_len; i++)
6218 text[i] = tolower (text[i]);
6219
6220 encoded_p = (strstr (text0, "__") != NULL);
6221 /* If the name contains a ".", then the user is entering a fully
6222 qualified entity name, and the match must not be done in wild
6223 mode. Similarly, if the user wants to complete what looks like
6224 an encoded name, the match must not be done in wild mode. */
6225 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6226 }
6227
6228 /* First, look at the partial symtab symbols. */
6229 {
6230 struct add_partial_datum data;
6231
6232 data.completions = &completions;
6233 data.text = text;
6234 data.text_len = text_len;
6235 data.text0 = text0;
6236 data.word = word;
6237 data.wild_match = wild_match_p;
6238 data.encoded = encoded_p;
6239 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6240 &data);
6241 }
6242
6243 /* At this point scan through the misc symbol vectors and add each
6244 symbol you find to the list. Eventually we want to ignore
6245 anything that isn't a text symbol (everything else will be
6246 handled by the psymtab code above). */
6247
6248 ALL_MSYMBOLS (objfile, msymbol)
6249 {
6250 QUIT;
6251 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6252 text, text_len, text0, word, wild_match_p,
6253 encoded_p);
6254 }
6255
6256 /* Search upwards from currently selected frame (so that we can
6257 complete on local vars. */
6258
6259 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6260 {
6261 if (!BLOCK_SUPERBLOCK (b))
6262 surrounding_static_block = b; /* For elmin of dups */
6263
6264 ALL_BLOCK_SYMBOLS (b, iter, sym)
6265 {
6266 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6267 text, text_len, text0, word,
6268 wild_match_p, encoded_p);
6269 }
6270 }
6271
6272 /* Go through the symtabs and check the externs and statics for
6273 symbols which match. */
6274
6275 ALL_COMPUNITS (objfile, s)
6276 {
6277 QUIT;
6278 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6279 ALL_BLOCK_SYMBOLS (b, iter, sym)
6280 {
6281 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6282 text, text_len, text0, word,
6283 wild_match_p, encoded_p);
6284 }
6285 }
6286
6287 ALL_COMPUNITS (objfile, s)
6288 {
6289 QUIT;
6290 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6291 /* Don't do this block twice. */
6292 if (b == surrounding_static_block)
6293 continue;
6294 ALL_BLOCK_SYMBOLS (b, iter, sym)
6295 {
6296 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6297 text, text_len, text0, word,
6298 wild_match_p, encoded_p);
6299 }
6300 }
6301
6302 do_cleanups (old_chain);
6303 return completions;
6304 }
6305
6306 /* Field Access */
6307
6308 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6309 for tagged types. */
6310
6311 static int
6312 ada_is_dispatch_table_ptr_type (struct type *type)
6313 {
6314 const char *name;
6315
6316 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6317 return 0;
6318
6319 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6320 if (name == NULL)
6321 return 0;
6322
6323 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6324 }
6325
6326 /* Return non-zero if TYPE is an interface tag. */
6327
6328 static int
6329 ada_is_interface_tag (struct type *type)
6330 {
6331 const char *name = TYPE_NAME (type);
6332
6333 if (name == NULL)
6334 return 0;
6335
6336 return (strcmp (name, "ada__tags__interface_tag") == 0);
6337 }
6338
6339 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6340 to be invisible to users. */
6341
6342 int
6343 ada_is_ignored_field (struct type *type, int field_num)
6344 {
6345 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6346 return 1;
6347
6348 /* Check the name of that field. */
6349 {
6350 const char *name = TYPE_FIELD_NAME (type, field_num);
6351
6352 /* Anonymous field names should not be printed.
6353 brobecker/2007-02-20: I don't think this can actually happen
6354 but we don't want to print the value of annonymous fields anyway. */
6355 if (name == NULL)
6356 return 1;
6357
6358 /* Normally, fields whose name start with an underscore ("_")
6359 are fields that have been internally generated by the compiler,
6360 and thus should not be printed. The "_parent" field is special,
6361 however: This is a field internally generated by the compiler
6362 for tagged types, and it contains the components inherited from
6363 the parent type. This field should not be printed as is, but
6364 should not be ignored either. */
6365 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6366 return 1;
6367 }
6368
6369 /* If this is the dispatch table of a tagged type or an interface tag,
6370 then ignore. */
6371 if (ada_is_tagged_type (type, 1)
6372 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6373 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6374 return 1;
6375
6376 /* Not a special field, so it should not be ignored. */
6377 return 0;
6378 }
6379
6380 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6381 pointer or reference type whose ultimate target has a tag field. */
6382
6383 int
6384 ada_is_tagged_type (struct type *type, int refok)
6385 {
6386 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6387 }
6388
6389 /* True iff TYPE represents the type of X'Tag */
6390
6391 int
6392 ada_is_tag_type (struct type *type)
6393 {
6394 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6395 return 0;
6396 else
6397 {
6398 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6399
6400 return (name != NULL
6401 && strcmp (name, "ada__tags__dispatch_table") == 0);
6402 }
6403 }
6404
6405 /* The type of the tag on VAL. */
6406
6407 struct type *
6408 ada_tag_type (struct value *val)
6409 {
6410 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6411 }
6412
6413 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6414 retired at Ada 05). */
6415
6416 static int
6417 is_ada95_tag (struct value *tag)
6418 {
6419 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6420 }
6421
6422 /* The value of the tag on VAL. */
6423
6424 struct value *
6425 ada_value_tag (struct value *val)
6426 {
6427 return ada_value_struct_elt (val, "_tag", 0);
6428 }
6429
6430 /* The value of the tag on the object of type TYPE whose contents are
6431 saved at VALADDR, if it is non-null, or is at memory address
6432 ADDRESS. */
6433
6434 static struct value *
6435 value_tag_from_contents_and_address (struct type *type,
6436 const gdb_byte *valaddr,
6437 CORE_ADDR address)
6438 {
6439 int tag_byte_offset;
6440 struct type *tag_type;
6441
6442 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6443 NULL, NULL, NULL))
6444 {
6445 const gdb_byte *valaddr1 = ((valaddr == NULL)
6446 ? NULL
6447 : valaddr + tag_byte_offset);
6448 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6449
6450 return value_from_contents_and_address (tag_type, valaddr1, address1);
6451 }
6452 return NULL;
6453 }
6454
6455 static struct type *
6456 type_from_tag (struct value *tag)
6457 {
6458 const char *type_name = ada_tag_name (tag);
6459
6460 if (type_name != NULL)
6461 return ada_find_any_type (ada_encode (type_name));
6462 return NULL;
6463 }
6464
6465 /* Given a value OBJ of a tagged type, return a value of this
6466 type at the base address of the object. The base address, as
6467 defined in Ada.Tags, it is the address of the primary tag of
6468 the object, and therefore where the field values of its full
6469 view can be fetched. */
6470
6471 struct value *
6472 ada_tag_value_at_base_address (struct value *obj)
6473 {
6474 volatile struct gdb_exception e;
6475 struct value *val;
6476 LONGEST offset_to_top = 0;
6477 struct type *ptr_type, *obj_type;
6478 struct value *tag;
6479 CORE_ADDR base_address;
6480
6481 obj_type = value_type (obj);
6482
6483 /* It is the responsability of the caller to deref pointers. */
6484
6485 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6486 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6487 return obj;
6488
6489 tag = ada_value_tag (obj);
6490 if (!tag)
6491 return obj;
6492
6493 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6494
6495 if (is_ada95_tag (tag))
6496 return obj;
6497
6498 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6499 ptr_type = lookup_pointer_type (ptr_type);
6500 val = value_cast (ptr_type, tag);
6501 if (!val)
6502 return obj;
6503
6504 /* It is perfectly possible that an exception be raised while
6505 trying to determine the base address, just like for the tag;
6506 see ada_tag_name for more details. We do not print the error
6507 message for the same reason. */
6508
6509 TRY_CATCH (e, RETURN_MASK_ERROR)
6510 {
6511 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6512 }
6513
6514 if (e.reason < 0)
6515 return obj;
6516
6517 /* If offset is null, nothing to do. */
6518
6519 if (offset_to_top == 0)
6520 return obj;
6521
6522 /* -1 is a special case in Ada.Tags; however, what should be done
6523 is not quite clear from the documentation. So do nothing for
6524 now. */
6525
6526 if (offset_to_top == -1)
6527 return obj;
6528
6529 base_address = value_address (obj) - offset_to_top;
6530 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6531
6532 /* Make sure that we have a proper tag at the new address.
6533 Otherwise, offset_to_top is bogus (which can happen when
6534 the object is not initialized yet). */
6535
6536 if (!tag)
6537 return obj;
6538
6539 obj_type = type_from_tag (tag);
6540
6541 if (!obj_type)
6542 return obj;
6543
6544 return value_from_contents_and_address (obj_type, NULL, base_address);
6545 }
6546
6547 /* Return the "ada__tags__type_specific_data" type. */
6548
6549 static struct type *
6550 ada_get_tsd_type (struct inferior *inf)
6551 {
6552 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6553
6554 if (data->tsd_type == 0)
6555 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6556 return data->tsd_type;
6557 }
6558
6559 /* Return the TSD (type-specific data) associated to the given TAG.
6560 TAG is assumed to be the tag of a tagged-type entity.
6561
6562 May return NULL if we are unable to get the TSD. */
6563
6564 static struct value *
6565 ada_get_tsd_from_tag (struct value *tag)
6566 {
6567 struct value *val;
6568 struct type *type;
6569
6570 /* First option: The TSD is simply stored as a field of our TAG.
6571 Only older versions of GNAT would use this format, but we have
6572 to test it first, because there are no visible markers for
6573 the current approach except the absence of that field. */
6574
6575 val = ada_value_struct_elt (tag, "tsd", 1);
6576 if (val)
6577 return val;
6578
6579 /* Try the second representation for the dispatch table (in which
6580 there is no explicit 'tsd' field in the referent of the tag pointer,
6581 and instead the tsd pointer is stored just before the dispatch
6582 table. */
6583
6584 type = ada_get_tsd_type (current_inferior());
6585 if (type == NULL)
6586 return NULL;
6587 type = lookup_pointer_type (lookup_pointer_type (type));
6588 val = value_cast (type, tag);
6589 if (val == NULL)
6590 return NULL;
6591 return value_ind (value_ptradd (val, -1));
6592 }
6593
6594 /* Given the TSD of a tag (type-specific data), return a string
6595 containing the name of the associated type.
6596
6597 The returned value is good until the next call. May return NULL
6598 if we are unable to determine the tag name. */
6599
6600 static char *
6601 ada_tag_name_from_tsd (struct value *tsd)
6602 {
6603 static char name[1024];
6604 char *p;
6605 struct value *val;
6606
6607 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6608 if (val == NULL)
6609 return NULL;
6610 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6611 for (p = name; *p != '\0'; p += 1)
6612 if (isalpha (*p))
6613 *p = tolower (*p);
6614 return name;
6615 }
6616
6617 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6618 a C string.
6619
6620 Return NULL if the TAG is not an Ada tag, or if we were unable to
6621 determine the name of that tag. The result is good until the next
6622 call. */
6623
6624 const char *
6625 ada_tag_name (struct value *tag)
6626 {
6627 volatile struct gdb_exception e;
6628 char *name = NULL;
6629
6630 if (!ada_is_tag_type (value_type (tag)))
6631 return NULL;
6632
6633 /* It is perfectly possible that an exception be raised while trying
6634 to determine the TAG's name, even under normal circumstances:
6635 The associated variable may be uninitialized or corrupted, for
6636 instance. We do not let any exception propagate past this point.
6637 instead we return NULL.
6638
6639 We also do not print the error message either (which often is very
6640 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6641 the caller print a more meaningful message if necessary. */
6642 TRY_CATCH (e, RETURN_MASK_ERROR)
6643 {
6644 struct value *tsd = ada_get_tsd_from_tag (tag);
6645
6646 if (tsd != NULL)
6647 name = ada_tag_name_from_tsd (tsd);
6648 }
6649
6650 return name;
6651 }
6652
6653 /* The parent type of TYPE, or NULL if none. */
6654
6655 struct type *
6656 ada_parent_type (struct type *type)
6657 {
6658 int i;
6659
6660 type = ada_check_typedef (type);
6661
6662 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6663 return NULL;
6664
6665 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6666 if (ada_is_parent_field (type, i))
6667 {
6668 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6669
6670 /* If the _parent field is a pointer, then dereference it. */
6671 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6672 parent_type = TYPE_TARGET_TYPE (parent_type);
6673 /* If there is a parallel XVS type, get the actual base type. */
6674 parent_type = ada_get_base_type (parent_type);
6675
6676 return ada_check_typedef (parent_type);
6677 }
6678
6679 return NULL;
6680 }
6681
6682 /* True iff field number FIELD_NUM of structure type TYPE contains the
6683 parent-type (inherited) fields of a derived type. Assumes TYPE is
6684 a structure type with at least FIELD_NUM+1 fields. */
6685
6686 int
6687 ada_is_parent_field (struct type *type, int field_num)
6688 {
6689 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6690
6691 return (name != NULL
6692 && (strncmp (name, "PARENT", 6) == 0
6693 || strncmp (name, "_parent", 7) == 0));
6694 }
6695
6696 /* True iff field number FIELD_NUM of structure type TYPE is a
6697 transparent wrapper field (which should be silently traversed when doing
6698 field selection and flattened when printing). Assumes TYPE is a
6699 structure type with at least FIELD_NUM+1 fields. Such fields are always
6700 structures. */
6701
6702 int
6703 ada_is_wrapper_field (struct type *type, int field_num)
6704 {
6705 const char *name = TYPE_FIELD_NAME (type, field_num);
6706
6707 return (name != NULL
6708 && (strncmp (name, "PARENT", 6) == 0
6709 || strcmp (name, "REP") == 0
6710 || strncmp (name, "_parent", 7) == 0
6711 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6712 }
6713
6714 /* True iff field number FIELD_NUM of structure or union type TYPE
6715 is a variant wrapper. Assumes TYPE is a structure type with at least
6716 FIELD_NUM+1 fields. */
6717
6718 int
6719 ada_is_variant_part (struct type *type, int field_num)
6720 {
6721 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6722
6723 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6724 || (is_dynamic_field (type, field_num)
6725 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6726 == TYPE_CODE_UNION)));
6727 }
6728
6729 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6730 whose discriminants are contained in the record type OUTER_TYPE,
6731 returns the type of the controlling discriminant for the variant.
6732 May return NULL if the type could not be found. */
6733
6734 struct type *
6735 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6736 {
6737 char *name = ada_variant_discrim_name (var_type);
6738
6739 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6740 }
6741
6742 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6743 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6744 represents a 'when others' clause; otherwise 0. */
6745
6746 int
6747 ada_is_others_clause (struct type *type, int field_num)
6748 {
6749 const char *name = TYPE_FIELD_NAME (type, field_num);
6750
6751 return (name != NULL && name[0] == 'O');
6752 }
6753
6754 /* Assuming that TYPE0 is the type of the variant part of a record,
6755 returns the name of the discriminant controlling the variant.
6756 The value is valid until the next call to ada_variant_discrim_name. */
6757
6758 char *
6759 ada_variant_discrim_name (struct type *type0)
6760 {
6761 static char *result = NULL;
6762 static size_t result_len = 0;
6763 struct type *type;
6764 const char *name;
6765 const char *discrim_end;
6766 const char *discrim_start;
6767
6768 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6769 type = TYPE_TARGET_TYPE (type0);
6770 else
6771 type = type0;
6772
6773 name = ada_type_name (type);
6774
6775 if (name == NULL || name[0] == '\000')
6776 return "";
6777
6778 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6779 discrim_end -= 1)
6780 {
6781 if (strncmp (discrim_end, "___XVN", 6) == 0)
6782 break;
6783 }
6784 if (discrim_end == name)
6785 return "";
6786
6787 for (discrim_start = discrim_end; discrim_start != name + 3;
6788 discrim_start -= 1)
6789 {
6790 if (discrim_start == name + 1)
6791 return "";
6792 if ((discrim_start > name + 3
6793 && strncmp (discrim_start - 3, "___", 3) == 0)
6794 || discrim_start[-1] == '.')
6795 break;
6796 }
6797
6798 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6799 strncpy (result, discrim_start, discrim_end - discrim_start);
6800 result[discrim_end - discrim_start] = '\0';
6801 return result;
6802 }
6803
6804 /* Scan STR for a subtype-encoded number, beginning at position K.
6805 Put the position of the character just past the number scanned in
6806 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6807 Return 1 if there was a valid number at the given position, and 0
6808 otherwise. A "subtype-encoded" number consists of the absolute value
6809 in decimal, followed by the letter 'm' to indicate a negative number.
6810 Assumes 0m does not occur. */
6811
6812 int
6813 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6814 {
6815 ULONGEST RU;
6816
6817 if (!isdigit (str[k]))
6818 return 0;
6819
6820 /* Do it the hard way so as not to make any assumption about
6821 the relationship of unsigned long (%lu scan format code) and
6822 LONGEST. */
6823 RU = 0;
6824 while (isdigit (str[k]))
6825 {
6826 RU = RU * 10 + (str[k] - '0');
6827 k += 1;
6828 }
6829
6830 if (str[k] == 'm')
6831 {
6832 if (R != NULL)
6833 *R = (-(LONGEST) (RU - 1)) - 1;
6834 k += 1;
6835 }
6836 else if (R != NULL)
6837 *R = (LONGEST) RU;
6838
6839 /* NOTE on the above: Technically, C does not say what the results of
6840 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6841 number representable as a LONGEST (although either would probably work
6842 in most implementations). When RU>0, the locution in the then branch
6843 above is always equivalent to the negative of RU. */
6844
6845 if (new_k != NULL)
6846 *new_k = k;
6847 return 1;
6848 }
6849
6850 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6851 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6852 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6853
6854 int
6855 ada_in_variant (LONGEST val, struct type *type, int field_num)
6856 {
6857 const char *name = TYPE_FIELD_NAME (type, field_num);
6858 int p;
6859
6860 p = 0;
6861 while (1)
6862 {
6863 switch (name[p])
6864 {
6865 case '\0':
6866 return 0;
6867 case 'S':
6868 {
6869 LONGEST W;
6870
6871 if (!ada_scan_number (name, p + 1, &W, &p))
6872 return 0;
6873 if (val == W)
6874 return 1;
6875 break;
6876 }
6877 case 'R':
6878 {
6879 LONGEST L, U;
6880
6881 if (!ada_scan_number (name, p + 1, &L, &p)
6882 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6883 return 0;
6884 if (val >= L && val <= U)
6885 return 1;
6886 break;
6887 }
6888 case 'O':
6889 return 1;
6890 default:
6891 return 0;
6892 }
6893 }
6894 }
6895
6896 /* FIXME: Lots of redundancy below. Try to consolidate. */
6897
6898 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6899 ARG_TYPE, extract and return the value of one of its (non-static)
6900 fields. FIELDNO says which field. Differs from value_primitive_field
6901 only in that it can handle packed values of arbitrary type. */
6902
6903 static struct value *
6904 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6905 struct type *arg_type)
6906 {
6907 struct type *type;
6908
6909 arg_type = ada_check_typedef (arg_type);
6910 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6911
6912 /* Handle packed fields. */
6913
6914 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6915 {
6916 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6917 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6918
6919 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6920 offset + bit_pos / 8,
6921 bit_pos % 8, bit_size, type);
6922 }
6923 else
6924 return value_primitive_field (arg1, offset, fieldno, arg_type);
6925 }
6926
6927 /* Find field with name NAME in object of type TYPE. If found,
6928 set the following for each argument that is non-null:
6929 - *FIELD_TYPE_P to the field's type;
6930 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6931 an object of that type;
6932 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6933 - *BIT_SIZE_P to its size in bits if the field is packed, and
6934 0 otherwise;
6935 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6936 fields up to but not including the desired field, or by the total
6937 number of fields if not found. A NULL value of NAME never
6938 matches; the function just counts visible fields in this case.
6939
6940 Returns 1 if found, 0 otherwise. */
6941
6942 static int
6943 find_struct_field (const char *name, struct type *type, int offset,
6944 struct type **field_type_p,
6945 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6946 int *index_p)
6947 {
6948 int i;
6949
6950 type = ada_check_typedef (type);
6951
6952 if (field_type_p != NULL)
6953 *field_type_p = NULL;
6954 if (byte_offset_p != NULL)
6955 *byte_offset_p = 0;
6956 if (bit_offset_p != NULL)
6957 *bit_offset_p = 0;
6958 if (bit_size_p != NULL)
6959 *bit_size_p = 0;
6960
6961 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6962 {
6963 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6964 int fld_offset = offset + bit_pos / 8;
6965 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6966
6967 if (t_field_name == NULL)
6968 continue;
6969
6970 else if (name != NULL && field_name_match (t_field_name, name))
6971 {
6972 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6973
6974 if (field_type_p != NULL)
6975 *field_type_p = TYPE_FIELD_TYPE (type, i);
6976 if (byte_offset_p != NULL)
6977 *byte_offset_p = fld_offset;
6978 if (bit_offset_p != NULL)
6979 *bit_offset_p = bit_pos % 8;
6980 if (bit_size_p != NULL)
6981 *bit_size_p = bit_size;
6982 return 1;
6983 }
6984 else if (ada_is_wrapper_field (type, i))
6985 {
6986 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6987 field_type_p, byte_offset_p, bit_offset_p,
6988 bit_size_p, index_p))
6989 return 1;
6990 }
6991 else if (ada_is_variant_part (type, i))
6992 {
6993 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6994 fixed type?? */
6995 int j;
6996 struct type *field_type
6997 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6998
6999 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7000 {
7001 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7002 fld_offset
7003 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7004 field_type_p, byte_offset_p,
7005 bit_offset_p, bit_size_p, index_p))
7006 return 1;
7007 }
7008 }
7009 else if (index_p != NULL)
7010 *index_p += 1;
7011 }
7012 return 0;
7013 }
7014
7015 /* Number of user-visible fields in record type TYPE. */
7016
7017 static int
7018 num_visible_fields (struct type *type)
7019 {
7020 int n;
7021
7022 n = 0;
7023 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7024 return n;
7025 }
7026
7027 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7028 and search in it assuming it has (class) type TYPE.
7029 If found, return value, else return NULL.
7030
7031 Searches recursively through wrapper fields (e.g., '_parent'). */
7032
7033 static struct value *
7034 ada_search_struct_field (char *name, struct value *arg, int offset,
7035 struct type *type)
7036 {
7037 int i;
7038
7039 type = ada_check_typedef (type);
7040 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7041 {
7042 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7043
7044 if (t_field_name == NULL)
7045 continue;
7046
7047 else if (field_name_match (t_field_name, name))
7048 return ada_value_primitive_field (arg, offset, i, type);
7049
7050 else if (ada_is_wrapper_field (type, i))
7051 {
7052 struct value *v = /* Do not let indent join lines here. */
7053 ada_search_struct_field (name, arg,
7054 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7055 TYPE_FIELD_TYPE (type, i));
7056
7057 if (v != NULL)
7058 return v;
7059 }
7060
7061 else if (ada_is_variant_part (type, i))
7062 {
7063 /* PNH: Do we ever get here? See find_struct_field. */
7064 int j;
7065 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7066 i));
7067 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7068
7069 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7070 {
7071 struct value *v = ada_search_struct_field /* Force line
7072 break. */
7073 (name, arg,
7074 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7075 TYPE_FIELD_TYPE (field_type, j));
7076
7077 if (v != NULL)
7078 return v;
7079 }
7080 }
7081 }
7082 return NULL;
7083 }
7084
7085 static struct value *ada_index_struct_field_1 (int *, struct value *,
7086 int, struct type *);
7087
7088
7089 /* Return field #INDEX in ARG, where the index is that returned by
7090 * find_struct_field through its INDEX_P argument. Adjust the address
7091 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7092 * If found, return value, else return NULL. */
7093
7094 static struct value *
7095 ada_index_struct_field (int index, struct value *arg, int offset,
7096 struct type *type)
7097 {
7098 return ada_index_struct_field_1 (&index, arg, offset, type);
7099 }
7100
7101
7102 /* Auxiliary function for ada_index_struct_field. Like
7103 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7104 * *INDEX_P. */
7105
7106 static struct value *
7107 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7108 struct type *type)
7109 {
7110 int i;
7111 type = ada_check_typedef (type);
7112
7113 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7114 {
7115 if (TYPE_FIELD_NAME (type, i) == NULL)
7116 continue;
7117 else if (ada_is_wrapper_field (type, i))
7118 {
7119 struct value *v = /* Do not let indent join lines here. */
7120 ada_index_struct_field_1 (index_p, arg,
7121 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7122 TYPE_FIELD_TYPE (type, i));
7123
7124 if (v != NULL)
7125 return v;
7126 }
7127
7128 else if (ada_is_variant_part (type, i))
7129 {
7130 /* PNH: Do we ever get here? See ada_search_struct_field,
7131 find_struct_field. */
7132 error (_("Cannot assign this kind of variant record"));
7133 }
7134 else if (*index_p == 0)
7135 return ada_value_primitive_field (arg, offset, i, type);
7136 else
7137 *index_p -= 1;
7138 }
7139 return NULL;
7140 }
7141
7142 /* Given ARG, a value of type (pointer or reference to a)*
7143 structure/union, extract the component named NAME from the ultimate
7144 target structure/union and return it as a value with its
7145 appropriate type.
7146
7147 The routine searches for NAME among all members of the structure itself
7148 and (recursively) among all members of any wrapper members
7149 (e.g., '_parent').
7150
7151 If NO_ERR, then simply return NULL in case of error, rather than
7152 calling error. */
7153
7154 struct value *
7155 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7156 {
7157 struct type *t, *t1;
7158 struct value *v;
7159
7160 v = NULL;
7161 t1 = t = ada_check_typedef (value_type (arg));
7162 if (TYPE_CODE (t) == TYPE_CODE_REF)
7163 {
7164 t1 = TYPE_TARGET_TYPE (t);
7165 if (t1 == NULL)
7166 goto BadValue;
7167 t1 = ada_check_typedef (t1);
7168 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7169 {
7170 arg = coerce_ref (arg);
7171 t = t1;
7172 }
7173 }
7174
7175 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7176 {
7177 t1 = TYPE_TARGET_TYPE (t);
7178 if (t1 == NULL)
7179 goto BadValue;
7180 t1 = ada_check_typedef (t1);
7181 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7182 {
7183 arg = value_ind (arg);
7184 t = t1;
7185 }
7186 else
7187 break;
7188 }
7189
7190 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7191 goto BadValue;
7192
7193 if (t1 == t)
7194 v = ada_search_struct_field (name, arg, 0, t);
7195 else
7196 {
7197 int bit_offset, bit_size, byte_offset;
7198 struct type *field_type;
7199 CORE_ADDR address;
7200
7201 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7202 address = value_address (ada_value_ind (arg));
7203 else
7204 address = value_address (ada_coerce_ref (arg));
7205
7206 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7207 if (find_struct_field (name, t1, 0,
7208 &field_type, &byte_offset, &bit_offset,
7209 &bit_size, NULL))
7210 {
7211 if (bit_size != 0)
7212 {
7213 if (TYPE_CODE (t) == TYPE_CODE_REF)
7214 arg = ada_coerce_ref (arg);
7215 else
7216 arg = ada_value_ind (arg);
7217 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7218 bit_offset, bit_size,
7219 field_type);
7220 }
7221 else
7222 v = value_at_lazy (field_type, address + byte_offset);
7223 }
7224 }
7225
7226 if (v != NULL || no_err)
7227 return v;
7228 else
7229 error (_("There is no member named %s."), name);
7230
7231 BadValue:
7232 if (no_err)
7233 return NULL;
7234 else
7235 error (_("Attempt to extract a component of "
7236 "a value that is not a record."));
7237 }
7238
7239 /* Given a type TYPE, look up the type of the component of type named NAME.
7240 If DISPP is non-null, add its byte displacement from the beginning of a
7241 structure (pointed to by a value) of type TYPE to *DISPP (does not
7242 work for packed fields).
7243
7244 Matches any field whose name has NAME as a prefix, possibly
7245 followed by "___".
7246
7247 TYPE can be either a struct or union. If REFOK, TYPE may also
7248 be a (pointer or reference)+ to a struct or union, and the
7249 ultimate target type will be searched.
