* ada-lang.c (ada_make_symbol_completion_list): Add 'code'
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61 #include "typeprint.h"
62
63 #include "psymtab.h"
64 #include "value.h"
65 #include "mi/mi-common.h"
66 #include "arch-utils.h"
67 #include "exceptions.h"
68 #include "cli/cli-utils.h"
69
70 /* Define whether or not the C operator '/' truncates towards zero for
71 differently signed operands (truncation direction is undefined in C).
72 Copied from valarith.c. */
73
74 #ifndef TRUNCATION_TOWARDS_ZERO
75 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
76 #endif
77
78 static struct type *desc_base_type (struct type *);
79
80 static struct type *desc_bounds_type (struct type *);
81
82 static struct value *desc_bounds (struct value *);
83
84 static int fat_pntr_bounds_bitpos (struct type *);
85
86 static int fat_pntr_bounds_bitsize (struct type *);
87
88 static struct type *desc_data_target_type (struct type *);
89
90 static struct value *desc_data (struct value *);
91
92 static int fat_pntr_data_bitpos (struct type *);
93
94 static int fat_pntr_data_bitsize (struct type *);
95
96 static struct value *desc_one_bound (struct value *, int, int);
97
98 static int desc_bound_bitpos (struct type *, int, int);
99
100 static int desc_bound_bitsize (struct type *, int, int);
101
102 static struct type *desc_index_type (struct type *, int);
103
104 static int desc_arity (struct type *);
105
106 static int ada_type_match (struct type *, struct type *, int);
107
108 static int ada_args_match (struct symbol *, struct value **, int);
109
110 static int full_match (const char *, const char *);
111
112 static struct value *make_array_descriptor (struct type *, struct value *);
113
114 static void ada_add_block_symbols (struct obstack *,
115 struct block *, const char *,
116 domain_enum, struct objfile *, int);
117
118 static int is_nonfunction (struct ada_symbol_info *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct ada_symbol_info *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
156 int, int, int *);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static struct value *get_var_value (char *, char *);
199
200 static int lesseq_defined_than (struct symbol *, struct symbol *);
201
202 static int equiv_types (struct type *, struct type *);
203
204 static int is_name_suffix (const char *);
205
206 static int advance_wild_match (const char **, const char *, int);
207
208 static int wild_match (const char *, const char *);
209
210 static struct value *ada_coerce_ref (struct value *);
211
212 static LONGEST pos_atr (struct value *);
213
214 static struct value *value_pos_atr (struct type *, struct value *);
215
216 static struct value *value_val_atr (struct type *, struct value *);
217
218 static struct symbol *standard_lookup (const char *, const struct block *,
219 domain_enum);
220
221 static struct value *ada_search_struct_field (char *, struct value *, int,
222 struct type *);
223
224 static struct value *ada_value_primitive_field (struct value *, int, int,
225 struct type *);
226
227 static int find_struct_field (const char *, struct type *, int,
228 struct type **, int *, int *, int *, int *);
229
230 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
231 struct value *);
232
233 static int ada_resolve_function (struct ada_symbol_info *, int,
234 struct value **, int, const char *,
235 struct type *);
236
237 static int ada_is_direct_array_type (struct type *);
238
239 static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
241
242 static void check_size (const struct type *);
243
244 static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247 static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *,
249 int *, enum noside);
250
251 static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256 static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262 static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273 static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
275
276 static struct type *ada_find_any_type (const char *name);
277 \f
278
279
280 /* Maximum-sized dynamic type. */
281 static unsigned int varsize_limit;
282
283 /* FIXME: brobecker/2003-09-17: No longer a const because it is
284 returned by a function that does not return a const char *. */
285 static char *ada_completer_word_break_characters =
286 #ifdef VMS
287 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
288 #else
289 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
290 #endif
291
292 /* The name of the symbol to use to get the name of the main subprogram. */
293 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
294 = "__gnat_ada_main_program_name";
295
296 /* Limit on the number of warnings to raise per expression evaluation. */
297 static int warning_limit = 2;
298
299 /* Number of warning messages issued; reset to 0 by cleanups after
300 expression evaluation. */
301 static int warnings_issued = 0;
302
303 static const char *known_runtime_file_name_patterns[] = {
304 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305 };
306
307 static const char *known_auxiliary_function_name_patterns[] = {
308 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309 };
310
311 /* Space for allocating results of ada_lookup_symbol_list. */
312 static struct obstack symbol_list_obstack;
313
314 /* Inferior-specific data. */
315
316 /* Per-inferior data for this module. */
317
318 struct ada_inferior_data
319 {
320 /* The ada__tags__type_specific_data type, which is used when decoding
321 tagged types. With older versions of GNAT, this type was directly
322 accessible through a component ("tsd") in the object tag. But this
323 is no longer the case, so we cache it for each inferior. */
324 struct type *tsd_type;
325
326 /* The exception_support_info data. This data is used to determine
327 how to implement support for Ada exception catchpoints in a given
328 inferior. */
329 const struct exception_support_info *exception_info;
330 };
331
332 /* Our key to this module's inferior data. */
333 static const struct inferior_data *ada_inferior_data;
334
335 /* A cleanup routine for our inferior data. */
336 static void
337 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
338 {
339 struct ada_inferior_data *data;
340
341 data = inferior_data (inf, ada_inferior_data);
342 if (data != NULL)
343 xfree (data);
344 }
345
346 /* Return our inferior data for the given inferior (INF).
347
348 This function always returns a valid pointer to an allocated
349 ada_inferior_data structure. If INF's inferior data has not
350 been previously set, this functions creates a new one with all
351 fields set to zero, sets INF's inferior to it, and then returns
352 a pointer to that newly allocated ada_inferior_data. */
353
354 static struct ada_inferior_data *
355 get_ada_inferior_data (struct inferior *inf)
356 {
357 struct ada_inferior_data *data;
358
359 data = inferior_data (inf, ada_inferior_data);
360 if (data == NULL)
361 {
362 data = XZALLOC (struct ada_inferior_data);
363 set_inferior_data (inf, ada_inferior_data, data);
364 }
365
366 return data;
367 }
368
369 /* Perform all necessary cleanups regarding our module's inferior data
370 that is required after the inferior INF just exited. */
371
372 static void
373 ada_inferior_exit (struct inferior *inf)
374 {
375 ada_inferior_data_cleanup (inf, NULL);
376 set_inferior_data (inf, ada_inferior_data, NULL);
377 }
378
379 /* Utilities */
380
381 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
382 all typedef layers have been peeled. Otherwise, return TYPE.
383
384 Normally, we really expect a typedef type to only have 1 typedef layer.
385 In other words, we really expect the target type of a typedef type to be
386 a non-typedef type. This is particularly true for Ada units, because
387 the language does not have a typedef vs not-typedef distinction.
388 In that respect, the Ada compiler has been trying to eliminate as many
389 typedef definitions in the debugging information, since they generally
390 do not bring any extra information (we still use typedef under certain
391 circumstances related mostly to the GNAT encoding).
392
393 Unfortunately, we have seen situations where the debugging information
394 generated by the compiler leads to such multiple typedef layers. For
395 instance, consider the following example with stabs:
396
397 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
398 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
399
400 This is an error in the debugging information which causes type
401 pck__float_array___XUP to be defined twice, and the second time,
402 it is defined as a typedef of a typedef.
403
404 This is on the fringe of legality as far as debugging information is
405 concerned, and certainly unexpected. But it is easy to handle these
406 situations correctly, so we can afford to be lenient in this case. */
407
408 static struct type *
409 ada_typedef_target_type (struct type *type)
410 {
411 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
412 type = TYPE_TARGET_TYPE (type);
413 return type;
414 }
415
416 /* Given DECODED_NAME a string holding a symbol name in its
417 decoded form (ie using the Ada dotted notation), returns
418 its unqualified name. */
419
420 static const char *
421 ada_unqualified_name (const char *decoded_name)
422 {
423 const char *result = strrchr (decoded_name, '.');
424
425 if (result != NULL)
426 result++; /* Skip the dot... */
427 else
428 result = decoded_name;
429
430 return result;
431 }
432
433 /* Return a string starting with '<', followed by STR, and '>'.
434 The result is good until the next call. */
435
436 static char *
437 add_angle_brackets (const char *str)
438 {
439 static char *result = NULL;
440
441 xfree (result);
442 result = xstrprintf ("<%s>", str);
443 return result;
444 }
445
446 static char *
447 ada_get_gdb_completer_word_break_characters (void)
448 {
449 return ada_completer_word_break_characters;
450 }
451
452 /* Print an array element index using the Ada syntax. */
453
454 static void
455 ada_print_array_index (struct value *index_value, struct ui_file *stream,
456 const struct value_print_options *options)
457 {
458 LA_VALUE_PRINT (index_value, stream, options);
459 fprintf_filtered (stream, " => ");
460 }
461
462 /* Assuming VECT points to an array of *SIZE objects of size
463 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
464 updating *SIZE as necessary and returning the (new) array. */
465
466 void *
467 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
468 {
469 if (*size < min_size)
470 {
471 *size *= 2;
472 if (*size < min_size)
473 *size = min_size;
474 vect = xrealloc (vect, *size * element_size);
475 }
476 return vect;
477 }
478
479 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
480 suffix of FIELD_NAME beginning "___". */
481
482 static int
483 field_name_match (const char *field_name, const char *target)
484 {
485 int len = strlen (target);
486
487 return
488 (strncmp (field_name, target, len) == 0
489 && (field_name[len] == '\0'
490 || (strncmp (field_name + len, "___", 3) == 0
491 && strcmp (field_name + strlen (field_name) - 6,
492 "___XVN") != 0)));
493 }
494
495
496 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
497 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
498 and return its index. This function also handles fields whose name
499 have ___ suffixes because the compiler sometimes alters their name
500 by adding such a suffix to represent fields with certain constraints.
501 If the field could not be found, return a negative number if
502 MAYBE_MISSING is set. Otherwise raise an error. */
503
504 int
505 ada_get_field_index (const struct type *type, const char *field_name,
506 int maybe_missing)
507 {
508 int fieldno;
509 struct type *struct_type = check_typedef ((struct type *) type);
510
511 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
512 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
513 return fieldno;
514
515 if (!maybe_missing)
516 error (_("Unable to find field %s in struct %s. Aborting"),
517 field_name, TYPE_NAME (struct_type));
518
519 return -1;
520 }
521
522 /* The length of the prefix of NAME prior to any "___" suffix. */
523
524 int
525 ada_name_prefix_len (const char *name)
526 {
527 if (name == NULL)
528 return 0;
529 else
530 {
531 const char *p = strstr (name, "___");
532
533 if (p == NULL)
534 return strlen (name);
535 else
536 return p - name;
537 }
538 }
539
540 /* Return non-zero if SUFFIX is a suffix of STR.
541 Return zero if STR is null. */
542
543 static int
544 is_suffix (const char *str, const char *suffix)
545 {
546 int len1, len2;
547
548 if (str == NULL)
549 return 0;
550 len1 = strlen (str);
551 len2 = strlen (suffix);
552 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
553 }
554
555 /* The contents of value VAL, treated as a value of type TYPE. The
556 result is an lval in memory if VAL is. */
557
558 static struct value *
559 coerce_unspec_val_to_type (struct value *val, struct type *type)
560 {
561 type = ada_check_typedef (type);
562 if (value_type (val) == type)
563 return val;
564 else
565 {
566 struct value *result;
567
568 /* Make sure that the object size is not unreasonable before
569 trying to allocate some memory for it. */
570 check_size (type);
571
572 if (value_lazy (val)
573 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
574 result = allocate_value_lazy (type);
575 else
576 {
577 result = allocate_value (type);
578 memcpy (value_contents_raw (result), value_contents (val),
579 TYPE_LENGTH (type));
580 }
581 set_value_component_location (result, val);
582 set_value_bitsize (result, value_bitsize (val));
583 set_value_bitpos (result, value_bitpos (val));
584 set_value_address (result, value_address (val));
585 set_value_optimized_out (result, value_optimized_out (val));
586 return result;
587 }
588 }
589
590 static const gdb_byte *
591 cond_offset_host (const gdb_byte *valaddr, long offset)
592 {
593 if (valaddr == NULL)
594 return NULL;
595 else
596 return valaddr + offset;
597 }
598
599 static CORE_ADDR
600 cond_offset_target (CORE_ADDR address, long offset)
601 {
602 if (address == 0)
603 return 0;
604 else
605 return address + offset;
606 }
607
608 /* Issue a warning (as for the definition of warning in utils.c, but
609 with exactly one argument rather than ...), unless the limit on the
610 number of warnings has passed during the evaluation of the current
611 expression. */
612
613 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
614 provided by "complaint". */
615 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
616
617 static void
618 lim_warning (const char *format, ...)
619 {
620 va_list args;
621
622 va_start (args, format);
623 warnings_issued += 1;
624 if (warnings_issued <= warning_limit)
625 vwarning (format, args);
626
627 va_end (args);
628 }
629
630 /* Issue an error if the size of an object of type T is unreasonable,
631 i.e. if it would be a bad idea to allocate a value of this type in
632 GDB. */
633
634 static void
635 check_size (const struct type *type)
636 {
637 if (TYPE_LENGTH (type) > varsize_limit)
638 error (_("object size is larger than varsize-limit"));
639 }
640
641 /* Maximum value of a SIZE-byte signed integer type. */
642 static LONGEST
643 max_of_size (int size)
644 {
645 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
646
647 return top_bit | (top_bit - 1);
648 }
649
650 /* Minimum value of a SIZE-byte signed integer type. */
651 static LONGEST
652 min_of_size (int size)
653 {
654 return -max_of_size (size) - 1;
655 }
656
657 /* Maximum value of a SIZE-byte unsigned integer type. */
658 static ULONGEST
659 umax_of_size (int size)
660 {
661 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
662
663 return top_bit | (top_bit - 1);
664 }
665
666 /* Maximum value of integral type T, as a signed quantity. */
667 static LONGEST
668 max_of_type (struct type *t)
669 {
670 if (TYPE_UNSIGNED (t))
671 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
672 else
673 return max_of_size (TYPE_LENGTH (t));
674 }
675
676 /* Minimum value of integral type T, as a signed quantity. */
677 static LONGEST
678 min_of_type (struct type *t)
679 {
680 if (TYPE_UNSIGNED (t))
681 return 0;
682 else
683 return min_of_size (TYPE_LENGTH (t));
684 }
685
686 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
687 LONGEST
688 ada_discrete_type_high_bound (struct type *type)
689 {
690 switch (TYPE_CODE (type))
691 {
692 case TYPE_CODE_RANGE:
693 return TYPE_HIGH_BOUND (type);
694 case TYPE_CODE_ENUM:
695 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
696 case TYPE_CODE_BOOL:
697 return 1;
698 case TYPE_CODE_CHAR:
699 case TYPE_CODE_INT:
700 return max_of_type (type);
701 default:
702 error (_("Unexpected type in ada_discrete_type_high_bound."));
703 }
704 }
705
706 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
707 LONGEST
708 ada_discrete_type_low_bound (struct type *type)
709 {
710 switch (TYPE_CODE (type))
711 {
712 case TYPE_CODE_RANGE:
713 return TYPE_LOW_BOUND (type);
714 case TYPE_CODE_ENUM:
715 return TYPE_FIELD_ENUMVAL (type, 0);
716 case TYPE_CODE_BOOL:
717 return 0;
718 case TYPE_CODE_CHAR:
719 case TYPE_CODE_INT:
720 return min_of_type (type);
721 default:
722 error (_("Unexpected type in ada_discrete_type_low_bound."));
723 }
724 }
725
726 /* The identity on non-range types. For range types, the underlying
727 non-range scalar type. */
728
729 static struct type *
730 get_base_type (struct type *type)
731 {
732 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
733 {
734 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
735 return type;
736 type = TYPE_TARGET_TYPE (type);
737 }
738 return type;
739 }
740
741 /* Return a decoded version of the given VALUE. This means returning
742 a value whose type is obtained by applying all the GNAT-specific
743 encondings, making the resulting type a static but standard description
744 of the initial type. */
745
746 struct value *
747 ada_get_decoded_value (struct value *value)
748 {
749 struct type *type = ada_check_typedef (value_type (value));
750
751 if (ada_is_array_descriptor_type (type)
752 || (ada_is_constrained_packed_array_type (type)
753 && TYPE_CODE (type) != TYPE_CODE_PTR))
754 {
755 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
756 value = ada_coerce_to_simple_array_ptr (value);
757 else
758 value = ada_coerce_to_simple_array (value);
759 }
760 else
761 value = ada_to_fixed_value (value);
762
763 return value;
764 }
765
766 /* Same as ada_get_decoded_value, but with the given TYPE.
767 Because there is no associated actual value for this type,
768 the resulting type might be a best-effort approximation in
769 the case of dynamic types. */
770
771 struct type *
772 ada_get_decoded_type (struct type *type)
773 {
774 type = to_static_fixed_type (type);
775 if (ada_is_constrained_packed_array_type (type))
776 type = ada_coerce_to_simple_array_type (type);
777 return type;
778 }
779
780 \f
781
782 /* Language Selection */
783
784 /* If the main program is in Ada, return language_ada, otherwise return LANG
785 (the main program is in Ada iif the adainit symbol is found). */
786
787 enum language
788 ada_update_initial_language (enum language lang)
789 {
790 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
791 (struct objfile *) NULL) != NULL)
792 return language_ada;
793
794 return lang;
795 }
796
797 /* If the main procedure is written in Ada, then return its name.
798 The result is good until the next call. Return NULL if the main
799 procedure doesn't appear to be in Ada. */
800
801 char *
802 ada_main_name (void)
803 {
804 struct minimal_symbol *msym;
805 static char *main_program_name = NULL;
806
807 /* For Ada, the name of the main procedure is stored in a specific
808 string constant, generated by the binder. Look for that symbol,
809 extract its address, and then read that string. If we didn't find
810 that string, then most probably the main procedure is not written
811 in Ada. */
812 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
813
814 if (msym != NULL)
815 {
816 CORE_ADDR main_program_name_addr;
817 int err_code;
818
819 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
820 if (main_program_name_addr == 0)
821 error (_("Invalid address for Ada main program name."));
822
823 xfree (main_program_name);
824 target_read_string (main_program_name_addr, &main_program_name,
825 1024, &err_code);
826
827 if (err_code != 0)
828 return NULL;
829 return main_program_name;
830 }
831
832 /* The main procedure doesn't seem to be in Ada. */
833 return NULL;
834 }
835 \f
836 /* Symbols */
837
838 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
839 of NULLs. */
840
841 const struct ada_opname_map ada_opname_table[] = {
842 {"Oadd", "\"+\"", BINOP_ADD},
843 {"Osubtract", "\"-\"", BINOP_SUB},
844 {"Omultiply", "\"*\"", BINOP_MUL},
845 {"Odivide", "\"/\"", BINOP_DIV},
846 {"Omod", "\"mod\"", BINOP_MOD},
847 {"Orem", "\"rem\"", BINOP_REM},
848 {"Oexpon", "\"**\"", BINOP_EXP},
849 {"Olt", "\"<\"", BINOP_LESS},
850 {"Ole", "\"<=\"", BINOP_LEQ},
851 {"Ogt", "\">\"", BINOP_GTR},
852 {"Oge", "\">=\"", BINOP_GEQ},
853 {"Oeq", "\"=\"", BINOP_EQUAL},
854 {"One", "\"/=\"", BINOP_NOTEQUAL},
855 {"Oand", "\"and\"", BINOP_BITWISE_AND},
856 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
857 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
858 {"Oconcat", "\"&\"", BINOP_CONCAT},
859 {"Oabs", "\"abs\"", UNOP_ABS},
860 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
861 {"Oadd", "\"+\"", UNOP_PLUS},
862 {"Osubtract", "\"-\"", UNOP_NEG},
863 {NULL, NULL}
864 };
865
866 /* The "encoded" form of DECODED, according to GNAT conventions.
867 The result is valid until the next call to ada_encode. */
868
869 char *
870 ada_encode (const char *decoded)
871 {
872 static char *encoding_buffer = NULL;
873 static size_t encoding_buffer_size = 0;
874 const char *p;
875 int k;
876
877 if (decoded == NULL)
878 return NULL;
879
880 GROW_VECT (encoding_buffer, encoding_buffer_size,
881 2 * strlen (decoded) + 10);
882
883 k = 0;
884 for (p = decoded; *p != '\0'; p += 1)
885 {
886 if (*p == '.')
887 {
888 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
889 k += 2;
890 }
891 else if (*p == '"')
892 {
893 const struct ada_opname_map *mapping;
894
895 for (mapping = ada_opname_table;
896 mapping->encoded != NULL
897 && strncmp (mapping->decoded, p,
898 strlen (mapping->decoded)) != 0; mapping += 1)
899 ;
900 if (mapping->encoded == NULL)
901 error (_("invalid Ada operator name: %s"), p);
902 strcpy (encoding_buffer + k, mapping->encoded);
903 k += strlen (mapping->encoded);
904 break;
905 }
906 else
907 {
908 encoding_buffer[k] = *p;
909 k += 1;
910 }
911 }
912
913 encoding_buffer[k] = '\0';
914 return encoding_buffer;
915 }
916
917 /* Return NAME folded to lower case, or, if surrounded by single
918 quotes, unfolded, but with the quotes stripped away. Result good
919 to next call. */
920
921 char *
922 ada_fold_name (const char *name)
923 {
924 static char *fold_buffer = NULL;
925 static size_t fold_buffer_size = 0;
926
927 int len = strlen (name);
928 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
929
930 if (name[0] == '\'')
931 {
932 strncpy (fold_buffer, name + 1, len - 2);
933 fold_buffer[len - 2] = '\000';
934 }
935 else
936 {
937 int i;
938
939 for (i = 0; i <= len; i += 1)
940 fold_buffer[i] = tolower (name[i]);
941 }
942
943 return fold_buffer;
944 }
945
946 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
947
948 static int
949 is_lower_alphanum (const char c)
950 {
951 return (isdigit (c) || (isalpha (c) && islower (c)));
952 }
953
954 /* ENCODED is the linkage name of a symbol and LEN contains its length.
955 This function saves in LEN the length of that same symbol name but
956 without either of these suffixes:
957 . .{DIGIT}+
958 . ${DIGIT}+
959 . ___{DIGIT}+
960 . __{DIGIT}+.
961
962 These are suffixes introduced by the compiler for entities such as
963 nested subprogram for instance, in order to avoid name clashes.
964 They do not serve any purpose for the debugger. */
965
966 static void
967 ada_remove_trailing_digits (const char *encoded, int *len)
968 {
969 if (*len > 1 && isdigit (encoded[*len - 1]))
970 {
971 int i = *len - 2;
972
973 while (i > 0 && isdigit (encoded[i]))
974 i--;
975 if (i >= 0 && encoded[i] == '.')
976 *len = i;
977 else if (i >= 0 && encoded[i] == '$')
978 *len = i;
979 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
980 *len = i - 2;
981 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
982 *len = i - 1;
983 }
984 }
985
986 /* Remove the suffix introduced by the compiler for protected object
987 subprograms. */
988
989 static void
990 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
991 {
992 /* Remove trailing N. */
993
994 /* Protected entry subprograms are broken into two
995 separate subprograms: The first one is unprotected, and has
996 a 'N' suffix; the second is the protected version, and has
997 the 'P' suffix. The second calls the first one after handling
998 the protection. Since the P subprograms are internally generated,
999 we leave these names undecoded, giving the user a clue that this
1000 entity is internal. */
1001
1002 if (*len > 1
1003 && encoded[*len - 1] == 'N'
1004 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1005 *len = *len - 1;
1006 }
1007
1008 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1009
1010 static void
1011 ada_remove_Xbn_suffix (const char *encoded, int *len)
1012 {
1013 int i = *len - 1;
1014
1015 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1016 i--;
1017
1018 if (encoded[i] != 'X')
1019 return;
1020
1021 if (i == 0)
1022 return;
1023
1024 if (isalnum (encoded[i-1]))
1025 *len = i;
1026 }
1027
1028 /* If ENCODED follows the GNAT entity encoding conventions, then return
1029 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1030 replaced by ENCODED.
1031
1032 The resulting string is valid until the next call of ada_decode.
1033 If the string is unchanged by decoding, the original string pointer
1034 is returned. */
1035
1036 const char *
1037 ada_decode (const char *encoded)
1038 {
1039 int i, j;
1040 int len0;
1041 const char *p;
1042 char *decoded;
1043 int at_start_name;
1044 static char *decoding_buffer = NULL;
1045 static size_t decoding_buffer_size = 0;
1046
1047 /* The name of the Ada main procedure starts with "_ada_".
1048 This prefix is not part of the decoded name, so skip this part
1049 if we see this prefix. */
1050 if (strncmp (encoded, "_ada_", 5) == 0)
1051 encoded += 5;
1052
1053 /* If the name starts with '_', then it is not a properly encoded
1054 name, so do not attempt to decode it. Similarly, if the name
1055 starts with '<', the name should not be decoded. */
1056 if (encoded[0] == '_' || encoded[0] == '<')
1057 goto Suppress;
1058
1059 len0 = strlen (encoded);
1060
1061 ada_remove_trailing_digits (encoded, &len0);
1062 ada_remove_po_subprogram_suffix (encoded, &len0);
1063
1064 /* Remove the ___X.* suffix if present. Do not forget to verify that
1065 the suffix is located before the current "end" of ENCODED. We want
1066 to avoid re-matching parts of ENCODED that have previously been
1067 marked as discarded (by decrementing LEN0). */
1068 p = strstr (encoded, "___");
1069 if (p != NULL && p - encoded < len0 - 3)
1070 {
1071 if (p[3] == 'X')
1072 len0 = p - encoded;
1073 else
1074 goto Suppress;
1075 }
1076
1077 /* Remove any trailing TKB suffix. It tells us that this symbol
1078 is for the body of a task, but that information does not actually
1079 appear in the decoded name. */
1080
1081 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1082 len0 -= 3;
1083
1084 /* Remove any trailing TB suffix. The TB suffix is slightly different
1085 from the TKB suffix because it is used for non-anonymous task
1086 bodies. */
1087
1088 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1089 len0 -= 2;
1090
1091 /* Remove trailing "B" suffixes. */
1092 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1093
1094 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1095 len0 -= 1;
1096
1097 /* Make decoded big enough for possible expansion by operator name. */
1098
1099 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1100 decoded = decoding_buffer;
1101
1102 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1103
1104 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1105 {
1106 i = len0 - 2;
1107 while ((i >= 0 && isdigit (encoded[i]))
1108 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1109 i -= 1;
1110 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1111 len0 = i - 1;
1112 else if (encoded[i] == '$')
1113 len0 = i;
1114 }
1115
1116 /* The first few characters that are not alphabetic are not part
1117 of any encoding we use, so we can copy them over verbatim. */
1118
1119 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1120 decoded[j] = encoded[i];
1121
1122 at_start_name = 1;
1123 while (i < len0)
1124 {
1125 /* Is this a symbol function? */
1126 if (at_start_name && encoded[i] == 'O')
1127 {
1128 int k;
1129
1130 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1131 {
1132 int op_len = strlen (ada_opname_table[k].encoded);
1133 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1134 op_len - 1) == 0)
1135 && !isalnum (encoded[i + op_len]))
1136 {
1137 strcpy (decoded + j, ada_opname_table[k].decoded);
1138 at_start_name = 0;
1139 i += op_len;
1140 j += strlen (ada_opname_table[k].decoded);
1141 break;
1142 }
1143 }
1144 if (ada_opname_table[k].encoded != NULL)
1145 continue;
1146 }
1147 at_start_name = 0;
1148
1149 /* Replace "TK__" with "__", which will eventually be translated
1150 into "." (just below). */
1151
1152 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1153 i += 2;
1154
1155 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1156 be translated into "." (just below). These are internal names
1157 generated for anonymous blocks inside which our symbol is nested. */
1158
1159 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1160 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1161 && isdigit (encoded [i+4]))
1162 {
1163 int k = i + 5;
1164
1165 while (k < len0 && isdigit (encoded[k]))
1166 k++; /* Skip any extra digit. */
1167
1168 /* Double-check that the "__B_{DIGITS}+" sequence we found
1169 is indeed followed by "__". */
1170 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1171 i = k;
1172 }
1173
1174 /* Remove _E{DIGITS}+[sb] */
1175
1176 /* Just as for protected object subprograms, there are 2 categories
1177 of subprograms created by the compiler for each entry. The first
1178 one implements the actual entry code, and has a suffix following
1179 the convention above; the second one implements the barrier and
1180 uses the same convention as above, except that the 'E' is replaced
1181 by a 'B'.
1182
1183 Just as above, we do not decode the name of barrier functions
1184 to give the user a clue that the code he is debugging has been
1185 internally generated. */
1186
1187 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1188 && isdigit (encoded[i+2]))
1189 {
1190 int k = i + 3;
1191
1192 while (k < len0 && isdigit (encoded[k]))
1193 k++;
1194
1195 if (k < len0
1196 && (encoded[k] == 'b' || encoded[k] == 's'))
1197 {
1198 k++;
1199 /* Just as an extra precaution, make sure that if this
1200 suffix is followed by anything else, it is a '_'.
1201 Otherwise, we matched this sequence by accident. */
1202 if (k == len0
1203 || (k < len0 && encoded[k] == '_'))
1204 i = k;
1205 }
1206 }
1207
1208 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1209 the GNAT front-end in protected object subprograms. */
1210
1211 if (i < len0 + 3
1212 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1213 {
1214 /* Backtrack a bit up until we reach either the begining of
1215 the encoded name, or "__". Make sure that we only find
1216 digits or lowercase characters. */
1217 const char *ptr = encoded + i - 1;
1218
1219 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1220 ptr--;
1221 if (ptr < encoded
1222 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1223 i++;
1224 }
1225
1226 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1227 {
1228 /* This is a X[bn]* sequence not separated from the previous
1229 part of the name with a non-alpha-numeric character (in other
1230 words, immediately following an alpha-numeric character), then
1231 verify that it is placed at the end of the encoded name. If
1232 not, then the encoding is not valid and we should abort the
1233 decoding. Otherwise, just skip it, it is used in body-nested
1234 package names. */
1235 do
1236 i += 1;
1237 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1238 if (i < len0)
1239 goto Suppress;
1240 }
1241 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1242 {
1243 /* Replace '__' by '.'. */
1244 decoded[j] = '.';
1245 at_start_name = 1;
1246 i += 2;
1247 j += 1;
1248 }
1249 else
1250 {
1251 /* It's a character part of the decoded name, so just copy it
1252 over. */
1253 decoded[j] = encoded[i];
1254 i += 1;
1255 j += 1;
1256 }
1257 }
1258 decoded[j] = '\000';
1259
1260 /* Decoded names should never contain any uppercase character.
1261 Double-check this, and abort the decoding if we find one. */
1262
1263 for (i = 0; decoded[i] != '\0'; i += 1)
1264 if (isupper (decoded[i]) || decoded[i] == ' ')
1265 goto Suppress;
1266
1267 if (strcmp (decoded, encoded) == 0)
1268 return encoded;
1269 else
1270 return decoded;
1271
1272 Suppress:
1273 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1274 decoded = decoding_buffer;
1275 if (encoded[0] == '<')
1276 strcpy (decoded, encoded);
1277 else
1278 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1279 return decoded;
1280
1281 }
1282
1283 /* Table for keeping permanent unique copies of decoded names. Once
1284 allocated, names in this table are never released. While this is a
1285 storage leak, it should not be significant unless there are massive
1286 changes in the set of decoded names in successive versions of a
1287 symbol table loaded during a single session. */
1288 static struct htab *decoded_names_store;
1289
1290 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1291 in the language-specific part of GSYMBOL, if it has not been
1292 previously computed. Tries to save the decoded name in the same
1293 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1294 in any case, the decoded symbol has a lifetime at least that of
1295 GSYMBOL).
1296 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1297 const, but nevertheless modified to a semantically equivalent form
1298 when a decoded name is cached in it. */
1299
1300 char *
1301 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1302 {
1303 char **resultp =
1304 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1305
1306 if (*resultp == NULL)
1307 {
1308 const char *decoded = ada_decode (gsymbol->name);
1309
1310 if (gsymbol->obj_section != NULL)
1311 {
1312 struct objfile *objf = gsymbol->obj_section->objfile;
1313
1314 *resultp = obsavestring (decoded, strlen (decoded),
1315 &objf->objfile_obstack);
1316 }
1317 /* Sometimes, we can't find a corresponding objfile, in which
1318 case, we put the result on the heap. Since we only decode
1319 when needed, we hope this usually does not cause a
1320 significant memory leak (FIXME). */
1321 if (*resultp == NULL)
1322 {
1323 char **slot = (char **) htab_find_slot (decoded_names_store,
1324 decoded, INSERT);
1325
1326 if (*slot == NULL)
1327 *slot = xstrdup (decoded);
1328 *resultp = *slot;
1329 }
1330 }
1331
1332 return *resultp;
1333 }
1334
1335 static char *
1336 ada_la_decode (const char *encoded, int options)
1337 {
1338 return xstrdup (ada_decode (encoded));
1339 }
1340
1341 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1342 suffixes that encode debugging information or leading _ada_ on
1343 SYM_NAME (see is_name_suffix commentary for the debugging
1344 information that is ignored). If WILD, then NAME need only match a
1345 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1346 either argument is NULL. */
1347
1348 static int
1349 match_name (const char *sym_name, const char *name, int wild)
1350 {
1351 if (sym_name == NULL || name == NULL)
1352 return 0;
1353 else if (wild)
1354 return wild_match (sym_name, name) == 0;
1355 else
1356 {
1357 int len_name = strlen (name);
1358
1359 return (strncmp (sym_name, name, len_name) == 0
1360 && is_name_suffix (sym_name + len_name))
1361 || (strncmp (sym_name, "_ada_", 5) == 0
1362 && strncmp (sym_name + 5, name, len_name) == 0
1363 && is_name_suffix (sym_name + len_name + 5));
1364 }
1365 }
1366 \f
1367
1368 /* Arrays */
1369
1370 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1371 generated by the GNAT compiler to describe the index type used
1372 for each dimension of an array, check whether it follows the latest
1373 known encoding. If not, fix it up to conform to the latest encoding.
1374 Otherwise, do nothing. This function also does nothing if
1375 INDEX_DESC_TYPE is NULL.
1376
1377 The GNAT encoding used to describle the array index type evolved a bit.
1378 Initially, the information would be provided through the name of each
1379 field of the structure type only, while the type of these fields was
1380 described as unspecified and irrelevant. The debugger was then expected
1381 to perform a global type lookup using the name of that field in order
1382 to get access to the full index type description. Because these global
1383 lookups can be very expensive, the encoding was later enhanced to make
1384 the global lookup unnecessary by defining the field type as being
1385 the full index type description.
1386
1387 The purpose of this routine is to allow us to support older versions
1388 of the compiler by detecting the use of the older encoding, and by
1389 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1390 we essentially replace each field's meaningless type by the associated
1391 index subtype). */
1392
1393 void
1394 ada_fixup_array_indexes_type (struct type *index_desc_type)
1395 {
1396 int i;
1397
1398 if (index_desc_type == NULL)
1399 return;
1400 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1401
1402 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1403 to check one field only, no need to check them all). If not, return
1404 now.
1405
1406 If our INDEX_DESC_TYPE was generated using the older encoding,
1407 the field type should be a meaningless integer type whose name
1408 is not equal to the field name. */
1409 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1410 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1411 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1412 return;
1413
1414 /* Fixup each field of INDEX_DESC_TYPE. */
1415 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1416 {
1417 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1418 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1419
1420 if (raw_type)
1421 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1422 }
1423 }
1424
1425 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1426
1427 static char *bound_name[] = {
1428 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1429 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1430 };
1431
1432 /* Maximum number of array dimensions we are prepared to handle. */
1433
1434 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1435
1436
1437 /* The desc_* routines return primitive portions of array descriptors
1438 (fat pointers). */
1439
1440 /* The descriptor or array type, if any, indicated by TYPE; removes
1441 level of indirection, if needed. */
1442
1443 static struct type *
1444 desc_base_type (struct type *type)
1445 {
1446 if (type == NULL)
1447 return NULL;
1448 type = ada_check_typedef (type);
1449 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1450 type = ada_typedef_target_type (type);
1451
1452 if (type != NULL
1453 && (TYPE_CODE (type) == TYPE_CODE_PTR
1454 || TYPE_CODE (type) == TYPE_CODE_REF))
1455 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1456 else
1457 return type;
1458 }
1459
1460 /* True iff TYPE indicates a "thin" array pointer type. */
1461
1462 static int
1463 is_thin_pntr (struct type *type)
1464 {
1465 return
1466 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1467 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1468 }
1469
1470 /* The descriptor type for thin pointer type TYPE. */
1471
1472 static struct type *
1473 thin_descriptor_type (struct type *type)
1474 {
1475 struct type *base_type = desc_base_type (type);
1476
1477 if (base_type == NULL)
1478 return NULL;
1479 if (is_suffix (ada_type_name (base_type), "___XVE"))
1480 return base_type;
1481 else
1482 {
1483 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1484
1485 if (alt_type == NULL)
1486 return base_type;
1487 else
1488 return alt_type;
1489 }
1490 }
1491
1492 /* A pointer to the array data for thin-pointer value VAL. */
1493
1494 static struct value *
1495 thin_data_pntr (struct value *val)
1496 {
1497 struct type *type = ada_check_typedef (value_type (val));
1498 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1499
1500 data_type = lookup_pointer_type (data_type);
1501
1502 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1503 return value_cast (data_type, value_copy (val));
1504 else
1505 return value_from_longest (data_type, value_address (val));
1506 }
1507
1508 /* True iff TYPE indicates a "thick" array pointer type. */
1509
1510 static int
1511 is_thick_pntr (struct type *type)
1512 {
1513 type = desc_base_type (type);
1514 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1515 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1516 }
1517
1518 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1519 pointer to one, the type of its bounds data; otherwise, NULL. */
1520
1521 static struct type *
1522 desc_bounds_type (struct type *type)
1523 {
1524 struct type *r;
1525
1526 type = desc_base_type (type);
1527
1528 if (type == NULL)
1529 return NULL;
1530 else if (is_thin_pntr (type))
1531 {
1532 type = thin_descriptor_type (type);
1533 if (type == NULL)
1534 return NULL;
1535 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1536 if (r != NULL)
1537 return ada_check_typedef (r);
1538 }
1539 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1540 {
1541 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1542 if (r != NULL)
1543 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1544 }
1545 return NULL;
1546 }
1547
1548 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1549 one, a pointer to its bounds data. Otherwise NULL. */
1550
1551 static struct value *
1552 desc_bounds (struct value *arr)
1553 {
1554 struct type *type = ada_check_typedef (value_type (arr));
1555
1556 if (is_thin_pntr (type))
1557 {
1558 struct type *bounds_type =
1559 desc_bounds_type (thin_descriptor_type (type));
1560 LONGEST addr;
1561
1562 if (bounds_type == NULL)
1563 error (_("Bad GNAT array descriptor"));
1564
1565 /* NOTE: The following calculation is not really kosher, but
1566 since desc_type is an XVE-encoded type (and shouldn't be),
1567 the correct calculation is a real pain. FIXME (and fix GCC). */
1568 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1569 addr = value_as_long (arr);
1570 else
1571 addr = value_address (arr);
1572
1573 return
1574 value_from_longest (lookup_pointer_type (bounds_type),
1575 addr - TYPE_LENGTH (bounds_type));
1576 }
1577
1578 else if (is_thick_pntr (type))
1579 {
1580 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1581 _("Bad GNAT array descriptor"));
1582 struct type *p_bounds_type = value_type (p_bounds);
1583
1584 if (p_bounds_type
1585 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1586 {
1587 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1588
1589 if (TYPE_STUB (target_type))
1590 p_bounds = value_cast (lookup_pointer_type
1591 (ada_check_typedef (target_type)),
1592 p_bounds);
1593 }
1594 else
1595 error (_("Bad GNAT array descriptor"));
1596
1597 return p_bounds;
1598 }
1599 else
1600 return NULL;
1601 }
1602
1603 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1604 position of the field containing the address of the bounds data. */
1605
1606 static int
1607 fat_pntr_bounds_bitpos (struct type *type)
1608 {
1609 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1610 }
1611
1612 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1613 size of the field containing the address of the bounds data. */
1614
1615 static int
1616 fat_pntr_bounds_bitsize (struct type *type)
1617 {
1618 type = desc_base_type (type);
1619
1620 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1621 return TYPE_FIELD_BITSIZE (type, 1);
1622 else
1623 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1624 }
1625
1626 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1627 pointer to one, the type of its array data (a array-with-no-bounds type);
1628 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1629 data. */
1630
1631 static struct type *
1632 desc_data_target_type (struct type *type)
1633 {
1634 type = desc_base_type (type);
1635
1636 /* NOTE: The following is bogus; see comment in desc_bounds. */
1637 if (is_thin_pntr (type))
1638 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1639 else if (is_thick_pntr (type))
1640 {
1641 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1642
1643 if (data_type
1644 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1645 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1646 }
1647
1648 return NULL;
1649 }
1650
1651 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1652 its array data. */
1653
1654 static struct value *
1655 desc_data (struct value *arr)
1656 {
1657 struct type *type = value_type (arr);
1658
1659 if (is_thin_pntr (type))
1660 return thin_data_pntr (arr);
1661 else if (is_thick_pntr (type))
1662 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1663 _("Bad GNAT array descriptor"));
1664 else
1665 return NULL;
1666 }
1667
1668
1669 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1670 position of the field containing the address of the data. */
1671
1672 static int
1673 fat_pntr_data_bitpos (struct type *type)
1674 {
1675 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1676 }
1677
1678 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1679 size of the field containing the address of the data. */
1680
1681 static int
1682 fat_pntr_data_bitsize (struct type *type)
1683 {
1684 type = desc_base_type (type);
1685
1686 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1687 return TYPE_FIELD_BITSIZE (type, 0);
1688 else
1689 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1690 }
1691
1692 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1693 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1694 bound, if WHICH is 1. The first bound is I=1. */
1695
1696 static struct value *
1697 desc_one_bound (struct value *bounds, int i, int which)
1698 {
1699 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1700 _("Bad GNAT array descriptor bounds"));
1701 }
1702
1703 /* If BOUNDS is an array-bounds structure type, return the bit position
1704 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1705 bound, if WHICH is 1. The first bound is I=1. */
1706
1707 static int
1708 desc_bound_bitpos (struct type *type, int i, int which)
1709 {
1710 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1711 }
1712
1713 /* If BOUNDS is an array-bounds structure type, return the bit field size
1714 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1715 bound, if WHICH is 1. The first bound is I=1. */
1716
1717 static int
1718 desc_bound_bitsize (struct type *type, int i, int which)
1719 {
1720 type = desc_base_type (type);
1721
1722 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1723 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1724 else
1725 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1726 }
1727
1728 /* If TYPE is the type of an array-bounds structure, the type of its
1729 Ith bound (numbering from 1). Otherwise, NULL. */
1730
1731 static struct type *
1732 desc_index_type (struct type *type, int i)
1733 {
1734 type = desc_base_type (type);
1735
1736 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1737 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1738 else
1739 return NULL;
1740 }
1741
1742 /* The number of index positions in the array-bounds type TYPE.
1743 Return 0 if TYPE is NULL. */
1744
1745 static int
1746 desc_arity (struct type *type)
1747 {
1748 type = desc_base_type (type);
1749
1750 if (type != NULL)
1751 return TYPE_NFIELDS (type) / 2;
1752 return 0;
1753 }
1754
1755 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1756 an array descriptor type (representing an unconstrained array
1757 type). */
1758
1759 static int
1760 ada_is_direct_array_type (struct type *type)
1761 {
1762 if (type == NULL)
1763 return 0;
1764 type = ada_check_typedef (type);
1765 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1766 || ada_is_array_descriptor_type (type));
1767 }
1768
1769 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1770 * to one. */
1771
1772 static int
1773 ada_is_array_type (struct type *type)
1774 {
1775 while (type != NULL
1776 && (TYPE_CODE (type) == TYPE_CODE_PTR
1777 || TYPE_CODE (type) == TYPE_CODE_REF))
1778 type = TYPE_TARGET_TYPE (type);
1779 return ada_is_direct_array_type (type);
1780 }
1781
1782 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1783
1784 int
1785 ada_is_simple_array_type (struct type *type)
1786 {
1787 if (type == NULL)
1788 return 0;
1789 type = ada_check_typedef (type);
1790 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1791 || (TYPE_CODE (type) == TYPE_CODE_PTR
1792 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1793 == TYPE_CODE_ARRAY));
1794 }
1795
1796 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1797
1798 int
1799 ada_is_array_descriptor_type (struct type *type)
1800 {
1801 struct type *data_type = desc_data_target_type (type);
1802
1803 if (type == NULL)
1804 return 0;
1805 type = ada_check_typedef (type);
1806 return (data_type != NULL
1807 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1808 && desc_arity (desc_bounds_type (type)) > 0);
1809 }
1810
1811 /* Non-zero iff type is a partially mal-formed GNAT array
1812 descriptor. FIXME: This is to compensate for some problems with
1813 debugging output from GNAT. Re-examine periodically to see if it
1814 is still needed. */
1815
1816 int
1817 ada_is_bogus_array_descriptor (struct type *type)
1818 {
1819 return
1820 type != NULL
1821 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1822 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1823 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1824 && !ada_is_array_descriptor_type (type);
1825 }
1826
1827
1828 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1829 (fat pointer) returns the type of the array data described---specifically,
1830 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1831 in from the descriptor; otherwise, they are left unspecified. If
1832 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1833 returns NULL. The result is simply the type of ARR if ARR is not
1834 a descriptor. */
1835 struct type *
1836 ada_type_of_array (struct value *arr, int bounds)
1837 {
1838 if (ada_is_constrained_packed_array_type (value_type (arr)))
1839 return decode_constrained_packed_array_type (value_type (arr));
1840
1841 if (!ada_is_array_descriptor_type (value_type (arr)))
1842 return value_type (arr);
1843
1844 if (!bounds)
1845 {
1846 struct type *array_type =
1847 ada_check_typedef (desc_data_target_type (value_type (arr)));
1848
1849 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1850 TYPE_FIELD_BITSIZE (array_type, 0) =
1851 decode_packed_array_bitsize (value_type (arr));
1852
1853 return array_type;
1854 }
1855 else
1856 {
1857 struct type *elt_type;
1858 int arity;
1859 struct value *descriptor;
1860
1861 elt_type = ada_array_element_type (value_type (arr), -1);
1862 arity = ada_array_arity (value_type (arr));
1863
1864 if (elt_type == NULL || arity == 0)
1865 return ada_check_typedef (value_type (arr));
1866
1867 descriptor = desc_bounds (arr);
1868 if (value_as_long (descriptor) == 0)
1869 return NULL;
1870 while (arity > 0)
1871 {
1872 struct type *range_type = alloc_type_copy (value_type (arr));
1873 struct type *array_type = alloc_type_copy (value_type (arr));
1874 struct value *low = desc_one_bound (descriptor, arity, 0);
1875 struct value *high = desc_one_bound (descriptor, arity, 1);
1876
1877 arity -= 1;
1878 create_range_type (range_type, value_type (low),
1879 longest_to_int (value_as_long (low)),
1880 longest_to_int (value_as_long (high)));
1881 elt_type = create_array_type (array_type, elt_type, range_type);
1882
1883 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1884 {
1885 /* We need to store the element packed bitsize, as well as
1886 recompute the array size, because it was previously
1887 computed based on the unpacked element size. */
1888 LONGEST lo = value_as_long (low);
1889 LONGEST hi = value_as_long (high);
1890
1891 TYPE_FIELD_BITSIZE (elt_type, 0) =
1892 decode_packed_array_bitsize (value_type (arr));
1893 /* If the array has no element, then the size is already
1894 zero, and does not need to be recomputed. */
1895 if (lo < hi)
1896 {
1897 int array_bitsize =
1898 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1899
1900 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1901 }
1902 }
1903 }
1904
1905 return lookup_pointer_type (elt_type);
1906 }
1907 }
1908
1909 /* If ARR does not represent an array, returns ARR unchanged.
