* python/py-prettyprint.c (search_pp_list): Decref 'attr'.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <stdio.h>
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "c-lang.h"
36 #include "inferior.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "breakpoint.h"
40 #include "gdbcore.h"
41 #include "hashtab.h"
42 #include "gdb_obstack.h"
43 #include "ada-lang.h"
44 #include "completer.h"
45 #include "gdb_stat.h"
46 #ifdef UI_OUT
47 #include "ui-out.h"
48 #endif
49 #include "block.h"
50 #include "infcall.h"
51 #include "dictionary.h"
52 #include "exceptions.h"
53 #include "annotate.h"
54 #include "valprint.h"
55 #include "source.h"
56 #include "observer.h"
57 #include "vec.h"
58 #include "stack.h"
59 #include "gdb_vecs.h"
60 #include "typeprint.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, const struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 const struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 set_value_optimized_out (result, value_optimized_out (val));
585 return result;
586 }
587 }
588
589 static const gdb_byte *
590 cond_offset_host (const gdb_byte *valaddr, long offset)
591 {
592 if (valaddr == NULL)
593 return NULL;
594 else
595 return valaddr + offset;
596 }
597
598 static CORE_ADDR
599 cond_offset_target (CORE_ADDR address, long offset)
600 {
601 if (address == 0)
602 return 0;
603 else
604 return address + offset;
605 }
606
607 /* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
610 expression. */
611
612 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
614 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
615
616 static void
617 lim_warning (const char *format, ...)
618 {
619 va_list args;
620
621 va_start (args, format);
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
624 vwarning (format, args);
625
626 va_end (args);
627 }
628
629 /* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
631 GDB. */
632
633 static void
634 check_size (const struct type *type)
635 {
636 if (TYPE_LENGTH (type) > varsize_limit)
637 error (_("object size is larger than varsize-limit"));
638 }
639
640 /* Maximum value of a SIZE-byte signed integer type. */
641 static LONGEST
642 max_of_size (int size)
643 {
644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
645
646 return top_bit | (top_bit - 1);
647 }
648
649 /* Minimum value of a SIZE-byte signed integer type. */
650 static LONGEST
651 min_of_size (int size)
652 {
653 return -max_of_size (size) - 1;
654 }
655
656 /* Maximum value of a SIZE-byte unsigned integer type. */
657 static ULONGEST
658 umax_of_size (int size)
659 {
660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
661
662 return top_bit | (top_bit - 1);
663 }
664
665 /* Maximum value of integral type T, as a signed quantity. */
666 static LONGEST
667 max_of_type (struct type *t)
668 {
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
671 else
672 return max_of_size (TYPE_LENGTH (t));
673 }
674
675 /* Minimum value of integral type T, as a signed quantity. */
676 static LONGEST
677 min_of_type (struct type *t)
678 {
679 if (TYPE_UNSIGNED (t))
680 return 0;
681 else
682 return min_of_size (TYPE_LENGTH (t));
683 }
684
685 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
686 LONGEST
687 ada_discrete_type_high_bound (struct type *type)
688 {
689 switch (TYPE_CODE (type))
690 {
691 case TYPE_CODE_RANGE:
692 return TYPE_HIGH_BOUND (type);
693 case TYPE_CODE_ENUM:
694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
695 case TYPE_CODE_BOOL:
696 return 1;
697 case TYPE_CODE_CHAR:
698 case TYPE_CODE_INT:
699 return max_of_type (type);
700 default:
701 error (_("Unexpected type in ada_discrete_type_high_bound."));
702 }
703 }
704
705 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
706 LONGEST
707 ada_discrete_type_low_bound (struct type *type)
708 {
709 switch (TYPE_CODE (type))
710 {
711 case TYPE_CODE_RANGE:
712 return TYPE_LOW_BOUND (type);
713 case TYPE_CODE_ENUM:
714 return TYPE_FIELD_ENUMVAL (type, 0);
715 case TYPE_CODE_BOOL:
716 return 0;
717 case TYPE_CODE_CHAR:
718 case TYPE_CODE_INT:
719 return min_of_type (type);
720 default:
721 error (_("Unexpected type in ada_discrete_type_low_bound."));
722 }
723 }
724
725 /* The identity on non-range types. For range types, the underlying
726 non-range scalar type. */
727
728 static struct type *
729 get_base_type (struct type *type)
730 {
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
732 {
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
734 return type;
735 type = TYPE_TARGET_TYPE (type);
736 }
737 return type;
738 }
739
740 /* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
744
745 struct value *
746 ada_get_decoded_value (struct value *value)
747 {
748 struct type *type = ada_check_typedef (value_type (value));
749
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
753 {
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
756 else
757 value = ada_coerce_to_simple_array (value);
758 }
759 else
760 value = ada_to_fixed_value (value);
761
762 return value;
763 }
764
765 /* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
769
770 struct type *
771 ada_get_decoded_type (struct type *type)
772 {
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
776 return type;
777 }
778
779 \f
780
781 /* Language Selection */
782
783 /* If the main program is in Ada, return language_ada, otherwise return LANG
784 (the main program is in Ada iif the adainit symbol is found). */
785
786 enum language
787 ada_update_initial_language (enum language lang)
788 {
789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
790 (struct objfile *) NULL) != NULL)
791 return language_ada;
792
793 return lang;
794 }
795
796 /* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
799
800 char *
801 ada_main_name (void)
802 {
803 struct minimal_symbol *msym;
804 static char *main_program_name = NULL;
805
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
810 in Ada. */
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
812
813 if (msym != NULL)
814 {
815 CORE_ADDR main_program_name_addr;
816 int err_code;
817
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
820 error (_("Invalid address for Ada main program name."));
821
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
824 1024, &err_code);
825
826 if (err_code != 0)
827 return NULL;
828 return main_program_name;
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833 }
834 \f
835 /* Symbols */
836
837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
839
840 const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
863 };
864
865 /* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
867
868 char *
869 ada_encode (const char *decoded)
870 {
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
873 const char *p;
874 int k;
875
876 if (decoded == NULL)
877 return NULL;
878
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
881
882 k = 0;
883 for (p = decoded; *p != '\0'; p += 1)
884 {
885 if (*p == '.')
886 {
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
888 k += 2;
889 }
890 else if (*p == '"')
891 {
892 const struct ada_opname_map *mapping;
893
894 for (mapping = ada_opname_table;
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
898 ;
899 if (mapping->encoded == NULL)
900 error (_("invalid Ada operator name: %s"), p);
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
903 break;
904 }
905 else
906 {
907 encoding_buffer[k] = *p;
908 k += 1;
909 }
910 }
911
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
914 }
915
916 /* Return NAME folded to lower case, or, if surrounded by single
917 quotes, unfolded, but with the quotes stripped away. Result good
918 to next call. */
919
920 char *
921 ada_fold_name (const char *name)
922 {
923 static char *fold_buffer = NULL;
924 static size_t fold_buffer_size = 0;
925
926 int len = strlen (name);
927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
928
929 if (name[0] == '\'')
930 {
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
933 }
934 else
935 {
936 int i;
937
938 for (i = 0; i <= len; i += 1)
939 fold_buffer[i] = tolower (name[i]);
940 }
941
942 return fold_buffer;
943 }
944
945 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
946
947 static int
948 is_lower_alphanum (const char c)
949 {
950 return (isdigit (c) || (isalpha (c) && islower (c)));
951 }
952
953 /* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
956 . .{DIGIT}+
957 . ${DIGIT}+
958 . ___{DIGIT}+
959 . __{DIGIT}+.
960
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
964
965 static void
966 ada_remove_trailing_digits (const char *encoded, int *len)
967 {
968 if (*len > 1 && isdigit (encoded[*len - 1]))
969 {
970 int i = *len - 2;
971
972 while (i > 0 && isdigit (encoded[i]))
973 i--;
974 if (i >= 0 && encoded[i] == '.')
975 *len = i;
976 else if (i >= 0 && encoded[i] == '$')
977 *len = i;
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
979 *len = i - 2;
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
981 *len = i - 1;
982 }
983 }
984
985 /* Remove the suffix introduced by the compiler for protected object
986 subprograms. */
987
988 static void
989 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
990 {
991 /* Remove trailing N. */
992
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
996 the 'P' suffix. The second calls the first one after handling
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1000
1001 if (*len > 1
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1004 *len = *len - 1;
1005 }
1006
1007 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1008
1009 static void
1010 ada_remove_Xbn_suffix (const char *encoded, int *len)
1011 {
1012 int i = *len - 1;
1013
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1015 i--;
1016
1017 if (encoded[i] != 'X')
1018 return;
1019
1020 if (i == 0)
1021 return;
1022
1023 if (isalnum (encoded[i-1]))
1024 *len = i;
1025 }
1026
1027 /* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
1030
1031 The resulting string is valid until the next call of ada_decode.
1032 If the string is unchanged by decoding, the original string pointer
1033 is returned. */
1034
1035 const char *
1036 ada_decode (const char *encoded)
1037 {
1038 int i, j;
1039 int len0;
1040 const char *p;
1041 char *decoded;
1042 int at_start_name;
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
1045
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1050 encoded += 5;
1051
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
1055 if (encoded[0] == '_' || encoded[0] == '<')
1056 goto Suppress;
1057
1058 len0 = strlen (encoded);
1059
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
1062
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
1069 {
1070 if (p[3] == 'X')
1071 len0 = p - encoded;
1072 else
1073 goto Suppress;
1074 }
1075
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1079
1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1081 len0 -= 3;
1082
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1085 bodies. */
1086
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1088 len0 -= 2;
1089
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1092
1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1094 len0 -= 1;
1095
1096 /* Make decoded big enough for possible expansion by operator name. */
1097
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
1100
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1102
1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1104 {
1105 i = len0 - 2;
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1108 i -= 1;
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1110 len0 = i - 1;
1111 else if (encoded[i] == '$')
1112 len0 = i;
1113 }
1114
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1117
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
1120
1121 at_start_name = 1;
1122 while (i < len0)
1123 {
1124 /* Is this a symbol function? */
1125 if (at_start_name && encoded[i] == 'O')
1126 {
1127 int k;
1128
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1130 {
1131 int op_len = strlen (ada_opname_table[k].encoded);
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1133 op_len - 1) == 0)
1134 && !isalnum (encoded[i + op_len]))
1135 {
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1137 at_start_name = 0;
1138 i += op_len;
1139 j += strlen (ada_opname_table[k].decoded);
1140 break;
1141 }
1142 }
1143 if (ada_opname_table[k].encoded != NULL)
1144 continue;
1145 }
1146 at_start_name = 0;
1147
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1150
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1152 i += 2;
1153
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1157
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1161 {
1162 int k = i + 5;
1163
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1166
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1170 i = k;
1171 }
1172
1173 /* Remove _E{DIGITS}+[sb] */
1174
1175 /* Just as for protected object subprograms, there are 2 categories
1176 of subprograms created by the compiler for each entry. The first
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1180 by a 'B'.
