* lib/gdb.exp (gdb_gnu_strip_debug): Remove debug format test.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58
59 #ifndef ADA_RETAIN_DOTS
60 #define ADA_RETAIN_DOTS 0
61 #endif
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *,
119 struct symtab *, int);
120
121 static int is_nonfunction (struct ada_symbol_info *, int);
122
123 static void add_defn_to_vec (struct obstack *, struct symbol *,
124 struct block *, struct symtab *);
125
126 static int num_defns_collected (struct obstack *);
127
128 static struct ada_symbol_info *defns_collected (struct obstack *, int);
129
130 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
131 *, const char *, int,
132 domain_enum, int);
133
134 static struct symtab *symtab_for_sym (struct symbol *);
135
136 static struct value *resolve_subexp (struct expression **, int *, int,
137 struct type *);
138
139 static void replace_operator_with_call (struct expression **, int, int, int,
140 struct symbol *, struct block *);
141
142 static int possible_user_operator_p (enum exp_opcode, struct value **);
143
144 static char *ada_op_name (enum exp_opcode);
145
146 static const char *ada_decoded_op_name (enum exp_opcode);
147
148 static int numeric_type_p (struct type *);
149
150 static int integer_type_p (struct type *);
151
152 static int scalar_type_p (struct type *);
153
154 static int discrete_type_p (struct type *);
155
156 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
157 int, int, int *);
158
159 static struct value *evaluate_subexp (struct type *, struct expression *,
160 int *, enum noside);
161
162 static struct value *evaluate_subexp_type (struct expression *, int *);
163
164 static int is_dynamic_field (struct type *, int);
165
166 static struct type *to_fixed_variant_branch_type (struct type *,
167 const gdb_byte *,
168 CORE_ADDR, struct value *);
169
170 static struct type *to_fixed_array_type (struct type *, struct value *, int);
171
172 static struct type *to_fixed_range_type (char *, struct value *,
173 struct objfile *);
174
175 static struct type *to_static_fixed_type (struct type *);
176
177 static struct value *unwrap_value (struct value *);
178
179 static struct type *packed_array_type (struct type *, long *);
180
181 static struct type *decode_packed_array_type (struct type *);
182
183 static struct value *decode_packed_array (struct value *);
184
185 static struct value *value_subscript_packed (struct value *, int,
186 struct value **);
187
188 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
189
190 static struct value *coerce_unspec_val_to_type (struct value *,
191 struct type *);
192
193 static struct value *get_var_value (char *, char *);
194
195 static int lesseq_defined_than (struct symbol *, struct symbol *);
196
197 static int equiv_types (struct type *, struct type *);
198
199 static int is_name_suffix (const char *);
200
201 static int wild_match (const char *, int, const char *);
202
203 static struct value *ada_coerce_ref (struct value *);
204
205 static LONGEST pos_atr (struct value *);
206
207 static struct value *value_pos_atr (struct value *);
208
209 static struct value *value_val_atr (struct type *, struct value *);
210
211 static struct symbol *standard_lookup (const char *, const struct block *,
212 domain_enum);
213
214 static struct value *ada_search_struct_field (char *, struct value *, int,
215 struct type *);
216
217 static struct value *ada_value_primitive_field (struct value *, int, int,
218 struct type *);
219
220 static int find_struct_field (char *, struct type *, int,
221 struct type **, int *, int *, int *, int *);
222
223 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
224 struct value *);
225
226 static struct value *ada_to_fixed_value (struct value *);
227
228 static int ada_resolve_function (struct ada_symbol_info *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static struct value *ada_coerce_to_simple_array (struct value *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static void check_size (const struct type *);
240
241 static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244 static struct value *assign_aggregate (struct value *, struct value *,
245 struct expression *, int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271 \f
272
273
274 /* Maximum-sized dynamic type. */
275 static unsigned int varsize_limit;
276
277 /* FIXME: brobecker/2003-09-17: No longer a const because it is
278 returned by a function that does not return a const char *. */
279 static char *ada_completer_word_break_characters =
280 #ifdef VMS
281 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
282 #else
283 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
284 #endif
285
286 /* The name of the symbol to use to get the name of the main subprogram. */
287 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
288 = "__gnat_ada_main_program_name";
289
290 /* Limit on the number of warnings to raise per expression evaluation. */
291 static int warning_limit = 2;
292
293 /* Number of warning messages issued; reset to 0 by cleanups after
294 expression evaluation. */
295 static int warnings_issued = 0;
296
297 static const char *known_runtime_file_name_patterns[] = {
298 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
299 };
300
301 static const char *known_auxiliary_function_name_patterns[] = {
302 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
303 };
304
305 /* Space for allocating results of ada_lookup_symbol_list. */
306 static struct obstack symbol_list_obstack;
307
308 /* Utilities */
309
310
311 static char *
312 ada_get_gdb_completer_word_break_characters (void)
313 {
314 return ada_completer_word_break_characters;
315 }
316
317 /* Print an array element index using the Ada syntax. */
318
319 static void
320 ada_print_array_index (struct value *index_value, struct ui_file *stream,
321 int format, enum val_prettyprint pretty)
322 {
323 LA_VALUE_PRINT (index_value, stream, format, pretty);
324 fprintf_filtered (stream, " => ");
325 }
326
327 /* Read the string located at ADDR from the inferior and store the
328 result into BUF. */
329
330 static void
331 extract_string (CORE_ADDR addr, char *buf)
332 {
333 int char_index = 0;
334
335 /* Loop, reading one byte at a time, until we reach the '\000'
336 end-of-string marker. */
337 do
338 {
339 target_read_memory (addr + char_index * sizeof (char),
340 buf + char_index * sizeof (char), sizeof (char));
341 char_index++;
342 }
343 while (buf[char_index - 1] != '\000');
344 }
345
346 /* Assuming VECT points to an array of *SIZE objects of size
347 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
348 updating *SIZE as necessary and returning the (new) array. */
349
350 void *
351 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
352 {
353 if (*size < min_size)
354 {
355 *size *= 2;
356 if (*size < min_size)
357 *size = min_size;
358 vect = xrealloc (vect, *size * element_size);
359 }
360 return vect;
361 }
362
363 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
364 suffix of FIELD_NAME beginning "___". */
365
366 static int
367 field_name_match (const char *field_name, const char *target)
368 {
369 int len = strlen (target);
370 return
371 (strncmp (field_name, target, len) == 0
372 && (field_name[len] == '\0'
373 || (strncmp (field_name + len, "___", 3) == 0
374 && strcmp (field_name + strlen (field_name) - 6,
375 "___XVN") != 0)));
376 }
377
378
379 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
380 FIELD_NAME, and return its index. This function also handles fields
381 whose name have ___ suffixes because the compiler sometimes alters
382 their name by adding such a suffix to represent fields with certain
383 constraints. If the field could not be found, return a negative
384 number if MAYBE_MISSING is set. Otherwise raise an error. */
385
386 int
387 ada_get_field_index (const struct type *type, const char *field_name,
388 int maybe_missing)
389 {
390 int fieldno;
391 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
392 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
393 return fieldno;
394
395 if (!maybe_missing)
396 error (_("Unable to find field %s in struct %s. Aborting"),
397 field_name, TYPE_NAME (type));
398
399 return -1;
400 }
401
402 /* The length of the prefix of NAME prior to any "___" suffix. */
403
404 int
405 ada_name_prefix_len (const char *name)
406 {
407 if (name == NULL)
408 return 0;
409 else
410 {
411 const char *p = strstr (name, "___");
412 if (p == NULL)
413 return strlen (name);
414 else
415 return p - name;
416 }
417 }
418
419 /* Return non-zero if SUFFIX is a suffix of STR.
420 Return zero if STR is null. */
421
422 static int
423 is_suffix (const char *str, const char *suffix)
424 {
425 int len1, len2;
426 if (str == NULL)
427 return 0;
428 len1 = strlen (str);
429 len2 = strlen (suffix);
430 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
431 }
432
433 /* Create a value of type TYPE whose contents come from VALADDR, if it
434 is non-null, and whose memory address (in the inferior) is
435 ADDRESS. */
436
437 struct value *
438 value_from_contents_and_address (struct type *type,
439 const gdb_byte *valaddr,
440 CORE_ADDR address)
441 {
442 struct value *v = allocate_value (type);
443 if (valaddr == NULL)
444 set_value_lazy (v, 1);
445 else
446 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
447 VALUE_ADDRESS (v) = address;
448 if (address != 0)
449 VALUE_LVAL (v) = lval_memory;
450 return v;
451 }
452
453 /* The contents of value VAL, treated as a value of type TYPE. The
454 result is an lval in memory if VAL is. */
455
456 static struct value *
457 coerce_unspec_val_to_type (struct value *val, struct type *type)
458 {
459 type = ada_check_typedef (type);
460 if (value_type (val) == type)
461 return val;
462 else
463 {
464 struct value *result;
465
466 /* Make sure that the object size is not unreasonable before
467 trying to allocate some memory for it. */
468 check_size (type);
469
470 result = allocate_value (type);
471 VALUE_LVAL (result) = VALUE_LVAL (val);
472 set_value_bitsize (result, value_bitsize (val));
473 set_value_bitpos (result, value_bitpos (val));
474 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
475 if (value_lazy (val)
476 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
477 set_value_lazy (result, 1);
478 else
479 memcpy (value_contents_raw (result), value_contents (val),
480 TYPE_LENGTH (type));
481 return result;
482 }
483 }
484
485 static const gdb_byte *
486 cond_offset_host (const gdb_byte *valaddr, long offset)
487 {
488 if (valaddr == NULL)
489 return NULL;
490 else
491 return valaddr + offset;
492 }
493
494 static CORE_ADDR
495 cond_offset_target (CORE_ADDR address, long offset)
496 {
497 if (address == 0)
498 return 0;
499 else
500 return address + offset;
501 }
502
503 /* Issue a warning (as for the definition of warning in utils.c, but
504 with exactly one argument rather than ...), unless the limit on the
505 number of warnings has passed during the evaluation of the current
506 expression. */
507
508 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
509 provided by "complaint". */
510 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
511
512 static void
513 lim_warning (const char *format, ...)
514 {
515 va_list args;
516 va_start (args, format);
517
518 warnings_issued += 1;
519 if (warnings_issued <= warning_limit)
520 vwarning (format, args);
521
522 va_end (args);
523 }
524
525 /* Issue an error if the size of an object of type T is unreasonable,
526 i.e. if it would be a bad idea to allocate a value of this type in
527 GDB. */
528
529 static void
530 check_size (const struct type *type)
531 {
532 if (TYPE_LENGTH (type) > varsize_limit)
533 error (_("object size is larger than varsize-limit"));
534 }
535
536
537 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
538 gdbtypes.h, but some of the necessary definitions in that file
539 seem to have gone missing. */
540
541 /* Maximum value of a SIZE-byte signed integer type. */
542 static LONGEST
543 max_of_size (int size)
544 {
545 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
546 return top_bit | (top_bit - 1);
547 }
548
549 /* Minimum value of a SIZE-byte signed integer type. */
550 static LONGEST
551 min_of_size (int size)
552 {
553 return -max_of_size (size) - 1;
554 }
555
556 /* Maximum value of a SIZE-byte unsigned integer type. */
557 static ULONGEST
558 umax_of_size (int size)
559 {
560 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
561 return top_bit | (top_bit - 1);
562 }
563
564 /* Maximum value of integral type T, as a signed quantity. */
565 static LONGEST
566 max_of_type (struct type *t)
567 {
568 if (TYPE_UNSIGNED (t))
569 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
570 else
571 return max_of_size (TYPE_LENGTH (t));
572 }
573
574 /* Minimum value of integral type T, as a signed quantity. */
575 static LONGEST
576 min_of_type (struct type *t)
577 {
578 if (TYPE_UNSIGNED (t))
579 return 0;
580 else
581 return min_of_size (TYPE_LENGTH (t));
582 }
583
584 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
585 static struct value *
586 discrete_type_high_bound (struct type *type)
587 {
588 switch (TYPE_CODE (type))
589 {
590 case TYPE_CODE_RANGE:
591 return value_from_longest (TYPE_TARGET_TYPE (type),
592 TYPE_HIGH_BOUND (type));
593 case TYPE_CODE_ENUM:
594 return
595 value_from_longest (type,
596 TYPE_FIELD_BITPOS (type,
597 TYPE_NFIELDS (type) - 1));
598 case TYPE_CODE_INT:
599 return value_from_longest (type, max_of_type (type));
600 default:
601 error (_("Unexpected type in discrete_type_high_bound."));
602 }
603 }
604
605 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
606 static struct value *
607 discrete_type_low_bound (struct type *type)
608 {
609 switch (TYPE_CODE (type))
610 {
611 case TYPE_CODE_RANGE:
612 return value_from_longest (TYPE_TARGET_TYPE (type),
613 TYPE_LOW_BOUND (type));
614 case TYPE_CODE_ENUM:
615 return value_from_longest (type, TYPE_FIELD_BITPOS (type, 0));
616 case TYPE_CODE_INT:
617 return value_from_longest (type, min_of_type (type));
618 default:
619 error (_("Unexpected type in discrete_type_low_bound."));
620 }
621 }
622
623 /* The identity on non-range types. For range types, the underlying
624 non-range scalar type. */
625
626 static struct type *
627 base_type (struct type *type)
628 {
629 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
630 {
631 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
632 return type;
633 type = TYPE_TARGET_TYPE (type);
634 }
635 return type;
636 }
637 \f
638
639 /* Language Selection */
640
641 /* If the main program is in Ada, return language_ada, otherwise return LANG
642 (the main program is in Ada iif the adainit symbol is found).
643
644 MAIN_PST is not used. */
645
646 enum language
647 ada_update_initial_language (enum language lang,
648 struct partial_symtab *main_pst)
649 {
650 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
651 (struct objfile *) NULL) != NULL)
652 return language_ada;
653
654 return lang;
655 }
656
657 /* If the main procedure is written in Ada, then return its name.
658 The result is good until the next call. Return NULL if the main
659 procedure doesn't appear to be in Ada. */
660
661 char *
662 ada_main_name (void)
663 {
664 struct minimal_symbol *msym;
665 CORE_ADDR main_program_name_addr;
666 static char main_program_name[1024];
667
668 /* For Ada, the name of the main procedure is stored in a specific
669 string constant, generated by the binder. Look for that symbol,
670 extract its address, and then read that string. If we didn't find
671 that string, then most probably the main procedure is not written
672 in Ada. */
673 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
674
675 if (msym != NULL)
676 {
677 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
678 if (main_program_name_addr == 0)
679 error (_("Invalid address for Ada main program name."));
680
681 extract_string (main_program_name_addr, main_program_name);
682 return main_program_name;
683 }
684
685 /* The main procedure doesn't seem to be in Ada. */
686 return NULL;
687 }
688 \f
689 /* Symbols */
690
691 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
692 of NULLs. */
693
694 const struct ada_opname_map ada_opname_table[] = {
695 {"Oadd", "\"+\"", BINOP_ADD},
696 {"Osubtract", "\"-\"", BINOP_SUB},
697 {"Omultiply", "\"*\"", BINOP_MUL},
698 {"Odivide", "\"/\"", BINOP_DIV},
699 {"Omod", "\"mod\"", BINOP_MOD},
700 {"Orem", "\"rem\"", BINOP_REM},
701 {"Oexpon", "\"**\"", BINOP_EXP},
702 {"Olt", "\"<\"", BINOP_LESS},
703 {"Ole", "\"<=\"", BINOP_LEQ},
704 {"Ogt", "\">\"", BINOP_GTR},
705 {"Oge", "\">=\"", BINOP_GEQ},
706 {"Oeq", "\"=\"", BINOP_EQUAL},
707 {"One", "\"/=\"", BINOP_NOTEQUAL},
708 {"Oand", "\"and\"", BINOP_BITWISE_AND},
709 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
710 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
711 {"Oconcat", "\"&\"", BINOP_CONCAT},
712 {"Oabs", "\"abs\"", UNOP_ABS},
713 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
714 {"Oadd", "\"+\"", UNOP_PLUS},
715 {"Osubtract", "\"-\"", UNOP_NEG},
716 {NULL, NULL}
717 };
718
719 /* Return non-zero if STR should be suppressed in info listings. */
720
721 static int
722 is_suppressed_name (const char *str)
723 {
724 if (strncmp (str, "_ada_", 5) == 0)
725 str += 5;
726 if (str[0] == '_' || str[0] == '\000')
727 return 1;
728 else
729 {
730 const char *p;
731 const char *suffix = strstr (str, "___");
732 if (suffix != NULL && suffix[3] != 'X')
733 return 1;
734 if (suffix == NULL)
735 suffix = str + strlen (str);
736 for (p = suffix - 1; p != str; p -= 1)
737 if (isupper (*p))
738 {
739 int i;
740 if (p[0] == 'X' && p[-1] != '_')
741 goto OK;
742 if (*p != 'O')
743 return 1;
744 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
745 if (strncmp (ada_opname_table[i].encoded, p,
746 strlen (ada_opname_table[i].encoded)) == 0)
747 goto OK;
748 return 1;
749 OK:;
750 }
751 return 0;
752 }
753 }
754
755 /* The "encoded" form of DECODED, according to GNAT conventions.
756 The result is valid until the next call to ada_encode. */
757
758 char *
759 ada_encode (const char *decoded)
760 {
761 static char *encoding_buffer = NULL;
762 static size_t encoding_buffer_size = 0;
763 const char *p;
764 int k;
765
766 if (decoded == NULL)
767 return NULL;
768
769 GROW_VECT (encoding_buffer, encoding_buffer_size,
770 2 * strlen (decoded) + 10);
771
772 k = 0;
773 for (p = decoded; *p != '\0'; p += 1)
774 {
775 if (!ADA_RETAIN_DOTS && *p == '.')
776 {
777 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
778 k += 2;
779 }
780 else if (*p == '"')
781 {
782 const struct ada_opname_map *mapping;
783
784 for (mapping = ada_opname_table;
785 mapping->encoded != NULL
786 && strncmp (mapping->decoded, p,
787 strlen (mapping->decoded)) != 0; mapping += 1)
788 ;
789 if (mapping->encoded == NULL)
790 error (_("invalid Ada operator name: %s"), p);
791 strcpy (encoding_buffer + k, mapping->encoded);
792 k += strlen (mapping->encoded);
793 break;
794 }
795 else
796 {
797 encoding_buffer[k] = *p;
798 k += 1;
799 }
800 }
801
802 encoding_buffer[k] = '\0';
803 return encoding_buffer;
804 }
805
806 /* Return NAME folded to lower case, or, if surrounded by single
807 quotes, unfolded, but with the quotes stripped away. Result good
808 to next call. */
809
810 char *
811 ada_fold_name (const char *name)
812 {
813 static char *fold_buffer = NULL;
814 static size_t fold_buffer_size = 0;
815
816 int len = strlen (name);
817 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
818
819 if (name[0] == '\'')
820 {
821 strncpy (fold_buffer, name + 1, len - 2);
822 fold_buffer[len - 2] = '\000';
823 }
824 else
825 {
826 int i;
827 for (i = 0; i <= len; i += 1)
828 fold_buffer[i] = tolower (name[i]);
829 }
830
831 return fold_buffer;
832 }
833
834 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
835
836 static int
837 is_lower_alphanum (const char c)
838 {
839 return (isdigit (c) || (isalpha (c) && islower (c)));
840 }
841
842 /* Decode:
843 . Discard trailing .{DIGIT}+, ${DIGIT}+ or ___{DIGIT}+
844 These are suffixes introduced by GNAT5 to nested subprogram
845 names, and do not serve any purpose for the debugger.
846 . Discard final __{DIGIT}+ or $({DIGIT}+(__{DIGIT}+)*)
847 . Discard final N if it follows a lowercase alphanumeric character
848 (protected object subprogram suffix)
849 . Convert other instances of embedded "__" to `.'.
850 . Discard leading _ada_.
851 . Convert operator names to the appropriate quoted symbols.
852 . Remove everything after first ___ if it is followed by
853 'X'.
854 . Replace TK__ with __, and a trailing B or TKB with nothing.
855 . Replace _[EB]{DIGIT}+[sb] with nothing (protected object entries)
856 . Put symbols that should be suppressed in <...> brackets.
857 . Remove trailing X[bn]* suffix (indicating names in package bodies).
858
859 The resulting string is valid until the next call of ada_decode.
860 If the string is unchanged by demangling, the original string pointer
861 is returned. */
862
863 const char *
864 ada_decode (const char *encoded)
865 {
866 int i, j;
867 int len0;
868 const char *p;
869 char *decoded;
870 int at_start_name;
871 static char *decoding_buffer = NULL;
872 static size_t decoding_buffer_size = 0;
873
874 if (strncmp (encoded, "_ada_", 5) == 0)
875 encoded += 5;
876
877 if (encoded[0] == '_' || encoded[0] == '<')
878 goto Suppress;
879
880 /* Remove trailing .{DIGIT}+ or ___{DIGIT}+ or __{DIGIT}+. */
881 len0 = strlen (encoded);
882 if (len0 > 1 && isdigit (encoded[len0 - 1]))
883 {
884 i = len0 - 2;
885 while (i > 0 && isdigit (encoded[i]))
886 i--;
887 if (i >= 0 && encoded[i] == '.')
888 len0 = i;
889 else if (i >= 0 && encoded[i] == '$')
890 len0 = i;
891 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
892 len0 = i - 2;
893 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
894 len0 = i - 1;
895 }
896
897 /* Remove trailing N. */
898
899 /* Protected entry subprograms are broken into two
900 separate subprograms: The first one is unprotected, and has
901 a 'N' suffix; the second is the protected version, and has
902 the 'P' suffix. The second calls the first one after handling
903 the protection. Since the P subprograms are internally generated,
904 we leave these names undecoded, giving the user a clue that this
905 entity is internal. */
906
907 if (len0 > 1
908 && encoded[len0 - 1] == 'N'
909 && (isdigit (encoded[len0 - 2]) || islower (encoded[len0 - 2])))
910 len0--;
911
912 /* Remove the ___X.* suffix if present. Do not forget to verify that
913 the suffix is located before the current "end" of ENCODED. We want
914 to avoid re-matching parts of ENCODED that have previously been
915 marked as discarded (by decrementing LEN0). */
916 p = strstr (encoded, "___");
917 if (p != NULL && p - encoded < len0 - 3)
918 {
919 if (p[3] == 'X')
920 len0 = p - encoded;
921 else
922 goto Suppress;
923 }
924
925 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
926 len0 -= 3;
927
928 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
929 len0 -= 1;
930
931 /* Make decoded big enough for possible expansion by operator name. */
932 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
933 decoded = decoding_buffer;
934
935 if (len0 > 1 && isdigit (encoded[len0 - 1]))
936 {
937 i = len0 - 2;
938 while ((i >= 0 && isdigit (encoded[i]))
939 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
940 i -= 1;
941 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
942 len0 = i - 1;
943 else if (encoded[i] == '$')
944 len0 = i;
945 }
946
947 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
948 decoded[j] = encoded[i];
949
950 at_start_name = 1;
951 while (i < len0)
952 {
953 if (at_start_name && encoded[i] == 'O')
954 {
955 int k;
956 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
957 {
958 int op_len = strlen (ada_opname_table[k].encoded);
959 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
960 op_len - 1) == 0)
961 && !isalnum (encoded[i + op_len]))
962 {
963 strcpy (decoded + j, ada_opname_table[k].decoded);
964 at_start_name = 0;
965 i += op_len;
966 j += strlen (ada_opname_table[k].decoded);
967 break;
968 }
969 }
970 if (ada_opname_table[k].encoded != NULL)
971 continue;
972 }
973 at_start_name = 0;
974
975 /* Replace "TK__" with "__", which will eventually be translated
976 into "." (just below). */
977
978 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
979 i += 2;
980
981 /* Remove _E{DIGITS}+[sb] */
982
983 /* Just as for protected object subprograms, there are 2 categories
984 of subprograms created by the compiler for each entry. The first
985 one implements the actual entry code, and has a suffix following
986 the convention above; the second one implements the barrier and
987 uses the same convention as above, except that the 'E' is replaced
988 by a 'B'.
989
990 Just as above, we do not decode the name of barrier functions
991 to give the user a clue that the code he is debugging has been
992 internally generated. */
993
994 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
995 && isdigit (encoded[i+2]))
996 {
997 int k = i + 3;
998
999 while (k < len0 && isdigit (encoded[k]))
1000 k++;
1001
1002 if (k < len0
1003 && (encoded[k] == 'b' || encoded[k] == 's'))
1004 {
1005 k++;
1006 /* Just as an extra precaution, make sure that if this
1007 suffix is followed by anything else, it is a '_'.
1008 Otherwise, we matched this sequence by accident. */
1009 if (k == len0
1010 || (k < len0 && encoded[k] == '_'))
1011 i = k;
1012 }
1013 }
1014
1015 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1016 the GNAT front-end in protected object subprograms. */
1017
1018 if (i < len0 + 3
1019 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1020 {
1021 /* Backtrack a bit up until we reach either the begining of
1022 the encoded name, or "__". Make sure that we only find
1023 digits or lowercase characters. */
1024 const char *ptr = encoded + i - 1;
1025
1026 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1027 ptr--;
1028 if (ptr < encoded
1029 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1030 i++;
1031 }
1032
1033 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1034 {
1035 do
1036 i += 1;
1037 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1038 if (i < len0)
1039 goto Suppress;
1040 }
1041 else if (!ADA_RETAIN_DOTS
1042 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1043 {
1044 decoded[j] = '.';
1045 at_start_name = 1;
1046 i += 2;
1047 j += 1;
1048 }
1049 else
1050 {
1051 decoded[j] = encoded[i];
1052 i += 1;
1053 j += 1;
1054 }
1055 }
1056 decoded[j] = '\000';
1057
1058 for (i = 0; decoded[i] != '\0'; i += 1)
1059 if (isupper (decoded[i]) || decoded[i] == ' ')
1060 goto Suppress;
1061
1062 if (strcmp (decoded, encoded) == 0)
1063 return encoded;
1064 else
1065 return decoded;
1066
1067 Suppress:
1068 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1069 decoded = decoding_buffer;
1070 if (encoded[0] == '<')
1071 strcpy (decoded, encoded);
1072 else
1073 sprintf (decoded, "<%s>", encoded);
1074 return decoded;
1075
1076 }
1077
1078 /* Table for keeping permanent unique copies of decoded names. Once
1079 allocated, names in this table are never released. While this is a
1080 storage leak, it should not be significant unless there are massive
1081 changes in the set of decoded names in successive versions of a
1082 symbol table loaded during a single session. */
1083 static struct htab *decoded_names_store;
1084
1085 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1086 in the language-specific part of GSYMBOL, if it has not been
1087 previously computed. Tries to save the decoded name in the same
1088 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1089 in any case, the decoded symbol has a lifetime at least that of
1090 GSYMBOL).
1091 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1092 const, but nevertheless modified to a semantically equivalent form
1093 when a decoded name is cached in it.
1094 */
1095
1096 char *
1097 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1098 {
1099 char **resultp =
1100 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1101 if (*resultp == NULL)
1102 {
1103 const char *decoded = ada_decode (gsymbol->name);
1104 if (gsymbol->bfd_section != NULL)
1105 {
1106 bfd *obfd = gsymbol->bfd_section->owner;
1107 if (obfd != NULL)
1108 {
1109 struct objfile *objf;
1110 ALL_OBJFILES (objf)
1111 {
1112 if (obfd == objf->obfd)
1113 {
1114 *resultp = obsavestring (decoded, strlen (decoded),
1115 &objf->objfile_obstack);
1116 break;
1117 }
1118 }
1119 }
1120 }
1121 /* Sometimes, we can't find a corresponding objfile, in which
1122 case, we put the result on the heap. Since we only decode
1123 when needed, we hope this usually does not cause a
1124 significant memory leak (FIXME). */
1125 if (*resultp == NULL)
1126 {
1127 char **slot = (char **) htab_find_slot (decoded_names_store,
1128 decoded, INSERT);
1129 if (*slot == NULL)
1130 *slot = xstrdup (decoded);
1131 *resultp = *slot;
1132 }
1133 }
1134
1135 return *resultp;
1136 }
1137
1138 char *
1139 ada_la_decode (const char *encoded, int options)
1140 {
1141 return xstrdup (ada_decode (encoded));
1142 }
1143
1144 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1145 suffixes that encode debugging information or leading _ada_ on
1146 SYM_NAME (see is_name_suffix commentary for the debugging
1147 information that is ignored). If WILD, then NAME need only match a
1148 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1149 either argument is NULL. */
1150
1151 int
1152 ada_match_name (const char *sym_name, const char *name, int wild)
1153 {
1154 if (sym_name == NULL || name == NULL)
1155 return 0;
1156 else if (wild)
1157 return wild_match (name, strlen (name), sym_name);
1158 else
1159 {
1160 int len_name = strlen (name);
1161 return (strncmp (sym_name, name, len_name) == 0
1162 && is_name_suffix (sym_name + len_name))
1163 || (strncmp (sym_name, "_ada_", 5) == 0
1164 && strncmp (sym_name + 5, name, len_name) == 0
1165 && is_name_suffix (sym_name + len_name + 5));
1166 }
1167 }
1168
1169 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1170 suppressed in info listings. */
1171
1172 int
1173 ada_suppress_symbol_printing (struct symbol *sym)
1174 {
1175 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1176 return 1;
1177 else
1178 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1179 }
1180 \f
1181
1182 /* Arrays */
1183
1184 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1185
1186 static char *bound_name[] = {
1187 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1188 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1189 };
1190
1191 /* Maximum number of array dimensions we are prepared to handle. */
1192
1193 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1194
1195 /* Like modify_field, but allows bitpos > wordlength. */
1196
1197 static void
1198 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1199 {
1200 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1201 }
1202
1203
1204 /* The desc_* routines return primitive portions of array descriptors
1205 (fat pointers). */
1206
1207 /* The descriptor or array type, if any, indicated by TYPE; removes
1208 level of indirection, if needed. */
1209
1210 static struct type *
1211 desc_base_type (struct type *type)
1212 {
1213 if (type == NULL)
1214 return NULL;
1215 type = ada_check_typedef (type);
1216 if (type != NULL
1217 && (TYPE_CODE (type) == TYPE_CODE_PTR
1218 || TYPE_CODE (type) == TYPE_CODE_REF))
1219 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1220 else
1221 return type;
1222 }
1223
1224 /* True iff TYPE indicates a "thin" array pointer type. */
1225
1226 static int
1227 is_thin_pntr (struct type *type)
1228 {
1229 return
1230 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1231 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1232 }
1233
1234 /* The descriptor type for thin pointer type TYPE. */
1235
1236 static struct type *
1237 thin_descriptor_type (struct type *type)
1238 {
1239 struct type *base_type = desc_base_type (type);
1240 if (base_type == NULL)
1241 return NULL;
1242 if (is_suffix (ada_type_name (base_type), "___XVE"))
1243 return base_type;
1244 else
1245 {
1246 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1247 if (alt_type == NULL)
1248 return base_type;
1249 else
1250 return alt_type;
1251 }
1252 }
1253
1254 /* A pointer to the array data for thin-pointer value VAL. */
1255
1256 static struct value *
1257 thin_data_pntr (struct value *val)
1258 {
1259 struct type *type = value_type (val);
1260 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1261 return value_cast (desc_data_type (thin_descriptor_type (type)),
1262 value_copy (val));
1263 else
1264 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1265 VALUE_ADDRESS (val) + value_offset (val));
1266 }
1267
1268 /* True iff TYPE indicates a "thick" array pointer type. */
1269
1270 static int
1271 is_thick_pntr (struct type *type)
1272 {
1273 type = desc_base_type (type);
1274 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1275 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1276 }
1277
1278 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1279 pointer to one, the type of its bounds data; otherwise, NULL. */
1280
1281 static struct type *
1282 desc_bounds_type (struct type *type)
1283 {
1284 struct type *r;
1285
1286 type = desc_base_type (type);
1287
1288 if (type == NULL)
1289 return NULL;
1290 else if (is_thin_pntr (type))
1291 {
1292 type = thin_descriptor_type (type);
1293 if (type == NULL)
1294 return NULL;
1295 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1296 if (r != NULL)
1297 return ada_check_typedef (r);
1298 }
1299 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1300 {
1301 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1302 if (r != NULL)
1303 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1304 }
1305 return NULL;
1306 }
1307
1308 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1309 one, a pointer to its bounds data. Otherwise NULL. */
1310
1311 static struct value *
1312 desc_bounds (struct value *arr)
1313 {
1314 struct type *type = ada_check_typedef (value_type (arr));
1315 if (is_thin_pntr (type))
1316 {
1317 struct type *bounds_type =
1318 desc_bounds_type (thin_descriptor_type (type));
1319 LONGEST addr;
1320
1321 if (bounds_type == NULL)
1322 error (_("Bad GNAT array descriptor"));
1323
1324 /* NOTE: The following calculation is not really kosher, but
1325 since desc_type is an XVE-encoded type (and shouldn't be),
1326 the correct calculation is a real pain. FIXME (and fix GCC). */
1327 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1328 addr = value_as_long (arr);
1329 else
1330 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1331
1332 return
1333 value_from_longest (lookup_pointer_type (bounds_type),
1334 addr - TYPE_LENGTH (bounds_type));
1335 }
1336
1337 else if (is_thick_pntr (type))
1338 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1339 _("Bad GNAT array descriptor"));
1340 else
1341 return NULL;
1342 }
1343
1344 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1345 position of the field containing the address of the bounds data. */
1346
1347 static int
1348 fat_pntr_bounds_bitpos (struct type *type)
1349 {
1350 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1351 }
1352
1353 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1354 size of the field containing the address of the bounds data. */
1355
1356 static int
1357 fat_pntr_bounds_bitsize (struct type *type)
1358 {
1359 type = desc_base_type (type);
1360
1361 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1362 return TYPE_FIELD_BITSIZE (type, 1);
1363 else
1364 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1365 }
1366
1367 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1368 pointer to one, the type of its array data (a
1369 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1370 ada_type_of_array to get an array type with bounds data. */
1371
1372 static struct type *
1373 desc_data_type (struct type *type)
1374 {
1375 type = desc_base_type (type);
1376
1377 /* NOTE: The following is bogus; see comment in desc_bounds. */
1378 if (is_thin_pntr (type))
1379 return lookup_pointer_type
1380 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1381 else if (is_thick_pntr (type))
1382 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1383 else
1384 return NULL;
1385 }
1386
1387 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1388 its array data. */
1389
1390 static struct value *
1391 desc_data (struct value *arr)
1392 {
1393 struct type *type = value_type (arr);
1394 if (is_thin_pntr (type))
1395 return thin_data_pntr (arr);
1396 else if (is_thick_pntr (type))
1397 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1398 _("Bad GNAT array descriptor"));
1399 else
1400 return NULL;
1401 }
1402
1403
1404 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1405 position of the field containing the address of the data. */
1406
1407 static int
1408 fat_pntr_data_bitpos (struct type *type)
1409 {
1410 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1411 }
1412
1413 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1414 size of the field containing the address of the data. */
1415
1416 static int
1417 fat_pntr_data_bitsize (struct type *type)
1418 {
1419 type = desc_base_type (type);
1420
1421 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1422 return TYPE_FIELD_BITSIZE (type, 0);
1423 else
1424 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1425 }
1426
1427 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1428 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1429 bound, if WHICH is 1. The first bound is I=1. */
1430
1431 static struct value *
1432 desc_one_bound (struct value *bounds, int i, int which)
1433 {
1434 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1435 _("Bad GNAT array descriptor bounds"));
1436 }
1437
1438 /* If BOUNDS is an array-bounds structure type, return the bit position
1439 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1440 bound, if WHICH is 1. The first bound is I=1. */
1441
1442 static int
1443 desc_bound_bitpos (struct type *type, int i, int which)
1444 {
1445 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1446 }
1447
1448 /* If BOUNDS is an array-bounds structure type, return the bit field size
1449 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1450 bound, if WHICH is 1. The first bound is I=1. */
1451
1452 static int
1453 desc_bound_bitsize (struct type *type, int i, int which)
1454 {
1455 type = desc_base_type (type);
1456
1457 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1458 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1459 else
1460 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1461 }
1462
1463 /* If TYPE is the type of an array-bounds structure, the type of its
1464 Ith bound (numbering from 1). Otherwise, NULL. */
1465
1466 static struct type *
1467 desc_index_type (struct type *type, int i)
1468 {
1469 type = desc_base_type (type);
1470
1471 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1472 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1473 else
1474 return NULL;
1475 }
1476
1477 /* The number of index positions in the array-bounds type TYPE.