1910 Otherwise, returns either a standard GDB array with bounds set
1911 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1912 GDB array. Returns NULL if ARR is a null fat pointer. */
1913
1914 struct value *
1915 ada_coerce_to_simple_array_ptr (struct value *arr)
1916 {
1917 if (ada_is_array_descriptor_type (value_type (arr)))
1918 {
1919 struct type *arrType = ada_type_of_array (arr, 1);
1920
1921 if (arrType == NULL)
1922 return NULL;
1923 return value_cast (arrType, value_copy (desc_data (arr)));
1924 }
1925 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1926 return decode_constrained_packed_array (arr);
1927 else
1928 return arr;
1929 }
1930
1931 /* If ARR does not represent an array, returns ARR unchanged.
1932 Otherwise, returns a standard GDB array describing ARR (which may
1933 be ARR itself if it already is in the proper form). */
1934
1935 struct value *
1936 ada_coerce_to_simple_array (struct value *arr)
1937 {
1938 if (ada_is_array_descriptor_type (value_type (arr)))
1939 {
1940 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1941
1942 if (arrVal == NULL)
1943 error (_("Bounds unavailable for null array pointer."));
1944 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1945 return value_ind (arrVal);
1946 }
1947 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array (arr);
1949 else
1950 return arr;
1951 }
1952
1953 /* If TYPE represents a GNAT array type, return it translated to an
1954 ordinary GDB array type (possibly with BITSIZE fields indicating
1955 packing). For other types, is the identity. */
1956
1957 struct type *
1958 ada_coerce_to_simple_array_type (struct type *type)
1959 {
1960 if (ada_is_constrained_packed_array_type (type))
1961 return decode_constrained_packed_array_type (type);
1962
1963 if (ada_is_array_descriptor_type (type))
1964 return ada_check_typedef (desc_data_target_type (type));
1965
1966 return type;
1967 }
1968
1969 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1970
1971 static int
1972 ada_is_packed_array_type (struct type *type)
1973 {
1974 if (type == NULL)
1975 return 0;
1976 type = desc_base_type (type);
1977 type = ada_check_typedef (type);
1978 return
1979 ada_type_name (type) != NULL
1980 && strstr (ada_type_name (type), "___XP") != NULL;
1981 }
1982
1983 /* Non-zero iff TYPE represents a standard GNAT constrained
1984 packed-array type. */
1985
1986 int
1987 ada_is_constrained_packed_array_type (struct type *type)
1988 {
1989 return ada_is_packed_array_type (type)
1990 && !ada_is_array_descriptor_type (type);
1991 }
1992
1993 /* Non-zero iff TYPE represents an array descriptor for a
1994 unconstrained packed-array type. */
1995
1996 static int
1997 ada_is_unconstrained_packed_array_type (struct type *type)
1998 {
1999 return ada_is_packed_array_type (type)
2000 && ada_is_array_descriptor_type (type);
2001 }
2002
2003 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2004 return the size of its elements in bits. */
2005
2006 static long
2007 decode_packed_array_bitsize (struct type *type)
2008 {
2009 const char *raw_name;
2010 const char *tail;
2011 long bits;
2012
2013 /* Access to arrays implemented as fat pointers are encoded as a typedef
2014 of the fat pointer type. We need the name of the fat pointer type
2015 to do the decoding, so strip the typedef layer. */
2016 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2017 type = ada_typedef_target_type (type);
2018
2019 raw_name = ada_type_name (ada_check_typedef (type));
2020 if (!raw_name)
2021 raw_name = ada_type_name (desc_base_type (type));
2022
2023 if (!raw_name)
2024 return 0;
2025
2026 tail = strstr (raw_name, "___XP");
2027 gdb_assert (tail != NULL);
2028
2029 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2030 {
2031 lim_warning
2032 (_("could not understand bit size information on packed array"));
2033 return 0;
2034 }
2035
2036 return bits;
2037 }
2038
2039 /* Given that TYPE is a standard GDB array type with all bounds filled
2040 in, and that the element size of its ultimate scalar constituents
2041 (that is, either its elements, or, if it is an array of arrays, its
2042 elements' elements, etc.) is *ELT_BITS, return an identical type,
2043 but with the bit sizes of its elements (and those of any
2044 constituent arrays) recorded in the BITSIZE components of its
2045 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2046 in bits. */
2047
2048 static struct type *
2049 constrained_packed_array_type (struct type *type, long *elt_bits)
2050 {
2051 struct type *new_elt_type;
2052 struct type *new_type;
2053 struct type *index_type_desc;
2054 struct type *index_type;
2055 LONGEST low_bound, high_bound;
2056
2057 type = ada_check_typedef (type);
2058 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2059 return type;
2060
2061 index_type_desc = ada_find_parallel_type (type, "___XA");
2062 if (index_type_desc)
2063 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2064 NULL);
2065 else
2066 index_type = TYPE_INDEX_TYPE (type);
2067
2068 new_type = alloc_type_copy (type);
2069 new_elt_type =
2070 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2071 elt_bits);
2072 create_array_type (new_type, new_elt_type, index_type);
2073 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2074 TYPE_NAME (new_type) = ada_type_name (type);
2075
2076 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2077 low_bound = high_bound = 0;
2078 if (high_bound < low_bound)
2079 *elt_bits = TYPE_LENGTH (new_type) = 0;
2080 else
2081 {
2082 *elt_bits *= (high_bound - low_bound + 1);
2083 TYPE_LENGTH (new_type) =
2084 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2085 }
2086
2087 TYPE_FIXED_INSTANCE (new_type) = 1;
2088 return new_type;
2089 }
2090
2091 /* The array type encoded by TYPE, where
2092 ada_is_constrained_packed_array_type (TYPE). */
2093
2094 static struct type *
2095 decode_constrained_packed_array_type (struct type *type)
2096 {
2097 const char *raw_name = ada_type_name (ada_check_typedef (type));
2098 char *name;
2099 const char *tail;
2100 struct type *shadow_type;
2101 long bits;
2102
2103 if (!raw_name)
2104 raw_name = ada_type_name (desc_base_type (type));
2105
2106 if (!raw_name)
2107 return NULL;
2108
2109 name = (char *) alloca (strlen (raw_name) + 1);
2110 tail = strstr (raw_name, "___XP");
2111 type = desc_base_type (type);
2112
2113 memcpy (name, raw_name, tail - raw_name);
2114 name[tail - raw_name] = '\000';
2115
2116 shadow_type = ada_find_parallel_type_with_name (type, name);
2117
2118 if (shadow_type == NULL)
2119 {
2120 lim_warning (_("could not find bounds information on packed array"));
2121 return NULL;
2122 }
2123 CHECK_TYPEDEF (shadow_type);
2124
2125 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2126 {
2127 lim_warning (_("could not understand bounds "
2128 "information on packed array"));
2129 return NULL;
2130 }
2131
2132 bits = decode_packed_array_bitsize (type);
2133 return constrained_packed_array_type (shadow_type, &bits);
2134 }
2135
2136 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2137 array, returns a simple array that denotes that array. Its type is a
2138 standard GDB array type except that the BITSIZEs of the array
2139 target types are set to the number of bits in each element, and the
2140 type length is set appropriately. */
2141
2142 static struct value *
2143 decode_constrained_packed_array (struct value *arr)
2144 {
2145 struct type *type;
2146
2147 arr = ada_coerce_ref (arr);
2148
2149 /* If our value is a pointer, then dererence it. Make sure that
2150 this operation does not cause the target type to be fixed, as
2151 this would indirectly cause this array to be decoded. The rest
2152 of the routine assumes that the array hasn't been decoded yet,
2153 so we use the basic "value_ind" routine to perform the dereferencing,
2154 as opposed to using "ada_value_ind". */
2155 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2156 arr = value_ind (arr);
2157
2158 type = decode_constrained_packed_array_type (value_type (arr));
2159 if (type == NULL)
2160 {
2161 error (_("can't unpack array"));
2162 return NULL;
2163 }
2164
2165 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2166 && ada_is_modular_type (value_type (arr)))
2167 {
2168 /* This is a (right-justified) modular type representing a packed
2169 array with no wrapper. In order to interpret the value through
2170 the (left-justified) packed array type we just built, we must
2171 first left-justify it. */
2172 int bit_size, bit_pos;
2173 ULONGEST mod;
2174
2175 mod = ada_modulus (value_type (arr)) - 1;
2176 bit_size = 0;
2177 while (mod > 0)
2178 {
2179 bit_size += 1;
2180 mod >>= 1;
2181 }
2182 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2183 arr = ada_value_primitive_packed_val (arr, NULL,
2184 bit_pos / HOST_CHAR_BIT,
2185 bit_pos % HOST_CHAR_BIT,
2186 bit_size,
2187 type);
2188 }
2189
2190 return coerce_unspec_val_to_type (arr, type);
2191 }
2192
2193
2194 /* The value of the element of packed array ARR at the ARITY indices
2195 given in IND. ARR must be a simple array. */
2196
2197 static struct value *
2198 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2199 {
2200 int i;
2201 int bits, elt_off, bit_off;
2202 long elt_total_bit_offset;
2203 struct type *elt_type;
2204 struct value *v;
2205
2206 bits = 0;
2207 elt_total_bit_offset = 0;
2208 elt_type = ada_check_typedef (value_type (arr));
2209 for (i = 0; i < arity; i += 1)
2210 {
2211 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2212 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2213 error
2214 (_("attempt to do packed indexing of "
2215 "something other than a packed array"));
2216 else
2217 {
2218 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2219 LONGEST lowerbound, upperbound;
2220 LONGEST idx;
2221
2222 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2223 {
2224 lim_warning (_("don't know bounds of array"));
2225 lowerbound = upperbound = 0;
2226 }
2227
2228 idx = pos_atr (ind[i]);
2229 if (idx < lowerbound || idx > upperbound)
2230 lim_warning (_("packed array index %ld out of bounds"),
2231 (long) idx);
2232 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2233 elt_total_bit_offset += (idx - lowerbound) * bits;
2234 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2235 }
2236 }
2237 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2238 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2239
2240 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2241 bits, elt_type);
2242 return v;
2243 }
2244
2245 /* Non-zero iff TYPE includes negative integer values. */
2246
2247 static int
2248 has_negatives (struct type *type)
2249 {
2250 switch (TYPE_CODE (type))
2251 {
2252 default:
2253 return 0;
2254 case TYPE_CODE_INT:
2255 return !TYPE_UNSIGNED (type);
2256 case TYPE_CODE_RANGE:
2257 return TYPE_LOW_BOUND (type) < 0;
2258 }
2259 }
2260
2261
2262 /* Create a new value of type TYPE from the contents of OBJ starting
2263 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2264 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2265 assigning through the result will set the field fetched from.
2266 VALADDR is ignored unless OBJ is NULL, in which case,
2267 VALADDR+OFFSET must address the start of storage containing the
2268 packed value. The value returned in this case is never an lval.
2269 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2270
2271 struct value *
2272 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2273 long offset, int bit_offset, int bit_size,
2274 struct type *type)
2275 {
2276 struct value *v;
2277 int src, /* Index into the source area */
2278 targ, /* Index into the target area */
2279 srcBitsLeft, /* Number of source bits left to move */
2280 nsrc, ntarg, /* Number of source and target bytes */
2281 unusedLS, /* Number of bits in next significant
2282 byte of source that are unused */
2283 accumSize; /* Number of meaningful bits in accum */
2284 unsigned char *bytes; /* First byte containing data to unpack */
2285 unsigned char *unpacked;
2286 unsigned long accum; /* Staging area for bits being transferred */
2287 unsigned char sign;
2288 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2289 /* Transmit bytes from least to most significant; delta is the direction
2290 the indices move. */
2291 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2292
2293 type = ada_check_typedef (type);
2294
2295 if (obj == NULL)
2296 {
2297 v = allocate_value (type);
2298 bytes = (unsigned char *) (valaddr + offset);
2299 }
2300 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2301 {
2302 v = value_at (type, value_address (obj));
2303 bytes = (unsigned char *) alloca (len);
2304 read_memory (value_address (v) + offset, bytes, len);
2305 }
2306 else
2307 {
2308 v = allocate_value (type);
2309 bytes = (unsigned char *) value_contents (obj) + offset;
2310 }
2311
2312 if (obj != NULL)
2313 {
2314 long new_offset = offset;
2315
2316 set_value_component_location (v, obj);
2317 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2318 set_value_bitsize (v, bit_size);
2319 if (value_bitpos (v) >= HOST_CHAR_BIT)
2320 {
2321 ++new_offset;
2322 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2323 }
2324 set_value_offset (v, new_offset);
2325
2326 /* Also set the parent value. This is needed when trying to
2327 assign a new value (in inferior memory). */
2328 set_value_parent (v, obj);
2329 value_incref (obj);
2330 }
2331 else
2332 set_value_bitsize (v, bit_size);
2333 unpacked = (unsigned char *) value_contents (v);
2334
2335 srcBitsLeft = bit_size;
2336 nsrc = len;
2337 ntarg = TYPE_LENGTH (type);
2338 sign = 0;
2339 if (bit_size == 0)
2340 {
2341 memset (unpacked, 0, TYPE_LENGTH (type));
2342 return v;
2343 }
2344 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2345 {
2346 src = len - 1;
2347 if (has_negatives (type)
2348 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2349 sign = ~0;
2350
2351 unusedLS =
2352 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2353 % HOST_CHAR_BIT;
2354
2355 switch (TYPE_CODE (type))
2356 {
2357 case TYPE_CODE_ARRAY:
2358 case TYPE_CODE_UNION:
2359 case TYPE_CODE_STRUCT:
2360 /* Non-scalar values must be aligned at a byte boundary... */
2361 accumSize =
2362 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2363 /* ... And are placed at the beginning (most-significant) bytes
2364 of the target. */
2365 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2366 ntarg = targ + 1;
2367 break;
2368 default:
2369 accumSize = 0;
2370 targ = TYPE_LENGTH (type) - 1;
2371 break;
2372 }
2373 }
2374 else
2375 {
2376 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2377
2378 src = targ = 0;
2379 unusedLS = bit_offset;
2380 accumSize = 0;
2381
2382 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2383 sign = ~0;
2384 }
2385
2386 accum = 0;
2387 while (nsrc > 0)
2388 {
2389 /* Mask for removing bits of the next source byte that are not
2390 part of the value. */
2391 unsigned int unusedMSMask =
2392 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2393 1;
2394 /* Sign-extend bits for this byte. */
2395 unsigned int signMask = sign & ~unusedMSMask;
2396
2397 accum |=
2398 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2399 accumSize += HOST_CHAR_BIT - unusedLS;
2400 if (accumSize >= HOST_CHAR_BIT)
2401 {
2402 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2403 accumSize -= HOST_CHAR_BIT;
2404 accum >>= HOST_CHAR_BIT;
2405 ntarg -= 1;
2406 targ += delta;
2407 }
2408 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2409 unusedLS = 0;
2410 nsrc -= 1;
2411 src += delta;
2412 }
2413 while (ntarg > 0)
2414 {
2415 accum |= sign << accumSize;
2416 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2417 accumSize -= HOST_CHAR_BIT;
2418 accum >>= HOST_CHAR_BIT;
2419 ntarg -= 1;
2420 targ += delta;
2421 }
2422
2423 return v;
2424 }
2425
2426 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2427 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2428 not overlap. */
2429 static void
2430 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2431 int src_offset, int n, int bits_big_endian_p)
2432 {
2433 unsigned int accum, mask;
2434 int accum_bits, chunk_size;
2435
2436 target += targ_offset / HOST_CHAR_BIT;
2437 targ_offset %= HOST_CHAR_BIT;
2438 source += src_offset / HOST_CHAR_BIT;
2439 src_offset %= HOST_CHAR_BIT;
2440 if (bits_big_endian_p)
2441 {
2442 accum = (unsigned char) *source;
2443 source += 1;
2444 accum_bits = HOST_CHAR_BIT - src_offset;
2445
2446 while (n > 0)
2447 {
2448 int unused_right;
2449
2450 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2451 accum_bits += HOST_CHAR_BIT;
2452 source += 1;
2453 chunk_size = HOST_CHAR_BIT - targ_offset;
2454 if (chunk_size > n)
2455 chunk_size = n;
2456 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2457 mask = ((1 << chunk_size) - 1) << unused_right;
2458 *target =
2459 (*target & ~mask)
2460 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2461 n -= chunk_size;
2462 accum_bits -= chunk_size;
2463 target += 1;
2464 targ_offset = 0;
2465 }
2466 }
2467 else
2468 {
2469 accum = (unsigned char) *source >> src_offset;
2470 source += 1;
2471 accum_bits = HOST_CHAR_BIT - src_offset;
2472
2473 while (n > 0)
2474 {
2475 accum = accum + ((unsigned char) *source << accum_bits);
2476 accum_bits += HOST_CHAR_BIT;
2477 source += 1;
2478 chunk_size = HOST_CHAR_BIT - targ_offset;
2479 if (chunk_size > n)
2480 chunk_size = n;
2481 mask = ((1 << chunk_size) - 1) << targ_offset;
2482 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2483 n -= chunk_size;
2484 accum_bits -= chunk_size;
2485 accum >>= chunk_size;
2486 target += 1;
2487 targ_offset = 0;
2488 }
2489 }
2490 }
2491
2492 /* Store the contents of FROMVAL into the location of TOVAL.
2493 Return a new value with the location of TOVAL and contents of
2494 FROMVAL. Handles assignment into packed fields that have
2495 floating-point or non-scalar types. */
2496
2497 static struct value *
2498 ada_value_assign (struct value *toval, struct value *fromval)
2499 {
2500 struct type *type = value_type (toval);
2501 int bits = value_bitsize (toval);
2502
2503 toval = ada_coerce_ref (toval);
2504 fromval = ada_coerce_ref (fromval);
2505
2506 if (ada_is_direct_array_type (value_type (toval)))
2507 toval = ada_coerce_to_simple_array (toval);
2508 if (ada_is_direct_array_type (value_type (fromval)))
2509 fromval = ada_coerce_to_simple_array (fromval);
2510
2511 if (!deprecated_value_modifiable (toval))
2512 error (_("Left operand of assignment is not a modifiable lvalue."));
2513
2514 if (VALUE_LVAL (toval) == lval_memory
2515 && bits > 0
2516 && (TYPE_CODE (type) == TYPE_CODE_FLT
2517 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2518 {
2519 int len = (value_bitpos (toval)
2520 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2521 int from_size;
2522 char *buffer = (char *) alloca (len);
2523 struct value *val;
2524 CORE_ADDR to_addr = value_address (toval);
2525
2526 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2527 fromval = value_cast (type, fromval);
2528
2529 read_memory (to_addr, buffer, len);
2530 from_size = value_bitsize (fromval);
2531 if (from_size == 0)
2532 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2533 if (gdbarch_bits_big_endian (get_type_arch (type)))
2534 move_bits (buffer, value_bitpos (toval),
2535 value_contents (fromval), from_size - bits, bits, 1);
2536 else
2537 move_bits (buffer, value_bitpos (toval),
2538 value_contents (fromval), 0, bits, 0);
2539 write_memory_with_notification (to_addr, buffer, len);
2540
2541 val = value_copy (toval);
2542 memcpy (value_contents_raw (val), value_contents (fromval),
2543 TYPE_LENGTH (type));
2544 deprecated_set_value_type (val, type);
2545
2546 return val;
2547 }
2548
2549 return value_assign (toval, fromval);
2550 }
2551
2552
2553 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2554 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2555 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2556 * COMPONENT, and not the inferior's memory. The current contents
2557 * of COMPONENT are ignored. */
2558 static void
2559 value_assign_to_component (struct value *container, struct value *component,
2560 struct value *val)
2561 {
2562 LONGEST offset_in_container =
2563 (LONGEST) (value_address (component) - value_address (container));
2564 int bit_offset_in_container =
2565 value_bitpos (component) - value_bitpos (container);
2566 int bits;
2567
2568 val = value_cast (value_type (component), val);
2569
2570 if (value_bitsize (component) == 0)
2571 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2572 else
2573 bits = value_bitsize (component);
2574
2575 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2576 move_bits (value_contents_writeable (container) + offset_in_container,
2577 value_bitpos (container) + bit_offset_in_container,
2578 value_contents (val),
2579 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2580 bits, 1);
2581 else
2582 move_bits (value_contents_writeable (container) + offset_in_container,
2583 value_bitpos (container) + bit_offset_in_container,
2584 value_contents (val), 0, bits, 0);
2585 }
2586
2587 /* The value of the element of array ARR at the ARITY indices given in IND.
2588 ARR may be either a simple array, GNAT array descriptor, or pointer
2589 thereto. */
2590
2591 struct value *
2592 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2593 {
2594 int k;
2595 struct value *elt;
2596 struct type *elt_type;
2597
2598 elt = ada_coerce_to_simple_array (arr);
2599
2600 elt_type = ada_check_typedef (value_type (elt));
2601 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2602 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2603 return value_subscript_packed (elt, arity, ind);
2604
2605 for (k = 0; k < arity; k += 1)
2606 {
2607 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2608 error (_("too many subscripts (%d expected)"), k);
2609 elt = value_subscript (elt, pos_atr (ind[k]));
2610 }
2611 return elt;
2612 }
2613
2614 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2615 value of the element of *ARR at the ARITY indices given in
2616 IND. Does not read the entire array into memory. */
2617
2618 static struct value *
2619 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2620 struct value **ind)
2621 {
2622 int k;
2623
2624 for (k = 0; k < arity; k += 1)
2625 {
2626 LONGEST lwb, upb;
2627
2628 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2629 error (_("too many subscripts (%d expected)"), k);
2630 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2631 value_copy (arr));
2632 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2633 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2634 type = TYPE_TARGET_TYPE (type);
2635 }
2636
2637 return value_ind (arr);
2638 }
2639
2640 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2641 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2642 elements starting at index LOW. The lower bound of this array is LOW, as
2643 per Ada rules. */
2644 static struct value *
2645 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2646 int low, int high)
2647 {
2648 struct type *type0 = ada_check_typedef (type);
2649 CORE_ADDR base = value_as_address (array_ptr)
2650 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2651 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2652 struct type *index_type =
2653 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2654 low, high);
2655 struct type *slice_type =
2656 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2657
2658 return value_at_lazy (slice_type, base);
2659 }
2660
2661
2662 static struct value *
2663 ada_value_slice (struct value *array, int low, int high)
2664 {
2665 struct type *type = ada_check_typedef (value_type (array));
2666 struct type *index_type =
2667 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2668 struct type *slice_type =
2669 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2670
2671 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2672 }
2673
2674 /* If type is a record type in the form of a standard GNAT array
2675 descriptor, returns the number of dimensions for type. If arr is a
2676 simple array, returns the number of "array of"s that prefix its
2677 type designation. Otherwise, returns 0. */
2678
2679 int
2680 ada_array_arity (struct type *type)
2681 {
2682 int arity;
2683
2684 if (type == NULL)
2685 return 0;
2686
2687 type = desc_base_type (type);
2688
2689 arity = 0;
2690 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2691 return desc_arity (desc_bounds_type (type));
2692 else
2693 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2694 {
2695 arity += 1;
2696 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2697 }
2698
2699 return arity;
2700 }
2701
2702 /* If TYPE is a record type in the form of a standard GNAT array
2703 descriptor or a simple array type, returns the element type for
2704 TYPE after indexing by NINDICES indices, or by all indices if
2705 NINDICES is -1. Otherwise, returns NULL. */
2706
2707 struct type *
2708 ada_array_element_type (struct type *type, int nindices)
2709 {
2710 type = desc_base_type (type);
2711
2712 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2713 {
2714 int k;
2715 struct type *p_array_type;
2716
2717 p_array_type = desc_data_target_type (type);
2718
2719 k = ada_array_arity (type);
2720 if (k == 0)
2721 return NULL;
2722
2723 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2724 if (nindices >= 0 && k > nindices)
2725 k = nindices;
2726 while (k > 0 && p_array_type != NULL)
2727 {
2728 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2729 k -= 1;
2730 }
2731 return p_array_type;
2732 }
2733 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2734 {
2735 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2736 {
2737 type = TYPE_TARGET_TYPE (type);
2738 nindices -= 1;
2739 }
2740 return type;
2741 }
2742
2743 return NULL;
2744 }
2745
2746 /* The type of nth index in arrays of given type (n numbering from 1).
2747 Does not examine memory. Throws an error if N is invalid or TYPE
2748 is not an array type. NAME is the name of the Ada attribute being
2749 evaluated ('range, 'first, 'last, or 'length); it is used in building
2750 the error message. */
2751
2752 static struct type *
2753 ada_index_type (struct type *type, int n, const char *name)
2754 {
2755 struct type *result_type;
2756
2757 type = desc_base_type (type);
2758
2759 if (n < 0 || n > ada_array_arity (type))
2760 error (_("invalid dimension number to '%s"), name);
2761
2762 if (ada_is_simple_array_type (type))
2763 {
2764 int i;
2765
2766 for (i = 1; i < n; i += 1)
2767 type = TYPE_TARGET_TYPE (type);
2768 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2769 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2770 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2771 perhaps stabsread.c would make more sense. */
2772 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2773 result_type = NULL;
2774 }
2775 else
2776 {
2777 result_type = desc_index_type (desc_bounds_type (type), n);
2778 if (result_type == NULL)
2779 error (_("attempt to take bound of something that is not an array"));
2780 }
2781
2782 return result_type;
2783 }
2784
2785 /* Given that arr is an array type, returns the lower bound of the
2786 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2787 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2788 array-descriptor type. It works for other arrays with bounds supplied
2789 by run-time quantities other than discriminants. */
2790
2791 static LONGEST
2792 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2793 {
2794 struct type *type, *elt_type, *index_type_desc, *index_type;
2795 int i;
2796
2797 gdb_assert (which == 0 || which == 1);
2798
2799 if (ada_is_constrained_packed_array_type (arr_type))
2800 arr_type = decode_constrained_packed_array_type (arr_type);
2801
2802 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2803 return (LONGEST) - which;
2804
2805 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2806 type = TYPE_TARGET_TYPE (arr_type);
2807 else
2808 type = arr_type;
2809
2810 elt_type = type;
2811 for (i = n; i > 1; i--)
2812 elt_type = TYPE_TARGET_TYPE (type);
2813
2814 index_type_desc = ada_find_parallel_type (type, "___XA");
2815 ada_fixup_array_indexes_type (index_type_desc);
2816 if (index_type_desc != NULL)
2817 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2818 NULL);
2819 else
2820 index_type = TYPE_INDEX_TYPE (elt_type);
2821
2822 return
2823 (LONGEST) (which == 0
2824 ? ada_discrete_type_low_bound (index_type)
2825 : ada_discrete_type_high_bound (index_type));
2826 }
2827
2828 /* Given that arr is an array value, returns the lower bound of the
2829 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2830 WHICH is 1. This routine will also work for arrays with bounds
2831 supplied by run-time quantities other than discriminants. */
2832
2833 static LONGEST
2834 ada_array_bound (struct value *arr, int n, int which)
2835 {
2836 struct type *arr_type = value_type (arr);
2837
2838 if (ada_is_constrained_packed_array_type (arr_type))
2839 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2840 else if (ada_is_simple_array_type (arr_type))
2841 return ada_array_bound_from_type (arr_type, n, which);
2842 else
2843 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2844 }
2845
2846 /* Given that arr is an array value, returns the length of the
2847 nth index. This routine will also work for arrays with bounds
2848 supplied by run-time quantities other than discriminants.
2849 Does not work for arrays indexed by enumeration types with representation
2850 clauses at the moment. */
2851
2852 static LONGEST
2853 ada_array_length (struct value *arr, int n)
2854 {
2855 struct type *arr_type = ada_check_typedef (value_type (arr));
2856
2857 if (ada_is_constrained_packed_array_type (arr_type))
2858 return ada_array_length (decode_constrained_packed_array (arr), n);
2859
2860 if (ada_is_simple_array_type (arr_type))
2861 return (ada_array_bound_from_type (arr_type, n, 1)
2862 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2863 else
2864 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2865 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2866 }
2867
2868 /* An empty array whose type is that of ARR_TYPE (an array type),
2869 with bounds LOW to LOW-1. */
2870
2871 static struct value *
2872 empty_array (struct type *arr_type, int low)
2873 {
2874 struct type *arr_type0 = ada_check_typedef (arr_type);
2875 struct type *index_type =
2876 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2877 low, low - 1);
2878 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2879
2880 return allocate_value (create_array_type (NULL, elt_type, index_type));
2881 }
2882 \f
2883
2884 /* Name resolution */
2885
2886 /* The "decoded" name for the user-definable Ada operator corresponding
2887 to OP. */
2888
2889 static const char *
2890 ada_decoded_op_name (enum exp_opcode op)
2891 {
2892 int i;
2893
2894 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2895 {
2896 if (ada_opname_table[i].op == op)
2897 return ada_opname_table[i].decoded;
2898 }
2899 error (_("Could not find operator name for opcode"));
2900 }
2901
2902
2903 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2904 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2905 undefined namespace) and converts operators that are
2906 user-defined into appropriate function calls. If CONTEXT_TYPE is
2907 non-null, it provides a preferred result type [at the moment, only
2908 type void has any effect---causing procedures to be preferred over
2909 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2910 return type is preferred. May change (expand) *EXP. */
2911
2912 static void
2913 resolve (struct expression **expp, int void_context_p)
2914 {
2915 struct type *context_type = NULL;
2916 int pc = 0;
2917
2918 if (void_context_p)
2919 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2920
2921 resolve_subexp (expp, &pc, 1, context_type);
2922 }
2923
2924 /* Resolve the operator of the subexpression beginning at
2925 position *POS of *EXPP. "Resolving" consists of replacing
2926 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2927 with their resolutions, replacing built-in operators with
2928 function calls to user-defined operators, where appropriate, and,
2929 when DEPROCEDURE_P is non-zero, converting function-valued variables
2930 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2931 are as in ada_resolve, above. */
2932
2933 static struct value *
2934 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2935 struct type *context_type)
2936 {
2937 int pc = *pos;
2938 int i;
2939 struct expression *exp; /* Convenience: == *expp. */
2940 enum exp_opcode op = (*expp)->elts[pc].opcode;
2941 struct value **argvec; /* Vector of operand types (alloca'ed). */
2942 int nargs; /* Number of operands. */
2943 int oplen;
2944
2945 argvec = NULL;
2946 nargs = 0;
2947 exp = *expp;
2948
2949 /* Pass one: resolve operands, saving their types and updating *pos,
2950 if needed. */
2951 switch (op)
2952 {
2953 case OP_FUNCALL:
2954 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2955 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2956 *pos += 7;
2957 else
2958 {
2959 *pos += 3;
2960 resolve_subexp (expp, pos, 0, NULL);
2961 }
2962 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2963 break;
2964
2965 case UNOP_ADDR:
2966 *pos += 1;
2967 resolve_subexp (expp, pos, 0, NULL);
2968 break;
2969
2970 case UNOP_QUAL:
2971 *pos += 3;
2972 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2973 break;
2974
2975 case OP_ATR_MODULUS:
2976 case OP_ATR_SIZE:
2977 case OP_ATR_TAG:
2978 case OP_ATR_FIRST:
2979 case OP_ATR_LAST:
2980 case OP_ATR_LENGTH:
2981 case OP_ATR_POS:
2982 case OP_ATR_VAL:
2983 case OP_ATR_MIN:
2984 case OP_ATR_MAX:
2985 case TERNOP_IN_RANGE:
2986 case BINOP_IN_BOUNDS:
2987 case UNOP_IN_RANGE:
2988 case OP_AGGREGATE:
2989 case OP_OTHERS:
2990 case OP_CHOICES:
2991 case OP_POSITIONAL:
2992 case OP_DISCRETE_RANGE:
2993 case OP_NAME:
2994 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2995 *pos += oplen;
2996 break;
2997
2998 case BINOP_ASSIGN:
2999 {
3000 struct value *arg1;
3001
3002 *pos += 1;
3003 arg1 = resolve_subexp (expp, pos, 0, NULL);
3004 if (arg1 == NULL)
3005 resolve_subexp (expp, pos, 1, NULL);
3006 else
3007 resolve_subexp (expp, pos, 1, value_type (arg1));
3008 break;
3009 }
3010
3011 case UNOP_CAST:
3012 *pos += 3;
3013 nargs = 1;
3014 break;
3015
3016 case BINOP_ADD:
3017 case BINOP_SUB:
3018 case BINOP_MUL:
3019 case BINOP_DIV:
3020 case BINOP_REM:
3021 case BINOP_MOD:
3022 case BINOP_EXP:
3023 case BINOP_CONCAT:
3024 case BINOP_LOGICAL_AND:
3025 case BINOP_LOGICAL_OR:
3026 case BINOP_BITWISE_AND:
3027 case BINOP_BITWISE_IOR:
3028 case BINOP_BITWISE_XOR:
3029
3030 case BINOP_EQUAL:
3031 case BINOP_NOTEQUAL:
3032 case BINOP_LESS:
3033 case BINOP_GTR:
3034 case BINOP_LEQ:
3035 case BINOP_GEQ:
3036
3037 case BINOP_REPEAT:
3038 case BINOP_SUBSCRIPT:
3039 case BINOP_COMMA:
3040 *pos += 1;
3041 nargs = 2;
3042 break;
3043
3044 case UNOP_NEG:
3045 case UNOP_PLUS:
3046 case UNOP_LOGICAL_NOT:
3047 case UNOP_ABS:
3048 case UNOP_IND:
3049 *pos += 1;
3050 nargs = 1;
3051 break;
3052
3053 case OP_LONG:
3054 case OP_DOUBLE:
3055 case OP_VAR_VALUE:
3056 *pos += 4;
3057 break;
3058
3059 case OP_TYPE:
3060 case OP_BOOL:
3061 case OP_LAST:
3062 case OP_INTERNALVAR:
3063 *pos += 3;
3064 break;
3065
3066 case UNOP_MEMVAL:
3067 *pos += 3;
3068 nargs = 1;
3069 break;
3070
3071 case OP_REGISTER:
3072 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3073 break;
3074
3075 case STRUCTOP_STRUCT:
3076 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3077 nargs = 1;
3078 break;
3079
3080 case TERNOP_SLICE:
3081 *pos += 1;
3082 nargs = 3;
3083 break;
3084
3085 case OP_STRING:
3086 break;
3087
3088 default:
3089 error (_("Unexpected operator during name resolution"));
3090 }
3091
3092 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3093 for (i = 0; i < nargs; i += 1)
3094 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3095 argvec[i] = NULL;
3096 exp = *expp;
3097
3098 /* Pass two: perform any resolution on principal operator. */
3099 switch (op)
3100 {
3101 default:
3102 break;
3103
3104 case OP_VAR_VALUE:
3105 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3106 {
3107 struct ada_symbol_info *candidates;
3108 int n_candidates;
3109
3110 n_candidates =
3111 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3112 (exp->elts[pc + 2].symbol),
3113 exp->elts[pc + 1].block, VAR_DOMAIN,
3114 &candidates, 1);
3115
3116 if (n_candidates > 1)
3117 {
3118 /* Types tend to get re-introduced locally, so if there
3119 are any local symbols that are not types, first filter
3120 out all types. */
3121 int j;
3122 for (j = 0; j < n_candidates; j += 1)
3123 switch (SYMBOL_CLASS (candidates[j].sym))
3124 {
3125 case LOC_REGISTER:
3126 case LOC_ARG:
3127 case LOC_REF_ARG:
3128 case LOC_REGPARM_ADDR:
3129 case LOC_LOCAL:
3130 case LOC_COMPUTED:
3131 goto FoundNonType;
3132 default:
3133 break;
3134 }
3135 FoundNonType:
3136 if (j < n_candidates)
3137 {
3138 j = 0;
3139 while (j < n_candidates)
3140 {
3141 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3142 {
3143 candidates[j] = candidates[n_candidates - 1];
3144 n_candidates -= 1;
3145 }
3146 else
3147 j += 1;
3148 }
3149 }
3150 }
3151
3152 if (n_candidates == 0)
3153 error (_("No definition found for %s"),
3154 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3155 else if (n_candidates == 1)
3156 i = 0;
3157 else if (deprocedure_p
3158 && !is_nonfunction (candidates, n_candidates))
3159 {
3160 i = ada_resolve_function
3161 (candidates, n_candidates, NULL, 0,
3162 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3163 context_type);
3164 if (i < 0)
3165 error (_("Could not find a match for %s"),
3166 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3167 }
3168 else
3169 {
3170 printf_filtered (_("Multiple matches for %s\n"),
3171 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3172 user_select_syms (candidates, n_candidates, 1);
3173 i = 0;
3174 }
3175
3176 exp->elts[pc + 1].block = candidates[i].block;
3177 exp->elts[pc + 2].symbol = candidates[i].sym;
3178 if (innermost_block == NULL
3179 || contained_in (candidates[i].block, innermost_block))
3180 innermost_block = candidates[i].block;
3181 }
3182
3183 if (deprocedure_p
3184 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3185 == TYPE_CODE_FUNC))
3186 {
3187 replace_operator_with_call (expp, pc, 0, 0,
3188 exp->elts[pc + 2].symbol,
3189 exp->elts[pc + 1].block);
3190 exp = *expp;
3191 }
3192 break;
3193
3194 case OP_FUNCALL:
3195 {
3196 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3197 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3198 {
3199 struct ada_symbol_info *candidates;
3200 int n_candidates;
3201
3202 n_candidates =
3203 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3204 (exp->elts[pc + 5].symbol),
3205 exp->elts[pc + 4].block, VAR_DOMAIN,
3206 &candidates, 1);
3207 if (n_candidates == 1)
3208 i = 0;
3209 else
3210 {
3211 i = ada_resolve_function
3212 (candidates, n_candidates,
3213 argvec, nargs,
3214 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3215 context_type);
3216 if (i < 0)
3217 error (_("Could not find a match for %s"),
3218 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3219 }
3220
3221 exp->elts[pc + 4].block = candidates[i].block;
3222 exp->elts[pc + 5].symbol = candidates[i].sym;
3223 if (innermost_block == NULL
3224 || contained_in (candidates[i].block, innermost_block))
3225 innermost_block = candidates[i].block;
3226 }
3227 }
3228 break;
3229 case BINOP_ADD:
3230 case BINOP_SUB:
3231 case BINOP_MUL:
3232 case BINOP_DIV:
3233 case BINOP_REM:
3234 case BINOP_MOD:
3235 case BINOP_CONCAT:
3236 case BINOP_BITWISE_AND:
3237 case BINOP_BITWISE_IOR:
3238 case BINOP_BITWISE_XOR:
3239 case BINOP_EQUAL:
3240 case BINOP_NOTEQUAL:
3241 case BINOP_LESS:
3242 case BINOP_GTR:
3243 case BINOP_LEQ:
3244 case BINOP_GEQ:
3245 case BINOP_EXP:
3246 case UNOP_NEG:
3247 case UNOP_PLUS:
3248 case UNOP_LOGICAL_NOT:
3249 case UNOP_ABS:
3250 if (possible_user_operator_p (op, argvec))
3251 {
3252 struct ada_symbol_info *candidates;
3253 int n_candidates;
3254
3255 n_candidates =
3256 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3257 (struct block *) NULL, VAR_DOMAIN,
3258 &candidates, 1);
3259 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3260 ada_decoded_op_name (op), NULL);
3261 if (i < 0)
3262 break;
3263
3264 replace_operator_with_call (expp, pc, nargs, 1,
3265 candidates[i].sym, candidates[i].block);
3266 exp = *expp;
3267 }
3268 break;
3269
3270 case OP_TYPE:
3271 case OP_REGISTER:
3272 return NULL;
3273 }
3274
3275 *pos = pc;
3276 return evaluate_subexp_type (exp, pos);
3277 }
3278
3279 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3280 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3281 a non-pointer. */
3282 /* The term "match" here is rather loose. The match is heuristic and
3283 liberal. */
3284
3285 static int
3286 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3287 {
3288 ftype = ada_check_typedef (ftype);
3289 atype = ada_check_typedef (atype);
3290
3291 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3292 ftype = TYPE_TARGET_TYPE (ftype);
3293 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3294 atype = TYPE_TARGET_TYPE (atype);
3295
3296 switch (TYPE_CODE (ftype))
3297 {
3298 default:
3299 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3300 case TYPE_CODE_PTR:
3301 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3302 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3303 TYPE_TARGET_TYPE (atype), 0);
3304 else
3305 return (may_deref
3306 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3307 case TYPE_CODE_INT:
3308 case TYPE_CODE_ENUM:
3309 case TYPE_CODE_RANGE:
3310 switch (TYPE_CODE (atype))
3311 {
3312 case TYPE_CODE_INT:
3313 case TYPE_CODE_ENUM:
3314 case TYPE_CODE_RANGE:
3315 return 1;
3316 default:
3317 return 0;
3318 }
3319
3320 case TYPE_CODE_ARRAY:
3321 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3322 || ada_is_array_descriptor_type (atype));
3323
3324 case TYPE_CODE_STRUCT:
3325 if (ada_is_array_descriptor_type (ftype))
3326 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3327 || ada_is_array_descriptor_type (atype));
3328 else
3329 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3330 && !ada_is_array_descriptor_type (atype));
3331
3332 case TYPE_CODE_UNION:
3333 case TYPE_CODE_FLT:
3334 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3335 }
3336 }
3337
3338 /* Return non-zero if the formals of FUNC "sufficiently match" the
3339 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3340 may also be an enumeral, in which case it is treated as a 0-
3341 argument function. */
3342
3343 static int
3344 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3345 {
3346 int i;
3347 struct type *func_type = SYMBOL_TYPE (func);
3348
3349 if (SYMBOL_CLASS (func) == LOC_CONST
3350 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3351 return (n_actuals == 0);
3352 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3353 return 0;
3354
3355 if (TYPE_NFIELDS (func_type) != n_actuals)
3356 return 0;
3357
3358 for (i = 0; i < n_actuals; i += 1)
3359 {
3360 if (actuals[i] == NULL)
3361 return 0;
3362 else
3363 {
3364 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3365 i));
3366 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3367
3368 if (!ada_type_match (ftype, atype, 1))
3369 return 0;
3370 }
3371 }
3372 return 1;
3373 }
3374
3375 /* False iff function type FUNC_TYPE definitely does not produce a value
3376 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3377 FUNC_TYPE is not a valid function type with a non-null return type
3378 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3379
3380 static int
3381 return_match (struct type *func_type, struct type *context_type)
3382 {
3383 struct type *return_type;
3384
3385 if (func_type == NULL)
3386 return 1;
3387
3388 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3389 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3390 else
3391 return_type = get_base_type (func_type);
3392 if (return_type == NULL)
3393 return 1;
3394
3395 context_type = get_base_type (context_type);
3396
3397 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3398 return context_type == NULL || return_type == context_type;
3399 else if (context_type == NULL)
3400 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3401 else
3402 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3403 }
3404
3405
3406 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3407 function (if any) that matches the types of the NARGS arguments in
3408 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3409 that returns that type, then eliminate matches that don't. If
3410 CONTEXT_TYPE is void and there is at least one match that does not
3411 return void, eliminate all matches that do.
3412
3413 Asks the user if there is more than one match remaining. Returns -1
3414 if there is no such symbol or none is selected. NAME is used
3415 solely for messages. May re-arrange and modify SYMS in
3416 the process; the index returned is for the modified vector. */
3417
3418 static int
3419 ada_resolve_function (struct ada_symbol_info syms[],
3420 int nsyms, struct value **args, int nargs,
3421 const char *name, struct type *context_type)
3422 {
3423 int fallback;
3424 int k;
3425 int m; /* Number of hits */
3426
3427 m = 0;
3428 /* In the first pass of the loop, we only accept functions matching
3429 context_type. If none are found, we add a second pass of the loop
3430 where every function is accepted. */
3431 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3432 {
3433 for (k = 0; k < nsyms; k += 1)
3434 {
3435 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3436
3437 if (ada_args_match (syms[k].sym, args, nargs)
3438 && (fallback || return_match (type, context_type)))
3439 {
3440 syms[m] = syms[k];
3441 m += 1;
3442 }
3443 }
3444 }
3445
3446 if (m == 0)
3447 return -1;
3448 else if (m > 1)
3449 {
3450 printf_filtered (_("Multiple matches for %s\n"), name);
3451 user_select_syms (syms, m, 1);
3452 return 0;
3453 }
3454 return 0;
3455 }
3456
3457 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3458 in a listing of choices during disambiguation (see sort_choices, below).