7250
7251 Looks recursively into variant clauses and parent types.
7252
7253 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7254 TYPE is not a type of the right kind. */
7255
7256 static struct type *
7257 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7258 int noerr, int *dispp)
7259 {
7260 int i;
7261
7262 if (name == NULL)
7263 goto BadName;
7264
7265 if (refok && type != NULL)
7266 while (1)
7267 {
7268 type = ada_check_typedef (type);
7269 if (TYPE_CODE (type) != TYPE_CODE_PTR
7270 && TYPE_CODE (type) != TYPE_CODE_REF)
7271 break;
7272 type = TYPE_TARGET_TYPE (type);
7273 }
7274
7275 if (type == NULL
7276 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7277 && TYPE_CODE (type) != TYPE_CODE_UNION))
7278 {
7279 if (noerr)
7280 return NULL;
7281 else
7282 {
7283 target_terminal_ours ();
7284 gdb_flush (gdb_stdout);
7285 if (type == NULL)
7286 error (_("Type (null) is not a structure or union type"));
7287 else
7288 {
7289 /* XXX: type_sprint */
7290 fprintf_unfiltered (gdb_stderr, _("Type "));
7291 type_print (type, "", gdb_stderr, -1);
7292 error (_(" is not a structure or union type"));
7293 }
7294 }
7295 }
7296
7297 type = to_static_fixed_type (type);
7298
7299 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7300 {
7301 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7302 struct type *t;
7303 int disp;
7304
7305 if (t_field_name == NULL)
7306 continue;
7307
7308 else if (field_name_match (t_field_name, name))
7309 {
7310 if (dispp != NULL)
7311 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7312 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7313 }
7314
7315 else if (ada_is_wrapper_field (type, i))
7316 {
7317 disp = 0;
7318 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7319 0, 1, &disp);
7320 if (t != NULL)
7321 {
7322 if (dispp != NULL)
7323 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7324 return t;
7325 }
7326 }
7327
7328 else if (ada_is_variant_part (type, i))
7329 {
7330 int j;
7331 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7332 i));
7333
7334 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7335 {
7336 /* FIXME pnh 2008/01/26: We check for a field that is
7337 NOT wrapped in a struct, since the compiler sometimes
7338 generates these for unchecked variant types. Revisit
7339 if the compiler changes this practice. */
7340 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7341 disp = 0;
7342 if (v_field_name != NULL
7343 && field_name_match (v_field_name, name))
7344 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7345 else
7346 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7347 j),
7348 name, 0, 1, &disp);
7349
7350 if (t != NULL)
7351 {
7352 if (dispp != NULL)
7353 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7354 return t;
7355 }
7356 }
7357 }
7358
7359 }
7360
7361 BadName:
7362 if (!noerr)
7363 {
7364 target_terminal_ours ();
7365 gdb_flush (gdb_stdout);
7366 if (name == NULL)
7367 {
7368 /* XXX: type_sprint */
7369 fprintf_unfiltered (gdb_stderr, _("Type "));
7370 type_print (type, "", gdb_stderr, -1);
7371 error (_(" has no component named <null>"));
7372 }
7373 else
7374 {
7375 /* XXX: type_sprint */
7376 fprintf_unfiltered (gdb_stderr, _("Type "));
7377 type_print (type, "", gdb_stderr, -1);
7378 error (_(" has no component named %s"), name);
7379 }
7380 }
7381
7382 return NULL;
7383 }
7384
7385 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7386 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7387 represents an unchecked union (that is, the variant part of a
7388 record that is named in an Unchecked_Union pragma). */
7389
7390 static int
7391 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7392 {
7393 char *discrim_name = ada_variant_discrim_name (var_type);
7394
7395 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7396 == NULL);
7397 }
7398
7399
7400 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7401 within a value of type OUTER_TYPE that is stored in GDB at
7402 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7403 numbering from 0) is applicable. Returns -1 if none are. */
7404
7405 int
7406 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7407 const gdb_byte *outer_valaddr)
7408 {
7409 int others_clause;
7410 int i;
7411 char *discrim_name = ada_variant_discrim_name (var_type);
7412 struct value *outer;
7413 struct value *discrim;
7414 LONGEST discrim_val;
7415
7416 /* Using plain value_from_contents_and_address here causes problems
7417 because we will end up trying to resolve a type that is currently
7418 being constructed. */
7419 outer = value_from_contents_and_address_unresolved (outer_type,
7420 outer_valaddr, 0);
7421 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7422 if (discrim == NULL)
7423 return -1;
7424 discrim_val = value_as_long (discrim);
7425
7426 others_clause = -1;
7427 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7428 {
7429 if (ada_is_others_clause (var_type, i))
7430 others_clause = i;
7431 else if (ada_in_variant (discrim_val, var_type, i))
7432 return i;
7433 }
7434
7435 return others_clause;
7436 }
7437 \f
7438
7439
7440 /* Dynamic-Sized Records */
7441
7442 /* Strategy: The type ostensibly attached to a value with dynamic size
7443 (i.e., a size that is not statically recorded in the debugging
7444 data) does not accurately reflect the size or layout of the value.
7445 Our strategy is to convert these values to values with accurate,
7446 conventional types that are constructed on the fly. */
7447
7448 /* There is a subtle and tricky problem here. In general, we cannot
7449 determine the size of dynamic records without its data. However,
7450 the 'struct value' data structure, which GDB uses to represent
7451 quantities in the inferior process (the target), requires the size
7452 of the type at the time of its allocation in order to reserve space
7453 for GDB's internal copy of the data. That's why the
7454 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7455 rather than struct value*s.
7456
7457 However, GDB's internal history variables ($1, $2, etc.) are
7458 struct value*s containing internal copies of the data that are not, in
7459 general, the same as the data at their corresponding addresses in
7460 the target. Fortunately, the types we give to these values are all
7461 conventional, fixed-size types (as per the strategy described
7462 above), so that we don't usually have to perform the
7463 'to_fixed_xxx_type' conversions to look at their values.
7464 Unfortunately, there is one exception: if one of the internal
7465 history variables is an array whose elements are unconstrained
7466 records, then we will need to create distinct fixed types for each
7467 element selected. */
7468
7469 /* The upshot of all of this is that many routines take a (type, host
7470 address, target address) triple as arguments to represent a value.
7471 The host address, if non-null, is supposed to contain an internal
7472 copy of the relevant data; otherwise, the program is to consult the
7473 target at the target address. */
7474
7475 /* Assuming that VAL0 represents a pointer value, the result of
7476 dereferencing it. Differs from value_ind in its treatment of
7477 dynamic-sized types. */
7478
7479 struct value *
7480 ada_value_ind (struct value *val0)
7481 {
7482 struct value *val = value_ind (val0);
7483
7484 if (ada_is_tagged_type (value_type (val), 0))
7485 val = ada_tag_value_at_base_address (val);
7486
7487 return ada_to_fixed_value (val);
7488 }
7489
7490 /* The value resulting from dereferencing any "reference to"
7491 qualifiers on VAL0. */
7492
7493 static struct value *
7494 ada_coerce_ref (struct value *val0)
7495 {
7496 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7497 {
7498 struct value *val = val0;
7499
7500 val = coerce_ref (val);
7501
7502 if (ada_is_tagged_type (value_type (val), 0))
7503 val = ada_tag_value_at_base_address (val);
7504
7505 return ada_to_fixed_value (val);
7506 }
7507 else
7508 return val0;
7509 }
7510
7511 /* Return OFF rounded upward if necessary to a multiple of
7512 ALIGNMENT (a power of 2). */
7513
7514 static unsigned int
7515 align_value (unsigned int off, unsigned int alignment)
7516 {
7517 return (off + alignment - 1) & ~(alignment - 1);
7518 }
7519
7520 /* Return the bit alignment required for field #F of template type TYPE. */
7521
7522 static unsigned int
7523 field_alignment (struct type *type, int f)
7524 {
7525 const char *name = TYPE_FIELD_NAME (type, f);
7526 int len;
7527 int align_offset;
7528
7529 /* The field name should never be null, unless the debugging information
7530 is somehow malformed. In this case, we assume the field does not
7531 require any alignment. */
7532 if (name == NULL)
7533 return 1;
7534
7535 len = strlen (name);
7536
7537 if (!isdigit (name[len - 1]))
7538 return 1;
7539
7540 if (isdigit (name[len - 2]))
7541 align_offset = len - 2;
7542 else
7543 align_offset = len - 1;
7544
7545 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7546 return TARGET_CHAR_BIT;
7547
7548 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7549 }
7550
7551 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7552
7553 static struct symbol *
7554 ada_find_any_type_symbol (const char *name)
7555 {
7556 struct symbol *sym;
7557
7558 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7559 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7560 return sym;
7561
7562 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7563 return sym;
7564 }
7565
7566 /* Find a type named NAME. Ignores ambiguity. This routine will look
7567 solely for types defined by debug info, it will not search the GDB
7568 primitive types. */
7569
7570 static struct type *
7571 ada_find_any_type (const char *name)
7572 {
7573 struct symbol *sym = ada_find_any_type_symbol (name);
7574
7575 if (sym != NULL)
7576 return SYMBOL_TYPE (sym);
7577
7578 return NULL;
7579 }
7580
7581 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7582 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7583 symbol, in which case it is returned. Otherwise, this looks for
7584 symbols whose name is that of NAME_SYM suffixed with "___XR".
7585 Return symbol if found, and NULL otherwise. */
7586
7587 struct symbol *
7588 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7589 {
7590 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7591 struct symbol *sym;
7592
7593 if (strstr (name, "___XR") != NULL)
7594 return name_sym;
7595
7596 sym = find_old_style_renaming_symbol (name, block);
7597
7598 if (sym != NULL)
7599 return sym;
7600
7601 /* Not right yet. FIXME pnh 7/20/2007. */
7602 sym = ada_find_any_type_symbol (name);
7603 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7604 return sym;
7605 else
7606 return NULL;
7607 }
7608
7609 static struct symbol *
7610 find_old_style_renaming_symbol (const char *name, const struct block *block)
7611 {
7612 const struct symbol *function_sym = block_linkage_function (block);
7613 char *rename;
7614
7615 if (function_sym != NULL)
7616 {
7617 /* If the symbol is defined inside a function, NAME is not fully
7618 qualified. This means we need to prepend the function name
7619 as well as adding the ``___XR'' suffix to build the name of
7620 the associated renaming symbol. */
7621 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7622 /* Function names sometimes contain suffixes used
7623 for instance to qualify nested subprograms. When building
7624 the XR type name, we need to make sure that this suffix is
7625 not included. So do not include any suffix in the function
7626 name length below. */
7627 int function_name_len = ada_name_prefix_len (function_name);
7628 const int rename_len = function_name_len + 2 /* "__" */
7629 + strlen (name) + 6 /* "___XR\0" */ ;
7630
7631 /* Strip the suffix if necessary. */
7632 ada_remove_trailing_digits (function_name, &function_name_len);
7633 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7634 ada_remove_Xbn_suffix (function_name, &function_name_len);
7635
7636 /* Library-level functions are a special case, as GNAT adds
7637 a ``_ada_'' prefix to the function name to avoid namespace
7638 pollution. However, the renaming symbols themselves do not
7639 have this prefix, so we need to skip this prefix if present. */
7640 if (function_name_len > 5 /* "_ada_" */
7641 && strstr (function_name, "_ada_") == function_name)
7642 {
7643 function_name += 5;
7644 function_name_len -= 5;
7645 }
7646
7647 rename = (char *) alloca (rename_len * sizeof (char));
7648 strncpy (rename, function_name, function_name_len);
7649 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7650 "__%s___XR", name);
7651 }
7652 else
7653 {
7654 const int rename_len = strlen (name) + 6;
7655
7656 rename = (char *) alloca (rename_len * sizeof (char));
7657 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7658 }
7659
7660 return ada_find_any_type_symbol (rename);
7661 }
7662
7663 /* Because of GNAT encoding conventions, several GDB symbols may match a
7664 given type name. If the type denoted by TYPE0 is to be preferred to
7665 that of TYPE1 for purposes of type printing, return non-zero;
7666 otherwise return 0. */
7667
7668 int
7669 ada_prefer_type (struct type *type0, struct type *type1)
7670 {
7671 if (type1 == NULL)
7672 return 1;
7673 else if (type0 == NULL)
7674 return 0;
7675 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7676 return 1;
7677 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7678 return 0;
7679 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7680 return 1;
7681 else if (ada_is_constrained_packed_array_type (type0))
7682 return 1;
7683 else if (ada_is_array_descriptor_type (type0)
7684 && !ada_is_array_descriptor_type (type1))
7685 return 1;
7686 else
7687 {
7688 const char *type0_name = type_name_no_tag (type0);
7689 const char *type1_name = type_name_no_tag (type1);
7690
7691 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7692 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7693 return 1;
7694 }
7695 return 0;
7696 }
7697
7698 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7699 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7700
7701 const char *
7702 ada_type_name (struct type *type)
7703 {
7704 if (type == NULL)
7705 return NULL;
7706 else if (TYPE_NAME (type) != NULL)
7707 return TYPE_NAME (type);
7708 else
7709 return TYPE_TAG_NAME (type);
7710 }
7711
7712 /* Search the list of "descriptive" types associated to TYPE for a type
7713 whose name is NAME. */
7714
7715 static struct type *
7716 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7717 {
7718 struct type *result;
7719
7720 if (ada_ignore_descriptive_types_p)
7721 return NULL;
7722
7723 /* If there no descriptive-type info, then there is no parallel type
7724 to be found. */
7725 if (!HAVE_GNAT_AUX_INFO (type))
7726 return NULL;
7727
7728 result = TYPE_DESCRIPTIVE_TYPE (type);
7729 while (result != NULL)
7730 {
7731 const char *result_name = ada_type_name (result);
7732
7733 if (result_name == NULL)
7734 {
7735 warning (_("unexpected null name on descriptive type"));
7736 return NULL;
7737 }
7738
7739 /* If the names match, stop. */
7740 if (strcmp (result_name, name) == 0)
7741 break;
7742
7743 /* Otherwise, look at the next item on the list, if any. */
7744 if (HAVE_GNAT_AUX_INFO (result))
7745 result = TYPE_DESCRIPTIVE_TYPE (result);
7746 else
7747 result = NULL;
7748 }
7749
7750 /* If we didn't find a match, see whether this is a packed array. With
7751 older compilers, the descriptive type information is either absent or
7752 irrelevant when it comes to packed arrays so the above lookup fails.
7753 Fall back to using a parallel lookup by name in this case. */
7754 if (result == NULL && ada_is_constrained_packed_array_type (type))
7755 return ada_find_any_type (name);
7756
7757 return result;
7758 }
7759
7760 /* Find a parallel type to TYPE with the specified NAME, using the
7761 descriptive type taken from the debugging information, if available,
7762 and otherwise using the (slower) name-based method. */
7763
7764 static struct type *
7765 ada_find_parallel_type_with_name (struct type *type, const char *name)
7766 {
7767 struct type *result = NULL;
7768
7769 if (HAVE_GNAT_AUX_INFO (type))
7770 result = find_parallel_type_by_descriptive_type (type, name);
7771 else
7772 result = ada_find_any_type (name);
7773
7774 return result;
7775 }
7776
7777 /* Same as above, but specify the name of the parallel type by appending
7778 SUFFIX to the name of TYPE. */
7779
7780 struct type *
7781 ada_find_parallel_type (struct type *type, const char *suffix)
7782 {
7783 char *name;
7784 const char *typename = ada_type_name (type);
7785 int len;
7786
7787 if (typename == NULL)
7788 return NULL;
7789
7790 len = strlen (typename);
7791
7792 name = (char *) alloca (len + strlen (suffix) + 1);
7793
7794 strcpy (name, typename);
7795 strcpy (name + len, suffix);
7796
7797 return ada_find_parallel_type_with_name (type, name);
7798 }
7799
7800 /* If TYPE is a variable-size record type, return the corresponding template
7801 type describing its fields. Otherwise, return NULL. */
7802
7803 static struct type *
7804 dynamic_template_type (struct type *type)
7805 {
7806 type = ada_check_typedef (type);
7807
7808 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7809 || ada_type_name (type) == NULL)
7810 return NULL;
7811 else
7812 {
7813 int len = strlen (ada_type_name (type));
7814
7815 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7816 return type;
7817 else
7818 return ada_find_parallel_type (type, "___XVE");
7819 }
7820 }
7821
7822 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7823 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7824
7825 static int
7826 is_dynamic_field (struct type *templ_type, int field_num)
7827 {
7828 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7829
7830 return name != NULL
7831 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7832 && strstr (name, "___XVL") != NULL;
7833 }
7834
7835 /* The index of the variant field of TYPE, or -1 if TYPE does not
7836 represent a variant record type. */
7837
7838 static int
7839 variant_field_index (struct type *type)
7840 {
7841 int f;
7842
7843 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7844 return -1;
7845
7846 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7847 {
7848 if (ada_is_variant_part (type, f))
7849 return f;
7850 }
7851 return -1;
7852 }
7853
7854 /* A record type with no fields. */
7855
7856 static struct type *
7857 empty_record (struct type *template)
7858 {
7859 struct type *type = alloc_type_copy (template);
7860
7861 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7862 TYPE_NFIELDS (type) = 0;
7863 TYPE_FIELDS (type) = NULL;
7864 INIT_CPLUS_SPECIFIC (type);
7865 TYPE_NAME (type) = "<empty>";
7866 TYPE_TAG_NAME (type) = NULL;
7867 TYPE_LENGTH (type) = 0;
7868 return type;
7869 }
7870
7871 /* An ordinary record type (with fixed-length fields) that describes
7872 the value of type TYPE at VALADDR or ADDRESS (see comments at
7873 the beginning of this section) VAL according to GNAT conventions.
7874 DVAL0 should describe the (portion of a) record that contains any
7875 necessary discriminants. It should be NULL if value_type (VAL) is
7876 an outer-level type (i.e., as opposed to a branch of a variant.) A
7877 variant field (unless unchecked) is replaced by a particular branch
7878 of the variant.
7879
7880 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7881 length are not statically known are discarded. As a consequence,
7882 VALADDR, ADDRESS and DVAL0 are ignored.
7883
7884 NOTE: Limitations: For now, we assume that dynamic fields and
7885 variants occupy whole numbers of bytes. However, they need not be
7886 byte-aligned. */
7887
7888 struct type *
7889 ada_template_to_fixed_record_type_1 (struct type *type,
7890 const gdb_byte *valaddr,
7891 CORE_ADDR address, struct value *dval0,
7892 int keep_dynamic_fields)
7893 {
7894 struct value *mark = value_mark ();
7895 struct value *dval;
7896 struct type *rtype;
7897 int nfields, bit_len;
7898 int variant_field;
7899 long off;
7900 int fld_bit_len;
7901 int f;
7902
7903 /* Compute the number of fields in this record type that are going
7904 to be processed: unless keep_dynamic_fields, this includes only
7905 fields whose position and length are static will be processed. */
7906 if (keep_dynamic_fields)
7907 nfields = TYPE_NFIELDS (type);
7908 else
7909 {
7910 nfields = 0;
7911 while (nfields < TYPE_NFIELDS (type)
7912 && !ada_is_variant_part (type, nfields)
7913 && !is_dynamic_field (type, nfields))
7914 nfields++;
7915 }
7916
7917 rtype = alloc_type_copy (type);
7918 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7919 INIT_CPLUS_SPECIFIC (rtype);
7920 TYPE_NFIELDS (rtype) = nfields;
7921 TYPE_FIELDS (rtype) = (struct field *)
7922 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7923 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7924 TYPE_NAME (rtype) = ada_type_name (type);
7925 TYPE_TAG_NAME (rtype) = NULL;
7926 TYPE_FIXED_INSTANCE (rtype) = 1;
7927
7928 off = 0;
7929 bit_len = 0;
7930 variant_field = -1;
7931
7932 for (f = 0; f < nfields; f += 1)
7933 {
7934 off = align_value (off, field_alignment (type, f))
7935 + TYPE_FIELD_BITPOS (type, f);
7936 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7937 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7938
7939 if (ada_is_variant_part (type, f))
7940 {
7941 variant_field = f;
7942 fld_bit_len = 0;
7943 }
7944 else if (is_dynamic_field (type, f))
7945 {
7946 const gdb_byte *field_valaddr = valaddr;
7947 CORE_ADDR field_address = address;
7948 struct type *field_type =
7949 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7950
7951 if (dval0 == NULL)
7952 {
7953 /* rtype's length is computed based on the run-time
7954 value of discriminants. If the discriminants are not
7955 initialized, the type size may be completely bogus and
7956 GDB may fail to allocate a value for it. So check the
7957 size first before creating the value. */
7958 ada_ensure_varsize_limit (rtype);
7959 /* Using plain value_from_contents_and_address here
7960 causes problems because we will end up trying to
7961 resolve a type that is currently being
7962 constructed. */
7963 dval = value_from_contents_and_address_unresolved (rtype,
7964 valaddr,
7965 address);
7966 rtype = value_type (dval);
7967 }
7968 else
7969 dval = dval0;
7970
7971 /* If the type referenced by this field is an aligner type, we need
7972 to unwrap that aligner type, because its size might not be set.
7973 Keeping the aligner type would cause us to compute the wrong
7974 size for this field, impacting the offset of the all the fields
7975 that follow this one. */
7976 if (ada_is_aligner_type (field_type))
7977 {
7978 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7979
7980 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7981 field_address = cond_offset_target (field_address, field_offset);
7982 field_type = ada_aligned_type (field_type);
7983 }
7984
7985 field_valaddr = cond_offset_host (field_valaddr,
7986 off / TARGET_CHAR_BIT);
7987 field_address = cond_offset_target (field_address,
7988 off / TARGET_CHAR_BIT);
7989
7990 /* Get the fixed type of the field. Note that, in this case,
7991 we do not want to get the real type out of the tag: if
7992 the current field is the parent part of a tagged record,
7993 we will get the tag of the object. Clearly wrong: the real
7994 type of the parent is not the real type of the child. We
7995 would end up in an infinite loop. */
7996 field_type = ada_get_base_type (field_type);
7997 field_type = ada_to_fixed_type (field_type, field_valaddr,
7998 field_address, dval, 0);
7999 /* If the field size is already larger than the maximum
8000 object size, then the record itself will necessarily
8001 be larger than the maximum object size. We need to make
8002 this check now, because the size might be so ridiculously
8003 large (due to an uninitialized variable in the inferior)
8004 that it would cause an overflow when adding it to the
8005 record size. */
8006 ada_ensure_varsize_limit (field_type);
8007
8008 TYPE_FIELD_TYPE (rtype, f) = field_type;
8009 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8010 /* The multiplication can potentially overflow. But because
8011 the field length has been size-checked just above, and
8012 assuming that the maximum size is a reasonable value,
8013 an overflow should not happen in practice. So rather than
8014 adding overflow recovery code to this already complex code,
8015 we just assume that it's not going to happen. */
8016 fld_bit_len =
8017 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8018 }
8019 else
8020 {
8021 /* Note: If this field's type is a typedef, it is important
8022 to preserve the typedef layer.
8023
8024 Otherwise, we might be transforming a typedef to a fat
8025 pointer (encoding a pointer to an unconstrained array),
8026 into a basic fat pointer (encoding an unconstrained
8027 array). As both types are implemented using the same
8028 structure, the typedef is the only clue which allows us
8029 to distinguish between the two options. Stripping it
8030 would prevent us from printing this field appropriately. */
8031 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8032 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8033 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8034 fld_bit_len =
8035 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8036 else
8037 {
8038 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8039
8040 /* We need to be careful of typedefs when computing
8041 the length of our field. If this is a typedef,
8042 get the length of the target type, not the length
8043 of the typedef. */
8044 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8045 field_type = ada_typedef_target_type (field_type);
8046
8047 fld_bit_len =
8048 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8049 }
8050 }
8051 if (off + fld_bit_len > bit_len)
8052 bit_len = off + fld_bit_len;
8053 off += fld_bit_len;
8054 TYPE_LENGTH (rtype) =
8055 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8056 }
8057
8058 /* We handle the variant part, if any, at the end because of certain
8059 odd cases in which it is re-ordered so as NOT to be the last field of
8060 the record. This can happen in the presence of representation
8061 clauses. */
8062 if (variant_field >= 0)
8063 {
8064 struct type *branch_type;
8065
8066 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8067
8068 if (dval0 == NULL)
8069 {
8070 /* Using plain value_from_contents_and_address here causes
8071 problems because we will end up trying to resolve a type
8072 that is currently being constructed. */
8073 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8074 address);
8075 rtype = value_type (dval);
8076 }
8077 else
8078 dval = dval0;
8079
8080 branch_type =
8081 to_fixed_variant_branch_type
8082 (TYPE_FIELD_TYPE (type, variant_field),
8083 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8084 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8085 if (branch_type == NULL)
8086 {
8087 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8088 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8089 TYPE_NFIELDS (rtype) -= 1;
8090 }
8091 else
8092 {
8093 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8094 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8095 fld_bit_len =
8096 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8097 TARGET_CHAR_BIT;
8098 if (off + fld_bit_len > bit_len)
8099 bit_len = off + fld_bit_len;
8100 TYPE_LENGTH (rtype) =
8101 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8102 }
8103 }
8104
8105 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8106 should contain the alignment of that record, which should be a strictly
8107 positive value. If null or negative, then something is wrong, most
8108 probably in the debug info. In that case, we don't round up the size
8109 of the resulting type. If this record is not part of another structure,
8110 the current RTYPE length might be good enough for our purposes. */
8111 if (TYPE_LENGTH (type) <= 0)
8112 {
8113 if (TYPE_NAME (rtype))
8114 warning (_("Invalid type size for `%s' detected: %d."),
8115 TYPE_NAME (rtype), TYPE_LENGTH (type));
8116 else
8117 warning (_("Invalid type size for <unnamed> detected: %d."),
8118 TYPE_LENGTH (type));
8119 }
8120 else
8121 {
8122 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8123 TYPE_LENGTH (type));
8124 }
8125
8126 value_free_to_mark (mark);
8127 if (TYPE_LENGTH (rtype) > varsize_limit)
8128 error (_("record type with dynamic size is larger than varsize-limit"));
8129 return rtype;
8130 }
8131
8132 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8133 of 1. */
8134
8135 static struct type *
8136 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8137 CORE_ADDR address, struct value *dval0)
8138 {
8139 return ada_template_to_fixed_record_type_1 (type, valaddr,
8140 address, dval0, 1);
8141 }
8142
8143 /* An ordinary record type in which ___XVL-convention fields and
8144 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8145 static approximations, containing all possible fields. Uses
8146 no runtime values. Useless for use in values, but that's OK,
8147 since the results are used only for type determinations. Works on both
8148 structs and unions. Representation note: to save space, we memorize
8149 the result of this function in the TYPE_TARGET_TYPE of the
8150 template type. */
8151
8152 static struct type *
8153 template_to_static_fixed_type (struct type *type0)
8154 {
8155 struct type *type;
8156 int nfields;
8157 int f;
8158
8159 if (TYPE_TARGET_TYPE (type0) != NULL)
8160 return TYPE_TARGET_TYPE (type0);
8161
8162 nfields = TYPE_NFIELDS (type0);
8163 type = type0;
8164
8165 for (f = 0; f < nfields; f += 1)
8166 {
8167 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
8168 struct type *new_type;
8169
8170 if (is_dynamic_field (type0, f))
8171 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8172 else
8173 new_type = static_unwrap_type (field_type);
8174 if (type == type0 && new_type != field_type)
8175 {
8176 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8177 TYPE_CODE (type) = TYPE_CODE (type0);
8178 INIT_CPLUS_SPECIFIC (type);
8179 TYPE_NFIELDS (type) = nfields;
8180 TYPE_FIELDS (type) = (struct field *)
8181 TYPE_ALLOC (type, nfields * sizeof (struct field));
8182 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8183 sizeof (struct field) * nfields);
8184 TYPE_NAME (type) = ada_type_name (type0);
8185 TYPE_TAG_NAME (type) = NULL;
8186 TYPE_FIXED_INSTANCE (type) = 1;
8187 TYPE_LENGTH (type) = 0;
8188 }
8189 TYPE_FIELD_TYPE (type, f) = new_type;
8190 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8191 }
8192 return type;
8193 }
8194
8195 /* Given an object of type TYPE whose contents are at VALADDR and
8196 whose address in memory is ADDRESS, returns a revision of TYPE,
8197 which should be a non-dynamic-sized record, in which the variant
8198 part, if any, is replaced with the appropriate branch. Looks
8199 for discriminant values in DVAL0, which can be NULL if the record
8200 contains the necessary discriminant values. */
8201
8202 static struct type *
8203 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8204 CORE_ADDR address, struct value *dval0)
8205 {
8206 struct value *mark = value_mark ();
8207 struct value *dval;
8208 struct type *rtype;
8209 struct type *branch_type;
8210 int nfields = TYPE_NFIELDS (type);
8211 int variant_field = variant_field_index (type);
8212
8213 if (variant_field == -1)
8214 return type;
8215
8216 if (dval0 == NULL)
8217 {
8218 dval = value_from_contents_and_address (type, valaddr, address);
8219 type = value_type (dval);
8220 }
8221 else
8222 dval = dval0;
8223
8224 rtype = alloc_type_copy (type);
8225 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8226 INIT_CPLUS_SPECIFIC (rtype);
8227 TYPE_NFIELDS (rtype) = nfields;
8228 TYPE_FIELDS (rtype) =
8229 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8230 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8231 sizeof (struct field) * nfields);
8232 TYPE_NAME (rtype) = ada_type_name (type);
8233 TYPE_TAG_NAME (rtype) = NULL;
8234 TYPE_FIXED_INSTANCE (rtype) = 1;
8235 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8236
8237 branch_type = to_fixed_variant_branch_type
8238 (TYPE_FIELD_TYPE (type, variant_field),
8239 cond_offset_host (valaddr,
8240 TYPE_FIELD_BITPOS (type, variant_field)
8241 / TARGET_CHAR_BIT),
8242 cond_offset_target (address,
8243 TYPE_FIELD_BITPOS (type, variant_field)
8244 / TARGET_CHAR_BIT), dval);
8245 if (branch_type == NULL)
8246 {
8247 int f;
8248
8249 for (f = variant_field + 1; f < nfields; f += 1)
8250 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8251 TYPE_NFIELDS (rtype) -= 1;
8252 }
8253 else
8254 {
8255 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8256 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8257 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8258 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8259 }
8260 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8261
8262 value_free_to_mark (mark);
8263 return rtype;
8264 }
8265
8266 /* An ordinary record type (with fixed-length fields) that describes
8267 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8268 beginning of this section]. Any necessary discriminants' values
8269 should be in DVAL, a record value; it may be NULL if the object
8270 at ADDR itself contains any necessary discriminant values.