1478 Return 0 if TYPE is NULL. */
1479
1480 static int
1481 desc_arity (struct type *type)
1482 {
1483 type = desc_base_type (type);
1484
1485 if (type != NULL)
1486 return TYPE_NFIELDS (type) / 2;
1487 return 0;
1488 }
1489
1490 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1491 an array descriptor type (representing an unconstrained array
1492 type). */
1493
1494 static int
1495 ada_is_direct_array_type (struct type *type)
1496 {
1497 if (type == NULL)
1498 return 0;
1499 type = ada_check_typedef (type);
1500 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1501 || ada_is_array_descriptor_type (type));
1502 }
1503
1504 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1505 * to one. */
1506
1507 int
1508 ada_is_array_type (struct type *type)
1509 {
1510 while (type != NULL
1511 && (TYPE_CODE (type) == TYPE_CODE_PTR
1512 || TYPE_CODE (type) == TYPE_CODE_REF))
1513 type = TYPE_TARGET_TYPE (type);
1514 return ada_is_direct_array_type (type);
1515 }
1516
1517 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1518
1519 int
1520 ada_is_simple_array_type (struct type *type)
1521 {
1522 if (type == NULL)
1523 return 0;
1524 type = ada_check_typedef (type);
1525 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1526 || (TYPE_CODE (type) == TYPE_CODE_PTR
1527 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1528 }
1529
1530 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1531
1532 int
1533 ada_is_array_descriptor_type (struct type *type)
1534 {
1535 struct type *data_type = desc_data_type (type);
1536
1537 if (type == NULL)
1538 return 0;
1539 type = ada_check_typedef (type);
1540 return
1541 data_type != NULL
1542 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1543 && TYPE_TARGET_TYPE (data_type) != NULL
1544 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1545 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1546 && desc_arity (desc_bounds_type (type)) > 0;
1547 }
1548
1549 /* Non-zero iff type is a partially mal-formed GNAT array
1550 descriptor. FIXME: This is to compensate for some problems with
1551 debugging output from GNAT. Re-examine periodically to see if it
1552 is still needed. */
1553
1554 int
1555 ada_is_bogus_array_descriptor (struct type *type)
1556 {
1557 return
1558 type != NULL
1559 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1560 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1561 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1562 && !ada_is_array_descriptor_type (type);
1563 }
1564
1565
1566 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1567 (fat pointer) returns the type of the array data described---specifically,
1568 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1569 in from the descriptor; otherwise, they are left unspecified. If
1570 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1571 returns NULL. The result is simply the type of ARR if ARR is not
1572 a descriptor. */
1573 struct type *
1574 ada_type_of_array (struct value *arr, int bounds)
1575 {
1576 if (ada_is_packed_array_type (value_type (arr)))
1577 return decode_packed_array_type (value_type (arr));
1578
1579 if (!ada_is_array_descriptor_type (value_type (arr)))
1580 return value_type (arr);
1581
1582 if (!bounds)
1583 return
1584 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1585 else
1586 {
1587 struct type *elt_type;
1588 int arity;
1589 struct value *descriptor;
1590 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1591
1592 elt_type = ada_array_element_type (value_type (arr), -1);
1593 arity = ada_array_arity (value_type (arr));
1594
1595 if (elt_type == NULL || arity == 0)
1596 return ada_check_typedef (value_type (arr));
1597
1598 descriptor = desc_bounds (arr);
1599 if (value_as_long (descriptor) == 0)
1600 return NULL;
1601 while (arity > 0)
1602 {
1603 struct type *range_type = alloc_type (objf);
1604 struct type *array_type = alloc_type (objf);
1605 struct value *low = desc_one_bound (descriptor, arity, 0);
1606 struct value *high = desc_one_bound (descriptor, arity, 1);
1607 arity -= 1;
1608
1609 create_range_type (range_type, value_type (low),
1610 longest_to_int (value_as_long (low)),
1611 longest_to_int (value_as_long (high)));
1612 elt_type = create_array_type (array_type, elt_type, range_type);
1613 }
1614
1615 return lookup_pointer_type (elt_type);
1616 }
1617 }
1618
1619 /* If ARR does not represent an array, returns ARR unchanged.
1620 Otherwise, returns either a standard GDB array with bounds set
1621 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1622 GDB array. Returns NULL if ARR is a null fat pointer. */
1623
1624 struct value *
1625 ada_coerce_to_simple_array_ptr (struct value *arr)
1626 {
1627 if (ada_is_array_descriptor_type (value_type (arr)))
1628 {
1629 struct type *arrType = ada_type_of_array (arr, 1);
1630 if (arrType == NULL)
1631 return NULL;
1632 return value_cast (arrType, value_copy (desc_data (arr)));
1633 }
1634 else if (ada_is_packed_array_type (value_type (arr)))
1635 return decode_packed_array (arr);
1636 else
1637 return arr;
1638 }
1639
1640 /* If ARR does not represent an array, returns ARR unchanged.
1641 Otherwise, returns a standard GDB array describing ARR (which may
1642 be ARR itself if it already is in the proper form). */
1643
1644 static struct value *
1645 ada_coerce_to_simple_array (struct value *arr)
1646 {
1647 if (ada_is_array_descriptor_type (value_type (arr)))
1648 {
1649 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1650 if (arrVal == NULL)
1651 error (_("Bounds unavailable for null array pointer."));
1652 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1653 return value_ind (arrVal);
1654 }
1655 else if (ada_is_packed_array_type (value_type (arr)))
1656 return decode_packed_array (arr);
1657 else
1658 return arr;
1659 }
1660
1661 /* If TYPE represents a GNAT array type, return it translated to an
1662 ordinary GDB array type (possibly with BITSIZE fields indicating
1663 packing). For other types, is the identity. */
1664
1665 struct type *
1666 ada_coerce_to_simple_array_type (struct type *type)
1667 {
1668 struct value *mark = value_mark ();
1669 struct value *dummy = value_from_longest (builtin_type_long, 0);
1670 struct type *result;
1671 deprecated_set_value_type (dummy, type);
1672 result = ada_type_of_array (dummy, 0);
1673 value_free_to_mark (mark);
1674 return result;
1675 }
1676
1677 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1678
1679 int
1680 ada_is_packed_array_type (struct type *type)
1681 {
1682 if (type == NULL)
1683 return 0;
1684 type = desc_base_type (type);
1685 type = ada_check_typedef (type);
1686 return
1687 ada_type_name (type) != NULL
1688 && strstr (ada_type_name (type), "___XP") != NULL;
1689 }
1690
1691 /* Given that TYPE is a standard GDB array type with all bounds filled
1692 in, and that the element size of its ultimate scalar constituents
1693 (that is, either its elements, or, if it is an array of arrays, its
1694 elements' elements, etc.) is *ELT_BITS, return an identical type,
1695 but with the bit sizes of its elements (and those of any
1696 constituent arrays) recorded in the BITSIZE components of its
1697 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1698 in bits. */
1699
1700 static struct type *
1701 packed_array_type (struct type *type, long *elt_bits)
1702 {
1703 struct type *new_elt_type;
1704 struct type *new_type;
1705 LONGEST low_bound, high_bound;
1706
1707 type = ada_check_typedef (type);
1708 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1709 return type;
1710
1711 new_type = alloc_type (TYPE_OBJFILE (type));
1712 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1713 elt_bits);
1714 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1715 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1716 TYPE_NAME (new_type) = ada_type_name (type);
1717
1718 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1719 &low_bound, &high_bound) < 0)
1720 low_bound = high_bound = 0;
1721 if (high_bound < low_bound)
1722 *elt_bits = TYPE_LENGTH (new_type) = 0;
1723 else
1724 {
1725 *elt_bits *= (high_bound - low_bound + 1);
1726 TYPE_LENGTH (new_type) =
1727 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1728 }
1729
1730 TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE;
1731 return new_type;
1732 }
1733
1734 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1735
1736 static struct type *
1737 decode_packed_array_type (struct type *type)
1738 {
1739 struct symbol *sym;
1740 struct block **blocks;
1741 const char *raw_name = ada_type_name (ada_check_typedef (type));
1742 char *name = (char *) alloca (strlen (raw_name) + 1);
1743 char *tail = strstr (raw_name, "___XP");
1744 struct type *shadow_type;
1745 long bits;
1746 int i, n;
1747
1748 type = desc_base_type (type);
1749
1750 memcpy (name, raw_name, tail - raw_name);
1751 name[tail - raw_name] = '\000';
1752
1753 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1754 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1755 {
1756 lim_warning (_("could not find bounds information on packed array"));
1757 return NULL;
1758 }
1759 shadow_type = SYMBOL_TYPE (sym);
1760
1761 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1762 {
1763 lim_warning (_("could not understand bounds information on packed array"));
1764 return NULL;
1765 }
1766
1767 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1768 {
1769 lim_warning
1770 (_("could not understand bit size information on packed array"));
1771 return NULL;
1772 }
1773
1774 return packed_array_type (shadow_type, &bits);
1775 }
1776
1777 /* Given that ARR is a struct value *indicating a GNAT packed array,
1778 returns a simple array that denotes that array. Its type is a
1779 standard GDB array type except that the BITSIZEs of the array
1780 target types are set to the number of bits in each element, and the
1781 type length is set appropriately. */
1782
1783 static struct value *
1784 decode_packed_array (struct value *arr)
1785 {
1786 struct type *type;
1787
1788 arr = ada_coerce_ref (arr);
1789 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1790 arr = ada_value_ind (arr);
1791
1792 type = decode_packed_array_type (value_type (arr));
1793 if (type == NULL)
1794 {
1795 error (_("can't unpack array"));
1796 return NULL;
1797 }
1798
1799 if (BITS_BIG_ENDIAN && ada_is_modular_type (value_type (arr)))
1800 {
1801 /* This is a (right-justified) modular type representing a packed
1802 array with no wrapper. In order to interpret the value through
1803 the (left-justified) packed array type we just built, we must
1804 first left-justify it. */
1805 int bit_size, bit_pos;
1806 ULONGEST mod;
1807
1808 mod = ada_modulus (value_type (arr)) - 1;
1809 bit_size = 0;
1810 while (mod > 0)
1811 {
1812 bit_size += 1;
1813 mod >>= 1;
1814 }
1815 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1816 arr = ada_value_primitive_packed_val (arr, NULL,
1817 bit_pos / HOST_CHAR_BIT,
1818 bit_pos % HOST_CHAR_BIT,
1819 bit_size,
1820 type);
1821 }
1822
1823 return coerce_unspec_val_to_type (arr, type);
1824 }
1825
1826
1827 /* The value of the element of packed array ARR at the ARITY indices
1828 given in IND. ARR must be a simple array. */
1829
1830 static struct value *
1831 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1832 {
1833 int i;
1834 int bits, elt_off, bit_off;
1835 long elt_total_bit_offset;
1836 struct type *elt_type;
1837 struct value *v;
1838
1839 bits = 0;
1840 elt_total_bit_offset = 0;
1841 elt_type = ada_check_typedef (value_type (arr));
1842 for (i = 0; i < arity; i += 1)
1843 {
1844 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1845 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1846 error
1847 (_("attempt to do packed indexing of something other than a packed array"));
1848 else
1849 {
1850 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1851 LONGEST lowerbound, upperbound;
1852 LONGEST idx;
1853
1854 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1855 {
1856 lim_warning (_("don't know bounds of array"));
1857 lowerbound = upperbound = 0;
1858 }
1859
1860 idx = value_as_long (value_pos_atr (ind[i]));
1861 if (idx < lowerbound || idx > upperbound)
1862 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1863 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1864 elt_total_bit_offset += (idx - lowerbound) * bits;
1865 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1866 }
1867 }
1868 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1869 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1870
1871 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1872 bits, elt_type);
1873 return v;
1874 }
1875
1876 /* Non-zero iff TYPE includes negative integer values. */
1877
1878 static int
1879 has_negatives (struct type *type)
1880 {
1881 switch (TYPE_CODE (type))
1882 {
1883 default:
1884 return 0;
1885 case TYPE_CODE_INT:
1886 return !TYPE_UNSIGNED (type);
1887 case TYPE_CODE_RANGE:
1888 return TYPE_LOW_BOUND (type) < 0;
1889 }
1890 }
1891
1892
1893 /* Create a new value of type TYPE from the contents of OBJ starting
1894 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1895 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1896 assigning through the result will set the field fetched from.
1897 VALADDR is ignored unless OBJ is NULL, in which case,
1898 VALADDR+OFFSET must address the start of storage containing the
1899 packed value. The value returned in this case is never an lval.
1900 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1901
1902 struct value *
1903 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1904 long offset, int bit_offset, int bit_size,
1905 struct type *type)
1906 {
1907 struct value *v;
1908 int src, /* Index into the source area */
1909 targ, /* Index into the target area */
1910 srcBitsLeft, /* Number of source bits left to move */
1911 nsrc, ntarg, /* Number of source and target bytes */
1912 unusedLS, /* Number of bits in next significant
1913 byte of source that are unused */
1914 accumSize; /* Number of meaningful bits in accum */
1915 unsigned char *bytes; /* First byte containing data to unpack */
1916 unsigned char *unpacked;
1917 unsigned long accum; /* Staging area for bits being transferred */
1918 unsigned char sign;
1919 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1920 /* Transmit bytes from least to most significant; delta is the direction
1921 the indices move. */
1922 int delta = BITS_BIG_ENDIAN ? -1 : 1;
1923
1924 type = ada_check_typedef (type);
1925
1926 if (obj == NULL)
1927 {
1928 v = allocate_value (type);
1929 bytes = (unsigned char *) (valaddr + offset);
1930 }
1931 else if (value_lazy (obj))
1932 {
1933 v = value_at (type,
1934 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1935 bytes = (unsigned char *) alloca (len);
1936 read_memory (VALUE_ADDRESS (v), bytes, len);
1937 }
1938 else
1939 {
1940 v = allocate_value (type);
1941 bytes = (unsigned char *) value_contents (obj) + offset;
1942 }
1943
1944 if (obj != NULL)
1945 {
1946 VALUE_LVAL (v) = VALUE_LVAL (obj);
1947 if (VALUE_LVAL (obj) == lval_internalvar)
1948 VALUE_LVAL (v) = lval_internalvar_component;
1949 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
1950 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1951 set_value_bitsize (v, bit_size);
1952 if (value_bitpos (v) >= HOST_CHAR_BIT)
1953 {
1954 VALUE_ADDRESS (v) += 1;
1955 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1956 }
1957 }
1958 else
1959 set_value_bitsize (v, bit_size);
1960 unpacked = (unsigned char *) value_contents (v);
1961
1962 srcBitsLeft = bit_size;
1963 nsrc = len;
1964 ntarg = TYPE_LENGTH (type);
1965 sign = 0;
1966 if (bit_size == 0)
1967 {
1968 memset (unpacked, 0, TYPE_LENGTH (type));
1969 return v;
1970 }
1971 else if (BITS_BIG_ENDIAN)
1972 {
1973 src = len - 1;
1974 if (has_negatives (type)
1975 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
1976 sign = ~0;
1977
1978 unusedLS =
1979 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
1980 % HOST_CHAR_BIT;
1981
1982 switch (TYPE_CODE (type))
1983 {
1984 case TYPE_CODE_ARRAY:
1985 case TYPE_CODE_UNION:
1986 case TYPE_CODE_STRUCT:
1987 /* Non-scalar values must be aligned at a byte boundary... */
1988 accumSize =
1989 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
1990 /* ... And are placed at the beginning (most-significant) bytes
1991 of the target. */
1992 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
1993 break;
1994 default:
1995 accumSize = 0;
1996 targ = TYPE_LENGTH (type) - 1;
1997 break;
1998 }
1999 }
2000 else
2001 {
2002 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2003
2004 src = targ = 0;
2005 unusedLS = bit_offset;
2006 accumSize = 0;
2007
2008 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2009 sign = ~0;
2010 }
2011
2012 accum = 0;
2013 while (nsrc > 0)
2014 {
2015 /* Mask for removing bits of the next source byte that are not
2016 part of the value. */
2017 unsigned int unusedMSMask =
2018 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2019 1;
2020 /* Sign-extend bits for this byte. */
2021 unsigned int signMask = sign & ~unusedMSMask;
2022 accum |=
2023 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2024 accumSize += HOST_CHAR_BIT - unusedLS;
2025 if (accumSize >= HOST_CHAR_BIT)
2026 {
2027 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2028 accumSize -= HOST_CHAR_BIT;
2029 accum >>= HOST_CHAR_BIT;
2030 ntarg -= 1;
2031 targ += delta;
2032 }
2033 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2034 unusedLS = 0;
2035 nsrc -= 1;
2036 src += delta;
2037 }
2038 while (ntarg > 0)
2039 {
2040 accum |= sign << accumSize;
2041 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2042 accumSize -= HOST_CHAR_BIT;
2043 accum >>= HOST_CHAR_BIT;
2044 ntarg -= 1;
2045 targ += delta;
2046 }
2047
2048 return v;
2049 }
2050
2051 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2052 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2053 not overlap. */
2054 static void
2055 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2056 int src_offset, int n)
2057 {
2058 unsigned int accum, mask;
2059 int accum_bits, chunk_size;
2060
2061 target += targ_offset / HOST_CHAR_BIT;
2062 targ_offset %= HOST_CHAR_BIT;
2063 source += src_offset / HOST_CHAR_BIT;
2064 src_offset %= HOST_CHAR_BIT;
2065 if (BITS_BIG_ENDIAN)
2066 {
2067 accum = (unsigned char) *source;
2068 source += 1;
2069 accum_bits = HOST_CHAR_BIT - src_offset;
2070
2071 while (n > 0)
2072 {
2073 int unused_right;
2074 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2075 accum_bits += HOST_CHAR_BIT;
2076 source += 1;
2077 chunk_size = HOST_CHAR_BIT - targ_offset;
2078 if (chunk_size > n)
2079 chunk_size = n;
2080 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2081 mask = ((1 << chunk_size) - 1) << unused_right;
2082 *target =
2083 (*target & ~mask)
2084 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2085 n -= chunk_size;
2086 accum_bits -= chunk_size;
2087 target += 1;
2088 targ_offset = 0;
2089 }
2090 }
2091 else
2092 {
2093 accum = (unsigned char) *source >> src_offset;
2094 source += 1;
2095 accum_bits = HOST_CHAR_BIT - src_offset;
2096
2097 while (n > 0)
2098 {
2099 accum = accum + ((unsigned char) *source << accum_bits);
2100 accum_bits += HOST_CHAR_BIT;
2101 source += 1;
2102 chunk_size = HOST_CHAR_BIT - targ_offset;
2103 if (chunk_size > n)
2104 chunk_size = n;
2105 mask = ((1 << chunk_size) - 1) << targ_offset;
2106 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2107 n -= chunk_size;
2108 accum_bits -= chunk_size;
2109 accum >>= chunk_size;
2110 target += 1;
2111 targ_offset = 0;
2112 }
2113 }
2114 }
2115
2116 /* Store the contents of FROMVAL into the location of TOVAL.
2117 Return a new value with the location of TOVAL and contents of
2118 FROMVAL. Handles assignment into packed fields that have
2119 floating-point or non-scalar types. */
2120
2121 static struct value *
2122 ada_value_assign (struct value *toval, struct value *fromval)
2123 {
2124 struct type *type = value_type (toval);
2125 int bits = value_bitsize (toval);
2126
2127 toval = ada_coerce_ref (toval);
2128 fromval = ada_coerce_ref (fromval);
2129
2130 if (ada_is_direct_array_type (value_type (toval)))
2131 toval = ada_coerce_to_simple_array (toval);
2132 if (ada_is_direct_array_type (value_type (fromval)))
2133 fromval = ada_coerce_to_simple_array (fromval);
2134
2135 if (!deprecated_value_modifiable (toval))
2136 error (_("Left operand of assignment is not a modifiable lvalue."));
2137
2138 if (VALUE_LVAL (toval) == lval_memory
2139 && bits > 0
2140 && (TYPE_CODE (type) == TYPE_CODE_FLT
2141 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2142 {
2143 int len = (value_bitpos (toval)
2144 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2145 char *buffer = (char *) alloca (len);
2146 struct value *val;
2147 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2148
2149 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2150 fromval = value_cast (type, fromval);
2151
2152 read_memory (to_addr, buffer, len);
2153 if (BITS_BIG_ENDIAN)
2154 move_bits (buffer, value_bitpos (toval),
2155 value_contents (fromval),
2156 TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT -
2157 bits, bits);
2158 else
2159 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2160 0, bits);
2161 write_memory (to_addr, buffer, len);
2162 if (deprecated_memory_changed_hook)
2163 deprecated_memory_changed_hook (to_addr, len);
2164
2165 val = value_copy (toval);
2166 memcpy (value_contents_raw (val), value_contents (fromval),
2167 TYPE_LENGTH (type));
2168 deprecated_set_value_type (val, type);
2169
2170 return val;
2171 }
2172
2173 return value_assign (toval, fromval);
2174 }
2175
2176
2177 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2178 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2179 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2180 * COMPONENT, and not the inferior's memory. The current contents
2181 * of COMPONENT are ignored. */
2182 static void
2183 value_assign_to_component (struct value *container, struct value *component,
2184 struct value *val)
2185 {
2186 LONGEST offset_in_container =
2187 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2188 - VALUE_ADDRESS (container) - value_offset (container));
2189 int bit_offset_in_container =
2190 value_bitpos (component) - value_bitpos (container);
2191 int bits;
2192
2193 val = value_cast (value_type (component), val);
2194
2195 if (value_bitsize (component) == 0)
2196 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2197 else
2198 bits = value_bitsize (component);
2199
2200 if (BITS_BIG_ENDIAN)
2201 move_bits (value_contents_writeable (container) + offset_in_container,
2202 value_bitpos (container) + bit_offset_in_container,
2203 value_contents (val),
2204 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2205 bits);
2206 else
2207 move_bits (value_contents_writeable (container) + offset_in_container,
2208 value_bitpos (container) + bit_offset_in_container,
2209 value_contents (val), 0, bits);
2210 }
2211
2212 /* The value of the element of array ARR at the ARITY indices given in IND.
2213 ARR may be either a simple array, GNAT array descriptor, or pointer
2214 thereto. */
2215
2216 struct value *
2217 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2218 {
2219 int k;
2220 struct value *elt;
2221 struct type *elt_type;
2222
2223 elt = ada_coerce_to_simple_array (arr);
2224
2225 elt_type = ada_check_typedef (value_type (elt));
2226 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2227 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2228 return value_subscript_packed (elt, arity, ind);
2229
2230 for (k = 0; k < arity; k += 1)
2231 {
2232 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2233 error (_("too many subscripts (%d expected)"), k);
2234 elt = value_subscript (elt, value_pos_atr (ind[k]));
2235 }
2236 return elt;
2237 }
2238
2239 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2240 value of the element of *ARR at the ARITY indices given in
2241 IND. Does not read the entire array into memory. */
2242
2243 struct value *
2244 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2245 struct value **ind)
2246 {
2247 int k;
2248
2249 for (k = 0; k < arity; k += 1)
2250 {
2251 LONGEST lwb, upb;
2252 struct value *idx;
2253
2254 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2255 error (_("too many subscripts (%d expected)"), k);
2256 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2257 value_copy (arr));
2258 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2259 idx = value_pos_atr (ind[k]);
2260 if (lwb != 0)
2261 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2262 arr = value_add (arr, idx);
2263 type = TYPE_TARGET_TYPE (type);
2264 }
2265
2266 return value_ind (arr);
2267 }
2268
2269 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2270 actual type of ARRAY_PTR is ignored), returns a reference to
2271 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2272 bound of this array is LOW, as per Ada rules. */
2273 static struct value *
2274 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2275 int low, int high)
2276 {
2277 CORE_ADDR base = value_as_address (array_ptr)
2278 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2279 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2280 struct type *index_type =
2281 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2282 low, high);
2283 struct type *slice_type =
2284 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2285 return value_from_pointer (lookup_reference_type (slice_type), base);
2286 }
2287
2288
2289 static struct value *
2290 ada_value_slice (struct value *array, int low, int high)
2291 {
2292 struct type *type = value_type (array);
2293 struct type *index_type =
2294 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2295 struct type *slice_type =
2296 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2297 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2298 }
2299
2300 /* If type is a record type in the form of a standard GNAT array
2301 descriptor, returns the number of dimensions for type. If arr is a
2302 simple array, returns the number of "array of"s that prefix its
2303 type designation. Otherwise, returns 0. */
2304
2305 int
2306 ada_array_arity (struct type *type)
2307 {
2308 int arity;
2309
2310 if (type == NULL)
2311 return 0;
2312
2313 type = desc_base_type (type);
2314
2315 arity = 0;
2316 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2317 return desc_arity (desc_bounds_type (type));
2318 else
2319 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2320 {
2321 arity += 1;
2322 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2323 }
2324
2325 return arity;
2326 }
2327
2328 /* If TYPE is a record type in the form of a standard GNAT array
2329 descriptor or a simple array type, returns the element type for
2330 TYPE after indexing by NINDICES indices, or by all indices if
2331 NINDICES is -1. Otherwise, returns NULL. */
2332
2333 struct type *
2334 ada_array_element_type (struct type *type, int nindices)
2335 {
2336 type = desc_base_type (type);
2337
2338 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2339 {
2340 int k;
2341 struct type *p_array_type;
2342
2343 p_array_type = desc_data_type (type);
2344
2345 k = ada_array_arity (type);
2346 if (k == 0)
2347 return NULL;
2348
2349 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2350 if (nindices >= 0 && k > nindices)
2351 k = nindices;
2352 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2353 while (k > 0 && p_array_type != NULL)
2354 {
2355 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2356 k -= 1;
2357 }
2358 return p_array_type;
2359 }
2360 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2361 {
2362 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2363 {
2364 type = TYPE_TARGET_TYPE (type);
2365 nindices -= 1;
2366 }
2367 return type;
2368 }
2369
2370 return NULL;
2371 }
2372
2373 /* The type of nth index in arrays of given type (n numbering from 1).
2374 Does not examine memory. */
2375
2376 struct type *
2377 ada_index_type (struct type *type, int n)
2378 {
2379 struct type *result_type;
2380
2381 type = desc_base_type (type);
2382
2383 if (n > ada_array_arity (type))
2384 return NULL;
2385
2386 if (ada_is_simple_array_type (type))
2387 {
2388 int i;
2389
2390 for (i = 1; i < n; i += 1)
2391 type = TYPE_TARGET_TYPE (type);
2392 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2393 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2394 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2395 perhaps stabsread.c would make more sense. */
2396 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2397 result_type = builtin_type_int;
2398
2399 return result_type;
2400 }
2401 else
2402 return desc_index_type (desc_bounds_type (type), n);
2403 }
2404
2405 /* Given that arr is an array type, returns the lower bound of the
2406 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2407 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2408 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2409 bounds type. It works for other arrays with bounds supplied by
2410 run-time quantities other than discriminants. */
2411
2412 LONGEST
2413 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2414 struct type ** typep)
2415 {
2416 struct type *type;
2417 struct type *index_type_desc;
2418
2419 if (ada_is_packed_array_type (arr_type))
2420 arr_type = decode_packed_array_type (arr_type);
2421
2422 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2423 {
2424 if (typep != NULL)
2425 *typep = builtin_type_int;
2426 return (LONGEST) - which;
2427 }
2428
2429 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2430 type = TYPE_TARGET_TYPE (arr_type);
2431 else
2432 type = arr_type;
2433
2434 index_type_desc = ada_find_parallel_type (type, "___XA");
2435 if (index_type_desc == NULL)
2436 {
2437 struct type *range_type;
2438 struct type *index_type;
2439
2440 while (n > 1)
2441 {
2442 type = TYPE_TARGET_TYPE (type);
2443 n -= 1;
2444 }
2445
2446 range_type = TYPE_INDEX_TYPE (type);
2447 index_type = TYPE_TARGET_TYPE (range_type);
2448 if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
2449 index_type = builtin_type_long;
2450 if (typep != NULL)
2451 *typep = index_type;
2452 return
2453 (LONGEST) (which == 0
2454 ? TYPE_LOW_BOUND (range_type)
2455 : TYPE_HIGH_BOUND (range_type));
2456 }
2457 else
2458 {
2459 struct type *index_type =
2460 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2461 NULL, TYPE_OBJFILE (arr_type));
2462 if (typep != NULL)
2463 *typep = TYPE_TARGET_TYPE (index_type);
2464 return
2465 (LONGEST) (which == 0
2466 ? TYPE_LOW_BOUND (index_type)
2467 : TYPE_HIGH_BOUND (index_type));
2468 }
2469 }
2470
2471 /* Given that arr is an array value, returns the lower bound of the
2472 nth index (numbering from 1) if which is 0, and the upper bound if
2473 which is 1. This routine will also work for arrays with bounds
2474 supplied by run-time quantities other than discriminants. */
2475
2476 struct value *
2477 ada_array_bound (struct value *arr, int n, int which)
2478 {
2479 struct type *arr_type = value_type (arr);
2480
2481 if (ada_is_packed_array_type (arr_type))
2482 return ada_array_bound (decode_packed_array (arr), n, which);
2483 else if (ada_is_simple_array_type (arr_type))
2484 {
2485 struct type *type;
2486 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2487 return value_from_longest (type, v);
2488 }
2489 else
2490 return desc_one_bound (desc_bounds (arr), n, which);
2491 }
2492
2493 /* Given that arr is an array value, returns the length of the
2494 nth index. This routine will also work for arrays with bounds
2495 supplied by run-time quantities other than discriminants.