3459 The idea is that overloadings of a subprogram name from the
3460 same package should sort in their source order. We settle for ordering
3461 such symbols by their trailing number (__N or $N). */
3462
3463 static int
3464 encoded_ordered_before (const char *N0, const char *N1)
3465 {
3466 if (N1 == NULL)
3467 return 0;
3468 else if (N0 == NULL)
3469 return 1;
3470 else
3471 {
3472 int k0, k1;
3473
3474 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3475 ;
3476 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3477 ;
3478 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3479 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3480 {
3481 int n0, n1;
3482
3483 n0 = k0;
3484 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3485 n0 -= 1;
3486 n1 = k1;
3487 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3488 n1 -= 1;
3489 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3490 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3491 }
3492 return (strcmp (N0, N1) < 0);
3493 }
3494 }
3495
3496 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3497 encoded names. */
3498
3499 static void
3500 sort_choices (struct ada_symbol_info syms[], int nsyms)
3501 {
3502 int i;
3503
3504 for (i = 1; i < nsyms; i += 1)
3505 {
3506 struct ada_symbol_info sym = syms[i];
3507 int j;
3508
3509 for (j = i - 1; j >= 0; j -= 1)
3510 {
3511 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3512 SYMBOL_LINKAGE_NAME (sym.sym)))
3513 break;
3514 syms[j + 1] = syms[j];
3515 }
3516 syms[j + 1] = sym;
3517 }
3518 }
3519
3520 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3521 by asking the user (if necessary), returning the number selected,
3522 and setting the first elements of SYMS items. Error if no symbols
3523 selected. */
3524
3525 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3526 to be re-integrated one of these days. */
3527
3528 int
3529 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3530 {
3531 int i;
3532 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3533 int n_chosen;
3534 int first_choice = (max_results == 1) ? 1 : 2;
3535 const char *select_mode = multiple_symbols_select_mode ();
3536
3537 if (max_results < 1)
3538 error (_("Request to select 0 symbols!"));
3539 if (nsyms <= 1)
3540 return nsyms;
3541
3542 if (select_mode == multiple_symbols_cancel)
3543 error (_("\
3544 canceled because the command is ambiguous\n\
3545 See set/show multiple-symbol."));
3546
3547 /* If select_mode is "all", then return all possible symbols.
3548 Only do that if more than one symbol can be selected, of course.
3549 Otherwise, display the menu as usual. */
3550 if (select_mode == multiple_symbols_all && max_results > 1)
3551 return nsyms;
3552
3553 printf_unfiltered (_("[0] cancel\n"));
3554 if (max_results > 1)
3555 printf_unfiltered (_("[1] all\n"));
3556
3557 sort_choices (syms, nsyms);
3558
3559 for (i = 0; i < nsyms; i += 1)
3560 {
3561 if (syms[i].sym == NULL)
3562 continue;
3563
3564 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3565 {
3566 struct symtab_and_line sal =
3567 find_function_start_sal (syms[i].sym, 1);
3568
3569 if (sal.symtab == NULL)
3570 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3571 i + first_choice,
3572 SYMBOL_PRINT_NAME (syms[i].sym),
3573 sal.line);
3574 else
3575 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3576 SYMBOL_PRINT_NAME (syms[i].sym),
3577 sal.symtab->filename, sal.line);
3578 continue;
3579 }
3580 else
3581 {
3582 int is_enumeral =
3583 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3584 && SYMBOL_TYPE (syms[i].sym) != NULL
3585 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3586 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3587
3588 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3589 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3590 i + first_choice,
3591 SYMBOL_PRINT_NAME (syms[i].sym),
3592 symtab->filename, SYMBOL_LINE (syms[i].sym));
3593 else if (is_enumeral
3594 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3595 {
3596 printf_unfiltered (("[%d] "), i + first_choice);
3597 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3598 gdb_stdout, -1, 0, &type_print_raw_options);
3599 printf_unfiltered (_("'(%s) (enumeral)\n"),
3600 SYMBOL_PRINT_NAME (syms[i].sym));
3601 }
3602 else if (symtab != NULL)
3603 printf_unfiltered (is_enumeral
3604 ? _("[%d] %s in %s (enumeral)\n")
3605 : _("[%d] %s at %s:?\n"),
3606 i + first_choice,
3607 SYMBOL_PRINT_NAME (syms[i].sym),
3608 symtab->filename);
3609 else
3610 printf_unfiltered (is_enumeral
3611 ? _("[%d] %s (enumeral)\n")
3612 : _("[%d] %s at ?\n"),
3613 i + first_choice,
3614 SYMBOL_PRINT_NAME (syms[i].sym));
3615 }
3616 }
3617
3618 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3619 "overload-choice");
3620
3621 for (i = 0; i < n_chosen; i += 1)
3622 syms[i] = syms[chosen[i]];
3623
3624 return n_chosen;
3625 }
3626
3627 /* Read and validate a set of numeric choices from the user in the
3628 range 0 .. N_CHOICES-1. Place the results in increasing
3629 order in CHOICES[0 .. N-1], and return N.
3630
3631 The user types choices as a sequence of numbers on one line
3632 separated by blanks, encoding them as follows:
3633
3634 + A choice of 0 means to cancel the selection, throwing an error.
3635 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3636 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3637
3638 The user is not allowed to choose more than MAX_RESULTS values.
3639
3640 ANNOTATION_SUFFIX, if present, is used to annotate the input
3641 prompts (for use with the -f switch). */
3642
3643 int
3644 get_selections (int *choices, int n_choices, int max_results,
3645 int is_all_choice, char *annotation_suffix)
3646 {
3647 char *args;
3648 char *prompt;
3649 int n_chosen;
3650 int first_choice = is_all_choice ? 2 : 1;
3651
3652 prompt = getenv ("PS2");
3653 if (prompt == NULL)
3654 prompt = "> ";
3655
3656 args = command_line_input (prompt, 0, annotation_suffix);
3657
3658 if (args == NULL)
3659 error_no_arg (_("one or more choice numbers"));
3660
3661 n_chosen = 0;
3662
3663 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3664 order, as given in args. Choices are validated. */
3665 while (1)
3666 {
3667 char *args2;
3668 int choice, j;
3669
3670 args = skip_spaces (args);
3671 if (*args == '\0' && n_chosen == 0)
3672 error_no_arg (_("one or more choice numbers"));
3673 else if (*args == '\0')
3674 break;
3675
3676 choice = strtol (args, &args2, 10);
3677 if (args == args2 || choice < 0
3678 || choice > n_choices + first_choice - 1)
3679 error (_("Argument must be choice number"));
3680 args = args2;
3681
3682 if (choice == 0)
3683 error (_("cancelled"));
3684
3685 if (choice < first_choice)
3686 {
3687 n_chosen = n_choices;
3688 for (j = 0; j < n_choices; j += 1)
3689 choices[j] = j;
3690 break;
3691 }
3692 choice -= first_choice;
3693
3694 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3695 {
3696 }
3697
3698 if (j < 0 || choice != choices[j])
3699 {
3700 int k;
3701
3702 for (k = n_chosen - 1; k > j; k -= 1)
3703 choices[k + 1] = choices[k];
3704 choices[j + 1] = choice;
3705 n_chosen += 1;
3706 }
3707 }
3708
3709 if (n_chosen > max_results)
3710 error (_("Select no more than %d of the above"), max_results);
3711
3712 return n_chosen;
3713 }
3714
3715 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3716 on the function identified by SYM and BLOCK, and taking NARGS
3717 arguments. Update *EXPP as needed to hold more space. */
3718
3719 static void
3720 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3721 int oplen, struct symbol *sym,
3722 const struct block *block)
3723 {
3724 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3725 symbol, -oplen for operator being replaced). */
3726 struct expression *newexp = (struct expression *)
3727 xzalloc (sizeof (struct expression)
3728 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3729 struct expression *exp = *expp;
3730
3731 newexp->nelts = exp->nelts + 7 - oplen;
3732 newexp->language_defn = exp->language_defn;
3733 newexp->gdbarch = exp->gdbarch;
3734 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3735 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3736 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3737
3738 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3739 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3740
3741 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3742 newexp->elts[pc + 4].block = block;
3743 newexp->elts[pc + 5].symbol = sym;
3744
3745 *expp = newexp;
3746 xfree (exp);
3747 }
3748
3749 /* Type-class predicates */
3750
3751 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3752 or FLOAT). */
3753
3754 static int
3755 numeric_type_p (struct type *type)
3756 {
3757 if (type == NULL)
3758 return 0;
3759 else
3760 {
3761 switch (TYPE_CODE (type))
3762 {
3763 case TYPE_CODE_INT:
3764 case TYPE_CODE_FLT:
3765 return 1;
3766 case TYPE_CODE_RANGE:
3767 return (type == TYPE_TARGET_TYPE (type)
3768 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3769 default:
3770 return 0;
3771 }
3772 }
3773 }
3774
3775 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3776
3777 static int
3778 integer_type_p (struct type *type)
3779 {
3780 if (type == NULL)
3781 return 0;
3782 else
3783 {
3784 switch (TYPE_CODE (type))
3785 {
3786 case TYPE_CODE_INT:
3787 return 1;
3788 case TYPE_CODE_RANGE:
3789 return (type == TYPE_TARGET_TYPE (type)
3790 || integer_type_p (TYPE_TARGET_TYPE (type)));
3791 default:
3792 return 0;
3793 }
3794 }
3795 }
3796
3797 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3798
3799 static int
3800 scalar_type_p (struct type *type)
3801 {
3802 if (type == NULL)
3803 return 0;
3804 else
3805 {
3806 switch (TYPE_CODE (type))
3807 {
3808 case TYPE_CODE_INT:
3809 case TYPE_CODE_RANGE:
3810 case TYPE_CODE_ENUM:
3811 case TYPE_CODE_FLT:
3812 return 1;
3813 default:
3814 return 0;
3815 }
3816 }
3817 }
3818
3819 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3820
3821 static int
3822 discrete_type_p (struct type *type)
3823 {
3824 if (type == NULL)
3825 return 0;
3826 else
3827 {
3828 switch (TYPE_CODE (type))
3829 {
3830 case TYPE_CODE_INT:
3831 case TYPE_CODE_RANGE:
3832 case TYPE_CODE_ENUM:
3833 case TYPE_CODE_BOOL:
3834 return 1;
3835 default:
3836 return 0;
3837 }
3838 }
3839 }
3840
3841 /* Returns non-zero if OP with operands in the vector ARGS could be
3842 a user-defined function. Errs on the side of pre-defined operators
3843 (i.e., result 0). */
3844
3845 static int
3846 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3847 {
3848 struct type *type0 =
3849 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3850 struct type *type1 =
3851 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3852
3853 if (type0 == NULL)
3854 return 0;
3855
3856 switch (op)
3857 {
3858 default:
3859 return 0;
3860
3861 case BINOP_ADD:
3862 case BINOP_SUB:
3863 case BINOP_MUL:
3864 case BINOP_DIV:
3865 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3866
3867 case BINOP_REM:
3868 case BINOP_MOD:
3869 case BINOP_BITWISE_AND:
3870 case BINOP_BITWISE_IOR:
3871 case BINOP_BITWISE_XOR:
3872 return (!(integer_type_p (type0) && integer_type_p (type1)));
3873
3874 case BINOP_EQUAL:
3875 case BINOP_NOTEQUAL:
3876 case BINOP_LESS:
3877 case BINOP_GTR:
3878 case BINOP_LEQ:
3879 case BINOP_GEQ:
3880 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3881
3882 case BINOP_CONCAT:
3883 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3884
3885 case BINOP_EXP:
3886 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3887
3888 case UNOP_NEG:
3889 case UNOP_PLUS:
3890 case UNOP_LOGICAL_NOT:
3891 case UNOP_ABS:
3892 return (!numeric_type_p (type0));
3893
3894 }
3895 }
3896 \f
3897 /* Renaming */
3898
3899 /* NOTES:
3900
3901 1. In the following, we assume that a renaming type's name may
3902 have an ___XD suffix. It would be nice if this went away at some
3903 point.
3904 2. We handle both the (old) purely type-based representation of
3905 renamings and the (new) variable-based encoding. At some point,
3906 it is devoutly to be hoped that the former goes away
3907 (FIXME: hilfinger-2007-07-09).
3908 3. Subprogram renamings are not implemented, although the XRS
3909 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3910
3911 /* If SYM encodes a renaming,
3912
3913 <renaming> renames <renamed entity>,
3914
3915 sets *LEN to the length of the renamed entity's name,
3916 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3917 the string describing the subcomponent selected from the renamed
3918 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3919 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3920 are undefined). Otherwise, returns a value indicating the category
3921 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3922 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3923 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3924 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3925 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3926 may be NULL, in which case they are not assigned.
3927
3928 [Currently, however, GCC does not generate subprogram renamings.] */
3929
3930 enum ada_renaming_category
3931 ada_parse_renaming (struct symbol *sym,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3934 {
3935 enum ada_renaming_category kind;
3936 const char *info;
3937 const char *suffix;
3938
3939 if (sym == NULL)
3940 return ADA_NOT_RENAMING;
3941 switch (SYMBOL_CLASS (sym))
3942 {
3943 default:
3944 return ADA_NOT_RENAMING;
3945 case LOC_TYPEDEF:
3946 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3947 renamed_entity, len, renaming_expr);
3948 case LOC_LOCAL:
3949 case LOC_STATIC:
3950 case LOC_COMPUTED:
3951 case LOC_OPTIMIZED_OUT:
3952 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3953 if (info == NULL)
3954 return ADA_NOT_RENAMING;
3955 switch (info[5])
3956 {
3957 case '_':
3958 kind = ADA_OBJECT_RENAMING;
3959 info += 6;
3960 break;
3961 case 'E':
3962 kind = ADA_EXCEPTION_RENAMING;
3963 info += 7;
3964 break;
3965 case 'P':
3966 kind = ADA_PACKAGE_RENAMING;
3967 info += 7;
3968 break;
3969 case 'S':
3970 kind = ADA_SUBPROGRAM_RENAMING;
3971 info += 7;
3972 break;
3973 default:
3974 return ADA_NOT_RENAMING;
3975 }
3976 }
3977
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (suffix == NULL || suffix == info)
3982 return ADA_NOT_RENAMING;
3983 if (len != NULL)
3984 *len = strlen (info) - strlen (suffix);
3985 suffix += 5;
3986 if (renaming_expr != NULL)
3987 *renaming_expr = suffix;
3988 return kind;
3989 }
3990
3991 /* Assuming TYPE encodes a renaming according to the old encoding in
3992 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3993 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3994 ADA_NOT_RENAMING otherwise. */
3995 static enum ada_renaming_category
3996 parse_old_style_renaming (struct type *type,
3997 const char **renamed_entity, int *len,
3998 const char **renaming_expr)
3999 {
4000 enum ada_renaming_category kind;
4001 const char *name;
4002 const char *info;
4003 const char *suffix;
4004
4005 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4006 || TYPE_NFIELDS (type) != 1)
4007 return ADA_NOT_RENAMING;
4008
4009 name = type_name_no_tag (type);
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012
4013 name = strstr (name, "___XR");
4014 if (name == NULL)
4015 return ADA_NOT_RENAMING;
4016 switch (name[5])
4017 {
4018 case '\0':
4019 case '_':
4020 kind = ADA_OBJECT_RENAMING;
4021 break;
4022 case 'E':
4023 kind = ADA_EXCEPTION_RENAMING;
4024 break;
4025 case 'P':
4026 kind = ADA_PACKAGE_RENAMING;
4027 break;
4028 case 'S':
4029 kind = ADA_SUBPROGRAM_RENAMING;
4030 break;
4031 default:
4032 return ADA_NOT_RENAMING;
4033 }
4034
4035 info = TYPE_FIELD_NAME (type, 0);
4036 if (info == NULL)
4037 return ADA_NOT_RENAMING;
4038 if (renamed_entity != NULL)
4039 *renamed_entity = info;
4040 suffix = strstr (info, "___XE");
4041 if (renaming_expr != NULL)
4042 *renaming_expr = suffix + 5;
4043 if (suffix == NULL || suffix == info)
4044 return ADA_NOT_RENAMING;
4045 if (len != NULL)
4046 *len = suffix - info;
4047 return kind;
4048 }
4049
4050 /* Compute the value of the given RENAMING_SYM, which is expected to
4051 be a symbol encoding a renaming expression. BLOCK is the block
4052 used to evaluate the renaming. */
4053
4054 static struct value *
4055 ada_read_renaming_var_value (struct symbol *renaming_sym,
4056 struct block *block)
4057 {
4058 char *sym_name;
4059 struct expression *expr;
4060 struct value *value;
4061 struct cleanup *old_chain = NULL;
4062
4063 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4064 old_chain = make_cleanup (xfree, sym_name);
4065 expr = parse_exp_1 (&sym_name, 0, block, 0);
4066 make_cleanup (free_current_contents, &expr);
4067 value = evaluate_expression (expr);
4068
4069 do_cleanups (old_chain);
4070 return value;
4071 }
4072 \f
4073
4074 /* Evaluation: Function Calls */
4075
4076 /* Return an lvalue containing the value VAL. This is the identity on
4077 lvalues, and otherwise has the side-effect of allocating memory
4078 in the inferior where a copy of the value contents is copied. */
4079
4080 static struct value *
4081 ensure_lval (struct value *val)
4082 {
4083 if (VALUE_LVAL (val) == not_lval
4084 || VALUE_LVAL (val) == lval_internalvar)
4085 {
4086 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4087 const CORE_ADDR addr =
4088 value_as_long (value_allocate_space_in_inferior (len));
4089
4090 set_value_address (val, addr);
4091 VALUE_LVAL (val) = lval_memory;
4092 write_memory (addr, value_contents (val), len);
4093 }
4094
4095 return val;
4096 }
4097
4098 /* Return the value ACTUAL, converted to be an appropriate value for a
4099 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4100 allocating any necessary descriptors (fat pointers), or copies of
4101 values not residing in memory, updating it as needed. */
4102
4103 struct value *
4104 ada_convert_actual (struct value *actual, struct type *formal_type0)
4105 {
4106 struct type *actual_type = ada_check_typedef (value_type (actual));
4107 struct type *formal_type = ada_check_typedef (formal_type0);
4108 struct type *formal_target =
4109 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4110 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4111 struct type *actual_target =
4112 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4113 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4114
4115 if (ada_is_array_descriptor_type (formal_target)
4116 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4117 return make_array_descriptor (formal_type, actual);
4118 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4119 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4120 {
4121 struct value *result;
4122
4123 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4124 && ada_is_array_descriptor_type (actual_target))
4125 result = desc_data (actual);
4126 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4127 {
4128 if (VALUE_LVAL (actual) != lval_memory)
4129 {
4130 struct value *val;
4131
4132 actual_type = ada_check_typedef (value_type (actual));
4133 val = allocate_value (actual_type);
4134 memcpy ((char *) value_contents_raw (val),
4135 (char *) value_contents (actual),
4136 TYPE_LENGTH (actual_type));
4137 actual = ensure_lval (val);
4138 }
4139 result = value_addr (actual);
4140 }
4141 else
4142 return actual;
4143 return value_cast_pointers (formal_type, result, 0);
4144 }
4145 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4146 return ada_value_ind (actual);
4147
4148 return actual;
4149 }
4150
4151 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4152 type TYPE. This is usually an inefficient no-op except on some targets
4153 (such as AVR) where the representation of a pointer and an address
4154 differs. */
4155
4156 static CORE_ADDR
4157 value_pointer (struct value *value, struct type *type)
4158 {
4159 struct gdbarch *gdbarch = get_type_arch (type);
4160 unsigned len = TYPE_LENGTH (type);
4161 gdb_byte *buf = alloca (len);
4162 CORE_ADDR addr;
4163
4164 addr = value_address (value);
4165 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4166 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4167 return addr;
4168 }
4169
4170
4171 /* Push a descriptor of type TYPE for array value ARR on the stack at
4172 *SP, updating *SP to reflect the new descriptor. Return either
4173 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4174 to-descriptor type rather than a descriptor type), a struct value *
4175 representing a pointer to this descriptor. */
4176
4177 static struct value *
4178 make_array_descriptor (struct type *type, struct value *arr)
4179 {
4180 struct type *bounds_type = desc_bounds_type (type);
4181 struct type *desc_type = desc_base_type (type);
4182 struct value *descriptor = allocate_value (desc_type);
4183 struct value *bounds = allocate_value (bounds_type);
4184 int i;
4185
4186 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4187 i > 0; i -= 1)
4188 {
4189 modify_field (value_type (bounds), value_contents_writeable (bounds),
4190 ada_array_bound (arr, i, 0),
4191 desc_bound_bitpos (bounds_type, i, 0),
4192 desc_bound_bitsize (bounds_type, i, 0));
4193 modify_field (value_type (bounds), value_contents_writeable (bounds),
4194 ada_array_bound (arr, i, 1),
4195 desc_bound_bitpos (bounds_type, i, 1),
4196 desc_bound_bitsize (bounds_type, i, 1));
4197 }
4198
4199 bounds = ensure_lval (bounds);
4200
4201 modify_field (value_type (descriptor),
4202 value_contents_writeable (descriptor),
4203 value_pointer (ensure_lval (arr),
4204 TYPE_FIELD_TYPE (desc_type, 0)),
4205 fat_pntr_data_bitpos (desc_type),
4206 fat_pntr_data_bitsize (desc_type));
4207
4208 modify_field (value_type (descriptor),
4209 value_contents_writeable (descriptor),
4210 value_pointer (bounds,
4211 TYPE_FIELD_TYPE (desc_type, 1)),
4212 fat_pntr_bounds_bitpos (desc_type),
4213 fat_pntr_bounds_bitsize (desc_type));
4214
4215 descriptor = ensure_lval (descriptor);
4216
4217 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4218 return value_addr (descriptor);
4219 else
4220 return descriptor;
4221 }
4222 \f
4223 /* Dummy definitions for an experimental caching module that is not
4224 * used in the public sources. */
4225
4226 static int
4227 lookup_cached_symbol (const char *name, domain_enum namespace,
4228 struct symbol **sym, struct block **block)
4229 {
4230 return 0;
4231 }
4232
4233 static void
4234 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4235 const struct block *block)
4236 {
4237 }
4238 \f
4239 /* Symbol Lookup */
4240
4241 /* Return nonzero if wild matching should be used when searching for
4242 all symbols matching LOOKUP_NAME.
4243
4244 LOOKUP_NAME is expected to be a symbol name after transformation
4245 for Ada lookups (see ada_name_for_lookup). */
4246
4247 static int
4248 should_use_wild_match (const char *lookup_name)
4249 {
4250 return (strstr (lookup_name, "__") == NULL);
4251 }
4252
4253 /* Return the result of a standard (literal, C-like) lookup of NAME in
4254 given DOMAIN, visible from lexical block BLOCK. */
4255
4256 static struct symbol *
4257 standard_lookup (const char *name, const struct block *block,
4258 domain_enum domain)
4259 {
4260 /* Initialize it just to avoid a GCC false warning. */
4261 struct symbol *sym = NULL;
4262
4263 if (lookup_cached_symbol (name, domain, &sym, NULL))
4264 return sym;
4265 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4266 cache_symbol (name, domain, sym, block_found);
4267 return sym;
4268 }
4269
4270
4271 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4272 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4273 since they contend in overloading in the same way. */
4274 static int
4275 is_nonfunction (struct ada_symbol_info syms[], int n)
4276 {
4277 int i;
4278
4279 for (i = 0; i < n; i += 1)
4280 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4281 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4282 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4283 return 1;
4284
4285 return 0;
4286 }
4287
4288 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4289 struct types. Otherwise, they may not. */
4290
4291 static int
4292 equiv_types (struct type *type0, struct type *type1)
4293 {
4294 if (type0 == type1)
4295 return 1;
4296 if (type0 == NULL || type1 == NULL
4297 || TYPE_CODE (type0) != TYPE_CODE (type1))
4298 return 0;
4299 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4300 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4301 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4302 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4303 return 1;
4304
4305 return 0;
4306 }
4307
4308 /* True iff SYM0 represents the same entity as SYM1, or one that is
4309 no more defined than that of SYM1. */
4310
4311 static int
4312 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4313 {
4314 if (sym0 == sym1)
4315 return 1;
4316 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4317 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4318 return 0;
4319
4320 switch (SYMBOL_CLASS (sym0))
4321 {
4322 case LOC_UNDEF:
4323 return 1;
4324 case LOC_TYPEDEF:
4325 {
4326 struct type *type0 = SYMBOL_TYPE (sym0);
4327 struct type *type1 = SYMBOL_TYPE (sym1);
4328 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4329 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4330 int len0 = strlen (name0);
4331
4332 return
4333 TYPE_CODE (type0) == TYPE_CODE (type1)
4334 && (equiv_types (type0, type1)
4335 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4336 && strncmp (name1 + len0, "___XV", 5) == 0));
4337 }
4338 case LOC_CONST:
4339 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4340 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4341 default:
4342 return 0;
4343 }
4344 }
4345
4346 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4347 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4348
4349 static void
4350 add_defn_to_vec (struct obstack *obstackp,
4351 struct symbol *sym,
4352 struct block *block)
4353 {
4354 int i;
4355 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4356
4357 /* Do not try to complete stub types, as the debugger is probably
4358 already scanning all symbols matching a certain name at the
4359 time when this function is called. Trying to replace the stub
4360 type by its associated full type will cause us to restart a scan
4361 which may lead to an infinite recursion. Instead, the client
4362 collecting the matching symbols will end up collecting several
4363 matches, with at least one of them complete. It can then filter
4364 out the stub ones if needed. */
4365
4366 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4367 {
4368 if (lesseq_defined_than (sym, prevDefns[i].sym))
4369 return;
4370 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4371 {
4372 prevDefns[i].sym = sym;
4373 prevDefns[i].block = block;
4374 return;
4375 }
4376 }
4377
4378 {
4379 struct ada_symbol_info info;
4380
4381 info.sym = sym;
4382 info.block = block;
4383 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4384 }
4385 }
4386
4387 /* Number of ada_symbol_info structures currently collected in
4388 current vector in *OBSTACKP. */
4389
4390 static int
4391 num_defns_collected (struct obstack *obstackp)
4392 {
4393 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4394 }
4395
4396 /* Vector of ada_symbol_info structures currently collected in current
4397 vector in *OBSTACKP. If FINISH, close off the vector and return
4398 its final address. */
4399
4400 static struct ada_symbol_info *
4401 defns_collected (struct obstack *obstackp, int finish)
4402 {
4403 if (finish)
4404 return obstack_finish (obstackp);
4405 else
4406 return (struct ada_symbol_info *) obstack_base (obstackp);
4407 }
4408
4409 /* Return a minimal symbol matching NAME according to Ada decoding
4410 rules. Returns NULL if there is no such minimal symbol. Names
4411 prefixed with "standard__" are handled specially: "standard__" is
4412 first stripped off, and only static and global symbols are searched. */
4413
4414 struct minimal_symbol *
4415 ada_lookup_simple_minsym (const char *name)
4416 {
4417 struct objfile *objfile;
4418 struct minimal_symbol *msymbol;
4419 const int wild_match_p = should_use_wild_match (name);
4420
4421 /* Special case: If the user specifies a symbol name inside package
4422 Standard, do a non-wild matching of the symbol name without
4423 the "standard__" prefix. This was primarily introduced in order
4424 to allow the user to specifically access the standard exceptions
4425 using, for instance, Standard.Constraint_Error when Constraint_Error
4426 is ambiguous (due to the user defining its own Constraint_Error
4427 entity inside its program). */
4428 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4429 name += sizeof ("standard__") - 1;
4430
4431 ALL_MSYMBOLS (objfile, msymbol)
4432 {
4433 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4434 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4435 return msymbol;
4436 }
4437
4438 return NULL;
4439 }
4440
4441 /* For all subprograms that statically enclose the subprogram of the
4442 selected frame, add symbols matching identifier NAME in DOMAIN
4443 and their blocks to the list of data in OBSTACKP, as for
4444 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4445 with a wildcard prefix. */
4446
4447 static void
4448 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4449 const char *name, domain_enum namespace,
4450 int wild_match_p)
4451 {
4452 }
4453
4454 /* True if TYPE is definitely an artificial type supplied to a symbol
4455 for which no debugging information was given in the symbol file. */
4456
4457 static int
4458 is_nondebugging_type (struct type *type)
4459 {
4460 const char *name = ada_type_name (type);
4461
4462 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4463 }
4464
4465 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4466 that are deemed "identical" for practical purposes.
4467
4468 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4469 types and that their number of enumerals is identical (in other
4470 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4471
4472 static int
4473 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4474 {
4475 int i;
4476
4477 /* The heuristic we use here is fairly conservative. We consider
4478 that 2 enumerate types are identical if they have the same
4479 number of enumerals and that all enumerals have the same
4480 underlying value and name. */
4481
4482 /* All enums in the type should have an identical underlying value. */
4483 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4484 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4485 return 0;
4486
4487 /* All enumerals should also have the same name (modulo any numerical
4488 suffix). */
4489 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4490 {
4491 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4492 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4493 int len_1 = strlen (name_1);
4494 int len_2 = strlen (name_2);
4495
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4497 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4498 if (len_1 != len_2
4499 || strncmp (TYPE_FIELD_NAME (type1, i),
4500 TYPE_FIELD_NAME (type2, i),
4501 len_1) != 0)
4502 return 0;
4503 }
4504
4505 return 1;
4506 }
4507
4508 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4509 that are deemed "identical" for practical purposes. Sometimes,
4510 enumerals are not strictly identical, but their types are so similar
4511 that they can be considered identical.
4512
4513 For instance, consider the following code:
4514
4515 type Color is (Black, Red, Green, Blue, White);
4516 type RGB_Color is new Color range Red .. Blue;
4517
4518 Type RGB_Color is a subrange of an implicit type which is a copy
4519 of type Color. If we call that implicit type RGB_ColorB ("B" is
4520 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4521 As a result, when an expression references any of the enumeral
4522 by name (Eg. "print green"), the expression is technically
4523 ambiguous and the user should be asked to disambiguate. But
4524 doing so would only hinder the user, since it wouldn't matter
4525 what choice he makes, the outcome would always be the same.
4526 So, for practical purposes, we consider them as the same. */
4527
4528 static int
4529 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4530 {
4531 int i;
4532
4533 /* Before performing a thorough comparison check of each type,
4534 we perform a series of inexpensive checks. We expect that these
4535 checks will quickly fail in the vast majority of cases, and thus
4536 help prevent the unnecessary use of a more expensive comparison.
4537 Said comparison also expects us to make some of these checks
4538 (see ada_identical_enum_types_p). */
4539
4540 /* Quick check: All symbols should have an enum type. */
4541 for (i = 0; i < nsyms; i++)
4542 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4543 return 0;
4544
4545 /* Quick check: They should all have the same value. */
4546 for (i = 1; i < nsyms; i++)
4547 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4548 return 0;
4549
4550 /* Quick check: They should all have the same number of enumerals. */
4551 for (i = 1; i < nsyms; i++)
4552 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4553 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4554 return 0;
4555
4556 /* All the sanity checks passed, so we might have a set of
4557 identical enumeration types. Perform a more complete
4558 comparison of the type of each symbol. */
4559 for (i = 1; i < nsyms; i++)
4560 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4561 SYMBOL_TYPE (syms[0].sym)))
4562 return 0;
4563
4564 return 1;
4565 }
4566
4567 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4568 duplicate other symbols in the list (The only case I know of where
4569 this happens is when object files containing stabs-in-ecoff are
4570 linked with files containing ordinary ecoff debugging symbols (or no
4571 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4572 Returns the number of items in the modified list. */
4573
4574 static int
4575 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4576 {
4577 int i, j;
4578
4579 /* We should never be called with less than 2 symbols, as there
4580 cannot be any extra symbol in that case. But it's easy to
4581 handle, since we have nothing to do in that case. */
4582 if (nsyms < 2)
4583 return nsyms;
4584
4585 i = 0;
4586 while (i < nsyms)
4587 {
4588 int remove_p = 0;
4589
4590 /* If two symbols have the same name and one of them is a stub type,
4591 the get rid of the stub. */
4592
4593 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4594 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4595 {
4596 for (j = 0; j < nsyms; j++)
4597 {
4598 if (j != i
4599 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4600 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4601 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4602 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4603 remove_p = 1;
4604 }
4605 }
4606
4607 /* Two symbols with the same name, same class and same address
4608 should be identical. */
4609
4610 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4611 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4612 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4613 {
4614 for (j = 0; j < nsyms; j += 1)
4615 {
4616 if (i != j
4617 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4618 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4619 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4620 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4621 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4622 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4623 remove_p = 1;
4624 }
4625 }
4626
4627 if (remove_p)
4628 {
4629 for (j = i + 1; j < nsyms; j += 1)
4630 syms[j - 1] = syms[j];
4631 nsyms -= 1;
4632 }
4633
4634 i += 1;
4635 }
4636
4637 /* If all the remaining symbols are identical enumerals, then
4638 just keep the first one and discard the rest.
4639
4640 Unlike what we did previously, we do not discard any entry
4641 unless they are ALL identical. This is because the symbol
4642 comparison is not a strict comparison, but rather a practical
4643 comparison. If all symbols are considered identical, then
4644 we can just go ahead and use the first one and discard the rest.
4645 But if we cannot reduce the list to a single element, we have
4646 to ask the user to disambiguate anyways. And if we have to
4647 present a multiple-choice menu, it's less confusing if the list
4648 isn't missing some choices that were identical and yet distinct. */
4649 if (symbols_are_identical_enums (syms, nsyms))
4650 nsyms = 1;
4651
4652 return nsyms;
4653 }
4654
4655 /* Given a type that corresponds to a renaming entity, use the type name
4656 to extract the scope (package name or function name, fully qualified,
4657 and following the GNAT encoding convention) where this renaming has been
4658 defined. The string returned needs to be deallocated after use. */
4659
4660 static char *
4661 xget_renaming_scope (struct type *renaming_type)
4662 {
4663 /* The renaming types adhere to the following convention:
4664 <scope>__<rename>___<XR extension>.
4665 So, to extract the scope, we search for the "___XR" extension,
4666 and then backtrack until we find the first "__". */
4667
4668 const char *name = type_name_no_tag (renaming_type);
4669 char *suffix = strstr (name, "___XR");
4670 char *last;
4671 int scope_len;
4672 char *scope;
4673
4674 /* Now, backtrack a bit until we find the first "__". Start looking
4675 at suffix - 3, as the <rename> part is at least one character long. */
4676
4677 for (last = suffix - 3; last > name; last--)
4678 if (last[0] == '_' && last[1] == '_')
4679 break;
4680
4681 /* Make a copy of scope and return it. */
4682
4683 scope_len = last - name;
4684 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4685
4686 strncpy (scope, name, scope_len);
4687 scope[scope_len] = '\0';
4688
4689 return scope;
4690 }
4691
4692 /* Return nonzero if NAME corresponds to a package name. */
4693
4694 static int
4695 is_package_name (const char *name)
4696 {
4697 /* Here, We take advantage of the fact that no symbols are generated
4698 for packages, while symbols are generated for each function.
4699 So the condition for NAME represent a package becomes equivalent
4700 to NAME not existing in our list of symbols. There is only one
4701 small complication with library-level functions (see below). */
4702
4703 char *fun_name;
4704
4705 /* If it is a function that has not been defined at library level,
4706 then we should be able to look it up in the symbols. */
4707 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4708 return 0;
4709
4710 /* Library-level function names start with "_ada_". See if function
4711 "_ada_" followed by NAME can be found. */
4712
4713 /* Do a quick check that NAME does not contain "__", since library-level
4714 functions names cannot contain "__" in them. */
4715 if (strstr (name, "__") != NULL)
4716 return 0;
4717
4718 fun_name = xstrprintf ("_ada_%s", name);
4719
4720 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4721 }
4722
4723 /* Return nonzero if SYM corresponds to a renaming entity that is
4724 not visible from FUNCTION_NAME. */
4725
4726 static int
4727 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4728 {
4729 char *scope;
4730
4731 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4732 return 0;
4733
4734 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4735
4736 make_cleanup (xfree, scope);
4737
4738 /* If the rename has been defined in a package, then it is visible. */
4739 if (is_package_name (scope))
4740 return 0;
4741
4742 /* Check that the rename is in the current function scope by checking
4743 that its name starts with SCOPE. */
4744
4745 /* If the function name starts with "_ada_", it means that it is
4746 a library-level function. Strip this prefix before doing the
4747 comparison, as the encoding for the renaming does not contain
4748 this prefix. */
4749 if (strncmp (function_name, "_ada_", 5) == 0)
4750 function_name += 5;
4751
4752 return (strncmp (function_name, scope, strlen (scope)) != 0);
4753 }
4754
4755 /* Remove entries from SYMS that corresponds to a renaming entity that
4756 is not visible from the function associated with CURRENT_BLOCK or
4757 that is superfluous due to the presence of more specific renaming
4758 information. Places surviving symbols in the initial entries of
4759 SYMS and returns the number of surviving symbols.
4760
4761 Rationale:
4762 First, in cases where an object renaming is implemented as a
4763 reference variable, GNAT may produce both the actual reference
4764 variable and the renaming encoding. In this case, we discard the
4765 latter.
4766
4767 Second, GNAT emits a type following a specified encoding for each renaming
4768 entity. Unfortunately, STABS currently does not support the definition
4769 of types that are local to a given lexical block, so all renamings types
4770 are emitted at library level. As a consequence, if an application
4771 contains two renaming entities using the same name, and a user tries to
4772 print the value of one of these entities, the result of the ada symbol
4773 lookup will also contain the wrong renaming type.
4774
4775 This function partially covers for this limitation by attempting to
4776 remove from the SYMS list renaming symbols that should be visible
4777 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4778 method with the current information available. The implementation
4779 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4780
4781 - When the user tries to print a rename in a function while there
4782 is another rename entity defined in a package: Normally, the
4783 rename in the function has precedence over the rename in the
4784 package, so the latter should be removed from the list. This is
4785 currently not the case.
4786
4787 - This function will incorrectly remove valid renames if
4788 the CURRENT_BLOCK corresponds to a function which symbol name
4789 has been changed by an "Export" pragma. As a consequence,
4790 the user will be unable to print such rename entities. */
4791
4792 static int
4793 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4794 int nsyms, const struct block *current_block)
4795 {
4796 struct symbol *current_function;
4797 const char *current_function_name;
4798 int i;
4799 int is_new_style_renaming;
4800
4801 /* If there is both a renaming foo___XR... encoded as a variable and
4802 a simple variable foo in the same block, discard the latter.
4803 First, zero out such symbols, then compress. */
4804 is_new_style_renaming = 0;
4805 for (i = 0; i < nsyms; i += 1)
4806 {
4807 struct symbol *sym = syms[i].sym;
4808 const struct block *block = syms[i].block;
4809 const char *name;
4810 const char *suffix;
4811
4812 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4813 continue;
4814 name = SYMBOL_LINKAGE_NAME (sym);
4815 suffix = strstr (name, "___XR");
4816
4817 if (suffix != NULL)
4818 {
4819 int name_len = suffix - name;
4820 int j;
4821
4822 is_new_style_renaming = 1;
4823 for (j = 0; j < nsyms; j += 1)
4824 if (i != j && syms[j].sym != NULL
4825 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4826 name_len) == 0
4827 && block == syms[j].block)
4828 syms[j].sym = NULL;
4829 }
4830 }
4831 if (is_new_style_renaming)
4832 {
4833 int j, k;
4834
4835 for (j = k = 0; j < nsyms; j += 1)
4836 if (syms[j].sym != NULL)
4837 {
4838 syms[k] = syms[j];
4839 k += 1;
4840 }
4841 return k;
4842 }
4843
4844 /* Extract the function name associated to CURRENT_BLOCK.
4845 Abort if unable to do so. */
4846
4847 if (current_block == NULL)
4848 return nsyms;
4849
4850 current_function = block_linkage_function (current_block);
4851 if (current_function == NULL)
4852 return nsyms;
4853
4854 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4855 if (current_function_name == NULL)
4856 return nsyms;
4857
4858 /* Check each of the symbols, and remove it from the list if it is
4859 a type corresponding to a renaming that is out of the scope of
4860 the current block. */
4861
4862 i = 0;
4863 while (i < nsyms)
4864 {
4865 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4866 == ADA_OBJECT_RENAMING
4867 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4868 {
4869 int j;
4870
4871 for (j = i + 1; j < nsyms; j += 1)
4872 syms[j - 1] = syms[j];
4873 nsyms -= 1;
4874 }
4875 else
4876 i += 1;
4877 }
4878
4879 return nsyms;
4880 }
4881
4882 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4883 whose name and domain match NAME and DOMAIN respectively.
4884 If no match was found, then extend the search to "enclosing"
4885 routines (in other words, if we're inside a nested function,
4886 search the symbols defined inside the enclosing functions).
4887 If WILD_MATCH_P is nonzero, perform the naming matching in
4888 "wild" mode (see function "wild_match" for more info).
4889
4890 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4891
4892 static void
4893 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4894 struct block *block, domain_enum domain,
4895 int wild_match_p)
4896 {
4897 int block_depth = 0;
4898
4899 while (block != NULL)
4900 {
4901 block_depth += 1;
4902 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4903 wild_match_p);
4904
4905 /* If we found a non-function match, assume that's the one. */
4906 if (is_nonfunction (defns_collected (obstackp, 0),
4907 num_defns_collected (obstackp)))
4908 return;
4909
4910 block = BLOCK_SUPERBLOCK (block);
4911 }
4912
4913 /* If no luck so far, try to find NAME as a local symbol in some lexically
4914 enclosing subprogram. */
4915 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4916 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4917 }
4918
4919 /* An object of this type is used as the user_data argument when
4920 calling the map_matching_symbols method. */
4921
4922 struct match_data
4923 {
4924 struct objfile *objfile;
4925 struct obstack *obstackp;
4926 struct symbol *arg_sym;
4927 int found_sym;
4928 };
4929
4930 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4931 to a list of symbols. DATA0 is a pointer to a struct match_data *
4932 containing the obstack that collects the symbol list, the file that SYM
4933 must come from, a flag indicating whether a non-argument symbol has
4934 been found in the current block, and the last argument symbol
4935 passed in SYM within the current block (if any). When SYM is null,
4936 marking the end of a block, the argument symbol is added if no
4937 other has been found. */
4938
4939 static int
4940 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4941 {
4942 struct match_data *data = (struct match_data *) data0;
4943
4944 if (sym == NULL)
4945 {
4946 if (!data->found_sym && data->arg_sym != NULL)
4947 add_defn_to_vec (data->obstackp,
4948 fixup_symbol_section (data->arg_sym, data->objfile),
4949 block);
4950 data->found_sym = 0;
4951 data->arg_sym = NULL;
4952 }
4953 else
4954 {
4955 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4956 return 0;
4957 else if (SYMBOL_IS_ARGUMENT (sym))
4958 data->arg_sym = sym;
4959 else
4960 {
4961 data->found_sym = 1;
4962 add_defn_to_vec (data->obstackp,
4963 fixup_symbol_section (sym, data->objfile),
4964 block);
4965 }
4966 }
4967 return 0;
4968 }
4969
4970 /* Compare STRING1 to STRING2, with results as for strcmp.
4971 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4972 implies compare_names (STRING1, STRING2) (they may differ as to
4973 what symbols compare equal). */
4974
4975 static int
4976 compare_names (const char *string1, const char *string2)
4977 {
4978 while (*string1 != '\0' && *string2 != '\0')
4979 {
4980 if (isspace (*string1) || isspace (*string2))
4981 return strcmp_iw_ordered (string1, string2);
4982 if (*string1 != *string2)
4983 break;
4984 string1 += 1;
4985 string2 += 1;
4986 }
4987 switch (*string1)
4988 {
4989 case '(':
4990 return strcmp_iw_ordered (string1, string2);
4991 case '_':
4992 if (*string2 == '\0')
4993 {
4994 if (is_name_suffix (string1))
4995 return 0;
4996 else
4997 return 1;
4998 }
4999 /* FALLTHROUGH */
5000 default:
5001 if (*string2 == '(')
5002 return strcmp_iw_ordered (string1, string2);
5003 else
5004 return *string1 - *string2;
5005 }
5006 }
5007
5008 /* Add to OBSTACKP all non-local symbols whose name and domain match
5009 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5010 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5011
5012 static void
5013 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5014 domain_enum domain, int global,
5015 int is_wild_match)
5016 {
5017 struct objfile *objfile;
5018 struct match_data data;
5019
5020 memset (&data, 0, sizeof data);
5021 data.obstackp = obstackp;
5022
5023 ALL_OBJFILES (objfile)
5024 {
5025 data.objfile = objfile;
5026
5027 if (is_wild_match)
5028 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5029 aux_add_nonlocal_symbols, &data,
5030 wild_match, NULL);
5031 else
5032 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5033 aux_add_nonlocal_symbols, &data,
5034 full_match, compare_names);
5035 }
5036
5037 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5038 {
5039 ALL_OBJFILES (objfile)
5040 {
5041 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5042 strcpy (name1, "_ada_");
5043 strcpy (name1 + sizeof ("_ada_") - 1, name);
5044 data.objfile = objfile;
5045 objfile->sf->qf->map_matching_symbols (name1, domain,
5046 objfile, global,
5047 aux_add_nonlocal_symbols,
5048 &data,
5049 full_match, compare_names);
5050 }
5051 }
5052 }
5053
5054 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5055 scope and in global scopes, returning the number of matches.
5056 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5057 indicating the symbols found and the blocks and symbol tables (if
5058 any) in which they were found. This vector are transient---good only to
5059 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5060 symbol match within the nest of blocks whose innermost member is BLOCK0,
5061 is the one match returned (no other matches in that or
5062 enclosing blocks is returned). If there are any matches in or
5063 surrounding BLOCK0, then these alone are returned. Otherwise, if
5064 FULL_SEARCH is non-zero, then the search extends to global and
5065 file-scope (static) symbol tables.