8271 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8272 values from the record are needed. Except in the case that DVAL,
8273 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8274 unchecked) is replaced by a particular branch of the variant.
8275
8276 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8277 is questionable and may be removed. It can arise during the
8278 processing of an unconstrained-array-of-record type where all the
8279 variant branches have exactly the same size. This is because in
8280 such cases, the compiler does not bother to use the XVS convention
8281 when encoding the record. I am currently dubious of this
8282 shortcut and suspect the compiler should be altered. FIXME. */
8283
8284 static struct type *
8285 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8286 CORE_ADDR address, struct value *dval)
8287 {
8288 struct type *templ_type;
8289
8290 if (TYPE_FIXED_INSTANCE (type0))
8291 return type0;
8292
8293 templ_type = dynamic_template_type (type0);
8294
8295 if (templ_type != NULL)
8296 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8297 else if (variant_field_index (type0) >= 0)
8298 {
8299 if (dval == NULL && valaddr == NULL && address == 0)
8300 return type0;
8301 return to_record_with_fixed_variant_part (type0, valaddr, address,
8302 dval);
8303 }
8304 else
8305 {
8306 TYPE_FIXED_INSTANCE (type0) = 1;
8307 return type0;
8308 }
8309
8310 }
8311
8312 /* An ordinary record type (with fixed-length fields) that describes
8313 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8314 union type. Any necessary discriminants' values should be in DVAL,
8315 a record value. That is, this routine selects the appropriate
8316 branch of the union at ADDR according to the discriminant value
8317 indicated in the union's type name. Returns VAR_TYPE0 itself if
8318 it represents a variant subject to a pragma Unchecked_Union. */
8319
8320 static struct type *
8321 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8322 CORE_ADDR address, struct value *dval)
8323 {
8324 int which;
8325 struct type *templ_type;
8326 struct type *var_type;
8327
8328 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8329 var_type = TYPE_TARGET_TYPE (var_type0);
8330 else
8331 var_type = var_type0;
8332
8333 templ_type = ada_find_parallel_type (var_type, "___XVU");
8334
8335 if (templ_type != NULL)
8336 var_type = templ_type;
8337
8338 if (is_unchecked_variant (var_type, value_type (dval)))
8339 return var_type0;
8340 which =
8341 ada_which_variant_applies (var_type,
8342 value_type (dval), value_contents (dval));
8343
8344 if (which < 0)
8345 return empty_record (var_type);
8346 else if (is_dynamic_field (var_type, which))
8347 return to_fixed_record_type
8348 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8349 valaddr, address, dval);
8350 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8351 return
8352 to_fixed_record_type
8353 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8354 else
8355 return TYPE_FIELD_TYPE (var_type, which);
8356 }
8357
8358 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8359 ENCODING_TYPE, a type following the GNAT conventions for discrete
8360 type encodings, only carries redundant information. */
8361
8362 static int
8363 ada_is_redundant_range_encoding (struct type *range_type,
8364 struct type *encoding_type)
8365 {
8366 struct type *fixed_range_type;
8367 char *bounds_str;
8368 int n;
8369 LONGEST lo, hi;
8370
8371 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8372
8373 if (TYPE_CODE (get_base_type (range_type))
8374 != TYPE_CODE (get_base_type (encoding_type)))
8375 {
8376 /* The compiler probably used a simple base type to describe
8377 the range type instead of the range's actual base type,
8378 expecting us to get the real base type from the encoding
8379 anyway. In this situation, the encoding cannot be ignored
8380 as redundant. */
8381 return 0;
8382 }
8383
8384 if (is_dynamic_type (range_type))
8385 return 0;
8386
8387 if (TYPE_NAME (encoding_type) == NULL)
8388 return 0;
8389
8390 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8391 if (bounds_str == NULL)
8392 return 0;
8393
8394 n = 8; /* Skip "___XDLU_". */
8395 if (!ada_scan_number (bounds_str, n, &lo, &n))
8396 return 0;
8397 if (TYPE_LOW_BOUND (range_type) != lo)
8398 return 0;
8399
8400 n += 2; /* Skip the "__" separator between the two bounds. */
8401 if (!ada_scan_number (bounds_str, n, &hi, &n))
8402 return 0;
8403 if (TYPE_HIGH_BOUND (range_type) != hi)
8404 return 0;
8405
8406 return 1;
8407 }
8408
8409 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8410 a type following the GNAT encoding for describing array type
8411 indices, only carries redundant information. */
8412
8413 static int
8414 ada_is_redundant_index_type_desc (struct type *array_type,
8415 struct type *desc_type)
8416 {
8417 struct type *this_layer = check_typedef (array_type);
8418 int i;
8419
8420 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8421 {
8422 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8423 TYPE_FIELD_TYPE (desc_type, i)))
8424 return 0;
8425 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8426 }
8427
8428 return 1;
8429 }
8430
8431 /* Assuming that TYPE0 is an array type describing the type of a value
8432 at ADDR, and that DVAL describes a record containing any
8433 discriminants used in TYPE0, returns a type for the value that
8434 contains no dynamic components (that is, no components whose sizes
8435 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8436 true, gives an error message if the resulting type's size is over
8437 varsize_limit. */
8438
8439 static struct type *
8440 to_fixed_array_type (struct type *type0, struct value *dval,
8441 int ignore_too_big)
8442 {
8443 struct type *index_type_desc;
8444 struct type *result;
8445 int constrained_packed_array_p;
8446
8447 type0 = ada_check_typedef (type0);
8448 if (TYPE_FIXED_INSTANCE (type0))
8449 return type0;
8450
8451 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8452 if (constrained_packed_array_p)
8453 type0 = decode_constrained_packed_array_type (type0);
8454
8455 index_type_desc = ada_find_parallel_type (type0, "___XA");
8456 ada_fixup_array_indexes_type (index_type_desc);
8457 if (index_type_desc != NULL
8458 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8459 {
8460 /* Ignore this ___XA parallel type, as it does not bring any
8461 useful information. This allows us to avoid creating fixed
8462 versions of the array's index types, which would be identical
8463 to the original ones. This, in turn, can also help avoid
8464 the creation of fixed versions of the array itself. */
8465 index_type_desc = NULL;
8466 }
8467
8468 if (index_type_desc == NULL)
8469 {
8470 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8471
8472 /* NOTE: elt_type---the fixed version of elt_type0---should never
8473 depend on the contents of the array in properly constructed
8474 debugging data. */
8475 /* Create a fixed version of the array element type.
8476 We're not providing the address of an element here,
8477 and thus the actual object value cannot be inspected to do
8478 the conversion. This should not be a problem, since arrays of
8479 unconstrained objects are not allowed. In particular, all
8480 the elements of an array of a tagged type should all be of
8481 the same type specified in the debugging info. No need to
8482 consult the object tag. */
8483 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8484
8485 /* Make sure we always create a new array type when dealing with
8486 packed array types, since we're going to fix-up the array
8487 type length and element bitsize a little further down. */
8488 if (elt_type0 == elt_type && !constrained_packed_array_p)
8489 result = type0;
8490 else
8491 result = create_array_type (alloc_type_copy (type0),
8492 elt_type, TYPE_INDEX_TYPE (type0));
8493 }
8494 else
8495 {
8496 int i;
8497 struct type *elt_type0;
8498
8499 elt_type0 = type0;
8500 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8501 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8502
8503 /* NOTE: result---the fixed version of elt_type0---should never
8504 depend on the contents of the array in properly constructed
8505 debugging data. */
8506 /* Create a fixed version of the array element type.
8507 We're not providing the address of an element here,
8508 and thus the actual object value cannot be inspected to do
8509 the conversion. This should not be a problem, since arrays of
8510 unconstrained objects are not allowed. In particular, all
8511 the elements of an array of a tagged type should all be of
8512 the same type specified in the debugging info. No need to
8513 consult the object tag. */
8514 result =
8515 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8516
8517 elt_type0 = type0;
8518 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8519 {
8520 struct type *range_type =
8521 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8522
8523 result = create_array_type (alloc_type_copy (elt_type0),
8524 result, range_type);
8525 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8526 }
8527 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8528 error (_("array type with dynamic size is larger than varsize-limit"));
8529 }
8530
8531 /* We want to preserve the type name. This can be useful when
8532 trying to get the type name of a value that has already been
8533 printed (for instance, if the user did "print VAR; whatis $". */
8534 TYPE_NAME (result) = TYPE_NAME (type0);
8535
8536 if (constrained_packed_array_p)
8537 {
8538 /* So far, the resulting type has been created as if the original
8539 type was a regular (non-packed) array type. As a result, the
8540 bitsize of the array elements needs to be set again, and the array
8541 length needs to be recomputed based on that bitsize. */
8542 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8543 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8544
8545 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8546 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8547 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8548 TYPE_LENGTH (result)++;
8549 }
8550
8551 TYPE_FIXED_INSTANCE (result) = 1;
8552 return result;
8553 }
8554
8555
8556 /* A standard type (containing no dynamically sized components)
8557 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8558 DVAL describes a record containing any discriminants used in TYPE0,
8559 and may be NULL if there are none, or if the object of type TYPE at
8560 ADDRESS or in VALADDR contains these discriminants.
8561
8562 If CHECK_TAG is not null, in the case of tagged types, this function
8563 attempts to locate the object's tag and use it to compute the actual
8564 type. However, when ADDRESS is null, we cannot use it to determine the
8565 location of the tag, and therefore compute the tagged type's actual type.
8566 So we return the tagged type without consulting the tag. */
8567
8568 static struct type *
8569 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8570 CORE_ADDR address, struct value *dval, int check_tag)
8571 {
8572 type = ada_check_typedef (type);
8573 switch (TYPE_CODE (type))
8574 {
8575 default:
8576 return type;
8577 case TYPE_CODE_STRUCT:
8578 {
8579 struct type *static_type = to_static_fixed_type (type);
8580 struct type *fixed_record_type =
8581 to_fixed_record_type (type, valaddr, address, NULL);
8582
8583 /* If STATIC_TYPE is a tagged type and we know the object's address,
8584 then we can determine its tag, and compute the object's actual
8585 type from there. Note that we have to use the fixed record
8586 type (the parent part of the record may have dynamic fields
8587 and the way the location of _tag is expressed may depend on
8588 them). */
8589
8590 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8591 {
8592 struct value *tag =
8593 value_tag_from_contents_and_address
8594 (fixed_record_type,
8595 valaddr,
8596 address);
8597 struct type *real_type = type_from_tag (tag);
8598 struct value *obj =
8599 value_from_contents_and_address (fixed_record_type,
8600 valaddr,
8601 address);
8602 fixed_record_type = value_type (obj);
8603 if (real_type != NULL)
8604 return to_fixed_record_type
8605 (real_type, NULL,
8606 value_address (ada_tag_value_at_base_address (obj)), NULL);
8607 }
8608
8609 /* Check to see if there is a parallel ___XVZ variable.
8610 If there is, then it provides the actual size of our type. */
8611 else if (ada_type_name (fixed_record_type) != NULL)
8612 {
8613 const char *name = ada_type_name (fixed_record_type);
8614 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8615 int xvz_found = 0;
8616 LONGEST size;
8617
8618 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8619 size = get_int_var_value (xvz_name, &xvz_found);
8620 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8621 {
8622 fixed_record_type = copy_type (fixed_record_type);
8623 TYPE_LENGTH (fixed_record_type) = size;
8624
8625 /* The FIXED_RECORD_TYPE may have be a stub. We have
8626 observed this when the debugging info is STABS, and
8627 apparently it is something that is hard to fix.
8628
8629 In practice, we don't need the actual type definition
8630 at all, because the presence of the XVZ variable allows us
8631 to assume that there must be a XVS type as well, which we
8632 should be able to use later, when we need the actual type
8633 definition.
8634
8635 In the meantime, pretend that the "fixed" type we are
8636 returning is NOT a stub, because this can cause trouble
8637 when using this type to create new types targeting it.
8638 Indeed, the associated creation routines often check
8639 whether the target type is a stub and will try to replace
8640 it, thus using a type with the wrong size. This, in turn,
8641 might cause the new type to have the wrong size too.
8642 Consider the case of an array, for instance, where the size
8643 of the array is computed from the number of elements in
8644 our array multiplied by the size of its element. */
8645 TYPE_STUB (fixed_record_type) = 0;
8646 }
8647 }
8648 return fixed_record_type;
8649 }
8650 case TYPE_CODE_ARRAY:
8651 return to_fixed_array_type (type, dval, 1);
8652 case TYPE_CODE_UNION:
8653 if (dval == NULL)
8654 return type;
8655 else
8656 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8657 }
8658 }
8659
8660 /* The same as ada_to_fixed_type_1, except that it preserves the type
8661 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8662
8663 The typedef layer needs be preserved in order to differentiate between
8664 arrays and array pointers when both types are implemented using the same
8665 fat pointer. In the array pointer case, the pointer is encoded as
8666 a typedef of the pointer type. For instance, considering:
8667
8668 type String_Access is access String;
8669 S1 : String_Access := null;
8670
8671 To the debugger, S1 is defined as a typedef of type String. But
8672 to the user, it is a pointer. So if the user tries to print S1,
8673 we should not dereference the array, but print the array address
8674 instead.
8675
8676 If we didn't preserve the typedef layer, we would lose the fact that
8677 the type is to be presented as a pointer (needs de-reference before
8678 being printed). And we would also use the source-level type name. */
8679
8680 struct type *
8681 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8682 CORE_ADDR address, struct value *dval, int check_tag)
8683
8684 {
8685 struct type *fixed_type =
8686 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8687
8688 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8689 then preserve the typedef layer.
8690
8691 Implementation note: We can only check the main-type portion of
8692 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8693 from TYPE now returns a type that has the same instance flags
8694 as TYPE. For instance, if TYPE is a "typedef const", and its
8695 target type is a "struct", then the typedef elimination will return
8696 a "const" version of the target type. See check_typedef for more
8697 details about how the typedef layer elimination is done.
8698
8699 brobecker/2010-11-19: It seems to me that the only case where it is
8700 useful to preserve the typedef layer is when dealing with fat pointers.
8701 Perhaps, we could add a check for that and preserve the typedef layer
8702 only in that situation. But this seems unecessary so far, probably
8703 because we call check_typedef/ada_check_typedef pretty much everywhere.
8704 */
8705 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8706 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8707 == TYPE_MAIN_TYPE (fixed_type)))
8708 return type;
8709
8710 return fixed_type;
8711 }
8712
8713 /* A standard (static-sized) type corresponding as well as possible to
8714 TYPE0, but based on no runtime data. */
8715
8716 static struct type *
8717 to_static_fixed_type (struct type *type0)
8718 {
8719 struct type *type;
8720
8721 if (type0 == NULL)
8722 return NULL;
8723
8724 if (TYPE_FIXED_INSTANCE (type0))
8725 return type0;
8726
8727 type0 = ada_check_typedef (type0);
8728
8729 switch (TYPE_CODE (type0))
8730 {
8731 default:
8732 return type0;
8733 case TYPE_CODE_STRUCT:
8734 type = dynamic_template_type (type0);
8735 if (type != NULL)
8736 return template_to_static_fixed_type (type);
8737 else
8738 return template_to_static_fixed_type (type0);
8739 case TYPE_CODE_UNION:
8740 type = ada_find_parallel_type (type0, "___XVU");
8741 if (type != NULL)
8742 return template_to_static_fixed_type (type);
8743 else
8744 return template_to_static_fixed_type (type0);
8745 }
8746 }
8747
8748 /* A static approximation of TYPE with all type wrappers removed. */
8749
8750 static struct type *
8751 static_unwrap_type (struct type *type)
8752 {
8753 if (ada_is_aligner_type (type))
8754 {
8755 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8756 if (ada_type_name (type1) == NULL)
8757 TYPE_NAME (type1) = ada_type_name (type);
8758
8759 return static_unwrap_type (type1);
8760 }
8761 else
8762 {
8763 struct type *raw_real_type = ada_get_base_type (type);
8764
8765 if (raw_real_type == type)
8766 return type;
8767 else
8768 return to_static_fixed_type (raw_real_type);
8769 }
8770 }
8771
8772 /* In some cases, incomplete and private types require
8773 cross-references that are not resolved as records (for example,
8774 type Foo;
8775 type FooP is access Foo;
8776 V: FooP;
8777 type Foo is array ...;
8778 ). In these cases, since there is no mechanism for producing
8779 cross-references to such types, we instead substitute for FooP a
8780 stub enumeration type that is nowhere resolved, and whose tag is
8781 the name of the actual type. Call these types "non-record stubs". */
8782
8783 /* A type equivalent to TYPE that is not a non-record stub, if one
8784 exists, otherwise TYPE. */
8785
8786 struct type *
8787 ada_check_typedef (struct type *type)
8788 {
8789 if (type == NULL)
8790 return NULL;
8791
8792 /* If our type is a typedef type of a fat pointer, then we're done.
8793 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8794 what allows us to distinguish between fat pointers that represent
8795 array types, and fat pointers that represent array access types
8796 (in both cases, the compiler implements them as fat pointers). */
8797 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8798 && is_thick_pntr (ada_typedef_target_type (type)))
8799 return type;
8800
8801 CHECK_TYPEDEF (type);
8802 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8803 || !TYPE_STUB (type)
8804 || TYPE_TAG_NAME (type) == NULL)
8805 return type;
8806 else
8807 {
8808 const char *name = TYPE_TAG_NAME (type);
8809 struct type *type1 = ada_find_any_type (name);
8810
8811 if (type1 == NULL)
8812 return type;
8813
8814 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8815 stubs pointing to arrays, as we don't create symbols for array
8816 types, only for the typedef-to-array types). If that's the case,
8817 strip the typedef layer. */
8818 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8819 type1 = ada_check_typedef (type1);
8820
8821 return type1;
8822 }
8823 }
8824
8825 /* A value representing the data at VALADDR/ADDRESS as described by
8826 type TYPE0, but with a standard (static-sized) type that correctly
8827 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8828 type, then return VAL0 [this feature is simply to avoid redundant
8829 creation of struct values]. */
8830
8831 static struct value *
8832 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8833 struct value *val0)
8834 {
8835 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8836
8837 if (type == type0 && val0 != NULL)
8838 return val0;
8839 else
8840 return value_from_contents_and_address (type, 0, address);
8841 }
8842
8843 /* A value representing VAL, but with a standard (static-sized) type
8844 that correctly describes it. Does not necessarily create a new
8845 value. */
8846
8847 struct value *
8848 ada_to_fixed_value (struct value *val)
8849 {
8850 val = unwrap_value (val);
8851 val = ada_to_fixed_value_create (value_type (val),
8852 value_address (val),
8853 val);
8854 return val;
8855 }
8856 \f
8857
8858 /* Attributes */
8859
8860 /* Table mapping attribute numbers to names.
8861 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8862
8863 static const char *attribute_names[] = {
8864 "<?>",
8865
8866 "first",
8867 "last",
8868 "length",
8869 "image",
8870 "max",
8871 "min",
8872 "modulus",
8873 "pos",
8874 "size",
8875 "tag",
8876 "val",
8877 0
8878 };
8879
8880 const char *
8881 ada_attribute_name (enum exp_opcode n)
8882 {
8883 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8884 return attribute_names[n - OP_ATR_FIRST + 1];
8885 else
8886 return attribute_names[0];
8887 }
8888
8889 /* Evaluate the 'POS attribute applied to ARG. */
8890
8891 static LONGEST
8892 pos_atr (struct value *arg)
8893 {
8894 struct value *val = coerce_ref (arg);
8895 struct type *type = value_type (val);
8896
8897 if (!discrete_type_p (type))
8898 error (_("'POS only defined on discrete types"));
8899
8900 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8901 {
8902 int i;
8903 LONGEST v = value_as_long (val);
8904
8905 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8906 {
8907 if (v == TYPE_FIELD_ENUMVAL (type, i))
8908 return i;
8909 }
8910 error (_("enumeration value is invalid: can't find 'POS"));
8911 }
8912 else
8913 return value_as_long (val);
8914 }
8915
8916 static struct value *
8917 value_pos_atr (struct type *type, struct value *arg)
8918 {
8919 return value_from_longest (type, pos_atr (arg));
8920 }
8921
8922 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8923
8924 static struct value *
8925 value_val_atr (struct type *type, struct value *arg)
8926 {
8927 if (!discrete_type_p (type))
8928 error (_("'VAL only defined on discrete types"));
8929 if (!integer_type_p (value_type (arg)))
8930 error (_("'VAL requires integral argument"));
8931
8932 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8933 {
8934 long pos = value_as_long (arg);
8935
8936 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8937 error (_("argument to 'VAL out of range"));
8938 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8939 }
8940 else
8941 return value_from_longest (type, value_as_long (arg));
8942 }
8943 \f
8944
8945 /* Evaluation */
8946
8947 /* True if TYPE appears to be an Ada character type.
8948 [At the moment, this is true only for Character and Wide_Character;
8949 It is a heuristic test that could stand improvement]. */
8950
8951 int
8952 ada_is_character_type (struct type *type)
8953 {
8954 const char *name;
8955
8956 /* If the type code says it's a character, then assume it really is,
8957 and don't check any further. */
8958 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8959 return 1;
8960
8961 /* Otherwise, assume it's a character type iff it is a discrete type
8962 with a known character type name. */
8963 name = ada_type_name (type);
8964 return (name != NULL
8965 && (TYPE_CODE (type) == TYPE_CODE_INT
8966 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8967 && (strcmp (name, "character") == 0
8968 || strcmp (name, "wide_character") == 0
8969 || strcmp (name, "wide_wide_character") == 0
8970 || strcmp (name, "unsigned char") == 0));
8971 }
8972
8973 /* True if TYPE appears to be an Ada string type. */
8974
8975 int
8976 ada_is_string_type (struct type *type)
8977 {
8978 type = ada_check_typedef (type);
8979 if (type != NULL
8980 && TYPE_CODE (type) != TYPE_CODE_PTR
8981 && (ada_is_simple_array_type (type)
8982 || ada_is_array_descriptor_type (type))
8983 && ada_array_arity (type) == 1)
8984 {
8985 struct type *elttype = ada_array_element_type (type, 1);
8986
8987 return ada_is_character_type (elttype);
8988 }
8989 else
8990 return 0;
8991 }
8992
8993 /* The compiler sometimes provides a parallel XVS type for a given
8994 PAD type. Normally, it is safe to follow the PAD type directly,
8995 but older versions of the compiler have a bug that causes the offset
8996 of its "F" field to be wrong. Following that field in that case
8997 would lead to incorrect results, but this can be worked around
8998 by ignoring the PAD type and using the associated XVS type instead.
8999
9000 Set to True if the debugger should trust the contents of PAD types.
9001 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9002 static int trust_pad_over_xvs = 1;
9003
9004 /* True if TYPE is a struct type introduced by the compiler to force the
9005 alignment of a value. Such types have a single field with a
9006 distinctive name. */
9007
9008 int
9009 ada_is_aligner_type (struct type *type)
9010 {
9011 type = ada_check_typedef (type);
9012
9013 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9014 return 0;
9015
9016 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9017 && TYPE_NFIELDS (type) == 1
9018 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9019 }
9020
9021 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9022 the parallel type. */
9023
9024 struct type *
9025 ada_get_base_type (struct type *raw_type)
9026 {
9027 struct type *real_type_namer;
9028 struct type *raw_real_type;
9029
9030 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9031 return raw_type;
9032
9033 if (ada_is_aligner_type (raw_type))
9034 /* The encoding specifies that we should always use the aligner type.
9035 So, even if this aligner type has an associated XVS type, we should
9036 simply ignore it.
9037
9038 According to the compiler gurus, an XVS type parallel to an aligner
9039 type may exist because of a stabs limitation. In stabs, aligner
9040 types are empty because the field has a variable-sized type, and
9041 thus cannot actually be used as an aligner type. As a result,
9042 we need the associated parallel XVS type to decode the type.
9043 Since the policy in the compiler is to not change the internal
9044 representation based on the debugging info format, we sometimes
9045 end up having a redundant XVS type parallel to the aligner type. */
9046 return raw_type;
9047
9048 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9049 if (real_type_namer == NULL
9050 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9051 || TYPE_NFIELDS (real_type_namer) != 1)
9052 return raw_type;
9053
9054 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9055 {
9056 /* This is an older encoding form where the base type needs to be
9057 looked up by name. We prefer the newer enconding because it is
9058 more efficient. */
9059 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9060 if (raw_real_type == NULL)
9061 return raw_type;
9062 else
9063 return raw_real_type;
9064 }
9065
9066 /* The field in our XVS type is a reference to the base type. */
9067 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9068 }
9069
9070 /* The type of value designated by TYPE, with all aligners removed. */
9071
9072 struct type *
9073 ada_aligned_type (struct type *type)
9074 {
9075 if (ada_is_aligner_type (type))
9076 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9077 else
9078 return ada_get_base_type (type);
9079 }
9080
9081
9082 /* The address of the aligned value in an object at address VALADDR
9083 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9084
9085 const gdb_byte *
9086 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9087 {
9088 if (ada_is_aligner_type (type))
9089 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9090 valaddr +
9091 TYPE_FIELD_BITPOS (type,
9092 0) / TARGET_CHAR_BIT);
9093 else
9094 return valaddr;
9095 }
9096
9097
9098
9099 /* The printed representation of an enumeration literal with encoded
9100 name NAME. The value is good to the next call of ada_enum_name. */
9101 const char *
9102 ada_enum_name (const char *name)
9103 {
9104 static char *result;
9105 static size_t result_len = 0;
9106 char *tmp;
9107
9108 /* First, unqualify the enumeration name:
9109 1. Search for the last '.' character. If we find one, then skip
9110 all the preceding characters, the unqualified name starts
9111 right after that dot.