2496 Does not work for arrays indexed by enumeration types with representation
2497 clauses at the moment. */
2498
2499 struct value *
2500 ada_array_length (struct value *arr, int n)
2501 {
2502 struct type *arr_type = ada_check_typedef (value_type (arr));
2503
2504 if (ada_is_packed_array_type (arr_type))
2505 return ada_array_length (decode_packed_array (arr), n);
2506
2507 if (ada_is_simple_array_type (arr_type))
2508 {
2509 struct type *type;
2510 LONGEST v =
2511 ada_array_bound_from_type (arr_type, n, 1, &type) -
2512 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2513 return value_from_longest (type, v);
2514 }
2515 else
2516 return
2517 value_from_longest (builtin_type_int,
2518 value_as_long (desc_one_bound (desc_bounds (arr),
2519 n, 1))
2520 - value_as_long (desc_one_bound (desc_bounds (arr),
2521 n, 0)) + 1);
2522 }
2523
2524 /* An empty array whose type is that of ARR_TYPE (an array type),
2525 with bounds LOW to LOW-1. */
2526
2527 static struct value *
2528 empty_array (struct type *arr_type, int low)
2529 {
2530 struct type *index_type =
2531 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2532 low, low - 1);
2533 struct type *elt_type = ada_array_element_type (arr_type, 1);
2534 return allocate_value (create_array_type (NULL, elt_type, index_type));
2535 }
2536 \f
2537
2538 /* Name resolution */
2539
2540 /* The "decoded" name for the user-definable Ada operator corresponding
2541 to OP. */
2542
2543 static const char *
2544 ada_decoded_op_name (enum exp_opcode op)
2545 {
2546 int i;
2547
2548 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2549 {
2550 if (ada_opname_table[i].op == op)
2551 return ada_opname_table[i].decoded;
2552 }
2553 error (_("Could not find operator name for opcode"));
2554 }
2555
2556
2557 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2558 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2559 undefined namespace) and converts operators that are
2560 user-defined into appropriate function calls. If CONTEXT_TYPE is
2561 non-null, it provides a preferred result type [at the moment, only
2562 type void has any effect---causing procedures to be preferred over
2563 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2564 return type is preferred. May change (expand) *EXP. */
2565
2566 static void
2567 resolve (struct expression **expp, int void_context_p)
2568 {
2569 int pc;
2570 pc = 0;
2571 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2572 }
2573
2574 /* Resolve the operator of the subexpression beginning at
2575 position *POS of *EXPP. "Resolving" consists of replacing
2576 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2577 with their resolutions, replacing built-in operators with
2578 function calls to user-defined operators, where appropriate, and,
2579 when DEPROCEDURE_P is non-zero, converting function-valued variables
2580 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2581 are as in ada_resolve, above. */
2582
2583 static struct value *
2584 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2585 struct type *context_type)
2586 {
2587 int pc = *pos;
2588 int i;
2589 struct expression *exp; /* Convenience: == *expp. */
2590 enum exp_opcode op = (*expp)->elts[pc].opcode;
2591 struct value **argvec; /* Vector of operand types (alloca'ed). */
2592 int nargs; /* Number of operands. */
2593 int oplen;
2594
2595 argvec = NULL;
2596 nargs = 0;
2597 exp = *expp;
2598
2599 /* Pass one: resolve operands, saving their types and updating *pos,
2600 if needed. */
2601 switch (op)
2602 {
2603 case OP_FUNCALL:
2604 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2605 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2606 *pos += 7;
2607 else
2608 {
2609 *pos += 3;
2610 resolve_subexp (expp, pos, 0, NULL);
2611 }
2612 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2613 break;
2614
2615 case UNOP_ADDR:
2616 *pos += 1;
2617 resolve_subexp (expp, pos, 0, NULL);
2618 break;
2619
2620 case UNOP_QUAL:
2621 *pos += 3;
2622 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2623 break;
2624
2625 case OP_ATR_MODULUS:
2626 case OP_ATR_SIZE:
2627 case OP_ATR_TAG:
2628 case OP_ATR_FIRST:
2629 case OP_ATR_LAST:
2630 case OP_ATR_LENGTH:
2631 case OP_ATR_POS:
2632 case OP_ATR_VAL:
2633 case OP_ATR_MIN:
2634 case OP_ATR_MAX:
2635 case TERNOP_IN_RANGE:
2636 case BINOP_IN_BOUNDS:
2637 case UNOP_IN_RANGE:
2638 case OP_AGGREGATE:
2639 case OP_OTHERS:
2640 case OP_CHOICES:
2641 case OP_POSITIONAL:
2642 case OP_DISCRETE_RANGE:
2643 case OP_NAME:
2644 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2645 *pos += oplen;
2646 break;
2647
2648 case BINOP_ASSIGN:
2649 {
2650 struct value *arg1;
2651
2652 *pos += 1;
2653 arg1 = resolve_subexp (expp, pos, 0, NULL);
2654 if (arg1 == NULL)
2655 resolve_subexp (expp, pos, 1, NULL);
2656 else
2657 resolve_subexp (expp, pos, 1, value_type (arg1));
2658 break;
2659 }
2660
2661 case UNOP_CAST:
2662 *pos += 3;
2663 nargs = 1;
2664 break;
2665
2666 case BINOP_ADD:
2667 case BINOP_SUB:
2668 case BINOP_MUL:
2669 case BINOP_DIV:
2670 case BINOP_REM:
2671 case BINOP_MOD:
2672 case BINOP_EXP:
2673 case BINOP_CONCAT:
2674 case BINOP_LOGICAL_AND:
2675 case BINOP_LOGICAL_OR:
2676 case BINOP_BITWISE_AND:
2677 case BINOP_BITWISE_IOR:
2678 case BINOP_BITWISE_XOR:
2679
2680 case BINOP_EQUAL:
2681 case BINOP_NOTEQUAL:
2682 case BINOP_LESS:
2683 case BINOP_GTR:
2684 case BINOP_LEQ:
2685 case BINOP_GEQ:
2686
2687 case BINOP_REPEAT:
2688 case BINOP_SUBSCRIPT:
2689 case BINOP_COMMA:
2690 *pos += 1;
2691 nargs = 2;
2692 break;
2693
2694 case UNOP_NEG:
2695 case UNOP_PLUS:
2696 case UNOP_LOGICAL_NOT:
2697 case UNOP_ABS:
2698 case UNOP_IND:
2699 *pos += 1;
2700 nargs = 1;
2701 break;
2702
2703 case OP_LONG:
2704 case OP_DOUBLE:
2705 case OP_VAR_VALUE:
2706 *pos += 4;
2707 break;
2708
2709 case OP_TYPE:
2710 case OP_BOOL:
2711 case OP_LAST:
2712 case OP_INTERNALVAR:
2713 *pos += 3;
2714 break;
2715
2716 case UNOP_MEMVAL:
2717 *pos += 3;
2718 nargs = 1;
2719 break;
2720
2721 case OP_REGISTER:
2722 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2723 break;
2724
2725 case STRUCTOP_STRUCT:
2726 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2727 nargs = 1;
2728 break;
2729
2730 case TERNOP_SLICE:
2731 *pos += 1;
2732 nargs = 3;
2733 break;
2734
2735 case OP_STRING:
2736 break;
2737
2738 default:
2739 error (_("Unexpected operator during name resolution"));
2740 }
2741
2742 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2743 for (i = 0; i < nargs; i += 1)
2744 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2745 argvec[i] = NULL;
2746 exp = *expp;
2747
2748 /* Pass two: perform any resolution on principal operator. */
2749 switch (op)
2750 {
2751 default:
2752 break;
2753
2754 case OP_VAR_VALUE:
2755 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2756 {
2757 struct ada_symbol_info *candidates;
2758 int n_candidates;
2759
2760 n_candidates =
2761 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2762 (exp->elts[pc + 2].symbol),
2763 exp->elts[pc + 1].block, VAR_DOMAIN,
2764 &candidates);
2765
2766 if (n_candidates > 1)
2767 {
2768 /* Types tend to get re-introduced locally, so if there
2769 are any local symbols that are not types, first filter
2770 out all types. */
2771 int j;
2772 for (j = 0; j < n_candidates; j += 1)
2773 switch (SYMBOL_CLASS (candidates[j].sym))
2774 {
2775 case LOC_REGISTER:
2776 case LOC_ARG:
2777 case LOC_REF_ARG:
2778 case LOC_REGPARM:
2779 case LOC_REGPARM_ADDR:
2780 case LOC_LOCAL:
2781 case LOC_LOCAL_ARG:
2782 case LOC_BASEREG:
2783 case LOC_BASEREG_ARG:
2784 case LOC_COMPUTED:
2785 case LOC_COMPUTED_ARG:
2786 goto FoundNonType;
2787 default:
2788 break;
2789 }
2790 FoundNonType:
2791 if (j < n_candidates)
2792 {
2793 j = 0;
2794 while (j < n_candidates)
2795 {
2796 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2797 {
2798 candidates[j] = candidates[n_candidates - 1];
2799 n_candidates -= 1;
2800 }
2801 else
2802 j += 1;
2803 }
2804 }
2805 }
2806
2807 if (n_candidates == 0)
2808 error (_("No definition found for %s"),
2809 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2810 else if (n_candidates == 1)
2811 i = 0;
2812 else if (deprocedure_p
2813 && !is_nonfunction (candidates, n_candidates))
2814 {
2815 i = ada_resolve_function
2816 (candidates, n_candidates, NULL, 0,
2817 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2818 context_type);
2819 if (i < 0)
2820 error (_("Could not find a match for %s"),
2821 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2822 }
2823 else
2824 {
2825 printf_filtered (_("Multiple matches for %s\n"),
2826 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2827 user_select_syms (candidates, n_candidates, 1);
2828 i = 0;
2829 }
2830
2831 exp->elts[pc + 1].block = candidates[i].block;
2832 exp->elts[pc + 2].symbol = candidates[i].sym;
2833 if (innermost_block == NULL
2834 || contained_in (candidates[i].block, innermost_block))
2835 innermost_block = candidates[i].block;
2836 }
2837
2838 if (deprocedure_p
2839 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2840 == TYPE_CODE_FUNC))
2841 {
2842 replace_operator_with_call (expp, pc, 0, 0,
2843 exp->elts[pc + 2].symbol,
2844 exp->elts[pc + 1].block);
2845 exp = *expp;
2846 }
2847 break;
2848
2849 case OP_FUNCALL:
2850 {
2851 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2852 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2853 {
2854 struct ada_symbol_info *candidates;
2855 int n_candidates;
2856
2857 n_candidates =
2858 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2859 (exp->elts[pc + 5].symbol),
2860 exp->elts[pc + 4].block, VAR_DOMAIN,
2861 &candidates);
2862 if (n_candidates == 1)
2863 i = 0;
2864 else
2865 {
2866 i = ada_resolve_function
2867 (candidates, n_candidates,
2868 argvec, nargs,
2869 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2870 context_type);
2871 if (i < 0)
2872 error (_("Could not find a match for %s"),
2873 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2874 }
2875
2876 exp->elts[pc + 4].block = candidates[i].block;
2877 exp->elts[pc + 5].symbol = candidates[i].sym;
2878 if (innermost_block == NULL
2879 || contained_in (candidates[i].block, innermost_block))
2880 innermost_block = candidates[i].block;
2881 }
2882 }
2883 break;
2884 case BINOP_ADD:
2885 case BINOP_SUB:
2886 case BINOP_MUL:
2887 case BINOP_DIV:
2888 case BINOP_REM:
2889 case BINOP_MOD:
2890 case BINOP_CONCAT:
2891 case BINOP_BITWISE_AND:
2892 case BINOP_BITWISE_IOR:
2893 case BINOP_BITWISE_XOR:
2894 case BINOP_EQUAL:
2895 case BINOP_NOTEQUAL:
2896 case BINOP_LESS:
2897 case BINOP_GTR:
2898 case BINOP_LEQ:
2899 case BINOP_GEQ:
2900 case BINOP_EXP:
2901 case UNOP_NEG:
2902 case UNOP_PLUS:
2903 case UNOP_LOGICAL_NOT:
2904 case UNOP_ABS:
2905 if (possible_user_operator_p (op, argvec))
2906 {
2907 struct ada_symbol_info *candidates;
2908 int n_candidates;
2909
2910 n_candidates =
2911 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2912 (struct block *) NULL, VAR_DOMAIN,
2913 &candidates);
2914 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2915 ada_decoded_op_name (op), NULL);
2916 if (i < 0)
2917 break;
2918
2919 replace_operator_with_call (expp, pc, nargs, 1,
2920 candidates[i].sym, candidates[i].block);
2921 exp = *expp;
2922 }
2923 break;
2924
2925 case OP_TYPE:
2926 return NULL;
2927 }
2928
2929 *pos = pc;
2930 return evaluate_subexp_type (exp, pos);
2931 }
2932
2933 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2934 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2935 a non-pointer. A type of 'void' (which is never a valid expression type)
2936 by convention matches anything. */
2937 /* The term "match" here is rather loose. The match is heuristic and
2938 liberal. FIXME: TOO liberal, in fact. */
2939
2940 static int
2941 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2942 {
2943 ftype = ada_check_typedef (ftype);
2944 atype = ada_check_typedef (atype);
2945
2946 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2947 ftype = TYPE_TARGET_TYPE (ftype);
2948 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2949 atype = TYPE_TARGET_TYPE (atype);
2950
2951 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2952 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2953 return 1;
2954
2955 switch (TYPE_CODE (ftype))
2956 {
2957 default:
2958 return 1;
2959 case TYPE_CODE_PTR:
2960 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2961 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2962 TYPE_TARGET_TYPE (atype), 0);
2963 else
2964 return (may_deref
2965 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
2966 case TYPE_CODE_INT:
2967 case TYPE_CODE_ENUM:
2968 case TYPE_CODE_RANGE:
2969 switch (TYPE_CODE (atype))
2970 {
2971 case TYPE_CODE_INT:
2972 case TYPE_CODE_ENUM:
2973 case TYPE_CODE_RANGE:
2974 return 1;
2975 default:
2976 return 0;
2977 }
2978
2979 case TYPE_CODE_ARRAY:
2980 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2981 || ada_is_array_descriptor_type (atype));
2982
2983 case TYPE_CODE_STRUCT:
2984 if (ada_is_array_descriptor_type (ftype))
2985 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
2986 || ada_is_array_descriptor_type (atype));
2987 else
2988 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
2989 && !ada_is_array_descriptor_type (atype));
2990
2991 case TYPE_CODE_UNION:
2992 case TYPE_CODE_FLT:
2993 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
2994 }
2995 }
2996
2997 /* Return non-zero if the formals of FUNC "sufficiently match" the
2998 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
2999 may also be an enumeral, in which case it is treated as a 0-
3000 argument function. */
3001
3002 static int
3003 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3004 {
3005 int i;
3006 struct type *func_type = SYMBOL_TYPE (func);
3007
3008 if (SYMBOL_CLASS (func) == LOC_CONST
3009 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3010 return (n_actuals == 0);
3011 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3012 return 0;
3013
3014 if (TYPE_NFIELDS (func_type) != n_actuals)
3015 return 0;
3016
3017 for (i = 0; i < n_actuals; i += 1)
3018 {
3019 if (actuals[i] == NULL)
3020 return 0;
3021 else
3022 {
3023 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3024 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3025
3026 if (!ada_type_match (ftype, atype, 1))
3027 return 0;
3028 }
3029 }
3030 return 1;
3031 }
3032
3033 /* False iff function type FUNC_TYPE definitely does not produce a value
3034 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3035 FUNC_TYPE is not a valid function type with a non-null return type
3036 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3037
3038 static int
3039 return_match (struct type *func_type, struct type *context_type)
3040 {
3041 struct type *return_type;
3042
3043 if (func_type == NULL)
3044 return 1;
3045
3046 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3047 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3048 else
3049 return_type = base_type (func_type);
3050 if (return_type == NULL)
3051 return 1;
3052
3053 context_type = base_type (context_type);
3054
3055 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3056 return context_type == NULL || return_type == context_type;
3057 else if (context_type == NULL)
3058 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3059 else
3060 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3061 }
3062
3063
3064 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3065 function (if any) that matches the types of the NARGS arguments in
3066 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3067 that returns that type, then eliminate matches that don't. If
3068 CONTEXT_TYPE is void and there is at least one match that does not
3069 return void, eliminate all matches that do.
3070
3071 Asks the user if there is more than one match remaining. Returns -1
3072 if there is no such symbol or none is selected. NAME is used
3073 solely for messages. May re-arrange and modify SYMS in
3074 the process; the index returned is for the modified vector. */
3075
3076 static int
3077 ada_resolve_function (struct ada_symbol_info syms[],
3078 int nsyms, struct value **args, int nargs,
3079 const char *name, struct type *context_type)
3080 {
3081 int k;
3082 int m; /* Number of hits */
3083 struct type *fallback;
3084 struct type *return_type;
3085
3086 return_type = context_type;
3087 if (context_type == NULL)
3088 fallback = builtin_type_void;
3089 else
3090 fallback = NULL;
3091
3092 m = 0;
3093 while (1)
3094 {
3095 for (k = 0; k < nsyms; k += 1)
3096 {
3097 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3098
3099 if (ada_args_match (syms[k].sym, args, nargs)
3100 && return_match (type, return_type))
3101 {
3102 syms[m] = syms[k];
3103 m += 1;
3104 }
3105 }
3106 if (m > 0 || return_type == fallback)
3107 break;
3108 else
3109 return_type = fallback;
3110 }
3111
3112 if (m == 0)
3113 return -1;
3114 else if (m > 1)
3115 {
3116 printf_filtered (_("Multiple matches for %s\n"), name);
3117 user_select_syms (syms, m, 1);
3118 return 0;
3119 }
3120 return 0;
3121 }
3122
3123 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3124 in a listing of choices during disambiguation (see sort_choices, below).
3125 The idea is that overloadings of a subprogram name from the
3126 same package should sort in their source order. We settle for ordering
3127 such symbols by their trailing number (__N or $N). */
3128
3129 static int
3130 encoded_ordered_before (char *N0, char *N1)
3131 {
3132 if (N1 == NULL)
3133 return 0;
3134 else if (N0 == NULL)
3135 return 1;
3136 else
3137 {
3138 int k0, k1;
3139 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3140 ;
3141 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3142 ;
3143 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3144 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3145 {
3146 int n0, n1;
3147 n0 = k0;
3148 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3149 n0 -= 1;
3150 n1 = k1;
3151 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3152 n1 -= 1;
3153 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3154 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3155 }
3156 return (strcmp (N0, N1) < 0);
3157 }
3158 }
3159
3160 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3161 encoded names. */
3162
3163 static void
3164 sort_choices (struct ada_symbol_info syms[], int nsyms)
3165 {
3166 int i;
3167 for (i = 1; i < nsyms; i += 1)
3168 {
3169 struct ada_symbol_info sym = syms[i];
3170 int j;
3171
3172 for (j = i - 1; j >= 0; j -= 1)
3173 {
3174 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3175 SYMBOL_LINKAGE_NAME (sym.sym)))
3176 break;
3177 syms[j + 1] = syms[j];
3178 }
3179 syms[j + 1] = sym;
3180 }
3181 }
3182
3183 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3184 by asking the user (if necessary), returning the number selected,
3185 and setting the first elements of SYMS items. Error if no symbols
3186 selected. */
3187
3188 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3189 to be re-integrated one of these days. */
3190
3191 int
3192 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3193 {
3194 int i;
3195 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3196 int n_chosen;
3197 int first_choice = (max_results == 1) ? 1 : 2;
3198
3199 if (max_results < 1)
3200 error (_("Request to select 0 symbols!"));
3201 if (nsyms <= 1)
3202 return nsyms;
3203
3204 printf_unfiltered (_("[0] cancel\n"));
3205 if (max_results > 1)
3206 printf_unfiltered (_("[1] all\n"));
3207
3208 sort_choices (syms, nsyms);
3209
3210 for (i = 0; i < nsyms; i += 1)
3211 {
3212 if (syms[i].sym == NULL)
3213 continue;
3214
3215 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3216 {
3217 struct symtab_and_line sal =
3218 find_function_start_sal (syms[i].sym, 1);
3219 if (sal.symtab == NULL)
3220 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3221 i + first_choice,
3222 SYMBOL_PRINT_NAME (syms[i].sym),
3223 sal.line);
3224 else
3225 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3226 SYMBOL_PRINT_NAME (syms[i].sym),
3227 sal.symtab->filename, sal.line);
3228 continue;
3229 }
3230 else
3231 {
3232 int is_enumeral =
3233 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3234 && SYMBOL_TYPE (syms[i].sym) != NULL
3235 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3236 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3237
3238 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3239 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3240 i + first_choice,
3241 SYMBOL_PRINT_NAME (syms[i].sym),
3242 symtab->filename, SYMBOL_LINE (syms[i].sym));
3243 else if (is_enumeral
3244 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3245 {
3246 printf_unfiltered (("[%d] "), i + first_choice);
3247 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3248 gdb_stdout, -1, 0);
3249 printf_unfiltered (_("'(%s) (enumeral)\n"),
3250 SYMBOL_PRINT_NAME (syms[i].sym));
3251 }
3252 else if (symtab != NULL)
3253 printf_unfiltered (is_enumeral
3254 ? _("[%d] %s in %s (enumeral)\n")
3255 : _("[%d] %s at %s:?\n"),
3256 i + first_choice,
3257 SYMBOL_PRINT_NAME (syms[i].sym),
3258 symtab->filename);
3259 else
3260 printf_unfiltered (is_enumeral
3261 ? _("[%d] %s (enumeral)\n")
3262 : _("[%d] %s at ?\n"),
3263 i + first_choice,
3264 SYMBOL_PRINT_NAME (syms[i].sym));
3265 }
3266 }
3267
3268 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3269 "overload-choice");
3270
3271 for (i = 0; i < n_chosen; i += 1)
3272 syms[i] = syms[chosen[i]];
3273
3274 return n_chosen;
3275 }
3276
3277 /* Read and validate a set of numeric choices from the user in the
3278 range 0 .. N_CHOICES-1. Place the results in increasing
3279 order in CHOICES[0 .. N-1], and return N.
3280
3281 The user types choices as a sequence of numbers on one line
3282 separated by blanks, encoding them as follows:
3283
3284 + A choice of 0 means to cancel the selection, throwing an error.
3285 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3286 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3287
3288 The user is not allowed to choose more than MAX_RESULTS values.
3289
3290 ANNOTATION_SUFFIX, if present, is used to annotate the input
3291 prompts (for use with the -f switch). */
3292
3293 int
3294 get_selections (int *choices, int n_choices, int max_results,
3295 int is_all_choice, char *annotation_suffix)
3296 {
3297 char *args;
3298 const char *prompt;
3299 int n_chosen;
3300 int first_choice = is_all_choice ? 2 : 1;
3301
3302 prompt = getenv ("PS2");
3303 if (prompt == NULL)
3304 prompt = ">";
3305
3306 printf_unfiltered (("%s "), prompt);
3307 gdb_flush (gdb_stdout);
3308
3309 args = command_line_input ((char *) NULL, 0, annotation_suffix);
3310
3311 if (args == NULL)
3312 error_no_arg (_("one or more choice numbers"));
3313
3314 n_chosen = 0;
3315
3316 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3317 order, as given in args. Choices are validated. */
3318 while (1)
3319 {
3320 char *args2;
3321 int choice, j;
3322
3323 while (isspace (*args))
3324 args += 1;
3325 if (*args == '\0' && n_chosen == 0)
3326 error_no_arg (_("one or more choice numbers"));
3327 else if (*args == '\0')
3328 break;
3329
3330 choice = strtol (args, &args2, 10);
3331 if (args == args2 || choice < 0
3332 || choice > n_choices + first_choice - 1)
3333 error (_("Argument must be choice number"));
3334 args = args2;
3335
3336 if (choice == 0)
3337 error (_("cancelled"));
3338
3339 if (choice < first_choice)
3340 {
3341 n_chosen = n_choices;
3342 for (j = 0; j < n_choices; j += 1)
3343 choices[j] = j;
3344 break;
3345 }
3346 choice -= first_choice;
3347
3348 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3349 {
3350 }
3351
3352 if (j < 0 || choice != choices[j])
3353 {
3354 int k;
3355 for (k = n_chosen - 1; k > j; k -= 1)
3356 choices[k + 1] = choices[k];
3357 choices[j + 1] = choice;
3358 n_chosen += 1;
3359 }
3360 }
3361
3362 if (n_chosen > max_results)
3363 error (_("Select no more than %d of the above"), max_results);
3364
3365 return n_chosen;
3366 }
3367
3368 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3369 on the function identified by SYM and BLOCK, and taking NARGS
3370 arguments. Update *EXPP as needed to hold more space. */
3371
3372 static void
3373 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3374 int oplen, struct symbol *sym,
3375 struct block *block)
3376 {
3377 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3378 symbol, -oplen for operator being replaced). */
3379 struct expression *newexp = (struct expression *)
3380 xmalloc (sizeof (struct expression)
3381 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3382 struct expression *exp = *expp;
3383
3384 newexp->nelts = exp->nelts + 7 - oplen;
3385 newexp->language_defn = exp->language_defn;
3386 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3387 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3388 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3389
3390 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3391 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3392
3393 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3394 newexp->elts[pc + 4].block = block;
3395 newexp->elts[pc + 5].symbol = sym;
3396
3397 *expp = newexp;
3398 xfree (exp);
3399 }
3400
3401 /* Type-class predicates */
3402
3403 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3404 or FLOAT). */
3405
3406 static int
3407 numeric_type_p (struct type *type)
3408 {
3409 if (type == NULL)
3410 return 0;
3411 else
3412 {
3413 switch (TYPE_CODE (type))
3414 {
3415 case TYPE_CODE_INT:
3416 case TYPE_CODE_FLT:
3417 return 1;
3418 case TYPE_CODE_RANGE:
3419 return (type == TYPE_TARGET_TYPE (type)
3420 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3421 default:
3422 return 0;
3423 }
3424 }
3425 }
3426
3427 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3428
3429 static int
3430 integer_type_p (struct type *type)
3431 {
3432 if (type == NULL)
3433 return 0;
3434 else
3435 {
3436 switch (TYPE_CODE (type))
3437 {
3438 case TYPE_CODE_INT:
3439 return 1;
3440 case TYPE_CODE_RANGE:
3441 return (type == TYPE_TARGET_TYPE (type)
3442 || integer_type_p (TYPE_TARGET_TYPE (type)));
3443 default:
3444 return 0;
3445 }
3446 }
3447 }
3448
3449 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3450
3451 static int
3452 scalar_type_p (struct type *type)
3453 {
3454 if (type == NULL)
3455 return 0;
3456 else
3457 {
3458 switch (TYPE_CODE (type))
3459 {
3460 case TYPE_CODE_INT:
3461 case TYPE_CODE_RANGE:
3462 case TYPE_CODE_ENUM:
3463 case TYPE_CODE_FLT:
3464 return 1;
3465 default:
3466 return 0;
3467 }
3468 }
3469 }
3470
3471 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3472
3473 static int
3474 discrete_type_p (struct type *type)
3475 {
3476 if (type == NULL)
3477 return 0;
3478 else
3479 {
3480 switch (TYPE_CODE (type))
3481 {
3482 case TYPE_CODE_INT:
3483 case TYPE_CODE_RANGE:
3484 case TYPE_CODE_ENUM:
3485 return 1;
3486 default:
3487 return 0;
3488 }
3489 }
3490 }
3491
3492 /* Returns non-zero if OP with operands in the vector ARGS could be
3493 a user-defined function. Errs on the side of pre-defined operators
3494 (i.e., result 0). */
3495
3496 static int
3497 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3498 {
3499 struct type *type0 =
3500 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3501 struct type *type1 =
3502 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3503
3504 if (type0 == NULL)
3505 return 0;
3506
3507 switch (op)
3508 {
3509 default:
3510 return 0;
3511
3512 case BINOP_ADD:
3513 case BINOP_SUB:
3514 case BINOP_MUL:
3515 case BINOP_DIV:
3516 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3517
3518 case BINOP_REM:
3519 case BINOP_MOD:
3520 case BINOP_BITWISE_AND:
3521 case BINOP_BITWISE_IOR:
3522 case BINOP_BITWISE_XOR:
3523 return (!(integer_type_p (type0) && integer_type_p (type1)));
3524
3525 case BINOP_EQUAL:
3526 case BINOP_NOTEQUAL:
3527 case BINOP_LESS:
3528 case BINOP_GTR:
3529 case BINOP_LEQ:
3530 case BINOP_GEQ:
3531 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3532
3533 case BINOP_CONCAT:
3534 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3535
3536 case BINOP_EXP:
3537 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3538
3539 case UNOP_NEG:
3540 case UNOP_PLUS:
3541 case UNOP_LOGICAL_NOT:
3542 case UNOP_ABS:
3543 return (!numeric_type_p (type0));
3544
3545 }
3546 }
3547 \f
3548 /* Renaming */
3549
3550 /* NOTE: In the following, we assume that a renaming type's name may
3551 have an ___XD suffix. It would be nice if this went away at some
3552 point. */
3553
3554 /* If TYPE encodes a renaming, returns the renaming suffix, which
3555 is XR for an object renaming, XRP for a procedure renaming, XRE for
3556 an exception renaming, and XRS for a subprogram renaming. Returns
3557 NULL if NAME encodes none of these. */
3558
3559 const char *
3560 ada_renaming_type (struct type *type)
3561 {
3562 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
3563 {
3564 const char *name = type_name_no_tag (type);
3565 const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
3566 if (suffix == NULL
3567 || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
3568 return NULL;
3569 else
3570 return suffix + 3;
3571 }
3572 else
3573 return NULL;
3574 }
3575
3576 /* Return non-zero iff SYM encodes an object renaming. */
3577
3578 int
3579 ada_is_object_renaming (struct symbol *sym)
3580 {
3581 const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
3582 return renaming_type != NULL
3583 && (renaming_type[2] == '\0' || renaming_type[2] == '_');
3584 }
3585
3586 /* Assuming that SYM encodes a non-object renaming, returns the original
3587 name of the renamed entity. The name is good until the end of
3588 parsing. */
3589
3590 char *
3591 ada_simple_renamed_entity (struct symbol *sym)
3592 {
3593 struct type *type;
3594 const char *raw_name;
3595 int len;
3596 char *result;
3597
3598 type = SYMBOL_TYPE (sym);
3599 if (type == NULL || TYPE_NFIELDS (type) < 1)
3600 error (_("Improperly encoded renaming."));
3601
3602 raw_name = TYPE_FIELD_NAME (type, 0);
3603 len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
3604 if (len <= 0)
3605 error (_("Improperly encoded renaming."));
3606
3607 result = xmalloc (len + 1);
3608 strncpy (result, raw_name, len);
3609 result[len] = '\000';
3610 return result;
3611 }
3612
3613 \f
3614
3615 /* Evaluation: Function Calls */
3616
3617 /* Return an lvalue containing the value VAL. This is the identity on
3618 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3619 on the stack, using and updating *SP as the stack pointer, and
3620 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3621
3622 static struct value *
3623 ensure_lval (struct value *val, CORE_ADDR *sp)
3624 {
3625 if (! VALUE_LVAL (val))
3626 {
3627 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3628
3629 /* The following is taken from the structure-return code in
3630 call_function_by_hand. FIXME: Therefore, some refactoring seems
3631 indicated. */
3632 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3633 {
3634 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3635 reserving sufficient space. */
3636 *sp -= len;
3637 if (gdbarch_frame_align_p (current_gdbarch))
3638 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3639 VALUE_ADDRESS (val) = *sp;
3640 }
3641 else
3642 {
3643 /* Stack grows upward. Align the frame, allocate space, and
3644 then again, re-align the frame. */
3645 if (gdbarch_frame_align_p (current_gdbarch))
3646 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3647 VALUE_ADDRESS (val) = *sp;
3648 *sp += len;
3649 if (gdbarch_frame_align_p (current_gdbarch))
3650 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3651 }
3652
3653 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3654 }
3655
3656 return val;
3657 }
3658
3659 /* Return the value ACTUAL, converted to be an appropriate value for a
3660 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3661 allocating any necessary descriptors (fat pointers), or copies of
3662 values not residing in memory, updating it as needed. */
3663
3664 static struct value *
3665 convert_actual (struct value *actual, struct type *formal_type0,
3666 CORE_ADDR *sp)
3667 {
3668 struct type *actual_type = ada_check_typedef (value_type (actual));
3669 struct type *formal_type = ada_check_typedef (formal_type0);
3670 struct type *formal_target =
3671 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3672 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3673 struct type *actual_target =
3674 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3675 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3676
3677 if (ada_is_array_descriptor_type (formal_target)
3678 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3679 return make_array_descriptor (formal_type, actual, sp);
3680 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
3681 {
3682 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3683 && ada_is_array_descriptor_type (actual_target))
3684 return desc_data (actual);
3685 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3686 {
3687 if (VALUE_LVAL (actual) != lval_memory)
3688 {
3689 struct value *val;
3690 actual_type = ada_check_typedef (value_type (actual));
3691 val = allocate_value (actual_type);
3692 memcpy ((char *) value_contents_raw (val),
3693 (char *) value_contents (actual),
3694 TYPE_LENGTH (actual_type));
3695 actual = ensure_lval (val, sp);
3696 }
3697 return value_addr (actual);
3698 }
3699 }
3700 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3701 return ada_value_ind (actual);
3702
3703 return actual;
3704 }
3705
3706
3707 /* Push a descriptor of type TYPE for array value ARR on the stack at
3708 *SP, updating *SP to reflect the new descriptor. Return either
3709 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3710 to-descriptor type rather than a descriptor type), a struct value *
3711 representing a pointer to this descriptor. */
3712
3713 static struct value *
3714 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3715 {
3716 struct type *bounds_type = desc_bounds_type (type);
3717 struct type *desc_type = desc_base_type (type);
3718 struct value *descriptor = allocate_value (desc_type);
3719 struct value *bounds = allocate_value (bounds_type);
3720 int i;
3721
3722 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3723 {
3724 modify_general_field (value_contents_writeable (bounds),
3725 value_as_long (ada_array_bound (arr, i, 0)),
3726 desc_bound_bitpos (bounds_type, i, 0),
3727 desc_bound_bitsize (bounds_type, i, 0));
3728 modify_general_field (value_contents_writeable (bounds),
3729 value_as_long (ada_array_bound (arr, i, 1)),
3730 desc_bound_bitpos (bounds_type, i, 1),
3731 desc_bound_bitsize (bounds_type, i, 1));
3732 }
3733
3734 bounds = ensure_lval (bounds, sp);
3735
3736 modify_general_field (value_contents_writeable (descriptor),
3737 VALUE_ADDRESS (ensure_lval (arr, sp)),
3738 fat_pntr_data_bitpos (desc_type),
3739 fat_pntr_data_bitsize (desc_type));
3740
3741 modify_general_field (value_contents_writeable (descriptor),
3742 VALUE_ADDRESS (bounds),
3743 fat_pntr_bounds_bitpos (desc_type),
3744 fat_pntr_bounds_bitsize (desc_type));
3745
3746 descriptor = ensure_lval (descriptor, sp);
3747
3748 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3749 return value_addr (descriptor);
3750 else
3751 return descriptor;
3752 }
3753
3754
3755 /* Assuming a dummy frame has been established on the target, perform any
3756 conversions needed for calling function FUNC on the NARGS actual
3757 parameters in ARGS, other than standard C conversions. Does
3758 nothing if FUNC does not have Ada-style prototype data, or if NARGS
3759 does not match the number of arguments expected. Use *SP as a
3760 stack pointer for additional data that must be pushed, updating its
3761 value as needed. */
3762
3763 void
3764 ada_convert_actuals (struct value *func, int nargs, struct value *args[],
3765 CORE_ADDR *sp)
3766 {
3767 int i;
3768
3769 if (TYPE_NFIELDS (value_type (func)) == 0
3770 || nargs != TYPE_NFIELDS (value_type (func)))
3771 return;
3772
3773 for (i = 0; i < nargs; i += 1)
3774 args[i] =
3775 convert_actual (args[i], TYPE_FIELD_TYPE (value_type (func), i), sp);
3776 }
3777 \f
3778 /* Dummy definitions for an experimental caching module that is not
3779 * used in the public sources. */
3780
3781 static int
3782 lookup_cached_symbol (const char *name, domain_enum namespace,
3783 struct symbol **sym, struct block **block,
3784 struct symtab **symtab)
3785 {
3786 return 0;
3787 }
3788
3789 static void
3790 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3791 struct block *block, struct symtab *symtab)
3792 {
3793 }
3794 \f
3795 /* Symbol Lookup */
3796
3797 /* Return the result of a standard (literal, C-like) lookup of NAME in
3798 given DOMAIN, visible from lexical block BLOCK. */
3799
3800 static struct symbol *
3801 standard_lookup (const char *name, const struct block *block,
3802 domain_enum domain)
3803 {
3804 struct symbol *sym;
3805 struct symtab *symtab;
3806
3807 if (lookup_cached_symbol (name, domain, &sym, NULL, NULL))
3808 return sym;
3809 sym =
3810 lookup_symbol_in_language (name, block, domain, language_c, 0, &symtab);
3811 cache_symbol (name, domain, sym, block_found, symtab);
3812 return sym;
3813 }
3814
3815
3816 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3817 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3818 since they contend in overloading in the same way. */
3819 static int
3820 is_nonfunction (struct ada_symbol_info syms[], int n)
3821 {
3822 int i;
3823
3824 for (i = 0; i < n; i += 1)
3825 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3826 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3827 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3828 return 1;
3829
3830 return 0;
3831 }
3832
3833 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3834 struct types. Otherwise, they may not. */
3835
3836 static int
3837 equiv_types (struct type *type0, struct type *type1)
3838 {
3839 if (type0 == type1)
3840 return 1;
3841 if (type0 == NULL || type1 == NULL
3842 || TYPE_CODE (type0) != TYPE_CODE (type1))
3843 return 0;
3844 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3845 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3846 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3847 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3848 return 1;
3849
3850 return 0;
3851 }
3852
3853 /* True iff SYM0 represents the same entity as SYM1, or one that is
3854 no more defined than that of SYM1. */
3855
3856 static int
3857 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3858 {
3859 if (sym0 == sym1)
3860 return 1;
3861 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3862 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3863 return 0;
3864
3865 switch (SYMBOL_CLASS (sym0))
3866 {
3867 case LOC_UNDEF:
3868 return 1;
3869 case LOC_TYPEDEF:
3870 {
3871 struct type *type0 = SYMBOL_TYPE (sym0);
3872 struct type *type1 = SYMBOL_TYPE (sym1);
3873 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3874 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3875 int len0 = strlen (name0);
3876 return
3877 TYPE_CODE (type0) == TYPE_CODE (type1)
3878 && (equiv_types (type0, type1)
3879 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3880 && strncmp (name1 + len0, "___XV", 5) == 0));
3881 }
3882 case LOC_CONST:
3883 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3884 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3885 default:
3886 return 0;
3887 }
3888 }
3889
3890 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3891 records in OBSTACKP. Do nothing if SYM is a duplicate. */
3892
3893 static void
3894 add_defn_to_vec (struct obstack *obstackp,
3895 struct symbol *sym,
3896 struct block *block, struct symtab *symtab)
3897 {
3898 int i;
3899 size_t tmp;
3900 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
3901
3902 /* Do not try to complete stub types, as the debugger is probably
3903 already scanning all symbols matching a certain name at the
3904 time when this function is called. Trying to replace the stub
3905 type by its associated full type will cause us to restart a scan
3906 which may lead to an infinite recursion. Instead, the client
3907 collecting the matching symbols will end up collecting several
3908 matches, with at least one of them complete. It can then filter
3909 out the stub ones if needed. */
3910
3911 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
3912 {
3913 if (lesseq_defined_than (sym, prevDefns[i].sym))
3914 return;
3915 else if (lesseq_defined_than (prevDefns[i].sym, sym))
3916 {
3917 prevDefns[i].sym = sym;
3918 prevDefns[i].block = block;
3919 prevDefns[i].symtab = symtab;
3920 return;
3921 }
3922 }
3923
3924 {
3925 struct ada_symbol_info info;
3926
3927 info.sym = sym;
3928 info.block = block;
3929 info.symtab = symtab;
3930 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
3931 }
3932 }
3933
3934 /* Number of ada_symbol_info structures currently collected in
3935 current vector in *OBSTACKP. */
3936
3937 static int
3938 num_defns_collected (struct obstack *obstackp)
3939 {
3940 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
3941 }
3942
3943 /* Vector of ada_symbol_info structures currently collected in current
3944 vector in *OBSTACKP. If FINISH, close off the vector and return
3945 its final address. */
3946
3947 static struct ada_symbol_info *
3948 defns_collected (struct obstack *obstackp, int finish)
3949 {
3950 if (finish)
3951 return obstack_finish (obstackp);
3952 else
3953 return (struct ada_symbol_info *) obstack_base (obstackp);
3954 }
3955
3956 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
3957 Check the global symbols if GLOBAL, the static symbols if not.
3958 Do wild-card match if WILD. */
3959
3960 static struct partial_symbol *
3961 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
3962 int global, domain_enum namespace, int wild)
3963 {
3964 struct partial_symbol **start;
3965 int name_len = strlen (name);
3966 int length = (global ? pst->n_global_syms : pst->n_static_syms);
3967 int i;
3968
3969 if (length == 0)
3970 {
3971 return (NULL);
3972 }
3973
3974 start = (global ?