5066 Names prefixed with "standard__" are handled specially: "standard__"
5067 is first stripped off, and only static and global symbols are searched. */
5068
5069 int
5070 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5071 domain_enum namespace,
5072 struct ada_symbol_info **results,
5073 int full_search)
5074 {
5075 struct symbol *sym;
5076 struct block *block;
5077 const char *name;
5078 const int wild_match_p = should_use_wild_match (name0);
5079 int cacheIfUnique;
5080 int ndefns;
5081
5082 obstack_free (&symbol_list_obstack, NULL);
5083 obstack_init (&symbol_list_obstack);
5084
5085 cacheIfUnique = 0;
5086
5087 /* Search specified block and its superiors. */
5088
5089 name = name0;
5090 block = (struct block *) block0; /* FIXME: No cast ought to be
5091 needed, but adding const will
5092 have a cascade effect. */
5093
5094 /* Special case: If the user specifies a symbol name inside package
5095 Standard, do a non-wild matching of the symbol name without
5096 the "standard__" prefix. This was primarily introduced in order
5097 to allow the user to specifically access the standard exceptions
5098 using, for instance, Standard.Constraint_Error when Constraint_Error
5099 is ambiguous (due to the user defining its own Constraint_Error
5100 entity inside its program). */
5101 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5102 {
5103 block = NULL;
5104 name = name0 + sizeof ("standard__") - 1;
5105 }
5106
5107 /* Check the non-global symbols. If we have ANY match, then we're done. */
5108
5109 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5110 wild_match_p);
5111 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5112 goto done;
5113
5114 /* No non-global symbols found. Check our cache to see if we have
5115 already performed this search before. If we have, then return
5116 the same result. */
5117
5118 cacheIfUnique = 1;
5119 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5120 {
5121 if (sym != NULL)
5122 add_defn_to_vec (&symbol_list_obstack, sym, block);
5123 goto done;
5124 }
5125
5126 /* Search symbols from all global blocks. */
5127
5128 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5129 wild_match_p);
5130
5131 /* Now add symbols from all per-file blocks if we've gotten no hits
5132 (not strictly correct, but perhaps better than an error). */
5133
5134 if (num_defns_collected (&symbol_list_obstack) == 0)
5135 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5136 wild_match_p);
5137
5138 done:
5139 ndefns = num_defns_collected (&symbol_list_obstack);
5140 *results = defns_collected (&symbol_list_obstack, 1);
5141
5142 ndefns = remove_extra_symbols (*results, ndefns);
5143
5144 if (ndefns == 0 && full_search)
5145 cache_symbol (name0, namespace, NULL, NULL);
5146
5147 if (ndefns == 1 && full_search && cacheIfUnique)
5148 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5149
5150 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5151
5152 return ndefns;
5153 }
5154
5155 /* If NAME is the name of an entity, return a string that should
5156 be used to look that entity up in Ada units. This string should
5157 be deallocated after use using xfree.
5158
5159 NAME can have any form that the "break" or "print" commands might
5160 recognize. In other words, it does not have to be the "natural"
5161 name, or the "encoded" name. */
5162
5163 char *
5164 ada_name_for_lookup (const char *name)
5165 {
5166 char *canon;
5167 int nlen = strlen (name);
5168
5169 if (name[0] == '<' && name[nlen - 1] == '>')
5170 {
5171 canon = xmalloc (nlen - 1);
5172 memcpy (canon, name + 1, nlen - 2);
5173 canon[nlen - 2] = '\0';
5174 }
5175 else
5176 canon = xstrdup (ada_encode (ada_fold_name (name)));
5177 return canon;
5178 }
5179
5180 /* Implementation of the la_iterate_over_symbols method. */
5181
5182 static void
5183 ada_iterate_over_symbols (const struct block *block,
5184 const char *name, domain_enum domain,
5185 symbol_found_callback_ftype *callback,
5186 void *data)
5187 {
5188 int ndefs, i;
5189 struct ada_symbol_info *results;
5190
5191 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5192 for (i = 0; i < ndefs; ++i)
5193 {
5194 if (! (*callback) (results[i].sym, data))
5195 break;
5196 }
5197 }
5198
5199 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5200 to 1, but choosing the first symbol found if there are multiple
5201 choices.
5202
5203 The result is stored in *INFO, which must be non-NULL.
5204 If no match is found, INFO->SYM is set to NULL. */
5205
5206 void
5207 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5208 domain_enum namespace,
5209 struct ada_symbol_info *info)
5210 {
5211 struct ada_symbol_info *candidates;
5212 int n_candidates;
5213
5214 gdb_assert (info != NULL);
5215 memset (info, 0, sizeof (struct ada_symbol_info));
5216
5217 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
5218 1);
5219
5220 if (n_candidates == 0)
5221 return;
5222
5223 *info = candidates[0];
5224 info->sym = fixup_symbol_section (info->sym, NULL);
5225 }
5226
5227 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5228 scope and in global scopes, or NULL if none. NAME is folded and
5229 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5230 choosing the first symbol if there are multiple choices.
5231 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5232
5233 struct symbol *
5234 ada_lookup_symbol (const char *name, const struct block *block0,
5235 domain_enum namespace, int *is_a_field_of_this)
5236 {
5237 struct ada_symbol_info info;
5238
5239 if (is_a_field_of_this != NULL)
5240 *is_a_field_of_this = 0;
5241
5242 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5243 block0, namespace, &info);
5244 return info.sym;
5245 }
5246
5247 static struct symbol *
5248 ada_lookup_symbol_nonlocal (const char *name,
5249 const struct block *block,
5250 const domain_enum domain)
5251 {
5252 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5253 }
5254
5255
5256 /* True iff STR is a possible encoded suffix of a normal Ada name
5257 that is to be ignored for matching purposes. Suffixes of parallel
5258 names (e.g., XVE) are not included here. Currently, the possible suffixes
5259 are given by any of the regular expressions:
5260
5261 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5262 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5263 TKB [subprogram suffix for task bodies]
5264 _E[0-9]+[bs]$ [protected object entry suffixes]
5265 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5266
5267 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5268 match is performed. This sequence is used to differentiate homonyms,
5269 is an optional part of a valid name suffix. */
5270
5271 static int
5272 is_name_suffix (const char *str)
5273 {
5274 int k;
5275 const char *matching;
5276 const int len = strlen (str);
5277
5278 /* Skip optional leading __[0-9]+. */
5279
5280 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5281 {
5282 str += 3;
5283 while (isdigit (str[0]))
5284 str += 1;
5285 }
5286
5287 /* [.$][0-9]+ */
5288
5289 if (str[0] == '.' || str[0] == '$')
5290 {
5291 matching = str + 1;
5292 while (isdigit (matching[0]))
5293 matching += 1;
5294 if (matching[0] == '\0')
5295 return 1;
5296 }
5297
5298 /* ___[0-9]+ */
5299
5300 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5301 {
5302 matching = str + 3;
5303 while (isdigit (matching[0]))
5304 matching += 1;
5305 if (matching[0] == '\0')
5306 return 1;
5307 }
5308
5309 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5310
5311 if (strcmp (str, "TKB") == 0)
5312 return 1;
5313
5314 #if 0
5315 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5316 with a N at the end. Unfortunately, the compiler uses the same
5317 convention for other internal types it creates. So treating
5318 all entity names that end with an "N" as a name suffix causes
5319 some regressions. For instance, consider the case of an enumerated
5320 type. To support the 'Image attribute, it creates an array whose
5321 name ends with N.
5322 Having a single character like this as a suffix carrying some
5323 information is a bit risky. Perhaps we should change the encoding
5324 to be something like "_N" instead. In the meantime, do not do
5325 the following check. */
5326 /* Protected Object Subprograms */
5327 if (len == 1 && str [0] == 'N')
5328 return 1;
5329 #endif
5330
5331 /* _E[0-9]+[bs]$ */
5332 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5333 {
5334 matching = str + 3;
5335 while (isdigit (matching[0]))
5336 matching += 1;
5337 if ((matching[0] == 'b' || matching[0] == 's')
5338 && matching [1] == '\0')
5339 return 1;
5340 }
5341
5342 /* ??? We should not modify STR directly, as we are doing below. This
5343 is fine in this case, but may become problematic later if we find
5344 that this alternative did not work, and want to try matching
5345 another one from the begining of STR. Since we modified it, we
5346 won't be able to find the begining of the string anymore! */
5347 if (str[0] == 'X')
5348 {
5349 str += 1;
5350 while (str[0] != '_' && str[0] != '\0')
5351 {
5352 if (str[0] != 'n' && str[0] != 'b')
5353 return 0;
5354 str += 1;
5355 }
5356 }
5357
5358 if (str[0] == '\000')
5359 return 1;
5360
5361 if (str[0] == '_')
5362 {
5363 if (str[1] != '_' || str[2] == '\000')
5364 return 0;
5365 if (str[2] == '_')
5366 {
5367 if (strcmp (str + 3, "JM") == 0)
5368 return 1;
5369 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5370 the LJM suffix in favor of the JM one. But we will
5371 still accept LJM as a valid suffix for a reasonable
5372 amount of time, just to allow ourselves to debug programs
5373 compiled using an older version of GNAT. */
5374 if (strcmp (str + 3, "LJM") == 0)
5375 return 1;
5376 if (str[3] != 'X')
5377 return 0;
5378 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5379 || str[4] == 'U' || str[4] == 'P')
5380 return 1;
5381 if (str[4] == 'R' && str[5] != 'T')
5382 return 1;
5383 return 0;
5384 }
5385 if (!isdigit (str[2]))
5386 return 0;
5387 for (k = 3; str[k] != '\0'; k += 1)
5388 if (!isdigit (str[k]) && str[k] != '_')
5389 return 0;
5390 return 1;
5391 }
5392 if (str[0] == '$' && isdigit (str[1]))
5393 {
5394 for (k = 2; str[k] != '\0'; k += 1)
5395 if (!isdigit (str[k]) && str[k] != '_')
5396 return 0;
5397 return 1;
5398 }
5399 return 0;
5400 }
5401
5402 /* Return non-zero if the string starting at NAME and ending before
5403 NAME_END contains no capital letters. */
5404
5405 static int
5406 is_valid_name_for_wild_match (const char *name0)
5407 {
5408 const char *decoded_name = ada_decode (name0);
5409 int i;
5410
5411 /* If the decoded name starts with an angle bracket, it means that
5412 NAME0 does not follow the GNAT encoding format. It should then
5413 not be allowed as a possible wild match. */
5414 if (decoded_name[0] == '<')
5415 return 0;
5416
5417 for (i=0; decoded_name[i] != '\0'; i++)
5418 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5419 return 0;
5420
5421 return 1;
5422 }
5423
5424 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5425 that could start a simple name. Assumes that *NAMEP points into
5426 the string beginning at NAME0. */
5427
5428 static int
5429 advance_wild_match (const char **namep, const char *name0, int target0)
5430 {
5431 const char *name = *namep;
5432
5433 while (1)
5434 {
5435 int t0, t1;
5436
5437 t0 = *name;
5438 if (t0 == '_')
5439 {
5440 t1 = name[1];
5441 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5442 {
5443 name += 1;
5444 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5445 break;
5446 else
5447 name += 1;
5448 }
5449 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5450 || name[2] == target0))
5451 {
5452 name += 2;
5453 break;
5454 }
5455 else
5456 return 0;
5457 }
5458 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5459 name += 1;
5460 else
5461 return 0;
5462 }
5463
5464 *namep = name;
5465 return 1;
5466 }
5467
5468 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5469 informational suffixes of NAME (i.e., for which is_name_suffix is
5470 true). Assumes that PATN is a lower-cased Ada simple name. */
5471
5472 static int
5473 wild_match (const char *name, const char *patn)
5474 {
5475 const char *p;
5476 const char *name0 = name;
5477
5478 while (1)
5479 {
5480 const char *match = name;
5481
5482 if (*name == *patn)
5483 {
5484 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5485 if (*p != *name)
5486 break;
5487 if (*p == '\0' && is_name_suffix (name))
5488 return match != name0 && !is_valid_name_for_wild_match (name0);
5489
5490 if (name[-1] == '_')
5491 name -= 1;
5492 }
5493 if (!advance_wild_match (&name, name0, *patn))
5494 return 1;
5495 }
5496 }
5497
5498 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5499 informational suffix. */
5500
5501 static int
5502 full_match (const char *sym_name, const char *search_name)
5503 {
5504 return !match_name (sym_name, search_name, 0);
5505 }
5506
5507
5508 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5509 vector *defn_symbols, updating the list of symbols in OBSTACKP
5510 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5511 OBJFILE is the section containing BLOCK.
5512 SYMTAB is recorded with each symbol added. */
5513
5514 static void
5515 ada_add_block_symbols (struct obstack *obstackp,
5516 struct block *block, const char *name,
5517 domain_enum domain, struct objfile *objfile,
5518 int wild)
5519 {
5520 struct block_iterator iter;
5521 int name_len = strlen (name);
5522 /* A matching argument symbol, if any. */
5523 struct symbol *arg_sym;
5524 /* Set true when we find a matching non-argument symbol. */
5525 int found_sym;
5526 struct symbol *sym;
5527
5528 arg_sym = NULL;
5529 found_sym = 0;
5530 if (wild)
5531 {
5532 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5533 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5534 {
5535 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5536 SYMBOL_DOMAIN (sym), domain)
5537 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5538 {
5539 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5540 continue;
5541 else if (SYMBOL_IS_ARGUMENT (sym))
5542 arg_sym = sym;
5543 else
5544 {
5545 found_sym = 1;
5546 add_defn_to_vec (obstackp,
5547 fixup_symbol_section (sym, objfile),
5548 block);
5549 }
5550 }
5551 }
5552 }
5553 else
5554 {
5555 for (sym = block_iter_match_first (block, name, full_match, &iter);
5556 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5557 {
5558 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5559 SYMBOL_DOMAIN (sym), domain))
5560 {
5561 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5562 {
5563 if (SYMBOL_IS_ARGUMENT (sym))
5564 arg_sym = sym;
5565 else
5566 {
5567 found_sym = 1;
5568 add_defn_to_vec (obstackp,
5569 fixup_symbol_section (sym, objfile),
5570 block);
5571 }
5572 }
5573 }
5574 }
5575 }
5576
5577 if (!found_sym && arg_sym != NULL)
5578 {
5579 add_defn_to_vec (obstackp,
5580 fixup_symbol_section (arg_sym, objfile),
5581 block);
5582 }
5583
5584 if (!wild)
5585 {
5586 arg_sym = NULL;
5587 found_sym = 0;
5588
5589 ALL_BLOCK_SYMBOLS (block, iter, sym)
5590 {
5591 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5592 SYMBOL_DOMAIN (sym), domain))
5593 {
5594 int cmp;
5595
5596 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5597 if (cmp == 0)
5598 {
5599 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5600 if (cmp == 0)
5601 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5602 name_len);
5603 }
5604
5605 if (cmp == 0
5606 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5607 {
5608 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5609 {
5610 if (SYMBOL_IS_ARGUMENT (sym))
5611 arg_sym = sym;
5612 else
5613 {
5614 found_sym = 1;
5615 add_defn_to_vec (obstackp,
5616 fixup_symbol_section (sym, objfile),
5617 block);
5618 }
5619 }
5620 }
5621 }
5622 }
5623
5624 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5625 They aren't parameters, right? */
5626 if (!found_sym && arg_sym != NULL)
5627 {
5628 add_defn_to_vec (obstackp,
5629 fixup_symbol_section (arg_sym, objfile),
5630 block);
5631 }
5632 }
5633 }
5634 \f
5635
5636 /* Symbol Completion */
5637
5638 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5639 name in a form that's appropriate for the completion. The result
5640 does not need to be deallocated, but is only good until the next call.
5641
5642 TEXT_LEN is equal to the length of TEXT.
5643 Perform a wild match if WILD_MATCH_P is set.
5644 ENCODED_P should be set if TEXT represents the start of a symbol name
5645 in its encoded form. */
5646
5647 static const char *
5648 symbol_completion_match (const char *sym_name,
5649 const char *text, int text_len,
5650 int wild_match_p, int encoded_p)
5651 {
5652 const int verbatim_match = (text[0] == '<');
5653 int match = 0;
5654
5655 if (verbatim_match)
5656 {
5657 /* Strip the leading angle bracket. */
5658 text = text + 1;
5659 text_len--;
5660 }
5661
5662 /* First, test against the fully qualified name of the symbol. */
5663
5664 if (strncmp (sym_name, text, text_len) == 0)
5665 match = 1;
5666
5667 if (match && !encoded_p)
5668 {
5669 /* One needed check before declaring a positive match is to verify
5670 that iff we are doing a verbatim match, the decoded version
5671 of the symbol name starts with '<'. Otherwise, this symbol name
5672 is not a suitable completion. */
5673 const char *sym_name_copy = sym_name;
5674 int has_angle_bracket;
5675
5676 sym_name = ada_decode (sym_name);
5677 has_angle_bracket = (sym_name[0] == '<');
5678 match = (has_angle_bracket == verbatim_match);
5679 sym_name = sym_name_copy;
5680 }
5681
5682 if (match && !verbatim_match)
5683 {
5684 /* When doing non-verbatim match, another check that needs to
5685 be done is to verify that the potentially matching symbol name
5686 does not include capital letters, because the ada-mode would
5687 not be able to understand these symbol names without the
5688 angle bracket notation. */
5689 const char *tmp;
5690
5691 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5692 if (*tmp != '\0')
5693 match = 0;
5694 }
5695
5696 /* Second: Try wild matching... */
5697
5698 if (!match && wild_match_p)
5699 {
5700 /* Since we are doing wild matching, this means that TEXT
5701 may represent an unqualified symbol name. We therefore must
5702 also compare TEXT against the unqualified name of the symbol. */
5703 sym_name = ada_unqualified_name (ada_decode (sym_name));
5704
5705 if (strncmp (sym_name, text, text_len) == 0)
5706 match = 1;
5707 }
5708
5709 /* Finally: If we found a mach, prepare the result to return. */
5710
5711 if (!match)
5712 return NULL;
5713
5714 if (verbatim_match)
5715 sym_name = add_angle_brackets (sym_name);
5716
5717 if (!encoded_p)
5718 sym_name = ada_decode (sym_name);
5719
5720 return sym_name;
5721 }
5722
5723 /* A companion function to ada_make_symbol_completion_list().
5724 Check if SYM_NAME represents a symbol which name would be suitable
5725 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5726 it is appended at the end of the given string vector SV.
5727
5728 ORIG_TEXT is the string original string from the user command
5729 that needs to be completed. WORD is the entire command on which
5730 completion should be performed. These two parameters are used to
5731 determine which part of the symbol name should be added to the
5732 completion vector.
5733 if WILD_MATCH_P is set, then wild matching is performed.
5734 ENCODED_P should be set if TEXT represents a symbol name in its
5735 encoded formed (in which case the completion should also be
5736 encoded). */
5737
5738 static void
5739 symbol_completion_add (VEC(char_ptr) **sv,
5740 const char *sym_name,
5741 const char *text, int text_len,
5742 const char *orig_text, const char *word,
5743 int wild_match_p, int encoded_p)
5744 {
5745 const char *match = symbol_completion_match (sym_name, text, text_len,
5746 wild_match_p, encoded_p);
5747 char *completion;
5748
5749 if (match == NULL)
5750 return;
5751
5752 /* We found a match, so add the appropriate completion to the given
5753 string vector. */
5754
5755 if (word == orig_text)
5756 {
5757 completion = xmalloc (strlen (match) + 5);
5758 strcpy (completion, match);
5759 }
5760 else if (word > orig_text)
5761 {
5762 /* Return some portion of sym_name. */
5763 completion = xmalloc (strlen (match) + 5);
5764 strcpy (completion, match + (word - orig_text));
5765 }
5766 else
5767 {
5768 /* Return some of ORIG_TEXT plus sym_name. */
5769 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5770 strncpy (completion, word, orig_text - word);
5771 completion[orig_text - word] = '\0';
5772 strcat (completion, match);
5773 }
5774
5775 VEC_safe_push (char_ptr, *sv, completion);
5776 }
5777
5778 /* An object of this type is passed as the user_data argument to the
5779 expand_partial_symbol_names method. */
5780 struct add_partial_datum
5781 {
5782 VEC(char_ptr) **completions;
5783 char *text;
5784 int text_len;
5785 char *text0;
5786 char *word;
5787 int wild_match;
5788 int encoded;
5789 };
5790
5791 /* A callback for expand_partial_symbol_names. */
5792 static int
5793 ada_expand_partial_symbol_name (const char *name, void *user_data)
5794 {
5795 struct add_partial_datum *data = user_data;
5796
5797 return symbol_completion_match (name, data->text, data->text_len,
5798 data->wild_match, data->encoded) != NULL;
5799 }
5800
5801 /* Return a list of possible symbol names completing TEXT0. WORD is
5802 the entire command on which completion is made. */
5803
5804 static VEC (char_ptr) *
5805 ada_make_symbol_completion_list (char *text0, char *word, enum type_code code)
5806 {
5807 char *text;
5808 int text_len;
5809 int wild_match_p;
5810 int encoded_p;
5811 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5812 struct symbol *sym;
5813 struct symtab *s;
5814 struct minimal_symbol *msymbol;
5815 struct objfile *objfile;
5816 struct block *b, *surrounding_static_block = 0;
5817 int i;
5818 struct block_iterator iter;
5819
5820 gdb_assert (code == TYPE_CODE_UNDEF);
5821
5822 if (text0[0] == '<')
5823 {
5824 text = xstrdup (text0);
5825 make_cleanup (xfree, text);
5826 text_len = strlen (text);
5827 wild_match_p = 0;
5828 encoded_p = 1;
5829 }
5830 else
5831 {
5832 text = xstrdup (ada_encode (text0));
5833 make_cleanup (xfree, text);
5834 text_len = strlen (text);
5835 for (i = 0; i < text_len; i++)
5836 text[i] = tolower (text[i]);
5837
5838 encoded_p = (strstr (text0, "__") != NULL);
5839 /* If the name contains a ".", then the user is entering a fully
5840 qualified entity name, and the match must not be done in wild
5841 mode. Similarly, if the user wants to complete what looks like
5842 an encoded name, the match must not be done in wild mode. */
5843 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5844 }
5845
5846 /* First, look at the partial symtab symbols. */
5847 {
5848 struct add_partial_datum data;
5849
5850 data.completions = &completions;
5851 data.text = text;
5852 data.text_len = text_len;
5853 data.text0 = text0;
5854 data.word = word;
5855 data.wild_match = wild_match_p;
5856 data.encoded = encoded_p;
5857 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5858 }
5859
5860 /* At this point scan through the misc symbol vectors and add each
5861 symbol you find to the list. Eventually we want to ignore
5862 anything that isn't a text symbol (everything else will be
5863 handled by the psymtab code above). */
5864
5865 ALL_MSYMBOLS (objfile, msymbol)
5866 {
5867 QUIT;
5868 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5869 text, text_len, text0, word, wild_match_p,
5870 encoded_p);
5871 }
5872
5873 /* Search upwards from currently selected frame (so that we can
5874 complete on local vars. */
5875
5876 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5877 {
5878 if (!BLOCK_SUPERBLOCK (b))
5879 surrounding_static_block = b; /* For elmin of dups */
5880
5881 ALL_BLOCK_SYMBOLS (b, iter, sym)
5882 {
5883 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5884 text, text_len, text0, word,
5885 wild_match_p, encoded_p);
5886 }
5887 }
5888
5889 /* Go through the symtabs and check the externs and statics for
5890 symbols which match. */
5891
5892 ALL_SYMTABS (objfile, s)
5893 {
5894 QUIT;
5895 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5896 ALL_BLOCK_SYMBOLS (b, iter, sym)
5897 {
5898 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5899 text, text_len, text0, word,
5900 wild_match_p, encoded_p);
5901 }
5902 }
5903
5904 ALL_SYMTABS (objfile, s)
5905 {
5906 QUIT;
5907 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5908 /* Don't do this block twice. */
5909 if (b == surrounding_static_block)
5910 continue;
5911 ALL_BLOCK_SYMBOLS (b, iter, sym)
5912 {
5913 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5914 text, text_len, text0, word,
5915 wild_match_p, encoded_p);
5916 }
5917 }
5918
5919 return completions;
5920 }
5921
5922 /* Field Access */
5923
5924 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5925 for tagged types. */
5926
5927 static int
5928 ada_is_dispatch_table_ptr_type (struct type *type)
5929 {
5930 const char *name;
5931
5932 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5933 return 0;
5934
5935 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5936 if (name == NULL)
5937 return 0;
5938
5939 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5940 }
5941
5942 /* Return non-zero if TYPE is an interface tag. */
5943
5944 static int
5945 ada_is_interface_tag (struct type *type)
5946 {
5947 const char *name = TYPE_NAME (type);
5948
5949 if (name == NULL)
5950 return 0;
5951
5952 return (strcmp (name, "ada__tags__interface_tag") == 0);
5953 }
5954
5955 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5956 to be invisible to users. */
5957
5958 int
5959 ada_is_ignored_field (struct type *type, int field_num)
5960 {
5961 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5962 return 1;
5963
5964 /* Check the name of that field. */
5965 {
5966 const char *name = TYPE_FIELD_NAME (type, field_num);
5967
5968 /* Anonymous field names should not be printed.
5969 brobecker/2007-02-20: I don't think this can actually happen
5970 but we don't want to print the value of annonymous fields anyway. */
5971 if (name == NULL)
5972 return 1;
5973
5974 /* Normally, fields whose name start with an underscore ("_")
5975 are fields that have been internally generated by the compiler,
5976 and thus should not be printed. The "_parent" field is special,
5977 however: This is a field internally generated by the compiler
5978 for tagged types, and it contains the components inherited from
5979 the parent type. This field should not be printed as is, but
5980 should not be ignored either. */
5981 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5982 return 1;
5983 }
5984
5985 /* If this is the dispatch table of a tagged type or an interface tag,
5986 then ignore. */
5987 if (ada_is_tagged_type (type, 1)
5988 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
5989 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
5990 return 1;
5991
5992 /* Not a special field, so it should not be ignored. */
5993 return 0;
5994 }
5995
5996 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5997 pointer or reference type whose ultimate target has a tag field. */
5998
5999 int
6000 ada_is_tagged_type (struct type *type, int refok)
6001 {
6002 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6003 }
6004
6005 /* True iff TYPE represents the type of X'Tag */
6006
6007 int
6008 ada_is_tag_type (struct type *type)
6009 {
6010 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6011 return 0;
6012 else
6013 {
6014 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6015
6016 return (name != NULL
6017 && strcmp (name, "ada__tags__dispatch_table") == 0);
6018 }
6019 }
6020
6021 /* The type of the tag on VAL. */
6022
6023 struct type *
6024 ada_tag_type (struct value *val)
6025 {
6026 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6027 }
6028
6029 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6030 retired at Ada 05). */
6031
6032 static int
6033 is_ada95_tag (struct value *tag)
6034 {
6035 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6036 }
6037
6038 /* The value of the tag on VAL. */
6039
6040 struct value *
6041 ada_value_tag (struct value *val)
6042 {
6043 return ada_value_struct_elt (val, "_tag", 0);
6044 }
6045
6046 /* The value of the tag on the object of type TYPE whose contents are
6047 saved at VALADDR, if it is non-null, or is at memory address
6048 ADDRESS. */
6049
6050 static struct value *
6051 value_tag_from_contents_and_address (struct type *type,
6052 const gdb_byte *valaddr,
6053 CORE_ADDR address)
6054 {
6055 int tag_byte_offset;
6056 struct type *tag_type;
6057
6058 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6059 NULL, NULL, NULL))
6060 {
6061 const gdb_byte *valaddr1 = ((valaddr == NULL)
6062 ? NULL
6063 : valaddr + tag_byte_offset);
6064 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6065
6066 return value_from_contents_and_address (tag_type, valaddr1, address1);
6067 }
6068 return NULL;
6069 }
6070
6071 static struct type *
6072 type_from_tag (struct value *tag)
6073 {
6074 const char *type_name = ada_tag_name (tag);
6075
6076 if (type_name != NULL)
6077 return ada_find_any_type (ada_encode (type_name));
6078 return NULL;
6079 }
6080
6081 /* Given a value OBJ of a tagged type, return a value of this
6082 type at the base address of the object. The base address, as
6083 defined in Ada.Tags, it is the address of the primary tag of
6084 the object, and therefore where the field values of its full
6085 view can be fetched. */
6086
6087 struct value *
6088 ada_tag_value_at_base_address (struct value *obj)
6089 {
6090 volatile struct gdb_exception e;
6091 struct value *val;
6092 LONGEST offset_to_top = 0;
6093 struct type *ptr_type, *obj_type;
6094 struct value *tag;
6095 CORE_ADDR base_address;
6096
6097 obj_type = value_type (obj);
6098
6099 /* It is the responsability of the caller to deref pointers. */
6100
6101 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6102 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6103 return obj;
6104
6105 tag = ada_value_tag (obj);
6106 if (!tag)
6107 return obj;
6108
6109 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6110
6111 if (is_ada95_tag (tag))
6112 return obj;
6113
6114 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6115 ptr_type = lookup_pointer_type (ptr_type);
6116 val = value_cast (ptr_type, tag);
6117 if (!val)
6118 return obj;
6119
6120 /* It is perfectly possible that an exception be raised while
6121 trying to determine the base address, just like for the tag;
6122 see ada_tag_name for more details. We do not print the error
6123 message for the same reason. */
6124
6125 TRY_CATCH (e, RETURN_MASK_ERROR)
6126 {
6127 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6128 }
6129
6130 if (e.reason < 0)
6131 return obj;
6132
6133 /* If offset is null, nothing to do. */
6134
6135 if (offset_to_top == 0)
6136 return obj;
6137
6138 /* -1 is a special case in Ada.Tags; however, what should be done
6139 is not quite clear from the documentation. So do nothing for
6140 now. */
6141
6142 if (offset_to_top == -1)
6143 return obj;
6144
6145 base_address = value_address (obj) - offset_to_top;
6146 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6147
6148 /* Make sure that we have a proper tag at the new address.
6149 Otherwise, offset_to_top is bogus (which can happen when
6150 the object is not initialized yet). */
6151
6152 if (!tag)
6153 return obj;
6154
6155 obj_type = type_from_tag (tag);
6156
6157 if (!obj_type)
6158 return obj;
6159
6160 return value_from_contents_and_address (obj_type, NULL, base_address);
6161 }
6162
6163 /* Return the "ada__tags__type_specific_data" type. */
6164
6165 static struct type *
6166 ada_get_tsd_type (struct inferior *inf)
6167 {
6168 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6169
6170 if (data->tsd_type == 0)
6171 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6172 return data->tsd_type;
6173 }
6174
6175 /* Return the TSD (type-specific data) associated to the given TAG.
6176 TAG is assumed to be the tag of a tagged-type entity.
6177
6178 May return NULL if we are unable to get the TSD. */
6179
6180 static struct value *
6181 ada_get_tsd_from_tag (struct value *tag)
6182 {
6183 struct value *val;
6184 struct type *type;
6185
6186 /* First option: The TSD is simply stored as a field of our TAG.
6187 Only older versions of GNAT would use this format, but we have
6188 to test it first, because there are no visible markers for
6189 the current approach except the absence of that field. */
6190
6191 val = ada_value_struct_elt (tag, "tsd", 1);
6192 if (val)
6193 return val;
6194
6195 /* Try the second representation for the dispatch table (in which
6196 there is no explicit 'tsd' field in the referent of the tag pointer,
6197 and instead the tsd pointer is stored just before the dispatch
6198 table. */
6199
6200 type = ada_get_tsd_type (current_inferior());
6201 if (type == NULL)
6202 return NULL;
6203 type = lookup_pointer_type (lookup_pointer_type (type));
6204 val = value_cast (type, tag);
6205 if (val == NULL)
6206 return NULL;
6207 return value_ind (value_ptradd (val, -1));
6208 }
6209
6210 /* Given the TSD of a tag (type-specific data), return a string
6211 containing the name of the associated type.
6212
6213 The returned value is good until the next call. May return NULL
6214 if we are unable to determine the tag name. */
6215
6216 static char *
6217 ada_tag_name_from_tsd (struct value *tsd)
6218 {
6219 static char name[1024];
6220 char *p;
6221 struct value *val;
6222
6223 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6224 if (val == NULL)
6225 return NULL;
6226 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6227 for (p = name; *p != '\0'; p += 1)
6228 if (isalpha (*p))
6229 *p = tolower (*p);
6230 return name;
6231 }
6232
6233 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6234 a C string.
6235
6236 Return NULL if the TAG is not an Ada tag, or if we were unable to
6237 determine the name of that tag. The result is good until the next
6238 call. */
6239
6240 const char *
6241 ada_tag_name (struct value *tag)
6242 {
6243 volatile struct gdb_exception e;
6244 char *name = NULL;
6245
6246 if (!ada_is_tag_type (value_type (tag)))
6247 return NULL;
6248
6249 /* It is perfectly possible that an exception be raised while trying
6250 to determine the TAG's name, even under normal circumstances:
6251 The associated variable may be uninitialized or corrupted, for
6252 instance. We do not let any exception propagate past this point.
6253 instead we return NULL.
6254
6255 We also do not print the error message either (which often is very
6256 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6257 the caller print a more meaningful message if necessary. */
6258 TRY_CATCH (e, RETURN_MASK_ERROR)
6259 {
6260 struct value *tsd = ada_get_tsd_from_tag (tag);
6261
6262 if (tsd != NULL)
6263 name = ada_tag_name_from_tsd (tsd);
6264 }
6265
6266 return name;
6267 }
6268
6269 /* The parent type of TYPE, or NULL if none. */
6270
6271 struct type *
6272 ada_parent_type (struct type *type)
6273 {
6274 int i;
6275
6276 type = ada_check_typedef (type);
6277
6278 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6279 return NULL;
6280
6281 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6282 if (ada_is_parent_field (type, i))
6283 {
6284 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6285
6286 /* If the _parent field is a pointer, then dereference it. */
6287 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6288 parent_type = TYPE_TARGET_TYPE (parent_type);
6289 /* If there is a parallel XVS type, get the actual base type. */
6290 parent_type = ada_get_base_type (parent_type);
6291
6292 return ada_check_typedef (parent_type);
6293 }
6294
6295 return NULL;
6296 }
6297
6298 /* True iff field number FIELD_NUM of structure type TYPE contains the
6299 parent-type (inherited) fields of a derived type. Assumes TYPE is
6300 a structure type with at least FIELD_NUM+1 fields. */
6301
6302 int
6303 ada_is_parent_field (struct type *type, int field_num)
6304 {
6305 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6306
6307 return (name != NULL
6308 && (strncmp (name, "PARENT", 6) == 0
6309 || strncmp (name, "_parent", 7) == 0));
6310 }
6311
6312 /* True iff field number FIELD_NUM of structure type TYPE is a
6313 transparent wrapper field (which should be silently traversed when doing
6314 field selection and flattened when printing). Assumes TYPE is a
6315 structure type with at least FIELD_NUM+1 fields. Such fields are always
6316 structures. */
6317
6318 int
6319 ada_is_wrapper_field (struct type *type, int field_num)
6320 {
6321 const char *name = TYPE_FIELD_NAME (type, field_num);
6322
6323 return (name != NULL
6324 && (strncmp (name, "PARENT", 6) == 0
6325 || strcmp (name, "REP") == 0
6326 || strncmp (name, "_parent", 7) == 0
6327 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6328 }
6329
6330 /* True iff field number FIELD_NUM of structure or union type TYPE
6331 is a variant wrapper. Assumes TYPE is a structure type with at least
6332 FIELD_NUM+1 fields. */
6333
6334 int
6335 ada_is_variant_part (struct type *type, int field_num)
6336 {
6337 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6338
6339 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6340 || (is_dynamic_field (type, field_num)
6341 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6342 == TYPE_CODE_UNION)));
6343 }
6344
6345 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6346 whose discriminants are contained in the record type OUTER_TYPE,
6347 returns the type of the controlling discriminant for the variant.
6348 May return NULL if the type could not be found. */
6349
6350 struct type *
6351 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6352 {
6353 char *name = ada_variant_discrim_name (var_type);
6354
6355 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6356 }
6357
6358 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6359 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6360 represents a 'when others' clause; otherwise 0. */
6361
6362 int
6363 ada_is_others_clause (struct type *type, int field_num)
6364 {
6365 const char *name = TYPE_FIELD_NAME (type, field_num);
6366
6367 return (name != NULL && name[0] == 'O');
6368 }
6369
6370 /* Assuming that TYPE0 is the type of the variant part of a record,
6371 returns the name of the discriminant controlling the variant.
6372 The value is valid until the next call to ada_variant_discrim_name. */
6373
6374 char *
6375 ada_variant_discrim_name (struct type *type0)
6376 {
6377 static char *result = NULL;
6378 static size_t result_len = 0;
6379 struct type *type;
6380 const char *name;
6381 const char *discrim_end;
6382 const char *discrim_start;
6383
6384 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6385 type = TYPE_TARGET_TYPE (type0);
6386 else
6387 type = type0;
6388
6389 name = ada_type_name (type);
6390
6391 if (name == NULL || name[0] == '\000')
6392 return "";
6393
6394 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6395 discrim_end -= 1)
6396 {
6397 if (strncmp (discrim_end, "___XVN", 6) == 0)
6398 break;
6399 }
6400 if (discrim_end == name)
6401 return "";
6402
6403 for (discrim_start = discrim_end; discrim_start != name + 3;
6404 discrim_start -= 1)
6405 {
6406 if (discrim_start == name + 1)
6407 return "";
6408 if ((discrim_start > name + 3
6409 && strncmp (discrim_start - 3, "___", 3) == 0)
6410 || discrim_start[-1] == '.')
6411 break;
6412 }
6413
6414 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6415 strncpy (result, discrim_start, discrim_end - discrim_start);
6416 result[discrim_end - discrim_start] = '\0';
6417 return result;
6418 }
6419
6420 /* Scan STR for a subtype-encoded number, beginning at position K.
6421 Put the position of the character just past the number scanned in
6422 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6423 Return 1 if there was a valid number at the given position, and 0
6424 otherwise. A "subtype-encoded" number consists of the absolute value
6425 in decimal, followed by the letter 'm' to indicate a negative number.
6426 Assumes 0m does not occur. */
6427
6428 int
6429 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6430 {
6431 ULONGEST RU;
6432
6433 if (!isdigit (str[k]))
6434 return 0;
6435
6436 /* Do it the hard way so as not to make any assumption about
6437 the relationship of unsigned long (%lu scan format code) and
6438 LONGEST. */
6439 RU = 0;
6440 while (isdigit (str[k]))
6441 {
6442 RU = RU * 10 + (str[k] - '0');
6443 k += 1;
6444 }
6445
6446 if (str[k] == 'm')
6447 {
6448 if (R != NULL)
6449 *R = (-(LONGEST) (RU - 1)) - 1;
6450 k += 1;
6451 }
6452 else if (R != NULL)
6453 *R = (LONGEST) RU;
6454
6455 /* NOTE on the above: Technically, C does not say what the results of
6456 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6457 number representable as a LONGEST (although either would probably work
6458 in most implementations). When RU>0, the locution in the then branch
6459 above is always equivalent to the negative of RU. */
6460
6461 if (new_k != NULL)
6462 *new_k = k;
6463 return 1;
6464 }
6465
6466 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6467 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6468 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6469
6470 int
6471 ada_in_variant (LONGEST val, struct type *type, int field_num)
6472 {
6473 const char *name = TYPE_FIELD_NAME (type, field_num);
6474 int p;
6475
6476 p = 0;
6477 while (1)
6478 {
6479 switch (name[p])
6480 {
6481 case '\0':
6482 return 0;
6483 case 'S':
6484 {
6485 LONGEST W;
6486
6487 if (!ada_scan_number (name, p + 1, &W, &p))
6488 return 0;
6489 if (val == W)
6490 return 1;
6491 break;
6492 }
6493 case 'R':
6494 {
6495 LONGEST L, U;
6496
6497 if (!ada_scan_number (name, p + 1, &L, &p)
6498 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6499 return 0;
6500 if (val >= L && val <= U)
6501 return 1;
6502 break;
6503 }
6504 case 'O':
6505 return 1;
6506 default:
6507 return 0;
6508 }
6509 }
6510 }
6511
6512 /* FIXME: Lots of redundancy below. Try to consolidate. */
6513
6514 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6515 ARG_TYPE, extract and return the value of one of its (non-static)
6516 fields. FIELDNO says which field. Differs from value_primitive_field
6517 only in that it can handle packed values of arbitrary type. */
6518
6519 static struct value *
6520 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6521 struct type *arg_type)
6522 {
6523 struct type *type;
6524
6525 arg_type = ada_check_typedef (arg_type);
6526 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6527
6528 /* Handle packed fields. */
6529
6530 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6531 {
6532 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6533 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6534
6535 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6536 offset + bit_pos / 8,
6537 bit_pos % 8, bit_size, type);
6538 }
6539 else
6540 return value_primitive_field (arg1, offset, fieldno, arg_type);
6541 }
6542
6543 /* Find field with name NAME in object of type TYPE. If found,
6544 set the following for each argument that is non-null:
6545 - *FIELD_TYPE_P to the field's type;
6546 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6547 an object of that type;
6548 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6549 - *BIT_SIZE_P to its size in bits if the field is packed, and
6550 0 otherwise;
6551 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6552 fields up to but not including the desired field, or by the total
6553 number of fields if not found. A NULL value of NAME never
6554 matches; the function just counts visible fields in this case.
6555
6556 Returns 1 if found, 0 otherwise. */
6557
6558 static int
6559 find_struct_field (const char *name, struct type *type, int offset,
6560 struct type **field_type_p,
6561 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6562 int *index_p)
6563 {
6564 int i;
6565
6566 type = ada_check_typedef (type);
6567
6568 if (field_type_p != NULL)
6569 *field_type_p = NULL;
6570 if (byte_offset_p != NULL)
6571 *byte_offset_p = 0;
6572 if (bit_offset_p != NULL)
6573 *bit_offset_p = 0;
6574 if (bit_size_p != NULL)
6575 *bit_size_p = 0;
6576
6577 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6578 {
6579 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6580 int fld_offset = offset + bit_pos / 8;
6581 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6582
6583 if (t_field_name == NULL)
6584 continue;
6585
6586 else if (name != NULL && field_name_match (t_field_name, name))
6587 {
6588 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6589
6590 if (field_type_p != NULL)
6591 *field_type_p = TYPE_FIELD_TYPE (type, i);
6592 if (byte_offset_p != NULL)
6593 *byte_offset_p = fld_offset;
6594 if (bit_offset_p != NULL)
6595 *bit_offset_p = bit_pos % 8;
6596 if (bit_size_p != NULL)
6597 *bit_size_p = bit_size;
6598 return 1;
6599 }
6600 else if (ada_is_wrapper_field (type, i))
6601 {
6602 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6603 field_type_p, byte_offset_p, bit_offset_p,
6604 bit_size_p, index_p))
6605 return 1;
6606 }
6607 else if (ada_is_variant_part (type, i))
6608 {
6609 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6610 fixed type?? */
6611 int j;
6612 struct type *field_type
6613 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6614
6615 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6616 {
6617 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6618 fld_offset
6619 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6620 field_type_p, byte_offset_p,
6621 bit_offset_p, bit_size_p, index_p))
6622 return 1;
6623 }
6624 }
6625 else if (index_p != NULL)
6626 *index_p += 1;
6627 }
6628 return 0;
6629 }
6630
6631 /* Number of user-visible fields in record type TYPE. */
6632
6633 static int
6634 num_visible_fields (struct type *type)
6635 {
6636 int n;
6637
6638 n = 0;
6639 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6640 return n;
6641 }
6642
6643 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6644 and search in it assuming it has (class) type TYPE.
6645 If found, return value, else return NULL.
6646
6647 Searches recursively through wrapper fields (e.g., '_parent'). */
6648
6649 static struct value *
6650 ada_search_struct_field (char *name, struct value *arg, int offset,
6651 struct type *type)
6652 {
6653 int i;
6654
6655 type = ada_check_typedef (type);
6656 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6657 {
6658 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6659
6660 if (t_field_name == NULL)
6661 continue;
6662
6663 else if (field_name_match (t_field_name, name))
6664 return ada_value_primitive_field (arg, offset, i, type);
6665
6666 else if (ada_is_wrapper_field (type, i))
6667 {
6668 struct value *v = /* Do not let indent join lines here. */
6669 ada_search_struct_field (name, arg,
6670 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6671 TYPE_FIELD_TYPE (type, i));
6672
6673 if (v != NULL)
6674 return v;
6675 }
6676
6677 else if (ada_is_variant_part (type, i))
6678 {
6679 /* PNH: Do we ever get here? See find_struct_field. */
6680 int j;
6681 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6682 i));
6683 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6684
6685 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6686 {
6687 struct value *v = ada_search_struct_field /* Force line
6688 break. */
6689 (name, arg,
6690 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6691 TYPE_FIELD_TYPE (field_type, j));
6692
6693 if (v != NULL)
6694 return v;
6695 }
6696 }
6697 }
6698 return NULL;
6699 }
6700
6701 static struct value *ada_index_struct_field_1 (int *, struct value *,
6702 int, struct type *);
6703
6704
6705 /* Return field #INDEX in ARG, where the index is that returned by
6706 * find_struct_field through its INDEX_P argument. Adjust the address
6707 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6708 * If found, return value, else return NULL. */
6709
6710 static struct value *
6711 ada_index_struct_field (int index, struct value *arg, int offset,
6712 struct type *type)
6713 {
6714 return ada_index_struct_field_1 (&index, arg, offset, type);
6715 }
6716
6717
6718 /* Auxiliary function for ada_index_struct_field. Like
6719 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6720 * *INDEX_P. */
6721
6722 static struct value *
6723 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6724 struct type *type)
6725 {
6726 int i;
6727 type = ada_check_typedef (type);
6728
6729 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6730 {
6731 if (TYPE_FIELD_NAME (type, i) == NULL)
6732 continue;
6733 else if (ada_is_wrapper_field (type, i))
6734 {
6735 struct value *v = /* Do not let indent join lines here. */
6736 ada_index_struct_field_1 (index_p, arg,
6737 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6738 TYPE_FIELD_TYPE (type, i));
6739
6740 if (v != NULL)
6741 return v;
6742 }
6743
6744 else if (ada_is_variant_part (type, i))
6745 {
6746 /* PNH: Do we ever get here? See ada_search_struct_field,
6747 find_struct_field. */
6748 error (_("Cannot assign this kind of variant record"));
6749 }
6750 else if (*index_p == 0)
6751 return ada_value_primitive_field (arg, offset, i, type);
6752 else
6753 *index_p -= 1;
6754 }
6755 return NULL;
6756 }
6757
6758 /* Given ARG, a value of type (pointer or reference to a)*
6759 structure/union, extract the component named NAME from the ultimate
6760 target structure/union and return it as a value with its
6761 appropriate type.