9112 2. Otherwise, we may be debugging on a target where the compiler
9113 translates dots into "__". Search forward for double underscores,
9114 but stop searching when we hit an overloading suffix, which is
9115 of the form "__" followed by digits. */
9116
9117 tmp = strrchr (name, '.');
9118 if (tmp != NULL)
9119 name = tmp + 1;
9120 else
9121 {
9122 while ((tmp = strstr (name, "__")) != NULL)
9123 {
9124 if (isdigit (tmp[2]))
9125 break;
9126 else
9127 name = tmp + 2;
9128 }
9129 }
9130
9131 if (name[0] == 'Q')
9132 {
9133 int v;
9134
9135 if (name[1] == 'U' || name[1] == 'W')
9136 {
9137 if (sscanf (name + 2, "%x", &v) != 1)
9138 return name;
9139 }
9140 else
9141 return name;
9142
9143 GROW_VECT (result, result_len, 16);
9144 if (isascii (v) && isprint (v))
9145 xsnprintf (result, result_len, "'%c'", v);
9146 else if (name[1] == 'U')
9147 xsnprintf (result, result_len, "[\"%02x\"]", v);
9148 else
9149 xsnprintf (result, result_len, "[\"%04x\"]", v);
9150
9151 return result;
9152 }
9153 else
9154 {
9155 tmp = strstr (name, "__");
9156 if (tmp == NULL)
9157 tmp = strstr (name, "$");
9158 if (tmp != NULL)
9159 {
9160 GROW_VECT (result, result_len, tmp - name + 1);
9161 strncpy (result, name, tmp - name);
9162 result[tmp - name] = '\0';
9163 return result;
9164 }
9165
9166 return name;
9167 }
9168 }
9169
9170 /* Evaluate the subexpression of EXP starting at *POS as for
9171 evaluate_type, updating *POS to point just past the evaluated
9172 expression. */
9173
9174 static struct value *
9175 evaluate_subexp_type (struct expression *exp, int *pos)
9176 {
9177 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9178 }
9179
9180 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9181 value it wraps. */
9182
9183 static struct value *
9184 unwrap_value (struct value *val)
9185 {
9186 struct type *type = ada_check_typedef (value_type (val));
9187
9188 if (ada_is_aligner_type (type))
9189 {
9190 struct value *v = ada_value_struct_elt (val, "F", 0);
9191 struct type *val_type = ada_check_typedef (value_type (v));
9192
9193 if (ada_type_name (val_type) == NULL)
9194 TYPE_NAME (val_type) = ada_type_name (type);
9195
9196 return unwrap_value (v);
9197 }
9198 else
9199 {
9200 struct type *raw_real_type =
9201 ada_check_typedef (ada_get_base_type (type));
9202
9203 /* If there is no parallel XVS or XVE type, then the value is
9204 already unwrapped. Return it without further modification. */
9205 if ((type == raw_real_type)
9206 && ada_find_parallel_type (type, "___XVE") == NULL)
9207 return val;
9208
9209 return
9210 coerce_unspec_val_to_type
9211 (val, ada_to_fixed_type (raw_real_type, 0,
9212 value_address (val),
9213 NULL, 1));
9214 }
9215 }
9216
9217 static struct value *
9218 cast_to_fixed (struct type *type, struct value *arg)
9219 {
9220 LONGEST val;
9221
9222 if (type == value_type (arg))
9223 return arg;
9224 else if (ada_is_fixed_point_type (value_type (arg)))
9225 val = ada_float_to_fixed (type,
9226 ada_fixed_to_float (value_type (arg),
9227 value_as_long (arg)));
9228 else
9229 {
9230 DOUBLEST argd = value_as_double (arg);
9231
9232 val = ada_float_to_fixed (type, argd);
9233 }
9234
9235 return value_from_longest (type, val);
9236 }
9237
9238 static struct value *
9239 cast_from_fixed (struct type *type, struct value *arg)
9240 {
9241 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9242 value_as_long (arg));
9243
9244 return value_from_double (type, val);
9245 }
9246
9247 /* Given two array types T1 and T2, return nonzero iff both arrays
9248 contain the same number of elements. */
9249
9250 static int
9251 ada_same_array_size_p (struct type *t1, struct type *t2)
9252 {
9253 LONGEST lo1, hi1, lo2, hi2;
9254
9255 /* Get the array bounds in order to verify that the size of
9256 the two arrays match. */
9257 if (!get_array_bounds (t1, &lo1, &hi1)
9258 || !get_array_bounds (t2, &lo2, &hi2))
9259 error (_("unable to determine array bounds"));
9260
9261 /* To make things easier for size comparison, normalize a bit
9262 the case of empty arrays by making sure that the difference
9263 between upper bound and lower bound is always -1. */
9264 if (lo1 > hi1)
9265 hi1 = lo1 - 1;
9266 if (lo2 > hi2)
9267 hi2 = lo2 - 1;
9268
9269 return (hi1 - lo1 == hi2 - lo2);
9270 }
9271
9272 /* Assuming that VAL is an array of integrals, and TYPE represents
9273 an array with the same number of elements, but with wider integral
9274 elements, return an array "casted" to TYPE. In practice, this
9275 means that the returned array is built by casting each element
9276 of the original array into TYPE's (wider) element type. */
9277
9278 static struct value *
9279 ada_promote_array_of_integrals (struct type *type, struct value *val)
9280 {
9281 struct type *elt_type = TYPE_TARGET_TYPE (type);
9282 LONGEST lo, hi;
9283 struct value *res;
9284 LONGEST i;
9285
9286 /* Verify that both val and type are arrays of scalars, and
9287 that the size of val's elements is smaller than the size
9288 of type's element. */
9289 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9290 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9291 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9292 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9293 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9294 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9295
9296 if (!get_array_bounds (type, &lo, &hi))
9297 error (_("unable to determine array bounds"));
9298
9299 res = allocate_value (type);
9300
9301 /* Promote each array element. */
9302 for (i = 0; i < hi - lo + 1; i++)
9303 {
9304 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9305
9306 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9307 value_contents_all (elt), TYPE_LENGTH (elt_type));
9308 }
9309
9310 return res;
9311 }
9312
9313 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9314 return the converted value. */
9315
9316 static struct value *
9317 coerce_for_assign (struct type *type, struct value *val)
9318 {
9319 struct type *type2 = value_type (val);
9320
9321 if (type == type2)
9322 return val;
9323
9324 type2 = ada_check_typedef (type2);
9325 type = ada_check_typedef (type);
9326
9327 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9328 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9329 {
9330 val = ada_value_ind (val);
9331 type2 = value_type (val);
9332 }
9333
9334 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9335 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9336 {
9337 if (!ada_same_array_size_p (type, type2))
9338 error (_("cannot assign arrays of different length"));
9339
9340 if (is_integral_type (TYPE_TARGET_TYPE (type))
9341 && is_integral_type (TYPE_TARGET_TYPE (type2))
9342 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9343 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9344 {
9345 /* Allow implicit promotion of the array elements to
9346 a wider type. */
9347 return ada_promote_array_of_integrals (type, val);
9348 }
9349
9350 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9351 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9352 error (_("Incompatible types in assignment"));
9353 deprecated_set_value_type (val, type);
9354 }
9355 return val;
9356 }
9357
9358 static struct value *
9359 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9360 {
9361 struct value *val;
9362 struct type *type1, *type2;
9363 LONGEST v, v1, v2;
9364
9365 arg1 = coerce_ref (arg1);
9366 arg2 = coerce_ref (arg2);
9367 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9368 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9369
9370 if (TYPE_CODE (type1) != TYPE_CODE_INT
9371 || TYPE_CODE (type2) != TYPE_CODE_INT)
9372 return value_binop (arg1, arg2, op);
9373
9374 switch (op)
9375 {
9376 case BINOP_MOD:
9377 case BINOP_DIV:
9378 case BINOP_REM:
9379 break;
9380 default:
9381 return value_binop (arg1, arg2, op);
9382 }
9383
9384 v2 = value_as_long (arg2);
9385 if (v2 == 0)
9386 error (_("second operand of %s must not be zero."), op_string (op));
9387
9388 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9389 return value_binop (arg1, arg2, op);
9390
9391 v1 = value_as_long (arg1);
9392 switch (op)
9393 {
9394 case BINOP_DIV:
9395 v = v1 / v2;
9396 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9397 v += v > 0 ? -1 : 1;
9398 break;
9399 case BINOP_REM:
9400 v = v1 % v2;
9401 if (v * v1 < 0)
9402 v -= v2;
9403 break;
9404 default:
9405 /* Should not reach this point. */
9406 v = 0;
9407 }
9408
9409 val = allocate_value (type1);
9410 store_unsigned_integer (value_contents_raw (val),
9411 TYPE_LENGTH (value_type (val)),
9412 gdbarch_byte_order (get_type_arch (type1)), v);
9413 return val;
9414 }
9415
9416 static int
9417 ada_value_equal (struct value *arg1, struct value *arg2)
9418 {
9419 if (ada_is_direct_array_type (value_type (arg1))
9420 || ada_is_direct_array_type (value_type (arg2)))
9421 {
9422 /* Automatically dereference any array reference before
9423 we attempt to perform the comparison. */
9424 arg1 = ada_coerce_ref (arg1);
9425 arg2 = ada_coerce_ref (arg2);
9426
9427 arg1 = ada_coerce_to_simple_array (arg1);
9428 arg2 = ada_coerce_to_simple_array (arg2);
9429 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9430 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9431 error (_("Attempt to compare array with non-array"));
9432 /* FIXME: The following works only for types whose
9433 representations use all bits (no padding or undefined bits)
9434 and do not have user-defined equality. */
9435 return
9436 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9437 && memcmp (value_contents (arg1), value_contents (arg2),
9438 TYPE_LENGTH (value_type (arg1))) == 0;
9439 }
9440 return value_equal (arg1, arg2);
9441 }
9442
9443 /* Total number of component associations in the aggregate starting at
9444 index PC in EXP. Assumes that index PC is the start of an
9445 OP_AGGREGATE. */
9446
9447 static int
9448 num_component_specs (struct expression *exp, int pc)
9449 {
9450 int n, m, i;
9451
9452 m = exp->elts[pc + 1].longconst;
9453 pc += 3;
9454 n = 0;
9455 for (i = 0; i < m; i += 1)
9456 {
9457 switch (exp->elts[pc].opcode)
9458 {
9459 default:
9460 n += 1;
9461 break;
9462 case OP_CHOICES:
9463 n += exp->elts[pc + 1].longconst;
9464 break;
9465 }
9466 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9467 }
9468 return n;
9469 }
9470
9471 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9472 component of LHS (a simple array or a record), updating *POS past
9473 the expression, assuming that LHS is contained in CONTAINER. Does
9474 not modify the inferior's memory, nor does it modify LHS (unless
9475 LHS == CONTAINER). */
9476
9477 static void
9478 assign_component (struct value *container, struct value *lhs, LONGEST index,
9479 struct expression *exp, int *pos)
9480 {
9481 struct value *mark = value_mark ();
9482 struct value *elt;
9483
9484 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9485 {
9486 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9487 struct value *index_val = value_from_longest (index_type, index);
9488
9489 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9490 }
9491 else
9492 {
9493 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9494 elt = ada_to_fixed_value (elt);
9495 }
9496
9497 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9498 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9499 else
9500 value_assign_to_component (container, elt,
9501 ada_evaluate_subexp (NULL, exp, pos,
9502 EVAL_NORMAL));
9503
9504 value_free_to_mark (mark);
9505 }
9506
9507 /* Assuming that LHS represents an lvalue having a record or array
9508 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9509 of that aggregate's value to LHS, advancing *POS past the
9510 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9511 lvalue containing LHS (possibly LHS itself). Does not modify
9512 the inferior's memory, nor does it modify the contents of
9513 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9514
9515 static struct value *
9516 assign_aggregate (struct value *container,
9517 struct value *lhs, struct expression *exp,
9518 int *pos, enum noside noside)
9519 {
9520 struct type *lhs_type;
9521 int n = exp->elts[*pos+1].longconst;
9522 LONGEST low_index, high_index;
9523 int num_specs;
9524 LONGEST *indices;
9525 int max_indices, num_indices;
9526 int i;
9527
9528 *pos += 3;
9529 if (noside != EVAL_NORMAL)
9530 {
9531 for (i = 0; i < n; i += 1)
9532 ada_evaluate_subexp (NULL, exp, pos, noside);
9533 return container;
9534 }
9535
9536 container = ada_coerce_ref (container);
9537 if (ada_is_direct_array_type (value_type (container)))
9538 container = ada_coerce_to_simple_array (container);
9539 lhs = ada_coerce_ref (lhs);
9540 if (!deprecated_value_modifiable (lhs))
9541 error (_("Left operand of assignment is not a modifiable lvalue."));
9542
9543 lhs_type = value_type (lhs);
9544 if (ada_is_direct_array_type (lhs_type))
9545 {
9546 lhs = ada_coerce_to_simple_array (lhs);
9547 lhs_type = value_type (lhs);
9548 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9549 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9550 }
9551 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9552 {
9553 low_index = 0;
9554 high_index = num_visible_fields (lhs_type) - 1;
9555 }
9556 else
9557 error (_("Left-hand side must be array or record."));
9558
9559 num_specs = num_component_specs (exp, *pos - 3);
9560 max_indices = 4 * num_specs + 4;
9561 indices = alloca (max_indices * sizeof (indices[0]));
9562 indices[0] = indices[1] = low_index - 1;
9563 indices[2] = indices[3] = high_index + 1;
9564 num_indices = 4;
9565
9566 for (i = 0; i < n; i += 1)
9567 {
9568 switch (exp->elts[*pos].opcode)
9569 {
9570 case OP_CHOICES:
9571 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9572 &num_indices, max_indices,
9573 low_index, high_index);
9574 break;
9575 case OP_POSITIONAL:
9576 aggregate_assign_positional (container, lhs, exp, pos, indices,
9577 &num_indices, max_indices,
9578 low_index, high_index);
9579 break;
9580 case OP_OTHERS:
9581 if (i != n-1)
9582 error (_("Misplaced 'others' clause"));
9583 aggregate_assign_others (container, lhs, exp, pos, indices,
9584 num_indices, low_index, high_index);
9585 break;
9586 default:
9587 error (_("Internal error: bad aggregate clause"));
9588 }
9589 }
9590
9591 return container;
9592 }
9593
9594 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9595 construct at *POS, updating *POS past the construct, given that
9596 the positions are relative to lower bound LOW, where HIGH is the
9597 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9598 updating *NUM_INDICES as needed. CONTAINER is as for
9599 assign_aggregate. */
9600 static void
9601 aggregate_assign_positional (struct value *container,
9602 struct value *lhs, struct expression *exp,
9603 int *pos, LONGEST *indices, int *num_indices,
9604 int max_indices, LONGEST low, LONGEST high)
9605 {
9606 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9607
9608 if (ind - 1 == high)
9609 warning (_("Extra components in aggregate ignored."));
9610 if (ind <= high)
9611 {
9612 add_component_interval (ind, ind, indices, num_indices, max_indices);
9613 *pos += 3;
9614 assign_component (container, lhs, ind, exp, pos);
9615 }
9616 else
9617 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9618 }
9619
9620 /* Assign into the components of LHS indexed by the OP_CHOICES
9621 construct at *POS, updating *POS past the construct, given that
9622 the allowable indices are LOW..HIGH. Record the indices assigned
9623 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9624 needed. CONTAINER is as for assign_aggregate. */
9625 static void
9626 aggregate_assign_from_choices (struct value *container,
9627 struct value *lhs, struct expression *exp,
9628 int *pos, LONGEST *indices, int *num_indices,
9629 int max_indices, LONGEST low, LONGEST high)
9630 {
9631 int j;
9632 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9633 int choice_pos, expr_pc;
9634 int is_array = ada_is_direct_array_type (value_type (lhs));
9635
9636 choice_pos = *pos += 3;
9637
9638 for (j = 0; j < n_choices; j += 1)
9639 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9640 expr_pc = *pos;
9641 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9642
9643 for (j = 0; j < n_choices; j += 1)
9644 {
9645 LONGEST lower, upper;
9646 enum exp_opcode op = exp->elts[choice_pos].opcode;
9647
9648 if (op == OP_DISCRETE_RANGE)
9649 {
9650 choice_pos += 1;
9651 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9652 EVAL_NORMAL));
9653 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9654 EVAL_NORMAL));
9655 }
9656 else if (is_array)
9657 {
9658 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9659 EVAL_NORMAL));
9660 upper = lower;
9661 }
9662 else
9663 {
9664 int ind;
9665 const char *name;
9666
9667 switch (op)
9668 {
9669 case OP_NAME:
9670 name = &exp->elts[choice_pos + 2].string;
9671 break;
9672 case OP_VAR_VALUE:
9673 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9674 break;
9675 default:
9676 error (_("Invalid record component association."));
9677 }
9678 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9679 ind = 0;
9680 if (! find_struct_field (name, value_type (lhs), 0,
9681 NULL, NULL, NULL, NULL, &ind))
9682 error (_("Unknown component name: %s."), name);
9683 lower = upper = ind;
9684 }
9685
9686 if (lower <= upper && (lower < low || upper > high))
9687 error (_("Index in component association out of bounds."));
9688
9689 add_component_interval (lower, upper, indices, num_indices,
9690 max_indices);
9691 while (lower <= upper)
9692 {
9693 int pos1;
9694
9695 pos1 = expr_pc;
9696 assign_component (container, lhs, lower, exp, &pos1);
9697 lower += 1;
9698 }
9699 }
9700 }
9701
9702 /* Assign the value of the expression in the OP_OTHERS construct in
9703 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9704 have not been previously assigned. The index intervals already assigned
9705 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9706 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9707 static void
9708 aggregate_assign_others (struct value *container,
9709 struct value *lhs, struct expression *exp,
9710 int *pos, LONGEST *indices, int num_indices,
9711 LONGEST low, LONGEST high)
9712 {
9713 int i;
9714 int expr_pc = *pos + 1;
9715
9716 for (i = 0; i < num_indices - 2; i += 2)
9717 {
9718 LONGEST ind;
9719
9720 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9721 {
9722 int localpos;
9723
9724 localpos = expr_pc;
9725 assign_component (container, lhs, ind, exp, &localpos);
9726 }
9727 }
9728 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9729 }
9730
9731 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9732 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9733 modifying *SIZE as needed. It is an error if *SIZE exceeds
9734 MAX_SIZE. The resulting intervals do not overlap. */
9735 static void
9736 add_component_interval (LONGEST low, LONGEST high,
9737 LONGEST* indices, int *size, int max_size)
9738 {
9739 int i, j;
9740
9741 for (i = 0; i < *size; i += 2) {
9742 if (high >= indices[i] && low <= indices[i + 1])
9743 {
9744 int kh;
9745
9746 for (kh = i + 2; kh < *size; kh += 2)
9747 if (high < indices[kh])
9748 break;
9749 if (low < indices[i])
9750 indices[i] = low;
9751 indices[i + 1] = indices[kh - 1];
9752 if (high > indices[i + 1])
9753 indices[i + 1] = high;
9754 memcpy (indices + i + 2, indices + kh, *size - kh);
9755 *size -= kh - i - 2;
9756 return;
9757 }
9758 else if (high < indices[i])
9759 break;
9760 }
9761
9762 if (*size == max_size)
9763 error (_("Internal error: miscounted aggregate components."));
9764 *size += 2;
9765 for (j = *size-1; j >= i+2; j -= 1)
9766 indices[j] = indices[j - 2];
9767 indices[i] = low;
9768 indices[i + 1] = high;
9769 }
9770
9771 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9772 is different. */
9773
9774 static struct value *
9775 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9776 {
9777 if (type == ada_check_typedef (value_type (arg2)))
9778 return arg2;
9779
9780 if (ada_is_fixed_point_type (type))
9781 return (cast_to_fixed (type, arg2));
9782
9783 if (ada_is_fixed_point_type (value_type (arg2)))
9784 return cast_from_fixed (type, arg2);
9785
9786 return value_cast (type, arg2);
9787 }
9788
9789 /* Evaluating Ada expressions, and printing their result.
9790 ------------------------------------------------------
9791
9792 1. Introduction:
9793 ----------------
9794
9795 We usually evaluate an Ada expression in order to print its value.
9796 We also evaluate an expression in order to print its type, which
9797 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9798 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9799 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9800 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9801 similar.
9802
9803 Evaluating expressions is a little more complicated for Ada entities
9804 than it is for entities in languages such as C. The main reason for
9805 this is that Ada provides types whose definition might be dynamic.
9806 One example of such types is variant records. Or another example
9807 would be an array whose bounds can only be known at run time.
9808
9809 The following description is a general guide as to what should be
9810 done (and what should NOT be done) in order to evaluate an expression
9811 involving such types, and when. This does not cover how the semantic
9812 information is encoded by GNAT as this is covered separatly. For the
9813 document used as the reference for the GNAT encoding, see exp_dbug.ads
9814 in the GNAT sources.
9815
9816 Ideally, we should embed each part of this description next to its
9817 associated code. Unfortunately, the amount of code is so vast right
9818 now that it's hard to see whether the code handling a particular
9819 situation might be duplicated or not. One day, when the code is
9820 cleaned up, this guide might become redundant with the comments
9821 inserted in the code, and we might want to remove it.
9822
9823 2. ``Fixing'' an Entity, the Simple Case:
9824 -----------------------------------------
9825
9826 When evaluating Ada expressions, the tricky issue is that they may
9827 reference entities whose type contents and size are not statically
9828 known. Consider for instance a variant record:
9829
9830 type Rec (Empty : Boolean := True) is record
9831 case Empty is
9832 when True => null;
9833 when False => Value : Integer;
9834 end case;
9835 end record;
9836 Yes : Rec := (Empty => False, Value => 1);
9837 No : Rec := (empty => True);
9838
9839 The size and contents of that record depends on the value of the
9840 descriminant (Rec.Empty). At this point, neither the debugging
9841 information nor the associated type structure in GDB are able to
9842 express such dynamic types. So what the debugger does is to create
9843 "fixed" versions of the type that applies to the specific object.
9844 We also informally refer to this opperation as "fixing" an object,
9845 which means creating its associated fixed type.
9846
9847 Example: when printing the value of variable "Yes" above, its fixed
9848 type would look like this:
9849
9850 type Rec is record
9851 Empty : Boolean;
9852 Value : Integer;
9853 end record;
9854
9855 On the other hand, if we printed the value of "No", its fixed type
9856 would become:
9857
9858 type Rec is record
9859 Empty : Boolean;
9860 end record;
9861
9862 Things become a little more complicated when trying to fix an entity
9863 with a dynamic type that directly contains another dynamic type,
9864 such as an array of variant records, for instance. There are
9865 two possible cases: Arrays, and records.
9866
9867 3. ``Fixing'' Arrays:
9868 ---------------------
9869
9870 The type structure in GDB describes an array in terms of its bounds,
9871 and the type of its elements. By design, all elements in the array
9872 have the same type and we cannot represent an array of variant elements
9873 using the current type structure in GDB. When fixing an array,
9874 we cannot fix the array element, as we would potentially need one
9875 fixed type per element of the array. As a result, the best we can do
9876 when fixing an array is to produce an array whose bounds and size
9877 are correct (allowing us to read it from memory), but without having
9878 touched its element type. Fixing each element will be done later,
9879 when (if) necessary.
9880
9881 Arrays are a little simpler to handle than records, because the same
9882 amount of memory is allocated for each element of the array, even if
9883 the amount of space actually used by each element differs from element
9884 to element. Consider for instance the following array of type Rec:
9885
9886 type Rec_Array is array (1 .. 2) of Rec;
9887
9888 The actual amount of memory occupied by each element might be different
9889 from element to element, depending on the value of their discriminant.
9890 But the amount of space reserved for each element in the array remains
9891 fixed regardless. So we simply need to compute that size using
9892 the debugging information available, from which we can then determine
9893 the array size (we multiply the number of elements of the array by
9894 the size of each element).
9895
9896 The simplest case is when we have an array of a constrained element
9897 type. For instance, consider the following type declarations:
9898
9899 type Bounded_String (Max_Size : Integer) is
9900 Length : Integer;
9901 Buffer : String (1 .. Max_Size);
9902 end record;
9903 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9904
9905 In this case, the compiler describes the array as an array of
9906 variable-size elements (identified by its XVS suffix) for which
9907 the size can be read in the parallel XVZ variable.
9908
9909 In the case of an array of an unconstrained element type, the compiler
9910 wraps the array element inside a private PAD type. This type should not
9911 be shown to the user, and must be "unwrap"'ed before printing. Note
9912 that we also use the adjective "aligner" in our code to designate
9913 these wrapper types.
9914
9915 In some cases, the size allocated for each element is statically
9916 known. In that case, the PAD type already has the correct size,
9917 and the array element should remain unfixed.
9918
9919 But there are cases when this size is not statically known.
9920 For instance, assuming that "Five" is an integer variable:
9921
9922 type Dynamic is array (1 .. Five) of Integer;
9923 type Wrapper (Has_Length : Boolean := False) is record
9924 Data : Dynamic;
9925 case Has_Length is
9926 when True => Length : Integer;
9927 when False => null;
9928 end case;
9929 end record;
9930 type Wrapper_Array is array (1 .. 2) of Wrapper;
9931
9932 Hello : Wrapper_Array := (others => (Has_Length => True,
9933 Data => (others => 17),
9934 Length => 1));
9935
9936
9937 The debugging info would describe variable Hello as being an
9938 array of a PAD type. The size of that PAD type is not statically
9939 known, but can be determined using a parallel XVZ variable.
9940 In that case, a copy of the PAD type with the correct size should
9941 be used for the fixed array.
9942
9943 3. ``Fixing'' record type objects:
9944 ----------------------------------
9945
9946 Things are slightly different from arrays in the case of dynamic
9947 record types. In this case, in order to compute the associated
9948 fixed type, we need to determine the size and offset of each of
9949 its components. This, in turn, requires us to compute the fixed
9950 type of each of these components.
9951
9952 Consider for instance the example:
9953
9954 type Bounded_String (Max_Size : Natural) is record
9955 Str : String (1 .. Max_Size);
9956 Length : Natural;
9957 end record;
9958 My_String : Bounded_String (Max_Size => 10);
9959
9960 In that case, the position of field "Length" depends on the size
9961 of field Str, which itself depends on the value of the Max_Size
9962 discriminant. In order to fix the type of variable My_String,
9963 we need to fix the type of field Str. Therefore, fixing a variant
9964 record requires us to fix each of its components.
9965
9966 However, if a component does not have a dynamic size, the component
9967 should not be fixed. In particular, fields that use a PAD type
9968 should not fixed. Here is an example where this might happen
9969 (assuming type Rec above):
9970
9971 type Container (Big : Boolean) is record
9972 First : Rec;
9973 After : Integer;
9974 case Big is
9975 when True => Another : Integer;
9976 when False => null;
9977 end case;
9978 end record;
9979 My_Container : Container := (Big => False,
9980 First => (Empty => True),
9981 After => 42);
9982
9983 In that example, the compiler creates a PAD type for component First,
9984 whose size is constant, and then positions the component After just
9985 right after it. The offset of component After is therefore constant
9986 in this case.
9987
9988 The debugger computes the position of each field based on an algorithm
9989 that uses, among other things, the actual position and size of the field
9990 preceding it. Let's now imagine that the user is trying to print
9991 the value of My_Container. If the type fixing was recursive, we would
9992 end up computing the offset of field After based on the size of the
9993 fixed version of field First. And since in our example First has
9994 only one actual field, the size of the fixed type is actually smaller
9995 than the amount of space allocated to that field, and thus we would
9996 compute the wrong offset of field After.
9997
9998 To make things more complicated, we need to watch out for dynamic
9999 components of variant records (identified by the ___XVL suffix in
10000 the component name). Even if the target type is a PAD type, the size
10001 of that type might not be statically known. So the PAD type needs
10002 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10003 we might end up with the wrong size for our component. This can be
10004 observed with the following type declarations:
10005
10006 type Octal is new Integer range 0 .. 7;
10007 type Octal_Array is array (Positive range <>) of Octal;
10008 pragma Pack (Octal_Array);
10009
10010 type Octal_Buffer (Size : Positive) is record
10011 Buffer : Octal_Array (1 .. Size);
10012 Length : Integer;
10013 end record;
10014
10015 In that case, Buffer is a PAD type whose size is unset and needs
10016 to be computed by fixing the unwrapped type.
10017
10018 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10019 ----------------------------------------------------------
10020
10021 Lastly, when should the sub-elements of an entity that remained unfixed
10022 thus far, be actually fixed?
10023
10024 The answer is: Only when referencing that element. For instance
10025 when selecting one component of a record, this specific component
10026 should be fixed at that point in time. Or when printing the value
10027 of a record, each component should be fixed before its value gets
10028 printed. Similarly for arrays, the element of the array should be
10029 fixed when printing each element of the array, or when extracting
10030 one element out of that array. On the other hand, fixing should
10031 not be performed on the elements when taking a slice of an array!
10032
10033 Note that one of the side-effects of miscomputing the offset and
10034 size of each field is that we end up also miscomputing the size
10035 of the containing type. This can have adverse results when computing
10036 the value of an entity. GDB fetches the value of an entity based
10037 on the size of its type, and thus a wrong size causes GDB to fetch
10038 the wrong amount of memory. In the case where the computed size is
10039 too small, GDB fetches too little data to print the value of our
10040 entiry. Results in this case as unpredicatble, as we usually read
10041 past the buffer containing the data =:-o. */
10042
10043 /* Implement the evaluate_exp routine in the exp_descriptor structure
10044 for the Ada language. */
10045
10046 static struct value *
10047 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10048 int *pos, enum noside noside)
10049 {
10050 enum exp_opcode op;
10051 int tem;
10052 int pc;
10053 int preeval_pos;
10054 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10055 struct type *type;
10056 int nargs, oplen;
10057 struct value **argvec;
10058
10059 pc = *pos;
10060 *pos += 1;
10061 op = exp->elts[pc].opcode;
10062
10063 switch (op)
10064 {
10065 default:
10066 *pos -= 1;
10067 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10068
10069 if (noside == EVAL_NORMAL)
10070 arg1 = unwrap_value (arg1);
10071
10072 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10073 then we need to perform the conversion manually, because
10074 evaluate_subexp_standard doesn't do it. This conversion is
10075 necessary in Ada because the different kinds of float/fixed
10076 types in Ada have different representations.