3975 pst->objfile->global_psymbols.list + pst->globals_offset :
3976 pst->objfile->static_psymbols.list + pst->statics_offset);
3977
3978 if (wild)
3979 {
3980 for (i = 0; i < length; i += 1)
3981 {
3982 struct partial_symbol *psym = start[i];
3983
3984 if (SYMBOL_DOMAIN (psym) == namespace
3985 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
3986 return psym;
3987 }
3988 return NULL;
3989 }
3990 else
3991 {
3992 if (global)
3993 {
3994 int U;
3995 i = 0;
3996 U = length - 1;
3997 while (U - i > 4)
3998 {
3999 int M = (U + i) >> 1;
4000 struct partial_symbol *psym = start[M];
4001 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4002 i = M + 1;
4003 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4004 U = M - 1;
4005 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4006 i = M + 1;
4007 else
4008 U = M;
4009 }
4010 }
4011 else
4012 i = 0;
4013
4014 while (i < length)
4015 {
4016 struct partial_symbol *psym = start[i];
4017
4018 if (SYMBOL_DOMAIN (psym) == namespace)
4019 {
4020 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4021
4022 if (cmp < 0)
4023 {
4024 if (global)
4025 break;
4026 }
4027 else if (cmp == 0
4028 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4029 + name_len))
4030 return psym;
4031 }
4032 i += 1;
4033 }
4034
4035 if (global)
4036 {
4037 int U;
4038 i = 0;
4039 U = length - 1;
4040 while (U - i > 4)
4041 {
4042 int M = (U + i) >> 1;
4043 struct partial_symbol *psym = start[M];
4044 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4045 i = M + 1;
4046 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4047 U = M - 1;
4048 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4049 i = M + 1;
4050 else
4051 U = M;
4052 }
4053 }
4054 else
4055 i = 0;
4056
4057 while (i < length)
4058 {
4059 struct partial_symbol *psym = start[i];
4060
4061 if (SYMBOL_DOMAIN (psym) == namespace)
4062 {
4063 int cmp;
4064
4065 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4066 if (cmp == 0)
4067 {
4068 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4069 if (cmp == 0)
4070 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4071 name_len);
4072 }
4073
4074 if (cmp < 0)
4075 {
4076 if (global)
4077 break;
4078 }
4079 else if (cmp == 0
4080 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4081 + name_len + 5))
4082 return psym;
4083 }
4084 i += 1;
4085 }
4086 }
4087 return NULL;
4088 }
4089
4090 /* Find a symbol table containing symbol SYM or NULL if none. */
4091
4092 static struct symtab *
4093 symtab_for_sym (struct symbol *sym)
4094 {
4095 struct symtab *s;
4096 struct objfile *objfile;
4097 struct block *b;
4098 struct symbol *tmp_sym;
4099 struct dict_iterator iter;
4100 int j;
4101
4102 ALL_PRIMARY_SYMTABS (objfile, s)
4103 {
4104 switch (SYMBOL_CLASS (sym))
4105 {
4106 case LOC_CONST:
4107 case LOC_STATIC:
4108 case LOC_TYPEDEF:
4109 case LOC_REGISTER:
4110 case LOC_LABEL:
4111 case LOC_BLOCK:
4112 case LOC_CONST_BYTES:
4113 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4114 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4115 return s;
4116 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4117 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4118 return s;
4119 break;
4120 default:
4121 break;
4122 }
4123 switch (SYMBOL_CLASS (sym))
4124 {
4125 case LOC_REGISTER:
4126 case LOC_ARG:
4127 case LOC_REF_ARG:
4128 case LOC_REGPARM:
4129 case LOC_REGPARM_ADDR:
4130 case LOC_LOCAL:
4131 case LOC_TYPEDEF:
4132 case LOC_LOCAL_ARG:
4133 case LOC_BASEREG:
4134 case LOC_BASEREG_ARG:
4135 case LOC_COMPUTED:
4136 case LOC_COMPUTED_ARG:
4137 for (j = FIRST_LOCAL_BLOCK;
4138 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4139 {
4140 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4141 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4142 return s;
4143 }
4144 break;
4145 default:
4146 break;
4147 }
4148 }
4149 return NULL;
4150 }
4151
4152 /* Return a minimal symbol matching NAME according to Ada decoding
4153 rules. Returns NULL if there is no such minimal symbol. Names
4154 prefixed with "standard__" are handled specially: "standard__" is
4155 first stripped off, and only static and global symbols are searched. */
4156
4157 struct minimal_symbol *
4158 ada_lookup_simple_minsym (const char *name)
4159 {
4160 struct objfile *objfile;
4161 struct minimal_symbol *msymbol;
4162 int wild_match;
4163
4164 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4165 {
4166 name += sizeof ("standard__") - 1;
4167 wild_match = 0;
4168 }
4169 else
4170 wild_match = (strstr (name, "__") == NULL);
4171
4172 ALL_MSYMBOLS (objfile, msymbol)
4173 {
4174 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4175 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4176 return msymbol;
4177 }
4178
4179 return NULL;
4180 }
4181
4182 /* For all subprograms that statically enclose the subprogram of the
4183 selected frame, add symbols matching identifier NAME in DOMAIN
4184 and their blocks to the list of data in OBSTACKP, as for
4185 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4186 wildcard prefix. */
4187
4188 static void
4189 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4190 const char *name, domain_enum namespace,
4191 int wild_match)
4192 {
4193 }
4194
4195 /* True if TYPE is definitely an artificial type supplied to a symbol
4196 for which no debugging information was given in the symbol file. */
4197
4198 static int
4199 is_nondebugging_type (struct type *type)
4200 {
4201 char *name = ada_type_name (type);
4202 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4203 }
4204
4205 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4206 duplicate other symbols in the list (The only case I know of where
4207 this happens is when object files containing stabs-in-ecoff are
4208 linked with files containing ordinary ecoff debugging symbols (or no
4209 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4210 Returns the number of items in the modified list. */
4211
4212 static int
4213 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4214 {
4215 int i, j;
4216
4217 i = 0;
4218 while (i < nsyms)
4219 {
4220 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4221 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4222 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4223 {
4224 for (j = 0; j < nsyms; j += 1)
4225 {
4226 if (i != j
4227 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4228 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4229 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4230 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4231 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4232 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4233 {
4234 int k;
4235 for (k = i + 1; k < nsyms; k += 1)
4236 syms[k - 1] = syms[k];
4237 nsyms -= 1;
4238 goto NextSymbol;
4239 }
4240 }
4241 }
4242 i += 1;
4243 NextSymbol:
4244 ;
4245 }
4246 return nsyms;
4247 }
4248
4249 /* Given a type that corresponds to a renaming entity, use the type name
4250 to extract the scope (package name or function name, fully qualified,
4251 and following the GNAT encoding convention) where this renaming has been
4252 defined. The string returned needs to be deallocated after use. */
4253
4254 static char *
4255 xget_renaming_scope (struct type *renaming_type)
4256 {
4257 /* The renaming types adhere to the following convention:
4258 <scope>__<rename>___<XR extension>.
4259 So, to extract the scope, we search for the "___XR" extension,
4260 and then backtrack until we find the first "__". */
4261
4262 const char *name = type_name_no_tag (renaming_type);
4263 char *suffix = strstr (name, "___XR");
4264 char *last;
4265 int scope_len;
4266 char *scope;
4267
4268 /* Now, backtrack a bit until we find the first "__". Start looking
4269 at suffix - 3, as the <rename> part is at least one character long. */
4270
4271 for (last = suffix - 3; last > name; last--)
4272 if (last[0] == '_' && last[1] == '_')
4273 break;
4274
4275 /* Make a copy of scope and return it. */
4276
4277 scope_len = last - name;
4278 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4279
4280 strncpy (scope, name, scope_len);
4281 scope[scope_len] = '\0';
4282
4283 return scope;
4284 }
4285
4286 /* Return nonzero if NAME corresponds to a package name. */
4287
4288 static int
4289 is_package_name (const char *name)
4290 {
4291 /* Here, We take advantage of the fact that no symbols are generated
4292 for packages, while symbols are generated for each function.
4293 So the condition for NAME represent a package becomes equivalent
4294 to NAME not existing in our list of symbols. There is only one
4295 small complication with library-level functions (see below). */
4296
4297 char *fun_name;
4298
4299 /* If it is a function that has not been defined at library level,
4300 then we should be able to look it up in the symbols. */
4301 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4302 return 0;
4303
4304 /* Library-level function names start with "_ada_". See if function
4305 "_ada_" followed by NAME can be found. */
4306
4307 /* Do a quick check that NAME does not contain "__", since library-level
4308 functions names cannot contain "__" in them. */
4309 if (strstr (name, "__") != NULL)
4310 return 0;
4311
4312 fun_name = xstrprintf ("_ada_%s", name);
4313
4314 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4315 }
4316
4317 /* Return nonzero if SYM corresponds to a renaming entity that is
4318 visible from FUNCTION_NAME. */
4319
4320 static int
4321 renaming_is_visible (const struct symbol *sym, char *function_name)
4322 {
4323 char *scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4324
4325 make_cleanup (xfree, scope);
4326
4327 /* If the rename has been defined in a package, then it is visible. */
4328 if (is_package_name (scope))
4329 return 1;
4330
4331 /* Check that the rename is in the current function scope by checking
4332 that its name starts with SCOPE. */
4333
4334 /* If the function name starts with "_ada_", it means that it is
4335 a library-level function. Strip this prefix before doing the
4336 comparison, as the encoding for the renaming does not contain
4337 this prefix. */
4338 if (strncmp (function_name, "_ada_", 5) == 0)
4339 function_name += 5;
4340
4341 return (strncmp (function_name, scope, strlen (scope)) == 0);
4342 }
4343
4344 /* Iterates over the SYMS list and remove any entry that corresponds to
4345 a renaming entity that is not visible from the function associated
4346 with CURRENT_BLOCK.
4347
4348 Rationale:
4349 GNAT emits a type following a specified encoding for each renaming
4350 entity. Unfortunately, STABS currently does not support the definition
4351 of types that are local to a given lexical block, so all renamings types
4352 are emitted at library level. As a consequence, if an application
4353 contains two renaming entities using the same name, and a user tries to
4354 print the value of one of these entities, the result of the ada symbol
4355 lookup will also contain the wrong renaming type.
4356
4357 This function partially covers for this limitation by attempting to
4358 remove from the SYMS list renaming symbols that should be visible
4359 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4360 method with the current information available. The implementation
4361 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4362
4363 - When the user tries to print a rename in a function while there
4364 is another rename entity defined in a package: Normally, the
4365 rename in the function has precedence over the rename in the
4366 package, so the latter should be removed from the list. This is
4367 currently not the case.
4368
4369 - This function will incorrectly remove valid renames if
4370 the CURRENT_BLOCK corresponds to a function which symbol name
4371 has been changed by an "Export" pragma. As a consequence,
4372 the user will be unable to print such rename entities. */
4373
4374 static int
4375 remove_out_of_scope_renamings (struct ada_symbol_info *syms,
4376 int nsyms, const struct block *current_block)
4377 {
4378 struct symbol *current_function;
4379 char *current_function_name;
4380 int i;
4381
4382 /* Extract the function name associated to CURRENT_BLOCK.
4383 Abort if unable to do so. */
4384
4385 if (current_block == NULL)
4386 return nsyms;
4387
4388 current_function = block_function (current_block);
4389 if (current_function == NULL)
4390 return nsyms;
4391
4392 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4393 if (current_function_name == NULL)
4394 return nsyms;
4395
4396 /* Check each of the symbols, and remove it from the list if it is
4397 a type corresponding to a renaming that is out of the scope of
4398 the current block. */
4399
4400 i = 0;
4401 while (i < nsyms)
4402 {
4403 if (ada_is_object_renaming (syms[i].sym)
4404 && !renaming_is_visible (syms[i].sym, current_function_name))
4405 {
4406 int j;
4407 for (j = i + 1; j < nsyms; j++)
4408 syms[j - 1] = syms[j];
4409 nsyms -= 1;
4410 }
4411 else
4412 i += 1;
4413 }
4414
4415 return nsyms;
4416 }
4417
4418 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4419 scope and in global scopes, returning the number of matches. Sets
4420 *RESULTS to point to a vector of (SYM,BLOCK,SYMTAB) triples,
4421 indicating the symbols found and the blocks and symbol tables (if
4422 any) in which they were found. This vector are transient---good only to
4423 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4424 symbol match within the nest of blocks whose innermost member is BLOCK0,
4425 is the one match returned (no other matches in that or
4426 enclosing blocks is returned). If there are any matches in or
4427 surrounding BLOCK0, then these alone are returned. Otherwise, the
4428 search extends to global and file-scope (static) symbol tables.
4429 Names prefixed with "standard__" are handled specially: "standard__"
4430 is first stripped off, and only static and global symbols are searched. */
4431
4432 int
4433 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4434 domain_enum namespace,
4435 struct ada_symbol_info **results)
4436 {
4437 struct symbol *sym;
4438 struct symtab *s;
4439 struct partial_symtab *ps;
4440 struct blockvector *bv;
4441 struct objfile *objfile;
4442 struct block *block;
4443 const char *name;
4444 struct minimal_symbol *msymbol;
4445 int wild_match;
4446 int cacheIfUnique;
4447 int block_depth;
4448 int ndefns;
4449
4450 obstack_free (&symbol_list_obstack, NULL);
4451 obstack_init (&symbol_list_obstack);
4452
4453 cacheIfUnique = 0;
4454
4455 /* Search specified block and its superiors. */
4456
4457 wild_match = (strstr (name0, "__") == NULL);
4458 name = name0;
4459 block = (struct block *) block0; /* FIXME: No cast ought to be
4460 needed, but adding const will
4461 have a cascade effect. */
4462 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4463 {
4464 wild_match = 0;
4465 block = NULL;
4466 name = name0 + sizeof ("standard__") - 1;
4467 }
4468
4469 block_depth = 0;
4470 while (block != NULL)
4471 {
4472 block_depth += 1;
4473 ada_add_block_symbols (&symbol_list_obstack, block, name,
4474 namespace, NULL, NULL, wild_match);
4475
4476 /* If we found a non-function match, assume that's the one. */
4477 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4478 num_defns_collected (&symbol_list_obstack)))
4479 goto done;
4480
4481 block = BLOCK_SUPERBLOCK (block);
4482 }
4483
4484 /* If no luck so far, try to find NAME as a local symbol in some lexically
4485 enclosing subprogram. */
4486 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4487 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4488 name, namespace, wild_match);
4489
4490 /* If we found ANY matches among non-global symbols, we're done. */
4491
4492 if (num_defns_collected (&symbol_list_obstack) > 0)
4493 goto done;
4494
4495 cacheIfUnique = 1;
4496 if (lookup_cached_symbol (name0, namespace, &sym, &block, &s))
4497 {
4498 if (sym != NULL)
4499 add_defn_to_vec (&symbol_list_obstack, sym, block, s);
4500 goto done;
4501 }
4502
4503 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4504 tables, and psymtab's. */
4505
4506 ALL_PRIMARY_SYMTABS (objfile, s)
4507 {
4508 QUIT;
4509 bv = BLOCKVECTOR (s);
4510 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4511 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4512 objfile, s, wild_match);
4513 }
4514
4515 if (namespace == VAR_DOMAIN)
4516 {
4517 ALL_MSYMBOLS (objfile, msymbol)
4518 {
4519 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4520 {
4521 switch (MSYMBOL_TYPE (msymbol))
4522 {
4523 case mst_solib_trampoline:
4524 break;
4525 default:
4526 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4527 if (s != NULL)
4528 {
4529 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4530 QUIT;
4531 bv = BLOCKVECTOR (s);
4532 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4533 ada_add_block_symbols (&symbol_list_obstack, block,
4534 SYMBOL_LINKAGE_NAME (msymbol),
4535 namespace, objfile, s, wild_match);
4536
4537 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4538 {
4539 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4540 ada_add_block_symbols (&symbol_list_obstack, block,
4541 SYMBOL_LINKAGE_NAME (msymbol),
4542 namespace, objfile, s,
4543 wild_match);
4544 }
4545 }
4546 }
4547 }
4548 }
4549 }
4550
4551 ALL_PSYMTABS (objfile, ps)
4552 {
4553 QUIT;
4554 if (!ps->readin
4555 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4556 {
4557 s = PSYMTAB_TO_SYMTAB (ps);
4558 if (!s->primary)
4559 continue;
4560 bv = BLOCKVECTOR (s);
4561 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4562 ada_add_block_symbols (&symbol_list_obstack, block, name,
4563 namespace, objfile, s, wild_match);
4564 }
4565 }
4566
4567 /* Now add symbols from all per-file blocks if we've gotten no hits
4568 (Not strictly correct, but perhaps better than an error).
4569 Do the symtabs first, then check the psymtabs. */
4570
4571 if (num_defns_collected (&symbol_list_obstack) == 0)
4572 {
4573
4574 ALL_PRIMARY_SYMTABS (objfile, s)
4575 {
4576 QUIT;
4577 bv = BLOCKVECTOR (s);
4578 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4579 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4580 objfile, s, wild_match);
4581 }
4582
4583 ALL_PSYMTABS (objfile, ps)
4584 {
4585 QUIT;
4586 if (!ps->readin
4587 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4588 {
4589 s = PSYMTAB_TO_SYMTAB (ps);
4590 bv = BLOCKVECTOR (s);
4591 if (!s->primary)
4592 continue;
4593 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4594 ada_add_block_symbols (&symbol_list_obstack, block, name,
4595 namespace, objfile, s, wild_match);
4596 }
4597 }
4598 }
4599
4600 done:
4601 ndefns = num_defns_collected (&symbol_list_obstack);
4602 *results = defns_collected (&symbol_list_obstack, 1);
4603
4604 ndefns = remove_extra_symbols (*results, ndefns);
4605
4606 if (ndefns == 0)
4607 cache_symbol (name0, namespace, NULL, NULL, NULL);
4608
4609 if (ndefns == 1 && cacheIfUnique)
4610 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block,
4611 (*results)[0].symtab);
4612
4613 ndefns = remove_out_of_scope_renamings (*results, ndefns, block0);
4614
4615 return ndefns;
4616 }
4617
4618 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4619 scope and in global scopes, or NULL if none. NAME is folded and
4620 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4621 choosing the first symbol if there are multiple choices.
4622 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4623 table in which the symbol was found (in both cases, these
4624 assignments occur only if the pointers are non-null). */
4625
4626 struct symbol *
4627 ada_lookup_symbol (const char *name, const struct block *block0,
4628 domain_enum namespace, int *is_a_field_of_this,
4629 struct symtab **symtab)
4630 {
4631 struct ada_symbol_info *candidates;
4632 int n_candidates;
4633
4634 n_candidates = ada_lookup_symbol_list (ada_encode (ada_fold_name (name)),
4635 block0, namespace, &candidates);
4636
4637 if (n_candidates == 0)
4638 return NULL;
4639
4640 if (is_a_field_of_this != NULL)
4641 *is_a_field_of_this = 0;
4642
4643 if (symtab != NULL)
4644 {
4645 *symtab = candidates[0].symtab;
4646 if (*symtab == NULL && candidates[0].block != NULL)
4647 {
4648 struct objfile *objfile;
4649 struct symtab *s;
4650 struct block *b;
4651 struct blockvector *bv;
4652
4653 /* Search the list of symtabs for one which contains the
4654 address of the start of this block. */
4655 ALL_PRIMARY_SYMTABS (objfile, s)
4656 {
4657 bv = BLOCKVECTOR (s);
4658 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4659 if (BLOCK_START (b) <= BLOCK_START (candidates[0].block)
4660 && BLOCK_END (b) > BLOCK_START (candidates[0].block))
4661 {
4662 *symtab = s;
4663 return fixup_symbol_section (candidates[0].sym, objfile);
4664 }
4665 }
4666 /* FIXME: brobecker/2004-11-12: I think that we should never
4667 reach this point. I don't see a reason why we would not
4668 find a symtab for a given block, so I suggest raising an
4669 internal_error exception here. Otherwise, we end up
4670 returning a symbol but no symtab, which certain parts of
4671 the code that rely (indirectly) on this function do not
4672 expect, eventually causing a SEGV. */
4673 return fixup_symbol_section (candidates[0].sym, NULL);
4674 }
4675 }
4676 return candidates[0].sym;
4677 }
4678
4679 static struct symbol *
4680 ada_lookup_symbol_nonlocal (const char *name,
4681 const char *linkage_name,
4682 const struct block *block,
4683 const domain_enum domain, struct symtab **symtab)
4684 {
4685 if (linkage_name == NULL)
4686 linkage_name = name;
4687 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4688 NULL, symtab);
4689 }
4690
4691
4692 /* True iff STR is a possible encoded suffix of a normal Ada name
4693 that is to be ignored for matching purposes. Suffixes of parallel
4694 names (e.g., XVE) are not included here. Currently, the possible suffixes
4695 are given by either of the regular expression:
4696
4697 (__[0-9]+)?[.$][0-9]+ [nested subprogram suffix, on platforms such
4698 as GNU/Linux]
4699 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4700 _E[0-9]+[bs]$ [protected object entry suffixes]
4701 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4702 */
4703
4704 static int
4705 is_name_suffix (const char *str)
4706 {
4707 int k;
4708 const char *matching;
4709 const int len = strlen (str);
4710
4711 /* (__[0-9]+)?\.[0-9]+ */
4712 matching = str;
4713 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4714 {
4715 matching += 3;
4716 while (isdigit (matching[0]))
4717 matching += 1;
4718 if (matching[0] == '\0')
4719 return 1;
4720 }
4721
4722 if (matching[0] == '.' || matching[0] == '$')
4723 {
4724 matching += 1;
4725 while (isdigit (matching[0]))
4726 matching += 1;
4727 if (matching[0] == '\0')
4728 return 1;
4729 }
4730
4731 /* ___[0-9]+ */
4732 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4733 {
4734 matching = str + 3;
4735 while (isdigit (matching[0]))
4736 matching += 1;
4737 if (matching[0] == '\0')
4738 return 1;
4739 }
4740
4741 #if 0
4742 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4743 with a N at the end. Unfortunately, the compiler uses the same
4744 convention for other internal types it creates. So treating
4745 all entity names that end with an "N" as a name suffix causes
4746 some regressions. For instance, consider the case of an enumerated
4747 type. To support the 'Image attribute, it creates an array whose
4748 name ends with N.
4749 Having a single character like this as a suffix carrying some
4750 information is a bit risky. Perhaps we should change the encoding
4751 to be something like "_N" instead. In the meantime, do not do
4752 the following check. */
4753 /* Protected Object Subprograms */
4754 if (len == 1 && str [0] == 'N')
4755 return 1;
4756 #endif
4757
4758 /* _E[0-9]+[bs]$ */
4759 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4760 {
4761 matching = str + 3;
4762 while (isdigit (matching[0]))
4763 matching += 1;
4764 if ((matching[0] == 'b' || matching[0] == 's')
4765 && matching [1] == '\0')
4766 return 1;
4767 }
4768
4769 /* ??? We should not modify STR directly, as we are doing below. This
4770 is fine in this case, but may become problematic later if we find
4771 that this alternative did not work, and want to try matching
4772 another one from the begining of STR. Since we modified it, we
4773 won't be able to find the begining of the string anymore! */
4774 if (str[0] == 'X')
4775 {
4776 str += 1;
4777 while (str[0] != '_' && str[0] != '\0')
4778 {
4779 if (str[0] != 'n' && str[0] != 'b')
4780 return 0;
4781 str += 1;
4782 }
4783 }
4784 if (str[0] == '\000')
4785 return 1;
4786 if (str[0] == '_')
4787 {
4788 if (str[1] != '_' || str[2] == '\000')
4789 return 0;
4790 if (str[2] == '_')
4791 {
4792 if (strcmp (str + 3, "JM") == 0)
4793 return 1;
4794 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4795 the LJM suffix in favor of the JM one. But we will
4796 still accept LJM as a valid suffix for a reasonable
4797 amount of time, just to allow ourselves to debug programs
4798 compiled using an older version of GNAT. */
4799 if (strcmp (str + 3, "LJM") == 0)
4800 return 1;
4801 if (str[3] != 'X')
4802 return 0;
4803 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4804 || str[4] == 'U' || str[4] == 'P')
4805 return 1;
4806 if (str[4] == 'R' && str[5] != 'T')
4807 return 1;
4808 return 0;
4809 }
4810 if (!isdigit (str[2]))
4811 return 0;
4812 for (k = 3; str[k] != '\0'; k += 1)
4813 if (!isdigit (str[k]) && str[k] != '_')
4814 return 0;
4815 return 1;
4816 }
4817 if (str[0] == '$' && isdigit (str[1]))
4818 {
4819 for (k = 2; str[k] != '\0'; k += 1)
4820 if (!isdigit (str[k]) && str[k] != '_')
4821 return 0;
4822 return 1;
4823 }
4824 return 0;
4825 }
4826
4827 /* Return nonzero if the given string starts with a dot ('.')
4828 followed by zero or more digits.
4829
4830 Note: brobecker/2003-11-10: A forward declaration has not been
4831 added at the begining of this file yet, because this function
4832 is only used to work around a problem found during wild matching
4833 when trying to match minimal symbol names against symbol names
4834 obtained from dwarf-2 data. This function is therefore currently
4835 only used in wild_match() and is likely to be deleted when the
4836 problem in dwarf-2 is fixed. */
4837
4838 static int
4839 is_dot_digits_suffix (const char *str)
4840 {
4841 if (str[0] != '.')
4842 return 0;
4843
4844 str++;
4845 while (isdigit (str[0]))
4846 str++;
4847 return (str[0] == '\0');
4848 }
4849
4850 /* Return non-zero if NAME0 is a valid match when doing wild matching.
4851 Certain symbols appear at first to match, except that they turn out
4852 not to follow the Ada encoding and hence should not be used as a wild
4853 match of a given pattern. */
4854
4855 static int
4856 is_valid_name_for_wild_match (const char *name0)
4857 {
4858 const char *decoded_name = ada_decode (name0);
4859 int i;
4860
4861 for (i=0; decoded_name[i] != '\0'; i++)
4862 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4863 return 0;
4864
4865 return 1;
4866 }
4867
4868 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4869 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4870 informational suffixes of NAME (i.e., for which is_name_suffix is
4871 true). */
4872
4873 static int
4874 wild_match (const char *patn0, int patn_len, const char *name0)
4875 {
4876 int name_len;
4877 char *name;
4878 char *patn;
4879
4880 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
4881 stored in the symbol table for nested function names is sometimes
4882 different from the name of the associated entity stored in
4883 the dwarf-2 data: This is the case for nested subprograms, where
4884 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
4885 while the symbol name from the dwarf-2 data does not.
4886
4887 Although the DWARF-2 standard documents that entity names stored
4888 in the dwarf-2 data should be identical to the name as seen in
4889 the source code, GNAT takes a different approach as we already use
4890 a special encoding mechanism to convey the information so that
4891 a C debugger can still use the information generated to debug
4892 Ada programs. A corollary is that the symbol names in the dwarf-2
4893 data should match the names found in the symbol table. I therefore
4894 consider this issue as a compiler defect.
4895
4896 Until the compiler is properly fixed, we work-around the problem
4897 by ignoring such suffixes during the match. We do so by making
4898 a copy of PATN0 and NAME0, and then by stripping such a suffix
4899 if present. We then perform the match on the resulting strings. */
4900 {
4901 char *dot;
4902 name_len = strlen (name0);
4903
4904 name = (char *) alloca ((name_len + 1) * sizeof (char));
4905 strcpy (name, name0);
4906 dot = strrchr (name, '.');
4907 if (dot != NULL && is_dot_digits_suffix (dot))
4908 *dot = '\0';
4909
4910 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
4911 strncpy (patn, patn0, patn_len);
4912 patn[patn_len] = '\0';
4913 dot = strrchr (patn, '.');
4914 if (dot != NULL && is_dot_digits_suffix (dot))
4915 {
4916 *dot = '\0';
4917 patn_len = dot - patn;
4918 }
4919 }
4920
4921 /* Now perform the wild match. */
4922
4923 name_len = strlen (name);
4924 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
4925 && strncmp (patn, name + 5, patn_len) == 0
4926 && is_name_suffix (name + patn_len + 5))
4927 return 1;
4928
4929 while (name_len >= patn_len)
4930 {
4931 if (strncmp (patn, name, patn_len) == 0
4932 && is_name_suffix (name + patn_len))
4933 return (is_valid_name_for_wild_match (name0));
4934 do
4935 {
4936 name += 1;
4937 name_len -= 1;
4938 }
4939 while (name_len > 0
4940 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
4941 if (name_len <= 0)
4942 return 0;
4943 if (name[0] == '_')
4944 {
4945 if (!islower (name[2]))
4946 return 0;
4947 name += 2;
4948 name_len -= 2;
4949 }
4950 else
4951 {
4952 if (!islower (name[1]))
4953 return 0;
4954 name += 1;
4955 name_len -= 1;
4956 }
4957 }
4958
4959 return 0;
4960 }
4961
4962
4963 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4964 vector *defn_symbols, updating the list of symbols in OBSTACKP
4965 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4966 OBJFILE is the section containing BLOCK.
4967 SYMTAB is recorded with each symbol added. */
4968
4969 static void
4970 ada_add_block_symbols (struct obstack *obstackp,
4971 struct block *block, const char *name,
4972 domain_enum domain, struct objfile *objfile,
4973 struct symtab *symtab, int wild)
4974 {
4975 struct dict_iterator iter;
4976 int name_len = strlen (name);
4977 /* A matching argument symbol, if any. */
4978 struct symbol *arg_sym;
4979 /* Set true when we find a matching non-argument symbol. */
4980 int found_sym;
4981 struct symbol *sym;
4982
4983 arg_sym = NULL;
4984 found_sym = 0;
4985 if (wild)
4986 {
4987 struct symbol *sym;
4988 ALL_BLOCK_SYMBOLS (block, iter, sym)
4989 {
4990 if (SYMBOL_DOMAIN (sym) == domain
4991 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4992 {
4993 switch (SYMBOL_CLASS (sym))
4994 {
4995 case LOC_ARG:
4996 case LOC_LOCAL_ARG:
4997 case LOC_REF_ARG:
4998 case LOC_REGPARM:
4999 case LOC_REGPARM_ADDR:
5000 case LOC_BASEREG_ARG:
5001 case LOC_COMPUTED_ARG:
5002 arg_sym = sym;
5003 break;
5004 case LOC_UNRESOLVED:
5005 continue;
5006 default:
5007 found_sym = 1;
5008 add_defn_to_vec (obstackp,
5009 fixup_symbol_section (sym, objfile),
5010 block, symtab);
5011 break;
5012 }
5013 }
5014 }
5015 }
5016 else
5017 {
5018 ALL_BLOCK_SYMBOLS (block, iter, sym)
5019 {
5020 if (SYMBOL_DOMAIN (sym) == domain)
5021 {
5022 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5023 if (cmp == 0
5024 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5025 {
5026 switch (SYMBOL_CLASS (sym))
5027 {
5028 case LOC_ARG:
5029 case LOC_LOCAL_ARG:
5030 case LOC_REF_ARG:
5031 case LOC_REGPARM:
5032 case LOC_REGPARM_ADDR:
5033 case LOC_BASEREG_ARG:
5034 case LOC_COMPUTED_ARG:
5035 arg_sym = sym;
5036 break;
5037 case LOC_UNRESOLVED:
5038 break;
5039 default:
5040 found_sym = 1;
5041 add_defn_to_vec (obstackp,
5042 fixup_symbol_section (sym, objfile),
5043 block, symtab);
5044 break;
5045 }
5046 }
5047 }
5048 }
5049 }
5050
5051 if (!found_sym && arg_sym != NULL)
5052 {
5053 add_defn_to_vec (obstackp,
5054 fixup_symbol_section (arg_sym, objfile),
5055 block, symtab);
5056 }
5057
5058 if (!wild)
5059 {
5060 arg_sym = NULL;
5061 found_sym = 0;
5062
5063 ALL_BLOCK_SYMBOLS (block, iter, sym)
5064 {
5065 if (SYMBOL_DOMAIN (sym) == domain)
5066 {
5067 int cmp;
5068
5069 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5070 if (cmp == 0)
5071 {
5072 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5073 if (cmp == 0)
5074 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5075 name_len);
5076 }
5077
5078 if (cmp == 0
5079 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5080 {
5081 switch (SYMBOL_CLASS (sym))
5082 {
5083 case LOC_ARG:
5084 case LOC_LOCAL_ARG:
5085 case LOC_REF_ARG:
5086 case LOC_REGPARM:
5087 case LOC_REGPARM_ADDR:
5088 case LOC_BASEREG_ARG:
5089 case LOC_COMPUTED_ARG:
5090 arg_sym = sym;
5091 break;
5092 case LOC_UNRESOLVED:
5093 break;
5094 default:
5095 found_sym = 1;
5096 add_defn_to_vec (obstackp,
5097 fixup_symbol_section (sym, objfile),
5098 block, symtab);
5099 break;
5100 }
5101 }
5102 }
5103 }
5104
5105 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5106 They aren't parameters, right? */
5107 if (!found_sym && arg_sym != NULL)
5108 {
5109 add_defn_to_vec (obstackp,
5110 fixup_symbol_section (arg_sym, objfile),
5111 block, symtab);
5112 }
5113 }
5114 }
5115 \f
5116 /* Field Access */
5117
5118 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5119 to be invisible to users. */
5120
5121 int
5122 ada_is_ignored_field (struct type *type, int field_num)
5123 {
5124 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5125 return 1;
5126 else
5127 {
5128 const char *name = TYPE_FIELD_NAME (type, field_num);
5129 return (name == NULL
5130 || (name[0] == '_' && strncmp (name, "_parent", 7) != 0));
5131 }
5132 }
5133
5134 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5135 pointer or reference type whose ultimate target has a tag field. */
5136
5137 int
5138 ada_is_tagged_type (struct type *type, int refok)
5139 {
5140 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5141 }
5142
5143 /* True iff TYPE represents the type of X'Tag */
5144
5145 int
5146 ada_is_tag_type (struct type *type)
5147 {
5148 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5149 return 0;
5150 else
5151 {
5152 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5153 return (name != NULL
5154 && strcmp (name, "ada__tags__dispatch_table") == 0);
5155 }
5156 }
5157
5158 /* The type of the tag on VAL. */
5159
5160 struct type *
5161 ada_tag_type (struct value *val)
5162 {
5163 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5164 }
5165
5166 /* The value of the tag on VAL. */
5167
5168 struct value *
5169 ada_value_tag (struct value *val)
5170 {
5171 return ada_value_struct_elt (val, "_tag", 0);
5172 }
5173
5174 /* The value of the tag on the object of type TYPE whose contents are
5175 saved at VALADDR, if it is non-null, or is at memory address
5176 ADDRESS. */
5177
5178 static struct value *
5179 value_tag_from_contents_and_address (struct type *type,
5180 const gdb_byte *valaddr,
5181 CORE_ADDR address)
5182 {
5183 int tag_byte_offset, dummy1, dummy2;
5184 struct type *tag_type;
5185 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5186 NULL, NULL, NULL))
5187 {
5188 const gdb_byte *valaddr1 = ((valaddr == NULL)
5189 ? NULL
5190 : valaddr + tag_byte_offset);
5191 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5192
5193 return value_from_contents_and_address (tag_type, valaddr1, address1);
5194 }
5195 return NULL;
5196 }
5197
5198 static struct type *
5199 type_from_tag (struct value *tag)
5200 {
5201 const char *type_name = ada_tag_name (tag);
5202 if (type_name != NULL)
5203 return ada_find_any_type (ada_encode (type_name));
5204 return NULL;
5205 }
5206
5207 struct tag_args
5208 {
5209 struct value *tag;
5210 char *name;
5211 };
5212
5213
5214 static int ada_tag_name_1 (void *);
5215 static int ada_tag_name_2 (struct tag_args *);
5216
5217 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5218 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5219 The value stored in ARGS->name is valid until the next call to
5220 ada_tag_name_1. */
5221
5222 static int
5223 ada_tag_name_1 (void *args0)
5224 {
5225 struct tag_args *args = (struct tag_args *) args0;
5226 static char name[1024];
5227 char *p;
5228 struct value *val;
5229 args->name = NULL;
5230 val = ada_value_struct_elt (args->tag, "tsd", 1);
5231 if (val == NULL)
5232 return ada_tag_name_2 (args);
5233 val = ada_value_struct_elt (val, "expanded_name", 1);
5234 if (val == NULL)
5235 return 0;
5236 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5237 for (p = name; *p != '\0'; p += 1)
5238 if (isalpha (*p))
5239 *p = tolower (*p);
5240 args->name = name;
5241 return 0;
5242 }
5243
5244 /* Utility function for ada_tag_name_1 that tries the second
5245 representation for the dispatch table (in which there is no
5246 explicit 'tsd' field in the referent of the tag pointer, and instead
5247 the tsd pointer is stored just before the dispatch table. */
5248
5249 static int
5250 ada_tag_name_2 (struct tag_args *args)
5251 {
5252 struct type *info_type;
5253 static char name[1024];
5254 char *p;
5255 struct value *val, *valp;
5256
5257 args->name = NULL;
5258 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5259 if (info_type == NULL)
5260 return 0;
5261 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5262 valp = value_cast (info_type, args->tag);
5263 if (valp == NULL)
5264 return 0;
5265 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5266 if (val == NULL)
5267 return 0;
5268 val = ada_value_struct_elt (val, "expanded_name", 1);
5269 if (val == NULL)
5270 return 0;
5271 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5272 for (p = name; *p != '\0'; p += 1)
5273 if (isalpha (*p))
5274 *p = tolower (*p);
5275 args->name = name;
5276 return 0;
5277 }
5278
5279 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5280 * a C string. */
5281
5282 const char *
5283 ada_tag_name (struct value *tag)
5284 {
5285 struct tag_args args;
5286 if (!ada_is_tag_type (value_type (tag)))
5287 return NULL;
5288 args.tag = tag;
5289 args.name = NULL;
5290 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5291 return args.name;
5292 }
5293
5294 /* The parent type of TYPE, or NULL if none. */
5295
5296 struct type *
5297 ada_parent_type (struct type *type)
5298 {
5299 int i;
5300
5301 type = ada_check_typedef (type);
5302
5303 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5304 return NULL;
5305
5306 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5307 if (ada_is_parent_field (type, i))
5308 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5309
5310 return NULL;
5311 }
5312
5313 /* True iff field number FIELD_NUM of structure type TYPE contains the
5314 parent-type (inherited) fields of a derived type. Assumes TYPE is
5315 a structure type with at least FIELD_NUM+1 fields. */
5316
5317 int
5318 ada_is_parent_field (struct type *type, int field_num)
5319 {
5320 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5321 return (name != NULL
5322 && (strncmp (name, "PARENT", 6) == 0
5323 || strncmp (name, "_parent", 7) == 0));
5324 }
5325
5326 /* True iff field number FIELD_NUM of structure type TYPE is a
5327 transparent wrapper field (which should be silently traversed when doing
5328 field selection and flattened when printing). Assumes TYPE is a
5329 structure type with at least FIELD_NUM+1 fields. Such fields are always
5330 structures. */
5331
5332 int
5333 ada_is_wrapper_field (struct type *type, int field_num)
5334 {
5335 const char *name = TYPE_FIELD_NAME (type, field_num);
5336 return (name != NULL
5337 && (strncmp (name, "PARENT", 6) == 0
5338 || strcmp (name, "REP") == 0
5339 || strncmp (name, "_parent", 7) == 0
5340 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5341 }
5342
5343 /* True iff field number FIELD_NUM of structure or union type TYPE
5344 is a variant wrapper. Assumes TYPE is a structure type with at least
5345 FIELD_NUM+1 fields. */
5346
5347 int
5348 ada_is_variant_part (struct type *type, int field_num)
5349 {
5350 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5351 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5352 || (is_dynamic_field (type, field_num)
5353 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5354 == TYPE_CODE_UNION)));
5355 }
5356
5357 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5358 whose discriminants are contained in the record type OUTER_TYPE,
5359 returns the type of the controlling discriminant for the variant. */
5360
5361 struct type *
5362 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5363 {
5364 char *name = ada_variant_discrim_name (var_type);
5365 struct type *type =
5366 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5367 if (type == NULL)
5368 return builtin_type_int;
5369 else
5370 return type;
5371 }
5372
5373 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5374 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5375 represents a 'when others' clause; otherwise 0. */
5376
5377 int
5378 ada_is_others_clause (struct type *type, int field_num)
5379 {
5380 const char *name = TYPE_FIELD_NAME (type, field_num);
5381 return (name != NULL && name[0] == 'O');
5382 }
5383
5384 /* Assuming that TYPE0 is the type of the variant part of a record,
5385 returns the name of the discriminant controlling the variant.