6762
6763 The routine searches for NAME among all members of the structure itself
6764 and (recursively) among all members of any wrapper members
6765 (e.g., '_parent').
6766
6767 If NO_ERR, then simply return NULL in case of error, rather than
6768 calling error. */
6769
6770 struct value *
6771 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6772 {
6773 struct type *t, *t1;
6774 struct value *v;
6775
6776 v = NULL;
6777 t1 = t = ada_check_typedef (value_type (arg));
6778 if (TYPE_CODE (t) == TYPE_CODE_REF)
6779 {
6780 t1 = TYPE_TARGET_TYPE (t);
6781 if (t1 == NULL)
6782 goto BadValue;
6783 t1 = ada_check_typedef (t1);
6784 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6785 {
6786 arg = coerce_ref (arg);
6787 t = t1;
6788 }
6789 }
6790
6791 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6792 {
6793 t1 = TYPE_TARGET_TYPE (t);
6794 if (t1 == NULL)
6795 goto BadValue;
6796 t1 = ada_check_typedef (t1);
6797 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6798 {
6799 arg = value_ind (arg);
6800 t = t1;
6801 }
6802 else
6803 break;
6804 }
6805
6806 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6807 goto BadValue;
6808
6809 if (t1 == t)
6810 v = ada_search_struct_field (name, arg, 0, t);
6811 else
6812 {
6813 int bit_offset, bit_size, byte_offset;
6814 struct type *field_type;
6815 CORE_ADDR address;
6816
6817 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6818 address = value_address (ada_value_ind (arg));
6819 else
6820 address = value_address (ada_coerce_ref (arg));
6821
6822 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6823 if (find_struct_field (name, t1, 0,
6824 &field_type, &byte_offset, &bit_offset,
6825 &bit_size, NULL))
6826 {
6827 if (bit_size != 0)
6828 {
6829 if (TYPE_CODE (t) == TYPE_CODE_REF)
6830 arg = ada_coerce_ref (arg);
6831 else
6832 arg = ada_value_ind (arg);
6833 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6834 bit_offset, bit_size,
6835 field_type);
6836 }
6837 else
6838 v = value_at_lazy (field_type, address + byte_offset);
6839 }
6840 }
6841
6842 if (v != NULL || no_err)
6843 return v;
6844 else
6845 error (_("There is no member named %s."), name);
6846
6847 BadValue:
6848 if (no_err)
6849 return NULL;
6850 else
6851 error (_("Attempt to extract a component of "
6852 "a value that is not a record."));
6853 }
6854
6855 /* Given a type TYPE, look up the type of the component of type named NAME.
6856 If DISPP is non-null, add its byte displacement from the beginning of a
6857 structure (pointed to by a value) of type TYPE to *DISPP (does not
6858 work for packed fields).
6859
6860 Matches any field whose name has NAME as a prefix, possibly
6861 followed by "___".
6862
6863 TYPE can be either a struct or union. If REFOK, TYPE may also
6864 be a (pointer or reference)+ to a struct or union, and the
6865 ultimate target type will be searched.
6866
6867 Looks recursively into variant clauses and parent types.
6868
6869 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6870 TYPE is not a type of the right kind. */
6871
6872 static struct type *
6873 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6874 int noerr, int *dispp)
6875 {
6876 int i;
6877
6878 if (name == NULL)
6879 goto BadName;
6880
6881 if (refok && type != NULL)
6882 while (1)
6883 {
6884 type = ada_check_typedef (type);
6885 if (TYPE_CODE (type) != TYPE_CODE_PTR
6886 && TYPE_CODE (type) != TYPE_CODE_REF)
6887 break;
6888 type = TYPE_TARGET_TYPE (type);
6889 }
6890
6891 if (type == NULL
6892 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6893 && TYPE_CODE (type) != TYPE_CODE_UNION))
6894 {
6895 if (noerr)
6896 return NULL;
6897 else
6898 {
6899 target_terminal_ours ();
6900 gdb_flush (gdb_stdout);
6901 if (type == NULL)
6902 error (_("Type (null) is not a structure or union type"));
6903 else
6904 {
6905 /* XXX: type_sprint */
6906 fprintf_unfiltered (gdb_stderr, _("Type "));
6907 type_print (type, "", gdb_stderr, -1);
6908 error (_(" is not a structure or union type"));
6909 }
6910 }
6911 }
6912
6913 type = to_static_fixed_type (type);
6914
6915 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6916 {
6917 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6918 struct type *t;
6919 int disp;
6920
6921 if (t_field_name == NULL)
6922 continue;
6923
6924 else if (field_name_match (t_field_name, name))
6925 {
6926 if (dispp != NULL)
6927 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6928 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6929 }
6930
6931 else if (ada_is_wrapper_field (type, i))
6932 {
6933 disp = 0;
6934 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6935 0, 1, &disp);
6936 if (t != NULL)
6937 {
6938 if (dispp != NULL)
6939 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6940 return t;
6941 }
6942 }
6943
6944 else if (ada_is_variant_part (type, i))
6945 {
6946 int j;
6947 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6948 i));
6949
6950 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6951 {
6952 /* FIXME pnh 2008/01/26: We check for a field that is
6953 NOT wrapped in a struct, since the compiler sometimes
6954 generates these for unchecked variant types. Revisit
6955 if the compiler changes this practice. */
6956 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6957 disp = 0;
6958 if (v_field_name != NULL
6959 && field_name_match (v_field_name, name))
6960 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6961 else
6962 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6963 j),
6964 name, 0, 1, &disp);
6965
6966 if (t != NULL)
6967 {
6968 if (dispp != NULL)
6969 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6970 return t;
6971 }
6972 }
6973 }
6974
6975 }
6976
6977 BadName:
6978 if (!noerr)
6979 {
6980 target_terminal_ours ();
6981 gdb_flush (gdb_stdout);
6982 if (name == NULL)
6983 {
6984 /* XXX: type_sprint */
6985 fprintf_unfiltered (gdb_stderr, _("Type "));
6986 type_print (type, "", gdb_stderr, -1);
6987 error (_(" has no component named <null>"));
6988 }
6989 else
6990 {
6991 /* XXX: type_sprint */
6992 fprintf_unfiltered (gdb_stderr, _("Type "));
6993 type_print (type, "", gdb_stderr, -1);
6994 error (_(" has no component named %s"), name);
6995 }
6996 }
6997
6998 return NULL;
6999 }
7000
7001 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7002 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7003 represents an unchecked union (that is, the variant part of a
7004 record that is named in an Unchecked_Union pragma). */
7005
7006 static int
7007 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7008 {
7009 char *discrim_name = ada_variant_discrim_name (var_type);
7010
7011 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7012 == NULL);
7013 }
7014
7015
7016 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7017 within a value of type OUTER_TYPE that is stored in GDB at
7018 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7019 numbering from 0) is applicable. Returns -1 if none are. */
7020
7021 int
7022 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7023 const gdb_byte *outer_valaddr)
7024 {
7025 int others_clause;
7026 int i;
7027 char *discrim_name = ada_variant_discrim_name (var_type);
7028 struct value *outer;
7029 struct value *discrim;
7030 LONGEST discrim_val;
7031
7032 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7033 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7034 if (discrim == NULL)
7035 return -1;
7036 discrim_val = value_as_long (discrim);
7037
7038 others_clause = -1;
7039 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7040 {
7041 if (ada_is_others_clause (var_type, i))
7042 others_clause = i;
7043 else if (ada_in_variant (discrim_val, var_type, i))
7044 return i;
7045 }
7046
7047 return others_clause;
7048 }
7049 \f
7050
7051
7052 /* Dynamic-Sized Records */
7053
7054 /* Strategy: The type ostensibly attached to a value with dynamic size
7055 (i.e., a size that is not statically recorded in the debugging
7056 data) does not accurately reflect the size or layout of the value.
7057 Our strategy is to convert these values to values with accurate,
7058 conventional types that are constructed on the fly. */
7059
7060 /* There is a subtle and tricky problem here. In general, we cannot
7061 determine the size of dynamic records without its data. However,
7062 the 'struct value' data structure, which GDB uses to represent
7063 quantities in the inferior process (the target), requires the size
7064 of the type at the time of its allocation in order to reserve space
7065 for GDB's internal copy of the data. That's why the
7066 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7067 rather than struct value*s.
7068
7069 However, GDB's internal history variables ($1, $2, etc.) are
7070 struct value*s containing internal copies of the data that are not, in
7071 general, the same as the data at their corresponding addresses in
7072 the target. Fortunately, the types we give to these values are all
7073 conventional, fixed-size types (as per the strategy described
7074 above), so that we don't usually have to perform the
7075 'to_fixed_xxx_type' conversions to look at their values.
7076 Unfortunately, there is one exception: if one of the internal
7077 history variables is an array whose elements are unconstrained
7078 records, then we will need to create distinct fixed types for each
7079 element selected. */
7080
7081 /* The upshot of all of this is that many routines take a (type, host
7082 address, target address) triple as arguments to represent a value.
7083 The host address, if non-null, is supposed to contain an internal
7084 copy of the relevant data; otherwise, the program is to consult the
7085 target at the target address. */
7086
7087 /* Assuming that VAL0 represents a pointer value, the result of
7088 dereferencing it. Differs from value_ind in its treatment of
7089 dynamic-sized types. */
7090
7091 struct value *
7092 ada_value_ind (struct value *val0)
7093 {
7094 struct value *val = value_ind (val0);
7095
7096 if (ada_is_tagged_type (value_type (val), 0))
7097 val = ada_tag_value_at_base_address (val);
7098
7099 return ada_to_fixed_value (val);
7100 }
7101
7102 /* The value resulting from dereferencing any "reference to"
7103 qualifiers on VAL0. */
7104
7105 static struct value *
7106 ada_coerce_ref (struct value *val0)
7107 {
7108 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7109 {
7110 struct value *val = val0;
7111
7112 val = coerce_ref (val);
7113
7114 if (ada_is_tagged_type (value_type (val), 0))
7115 val = ada_tag_value_at_base_address (val);
7116
7117 return ada_to_fixed_value (val);
7118 }
7119 else
7120 return val0;
7121 }
7122
7123 /* Return OFF rounded upward if necessary to a multiple of
7124 ALIGNMENT (a power of 2). */
7125
7126 static unsigned int
7127 align_value (unsigned int off, unsigned int alignment)
7128 {
7129 return (off + alignment - 1) & ~(alignment - 1);
7130 }
7131
7132 /* Return the bit alignment required for field #F of template type TYPE. */
7133
7134 static unsigned int
7135 field_alignment (struct type *type, int f)
7136 {
7137 const char *name = TYPE_FIELD_NAME (type, f);
7138 int len;
7139 int align_offset;
7140
7141 /* The field name should never be null, unless the debugging information
7142 is somehow malformed. In this case, we assume the field does not
7143 require any alignment. */
7144 if (name == NULL)
7145 return 1;
7146
7147 len = strlen (name);
7148
7149 if (!isdigit (name[len - 1]))
7150 return 1;
7151
7152 if (isdigit (name[len - 2]))
7153 align_offset = len - 2;
7154 else
7155 align_offset = len - 1;
7156
7157 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7158 return TARGET_CHAR_BIT;
7159
7160 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7161 }
7162
7163 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7164
7165 static struct symbol *
7166 ada_find_any_type_symbol (const char *name)
7167 {
7168 struct symbol *sym;
7169
7170 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7171 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7172 return sym;
7173
7174 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7175 return sym;
7176 }
7177
7178 /* Find a type named NAME. Ignores ambiguity. This routine will look
7179 solely for types defined by debug info, it will not search the GDB
7180 primitive types. */
7181
7182 static struct type *
7183 ada_find_any_type (const char *name)
7184 {
7185 struct symbol *sym = ada_find_any_type_symbol (name);
7186
7187 if (sym != NULL)
7188 return SYMBOL_TYPE (sym);
7189
7190 return NULL;
7191 }
7192
7193 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7194 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7195 symbol, in which case it is returned. Otherwise, this looks for
7196 symbols whose name is that of NAME_SYM suffixed with "___XR".
7197 Return symbol if found, and NULL otherwise. */
7198
7199 struct symbol *
7200 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7201 {
7202 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7203 struct symbol *sym;
7204
7205 if (strstr (name, "___XR") != NULL)
7206 return name_sym;
7207
7208 sym = find_old_style_renaming_symbol (name, block);
7209
7210 if (sym != NULL)
7211 return sym;
7212
7213 /* Not right yet. FIXME pnh 7/20/2007. */
7214 sym = ada_find_any_type_symbol (name);
7215 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7216 return sym;
7217 else
7218 return NULL;
7219 }
7220
7221 static struct symbol *
7222 find_old_style_renaming_symbol (const char *name, const struct block *block)
7223 {
7224 const struct symbol *function_sym = block_linkage_function (block);
7225 char *rename;
7226
7227 if (function_sym != NULL)
7228 {
7229 /* If the symbol is defined inside a function, NAME is not fully
7230 qualified. This means we need to prepend the function name
7231 as well as adding the ``___XR'' suffix to build the name of
7232 the associated renaming symbol. */
7233 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7234 /* Function names sometimes contain suffixes used
7235 for instance to qualify nested subprograms. When building
7236 the XR type name, we need to make sure that this suffix is
7237 not included. So do not include any suffix in the function
7238 name length below. */
7239 int function_name_len = ada_name_prefix_len (function_name);
7240 const int rename_len = function_name_len + 2 /* "__" */
7241 + strlen (name) + 6 /* "___XR\0" */ ;
7242
7243 /* Strip the suffix if necessary. */
7244 ada_remove_trailing_digits (function_name, &function_name_len);
7245 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7246 ada_remove_Xbn_suffix (function_name, &function_name_len);
7247
7248 /* Library-level functions are a special case, as GNAT adds
7249 a ``_ada_'' prefix to the function name to avoid namespace
7250 pollution. However, the renaming symbols themselves do not
7251 have this prefix, so we need to skip this prefix if present. */
7252 if (function_name_len > 5 /* "_ada_" */
7253 && strstr (function_name, "_ada_") == function_name)
7254 {
7255 function_name += 5;
7256 function_name_len -= 5;
7257 }
7258
7259 rename = (char *) alloca (rename_len * sizeof (char));
7260 strncpy (rename, function_name, function_name_len);
7261 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7262 "__%s___XR", name);
7263 }
7264 else
7265 {
7266 const int rename_len = strlen (name) + 6;
7267
7268 rename = (char *) alloca (rename_len * sizeof (char));
7269 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7270 }
7271
7272 return ada_find_any_type_symbol (rename);
7273 }
7274
7275 /* Because of GNAT encoding conventions, several GDB symbols may match a
7276 given type name. If the type denoted by TYPE0 is to be preferred to
7277 that of TYPE1 for purposes of type printing, return non-zero;
7278 otherwise return 0. */
7279
7280 int
7281 ada_prefer_type (struct type *type0, struct type *type1)
7282 {
7283 if (type1 == NULL)
7284 return 1;
7285 else if (type0 == NULL)
7286 return 0;
7287 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7288 return 1;
7289 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7290 return 0;
7291 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7292 return 1;
7293 else if (ada_is_constrained_packed_array_type (type0))
7294 return 1;
7295 else if (ada_is_array_descriptor_type (type0)
7296 && !ada_is_array_descriptor_type (type1))
7297 return 1;
7298 else
7299 {
7300 const char *type0_name = type_name_no_tag (type0);
7301 const char *type1_name = type_name_no_tag (type1);
7302
7303 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7304 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7305 return 1;
7306 }
7307 return 0;
7308 }
7309
7310 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7311 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7312
7313 const char *
7314 ada_type_name (struct type *type)
7315 {
7316 if (type == NULL)
7317 return NULL;
7318 else if (TYPE_NAME (type) != NULL)
7319 return TYPE_NAME (type);
7320 else
7321 return TYPE_TAG_NAME (type);
7322 }
7323
7324 /* Search the list of "descriptive" types associated to TYPE for a type
7325 whose name is NAME. */
7326
7327 static struct type *
7328 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7329 {
7330 struct type *result;
7331
7332 /* If there no descriptive-type info, then there is no parallel type
7333 to be found. */
7334 if (!HAVE_GNAT_AUX_INFO (type))
7335 return NULL;
7336
7337 result = TYPE_DESCRIPTIVE_TYPE (type);
7338 while (result != NULL)
7339 {
7340 const char *result_name = ada_type_name (result);
7341
7342 if (result_name == NULL)
7343 {
7344 warning (_("unexpected null name on descriptive type"));
7345 return NULL;
7346 }
7347
7348 /* If the names match, stop. */
7349 if (strcmp (result_name, name) == 0)
7350 break;
7351
7352 /* Otherwise, look at the next item on the list, if any. */
7353 if (HAVE_GNAT_AUX_INFO (result))
7354 result = TYPE_DESCRIPTIVE_TYPE (result);
7355 else
7356 result = NULL;
7357 }
7358
7359 /* If we didn't find a match, see whether this is a packed array. With
7360 older compilers, the descriptive type information is either absent or
7361 irrelevant when it comes to packed arrays so the above lookup fails.
7362 Fall back to using a parallel lookup by name in this case. */
7363 if (result == NULL && ada_is_constrained_packed_array_type (type))
7364 return ada_find_any_type (name);
7365
7366 return result;
7367 }
7368
7369 /* Find a parallel type to TYPE with the specified NAME, using the
7370 descriptive type taken from the debugging information, if available,
7371 and otherwise using the (slower) name-based method. */
7372
7373 static struct type *
7374 ada_find_parallel_type_with_name (struct type *type, const char *name)
7375 {
7376 struct type *result = NULL;
7377
7378 if (HAVE_GNAT_AUX_INFO (type))
7379 result = find_parallel_type_by_descriptive_type (type, name);
7380 else
7381 result = ada_find_any_type (name);
7382
7383 return result;
7384 }
7385
7386 /* Same as above, but specify the name of the parallel type by appending
7387 SUFFIX to the name of TYPE. */
7388
7389 struct type *
7390 ada_find_parallel_type (struct type *type, const char *suffix)
7391 {
7392 char *name;
7393 const char *typename = ada_type_name (type);
7394 int len;
7395
7396 if (typename == NULL)
7397 return NULL;
7398
7399 len = strlen (typename);
7400
7401 name = (char *) alloca (len + strlen (suffix) + 1);
7402
7403 strcpy (name, typename);
7404 strcpy (name + len, suffix);
7405
7406 return ada_find_parallel_type_with_name (type, name);
7407 }
7408
7409 /* If TYPE is a variable-size record type, return the corresponding template
7410 type describing its fields. Otherwise, return NULL. */
7411
7412 static struct type *
7413 dynamic_template_type (struct type *type)
7414 {
7415 type = ada_check_typedef (type);
7416
7417 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7418 || ada_type_name (type) == NULL)
7419 return NULL;
7420 else
7421 {
7422 int len = strlen (ada_type_name (type));
7423
7424 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7425 return type;
7426 else
7427 return ada_find_parallel_type (type, "___XVE");
7428 }
7429 }
7430
7431 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7432 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7433
7434 static int
7435 is_dynamic_field (struct type *templ_type, int field_num)
7436 {
7437 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7438
7439 return name != NULL
7440 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7441 && strstr (name, "___XVL") != NULL;
7442 }
7443
7444 /* The index of the variant field of TYPE, or -1 if TYPE does not
7445 represent a variant record type. */
7446
7447 static int
7448 variant_field_index (struct type *type)
7449 {
7450 int f;
7451
7452 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7453 return -1;
7454
7455 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7456 {
7457 if (ada_is_variant_part (type, f))
7458 return f;
7459 }
7460 return -1;
7461 }
7462
7463 /* A record type with no fields. */
7464
7465 static struct type *
7466 empty_record (struct type *template)
7467 {
7468 struct type *type = alloc_type_copy (template);
7469
7470 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7471 TYPE_NFIELDS (type) = 0;
7472 TYPE_FIELDS (type) = NULL;
7473 INIT_CPLUS_SPECIFIC (type);
7474 TYPE_NAME (type) = "<empty>";
7475 TYPE_TAG_NAME (type) = NULL;
7476 TYPE_LENGTH (type) = 0;
7477 return type;
7478 }
7479
7480 /* An ordinary record type (with fixed-length fields) that describes
7481 the value of type TYPE at VALADDR or ADDRESS (see comments at
7482 the beginning of this section) VAL according to GNAT conventions.
7483 DVAL0 should describe the (portion of a) record that contains any
7484 necessary discriminants. It should be NULL if value_type (VAL) is
7485 an outer-level type (i.e., as opposed to a branch of a variant.) A
7486 variant field (unless unchecked) is replaced by a particular branch
7487 of the variant.
7488
7489 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7490 length are not statically known are discarded. As a consequence,
7491 VALADDR, ADDRESS and DVAL0 are ignored.
7492
7493 NOTE: Limitations: For now, we assume that dynamic fields and
7494 variants occupy whole numbers of bytes. However, they need not be
7495 byte-aligned. */
7496
7497 struct type *
7498 ada_template_to_fixed_record_type_1 (struct type *type,
7499 const gdb_byte *valaddr,
7500 CORE_ADDR address, struct value *dval0,
7501 int keep_dynamic_fields)
7502 {
7503 struct value *mark = value_mark ();
7504 struct value *dval;
7505 struct type *rtype;
7506 int nfields, bit_len;
7507 int variant_field;
7508 long off;
7509 int fld_bit_len;
7510 int f;
7511
7512 /* Compute the number of fields in this record type that are going
7513 to be processed: unless keep_dynamic_fields, this includes only
7514 fields whose position and length are static will be processed. */
7515 if (keep_dynamic_fields)
7516 nfields = TYPE_NFIELDS (type);
7517 else
7518 {
7519 nfields = 0;
7520 while (nfields < TYPE_NFIELDS (type)
7521 && !ada_is_variant_part (type, nfields)
7522 && !is_dynamic_field (type, nfields))
7523 nfields++;
7524 }
7525
7526 rtype = alloc_type_copy (type);
7527 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7528 INIT_CPLUS_SPECIFIC (rtype);
7529 TYPE_NFIELDS (rtype) = nfields;
7530 TYPE_FIELDS (rtype) = (struct field *)
7531 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7532 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7533 TYPE_NAME (rtype) = ada_type_name (type);
7534 TYPE_TAG_NAME (rtype) = NULL;
7535 TYPE_FIXED_INSTANCE (rtype) = 1;
7536
7537 off = 0;
7538 bit_len = 0;
7539 variant_field = -1;
7540
7541 for (f = 0; f < nfields; f += 1)
7542 {
7543 off = align_value (off, field_alignment (type, f))
7544 + TYPE_FIELD_BITPOS (type, f);
7545 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7546 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7547
7548 if (ada_is_variant_part (type, f))
7549 {
7550 variant_field = f;
7551 fld_bit_len = 0;
7552 }
7553 else if (is_dynamic_field (type, f))
7554 {
7555 const gdb_byte *field_valaddr = valaddr;
7556 CORE_ADDR field_address = address;
7557 struct type *field_type =
7558 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7559
7560 if (dval0 == NULL)
7561 {
7562 /* rtype's length is computed based on the run-time
7563 value of discriminants. If the discriminants are not
7564 initialized, the type size may be completely bogus and
7565 GDB may fail to allocate a value for it. So check the
7566 size first before creating the value. */
7567 check_size (rtype);
7568 dval = value_from_contents_and_address (rtype, valaddr, address);
7569 }
7570 else
7571 dval = dval0;
7572
7573 /* If the type referenced by this field is an aligner type, we need
7574 to unwrap that aligner type, because its size might not be set.
7575 Keeping the aligner type would cause us to compute the wrong
7576 size for this field, impacting the offset of the all the fields
7577 that follow this one. */
7578 if (ada_is_aligner_type (field_type))
7579 {
7580 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7581
7582 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7583 field_address = cond_offset_target (field_address, field_offset);
7584 field_type = ada_aligned_type (field_type);
7585 }
7586
7587 field_valaddr = cond_offset_host (field_valaddr,
7588 off / TARGET_CHAR_BIT);
7589 field_address = cond_offset_target (field_address,
7590 off / TARGET_CHAR_BIT);
7591
7592 /* Get the fixed type of the field. Note that, in this case,
7593 we do not want to get the real type out of the tag: if
7594 the current field is the parent part of a tagged record,
7595 we will get the tag of the object. Clearly wrong: the real
7596 type of the parent is not the real type of the child. We
7597 would end up in an infinite loop. */
7598 field_type = ada_get_base_type (field_type);
7599 field_type = ada_to_fixed_type (field_type, field_valaddr,
7600 field_address, dval, 0);
7601 /* If the field size is already larger than the maximum
7602 object size, then the record itself will necessarily
7603 be larger than the maximum object size. We need to make
7604 this check now, because the size might be so ridiculously
7605 large (due to an uninitialized variable in the inferior)
7606 that it would cause an overflow when adding it to the
7607 record size. */
7608 check_size (field_type);
7609
7610 TYPE_FIELD_TYPE (rtype, f) = field_type;
7611 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7612 /* The multiplication can potentially overflow. But because
7613 the field length has been size-checked just above, and
7614 assuming that the maximum size is a reasonable value,
7615 an overflow should not happen in practice. So rather than
7616 adding overflow recovery code to this already complex code,
7617 we just assume that it's not going to happen. */
7618 fld_bit_len =
7619 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7620 }
7621 else
7622 {
7623 /* Note: If this field's type is a typedef, it is important
7624 to preserve the typedef layer.
7625
7626 Otherwise, we might be transforming a typedef to a fat
7627 pointer (encoding a pointer to an unconstrained array),
7628 into a basic fat pointer (encoding an unconstrained
7629 array). As both types are implemented using the same
7630 structure, the typedef is the only clue which allows us
7631 to distinguish between the two options. Stripping it
7632 would prevent us from printing this field appropriately. */
7633 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7634 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7635 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7636 fld_bit_len =
7637 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7638 else
7639 {
7640 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7641
7642 /* We need to be careful of typedefs when computing
7643 the length of our field. If this is a typedef,
7644 get the length of the target type, not the length
7645 of the typedef. */
7646 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7647 field_type = ada_typedef_target_type (field_type);
7648
7649 fld_bit_len =
7650 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7651 }
7652 }
7653 if (off + fld_bit_len > bit_len)
7654 bit_len = off + fld_bit_len;
7655 off += fld_bit_len;
7656 TYPE_LENGTH (rtype) =
7657 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7658 }
7659
7660 /* We handle the variant part, if any, at the end because of certain
7661 odd cases in which it is re-ordered so as NOT to be the last field of
7662 the record. This can happen in the presence of representation
7663 clauses. */
7664 if (variant_field >= 0)
7665 {
7666 struct type *branch_type;
7667
7668 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7669
7670 if (dval0 == NULL)
7671 dval = value_from_contents_and_address (rtype, valaddr, address);
7672 else
7673 dval = dval0;
7674
7675 branch_type =
7676 to_fixed_variant_branch_type
7677 (TYPE_FIELD_TYPE (type, variant_field),
7678 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7679 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7680 if (branch_type == NULL)
7681 {
7682 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7683 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7684 TYPE_NFIELDS (rtype) -= 1;
7685 }
7686 else
7687 {
7688 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7689 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7690 fld_bit_len =
7691 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7692 TARGET_CHAR_BIT;
7693 if (off + fld_bit_len > bit_len)
7694 bit_len = off + fld_bit_len;
7695 TYPE_LENGTH (rtype) =
7696 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7697 }
7698 }
7699
7700 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7701 should contain the alignment of that record, which should be a strictly
7702 positive value. If null or negative, then something is wrong, most
7703 probably in the debug info. In that case, we don't round up the size
7704 of the resulting type. If this record is not part of another structure,
7705 the current RTYPE length might be good enough for our purposes. */
7706 if (TYPE_LENGTH (type) <= 0)
7707 {
7708 if (TYPE_NAME (rtype))
7709 warning (_("Invalid type size for `%s' detected: %d."),
7710 TYPE_NAME (rtype), TYPE_LENGTH (type));
7711 else
7712 warning (_("Invalid type size for <unnamed> detected: %d."),
7713 TYPE_LENGTH (type));
7714 }
7715 else
7716 {
7717 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7718 TYPE_LENGTH (type));
7719 }
7720
7721 value_free_to_mark (mark);
7722 if (TYPE_LENGTH (rtype) > varsize_limit)
7723 error (_("record type with dynamic size is larger than varsize-limit"));
7724 return rtype;
7725 }
7726
7727 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7728 of 1. */
7729
7730 static struct type *
7731 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7732 CORE_ADDR address, struct value *dval0)
7733 {
7734 return ada_template_to_fixed_record_type_1 (type, valaddr,
7735 address, dval0, 1);
7736 }
7737
7738 /* An ordinary record type in which ___XVL-convention fields and
7739 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7740 static approximations, containing all possible fields. Uses
7741 no runtime values. Useless for use in values, but that's OK,
7742 since the results are used only for type determinations. Works on both
7743 structs and unions. Representation note: to save space, we memorize
7744 the result of this function in the TYPE_TARGET_TYPE of the
7745 template type. */
7746
7747 static struct type *
7748 template_to_static_fixed_type (struct type *type0)
7749 {
7750 struct type *type;
7751 int nfields;
7752 int f;
7753
7754 if (TYPE_TARGET_TYPE (type0) != NULL)
7755 return TYPE_TARGET_TYPE (type0);
7756
7757 nfields = TYPE_NFIELDS (type0);
7758 type = type0;
7759
7760 for (f = 0; f < nfields; f += 1)
7761 {
7762 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7763 struct type *new_type;
7764
7765 if (is_dynamic_field (type0, f))
7766 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7767 else
7768 new_type = static_unwrap_type (field_type);
7769 if (type == type0 && new_type != field_type)
7770 {
7771 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7772 TYPE_CODE (type) = TYPE_CODE (type0);
7773 INIT_CPLUS_SPECIFIC (type);
7774 TYPE_NFIELDS (type) = nfields;
7775 TYPE_FIELDS (type) = (struct field *)
7776 TYPE_ALLOC (type, nfields * sizeof (struct field));
7777 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7778 sizeof (struct field) * nfields);
7779 TYPE_NAME (type) = ada_type_name (type0);
7780 TYPE_TAG_NAME (type) = NULL;
7781 TYPE_FIXED_INSTANCE (type) = 1;
7782 TYPE_LENGTH (type) = 0;
7783 }
7784 TYPE_FIELD_TYPE (type, f) = new_type;
7785 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7786 }
7787 return type;
7788 }
7789
7790 /* Given an object of type TYPE whose contents are at VALADDR and
7791 whose address in memory is ADDRESS, returns a revision of TYPE,
7792 which should be a non-dynamic-sized record, in which the variant
7793 part, if any, is replaced with the appropriate branch. Looks
7794 for discriminant values in DVAL0, which can be NULL if the record
7795 contains the necessary discriminant values. */
7796
7797 static struct type *
7798 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7799 CORE_ADDR address, struct value *dval0)
7800 {
7801 struct value *mark = value_mark ();
7802 struct value *dval;
7803 struct type *rtype;
7804 struct type *branch_type;
7805 int nfields = TYPE_NFIELDS (type);
7806 int variant_field = variant_field_index (type);
7807
7808 if (variant_field == -1)
7809 return type;
7810
7811 if (dval0 == NULL)
7812 dval = value_from_contents_and_address (type, valaddr, address);
7813 else
7814 dval = dval0;
7815
7816 rtype = alloc_type_copy (type);
7817 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7818 INIT_CPLUS_SPECIFIC (rtype);
7819 TYPE_NFIELDS (rtype) = nfields;
7820 TYPE_FIELDS (rtype) =
7821 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7822 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7823 sizeof (struct field) * nfields);
7824 TYPE_NAME (rtype) = ada_type_name (type);
7825 TYPE_TAG_NAME (rtype) = NULL;
7826 TYPE_FIXED_INSTANCE (rtype) = 1;
7827 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7828
7829 branch_type = to_fixed_variant_branch_type
7830 (TYPE_FIELD_TYPE (type, variant_field),
7831 cond_offset_host (valaddr,
7832 TYPE_FIELD_BITPOS (type, variant_field)
7833 / TARGET_CHAR_BIT),
7834 cond_offset_target (address,
7835 TYPE_FIELD_BITPOS (type, variant_field)
7836 / TARGET_CHAR_BIT), dval);
7837 if (branch_type == NULL)
7838 {
7839 int f;
7840
7841 for (f = variant_field + 1; f < nfields; f += 1)
7842 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7843 TYPE_NFIELDS (rtype) -= 1;
7844 }
7845 else
7846 {
7847 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7848 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7849 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7850 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7851 }
7852 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7853
7854 value_free_to_mark (mark);
7855 return rtype;
7856 }
7857
7858 /* An ordinary record type (with fixed-length fields) that describes
7859 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7860 beginning of this section]. Any necessary discriminants' values
7861 should be in DVAL, a record value; it may be NULL if the object
7862 at ADDR itself contains any necessary discriminant values.
7863 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7864 values from the record are needed. Except in the case that DVAL,
7865 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7866 unchecked) is replaced by a particular branch of the variant.
7867
7868 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7869 is questionable and may be removed. It can arise during the
7870 processing of an unconstrained-array-of-record type where all the
7871 variant branches have exactly the same size. This is because in
7872 such cases, the compiler does not bother to use the XVS convention
7873 when encoding the record. I am currently dubious of this
7874 shortcut and suspect the compiler should be altered. FIXME. */
7875
7876 static struct type *
7877 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7878 CORE_ADDR address, struct value *dval)
7879 {
7880 struct type *templ_type;
7881
7882 if (TYPE_FIXED_INSTANCE (type0))
7883 return type0;
7884
7885 templ_type = dynamic_template_type (type0);
7886
7887 if (templ_type != NULL)
7888 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7889 else if (variant_field_index (type0) >= 0)
7890 {
7891 if (dval == NULL && valaddr == NULL && address == 0)
7892 return type0;
7893 return to_record_with_fixed_variant_part (type0, valaddr, address,
7894 dval);
7895 }
7896 else
7897 {
7898 TYPE_FIXED_INSTANCE (type0) = 1;
7899 return type0;
7900 }
7901
7902 }
7903
7904 /* An ordinary record type (with fixed-length fields) that describes
7905 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7906 union type. Any necessary discriminants' values should be in DVAL,
7907 a record value. That is, this routine selects the appropriate
7908 branch of the union at ADDR according to the discriminant value
7909 indicated in the union's type name. Returns VAR_TYPE0 itself if
7910 it represents a variant subject to a pragma Unchecked_Union. */
7911
7912 static struct type *
7913 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7914 CORE_ADDR address, struct value *dval)
7915 {
7916 int which;
7917 struct type *templ_type;
7918 struct type *var_type;
7919
7920 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7921 var_type = TYPE_TARGET_TYPE (var_type0);
7922 else
7923 var_type = var_type0;
7924
7925 templ_type = ada_find_parallel_type (var_type, "___XVU");
7926
7927 if (templ_type != NULL)
7928 var_type = templ_type;
7929
7930 if (is_unchecked_variant (var_type, value_type (dval)))
7931 return var_type0;
7932 which =
7933 ada_which_variant_applies (var_type,
7934 value_type (dval), value_contents (dval));
7935
7936 if (which < 0)
7937 return empty_record (var_type);
7938 else if (is_dynamic_field (var_type, which))
7939 return to_fixed_record_type
7940 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7941 valaddr, address, dval);
7942 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7943 return
7944 to_fixed_record_type
7945 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7946 else
7947 return TYPE_FIELD_TYPE (var_type, which);
7948 }
7949
7950 /* Assuming that TYPE0 is an array type describing the type of a value
7951 at ADDR, and that DVAL describes a record containing any
7952 discriminants used in TYPE0, returns a type for the value that
7953 contains no dynamic components (that is, no components whose sizes
7954 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7955 true, gives an error message if the resulting type's size is over
7956 varsize_limit. */
7957
7958 static struct type *
7959 to_fixed_array_type (struct type *type0, struct value *dval,
7960 int ignore_too_big)
7961 {
7962 struct type *index_type_desc;
7963 struct type *result;
7964 int constrained_packed_array_p;
7965
7966 type0 = ada_check_typedef (type0);
7967 if (TYPE_FIXED_INSTANCE (type0))
7968 return type0;
7969
7970 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7971 if (constrained_packed_array_p)
7972 type0 = decode_constrained_packed_array_type (type0);
7973
7974 index_type_desc = ada_find_parallel_type (type0, "___XA");
7975 ada_fixup_array_indexes_type (index_type_desc);
7976 if (index_type_desc == NULL)
7977 {
7978 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7979
7980 /* NOTE: elt_type---the fixed version of elt_type0---should never
7981 depend on the contents of the array in properly constructed
7982 debugging data. */
7983 /* Create a fixed version of the array element type.
7984 We're not providing the address of an element here,
7985 and thus the actual object value cannot be inspected to do
7986 the conversion. This should not be a problem, since arrays of
7987 unconstrained objects are not allowed. In particular, all
7988 the elements of an array of a tagged type should all be of
7989 the same type specified in the debugging info. No need to
7990 consult the object tag. */
7991 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7992
7993 /* Make sure we always create a new array type when dealing with
7994 packed array types, since we're going to fix-up the array
7995 type length and element bitsize a little further down. */
7996 if (elt_type0 == elt_type && !constrained_packed_array_p)
7997 result = type0;
7998 else
7999 result = create_array_type (alloc_type_copy (type0),
8000 elt_type, TYPE_INDEX_TYPE (type0));
8001 }
8002 else
8003 {
8004 int i;
8005 struct type *elt_type0;
8006
8007 elt_type0 = type0;
8008 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8009 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8010
8011 /* NOTE: result---the fixed version of elt_type0---should never
8012 depend on the contents of the array in properly constructed
8013 debugging data. */
8014 /* Create a fixed version of the array element type.
8015 We're not providing the address of an element here,
8016 and thus the actual object value cannot be inspected to do
8017 the conversion. This should not be a problem, since arrays of
8018 unconstrained objects are not allowed. In particular, all
8019 the elements of an array of a tagged type should all be of
8020 the same type specified in the debugging info. No need to
8021 consult the object tag. */
8022 result =
8023 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8024
8025 elt_type0 = type0;
8026 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8027 {
8028 struct type *range_type =
8029 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8030
8031 result = create_array_type (alloc_type_copy (elt_type0),
8032 result, range_type);
8033 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8034 }
8035 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8036 error (_("array type with dynamic size is larger than varsize-limit"));
8037 }
8038
8039 /* We want to preserve the type name. This can be useful when
8040 trying to get the type name of a value that has already been
8041 printed (for instance, if the user did "print VAR; whatis $". */
8042 TYPE_NAME (result) = TYPE_NAME (type0);
8043
8044 if (constrained_packed_array_p)
8045 {
8046 /* So far, the resulting type has been created as if the original
8047 type was a regular (non-packed) array type. As a result, the
8048 bitsize of the array elements needs to be set again, and the array
8049 length needs to be recomputed based on that bitsize. */
8050 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8051 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8052
8053 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8054 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8055 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8056 TYPE_LENGTH (result)++;
8057 }
8058
8059 TYPE_FIXED_INSTANCE (result) = 1;
8060 return result;
8061 }
8062
8063
8064 /* A standard type (containing no dynamically sized components)
8065 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8066 DVAL describes a record containing any discriminants used in TYPE0,
8067 and may be NULL if there are none, or if the object of type TYPE at
8068 ADDRESS or in VALADDR contains these discriminants.
8069
8070 If CHECK_TAG is not null, in the case of tagged types, this function
8071 attempts to locate the object's tag and use it to compute the actual
8072 type. However, when ADDRESS is null, we cannot use it to determine the
8073 location of the tag, and therefore compute the tagged type's actual type.
8074 So we return the tagged type without consulting the tag. */
8075
8076 static struct type *
8077 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8078 CORE_ADDR address, struct value *dval, int check_tag)
8079 {
8080 type = ada_check_typedef (type);
8081 switch (TYPE_CODE (type))
8082 {
8083 default:
8084 return type;
8085 case TYPE_CODE_STRUCT:
8086 {
8087 struct type *static_type = to_static_fixed_type (type);
8088 struct type *fixed_record_type =
8089 to_fixed_record_type (type, valaddr, address, NULL);
8090
8091 /* If STATIC_TYPE is a tagged type and we know the object's address,
8092 then we can determine its tag, and compute the object's actual
8093 type from there. Note that we have to use the fixed record
8094 type (the parent part of the record may have dynamic fields
8095 and the way the location of _tag is expressed may depend on
8096 them). */
8097
8098 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8099 {
8100 struct value *tag =
8101 value_tag_from_contents_and_address
8102 (fixed_record_type,
8103 valaddr,
8104 address);
8105 struct type *real_type = type_from_tag (tag);
8106 struct value *obj =
8107 value_from_contents_and_address (fixed_record_type,
8108 valaddr,
8109 address);
8110 if (real_type != NULL)
8111 return to_fixed_record_type
8112 (real_type, NULL,
8113 value_address (ada_tag_value_at_base_address (obj)), NULL);
8114 }
8115
8116 /* Check to see if there is a parallel ___XVZ variable.
8117 If there is, then it provides the actual size of our type. */
8118 else if (ada_type_name (fixed_record_type) != NULL)
8119 {
8120 const char *name = ada_type_name (fixed_record_type);
8121 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8122 int xvz_found = 0;
8123 LONGEST size;
8124
8125 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8126 size = get_int_var_value (xvz_name, &xvz_found);
8127 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8128 {
8129 fixed_record_type = copy_type (fixed_record_type);
8130 TYPE_LENGTH (fixed_record_type) = size;
8131
8132 /* The FIXED_RECORD_TYPE may have be a stub. We have
8133 observed this when the debugging info is STABS, and
8134 apparently it is something that is hard to fix.
8135
8136 In practice, we don't need the actual type definition
8137 at all, because the presence of the XVZ variable allows us
8138 to assume that there must be a XVS type as well, which we
8139 should be able to use later, when we need the actual type
8140 definition.
8141
8142 In the meantime, pretend that the "fixed" type we are
8143 returning is NOT a stub, because this can cause trouble
8144 when using this type to create new types targeting it.
8145 Indeed, the associated creation routines often check
8146 whether the target type is a stub and will try to replace
8147 it, thus using a type with the wrong size. This, in turn,
8148 might cause the new type to have the wrong size too.
8149 Consider the case of an array, for instance, where the size
8150 of the array is computed from the number of elements in
8151 our array multiplied by the size of its element. */
8152 TYPE_STUB (fixed_record_type) = 0;
8153 }
8154 }
8155 return fixed_record_type;
8156 }
8157 case TYPE_CODE_ARRAY:
8158 return to_fixed_array_type (type, dval, 1);
8159 case TYPE_CODE_UNION:
8160 if (dval == NULL)
8161 return type;
8162 else
8163 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8164 }
8165 }
8166
8167 /* The same as ada_to_fixed_type_1, except that it preserves the type
8168 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8169
8170 The typedef layer needs be preserved in order to differentiate between
8171 arrays and array pointers when both types are implemented using the same
8172 fat pointer. In the array pointer case, the pointer is encoded as
8173 a typedef of the pointer type. For instance, considering:
8174
8175 type String_Access is access String;
8176 S1 : String_Access := null;
8177
8178 To the debugger, S1 is defined as a typedef of type String. But
8179 to the user, it is a pointer. So if the user tries to print S1,
8180 we should not dereference the array, but print the array address
8181 instead.
8182
8183 If we didn't preserve the typedef layer, we would lose the fact that
8184 the type is to be presented as a pointer (needs de-reference before
8185 being printed). And we would also use the source-level type name. */
8186
8187 struct type *
8188 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8189 CORE_ADDR address, struct value *dval, int check_tag)
8190
8191 {
8192 struct type *fixed_type =
8193 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8194
8195 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8196 then preserve the typedef layer.
8197
8198 Implementation note: We can only check the main-type portion of
8199 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8200 from TYPE now returns a type that has the same instance flags
8201 as TYPE. For instance, if TYPE is a "typedef const", and its
8202 target type is a "struct", then the typedef elimination will return
8203 a "const" version of the target type. See check_typedef for more
8204 details about how the typedef layer elimination is done.
8205
8206 brobecker/2010-11-19: It seems to me that the only case where it is
8207 useful to preserve the typedef layer is when dealing with fat pointers.
8208 Perhaps, we could add a check for that and preserve the typedef layer
8209 only in that situation. But this seems unecessary so far, probably
8210 because we call check_typedef/ada_check_typedef pretty much everywhere.
8211 */
8212 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8213 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8214 == TYPE_MAIN_TYPE (fixed_type)))
8215 return type;
8216
8217 return fixed_type;
8218 }
8219
8220 /* A standard (static-sized) type corresponding as well as possible to
8221 TYPE0, but based on no runtime data. */
8222
8223 static struct type *
8224 to_static_fixed_type (struct type *type0)
8225 {
8226 struct type *type;
8227
8228 if (type0 == NULL)
8229 return NULL;
8230
8231 if (TYPE_FIXED_INSTANCE (type0))
8232 return type0;
8233
8234 type0 = ada_check_typedef (type0);
8235
8236 switch (TYPE_CODE (type0))
8237 {
8238 default:
8239 return type0;
8240 case TYPE_CODE_STRUCT:
8241 type = dynamic_template_type (type0);
8242 if (type != NULL)
8243 return template_to_static_fixed_type (type);
8244 else
8245 return template_to_static_fixed_type (type0);
8246 case TYPE_CODE_UNION:
8247 type = ada_find_parallel_type (type0, "___XVU");
8248 if (type != NULL)
8249 return template_to_static_fixed_type (type);
8250 else
8251 return template_to_static_fixed_type (type0);
8252 }
8253 }
8254
8255 /* A static approximation of TYPE with all type wrappers removed. */
8256
8257 static struct type *
8258 static_unwrap_type (struct type *type)
8259 {
8260 if (ada_is_aligner_type (type))
8261 {
8262 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8263 if (ada_type_name (type1) == NULL)
8264 TYPE_NAME (type1) = ada_type_name (type);
8265
8266 return static_unwrap_type (type1);
8267 }
8268 else
8269 {
8270 struct type *raw_real_type = ada_get_base_type (type);
8271
8272 if (raw_real_type == type)
8273 return type;
8274 else
8275 return to_static_fixed_type (raw_real_type);
8276 }
8277 }
8278
8279 /* In some cases, incomplete and private types require
8280 cross-references that are not resolved as records (for example,
8281 type Foo;
8282 type FooP is access Foo;
8283 V: FooP;
8284 type Foo is array ...;
8285 ). In these cases, since there is no mechanism for producing
8286 cross-references to such types, we instead substitute for FooP a
8287 stub enumeration type that is nowhere resolved, and whose tag is
8288 the name of the actual type. Call these types "non-record stubs". */
8289
8290 /* A type equivalent to TYPE that is not a non-record stub, if one
8291 exists, otherwise TYPE. */
8292
8293 struct type *
8294 ada_check_typedef (struct type *type)
8295 {
8296 if (type == NULL)
8297 return NULL;
8298
8299 /* If our type is a typedef type of a fat pointer, then we're done.