1181
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1185
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1188 {
1189 int k = i + 3;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++;
1193
1194 if (k < len0
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1196 {
1197 k++;
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1201 if (k == len0
1202 || (k < len0 && encoded[k] == '_'))
1203 i = k;
1204 }
1205 }
1206
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1209
1210 if (i < len0 + 3
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1212 {
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1217
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1219 ptr--;
1220 if (ptr < encoded
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1222 i++;
1223 }
1224
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1226 {
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1233 package names. */
1234 do
1235 i += 1;
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1237 if (i < len0)
1238 goto Suppress;
1239 }
1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1241 {
1242 /* Replace '__' by '.'. */
1243 decoded[j] = '.';
1244 at_start_name = 1;
1245 i += 2;
1246 j += 1;
1247 }
1248 else
1249 {
1250 /* It's a character part of the decoded name, so just copy it
1251 over. */
1252 decoded[j] = encoded[i];
1253 i += 1;
1254 j += 1;
1255 }
1256 }
1257 decoded[j] = '\000';
1258
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1261
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
1264 goto Suppress;
1265
1266 if (strcmp (decoded, encoded) == 0)
1267 return encoded;
1268 else
1269 return decoded;
1270
1271 Suppress:
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
1276 else
1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1278 return decoded;
1279
1280 }
1281
1282 /* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287 static struct htab *decoded_names_store;
1288
1289 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
1294 GSYMBOL).
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
1297 when a decoded name is cached in it. */
1298
1299 const char *
1300 ada_decode_symbol (const struct general_symbol_info *arg)
1301 {
1302 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1303 const char **resultp =
1304 &gsymbol->language_specific.mangled_lang.demangled_name;
1305
1306 if (!gsymbol->ada_mangled)
1307 {
1308 const char *decoded = ada_decode (gsymbol->name);
1309 struct obstack *obstack = gsymbol->language_specific.obstack;
1310
1311 gsymbol->ada_mangled = 1;
1312
1313 if (obstack != NULL)
1314 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1315 else
1316 {
1317 /* Sometimes, we can't find a corresponding objfile, in
1318 which case, we put the result on the heap. Since we only
1319 decode when needed, we hope this usually does not cause a
1320 significant memory leak (FIXME). */
1321
1322 char **slot = (char **) htab_find_slot (decoded_names_store,
1323 decoded, INSERT);
1324
1325 if (*slot == NULL)
1326 *slot = xstrdup (decoded);
1327 *resultp = *slot;
1328 }
1329 }
1330
1331 return *resultp;
1332 }
1333
1334 static char *
1335 ada_la_decode (const char *encoded, int options)
1336 {
1337 return xstrdup (ada_decode (encoded));
1338 }
1339
1340 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
1346
1347 static int
1348 match_name (const char *sym_name, const char *name, int wild)
1349 {
1350 if (sym_name == NULL || name == NULL)
1351 return 0;
1352 else if (wild)
1353 return wild_match (sym_name, name) == 0;
1354 else
1355 {
1356 int len_name = strlen (name);
1357
1358 return (strncmp (sym_name, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name))
1360 || (strncmp (sym_name, "_ada_", 5) == 0
1361 && strncmp (sym_name + 5, name, len_name) == 0
1362 && is_name_suffix (sym_name + len_name + 5));
1363 }
1364 }
1365 \f
1366
1367 /* Arrays */
1368
1369 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1375
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1385
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1390 index subtype). */
1391
1392 void
1393 ada_fixup_array_indexes_type (struct type *index_desc_type)
1394 {
1395 int i;
1396
1397 if (index_desc_type == NULL)
1398 return;
1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1400
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1403 now.
1404
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1411 return;
1412
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1415 {
1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1418
1419 if (raw_type)
1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1421 }
1422 }
1423
1424 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1425
1426 static char *bound_name[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1429 };
1430
1431 /* Maximum number of array dimensions we are prepared to handle. */
1432
1433 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1434
1435
1436 /* The desc_* routines return primitive portions of array descriptors
1437 (fat pointers). */
1438
1439 /* The descriptor or array type, if any, indicated by TYPE; removes
1440 level of indirection, if needed. */
1441
1442 static struct type *
1443 desc_base_type (struct type *type)
1444 {
1445 if (type == NULL)
1446 return NULL;
1447 type = ada_check_typedef (type);
1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449 type = ada_typedef_target_type (type);
1450
1451 if (type != NULL
1452 && (TYPE_CODE (type) == TYPE_CODE_PTR
1453 || TYPE_CODE (type) == TYPE_CODE_REF))
1454 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1455 else
1456 return type;
1457 }
1458
1459 /* True iff TYPE indicates a "thin" array pointer type. */
1460
1461 static int
1462 is_thin_pntr (struct type *type)
1463 {
1464 return
1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1467 }
1468
1469 /* The descriptor type for thin pointer type TYPE. */
1470
1471 static struct type *
1472 thin_descriptor_type (struct type *type)
1473 {
1474 struct type *base_type = desc_base_type (type);
1475
1476 if (base_type == NULL)
1477 return NULL;
1478 if (is_suffix (ada_type_name (base_type), "___XVE"))
1479 return base_type;
1480 else
1481 {
1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1483
1484 if (alt_type == NULL)
1485 return base_type;
1486 else
1487 return alt_type;
1488 }
1489 }
1490
1491 /* A pointer to the array data for thin-pointer value VAL. */
1492
1493 static struct value *
1494 thin_data_pntr (struct value *val)
1495 {
1496 struct type *type = ada_check_typedef (value_type (val));
1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1498
1499 data_type = lookup_pointer_type (data_type);
1500
1501 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1502 return value_cast (data_type, value_copy (val));
1503 else
1504 return value_from_longest (data_type, value_address (val));
1505 }
1506
1507 /* True iff TYPE indicates a "thick" array pointer type. */
1508
1509 static int
1510 is_thick_pntr (struct type *type)
1511 {
1512 type = desc_base_type (type);
1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1515 }
1516
1517 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
1519
1520 static struct type *
1521 desc_bounds_type (struct type *type)
1522 {
1523 struct type *r;
1524
1525 type = desc_base_type (type);
1526
1527 if (type == NULL)
1528 return NULL;
1529 else if (is_thin_pntr (type))
1530 {
1531 type = thin_descriptor_type (type);
1532 if (type == NULL)
1533 return NULL;
1534 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1535 if (r != NULL)
1536 return ada_check_typedef (r);
1537 }
1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1539 {
1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1541 if (r != NULL)
1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1543 }
1544 return NULL;
1545 }
1546
1547 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1548 one, a pointer to its bounds data. Otherwise NULL. */
1549
1550 static struct value *
1551 desc_bounds (struct value *arr)
1552 {
1553 struct type *type = ada_check_typedef (value_type (arr));
1554
1555 if (is_thin_pntr (type))
1556 {
1557 struct type *bounds_type =
1558 desc_bounds_type (thin_descriptor_type (type));
1559 LONGEST addr;
1560
1561 if (bounds_type == NULL)
1562 error (_("Bad GNAT array descriptor"));
1563
1564 /* NOTE: The following calculation is not really kosher, but
1565 since desc_type is an XVE-encoded type (and shouldn't be),
1566 the correct calculation is a real pain. FIXME (and fix GCC). */
1567 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1568 addr = value_as_long (arr);
1569 else
1570 addr = value_address (arr);
1571
1572 return
1573 value_from_longest (lookup_pointer_type (bounds_type),
1574 addr - TYPE_LENGTH (bounds_type));
1575 }
1576
1577 else if (is_thick_pntr (type))
1578 {
1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 _("Bad GNAT array descriptor"));
1581 struct type *p_bounds_type = value_type (p_bounds);
1582
1583 if (p_bounds_type
1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1585 {
1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1587
1588 if (TYPE_STUB (target_type))
1589 p_bounds = value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type)),
1591 p_bounds);
1592 }
1593 else
1594 error (_("Bad GNAT array descriptor"));
1595
1596 return p_bounds;
1597 }
1598 else
1599 return NULL;
1600 }
1601
1602 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1604
1605 static int
1606 fat_pntr_bounds_bitpos (struct type *type)
1607 {
1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1609 }
1610
1611 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1612 size of the field containing the address of the bounds data. */
1613
1614 static int
1615 fat_pntr_bounds_bitsize (struct type *type)
1616 {
1617 type = desc_base_type (type);
1618
1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1620 return TYPE_FIELD_BITSIZE (type, 1);
1621 else
1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1623 }
1624
1625 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1628 data. */
1629
1630 static struct type *
1631 desc_data_target_type (struct type *type)
1632 {
1633 type = desc_base_type (type);
1634
1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
1636 if (is_thin_pntr (type))
1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1638 else if (is_thick_pntr (type))
1639 {
1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1641
1642 if (data_type
1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1645 }
1646
1647 return NULL;
1648 }
1649
1650 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1651 its array data. */
1652
1653 static struct value *
1654 desc_data (struct value *arr)
1655 {
1656 struct type *type = value_type (arr);
1657
1658 if (is_thin_pntr (type))
1659 return thin_data_pntr (arr);
1660 else if (is_thick_pntr (type))
1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1662 _("Bad GNAT array descriptor"));
1663 else
1664 return NULL;
1665 }
1666
1667
1668 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1669 position of the field containing the address of the data. */
1670
1671 static int
1672 fat_pntr_data_bitpos (struct type *type)
1673 {
1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1675 }
1676
1677 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1678 size of the field containing the address of the data. */
1679
1680 static int
1681 fat_pntr_data_bitsize (struct type *type)
1682 {
1683 type = desc_base_type (type);
1684
1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type, 0);
1687 else
1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1689 }
1690
1691 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1693 bound, if WHICH is 1. The first bound is I=1. */
1694
1695 static struct value *
1696 desc_one_bound (struct value *bounds, int i, int which)
1697 {
1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1699 _("Bad GNAT array descriptor bounds"));
1700 }
1701
1702 /* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
1706 static int
1707 desc_bound_bitpos (struct type *type, int i, int which)
1708 {
1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1710 }
1711
1712 /* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1714 bound, if WHICH is 1. The first bound is I=1. */
1715
1716 static int
1717 desc_bound_bitsize (struct type *type, int i, int which)
1718 {
1719 type = desc_base_type (type);
1720
1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1723 else
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1725 }
1726
1727 /* If TYPE is the type of an array-bounds structure, the type of its
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1729
1730 static struct type *
1731 desc_index_type (struct type *type, int i)
1732 {
1733 type = desc_base_type (type);
1734
1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1737 else
1738 return NULL;
1739 }
1740
1741 /* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1743
1744 static int
1745 desc_arity (struct type *type)
1746 {
1747 type = desc_base_type (type);
1748
1749 if (type != NULL)
1750 return TYPE_NFIELDS (type) / 2;
1751 return 0;
1752 }
1753
1754 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1756 type). */
1757
1758 static int
1759 ada_is_direct_array_type (struct type *type)
1760 {
1761 if (type == NULL)
1762 return 0;
1763 type = ada_check_typedef (type);
1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1765 || ada_is_array_descriptor_type (type));
1766 }
1767
1768 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1769 * to one. */
1770
1771 static int
1772 ada_is_array_type (struct type *type)
1773 {
1774 while (type != NULL
1775 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 || TYPE_CODE (type) == TYPE_CODE_REF))
1777 type = TYPE_TARGET_TYPE (type);
1778 return ada_is_direct_array_type (type);
1779 }
1780
1781 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1782
1783 int
1784 ada_is_simple_array_type (struct type *type)
1785 {
1786 if (type == NULL)
1787 return 0;
1788 type = ada_check_typedef (type);
1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1790 || (TYPE_CODE (type) == TYPE_CODE_PTR
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792 == TYPE_CODE_ARRAY));
1793 }
1794
1795 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1796
1797 int
1798 ada_is_array_descriptor_type (struct type *type)
1799 {
1800 struct type *data_type = desc_data_target_type (type);
1801
1802 if (type == NULL)
1803 return 0;
1804 type = ada_check_typedef (type);
1805 return (data_type != NULL
1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type)) > 0);
1808 }
1809
1810 /* Non-zero iff type is a partially mal-formed GNAT array
1811 descriptor. FIXME: This is to compensate for some problems with
1812 debugging output from GNAT. Re-examine periodically to see if it
1813 is still needed. */
1814
1815 int
1816 ada_is_bogus_array_descriptor (struct type *type)
1817 {
1818 return
1819 type != NULL
1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823 && !ada_is_array_descriptor_type (type);
1824 }
1825
1826
1827 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1828 (fat pointer) returns the type of the array data described---specifically,
1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1830 in from the descriptor; otherwise, they are left unspecified. If
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
1833 a descriptor. */
1834 struct type *
1835 ada_type_of_array (struct value *arr, int bounds)
1836 {
1837 if (ada_is_constrained_packed_array_type (value_type (arr)))
1838 return decode_constrained_packed_array_type (value_type (arr));
1839
1840 if (!ada_is_array_descriptor_type (value_type (arr)))
1841 return value_type (arr);
1842
1843 if (!bounds)
1844 {
1845 struct type *array_type =
1846 ada_check_typedef (desc_data_target_type (value_type (arr)));
1847
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 TYPE_FIELD_BITSIZE (array_type, 0) =
1850 decode_packed_array_bitsize (value_type (arr));
1851
1852 return array_type;
1853 }
1854 else
1855 {
1856 struct type *elt_type;
1857 int arity;
1858 struct value *descriptor;
1859
1860 elt_type = ada_array_element_type (value_type (arr), -1);
1861 arity = ada_array_arity (value_type (arr));
1862
1863 if (elt_type == NULL || arity == 0)
1864 return ada_check_typedef (value_type (arr));
1865
1866 descriptor = desc_bounds (arr);
1867 if (value_as_long (descriptor) == 0)
1868 return NULL;
1869 while (arity > 0)
1870 {
1871 struct type *range_type = alloc_type_copy (value_type (arr));
1872 struct type *array_type = alloc_type_copy (value_type (arr));
1873 struct value *low = desc_one_bound (descriptor, arity, 0);
1874 struct value *high = desc_one_bound (descriptor, arity, 1);
1875
1876 arity -= 1;
1877 create_range_type (range_type, value_type (low),
1878 longest_to_int (value_as_long (low)),
1879 longest_to_int (value_as_long (high)));
1880 elt_type = create_array_type (array_type, elt_type, range_type);
1881
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1883 {
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo = value_as_long (low);
1888 LONGEST hi = value_as_long (high);
1889
1890 TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 decode_packed_array_bitsize (value_type (arr));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1894 if (lo < hi)
1895 {
1896 int array_bitsize =
1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1898
1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1900 }
1901 }
1902 }
1903
1904 return lookup_pointer_type (elt_type);
1905 }
1906 }
1907
1908 /* If ARR does not represent an array, returns ARR unchanged.