5386 The value is valid until the next call to ada_variant_discrim_name. */
5387
5388 char *
5389 ada_variant_discrim_name (struct type *type0)
5390 {
5391 static char *result = NULL;
5392 static size_t result_len = 0;
5393 struct type *type;
5394 const char *name;
5395 const char *discrim_end;
5396 const char *discrim_start;
5397
5398 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5399 type = TYPE_TARGET_TYPE (type0);
5400 else
5401 type = type0;
5402
5403 name = ada_type_name (type);
5404
5405 if (name == NULL || name[0] == '\000')
5406 return "";
5407
5408 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5409 discrim_end -= 1)
5410 {
5411 if (strncmp (discrim_end, "___XVN", 6) == 0)
5412 break;
5413 }
5414 if (discrim_end == name)
5415 return "";
5416
5417 for (discrim_start = discrim_end; discrim_start != name + 3;
5418 discrim_start -= 1)
5419 {
5420 if (discrim_start == name + 1)
5421 return "";
5422 if ((discrim_start > name + 3
5423 && strncmp (discrim_start - 3, "___", 3) == 0)
5424 || discrim_start[-1] == '.')
5425 break;
5426 }
5427
5428 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5429 strncpy (result, discrim_start, discrim_end - discrim_start);
5430 result[discrim_end - discrim_start] = '\0';
5431 return result;
5432 }
5433
5434 /* Scan STR for a subtype-encoded number, beginning at position K.
5435 Put the position of the character just past the number scanned in
5436 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5437 Return 1 if there was a valid number at the given position, and 0
5438 otherwise. A "subtype-encoded" number consists of the absolute value
5439 in decimal, followed by the letter 'm' to indicate a negative number.
5440 Assumes 0m does not occur. */
5441
5442 int
5443 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5444 {
5445 ULONGEST RU;
5446
5447 if (!isdigit (str[k]))
5448 return 0;
5449
5450 /* Do it the hard way so as not to make any assumption about
5451 the relationship of unsigned long (%lu scan format code) and
5452 LONGEST. */
5453 RU = 0;
5454 while (isdigit (str[k]))
5455 {
5456 RU = RU * 10 + (str[k] - '0');
5457 k += 1;
5458 }
5459
5460 if (str[k] == 'm')
5461 {
5462 if (R != NULL)
5463 *R = (-(LONGEST) (RU - 1)) - 1;
5464 k += 1;
5465 }
5466 else if (R != NULL)
5467 *R = (LONGEST) RU;
5468
5469 /* NOTE on the above: Technically, C does not say what the results of
5470 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5471 number representable as a LONGEST (although either would probably work
5472 in most implementations). When RU>0, the locution in the then branch
5473 above is always equivalent to the negative of RU. */
5474
5475 if (new_k != NULL)
5476 *new_k = k;
5477 return 1;
5478 }
5479
5480 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5481 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5482 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5483
5484 int
5485 ada_in_variant (LONGEST val, struct type *type, int field_num)
5486 {
5487 const char *name = TYPE_FIELD_NAME (type, field_num);
5488 int p;
5489
5490 p = 0;
5491 while (1)
5492 {
5493 switch (name[p])
5494 {
5495 case '\0':
5496 return 0;
5497 case 'S':
5498 {
5499 LONGEST W;
5500 if (!ada_scan_number (name, p + 1, &W, &p))
5501 return 0;
5502 if (val == W)
5503 return 1;
5504 break;
5505 }
5506 case 'R':
5507 {
5508 LONGEST L, U;
5509 if (!ada_scan_number (name, p + 1, &L, &p)
5510 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5511 return 0;
5512 if (val >= L && val <= U)
5513 return 1;
5514 break;
5515 }
5516 case 'O':
5517 return 1;
5518 default:
5519 return 0;
5520 }
5521 }
5522 }
5523
5524 /* FIXME: Lots of redundancy below. Try to consolidate. */
5525
5526 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5527 ARG_TYPE, extract and return the value of one of its (non-static)
5528 fields. FIELDNO says which field. Differs from value_primitive_field
5529 only in that it can handle packed values of arbitrary type. */
5530
5531 static struct value *
5532 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5533 struct type *arg_type)
5534 {
5535 struct type *type;
5536
5537 arg_type = ada_check_typedef (arg_type);
5538 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5539
5540 /* Handle packed fields. */
5541
5542 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5543 {
5544 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5545 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5546
5547 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5548 offset + bit_pos / 8,
5549 bit_pos % 8, bit_size, type);
5550 }
5551 else
5552 return value_primitive_field (arg1, offset, fieldno, arg_type);
5553 }
5554
5555 /* Find field with name NAME in object of type TYPE. If found,
5556 set the following for each argument that is non-null:
5557 - *FIELD_TYPE_P to the field's type;
5558 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5559 an object of that type;
5560 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5561 - *BIT_SIZE_P to its size in bits if the field is packed, and
5562 0 otherwise;
5563 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5564 fields up to but not including the desired field, or by the total
5565 number of fields if not found. A NULL value of NAME never
5566 matches; the function just counts visible fields in this case.
5567
5568 Returns 1 if found, 0 otherwise. */
5569
5570 static int
5571 find_struct_field (char *name, struct type *type, int offset,
5572 struct type **field_type_p,
5573 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5574 int *index_p)
5575 {
5576 int i;
5577
5578 type = ada_check_typedef (type);
5579
5580 if (field_type_p != NULL)
5581 *field_type_p = NULL;
5582 if (byte_offset_p != NULL)
5583 *byte_offset_p = 0;
5584 if (bit_offset_p != NULL)
5585 *bit_offset_p = 0;
5586 if (bit_size_p != NULL)
5587 *bit_size_p = 0;
5588
5589 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5590 {
5591 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5592 int fld_offset = offset + bit_pos / 8;
5593 char *t_field_name = TYPE_FIELD_NAME (type, i);
5594
5595 if (t_field_name == NULL)
5596 continue;
5597
5598 else if (name != NULL && field_name_match (t_field_name, name))
5599 {
5600 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5601 if (field_type_p != NULL)
5602 *field_type_p = TYPE_FIELD_TYPE (type, i);
5603 if (byte_offset_p != NULL)
5604 *byte_offset_p = fld_offset;
5605 if (bit_offset_p != NULL)
5606 *bit_offset_p = bit_pos % 8;
5607 if (bit_size_p != NULL)
5608 *bit_size_p = bit_size;
5609 return 1;
5610 }
5611 else if (ada_is_wrapper_field (type, i))
5612 {
5613 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5614 field_type_p, byte_offset_p, bit_offset_p,
5615 bit_size_p, index_p))
5616 return 1;
5617 }
5618 else if (ada_is_variant_part (type, i))
5619 {
5620 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5621 fixed type?? */
5622 int j;
5623 struct type *field_type
5624 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5625
5626 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5627 {
5628 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5629 fld_offset
5630 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5631 field_type_p, byte_offset_p,
5632 bit_offset_p, bit_size_p, index_p))
5633 return 1;
5634 }
5635 }
5636 else if (index_p != NULL)
5637 *index_p += 1;
5638 }
5639 return 0;
5640 }
5641
5642 /* Number of user-visible fields in record type TYPE. */
5643
5644 static int
5645 num_visible_fields (struct type *type)
5646 {
5647 int n;
5648 n = 0;
5649 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5650 return n;
5651 }
5652
5653 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5654 and search in it assuming it has (class) type TYPE.
5655 If found, return value, else return NULL.
5656
5657 Searches recursively through wrapper fields (e.g., '_parent'). */
5658
5659 static struct value *
5660 ada_search_struct_field (char *name, struct value *arg, int offset,
5661 struct type *type)
5662 {
5663 int i;
5664 type = ada_check_typedef (type);
5665
5666 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5667 {
5668 char *t_field_name = TYPE_FIELD_NAME (type, i);
5669
5670 if (t_field_name == NULL)
5671 continue;
5672
5673 else if (field_name_match (t_field_name, name))
5674 return ada_value_primitive_field (arg, offset, i, type);
5675
5676 else if (ada_is_wrapper_field (type, i))
5677 {
5678 struct value *v = /* Do not let indent join lines here. */
5679 ada_search_struct_field (name, arg,
5680 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5681 TYPE_FIELD_TYPE (type, i));
5682 if (v != NULL)
5683 return v;
5684 }
5685
5686 else if (ada_is_variant_part (type, i))
5687 {
5688 /* PNH: Do we ever get here? See find_struct_field. */
5689 int j;
5690 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5691 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5692
5693 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5694 {
5695 struct value *v = ada_search_struct_field /* Force line break. */
5696 (name, arg,
5697 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5698 TYPE_FIELD_TYPE (field_type, j));
5699 if (v != NULL)
5700 return v;
5701 }
5702 }
5703 }
5704 return NULL;
5705 }
5706
5707 static struct value *ada_index_struct_field_1 (int *, struct value *,
5708 int, struct type *);
5709
5710
5711 /* Return field #INDEX in ARG, where the index is that returned by
5712 * find_struct_field through its INDEX_P argument. Adjust the address
5713 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5714 * If found, return value, else return NULL. */
5715
5716 static struct value *
5717 ada_index_struct_field (int index, struct value *arg, int offset,
5718 struct type *type)
5719 {
5720 return ada_index_struct_field_1 (&index, arg, offset, type);
5721 }
5722
5723
5724 /* Auxiliary function for ada_index_struct_field. Like
5725 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5726 * *INDEX_P. */
5727
5728 static struct value *
5729 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5730 struct type *type)
5731 {
5732 int i;
5733 type = ada_check_typedef (type);
5734
5735 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5736 {
5737 if (TYPE_FIELD_NAME (type, i) == NULL)
5738 continue;
5739 else if (ada_is_wrapper_field (type, i))
5740 {
5741 struct value *v = /* Do not let indent join lines here. */
5742 ada_index_struct_field_1 (index_p, arg,
5743 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5744 TYPE_FIELD_TYPE (type, i));
5745 if (v != NULL)
5746 return v;
5747 }
5748
5749 else if (ada_is_variant_part (type, i))
5750 {
5751 /* PNH: Do we ever get here? See ada_search_struct_field,
5752 find_struct_field. */
5753 error (_("Cannot assign this kind of variant record"));
5754 }
5755 else if (*index_p == 0)
5756 return ada_value_primitive_field (arg, offset, i, type);
5757 else
5758 *index_p -= 1;
5759 }
5760 return NULL;
5761 }
5762
5763 /* Given ARG, a value of type (pointer or reference to a)*
5764 structure/union, extract the component named NAME from the ultimate
5765 target structure/union and return it as a value with its
5766 appropriate type. If ARG is a pointer or reference and the field
5767 is not packed, returns a reference to the field, otherwise the
5768 value of the field (an lvalue if ARG is an lvalue).
5769
5770 The routine searches for NAME among all members of the structure itself
5771 and (recursively) among all members of any wrapper members
5772 (e.g., '_parent').
5773
5774 If NO_ERR, then simply return NULL in case of error, rather than
5775 calling error. */
5776
5777 struct value *
5778 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5779 {
5780 struct type *t, *t1;
5781 struct value *v;
5782
5783 v = NULL;
5784 t1 = t = ada_check_typedef (value_type (arg));
5785 if (TYPE_CODE (t) == TYPE_CODE_REF)
5786 {
5787 t1 = TYPE_TARGET_TYPE (t);
5788 if (t1 == NULL)
5789 goto BadValue;
5790 t1 = ada_check_typedef (t1);
5791 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5792 {
5793 arg = coerce_ref (arg);
5794 t = t1;
5795 }
5796 }
5797
5798 while (TYPE_CODE (t) == TYPE_CODE_PTR)
5799 {
5800 t1 = TYPE_TARGET_TYPE (t);
5801 if (t1 == NULL)
5802 goto BadValue;
5803 t1 = ada_check_typedef (t1);
5804 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
5805 {
5806 arg = value_ind (arg);
5807 t = t1;
5808 }
5809 else
5810 break;
5811 }
5812
5813 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
5814 goto BadValue;
5815
5816 if (t1 == t)
5817 v = ada_search_struct_field (name, arg, 0, t);
5818 else
5819 {
5820 int bit_offset, bit_size, byte_offset;
5821 struct type *field_type;
5822 CORE_ADDR address;
5823
5824 if (TYPE_CODE (t) == TYPE_CODE_PTR)
5825 address = value_as_address (arg);
5826 else
5827 address = unpack_pointer (t, value_contents (arg));
5828
5829 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL);
5830 if (find_struct_field (name, t1, 0,
5831 &field_type, &byte_offset, &bit_offset,
5832 &bit_size, NULL))
5833 {
5834 if (bit_size != 0)
5835 {
5836 if (TYPE_CODE (t) == TYPE_CODE_REF)
5837 arg = ada_coerce_ref (arg);
5838 else
5839 arg = ada_value_ind (arg);
5840 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
5841 bit_offset, bit_size,
5842 field_type);
5843 }
5844 else
5845 v = value_from_pointer (lookup_reference_type (field_type),
5846 address + byte_offset);
5847 }
5848 }
5849
5850 if (v != NULL || no_err)
5851 return v;
5852 else
5853 error (_("There is no member named %s."), name);
5854
5855 BadValue:
5856 if (no_err)
5857 return NULL;
5858 else
5859 error (_("Attempt to extract a component of a value that is not a record."));
5860 }
5861
5862 /* Given a type TYPE, look up the type of the component of type named NAME.
5863 If DISPP is non-null, add its byte displacement from the beginning of a
5864 structure (pointed to by a value) of type TYPE to *DISPP (does not
5865 work for packed fields).
5866
5867 Matches any field whose name has NAME as a prefix, possibly
5868 followed by "___".
5869
5870 TYPE can be either a struct or union. If REFOK, TYPE may also
5871 be a (pointer or reference)+ to a struct or union, and the
5872 ultimate target type will be searched.
5873
5874 Looks recursively into variant clauses and parent types.
5875
5876 If NOERR is nonzero, return NULL if NAME is not suitably defined or
5877 TYPE is not a type of the right kind. */
5878
5879 static struct type *
5880 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
5881 int noerr, int *dispp)
5882 {
5883 int i;
5884
5885 if (name == NULL)
5886 goto BadName;
5887
5888 if (refok && type != NULL)
5889 while (1)
5890 {
5891 type = ada_check_typedef (type);
5892 if (TYPE_CODE (type) != TYPE_CODE_PTR
5893 && TYPE_CODE (type) != TYPE_CODE_REF)
5894 break;
5895 type = TYPE_TARGET_TYPE (type);
5896 }
5897
5898 if (type == NULL
5899 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
5900 && TYPE_CODE (type) != TYPE_CODE_UNION))
5901 {
5902 if (noerr)
5903 return NULL;
5904 else
5905 {
5906 target_terminal_ours ();
5907 gdb_flush (gdb_stdout);
5908 if (type == NULL)
5909 error (_("Type (null) is not a structure or union type"));
5910 else
5911 {
5912 /* XXX: type_sprint */
5913 fprintf_unfiltered (gdb_stderr, _("Type "));
5914 type_print (type, "", gdb_stderr, -1);
5915 error (_(" is not a structure or union type"));
5916 }
5917 }
5918 }
5919
5920 type = to_static_fixed_type (type);
5921
5922 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5923 {
5924 char *t_field_name = TYPE_FIELD_NAME (type, i);
5925 struct type *t;
5926 int disp;
5927
5928 if (t_field_name == NULL)
5929 continue;
5930
5931 else if (field_name_match (t_field_name, name))
5932 {
5933 if (dispp != NULL)
5934 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
5935 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5936 }
5937
5938 else if (ada_is_wrapper_field (type, i))
5939 {
5940 disp = 0;
5941 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
5942 0, 1, &disp);
5943 if (t != NULL)
5944 {
5945 if (dispp != NULL)
5946 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5947 return t;
5948 }
5949 }
5950
5951 else if (ada_is_variant_part (type, i))
5952 {
5953 int j;
5954 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5955
5956 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
5957 {
5958 disp = 0;
5959 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
5960 name, 0, 1, &disp);
5961 if (t != NULL)
5962 {
5963 if (dispp != NULL)
5964 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
5965 return t;
5966 }
5967 }
5968 }
5969
5970 }
5971
5972 BadName:
5973 if (!noerr)
5974 {
5975 target_terminal_ours ();
5976 gdb_flush (gdb_stdout);
5977 if (name == NULL)
5978 {
5979 /* XXX: type_sprint */
5980 fprintf_unfiltered (gdb_stderr, _("Type "));
5981 type_print (type, "", gdb_stderr, -1);
5982 error (_(" has no component named <null>"));
5983 }
5984 else
5985 {
5986 /* XXX: type_sprint */
5987 fprintf_unfiltered (gdb_stderr, _("Type "));
5988 type_print (type, "", gdb_stderr, -1);
5989 error (_(" has no component named %s"), name);
5990 }
5991 }
5992
5993 return NULL;
5994 }
5995
5996 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
5997 within a value of type OUTER_TYPE that is stored in GDB at
5998 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
5999 numbering from 0) is applicable. Returns -1 if none are. */
6000
6001 int
6002 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6003 const gdb_byte *outer_valaddr)
6004 {
6005 int others_clause;
6006 int i;
6007 int disp;
6008 struct type *discrim_type;
6009 char *discrim_name = ada_variant_discrim_name (var_type);
6010 LONGEST discrim_val;
6011
6012 disp = 0;
6013 discrim_type =
6014 ada_lookup_struct_elt_type (outer_type, discrim_name, 1, 1, &disp);
6015 if (discrim_type == NULL)
6016 return -1;
6017 discrim_val = unpack_long (discrim_type, outer_valaddr + disp);
6018
6019 others_clause = -1;
6020 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6021 {
6022 if (ada_is_others_clause (var_type, i))
6023 others_clause = i;
6024 else if (ada_in_variant (discrim_val, var_type, i))
6025 return i;
6026 }
6027
6028 return others_clause;
6029 }
6030 \f
6031
6032
6033 /* Dynamic-Sized Records */
6034
6035 /* Strategy: The type ostensibly attached to a value with dynamic size
6036 (i.e., a size that is not statically recorded in the debugging
6037 data) does not accurately reflect the size or layout of the value.
6038 Our strategy is to convert these values to values with accurate,
6039 conventional types that are constructed on the fly. */
6040
6041 /* There is a subtle and tricky problem here. In general, we cannot
6042 determine the size of dynamic records without its data. However,
6043 the 'struct value' data structure, which GDB uses to represent
6044 quantities in the inferior process (the target), requires the size
6045 of the type at the time of its allocation in order to reserve space
6046 for GDB's internal copy of the data. That's why the
6047 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6048 rather than struct value*s.
6049
6050 However, GDB's internal history variables ($1, $2, etc.) are
6051 struct value*s containing internal copies of the data that are not, in
6052 general, the same as the data at their corresponding addresses in
6053 the target. Fortunately, the types we give to these values are all
6054 conventional, fixed-size types (as per the strategy described
6055 above), so that we don't usually have to perform the
6056 'to_fixed_xxx_type' conversions to look at their values.
6057 Unfortunately, there is one exception: if one of the internal
6058 history variables is an array whose elements are unconstrained
6059 records, then we will need to create distinct fixed types for each
6060 element selected. */
6061
6062 /* The upshot of all of this is that many routines take a (type, host
6063 address, target address) triple as arguments to represent a value.
6064 The host address, if non-null, is supposed to contain an internal
6065 copy of the relevant data; otherwise, the program is to consult the
6066 target at the target address. */
6067
6068 /* Assuming that VAL0 represents a pointer value, the result of
6069 dereferencing it. Differs from value_ind in its treatment of
6070 dynamic-sized types. */
6071
6072 struct value *
6073 ada_value_ind (struct value *val0)
6074 {
6075 struct value *val = unwrap_value (value_ind (val0));
6076 return ada_to_fixed_value (val);
6077 }
6078
6079 /* The value resulting from dereferencing any "reference to"
6080 qualifiers on VAL0. */
6081
6082 static struct value *
6083 ada_coerce_ref (struct value *val0)
6084 {
6085 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6086 {
6087 struct value *val = val0;
6088 val = coerce_ref (val);
6089 val = unwrap_value (val);
6090 return ada_to_fixed_value (val);
6091 }
6092 else
6093 return val0;
6094 }
6095
6096 /* Return OFF rounded upward if necessary to a multiple of
6097 ALIGNMENT (a power of 2). */
6098
6099 static unsigned int
6100 align_value (unsigned int off, unsigned int alignment)
6101 {
6102 return (off + alignment - 1) & ~(alignment - 1);
6103 }
6104
6105 /* Return the bit alignment required for field #F of template type TYPE. */
6106
6107 static unsigned int
6108 field_alignment (struct type *type, int f)
6109 {
6110 const char *name = TYPE_FIELD_NAME (type, f);
6111 int len;
6112 int align_offset;
6113
6114 /* The field name should never be null, unless the debugging information
6115 is somehow malformed. In this case, we assume the field does not
6116 require any alignment. */
6117 if (name == NULL)
6118 return 1;
6119
6120 len = strlen (name);
6121
6122 if (!isdigit (name[len - 1]))
6123 return 1;
6124
6125 if (isdigit (name[len - 2]))
6126 align_offset = len - 2;
6127 else
6128 align_offset = len - 1;
6129
6130 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6131 return TARGET_CHAR_BIT;
6132
6133 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6134 }
6135
6136 /* Find a symbol named NAME. Ignores ambiguity. */
6137
6138 struct symbol *
6139 ada_find_any_symbol (const char *name)
6140 {
6141 struct symbol *sym;
6142
6143 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6144 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6145 return sym;
6146
6147 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6148 return sym;
6149 }
6150
6151 /* Find a type named NAME. Ignores ambiguity. */
6152
6153 struct type *
6154 ada_find_any_type (const char *name)
6155 {
6156 struct symbol *sym = ada_find_any_symbol (name);
6157
6158 if (sym != NULL)
6159 return SYMBOL_TYPE (sym);
6160
6161 return NULL;
6162 }
6163
6164 /* Given a symbol NAME and its associated BLOCK, search all symbols
6165 for its ___XR counterpart, which is the ``renaming'' symbol
6166 associated to NAME. Return this symbol if found, return
6167 NULL otherwise. */
6168
6169 struct symbol *
6170 ada_find_renaming_symbol (const char *name, struct block *block)
6171 {
6172 const struct symbol *function_sym = block_function (block);
6173 char *rename;
6174
6175 if (function_sym != NULL)
6176 {
6177 /* If the symbol is defined inside a function, NAME is not fully
6178 qualified. This means we need to prepend the function name
6179 as well as adding the ``___XR'' suffix to build the name of
6180 the associated renaming symbol. */
6181 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6182 /* Function names sometimes contain suffixes used
6183 for instance to qualify nested subprograms. When building
6184 the XR type name, we need to make sure that this suffix is
6185 not included. So do not include any suffix in the function
6186 name length below. */
6187 const int function_name_len = ada_name_prefix_len (function_name);
6188 const int rename_len = function_name_len + 2 /* "__" */
6189 + strlen (name) + 6 /* "___XR\0" */ ;
6190
6191 /* Strip the suffix if necessary. */
6192 function_name[function_name_len] = '\0';
6193
6194 /* Library-level functions are a special case, as GNAT adds
6195 a ``_ada_'' prefix to the function name to avoid namespace
6196 pollution. However, the renaming symbol themselves do not
6197 have this prefix, so we need to skip this prefix if present. */
6198 if (function_name_len > 5 /* "_ada_" */
6199 && strstr (function_name, "_ada_") == function_name)
6200 function_name = function_name + 5;
6201
6202 rename = (char *) alloca (rename_len * sizeof (char));
6203 sprintf (rename, "%s__%s___XR", function_name, name);
6204 }
6205 else
6206 {
6207 const int rename_len = strlen (name) + 6;
6208 rename = (char *) alloca (rename_len * sizeof (char));
6209 sprintf (rename, "%s___XR", name);
6210 }
6211
6212 return ada_find_any_symbol (rename);
6213 }
6214
6215 /* Because of GNAT encoding conventions, several GDB symbols may match a
6216 given type name. If the type denoted by TYPE0 is to be preferred to
6217 that of TYPE1 for purposes of type printing, return non-zero;
6218 otherwise return 0. */
6219
6220 int
6221 ada_prefer_type (struct type *type0, struct type *type1)
6222 {
6223 if (type1 == NULL)
6224 return 1;
6225 else if (type0 == NULL)
6226 return 0;
6227 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6228 return 1;
6229 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6230 return 0;
6231 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6232 return 1;
6233 else if (ada_is_packed_array_type (type0))
6234 return 1;
6235 else if (ada_is_array_descriptor_type (type0)
6236 && !ada_is_array_descriptor_type (type1))
6237 return 1;
6238 else if (ada_renaming_type (type0) != NULL
6239 && ada_renaming_type (type1) == NULL)
6240 return 1;
6241 return 0;
6242 }
6243
6244 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6245 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6246
6247 char *
6248 ada_type_name (struct type *type)
6249 {
6250 if (type == NULL)
6251 return NULL;
6252 else if (TYPE_NAME (type) != NULL)
6253 return TYPE_NAME (type);
6254 else
6255 return TYPE_TAG_NAME (type);
6256 }
6257
6258 /* Find a parallel type to TYPE whose name is formed by appending
6259 SUFFIX to the name of TYPE. */
6260
6261 struct type *
6262 ada_find_parallel_type (struct type *type, const char *suffix)
6263 {
6264 static char *name;
6265 static size_t name_len = 0;
6266 int len;
6267 char *typename = ada_type_name (type);
6268
6269 if (typename == NULL)
6270 return NULL;
6271
6272 len = strlen (typename);
6273
6274 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6275
6276 strcpy (name, typename);
6277 strcpy (name + len, suffix);
6278
6279 return ada_find_any_type (name);
6280 }
6281
6282
6283 /* If TYPE is a variable-size record type, return the corresponding template
6284 type describing its fields. Otherwise, return NULL. */
6285
6286 static struct type *
6287 dynamic_template_type (struct type *type)
6288 {
6289 type = ada_check_typedef (type);
6290
6291 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6292 || ada_type_name (type) == NULL)
6293 return NULL;
6294 else
6295 {
6296 int len = strlen (ada_type_name (type));
6297 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6298 return type;
6299 else
6300 return ada_find_parallel_type (type, "___XVE");
6301 }
6302 }
6303
6304 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6305 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6306
6307 static int
6308 is_dynamic_field (struct type *templ_type, int field_num)
6309 {
6310 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6311 return name != NULL
6312 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6313 && strstr (name, "___XVL") != NULL;
6314 }
6315
6316 /* The index of the variant field of TYPE, or -1 if TYPE does not
6317 represent a variant record type. */
6318
6319 static int
6320 variant_field_index (struct type *type)
6321 {
6322 int f;
6323
6324 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6325 return -1;
6326
6327 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6328 {
6329 if (ada_is_variant_part (type, f))
6330 return f;
6331 }
6332 return -1;
6333 }
6334
6335 /* A record type with no fields. */
6336
6337 static struct type *
6338 empty_record (struct objfile *objfile)
6339 {
6340 struct type *type = alloc_type (objfile);
6341 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6342 TYPE_NFIELDS (type) = 0;
6343 TYPE_FIELDS (type) = NULL;
6344 TYPE_NAME (type) = "<empty>";
6345 TYPE_TAG_NAME (type) = NULL;
6346 TYPE_FLAGS (type) = 0;
6347 TYPE_LENGTH (type) = 0;
6348 return type;
6349 }
6350
6351 /* An ordinary record type (with fixed-length fields) that describes
6352 the value of type TYPE at VALADDR or ADDRESS (see comments at
6353 the beginning of this section) VAL according to GNAT conventions.
6354 DVAL0 should describe the (portion of a) record that contains any
6355 necessary discriminants. It should be NULL if value_type (VAL) is
6356 an outer-level type (i.e., as opposed to a branch of a variant.) A
6357 variant field (unless unchecked) is replaced by a particular branch
6358 of the variant.
6359
6360 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6361 length are not statically known are discarded. As a consequence,
6362 VALADDR, ADDRESS and DVAL0 are ignored.
6363
6364 NOTE: Limitations: For now, we assume that dynamic fields and
6365 variants occupy whole numbers of bytes. However, they need not be
6366 byte-aligned. */
6367
6368 struct type *
6369 ada_template_to_fixed_record_type_1 (struct type *type,
6370 const gdb_byte *valaddr,
6371 CORE_ADDR address, struct value *dval0,
6372 int keep_dynamic_fields)
6373 {
6374 struct value *mark = value_mark ();
6375 struct value *dval;
6376 struct type *rtype;
6377 int nfields, bit_len;
6378 int variant_field;
6379 long off;
6380 int fld_bit_len, bit_incr;
6381 int f;
6382
6383 /* Compute the number of fields in this record type that are going
6384 to be processed: unless keep_dynamic_fields, this includes only
6385 fields whose position and length are static will be processed. */
6386 if (keep_dynamic_fields)
6387 nfields = TYPE_NFIELDS (type);
6388 else
6389 {
6390 nfields = 0;
6391 while (nfields < TYPE_NFIELDS (type)
6392 && !ada_is_variant_part (type, nfields)
6393 && !is_dynamic_field (type, nfields))
6394 nfields++;
6395 }
6396
6397 rtype = alloc_type (TYPE_OBJFILE (type));
6398 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6399 INIT_CPLUS_SPECIFIC (rtype);
6400 TYPE_NFIELDS (rtype) = nfields;
6401 TYPE_FIELDS (rtype) = (struct field *)
6402 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6403 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6404 TYPE_NAME (rtype) = ada_type_name (type);
6405 TYPE_TAG_NAME (rtype) = NULL;
6406 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6407
6408 off = 0;
6409 bit_len = 0;
6410 variant_field = -1;
6411
6412 for (f = 0; f < nfields; f += 1)
6413 {
6414 off = align_value (off, field_alignment (type, f))
6415 + TYPE_FIELD_BITPOS (type, f);
6416 TYPE_FIELD_BITPOS (rtype, f) = off;
6417 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6418
6419 if (ada_is_variant_part (type, f))
6420 {
6421 variant_field = f;
6422 fld_bit_len = bit_incr = 0;
6423 }
6424 else if (is_dynamic_field (type, f))
6425 {
6426 if (dval0 == NULL)
6427 dval = value_from_contents_and_address (rtype, valaddr, address);
6428 else
6429 dval = dval0;
6430
6431 TYPE_FIELD_TYPE (rtype, f) =
6432 ada_to_fixed_type
6433 (ada_get_base_type
6434 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6435 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6436 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6437 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6438 bit_incr = fld_bit_len =
6439 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6440 }
6441 else
6442 {
6443 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6444 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6445 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6446 bit_incr = fld_bit_len =
6447 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6448 else
6449 bit_incr = fld_bit_len =
6450 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6451 }
6452 if (off + fld_bit_len > bit_len)
6453 bit_len = off + fld_bit_len;
6454 off += bit_incr;
6455 TYPE_LENGTH (rtype) =
6456 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6457 }
6458
6459 /* We handle the variant part, if any, at the end because of certain
6460 odd cases in which it is re-ordered so as NOT the last field of
6461 the record. This can happen in the presence of representation
6462 clauses. */
6463 if (variant_field >= 0)
6464 {
6465 struct type *branch_type;
6466
6467 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6468
6469 if (dval0 == NULL)
6470 dval = value_from_contents_and_address (rtype, valaddr, address);
6471 else
6472 dval = dval0;
6473
6474 branch_type =
6475 to_fixed_variant_branch_type
6476 (TYPE_FIELD_TYPE (type, variant_field),
6477 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6478 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6479 if (branch_type == NULL)
6480 {
6481 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6482 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6483 TYPE_NFIELDS (rtype) -= 1;
6484 }
6485 else
6486 {
6487 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6488 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6489 fld_bit_len =
6490 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6491 TARGET_CHAR_BIT;
6492 if (off + fld_bit_len > bit_len)
6493 bit_len = off + fld_bit_len;
6494 TYPE_LENGTH (rtype) =
6495 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6496 }
6497 }
6498
6499 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6500 should contain the alignment of that record, which should be a strictly
6501 positive value. If null or negative, then something is wrong, most
6502 probably in the debug info. In that case, we don't round up the size
6503 of the resulting type. If this record is not part of another structure,
6504 the current RTYPE length might be good enough for our purposes. */
6505 if (TYPE_LENGTH (type) <= 0)
6506 {
6507 if (TYPE_NAME (rtype))
6508 warning (_("Invalid type size for `%s' detected: %d."),
6509 TYPE_NAME (rtype), TYPE_LENGTH (type));
6510 else
6511 warning (_("Invalid type size for <unnamed> detected: %d."),
6512 TYPE_LENGTH (type));
6513 }
6514 else
6515 {
6516 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6517 TYPE_LENGTH (type));
6518 }
6519
6520 value_free_to_mark (mark);
6521 if (TYPE_LENGTH (rtype) > varsize_limit)
6522 error (_("record type with dynamic size is larger than varsize-limit"));
6523 return rtype;
6524 }
6525
6526 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6527 of 1. */
6528
6529 static struct type *
6530 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6531 CORE_ADDR address, struct value *dval0)
6532 {
6533 return ada_template_to_fixed_record_type_1 (type, valaddr,
6534 address, dval0, 1);
6535 }
6536
6537 /* An ordinary record type in which ___XVL-convention fields and
6538 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6539 static approximations, containing all possible fields. Uses
6540 no runtime values. Useless for use in values, but that's OK,
6541 since the results are used only for type determinations. Works on both
6542 structs and unions. Representation note: to save space, we memorize
6543 the result of this function in the TYPE_TARGET_TYPE of the
6544 template type. */
6545
6546 static struct type *
6547 template_to_static_fixed_type (struct type *type0)
6548 {
6549 struct type *type;
6550 int nfields;
6551 int f;
6552
6553 if (TYPE_TARGET_TYPE (type0) != NULL)
6554 return TYPE_TARGET_TYPE (type0);
6555
6556 nfields = TYPE_NFIELDS (type0);
6557 type = type0;
6558
6559 for (f = 0; f < nfields; f += 1)
6560 {
6561 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6562 struct type *new_type;
6563
6564 if (is_dynamic_field (type0, f))
6565 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6566 else
6567 new_type = to_static_fixed_type (field_type);
6568 if (type == type0 && new_type != field_type)
6569 {
6570 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6571 TYPE_CODE (type) = TYPE_CODE (type0);
6572 INIT_CPLUS_SPECIFIC (type);
6573 TYPE_NFIELDS (type) = nfields;
6574 TYPE_FIELDS (type) = (struct field *)
6575 TYPE_ALLOC (type, nfields * sizeof (struct field));
6576 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6577 sizeof (struct field) * nfields);
6578 TYPE_NAME (type) = ada_type_name (type0);
6579 TYPE_TAG_NAME (type) = NULL;
6580 TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE;
6581 TYPE_LENGTH (type) = 0;
6582 }
6583 TYPE_FIELD_TYPE (type, f) = new_type;
6584 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6585 }
6586 return type;
6587 }
6588
6589 /* Given an object of type TYPE whose contents are at VALADDR and
6590 whose address in memory is ADDRESS, returns a revision of TYPE --
6591 a non-dynamic-sized record with a variant part -- in which
6592 the variant part is replaced with the appropriate branch. Looks
6593 for discriminant values in DVAL0, which can be NULL if the record
6594 contains the necessary discriminant values. */
6595
6596 static struct type *
6597 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6598 CORE_ADDR address, struct value *dval0)
6599 {
6600 struct value *mark = value_mark ();
6601 struct value *dval;
6602 struct type *rtype;
6603 struct type *branch_type;
6604 int nfields = TYPE_NFIELDS (type);
6605 int variant_field = variant_field_index (type);
6606
6607 if (variant_field == -1)
6608 return type;
6609
6610 if (dval0 == NULL)
6611 dval = value_from_contents_and_address (type, valaddr, address);
6612 else
6613 dval = dval0;
6614
6615 rtype = alloc_type (TYPE_OBJFILE (type));
6616 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6617 INIT_CPLUS_SPECIFIC (rtype);
6618 TYPE_NFIELDS (rtype) = nfields;
6619 TYPE_FIELDS (rtype) =
6620 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6621 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6622 sizeof (struct field) * nfields);
6623 TYPE_NAME (rtype) = ada_type_name (type);
6624 TYPE_TAG_NAME (rtype) = NULL;
6625 TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;
6626 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6627
6628 branch_type = to_fixed_variant_branch_type
6629 (TYPE_FIELD_TYPE (type, variant_field),
6630 cond_offset_host (valaddr,
6631 TYPE_FIELD_BITPOS (type, variant_field)
6632 / TARGET_CHAR_BIT),
6633 cond_offset_target (address,
6634 TYPE_FIELD_BITPOS (type, variant_field)
6635 / TARGET_CHAR_BIT), dval);
6636 if (branch_type == NULL)
6637 {
6638 int f;
6639 for (f = variant_field + 1; f < nfields; f += 1)
6640 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6641 TYPE_NFIELDS (rtype) -= 1;
6642 }
6643 else
6644 {
6645 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6646 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6647 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
6648 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
6649 }
6650 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
6651
6652 value_free_to_mark (mark);
6653 return rtype;
6654 }
6655
6656 /* An ordinary record type (with fixed-length fields) that describes
6657 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
6658 beginning of this section]. Any necessary discriminants' values
6659 should be in DVAL, a record value; it may be NULL if the object
6660 at ADDR itself contains any necessary discriminant values.