8300 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8301 what allows us to distinguish between fat pointers that represent
8302 array types, and fat pointers that represent array access types
8303 (in both cases, the compiler implements them as fat pointers). */
8304 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8305 && is_thick_pntr (ada_typedef_target_type (type)))
8306 return type;
8307
8308 CHECK_TYPEDEF (type);
8309 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8310 || !TYPE_STUB (type)
8311 || TYPE_TAG_NAME (type) == NULL)
8312 return type;
8313 else
8314 {
8315 const char *name = TYPE_TAG_NAME (type);
8316 struct type *type1 = ada_find_any_type (name);
8317
8318 if (type1 == NULL)
8319 return type;
8320
8321 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8322 stubs pointing to arrays, as we don't create symbols for array
8323 types, only for the typedef-to-array types). If that's the case,
8324 strip the typedef layer. */
8325 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8326 type1 = ada_check_typedef (type1);
8327
8328 return type1;
8329 }
8330 }
8331
8332 /* A value representing the data at VALADDR/ADDRESS as described by
8333 type TYPE0, but with a standard (static-sized) type that correctly
8334 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8335 type, then return VAL0 [this feature is simply to avoid redundant
8336 creation of struct values]. */
8337
8338 static struct value *
8339 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8340 struct value *val0)
8341 {
8342 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8343
8344 if (type == type0 && val0 != NULL)
8345 return val0;
8346 else
8347 return value_from_contents_and_address (type, 0, address);
8348 }
8349
8350 /* A value representing VAL, but with a standard (static-sized) type
8351 that correctly describes it. Does not necessarily create a new
8352 value. */
8353
8354 struct value *
8355 ada_to_fixed_value (struct value *val)
8356 {
8357 val = unwrap_value (val);
8358 val = ada_to_fixed_value_create (value_type (val),
8359 value_address (val),
8360 val);
8361 return val;
8362 }
8363 \f
8364
8365 /* Attributes */
8366
8367 /* Table mapping attribute numbers to names.
8368 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8369
8370 static const char *attribute_names[] = {
8371 "<?>",
8372
8373 "first",
8374 "last",
8375 "length",
8376 "image",
8377 "max",
8378 "min",
8379 "modulus",
8380 "pos",
8381 "size",
8382 "tag",
8383 "val",
8384 0
8385 };
8386
8387 const char *
8388 ada_attribute_name (enum exp_opcode n)
8389 {
8390 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8391 return attribute_names[n - OP_ATR_FIRST + 1];
8392 else
8393 return attribute_names[0];
8394 }
8395
8396 /* Evaluate the 'POS attribute applied to ARG. */
8397
8398 static LONGEST
8399 pos_atr (struct value *arg)
8400 {
8401 struct value *val = coerce_ref (arg);
8402 struct type *type = value_type (val);
8403
8404 if (!discrete_type_p (type))
8405 error (_("'POS only defined on discrete types"));
8406
8407 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8408 {
8409 int i;
8410 LONGEST v = value_as_long (val);
8411
8412 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8413 {
8414 if (v == TYPE_FIELD_ENUMVAL (type, i))
8415 return i;
8416 }
8417 error (_("enumeration value is invalid: can't find 'POS"));
8418 }
8419 else
8420 return value_as_long (val);
8421 }
8422
8423 static struct value *
8424 value_pos_atr (struct type *type, struct value *arg)
8425 {
8426 return value_from_longest (type, pos_atr (arg));
8427 }
8428
8429 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8430
8431 static struct value *
8432 value_val_atr (struct type *type, struct value *arg)
8433 {
8434 if (!discrete_type_p (type))
8435 error (_("'VAL only defined on discrete types"));
8436 if (!integer_type_p (value_type (arg)))
8437 error (_("'VAL requires integral argument"));
8438
8439 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8440 {
8441 long pos = value_as_long (arg);
8442
8443 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8444 error (_("argument to 'VAL out of range"));
8445 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8446 }
8447 else
8448 return value_from_longest (type, value_as_long (arg));
8449 }
8450 \f
8451
8452 /* Evaluation */
8453
8454 /* True if TYPE appears to be an Ada character type.
8455 [At the moment, this is true only for Character and Wide_Character;
8456 It is a heuristic test that could stand improvement]. */
8457
8458 int
8459 ada_is_character_type (struct type *type)
8460 {
8461 const char *name;
8462
8463 /* If the type code says it's a character, then assume it really is,
8464 and don't check any further. */
8465 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8466 return 1;
8467
8468 /* Otherwise, assume it's a character type iff it is a discrete type
8469 with a known character type name. */
8470 name = ada_type_name (type);
8471 return (name != NULL
8472 && (TYPE_CODE (type) == TYPE_CODE_INT
8473 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8474 && (strcmp (name, "character") == 0
8475 || strcmp (name, "wide_character") == 0
8476 || strcmp (name, "wide_wide_character") == 0
8477 || strcmp (name, "unsigned char") == 0));
8478 }
8479
8480 /* True if TYPE appears to be an Ada string type. */
8481
8482 int
8483 ada_is_string_type (struct type *type)
8484 {
8485 type = ada_check_typedef (type);
8486 if (type != NULL
8487 && TYPE_CODE (type) != TYPE_CODE_PTR
8488 && (ada_is_simple_array_type (type)
8489 || ada_is_array_descriptor_type (type))
8490 && ada_array_arity (type) == 1)
8491 {
8492 struct type *elttype = ada_array_element_type (type, 1);
8493
8494 return ada_is_character_type (elttype);
8495 }
8496 else
8497 return 0;
8498 }
8499
8500 /* The compiler sometimes provides a parallel XVS type for a given
8501 PAD type. Normally, it is safe to follow the PAD type directly,
8502 but older versions of the compiler have a bug that causes the offset
8503 of its "F" field to be wrong. Following that field in that case
8504 would lead to incorrect results, but this can be worked around
8505 by ignoring the PAD type and using the associated XVS type instead.
8506
8507 Set to True if the debugger should trust the contents of PAD types.
8508 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8509 static int trust_pad_over_xvs = 1;
8510
8511 /* True if TYPE is a struct type introduced by the compiler to force the
8512 alignment of a value. Such types have a single field with a
8513 distinctive name. */
8514
8515 int
8516 ada_is_aligner_type (struct type *type)
8517 {
8518 type = ada_check_typedef (type);
8519
8520 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8521 return 0;
8522
8523 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8524 && TYPE_NFIELDS (type) == 1
8525 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8526 }
8527
8528 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8529 the parallel type. */
8530
8531 struct type *
8532 ada_get_base_type (struct type *raw_type)
8533 {
8534 struct type *real_type_namer;
8535 struct type *raw_real_type;
8536
8537 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8538 return raw_type;
8539
8540 if (ada_is_aligner_type (raw_type))
8541 /* The encoding specifies that we should always use the aligner type.
8542 So, even if this aligner type has an associated XVS type, we should
8543 simply ignore it.
8544
8545 According to the compiler gurus, an XVS type parallel to an aligner
8546 type may exist because of a stabs limitation. In stabs, aligner
8547 types are empty because the field has a variable-sized type, and
8548 thus cannot actually be used as an aligner type. As a result,
8549 we need the associated parallel XVS type to decode the type.
8550 Since the policy in the compiler is to not change the internal
8551 representation based on the debugging info format, we sometimes
8552 end up having a redundant XVS type parallel to the aligner type. */
8553 return raw_type;
8554
8555 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8556 if (real_type_namer == NULL
8557 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8558 || TYPE_NFIELDS (real_type_namer) != 1)
8559 return raw_type;
8560
8561 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8562 {
8563 /* This is an older encoding form where the base type needs to be
8564 looked up by name. We prefer the newer enconding because it is
8565 more efficient. */
8566 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8567 if (raw_real_type == NULL)
8568 return raw_type;
8569 else
8570 return raw_real_type;
8571 }
8572
8573 /* The field in our XVS type is a reference to the base type. */
8574 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8575 }
8576
8577 /* The type of value designated by TYPE, with all aligners removed. */
8578
8579 struct type *
8580 ada_aligned_type (struct type *type)
8581 {
8582 if (ada_is_aligner_type (type))
8583 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8584 else
8585 return ada_get_base_type (type);
8586 }
8587
8588
8589 /* The address of the aligned value in an object at address VALADDR
8590 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8591
8592 const gdb_byte *
8593 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8594 {
8595 if (ada_is_aligner_type (type))
8596 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8597 valaddr +
8598 TYPE_FIELD_BITPOS (type,
8599 0) / TARGET_CHAR_BIT);
8600 else
8601 return valaddr;
8602 }
8603
8604
8605
8606 /* The printed representation of an enumeration literal with encoded
8607 name NAME. The value is good to the next call of ada_enum_name. */
8608 const char *
8609 ada_enum_name (const char *name)
8610 {
8611 static char *result;
8612 static size_t result_len = 0;
8613 char *tmp;
8614
8615 /* First, unqualify the enumeration name:
8616 1. Search for the last '.' character. If we find one, then skip
8617 all the preceding characters, the unqualified name starts
8618 right after that dot.
8619 2. Otherwise, we may be debugging on a target where the compiler
8620 translates dots into "__". Search forward for double underscores,
8621 but stop searching when we hit an overloading suffix, which is
8622 of the form "__" followed by digits. */
8623
8624 tmp = strrchr (name, '.');
8625 if (tmp != NULL)
8626 name = tmp + 1;
8627 else
8628 {
8629 while ((tmp = strstr (name, "__")) != NULL)
8630 {
8631 if (isdigit (tmp[2]))
8632 break;
8633 else
8634 name = tmp + 2;
8635 }
8636 }
8637
8638 if (name[0] == 'Q')
8639 {
8640 int v;
8641
8642 if (name[1] == 'U' || name[1] == 'W')
8643 {
8644 if (sscanf (name + 2, "%x", &v) != 1)
8645 return name;
8646 }
8647 else
8648 return name;
8649
8650 GROW_VECT (result, result_len, 16);
8651 if (isascii (v) && isprint (v))
8652 xsnprintf (result, result_len, "'%c'", v);
8653 else if (name[1] == 'U')
8654 xsnprintf (result, result_len, "[\"%02x\"]", v);
8655 else
8656 xsnprintf (result, result_len, "[\"%04x\"]", v);
8657
8658 return result;
8659 }
8660 else
8661 {
8662 tmp = strstr (name, "__");
8663 if (tmp == NULL)
8664 tmp = strstr (name, "$");
8665 if (tmp != NULL)
8666 {
8667 GROW_VECT (result, result_len, tmp - name + 1);
8668 strncpy (result, name, tmp - name);
8669 result[tmp - name] = '\0';
8670 return result;
8671 }
8672
8673 return name;
8674 }
8675 }
8676
8677 /* Evaluate the subexpression of EXP starting at *POS as for
8678 evaluate_type, updating *POS to point just past the evaluated
8679 expression. */
8680
8681 static struct value *
8682 evaluate_subexp_type (struct expression *exp, int *pos)
8683 {
8684 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8685 }
8686
8687 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8688 value it wraps. */
8689
8690 static struct value *
8691 unwrap_value (struct value *val)
8692 {
8693 struct type *type = ada_check_typedef (value_type (val));
8694
8695 if (ada_is_aligner_type (type))
8696 {
8697 struct value *v = ada_value_struct_elt (val, "F", 0);
8698 struct type *val_type = ada_check_typedef (value_type (v));
8699
8700 if (ada_type_name (val_type) == NULL)
8701 TYPE_NAME (val_type) = ada_type_name (type);
8702
8703 return unwrap_value (v);
8704 }
8705 else
8706 {
8707 struct type *raw_real_type =
8708 ada_check_typedef (ada_get_base_type (type));
8709
8710 /* If there is no parallel XVS or XVE type, then the value is
8711 already unwrapped. Return it without further modification. */
8712 if ((type == raw_real_type)
8713 && ada_find_parallel_type (type, "___XVE") == NULL)
8714 return val;
8715
8716 return
8717 coerce_unspec_val_to_type
8718 (val, ada_to_fixed_type (raw_real_type, 0,
8719 value_address (val),
8720 NULL, 1));
8721 }
8722 }
8723
8724 static struct value *
8725 cast_to_fixed (struct type *type, struct value *arg)
8726 {
8727 LONGEST val;
8728
8729 if (type == value_type (arg))
8730 return arg;
8731 else if (ada_is_fixed_point_type (value_type (arg)))
8732 val = ada_float_to_fixed (type,
8733 ada_fixed_to_float (value_type (arg),
8734 value_as_long (arg)));
8735 else
8736 {
8737 DOUBLEST argd = value_as_double (arg);
8738
8739 val = ada_float_to_fixed (type, argd);
8740 }
8741
8742 return value_from_longest (type, val);
8743 }
8744
8745 static struct value *
8746 cast_from_fixed (struct type *type, struct value *arg)
8747 {
8748 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8749 value_as_long (arg));
8750
8751 return value_from_double (type, val);
8752 }
8753
8754 /* Given two array types T1 and T2, return nonzero iff both arrays
8755 contain the same number of elements. */
8756
8757 static int
8758 ada_same_array_size_p (struct type *t1, struct type *t2)
8759 {
8760 LONGEST lo1, hi1, lo2, hi2;
8761
8762 /* Get the array bounds in order to verify that the size of
8763 the two arrays match. */
8764 if (!get_array_bounds (t1, &lo1, &hi1)
8765 || !get_array_bounds (t2, &lo2, &hi2))
8766 error (_("unable to determine array bounds"));
8767
8768 /* To make things easier for size comparison, normalize a bit
8769 the case of empty arrays by making sure that the difference
8770 between upper bound and lower bound is always -1. */
8771 if (lo1 > hi1)
8772 hi1 = lo1 - 1;
8773 if (lo2 > hi2)
8774 hi2 = lo2 - 1;
8775
8776 return (hi1 - lo1 == hi2 - lo2);
8777 }
8778
8779 /* Assuming that VAL is an array of integrals, and TYPE represents
8780 an array with the same number of elements, but with wider integral
8781 elements, return an array "casted" to TYPE. In practice, this
8782 means that the returned array is built by casting each element
8783 of the original array into TYPE's (wider) element type. */
8784
8785 static struct value *
8786 ada_promote_array_of_integrals (struct type *type, struct value *val)
8787 {
8788 struct type *elt_type = TYPE_TARGET_TYPE (type);
8789 LONGEST lo, hi;
8790 struct value *res;
8791 LONGEST i;
8792
8793 /* Verify that both val and type are arrays of scalars, and
8794 that the size of val's elements is smaller than the size
8795 of type's element. */
8796 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8797 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8798 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8799 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8800 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8801 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8802
8803 if (!get_array_bounds (type, &lo, &hi))
8804 error (_("unable to determine array bounds"));
8805
8806 res = allocate_value (type);
8807
8808 /* Promote each array element. */
8809 for (i = 0; i < hi - lo + 1; i++)
8810 {
8811 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8812
8813 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8814 value_contents_all (elt), TYPE_LENGTH (elt_type));
8815 }
8816
8817 return res;
8818 }
8819
8820 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8821 return the converted value. */
8822
8823 static struct value *
8824 coerce_for_assign (struct type *type, struct value *val)
8825 {
8826 struct type *type2 = value_type (val);
8827
8828 if (type == type2)
8829 return val;
8830
8831 type2 = ada_check_typedef (type2);
8832 type = ada_check_typedef (type);
8833
8834 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8835 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8836 {
8837 val = ada_value_ind (val);
8838 type2 = value_type (val);
8839 }
8840
8841 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8842 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8843 {
8844 if (!ada_same_array_size_p (type, type2))
8845 error (_("cannot assign arrays of different length"));
8846
8847 if (is_integral_type (TYPE_TARGET_TYPE (type))
8848 && is_integral_type (TYPE_TARGET_TYPE (type2))
8849 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8850 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8851 {
8852 /* Allow implicit promotion of the array elements to
8853 a wider type. */
8854 return ada_promote_array_of_integrals (type, val);
8855 }
8856
8857 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8858 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8859 error (_("Incompatible types in assignment"));
8860 deprecated_set_value_type (val, type);
8861 }
8862 return val;
8863 }
8864
8865 static struct value *
8866 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8867 {
8868 struct value *val;
8869 struct type *type1, *type2;
8870 LONGEST v, v1, v2;
8871
8872 arg1 = coerce_ref (arg1);
8873 arg2 = coerce_ref (arg2);
8874 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8875 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8876
8877 if (TYPE_CODE (type1) != TYPE_CODE_INT
8878 || TYPE_CODE (type2) != TYPE_CODE_INT)
8879 return value_binop (arg1, arg2, op);
8880
8881 switch (op)
8882 {
8883 case BINOP_MOD:
8884 case BINOP_DIV:
8885 case BINOP_REM:
8886 break;
8887 default:
8888 return value_binop (arg1, arg2, op);
8889 }
8890
8891 v2 = value_as_long (arg2);
8892 if (v2 == 0)
8893 error (_("second operand of %s must not be zero."), op_string (op));
8894
8895 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8896 return value_binop (arg1, arg2, op);
8897
8898 v1 = value_as_long (arg1);
8899 switch (op)
8900 {
8901 case BINOP_DIV:
8902 v = v1 / v2;
8903 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8904 v += v > 0 ? -1 : 1;
8905 break;
8906 case BINOP_REM:
8907 v = v1 % v2;
8908 if (v * v1 < 0)
8909 v -= v2;
8910 break;
8911 default:
8912 /* Should not reach this point. */
8913 v = 0;
8914 }
8915
8916 val = allocate_value (type1);
8917 store_unsigned_integer (value_contents_raw (val),
8918 TYPE_LENGTH (value_type (val)),
8919 gdbarch_byte_order (get_type_arch (type1)), v);
8920 return val;
8921 }
8922
8923 static int
8924 ada_value_equal (struct value *arg1, struct value *arg2)
8925 {
8926 if (ada_is_direct_array_type (value_type (arg1))
8927 || ada_is_direct_array_type (value_type (arg2)))
8928 {
8929 /* Automatically dereference any array reference before
8930 we attempt to perform the comparison. */
8931 arg1 = ada_coerce_ref (arg1);
8932 arg2 = ada_coerce_ref (arg2);
8933
8934 arg1 = ada_coerce_to_simple_array (arg1);
8935 arg2 = ada_coerce_to_simple_array (arg2);
8936 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8937 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8938 error (_("Attempt to compare array with non-array"));
8939 /* FIXME: The following works only for types whose
8940 representations use all bits (no padding or undefined bits)
8941 and do not have user-defined equality. */
8942 return
8943 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8944 && memcmp (value_contents (arg1), value_contents (arg2),
8945 TYPE_LENGTH (value_type (arg1))) == 0;
8946 }
8947 return value_equal (arg1, arg2);
8948 }
8949
8950 /* Total number of component associations in the aggregate starting at
8951 index PC in EXP. Assumes that index PC is the start of an
8952 OP_AGGREGATE. */
8953
8954 static int
8955 num_component_specs (struct expression *exp, int pc)
8956 {
8957 int n, m, i;
8958
8959 m = exp->elts[pc + 1].longconst;
8960 pc += 3;
8961 n = 0;
8962 for (i = 0; i < m; i += 1)
8963 {
8964 switch (exp->elts[pc].opcode)
8965 {
8966 default:
8967 n += 1;
8968 break;
8969 case OP_CHOICES:
8970 n += exp->elts[pc + 1].longconst;
8971 break;
8972 }
8973 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8974 }
8975 return n;
8976 }
8977
8978 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8979 component of LHS (a simple array or a record), updating *POS past
8980 the expression, assuming that LHS is contained in CONTAINER. Does
8981 not modify the inferior's memory, nor does it modify LHS (unless
8982 LHS == CONTAINER). */
8983
8984 static void
8985 assign_component (struct value *container, struct value *lhs, LONGEST index,
8986 struct expression *exp, int *pos)
8987 {
8988 struct value *mark = value_mark ();
8989 struct value *elt;
8990
8991 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8992 {
8993 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8994 struct value *index_val = value_from_longest (index_type, index);
8995
8996 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8997 }
8998 else
8999 {
9000 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9001 elt = ada_to_fixed_value (elt);
9002 }
9003
9004 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9005 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9006 else
9007 value_assign_to_component (container, elt,
9008 ada_evaluate_subexp (NULL, exp, pos,
9009 EVAL_NORMAL));
9010
9011 value_free_to_mark (mark);
9012 }
9013
9014 /* Assuming that LHS represents an lvalue having a record or array
9015 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9016 of that aggregate's value to LHS, advancing *POS past the
9017 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9018 lvalue containing LHS (possibly LHS itself). Does not modify
9019 the inferior's memory, nor does it modify the contents of
9020 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9021
9022 static struct value *
9023 assign_aggregate (struct value *container,
9024 struct value *lhs, struct expression *exp,
9025 int *pos, enum noside noside)
9026 {
9027 struct type *lhs_type;
9028 int n = exp->elts[*pos+1].longconst;
9029 LONGEST low_index, high_index;
9030 int num_specs;
9031 LONGEST *indices;
9032 int max_indices, num_indices;
9033 int is_array_aggregate;
9034 int i;
9035
9036 *pos += 3;
9037 if (noside != EVAL_NORMAL)
9038 {
9039 for (i = 0; i < n; i += 1)
9040 ada_evaluate_subexp (NULL, exp, pos, noside);
9041 return container;
9042 }
9043
9044 container = ada_coerce_ref (container);
9045 if (ada_is_direct_array_type (value_type (container)))
9046 container = ada_coerce_to_simple_array (container);
9047 lhs = ada_coerce_ref (lhs);
9048 if (!deprecated_value_modifiable (lhs))
9049 error (_("Left operand of assignment is not a modifiable lvalue."));
9050
9051 lhs_type = value_type (lhs);
9052 if (ada_is_direct_array_type (lhs_type))
9053 {
9054 lhs = ada_coerce_to_simple_array (lhs);
9055 lhs_type = value_type (lhs);
9056 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9057 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9058 is_array_aggregate = 1;
9059 }
9060 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9061 {
9062 low_index = 0;
9063 high_index = num_visible_fields (lhs_type) - 1;
9064 is_array_aggregate = 0;
9065 }
9066 else
9067 error (_("Left-hand side must be array or record."));
9068
9069 num_specs = num_component_specs (exp, *pos - 3);
9070 max_indices = 4 * num_specs + 4;
9071 indices = alloca (max_indices * sizeof (indices[0]));
9072 indices[0] = indices[1] = low_index - 1;
9073 indices[2] = indices[3] = high_index + 1;
9074 num_indices = 4;
9075
9076 for (i = 0; i < n; i += 1)
9077 {
9078 switch (exp->elts[*pos].opcode)
9079 {
9080 case OP_CHOICES:
9081 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9082 &num_indices, max_indices,
9083 low_index, high_index);
9084 break;
9085 case OP_POSITIONAL:
9086 aggregate_assign_positional (container, lhs, exp, pos, indices,
9087 &num_indices, max_indices,
9088 low_index, high_index);
9089 break;
9090 case OP_OTHERS:
9091 if (i != n-1)
9092 error (_("Misplaced 'others' clause"));
9093 aggregate_assign_others (container, lhs, exp, pos, indices,
9094 num_indices, low_index, high_index);
9095 break;
9096 default:
9097 error (_("Internal error: bad aggregate clause"));
9098 }
9099 }
9100
9101 return container;
9102 }
9103
9104 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9105 construct at *POS, updating *POS past the construct, given that
9106 the positions are relative to lower bound LOW, where HIGH is the
9107 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9108 updating *NUM_INDICES as needed. CONTAINER is as for
9109 assign_aggregate. */
9110 static void
9111 aggregate_assign_positional (struct value *container,
9112 struct value *lhs, struct expression *exp,
9113 int *pos, LONGEST *indices, int *num_indices,
9114 int max_indices, LONGEST low, LONGEST high)
9115 {
9116 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9117
9118 if (ind - 1 == high)
9119 warning (_("Extra components in aggregate ignored."));
9120 if (ind <= high)
9121 {
9122 add_component_interval (ind, ind, indices, num_indices, max_indices);
9123 *pos += 3;
9124 assign_component (container, lhs, ind, exp, pos);
9125 }
9126 else
9127 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9128 }
9129
9130 /* Assign into the components of LHS indexed by the OP_CHOICES
9131 construct at *POS, updating *POS past the construct, given that
9132 the allowable indices are LOW..HIGH. Record the indices assigned
9133 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9134 needed. CONTAINER is as for assign_aggregate. */
9135 static void
9136 aggregate_assign_from_choices (struct value *container,
9137 struct value *lhs, struct expression *exp,
9138 int *pos, LONGEST *indices, int *num_indices,
9139 int max_indices, LONGEST low, LONGEST high)
9140 {
9141 int j;
9142 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9143 int choice_pos, expr_pc;
9144 int is_array = ada_is_direct_array_type (value_type (lhs));
9145
9146 choice_pos = *pos += 3;
9147
9148 for (j = 0; j < n_choices; j += 1)
9149 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9150 expr_pc = *pos;
9151 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9152
9153 for (j = 0; j < n_choices; j += 1)
9154 {
9155 LONGEST lower, upper;
9156 enum exp_opcode op = exp->elts[choice_pos].opcode;
9157
9158 if (op == OP_DISCRETE_RANGE)
9159 {
9160 choice_pos += 1;
9161 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9162 EVAL_NORMAL));
9163 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9164 EVAL_NORMAL));
9165 }
9166 else if (is_array)
9167 {
9168 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9169 EVAL_NORMAL));
9170 upper = lower;
9171 }
9172 else
9173 {
9174 int ind;
9175 const char *name;
9176
9177 switch (op)
9178 {
9179 case OP_NAME:
9180 name = &exp->elts[choice_pos + 2].string;
9181 break;
9182 case OP_VAR_VALUE:
9183 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9184 break;
9185 default:
9186 error (_("Invalid record component association."));
9187 }
9188 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9189 ind = 0;
9190 if (! find_struct_field (name, value_type (lhs), 0,
9191 NULL, NULL, NULL, NULL, &ind))
9192 error (_("Unknown component name: %s."), name);
9193 lower = upper = ind;
9194 }
9195
9196 if (lower <= upper && (lower < low || upper > high))
9197 error (_("Index in component association out of bounds."));
9198
9199 add_component_interval (lower, upper, indices, num_indices,
9200 max_indices);
9201 while (lower <= upper)
9202 {
9203 int pos1;
9204
9205 pos1 = expr_pc;
9206 assign_component (container, lhs, lower, exp, &pos1);
9207 lower += 1;
9208 }
9209 }
9210 }
9211
9212 /* Assign the value of the expression in the OP_OTHERS construct in
9213 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9214 have not been previously assigned. The index intervals already assigned
9215 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9216 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9217 static void
9218 aggregate_assign_others (struct value *container,
9219 struct value *lhs, struct expression *exp,
9220 int *pos, LONGEST *indices, int num_indices,
9221 LONGEST low, LONGEST high)
9222 {
9223 int i;
9224 int expr_pc = *pos + 1;
9225
9226 for (i = 0; i < num_indices - 2; i += 2)
9227 {
9228 LONGEST ind;
9229
9230 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9231 {
9232 int localpos;
9233
9234 localpos = expr_pc;
9235 assign_component (container, lhs, ind, exp, &localpos);
9236 }
9237 }
9238 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9239 }
9240
9241 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9242 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9243 modifying *SIZE as needed. It is an error if *SIZE exceeds
9244 MAX_SIZE. The resulting intervals do not overlap. */
9245 static void
9246 add_component_interval (LONGEST low, LONGEST high,
9247 LONGEST* indices, int *size, int max_size)
9248 {
9249 int i, j;
9250
9251 for (i = 0; i < *size; i += 2) {
9252 if (high >= indices[i] && low <= indices[i + 1])
9253 {
9254 int kh;
9255
9256 for (kh = i + 2; kh < *size; kh += 2)
9257 if (high < indices[kh])
9258 break;
9259 if (low < indices[i])
9260 indices[i] = low;
9261 indices[i + 1] = indices[kh - 1];
9262 if (high > indices[i + 1])
9263 indices[i + 1] = high;
9264 memcpy (indices + i + 2, indices + kh, *size - kh);
9265 *size -= kh - i - 2;
9266 return;
9267 }
9268 else if (high < indices[i])
9269 break;
9270 }
9271
9272 if (*size == max_size)
9273 error (_("Internal error: miscounted aggregate components."));
9274 *size += 2;
9275 for (j = *size-1; j >= i+2; j -= 1)
9276 indices[j] = indices[j - 2];
9277 indices[i] = low;
9278 indices[i + 1] = high;
9279 }
9280
9281 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9282 is different. */
9283
9284 static struct value *
9285 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9286 {
9287 if (type == ada_check_typedef (value_type (arg2)))
9288 return arg2;
9289
9290 if (ada_is_fixed_point_type (type))
9291 return (cast_to_fixed (type, arg2));
9292
9293 if (ada_is_fixed_point_type (value_type (arg2)))
9294 return cast_from_fixed (type, arg2);
9295
9296 return value_cast (type, arg2);
9297 }
9298
9299 /* Evaluating Ada expressions, and printing their result.
9300 ------------------------------------------------------
9301
9302 1. Introduction:
9303 ----------------
9304
9305 We usually evaluate an Ada expression in order to print its value.
9306 We also evaluate an expression in order to print its type, which
9307 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9308 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9309 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9310 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9311 similar.
9312
9313 Evaluating expressions is a little more complicated for Ada entities
9314 than it is for entities in languages such as C. The main reason for
9315 this is that Ada provides types whose definition might be dynamic.
9316 One example of such types is variant records. Or another example
9317 would be an array whose bounds can only be known at run time.
9318
9319 The following description is a general guide as to what should be
9320 done (and what should NOT be done) in order to evaluate an expression
9321 involving such types, and when. This does not cover how the semantic
9322 information is encoded by GNAT as this is covered separatly. For the
9323 document used as the reference for the GNAT encoding, see exp_dbug.ads
9324 in the GNAT sources.
9325
9326 Ideally, we should embed each part of this description next to its
9327 associated code. Unfortunately, the amount of code is so vast right
9328 now that it's hard to see whether the code handling a particular
9329 situation might be duplicated or not. One day, when the code is
9330 cleaned up, this guide might become redundant with the comments
9331 inserted in the code, and we might want to remove it.
9332
9333 2. ``Fixing'' an Entity, the Simple Case:
9334 -----------------------------------------
9335
9336 When evaluating Ada expressions, the tricky issue is that they may
9337 reference entities whose type contents and size are not statically
9338 known. Consider for instance a variant record:
9339
9340 type Rec (Empty : Boolean := True) is record
9341 case Empty is
9342 when True => null;
9343 when False => Value : Integer;
9344 end case;
9345 end record;
9346 Yes : Rec := (Empty => False, Value => 1);
9347 No : Rec := (empty => True);
9348
9349 The size and contents of that record depends on the value of the
9350 descriminant (Rec.Empty). At this point, neither the debugging
9351 information nor the associated type structure in GDB are able to
9352 express such dynamic types. So what the debugger does is to create
9353 "fixed" versions of the type that applies to the specific object.
9354 We also informally refer to this opperation as "fixing" an object,
9355 which means creating its associated fixed type.
9356
9357 Example: when printing the value of variable "Yes" above, its fixed
9358 type would look like this:
9359
9360 type Rec is record
9361 Empty : Boolean;
9362 Value : Integer;
9363 end record;
9364
9365 On the other hand, if we printed the value of "No", its fixed type
9366 would become:
9367
9368 type Rec is record
9369 Empty : Boolean;
9370 end record;
9371
9372 Things become a little more complicated when trying to fix an entity
9373 with a dynamic type that directly contains another dynamic type,
9374 such as an array of variant records, for instance. There are
9375 two possible cases: Arrays, and records.
9376
9377 3. ``Fixing'' Arrays:
9378 ---------------------
9379
9380 The type structure in GDB describes an array in terms of its bounds,
9381 and the type of its elements. By design, all elements in the array
9382 have the same type and we cannot represent an array of variant elements
9383 using the current type structure in GDB. When fixing an array,
9384 we cannot fix the array element, as we would potentially need one
9385 fixed type per element of the array. As a result, the best we can do
9386 when fixing an array is to produce an array whose bounds and size
9387 are correct (allowing us to read it from memory), but without having
9388 touched its element type. Fixing each element will be done later,
9389 when (if) necessary.
9390
9391 Arrays are a little simpler to handle than records, because the same
9392 amount of memory is allocated for each element of the array, even if
9393 the amount of space actually used by each element differs from element
9394 to element. Consider for instance the following array of type Rec:
9395
9396 type Rec_Array is array (1 .. 2) of Rec;
9397
9398 The actual amount of memory occupied by each element might be different
9399 from element to element, depending on the value of their discriminant.
9400 But the amount of space reserved for each element in the array remains
9401 fixed regardless. So we simply need to compute that size using
9402 the debugging information available, from which we can then determine
9403 the array size (we multiply the number of elements of the array by
9404 the size of each element).
9405
9406 The simplest case is when we have an array of a constrained element
9407 type. For instance, consider the following type declarations:
9408
9409 type Bounded_String (Max_Size : Integer) is
9410 Length : Integer;
9411 Buffer : String (1 .. Max_Size);
9412 end record;
9413 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9414
9415 In this case, the compiler describes the array as an array of
9416 variable-size elements (identified by its XVS suffix) for which
9417 the size can be read in the parallel XVZ variable.
9418
9419 In the case of an array of an unconstrained element type, the compiler
9420 wraps the array element inside a private PAD type. This type should not
9421 be shown to the user, and must be "unwrap"'ed before printing. Note
9422 that we also use the adjective "aligner" in our code to designate
9423 these wrapper types.
9424
9425 In some cases, the size allocated for each element is statically
9426 known. In that case, the PAD type already has the correct size,
9427 and the array element should remain unfixed.
9428
9429 But there are cases when this size is not statically known.
9430 For instance, assuming that "Five" is an integer variable:
9431
9432 type Dynamic is array (1 .. Five) of Integer;
9433 type Wrapper (Has_Length : Boolean := False) is record
9434 Data : Dynamic;
9435 case Has_Length is
9436 when True => Length : Integer;
9437 when False => null;
9438 end case;
9439 end record;
9440 type Wrapper_Array is array (1 .. 2) of Wrapper;
9441
9442 Hello : Wrapper_Array := (others => (Has_Length => True,
9443 Data => (others => 17),
9444 Length => 1));
9445
9446
9447 The debugging info would describe variable Hello as being an
9448 array of a PAD type. The size of that PAD type is not statically
9449 known, but can be determined using a parallel XVZ variable.
9450 In that case, a copy of the PAD type with the correct size should
9451 be used for the fixed array.
9452
9453 3. ``Fixing'' record type objects:
9454 ----------------------------------
9455
9456 Things are slightly different from arrays in the case of dynamic
9457 record types. In this case, in order to compute the associated
9458 fixed type, we need to determine the size and offset of each of
9459 its components. This, in turn, requires us to compute the fixed
9460 type of each of these components.
9461
9462 Consider for instance the example:
9463
9464 type Bounded_String (Max_Size : Natural) is record
9465 Str : String (1 .. Max_Size);
9466 Length : Natural;
9467 end record;
9468 My_String : Bounded_String (Max_Size => 10);
9469
9470 In that case, the position of field "Length" depends on the size
9471 of field Str, which itself depends on the value of the Max_Size
9472 discriminant. In order to fix the type of variable My_String,
9473 we need to fix the type of field Str. Therefore, fixing a variant
9474 record requires us to fix each of its components.
9475
9476 However, if a component does not have a dynamic size, the component
9477 should not be fixed. In particular, fields that use a PAD type
9478 should not fixed. Here is an example where this might happen
9479 (assuming type Rec above):
9480
9481 type Container (Big : Boolean) is record
9482 First : Rec;
9483 After : Integer;
9484 case Big is
9485 when True => Another : Integer;
9486 when False => null;
9487 end case;
9488 end record;
9489 My_Container : Container := (Big => False,
9490 First => (Empty => True),
9491 After => 42);
9492
9493 In that example, the compiler creates a PAD type for component First,
9494 whose size is constant, and then positions the component After just
9495 right after it. The offset of component After is therefore constant
9496 in this case.
9497
9498 The debugger computes the position of each field based on an algorithm
9499 that uses, among other things, the actual position and size of the field
9500 preceding it. Let's now imagine that the user is trying to print
9501 the value of My_Container. If the type fixing was recursive, we would
9502 end up computing the offset of field After based on the size of the
9503 fixed version of field First. And since in our example First has
9504 only one actual field, the size of the fixed type is actually smaller
9505 than the amount of space allocated to that field, and thus we would
9506 compute the wrong offset of field After.
9507
9508 To make things more complicated, we need to watch out for dynamic
9509 components of variant records (identified by the ___XVL suffix in
9510 the component name). Even if the target type is a PAD type, the size
9511 of that type might not be statically known. So the PAD type needs
9512 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9513 we might end up with the wrong size for our component. This can be
9514 observed with the following type declarations:
9515
9516 type Octal is new Integer range 0 .. 7;
9517 type Octal_Array is array (Positive range <>) of Octal;
9518 pragma Pack (Octal_Array);
9519
9520 type Octal_Buffer (Size : Positive) is record
9521 Buffer : Octal_Array (1 .. Size);
9522 Length : Integer;
9523 end record;
9524
9525 In that case, Buffer is a PAD type whose size is unset and needs
9526 to be computed by fixing the unwrapped type.
9527
9528 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9529 ----------------------------------------------------------
9530
9531 Lastly, when should the sub-elements of an entity that remained unfixed
9532 thus far, be actually fixed?
9533
9534 The answer is: Only when referencing that element. For instance
9535 when selecting one component of a record, this specific component
9536 should be fixed at that point in time. Or when printing the value
9537 of a record, each component should be fixed before its value gets
9538 printed. Similarly for arrays, the element of the array should be
9539 fixed when printing each element of the array, or when extracting
9540 one element out of that array. On the other hand, fixing should
9541 not be performed on the elements when taking a slice of an array!
9542
9543 Note that one of the side-effects of miscomputing the offset and
9544 size of each field is that we end up also miscomputing the size
9545 of the containing type. This can have adverse results when computing
9546 the value of an entity. GDB fetches the value of an entity based
9547 on the size of its type, and thus a wrong size causes GDB to fetch
9548 the wrong amount of memory. In the case where the computed size is
9549 too small, GDB fetches too little data to print the value of our
9550 entiry. Results in this case as unpredicatble, as we usually read
9551 past the buffer containing the data =:-o. */
9552
9553 /* Implement the evaluate_exp routine in the exp_descriptor structure
9554 for the Ada language. */
9555
9556 static struct value *
9557 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9558 int *pos, enum noside noside)
9559 {
9560 enum exp_opcode op;
9561 int tem;
9562 int pc;
9563 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9564 struct type *type;
9565 int nargs, oplen;
9566 struct value **argvec;
9567
9568 pc = *pos;
9569 *pos += 1;
9570 op = exp->elts[pc].opcode;
9571
9572 switch (op)
9573 {
9574 default:
9575 *pos -= 1;
9576 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9577
9578 if (noside == EVAL_NORMAL)
9579 arg1 = unwrap_value (arg1);
9580
9581 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9582 then we need to perform the conversion manually, because
9583 evaluate_subexp_standard doesn't do it. This conversion is
9584 necessary in Ada because the different kinds of float/fixed
9585 types in Ada have different representations.
9586
9587 Similarly, we need to perform the conversion from OP_LONG
9588 ourselves. */
9589 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9590 arg1 = ada_value_cast (expect_type, arg1, noside);
9591
9592 return arg1;
9593
9594 case OP_STRING:
9595 {
9596 struct value *result;
9597
9598 *pos -= 1;
9599 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9600 /* The result type will have code OP_STRING, bashed there from
9601 OP_ARRAY. Bash it back. */
9602 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9603 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9604 return result;
9605 }
9606
9607 case UNOP_CAST:
9608 (*pos) += 2;
9609 type = exp->elts[pc + 1].type;
9610 arg1 = evaluate_subexp (type, exp, pos, noside);
9611 if (noside == EVAL_SKIP)
9612 goto nosideret;
9613 arg1 = ada_value_cast (type, arg1, noside);
9614 return arg1;
9615
9616 case UNOP_QUAL:
9617 (*pos) += 2;
9618 type = exp->elts[pc + 1].type;
9619 return ada_evaluate_subexp (type, exp, pos, noside);
9620
9621 case BINOP_ASSIGN:
9622 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9623 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9624 {
9625 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9626 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9627 return arg1;
9628 return ada_value_assign (arg1, arg1);
9629 }
9630 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9631 except if the lhs of our assignment is a convenience variable.
9632 In the case of assigning to a convenience variable, the lhs
9633 should be exactly the result of the evaluation of the rhs. */
9634 type = value_type (arg1);
9635 if (VALUE_LVAL (arg1) == lval_internalvar)
9636 type = NULL;
9637 arg2 = evaluate_subexp (type, exp, pos, noside);
9638 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9639 return arg1;
9640 if (ada_is_fixed_point_type (value_type (arg1)))
9641 arg2 = cast_to_fixed (value_type (arg1), arg2);
9642 else if (ada_is_fixed_point_type (value_type (arg2)))
9643 error
9644 (_("Fixed-point values must be assigned to fixed-point variables"));
9645 else
9646 arg2 = coerce_for_assign (value_type (arg1), arg2);
9647 return ada_value_assign (arg1, arg2);
9648
9649 case BINOP_ADD:
9650 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9651 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9652 if (noside == EVAL_SKIP)
9653 goto nosideret;
9654 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9655 return (value_from_longest
9656 (value_type (arg1),
9657 value_as_long (arg1) + value_as_long (arg2)));
9658 if ((ada_is_fixed_point_type (value_type (arg1))
9659 || ada_is_fixed_point_type (value_type (arg2)))
9660 && value_type (arg1) != value_type (arg2))
9661 error (_("Operands of fixed-point addition must have the same type"));
9662 /* Do the addition, and cast the result to the type of the first
9663 argument. We cannot cast the result to a reference type, so if
9664 ARG1 is a reference type, find its underlying type. */
9665 type = value_type (arg1);
9666 while (TYPE_CODE (type) == TYPE_CODE_REF)
9667 type = TYPE_TARGET_TYPE (type);
9668 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9669 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9670
9671 case BINOP_SUB:
9672 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9673 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9674 if (noside == EVAL_SKIP)
9675 goto nosideret;
9676 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9677 return (value_from_longest
9678 (value_type (arg1),
9679 value_as_long (arg1) - value_as_long (arg2)));
9680 if ((ada_is_fixed_point_type (value_type (arg1))
9681 || ada_is_fixed_point_type (value_type (arg2)))
9682 && value_type (arg1) != value_type (arg2))
9683 error (_("Operands of fixed-point subtraction "
9684 "must have the same type"));
9685 /* Do the substraction, and cast the result to the type of the first
9686 argument. We cannot cast the result to a reference type, so if
9687 ARG1 is a reference type, find its underlying type. */
9688 type = value_type (arg1);
9689 while (TYPE_CODE (type) == TYPE_CODE_REF)
9690 type = TYPE_TARGET_TYPE (type);
9691 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9692 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9693
9694 case BINOP_MUL:
9695 case BINOP_DIV:
9696 case BINOP_REM:
9697 case BINOP_MOD:
9698 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9699 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9700 if (noside == EVAL_SKIP)
9701 goto nosideret;
9702 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9703 {
9704 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9705 return value_zero (value_type (arg1), not_lval);
9706 }
9707 else
9708 {
9709 type = builtin_type (exp->gdbarch)->builtin_double;
9710 if (ada_is_fixed_point_type (value_type (arg1)))
9711 arg1 = cast_from_fixed (type, arg1);
9712 if (ada_is_fixed_point_type (value_type (arg2)))
9713 arg2 = cast_from_fixed (type, arg2);
9714 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9715 return ada_value_binop (arg1, arg2, op);
9716 }
9717
9718 case BINOP_EQUAL:
9719 case BINOP_NOTEQUAL:
9720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9721 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9722 if (noside == EVAL_SKIP)
9723 goto nosideret;
9724 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9725 tem = 0;
9726 else
9727 {
9728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9729 tem = ada_value_equal (arg1, arg2);
9730 }
9731 if (op == BINOP_NOTEQUAL)
9732 tem = !tem;
9733 type = language_bool_type (exp->language_defn, exp->gdbarch);
9734 return value_from_longest (type, (LONGEST) tem);
9735
9736 case UNOP_NEG:
9737 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9738 if (noside == EVAL_SKIP)
9739 goto nosideret;
9740 else if (ada_is_fixed_point_type (value_type (arg1)))
9741 return value_cast (value_type (arg1), value_neg (arg1));
9742 else
9743 {
9744 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9745 return value_neg (arg1);
9746 }
9747
9748 case BINOP_LOGICAL_AND:
9749 case BINOP_LOGICAL_OR:
9750 case UNOP_LOGICAL_NOT:
9751 {
9752 struct value *val;
9753
9754 *pos -= 1;
9755 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9756 type = language_bool_type (exp->language_defn, exp->gdbarch);
9757 return value_cast (type, val);
9758 }
9759
9760 case BINOP_BITWISE_AND:
9761 case BINOP_BITWISE_IOR:
9762 case BINOP_BITWISE_XOR:
9763 {
9764 struct value *val;
9765
9766 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9767 *pos = pc;
9768 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9769
9770 return value_cast (value_type (arg1), val);
9771 }
9772
9773 case OP_VAR_VALUE:
9774 *pos -= 1;
9775
9776 if (noside == EVAL_SKIP)
9777 {
9778 *pos += 4;
9779 goto nosideret;
9780 }
9781 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9782 /* Only encountered when an unresolved symbol occurs in a
9783 context other than a function call, in which case, it is
9784 invalid. */
9785 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9786 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9787 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9788 {
9789 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9790 /* Check to see if this is a tagged type. We also need to handle
9791 the case where the type is a reference to a tagged type, but
9792 we have to be careful to exclude pointers to tagged types.