10077
10078 Similarly, we need to perform the conversion from OP_LONG
10079 ourselves. */
10080 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10081 arg1 = ada_value_cast (expect_type, arg1, noside);
10082
10083 return arg1;
10084
10085 case OP_STRING:
10086 {
10087 struct value *result;
10088
10089 *pos -= 1;
10090 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10091 /* The result type will have code OP_STRING, bashed there from
10092 OP_ARRAY. Bash it back. */
10093 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10094 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10095 return result;
10096 }
10097
10098 case UNOP_CAST:
10099 (*pos) += 2;
10100 type = exp->elts[pc + 1].type;
10101 arg1 = evaluate_subexp (type, exp, pos, noside);
10102 if (noside == EVAL_SKIP)
10103 goto nosideret;
10104 arg1 = ada_value_cast (type, arg1, noside);
10105 return arg1;
10106
10107 case UNOP_QUAL:
10108 (*pos) += 2;
10109 type = exp->elts[pc + 1].type;
10110 return ada_evaluate_subexp (type, exp, pos, noside);
10111
10112 case BINOP_ASSIGN:
10113 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10114 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10115 {
10116 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10117 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10118 return arg1;
10119 return ada_value_assign (arg1, arg1);
10120 }
10121 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10122 except if the lhs of our assignment is a convenience variable.
10123 In the case of assigning to a convenience variable, the lhs
10124 should be exactly the result of the evaluation of the rhs. */
10125 type = value_type (arg1);
10126 if (VALUE_LVAL (arg1) == lval_internalvar)
10127 type = NULL;
10128 arg2 = evaluate_subexp (type, exp, pos, noside);
10129 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10130 return arg1;
10131 if (ada_is_fixed_point_type (value_type (arg1)))
10132 arg2 = cast_to_fixed (value_type (arg1), arg2);
10133 else if (ada_is_fixed_point_type (value_type (arg2)))
10134 error
10135 (_("Fixed-point values must be assigned to fixed-point variables"));
10136 else
10137 arg2 = coerce_for_assign (value_type (arg1), arg2);
10138 return ada_value_assign (arg1, arg2);
10139
10140 case BINOP_ADD:
10141 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10142 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10143 if (noside == EVAL_SKIP)
10144 goto nosideret;
10145 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10146 return (value_from_longest
10147 (value_type (arg1),
10148 value_as_long (arg1) + value_as_long (arg2)));
10149 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10150 return (value_from_longest
10151 (value_type (arg2),
10152 value_as_long (arg1) + value_as_long (arg2)));
10153 if ((ada_is_fixed_point_type (value_type (arg1))
10154 || ada_is_fixed_point_type (value_type (arg2)))
10155 && value_type (arg1) != value_type (arg2))
10156 error (_("Operands of fixed-point addition must have the same type"));
10157 /* Do the addition, and cast the result to the type of the first
10158 argument. We cannot cast the result to a reference type, so if
10159 ARG1 is a reference type, find its underlying type. */
10160 type = value_type (arg1);
10161 while (TYPE_CODE (type) == TYPE_CODE_REF)
10162 type = TYPE_TARGET_TYPE (type);
10163 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10164 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10165
10166 case BINOP_SUB:
10167 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10168 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10169 if (noside == EVAL_SKIP)
10170 goto nosideret;
10171 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10172 return (value_from_longest
10173 (value_type (arg1),
10174 value_as_long (arg1) - value_as_long (arg2)));
10175 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10176 return (value_from_longest
10177 (value_type (arg2),
10178 value_as_long (arg1) - value_as_long (arg2)));
10179 if ((ada_is_fixed_point_type (value_type (arg1))
10180 || ada_is_fixed_point_type (value_type (arg2)))
10181 && value_type (arg1) != value_type (arg2))
10182 error (_("Operands of fixed-point subtraction "
10183 "must have the same type"));
10184 /* Do the substraction, and cast the result to the type of the first
10185 argument. We cannot cast the result to a reference type, so if
10186 ARG1 is a reference type, find its underlying type. */
10187 type = value_type (arg1);
10188 while (TYPE_CODE (type) == TYPE_CODE_REF)
10189 type = TYPE_TARGET_TYPE (type);
10190 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10191 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10192
10193 case BINOP_MUL:
10194 case BINOP_DIV:
10195 case BINOP_REM:
10196 case BINOP_MOD:
10197 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10198 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10199 if (noside == EVAL_SKIP)
10200 goto nosideret;
10201 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10202 {
10203 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10204 return value_zero (value_type (arg1), not_lval);
10205 }
10206 else
10207 {
10208 type = builtin_type (exp->gdbarch)->builtin_double;
10209 if (ada_is_fixed_point_type (value_type (arg1)))
10210 arg1 = cast_from_fixed (type, arg1);
10211 if (ada_is_fixed_point_type (value_type (arg2)))
10212 arg2 = cast_from_fixed (type, arg2);
10213 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10214 return ada_value_binop (arg1, arg2, op);
10215 }
10216
10217 case BINOP_EQUAL:
10218 case BINOP_NOTEQUAL:
10219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10220 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10221 if (noside == EVAL_SKIP)
10222 goto nosideret;
10223 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10224 tem = 0;
10225 else
10226 {
10227 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10228 tem = ada_value_equal (arg1, arg2);
10229 }
10230 if (op == BINOP_NOTEQUAL)
10231 tem = !tem;
10232 type = language_bool_type (exp->language_defn, exp->gdbarch);
10233 return value_from_longest (type, (LONGEST) tem);
10234
10235 case UNOP_NEG:
10236 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10237 if (noside == EVAL_SKIP)
10238 goto nosideret;
10239 else if (ada_is_fixed_point_type (value_type (arg1)))
10240 return value_cast (value_type (arg1), value_neg (arg1));
10241 else
10242 {
10243 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10244 return value_neg (arg1);
10245 }
10246
10247 case BINOP_LOGICAL_AND:
10248 case BINOP_LOGICAL_OR:
10249 case UNOP_LOGICAL_NOT:
10250 {
10251 struct value *val;
10252
10253 *pos -= 1;
10254 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10255 type = language_bool_type (exp->language_defn, exp->gdbarch);
10256 return value_cast (type, val);
10257 }
10258
10259 case BINOP_BITWISE_AND:
10260 case BINOP_BITWISE_IOR:
10261 case BINOP_BITWISE_XOR:
10262 {
10263 struct value *val;
10264
10265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10266 *pos = pc;
10267 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10268
10269 return value_cast (value_type (arg1), val);
10270 }
10271
10272 case OP_VAR_VALUE:
10273 *pos -= 1;
10274
10275 if (noside == EVAL_SKIP)
10276 {
10277 *pos += 4;
10278 goto nosideret;
10279 }
10280
10281 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10282 /* Only encountered when an unresolved symbol occurs in a
10283 context other than a function call, in which case, it is
10284 invalid. */
10285 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10286 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10287
10288 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10289 {
10290 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10291 /* Check to see if this is a tagged type. We also need to handle
10292 the case where the type is a reference to a tagged type, but
10293 we have to be careful to exclude pointers to tagged types.
10294 The latter should be shown as usual (as a pointer), whereas
10295 a reference should mostly be transparent to the user. */
10296 if (ada_is_tagged_type (type, 0)
10297 || (TYPE_CODE (type) == TYPE_CODE_REF
10298 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10299 {
10300 /* Tagged types are a little special in the fact that the real
10301 type is dynamic and can only be determined by inspecting the
10302 object's tag. This means that we need to get the object's
10303 value first (EVAL_NORMAL) and then extract the actual object
10304 type from its tag.
10305
10306 Note that we cannot skip the final step where we extract
10307 the object type from its tag, because the EVAL_NORMAL phase
10308 results in dynamic components being resolved into fixed ones.
10309 This can cause problems when trying to print the type
10310 description of tagged types whose parent has a dynamic size:
10311 We use the type name of the "_parent" component in order
10312 to print the name of the ancestor type in the type description.
10313 If that component had a dynamic size, the resolution into
10314 a fixed type would result in the loss of that type name,
10315 thus preventing us from printing the name of the ancestor
10316 type in the type description. */
10317 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10318
10319 if (TYPE_CODE (type) != TYPE_CODE_REF)
10320 {
10321 struct type *actual_type;
10322
10323 actual_type = type_from_tag (ada_value_tag (arg1));
10324 if (actual_type == NULL)
10325 /* If, for some reason, we were unable to determine
10326 the actual type from the tag, then use the static
10327 approximation that we just computed as a fallback.
10328 This can happen if the debugging information is
10329 incomplete, for instance. */
10330 actual_type = type;
10331 return value_zero (actual_type, not_lval);
10332 }
10333 else
10334 {
10335 /* In the case of a ref, ada_coerce_ref takes care
10336 of determining the actual type. But the evaluation
10337 should return a ref as it should be valid to ask
10338 for its address; so rebuild a ref after coerce. */
10339 arg1 = ada_coerce_ref (arg1);
10340 return value_ref (arg1);
10341 }
10342 }
10343
10344 /* Records and unions for which GNAT encodings have been
10345 generated need to be statically fixed as well.
10346 Otherwise, non-static fixing produces a type where
10347 all dynamic properties are removed, which prevents "ptype"
10348 from being able to completely describe the type.
10349 For instance, a case statement in a variant record would be
10350 replaced by the relevant components based on the actual
10351 value of the discriminants. */
10352 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10353 && dynamic_template_type (type) != NULL)
10354 || (TYPE_CODE (type) == TYPE_CODE_UNION
10355 && ada_find_parallel_type (type, "___XVU") != NULL))
10356 {
10357 *pos += 4;
10358 return value_zero (to_static_fixed_type (type), not_lval);
10359 }
10360 }
10361
10362 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10363 return ada_to_fixed_value (arg1);
10364
10365 case OP_FUNCALL:
10366 (*pos) += 2;
10367
10368 /* Allocate arg vector, including space for the function to be
10369 called in argvec[0] and a terminating NULL. */
10370 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10371 argvec =
10372 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10373
10374 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10375 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10376 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10377 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10378 else
10379 {
10380 for (tem = 0; tem <= nargs; tem += 1)
10381 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10382 argvec[tem] = 0;
10383
10384 if (noside == EVAL_SKIP)
10385 goto nosideret;
10386 }
10387
10388 if (ada_is_constrained_packed_array_type
10389 (desc_base_type (value_type (argvec[0]))))
10390 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10391 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10392 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10393 /* This is a packed array that has already been fixed, and
10394 therefore already coerced to a simple array. Nothing further
10395 to do. */
10396 ;
10397 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10398 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10399 && VALUE_LVAL (argvec[0]) == lval_memory))
10400 argvec[0] = value_addr (argvec[0]);
10401
10402 type = ada_check_typedef (value_type (argvec[0]));
10403
10404 /* Ada allows us to implicitly dereference arrays when subscripting
10405 them. So, if this is an array typedef (encoding use for array
10406 access types encoded as fat pointers), strip it now. */
10407 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10408 type = ada_typedef_target_type (type);
10409
10410 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10411 {
10412 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10413 {
10414 case TYPE_CODE_FUNC:
10415 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10416 break;
10417 case TYPE_CODE_ARRAY:
10418 break;
10419 case TYPE_CODE_STRUCT:
10420 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10421 argvec[0] = ada_value_ind (argvec[0]);
10422 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10423 break;
10424 default:
10425 error (_("cannot subscript or call something of type `%s'"),
10426 ada_type_name (value_type (argvec[0])));
10427 break;
10428 }
10429 }
10430
10431 switch (TYPE_CODE (type))
10432 {
10433 case TYPE_CODE_FUNC:
10434 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10435 {
10436 struct type *rtype = TYPE_TARGET_TYPE (type);
10437
10438 if (TYPE_GNU_IFUNC (type))
10439 return allocate_value (TYPE_TARGET_TYPE (rtype));
10440 return allocate_value (rtype);
10441 }
10442 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10443 case TYPE_CODE_INTERNAL_FUNCTION:
10444 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10445 /* We don't know anything about what the internal
10446 function might return, but we have to return
10447 something. */
10448 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10449 not_lval);
10450 else
10451 return call_internal_function (exp->gdbarch, exp->language_defn,
10452 argvec[0], nargs, argvec + 1);
10453
10454 case TYPE_CODE_STRUCT:
10455 {
10456 int arity;
10457
10458 arity = ada_array_arity (type);
10459 type = ada_array_element_type (type, nargs);
10460 if (type == NULL)
10461 error (_("cannot subscript or call a record"));
10462 if (arity != nargs)
10463 error (_("wrong number of subscripts; expecting %d"), arity);
10464 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10465 return value_zero (ada_aligned_type (type), lval_memory);
10466 return
10467 unwrap_value (ada_value_subscript
10468 (argvec[0], nargs, argvec + 1));
10469 }
10470 case TYPE_CODE_ARRAY:
10471 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10472 {
10473 type = ada_array_element_type (type, nargs);
10474 if (type == NULL)
10475 error (_("element type of array unknown"));
10476 else
10477 return value_zero (ada_aligned_type (type), lval_memory);
10478 }
10479 return
10480 unwrap_value (ada_value_subscript
10481 (ada_coerce_to_simple_array (argvec[0]),
10482 nargs, argvec + 1));
10483 case TYPE_CODE_PTR: /* Pointer to array */
10484 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10485 {
10486 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10487 type = ada_array_element_type (type, nargs);
10488 if (type == NULL)
10489 error (_("element type of array unknown"));
10490 else
10491 return value_zero (ada_aligned_type (type), lval_memory);
10492 }
10493 return
10494 unwrap_value (ada_value_ptr_subscript (argvec[0],
10495 nargs, argvec + 1));
10496
10497 default:
10498 error (_("Attempt to index or call something other than an "
10499 "array or function"));
10500 }
10501
10502 case TERNOP_SLICE:
10503 {
10504 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10505 struct value *low_bound_val =
10506 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10507 struct value *high_bound_val =
10508 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10509 LONGEST low_bound;
10510 LONGEST high_bound;
10511
10512 low_bound_val = coerce_ref (low_bound_val);
10513 high_bound_val = coerce_ref (high_bound_val);
10514 low_bound = pos_atr (low_bound_val);
10515 high_bound = pos_atr (high_bound_val);
10516
10517 if (noside == EVAL_SKIP)
10518 goto nosideret;
10519
10520 /* If this is a reference to an aligner type, then remove all
10521 the aligners. */
10522 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10523 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10524 TYPE_TARGET_TYPE (value_type (array)) =
10525 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10526
10527 if (ada_is_constrained_packed_array_type (value_type (array)))
10528 error (_("cannot slice a packed array"));
10529
10530 /* If this is a reference to an array or an array lvalue,
10531 convert to a pointer. */
10532 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10533 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10534 && VALUE_LVAL (array) == lval_memory))
10535 array = value_addr (array);
10536
10537 if (noside == EVAL_AVOID_SIDE_EFFECTS
10538 && ada_is_array_descriptor_type (ada_check_typedef
10539 (value_type (array))))
10540 return empty_array (ada_type_of_array (array, 0), low_bound);
10541
10542 array = ada_coerce_to_simple_array_ptr (array);
10543
10544 /* If we have more than one level of pointer indirection,
10545 dereference the value until we get only one level. */
10546 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10547 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10548 == TYPE_CODE_PTR))
10549 array = value_ind (array);
10550
10551 /* Make sure we really do have an array type before going further,
10552 to avoid a SEGV when trying to get the index type or the target
10553 type later down the road if the debug info generated by
10554 the compiler is incorrect or incomplete. */
10555 if (!ada_is_simple_array_type (value_type (array)))
10556 error (_("cannot take slice of non-array"));
10557
10558 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10559 == TYPE_CODE_PTR)
10560 {
10561 struct type *type0 = ada_check_typedef (value_type (array));
10562
10563 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10564 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10565 else
10566 {
10567 struct type *arr_type0 =
10568 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10569
10570 return ada_value_slice_from_ptr (array, arr_type0,
10571 longest_to_int (low_bound),
10572 longest_to_int (high_bound));
10573 }
10574 }
10575 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10576 return array;
10577 else if (high_bound < low_bound)
10578 return empty_array (value_type (array), low_bound);
10579 else
10580 return ada_value_slice (array, longest_to_int (low_bound),
10581 longest_to_int (high_bound));
10582 }
10583
10584 case UNOP_IN_RANGE:
10585 (*pos) += 2;
10586 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10587 type = check_typedef (exp->elts[pc + 1].type);
10588
10589 if (noside == EVAL_SKIP)
10590 goto nosideret;
10591
10592 switch (TYPE_CODE (type))
10593 {
10594 default:
10595 lim_warning (_("Membership test incompletely implemented; "
10596 "always returns true"));
10597 type = language_bool_type (exp->language_defn, exp->gdbarch);
10598 return value_from_longest (type, (LONGEST) 1);
10599
10600 case TYPE_CODE_RANGE:
10601 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10602 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10603 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10604 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10605 type = language_bool_type (exp->language_defn, exp->gdbarch);
10606 return
10607 value_from_longest (type,
10608 (value_less (arg1, arg3)
10609 || value_equal (arg1, arg3))
10610 && (value_less (arg2, arg1)
10611 || value_equal (arg2, arg1)));
10612 }
10613
10614 case BINOP_IN_BOUNDS:
10615 (*pos) += 2;
10616 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10617 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10618
10619 if (noside == EVAL_SKIP)
10620 goto nosideret;
10621
10622 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10623 {
10624 type = language_bool_type (exp->language_defn, exp->gdbarch);
10625 return value_zero (type, not_lval);
10626 }
10627
10628 tem = longest_to_int (exp->elts[pc + 1].longconst);
10629
10630 type = ada_index_type (value_type (arg2), tem, "range");
10631 if (!type)
10632 type = value_type (arg1);
10633
10634 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10635 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10636
10637 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10638 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10639 type = language_bool_type (exp->language_defn, exp->gdbarch);
10640 return
10641 value_from_longest (type,
10642 (value_less (arg1, arg3)
10643 || value_equal (arg1, arg3))
10644 && (value_less (arg2, arg1)
10645 || value_equal (arg2, arg1)));
10646
10647 case TERNOP_IN_RANGE:
10648 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10649 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10650 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10651
10652 if (noside == EVAL_SKIP)
10653 goto nosideret;
10654
10655 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10656 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10657 type = language_bool_type (exp->language_defn, exp->gdbarch);
10658 return
10659 value_from_longest (type,
10660 (value_less (arg1, arg3)
10661 || value_equal (arg1, arg3))
10662 && (value_less (arg2, arg1)
10663 || value_equal (arg2, arg1)));
10664
10665 case OP_ATR_FIRST:
10666 case OP_ATR_LAST:
10667 case OP_ATR_LENGTH:
10668 {
10669 struct type *type_arg;
10670
10671 if (exp->elts[*pos].opcode == OP_TYPE)
10672 {
10673 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10674 arg1 = NULL;
10675 type_arg = check_typedef (exp->elts[pc + 2].type);
10676 }
10677 else
10678 {
10679 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10680 type_arg = NULL;
10681 }
10682
10683 if (exp->elts[*pos].opcode != OP_LONG)
10684 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10685 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10686 *pos += 4;
10687
10688 if (noside == EVAL_SKIP)
10689 goto nosideret;
10690
10691 if (type_arg == NULL)
10692 {
10693 arg1 = ada_coerce_ref (arg1);
10694
10695 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10696 arg1 = ada_coerce_to_simple_array (arg1);
10697
10698 if (op == OP_ATR_LENGTH)
10699 type = builtin_type (exp->gdbarch)->builtin_int;
10700 else
10701 {
10702 type = ada_index_type (value_type (arg1), tem,
10703 ada_attribute_name (op));
10704 if (type == NULL)
10705 type = builtin_type (exp->gdbarch)->builtin_int;
10706 }
10707
10708 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10709 return allocate_value (type);
10710
10711 switch (op)
10712 {
10713 default: /* Should never happen. */
10714 error (_("unexpected attribute encountered"));
10715 case OP_ATR_FIRST:
10716 return value_from_longest
10717 (type, ada_array_bound (arg1, tem, 0));
10718 case OP_ATR_LAST:
10719 return value_from_longest
10720 (type, ada_array_bound (arg1, tem, 1));
10721 case OP_ATR_LENGTH:
10722 return value_from_longest
10723 (type, ada_array_length (arg1, tem));
10724 }
10725 }
10726 else if (discrete_type_p (type_arg))
10727 {
10728 struct type *range_type;
10729 const char *name = ada_type_name (type_arg);
10730
10731 range_type = NULL;
10732 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10733 range_type = to_fixed_range_type (type_arg, NULL);
10734 if (range_type == NULL)
10735 range_type = type_arg;
10736 switch (op)
10737 {
10738 default:
10739 error (_("unexpected attribute encountered"));
10740 case OP_ATR_FIRST:
10741 return value_from_longest
10742 (range_type, ada_discrete_type_low_bound (range_type));
10743 case OP_ATR_LAST:
10744 return value_from_longest
10745 (range_type, ada_discrete_type_high_bound (range_type));
10746 case OP_ATR_LENGTH:
10747 error (_("the 'length attribute applies only to array types"));
10748 }
10749 }
10750 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10751 error (_("unimplemented type attribute"));
10752 else
10753 {
10754 LONGEST low, high;
10755
10756 if (ada_is_constrained_packed_array_type (type_arg))
10757 type_arg = decode_constrained_packed_array_type (type_arg);
10758
10759 if (op == OP_ATR_LENGTH)
10760 type = builtin_type (exp->gdbarch)->builtin_int;
10761 else
10762 {
10763 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10764 if (type == NULL)
10765 type = builtin_type (exp->gdbarch)->builtin_int;
10766 }
10767
10768 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10769 return allocate_value (type);
10770
10771 switch (op)
10772 {
10773 default:
10774 error (_("unexpected attribute encountered"));
10775 case OP_ATR_FIRST:
10776 low = ada_array_bound_from_type (type_arg, tem, 0);
10777 return value_from_longest (type, low);
10778 case OP_ATR_LAST:
10779 high = ada_array_bound_from_type (type_arg, tem, 1);
10780 return value_from_longest (type, high);
10781 case OP_ATR_LENGTH:
10782 low = ada_array_bound_from_type (type_arg, tem, 0);
10783 high = ada_array_bound_from_type (type_arg, tem, 1);
10784 return value_from_longest (type, high - low + 1);
10785 }
10786 }
10787 }
10788
10789 case OP_ATR_TAG:
10790 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10791 if (noside == EVAL_SKIP)
10792 goto nosideret;
10793
10794 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10795 return value_zero (ada_tag_type (arg1), not_lval);
10796
10797 return ada_value_tag (arg1);
10798
10799 case OP_ATR_MIN:
10800 case OP_ATR_MAX:
10801 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10802 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10803 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10804 if (noside == EVAL_SKIP)
10805 goto nosideret;
10806 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10807 return value_zero (value_type (arg1), not_lval);
10808 else
10809 {
10810 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10811 return value_binop (arg1, arg2,
10812 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10813 }
10814
10815 case OP_ATR_MODULUS:
10816 {
10817 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10818
10819 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10820 if (noside == EVAL_SKIP)
10821 goto nosideret;
10822
10823 if (!ada_is_modular_type (type_arg))
10824 error (_("'modulus must be applied to modular type"));
10825
10826 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10827 ada_modulus (type_arg));
10828 }
10829
10830
10831 case OP_ATR_POS:
10832 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10833 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10834 if (noside == EVAL_SKIP)
10835 goto nosideret;
10836 type = builtin_type (exp->gdbarch)->builtin_int;
10837 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10838 return value_zero (type, not_lval);
10839 else
10840 return value_pos_atr (type, arg1);
10841
10842 case OP_ATR_SIZE:
10843 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10844 type = value_type (arg1);
10845
10846 /* If the argument is a reference, then dereference its type, since
10847 the user is really asking for the size of the actual object,
10848 not the size of the pointer. */
10849 if (TYPE_CODE (type) == TYPE_CODE_REF)
10850 type = TYPE_TARGET_TYPE (type);
10851
10852 if (noside == EVAL_SKIP)
10853 goto nosideret;
10854 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10855 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10856 else
10857 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10858 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10859
10860 case OP_ATR_VAL:
10861 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10862 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10863 type = exp->elts[pc + 2].type;
10864 if (noside == EVAL_SKIP)
10865 goto nosideret;
10866 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10867 return value_zero (type, not_lval);
10868 else
10869 return value_val_atr (type, arg1);
10870
10871 case BINOP_EXP:
10872 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10873 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10874 if (noside == EVAL_SKIP)
10875 goto nosideret;
10876 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10877 return value_zero (value_type (arg1), not_lval);
10878 else
10879 {
10880 /* For integer exponentiation operations,
10881 only promote the first argument. */
10882 if (is_integral_type (value_type (arg2)))
10883 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10884 else
10885 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10886
10887 return value_binop (arg1, arg2, op);
10888 }
10889
10890 case UNOP_PLUS:
10891 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10892 if (noside == EVAL_SKIP)
10893 goto nosideret;
10894 else
10895 return arg1;
10896
10897 case UNOP_ABS:
10898 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10899 if (noside == EVAL_SKIP)
10900 goto nosideret;
10901 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10902 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10903 return value_neg (arg1);
10904 else
10905 return arg1;
10906
10907 case UNOP_IND:
10908 preeval_pos = *pos;
10909 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10910 if (noside == EVAL_SKIP)
10911 goto nosideret;
10912 type = ada_check_typedef (value_type (arg1));
10913 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10914 {
10915 if (ada_is_array_descriptor_type (type))
10916 /* GDB allows dereferencing GNAT array descriptors. */
10917 {
10918 struct type *arrType = ada_type_of_array (arg1, 0);
10919
10920 if (arrType == NULL)
10921 error (_("Attempt to dereference null array pointer."));
10922 return value_at_lazy (arrType, 0);
10923 }
10924 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10925 || TYPE_CODE (type) == TYPE_CODE_REF
10926 /* In C you can dereference an array to get the 1st elt. */
10927 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10928 {
10929 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10930 only be determined by inspecting the object's tag.
10931 This means that we need to evaluate completely the
10932 expression in order to get its type. */
10933
10934 if ((TYPE_CODE (type) == TYPE_CODE_REF
10935 || TYPE_CODE (type) == TYPE_CODE_PTR)
10936 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10937 {
10938 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10939 EVAL_NORMAL);
10940 type = value_type (ada_value_ind (arg1));
10941 }
10942 else
10943 {
10944 type = to_static_fixed_type
10945 (ada_aligned_type
10946 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10947 }
10948 ada_ensure_varsize_limit (type);
10949 return value_zero (type, lval_memory);
10950 }
10951 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10952 {
10953 /* GDB allows dereferencing an int. */
10954 if (expect_type == NULL)
10955 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10956 lval_memory);
10957 else
10958 {
10959 expect_type =
10960 to_static_fixed_type (ada_aligned_type (expect_type));
10961 return value_zero (expect_type, lval_memory);
10962 }
10963 }
10964 else
10965 error (_("Attempt to take contents of a non-pointer value."));
10966 }
10967 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10968 type = ada_check_typedef (value_type (arg1));
10969
10970 if (TYPE_CODE (type) == TYPE_CODE_INT)
10971 /* GDB allows dereferencing an int. If we were given
10972 the expect_type, then use that as the target type.