6661 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
6662 values from the record are needed. Except in the case that DVAL,
6663 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
6664 unchecked) is replaced by a particular branch of the variant.
6665
6666 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
6667 is questionable and may be removed. It can arise during the
6668 processing of an unconstrained-array-of-record type where all the
6669 variant branches have exactly the same size. This is because in
6670 such cases, the compiler does not bother to use the XVS convention
6671 when encoding the record. I am currently dubious of this
6672 shortcut and suspect the compiler should be altered. FIXME. */
6673
6674 static struct type *
6675 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
6676 CORE_ADDR address, struct value *dval)
6677 {
6678 struct type *templ_type;
6679
6680 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6681 return type0;
6682
6683 templ_type = dynamic_template_type (type0);
6684
6685 if (templ_type != NULL)
6686 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
6687 else if (variant_field_index (type0) >= 0)
6688 {
6689 if (dval == NULL && valaddr == NULL && address == 0)
6690 return type0;
6691 return to_record_with_fixed_variant_part (type0, valaddr, address,
6692 dval);
6693 }
6694 else
6695 {
6696 TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE;
6697 return type0;
6698 }
6699
6700 }
6701
6702 /* An ordinary record type (with fixed-length fields) that describes
6703 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
6704 union type. Any necessary discriminants' values should be in DVAL,
6705 a record value. That is, this routine selects the appropriate
6706 branch of the union at ADDR according to the discriminant value
6707 indicated in the union's type name. */
6708
6709 static struct type *
6710 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
6711 CORE_ADDR address, struct value *dval)
6712 {
6713 int which;
6714 struct type *templ_type;
6715 struct type *var_type;
6716
6717 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
6718 var_type = TYPE_TARGET_TYPE (var_type0);
6719 else
6720 var_type = var_type0;
6721
6722 templ_type = ada_find_parallel_type (var_type, "___XVU");
6723
6724 if (templ_type != NULL)
6725 var_type = templ_type;
6726
6727 which =
6728 ada_which_variant_applies (var_type,
6729 value_type (dval), value_contents (dval));
6730
6731 if (which < 0)
6732 return empty_record (TYPE_OBJFILE (var_type));
6733 else if (is_dynamic_field (var_type, which))
6734 return to_fixed_record_type
6735 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
6736 valaddr, address, dval);
6737 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
6738 return
6739 to_fixed_record_type
6740 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
6741 else
6742 return TYPE_FIELD_TYPE (var_type, which);
6743 }
6744
6745 /* Assuming that TYPE0 is an array type describing the type of a value
6746 at ADDR, and that DVAL describes a record containing any
6747 discriminants used in TYPE0, returns a type for the value that
6748 contains no dynamic components (that is, no components whose sizes
6749 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
6750 true, gives an error message if the resulting type's size is over
6751 varsize_limit. */
6752
6753 static struct type *
6754 to_fixed_array_type (struct type *type0, struct value *dval,
6755 int ignore_too_big)
6756 {
6757 struct type *index_type_desc;
6758 struct type *result;
6759
6760 if (ada_is_packed_array_type (type0) /* revisit? */
6761 || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
6762 return type0;
6763
6764 index_type_desc = ada_find_parallel_type (type0, "___XA");
6765 if (index_type_desc == NULL)
6766 {
6767 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
6768 /* NOTE: elt_type---the fixed version of elt_type0---should never
6769 depend on the contents of the array in properly constructed
6770 debugging data. */
6771 /* Create a fixed version of the array element type.
6772 We're not providing the address of an element here,
6773 and thus the actual object value cannot be inspected to do
6774 the conversion. This should not be a problem, since arrays of
6775 unconstrained objects are not allowed. In particular, all
6776 the elements of an array of a tagged type should all be of
6777 the same type specified in the debugging info. No need to
6778 consult the object tag. */
6779 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);
6780
6781 if (elt_type0 == elt_type)
6782 result = type0;
6783 else
6784 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6785 elt_type, TYPE_INDEX_TYPE (type0));
6786 }
6787 else
6788 {
6789 int i;
6790 struct type *elt_type0;
6791
6792 elt_type0 = type0;
6793 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
6794 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
6795
6796 /* NOTE: result---the fixed version of elt_type0---should never
6797 depend on the contents of the array in properly constructed
6798 debugging data. */
6799 /* Create a fixed version of the array element type.
6800 We're not providing the address of an element here,
6801 and thus the actual object value cannot be inspected to do
6802 the conversion. This should not be a problem, since arrays of
6803 unconstrained objects are not allowed. In particular, all
6804 the elements of an array of a tagged type should all be of
6805 the same type specified in the debugging info. No need to
6806 consult the object tag. */
6807 result = ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval);
6808 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
6809 {
6810 struct type *range_type =
6811 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
6812 dval, TYPE_OBJFILE (type0));
6813 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
6814 result, range_type);
6815 }
6816 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
6817 error (_("array type with dynamic size is larger than varsize-limit"));
6818 }
6819
6820 TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE;
6821 return result;
6822 }
6823
6824
6825 /* A standard type (containing no dynamically sized components)
6826 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
6827 DVAL describes a record containing any discriminants used in TYPE0,
6828 and may be NULL if there are none, or if the object of type TYPE at
6829 ADDRESS or in VALADDR contains these discriminants.
6830
6831 In the case of tagged types, this function attempts to locate the object's
6832 tag and use it to compute the actual type. However, when ADDRESS is null,
6833 we cannot use it to determine the location of the tag, and therefore
6834 compute the tagged type's actual type. So we return the tagged type
6835 without consulting the tag. */
6836
6837 struct type *
6838 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
6839 CORE_ADDR address, struct value *dval)
6840 {
6841 type = ada_check_typedef (type);
6842 switch (TYPE_CODE (type))
6843 {
6844 default:
6845 return type;
6846 case TYPE_CODE_STRUCT:
6847 {
6848 struct type *static_type = to_static_fixed_type (type);
6849
6850 /* If STATIC_TYPE is a tagged type and we know the object's address,
6851 then we can determine its tag, and compute the object's actual
6852 type from there. */
6853
6854 if (address != 0 && ada_is_tagged_type (static_type, 0))
6855 {
6856 struct type *real_type =
6857 type_from_tag (value_tag_from_contents_and_address (static_type,
6858 valaddr,
6859 address));
6860 if (real_type != NULL)
6861 type = real_type;
6862 }
6863 return to_fixed_record_type (type, valaddr, address, NULL);
6864 }
6865 case TYPE_CODE_ARRAY:
6866 return to_fixed_array_type (type, dval, 1);
6867 case TYPE_CODE_UNION:
6868 if (dval == NULL)
6869 return type;
6870 else
6871 return to_fixed_variant_branch_type (type, valaddr, address, dval);
6872 }
6873 }
6874
6875 /* A standard (static-sized) type corresponding as well as possible to
6876 TYPE0, but based on no runtime data. */
6877
6878 static struct type *
6879 to_static_fixed_type (struct type *type0)
6880 {
6881 struct type *type;
6882
6883 if (type0 == NULL)
6884 return NULL;
6885
6886 if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
6887 return type0;
6888
6889 type0 = ada_check_typedef (type0);
6890
6891 switch (TYPE_CODE (type0))
6892 {
6893 default:
6894 return type0;
6895 case TYPE_CODE_STRUCT:
6896 type = dynamic_template_type (type0);
6897 if (type != NULL)
6898 return template_to_static_fixed_type (type);
6899 else
6900 return template_to_static_fixed_type (type0);
6901 case TYPE_CODE_UNION:
6902 type = ada_find_parallel_type (type0, "___XVU");
6903 if (type != NULL)
6904 return template_to_static_fixed_type (type);
6905 else
6906 return template_to_static_fixed_type (type0);
6907 }
6908 }
6909
6910 /* A static approximation of TYPE with all type wrappers removed. */
6911
6912 static struct type *
6913 static_unwrap_type (struct type *type)
6914 {
6915 if (ada_is_aligner_type (type))
6916 {
6917 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
6918 if (ada_type_name (type1) == NULL)
6919 TYPE_NAME (type1) = ada_type_name (type);
6920
6921 return static_unwrap_type (type1);
6922 }
6923 else
6924 {
6925 struct type *raw_real_type = ada_get_base_type (type);
6926 if (raw_real_type == type)
6927 return type;
6928 else
6929 return to_static_fixed_type (raw_real_type);
6930 }
6931 }
6932
6933 /* In some cases, incomplete and private types require
6934 cross-references that are not resolved as records (for example,
6935 type Foo;
6936 type FooP is access Foo;
6937 V: FooP;
6938 type Foo is array ...;
6939 ). In these cases, since there is no mechanism for producing
6940 cross-references to such types, we instead substitute for FooP a
6941 stub enumeration type that is nowhere resolved, and whose tag is
6942 the name of the actual type. Call these types "non-record stubs". */
6943
6944 /* A type equivalent to TYPE that is not a non-record stub, if one
6945 exists, otherwise TYPE. */
6946
6947 struct type *
6948 ada_check_typedef (struct type *type)
6949 {
6950 CHECK_TYPEDEF (type);
6951 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
6952 || !TYPE_STUB (type)
6953 || TYPE_TAG_NAME (type) == NULL)
6954 return type;
6955 else
6956 {
6957 char *name = TYPE_TAG_NAME (type);
6958 struct type *type1 = ada_find_any_type (name);
6959 return (type1 == NULL) ? type : type1;
6960 }
6961 }
6962
6963 /* A value representing the data at VALADDR/ADDRESS as described by
6964 type TYPE0, but with a standard (static-sized) type that correctly
6965 describes it. If VAL0 is not NULL and TYPE0 already is a standard
6966 type, then return VAL0 [this feature is simply to avoid redundant
6967 creation of struct values]. */
6968
6969 static struct value *
6970 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
6971 struct value *val0)
6972 {
6973 struct type *type = ada_to_fixed_type (type0, 0, address, NULL);
6974 if (type == type0 && val0 != NULL)
6975 return val0;
6976 else
6977 return value_from_contents_and_address (type, 0, address);
6978 }
6979
6980 /* A value representing VAL, but with a standard (static-sized) type
6981 that correctly describes it. Does not necessarily create a new
6982 value. */
6983
6984 static struct value *
6985 ada_to_fixed_value (struct value *val)
6986 {
6987 return ada_to_fixed_value_create (value_type (val),
6988 VALUE_ADDRESS (val) + value_offset (val),
6989 val);
6990 }
6991
6992 /* A value representing VAL, but with a standard (static-sized) type
6993 chosen to approximate the real type of VAL as well as possible, but
6994 without consulting any runtime values. For Ada dynamic-sized
6995 types, therefore, the type of the result is likely to be inaccurate. */
6996
6997 struct value *
6998 ada_to_static_fixed_value (struct value *val)
6999 {
7000 struct type *type =
7001 to_static_fixed_type (static_unwrap_type (value_type (val)));
7002 if (type == value_type (val))
7003 return val;
7004 else
7005 return coerce_unspec_val_to_type (val, type);
7006 }
7007 \f
7008
7009 /* Attributes */
7010
7011 /* Table mapping attribute numbers to names.
7012 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7013
7014 static const char *attribute_names[] = {
7015 "<?>",
7016
7017 "first",
7018 "last",
7019 "length",
7020 "image",
7021 "max",
7022 "min",
7023 "modulus",
7024 "pos",
7025 "size",
7026 "tag",
7027 "val",
7028 0
7029 };
7030
7031 const char *
7032 ada_attribute_name (enum exp_opcode n)
7033 {
7034 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7035 return attribute_names[n - OP_ATR_FIRST + 1];
7036 else
7037 return attribute_names[0];
7038 }
7039
7040 /* Evaluate the 'POS attribute applied to ARG. */
7041
7042 static LONGEST
7043 pos_atr (struct value *arg)
7044 {
7045 struct type *type = value_type (arg);
7046
7047 if (!discrete_type_p (type))
7048 error (_("'POS only defined on discrete types"));
7049
7050 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7051 {
7052 int i;
7053 LONGEST v = value_as_long (arg);
7054
7055 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7056 {
7057 if (v == TYPE_FIELD_BITPOS (type, i))
7058 return i;
7059 }
7060 error (_("enumeration value is invalid: can't find 'POS"));
7061 }
7062 else
7063 return value_as_long (arg);
7064 }
7065
7066 static struct value *
7067 value_pos_atr (struct value *arg)
7068 {
7069 return value_from_longest (builtin_type_int, pos_atr (arg));
7070 }
7071
7072 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7073
7074 static struct value *
7075 value_val_atr (struct type *type, struct value *arg)
7076 {
7077 if (!discrete_type_p (type))
7078 error (_("'VAL only defined on discrete types"));
7079 if (!integer_type_p (value_type (arg)))
7080 error (_("'VAL requires integral argument"));
7081
7082 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7083 {
7084 long pos = value_as_long (arg);
7085 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7086 error (_("argument to 'VAL out of range"));
7087 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7088 }
7089 else
7090 return value_from_longest (type, value_as_long (arg));
7091 }
7092 \f
7093
7094 /* Evaluation */
7095
7096 /* True if TYPE appears to be an Ada character type.
7097 [At the moment, this is true only for Character and Wide_Character;
7098 It is a heuristic test that could stand improvement]. */
7099
7100 int
7101 ada_is_character_type (struct type *type)
7102 {
7103 const char *name = ada_type_name (type);
7104 return
7105 name != NULL
7106 && (TYPE_CODE (type) == TYPE_CODE_CHAR
7107 || TYPE_CODE (type) == TYPE_CODE_INT
7108 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7109 && (strcmp (name, "character") == 0
7110 || strcmp (name, "wide_character") == 0
7111 || strcmp (name, "unsigned char") == 0);
7112 }
7113
7114 /* True if TYPE appears to be an Ada string type. */
7115
7116 int
7117 ada_is_string_type (struct type *type)
7118 {
7119 type = ada_check_typedef (type);
7120 if (type != NULL
7121 && TYPE_CODE (type) != TYPE_CODE_PTR
7122 && (ada_is_simple_array_type (type)
7123 || ada_is_array_descriptor_type (type))
7124 && ada_array_arity (type) == 1)
7125 {
7126 struct type *elttype = ada_array_element_type (type, 1);
7127
7128 return ada_is_character_type (elttype);
7129 }
7130 else
7131 return 0;
7132 }
7133
7134
7135 /* True if TYPE is a struct type introduced by the compiler to force the
7136 alignment of a value. Such types have a single field with a
7137 distinctive name. */
7138
7139 int
7140 ada_is_aligner_type (struct type *type)
7141 {
7142 type = ada_check_typedef (type);
7143
7144 /* If we can find a parallel XVS type, then the XVS type should
7145 be used instead of this type. And hence, this is not an aligner
7146 type. */
7147 if (ada_find_parallel_type (type, "___XVS") != NULL)
7148 return 0;
7149
7150 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7151 && TYPE_NFIELDS (type) == 1
7152 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7153 }
7154
7155 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7156 the parallel type. */
7157
7158 struct type *
7159 ada_get_base_type (struct type *raw_type)
7160 {
7161 struct type *real_type_namer;
7162 struct type *raw_real_type;
7163
7164 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7165 return raw_type;
7166
7167 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7168 if (real_type_namer == NULL
7169 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7170 || TYPE_NFIELDS (real_type_namer) != 1)
7171 return raw_type;
7172
7173 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7174 if (raw_real_type == NULL)
7175 return raw_type;
7176 else
7177 return raw_real_type;
7178 }
7179
7180 /* The type of value designated by TYPE, with all aligners removed. */
7181
7182 struct type *
7183 ada_aligned_type (struct type *type)
7184 {
7185 if (ada_is_aligner_type (type))
7186 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7187 else
7188 return ada_get_base_type (type);
7189 }
7190
7191
7192 /* The address of the aligned value in an object at address VALADDR
7193 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7194
7195 const gdb_byte *
7196 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7197 {
7198 if (ada_is_aligner_type (type))
7199 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7200 valaddr +
7201 TYPE_FIELD_BITPOS (type,
7202 0) / TARGET_CHAR_BIT);
7203 else
7204 return valaddr;
7205 }
7206
7207
7208
7209 /* The printed representation of an enumeration literal with encoded
7210 name NAME. The value is good to the next call of ada_enum_name. */
7211 const char *
7212 ada_enum_name (const char *name)
7213 {
7214 static char *result;
7215 static size_t result_len = 0;
7216 char *tmp;
7217
7218 /* First, unqualify the enumeration name:
7219 1. Search for the last '.' character. If we find one, then skip
7220 all the preceeding characters, the unqualified name starts
7221 right after that dot.
7222 2. Otherwise, we may be debugging on a target where the compiler
7223 translates dots into "__". Search forward for double underscores,
7224 but stop searching when we hit an overloading suffix, which is
7225 of the form "__" followed by digits. */
7226
7227 tmp = strrchr (name, '.');
7228 if (tmp != NULL)
7229 name = tmp + 1;
7230 else
7231 {
7232 while ((tmp = strstr (name, "__")) != NULL)
7233 {
7234 if (isdigit (tmp[2]))
7235 break;
7236 else
7237 name = tmp + 2;
7238 }
7239 }
7240
7241 if (name[0] == 'Q')
7242 {
7243 int v;
7244 if (name[1] == 'U' || name[1] == 'W')
7245 {
7246 if (sscanf (name + 2, "%x", &v) != 1)
7247 return name;
7248 }
7249 else
7250 return name;
7251
7252 GROW_VECT (result, result_len, 16);
7253 if (isascii (v) && isprint (v))
7254 sprintf (result, "'%c'", v);
7255 else if (name[1] == 'U')
7256 sprintf (result, "[\"%02x\"]", v);
7257 else
7258 sprintf (result, "[\"%04x\"]", v);
7259
7260 return result;
7261 }
7262 else
7263 {
7264 tmp = strstr (name, "__");
7265 if (tmp == NULL)
7266 tmp = strstr (name, "$");
7267 if (tmp != NULL)
7268 {
7269 GROW_VECT (result, result_len, tmp - name + 1);
7270 strncpy (result, name, tmp - name);
7271 result[tmp - name] = '\0';
7272 return result;
7273 }
7274
7275 return name;
7276 }
7277 }
7278
7279 static struct value *
7280 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7281 enum noside noside)
7282 {
7283 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7284 (expect_type, exp, pos, noside);
7285 }
7286
7287 /* Evaluate the subexpression of EXP starting at *POS as for
7288 evaluate_type, updating *POS to point just past the evaluated
7289 expression. */
7290
7291 static struct value *
7292 evaluate_subexp_type (struct expression *exp, int *pos)
7293 {
7294 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7295 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7296 }
7297
7298 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7299 value it wraps. */
7300
7301 static struct value *
7302 unwrap_value (struct value *val)
7303 {
7304 struct type *type = ada_check_typedef (value_type (val));
7305 if (ada_is_aligner_type (type))
7306 {
7307 struct value *v = value_struct_elt (&val, NULL, "F",
7308 NULL, "internal structure");
7309 struct type *val_type = ada_check_typedef (value_type (v));
7310 if (ada_type_name (val_type) == NULL)
7311 TYPE_NAME (val_type) = ada_type_name (type);
7312
7313 return unwrap_value (v);
7314 }
7315 else
7316 {
7317 struct type *raw_real_type =
7318 ada_check_typedef (ada_get_base_type (type));
7319
7320 if (type == raw_real_type)
7321 return val;
7322
7323 return
7324 coerce_unspec_val_to_type
7325 (val, ada_to_fixed_type (raw_real_type, 0,
7326 VALUE_ADDRESS (val) + value_offset (val),
7327 NULL));
7328 }
7329 }
7330
7331 static struct value *
7332 cast_to_fixed (struct type *type, struct value *arg)
7333 {
7334 LONGEST val;
7335
7336 if (type == value_type (arg))
7337 return arg;
7338 else if (ada_is_fixed_point_type (value_type (arg)))
7339 val = ada_float_to_fixed (type,
7340 ada_fixed_to_float (value_type (arg),
7341 value_as_long (arg)));
7342 else
7343 {
7344 DOUBLEST argd =
7345 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7346 val = ada_float_to_fixed (type, argd);
7347 }
7348
7349 return value_from_longest (type, val);
7350 }
7351
7352 static struct value *
7353 cast_from_fixed_to_double (struct value *arg)
7354 {
7355 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7356 value_as_long (arg));
7357 return value_from_double (builtin_type_double, val);
7358 }
7359
7360 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7361 return the converted value. */
7362
7363 static struct value *
7364 coerce_for_assign (struct type *type, struct value *val)
7365 {
7366 struct type *type2 = value_type (val);
7367 if (type == type2)
7368 return val;
7369
7370 type2 = ada_check_typedef (type2);
7371 type = ada_check_typedef (type);
7372
7373 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7374 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7375 {
7376 val = ada_value_ind (val);
7377 type2 = value_type (val);
7378 }
7379
7380 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7381 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7382 {
7383 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7384 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7385 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7386 error (_("Incompatible types in assignment"));
7387 deprecated_set_value_type (val, type);
7388 }
7389 return val;
7390 }
7391
7392 static struct value *
7393 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7394 {
7395 struct value *val;
7396 struct type *type1, *type2;
7397 LONGEST v, v1, v2;
7398
7399 arg1 = coerce_ref (arg1);
7400 arg2 = coerce_ref (arg2);
7401 type1 = base_type (ada_check_typedef (value_type (arg1)));
7402 type2 = base_type (ada_check_typedef (value_type (arg2)));
7403
7404 if (TYPE_CODE (type1) != TYPE_CODE_INT
7405 || TYPE_CODE (type2) != TYPE_CODE_INT)
7406 return value_binop (arg1, arg2, op);
7407
7408 switch (op)
7409 {
7410 case BINOP_MOD:
7411 case BINOP_DIV:
7412 case BINOP_REM:
7413 break;
7414 default:
7415 return value_binop (arg1, arg2, op);
7416 }
7417
7418 v2 = value_as_long (arg2);
7419 if (v2 == 0)
7420 error (_("second operand of %s must not be zero."), op_string (op));
7421
7422 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7423 return value_binop (arg1, arg2, op);
7424
7425 v1 = value_as_long (arg1);
7426 switch (op)
7427 {
7428 case BINOP_DIV:
7429 v = v1 / v2;
7430 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7431 v += v > 0 ? -1 : 1;
7432 break;
7433 case BINOP_REM:
7434 v = v1 % v2;
7435 if (v * v1 < 0)
7436 v -= v2;
7437 break;
7438 default:
7439 /* Should not reach this point. */
7440 v = 0;
7441 }
7442
7443 val = allocate_value (type1);
7444 store_unsigned_integer (value_contents_raw (val),
7445 TYPE_LENGTH (value_type (val)), v);
7446 return val;
7447 }
7448
7449 static int
7450 ada_value_equal (struct value *arg1, struct value *arg2)
7451 {
7452 if (ada_is_direct_array_type (value_type (arg1))
7453 || ada_is_direct_array_type (value_type (arg2)))
7454 {
7455 arg1 = ada_coerce_to_simple_array (arg1);
7456 arg2 = ada_coerce_to_simple_array (arg2);
7457 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7458 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7459 error (_("Attempt to compare array with non-array"));
7460 /* FIXME: The following works only for types whose
7461 representations use all bits (no padding or undefined bits)
7462 and do not have user-defined equality. */
7463 return
7464 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7465 && memcmp (value_contents (arg1), value_contents (arg2),
7466 TYPE_LENGTH (value_type (arg1))) == 0;
7467 }
7468 return value_equal (arg1, arg2);
7469 }
7470
7471 /* Total number of component associations in the aggregate starting at
7472 index PC in EXP. Assumes that index PC is the start of an
7473 OP_AGGREGATE. */
7474
7475 static int
7476 num_component_specs (struct expression *exp, int pc)
7477 {
7478 int n, m, i;
7479 m = exp->elts[pc + 1].longconst;
7480 pc += 3;
7481 n = 0;
7482 for (i = 0; i < m; i += 1)
7483 {
7484 switch (exp->elts[pc].opcode)
7485 {
7486 default:
7487 n += 1;
7488 break;
7489 case OP_CHOICES:
7490 n += exp->elts[pc + 1].longconst;
7491 break;
7492 }
7493 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7494 }
7495 return n;
7496 }
7497
7498 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7499 component of LHS (a simple array or a record), updating *POS past
7500 the expression, assuming that LHS is contained in CONTAINER. Does
7501 not modify the inferior's memory, nor does it modify LHS (unless
7502 LHS == CONTAINER). */
7503
7504 static void
7505 assign_component (struct value *container, struct value *lhs, LONGEST index,
7506 struct expression *exp, int *pos)
7507 {
7508 struct value *mark = value_mark ();
7509 struct value *elt;
7510 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7511 {
7512 struct value *index_val = value_from_longest (builtin_type_int, index);
7513 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7514 }
7515 else
7516 {
7517 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7518 elt = ada_to_fixed_value (unwrap_value (elt));
7519 }
7520
7521 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7522 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7523 else
7524 value_assign_to_component (container, elt,
7525 ada_evaluate_subexp (NULL, exp, pos,
7526 EVAL_NORMAL));
7527
7528 value_free_to_mark (mark);
7529 }
7530
7531 /* Assuming that LHS represents an lvalue having a record or array
7532 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7533 of that aggregate's value to LHS, advancing *POS past the
7534 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7535 lvalue containing LHS (possibly LHS itself). Does not modify
7536 the inferior's memory, nor does it modify the contents of
7537 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7538
7539 static struct value *
7540 assign_aggregate (struct value *container,
7541 struct value *lhs, struct expression *exp,
7542 int *pos, enum noside noside)
7543 {
7544 struct type *lhs_type;
7545 int n = exp->elts[*pos+1].longconst;
7546 LONGEST low_index, high_index;
7547 int num_specs;
7548 LONGEST *indices;
7549 int max_indices, num_indices;
7550 int is_array_aggregate;
7551 int i;
7552 struct value *mark = value_mark ();
7553
7554 *pos += 3;
7555 if (noside != EVAL_NORMAL)
7556 {
7557 int i;
7558 for (i = 0; i < n; i += 1)
7559 ada_evaluate_subexp (NULL, exp, pos, noside);
7560 return container;
7561 }
7562
7563 container = ada_coerce_ref (container);
7564 if (ada_is_direct_array_type (value_type (container)))
7565 container = ada_coerce_to_simple_array (container);
7566 lhs = ada_coerce_ref (lhs);
7567 if (!deprecated_value_modifiable (lhs))
7568 error (_("Left operand of assignment is not a modifiable lvalue."));
7569
7570 lhs_type = value_type (lhs);
7571 if (ada_is_direct_array_type (lhs_type))
7572 {
7573 lhs = ada_coerce_to_simple_array (lhs);
7574 lhs_type = value_type (lhs);
7575 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
7576 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
7577 is_array_aggregate = 1;
7578 }
7579 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
7580 {
7581 low_index = 0;
7582 high_index = num_visible_fields (lhs_type) - 1;
7583 is_array_aggregate = 0;
7584 }
7585 else
7586 error (_("Left-hand side must be array or record."));
7587
7588 num_specs = num_component_specs (exp, *pos - 3);
7589 max_indices = 4 * num_specs + 4;
7590 indices = alloca (max_indices * sizeof (indices[0]));
7591 indices[0] = indices[1] = low_index - 1;
7592 indices[2] = indices[3] = high_index + 1;
7593 num_indices = 4;
7594
7595 for (i = 0; i < n; i += 1)
7596 {
7597 switch (exp->elts[*pos].opcode)
7598 {
7599 case OP_CHOICES:
7600 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
7601 &num_indices, max_indices,
7602 low_index, high_index);
7603 break;
7604 case OP_POSITIONAL:
7605 aggregate_assign_positional (container, lhs, exp, pos, indices,
7606 &num_indices, max_indices,
7607 low_index, high_index);
7608 break;
7609 case OP_OTHERS:
7610 if (i != n-1)
7611 error (_("Misplaced 'others' clause"));
7612 aggregate_assign_others (container, lhs, exp, pos, indices,
7613 num_indices, low_index, high_index);
7614 break;
7615 default:
7616 error (_("Internal error: bad aggregate clause"));
7617 }
7618 }
7619
7620 return container;
7621 }
7622
7623 /* Assign into the component of LHS indexed by the OP_POSITIONAL
7624 construct at *POS, updating *POS past the construct, given that
7625 the positions are relative to lower bound LOW, where HIGH is the
7626 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
7627 updating *NUM_INDICES as needed. CONTAINER is as for
7628 assign_aggregate. */
7629 static void
7630 aggregate_assign_positional (struct value *container,
7631 struct value *lhs, struct expression *exp,
7632 int *pos, LONGEST *indices, int *num_indices,
7633 int max_indices, LONGEST low, LONGEST high)
7634 {
7635 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
7636
7637 if (ind - 1 == high)
7638 warning (_("Extra components in aggregate ignored."));
7639 if (ind <= high)
7640 {
7641 add_component_interval (ind, ind, indices, num_indices, max_indices);
7642 *pos += 3;
7643 assign_component (container, lhs, ind, exp, pos);
7644 }
7645 else
7646 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7647 }
7648
7649 /* Assign into the components of LHS indexed by the OP_CHOICES
7650 construct at *POS, updating *POS past the construct, given that
7651 the allowable indices are LOW..HIGH. Record the indices assigned
7652 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
7653 needed. CONTAINER is as for assign_aggregate. */
7654 static void
7655 aggregate_assign_from_choices (struct value *container,
7656 struct value *lhs, struct expression *exp,
7657 int *pos, LONGEST *indices, int *num_indices,
7658 int max_indices, LONGEST low, LONGEST high)
7659 {
7660 int j;
7661 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
7662 int choice_pos, expr_pc;
7663 int is_array = ada_is_direct_array_type (value_type (lhs));
7664
7665 choice_pos = *pos += 3;
7666
7667 for (j = 0; j < n_choices; j += 1)
7668 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7669 expr_pc = *pos;
7670 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7671
7672 for (j = 0; j < n_choices; j += 1)
7673 {
7674 LONGEST lower, upper;
7675 enum exp_opcode op = exp->elts[choice_pos].opcode;
7676 if (op == OP_DISCRETE_RANGE)
7677 {
7678 choice_pos += 1;
7679 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7680 EVAL_NORMAL));
7681 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
7682 EVAL_NORMAL));
7683 }
7684 else if (is_array)
7685 {
7686 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
7687 EVAL_NORMAL));
7688 upper = lower;
7689 }
7690 else
7691 {
7692 int ind;
7693 char *name;
7694 switch (op)
7695 {
7696 case OP_NAME:
7697 name = &exp->elts[choice_pos + 2].string;
7698 break;
7699 case OP_VAR_VALUE:
7700 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
7701 break;
7702 default:
7703 error (_("Invalid record component association."));
7704 }
7705 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
7706 ind = 0;
7707 if (! find_struct_field (name, value_type (lhs), 0,
7708 NULL, NULL, NULL, NULL, &ind))
7709 error (_("Unknown component name: %s."), name);
7710 lower = upper = ind;
7711 }
7712
7713 if (lower <= upper && (lower < low || upper > high))
7714 error (_("Index in component association out of bounds."));
7715
7716 add_component_interval (lower, upper, indices, num_indices,
7717 max_indices);
7718 while (lower <= upper)
7719 {
7720 int pos1;
7721 pos1 = expr_pc;
7722 assign_component (container, lhs, lower, exp, &pos1);
7723 lower += 1;
7724 }
7725 }
7726 }
7727
7728 /* Assign the value of the expression in the OP_OTHERS construct in
7729 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
7730 have not been previously assigned. The index intervals already assigned
7731 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
7732 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
7733 static void
7734 aggregate_assign_others (struct value *container,
7735 struct value *lhs, struct expression *exp,
7736 int *pos, LONGEST *indices, int num_indices,
7737 LONGEST low, LONGEST high)
7738 {
7739 int i;
7740 int expr_pc = *pos+1;
7741
7742 for (i = 0; i < num_indices - 2; i += 2)
7743 {
7744 LONGEST ind;
7745 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
7746 {
7747 int pos;
7748 pos = expr_pc;
7749 assign_component (container, lhs, ind, exp, &pos);
7750 }
7751 }
7752 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
7753 }
7754
7755 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
7756 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
7757 modifying *SIZE as needed. It is an error if *SIZE exceeds
7758 MAX_SIZE. The resulting intervals do not overlap. */
7759 static void
7760 add_component_interval (LONGEST low, LONGEST high,
7761 LONGEST* indices, int *size, int max_size)
7762 {
7763 int i, j;
7764 for (i = 0; i < *size; i += 2) {
7765 if (high >= indices[i] && low <= indices[i + 1])
7766 {
7767 int kh;
7768 for (kh = i + 2; kh < *size; kh += 2)
7769 if (high < indices[kh])
7770 break;
7771 if (low < indices[i])
7772 indices[i] = low;
7773 indices[i + 1] = indices[kh - 1];
7774 if (high > indices[i + 1])
7775 indices[i + 1] = high;
7776 memcpy (indices + i + 2, indices + kh, *size - kh);
7777 *size -= kh - i - 2;
7778 return;
7779 }
7780 else if (high < indices[i])
7781 break;
7782 }
7783
7784 if (*size == max_size)
7785 error (_("Internal error: miscounted aggregate components."));
7786 *size += 2;
7787 for (j = *size-1; j >= i+2; j -= 1)
7788 indices[j] = indices[j - 2];
7789 indices[i] = low;
7790 indices[i + 1] = high;
7791 }
7792
7793 static struct value *
7794 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
7795 int *pos, enum noside noside)
7796 {
7797 enum exp_opcode op;
7798 int tem, tem2, tem3;
7799 int pc;
7800 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
7801 struct type *type;
7802 int nargs, oplen;
7803 struct value **argvec;
7804
7805 pc = *pos;
7806 *pos += 1;
7807 op = exp->elts[pc].opcode;
7808
7809 switch (op)
7810 {
7811 default:
7812 *pos -= 1;
7813 return
7814 unwrap_value (evaluate_subexp_standard
7815 (expect_type, exp, pos, noside));
7816
7817 case OP_STRING:
7818 {
7819 struct value *result;
7820 *pos -= 1;
7821 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
7822 /* The result type will have code OP_STRING, bashed there from
7823 OP_ARRAY. Bash it back. */
7824 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
7825 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
7826 return result;
7827 }
7828
7829 case UNOP_CAST:
7830 (*pos) += 2;
7831 type = exp->elts[pc + 1].type;
7832 arg1 = evaluate_subexp (type, exp, pos, noside);
7833 if (noside == EVAL_SKIP)
7834 goto nosideret;
7835 if (type != ada_check_typedef (value_type (arg1)))
7836 {
7837 if (ada_is_fixed_point_type (type))
7838 arg1 = cast_to_fixed (type, arg1);
7839 else if (ada_is_fixed_point_type (value_type (arg1)))
7840 arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
7841 else if (VALUE_LVAL (arg1) == lval_memory)
7842 {
7843 /* This is in case of the really obscure (and undocumented,
7844 but apparently expected) case of (Foo) Bar.all, where Bar
7845 is an integer constant and Foo is a dynamic-sized type.