9793 The latter should be shown as usual (as a pointer), whereas
9794 a reference should mostly be transparent to the user. */
9795 if (ada_is_tagged_type (type, 0)
9796 || (TYPE_CODE(type) == TYPE_CODE_REF
9797 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9798 {
9799 /* Tagged types are a little special in the fact that the real
9800 type is dynamic and can only be determined by inspecting the
9801 object's tag. This means that we need to get the object's
9802 value first (EVAL_NORMAL) and then extract the actual object
9803 type from its tag.
9804
9805 Note that we cannot skip the final step where we extract
9806 the object type from its tag, because the EVAL_NORMAL phase
9807 results in dynamic components being resolved into fixed ones.
9808 This can cause problems when trying to print the type
9809 description of tagged types whose parent has a dynamic size:
9810 We use the type name of the "_parent" component in order
9811 to print the name of the ancestor type in the type description.
9812 If that component had a dynamic size, the resolution into
9813 a fixed type would result in the loss of that type name,
9814 thus preventing us from printing the name of the ancestor
9815 type in the type description. */
9816 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9817
9818 if (TYPE_CODE (type) != TYPE_CODE_REF)
9819 {
9820 struct type *actual_type;
9821
9822 actual_type = type_from_tag (ada_value_tag (arg1));
9823 if (actual_type == NULL)
9824 /* If, for some reason, we were unable to determine
9825 the actual type from the tag, then use the static
9826 approximation that we just computed as a fallback.
9827 This can happen if the debugging information is
9828 incomplete, for instance. */
9829 actual_type = type;
9830 return value_zero (actual_type, not_lval);
9831 }
9832 else
9833 {
9834 /* In the case of a ref, ada_coerce_ref takes care
9835 of determining the actual type. But the evaluation
9836 should return a ref as it should be valid to ask
9837 for its address; so rebuild a ref after coerce. */
9838 arg1 = ada_coerce_ref (arg1);
9839 return value_ref (arg1);
9840 }
9841 }
9842
9843 *pos += 4;
9844 return value_zero
9845 (to_static_fixed_type
9846 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9847 not_lval);
9848 }
9849 else
9850 {
9851 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9852 return ada_to_fixed_value (arg1);
9853 }
9854
9855 case OP_FUNCALL:
9856 (*pos) += 2;
9857
9858 /* Allocate arg vector, including space for the function to be
9859 called in argvec[0] and a terminating NULL. */
9860 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9861 argvec =
9862 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9863
9864 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9865 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9866 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9867 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9868 else
9869 {
9870 for (tem = 0; tem <= nargs; tem += 1)
9871 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9872 argvec[tem] = 0;
9873
9874 if (noside == EVAL_SKIP)
9875 goto nosideret;
9876 }
9877
9878 if (ada_is_constrained_packed_array_type
9879 (desc_base_type (value_type (argvec[0]))))
9880 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9881 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9882 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9883 /* This is a packed array that has already been fixed, and
9884 therefore already coerced to a simple array. Nothing further
9885 to do. */
9886 ;
9887 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9888 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9889 && VALUE_LVAL (argvec[0]) == lval_memory))
9890 argvec[0] = value_addr (argvec[0]);
9891
9892 type = ada_check_typedef (value_type (argvec[0]));
9893
9894 /* Ada allows us to implicitly dereference arrays when subscripting
9895 them. So, if this is an array typedef (encoding use for array
9896 access types encoded as fat pointers), strip it now. */
9897 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9898 type = ada_typedef_target_type (type);
9899
9900 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9901 {
9902 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9903 {
9904 case TYPE_CODE_FUNC:
9905 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9906 break;
9907 case TYPE_CODE_ARRAY:
9908 break;
9909 case TYPE_CODE_STRUCT:
9910 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9911 argvec[0] = ada_value_ind (argvec[0]);
9912 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9913 break;
9914 default:
9915 error (_("cannot subscript or call something of type `%s'"),
9916 ada_type_name (value_type (argvec[0])));
9917 break;
9918 }
9919 }
9920
9921 switch (TYPE_CODE (type))
9922 {
9923 case TYPE_CODE_FUNC:
9924 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9925 {
9926 struct type *rtype = TYPE_TARGET_TYPE (type);
9927
9928 if (TYPE_GNU_IFUNC (type))
9929 return allocate_value (TYPE_TARGET_TYPE (rtype));
9930 return allocate_value (rtype);
9931 }
9932 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9933 case TYPE_CODE_INTERNAL_FUNCTION:
9934 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9935 /* We don't know anything about what the internal
9936 function might return, but we have to return
9937 something. */
9938 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9939 not_lval);
9940 else
9941 return call_internal_function (exp->gdbarch, exp->language_defn,
9942 argvec[0], nargs, argvec + 1);
9943
9944 case TYPE_CODE_STRUCT:
9945 {
9946 int arity;
9947
9948 arity = ada_array_arity (type);
9949 type = ada_array_element_type (type, nargs);
9950 if (type == NULL)
9951 error (_("cannot subscript or call a record"));
9952 if (arity != nargs)
9953 error (_("wrong number of subscripts; expecting %d"), arity);
9954 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9955 return value_zero (ada_aligned_type (type), lval_memory);
9956 return
9957 unwrap_value (ada_value_subscript
9958 (argvec[0], nargs, argvec + 1));
9959 }
9960 case TYPE_CODE_ARRAY:
9961 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9962 {
9963 type = ada_array_element_type (type, nargs);
9964 if (type == NULL)
9965 error (_("element type of array unknown"));
9966 else
9967 return value_zero (ada_aligned_type (type), lval_memory);
9968 }
9969 return
9970 unwrap_value (ada_value_subscript
9971 (ada_coerce_to_simple_array (argvec[0]),
9972 nargs, argvec + 1));
9973 case TYPE_CODE_PTR: /* Pointer to array */
9974 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9975 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9976 {
9977 type = ada_array_element_type (type, nargs);
9978 if (type == NULL)
9979 error (_("element type of array unknown"));
9980 else
9981 return value_zero (ada_aligned_type (type), lval_memory);
9982 }
9983 return
9984 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9985 nargs, argvec + 1));
9986
9987 default:
9988 error (_("Attempt to index or call something other than an "
9989 "array or function"));
9990 }
9991
9992 case TERNOP_SLICE:
9993 {
9994 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9995 struct value *low_bound_val =
9996 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9997 struct value *high_bound_val =
9998 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9999 LONGEST low_bound;
10000 LONGEST high_bound;
10001
10002 low_bound_val = coerce_ref (low_bound_val);
10003 high_bound_val = coerce_ref (high_bound_val);
10004 low_bound = pos_atr (low_bound_val);
10005 high_bound = pos_atr (high_bound_val);
10006
10007 if (noside == EVAL_SKIP)
10008 goto nosideret;
10009
10010 /* If this is a reference to an aligner type, then remove all
10011 the aligners. */
10012 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10013 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10014 TYPE_TARGET_TYPE (value_type (array)) =
10015 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10016
10017 if (ada_is_constrained_packed_array_type (value_type (array)))
10018 error (_("cannot slice a packed array"));
10019
10020 /* If this is a reference to an array or an array lvalue,
10021 convert to a pointer. */
10022 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10023 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10024 && VALUE_LVAL (array) == lval_memory))
10025 array = value_addr (array);
10026
10027 if (noside == EVAL_AVOID_SIDE_EFFECTS
10028 && ada_is_array_descriptor_type (ada_check_typedef
10029 (value_type (array))))
10030 return empty_array (ada_type_of_array (array, 0), low_bound);
10031
10032 array = ada_coerce_to_simple_array_ptr (array);
10033
10034 /* If we have more than one level of pointer indirection,
10035 dereference the value until we get only one level. */
10036 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10037 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10038 == TYPE_CODE_PTR))
10039 array = value_ind (array);
10040
10041 /* Make sure we really do have an array type before going further,
10042 to avoid a SEGV when trying to get the index type or the target
10043 type later down the road if the debug info generated by
10044 the compiler is incorrect or incomplete. */
10045 if (!ada_is_simple_array_type (value_type (array)))
10046 error (_("cannot take slice of non-array"));
10047
10048 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10049 == TYPE_CODE_PTR)
10050 {
10051 struct type *type0 = ada_check_typedef (value_type (array));
10052
10053 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10054 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10055 else
10056 {
10057 struct type *arr_type0 =
10058 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10059
10060 return ada_value_slice_from_ptr (array, arr_type0,
10061 longest_to_int (low_bound),
10062 longest_to_int (high_bound));
10063 }
10064 }
10065 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10066 return array;
10067 else if (high_bound < low_bound)
10068 return empty_array (value_type (array), low_bound);
10069 else
10070 return ada_value_slice (array, longest_to_int (low_bound),
10071 longest_to_int (high_bound));
10072 }
10073
10074 case UNOP_IN_RANGE:
10075 (*pos) += 2;
10076 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10077 type = check_typedef (exp->elts[pc + 1].type);
10078
10079 if (noside == EVAL_SKIP)
10080 goto nosideret;
10081
10082 switch (TYPE_CODE (type))
10083 {
10084 default:
10085 lim_warning (_("Membership test incompletely implemented; "
10086 "always returns true"));
10087 type = language_bool_type (exp->language_defn, exp->gdbarch);
10088 return value_from_longest (type, (LONGEST) 1);
10089
10090 case TYPE_CODE_RANGE:
10091 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10092 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10093 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10094 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10095 type = language_bool_type (exp->language_defn, exp->gdbarch);
10096 return
10097 value_from_longest (type,
10098 (value_less (arg1, arg3)
10099 || value_equal (arg1, arg3))
10100 && (value_less (arg2, arg1)
10101 || value_equal (arg2, arg1)));
10102 }
10103
10104 case BINOP_IN_BOUNDS:
10105 (*pos) += 2;
10106 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10107 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10108
10109 if (noside == EVAL_SKIP)
10110 goto nosideret;
10111
10112 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10113 {
10114 type = language_bool_type (exp->language_defn, exp->gdbarch);
10115 return value_zero (type, not_lval);
10116 }
10117
10118 tem = longest_to_int (exp->elts[pc + 1].longconst);
10119
10120 type = ada_index_type (value_type (arg2), tem, "range");
10121 if (!type)
10122 type = value_type (arg1);
10123
10124 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10125 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10126
10127 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10128 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10129 type = language_bool_type (exp->language_defn, exp->gdbarch);
10130 return
10131 value_from_longest (type,
10132 (value_less (arg1, arg3)
10133 || value_equal (arg1, arg3))
10134 && (value_less (arg2, arg1)
10135 || value_equal (arg2, arg1)));
10136
10137 case TERNOP_IN_RANGE:
10138 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10139 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10140 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10141
10142 if (noside == EVAL_SKIP)
10143 goto nosideret;
10144
10145 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10146 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10147 type = language_bool_type (exp->language_defn, exp->gdbarch);
10148 return
10149 value_from_longest (type,
10150 (value_less (arg1, arg3)
10151 || value_equal (arg1, arg3))
10152 && (value_less (arg2, arg1)
10153 || value_equal (arg2, arg1)));
10154
10155 case OP_ATR_FIRST:
10156 case OP_ATR_LAST:
10157 case OP_ATR_LENGTH:
10158 {
10159 struct type *type_arg;
10160
10161 if (exp->elts[*pos].opcode == OP_TYPE)
10162 {
10163 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10164 arg1 = NULL;
10165 type_arg = check_typedef (exp->elts[pc + 2].type);
10166 }
10167 else
10168 {
10169 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10170 type_arg = NULL;
10171 }
10172
10173 if (exp->elts[*pos].opcode != OP_LONG)
10174 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10175 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10176 *pos += 4;
10177
10178 if (noside == EVAL_SKIP)
10179 goto nosideret;
10180
10181 if (type_arg == NULL)
10182 {
10183 arg1 = ada_coerce_ref (arg1);
10184
10185 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10186 arg1 = ada_coerce_to_simple_array (arg1);
10187
10188 type = ada_index_type (value_type (arg1), tem,
10189 ada_attribute_name (op));
10190 if (type == NULL)
10191 type = builtin_type (exp->gdbarch)->builtin_int;
10192
10193 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10194 return allocate_value (type);
10195
10196 switch (op)
10197 {
10198 default: /* Should never happen. */
10199 error (_("unexpected attribute encountered"));
10200 case OP_ATR_FIRST:
10201 return value_from_longest
10202 (type, ada_array_bound (arg1, tem, 0));
10203 case OP_ATR_LAST:
10204 return value_from_longest
10205 (type, ada_array_bound (arg1, tem, 1));
10206 case OP_ATR_LENGTH:
10207 return value_from_longest
10208 (type, ada_array_length (arg1, tem));
10209 }
10210 }
10211 else if (discrete_type_p (type_arg))
10212 {
10213 struct type *range_type;
10214 const char *name = ada_type_name (type_arg);
10215
10216 range_type = NULL;
10217 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10218 range_type = to_fixed_range_type (type_arg, NULL);
10219 if (range_type == NULL)
10220 range_type = type_arg;
10221 switch (op)
10222 {
10223 default:
10224 error (_("unexpected attribute encountered"));
10225 case OP_ATR_FIRST:
10226 return value_from_longest
10227 (range_type, ada_discrete_type_low_bound (range_type));
10228 case OP_ATR_LAST:
10229 return value_from_longest
10230 (range_type, ada_discrete_type_high_bound (range_type));
10231 case OP_ATR_LENGTH:
10232 error (_("the 'length attribute applies only to array types"));
10233 }
10234 }
10235 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10236 error (_("unimplemented type attribute"));
10237 else
10238 {
10239 LONGEST low, high;
10240
10241 if (ada_is_constrained_packed_array_type (type_arg))
10242 type_arg = decode_constrained_packed_array_type (type_arg);
10243
10244 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10245 if (type == NULL)
10246 type = builtin_type (exp->gdbarch)->builtin_int;
10247
10248 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10249 return allocate_value (type);
10250
10251 switch (op)
10252 {
10253 default:
10254 error (_("unexpected attribute encountered"));
10255 case OP_ATR_FIRST:
10256 low = ada_array_bound_from_type (type_arg, tem, 0);
10257 return value_from_longest (type, low);
10258 case OP_ATR_LAST:
10259 high = ada_array_bound_from_type (type_arg, tem, 1);
10260 return value_from_longest (type, high);
10261 case OP_ATR_LENGTH:
10262 low = ada_array_bound_from_type (type_arg, tem, 0);
10263 high = ada_array_bound_from_type (type_arg, tem, 1);
10264 return value_from_longest (type, high - low + 1);
10265 }
10266 }
10267 }
10268
10269 case OP_ATR_TAG:
10270 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10271 if (noside == EVAL_SKIP)
10272 goto nosideret;
10273
10274 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10275 return value_zero (ada_tag_type (arg1), not_lval);
10276
10277 return ada_value_tag (arg1);
10278
10279 case OP_ATR_MIN:
10280 case OP_ATR_MAX:
10281 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10282 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10283 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10284 if (noside == EVAL_SKIP)
10285 goto nosideret;
10286 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10287 return value_zero (value_type (arg1), not_lval);
10288 else
10289 {
10290 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10291 return value_binop (arg1, arg2,
10292 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10293 }
10294
10295 case OP_ATR_MODULUS:
10296 {
10297 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10298
10299 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10300 if (noside == EVAL_SKIP)
10301 goto nosideret;
10302
10303 if (!ada_is_modular_type (type_arg))
10304 error (_("'modulus must be applied to modular type"));
10305
10306 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10307 ada_modulus (type_arg));
10308 }
10309
10310
10311 case OP_ATR_POS:
10312 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10313 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10314 if (noside == EVAL_SKIP)
10315 goto nosideret;
10316 type = builtin_type (exp->gdbarch)->builtin_int;
10317 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10318 return value_zero (type, not_lval);
10319 else
10320 return value_pos_atr (type, arg1);
10321
10322 case OP_ATR_SIZE:
10323 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10324 type = value_type (arg1);
10325
10326 /* If the argument is a reference, then dereference its type, since
10327 the user is really asking for the size of the actual object,
10328 not the size of the pointer. */
10329 if (TYPE_CODE (type) == TYPE_CODE_REF)
10330 type = TYPE_TARGET_TYPE (type);
10331
10332 if (noside == EVAL_SKIP)
10333 goto nosideret;
10334 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10335 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10336 else
10337 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10338 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10339
10340 case OP_ATR_VAL:
10341 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10342 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10343 type = exp->elts[pc + 2].type;
10344 if (noside == EVAL_SKIP)
10345 goto nosideret;
10346 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10347 return value_zero (type, not_lval);
10348 else
10349 return value_val_atr (type, arg1);
10350
10351 case BINOP_EXP:
10352 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10353 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10354 if (noside == EVAL_SKIP)
10355 goto nosideret;
10356 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10357 return value_zero (value_type (arg1), not_lval);
10358 else
10359 {
10360 /* For integer exponentiation operations,
10361 only promote the first argument. */
10362 if (is_integral_type (value_type (arg2)))
10363 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10364 else
10365 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10366
10367 return value_binop (arg1, arg2, op);
10368 }
10369
10370 case UNOP_PLUS:
10371 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10372 if (noside == EVAL_SKIP)
10373 goto nosideret;
10374 else
10375 return arg1;
10376
10377 case UNOP_ABS:
10378 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10379 if (noside == EVAL_SKIP)
10380 goto nosideret;
10381 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10382 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10383 return value_neg (arg1);
10384 else
10385 return arg1;
10386
10387 case UNOP_IND:
10388 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10389 if (noside == EVAL_SKIP)
10390 goto nosideret;
10391 type = ada_check_typedef (value_type (arg1));
10392 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10393 {
10394 if (ada_is_array_descriptor_type (type))
10395 /* GDB allows dereferencing GNAT array descriptors. */
10396 {
10397 struct type *arrType = ada_type_of_array (arg1, 0);
10398
10399 if (arrType == NULL)
10400 error (_("Attempt to dereference null array pointer."));
10401 return value_at_lazy (arrType, 0);
10402 }
10403 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10404 || TYPE_CODE (type) == TYPE_CODE_REF
10405 /* In C you can dereference an array to get the 1st elt. */
10406 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10407 {
10408 type = to_static_fixed_type
10409 (ada_aligned_type
10410 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10411 check_size (type);
10412 return value_zero (type, lval_memory);
10413 }
10414 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10415 {
10416 /* GDB allows dereferencing an int. */
10417 if (expect_type == NULL)
10418 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10419 lval_memory);
10420 else
10421 {
10422 expect_type =
10423 to_static_fixed_type (ada_aligned_type (expect_type));
10424 return value_zero (expect_type, lval_memory);
10425 }
10426 }
10427 else
10428 error (_("Attempt to take contents of a non-pointer value."));
10429 }
10430 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10431 type = ada_check_typedef (value_type (arg1));
10432
10433 if (TYPE_CODE (type) == TYPE_CODE_INT)
10434 /* GDB allows dereferencing an int. If we were given
10435 the expect_type, then use that as the target type.
10436 Otherwise, assume that the target type is an int. */
10437 {
10438 if (expect_type != NULL)
10439 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10440 arg1));
10441 else
10442 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10443 (CORE_ADDR) value_as_address (arg1));
10444 }
10445
10446 if (ada_is_array_descriptor_type (type))
10447 /* GDB allows dereferencing GNAT array descriptors. */
10448 return ada_coerce_to_simple_array (arg1);
10449 else
10450 return ada_value_ind (arg1);
10451
10452 case STRUCTOP_STRUCT:
10453 tem = longest_to_int (exp->elts[pc + 1].longconst);
10454 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10455 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10456 if (noside == EVAL_SKIP)
10457 goto nosideret;
10458 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10459 {
10460 struct type *type1 = value_type (arg1);
10461
10462 if (ada_is_tagged_type (type1, 1))
10463 {
10464 type = ada_lookup_struct_elt_type (type1,
10465 &exp->elts[pc + 2].string,
10466 1, 1, NULL);
10467 if (type == NULL)
10468 /* In this case, we assume that the field COULD exist
10469 in some extension of the type. Return an object of
10470 "type" void, which will match any formal
10471 (see ada_type_match). */
10472 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10473 lval_memory);
10474 }
10475 else
10476 type =
10477 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10478 0, NULL);
10479
10480 return value_zero (ada_aligned_type (type), lval_memory);
10481 }
10482 else
10483 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10484 arg1 = unwrap_value (arg1);
10485 return ada_to_fixed_value (arg1);
10486
10487 case OP_TYPE:
10488 /* The value is not supposed to be used. This is here to make it
10489 easier to accommodate expressions that contain types. */
10490 (*pos) += 2;
10491 if (noside == EVAL_SKIP)
10492 goto nosideret;
10493 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10494 return allocate_value (exp->elts[pc + 1].type);
10495 else
10496 error (_("Attempt to use a type name as an expression"));
10497
10498 case OP_AGGREGATE:
10499 case OP_CHOICES:
10500 case OP_OTHERS:
10501 case OP_DISCRETE_RANGE:
10502 case OP_POSITIONAL:
10503 case OP_NAME:
10504 if (noside == EVAL_NORMAL)
10505 switch (op)
10506 {
10507 case OP_NAME:
10508 error (_("Undefined name, ambiguous name, or renaming used in "
10509 "component association: %s."), &exp->elts[pc+2].string);
10510 case OP_AGGREGATE:
10511 error (_("Aggregates only allowed on the right of an assignment"));
10512 default:
10513 internal_error (__FILE__, __LINE__,
10514 _("aggregate apparently mangled"));
10515 }
10516
10517 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10518 *pos += oplen - 1;
10519 for (tem = 0; tem < nargs; tem += 1)
10520 ada_evaluate_subexp (NULL, exp, pos, noside);
10521 goto nosideret;
10522 }
10523
10524 nosideret:
10525 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10526 }
10527 \f
10528
10529 /* Fixed point */
10530
10531 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10532 type name that encodes the 'small and 'delta information.
10533 Otherwise, return NULL. */
10534
10535 static const char *
10536 fixed_type_info (struct type *type)
10537 {
10538 const char *name = ada_type_name (type);
10539 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10540
10541 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10542 {
10543 const char *tail = strstr (name, "___XF_");
10544
10545 if (tail == NULL)
10546 return NULL;
10547 else
10548 return tail + 5;
10549 }
10550 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10551 return fixed_type_info (TYPE_TARGET_TYPE (type));
10552 else
10553 return NULL;
10554 }
10555
10556 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10557
10558 int
10559 ada_is_fixed_point_type (struct type *type)
10560 {
10561 return fixed_type_info (type) != NULL;
10562 }
10563
10564 /* Return non-zero iff TYPE represents a System.Address type. */
10565
10566 int
10567 ada_is_system_address_type (struct type *type)
10568 {
10569 return (TYPE_NAME (type)
10570 && strcmp (TYPE_NAME (type), "system__address") == 0);
10571 }
10572
10573 /* Assuming that TYPE is the representation of an Ada fixed-point
10574 type, return its delta, or -1 if the type is malformed and the
10575 delta cannot be determined. */
10576
10577 DOUBLEST
10578 ada_delta (struct type *type)
10579 {
10580 const char *encoding = fixed_type_info (type);
10581 DOUBLEST num, den;
10582
10583 /* Strictly speaking, num and den are encoded as integer. However,
10584 they may not fit into a long, and they will have to be converted
10585 to DOUBLEST anyway. So scan them as DOUBLEST. */
10586 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10587 &num, &den) < 2)
10588 return -1.0;
10589 else
10590 return num / den;
10591 }
10592
10593 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10594 factor ('SMALL value) associated with the type. */
10595
10596 static DOUBLEST
10597 scaling_factor (struct type *type)
10598 {
10599 const char *encoding = fixed_type_info (type);
10600 DOUBLEST num0, den0, num1, den1;
10601 int n;
10602
10603 /* Strictly speaking, num's and den's are encoded as integer. However,
10604 they may not fit into a long, and they will have to be converted
10605 to DOUBLEST anyway. So scan them as DOUBLEST. */
10606 n = sscanf (encoding,
10607 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10608 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10609 &num0, &den0, &num1, &den1);
10610
10611 if (n < 2)
10612 return 1.0;
10613 else if (n == 4)
10614 return num1 / den1;
10615 else
10616 return num0 / den0;
10617 }
10618
10619
10620 /* Assuming that X is the representation of a value of fixed-point
10621 type TYPE, return its floating-point equivalent. */
10622
10623 DOUBLEST
10624 ada_fixed_to_float (struct type *type, LONGEST x)
10625 {
10626 return (DOUBLEST) x *scaling_factor (type);
10627 }
10628
10629 /* The representation of a fixed-point value of type TYPE
10630 corresponding to the value X. */
10631
10632 LONGEST
10633 ada_float_to_fixed (struct type *type, DOUBLEST x)
10634 {
10635 return (LONGEST) (x / scaling_factor (type) + 0.5);
10636 }
10637
10638 \f
10639
10640 /* Range types */
10641
10642 /* Scan STR beginning at position K for a discriminant name, and
10643 return the value of that discriminant field of DVAL in *PX. If
10644 PNEW_K is not null, put the position of the character beyond the
10645 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10646 not alter *PX and *PNEW_K if unsuccessful. */
10647
10648 static int
10649 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10650 int *pnew_k)
10651 {
10652 static char *bound_buffer = NULL;
10653 static size_t bound_buffer_len = 0;
10654 char *bound;
10655 char *pend;
10656 struct value *bound_val;
10657
10658 if (dval == NULL || str == NULL || str[k] == '\0')
10659 return 0;
10660
10661 pend = strstr (str + k, "__");
10662 if (pend == NULL)
10663 {
10664 bound = str + k;
10665 k += strlen (bound);
10666 }
10667 else
10668 {
10669 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10670 bound = bound_buffer;
10671 strncpy (bound_buffer, str + k, pend - (str + k));
10672 bound[pend - (str + k)] = '\0';
10673 k = pend - str;
10674 }
10675
10676 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10677 if (bound_val == NULL)
10678 return 0;
10679
10680 *px = value_as_long (bound_val);
10681 if (pnew_k != NULL)
10682 *pnew_k = k;
10683 return 1;
10684 }
10685
10686 /* Value of variable named NAME in the current environment. If
10687 no such variable found, then if ERR_MSG is null, returns 0, and
10688 otherwise causes an error with message ERR_MSG. */
10689
10690 static struct value *
10691 get_var_value (char *name, char *err_msg)
10692 {
10693 struct ada_symbol_info *syms;
10694 int nsyms;
10695
10696 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10697 &syms, 1);
10698
10699 if (nsyms != 1)
10700 {
10701 if (err_msg == NULL)
10702 return 0;
10703 else
10704 error (("%s"), err_msg);
10705 }
10706
10707 return value_of_variable (syms[0].sym, syms[0].block);
10708 }
10709
10710 /* Value of integer variable named NAME in the current environment. If
10711 no such variable found, returns 0, and sets *FLAG to 0. If
10712 successful, sets *FLAG to 1. */
10713
10714 LONGEST
10715 get_int_var_value (char *name, int *flag)
10716 {
10717 struct value *var_val = get_var_value (name, 0);
10718
10719 if (var_val == 0)
10720 {
10721 if (flag != NULL)
10722 *flag = 0;
10723 return 0;
10724 }
10725 else
10726 {
10727 if (flag != NULL)
10728 *flag = 1;
10729 return value_as_long (var_val);
10730 }
10731 }
10732
10733
10734 /* Return a range type whose base type is that of the range type named
10735 NAME in the current environment, and whose bounds are calculated
10736 from NAME according to the GNAT range encoding conventions.
10737 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10738 corresponding range type from debug information; fall back to using it
10739 if symbol lookup fails. If a new type must be created, allocate it
10740 like ORIG_TYPE was. The bounds information, in general, is encoded
10741 in NAME, the base type given in the named range type. */
10742
10743 static struct type *
10744 to_fixed_range_type (struct type *raw_type, struct value *dval)
10745 {
10746 const char *name;
10747 struct type *base_type;
10748 char *subtype_info;
10749
10750 gdb_assert (raw_type != NULL);
10751 gdb_assert (TYPE_NAME (raw_type) != NULL);
10752
10753 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10754 base_type = TYPE_TARGET_TYPE (raw_type);
10755 else
10756 base_type = raw_type;
10757
10758 name = TYPE_NAME (raw_type);
10759 subtype_info = strstr (name, "___XD");
10760 if (subtype_info == NULL)
10761 {
10762 LONGEST L = ada_discrete_type_low_bound (raw_type);
10763 LONGEST U = ada_discrete_type_high_bound (raw_type);
10764
10765 if (L < INT_MIN || U > INT_MAX)
10766 return raw_type;
10767 else
10768 return create_range_type (alloc_type_copy (raw_type), raw_type,
10769 ada_discrete_type_low_bound (raw_type),
10770 ada_discrete_type_high_bound (raw_type));
10771 }
10772 else
10773 {
10774 static char *name_buf = NULL;
10775 static size_t name_len = 0;
10776 int prefix_len = subtype_info - name;
10777 LONGEST L, U;
10778 struct type *type;
10779 char *bounds_str;
10780 int n;
10781
10782 GROW_VECT (name_buf, name_len, prefix_len + 5);
10783 strncpy (name_buf, name, prefix_len);
10784 name_buf[prefix_len] = '\0';
10785
10786 subtype_info += 5;
10787 bounds_str = strchr (subtype_info, '_');
10788 n = 1;
10789
10790 if (*subtype_info == 'L')
10791 {
10792 if (!ada_scan_number (bounds_str, n, &L, &n)
10793 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10794 return raw_type;
10795 if (bounds_str[n] == '_')
10796 n += 2;
10797 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10798 n += 1;
10799 subtype_info += 1;
10800 }
10801 else
10802 {
10803 int ok;
10804
10805 strcpy (name_buf + prefix_len, "___L");
10806 L = get_int_var_value (name_buf, &ok);
10807 if (!ok)
10808 {
10809 lim_warning (_("Unknown lower bound, using 1."));
10810 L = 1;
10811 }
10812 }
10813
10814 if (*subtype_info == 'U')
10815 {
10816 if (!ada_scan_number (bounds_str, n, &U, &n)
10817 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10818 return raw_type;
10819 }
10820 else
10821 {
10822 int ok;
10823
10824 strcpy (name_buf + prefix_len, "___U");
10825 U = get_int_var_value (name_buf, &ok);
10826 if (!ok)
10827 {
10828 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10829 U = L;
10830 }
10831 }
10832
10833 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10834 TYPE_NAME (type) = name;
10835 return type;
10836 }
10837 }
10838
10839 /* True iff NAME is the name of a range type. */
10840
10841 int
10842 ada_is_range_type_name (const char *name)
10843 {
10844 return (name != NULL && strstr (name, "___XD"));
10845 }
10846 \f
10847
10848 /* Modular types */
10849
10850 /* True iff TYPE is an Ada modular type. */
10851
10852 int
10853 ada_is_modular_type (struct type *type)
10854 {
10855 struct type *subranged_type = get_base_type (type);
10856
10857 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10858 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10859 && TYPE_UNSIGNED (subranged_type));
10860 }
10861
10862 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10863
10864 ULONGEST
10865 ada_modulus (struct type *type)
10866 {
10867 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10868 }
10869 \f
10870
10871 /* Ada exception catchpoint support:
10872 ---------------------------------
10873
10874 We support 3 kinds of exception catchpoints:
10875 . catchpoints on Ada exceptions
10876 . catchpoints on unhandled Ada exceptions
10877 . catchpoints on failed assertions
10878
10879 Exceptions raised during failed assertions, or unhandled exceptions
10880 could perfectly be caught with the general catchpoint on Ada exceptions.
10881 However, we can easily differentiate these two special cases, and having
10882 the option to distinguish these two cases from the rest can be useful
10883 to zero-in on certain situations.
10884
10885 Exception catchpoints are a specialized form of breakpoint,
10886 since they rely on inserting breakpoints inside known routines
10887 of the GNAT runtime. The implementation therefore uses a standard
10888 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10889 of breakpoint_ops.
10890
10891 Support in the runtime for exception catchpoints have been changed
10892 a few times already, and these changes affect the implementation
10893 of these catchpoints. In order to be able to support several
10894 variants of the runtime, we use a sniffer that will determine
10895 the runtime variant used by the program being debugged. */
10896
10897 /* The different types of catchpoints that we introduced for catching
10898 Ada exceptions. */
10899
10900 enum exception_catchpoint_kind
10901 {
10902 ex_catch_exception,
10903 ex_catch_exception_unhandled,
10904 ex_catch_assert
10905 };
10906
10907 /* Ada's standard exceptions. */
10908
10909 static char *standard_exc[] = {
10910 "constraint_error",
10911 "program_error",
10912 "storage_error",
10913 "tasking_error"
10914 };
10915
10916 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10917
10918 /* A structure that describes how to support exception catchpoints
10919 for a given executable. */
10920
10921 struct exception_support_info
10922 {
10923 /* The name of the symbol to break on in order to insert
10924 a catchpoint on exceptions. */
10925 const char *catch_exception_sym;
10926
10927 /* The name of the symbol to break on in order to insert
10928 a catchpoint on unhandled exceptions. */
10929 const char *catch_exception_unhandled_sym;
10930
10931 /* The name of the symbol to break on in order to insert
10932 a catchpoint on failed assertions. */
10933 const char *catch_assert_sym;
10934
10935 /* Assuming that the inferior just triggered an unhandled exception
10936 catchpoint, this function is responsible for returning the address
10937 in inferior memory where the name of that exception is stored.
10938 Return zero if the address could not be computed. */
10939 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10940 };
10941
10942 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10943 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10944
10945 /* The following exception support info structure describes how to
10946 implement exception catchpoints with the latest version of the
10947 Ada runtime (as of 2007-03-06). */
10948
10949 static const struct exception_support_info default_exception_support_info =
10950 {
10951 "__gnat_debug_raise_exception", /* catch_exception_sym */
10952 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10953 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10954 ada_unhandled_exception_name_addr
10955 };
10956
10957 /* The following exception support info structure describes how to
10958 implement exception catchpoints with a slightly older version
10959 of the Ada runtime. */
10960
10961 static const struct exception_support_info exception_support_info_fallback =
10962 {
10963 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10964 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10965 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10966 ada_unhandled_exception_name_addr_from_raise
10967 };
10968
10969 /* Return nonzero if we can detect the exception support routines
10970 described in EINFO.
10971
10972 This function errors out if an abnormal situation is detected
10973 (for instance, if we find the exception support routines, but
10974 that support is found to be incomplete). */
10975
10976 static int
10977 ada_has_this_exception_support (const struct exception_support_info *einfo)
10978 {
10979 struct symbol *sym;
10980
10981 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10982 that should be compiled with debugging information. As a result, we
10983 expect to find that symbol in the symtabs. */
10984
10985 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10986 if (sym == NULL)
10987 {
10988 /* Perhaps we did not find our symbol because the Ada runtime was
10989 compiled without debugging info, or simply stripped of it.
10990 It happens on some GNU/Linux distributions for instance, where
10991 users have to install a separate debug package in order to get
10992 the runtime's debugging info. In that situation, let the user
10993 know why we cannot insert an Ada exception catchpoint.
10994
10995 Note: Just for the purpose of inserting our Ada exception
10996 catchpoint, we could rely purely on the associated minimal symbol.
10997 But we would be operating in degraded mode anyway, since we are
10998 still lacking the debugging info needed later on to extract
10999 the name of the exception being raised (this name is printed in
11000 the catchpoint message, and is also used when trying to catch
11001 a specific exception). We do not handle this case for now. */
11002 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11003 error (_("Your Ada runtime appears to be missing some debugging "
11004 "information.\nCannot insert Ada exception catchpoint "
11005 "in this configuration."));
11006
11007 return 0;
11008 }
11009
11010 /* Make sure that the symbol we found corresponds to a function. */
11011
11012 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11013 error (_("Symbol \"%s\" is not a function (class = %d)"),
11014 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11015
11016 return 1;
11017 }
11018
11019 /* Inspect the Ada runtime and determine which exception info structure
11020 should be used to provide support for exception catchpoints.
11021
11022 This function will always set the per-inferior exception_info,
11023 or raise an error. */
11024
11025 static void
11026 ada_exception_support_info_sniffer (void)
11027 {
11028 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11029
11030 /* If the exception info is already known, then no need to recompute it. */
11031 if (data->exception_info != NULL)
11032 return;
11033
11034 /* Check the latest (default) exception support info. */
11035 if (ada_has_this_exception_support (&default_exception_support_info))
11036 {
11037 data->exception_info = &default_exception_support_info;
11038 return;
11039 }
11040
11041 /* Try our fallback exception suport info. */
11042 if (ada_has_this_exception_support (&exception_support_info_fallback))
11043 {
11044 data->exception_info = &exception_support_info_fallback;
11045 return;
11046 }
11047
11048 /* Sometimes, it is normal for us to not be able to find the routine
11049 we are looking for. This happens when the program is linked with
11050 the shared version of the GNAT runtime, and the program has not been
11051 started yet. Inform the user of these two possible causes if
11052 applicable. */
11053
11054 if (ada_update_initial_language (language_unknown) != language_ada)
11055 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11056
11057 /* If the symbol does not exist, then check that the program is
11058 already started, to make sure that shared libraries have been
11059 loaded. If it is not started, this may mean that the symbol is
11060 in a shared library. */
11061
11062 if (ptid_get_pid (inferior_ptid) == 0)
11063 error (_("Unable to insert catchpoint. Try to start the program first."));
11064
11065 /* At this point, we know that we are debugging an Ada program and
11066 that the inferior has been started, but we still are not able to
11067 find the run-time symbols. That can mean that we are in
11068 configurable run time mode, or that a-except as been optimized
11069 out by the linker... In any case, at this point it is not worth
11070 supporting this feature. */
11071
11072 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11073 }
11074
11075 /* True iff FRAME is very likely to be that of a function that is
11076 part of the runtime system. This is all very heuristic, but is
11077 intended to be used as advice as to what frames are uninteresting
11078 to most users. */
11079
11080 static int
11081 is_known_support_routine (struct frame_info *frame)
11082 {
11083 struct symtab_and_line sal;
11084 const char *func_name;
11085 enum language func_lang;
11086 int i;
11087
11088 /* If this code does not have any debugging information (no symtab),
11089 This cannot be any user code. */
11090
11091 find_frame_sal (frame, &sal);
11092 if (sal.symtab == NULL)
11093 return 1;
11094
11095 /* If there is a symtab, but the associated source file cannot be
11096 located, then assume this is not user code: Selecting a frame
11097 for which we cannot display the code would not be very helpful
11098 for the user. This should also take care of case such as VxWorks
11099 where the kernel has some debugging info provided for a few units. */
11100
11101 if (symtab_to_fullname (sal.symtab) == NULL)
11102 return 1;
11103
11104 /* Check the unit filename againt the Ada runtime file naming.
11105 We also check the name of the objfile against the name of some
11106 known system libraries that sometimes come with debugging info
11107 too. */
11108
11109 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11110 {
11111 re_comp (known_runtime_file_name_patterns[i]);
11112 if (re_exec (lbasename (sal.symtab->filename)))
11113 return 1;
11114 if (sal.symtab->objfile != NULL
11115 && re_exec (sal.symtab->objfile->name))
11116 return 1;
11117 }
11118
11119 /* Check whether the function is a GNAT-generated entity. */
11120
11121 find_frame_funname (frame, &func_name, &func_lang, NULL);
11122 if (func_name == NULL)
11123 return 1;
11124
11125 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11126 {
11127 re_comp (known_auxiliary_function_name_patterns[i]);
11128 if (re_exec (func_name))
11129 return 1;
11130 }
11131
11132 return 0;
11133 }
11134
11135 /* Find the first frame that contains debugging information and that is not
11136 part of the Ada run-time, starting from FI and moving upward. */
11137
11138 void
11139 ada_find_printable_frame (struct frame_info *fi)
11140 {
11141 for (; fi != NULL; fi = get_prev_frame (fi))
11142 {
11143 if (!is_known_support_routine (fi))
11144 {
11145 select_frame (fi);
11146 break;
11147 }
11148 }
11149
11150 }
11151
11152 /* Assuming that the inferior just triggered an unhandled exception
11153 catchpoint, return the address in inferior memory where the name
11154 of the exception is stored.
11155
11156 Return zero if the address could not be computed. */
11157
11158 static CORE_ADDR
11159 ada_unhandled_exception_name_addr (void)
11160 {
11161 return parse_and_eval_address ("e.full_name");
11162 }
11163
11164 /* Same as ada_unhandled_exception_name_addr, except that this function
11165 should be used when the inferior uses an older version of the runtime,
11166 where the exception name needs to be extracted from a specific frame
11167 several frames up in the callstack. */
11168
11169 static CORE_ADDR
11170 ada_unhandled_exception_name_addr_from_raise (void)
11171 {
11172 int frame_level;
11173 struct frame_info *fi;
11174 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11175
11176 /* To determine the name of this exception, we need to select
11177 the frame corresponding to RAISE_SYM_NAME. This frame is
11178 at least 3 levels up, so we simply skip the first 3 frames
11179 without checking the name of their associated function. */
11180 fi = get_current_frame ();
11181 for (frame_level = 0; frame_level < 3; frame_level += 1)
11182 if (fi != NULL)
11183 fi = get_prev_frame (fi);
11184
11185 while (fi != NULL)
11186 {
11187 const char *func_name;
11188 enum language func_lang;
11189
11190 find_frame_funname (fi, &func_name, &func_lang, NULL);
11191 if (func_name != NULL
11192 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
11193 break; /* We found the frame we were looking for... */
11194 fi = get_prev_frame (fi);
11195 }
11196
11197 if (fi == NULL)
11198 return 0;
11199
11200 select_frame (fi);
11201 return parse_and_eval_address ("id.full_name");
11202 }
11203
11204 /* Assuming the inferior just triggered an Ada exception catchpoint
11205 (of any type), return the address in inferior memory where the name
11206 of the exception is stored, if applicable.
11207
11208 Return zero if the address could not be computed, or if not relevant. */
11209
11210 static CORE_ADDR
11211 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11212 struct breakpoint *b)
11213 {
11214 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11215
11216 switch (ex)
11217 {
11218 case ex_catch_exception:
11219 return (parse_and_eval_address ("e.full_name"));
11220 break;
11221
11222 case ex_catch_exception_unhandled:
11223 return data->exception_info->unhandled_exception_name_addr ();
11224 break;
11225
11226 case ex_catch_assert:
11227 return 0; /* Exception name is not relevant in this case. */
11228 break;
11229
11230 default:
11231 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11232 break;
11233 }
11234
11235 return 0; /* Should never be reached. */
11236 }
11237
11238 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11239 any error that ada_exception_name_addr_1 might cause to be thrown.
11240 When an error is intercepted, a warning with the error message is printed,
11241 and zero is returned. */
11242
11243 static CORE_ADDR
11244 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11245 struct breakpoint *b)
11246 {
11247 volatile struct gdb_exception e;
11248 CORE_ADDR result = 0;
11249
11250 TRY_CATCH (e, RETURN_MASK_ERROR)
11251 {
11252 result = ada_exception_name_addr_1 (ex, b);
11253 }
11254
11255 if (e.reason < 0)
11256 {
11257 warning (_("failed to get exception name: %s"), e.message);
11258 return 0;
11259 }
11260
11261 return result;
11262 }
11263
11264 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11265 char *, char **,
11266 const struct breakpoint_ops **);
11267 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11268
11269 /* Ada catchpoints.
11270
11271 In the case of catchpoints on Ada exceptions, the catchpoint will
11272 stop the target on every exception the program throws. When a user
11273 specifies the name of a specific exception, we translate this
11274 request into a condition expression (in text form), and then parse
11275 it into an expression stored in each of the catchpoint's locations.
11276 We then use this condition to check whether the exception that was
11277 raised is the one the user is interested in. If not, then the
11278 target is resumed again. We store the name of the requested
11279 exception, in order to be able to re-set the condition expression
11280 when symbols change. */
11281
11282 /* An instance of this type is used to represent an Ada catchpoint
11283 breakpoint location. It includes a "struct bp_location" as a kind
11284 of base class; users downcast to "struct bp_location *" when
11285 needed. */
11286
11287 struct ada_catchpoint_location
11288 {
11289 /* The base class. */
11290 struct bp_location base;
11291
11292 /* The condition that checks whether the exception that was raised
11293 is the specific exception the user specified on catchpoint
11294 creation. */
11295 struct expression *excep_cond_expr;
11296 };
11297
11298 /* Implement the DTOR method in the bp_location_ops structure for all
11299 Ada exception catchpoint kinds. */
11300
11301 static void
11302 ada_catchpoint_location_dtor (struct bp_location *bl)
11303 {
11304 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11305
11306 xfree (al->excep_cond_expr);
11307 }
11308
11309 /* The vtable to be used in Ada catchpoint locations. */
11310
11311 static const struct bp_location_ops ada_catchpoint_location_ops =
11312 {
11313 ada_catchpoint_location_dtor
11314 };
11315
11316 /* An instance of this type is used to represent an Ada catchpoint.