10973 Otherwise, assume that the target type is an int. */
10974 {
10975 if (expect_type != NULL)
10976 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10977 arg1));
10978 else
10979 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10980 (CORE_ADDR) value_as_address (arg1));
10981 }
10982
10983 if (ada_is_array_descriptor_type (type))
10984 /* GDB allows dereferencing GNAT array descriptors. */
10985 return ada_coerce_to_simple_array (arg1);
10986 else
10987 return ada_value_ind (arg1);
10988
10989 case STRUCTOP_STRUCT:
10990 tem = longest_to_int (exp->elts[pc + 1].longconst);
10991 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10992 preeval_pos = *pos;
10993 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10994 if (noside == EVAL_SKIP)
10995 goto nosideret;
10996 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10997 {
10998 struct type *type1 = value_type (arg1);
10999
11000 if (ada_is_tagged_type (type1, 1))
11001 {
11002 type = ada_lookup_struct_elt_type (type1,
11003 &exp->elts[pc + 2].string,
11004 1, 1, NULL);
11005
11006 /* If the field is not found, check if it exists in the
11007 extension of this object's type. This means that we
11008 need to evaluate completely the expression. */
11009
11010 if (type == NULL)
11011 {
11012 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11013 EVAL_NORMAL);
11014 arg1 = ada_value_struct_elt (arg1,
11015 &exp->elts[pc + 2].string,
11016 0);
11017 arg1 = unwrap_value (arg1);
11018 type = value_type (ada_to_fixed_value (arg1));
11019 }
11020 }
11021 else
11022 type =
11023 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11024 0, NULL);
11025
11026 return value_zero (ada_aligned_type (type), lval_memory);
11027 }
11028 else
11029 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11030 arg1 = unwrap_value (arg1);
11031 return ada_to_fixed_value (arg1);
11032
11033 case OP_TYPE:
11034 /* The value is not supposed to be used. This is here to make it
11035 easier to accommodate expressions that contain types. */
11036 (*pos) += 2;
11037 if (noside == EVAL_SKIP)
11038 goto nosideret;
11039 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11040 return allocate_value (exp->elts[pc + 1].type);
11041 else
11042 error (_("Attempt to use a type name as an expression"));
11043
11044 case OP_AGGREGATE:
11045 case OP_CHOICES:
11046 case OP_OTHERS:
11047 case OP_DISCRETE_RANGE:
11048 case OP_POSITIONAL:
11049 case OP_NAME:
11050 if (noside == EVAL_NORMAL)
11051 switch (op)
11052 {
11053 case OP_NAME:
11054 error (_("Undefined name, ambiguous name, or renaming used in "
11055 "component association: %s."), &exp->elts[pc+2].string);
11056 case OP_AGGREGATE:
11057 error (_("Aggregates only allowed on the right of an assignment"));
11058 default:
11059 internal_error (__FILE__, __LINE__,
11060 _("aggregate apparently mangled"));
11061 }
11062
11063 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11064 *pos += oplen - 1;
11065 for (tem = 0; tem < nargs; tem += 1)
11066 ada_evaluate_subexp (NULL, exp, pos, noside);
11067 goto nosideret;
11068 }
11069
11070 nosideret:
11071 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11072 }
11073 \f
11074
11075 /* Fixed point */
11076
11077 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11078 type name that encodes the 'small and 'delta information.
11079 Otherwise, return NULL. */
11080
11081 static const char *
11082 fixed_type_info (struct type *type)
11083 {
11084 const char *name = ada_type_name (type);
11085 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11086
11087 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11088 {
11089 const char *tail = strstr (name, "___XF_");
11090
11091 if (tail == NULL)
11092 return NULL;
11093 else
11094 return tail + 5;
11095 }
11096 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11097 return fixed_type_info (TYPE_TARGET_TYPE (type));
11098 else
11099 return NULL;
11100 }
11101
11102 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11103
11104 int
11105 ada_is_fixed_point_type (struct type *type)
11106 {
11107 return fixed_type_info (type) != NULL;
11108 }
11109
11110 /* Return non-zero iff TYPE represents a System.Address type. */
11111
11112 int
11113 ada_is_system_address_type (struct type *type)
11114 {
11115 return (TYPE_NAME (type)
11116 && strcmp (TYPE_NAME (type), "system__address") == 0);
11117 }
11118
11119 /* Assuming that TYPE is the representation of an Ada fixed-point
11120 type, return its delta, or -1 if the type is malformed and the
11121 delta cannot be determined. */
11122
11123 DOUBLEST
11124 ada_delta (struct type *type)
11125 {
11126 const char *encoding = fixed_type_info (type);
11127 DOUBLEST num, den;
11128
11129 /* Strictly speaking, num and den are encoded as integer. However,
11130 they may not fit into a long, and they will have to be converted
11131 to DOUBLEST anyway. So scan them as DOUBLEST. */
11132 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11133 &num, &den) < 2)
11134 return -1.0;
11135 else
11136 return num / den;
11137 }
11138
11139 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11140 factor ('SMALL value) associated with the type. */
11141
11142 static DOUBLEST
11143 scaling_factor (struct type *type)
11144 {
11145 const char *encoding = fixed_type_info (type);
11146 DOUBLEST num0, den0, num1, den1;
11147 int n;
11148
11149 /* Strictly speaking, num's and den's are encoded as integer. However,
11150 they may not fit into a long, and they will have to be converted
11151 to DOUBLEST anyway. So scan them as DOUBLEST. */
11152 n = sscanf (encoding,
11153 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11154 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11155 &num0, &den0, &num1, &den1);
11156
11157 if (n < 2)
11158 return 1.0;
11159 else if (n == 4)
11160 return num1 / den1;
11161 else
11162 return num0 / den0;
11163 }
11164
11165
11166 /* Assuming that X is the representation of a value of fixed-point
11167 type TYPE, return its floating-point equivalent. */
11168
11169 DOUBLEST
11170 ada_fixed_to_float (struct type *type, LONGEST x)
11171 {
11172 return (DOUBLEST) x *scaling_factor (type);
11173 }
11174
11175 /* The representation of a fixed-point value of type TYPE
11176 corresponding to the value X. */
11177
11178 LONGEST
11179 ada_float_to_fixed (struct type *type, DOUBLEST x)
11180 {
11181 return (LONGEST) (x / scaling_factor (type) + 0.5);
11182 }
11183
11184 \f
11185
11186 /* Range types */
11187
11188 /* Scan STR beginning at position K for a discriminant name, and
11189 return the value of that discriminant field of DVAL in *PX. If
11190 PNEW_K is not null, put the position of the character beyond the
11191 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11192 not alter *PX and *PNEW_K if unsuccessful. */
11193
11194 static int
11195 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11196 int *pnew_k)
11197 {
11198 static char *bound_buffer = NULL;
11199 static size_t bound_buffer_len = 0;
11200 char *bound;
11201 char *pend;
11202 struct value *bound_val;
11203
11204 if (dval == NULL || str == NULL || str[k] == '\0')
11205 return 0;
11206
11207 pend = strstr (str + k, "__");
11208 if (pend == NULL)
11209 {
11210 bound = str + k;
11211 k += strlen (bound);
11212 }
11213 else
11214 {
11215 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11216 bound = bound_buffer;
11217 strncpy (bound_buffer, str + k, pend - (str + k));
11218 bound[pend - (str + k)] = '\0';
11219 k = pend - str;
11220 }
11221
11222 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11223 if (bound_val == NULL)
11224 return 0;
11225
11226 *px = value_as_long (bound_val);
11227 if (pnew_k != NULL)
11228 *pnew_k = k;
11229 return 1;
11230 }
11231
11232 /* Value of variable named NAME in the current environment. If
11233 no such variable found, then if ERR_MSG is null, returns 0, and
11234 otherwise causes an error with message ERR_MSG. */
11235
11236 static struct value *
11237 get_var_value (char *name, char *err_msg)
11238 {
11239 struct ada_symbol_info *syms;
11240 int nsyms;
11241
11242 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11243 &syms);
11244
11245 if (nsyms != 1)
11246 {
11247 if (err_msg == NULL)
11248 return 0;
11249 else
11250 error (("%s"), err_msg);
11251 }
11252
11253 return value_of_variable (syms[0].sym, syms[0].block);
11254 }
11255
11256 /* Value of integer variable named NAME in the current environment. If
11257 no such variable found, returns 0, and sets *FLAG to 0. If
11258 successful, sets *FLAG to 1. */
11259
11260 LONGEST
11261 get_int_var_value (char *name, int *flag)
11262 {
11263 struct value *var_val = get_var_value (name, 0);
11264
11265 if (var_val == 0)
11266 {
11267 if (flag != NULL)
11268 *flag = 0;
11269 return 0;
11270 }
11271 else
11272 {
11273 if (flag != NULL)
11274 *flag = 1;
11275 return value_as_long (var_val);
11276 }
11277 }
11278
11279
11280 /* Return a range type whose base type is that of the range type named
11281 NAME in the current environment, and whose bounds are calculated
11282 from NAME according to the GNAT range encoding conventions.
11283 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11284 corresponding range type from debug information; fall back to using it
11285 if symbol lookup fails. If a new type must be created, allocate it
11286 like ORIG_TYPE was. The bounds information, in general, is encoded
11287 in NAME, the base type given in the named range type. */
11288
11289 static struct type *
11290 to_fixed_range_type (struct type *raw_type, struct value *dval)
11291 {
11292 const char *name;
11293 struct type *base_type;
11294 char *subtype_info;
11295
11296 gdb_assert (raw_type != NULL);
11297 gdb_assert (TYPE_NAME (raw_type) != NULL);
11298
11299 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11300 base_type = TYPE_TARGET_TYPE (raw_type);
11301 else
11302 base_type = raw_type;
11303
11304 name = TYPE_NAME (raw_type);
11305 subtype_info = strstr (name, "___XD");
11306 if (subtype_info == NULL)
11307 {
11308 LONGEST L = ada_discrete_type_low_bound (raw_type);
11309 LONGEST U = ada_discrete_type_high_bound (raw_type);
11310
11311 if (L < INT_MIN || U > INT_MAX)
11312 return raw_type;
11313 else
11314 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11315 L, U);
11316 }
11317 else
11318 {
11319 static char *name_buf = NULL;
11320 static size_t name_len = 0;
11321 int prefix_len = subtype_info - name;
11322 LONGEST L, U;
11323 struct type *type;
11324 char *bounds_str;
11325 int n;
11326
11327 GROW_VECT (name_buf, name_len, prefix_len + 5);
11328 strncpy (name_buf, name, prefix_len);
11329 name_buf[prefix_len] = '\0';
11330
11331 subtype_info += 5;
11332 bounds_str = strchr (subtype_info, '_');
11333 n = 1;
11334
11335 if (*subtype_info == 'L')
11336 {
11337 if (!ada_scan_number (bounds_str, n, &L, &n)
11338 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11339 return raw_type;
11340 if (bounds_str[n] == '_')
11341 n += 2;
11342 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11343 n += 1;
11344 subtype_info += 1;
11345 }
11346 else
11347 {
11348 int ok;
11349
11350 strcpy (name_buf + prefix_len, "___L");
11351 L = get_int_var_value (name_buf, &ok);
11352 if (!ok)
11353 {
11354 lim_warning (_("Unknown lower bound, using 1."));
11355 L = 1;
11356 }
11357 }
11358
11359 if (*subtype_info == 'U')
11360 {
11361 if (!ada_scan_number (bounds_str, n, &U, &n)
11362 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11363 return raw_type;
11364 }
11365 else
11366 {
11367 int ok;
11368
11369 strcpy (name_buf + prefix_len, "___U");
11370 U = get_int_var_value (name_buf, &ok);
11371 if (!ok)
11372 {
11373 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11374 U = L;
11375 }
11376 }
11377
11378 type = create_static_range_type (alloc_type_copy (raw_type),
11379 base_type, L, U);
11380 TYPE_NAME (type) = name;
11381 return type;
11382 }
11383 }
11384
11385 /* True iff NAME is the name of a range type. */
11386
11387 int
11388 ada_is_range_type_name (const char *name)
11389 {
11390 return (name != NULL && strstr (name, "___XD"));
11391 }
11392 \f
11393
11394 /* Modular types */
11395
11396 /* True iff TYPE is an Ada modular type. */
11397
11398 int
11399 ada_is_modular_type (struct type *type)
11400 {
11401 struct type *subranged_type = get_base_type (type);
11402
11403 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11404 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11405 && TYPE_UNSIGNED (subranged_type));
11406 }
11407
11408 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11409
11410 ULONGEST
11411 ada_modulus (struct type *type)
11412 {
11413 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11414 }
11415 \f
11416
11417 /* Ada exception catchpoint support:
11418 ---------------------------------
11419
11420 We support 3 kinds of exception catchpoints:
11421 . catchpoints on Ada exceptions
11422 . catchpoints on unhandled Ada exceptions
11423 . catchpoints on failed assertions
11424
11425 Exceptions raised during failed assertions, or unhandled exceptions
11426 could perfectly be caught with the general catchpoint on Ada exceptions.
11427 However, we can easily differentiate these two special cases, and having
11428 the option to distinguish these two cases from the rest can be useful
11429 to zero-in on certain situations.
11430
11431 Exception catchpoints are a specialized form of breakpoint,
11432 since they rely on inserting breakpoints inside known routines
11433 of the GNAT runtime. The implementation therefore uses a standard
11434 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11435 of breakpoint_ops.
11436
11437 Support in the runtime for exception catchpoints have been changed
11438 a few times already, and these changes affect the implementation
11439 of these catchpoints. In order to be able to support several
11440 variants of the runtime, we use a sniffer that will determine
11441 the runtime variant used by the program being debugged. */
11442
11443 /* Ada's standard exceptions.
11444
11445 The Ada 83 standard also defined Numeric_Error. But there so many
11446 situations where it was unclear from the Ada 83 Reference Manual
11447 (RM) whether Constraint_Error or Numeric_Error should be raised,
11448 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11449 Interpretation saying that anytime the RM says that Numeric_Error
11450 should be raised, the implementation may raise Constraint_Error.
11451 Ada 95 went one step further and pretty much removed Numeric_Error
11452 from the list of standard exceptions (it made it a renaming of
11453 Constraint_Error, to help preserve compatibility when compiling
11454 an Ada83 compiler). As such, we do not include Numeric_Error from
11455 this list of standard exceptions. */
11456
11457 static char *standard_exc[] = {
11458 "constraint_error",
11459 "program_error",
11460 "storage_error",
11461 "tasking_error"
11462 };
11463
11464 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11465
11466 /* A structure that describes how to support exception catchpoints
11467 for a given executable. */
11468
11469 struct exception_support_info
11470 {
11471 /* The name of the symbol to break on in order to insert
11472 a catchpoint on exceptions. */
11473 const char *catch_exception_sym;
11474
11475 /* The name of the symbol to break on in order to insert
11476 a catchpoint on unhandled exceptions. */
11477 const char *catch_exception_unhandled_sym;
11478
11479 /* The name of the symbol to break on in order to insert
11480 a catchpoint on failed assertions. */
11481 const char *catch_assert_sym;
11482
11483 /* Assuming that the inferior just triggered an unhandled exception
11484 catchpoint, this function is responsible for returning the address
11485 in inferior memory where the name of that exception is stored.
11486 Return zero if the address could not be computed. */
11487 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11488 };
11489
11490 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11491 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11492
11493 /* The following exception support info structure describes how to
11494 implement exception catchpoints with the latest version of the
11495 Ada runtime (as of 2007-03-06). */
11496
11497 static const struct exception_support_info default_exception_support_info =
11498 {
11499 "__gnat_debug_raise_exception", /* catch_exception_sym */
11500 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11501 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11502 ada_unhandled_exception_name_addr
11503 };
11504
11505 /* The following exception support info structure describes how to
11506 implement exception catchpoints with a slightly older version
11507 of the Ada runtime. */
11508
11509 static const struct exception_support_info exception_support_info_fallback =
11510 {
11511 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11512 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11513 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11514 ada_unhandled_exception_name_addr_from_raise
11515 };
11516
11517 /* Return nonzero if we can detect the exception support routines
11518 described in EINFO.
11519
11520 This function errors out if an abnormal situation is detected
11521 (for instance, if we find the exception support routines, but
11522 that support is found to be incomplete). */
11523
11524 static int
11525 ada_has_this_exception_support (const struct exception_support_info *einfo)
11526 {
11527 struct symbol *sym;
11528
11529 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11530 that should be compiled with debugging information. As a result, we
11531 expect to find that symbol in the symtabs. */
11532
11533 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11534 if (sym == NULL)
11535 {
11536 /* Perhaps we did not find our symbol because the Ada runtime was
11537 compiled without debugging info, or simply stripped of it.
11538 It happens on some GNU/Linux distributions for instance, where
11539 users have to install a separate debug package in order to get
11540 the runtime's debugging info. In that situation, let the user
11541 know why we cannot insert an Ada exception catchpoint.
11542
11543 Note: Just for the purpose of inserting our Ada exception
11544 catchpoint, we could rely purely on the associated minimal symbol.
11545 But we would be operating in degraded mode anyway, since we are
11546 still lacking the debugging info needed later on to extract
11547 the name of the exception being raised (this name is printed in
11548 the catchpoint message, and is also used when trying to catch
11549 a specific exception). We do not handle this case for now. */
11550 struct bound_minimal_symbol msym
11551 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11552
11553 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11554 error (_("Your Ada runtime appears to be missing some debugging "
11555 "information.\nCannot insert Ada exception catchpoint "
11556 "in this configuration."));
11557
11558 return 0;
11559 }
11560
11561 /* Make sure that the symbol we found corresponds to a function. */
11562
11563 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11564 error (_("Symbol \"%s\" is not a function (class = %d)"),
11565 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11566
11567 return 1;
11568 }
11569
11570 /* Inspect the Ada runtime and determine which exception info structure
11571 should be used to provide support for exception catchpoints.
11572
11573 This function will always set the per-inferior exception_info,
11574 or raise an error. */
11575
11576 static void
11577 ada_exception_support_info_sniffer (void)
11578 {
11579 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11580
11581 /* If the exception info is already known, then no need to recompute it. */
11582 if (data->exception_info != NULL)
11583 return;
11584
11585 /* Check the latest (default) exception support info. */
11586 if (ada_has_this_exception_support (&default_exception_support_info))
11587 {
11588 data->exception_info = &default_exception_support_info;
11589 return;
11590 }
11591
11592 /* Try our fallback exception suport info. */
11593 if (ada_has_this_exception_support (&exception_support_info_fallback))
11594 {
11595 data->exception_info = &exception_support_info_fallback;
11596 return;
11597 }
11598
11599 /* Sometimes, it is normal for us to not be able to find the routine
11600 we are looking for. This happens when the program is linked with
11601 the shared version of the GNAT runtime, and the program has not been
11602 started yet. Inform the user of these two possible causes if
11603 applicable. */
11604
11605 if (ada_update_initial_language (language_unknown) != language_ada)
11606 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11607
11608 /* If the symbol does not exist, then check that the program is
11609 already started, to make sure that shared libraries have been
11610 loaded. If it is not started, this may mean that the symbol is
11611 in a shared library. */
11612
11613 if (ptid_get_pid (inferior_ptid) == 0)
11614 error (_("Unable to insert catchpoint. Try to start the program first."));
11615
11616 /* At this point, we know that we are debugging an Ada program and
11617 that the inferior has been started, but we still are not able to
11618 find the run-time symbols. That can mean that we are in
11619 configurable run time mode, or that a-except as been optimized
11620 out by the linker... In any case, at this point it is not worth
11621 supporting this feature. */
11622
11623 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11624 }
11625
11626 /* True iff FRAME is very likely to be that of a function that is
11627 part of the runtime system. This is all very heuristic, but is
11628 intended to be used as advice as to what frames are uninteresting
11629 to most users. */
11630
11631 static int
11632 is_known_support_routine (struct frame_info *frame)
11633 {
11634 struct symtab_and_line sal;
11635 char *func_name;
11636 enum language func_lang;
11637 int i;
11638 const char *fullname;
11639
11640 /* If this code does not have any debugging information (no symtab),
11641 This cannot be any user code. */
11642
11643 find_frame_sal (frame, &sal);
11644 if (sal.symtab == NULL)
11645 return 1;
11646
11647 /* If there is a symtab, but the associated source file cannot be
11648 located, then assume this is not user code: Selecting a frame
11649 for which we cannot display the code would not be very helpful
11650 for the user. This should also take care of case such as VxWorks
11651 where the kernel has some debugging info provided for a few units. */
11652
11653 fullname = symtab_to_fullname (sal.symtab);
11654 if (access (fullname, R_OK) != 0)
11655 return 1;
11656
11657 /* Check the unit filename againt the Ada runtime file naming.
11658 We also check the name of the objfile against the name of some
11659 known system libraries that sometimes come with debugging info
11660 too. */
11661
11662 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11663 {
11664 re_comp (known_runtime_file_name_patterns[i]);
11665 if (re_exec (lbasename (sal.symtab->filename)))
11666 return 1;
11667 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11668 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11669 return 1;
11670 }
11671
11672 /* Check whether the function is a GNAT-generated entity. */
11673
11674 find_frame_funname (frame, &func_name, &func_lang, NULL);
11675 if (func_name == NULL)
11676 return 1;
11677
11678 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11679 {
11680 re_comp (known_auxiliary_function_name_patterns[i]);
11681 if (re_exec (func_name))
11682 {
11683 xfree (func_name);
11684 return 1;
11685 }
11686 }
11687
11688 xfree (func_name);
11689 return 0;
11690 }
11691
11692 /* Find the first frame that contains debugging information and that is not
11693 part of the Ada run-time, starting from FI and moving upward. */
11694
11695 void
11696 ada_find_printable_frame (struct frame_info *fi)
11697 {
11698 for (; fi != NULL; fi = get_prev_frame (fi))
11699 {
11700 if (!is_known_support_routine (fi))
11701 {
11702 select_frame (fi);
11703 break;
11704 }
11705 }
11706
11707 }
11708
11709 /* Assuming that the inferior just triggered an unhandled exception
11710 catchpoint, return the address in inferior memory where the name
11711 of the exception is stored.
11712
11713 Return zero if the address could not be computed. */
11714
11715 static CORE_ADDR
11716 ada_unhandled_exception_name_addr (void)
11717 {
11718 return parse_and_eval_address ("e.full_name");
11719 }
11720
11721 /* Same as ada_unhandled_exception_name_addr, except that this function
11722 should be used when the inferior uses an older version of the runtime,
11723 where the exception name needs to be extracted from a specific frame
11724 several frames up in the callstack. */
11725
11726 static CORE_ADDR
11727 ada_unhandled_exception_name_addr_from_raise (void)
11728 {
11729 int frame_level;
11730 struct frame_info *fi;
11731 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11732 struct cleanup *old_chain;
11733
11734 /* To determine the name of this exception, we need to select
11735 the frame corresponding to RAISE_SYM_NAME. This frame is
11736 at least 3 levels up, so we simply skip the first 3 frames
11737 without checking the name of their associated function. */
11738 fi = get_current_frame ();
11739 for (frame_level = 0; frame_level < 3; frame_level += 1)
11740 if (fi != NULL)
11741 fi = get_prev_frame (fi);
11742
11743 old_chain = make_cleanup (null_cleanup, NULL);
11744 while (fi != NULL)
11745 {
11746 char *func_name;
11747 enum language func_lang;
11748
11749 find_frame_funname (fi, &func_name, &func_lang, NULL);
11750 if (func_name != NULL)
11751 {
11752 make_cleanup (xfree, func_name);
11753
11754 if (strcmp (func_name,
11755 data->exception_info->catch_exception_sym) == 0)
11756 break; /* We found the frame we were looking for... */
11757 fi = get_prev_frame (fi);
11758 }
11759 }
11760 do_cleanups (old_chain);
11761
11762 if (fi == NULL)
11763 return 0;
11764
11765 select_frame (fi);
11766 return parse_and_eval_address ("id.full_name");
11767 }
11768
11769 /* Assuming the inferior just triggered an Ada exception catchpoint
11770 (of any type), return the address in inferior memory where the name
11771 of the exception is stored, if applicable.
11772
11773 Return zero if the address could not be computed, or if not relevant. */
11774
11775 static CORE_ADDR
11776 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11777 struct breakpoint *b)
11778 {
11779 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11780
11781 switch (ex)
11782 {
11783 case ada_catch_exception:
11784 return (parse_and_eval_address ("e.full_name"));
11785 break;
11786
11787 case ada_catch_exception_unhandled:
11788 return data->exception_info->unhandled_exception_name_addr ();
11789 break;
11790
11791 case ada_catch_assert:
11792 return 0; /* Exception name is not relevant in this case. */
11793 break;
11794
11795 default:
11796 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11797 break;
11798 }
11799
11800 return 0; /* Should never be reached. */
11801 }
11802
11803 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11804 any error that ada_exception_name_addr_1 might cause to be thrown.
11805 When an error is intercepted, a warning with the error message is printed,
11806 and zero is returned. */
11807
11808 static CORE_ADDR
11809 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11810 struct breakpoint *b)
11811 {
11812 volatile struct gdb_exception e;
11813 CORE_ADDR result = 0;
11814
11815 TRY_CATCH (e, RETURN_MASK_ERROR)
11816 {
11817 result = ada_exception_name_addr_1 (ex, b);
11818 }
11819
11820 if (e.reason < 0)
11821 {
11822 warning (_("failed to get exception name: %s"), e.message);
11823 return 0;
11824 }
11825
11826 return result;
11827 }
11828
11829 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11830
11831 /* Ada catchpoints.
11832
11833 In the case of catchpoints on Ada exceptions, the catchpoint will
11834 stop the target on every exception the program throws. When a user
11835 specifies the name of a specific exception, we translate this
11836 request into a condition expression (in text form), and then parse
11837 it into an expression stored in each of the catchpoint's locations.
11838 We then use this condition to check whether the exception that was
11839 raised is the one the user is interested in. If not, then the
11840 target is resumed again. We store the name of the requested
11841 exception, in order to be able to re-set the condition expression
11842 when symbols change. */
11843
11844 /* An instance of this type is used to represent an Ada catchpoint
11845 breakpoint location. It includes a "struct bp_location" as a kind
11846 of base class; users downcast to "struct bp_location *" when
11847 needed. */
11848
11849 struct ada_catchpoint_location
11850 {
11851 /* The base class. */
11852 struct bp_location base;
11853
11854 /* The condition that checks whether the exception that was raised
11855 is the specific exception the user specified on catchpoint
11856 creation. */
11857 struct expression *excep_cond_expr;
11858 };
11859
11860 /* Implement the DTOR method in the bp_location_ops structure for all
11861 Ada exception catchpoint kinds. */
11862
11863 static void
11864 ada_catchpoint_location_dtor (struct bp_location *bl)
11865 {
11866 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11867
11868 xfree (al->excep_cond_expr);
11869 }
11870
11871 /* The vtable to be used in Ada catchpoint locations. */
11872
11873 static const struct bp_location_ops ada_catchpoint_location_ops =
11874 {
11875 ada_catchpoint_location_dtor
11876 };
11877
11878 /* An instance of this type is used to represent an Ada catchpoint.
11879 It includes a "struct breakpoint" as a kind of base class; users
11880 downcast to "struct breakpoint *" when needed. */
11881
11882 struct ada_catchpoint
11883 {
11884 /* The base class. */
11885 struct breakpoint base;
11886
11887 /* The name of the specific exception the user specified. */
11888 char *excep_string;
11889 };
11890
11891 /* Parse the exception condition string in the context of each of the
11892 catchpoint's locations, and store them for later evaluation. */
11893
11894 static void
11895 create_excep_cond_exprs (struct ada_catchpoint *c)
11896 {
11897 struct cleanup *old_chain;
11898 struct bp_location *bl;
11899 char *cond_string;
11900
11901 /* Nothing to do if there's no specific exception to catch. */
11902 if (c->excep_string == NULL)
11903 return;
11904
11905 /* Same if there are no locations... */
11906 if (c->base.loc == NULL)
11907 return;
11908
11909 /* Compute the condition expression in text form, from the specific
11910 expection we want to catch. */
11911 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11912 old_chain = make_cleanup (xfree, cond_string);
11913
11914 /* Iterate over all the catchpoint's locations, and parse an
11915 expression for each. */
11916 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11917 {
11918 struct ada_catchpoint_location *ada_loc
11919 = (struct ada_catchpoint_location *) bl;
11920 struct expression *exp = NULL;
11921
11922 if (!bl->shlib_disabled)
11923 {
11924 volatile struct gdb_exception e;
11925 const char *s;
11926
11927 s = cond_string;
11928 TRY_CATCH (e, RETURN_MASK_ERROR)
11929 {
11930 exp = parse_exp_1 (&s, bl->address,
11931 block_for_pc (bl->address), 0);
11932 }
11933 if (e.reason < 0)
11934 {
11935 warning (_("failed to reevaluate internal exception condition "
11936 "for catchpoint %d: %s"),
11937 c->base.number, e.message);
11938 /* There is a bug in GCC on sparc-solaris when building with
11939 optimization which causes EXP to change unexpectedly
11940 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11941 The problem should be fixed starting with GCC 4.9.