7846 If we don't do this, ARG1 will simply be relabeled with
7847 TYPE. */
7848 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7849 return value_zero (to_static_fixed_type (type), not_lval);
7850 arg1 =
7851 ada_to_fixed_value_create
7852 (type, VALUE_ADDRESS (arg1) + value_offset (arg1), 0);
7853 }
7854 else
7855 arg1 = value_cast (type, arg1);
7856 }
7857 return arg1;
7858
7859 case UNOP_QUAL:
7860 (*pos) += 2;
7861 type = exp->elts[pc + 1].type;
7862 return ada_evaluate_subexp (type, exp, pos, noside);
7863
7864 case BINOP_ASSIGN:
7865 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7866 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7867 {
7868 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
7869 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7870 return arg1;
7871 return ada_value_assign (arg1, arg1);
7872 }
7873 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7874 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
7875 return arg1;
7876 if (ada_is_fixed_point_type (value_type (arg1)))
7877 arg2 = cast_to_fixed (value_type (arg1), arg2);
7878 else if (ada_is_fixed_point_type (value_type (arg2)))
7879 error
7880 (_("Fixed-point values must be assigned to fixed-point variables"));
7881 else
7882 arg2 = coerce_for_assign (value_type (arg1), arg2);
7883 return ada_value_assign (arg1, arg2);
7884
7885 case BINOP_ADD:
7886 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7887 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7888 if (noside == EVAL_SKIP)
7889 goto nosideret;
7890 if ((ada_is_fixed_point_type (value_type (arg1))
7891 || ada_is_fixed_point_type (value_type (arg2)))
7892 && value_type (arg1) != value_type (arg2))
7893 error (_("Operands of fixed-point addition must have the same type"));
7894 return value_cast (value_type (arg1), value_add (arg1, arg2));
7895
7896 case BINOP_SUB:
7897 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
7898 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
7899 if (noside == EVAL_SKIP)
7900 goto nosideret;
7901 if ((ada_is_fixed_point_type (value_type (arg1))
7902 || ada_is_fixed_point_type (value_type (arg2)))
7903 && value_type (arg1) != value_type (arg2))
7904 error (_("Operands of fixed-point subtraction must have the same type"));
7905 return value_cast (value_type (arg1), value_sub (arg1, arg2));
7906
7907 case BINOP_MUL:
7908 case BINOP_DIV:
7909 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7910 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7911 if (noside == EVAL_SKIP)
7912 goto nosideret;
7913 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7914 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7915 return value_zero (value_type (arg1), not_lval);
7916 else
7917 {
7918 if (ada_is_fixed_point_type (value_type (arg1)))
7919 arg1 = cast_from_fixed_to_double (arg1);
7920 if (ada_is_fixed_point_type (value_type (arg2)))
7921 arg2 = cast_from_fixed_to_double (arg2);
7922 return ada_value_binop (arg1, arg2, op);
7923 }
7924
7925 case BINOP_REM:
7926 case BINOP_MOD:
7927 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7928 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7929 if (noside == EVAL_SKIP)
7930 goto nosideret;
7931 else if (noside == EVAL_AVOID_SIDE_EFFECTS
7932 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
7933 return value_zero (value_type (arg1), not_lval);
7934 else
7935 return ada_value_binop (arg1, arg2, op);
7936
7937 case BINOP_EQUAL:
7938 case BINOP_NOTEQUAL:
7939 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7940 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
7941 if (noside == EVAL_SKIP)
7942 goto nosideret;
7943 if (noside == EVAL_AVOID_SIDE_EFFECTS)
7944 tem = 0;
7945 else
7946 tem = ada_value_equal (arg1, arg2);
7947 if (op == BINOP_NOTEQUAL)
7948 tem = !tem;
7949 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
7950
7951 case UNOP_NEG:
7952 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
7953 if (noside == EVAL_SKIP)
7954 goto nosideret;
7955 else if (ada_is_fixed_point_type (value_type (arg1)))
7956 return value_cast (value_type (arg1), value_neg (arg1));
7957 else
7958 return value_neg (arg1);
7959
7960 case OP_VAR_VALUE:
7961 *pos -= 1;
7962 if (noside == EVAL_SKIP)
7963 {
7964 *pos += 4;
7965 goto nosideret;
7966 }
7967 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
7968 /* Only encountered when an unresolved symbol occurs in a
7969 context other than a function call, in which case, it is
7970 invalid. */
7971 error (_("Unexpected unresolved symbol, %s, during evaluation"),
7972 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
7973 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
7974 {
7975 *pos += 4;
7976 return value_zero
7977 (to_static_fixed_type
7978 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
7979 not_lval);
7980 }
7981 else
7982 {
7983 arg1 =
7984 unwrap_value (evaluate_subexp_standard
7985 (expect_type, exp, pos, noside));
7986 return ada_to_fixed_value (arg1);
7987 }
7988
7989 case OP_FUNCALL:
7990 (*pos) += 2;
7991
7992 /* Allocate arg vector, including space for the function to be
7993 called in argvec[0] and a terminating NULL. */
7994 nargs = longest_to_int (exp->elts[pc + 1].longconst);
7995 argvec =
7996 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
7997
7998 if (exp->elts[*pos].opcode == OP_VAR_VALUE
7999 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8000 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8001 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8002 else
8003 {
8004 for (tem = 0; tem <= nargs; tem += 1)
8005 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8006 argvec[tem] = 0;
8007
8008 if (noside == EVAL_SKIP)
8009 goto nosideret;
8010 }
8011
8012 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8013 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8014 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8015 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8016 && VALUE_LVAL (argvec[0]) == lval_memory))
8017 argvec[0] = value_addr (argvec[0]);
8018
8019 type = ada_check_typedef (value_type (argvec[0]));
8020 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8021 {
8022 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8023 {
8024 case TYPE_CODE_FUNC:
8025 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8026 break;
8027 case TYPE_CODE_ARRAY:
8028 break;
8029 case TYPE_CODE_STRUCT:
8030 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8031 argvec[0] = ada_value_ind (argvec[0]);
8032 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8033 break;
8034 default:
8035 error (_("cannot subscript or call something of type `%s'"),
8036 ada_type_name (value_type (argvec[0])));
8037 break;
8038 }
8039 }
8040
8041 switch (TYPE_CODE (type))
8042 {
8043 case TYPE_CODE_FUNC:
8044 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8045 return allocate_value (TYPE_TARGET_TYPE (type));
8046 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8047 case TYPE_CODE_STRUCT:
8048 {
8049 int arity;
8050
8051 arity = ada_array_arity (type);
8052 type = ada_array_element_type (type, nargs);
8053 if (type == NULL)
8054 error (_("cannot subscript or call a record"));
8055 if (arity != nargs)
8056 error (_("wrong number of subscripts; expecting %d"), arity);
8057 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8058 return allocate_value (ada_aligned_type (type));
8059 return
8060 unwrap_value (ada_value_subscript
8061 (argvec[0], nargs, argvec + 1));
8062 }
8063 case TYPE_CODE_ARRAY:
8064 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8065 {
8066 type = ada_array_element_type (type, nargs);
8067 if (type == NULL)
8068 error (_("element type of array unknown"));
8069 else
8070 return allocate_value (ada_aligned_type (type));
8071 }
8072 return
8073 unwrap_value (ada_value_subscript
8074 (ada_coerce_to_simple_array (argvec[0]),
8075 nargs, argvec + 1));
8076 case TYPE_CODE_PTR: /* Pointer to array */
8077 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8078 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8079 {
8080 type = ada_array_element_type (type, nargs);
8081 if (type == NULL)
8082 error (_("element type of array unknown"));
8083 else
8084 return allocate_value (ada_aligned_type (type));
8085 }
8086 return
8087 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8088 nargs, argvec + 1));
8089
8090 default:
8091 error (_("Attempt to index or call something other than an "
8092 "array or function"));
8093 }
8094
8095 case TERNOP_SLICE:
8096 {
8097 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8098 struct value *low_bound_val =
8099 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8100 struct value *high_bound_val =
8101 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8102 LONGEST low_bound;
8103 LONGEST high_bound;
8104 low_bound_val = coerce_ref (low_bound_val);
8105 high_bound_val = coerce_ref (high_bound_val);
8106 low_bound = pos_atr (low_bound_val);
8107 high_bound = pos_atr (high_bound_val);
8108
8109 if (noside == EVAL_SKIP)
8110 goto nosideret;
8111
8112 /* If this is a reference to an aligner type, then remove all
8113 the aligners. */
8114 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8115 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8116 TYPE_TARGET_TYPE (value_type (array)) =
8117 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8118
8119 if (ada_is_packed_array_type (value_type (array)))
8120 error (_("cannot slice a packed array"));
8121
8122 /* If this is a reference to an array or an array lvalue,
8123 convert to a pointer. */
8124 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8125 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8126 && VALUE_LVAL (array) == lval_memory))
8127 array = value_addr (array);
8128
8129 if (noside == EVAL_AVOID_SIDE_EFFECTS
8130 && ada_is_array_descriptor_type (ada_check_typedef
8131 (value_type (array))))
8132 return empty_array (ada_type_of_array (array, 0), low_bound);
8133
8134 array = ada_coerce_to_simple_array_ptr (array);
8135
8136 /* If we have more than one level of pointer indirection,
8137 dereference the value until we get only one level. */
8138 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8139 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8140 == TYPE_CODE_PTR))
8141 array = value_ind (array);
8142
8143 /* Make sure we really do have an array type before going further,
8144 to avoid a SEGV when trying to get the index type or the target
8145 type later down the road if the debug info generated by
8146 the compiler is incorrect or incomplete. */
8147 if (!ada_is_simple_array_type (value_type (array)))
8148 error (_("cannot take slice of non-array"));
8149
8150 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8151 {
8152 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8153 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8154 low_bound);
8155 else
8156 {
8157 struct type *arr_type0 =
8158 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8159 NULL, 1);
8160 return ada_value_slice_ptr (array, arr_type0,
8161 longest_to_int (low_bound),
8162 longest_to_int (high_bound));
8163 }
8164 }
8165 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8166 return array;
8167 else if (high_bound < low_bound)
8168 return empty_array (value_type (array), low_bound);
8169 else
8170 return ada_value_slice (array, longest_to_int (low_bound),
8171 longest_to_int (high_bound));
8172 }
8173
8174 case UNOP_IN_RANGE:
8175 (*pos) += 2;
8176 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8177 type = exp->elts[pc + 1].type;
8178
8179 if (noside == EVAL_SKIP)
8180 goto nosideret;
8181
8182 switch (TYPE_CODE (type))
8183 {
8184 default:
8185 lim_warning (_("Membership test incompletely implemented; "
8186 "always returns true"));
8187 return value_from_longest (builtin_type_int, (LONGEST) 1);
8188
8189 case TYPE_CODE_RANGE:
8190 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8191 arg3 = value_from_longest (builtin_type_int,
8192 TYPE_HIGH_BOUND (type));
8193 return
8194 value_from_longest (builtin_type_int,
8195 (value_less (arg1, arg3)
8196 || value_equal (arg1, arg3))
8197 && (value_less (arg2, arg1)
8198 || value_equal (arg2, arg1)));
8199 }
8200
8201 case BINOP_IN_BOUNDS:
8202 (*pos) += 2;
8203 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8204 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8205
8206 if (noside == EVAL_SKIP)
8207 goto nosideret;
8208
8209 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8210 return value_zero (builtin_type_int, not_lval);
8211
8212 tem = longest_to_int (exp->elts[pc + 1].longconst);
8213
8214 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8215 error (_("invalid dimension number to 'range"));
8216
8217 arg3 = ada_array_bound (arg2, tem, 1);
8218 arg2 = ada_array_bound (arg2, tem, 0);
8219
8220 return
8221 value_from_longest (builtin_type_int,
8222 (value_less (arg1, arg3)
8223 || value_equal (arg1, arg3))
8224 && (value_less (arg2, arg1)
8225 || value_equal (arg2, arg1)));
8226
8227 case TERNOP_IN_RANGE:
8228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8229 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8230 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8231
8232 if (noside == EVAL_SKIP)
8233 goto nosideret;
8234
8235 return
8236 value_from_longest (builtin_type_int,
8237 (value_less (arg1, arg3)
8238 || value_equal (arg1, arg3))
8239 && (value_less (arg2, arg1)
8240 || value_equal (arg2, arg1)));
8241
8242 case OP_ATR_FIRST:
8243 case OP_ATR_LAST:
8244 case OP_ATR_LENGTH:
8245 {
8246 struct type *type_arg;
8247 if (exp->elts[*pos].opcode == OP_TYPE)
8248 {
8249 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8250 arg1 = NULL;
8251 type_arg = exp->elts[pc + 2].type;
8252 }
8253 else
8254 {
8255 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8256 type_arg = NULL;
8257 }
8258
8259 if (exp->elts[*pos].opcode != OP_LONG)
8260 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8261 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8262 *pos += 4;
8263
8264 if (noside == EVAL_SKIP)
8265 goto nosideret;
8266
8267 if (type_arg == NULL)
8268 {
8269 arg1 = ada_coerce_ref (arg1);
8270
8271 if (ada_is_packed_array_type (value_type (arg1)))
8272 arg1 = ada_coerce_to_simple_array (arg1);
8273
8274 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8275 error (_("invalid dimension number to '%s"),
8276 ada_attribute_name (op));
8277
8278 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8279 {
8280 type = ada_index_type (value_type (arg1), tem);
8281 if (type == NULL)
8282 error
8283 (_("attempt to take bound of something that is not an array"));
8284 return allocate_value (type);
8285 }
8286
8287 switch (op)
8288 {
8289 default: /* Should never happen. */
8290 error (_("unexpected attribute encountered"));
8291 case OP_ATR_FIRST:
8292 return ada_array_bound (arg1, tem, 0);
8293 case OP_ATR_LAST:
8294 return ada_array_bound (arg1, tem, 1);
8295 case OP_ATR_LENGTH:
8296 return ada_array_length (arg1, tem);
8297 }
8298 }
8299 else if (discrete_type_p (type_arg))
8300 {
8301 struct type *range_type;
8302 char *name = ada_type_name (type_arg);
8303 range_type = NULL;
8304 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8305 range_type =
8306 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8307 if (range_type == NULL)
8308 range_type = type_arg;
8309 switch (op)
8310 {
8311 default:
8312 error (_("unexpected attribute encountered"));
8313 case OP_ATR_FIRST:
8314 return discrete_type_low_bound (range_type);
8315 case OP_ATR_LAST:
8316 return discrete_type_high_bound (range_type);
8317 case OP_ATR_LENGTH:
8318 error (_("the 'length attribute applies only to array types"));
8319 }
8320 }
8321 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8322 error (_("unimplemented type attribute"));
8323 else
8324 {
8325 LONGEST low, high;
8326
8327 if (ada_is_packed_array_type (type_arg))
8328 type_arg = decode_packed_array_type (type_arg);
8329
8330 if (tem < 1 || tem > ada_array_arity (type_arg))
8331 error (_("invalid dimension number to '%s"),
8332 ada_attribute_name (op));
8333
8334 type = ada_index_type (type_arg, tem);
8335 if (type == NULL)
8336 error
8337 (_("attempt to take bound of something that is not an array"));
8338 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8339 return allocate_value (type);
8340
8341 switch (op)
8342 {
8343 default:
8344 error (_("unexpected attribute encountered"));
8345 case OP_ATR_FIRST:
8346 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8347 return value_from_longest (type, low);
8348 case OP_ATR_LAST:
8349 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8350 return value_from_longest (type, high);
8351 case OP_ATR_LENGTH:
8352 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8353 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8354 return value_from_longest (type, high - low + 1);
8355 }
8356 }
8357 }
8358
8359 case OP_ATR_TAG:
8360 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8361 if (noside == EVAL_SKIP)
8362 goto nosideret;
8363
8364 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8365 return value_zero (ada_tag_type (arg1), not_lval);
8366
8367 return ada_value_tag (arg1);
8368
8369 case OP_ATR_MIN:
8370 case OP_ATR_MAX:
8371 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8372 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8373 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8374 if (noside == EVAL_SKIP)
8375 goto nosideret;
8376 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8377 return value_zero (value_type (arg1), not_lval);
8378 else
8379 return value_binop (arg1, arg2,
8380 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8381
8382 case OP_ATR_MODULUS:
8383 {
8384 struct type *type_arg = exp->elts[pc + 2].type;
8385 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8386
8387 if (noside == EVAL_SKIP)
8388 goto nosideret;
8389
8390 if (!ada_is_modular_type (type_arg))
8391 error (_("'modulus must be applied to modular type"));
8392
8393 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8394 ada_modulus (type_arg));
8395 }
8396
8397
8398 case OP_ATR_POS:
8399 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8400 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8401 if (noside == EVAL_SKIP)
8402 goto nosideret;
8403 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8404 return value_zero (builtin_type_int, not_lval);
8405 else
8406 return value_pos_atr (arg1);
8407
8408 case OP_ATR_SIZE:
8409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8410 if (noside == EVAL_SKIP)
8411 goto nosideret;
8412 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8413 return value_zero (builtin_type_int, not_lval);
8414 else
8415 return value_from_longest (builtin_type_int,
8416 TARGET_CHAR_BIT
8417 * TYPE_LENGTH (value_type (arg1)));
8418
8419 case OP_ATR_VAL:
8420 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8421 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8422 type = exp->elts[pc + 2].type;
8423 if (noside == EVAL_SKIP)
8424 goto nosideret;
8425 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8426 return value_zero (type, not_lval);
8427 else
8428 return value_val_atr (type, arg1);
8429
8430 case BINOP_EXP:
8431 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8432 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8433 if (noside == EVAL_SKIP)
8434 goto nosideret;
8435 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8436 return value_zero (value_type (arg1), not_lval);
8437 else
8438 return value_binop (arg1, arg2, op);
8439
8440 case UNOP_PLUS:
8441 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8442 if (noside == EVAL_SKIP)
8443 goto nosideret;
8444 else
8445 return arg1;
8446
8447 case UNOP_ABS:
8448 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8449 if (noside == EVAL_SKIP)
8450 goto nosideret;
8451 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
8452 return value_neg (arg1);
8453 else
8454 return arg1;
8455
8456 case UNOP_IND:
8457 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
8458 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
8459 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
8460 if (noside == EVAL_SKIP)
8461 goto nosideret;
8462 type = ada_check_typedef (value_type (arg1));
8463 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8464 {
8465 if (ada_is_array_descriptor_type (type))
8466 /* GDB allows dereferencing GNAT array descriptors. */
8467 {
8468 struct type *arrType = ada_type_of_array (arg1, 0);
8469 if (arrType == NULL)
8470 error (_("Attempt to dereference null array pointer."));
8471 return value_at_lazy (arrType, 0);
8472 }
8473 else if (TYPE_CODE (type) == TYPE_CODE_PTR
8474 || TYPE_CODE (type) == TYPE_CODE_REF
8475 /* In C you can dereference an array to get the 1st elt. */
8476 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
8477 {
8478 type = to_static_fixed_type
8479 (ada_aligned_type
8480 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
8481 check_size (type);
8482 return value_zero (type, lval_memory);
8483 }
8484 else if (TYPE_CODE (type) == TYPE_CODE_INT)
8485 /* GDB allows dereferencing an int. */
8486 return value_zero (builtin_type_int, lval_memory);
8487 else
8488 error (_("Attempt to take contents of a non-pointer value."));
8489 }
8490 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
8491 type = ada_check_typedef (value_type (arg1));
8492
8493 if (ada_is_array_descriptor_type (type))
8494 /* GDB allows dereferencing GNAT array descriptors. */
8495 return ada_coerce_to_simple_array (arg1);
8496 else
8497 return ada_value_ind (arg1);
8498
8499 case STRUCTOP_STRUCT:
8500 tem = longest_to_int (exp->elts[pc + 1].longconst);
8501 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
8502 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8503 if (noside == EVAL_SKIP)
8504 goto nosideret;
8505 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8506 {
8507 struct type *type1 = value_type (arg1);
8508 if (ada_is_tagged_type (type1, 1))
8509 {
8510 type = ada_lookup_struct_elt_type (type1,
8511 &exp->elts[pc + 2].string,
8512 1, 1, NULL);
8513 if (type == NULL)
8514 /* In this case, we assume that the field COULD exist
8515 in some extension of the type. Return an object of
8516 "type" void, which will match any formal
8517 (see ada_type_match). */
8518 return value_zero (builtin_type_void, lval_memory);
8519 }
8520 else
8521 type =
8522 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
8523 0, NULL);
8524
8525 return value_zero (ada_aligned_type (type), lval_memory);
8526 }
8527 else
8528 return
8529 ada_to_fixed_value (unwrap_value
8530 (ada_value_struct_elt
8531 (arg1, &exp->elts[pc + 2].string, 0)));
8532 case OP_TYPE:
8533 /* The value is not supposed to be used. This is here to make it
8534 easier to accommodate expressions that contain types. */
8535 (*pos) += 2;
8536 if (noside == EVAL_SKIP)
8537 goto nosideret;
8538 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8539 return allocate_value (exp->elts[pc + 1].type);
8540 else
8541 error (_("Attempt to use a type name as an expression"));
8542
8543 case OP_AGGREGATE:
8544 case OP_CHOICES:
8545 case OP_OTHERS:
8546 case OP_DISCRETE_RANGE:
8547 case OP_POSITIONAL:
8548 case OP_NAME:
8549 if (noside == EVAL_NORMAL)
8550 switch (op)
8551 {
8552 case OP_NAME:
8553 error (_("Undefined name, ambiguous name, or renaming used in "
8554 "component association: %s."), &exp->elts[pc+2].string);
8555 case OP_AGGREGATE:
8556 error (_("Aggregates only allowed on the right of an assignment"));
8557 default:
8558 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
8559 }
8560
8561 ada_forward_operator_length (exp, pc, &oplen, &nargs);
8562 *pos += oplen - 1;
8563 for (tem = 0; tem < nargs; tem += 1)
8564 ada_evaluate_subexp (NULL, exp, pos, noside);
8565 goto nosideret;
8566 }
8567
8568 nosideret:
8569 return value_from_longest (builtin_type_long, (LONGEST) 1);
8570 }
8571 \f
8572
8573 /* Fixed point */
8574
8575 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
8576 type name that encodes the 'small and 'delta information.
8577 Otherwise, return NULL. */
8578
8579 static const char *
8580 fixed_type_info (struct type *type)
8581 {
8582 const char *name = ada_type_name (type);
8583 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
8584
8585 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
8586 {
8587 const char *tail = strstr (name, "___XF_");
8588 if (tail == NULL)
8589 return NULL;
8590 else
8591 return tail + 5;
8592 }
8593 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
8594 return fixed_type_info (TYPE_TARGET_TYPE (type));
8595 else
8596 return NULL;
8597 }
8598
8599 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
8600
8601 int
8602 ada_is_fixed_point_type (struct type *type)
8603 {
8604 return fixed_type_info (type) != NULL;
8605 }
8606
8607 /* Return non-zero iff TYPE represents a System.Address type. */
8608
8609 int
8610 ada_is_system_address_type (struct type *type)
8611 {
8612 return (TYPE_NAME (type)
8613 && strcmp (TYPE_NAME (type), "system__address") == 0);
8614 }
8615
8616 /* Assuming that TYPE is the representation of an Ada fixed-point
8617 type, return its delta, or -1 if the type is malformed and the
8618 delta cannot be determined. */
8619
8620 DOUBLEST
8621 ada_delta (struct type *type)
8622 {
8623 const char *encoding = fixed_type_info (type);
8624 long num, den;
8625
8626 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
8627 return -1.0;
8628 else
8629 return (DOUBLEST) num / (DOUBLEST) den;
8630 }
8631
8632 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
8633 factor ('SMALL value) associated with the type. */
8634
8635 static DOUBLEST
8636 scaling_factor (struct type *type)
8637 {
8638 const char *encoding = fixed_type_info (type);
8639 unsigned long num0, den0, num1, den1;
8640 int n;
8641
8642 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
8643
8644 if (n < 2)
8645 return 1.0;
8646 else if (n == 4)
8647 return (DOUBLEST) num1 / (DOUBLEST) den1;
8648 else
8649 return (DOUBLEST) num0 / (DOUBLEST) den0;
8650 }
8651
8652
8653 /* Assuming that X is the representation of a value of fixed-point
8654 type TYPE, return its floating-point equivalent. */
8655
8656 DOUBLEST
8657 ada_fixed_to_float (struct type *type, LONGEST x)
8658 {
8659 return (DOUBLEST) x *scaling_factor (type);
8660 }
8661
8662 /* The representation of a fixed-point value of type TYPE
8663 corresponding to the value X. */
8664
8665 LONGEST
8666 ada_float_to_fixed (struct type *type, DOUBLEST x)
8667 {
8668 return (LONGEST) (x / scaling_factor (type) + 0.5);
8669 }
8670
8671
8672 /* VAX floating formats */
8673
8674 /* Non-zero iff TYPE represents one of the special VAX floating-point
8675 types. */
8676
8677 int
8678 ada_is_vax_floating_type (struct type *type)
8679 {
8680 int name_len =
8681 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
8682 return
8683 name_len > 6
8684 && (TYPE_CODE (type) == TYPE_CODE_INT
8685 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8686 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
8687 }
8688
8689 /* The type of special VAX floating-point type this is, assuming
8690 ada_is_vax_floating_point. */
8691
8692 int
8693 ada_vax_float_type_suffix (struct type *type)
8694 {
8695 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
8696 }
8697
8698 /* A value representing the special debugging function that outputs
8699 VAX floating-point values of the type represented by TYPE. Assumes
8700 ada_is_vax_floating_type (TYPE). */
8701
8702 struct value *
8703 ada_vax_float_print_function (struct type *type)
8704 {
8705 switch (ada_vax_float_type_suffix (type))
8706 {
8707 case 'F':
8708 return get_var_value ("DEBUG_STRING_F", 0);
8709 case 'D':
8710 return get_var_value ("DEBUG_STRING_D", 0);
8711 case 'G':
8712 return get_var_value ("DEBUG_STRING_G", 0);
8713 default:
8714 error (_("invalid VAX floating-point type"));
8715 }
8716 }
8717 \f
8718
8719 /* Range types */
8720
8721 /* Scan STR beginning at position K for a discriminant name, and
8722 return the value of that discriminant field of DVAL in *PX. If
8723 PNEW_K is not null, put the position of the character beyond the
8724 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
8725 not alter *PX and *PNEW_K if unsuccessful. */
8726
8727 static int
8728 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
8729 int *pnew_k)
8730 {
8731 static char *bound_buffer = NULL;
8732 static size_t bound_buffer_len = 0;
8733 char *bound;
8734 char *pend;
8735 struct value *bound_val;
8736
8737 if (dval == NULL || str == NULL || str[k] == '\0')
8738 return 0;
8739
8740 pend = strstr (str + k, "__");
8741 if (pend == NULL)
8742 {
8743 bound = str + k;
8744 k += strlen (bound);
8745 }
8746 else
8747 {
8748 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
8749 bound = bound_buffer;
8750 strncpy (bound_buffer, str + k, pend - (str + k));
8751 bound[pend - (str + k)] = '\0';
8752 k = pend - str;
8753 }
8754
8755 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
8756 if (bound_val == NULL)
8757 return 0;
8758
8759 *px = value_as_long (bound_val);
8760 if (pnew_k != NULL)
8761 *pnew_k = k;
8762 return 1;
8763 }
8764
8765 /* Value of variable named NAME in the current environment. If
8766 no such variable found, then if ERR_MSG is null, returns 0, and
8767 otherwise causes an error with message ERR_MSG. */
8768
8769 static struct value *
8770 get_var_value (char *name, char *err_msg)
8771 {
8772 struct ada_symbol_info *syms;
8773 int nsyms;
8774
8775 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
8776 &syms);
8777
8778 if (nsyms != 1)
8779 {
8780 if (err_msg == NULL)
8781 return 0;
8782 else
8783 error (("%s"), err_msg);
8784 }
8785
8786 return value_of_variable (syms[0].sym, syms[0].block);
8787 }
8788
8789 /* Value of integer variable named NAME in the current environment. If
8790 no such variable found, returns 0, and sets *FLAG to 0. If
8791 successful, sets *FLAG to 1. */
8792
8793 LONGEST
8794 get_int_var_value (char *name, int *flag)
8795 {
8796 struct value *var_val = get_var_value (name, 0);
8797
8798 if (var_val == 0)
8799 {
8800 if (flag != NULL)
8801 *flag = 0;
8802 return 0;
8803 }
8804 else
8805 {
8806 if (flag != NULL)
8807 *flag = 1;
8808 return value_as_long (var_val);
8809 }
8810 }
8811
8812
8813 /* Return a range type whose base type is that of the range type named
8814 NAME in the current environment, and whose bounds are calculated
8815 from NAME according to the GNAT range encoding conventions.
8816 Extract discriminant values, if needed, from DVAL. If a new type
8817 must be created, allocate in OBJFILE's space. The bounds
8818 information, in general, is encoded in NAME, the base type given in
8819 the named range type. */
8820
8821 static struct type *
8822 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
8823 {
8824 struct type *raw_type = ada_find_any_type (name);
8825 struct type *base_type;
8826 char *subtype_info;
8827
8828 if (raw_type == NULL)
8829 base_type = builtin_type_int;
8830 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
8831 base_type = TYPE_TARGET_TYPE (raw_type);
8832 else
8833 base_type = raw_type;
8834
8835 subtype_info = strstr (name, "___XD");
8836 if (subtype_info == NULL)
8837 return raw_type;
8838 else
8839 {
8840 static char *name_buf = NULL;
8841 static size_t name_len = 0;
8842 int prefix_len = subtype_info - name;
8843 LONGEST L, U;
8844 struct type *type;
8845 char *bounds_str;
8846 int n;
8847
8848 GROW_VECT (name_buf, name_len, prefix_len + 5);
8849 strncpy (name_buf, name, prefix_len);
8850 name_buf[prefix_len] = '\0';
8851
8852 subtype_info += 5;
8853 bounds_str = strchr (subtype_info, '_');
8854 n = 1;
8855
8856 if (*subtype_info == 'L')
8857 {
8858 if (!ada_scan_number (bounds_str, n, &L, &n)
8859 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
8860 return raw_type;
8861 if (bounds_str[n] == '_')
8862 n += 2;
8863 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
8864 n += 1;
8865 subtype_info += 1;
8866 }
8867 else
8868 {
8869 int ok;
8870 strcpy (name_buf + prefix_len, "___L");
8871 L = get_int_var_value (name_buf, &ok);
8872 if (!ok)
8873 {
8874 lim_warning (_("Unknown lower bound, using 1."));
8875 L = 1;
8876 }
8877 }
8878
8879 if (*subtype_info == 'U')
8880 {
8881 if (!ada_scan_number (bounds_str, n, &U, &n)
8882 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
8883 return raw_type;
8884 }
8885 else
8886 {
8887 int ok;
8888 strcpy (name_buf + prefix_len, "___U");
8889 U = get_int_var_value (name_buf, &ok);
8890 if (!ok)
8891 {
8892 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
8893 U = L;
8894 }
8895 }
8896
8897 if (objfile == NULL)
8898 objfile = TYPE_OBJFILE (base_type);
8899 type = create_range_type (alloc_type (objfile), base_type, L, U);
8900 TYPE_NAME (type) = name;
8901 return type;
8902 }
8903 }
8904
8905 /* True iff NAME is the name of a range type. */
8906
8907 int
8908 ada_is_range_type_name (const char *name)
8909 {
8910 return (name != NULL && strstr (name, "___XD"));
8911 }
8912 \f
8913
8914 /* Modular types */
8915
8916 /* True iff TYPE is an Ada modular type. */
8917
8918 int
8919 ada_is_modular_type (struct type *type)
8920 {
8921 struct type *subranged_type = base_type (type);
8922
8923 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
8924 && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
8925 && TYPE_UNSIGNED (subranged_type));
8926 }
8927
8928 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
8929
8930 ULONGEST
8931 ada_modulus (struct type * type)
8932 {
8933 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
8934 }
8935 \f
8936
8937 /* Ada exception catchpoint support:
8938 ---------------------------------
8939
8940 We support 3 kinds of exception catchpoints:
8941 . catchpoints on Ada exceptions
8942 . catchpoints on unhandled Ada exceptions
8943 . catchpoints on failed assertions
8944
8945 Exceptions raised during failed assertions, or unhandled exceptions
8946 could perfectly be caught with the general catchpoint on Ada exceptions.
8947 However, we can easily differentiate these two special cases, and having
8948 the option to distinguish these two cases from the rest can be useful
8949 to zero-in on certain situations.
8950
8951 Exception catchpoints are a specialized form of breakpoint,
8952 since they rely on inserting breakpoints inside known routines
8953 of the GNAT runtime. The implementation therefore uses a standard
8954 breakpoint structure of the BP_BREAKPOINT type, but with its own set
8955 of breakpoint_ops.
8956
8957 Support in the runtime for exception catchpoints have been changed
8958 a few times already, and these changes affect the implementation
8959 of these catchpoints. In order to be able to support several
8960 variants of the runtime, we use a sniffer that will determine
8961 the runtime variant used by the program being debugged.
8962
8963 At this time, we do not support the use of conditions on Ada exception
8964 catchpoints. The COND and COND_STRING fields are therefore set
8965 to NULL (most of the time, see below).
8966
8967 Conditions where EXP_STRING, COND, and COND_STRING are used:
8968
8969 When a user specifies the name of a specific exception in the case
8970 of catchpoints on Ada exceptions, we store the name of that exception
8971 in the EXP_STRING. We then translate this request into an actual
8972 condition stored in COND_STRING, and then parse it into an expression
8973 stored in COND. */
8974
8975 /* The different types of catchpoints that we introduced for catching
8976 Ada exceptions. */
8977
8978 enum exception_catchpoint_kind
8979 {
8980 ex_catch_exception,
8981 ex_catch_exception_unhandled,
8982 ex_catch_assert
8983 };
8984
8985 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
8986
8987 /* A structure that describes how to support exception catchpoints
8988 for a given executable. */
8989
8990 struct exception_support_info
8991 {
8992 /* The name of the symbol to break on in order to insert
8993 a catchpoint on exceptions. */
8994 const char *catch_exception_sym;
8995
8996 /* The name of the symbol to break on in order to insert
8997 a catchpoint on unhandled exceptions. */
8998 const char *catch_exception_unhandled_sym;
8999
9000 /* The name of the symbol to break on in order to insert
9001 a catchpoint on failed assertions. */
9002 const char *catch_assert_sym;
9003
9004 /* Assuming that the inferior just triggered an unhandled exception
9005 catchpoint, this function is responsible for returning the address
9006 in inferior memory where the name of that exception is stored.
9007 Return zero if the address could not be computed. */
9008 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9009 };
9010
9011 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9012 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9013
9014 /* The following exception support info structure describes how to
9015 implement exception catchpoints with the latest version of the
9016 Ada runtime (as of 2007-03-06). */
9017
9018 static const struct exception_support_info default_exception_support_info =
9019 {
9020 "__gnat_debug_raise_exception", /* catch_exception_sym */
9021 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9022 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9023 ada_unhandled_exception_name_addr
9024 };
9025
9026 /* The following exception support info structure describes how to
9027 implement exception catchpoints with a slightly older version
9028 of the Ada runtime. */
9029
9030 static const struct exception_support_info exception_support_info_fallback =
9031 {
9032 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9033 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9034 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9035 ada_unhandled_exception_name_addr_from_raise
9036 };
9037
9038 /* For each executable, we sniff which exception info structure to use
9039 and cache it in the following global variable. */
9040
9041 static const struct exception_support_info *exception_info = NULL;
9042
9043 /* Inspect the Ada runtime and determine which exception info structure
9044 should be used to provide support for exception catchpoints.
9045
9046 This function will always set exception_info, or raise an error. */
9047
9048 static void
9049 ada_exception_support_info_sniffer (void)
9050 {
9051 struct symbol *sym;
9052
9053 /* If the exception info is already known, then no need to recompute it. */
9054 if (exception_info != NULL)
9055 return;
9056
9057 /* Check the latest (default) exception support info. */
9058 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9059 NULL, VAR_DOMAIN);
9060 if (sym != NULL)
9061 {
9062 exception_info = &default_exception_support_info;
9063 return;
9064 }
9065
9066 /* Try our fallback exception suport info. */
9067 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9068 NULL, VAR_DOMAIN);
9069 if (sym != NULL)
9070 {
9071 exception_info = &exception_support_info_fallback;
9072 return;
9073 }
9074
9075 /* Sometimes, it is normal for us to not be able to find the routine
9076 we are looking for. This happens when the program is linked with
9077 the shared version of the GNAT runtime, and the program has not been
9078 started yet. Inform the user of these two possible causes if
9079 applicable. */
9080
9081 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9082 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9083
9084 /* If the symbol does not exist, then check that the program is
9085 already started, to make sure that shared libraries have been
9086 loaded. If it is not started, this may mean that the symbol is
9087 in a shared library. */
9088
9089 if (ptid_get_pid (inferior_ptid) == 0)
9090 error (_("Unable to insert catchpoint. Try to start the program first."));
9091
9092 /* At this point, we know that we are debugging an Ada program and
9093 that the inferior has been started, but we still are not able to
9094 find the run-time symbols. That can mean that we are in
9095 configurable run time mode, or that a-except as been optimized
9096 out by the linker... In any case, at this point it is not worth
9097 supporting this feature. */
9098
9099 error (_("Cannot insert catchpoints in this configuration."));
9100 }
9101
9102 /* An observer of "executable_changed" events.