11317 It includes a "struct breakpoint" as a kind of base class; users
11318 downcast to "struct breakpoint *" when needed. */
11319
11320 struct ada_catchpoint
11321 {
11322 /* The base class. */
11323 struct breakpoint base;
11324
11325 /* The name of the specific exception the user specified. */
11326 char *excep_string;
11327 };
11328
11329 /* Parse the exception condition string in the context of each of the
11330 catchpoint's locations, and store them for later evaluation. */
11331
11332 static void
11333 create_excep_cond_exprs (struct ada_catchpoint *c)
11334 {
11335 struct cleanup *old_chain;
11336 struct bp_location *bl;
11337 char *cond_string;
11338
11339 /* Nothing to do if there's no specific exception to catch. */
11340 if (c->excep_string == NULL)
11341 return;
11342
11343 /* Same if there are no locations... */
11344 if (c->base.loc == NULL)
11345 return;
11346
11347 /* Compute the condition expression in text form, from the specific
11348 expection we want to catch. */
11349 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11350 old_chain = make_cleanup (xfree, cond_string);
11351
11352 /* Iterate over all the catchpoint's locations, and parse an
11353 expression for each. */
11354 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11355 {
11356 struct ada_catchpoint_location *ada_loc
11357 = (struct ada_catchpoint_location *) bl;
11358 struct expression *exp = NULL;
11359
11360 if (!bl->shlib_disabled)
11361 {
11362 volatile struct gdb_exception e;
11363 char *s;
11364
11365 s = cond_string;
11366 TRY_CATCH (e, RETURN_MASK_ERROR)
11367 {
11368 exp = parse_exp_1 (&s, bl->address,
11369 block_for_pc (bl->address), 0);
11370 }
11371 if (e.reason < 0)
11372 warning (_("failed to reevaluate internal exception condition "
11373 "for catchpoint %d: %s"),
11374 c->base.number, e.message);
11375 }
11376
11377 ada_loc->excep_cond_expr = exp;
11378 }
11379
11380 do_cleanups (old_chain);
11381 }
11382
11383 /* Implement the DTOR method in the breakpoint_ops structure for all
11384 exception catchpoint kinds. */
11385
11386 static void
11387 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11388 {
11389 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11390
11391 xfree (c->excep_string);
11392
11393 bkpt_breakpoint_ops.dtor (b);
11394 }
11395
11396 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11397 structure for all exception catchpoint kinds. */
11398
11399 static struct bp_location *
11400 allocate_location_exception (enum exception_catchpoint_kind ex,
11401 struct breakpoint *self)
11402 {
11403 struct ada_catchpoint_location *loc;
11404
11405 loc = XNEW (struct ada_catchpoint_location);
11406 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11407 loc->excep_cond_expr = NULL;
11408 return &loc->base;
11409 }
11410
11411 /* Implement the RE_SET method in the breakpoint_ops structure for all
11412 exception catchpoint kinds. */
11413
11414 static void
11415 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11416 {
11417 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11418
11419 /* Call the base class's method. This updates the catchpoint's
11420 locations. */
11421 bkpt_breakpoint_ops.re_set (b);
11422
11423 /* Reparse the exception conditional expressions. One for each
11424 location. */
11425 create_excep_cond_exprs (c);
11426 }
11427
11428 /* Returns true if we should stop for this breakpoint hit. If the
11429 user specified a specific exception, we only want to cause a stop
11430 if the program thrown that exception. */
11431
11432 static int
11433 should_stop_exception (const struct bp_location *bl)
11434 {
11435 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11436 const struct ada_catchpoint_location *ada_loc
11437 = (const struct ada_catchpoint_location *) bl;
11438 volatile struct gdb_exception ex;
11439 int stop;
11440
11441 /* With no specific exception, should always stop. */
11442 if (c->excep_string == NULL)
11443 return 1;
11444
11445 if (ada_loc->excep_cond_expr == NULL)
11446 {
11447 /* We will have a NULL expression if back when we were creating
11448 the expressions, this location's had failed to parse. */
11449 return 1;
11450 }
11451
11452 stop = 1;
11453 TRY_CATCH (ex, RETURN_MASK_ALL)
11454 {
11455 struct value *mark;
11456
11457 mark = value_mark ();
11458 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11459 value_free_to_mark (mark);
11460 }
11461 if (ex.reason < 0)
11462 exception_fprintf (gdb_stderr, ex,
11463 _("Error in testing exception condition:\n"));
11464 return stop;
11465 }
11466
11467 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11468 for all exception catchpoint kinds. */
11469
11470 static void
11471 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11472 {
11473 bs->stop = should_stop_exception (bs->bp_location_at);
11474 }
11475
11476 /* Implement the PRINT_IT method in the breakpoint_ops structure
11477 for all exception catchpoint kinds. */
11478
11479 static enum print_stop_action
11480 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11481 {
11482 struct ui_out *uiout = current_uiout;
11483 struct breakpoint *b = bs->breakpoint_at;
11484
11485 annotate_catchpoint (b->number);
11486
11487 if (ui_out_is_mi_like_p (uiout))
11488 {
11489 ui_out_field_string (uiout, "reason",
11490 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11491 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11492 }
11493
11494 ui_out_text (uiout,
11495 b->disposition == disp_del ? "\nTemporary catchpoint "
11496 : "\nCatchpoint ");
11497 ui_out_field_int (uiout, "bkptno", b->number);
11498 ui_out_text (uiout, ", ");
11499
11500 switch (ex)
11501 {
11502 case ex_catch_exception:
11503 case ex_catch_exception_unhandled:
11504 {
11505 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11506 char exception_name[256];
11507
11508 if (addr != 0)
11509 {
11510 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11511 exception_name [sizeof (exception_name) - 1] = '\0';
11512 }
11513 else
11514 {
11515 /* For some reason, we were unable to read the exception
11516 name. This could happen if the Runtime was compiled
11517 without debugging info, for instance. In that case,
11518 just replace the exception name by the generic string
11519 "exception" - it will read as "an exception" in the
11520 notification we are about to print. */
11521 memcpy (exception_name, "exception", sizeof ("exception"));
11522 }
11523 /* In the case of unhandled exception breakpoints, we print
11524 the exception name as "unhandled EXCEPTION_NAME", to make
11525 it clearer to the user which kind of catchpoint just got
11526 hit. We used ui_out_text to make sure that this extra
11527 info does not pollute the exception name in the MI case. */
11528 if (ex == ex_catch_exception_unhandled)
11529 ui_out_text (uiout, "unhandled ");
11530 ui_out_field_string (uiout, "exception-name", exception_name);
11531 }
11532 break;
11533 case ex_catch_assert:
11534 /* In this case, the name of the exception is not really
11535 important. Just print "failed assertion" to make it clearer
11536 that his program just hit an assertion-failure catchpoint.
11537 We used ui_out_text because this info does not belong in
11538 the MI output. */
11539 ui_out_text (uiout, "failed assertion");
11540 break;
11541 }
11542 ui_out_text (uiout, " at ");
11543 ada_find_printable_frame (get_current_frame ());
11544
11545 return PRINT_SRC_AND_LOC;
11546 }
11547
11548 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11549 for all exception catchpoint kinds. */
11550
11551 static void
11552 print_one_exception (enum exception_catchpoint_kind ex,
11553 struct breakpoint *b, struct bp_location **last_loc)
11554 {
11555 struct ui_out *uiout = current_uiout;
11556 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11557 struct value_print_options opts;
11558
11559 get_user_print_options (&opts);
11560 if (opts.addressprint)
11561 {
11562 annotate_field (4);
11563 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11564 }
11565
11566 annotate_field (5);
11567 *last_loc = b->loc;
11568 switch (ex)
11569 {
11570 case ex_catch_exception:
11571 if (c->excep_string != NULL)
11572 {
11573 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11574
11575 ui_out_field_string (uiout, "what", msg);
11576 xfree (msg);
11577 }
11578 else
11579 ui_out_field_string (uiout, "what", "all Ada exceptions");
11580
11581 break;
11582
11583 case ex_catch_exception_unhandled:
11584 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11585 break;
11586
11587 case ex_catch_assert:
11588 ui_out_field_string (uiout, "what", "failed Ada assertions");
11589 break;
11590
11591 default:
11592 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11593 break;
11594 }
11595 }
11596
11597 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11598 for all exception catchpoint kinds. */
11599
11600 static void
11601 print_mention_exception (enum exception_catchpoint_kind ex,
11602 struct breakpoint *b)
11603 {
11604 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11605 struct ui_out *uiout = current_uiout;
11606
11607 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11608 : _("Catchpoint "));
11609 ui_out_field_int (uiout, "bkptno", b->number);
11610 ui_out_text (uiout, ": ");
11611
11612 switch (ex)
11613 {
11614 case ex_catch_exception:
11615 if (c->excep_string != NULL)
11616 {
11617 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11618 struct cleanup *old_chain = make_cleanup (xfree, info);
11619
11620 ui_out_text (uiout, info);
11621 do_cleanups (old_chain);
11622 }
11623 else
11624 ui_out_text (uiout, _("all Ada exceptions"));
11625 break;
11626
11627 case ex_catch_exception_unhandled:
11628 ui_out_text (uiout, _("unhandled Ada exceptions"));
11629 break;
11630
11631 case ex_catch_assert:
11632 ui_out_text (uiout, _("failed Ada assertions"));
11633 break;
11634
11635 default:
11636 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11637 break;
11638 }
11639 }
11640
11641 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11642 for all exception catchpoint kinds. */
11643
11644 static void
11645 print_recreate_exception (enum exception_catchpoint_kind ex,
11646 struct breakpoint *b, struct ui_file *fp)
11647 {
11648 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11649
11650 switch (ex)
11651 {
11652 case ex_catch_exception:
11653 fprintf_filtered (fp, "catch exception");
11654 if (c->excep_string != NULL)
11655 fprintf_filtered (fp, " %s", c->excep_string);
11656 break;
11657
11658 case ex_catch_exception_unhandled:
11659 fprintf_filtered (fp, "catch exception unhandled");
11660 break;
11661
11662 case ex_catch_assert:
11663 fprintf_filtered (fp, "catch assert");
11664 break;
11665
11666 default:
11667 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11668 }
11669 print_recreate_thread (b, fp);
11670 }
11671
11672 /* Virtual table for "catch exception" breakpoints. */
11673
11674 static void
11675 dtor_catch_exception (struct breakpoint *b)
11676 {
11677 dtor_exception (ex_catch_exception, b);
11678 }
11679
11680 static struct bp_location *
11681 allocate_location_catch_exception (struct breakpoint *self)
11682 {
11683 return allocate_location_exception (ex_catch_exception, self);
11684 }
11685
11686 static void
11687 re_set_catch_exception (struct breakpoint *b)
11688 {
11689 re_set_exception (ex_catch_exception, b);
11690 }
11691
11692 static void
11693 check_status_catch_exception (bpstat bs)
11694 {
11695 check_status_exception (ex_catch_exception, bs);
11696 }
11697
11698 static enum print_stop_action
11699 print_it_catch_exception (bpstat bs)
11700 {
11701 return print_it_exception (ex_catch_exception, bs);
11702 }
11703
11704 static void
11705 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11706 {
11707 print_one_exception (ex_catch_exception, b, last_loc);
11708 }
11709
11710 static void
11711 print_mention_catch_exception (struct breakpoint *b)
11712 {
11713 print_mention_exception (ex_catch_exception, b);
11714 }
11715
11716 static void
11717 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11718 {
11719 print_recreate_exception (ex_catch_exception, b, fp);
11720 }
11721
11722 static struct breakpoint_ops catch_exception_breakpoint_ops;
11723
11724 /* Virtual table for "catch exception unhandled" breakpoints. */
11725
11726 static void
11727 dtor_catch_exception_unhandled (struct breakpoint *b)
11728 {
11729 dtor_exception (ex_catch_exception_unhandled, b);
11730 }
11731
11732 static struct bp_location *
11733 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11734 {
11735 return allocate_location_exception (ex_catch_exception_unhandled, self);
11736 }
11737
11738 static void
11739 re_set_catch_exception_unhandled (struct breakpoint *b)
11740 {
11741 re_set_exception (ex_catch_exception_unhandled, b);
11742 }
11743
11744 static void
11745 check_status_catch_exception_unhandled (bpstat bs)
11746 {
11747 check_status_exception (ex_catch_exception_unhandled, bs);
11748 }
11749
11750 static enum print_stop_action
11751 print_it_catch_exception_unhandled (bpstat bs)
11752 {
11753 return print_it_exception (ex_catch_exception_unhandled, bs);
11754 }
11755
11756 static void
11757 print_one_catch_exception_unhandled (struct breakpoint *b,
11758 struct bp_location **last_loc)
11759 {
11760 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11761 }
11762
11763 static void
11764 print_mention_catch_exception_unhandled (struct breakpoint *b)
11765 {
11766 print_mention_exception (ex_catch_exception_unhandled, b);
11767 }
11768
11769 static void
11770 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11771 struct ui_file *fp)
11772 {
11773 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11774 }
11775
11776 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11777
11778 /* Virtual table for "catch assert" breakpoints. */
11779
11780 static void
11781 dtor_catch_assert (struct breakpoint *b)
11782 {
11783 dtor_exception (ex_catch_assert, b);
11784 }
11785
11786 static struct bp_location *
11787 allocate_location_catch_assert (struct breakpoint *self)
11788 {
11789 return allocate_location_exception (ex_catch_assert, self);
11790 }
11791
11792 static void
11793 re_set_catch_assert (struct breakpoint *b)
11794 {
11795 return re_set_exception (ex_catch_assert, b);
11796 }
11797
11798 static void
11799 check_status_catch_assert (bpstat bs)
11800 {
11801 check_status_exception (ex_catch_assert, bs);
11802 }
11803
11804 static enum print_stop_action
11805 print_it_catch_assert (bpstat bs)
11806 {
11807 return print_it_exception (ex_catch_assert, bs);
11808 }
11809
11810 static void
11811 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11812 {
11813 print_one_exception (ex_catch_assert, b, last_loc);
11814 }
11815
11816 static void
11817 print_mention_catch_assert (struct breakpoint *b)
11818 {
11819 print_mention_exception (ex_catch_assert, b);
11820 }
11821
11822 static void
11823 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11824 {
11825 print_recreate_exception (ex_catch_assert, b, fp);
11826 }
11827
11828 static struct breakpoint_ops catch_assert_breakpoint_ops;
11829
11830 /* Return a newly allocated copy of the first space-separated token
11831 in ARGSP, and then adjust ARGSP to point immediately after that
11832 token.
11833
11834 Return NULL if ARGPS does not contain any more tokens. */
11835
11836 static char *
11837 ada_get_next_arg (char **argsp)
11838 {
11839 char *args = *argsp;
11840 char *end;
11841 char *result;
11842
11843 args = skip_spaces (args);
11844 if (args[0] == '\0')
11845 return NULL; /* No more arguments. */
11846
11847 /* Find the end of the current argument. */
11848
11849 end = skip_to_space (args);
11850
11851 /* Adjust ARGSP to point to the start of the next argument. */
11852
11853 *argsp = end;
11854
11855 /* Make a copy of the current argument and return it. */
11856
11857 result = xmalloc (end - args + 1);
11858 strncpy (result, args, end - args);
11859 result[end - args] = '\0';
11860
11861 return result;
11862 }
11863
11864 /* Split the arguments specified in a "catch exception" command.
11865 Set EX to the appropriate catchpoint type.
11866 Set EXCEP_STRING to the name of the specific exception if
11867 specified by the user.
11868 If a condition is found at the end of the arguments, the condition
11869 expression is stored in COND_STRING (memory must be deallocated
11870 after use). Otherwise COND_STRING is set to NULL. */
11871
11872 static void
11873 catch_ada_exception_command_split (char *args,
11874 enum exception_catchpoint_kind *ex,
11875 char **excep_string,
11876 char **cond_string)
11877 {
11878 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11879 char *exception_name;
11880 char *cond = NULL;
11881
11882 exception_name = ada_get_next_arg (&args);
11883 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11884 {
11885 /* This is not an exception name; this is the start of a condition
11886 expression for a catchpoint on all exceptions. So, "un-get"
11887 this token, and set exception_name to NULL. */
11888 xfree (exception_name);
11889 exception_name = NULL;
11890 args -= 2;
11891 }
11892 make_cleanup (xfree, exception_name);
11893
11894 /* Check to see if we have a condition. */
11895
11896 args = skip_spaces (args);
11897 if (strncmp (args, "if", 2) == 0
11898 && (isspace (args[2]) || args[2] == '\0'))
11899 {
11900 args += 2;
11901 args = skip_spaces (args);
11902
11903 if (args[0] == '\0')
11904 error (_("Condition missing after `if' keyword"));
11905 cond = xstrdup (args);
11906 make_cleanup (xfree, cond);
11907
11908 args += strlen (args);
11909 }
11910
11911 /* Check that we do not have any more arguments. Anything else
11912 is unexpected. */
11913
11914 if (args[0] != '\0')
11915 error (_("Junk at end of expression"));
11916
11917 discard_cleanups (old_chain);
11918
11919 if (exception_name == NULL)
11920 {
11921 /* Catch all exceptions. */
11922 *ex = ex_catch_exception;
11923 *excep_string = NULL;
11924 }
11925 else if (strcmp (exception_name, "unhandled") == 0)
11926 {
11927 /* Catch unhandled exceptions. */
11928 *ex = ex_catch_exception_unhandled;
11929 *excep_string = NULL;
11930 }
11931 else
11932 {
11933 /* Catch a specific exception. */
11934 *ex = ex_catch_exception;
11935 *excep_string = exception_name;
11936 }
11937 *cond_string = cond;
11938 }
11939
11940 /* Return the name of the symbol on which we should break in order to
11941 implement a catchpoint of the EX kind. */
11942
11943 static const char *
11944 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11945 {
11946 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11947
11948 gdb_assert (data->exception_info != NULL);
11949
11950 switch (ex)
11951 {
11952 case ex_catch_exception:
11953 return (data->exception_info->catch_exception_sym);
11954 break;
11955 case ex_catch_exception_unhandled:
11956 return (data->exception_info->catch_exception_unhandled_sym);
11957 break;
11958 case ex_catch_assert:
11959 return (data->exception_info->catch_assert_sym);
11960 break;
11961 default:
11962 internal_error (__FILE__, __LINE__,
11963 _("unexpected catchpoint kind (%d)"), ex);
11964 }
11965 }
11966
11967 /* Return the breakpoint ops "virtual table" used for catchpoints
11968 of the EX kind. */
11969
11970 static const struct breakpoint_ops *
11971 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11972 {
11973 switch (ex)
11974 {
11975 case ex_catch_exception:
11976 return (&catch_exception_breakpoint_ops);
11977 break;
11978 case ex_catch_exception_unhandled:
11979 return (&catch_exception_unhandled_breakpoint_ops);
11980 break;
11981 case ex_catch_assert:
11982 return (&catch_assert_breakpoint_ops);
11983 break;
11984 default:
11985 internal_error (__FILE__, __LINE__,
11986 _("unexpected catchpoint kind (%d)"), ex);
11987 }
11988 }
11989
11990 /* Return the condition that will be used to match the current exception
11991 being raised with the exception that the user wants to catch. This
11992 assumes that this condition is used when the inferior just triggered
11993 an exception catchpoint.
11994
11995 The string returned is a newly allocated string that needs to be
11996 deallocated later. */
11997
11998 static char *
11999 ada_exception_catchpoint_cond_string (const char *excep_string)
12000 {
12001 int i;
12002
12003 /* The standard exceptions are a special case. They are defined in
12004 runtime units that have been compiled without debugging info; if
12005 EXCEP_STRING is the not-fully-qualified name of a standard
12006 exception (e.g. "constraint_error") then, during the evaluation
12007 of the condition expression, the symbol lookup on this name would
12008 *not* return this standard exception. The catchpoint condition
12009 may then be set only on user-defined exceptions which have the
12010 same not-fully-qualified name (e.g. my_package.constraint_error).
12011
12012 To avoid this unexcepted behavior, these standard exceptions are
12013 systematically prefixed by "standard". This means that "catch
12014 exception constraint_error" is rewritten into "catch exception
12015 standard.constraint_error".
12016
12017 If an exception named contraint_error is defined in another package of
12018 the inferior program, then the only way to specify this exception as a
12019 breakpoint condition is to use its fully-qualified named:
12020 e.g. my_package.constraint_error. */
12021
12022 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12023 {
12024 if (strcmp (standard_exc [i], excep_string) == 0)
12025 {
12026 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12027 excep_string);
12028 }
12029 }
12030 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12031 }
12032
12033 /* Return the symtab_and_line that should be used to insert an exception
12034 catchpoint of the TYPE kind.
12035
12036 EXCEP_STRING should contain the name of a specific exception that
12037 the catchpoint should catch, or NULL otherwise.
12038
12039 ADDR_STRING returns the name of the function where the real
12040 breakpoint that implements the catchpoints is set, depending on the
12041 type of catchpoint we need to create. */
12042
12043 static struct symtab_and_line
12044 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
12045 char **addr_string, const struct breakpoint_ops **ops)
12046 {
12047 const char *sym_name;
12048 struct symbol *sym;
12049
12050 /* First, find out which exception support info to use. */
12051 ada_exception_support_info_sniffer ();
12052
12053 /* Then lookup the function on which we will break in order to catch
12054 the Ada exceptions requested by the user. */
12055 sym_name = ada_exception_sym_name (ex);
12056 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12057
12058 /* We can assume that SYM is not NULL at this stage. If the symbol
12059 did not exist, ada_exception_support_info_sniffer would have
12060 raised an exception.
12061
12062 Also, ada_exception_support_info_sniffer should have already
12063 verified that SYM is a function symbol. */
12064 gdb_assert (sym != NULL);
12065 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12066
12067 /* Set ADDR_STRING. */
12068 *addr_string = xstrdup (sym_name);
12069
12070 /* Set OPS. */
12071 *ops = ada_exception_breakpoint_ops (ex);
12072
12073 return find_function_start_sal (sym, 1);
12074 }
12075
12076 /* Parse the arguments (ARGS) of the "catch exception" command.
12077
12078 If the user asked the catchpoint to catch only a specific
12079 exception, then save the exception name in ADDR_STRING.
12080
12081 If the user provided a condition, then set COND_STRING to
12082 that condition expression (the memory must be deallocated
12083 after use). Otherwise, set COND_STRING to NULL.
12084
12085 See ada_exception_sal for a description of all the remaining
12086 function arguments of this function. */
12087
12088 static struct symtab_and_line
12089 ada_decode_exception_location (char *args, char **addr_string,
12090 char **excep_string,
12091 char **cond_string,
12092 const struct breakpoint_ops **ops)
12093 {
12094 enum exception_catchpoint_kind ex;
12095
12096 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
12097 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12098 }
12099
12100 /* Create an Ada exception catchpoint. */
12101
12102 static void
12103 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12104 struct symtab_and_line sal,
12105 char *addr_string,
12106 char *excep_string,
12107 char *cond_string,
12108 const struct breakpoint_ops *ops,
12109 int tempflag,
12110 int from_tty)
12111 {
12112 struct ada_catchpoint *c;
12113
12114 c = XNEW (struct ada_catchpoint);
12115 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12116 ops, tempflag, from_tty);
12117 c->excep_string = excep_string;
12118 create_excep_cond_exprs (c);
12119 if (cond_string != NULL)
12120 set_breakpoint_condition (&c->base, cond_string, from_tty);
12121 install_breakpoint (0, &c->base, 1);
12122 }
12123
12124 /* Implement the "catch exception" command. */
12125
12126 static void
12127 catch_ada_exception_command (char *arg, int from_tty,
12128 struct cmd_list_element *command)
12129 {
12130 struct gdbarch *gdbarch = get_current_arch ();
12131 int tempflag;
12132 struct symtab_and_line sal;
12133 char *addr_string = NULL;
12134 char *excep_string = NULL;
12135 char *cond_string = NULL;
12136 const struct breakpoint_ops *ops = NULL;
12137
12138 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12139
12140 if (!arg)
12141 arg = "";
12142 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12143 &cond_string, &ops);
12144 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12145 excep_string, cond_string, ops,
12146 tempflag, from_tty);
12147 }
12148
12149 /* Assuming that ARGS contains the arguments of a "catch assert"
12150 command, parse those arguments and return a symtab_and_line object
12151 for a failed assertion catchpoint.
12152
12153 Set ADDR_STRING to the name of the function where the real
12154 breakpoint that implements the catchpoint is set.
12155
12156 If ARGS contains a condition, set COND_STRING to that condition
12157 (the memory needs to be deallocated after use). Otherwise, set
12158 COND_STRING to NULL. */
12159
12160 static struct symtab_and_line
12161 ada_decode_assert_location (char *args, char **addr_string,
12162 char **cond_string,
12163 const struct breakpoint_ops **ops)
12164 {
12165 args = skip_spaces (args);
12166
12167 /* Check whether a condition was provided. */
12168 if (strncmp (args, "if", 2) == 0
12169 && (isspace (args[2]) || args[2] == '\0'))
12170 {
12171 args += 2;
12172 args = skip_spaces (args);
12173 if (args[0] == '\0')
12174 error (_("condition missing after `if' keyword"));
12175 *cond_string = xstrdup (args);
12176 }
12177
12178 /* Otherwise, there should be no other argument at the end of
12179 the command. */
12180 else if (args[0] != '\0')
12181 error (_("Junk at end of arguments."));
12182
12183 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
12184 }
12185
12186 /* Implement the "catch assert" command. */
12187
12188 static void
12189 catch_assert_command (char *arg, int from_tty,
12190 struct cmd_list_element *command)
12191 {
12192 struct gdbarch *gdbarch = get_current_arch ();
12193 int tempflag;
12194 struct symtab_and_line sal;
12195 char *addr_string = NULL;
12196 char *cond_string = NULL;
12197 const struct breakpoint_ops *ops = NULL;
12198
12199 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12200
12201 if (!arg)
12202 arg = "";
12203 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
12204 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12205 NULL, cond_string, ops, tempflag,
12206 from_tty);
12207 }
12208 /* Operators */
12209 /* Information about operators given special treatment in functions
12210 below. */
12211 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12212
12213 #define ADA_OPERATORS \
12214 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12215 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12216 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12217 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12218 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12219 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12220 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12221 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12222 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12223 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12224 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12225 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12226 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12227 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12228 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12229 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12230 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12231 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12232 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12233
12234 static void
12235 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12236 int *argsp)
12237 {
12238 switch (exp->elts[pc - 1].opcode)
12239 {
12240 default:
12241 operator_length_standard (exp, pc, oplenp, argsp);
12242 break;
12243
12244 #define OP_DEFN(op, len, args, binop) \
12245 case op: *oplenp = len; *argsp = args; break;
12246 ADA_OPERATORS;
12247 #undef OP_DEFN
12248
12249 case OP_AGGREGATE:
12250 *oplenp = 3;
12251 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12252 break;
12253
12254 case OP_CHOICES:
12255 *oplenp = 3;
12256 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12257 break;
12258 }
12259 }
12260
12261 /* Implementation of the exp_descriptor method operator_check. */
12262
12263 static int
12264 ada_operator_check (struct expression *exp, int pos,
12265 int (*objfile_func) (struct objfile *objfile, void *data),
12266 void *data)
12267 {
12268 const union exp_element *const elts = exp->elts;
12269 struct type *type = NULL;
12270
12271 switch (elts[pos].opcode)
12272 {
12273 case UNOP_IN_RANGE:
12274 case UNOP_QUAL:
12275 type = elts[pos + 1].type;
12276 break;
12277
12278 default:
12279 return operator_check_standard (exp, pos, objfile_func, data);
12280 }
12281
12282 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12283
12284 if (type && TYPE_OBJFILE (type)
12285 && (*objfile_func) (TYPE_OBJFILE (type), data))
12286 return 1;
12287
12288 return 0;
12289 }
12290
12291 static char *
12292 ada_op_name (enum exp_opcode opcode)
12293 {
12294 switch (opcode)
12295 {
12296 default:
12297 return op_name_standard (opcode);
12298
12299 #define OP_DEFN(op, len, args, binop) case op: return #op;
12300 ADA_OPERATORS;
12301 #undef OP_DEFN
12302
12303 case OP_AGGREGATE:
12304 return "OP_AGGREGATE";
12305 case OP_CHOICES:
12306 return "OP_CHOICES";
12307 case OP_NAME:
12308 return "OP_NAME";
12309 }
12310 }
12311
12312 /* As for operator_length, but assumes PC is pointing at the first
12313 element of the operator, and gives meaningful results only for the
12314 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12315
12316 static void
12317 ada_forward_operator_length (struct expression *exp, int pc,
12318 int *oplenp, int *argsp)
12319 {
12320 switch (exp->elts[pc].opcode)
12321 {
12322 default:
12323 *oplenp = *argsp = 0;
12324 break;
12325
12326 #define OP_DEFN(op, len, args, binop) \
12327 case op: *oplenp = len; *argsp = args; break;
12328 ADA_OPERATORS;
12329 #undef OP_DEFN
12330
12331 case OP_AGGREGATE:
12332 *oplenp = 3;
12333 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12334 break;
12335
12336 case OP_CHOICES:
12337 *oplenp = 3;
12338 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12339 break;
12340
12341 case OP_STRING:
12342 case OP_NAME:
12343 {
12344 int len = longest_to_int (exp->elts[pc + 1].longconst);
12345
12346 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12347 *argsp = 0;
12348 break;
12349 }
12350 }
12351 }
12352
12353 static int
12354 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12355 {
12356 enum exp_opcode op = exp->elts[elt].opcode;
12357 int oplen, nargs;
12358 int pc = elt;
12359 int i;
12360
12361 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12362
12363 switch (op)
12364 {
12365 /* Ada attributes ('Foo). */
12366 case OP_ATR_FIRST:
12367 case OP_ATR_LAST:
12368 case OP_ATR_LENGTH:
12369 case OP_ATR_IMAGE:
12370 case OP_ATR_MAX:
12371 case OP_ATR_MIN:
12372 case OP_ATR_MODULUS:
12373 case OP_ATR_POS:
12374 case OP_ATR_SIZE:
12375 case OP_ATR_TAG:
12376 case OP_ATR_VAL:
12377 break;
12378
12379 case UNOP_IN_RANGE:
12380 case UNOP_QUAL:
12381 /* XXX: gdb_sprint_host_address, type_sprint */
12382 fprintf_filtered (stream, _("Type @"));
12383 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12384 fprintf_filtered (stream, " (");
12385 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12386 fprintf_filtered (stream, ")");
12387 break;
12388 case BINOP_IN_BOUNDS:
12389 fprintf_filtered (stream, " (%d)",
12390 longest_to_int (exp->elts[pc + 2].longconst));
12391 break;
12392 case TERNOP_IN_RANGE:
12393 break;
12394
12395 case OP_AGGREGATE:
12396 case OP_OTHERS:
12397 case OP_DISCRETE_RANGE:
12398 case OP_POSITIONAL:
12399 case OP_CHOICES:
12400 break;
12401
12402 case OP_NAME:
12403 case OP_STRING:
12404 {
12405 char *name = &exp->elts[elt + 2].string;
12406 int len = longest_to_int (exp->elts[elt + 1].longconst);
12407
12408 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12409 break;
12410 }
12411
12412 default:
12413 return dump_subexp_body_standard (exp, stream, elt);
12414 }
12415
12416 elt += oplen;
12417 for (i = 0; i < nargs; i += 1)
12418 elt = dump_subexp (exp, stream, elt);
12419
12420 return elt;
12421 }
12422
12423 /* The Ada extension of print_subexp (q.v.). */
12424
12425 static void
12426 ada_print_subexp (struct expression *exp, int *pos,
12427 struct ui_file *stream, enum precedence prec)
12428 {
12429 int oplen, nargs, i;
12430 int pc = *pos;
12431 enum exp_opcode op = exp->elts[pc].opcode;
12432
12433 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12434
12435 *pos += oplen;
12436 switch (op)
12437 {
12438 default:
12439 *pos -= oplen;
12440 print_subexp_standard (exp, pos, stream, prec);
12441 return;
12442
12443 case OP_VAR_VALUE:
12444 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12445 return;
12446
12447 case BINOP_IN_BOUNDS:
12448 /* XXX: sprint_subexp */
12449 print_subexp (exp, pos, stream, PREC_SUFFIX);
12450 fputs_filtered (" in ", stream);
12451 print_subexp (exp, pos, stream, PREC_SUFFIX);
12452 fputs_filtered ("'range", stream);
12453 if (exp->elts[pc + 1].longconst > 1)
12454 fprintf_filtered (stream, "(%ld)",
12455 (long) exp->elts[pc + 1].longconst);
12456 return;
12457
12458 case TERNOP_IN_RANGE:
12459 if (prec >= PREC_EQUAL)
12460 fputs_filtered ("(", stream);
12461 /* XXX: sprint_subexp */
12462 print_subexp (exp, pos, stream, PREC_SUFFIX);
12463 fputs_filtered (" in ", stream);
12464 print_subexp (exp, pos, stream, PREC_EQUAL);
12465 fputs_filtered (" .. ", stream);
12466 print_subexp (exp, pos, stream, PREC_EQUAL);
12467 if (prec >= PREC_EQUAL)
12468 fputs_filtered (")", stream);
12469 return;
12470
12471 case OP_ATR_FIRST:
12472 case OP_ATR_LAST:
12473 case OP_ATR_LENGTH:
12474 case OP_ATR_IMAGE:
12475 case OP_ATR_MAX:
12476 case OP_ATR_MIN:
12477 case OP_ATR_MODULUS:
12478 case OP_ATR_POS:
12479 case OP_ATR_SIZE:
12480 case OP_ATR_TAG:
12481 case OP_ATR_VAL:
12482 if (exp->elts[*pos].opcode == OP_TYPE)
12483 {
12484 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12485 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12486 &type_print_raw_options);
12487 *pos += 3;
12488 }
12489 else
12490 print_subexp (exp, pos, stream, PREC_SUFFIX);
12491 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12492 if (nargs > 1)
12493 {
12494 int tem;
12495
12496 for (tem = 1; tem < nargs; tem += 1)
12497 {
12498 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12499 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12500 }
12501 fputs_filtered (")", stream);
12502 }
12503 return;
12504
12505 case UNOP_QUAL:
12506 type_print (exp->elts[pc + 1].type, "", stream, 0);
12507 fputs_filtered ("'(", stream);
12508 print_subexp (exp, pos, stream, PREC_PREFIX);
12509 fputs_filtered (")", stream);
12510 return;
12511
12512 case UNOP_IN_RANGE:
12513 /* XXX: sprint_subexp */
12514 print_subexp (exp, pos, stream, PREC_SUFFIX);
12515 fputs_filtered (" in ", stream);
12516 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12517 &type_print_raw_options);
12518 return;
12519
12520 case OP_DISCRETE_RANGE:
12521 print_subexp (exp, pos, stream, PREC_SUFFIX);
12522 fputs_filtered ("..", stream);
12523 print_subexp (exp, pos, stream, PREC_SUFFIX);
12524 return;
12525
12526 case OP_OTHERS:
12527 fputs_filtered ("others => ", stream);
12528 print_subexp (exp, pos, stream, PREC_SUFFIX);
12529 return;
12530
12531 case OP_CHOICES:
12532 for (i = 0; i < nargs-1; i += 1)
12533 {
12534 if (i > 0)
12535 fputs_filtered ("|", stream);
12536 print_subexp (exp, pos, stream, PREC_SUFFIX);
12537 }
12538 fputs_filtered (" => ", stream);
12539 print_subexp (exp, pos, stream, PREC_SUFFIX);
12540 return;
12541
12542 case OP_POSITIONAL:
12543 print_subexp (exp, pos, stream, PREC_SUFFIX);
12544 return;
12545
12546 case OP_AGGREGATE:
12547 fputs_filtered ("(", stream);
12548 for (i = 0; i < nargs; i += 1)
12549 {
12550 if (i > 0)
12551 fputs_filtered (", ", stream);
12552 print_subexp (exp, pos, stream, PREC_SUFFIX);
12553 }
12554 fputs_filtered (")", stream);
12555 return;
12556 }
12557 }
12558
12559 /* Table mapping opcodes into strings for printing operators
12560 and precedences of the operators. */
12561
12562 static const struct op_print ada_op_print_tab[] = {
12563 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12564 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12565 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12566 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12567 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12568 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12569 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12570 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12571 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12572 {">=", BINOP_GEQ, PREC_ORDER, 0},
12573 {">", BINOP_GTR, PREC_ORDER, 0},
12574 {"<", BINOP_LESS, PREC_ORDER, 0},
12575 {">>", BINOP_RSH, PREC_SHIFT, 0},
12576 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12577 {"+", BINOP_ADD, PREC_ADD, 0},
12578 {"-", BINOP_SUB, PREC_ADD, 0},
12579 {"&", BINOP_CONCAT, PREC_ADD, 0},
12580 {"*", BINOP_MUL, PREC_MUL, 0},
12581 {"/", BINOP_DIV, PREC_MUL, 0},
12582 {"rem", BINOP_REM, PREC_MUL, 0},
12583 {"mod", BINOP_MOD, PREC_MUL, 0},
12584 {"**", BINOP_EXP, PREC_REPEAT, 0},
12585 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12586 {"-", UNOP_NEG, PREC_PREFIX, 0},
12587 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12588 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12589 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12590 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12591 {".all", UNOP_IND, PREC_SUFFIX, 1},
12592 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12593 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12594 {NULL, 0, 0, 0}
12595 };
12596 \f
12597 enum ada_primitive_types {
12598 ada_primitive_type_int,
12599 ada_primitive_type_long,
12600 ada_primitive_type_short,
12601 ada_primitive_type_char,
12602 ada_primitive_type_float,
12603 ada_primitive_type_double,
12604 ada_primitive_type_void,
12605 ada_primitive_type_long_long,
12606 ada_primitive_type_long_double,
12607 ada_primitive_type_natural,
12608 ada_primitive_type_positive,
12609 ada_primitive_type_system_address,
12610 nr_ada_primitive_types
12611 };
12612
12613 static void
12614 ada_language_arch_info (struct gdbarch *gdbarch,
12615 struct language_arch_info *lai)
12616 {
12617 const struct builtin_type *builtin = builtin_type (gdbarch);
12618
12619 lai->primitive_type_vector
12620 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12621 struct type *);
12622
12623 lai->primitive_type_vector [ada_primitive_type_int]
12624 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12625 0, "integer");
12626 lai->primitive_type_vector [ada_primitive_type_long]
12627 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12628 0, "long_integer");
12629 lai->primitive_type_vector [ada_primitive_type_short]
12630 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12631 0, "short_integer");
12632 lai->string_char_type
12633 = lai->primitive_type_vector [ada_primitive_type_char]
12634 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12635 lai->primitive_type_vector [ada_primitive_type_float]
12636 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12637 "float", NULL);
12638 lai->primitive_type_vector [ada_primitive_type_double]
12639 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12640 "long_float", NULL);
12641 lai->primitive_type_vector [ada_primitive_type_long_long]
12642 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12643 0, "long_long_integer");
12644 lai->primitive_type_vector [ada_primitive_type_long_double]
12645 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12646 "long_long_float", NULL);
12647 lai->primitive_type_vector [ada_primitive_type_natural]
12648 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12649 0, "natural");
12650 lai->primitive_type_vector [ada_primitive_type_positive]
12651 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12652 0, "positive");
12653 lai->primitive_type_vector [ada_primitive_type_void]
12654 = builtin->builtin_void;
12655
12656 lai->primitive_type_vector [ada_primitive_type_system_address]
12657 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12658 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12659 = "system__address";
12660
12661 lai->bool_type_symbol = NULL;
12662 lai->bool_type_default = builtin->builtin_bool;
12663 }
12664 \f
12665 /* Language vector */
12666
12667 /* Not really used, but needed in the ada_language_defn. */
12668
12669 static void
12670 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12671 {
12672 ada_emit_char (c, type, stream, quoter, 1);
12673 }
12674
12675 static int
12676 parse (void)
12677 {
12678 warnings_issued = 0;
12679 return ada_parse ();
12680 }
12681
12682 static const struct exp_descriptor ada_exp_descriptor = {
12683 ada_print_subexp,
12684 ada_operator_length,
12685 ada_operator_check,
12686 ada_op_name,
12687 ada_dump_subexp_body,
12688 ada_evaluate_subexp
12689 };
12690
12691 /* Implement the "la_get_symbol_name_cmp" language_defn method
12692 for Ada. */
12693
12694 static symbol_name_cmp_ftype
12695 ada_get_symbol_name_cmp (const char *lookup_name)
12696 {
12697 if (should_use_wild_match (lookup_name))
12698 return wild_match;
12699 else
12700 return compare_names;
12701 }
12702
12703 /* Implement the "la_read_var_value" language_defn method for Ada. */
12704
12705 static struct value *
12706 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12707 {
12708 struct block *frame_block = NULL;
12709 struct symbol *renaming_sym = NULL;
12710
12711 /* The only case where default_read_var_value is not sufficient
12712 is when VAR is a renaming... */
12713 if (frame)
12714 frame_block = get_frame_block (frame, NULL);
12715 if (frame_block)
12716 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12717 if (renaming_sym != NULL)
12718 return ada_read_renaming_var_value (renaming_sym, frame_block);
12719
12720 /* This is a typical case where we expect the default_read_var_value
12721 function to work. */
12722 return default_read_var_value (var, frame);
12723 }
12724
12725 const struct language_defn ada_language_defn = {
12726 "ada", /* Language name */
12727 language_ada,
12728 range_check_off,
12729 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12730 that's not quite what this means. */
12731 array_row_major,
12732 macro_expansion_no,
12733 &ada_exp_descriptor,
12734 parse,
12735 ada_error,
12736 resolve,
12737 ada_printchar, /* Print a character constant */
12738 ada_printstr, /* Function to print string constant */
12739 emit_char, /* Function to print single char (not used) */
12740 ada_print_type, /* Print a type using appropriate syntax */
12741 ada_print_typedef, /* Print a typedef using appropriate syntax */
12742 ada_val_print, /* Print a value using appropriate syntax */
12743 ada_value_print, /* Print a top-level value */
12744 ada_read_var_value, /* la_read_var_value */
12745 NULL, /* Language specific skip_trampoline */
12746 NULL, /* name_of_this */
12747 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12748 basic_lookup_transparent_type, /* lookup_transparent_type */
12749 ada_la_decode, /* Language specific symbol demangler */
12750 NULL, /* Language specific
12751 class_name_from_physname */
12752 ada_op_print_tab, /* expression operators for printing */
12753 0, /* c-style arrays */
12754 1, /* String lower bound */
12755 ada_get_gdb_completer_word_break_characters,
12756 ada_make_symbol_completion_list,
12757 ada_language_arch_info,
12758 ada_print_array_index,
12759 default_pass_by_reference,
12760 c_get_string,
12761 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12762 ada_iterate_over_symbols,
12763 LANG_MAGIC
12764 };
12765
12766 /* Provide a prototype to silence -Wmissing-prototypes. */
12767 extern initialize_file_ftype _initialize_ada_language;
12768
12769 /* Command-list for the "set/show ada" prefix command. */
12770 static struct cmd_list_element *set_ada_list;
12771 static struct cmd_list_element *show_ada_list;
12772
12773 /* Implement the "set ada" prefix command. */
12774
12775 static void
12776 set_ada_command (char *arg, int from_tty)
12777 {
12778 printf_unfiltered (_(\
12779 "\"set ada\" must be followed by the name of a setting.\n"));
12780 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12781 }
12782
12783 /* Implement the "show ada" prefix command. */
12784
12785 static void
12786 show_ada_command (char *args, int from_tty)
12787 {
12788 cmd_show_list (show_ada_list, from_tty, "");
12789 }
12790
12791 static void
12792 initialize_ada_catchpoint_ops (void)
12793 {
12794 struct breakpoint_ops *ops;
12795
12796 initialize_breakpoint_ops ();
12797
12798 ops = &catch_exception_breakpoint_ops;
12799 *ops = bkpt_breakpoint_ops;
12800 ops->dtor = dtor_catch_exception;
12801 ops->allocate_location = allocate_location_catch_exception;
12802 ops->re_set = re_set_catch_exception;
12803 ops->check_status = check_status_catch_exception;
12804 ops->print_it = print_it_catch_exception;
12805 ops->print_one = print_one_catch_exception;
12806 ops->print_mention = print_mention_catch_exception;
12807 ops->print_recreate = print_recreate_catch_exception;
12808
12809 ops = &catch_exception_unhandled_breakpoint_ops;
12810 *ops = bkpt_breakpoint_ops;
12811 ops->dtor = dtor_catch_exception_unhandled;
12812 ops->allocate_location = allocate_location_catch_exception_unhandled;
12813 ops->re_set = re_set_catch_exception_unhandled;
12814 ops->check_status = check_status_catch_exception_unhandled;
12815 ops->print_it = print_it_catch_exception_unhandled;
12816 ops->print_one = print_one_catch_exception_unhandled;
12817 ops->print_mention = print_mention_catch_exception_unhandled;
12818 ops->print_recreate = print_recreate_catch_exception_unhandled;
12819
12820 ops = &catch_assert_breakpoint_ops;
12821 *ops = bkpt_breakpoint_ops;
12822 ops->dtor = dtor_catch_assert;
12823 ops->allocate_location = allocate_location_catch_assert;
12824 ops->re_set = re_set_catch_assert;
12825 ops->check_status = check_status_catch_assert;
12826 ops->print_it = print_it_catch_assert;
12827 ops->print_one = print_one_catch_assert;
12828 ops->print_mention = print_mention_catch_assert;
12829 ops->print_recreate = print_recreate_catch_assert;
12830 }
12831
12832 void
12833 _initialize_ada_language (void)
12834 {
12835 add_language (&ada_language_defn);
12836
12837 initialize_ada_catchpoint_ops ();
12838
12839 add_prefix_cmd ("ada", no_class, set_ada_command,
12840 _("Prefix command for changing Ada-specfic settings"),
12841 &set_ada_list, "set ada ", 0, &setlist);
12842
12843 add_prefix_cmd ("ada", no_class, show_ada_command,
12844 _("Generic command for showing Ada-specific settings."),
12845 &show_ada_list, "show ada ", 0, &showlist);
12846
12847 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12848 &trust_pad_over_xvs, _("\
12849 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12850 Show whether an optimization trusting PAD types over XVS types is activated"),
12851 _("\
12852 This is related to the encoding used by the GNAT compiler. The debugger\n\
12853 should normally trust the contents of PAD types, but certain older versions\n\
12854 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12855 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12856 work around this bug. It is always safe to turn this option \"off\", but\n\
12857 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12858 this option to \"off\" unless necessary."),
12859 NULL, NULL, &set_ada_list, &show_ada_list);
12860
12861 add_catch_command ("exception", _("\
12862 Catch Ada exceptions, when raised.\n\
12863 With an argument, catch only exceptions with the given name."),
12864 catch_ada_exception_command,
12865 NULL,
12866 CATCH_PERMANENT,
12867 CATCH_TEMPORARY);
12868 add_catch_command ("assert", _("\
12869 Catch failed Ada assertions, when raised.\n\
12870 With an argument, catch only exceptions with the given name."),
12871 catch_assert_command,
12872 NULL,
12873 CATCH_PERMANENT,
12874 CATCH_TEMPORARY);
12875
12876 varsize_limit = 65536;
12877
12878 obstack_init (&symbol_list_obstack);
12879
12880 decoded_names_store = htab_create_alloc
12881 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12882 NULL, xcalloc, xfree);
12883
12884 /* Setup per-inferior data. */
12885 observer_attach_inferior_exit (ada_inferior_exit);
12886 ada_inferior_data
12887 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
12888 }
This page took 0.302893 seconds and 4 git commands to generate.