11942 In the meantime, work around it by forcing EXP back
11943 to NULL. */
11944 exp = NULL;
11945 }
11946 }
11947
11948 ada_loc->excep_cond_expr = exp;
11949 }
11950
11951 do_cleanups (old_chain);
11952 }
11953
11954 /* Implement the DTOR method in the breakpoint_ops structure for all
11955 exception catchpoint kinds. */
11956
11957 static void
11958 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11959 {
11960 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11961
11962 xfree (c->excep_string);
11963
11964 bkpt_breakpoint_ops.dtor (b);
11965 }
11966
11967 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11968 structure for all exception catchpoint kinds. */
11969
11970 static struct bp_location *
11971 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11972 struct breakpoint *self)
11973 {
11974 struct ada_catchpoint_location *loc;
11975
11976 loc = XNEW (struct ada_catchpoint_location);
11977 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11978 loc->excep_cond_expr = NULL;
11979 return &loc->base;
11980 }
11981
11982 /* Implement the RE_SET method in the breakpoint_ops structure for all
11983 exception catchpoint kinds. */
11984
11985 static void
11986 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11987 {
11988 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11989
11990 /* Call the base class's method. This updates the catchpoint's
11991 locations. */
11992 bkpt_breakpoint_ops.re_set (b);
11993
11994 /* Reparse the exception conditional expressions. One for each
11995 location. */
11996 create_excep_cond_exprs (c);
11997 }
11998
11999 /* Returns true if we should stop for this breakpoint hit. If the
12000 user specified a specific exception, we only want to cause a stop
12001 if the program thrown that exception. */
12002
12003 static int
12004 should_stop_exception (const struct bp_location *bl)
12005 {
12006 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12007 const struct ada_catchpoint_location *ada_loc
12008 = (const struct ada_catchpoint_location *) bl;
12009 volatile struct gdb_exception ex;
12010 int stop;
12011
12012 /* With no specific exception, should always stop. */
12013 if (c->excep_string == NULL)
12014 return 1;
12015
12016 if (ada_loc->excep_cond_expr == NULL)
12017 {
12018 /* We will have a NULL expression if back when we were creating
12019 the expressions, this location's had failed to parse. */
12020 return 1;
12021 }
12022
12023 stop = 1;
12024 TRY_CATCH (ex, RETURN_MASK_ALL)
12025 {
12026 struct value *mark;
12027
12028 mark = value_mark ();
12029 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12030 value_free_to_mark (mark);
12031 }
12032 if (ex.reason < 0)
12033 exception_fprintf (gdb_stderr, ex,
12034 _("Error in testing exception condition:\n"));
12035 return stop;
12036 }
12037
12038 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12039 for all exception catchpoint kinds. */
12040
12041 static void
12042 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12043 {
12044 bs->stop = should_stop_exception (bs->bp_location_at);
12045 }
12046
12047 /* Implement the PRINT_IT method in the breakpoint_ops structure
12048 for all exception catchpoint kinds. */
12049
12050 static enum print_stop_action
12051 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12052 {
12053 struct ui_out *uiout = current_uiout;
12054 struct breakpoint *b = bs->breakpoint_at;
12055
12056 annotate_catchpoint (b->number);
12057
12058 if (ui_out_is_mi_like_p (uiout))
12059 {
12060 ui_out_field_string (uiout, "reason",
12061 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12062 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12063 }
12064
12065 ui_out_text (uiout,
12066 b->disposition == disp_del ? "\nTemporary catchpoint "
12067 : "\nCatchpoint ");
12068 ui_out_field_int (uiout, "bkptno", b->number);
12069 ui_out_text (uiout, ", ");
12070
12071 switch (ex)
12072 {
12073 case ada_catch_exception:
12074 case ada_catch_exception_unhandled:
12075 {
12076 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12077 char exception_name[256];
12078
12079 if (addr != 0)
12080 {
12081 read_memory (addr, (gdb_byte *) exception_name,
12082 sizeof (exception_name) - 1);
12083 exception_name [sizeof (exception_name) - 1] = '\0';
12084 }
12085 else
12086 {
12087 /* For some reason, we were unable to read the exception
12088 name. This could happen if the Runtime was compiled
12089 without debugging info, for instance. In that case,
12090 just replace the exception name by the generic string
12091 "exception" - it will read as "an exception" in the
12092 notification we are about to print. */
12093 memcpy (exception_name, "exception", sizeof ("exception"));
12094 }
12095 /* In the case of unhandled exception breakpoints, we print
12096 the exception name as "unhandled EXCEPTION_NAME", to make
12097 it clearer to the user which kind of catchpoint just got
12098 hit. We used ui_out_text to make sure that this extra
12099 info does not pollute the exception name in the MI case. */
12100 if (ex == ada_catch_exception_unhandled)
12101 ui_out_text (uiout, "unhandled ");
12102 ui_out_field_string (uiout, "exception-name", exception_name);
12103 }
12104 break;
12105 case ada_catch_assert:
12106 /* In this case, the name of the exception is not really
12107 important. Just print "failed assertion" to make it clearer
12108 that his program just hit an assertion-failure catchpoint.
12109 We used ui_out_text because this info does not belong in
12110 the MI output. */
12111 ui_out_text (uiout, "failed assertion");
12112 break;
12113 }
12114 ui_out_text (uiout, " at ");
12115 ada_find_printable_frame (get_current_frame ());
12116
12117 return PRINT_SRC_AND_LOC;
12118 }
12119
12120 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12121 for all exception catchpoint kinds. */
12122
12123 static void
12124 print_one_exception (enum ada_exception_catchpoint_kind ex,
12125 struct breakpoint *b, struct bp_location **last_loc)
12126 {
12127 struct ui_out *uiout = current_uiout;
12128 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12129 struct value_print_options opts;
12130
12131 get_user_print_options (&opts);
12132 if (opts.addressprint)
12133 {
12134 annotate_field (4);
12135 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12136 }
12137
12138 annotate_field (5);
12139 *last_loc = b->loc;
12140 switch (ex)
12141 {
12142 case ada_catch_exception:
12143 if (c->excep_string != NULL)
12144 {
12145 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12146
12147 ui_out_field_string (uiout, "what", msg);
12148 xfree (msg);
12149 }
12150 else
12151 ui_out_field_string (uiout, "what", "all Ada exceptions");
12152
12153 break;
12154
12155 case ada_catch_exception_unhandled:
12156 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12157 break;
12158
12159 case ada_catch_assert:
12160 ui_out_field_string (uiout, "what", "failed Ada assertions");
12161 break;
12162
12163 default:
12164 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12165 break;
12166 }
12167 }
12168
12169 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12170 for all exception catchpoint kinds. */
12171
12172 static void
12173 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12174 struct breakpoint *b)
12175 {
12176 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12177 struct ui_out *uiout = current_uiout;
12178
12179 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12180 : _("Catchpoint "));
12181 ui_out_field_int (uiout, "bkptno", b->number);
12182 ui_out_text (uiout, ": ");
12183
12184 switch (ex)
12185 {
12186 case ada_catch_exception:
12187 if (c->excep_string != NULL)
12188 {
12189 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12190 struct cleanup *old_chain = make_cleanup (xfree, info);
12191
12192 ui_out_text (uiout, info);
12193 do_cleanups (old_chain);
12194 }
12195 else
12196 ui_out_text (uiout, _("all Ada exceptions"));
12197 break;
12198
12199 case ada_catch_exception_unhandled:
12200 ui_out_text (uiout, _("unhandled Ada exceptions"));
12201 break;
12202
12203 case ada_catch_assert:
12204 ui_out_text (uiout, _("failed Ada assertions"));
12205 break;
12206
12207 default:
12208 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12209 break;
12210 }
12211 }
12212
12213 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12214 for all exception catchpoint kinds. */
12215
12216 static void
12217 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12218 struct breakpoint *b, struct ui_file *fp)
12219 {
12220 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12221
12222 switch (ex)
12223 {
12224 case ada_catch_exception:
12225 fprintf_filtered (fp, "catch exception");
12226 if (c->excep_string != NULL)
12227 fprintf_filtered (fp, " %s", c->excep_string);
12228 break;
12229
12230 case ada_catch_exception_unhandled:
12231 fprintf_filtered (fp, "catch exception unhandled");
12232 break;
12233
12234 case ada_catch_assert:
12235 fprintf_filtered (fp, "catch assert");
12236 break;
12237
12238 default:
12239 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12240 }
12241 print_recreate_thread (b, fp);
12242 }
12243
12244 /* Virtual table for "catch exception" breakpoints. */
12245
12246 static void
12247 dtor_catch_exception (struct breakpoint *b)
12248 {
12249 dtor_exception (ada_catch_exception, b);
12250 }
12251
12252 static struct bp_location *
12253 allocate_location_catch_exception (struct breakpoint *self)
12254 {
12255 return allocate_location_exception (ada_catch_exception, self);
12256 }
12257
12258 static void
12259 re_set_catch_exception (struct breakpoint *b)
12260 {
12261 re_set_exception (ada_catch_exception, b);
12262 }
12263
12264 static void
12265 check_status_catch_exception (bpstat bs)
12266 {
12267 check_status_exception (ada_catch_exception, bs);
12268 }
12269
12270 static enum print_stop_action
12271 print_it_catch_exception (bpstat bs)
12272 {
12273 return print_it_exception (ada_catch_exception, bs);
12274 }
12275
12276 static void
12277 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12278 {
12279 print_one_exception (ada_catch_exception, b, last_loc);
12280 }
12281
12282 static void
12283 print_mention_catch_exception (struct breakpoint *b)
12284 {
12285 print_mention_exception (ada_catch_exception, b);
12286 }
12287
12288 static void
12289 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12290 {
12291 print_recreate_exception (ada_catch_exception, b, fp);
12292 }
12293
12294 static struct breakpoint_ops catch_exception_breakpoint_ops;
12295
12296 /* Virtual table for "catch exception unhandled" breakpoints. */
12297
12298 static void
12299 dtor_catch_exception_unhandled (struct breakpoint *b)
12300 {
12301 dtor_exception (ada_catch_exception_unhandled, b);
12302 }
12303
12304 static struct bp_location *
12305 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12306 {
12307 return allocate_location_exception (ada_catch_exception_unhandled, self);
12308 }
12309
12310 static void
12311 re_set_catch_exception_unhandled (struct breakpoint *b)
12312 {
12313 re_set_exception (ada_catch_exception_unhandled, b);
12314 }
12315
12316 static void
12317 check_status_catch_exception_unhandled (bpstat bs)
12318 {
12319 check_status_exception (ada_catch_exception_unhandled, bs);
12320 }
12321
12322 static enum print_stop_action
12323 print_it_catch_exception_unhandled (bpstat bs)
12324 {
12325 return print_it_exception (ada_catch_exception_unhandled, bs);
12326 }
12327
12328 static void
12329 print_one_catch_exception_unhandled (struct breakpoint *b,
12330 struct bp_location **last_loc)
12331 {
12332 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12333 }
12334
12335 static void
12336 print_mention_catch_exception_unhandled (struct breakpoint *b)
12337 {
12338 print_mention_exception (ada_catch_exception_unhandled, b);
12339 }
12340
12341 static void
12342 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12343 struct ui_file *fp)
12344 {
12345 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12346 }
12347
12348 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12349
12350 /* Virtual table for "catch assert" breakpoints. */
12351
12352 static void
12353 dtor_catch_assert (struct breakpoint *b)
12354 {
12355 dtor_exception (ada_catch_assert, b);
12356 }
12357
12358 static struct bp_location *
12359 allocate_location_catch_assert (struct breakpoint *self)
12360 {
12361 return allocate_location_exception (ada_catch_assert, self);
12362 }
12363
12364 static void
12365 re_set_catch_assert (struct breakpoint *b)
12366 {
12367 re_set_exception (ada_catch_assert, b);
12368 }
12369
12370 static void
12371 check_status_catch_assert (bpstat bs)
12372 {
12373 check_status_exception (ada_catch_assert, bs);
12374 }
12375
12376 static enum print_stop_action
12377 print_it_catch_assert (bpstat bs)
12378 {
12379 return print_it_exception (ada_catch_assert, bs);
12380 }
12381
12382 static void
12383 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12384 {
12385 print_one_exception (ada_catch_assert, b, last_loc);
12386 }
12387
12388 static void
12389 print_mention_catch_assert (struct breakpoint *b)
12390 {
12391 print_mention_exception (ada_catch_assert, b);
12392 }
12393
12394 static void
12395 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12396 {
12397 print_recreate_exception (ada_catch_assert, b, fp);
12398 }
12399
12400 static struct breakpoint_ops catch_assert_breakpoint_ops;
12401
12402 /* Return a newly allocated copy of the first space-separated token
12403 in ARGSP, and then adjust ARGSP to point immediately after that
12404 token.
12405
12406 Return NULL if ARGPS does not contain any more tokens. */
12407
12408 static char *
12409 ada_get_next_arg (char **argsp)
12410 {
12411 char *args = *argsp;
12412 char *end;
12413 char *result;
12414
12415 args = skip_spaces (args);
12416 if (args[0] == '\0')
12417 return NULL; /* No more arguments. */
12418
12419 /* Find the end of the current argument. */
12420
12421 end = skip_to_space (args);
12422
12423 /* Adjust ARGSP to point to the start of the next argument. */
12424
12425 *argsp = end;
12426
12427 /* Make a copy of the current argument and return it. */
12428
12429 result = xmalloc (end - args + 1);
12430 strncpy (result, args, end - args);
12431 result[end - args] = '\0';
12432
12433 return result;
12434 }
12435
12436 /* Split the arguments specified in a "catch exception" command.
12437 Set EX to the appropriate catchpoint type.
12438 Set EXCEP_STRING to the name of the specific exception if
12439 specified by the user.
12440 If a condition is found at the end of the arguments, the condition
12441 expression is stored in COND_STRING (memory must be deallocated
12442 after use). Otherwise COND_STRING is set to NULL. */
12443
12444 static void
12445 catch_ada_exception_command_split (char *args,
12446 enum ada_exception_catchpoint_kind *ex,
12447 char **excep_string,
12448 char **cond_string)
12449 {
12450 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12451 char *exception_name;
12452 char *cond = NULL;
12453
12454 exception_name = ada_get_next_arg (&args);
12455 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12456 {
12457 /* This is not an exception name; this is the start of a condition
12458 expression for a catchpoint on all exceptions. So, "un-get"
12459 this token, and set exception_name to NULL. */
12460 xfree (exception_name);
12461 exception_name = NULL;
12462 args -= 2;
12463 }
12464 make_cleanup (xfree, exception_name);
12465
12466 /* Check to see if we have a condition. */
12467
12468 args = skip_spaces (args);
12469 if (strncmp (args, "if", 2) == 0
12470 && (isspace (args[2]) || args[2] == '\0'))
12471 {
12472 args += 2;
12473 args = skip_spaces (args);
12474
12475 if (args[0] == '\0')
12476 error (_("Condition missing after `if' keyword"));
12477 cond = xstrdup (args);
12478 make_cleanup (xfree, cond);
12479
12480 args += strlen (args);
12481 }
12482
12483 /* Check that we do not have any more arguments. Anything else
12484 is unexpected. */
12485
12486 if (args[0] != '\0')
12487 error (_("Junk at end of expression"));
12488
12489 discard_cleanups (old_chain);
12490
12491 if (exception_name == NULL)
12492 {
12493 /* Catch all exceptions. */
12494 *ex = ada_catch_exception;
12495 *excep_string = NULL;
12496 }
12497 else if (strcmp (exception_name, "unhandled") == 0)
12498 {
12499 /* Catch unhandled exceptions. */
12500 *ex = ada_catch_exception_unhandled;
12501 *excep_string = NULL;
12502 }
12503 else
12504 {
12505 /* Catch a specific exception. */
12506 *ex = ada_catch_exception;
12507 *excep_string = exception_name;
12508 }
12509 *cond_string = cond;
12510 }
12511
12512 /* Return the name of the symbol on which we should break in order to
12513 implement a catchpoint of the EX kind. */
12514
12515 static const char *
12516 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12517 {
12518 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12519
12520 gdb_assert (data->exception_info != NULL);
12521
12522 switch (ex)
12523 {
12524 case ada_catch_exception:
12525 return (data->exception_info->catch_exception_sym);
12526 break;
12527 case ada_catch_exception_unhandled:
12528 return (data->exception_info->catch_exception_unhandled_sym);
12529 break;
12530 case ada_catch_assert:
12531 return (data->exception_info->catch_assert_sym);
12532 break;
12533 default:
12534 internal_error (__FILE__, __LINE__,
12535 _("unexpected catchpoint kind (%d)"), ex);
12536 }
12537 }
12538
12539 /* Return the breakpoint ops "virtual table" used for catchpoints
12540 of the EX kind. */
12541
12542 static const struct breakpoint_ops *
12543 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12544 {
12545 switch (ex)
12546 {
12547 case ada_catch_exception:
12548 return (&catch_exception_breakpoint_ops);
12549 break;
12550 case ada_catch_exception_unhandled:
12551 return (&catch_exception_unhandled_breakpoint_ops);
12552 break;
12553 case ada_catch_assert:
12554 return (&catch_assert_breakpoint_ops);
12555 break;
12556 default:
12557 internal_error (__FILE__, __LINE__,
12558 _("unexpected catchpoint kind (%d)"), ex);
12559 }
12560 }
12561
12562 /* Return the condition that will be used to match the current exception
12563 being raised with the exception that the user wants to catch. This
12564 assumes that this condition is used when the inferior just triggered
12565 an exception catchpoint.
12566
12567 The string returned is a newly allocated string that needs to be
12568 deallocated later. */
12569
12570 static char *
12571 ada_exception_catchpoint_cond_string (const char *excep_string)
12572 {
12573 int i;
12574
12575 /* The standard exceptions are a special case. They are defined in
12576 runtime units that have been compiled without debugging info; if
12577 EXCEP_STRING is the not-fully-qualified name of a standard
12578 exception (e.g. "constraint_error") then, during the evaluation
12579 of the condition expression, the symbol lookup on this name would
12580 *not* return this standard exception. The catchpoint condition
12581 may then be set only on user-defined exceptions which have the
12582 same not-fully-qualified name (e.g. my_package.constraint_error).
12583
12584 To avoid this unexcepted behavior, these standard exceptions are
12585 systematically prefixed by "standard". This means that "catch
12586 exception constraint_error" is rewritten into "catch exception
12587 standard.constraint_error".
12588
12589 If an exception named contraint_error is defined in another package of
12590 the inferior program, then the only way to specify this exception as a
12591 breakpoint condition is to use its fully-qualified named:
12592 e.g. my_package.constraint_error. */
12593
12594 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12595 {
12596 if (strcmp (standard_exc [i], excep_string) == 0)
12597 {
12598 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12599 excep_string);
12600 }
12601 }
12602 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12603 }
12604
12605 /* Return the symtab_and_line that should be used to insert an exception
12606 catchpoint of the TYPE kind.
12607
12608 EXCEP_STRING should contain the name of a specific exception that
12609 the catchpoint should catch, or NULL otherwise.
12610
12611 ADDR_STRING returns the name of the function where the real
12612 breakpoint that implements the catchpoints is set, depending on the
12613 type of catchpoint we need to create. */
12614
12615 static struct symtab_and_line
12616 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12617 char **addr_string, const struct breakpoint_ops **ops)
12618 {
12619 const char *sym_name;
12620 struct symbol *sym;
12621
12622 /* First, find out which exception support info to use. */
12623 ada_exception_support_info_sniffer ();
12624
12625 /* Then lookup the function on which we will break in order to catch
12626 the Ada exceptions requested by the user. */
12627 sym_name = ada_exception_sym_name (ex);
12628 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12629
12630 /* We can assume that SYM is not NULL at this stage. If the symbol
12631 did not exist, ada_exception_support_info_sniffer would have
12632 raised an exception.
12633
12634 Also, ada_exception_support_info_sniffer should have already
12635 verified that SYM is a function symbol. */
12636 gdb_assert (sym != NULL);
12637 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12638
12639 /* Set ADDR_STRING. */
12640 *addr_string = xstrdup (sym_name);
12641
12642 /* Set OPS. */
12643 *ops = ada_exception_breakpoint_ops (ex);
12644
12645 return find_function_start_sal (sym, 1);
12646 }
12647
12648 /* Create an Ada exception catchpoint.
12649
12650 EX_KIND is the kind of exception catchpoint to be created.
12651
12652 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12653 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12654 of the exception to which this catchpoint applies. When not NULL,
12655 the string must be allocated on the heap, and its deallocation
12656 is no longer the responsibility of the caller.
12657
12658 COND_STRING, if not NULL, is the catchpoint condition. This string
12659 must be allocated on the heap, and its deallocation is no longer
12660 the responsibility of the caller.
12661
12662 TEMPFLAG, if nonzero, means that the underlying breakpoint
12663 should be temporary.
12664
12665 FROM_TTY is the usual argument passed to all commands implementations. */
12666
12667 void
12668 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12669 enum ada_exception_catchpoint_kind ex_kind,
12670 char *excep_string,
12671 char *cond_string,
12672 int tempflag,
12673 int disabled,
12674 int from_tty)
12675 {
12676 struct ada_catchpoint *c;
12677 char *addr_string = NULL;
12678 const struct breakpoint_ops *ops = NULL;
12679 struct symtab_and_line sal
12680 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12681
12682 c = XNEW (struct ada_catchpoint);
12683 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12684 ops, tempflag, disabled, from_tty);
12685 c->excep_string = excep_string;
12686 create_excep_cond_exprs (c);
12687 if (cond_string != NULL)
12688 set_breakpoint_condition (&c->base, cond_string, from_tty);
12689 install_breakpoint (0, &c->base, 1);
12690 }
12691
12692 /* Implement the "catch exception" command. */
12693
12694 static void
12695 catch_ada_exception_command (char *arg, int from_tty,
12696 struct cmd_list_element *command)
12697 {
12698 struct gdbarch *gdbarch = get_current_arch ();
12699 int tempflag;
12700 enum ada_exception_catchpoint_kind ex_kind;
12701 char *excep_string = NULL;
12702 char *cond_string = NULL;
12703
12704 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12705
12706 if (!arg)
12707 arg = "";
12708 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12709 &cond_string);
12710 create_ada_exception_catchpoint (gdbarch, ex_kind,
12711 excep_string, cond_string,
12712 tempflag, 1 /* enabled */,
12713 from_tty);
12714 }
12715
12716 /* Split the arguments specified in a "catch assert" command.
12717
12718 ARGS contains the command's arguments (or the empty string if
12719 no arguments were passed).
12720
12721 If ARGS contains a condition, set COND_STRING to that condition
12722 (the memory needs to be deallocated after use). */
12723
12724 static void
12725 catch_ada_assert_command_split (char *args, char **cond_string)
12726 {
12727 args = skip_spaces (args);
12728
12729 /* Check whether a condition was provided. */
12730 if (strncmp (args, "if", 2) == 0
12731 && (isspace (args[2]) || args[2] == '\0'))
12732 {
12733 args += 2;
12734 args = skip_spaces (args);
12735 if (args[0] == '\0')
12736 error (_("condition missing after `if' keyword"));
12737 *cond_string = xstrdup (args);
12738 }
12739
12740 /* Otherwise, there should be no other argument at the end of
12741 the command. */
12742 else if (args[0] != '\0')
12743 error (_("Junk at end of arguments."));
12744 }
12745
12746 /* Implement the "catch assert" command. */
12747
12748 static void
12749 catch_assert_command (char *arg, int from_tty,
12750 struct cmd_list_element *command)
12751 {
12752 struct gdbarch *gdbarch = get_current_arch ();
12753 int tempflag;
12754 char *cond_string = NULL;
12755
12756 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12757
12758 if (!arg)
12759 arg = "";
12760 catch_ada_assert_command_split (arg, &cond_string);
12761 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12762 NULL, cond_string,
12763 tempflag, 1 /* enabled */,
12764 from_tty);
12765 }
12766
12767 /* Return non-zero if the symbol SYM is an Ada exception object. */
12768
12769 static int
12770 ada_is_exception_sym (struct symbol *sym)
12771 {
12772 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12773
12774 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12775 && SYMBOL_CLASS (sym) != LOC_BLOCK
12776 && SYMBOL_CLASS (sym) != LOC_CONST
12777 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12778 && type_name != NULL && strcmp (type_name, "exception") == 0);
12779 }
12780
12781 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12782 Ada exception object. This matches all exceptions except the ones
12783 defined by the Ada language. */
12784
12785 static int
12786 ada_is_non_standard_exception_sym (struct symbol *sym)
12787 {
12788 int i;
12789
12790 if (!ada_is_exception_sym (sym))
12791 return 0;
12792
12793 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12794 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12795 return 0; /* A standard exception. */
12796
12797 /* Numeric_Error is also a standard exception, so exclude it.
12798 See the STANDARD_EXC description for more details as to why
12799 this exception is not listed in that array. */
12800 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12801 return 0;
12802
12803 return 1;
12804 }
12805
12806 /* A helper function for qsort, comparing two struct ada_exc_info
12807 objects.
12808
12809 The comparison is determined first by exception name, and then
12810 by exception address. */
12811
12812 static int
12813 compare_ada_exception_info (const void *a, const void *b)
12814 {
12815 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12816 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12817 int result;
12818
12819 result = strcmp (exc_a->name, exc_b->name);
12820 if (result != 0)
12821 return result;
12822
12823 if (exc_a->addr < exc_b->addr)
12824 return -1;
12825 if (exc_a->addr > exc_b->addr)
12826 return 1;
12827
12828 return 0;
12829 }
12830
12831 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12832 routine, but keeping the first SKIP elements untouched.
12833
12834 All duplicates are also removed. */
12835
12836 static void
12837 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12838 int skip)
12839 {
12840 struct ada_exc_info *to_sort
12841 = VEC_address (ada_exc_info, *exceptions) + skip;
12842 int to_sort_len
12843 = VEC_length (ada_exc_info, *exceptions) - skip;
12844 int i, j;
12845
12846 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12847 compare_ada_exception_info);
12848
12849 for (i = 1, j = 1; i < to_sort_len; i++)
12850 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12851 to_sort[j++] = to_sort[i];
12852 to_sort_len = j;
12853 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12854 }
12855
12856 /* A function intended as the "name_matcher" callback in the struct
12857 quick_symbol_functions' expand_symtabs_matching method.
12858
12859 SEARCH_NAME is the symbol's search name.
12860
12861 If USER_DATA is not NULL, it is a pointer to a regext_t object
12862 used to match the symbol (by natural name). Otherwise, when USER_DATA
12863 is null, no filtering is performed, and all symbols are a positive
12864 match. */
12865
12866 static int
12867 ada_exc_search_name_matches (const char *search_name, void *user_data)
12868 {
12869 regex_t *preg = user_data;
12870
12871 if (preg == NULL)
12872 return 1;
12873
12874 /* In Ada, the symbol "search name" is a linkage name, whereas
12875 the regular expression used to do the matching refers to
12876 the natural name. So match against the decoded name. */
12877 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12878 }
12879
12880 /* Add all exceptions defined by the Ada standard whose name match
12881 a regular expression.
12882
12883 If PREG is not NULL, then this regexp_t object is used to
12884 perform the symbol name matching. Otherwise, no name-based
12885 filtering is performed.
12886
12887 EXCEPTIONS is a vector of exceptions to which matching exceptions
12888 gets pushed. */
12889
12890 static void
12891 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12892 {
12893 int i;
12894
12895 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12896 {
12897 if (preg == NULL
12898 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12899 {
12900 struct bound_minimal_symbol msymbol
12901 = ada_lookup_simple_minsym (standard_exc[i]);
12902
12903 if (msymbol.minsym != NULL)
12904 {
12905 struct ada_exc_info info
12906 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12907
12908 VEC_safe_push (ada_exc_info, *exceptions, &info);
12909 }
12910 }
12911 }
12912 }
12913
12914 /* Add all Ada exceptions defined locally and accessible from the given
12915 FRAME.
12916
12917 If PREG is not NULL, then this regexp_t object is used to
12918 perform the symbol name matching. Otherwise, no name-based
12919 filtering is performed.
12920
12921 EXCEPTIONS is a vector of exceptions to which matching exceptions
12922 gets pushed. */
12923
12924 static void
12925 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12926 VEC(ada_exc_info) **exceptions)
12927 {
12928 const struct block *block = get_frame_block (frame, 0);
12929
12930 while (block != 0)
12931 {
12932 struct block_iterator iter;
12933 struct symbol *sym;
12934
12935 ALL_BLOCK_SYMBOLS (block, iter, sym)
12936 {
12937 switch (SYMBOL_CLASS (sym))
12938 {
12939 case LOC_TYPEDEF:
12940 case LOC_BLOCK:
12941 case LOC_CONST:
12942 break;
12943 default:
12944 if (ada_is_exception_sym (sym))
12945 {
12946 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12947 SYMBOL_VALUE_ADDRESS (sym)};
12948
12949 VEC_safe_push (ada_exc_info, *exceptions, &info);
12950 }
12951 }
12952 }
12953 if (BLOCK_FUNCTION (block) != NULL)
12954 break;
12955 block = BLOCK_SUPERBLOCK (block);
12956 }
12957 }
12958
12959 /* Add all exceptions defined globally whose name name match
12960 a regular expression, excluding standard exceptions.