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1912
1913 struct value *
1914 ada_coerce_to_simple_array_ptr (struct value *arr)
1915 {
1916 if (ada_is_array_descriptor_type (value_type (arr)))
1917 {
1918 struct type *arrType = ada_type_of_array (arr, 1);
1919
1920 if (arrType == NULL)
1921 return NULL;
1922 return value_cast (arrType, value_copy (desc_data (arr)));
1923 }
1924 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array (arr);
1926 else
1927 return arr;
1928 }
1929
1930 /* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
1932 be ARR itself if it already is in the proper form). */
1933
1934 struct value *
1935 ada_coerce_to_simple_array (struct value *arr)
1936 {
1937 if (ada_is_array_descriptor_type (value_type (arr)))
1938 {
1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1940
1941 if (arrVal == NULL)
1942 error (_("Bounds unavailable for null array pointer."));
1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1944 return value_ind (arrVal);
1945 }
1946 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array (arr);
1948 else
1949 return arr;
1950 }
1951
1952 /* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
1954 packing). For other types, is the identity. */
1955
1956 struct type *
1957 ada_coerce_to_simple_array_type (struct type *type)
1958 {
1959 if (ada_is_constrained_packed_array_type (type))
1960 return decode_constrained_packed_array_type (type);
1961
1962 if (ada_is_array_descriptor_type (type))
1963 return ada_check_typedef (desc_data_target_type (type));
1964
1965 return type;
1966 }
1967
1968 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1969
1970 static int
1971 ada_is_packed_array_type (struct type *type)
1972 {
1973 if (type == NULL)
1974 return 0;
1975 type = desc_base_type (type);
1976 type = ada_check_typedef (type);
1977 return
1978 ada_type_name (type) != NULL
1979 && strstr (ada_type_name (type), "___XP") != NULL;
1980 }
1981
1982 /* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1984
1985 int
1986 ada_is_constrained_packed_array_type (struct type *type)
1987 {
1988 return ada_is_packed_array_type (type)
1989 && !ada_is_array_descriptor_type (type);
1990 }
1991
1992 /* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1994
1995 static int
1996 ada_is_unconstrained_packed_array_type (struct type *type)
1997 {
1998 return ada_is_packed_array_type (type)
1999 && ada_is_array_descriptor_type (type);
2000 }
2001
2002 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2004
2005 static long
2006 decode_packed_array_bitsize (struct type *type)
2007 {
2008 const char *raw_name;
2009 const char *tail;
2010 long bits;
2011
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 type = ada_typedef_target_type (type);
2017
2018 raw_name = ada_type_name (ada_check_typedef (type));
2019 if (!raw_name)
2020 raw_name = ada_type_name (desc_base_type (type));
2021
2022 if (!raw_name)
2023 return 0;
2024
2025 tail = strstr (raw_name, "___XP");
2026 gdb_assert (tail != NULL);
2027
2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2029 {
2030 lim_warning
2031 (_("could not understand bit size information on packed array"));
2032 return 0;
2033 }
2034
2035 return bits;
2036 }
2037
2038 /* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2045 in bits. */
2046
2047 static struct type *
2048 constrained_packed_array_type (struct type *type, long *elt_bits)
2049 {
2050 struct type *new_elt_type;
2051 struct type *new_type;
2052 struct type *index_type_desc;
2053 struct type *index_type;
2054 LONGEST low_bound, high_bound;
2055
2056 type = ada_check_typedef (type);
2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2058 return type;
2059
2060 index_type_desc = ada_find_parallel_type (type, "___XA");
2061 if (index_type_desc)
2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2063 NULL);
2064 else
2065 index_type = TYPE_INDEX_TYPE (type);
2066
2067 new_type = alloc_type_copy (type);
2068 new_elt_type =
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2070 elt_bits);
2071 create_array_type (new_type, new_elt_type, index_type);
2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073 TYPE_NAME (new_type) = ada_type_name (type);
2074
2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2076 low_bound = high_bound = 0;
2077 if (high_bound < low_bound)
2078 *elt_bits = TYPE_LENGTH (new_type) = 0;
2079 else
2080 {
2081 *elt_bits *= (high_bound - low_bound + 1);
2082 TYPE_LENGTH (new_type) =
2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2084 }
2085
2086 TYPE_FIXED_INSTANCE (new_type) = 1;
2087 return new_type;
2088 }
2089
2090 /* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
2092
2093 static struct type *
2094 decode_constrained_packed_array_type (struct type *type)
2095 {
2096 const char *raw_name = ada_type_name (ada_check_typedef (type));
2097 char *name;
2098 const char *tail;
2099 struct type *shadow_type;
2100 long bits;
2101
2102 if (!raw_name)
2103 raw_name = ada_type_name (desc_base_type (type));
2104
2105 if (!raw_name)
2106 return NULL;
2107
2108 name = (char *) alloca (strlen (raw_name) + 1);
2109 tail = strstr (raw_name, "___XP");
2110 type = desc_base_type (type);
2111
2112 memcpy (name, raw_name, tail - raw_name);
2113 name[tail - raw_name] = '\000';
2114
2115 shadow_type = ada_find_parallel_type_with_name (type, name);
2116
2117 if (shadow_type == NULL)
2118 {
2119 lim_warning (_("could not find bounds information on packed array"));
2120 return NULL;
2121 }
2122 CHECK_TYPEDEF (shadow_type);
2123
2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2125 {
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
2128 return NULL;
2129 }
2130
2131 bits = decode_packed_array_bitsize (type);
2132 return constrained_packed_array_type (shadow_type, &bits);
2133 }
2134
2135 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
2139 type length is set appropriately. */
2140
2141 static struct value *
2142 decode_constrained_packed_array (struct value *arr)
2143 {
2144 struct type *type;
2145
2146 arr = ada_coerce_ref (arr);
2147
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2155 arr = value_ind (arr);
2156
2157 type = decode_constrained_packed_array_type (value_type (arr));
2158 if (type == NULL)
2159 {
2160 error (_("can't unpack array"));
2161 return NULL;
2162 }
2163
2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2165 && ada_is_modular_type (value_type (arr)))
2166 {
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size, bit_pos;
2172 ULONGEST mod;
2173
2174 mod = ada_modulus (value_type (arr)) - 1;
2175 bit_size = 0;
2176 while (mod > 0)
2177 {
2178 bit_size += 1;
2179 mod >>= 1;
2180 }
2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2182 arr = ada_value_primitive_packed_val (arr, NULL,
2183 bit_pos / HOST_CHAR_BIT,
2184 bit_pos % HOST_CHAR_BIT,
2185 bit_size,
2186 type);
2187 }
2188
2189 return coerce_unspec_val_to_type (arr, type);
2190 }
2191
2192
2193 /* The value of the element of packed array ARR at the ARITY indices
2194 given in IND. ARR must be a simple array. */
2195
2196 static struct value *
2197 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2198 {
2199 int i;
2200 int bits, elt_off, bit_off;
2201 long elt_total_bit_offset;
2202 struct type *elt_type;
2203 struct value *v;
2204
2205 bits = 0;
2206 elt_total_bit_offset = 0;
2207 elt_type = ada_check_typedef (value_type (arr));
2208 for (i = 0; i < arity; i += 1)
2209 {
2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2212 error
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
2215 else
2216 {
2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218 LONGEST lowerbound, upperbound;
2219 LONGEST idx;
2220
2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2222 {
2223 lim_warning (_("don't know bounds of array"));
2224 lowerbound = upperbound = 0;
2225 }
2226
2227 idx = pos_atr (ind[i]);
2228 if (idx < lowerbound || idx > upperbound)
2229 lim_warning (_("packed array index %ld out of bounds"),
2230 (long) idx);
2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232 elt_total_bit_offset += (idx - lowerbound) * bits;
2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2234 }
2235 }
2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2238
2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2240 bits, elt_type);
2241 return v;
2242 }
2243
2244 /* Non-zero iff TYPE includes negative integer values. */
2245
2246 static int
2247 has_negatives (struct type *type)
2248 {
2249 switch (TYPE_CODE (type))
2250 {
2251 default:
2252 return 0;
2253 case TYPE_CODE_INT:
2254 return !TYPE_UNSIGNED (type);
2255 case TYPE_CODE_RANGE:
2256 return TYPE_LOW_BOUND (type) < 0;
2257 }
2258 }
2259
2260
2261 /* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2264 assigning through the result will set the field fetched from.