9103 Its role is to clear certain cached values that need to be recomputed
9104 each time a new executable is loaded by GDB. */
9105
9106 static void
9107 ada_executable_changed_observer (void *unused)
9108 {
9109 /* If the executable changed, then it is possible that the Ada runtime
9110 is different. So we need to invalidate the exception support info
9111 cache. */
9112 exception_info = NULL;
9113 }
9114
9115 /* Return the name of the function at PC, NULL if could not find it.
9116 This function only checks the debugging information, not the symbol
9117 table. */
9118
9119 static char *
9120 function_name_from_pc (CORE_ADDR pc)
9121 {
9122 char *func_name;
9123
9124 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9125 return NULL;
9126
9127 return func_name;
9128 }
9129
9130 /* True iff FRAME is very likely to be that of a function that is
9131 part of the runtime system. This is all very heuristic, but is
9132 intended to be used as advice as to what frames are uninteresting
9133 to most users. */
9134
9135 static int
9136 is_known_support_routine (struct frame_info *frame)
9137 {
9138 struct symtab_and_line sal;
9139 char *func_name;
9140 int i;
9141
9142 /* If this code does not have any debugging information (no symtab),
9143 This cannot be any user code. */
9144
9145 find_frame_sal (frame, &sal);
9146 if (sal.symtab == NULL)
9147 return 1;
9148
9149 /* If there is a symtab, but the associated source file cannot be
9150 located, then assume this is not user code: Selecting a frame
9151 for which we cannot display the code would not be very helpful
9152 for the user. This should also take care of case such as VxWorks
9153 where the kernel has some debugging info provided for a few units. */
9154
9155 if (symtab_to_fullname (sal.symtab) == NULL)
9156 return 1;
9157
9158 /* Check the unit filename againt the Ada runtime file naming.
9159 We also check the name of the objfile against the name of some
9160 known system libraries that sometimes come with debugging info
9161 too. */
9162
9163 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9164 {
9165 re_comp (known_runtime_file_name_patterns[i]);
9166 if (re_exec (sal.symtab->filename))
9167 return 1;
9168 if (sal.symtab->objfile != NULL
9169 && re_exec (sal.symtab->objfile->name))
9170 return 1;
9171 }
9172
9173 /* Check whether the function is a GNAT-generated entity. */
9174
9175 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9176 if (func_name == NULL)
9177 return 1;
9178
9179 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9180 {
9181 re_comp (known_auxiliary_function_name_patterns[i]);
9182 if (re_exec (func_name))
9183 return 1;
9184 }
9185
9186 return 0;
9187 }
9188
9189 /* Find the first frame that contains debugging information and that is not
9190 part of the Ada run-time, starting from FI and moving upward. */
9191
9192 static void
9193 ada_find_printable_frame (struct frame_info *fi)
9194 {
9195 for (; fi != NULL; fi = get_prev_frame (fi))
9196 {
9197 if (!is_known_support_routine (fi))
9198 {
9199 select_frame (fi);
9200 break;
9201 }
9202 }
9203
9204 }
9205
9206 /* Assuming that the inferior just triggered an unhandled exception
9207 catchpoint, return the address in inferior memory where the name
9208 of the exception is stored.
9209
9210 Return zero if the address could not be computed. */
9211
9212 static CORE_ADDR
9213 ada_unhandled_exception_name_addr (void)
9214 {
9215 return parse_and_eval_address ("e.full_name");
9216 }
9217
9218 /* Same as ada_unhandled_exception_name_addr, except that this function
9219 should be used when the inferior uses an older version of the runtime,
9220 where the exception name needs to be extracted from a specific frame
9221 several frames up in the callstack. */
9222
9223 static CORE_ADDR
9224 ada_unhandled_exception_name_addr_from_raise (void)
9225 {
9226 int frame_level;
9227 struct frame_info *fi;
9228
9229 /* To determine the name of this exception, we need to select
9230 the frame corresponding to RAISE_SYM_NAME. This frame is
9231 at least 3 levels up, so we simply skip the first 3 frames
9232 without checking the name of their associated function. */
9233 fi = get_current_frame ();
9234 for (frame_level = 0; frame_level < 3; frame_level += 1)
9235 if (fi != NULL)
9236 fi = get_prev_frame (fi);
9237
9238 while (fi != NULL)
9239 {
9240 const char *func_name =
9241 function_name_from_pc (get_frame_address_in_block (fi));
9242 if (func_name != NULL
9243 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9244 break; /* We found the frame we were looking for... */
9245 fi = get_prev_frame (fi);
9246 }
9247
9248 if (fi == NULL)
9249 return 0;
9250
9251 select_frame (fi);
9252 return parse_and_eval_address ("id.full_name");
9253 }
9254
9255 /* Assuming the inferior just triggered an Ada exception catchpoint
9256 (of any type), return the address in inferior memory where the name
9257 of the exception is stored, if applicable.
9258
9259 Return zero if the address could not be computed, or if not relevant. */
9260
9261 static CORE_ADDR
9262 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9263 struct breakpoint *b)
9264 {
9265 switch (ex)
9266 {
9267 case ex_catch_exception:
9268 return (parse_and_eval_address ("e.full_name"));
9269 break;
9270
9271 case ex_catch_exception_unhandled:
9272 return exception_info->unhandled_exception_name_addr ();
9273 break;
9274
9275 case ex_catch_assert:
9276 return 0; /* Exception name is not relevant in this case. */
9277 break;
9278
9279 default:
9280 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9281 break;
9282 }
9283
9284 return 0; /* Should never be reached. */
9285 }
9286
9287 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9288 any error that ada_exception_name_addr_1 might cause to be thrown.
9289 When an error is intercepted, a warning with the error message is printed,
9290 and zero is returned. */
9291
9292 static CORE_ADDR
9293 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9294 struct breakpoint *b)
9295 {
9296 struct gdb_exception e;
9297 CORE_ADDR result = 0;
9298
9299 TRY_CATCH (e, RETURN_MASK_ERROR)
9300 {
9301 result = ada_exception_name_addr_1 (ex, b);
9302 }
9303
9304 if (e.reason < 0)
9305 {
9306 warning (_("failed to get exception name: %s"), e.message);
9307 return 0;
9308 }
9309
9310 return result;
9311 }
9312
9313 /* Implement the PRINT_IT method in the breakpoint_ops structure
9314 for all exception catchpoint kinds. */
9315
9316 static enum print_stop_action
9317 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9318 {
9319 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9320 char exception_name[256];
9321
9322 if (addr != 0)
9323 {
9324 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9325 exception_name [sizeof (exception_name) - 1] = '\0';
9326 }
9327
9328 ada_find_printable_frame (get_current_frame ());
9329
9330 annotate_catchpoint (b->number);
9331 switch (ex)
9332 {
9333 case ex_catch_exception:
9334 if (addr != 0)
9335 printf_filtered (_("\nCatchpoint %d, %s at "),
9336 b->number, exception_name);
9337 else
9338 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
9339 break;
9340 case ex_catch_exception_unhandled:
9341 if (addr != 0)
9342 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
9343 b->number, exception_name);
9344 else
9345 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
9346 b->number);
9347 break;
9348 case ex_catch_assert:
9349 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
9350 b->number);
9351 break;
9352 }
9353
9354 return PRINT_SRC_AND_LOC;
9355 }
9356
9357 /* Implement the PRINT_ONE method in the breakpoint_ops structure
9358 for all exception catchpoint kinds. */
9359
9360 static void
9361 print_one_exception (enum exception_catchpoint_kind ex,
9362 struct breakpoint *b, CORE_ADDR *last_addr)
9363 {
9364 if (addressprint)
9365 {
9366 annotate_field (4);
9367 ui_out_field_core_addr (uiout, "addr", b->loc->address);
9368 }
9369
9370 annotate_field (5);
9371 *last_addr = b->loc->address;
9372 switch (ex)
9373 {
9374 case ex_catch_exception:
9375 if (b->exp_string != NULL)
9376 {
9377 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
9378
9379 ui_out_field_string (uiout, "what", msg);
9380 xfree (msg);
9381 }
9382 else
9383 ui_out_field_string (uiout, "what", "all Ada exceptions");
9384
9385 break;
9386
9387 case ex_catch_exception_unhandled:
9388 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
9389 break;
9390
9391 case ex_catch_assert:
9392 ui_out_field_string (uiout, "what", "failed Ada assertions");
9393 break;
9394
9395 default:
9396 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9397 break;
9398 }
9399 }
9400
9401 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
9402 for all exception catchpoint kinds. */
9403
9404 static void
9405 print_mention_exception (enum exception_catchpoint_kind ex,
9406 struct breakpoint *b)
9407 {
9408 switch (ex)
9409 {
9410 case ex_catch_exception:
9411 if (b->exp_string != NULL)
9412 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
9413 b->number, b->exp_string);
9414 else
9415 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
9416
9417 break;
9418
9419 case ex_catch_exception_unhandled:
9420 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
9421 b->number);
9422 break;
9423
9424 case ex_catch_assert:
9425 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
9426 break;
9427
9428 default:
9429 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9430 break;
9431 }
9432 }
9433
9434 /* Virtual table for "catch exception" breakpoints. */
9435
9436 static enum print_stop_action
9437 print_it_catch_exception (struct breakpoint *b)
9438 {
9439 return print_it_exception (ex_catch_exception, b);
9440 }
9441
9442 static void
9443 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
9444 {
9445 print_one_exception (ex_catch_exception, b, last_addr);
9446 }
9447
9448 static void
9449 print_mention_catch_exception (struct breakpoint *b)
9450 {
9451 print_mention_exception (ex_catch_exception, b);
9452 }
9453
9454 static struct breakpoint_ops catch_exception_breakpoint_ops =
9455 {
9456 print_it_catch_exception,
9457 print_one_catch_exception,
9458 print_mention_catch_exception
9459 };
9460
9461 /* Virtual table for "catch exception unhandled" breakpoints. */
9462
9463 static enum print_stop_action
9464 print_it_catch_exception_unhandled (struct breakpoint *b)
9465 {
9466 return print_it_exception (ex_catch_exception_unhandled, b);
9467 }
9468
9469 static void
9470 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
9471 {
9472 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
9473 }
9474
9475 static void
9476 print_mention_catch_exception_unhandled (struct breakpoint *b)
9477 {
9478 print_mention_exception (ex_catch_exception_unhandled, b);
9479 }
9480
9481 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
9482 print_it_catch_exception_unhandled,
9483 print_one_catch_exception_unhandled,
9484 print_mention_catch_exception_unhandled
9485 };
9486
9487 /* Virtual table for "catch assert" breakpoints. */
9488
9489 static enum print_stop_action
9490 print_it_catch_assert (struct breakpoint *b)
9491 {
9492 return print_it_exception (ex_catch_assert, b);
9493 }
9494
9495 static void
9496 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
9497 {
9498 print_one_exception (ex_catch_assert, b, last_addr);
9499 }
9500
9501 static void
9502 print_mention_catch_assert (struct breakpoint *b)
9503 {
9504 print_mention_exception (ex_catch_assert, b);
9505 }
9506
9507 static struct breakpoint_ops catch_assert_breakpoint_ops = {
9508 print_it_catch_assert,
9509 print_one_catch_assert,
9510 print_mention_catch_assert
9511 };
9512
9513 /* Return non-zero if B is an Ada exception catchpoint. */
9514
9515 int
9516 ada_exception_catchpoint_p (struct breakpoint *b)
9517 {
9518 return (b->ops == &catch_exception_breakpoint_ops
9519 || b->ops == &catch_exception_unhandled_breakpoint_ops
9520 || b->ops == &catch_assert_breakpoint_ops);
9521 }
9522
9523 /* Return a newly allocated copy of the first space-separated token
9524 in ARGSP, and then adjust ARGSP to point immediately after that
9525 token.
9526
9527 Return NULL if ARGPS does not contain any more tokens. */
9528
9529 static char *
9530 ada_get_next_arg (char **argsp)
9531 {
9532 char *args = *argsp;
9533 char *end;
9534 char *result;
9535
9536 /* Skip any leading white space. */
9537
9538 while (isspace (*args))
9539 args++;
9540
9541 if (args[0] == '\0')
9542 return NULL; /* No more arguments. */
9543
9544 /* Find the end of the current argument. */
9545
9546 end = args;
9547 while (*end != '\0' && !isspace (*end))
9548 end++;
9549
9550 /* Adjust ARGSP to point to the start of the next argument. */
9551
9552 *argsp = end;
9553
9554 /* Make a copy of the current argument and return it. */
9555
9556 result = xmalloc (end - args + 1);
9557 strncpy (result, args, end - args);
9558 result[end - args] = '\0';
9559
9560 return result;
9561 }
9562
9563 /* Split the arguments specified in a "catch exception" command.
9564 Set EX to the appropriate catchpoint type.
9565 Set EXP_STRING to the name of the specific exception if
9566 specified by the user. */
9567
9568 static void
9569 catch_ada_exception_command_split (char *args,
9570 enum exception_catchpoint_kind *ex,
9571 char **exp_string)
9572 {
9573 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
9574 char *exception_name;
9575
9576 exception_name = ada_get_next_arg (&args);
9577 make_cleanup (xfree, exception_name);
9578
9579 /* Check that we do not have any more arguments. Anything else
9580 is unexpected. */
9581
9582 while (isspace (*args))
9583 args++;
9584
9585 if (args[0] != '\0')
9586 error (_("Junk at end of expression"));
9587
9588 discard_cleanups (old_chain);
9589
9590 if (exception_name == NULL)
9591 {
9592 /* Catch all exceptions. */
9593 *ex = ex_catch_exception;
9594 *exp_string = NULL;
9595 }
9596 else if (strcmp (exception_name, "unhandled") == 0)
9597 {
9598 /* Catch unhandled exceptions. */
9599 *ex = ex_catch_exception_unhandled;
9600 *exp_string = NULL;
9601 }
9602 else
9603 {
9604 /* Catch a specific exception. */
9605 *ex = ex_catch_exception;
9606 *exp_string = exception_name;
9607 }
9608 }
9609
9610 /* Return the name of the symbol on which we should break in order to
9611 implement a catchpoint of the EX kind. */
9612
9613 static const char *
9614 ada_exception_sym_name (enum exception_catchpoint_kind ex)
9615 {
9616 gdb_assert (exception_info != NULL);
9617
9618 switch (ex)
9619 {
9620 case ex_catch_exception:
9621 return (exception_info->catch_exception_sym);
9622 break;
9623 case ex_catch_exception_unhandled:
9624 return (exception_info->catch_exception_unhandled_sym);
9625 break;
9626 case ex_catch_assert:
9627 return (exception_info->catch_assert_sym);
9628 break;
9629 default:
9630 internal_error (__FILE__, __LINE__,
9631 _("unexpected catchpoint kind (%d)"), ex);
9632 }
9633 }
9634
9635 /* Return the breakpoint ops "virtual table" used for catchpoints
9636 of the EX kind. */
9637
9638 static struct breakpoint_ops *
9639 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
9640 {
9641 switch (ex)
9642 {
9643 case ex_catch_exception:
9644 return (&catch_exception_breakpoint_ops);
9645 break;
9646 case ex_catch_exception_unhandled:
9647 return (&catch_exception_unhandled_breakpoint_ops);
9648 break;
9649 case ex_catch_assert:
9650 return (&catch_assert_breakpoint_ops);
9651 break;
9652 default:
9653 internal_error (__FILE__, __LINE__,
9654 _("unexpected catchpoint kind (%d)"), ex);
9655 }
9656 }
9657
9658 /* Return the condition that will be used to match the current exception
9659 being raised with the exception that the user wants to catch. This
9660 assumes that this condition is used when the inferior just triggered
9661 an exception catchpoint.
9662
9663 The string returned is a newly allocated string that needs to be
9664 deallocated later. */
9665
9666 static char *
9667 ada_exception_catchpoint_cond_string (const char *exp_string)
9668 {
9669 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
9670 }
9671
9672 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
9673
9674 static struct expression *
9675 ada_parse_catchpoint_condition (char *cond_string,
9676 struct symtab_and_line sal)
9677 {
9678 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
9679 }
9680
9681 /* Return the symtab_and_line that should be used to insert an exception
9682 catchpoint of the TYPE kind.
9683
9684 EX_STRING should contain the name of a specific exception
9685 that the catchpoint should catch, or NULL otherwise.
9686
9687 The idea behind all the remaining parameters is that their names match
9688 the name of certain fields in the breakpoint structure that are used to
9689 handle exception catchpoints. This function returns the value to which
9690 these fields should be set, depending on the type of catchpoint we need
9691 to create.
9692
9693 If COND and COND_STRING are both non-NULL, any value they might
9694 hold will be free'ed, and then replaced by newly allocated ones.
9695 These parameters are left untouched otherwise. */
9696
9697 static struct symtab_and_line
9698 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
9699 char **addr_string, char **cond_string,
9700 struct expression **cond, struct breakpoint_ops **ops)
9701 {
9702 const char *sym_name;
9703 struct symbol *sym;
9704 struct symtab_and_line sal;
9705
9706 /* First, find out which exception support info to use. */
9707 ada_exception_support_info_sniffer ();
9708
9709 /* Then lookup the function on which we will break in order to catch
9710 the Ada exceptions requested by the user. */
9711
9712 sym_name = ada_exception_sym_name (ex);
9713 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
9714
9715 /* The symbol we're looking up is provided by a unit in the GNAT runtime
9716 that should be compiled with debugging information. As a result, we
9717 expect to find that symbol in the symtabs. If we don't find it, then
9718 the target most likely does not support Ada exceptions, or we cannot
9719 insert exception breakpoints yet, because the GNAT runtime hasn't been
9720 loaded yet. */
9721
9722 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
9723 in such a way that no debugging information is produced for the symbol
9724 we are looking for. In this case, we could search the minimal symbols
9725 as a fall-back mechanism. This would still be operating in degraded
9726 mode, however, as we would still be missing the debugging information
9727 that is needed in order to extract the name of the exception being
9728 raised (this name is printed in the catchpoint message, and is also
9729 used when trying to catch a specific exception). We do not handle
9730 this case for now. */
9731
9732 if (sym == NULL)
9733 error (_("Unable to break on '%s' in this configuration."), sym_name);
9734
9735 /* Make sure that the symbol we found corresponds to a function. */
9736 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
9737 error (_("Symbol \"%s\" is not a function (class = %d)"),
9738 sym_name, SYMBOL_CLASS (sym));
9739
9740 sal = find_function_start_sal (sym, 1);
9741
9742 /* Set ADDR_STRING. */
9743
9744 *addr_string = xstrdup (sym_name);
9745
9746 /* Set the COND and COND_STRING (if not NULL). */
9747
9748 if (cond_string != NULL && cond != NULL)
9749 {
9750 if (*cond_string != NULL)
9751 {
9752 xfree (*cond_string);
9753 *cond_string = NULL;
9754 }
9755 if (*cond != NULL)
9756 {
9757 xfree (*cond);
9758 *cond = NULL;
9759 }
9760 if (exp_string != NULL)
9761 {
9762 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
9763 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
9764 }
9765 }
9766
9767 /* Set OPS. */
9768 *ops = ada_exception_breakpoint_ops (ex);
9769
9770 return sal;
9771 }
9772
9773 /* Parse the arguments (ARGS) of the "catch exception" command.
9774
9775 Set TYPE to the appropriate exception catchpoint type.
9776 If the user asked the catchpoint to catch only a specific
9777 exception, then save the exception name in ADDR_STRING.
9778
9779 See ada_exception_sal for a description of all the remaining
9780 function arguments of this function. */
9781
9782 struct symtab_and_line
9783 ada_decode_exception_location (char *args, char **addr_string,
9784 char **exp_string, char **cond_string,
9785 struct expression **cond,
9786 struct breakpoint_ops **ops)
9787 {
9788 enum exception_catchpoint_kind ex;
9789
9790 catch_ada_exception_command_split (args, &ex, exp_string);
9791 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
9792 cond, ops);
9793 }
9794
9795 struct symtab_and_line
9796 ada_decode_assert_location (char *args, char **addr_string,
9797 struct breakpoint_ops **ops)
9798 {
9799 /* Check that no argument where provided at the end of the command. */
9800
9801 if (args != NULL)
9802 {
9803 while (isspace (*args))
9804 args++;
9805 if (*args != '\0')
9806 error (_("Junk at end of arguments."));
9807 }
9808
9809 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
9810 ops);
9811 }
9812
9813 /* Operators */
9814 /* Information about operators given special treatment in functions
9815 below. */
9816 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
9817
9818 #define ADA_OPERATORS \
9819 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
9820 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
9821 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
9822 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
9823 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
9824 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
9825 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
9826 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
9827 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
9828 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
9829 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
9830 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
9831 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
9832 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
9833 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
9834 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
9835 OP_DEFN (OP_OTHERS, 1, 1, 0) \
9836 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
9837 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
9838
9839 static void
9840 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
9841 {
9842 switch (exp->elts[pc - 1].opcode)
9843 {
9844 default:
9845 operator_length_standard (exp, pc, oplenp, argsp);
9846 break;
9847
9848 #define OP_DEFN(op, len, args, binop) \
9849 case op: *oplenp = len; *argsp = args; break;
9850 ADA_OPERATORS;
9851 #undef OP_DEFN
9852
9853 case OP_AGGREGATE:
9854 *oplenp = 3;
9855 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
9856 break;
9857
9858 case OP_CHOICES:
9859 *oplenp = 3;
9860 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
9861 break;
9862 }
9863 }
9864
9865 static char *
9866 ada_op_name (enum exp_opcode opcode)
9867 {
9868 switch (opcode)
9869 {
9870 default:
9871 return op_name_standard (opcode);
9872
9873 #define OP_DEFN(op, len, args, binop) case op: return #op;
9874 ADA_OPERATORS;
9875 #undef OP_DEFN
9876
9877 case OP_AGGREGATE:
9878 return "OP_AGGREGATE";
9879 case OP_CHOICES:
9880 return "OP_CHOICES";
9881 case OP_NAME:
9882 return "OP_NAME";
9883 }
9884 }
9885
9886 /* As for operator_length, but assumes PC is pointing at the first
9887 element of the operator, and gives meaningful results only for the
9888 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
9889
9890 static void
9891 ada_forward_operator_length (struct expression *exp, int pc,
9892 int *oplenp, int *argsp)
9893 {
9894 switch (exp->elts[pc].opcode)
9895 {
9896 default:
9897 *oplenp = *argsp = 0;
9898 break;
9899
9900 #define OP_DEFN(op, len, args, binop) \
9901 case op: *oplenp = len; *argsp = args; break;
9902 ADA_OPERATORS;
9903 #undef OP_DEFN
9904
9905 case OP_AGGREGATE:
9906 *oplenp = 3;
9907 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
9908 break;
9909
9910 case OP_CHOICES:
9911 *oplenp = 3;
9912 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
9913 break;
9914
9915 case OP_STRING:
9916 case OP_NAME:
9917 {
9918 int len = longest_to_int (exp->elts[pc + 1].longconst);
9919 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
9920 *argsp = 0;
9921 break;
9922 }
9923 }
9924 }
9925
9926 static int
9927 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
9928 {
9929 enum exp_opcode op = exp->elts[elt].opcode;
9930 int oplen, nargs;
9931 int pc = elt;
9932 int i;
9933
9934 ada_forward_operator_length (exp, elt, &oplen, &nargs);
9935
9936 switch (op)
9937 {
9938 /* Ada attributes ('Foo). */
9939 case OP_ATR_FIRST:
9940 case OP_ATR_LAST:
9941 case OP_ATR_LENGTH:
9942 case OP_ATR_IMAGE:
9943 case OP_ATR_MAX:
9944 case OP_ATR_MIN:
9945 case OP_ATR_MODULUS:
9946 case OP_ATR_POS:
9947 case OP_ATR_SIZE:
9948 case OP_ATR_TAG:
9949 case OP_ATR_VAL:
9950 break;
9951
9952 case UNOP_IN_RANGE:
9953 case UNOP_QUAL:
9954 /* XXX: gdb_sprint_host_address, type_sprint */
9955 fprintf_filtered (stream, _("Type @"));
9956 gdb_print_host_address (exp->elts[pc + 1].type, stream);
9957 fprintf_filtered (stream, " (");
9958 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
9959 fprintf_filtered (stream, ")");
9960 break;
9961 case BINOP_IN_BOUNDS:
9962 fprintf_filtered (stream, " (%d)",
9963 longest_to_int (exp->elts[pc + 2].longconst));
9964 break;
9965 case TERNOP_IN_RANGE:
9966 break;
9967
9968 case OP_AGGREGATE:
9969 case OP_OTHERS:
9970 case OP_DISCRETE_RANGE:
9971 case OP_POSITIONAL:
9972 case OP_CHOICES:
9973 break;
9974
9975 case OP_NAME:
9976 case OP_STRING:
9977 {
9978 char *name = &exp->elts[elt + 2].string;
9979 int len = longest_to_int (exp->elts[elt + 1].longconst);
9980 fprintf_filtered (stream, "Text: `%.*s'", len, name);
9981 break;
9982 }
9983
9984 default:
9985 return dump_subexp_body_standard (exp, stream, elt);
9986 }
9987
9988 elt += oplen;
9989 for (i = 0; i < nargs; i += 1)
9990 elt = dump_subexp (exp, stream, elt);
9991
9992 return elt;
9993 }
9994
9995 /* The Ada extension of print_subexp (q.v.). */
9996
9997 static void
9998 ada_print_subexp (struct expression *exp, int *pos,
9999 struct ui_file *stream, enum precedence prec)
10000 {
10001 int oplen, nargs, i;
10002 int pc = *pos;
10003 enum exp_opcode op = exp->elts[pc].opcode;
10004
10005 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10006
10007 *pos += oplen;
10008 switch (op)
10009 {
10010 default:
10011 *pos -= oplen;
10012 print_subexp_standard (exp, pos, stream, prec);
10013 return;
10014
10015 case OP_VAR_VALUE:
10016 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10017 return;
10018
10019 case BINOP_IN_BOUNDS:
10020 /* XXX: sprint_subexp */
10021 print_subexp (exp, pos, stream, PREC_SUFFIX);
10022 fputs_filtered (" in ", stream);
10023 print_subexp (exp, pos, stream, PREC_SUFFIX);
10024 fputs_filtered ("'range", stream);
10025 if (exp->elts[pc + 1].longconst > 1)
10026 fprintf_filtered (stream, "(%ld)",
10027 (long) exp->elts[pc + 1].longconst);
10028 return;
10029
10030 case TERNOP_IN_RANGE:
10031 if (prec >= PREC_EQUAL)
10032 fputs_filtered ("(", stream);
10033 /* XXX: sprint_subexp */
10034 print_subexp (exp, pos, stream, PREC_SUFFIX);
10035 fputs_filtered (" in ", stream);
10036 print_subexp (exp, pos, stream, PREC_EQUAL);
10037 fputs_filtered (" .. ", stream);
10038 print_subexp (exp, pos, stream, PREC_EQUAL);
10039 if (prec >= PREC_EQUAL)
10040 fputs_filtered (")", stream);
10041 return;
10042
10043 case OP_ATR_FIRST:
10044 case OP_ATR_LAST:
10045 case OP_ATR_LENGTH:
10046 case OP_ATR_IMAGE:
10047 case OP_ATR_MAX:
10048 case OP_ATR_MIN:
10049 case OP_ATR_MODULUS:
10050 case OP_ATR_POS:
10051 case OP_ATR_SIZE:
10052 case OP_ATR_TAG:
10053 case OP_ATR_VAL:
10054 if (exp->elts[*pos].opcode == OP_TYPE)
10055 {
10056 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10057 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10058 *pos += 3;
10059 }
10060 else
10061 print_subexp (exp, pos, stream, PREC_SUFFIX);
10062 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10063 if (nargs > 1)
10064 {
10065 int tem;
10066 for (tem = 1; tem < nargs; tem += 1)
10067 {
10068 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10069 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10070 }
10071 fputs_filtered (")", stream);
10072 }
10073 return;
10074
10075 case UNOP_QUAL:
10076 type_print (exp->elts[pc + 1].type, "", stream, 0);
10077 fputs_filtered ("'(", stream);
10078 print_subexp (exp, pos, stream, PREC_PREFIX);
10079 fputs_filtered (")", stream);
10080 return;
10081
10082 case UNOP_IN_RANGE:
10083 /* XXX: sprint_subexp */
10084 print_subexp (exp, pos, stream, PREC_SUFFIX);
10085 fputs_filtered (" in ", stream);
10086 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10087 return;
10088
10089 case OP_DISCRETE_RANGE:
10090 print_subexp (exp, pos, stream, PREC_SUFFIX);
10091 fputs_filtered ("..", stream);
10092 print_subexp (exp, pos, stream, PREC_SUFFIX);
10093 return;
10094
10095 case OP_OTHERS:
10096 fputs_filtered ("others => ", stream);
10097 print_subexp (exp, pos, stream, PREC_SUFFIX);
10098 return;
10099
10100 case OP_CHOICES:
10101 for (i = 0; i < nargs-1; i += 1)
10102 {
10103 if (i > 0)
10104 fputs_filtered ("|", stream);
10105 print_subexp (exp, pos, stream, PREC_SUFFIX);
10106 }
10107 fputs_filtered (" => ", stream);
10108 print_subexp (exp, pos, stream, PREC_SUFFIX);
10109 return;
10110
10111 case OP_POSITIONAL:
10112 print_subexp (exp, pos, stream, PREC_SUFFIX);
10113 return;
10114
10115 case OP_AGGREGATE:
10116 fputs_filtered ("(", stream);
10117 for (i = 0; i < nargs; i += 1)
10118 {
10119 if (i > 0)
10120 fputs_filtered (", ", stream);
10121 print_subexp (exp, pos, stream, PREC_SUFFIX);
10122 }
10123 fputs_filtered (")", stream);
10124 return;
10125 }
10126 }
10127
10128 /* Table mapping opcodes into strings for printing operators
10129 and precedences of the operators. */
10130
10131 static const struct op_print ada_op_print_tab[] = {
10132 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10133 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10134 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10135 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10136 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10137 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10138 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10139 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10140 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10141 {">=", BINOP_GEQ, PREC_ORDER, 0},
10142 {">", BINOP_GTR, PREC_ORDER, 0},
10143 {"<", BINOP_LESS, PREC_ORDER, 0},
10144 {">>", BINOP_RSH, PREC_SHIFT, 0},
10145 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10146 {"+", BINOP_ADD, PREC_ADD, 0},
10147 {"-", BINOP_SUB, PREC_ADD, 0},
10148 {"&", BINOP_CONCAT, PREC_ADD, 0},
10149 {"*", BINOP_MUL, PREC_MUL, 0},
10150 {"/", BINOP_DIV, PREC_MUL, 0},
10151 {"rem", BINOP_REM, PREC_MUL, 0},
10152 {"mod", BINOP_MOD, PREC_MUL, 0},
10153 {"**", BINOP_EXP, PREC_REPEAT, 0},
10154 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10155 {"-", UNOP_NEG, PREC_PREFIX, 0},
10156 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10157 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10158 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10159 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10160 {".all", UNOP_IND, PREC_SUFFIX, 1},
10161 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10162 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10163 {NULL, 0, 0, 0}
10164 };
10165 \f
10166 enum ada_primitive_types {
10167 ada_primitive_type_int,
10168 ada_primitive_type_long,
10169 ada_primitive_type_short,
10170 ada_primitive_type_char,
10171 ada_primitive_type_float,
10172 ada_primitive_type_double,
10173 ada_primitive_type_void,
10174 ada_primitive_type_long_long,
10175 ada_primitive_type_long_double,
10176 ada_primitive_type_natural,
10177 ada_primitive_type_positive,
10178 ada_primitive_type_system_address,
10179 nr_ada_primitive_types
10180 };
10181
10182 static void
10183 ada_language_arch_info (struct gdbarch *gdbarch,
10184 struct language_arch_info *lai)
10185 {
10186 const struct builtin_type *builtin = builtin_type (gdbarch);
10187 lai->primitive_type_vector
10188 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10189 struct type *);
10190 lai->primitive_type_vector [ada_primitive_type_int] =
10191 init_type (TYPE_CODE_INT,
10192 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10193 0, "integer", (struct objfile *) NULL);
10194 lai->primitive_type_vector [ada_primitive_type_long] =
10195 init_type (TYPE_CODE_INT,
10196 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10197 0, "long_integer", (struct objfile *) NULL);
10198 lai->primitive_type_vector [ada_primitive_type_short] =
10199 init_type (TYPE_CODE_INT,
10200 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10201 0, "short_integer", (struct objfile *) NULL);
10202 lai->string_char_type =
10203 lai->primitive_type_vector [ada_primitive_type_char] =
10204 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10205 0, "character", (struct objfile *) NULL);
10206 lai->primitive_type_vector [ada_primitive_type_float] =
10207 init_type (TYPE_CODE_FLT,
10208 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10209 0, "float", (struct objfile *) NULL);
10210 lai->primitive_type_vector [ada_primitive_type_double] =
10211 init_type (TYPE_CODE_FLT,
10212 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10213 0, "long_float", (struct objfile *) NULL);
10214 lai->primitive_type_vector [ada_primitive_type_long_long] =
10215 init_type (TYPE_CODE_INT,
10216 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10217 0, "long_long_integer", (struct objfile *) NULL);
10218 lai->primitive_type_vector [ada_primitive_type_long_double] =
10219 init_type (TYPE_CODE_FLT,
10220 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10221 0, "long_long_float", (struct objfile *) NULL);
10222 lai->primitive_type_vector [ada_primitive_type_natural] =
10223 init_type (TYPE_CODE_INT,
10224 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10225 0, "natural", (struct objfile *) NULL);
10226 lai->primitive_type_vector [ada_primitive_type_positive] =
10227 init_type (TYPE_CODE_INT,
10228 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10229 0, "positive", (struct objfile *) NULL);
10230 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10231
10232 lai->primitive_type_vector [ada_primitive_type_system_address] =
10233 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10234 (struct objfile *) NULL));
10235 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10236 = "system__address";
10237 }
10238 \f
10239 /* Language vector */
10240
10241 /* Not really used, but needed in the ada_language_defn. */
10242
10243 static void
10244 emit_char (int c, struct ui_file *stream, int quoter)
10245 {
10246 ada_emit_char (c, stream, quoter, 1);
10247 }
10248
10249 static int
10250 parse (void)
10251 {
10252 warnings_issued = 0;
10253 return ada_parse ();
10254 }
10255
10256 static const struct exp_descriptor ada_exp_descriptor = {
10257 ada_print_subexp,
10258 ada_operator_length,
10259 ada_op_name,
10260 ada_dump_subexp_body,
10261 ada_evaluate_subexp
10262 };
10263
10264 const struct language_defn ada_language_defn = {
10265 "ada", /* Language name */
10266 language_ada,
10267 range_check_off,
10268 type_check_off,
10269 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10270 that's not quite what this means. */
10271 array_row_major,
10272 &ada_exp_descriptor,
10273 parse,
10274 ada_error,
10275 resolve,
10276 ada_printchar, /* Print a character constant */
10277 ada_printstr, /* Function to print string constant */
10278 emit_char, /* Function to print single char (not used) */
10279 ada_print_type, /* Print a type using appropriate syntax */
10280 ada_val_print, /* Print a value using appropriate syntax */
10281 ada_value_print, /* Print a top-level value */
10282 NULL, /* Language specific skip_trampoline */
10283 NULL, /* value_of_this */
10284 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10285 basic_lookup_transparent_type, /* lookup_transparent_type */
10286 ada_la_decode, /* Language specific symbol demangler */
10287 NULL, /* Language specific class_name_from_physname */
10288 ada_op_print_tab, /* expression operators for printing */
10289 0, /* c-style arrays */
10290 1, /* String lower bound */
10291 ada_get_gdb_completer_word_break_characters,
10292 ada_language_arch_info,
10293 ada_print_array_index,
10294 default_pass_by_reference,
10295 LANG_MAGIC
10296 };
10297
10298 void
10299 _initialize_ada_language (void)
10300 {
10301 add_language (&ada_language_defn);
10302
10303 varsize_limit = 65536;
10304
10305 obstack_init (&symbol_list_obstack);
10306
10307 decoded_names_store = htab_create_alloc
10308 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10309 NULL, xcalloc, xfree);
10310 }
This page took 0.251895 seconds and 4 git commands to generate.