12961
12962 The reason we exclude standard exceptions is that they need
12963 to be handled separately: Standard exceptions are defined inside
12964 a runtime unit which is normally not compiled with debugging info,
12965 and thus usually do not show up in our symbol search. However,
12966 if the unit was in fact built with debugging info, we need to
12967 exclude them because they would duplicate the entry we found
12968 during the special loop that specifically searches for those
12969 standard exceptions.
12970
12971 If PREG is not NULL, then this regexp_t object is used to
12972 perform the symbol name matching. Otherwise, no name-based
12973 filtering is performed.
12974
12975 EXCEPTIONS is a vector of exceptions to which matching exceptions
12976 gets pushed. */
12977
12978 static void
12979 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12980 {
12981 struct objfile *objfile;
12982 struct compunit_symtab *s;
12983
12984 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12985 VARIABLES_DOMAIN, preg);
12986
12987 ALL_COMPUNITS (objfile, s)
12988 {
12989 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12990 int i;
12991
12992 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12993 {
12994 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12995 struct block_iterator iter;
12996 struct symbol *sym;
12997
12998 ALL_BLOCK_SYMBOLS (b, iter, sym)
12999 if (ada_is_non_standard_exception_sym (sym)
13000 && (preg == NULL
13001 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13002 0, NULL, 0) == 0))
13003 {
13004 struct ada_exc_info info
13005 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13006
13007 VEC_safe_push (ada_exc_info, *exceptions, &info);
13008 }
13009 }
13010 }
13011 }
13012
13013 /* Implements ada_exceptions_list with the regular expression passed
13014 as a regex_t, rather than a string.
13015
13016 If not NULL, PREG is used to filter out exceptions whose names
13017 do not match. Otherwise, all exceptions are listed. */
13018
13019 static VEC(ada_exc_info) *
13020 ada_exceptions_list_1 (regex_t *preg)
13021 {
13022 VEC(ada_exc_info) *result = NULL;
13023 struct cleanup *old_chain
13024 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13025 int prev_len;
13026
13027 /* First, list the known standard exceptions. These exceptions
13028 need to be handled separately, as they are usually defined in
13029 runtime units that have been compiled without debugging info. */
13030
13031 ada_add_standard_exceptions (preg, &result);
13032
13033 /* Next, find all exceptions whose scope is local and accessible
13034 from the currently selected frame. */
13035
13036 if (has_stack_frames ())
13037 {
13038 prev_len = VEC_length (ada_exc_info, result);
13039 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13040 &result);
13041 if (VEC_length (ada_exc_info, result) > prev_len)
13042 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13043 }
13044
13045 /* Add all exceptions whose scope is global. */
13046
13047 prev_len = VEC_length (ada_exc_info, result);
13048 ada_add_global_exceptions (preg, &result);
13049 if (VEC_length (ada_exc_info, result) > prev_len)
13050 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13051
13052 discard_cleanups (old_chain);
13053 return result;
13054 }
13055
13056 /* Return a vector of ada_exc_info.
13057
13058 If REGEXP is NULL, all exceptions are included in the result.
13059 Otherwise, it should contain a valid regular expression,
13060 and only the exceptions whose names match that regular expression
13061 are included in the result.
13062
13063 The exceptions are sorted in the following order:
13064 - Standard exceptions (defined by the Ada language), in
13065 alphabetical order;
13066 - Exceptions only visible from the current frame, in
13067 alphabetical order;
13068 - Exceptions whose scope is global, in alphabetical order. */
13069
13070 VEC(ada_exc_info) *
13071 ada_exceptions_list (const char *regexp)
13072 {
13073 VEC(ada_exc_info) *result = NULL;
13074 struct cleanup *old_chain = NULL;
13075 regex_t reg;
13076
13077 if (regexp != NULL)
13078 old_chain = compile_rx_or_error (&reg, regexp,
13079 _("invalid regular expression"));
13080
13081 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13082
13083 if (old_chain != NULL)
13084 do_cleanups (old_chain);
13085 return result;
13086 }
13087
13088 /* Implement the "info exceptions" command. */
13089
13090 static void
13091 info_exceptions_command (char *regexp, int from_tty)
13092 {
13093 VEC(ada_exc_info) *exceptions;
13094 struct cleanup *cleanup;
13095 struct gdbarch *gdbarch = get_current_arch ();
13096 int ix;
13097 struct ada_exc_info *info;
13098
13099 exceptions = ada_exceptions_list (regexp);
13100 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13101
13102 if (regexp != NULL)
13103 printf_filtered
13104 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13105 else
13106 printf_filtered (_("All defined Ada exceptions:\n"));
13107
13108 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13109 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13110
13111 do_cleanups (cleanup);
13112 }
13113
13114 /* Operators */
13115 /* Information about operators given special treatment in functions
13116 below. */
13117 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13118
13119 #define ADA_OPERATORS \
13120 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13121 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13122 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13123 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13124 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13125 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13126 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13127 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13128 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13129 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13130 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13131 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13132 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13133 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13134 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13135 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13136 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13137 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13138 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13139
13140 static void
13141 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13142 int *argsp)
13143 {
13144 switch (exp->elts[pc - 1].opcode)
13145 {
13146 default:
13147 operator_length_standard (exp, pc, oplenp, argsp);
13148 break;
13149
13150 #define OP_DEFN(op, len, args, binop) \
13151 case op: *oplenp = len; *argsp = args; break;
13152 ADA_OPERATORS;
13153 #undef OP_DEFN
13154
13155 case OP_AGGREGATE:
13156 *oplenp = 3;
13157 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13158 break;
13159
13160 case OP_CHOICES:
13161 *oplenp = 3;
13162 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13163 break;
13164 }
13165 }
13166
13167 /* Implementation of the exp_descriptor method operator_check. */
13168
13169 static int
13170 ada_operator_check (struct expression *exp, int pos,
13171 int (*objfile_func) (struct objfile *objfile, void *data),
13172 void *data)
13173 {
13174 const union exp_element *const elts = exp->elts;
13175 struct type *type = NULL;
13176
13177 switch (elts[pos].opcode)
13178 {
13179 case UNOP_IN_RANGE:
13180 case UNOP_QUAL:
13181 type = elts[pos + 1].type;
13182 break;
13183
13184 default:
13185 return operator_check_standard (exp, pos, objfile_func, data);
13186 }
13187
13188 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13189
13190 if (type && TYPE_OBJFILE (type)
13191 && (*objfile_func) (TYPE_OBJFILE (type), data))
13192 return 1;
13193
13194 return 0;
13195 }
13196
13197 static char *
13198 ada_op_name (enum exp_opcode opcode)
13199 {
13200 switch (opcode)
13201 {
13202 default:
13203 return op_name_standard (opcode);
13204
13205 #define OP_DEFN(op, len, args, binop) case op: return #op;
13206 ADA_OPERATORS;
13207 #undef OP_DEFN
13208
13209 case OP_AGGREGATE:
13210 return "OP_AGGREGATE";
13211 case OP_CHOICES:
13212 return "OP_CHOICES";
13213 case OP_NAME:
13214 return "OP_NAME";
13215 }
13216 }
13217
13218 /* As for operator_length, but assumes PC is pointing at the first
13219 element of the operator, and gives meaningful results only for the
13220 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13221
13222 static void
13223 ada_forward_operator_length (struct expression *exp, int pc,
13224 int *oplenp, int *argsp)
13225 {
13226 switch (exp->elts[pc].opcode)
13227 {
13228 default:
13229 *oplenp = *argsp = 0;
13230 break;
13231
13232 #define OP_DEFN(op, len, args, binop) \
13233 case op: *oplenp = len; *argsp = args; break;
13234 ADA_OPERATORS;
13235 #undef OP_DEFN
13236
13237 case OP_AGGREGATE:
13238 *oplenp = 3;
13239 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13240 break;
13241
13242 case OP_CHOICES:
13243 *oplenp = 3;
13244 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13245 break;
13246
13247 case OP_STRING:
13248 case OP_NAME:
13249 {
13250 int len = longest_to_int (exp->elts[pc + 1].longconst);
13251
13252 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13253 *argsp = 0;
13254 break;
13255 }
13256 }
13257 }
13258
13259 static int
13260 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13261 {
13262 enum exp_opcode op = exp->elts[elt].opcode;
13263 int oplen, nargs;
13264 int pc = elt;
13265 int i;
13266
13267 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13268
13269 switch (op)
13270 {
13271 /* Ada attributes ('Foo). */
13272 case OP_ATR_FIRST:
13273 case OP_ATR_LAST:
13274 case OP_ATR_LENGTH:
13275 case OP_ATR_IMAGE:
13276 case OP_ATR_MAX:
13277 case OP_ATR_MIN:
13278 case OP_ATR_MODULUS:
13279 case OP_ATR_POS:
13280 case OP_ATR_SIZE:
13281 case OP_ATR_TAG:
13282 case OP_ATR_VAL:
13283 break;
13284
13285 case UNOP_IN_RANGE:
13286 case UNOP_QUAL:
13287 /* XXX: gdb_sprint_host_address, type_sprint */
13288 fprintf_filtered (stream, _("Type @"));
13289 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13290 fprintf_filtered (stream, " (");
13291 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13292 fprintf_filtered (stream, ")");
13293 break;
13294 case BINOP_IN_BOUNDS:
13295 fprintf_filtered (stream, " (%d)",
13296 longest_to_int (exp->elts[pc + 2].longconst));
13297 break;
13298 case TERNOP_IN_RANGE:
13299 break;
13300
13301 case OP_AGGREGATE:
13302 case OP_OTHERS:
13303 case OP_DISCRETE_RANGE:
13304 case OP_POSITIONAL:
13305 case OP_CHOICES:
13306 break;
13307
13308 case OP_NAME:
13309 case OP_STRING:
13310 {
13311 char *name = &exp->elts[elt + 2].string;
13312 int len = longest_to_int (exp->elts[elt + 1].longconst);
13313
13314 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13315 break;
13316 }
13317
13318 default:
13319 return dump_subexp_body_standard (exp, stream, elt);
13320 }
13321
13322 elt += oplen;
13323 for (i = 0; i < nargs; i += 1)
13324 elt = dump_subexp (exp, stream, elt);
13325
13326 return elt;
13327 }
13328
13329 /* The Ada extension of print_subexp (q.v.). */
13330
13331 static void
13332 ada_print_subexp (struct expression *exp, int *pos,
13333 struct ui_file *stream, enum precedence prec)
13334 {
13335 int oplen, nargs, i;
13336 int pc = *pos;
13337 enum exp_opcode op = exp->elts[pc].opcode;
13338
13339 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13340
13341 *pos += oplen;
13342 switch (op)
13343 {
13344 default:
13345 *pos -= oplen;
13346 print_subexp_standard (exp, pos, stream, prec);
13347 return;
13348
13349 case OP_VAR_VALUE:
13350 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13351 return;
13352
13353 case BINOP_IN_BOUNDS:
13354 /* XXX: sprint_subexp */
13355 print_subexp (exp, pos, stream, PREC_SUFFIX);
13356 fputs_filtered (" in ", stream);
13357 print_subexp (exp, pos, stream, PREC_SUFFIX);
13358 fputs_filtered ("'range", stream);
13359 if (exp->elts[pc + 1].longconst > 1)
13360 fprintf_filtered (stream, "(%ld)",
13361 (long) exp->elts[pc + 1].longconst);
13362 return;
13363
13364 case TERNOP_IN_RANGE:
13365 if (prec >= PREC_EQUAL)
13366 fputs_filtered ("(", stream);
13367 /* XXX: sprint_subexp */
13368 print_subexp (exp, pos, stream, PREC_SUFFIX);
13369 fputs_filtered (" in ", stream);
13370 print_subexp (exp, pos, stream, PREC_EQUAL);
13371 fputs_filtered (" .. ", stream);
13372 print_subexp (exp, pos, stream, PREC_EQUAL);
13373 if (prec >= PREC_EQUAL)
13374 fputs_filtered (")", stream);
13375 return;
13376
13377 case OP_ATR_FIRST:
13378 case OP_ATR_LAST:
13379 case OP_ATR_LENGTH:
13380 case OP_ATR_IMAGE:
13381 case OP_ATR_MAX:
13382 case OP_ATR_MIN:
13383 case OP_ATR_MODULUS:
13384 case OP_ATR_POS:
13385 case OP_ATR_SIZE:
13386 case OP_ATR_TAG:
13387 case OP_ATR_VAL:
13388 if (exp->elts[*pos].opcode == OP_TYPE)
13389 {
13390 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13391 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13392 &type_print_raw_options);
13393 *pos += 3;
13394 }
13395 else
13396 print_subexp (exp, pos, stream, PREC_SUFFIX);
13397 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13398 if (nargs > 1)
13399 {
13400 int tem;
13401
13402 for (tem = 1; tem < nargs; tem += 1)
13403 {
13404 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13405 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13406 }
13407 fputs_filtered (")", stream);
13408 }
13409 return;
13410
13411 case UNOP_QUAL:
13412 type_print (exp->elts[pc + 1].type, "", stream, 0);
13413 fputs_filtered ("'(", stream);
13414 print_subexp (exp, pos, stream, PREC_PREFIX);
13415 fputs_filtered (")", stream);
13416 return;
13417
13418 case UNOP_IN_RANGE:
13419 /* XXX: sprint_subexp */
13420 print_subexp (exp, pos, stream, PREC_SUFFIX);
13421 fputs_filtered (" in ", stream);
13422 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13423 &type_print_raw_options);
13424 return;
13425
13426 case OP_DISCRETE_RANGE:
13427 print_subexp (exp, pos, stream, PREC_SUFFIX);
13428 fputs_filtered ("..", stream);
13429 print_subexp (exp, pos, stream, PREC_SUFFIX);
13430 return;
13431
13432 case OP_OTHERS:
13433 fputs_filtered ("others => ", stream);
13434 print_subexp (exp, pos, stream, PREC_SUFFIX);
13435 return;
13436
13437 case OP_CHOICES:
13438 for (i = 0; i < nargs-1; i += 1)
13439 {
13440 if (i > 0)
13441 fputs_filtered ("|", stream);
13442 print_subexp (exp, pos, stream, PREC_SUFFIX);
13443 }
13444 fputs_filtered (" => ", stream);
13445 print_subexp (exp, pos, stream, PREC_SUFFIX);
13446 return;
13447
13448 case OP_POSITIONAL:
13449 print_subexp (exp, pos, stream, PREC_SUFFIX);
13450 return;
13451
13452 case OP_AGGREGATE:
13453 fputs_filtered ("(", stream);
13454 for (i = 0; i < nargs; i += 1)
13455 {
13456 if (i > 0)
13457 fputs_filtered (", ", stream);
13458 print_subexp (exp, pos, stream, PREC_SUFFIX);
13459 }
13460 fputs_filtered (")", stream);
13461 return;
13462 }
13463 }
13464
13465 /* Table mapping opcodes into strings for printing operators
13466 and precedences of the operators. */
13467
13468 static const struct op_print ada_op_print_tab[] = {
13469 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13470 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13471 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13472 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13473 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13474 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13475 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13476 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13477 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13478 {">=", BINOP_GEQ, PREC_ORDER, 0},
13479 {">", BINOP_GTR, PREC_ORDER, 0},
13480 {"<", BINOP_LESS, PREC_ORDER, 0},
13481 {">>", BINOP_RSH, PREC_SHIFT, 0},
13482 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13483 {"+", BINOP_ADD, PREC_ADD, 0},
13484 {"-", BINOP_SUB, PREC_ADD, 0},
13485 {"&", BINOP_CONCAT, PREC_ADD, 0},
13486 {"*", BINOP_MUL, PREC_MUL, 0},
13487 {"/", BINOP_DIV, PREC_MUL, 0},
13488 {"rem", BINOP_REM, PREC_MUL, 0},
13489 {"mod", BINOP_MOD, PREC_MUL, 0},
13490 {"**", BINOP_EXP, PREC_REPEAT, 0},
13491 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13492 {"-", UNOP_NEG, PREC_PREFIX, 0},
13493 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13494 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13495 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13496 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13497 {".all", UNOP_IND, PREC_SUFFIX, 1},
13498 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13499 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13500 {NULL, 0, 0, 0}
13501 };
13502 \f
13503 enum ada_primitive_types {
13504 ada_primitive_type_int,
13505 ada_primitive_type_long,
13506 ada_primitive_type_short,
13507 ada_primitive_type_char,
13508 ada_primitive_type_float,
13509 ada_primitive_type_double,
13510 ada_primitive_type_void,
13511 ada_primitive_type_long_long,
13512 ada_primitive_type_long_double,
13513 ada_primitive_type_natural,
13514 ada_primitive_type_positive,
13515 ada_primitive_type_system_address,
13516 nr_ada_primitive_types
13517 };
13518
13519 static void
13520 ada_language_arch_info (struct gdbarch *gdbarch,
13521 struct language_arch_info *lai)
13522 {
13523 const struct builtin_type *builtin = builtin_type (gdbarch);
13524
13525 lai->primitive_type_vector
13526 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13527 struct type *);
13528
13529 lai->primitive_type_vector [ada_primitive_type_int]
13530 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13531 0, "integer");
13532 lai->primitive_type_vector [ada_primitive_type_long]
13533 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13534 0, "long_integer");
13535 lai->primitive_type_vector [ada_primitive_type_short]
13536 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13537 0, "short_integer");
13538 lai->string_char_type
13539 = lai->primitive_type_vector [ada_primitive_type_char]
13540 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13541 lai->primitive_type_vector [ada_primitive_type_float]
13542 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13543 "float", NULL);
13544 lai->primitive_type_vector [ada_primitive_type_double]
13545 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13546 "long_float", NULL);
13547 lai->primitive_type_vector [ada_primitive_type_long_long]
13548 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13549 0, "long_long_integer");
13550 lai->primitive_type_vector [ada_primitive_type_long_double]
13551 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13552 "long_long_float", NULL);
13553 lai->primitive_type_vector [ada_primitive_type_natural]
13554 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13555 0, "natural");
13556 lai->primitive_type_vector [ada_primitive_type_positive]
13557 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13558 0, "positive");
13559 lai->primitive_type_vector [ada_primitive_type_void]
13560 = builtin->builtin_void;
13561
13562 lai->primitive_type_vector [ada_primitive_type_system_address]
13563 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13564 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13565 = "system__address";
13566
13567 lai->bool_type_symbol = NULL;
13568 lai->bool_type_default = builtin->builtin_bool;
13569 }
13570 \f
13571 /* Language vector */
13572
13573 /* Not really used, but needed in the ada_language_defn. */
13574
13575 static void
13576 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13577 {
13578 ada_emit_char (c, type, stream, quoter, 1);
13579 }
13580
13581 static int
13582 parse (struct parser_state *ps)
13583 {
13584 warnings_issued = 0;
13585 return ada_parse (ps);
13586 }
13587
13588 static const struct exp_descriptor ada_exp_descriptor = {
13589 ada_print_subexp,
13590 ada_operator_length,
13591 ada_operator_check,
13592 ada_op_name,
13593 ada_dump_subexp_body,
13594 ada_evaluate_subexp
13595 };
13596
13597 /* Implement the "la_get_symbol_name_cmp" language_defn method
13598 for Ada. */
13599
13600 static symbol_name_cmp_ftype
13601 ada_get_symbol_name_cmp (const char *lookup_name)
13602 {
13603 if (should_use_wild_match (lookup_name))
13604 return wild_match;
13605 else
13606 return compare_names;
13607 }
13608
13609 /* Implement the "la_read_var_value" language_defn method for Ada. */
13610
13611 static struct value *
13612 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13613 {
13614 const struct block *frame_block = NULL;
13615 struct symbol *renaming_sym = NULL;
13616
13617 /* The only case where default_read_var_value is not sufficient
13618 is when VAR is a renaming... */
13619 if (frame)
13620 frame_block = get_frame_block (frame, NULL);
13621 if (frame_block)
13622 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13623 if (renaming_sym != NULL)
13624 return ada_read_renaming_var_value (renaming_sym, frame_block);
13625
13626 /* This is a typical case where we expect the default_read_var_value
13627 function to work. */
13628 return default_read_var_value (var, frame);
13629 }
13630
13631 const struct language_defn ada_language_defn = {
13632 "ada", /* Language name */
13633 "Ada",
13634 language_ada,
13635 range_check_off,
13636 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13637 that's not quite what this means. */
13638 array_row_major,
13639 macro_expansion_no,
13640 &ada_exp_descriptor,
13641 parse,
13642 ada_error,
13643 resolve,
13644 ada_printchar, /* Print a character constant */
13645 ada_printstr, /* Function to print string constant */
13646 emit_char, /* Function to print single char (not used) */
13647 ada_print_type, /* Print a type using appropriate syntax */
13648 ada_print_typedef, /* Print a typedef using appropriate syntax */
13649 ada_val_print, /* Print a value using appropriate syntax */
13650 ada_value_print, /* Print a top-level value */
13651 ada_read_var_value, /* la_read_var_value */
13652 NULL, /* Language specific skip_trampoline */
13653 NULL, /* name_of_this */
13654 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13655 basic_lookup_transparent_type, /* lookup_transparent_type */
13656 ada_la_decode, /* Language specific symbol demangler */
13657 NULL, /* Language specific
13658 class_name_from_physname */
13659 ada_op_print_tab, /* expression operators for printing */
13660 0, /* c-style arrays */
13661 1, /* String lower bound */
13662 ada_get_gdb_completer_word_break_characters,
13663 ada_make_symbol_completion_list,
13664 ada_language_arch_info,
13665 ada_print_array_index,
13666 default_pass_by_reference,
13667 c_get_string,
13668 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13669 ada_iterate_over_symbols,
13670 &ada_varobj_ops,
13671 NULL,
13672 NULL,
13673 LANG_MAGIC
13674 };
13675
13676 /* Provide a prototype to silence -Wmissing-prototypes. */
13677 extern initialize_file_ftype _initialize_ada_language;
13678
13679 /* Command-list for the "set/show ada" prefix command. */
13680 static struct cmd_list_element *set_ada_list;
13681 static struct cmd_list_element *show_ada_list;
13682
13683 /* Implement the "set ada" prefix command. */
13684
13685 static void
13686 set_ada_command (char *arg, int from_tty)
13687 {
13688 printf_unfiltered (_(\
13689 "\"set ada\" must be followed by the name of a setting.\n"));
13690 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13691 }
13692
13693 /* Implement the "show ada" prefix command. */
13694
13695 static void
13696 show_ada_command (char *args, int from_tty)
13697 {
13698 cmd_show_list (show_ada_list, from_tty, "");
13699 }
13700
13701 static void
13702 initialize_ada_catchpoint_ops (void)
13703 {
13704 struct breakpoint_ops *ops;
13705
13706 initialize_breakpoint_ops ();
13707
13708 ops = &catch_exception_breakpoint_ops;
13709 *ops = bkpt_breakpoint_ops;
13710 ops->dtor = dtor_catch_exception;
13711 ops->allocate_location = allocate_location_catch_exception;
13712 ops->re_set = re_set_catch_exception;
13713 ops->check_status = check_status_catch_exception;
13714 ops->print_it = print_it_catch_exception;
13715 ops->print_one = print_one_catch_exception;
13716 ops->print_mention = print_mention_catch_exception;
13717 ops->print_recreate = print_recreate_catch_exception;
13718
13719 ops = &catch_exception_unhandled_breakpoint_ops;
13720 *ops = bkpt_breakpoint_ops;
13721 ops->dtor = dtor_catch_exception_unhandled;
13722 ops->allocate_location = allocate_location_catch_exception_unhandled;
13723 ops->re_set = re_set_catch_exception_unhandled;
13724 ops->check_status = check_status_catch_exception_unhandled;
13725 ops->print_it = print_it_catch_exception_unhandled;
13726 ops->print_one = print_one_catch_exception_unhandled;
13727 ops->print_mention = print_mention_catch_exception_unhandled;
13728 ops->print_recreate = print_recreate_catch_exception_unhandled;
13729
13730 ops = &catch_assert_breakpoint_ops;
13731 *ops = bkpt_breakpoint_ops;
13732 ops->dtor = dtor_catch_assert;
13733 ops->allocate_location = allocate_location_catch_assert;
13734 ops->re_set = re_set_catch_assert;
13735 ops->check_status = check_status_catch_assert;
13736 ops->print_it = print_it_catch_assert;
13737 ops->print_one = print_one_catch_assert;
13738 ops->print_mention = print_mention_catch_assert;
13739 ops->print_recreate = print_recreate_catch_assert;
13740 }
13741
13742 /* This module's 'new_objfile' observer. */
13743
13744 static void
13745 ada_new_objfile_observer (struct objfile *objfile)
13746 {
13747 ada_clear_symbol_cache ();
13748 }
13749
13750 /* This module's 'free_objfile' observer. */
13751
13752 static void
13753 ada_free_objfile_observer (struct objfile *objfile)
13754 {
13755 ada_clear_symbol_cache ();
13756 }
13757
13758 void
13759 _initialize_ada_language (void)
13760 {
13761 add_language (&ada_language_defn);
13762
13763 initialize_ada_catchpoint_ops ();
13764
13765 add_prefix_cmd ("ada", no_class, set_ada_command,
13766 _("Prefix command for changing Ada-specfic settings"),
13767 &set_ada_list, "set ada ", 0, &setlist);
13768
13769 add_prefix_cmd ("ada", no_class, show_ada_command,
13770 _("Generic command for showing Ada-specific settings."),
13771 &show_ada_list, "show ada ", 0, &showlist);
13772
13773 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13774 &trust_pad_over_xvs, _("\
13775 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13776 Show whether an optimization trusting PAD types over XVS types is activated"),
13777 _("\
13778 This is related to the encoding used by the GNAT compiler. The debugger\n\
13779 should normally trust the contents of PAD types, but certain older versions\n\
13780 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13781 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13782 work around this bug. It is always safe to turn this option \"off\", but\n\
13783 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13784 this option to \"off\" unless necessary."),
13785 NULL, NULL, &set_ada_list, &show_ada_list);
13786
13787 add_catch_command ("exception", _("\
13788 Catch Ada exceptions, when raised.\n\
13789 With an argument, catch only exceptions with the given name."),
13790 catch_ada_exception_command,
13791 NULL,
13792 CATCH_PERMANENT,
13793 CATCH_TEMPORARY);
13794 add_catch_command ("assert", _("\
13795 Catch failed Ada assertions, when raised.\n\
13796 With an argument, catch only exceptions with the given name."),
13797 catch_assert_command,
13798 NULL,
13799 CATCH_PERMANENT,
13800 CATCH_TEMPORARY);
13801
13802 varsize_limit = 65536;
13803
13804 add_info ("exceptions", info_exceptions_command,
13805 _("\
13806 List all Ada exception names.\n\
13807 If a regular expression is passed as an argument, only those matching\n\
13808 the regular expression are listed."));
13809
13810 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13811 _("Set Ada maintenance-related variables."),
13812 &maint_set_ada_cmdlist, "maintenance set ada ",
13813 0/*allow-unknown*/, &maintenance_set_cmdlist);
13814
13815 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13816 _("Show Ada maintenance-related variables"),
13817 &maint_show_ada_cmdlist, "maintenance show ada ",
13818 0/*allow-unknown*/, &maintenance_show_cmdlist);
13819
13820 add_setshow_boolean_cmd
13821 ("ignore-descriptive-types", class_maintenance,
13822 &ada_ignore_descriptive_types_p,
13823 _("Set whether descriptive types generated by GNAT should be ignored."),
13824 _("Show whether descriptive types generated by GNAT should be ignored."),
13825 _("\
13826 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13827 DWARF attribute."),
13828 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13829
13830 obstack_init (&symbol_list_obstack);
13831
13832 decoded_names_store = htab_create_alloc
13833 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13834 NULL, xcalloc, xfree);
13835
13836 /* The ada-lang observers. */
13837 observer_attach_new_objfile (ada_new_objfile_observer);
13838 observer_attach_free_objfile (ada_free_objfile_observer);
13839 observer_attach_inferior_exit (ada_inferior_exit);
13840
13841 /* Setup various context-specific data. */
13842 ada_inferior_data
13843 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13844 ada_pspace_data_handle
13845 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13846 }
This page took 0.319314 seconds and 4 git commands to generate.