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2269
2270 struct value *
2271 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2272 long offset, int bit_offset, int bit_size,
2273 struct type *type)
2274 {
2275 struct value *v;
2276 int src, /* Index into the source area */
2277 targ, /* Index into the target area */
2278 srcBitsLeft, /* Number of source bits left to move */
2279 nsrc, ntarg, /* Number of source and target bytes */
2280 unusedLS, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize; /* Number of meaningful bits in accum */
2283 unsigned char *bytes; /* First byte containing data to unpack */
2284 unsigned char *unpacked;
2285 unsigned long accum; /* Staging area for bits being transferred */
2286 unsigned char sign;
2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2291
2292 type = ada_check_typedef (type);
2293
2294 if (obj == NULL)
2295 {
2296 v = allocate_value (type);
2297 bytes = (unsigned char *) (valaddr + offset);
2298 }
2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2300 {
2301 v = value_at (type, value_address (obj));
2302 bytes = (unsigned char *) alloca (len);
2303 read_memory (value_address (v) + offset, bytes, len);
2304 }
2305 else
2306 {
2307 v = allocate_value (type);
2308 bytes = (unsigned char *) value_contents (obj) + offset;
2309 }
2310
2311 if (obj != NULL)
2312 {
2313 long new_offset = offset;
2314
2315 set_value_component_location (v, obj);
2316 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317 set_value_bitsize (v, bit_size);
2318 if (value_bitpos (v) >= HOST_CHAR_BIT)
2319 {
2320 ++new_offset;
2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2322 }
2323 set_value_offset (v, new_offset);
2324
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v, obj);
2328 }
2329 else
2330 set_value_bitsize (v, bit_size);
2331 unpacked = (unsigned char *) value_contents (v);
2332
2333 srcBitsLeft = bit_size;
2334 nsrc = len;
2335 ntarg = TYPE_LENGTH (type);
2336 sign = 0;
2337 if (bit_size == 0)
2338 {
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2340 return v;
2341 }
2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2343 {
2344 src = len - 1;
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2347 sign = ~0;
2348
2349 unusedLS =
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351 % HOST_CHAR_BIT;
2352
2353 switch (TYPE_CODE (type))
2354 {
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2359 accumSize =
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2362 of the target. */
2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2364 ntarg = targ + 1;
2365 break;
2366 default:
2367 accumSize = 0;
2368 targ = TYPE_LENGTH (type) - 1;
2369 break;
2370 }
2371 }
2372 else
2373 {
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375
2376 src = targ = 0;
2377 unusedLS = bit_offset;
2378 accumSize = 0;
2379
2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2381 sign = ~0;
2382 }
2383
2384 accum = 0;
2385 while (nsrc > 0)
2386 {
2387 /* Mask for removing bits of the next source byte that are not
2388 part of the value. */
2389 unsigned int unusedMSMask =
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391 1;
2392 /* Sign-extend bits for this byte. */
2393 unsigned int signMask = sign & ~unusedMSMask;
2394
2395 accum |=
2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2397 accumSize += HOST_CHAR_BIT - unusedLS;
2398 if (accumSize >= HOST_CHAR_BIT)
2399 {
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2403 ntarg -= 1;
2404 targ += delta;
2405 }
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407 unusedLS = 0;
2408 nsrc -= 1;
2409 src += delta;
2410 }
2411 while (ntarg > 0)
2412 {
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2417 ntarg -= 1;
2418 targ += delta;
2419 }
2420
2421 return v;
2422 }
2423
2424 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2426 not overlap. */
2427 static void
2428 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2429 int src_offset, int n, int bits_big_endian_p)
2430 {
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2433
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
2438 if (bits_big_endian_p)
2439 {
2440 accum = (unsigned char) *source;
2441 source += 1;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2443
2444 while (n > 0)
2445 {
2446 int unused_right;
2447
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2450 source += 1;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2452 if (chunk_size > n)
2453 chunk_size = n;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2456 *target =
2457 (*target & ~mask)
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459 n -= chunk_size;
2460 accum_bits -= chunk_size;
2461 target += 1;
2462 targ_offset = 0;
2463 }
2464 }
2465 else
2466 {
2467 accum = (unsigned char) *source >> src_offset;
2468 source += 1;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2470
2471 while (n > 0)
2472 {
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2475 source += 1;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2477 if (chunk_size > n)
2478 chunk_size = n;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481 n -= chunk_size;
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
2487 }
2488 }
2489
2490 /* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
2493 floating-point or non-scalar types. */
2494
2495 static struct value *
2496 ada_value_assign (struct value *toval, struct value *fromval)
2497 {
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
2500
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2503
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2508
2509 if (!deprecated_value_modifiable (toval))
2510 error (_("Left operand of assignment is not a modifiable lvalue."));
2511
2512 if (VALUE_LVAL (toval) == lval_memory
2513 && bits > 0
2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2516 {
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2519 int from_size;
2520 gdb_byte *buffer = alloca (len);
2521 struct value *val;
2522 CORE_ADDR to_addr = value_address (toval);
2523
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2525 fromval = value_cast (type, fromval);
2526
2527 read_memory (to_addr, buffer, len);
2528 from_size = value_bitsize (fromval);
2529 if (from_size == 0)
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), from_size - bits, bits, 1);
2534 else
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
2537 write_memory_with_notification (to_addr, buffer, len);
2538
2539 val = value_copy (toval);
2540 memcpy (value_contents_raw (val), value_contents (fromval),
2541 TYPE_LENGTH (type));
2542 deprecated_set_value_type (val, type);
2543
2544 return val;
2545 }
2546
2547 return value_assign (toval, fromval);
2548 }
2549
2550
2551 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2552 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2553 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2554 * COMPONENT, and not the inferior's memory. The current contents
2555 * of COMPONENT are ignored. */
2556 static void
2557 value_assign_to_component (struct value *container, struct value *component,
2558 struct value *val)
2559 {
2560 LONGEST offset_in_container =
2561 (LONGEST) (value_address (component) - value_address (container));
2562 int bit_offset_in_container =
2563 value_bitpos (component) - value_bitpos (container);
2564 int bits;
2565
2566 val = value_cast (value_type (component), val);
2567
2568 if (value_bitsize (component) == 0)
2569 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2570 else
2571 bits = value_bitsize (component);
2572
2573 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2574 move_bits (value_contents_writeable (container) + offset_in_container,
2575 value_bitpos (container) + bit_offset_in_container,
2576 value_contents (val),
2577 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2578 bits, 1);
2579 else
2580 move_bits (value_contents_writeable (container) + offset_in_container,
2581 value_bitpos (container) + bit_offset_in_container,
2582 value_contents (val), 0, bits, 0);
2583 }
2584
2585 /* The value of the element of array ARR at the ARITY indices given in IND.
2586 ARR may be either a simple array, GNAT array descriptor, or pointer
2587 thereto. */
2588
2589 struct value *
2590 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2591 {
2592 int k;
2593 struct value *elt;
2594 struct type *elt_type;
2595
2596 elt = ada_coerce_to_simple_array (arr);
2597
2598 elt_type = ada_check_typedef (value_type (elt));
2599 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2600 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2601 return value_subscript_packed (elt, arity, ind);
2602
2603 for (k = 0; k < arity; k += 1)
2604 {
2605 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2606 error (_("too many subscripts (%d expected)"), k);
2607 elt = value_subscript (elt, pos_atr (ind[k]));
2608 }
2609 return elt;
2610 }
2611
2612 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2613 value of the element of *ARR at the ARITY indices given in
2614 IND. Does not read the entire array into memory. */
2615
2616 static struct value *
2617 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2618 struct value **ind)
2619 {
2620 int k;
2621
2622 for (k = 0; k < arity; k += 1)
2623 {
2624 LONGEST lwb, upb;
2625
2626 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2627 error (_("too many subscripts (%d expected)"), k);
2628 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2629 value_copy (arr));
2630 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2631 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2632 type = TYPE_TARGET_TYPE (type);
2633 }
2634
2635 return value_ind (arr);
2636 }
2637
2638 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2639 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2640 elements starting at index LOW. The lower bound of this array is LOW, as
2641 per Ada rules. */
2642 static struct value *
2643 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2644 int low, int high)
2645 {
2646 struct type *type0 = ada_check_typedef (type);
2647 CORE_ADDR base = value_as_address (array_ptr)
2648 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2649 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2650 struct type *index_type =
2651 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2652 low, high);
2653 struct type *slice_type =
2654 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2655
2656 return value_at_lazy (slice_type, base);
2657 }
2658
2659
2660 static struct value *
2661 ada_value_slice (struct value *array, int low, int high)
2662 {
2663 struct type *type = ada_check_typedef (value_type (array));
2664 struct type *index_type =
2665 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2666 struct type *slice_type =
2667 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2668
2669 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2670 }
2671
2672 /* If type is a record type in the form of a standard GNAT array
2673 descriptor, returns the number of dimensions for type. If arr is a
2674 simple array, returns the number of "array of"s that prefix its
2675 type designation. Otherwise, returns 0. */
2676
2677 int
2678 ada_array_arity (struct type *type)
2679 {
2680 int arity;
2681
2682 if (type == NULL)
2683 return 0;
2684
2685 type = desc_base_type (type);
2686
2687 arity = 0;
2688 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2689 return desc_arity (desc_bounds_type (type));
2690 else
2691 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2692 {
2693 arity += 1;
2694 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2695 }
2696
2697 return arity;
2698 }
2699
2700 /* If TYPE is a record type in the form of a standard GNAT array
2701 descriptor or a simple array type, returns the element type for
2702 TYPE after indexing by NINDICES indices, or by all indices if
2703 NINDICES is -1. Otherwise, returns NULL. */
2704
2705 struct type *
2706 ada_array_element_type (struct type *type, int nindices)
2707 {
2708 type = desc_base_type (type);
2709
2710 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2711 {
2712 int k;
2713 struct type *p_array_type;
2714
2715 p_array_type = desc_data_target_type (type);
2716
2717 k = ada_array_arity (type);
2718 if (k == 0)
2719 return NULL;
2720
2721 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2722 if (nindices >= 0 && k > nindices)
2723 k = nindices;
2724 while (k > 0 && p_array_type != NULL)
2725 {
2726 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2727 k -= 1;
2728 }
2729 return p_array_type;
2730 }
2731 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2732 {
2733 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2734 {
2735 type = TYPE_TARGET_TYPE (type);
2736 nindices -= 1;
2737 }
2738 return type;
2739 }
2740
2741 return NULL;
2742 }
2743
2744 /* The type of nth index in arrays of given type (n numbering from 1).
2745 Does not examine memory. Throws an error if N is invalid or TYPE
2746 is not an array type. NAME is the name of the Ada attribute being
2747 evaluated ('range, 'first, 'last, or 'length); it is used in building
2748 the error message. */
2749
2750 static struct type *
2751 ada_index_type (struct type *type, int n, const char *name)
2752 {
2753 struct type *result_type;
2754
2755 type = desc_base_type (type);
2756
2757 if (n < 0 || n > ada_array_arity (type))
2758 error (_("invalid dimension number to '%s"), name);
2759
2760 if (ada_is_simple_array_type (type))
2761 {
2762 int i;
2763
2764 for (i = 1; i < n; i += 1)
2765 type = TYPE_TARGET_TYPE (type);
2766 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2767 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2768 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2769 perhaps stabsread.c would make more sense. */
2770 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2771 result_type = NULL;
2772 }
2773 else
2774 {
2775 result_type = desc_index_type (desc_bounds_type (type), n);
2776 if (result_type == NULL)
2777 error (_("attempt to take bound of something that is not an array"));
2778 }
2779
2780 return result_type;
2781 }
2782
2783 /* Given that arr is an array type, returns the lower bound of the
2784 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2785 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2786 array-descriptor type. It works for other arrays with bounds supplied
2787 by run-time quantities other than discriminants. */
2788
2789 static LONGEST
2790 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2791 {
2792 struct type *type, *elt_type, *index_type_desc, *index_type;
2793 int i;
2794
2795 gdb_assert (which == 0 || which == 1);
2796
2797 if (ada_is_constrained_packed_array_type (arr_type))
2798 arr_type = decode_constrained_packed_array_type (arr_type);
2799
2800 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2801 return (LONGEST) - which;
2802
2803 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2804 type = TYPE_TARGET_TYPE (arr_type);
2805 else
2806 type = arr_type;
2807
2808 elt_type = type;
2809 for (i = n; i > 1; i--)
2810 elt_type = TYPE_TARGET_TYPE (type);
2811
2812 index_type_desc = ada_find_parallel_type (type, "___XA");
2813 ada_fixup_array_indexes_type (index_type_desc);
2814 if (index_type_desc != NULL)
2815 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2816 NULL);
2817 else
2818 index_type = TYPE_INDEX_TYPE (elt_type);
2819
2820 return
2821 (LONGEST) (which == 0
2822 ? ada_discrete_type_low_bound (index_type)
2823 : ada_discrete_type_high_bound (index_type));
2824 }
2825
2826 /* Given that arr is an array value, returns the lower bound of the
2827 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2828 WHICH is 1. This routine will also work for arrays with bounds
2829 supplied by run-time quantities other than discriminants. */
2830
2831 static LONGEST
2832 ada_array_bound (struct value *arr, int n, int which)
2833 {
2834 struct type *arr_type = value_type (arr);
2835
2836 if (ada_is_constrained_packed_array_type (arr_type))
2837 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2838 else if (ada_is_simple_array_type (arr_type))
2839 return ada_array_bound_from_type (arr_type, n, which);
2840 else
2841 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2842 }
2843
2844 /* Given that arr is an array value, returns the length of the
2845 nth index. This routine will also work for arrays with bounds
2846 supplied by run-time quantities other than discriminants.
2847 Does not work for arrays indexed by enumeration types with representation
2848 clauses at the moment. */
2849
2850 static LONGEST
2851 ada_array_length (struct value *arr, int n)
2852 {
2853 struct type *arr_type = ada_check_typedef (value_type (arr));
2854
2855 if (ada_is_constrained_packed_array_type (arr_type))
2856 return ada_array_length (decode_constrained_packed_array (arr), n);
2857
2858 if (ada_is_simple_array_type (arr_type))
2859 return (ada_array_bound_from_type (arr_type, n, 1)
2860 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2861 else
2862 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2863 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2864 }
2865
2866 /* An empty array whose type is that of ARR_TYPE (an array type),
2867 with bounds LOW to LOW-1. */
2868
2869 static struct value *
2870 empty_array (struct type *arr_type, int low)
2871 {
2872 struct type *arr_type0 = ada_check_typedef (arr_type);
2873 struct type *index_type =
2874 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2875 low, low - 1);
2876 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2877
2878 return allocate_value (create_array_type (NULL, elt_type, index_type));
2879 }
2880 \f
2881
2882 /* Name resolution */
2883
2884 /* The "decoded" name for the user-definable Ada operator corresponding
2885 to OP. */
2886
2887 static const char *
2888 ada_decoded_op_name (enum exp_opcode op)
2889 {
2890 int i;
2891
2892 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2893 {
2894 if (ada_opname_table[i].op == op)
2895 return ada_opname_table[i].decoded;
2896 }
2897 error (_("Could not find operator name for opcode"));
2898 }
2899
2900
2901 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2902 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2903 undefined namespace) and converts operators that are
2904 user-defined into appropriate function calls. If CONTEXT_TYPE is
2905 non-null, it provides a preferred result type [at the moment, only
2906 type void has any effect---causing procedures to be preferred over
2907 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2908 return type is preferred. May change (expand) *EXP. */
2909
2910 static void
2911 resolve (struct expression **expp, int void_context_p)
2912 {
2913 struct type *context_type = NULL;
2914 int pc = 0;
2915
2916 if (void_context_p)
2917 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2918
2919 resolve_subexp (expp, &pc, 1, context_type);
2920 }
2921
2922 /* Resolve the operator of the subexpression beginning at
2923 position *POS of *EXPP. "Resolving" consists of replacing
2924 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2925 with their resolutions, replacing built-in operators with
2926 function calls to user-defined operators, where appropriate, and,
2927 when DEPROCEDURE_P is non-zero, converting function-valued variables
2928 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2929 are as in ada_resolve, above. */
2930
2931 static struct value *
2932 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2933 struct type *context_type)
2934 {
2935 int pc = *pos;
2936 int i;
2937 struct expression *exp; /* Convenience: == *expp. */
2938 enum exp_opcode op = (*expp)->elts[pc].opcode;
2939 struct value **argvec; /* Vector of operand types (alloca'ed). */
2940 int nargs; /* Number of operands. */
2941 int oplen;
2942
2943 argvec = NULL;
2944 nargs = 0;
2945 exp = *expp;
2946
2947 /* Pass one: resolve operands, saving their types and updating *pos,
2948 if needed. */
2949 switch (op)
2950 {
2951 case OP_FUNCALL:
2952 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2953 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2954 *pos += 7;
2955 else
2956 {
2957 *pos += 3;
2958 resolve_subexp (expp, pos, 0, NULL);
2959 }
2960 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2961 break;
2962
2963 case UNOP_ADDR:
2964 *pos += 1;
2965 resolve_subexp (expp, pos, 0, NULL);
2966 break;
2967
2968 case UNOP_QUAL:
2969 *pos += 3;
2970 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2971 break;
2972
2973 case OP_ATR_MODULUS:
2974 case OP_ATR_SIZE:
2975 case OP_ATR_TAG:
2976 case OP_ATR_FIRST:
2977 case OP_ATR_LAST:
2978 case OP_ATR_LENGTH:
2979 case OP_ATR_POS:
2980 case OP_ATR_VAL:
2981 case OP_ATR_MIN:
2982 case OP_ATR_MAX:
2983 case TERNOP_IN_RANGE:
2984 case BINOP_IN_BOUNDS:
2985 case UNOP_IN_RANGE:
2986 case OP_AGGREGATE:
2987 case OP_OTHERS:
2988 case OP_CHOICES:
2989 case OP_POSITIONAL:
2990 case OP_DISCRETE_RANGE:
2991 case OP_NAME:
2992 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2993 *pos += oplen;
2994 break;
2995
2996 case BINOP_ASSIGN:
2997 {
2998 struct value *arg1;
2999
3000 *pos += 1;
3001 arg1 = resolve_subexp (expp, pos, 0, NULL);
3002 if (arg1 == NULL)
3003 resolve_subexp (expp, pos, 1, NULL);
3004 else
3005 resolve_subexp (expp, pos, 1, value_type (arg1));
3006 break;
3007 }
3008
3009 case UNOP_CAST:
3010 *pos += 3;
3011 nargs = 1;
3012 break;
3013
3014 case BINOP_ADD:
3015 case BINOP_SUB:
3016 case BINOP_MUL:
3017 case BINOP_DIV:
3018 case BINOP_REM:
3019 case BINOP_MOD:
3020 case BINOP_EXP:
3021 case BINOP_CONCAT:
3022 case BINOP_LOGICAL_AND:
3023 case BINOP_LOGICAL_OR:
3024 case BINOP_BITWISE_AND:
3025 case BINOP_BITWISE_IOR:
3026 case BINOP_BITWISE_XOR:
3027
3028 case BINOP_EQUAL:
3029 case BINOP_NOTEQUAL:
3030 case BINOP_LESS:
3031 case BINOP_GTR:
3032 case BINOP_LEQ:
3033 case BINOP_GEQ:
3034
3035 case BINOP_REPEAT:
3036 case BINOP_SUBSCRIPT:
3037 case BINOP_COMMA:
3038 *pos += 1;
3039 nargs = 2;
3040 break;
3041
3042 case UNOP_NEG:
3043 case UNOP_PLUS:
3044 case UNOP_LOGICAL_NOT:
3045 case UNOP_ABS:
3046 case UNOP_IND:
3047 *pos += 1;
3048 nargs = 1;
3049 break;
3050
3051 case OP_LONG:
3052 case OP_DOUBLE:
3053 case OP_VAR_VALUE:
3054 *pos += 4;
3055 break;
3056
3057 case OP_TYPE:
3058 case OP_BOOL:
3059 case OP_LAST:
3060 case OP_INTERNALVAR:
3061 *pos += 3;
3062 break;
3063
3064 case UNOP_MEMVAL:
3065 *pos += 3;
3066 nargs = 1;
3067 break;
3068
3069 case OP_REGISTER:
3070 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3071 break;
3072
3073 case STRUCTOP_STRUCT:
3074 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3075 nargs = 1;
3076 break;
3077
3078 case TERNOP_SLICE:
3079 *pos += 1;
3080 nargs = 3;
3081 break;
3082
3083 case OP_STRING:
3084 break;
3085
3086 default:
3087 error (_("Unexpected operator during name resolution"));
3088 }
3089
3090 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3091 for (i = 0; i < nargs; i += 1)
3092 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3093 argvec[i] = NULL;
3094 exp = *expp;
3095
3096 /* Pass two: perform any resolution on principal operator. */
3097 switch (op)
3098 {
3099 default:
3100 break;
3101
3102 case OP_VAR_VALUE:
3103 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3104 {
3105 struct ada_symbol_info *candidates;
3106 int n_candidates;
3107
3108 n_candidates =
3109 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3110 (exp->elts[pc + 2].symbol),
3111 exp->elts[pc + 1].block, VAR_DOMAIN,
3112 &candidates);
3113
3114 if (n_candidates > 1)
3115 {
3116 /* Types tend to get re-introduced locally, so if there
3117 are any local symbols that are not types, first filter
3118 out all types. */
3119 int j;
3120 for (j = 0; j < n_candidates; j += 1)
3121 switch (SYMBOL_CLASS (candidates[j].sym))
3122 {
3123 case LOC_REGISTER:
3124 case LOC_ARG:
3125 case LOC_REF_ARG:
3126 case LOC_REGPARM_ADDR:
3127 case LOC_LOCAL:
3128 case LOC_COMPUTED:
3129 goto FoundNonType;
3130 default:
3131 break;
3132 }
3133 FoundNonType:
3134 if (j < n_candidates)
3135 {
3136 j = 0;
3137 while (j < n_candidates)
3138 {
3139 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3140 {
3141 candidates[j] = candidates[n_candidates - 1];
3142 n_candidates -= 1;
3143 }
3144 else
3145 j += 1;
3146 }
3147 }
3148 }
3149
3150 if (n_candidates == 0)
3151 error (_("No definition found for %s"),
3152 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3153 else if (n_candidates == 1)
3154 i = 0;
3155 else if (deprocedure_p
3156 && !is_nonfunction (candidates, n_candidates))
3157 {
3158 i = ada_resolve_function
3159 (candidates, n_candidates, NULL, 0,
3160 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3161 context_type);
3162 if (i < 0)
3163 error (_("Could not find a match for %s"),
3164 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3165 }
3166 else
3167 {
3168 printf_filtered (_("Multiple matches for %s\n"),
3169 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3170 user_select_syms (candidates, n_candidates, 1);
3171 i = 0;
3172 }
3173
3174 exp->elts[pc + 1].block = candidates[i].block;
3175 exp->elts[pc + 2].symbol = candidates[i].sym;
3176 if (innermost_block == NULL
3177 || contained_in (candidates[i].block, innermost_block))
3178 innermost_block = candidates[i].block;
3179 }
3180
3181 if (deprocedure_p
3182 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3183 == TYPE_CODE_FUNC))
3184 {
3185 replace_operator_with_call (expp, pc, 0, 0,
3186 exp->elts[pc + 2].symbol,
3187 exp->elts[pc + 1].block);
3188 exp = *expp;
3189 }
3190 break;
3191
3192 case OP_FUNCALL:
3193 {
3194 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3195 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3196 {
3197 struct ada_symbol_info *candidates;
3198 int n_candidates;
3199
3200 n_candidates =
3201 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3202 (exp->elts[pc + 5].symbol),
3203 exp->elts[pc + 4].block, VAR_DOMAIN,
3204 &candidates);
3205 if (n_candidates == 1)
3206 i = 0;
3207 else
3208 {
3209 i = ada_resolve_function
3210 (candidates, n_candidates,
3211 argvec, nargs,
3212 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3213 context_type);
3214 if (i < 0)
3215 error (_("Could not find a match for %s"),
3216 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3217 }
3218
3219 exp->elts[pc + 4].block = candidates[i].block;
3220 exp->elts[pc + 5].symbol = candidates[i].sym;
3221 if (innermost_block == NULL
3222 || contained_in (candidates[i].block, innermost_block))
3223 innermost_block = candidates[i].block;
3224 }
3225 }
3226 break;
3227 case BINOP_ADD:
3228 case BINOP_SUB:
3229 case BINOP_MUL:
3230 case BINOP_DIV:
3231 case BINOP_REM:
3232 case BINOP_MOD:
3233 case BINOP_CONCAT:
3234 case BINOP_BITWISE_AND:
3235 case BINOP_BITWISE_IOR:
3236 case BINOP_BITWISE_XOR:
3237 case BINOP_EQUAL:
3238 case BINOP_NOTEQUAL:
3239 case BINOP_LESS:
3240 case BINOP_GTR:
3241 case BINOP_LEQ:
3242 case BINOP_GEQ:
3243 case BINOP_EXP:
3244 case UNOP_NEG:
3245 case UNOP_PLUS:
3246 case UNOP_LOGICAL_NOT:
3247 case UNOP_ABS:
3248 if (possible_user_operator_p (op, argvec))
3249 {
3250 struct ada_symbol_info *candidates;
3251 int n_candidates;
3252
3253 n_candidates =
3254 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3255 (struct block *) NULL, VAR_DOMAIN,
3256 &candidates);
3257 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3258 ada_decoded_op_name (op), NULL);
3259 if (i < 0)
3260 break;
3261
3262 replace_operator_with_call (expp, pc, nargs, 1,
3263 candidates[i].sym, candidates[i].block);
3264 exp = *expp;
3265 }
3266 break;
3267
3268 case OP_TYPE:
3269 case OP_REGISTER:
3270 return NULL;
3271 }
3272
3273 *pos = pc;
3274 return evaluate_subexp_type (exp, pos);
3275 }
3276
3277 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3278 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3279 a non-pointer. */
3280 /* The term "match" here is rather loose. The match is heuristic and
3281 liberal. */
3282
3283 static int
3284 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3285 {
3286 ftype = ada_check_typedef (ftype);
3287 atype = ada_check_typedef (atype);
3288
3289 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3290 ftype = TYPE_TARGET_TYPE (ftype);
3291 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3292 atype = TYPE_TARGET_TYPE (atype);
3293
3294 switch (TYPE_CODE (ftype))
3295 {
3296 default:
3297 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3298 case TYPE_CODE_PTR:
3299 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3300 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3301 TYPE_TARGET_TYPE (atype), 0);
3302 else
3303 return (may_deref
3304 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3305 case TYPE_CODE_INT:
3306 case TYPE_CODE_ENUM:
3307 case TYPE_CODE_RANGE:
3308 switch (TYPE_CODE (atype))
3309 {
3310 case TYPE_CODE_INT:
3311 case TYPE_CODE_ENUM:
3312 case TYPE_CODE_RANGE:
3313 return 1;
3314 default:
3315 return 0;
3316 }
3317
3318 case TYPE_CODE_ARRAY:
3319 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3320 || ada_is_array_descriptor_type (atype));
3321
3322 case TYPE_CODE_STRUCT:
3323 if (ada_is_array_descriptor_type (ftype))
3324 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3325 || ada_is_array_descriptor_type (atype));
3326 else
3327 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3328 && !ada_is_array_descriptor_type (atype));
3329
3330 case TYPE_CODE_UNION:
3331 case TYPE_CODE_FLT:
3332 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3333 }
3334 }
3335
3336 /* Return non-zero if the formals of FUNC "sufficiently match" the
3337 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3338 may also be an enumeral, in which case it is treated as a 0-
3339 argument function. */
3340
3341 static int
3342 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3343 {
3344 int i;
3345 struct type *func_type = SYMBOL_TYPE (func);
3346
3347 if (SYMBOL_CLASS (func) == LOC_CONST
3348 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3349 return (n_actuals == 0);
3350 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3351 return 0;
3352
3353 if (TYPE_NFIELDS (func_type) != n_actuals)
3354 return 0;
3355
3356 for (i = 0; i < n_actuals; i += 1)
3357 {
3358 if (actuals[i] == NULL)
3359 return 0;
3360 else
3361 {
3362 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3363 i));
3364 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3365
3366 if (!ada_type_match (ftype, atype, 1))
3367 return 0;
3368 }
3369 }
3370 return 1;
3371 }
3372
3373 /* False iff function type FUNC_TYPE definitely does not produce a value
3374 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3375 FUNC_TYPE is not a valid function type with a non-null return type
3376 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3377
3378 static int
3379 return_match (struct type *func_type, struct type *context_type)
3380 {
3381 struct type *return_type;
3382
3383 if (func_type == NULL)
3384 return 1;
3385
3386 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3387 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3388 else
3389 return_type = get_base_type (func_type);
3390 if (return_type == NULL)
3391 return 1;
3392
3393 context_type = get_base_type (context_type);
3394
3395 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3396 return context_type == NULL || return_type == context_type;
3397 else if (context_type == NULL)
3398 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3399 else
3400 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3401 }
3402
3403
3404 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3405 function (if any) that matches the types of the NARGS arguments in
3406 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3407 that returns that type, then eliminate matches that don't. If
3408 CONTEXT_TYPE is void and there is at least one match that does not
3409 return void, eliminate all matches that do.
3410
3411 Asks the user if there is more than one match remaining. Returns -1
3412 if there is no such symbol or none is selected. NAME is used
3413 solely for messages. May re-arrange and modify SYMS in
3414 the process; the index returned is for the modified vector. */
3415
3416 static int
3417 ada_resolve_function (struct ada_symbol_info syms[],
3418 int nsyms, struct value **args, int nargs,
3419 const char *name, struct type *context_type)
3420 {
3421 int fallback;
3422 int k;
3423 int m; /* Number of hits */
3424
3425 m = 0;
3426 /* In the first pass of the loop, we only accept functions matching
3427 context_type. If none are found, we add a second pass of the loop
3428 where every function is accepted. */
3429 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3430 {
3431 for (k = 0; k < nsyms; k += 1)
3432 {
3433 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3434
3435 if (ada_args_match (syms[k].sym, args, nargs)
3436 && (fallback || return_match (type, context_type)))
3437 {
3438 syms[m] = syms[k];
3439 m += 1;
3440 }
3441 }
3442 }
3443
3444 if (m == 0)
3445 return -1;
3446 else if (m > 1)
3447 {
3448 printf_filtered (_("Multiple matches for %s\n"), name);
3449 user_select_syms (syms, m, 1);
3450 return 0;
3451 }
3452 return 0;
3453 }
3454
3455 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3456 in a listing of choices during disambiguation (see sort_choices, below).
3457 The idea is that overloadings of a subprogram name from the
3458 same package should sort in their source order. We settle for ordering
3459 such symbols by their trailing number (__N or $N). */
3460
3461 static int
3462 encoded_ordered_before (const char *N0, const char *N1)
3463 {
3464 if (N1 == NULL)
3465 return 0;
3466 else if (N0 == NULL)
3467 return 1;
3468 else
3469 {
3470 int k0, k1;
3471
3472 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3473 ;
3474 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3475 ;
3476 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3477 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3478 {
3479 int n0, n1;
3480
3481 n0 = k0;
3482 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3483 n0 -= 1;
3484 n1 = k1;
3485 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3486 n1 -= 1;
3487 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3488 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3489 }
3490 return (strcmp (N0, N1) < 0);
3491 }
3492 }
3493
3494 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3495 encoded names. */
3496
3497 static void
3498 sort_choices (struct ada_symbol_info syms[], int nsyms)
3499 {
3500 int i;
3501
3502 for (i = 1; i < nsyms; i += 1)
3503 {
3504 struct ada_symbol_info sym = syms[i];
3505 int j;
3506
3507 for (j = i - 1; j >= 0; j -= 1)
3508 {
3509 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3510 SYMBOL_LINKAGE_NAME (sym.sym)))
3511 break;
3512 syms[j + 1] = syms[j];
3513 }
3514 syms[j + 1] = sym;
3515 }
3516 }
3517
3518 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3519 by asking the user (if necessary), returning the number selected,
3520 and setting the first elements of SYMS items. Error if no symbols
3521 selected. */
3522
3523 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3524 to be re-integrated one of these days. */
3525
3526 int
3527 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3528 {
3529 int i;
3530 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3531 int n_chosen;
3532 int first_choice = (max_results == 1) ? 1 : 2;
3533 const char *select_mode = multiple_symbols_select_mode ();
3534
3535 if (max_results < 1)
3536 error (_("Request to select 0 symbols!"));
3537 if (nsyms <= 1)
3538 return nsyms;
3539
3540 if (select_mode == multiple_symbols_cancel)
3541 error (_("\
3542 canceled because the command is ambiguous\n\
3543 See set/show multiple-symbol."));
3544
3545 /* If select_mode is "all", then return all possible symbols.
3546 Only do that if more than one symbol can be selected, of course.
3547 Otherwise, display the menu as usual. */
3548 if (select_mode == multiple_symbols_all && max_results > 1)
3549 return nsyms;
3550
3551 printf_unfiltered (_("[0] cancel\n"));
3552 if (max_results > 1)
3553 printf_unfiltered (_("[1] all\n"));
3554
3555 sort_choices (syms, nsyms);
3556
3557 for (i = 0; i < nsyms; i += 1)
3558 {
3559 if (syms[i].sym == NULL)
3560 continue;
3561
3562 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3563 {
3564 struct symtab_and_line sal =
3565 find_function_start_sal (syms[i].sym, 1);
3566
3567 if (sal.symtab == NULL)
3568 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3569 i + first_choice,
3570 SYMBOL_PRINT_NAME (syms[i].sym),
3571 sal.line);
3572 else
3573 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3574 SYMBOL_PRINT_NAME (syms[i].sym),
3575 symtab_to_filename_for_display (sal.symtab),
3576 sal.line);
3577 continue;
3578 }
3579 else
3580 {
3581 int is_enumeral =
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3585 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3586
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3589 i + first_choice,
3590 SYMBOL_PRINT_NAME (syms[i].sym),
3591 symtab_to_filename_for_display (symtab),
3592 SYMBOL_LINE (syms[i].sym));
3593 else if (is_enumeral
3594 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3595 {
3596 printf_unfiltered (("[%d] "), i + first_choice);
3597 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3598 gdb_stdout, -1, 0, &type_print_raw_options);
3599 printf_unfiltered (_("'(%s) (enumeral)\n"),
3600 SYMBOL_PRINT_NAME (syms[i].sym));
3601 }
3602 else if (symtab != NULL)
3603 printf_unfiltered (is_enumeral
3604 ? _("[%d] %s in %s (enumeral)\n")
3605 : _("[%d] %s at %s:?\n"),
3606 i + first_choice,
3607 SYMBOL_PRINT_NAME (syms[i].sym),
3608 symtab_to_filename_for_display (symtab));
3609 else
3610 printf_unfiltered (is_enumeral
3611 ? _("[%d] %s (enumeral)\n")
3612 : _("[%d] %s at ?\n"),
3613 i + first_choice,
3614 SYMBOL_PRINT_NAME (syms[i].sym));
3615 }
3616 }
3617
3618 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3619 "overload-choice");
3620
3621 for (i = 0; i < n_chosen; i += 1)
3622 syms[i] = syms[chosen[i]];
3623
3624 return n_chosen;
3625 }
3626
3627 /* Read and validate a set of numeric choices from the user in the
3628 range 0 .. N_CHOICES-1. Place the results in increasing
3629 order in CHOICES[0 .. N-1], and return N.
3630
3631 The user types choices as a sequence of numbers on one line
3632 separated by blanks, encoding them as follows:
3633
3634 + A choice of 0 means to cancel the selection, throwing an error.
3635 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3636 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3637
3638 The user is not allowed to choose more than MAX_RESULTS values.
3639
3640 ANNOTATION_SUFFIX, if present, is used to annotate the input
3641 prompts (for use with the -f switch). */
3642
3643 int
3644 get_selections (int *choices, int n_choices, int max_results,
3645 int is_all_choice, char *annotation_suffix)
3646 {
3647 char *args;
3648 char *prompt;
3649 int n_chosen;
3650 int first_choice = is_all_choice ? 2 : 1;
3651
3652 prompt = getenv ("PS2");
3653 if (prompt == NULL)
3654 prompt = "> ";
3655
3656 args = command_line_input (prompt, 0, annotation_suffix);
3657
3658 if (args == NULL)
3659 error_no_arg (_("one or more choice numbers"));
3660
3661 n_chosen = 0;
3662
3663 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3664 order, as given in args. Choices are validated. */
3665 while (1)
3666 {
3667 char *args2;
3668 int choice, j;
3669
3670 args = skip_spaces (args);
3671 if (*args == '\0' && n_chosen == 0)
3672 error_no_arg (_("one or more choice numbers"));
3673 else if (*args == '\0')
3674 break;
3675
3676 choice = strtol (args, &args2, 10);
3677 if (args == args2 || choice < 0
3678 || choice > n_choices + first_choice - 1)
3679 error (_("Argument must be choice number"));
3680 args = args2;
3681
3682 if (choice == 0)
3683 error (_("cancelled"));
3684
3685 if (choice < first_choice)
3686 {
3687 n_chosen = n_choices;
3688 for (j = 0; j < n_choices; j += 1)
3689 choices[j] = j;
3690 break;
3691 }
3692 choice -= first_choice;
3693
3694 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3695 {
3696 }
3697
3698 if (j < 0 || choice != choices[j])
3699 {
3700 int k;
3701
3702 for (k = n_chosen - 1; k > j; k -= 1)
3703 choices[k + 1] = choices[k];
3704 choices[j + 1] = choice;
3705 n_chosen += 1;
3706 }
3707 }
3708
3709 if (n_chosen > max_results)
3710 error (_("Select no more than %d of the above"), max_results);
3711
3712 return n_chosen;
3713 }
3714
3715 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3716 on the function identified by SYM and BLOCK, and taking NARGS
3717 arguments. Update *EXPP as needed to hold more space. */
3718
3719 static void
3720 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3721 int oplen, struct symbol *sym,
3722 const struct block *block)
3723 {
3724 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3725 symbol, -oplen for operator being replaced). */
3726 struct expression *newexp = (struct expression *)
3727 xzalloc (sizeof (struct expression)
3728 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3729 struct expression *exp = *expp;
3730
3731 newexp->nelts = exp->nelts + 7 - oplen;
3732 newexp->language_defn = exp->language_defn;
3733 newexp->gdbarch = exp->gdbarch;
3734 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3735 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3736 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3737
3738 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3739 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3740
3741 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3742 newexp->elts[pc + 4].block = block;
3743 newexp->elts[pc + 5].symbol = sym;
3744
3745 *expp = newexp;
3746 xfree (exp);
3747 }
3748
3749 /* Type-class predicates */
3750
3751 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3752 or FLOAT). */
3753
3754 static int
3755 numeric_type_p (struct type *type)
3756 {
3757 if (type == NULL)
3758 return 0;
3759 else
3760 {
3761 switch (TYPE_CODE (type))
3762 {
3763 case TYPE_CODE_INT:
3764 case TYPE_CODE_FLT:
3765 return 1;
3766 case TYPE_CODE_RANGE:
3767 return (type == TYPE_TARGET_TYPE (type)
3768 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3769 default:
3770 return 0;
3771 }
3772 }
3773 }
3774
3775 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3776
3777 static int
3778 integer_type_p (struct type *type)
3779 {
3780 if (type == NULL)
3781 return 0;
3782 else
3783 {
3784 switch (TYPE_CODE (type))
3785 {
3786 case TYPE_CODE_INT:
3787 return 1;
3788 case TYPE_CODE_RANGE:
3789 return (type == TYPE_TARGET_TYPE (type)
3790 || integer_type_p (TYPE_TARGET_TYPE (type)));
3791 default:
3792 return 0;
3793 }
3794 }
3795 }
3796
3797 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3798
3799 static int
3800 scalar_type_p (struct type *type)
3801 {
3802 if (type == NULL)
3803 return 0;
3804 else
3805 {
3806 switch (TYPE_CODE (type))
3807 {
3808 case TYPE_CODE_INT:
3809 case TYPE_CODE_RANGE:
3810 case TYPE_CODE_ENUM:
3811 case TYPE_CODE_FLT:
3812 return 1;
3813 default:
3814 return 0;
3815 }
3816 }
3817 }
3818
3819 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3820
3821 static int
3822 discrete_type_p (struct type *type)
3823 {
3824 if (type == NULL)
3825 return 0;
3826 else
3827 {
3828 switch (TYPE_CODE (type))
3829 {
3830 case TYPE_CODE_INT:
3831 case TYPE_CODE_RANGE:
3832 case TYPE_CODE_ENUM:
3833 case TYPE_CODE_BOOL:
3834 return 1;
3835 default:
3836 return 0;
3837 }
3838 }
3839 }
3840
3841 /* Returns non-zero if OP with operands in the vector ARGS could be
3842 a user-defined function. Errs on the side of pre-defined operators
3843 (i.e., result 0). */
3844
3845 static int
3846 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3847 {
3848 struct type *type0 =
3849 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3850 struct type *type1 =
3851 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3852
3853 if (type0 == NULL)
3854 return 0;
3855
3856 switch (op)
3857 {
3858 default:
3859 return 0;
3860
3861 case BINOP_ADD:
3862 case BINOP_SUB:
3863 case BINOP_MUL:
3864 case BINOP_DIV:
3865 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3866
3867 case BINOP_REM:
3868 case BINOP_MOD:
3869 case BINOP_BITWISE_AND:
3870 case BINOP_BITWISE_IOR:
3871 case BINOP_BITWISE_XOR:
3872 return (!(integer_type_p (type0) && integer_type_p (type1)));
3873
3874 case BINOP_EQUAL:
3875 case BINOP_NOTEQUAL:
3876 case BINOP_LESS:
3877 case BINOP_GTR:
3878 case BINOP_LEQ:
3879 case BINOP_GEQ:
3880 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3881
3882 case BINOP_CONCAT:
3883 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3884
3885 case BINOP_EXP:
3886 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3887
3888 case UNOP_NEG:
3889 case UNOP_PLUS:
3890 case UNOP_LOGICAL_NOT:
3891 case UNOP_ABS:
3892 return (!numeric_type_p (type0));
3893
3894 }
3895 }
3896 \f
3897 /* Renaming */
3898
3899 /* NOTES:
3900
3901 1. In the following, we assume that a renaming type's name may
3902 have an ___XD suffix. It would be nice if this went away at some
3903 point.
3904 2. We handle both the (old) purely type-based representation of
3905 renamings and the (new) variable-based encoding. At some point,
3906 it is devoutly to be hoped that the former goes away
3907 (FIXME: hilfinger-2007-07-09).
3908 3. Subprogram renamings are not implemented, although the XRS
3909 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3910
3911 /* If SYM encodes a renaming,
3912
3913 <renaming> renames <renamed entity>,
3914
3915 sets *LEN to the length of the renamed entity's name,
3916 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3917 the string describing the subcomponent selected from the renamed
3918 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3919 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3920 are undefined). Otherwise, returns a value indicating the category
3921 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3922 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3923 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3924 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3925 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3926 may be NULL, in which case they are not assigned.
3927
3928 [Currently, however, GCC does not generate subprogram renamings.] */
3929
3930 enum ada_renaming_category
3931 ada_parse_renaming (struct symbol *sym,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3934 {
3935 enum ada_renaming_category kind;
3936 const char *info;
3937 const char *suffix;
3938
3939 if (sym == NULL)
3940 return ADA_NOT_RENAMING;
3941 switch (SYMBOL_CLASS (sym))
3942 {
3943 default:
3944 return ADA_NOT_RENAMING;
3945 case LOC_TYPEDEF:
3946 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3947 renamed_entity, len, renaming_expr);
3948 case LOC_LOCAL:
3949 case LOC_STATIC:
3950 case LOC_COMPUTED:
3951 case LOC_OPTIMIZED_OUT:
3952 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3953 if (info == NULL)
3954 return ADA_NOT_RENAMING;
3955 switch (info[5])
3956 {
3957 case '_':
3958 kind = ADA_OBJECT_RENAMING;
3959 info += 6;
3960 break;
3961 case 'E':
3962 kind = ADA_EXCEPTION_RENAMING;
3963 info += 7;
3964 break;
3965 case 'P':
3966 kind = ADA_PACKAGE_RENAMING;
3967 info += 7;
3968 break;
3969 case 'S':
3970 kind = ADA_SUBPROGRAM_RENAMING;
3971 info += 7;
3972 break;
3973 default:
3974 return ADA_NOT_RENAMING;
3975 }
3976 }
3977
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (suffix == NULL || suffix == info)
3982 return ADA_NOT_RENAMING;
3983 if (len != NULL)
3984 *len = strlen (info) - strlen (suffix);
3985 suffix += 5;
3986 if (renaming_expr != NULL)
3987 *renaming_expr = suffix;
3988 return kind;
3989 }
3990
3991 /* Assuming TYPE encodes a renaming according to the old encoding in
3992 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3993 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3994 ADA_NOT_RENAMING otherwise. */
3995 static enum ada_renaming_category
3996 parse_old_style_renaming (struct type *type,
3997 const char **renamed_entity, int *len,
3998 const char **renaming_expr)
3999 {
4000 enum ada_renaming_category kind;
4001 const char *name;
4002 const char *info;
4003 const char *suffix;
4004
4005 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4006 || TYPE_NFIELDS (type) != 1)
4007 return ADA_NOT_RENAMING;
4008
4009 name = type_name_no_tag (type);
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012
4013 name = strstr (name, "___XR");
4014 if (name == NULL)
4015 return ADA_NOT_RENAMING;
4016 switch (name[5])
4017 {
4018 case '\0':
4019 case '_':
4020 kind = ADA_OBJECT_RENAMING;
4021 break;
4022 case 'E':
4023 kind = ADA_EXCEPTION_RENAMING;
4024 break;
4025 case 'P':
4026 kind = ADA_PACKAGE_RENAMING;
4027 break;
4028 case 'S':
4029 kind = ADA_SUBPROGRAM_RENAMING;
4030 break;
4031 default:
4032 return ADA_NOT_RENAMING;
4033 }
4034
4035 info = TYPE_FIELD_NAME (type, 0);
4036 if (info == NULL)
4037 return ADA_NOT_RENAMING;
4038 if (renamed_entity != NULL)
4039 *renamed_entity = info;
4040 suffix = strstr (info, "___XE");
4041 if (renaming_expr != NULL)
4042 *renaming_expr = suffix + 5;
4043 if (suffix == NULL || suffix == info)
4044 return ADA_NOT_RENAMING;
4045 if (len != NULL)
4046 *len = suffix - info;
4047 return kind;
4048 }
4049
4050 /* Compute the value of the given RENAMING_SYM, which is expected to
4051 be a symbol encoding a renaming expression. BLOCK is the block
4052 used to evaluate the renaming. */
4053
4054 static struct value *
4055 ada_read_renaming_var_value (struct symbol *renaming_sym,
4056 struct block *block)
4057 {
4058 const char *sym_name;
4059 struct expression *expr;
4060 struct value *value;
4061 struct cleanup *old_chain = NULL;
4062
4063 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4064 expr = parse_exp_1 (&sym_name, 0, block, 0);
4065 old_chain = make_cleanup (free_current_contents, &expr);
4066 value = evaluate_expression (expr);
4067
4068 do_cleanups (old_chain);
4069 return value;
4070 }
4071 \f
4072
4073 /* Evaluation: Function Calls */
4074
4075 /* Return an lvalue containing the value VAL. This is the identity on
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
4078
4079 static struct value *
4080 ensure_lval (struct value *val)
4081 {
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
4084 {
4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
4088
4089 set_value_address (val, addr);
4090 VALUE_LVAL (val) = lval_memory;
4091 write_memory (addr, value_contents (val), len);
4092 }
4093
4094 return val;
4095 }
4096
4097 /* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4100 values not residing in memory, updating it as needed. */
4101
4102 struct value *
4103 ada_convert_actual (struct value *actual, struct type *formal_type0)
4104 {
4105 struct type *actual_type = ada_check_typedef (value_type (actual));
4106 struct type *formal_type = ada_check_typedef (formal_type0);
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4113
4114 if (ada_is_array_descriptor_type (formal_target)
4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4116 return make_array_descriptor (formal_type, actual);
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4119 {
4120 struct value *result;
4121
4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4123 && ada_is_array_descriptor_type (actual_target))
4124 result = desc_data (actual);
4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4126 {
4127 if (VALUE_LVAL (actual) != lval_memory)
4128 {
4129 struct value *val;
4130
4131 actual_type = ada_check_typedef (value_type (actual));
4132 val = allocate_value (actual_type);
4133 memcpy ((char *) value_contents_raw (val),
4134 (char *) value_contents (actual),
4135 TYPE_LENGTH (actual_type));
4136 actual = ensure_lval (val);
4137 }
4138 result = value_addr (actual);
4139 }
4140 else
4141 return actual;
4142 return value_cast_pointers (formal_type, result, 0);
4143 }
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4146
4147 return actual;
4148 }
4149
4150 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155 static CORE_ADDR
4156 value_pointer (struct value *value, struct type *type)
4157 {
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4166 return addr;
4167 }
4168
4169
4170 /* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
4175
4176 static struct value *
4177 make_array_descriptor (struct type *type, struct value *arr)
4178 {
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
4183 int i;
4184
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
4187 {
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
4196 }
4197
4198 bounds = ensure_lval (bounds);
4199
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
4213
4214 descriptor = ensure_lval (descriptor);
4215
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220 }
4221 \f
4222 /* Dummy definitions for an experimental caching module that is not
4223 * used in the public sources. */
4224
4225 static int
4226 lookup_cached_symbol (const char *name, domain_enum namespace,
4227 struct symbol **sym, struct block **block)
4228 {
4229 return 0;
4230 }
4231
4232 static void
4233 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4234 const struct block *block)
4235 {
4236 }
4237 \f
4238 /* Symbol Lookup */
4239
4240 /* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4242
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4245
4246 static int
4247 should_use_wild_match (const char *lookup_name)
4248 {
4249 return (strstr (lookup_name, "__") == NULL);
4250 }
4251
4252 /* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4254
4255 static struct symbol *
4256 standard_lookup (const char *name, const struct block *block,
4257 domain_enum domain)
4258 {
4259 /* Initialize it just to avoid a GCC false warning. */
4260 struct symbol *sym = NULL;
4261
4262 if (lookup_cached_symbol (name, domain, &sym, NULL))
4263 return sym;
4264 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4265 cache_symbol (name, domain, sym, block_found);
4266 return sym;
4267 }
4268
4269
4270 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4271 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4272 since they contend in overloading in the same way. */
4273 static int
4274 is_nonfunction (struct ada_symbol_info syms[], int n)
4275 {
4276 int i;
4277
4278 for (i = 0; i < n; i += 1)
4279 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4280 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4281 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4282 return 1;
4283
4284 return 0;
4285 }
4286
4287 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4288 struct types. Otherwise, they may not. */
4289
4290 static int
4291 equiv_types (struct type *type0, struct type *type1)
4292 {
4293 if (type0 == type1)
4294 return 1;
4295 if (type0 == NULL || type1 == NULL
4296 || TYPE_CODE (type0) != TYPE_CODE (type1))
4297 return 0;
4298 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4299 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4300 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4301 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4302 return 1;
4303
4304 return 0;
4305 }
4306
4307 /* True iff SYM0 represents the same entity as SYM1, or one that is
4308 no more defined than that of SYM1. */
4309
4310 static int
4311 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4312 {
4313 if (sym0 == sym1)
4314 return 1;
4315 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4316 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4317 return 0;
4318
4319 switch (SYMBOL_CLASS (sym0))
4320 {
4321 case LOC_UNDEF:
4322 return 1;
4323 case LOC_TYPEDEF:
4324 {
4325 struct type *type0 = SYMBOL_TYPE (sym0);
4326 struct type *type1 = SYMBOL_TYPE (sym1);
4327 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4328 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4329 int len0 = strlen (name0);
4330
4331 return
4332 TYPE_CODE (type0) == TYPE_CODE (type1)
4333 && (equiv_types (type0, type1)
4334 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4335 && strncmp (name1 + len0, "___XV", 5) == 0));
4336 }
4337 case LOC_CONST:
4338 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4339 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4340 default:
4341 return 0;
4342 }
4343 }
4344
4345 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4346 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4347
4348 static void
4349 add_defn_to_vec (struct obstack *obstackp,
4350 struct symbol *sym,
4351 struct block *block)
4352 {
4353 int i;
4354 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4355
4356 /* Do not try to complete stub types, as the debugger is probably
4357 already scanning all symbols matching a certain name at the
4358 time when this function is called. Trying to replace the stub
4359 type by its associated full type will cause us to restart a scan
4360 which may lead to an infinite recursion. Instead, the client
4361 collecting the matching symbols will end up collecting several
4362 matches, with at least one of them complete. It can then filter
4363 out the stub ones if needed. */
4364
4365 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4366 {
4367 if (lesseq_defined_than (sym, prevDefns[i].sym))
4368 return;
4369 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4370 {
4371 prevDefns[i].sym = sym;
4372 prevDefns[i].block = block;
4373 return;
4374 }
4375 }
4376
4377 {
4378 struct ada_symbol_info info;
4379
4380 info.sym = sym;
4381 info.block = block;
4382 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4383 }
4384 }
4385
4386 /* Number of ada_symbol_info structures currently collected in
4387 current vector in *OBSTACKP. */
4388
4389 static int
4390 num_defns_collected (struct obstack *obstackp)
4391 {
4392 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4393 }
4394
4395 /* Vector of ada_symbol_info structures currently collected in current
4396 vector in *OBSTACKP. If FINISH, close off the vector and return
4397 its final address. */
4398
4399 static struct ada_symbol_info *
4400 defns_collected (struct obstack *obstackp, int finish)
4401 {
4402 if (finish)
4403 return obstack_finish (obstackp);
4404 else
4405 return (struct ada_symbol_info *) obstack_base (obstackp);
4406 }
4407
4408 /* Return a minimal symbol matching NAME according to Ada decoding
4409 rules. Returns NULL if there is no such minimal symbol. Names
4410 prefixed with "standard__" are handled specially: "standard__" is
4411 first stripped off, and only static and global symbols are searched. */
4412
4413 struct minimal_symbol *
4414 ada_lookup_simple_minsym (const char *name)
4415 {
4416 struct objfile *objfile;
4417 struct minimal_symbol *msymbol;
4418 const int wild_match_p = should_use_wild_match (name);
4419
4420 /* Special case: If the user specifies a symbol name inside package
4421 Standard, do a non-wild matching of the symbol name without
4422 the "standard__" prefix. This was primarily introduced in order
4423 to allow the user to specifically access the standard exceptions
4424 using, for instance, Standard.Constraint_Error when Constraint_Error
4425 is ambiguous (due to the user defining its own Constraint_Error
4426 entity inside its program). */
4427 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4428 name += sizeof ("standard__") - 1;
4429
4430 ALL_MSYMBOLS (objfile, msymbol)
4431 {
4432 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4433 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4434 return msymbol;
4435 }
4436
4437 return NULL;
4438 }
4439
4440 /* For all subprograms that statically enclose the subprogram of the
4441 selected frame, add symbols matching identifier NAME in DOMAIN
4442 and their blocks to the list of data in OBSTACKP, as for
4443 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4444 with a wildcard prefix. */
4445
4446 static void
4447 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4448 const char *name, domain_enum namespace,
4449 int wild_match_p)
4450 {
4451 }
4452
4453 /* True if TYPE is definitely an artificial type supplied to a symbol
4454 for which no debugging information was given in the symbol file. */
4455
4456 static int
4457 is_nondebugging_type (struct type *type)
4458 {
4459 const char *name = ada_type_name (type);
4460
4461 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4462 }
4463
4464 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4465 that are deemed "identical" for practical purposes.
4466
4467 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4468 types and that their number of enumerals is identical (in other
4469 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4470
4471 static int
4472 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4473 {
4474 int i;
4475
4476 /* The heuristic we use here is fairly conservative. We consider
4477 that 2 enumerate types are identical if they have the same
4478 number of enumerals and that all enumerals have the same
4479 underlying value and name. */
4480
4481 /* All enums in the type should have an identical underlying value. */
4482 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4483 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4484 return 0;
4485
4486 /* All enumerals should also have the same name (modulo any numerical
4487 suffix). */
4488 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4489 {
4490 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4491 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4492 int len_1 = strlen (name_1);
4493 int len_2 = strlen (name_2);
4494
4495 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4497 if (len_1 != len_2
4498 || strncmp (TYPE_FIELD_NAME (type1, i),
4499 TYPE_FIELD_NAME (type2, i),
4500 len_1) != 0)
4501 return 0;
4502 }
4503
4504 return 1;
4505 }
4506
4507 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4508 that are deemed "identical" for practical purposes. Sometimes,
4509 enumerals are not strictly identical, but their types are so similar
4510 that they can be considered identical.
4511
4512 For instance, consider the following code:
4513
4514 type Color is (Black, Red, Green, Blue, White);
4515 type RGB_Color is new Color range Red .. Blue;
4516
4517 Type RGB_Color is a subrange of an implicit type which is a copy
4518 of type Color. If we call that implicit type RGB_ColorB ("B" is
4519 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4520 As a result, when an expression references any of the enumeral
4521 by name (Eg. "print green"), the expression is technically
4522 ambiguous and the user should be asked to disambiguate. But
4523 doing so would only hinder the user, since it wouldn't matter
4524 what choice he makes, the outcome would always be the same.
4525 So, for practical purposes, we consider them as the same. */
4526
4527 static int
4528 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4529 {
4530 int i;
4531
4532 /* Before performing a thorough comparison check of each type,
4533 we perform a series of inexpensive checks. We expect that these
4534 checks will quickly fail in the vast majority of cases, and thus
4535 help prevent the unnecessary use of a more expensive comparison.
4536 Said comparison also expects us to make some of these checks
4537 (see ada_identical_enum_types_p). */
4538
4539 /* Quick check: All symbols should have an enum type. */
4540 for (i = 0; i < nsyms; i++)
4541 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4542 return 0;
4543
4544 /* Quick check: They should all have the same value. */
4545 for (i = 1; i < nsyms; i++)
4546 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4547 return 0;
4548
4549 /* Quick check: They should all have the same number of enumerals. */
4550 for (i = 1; i < nsyms; i++)
4551 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4552 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4553 return 0;
4554
4555 /* All the sanity checks passed, so we might have a set of
4556 identical enumeration types. Perform a more complete
4557 comparison of the type of each symbol. */
4558 for (i = 1; i < nsyms; i++)
4559 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4560 SYMBOL_TYPE (syms[0].sym)))
4561 return 0;
4562
4563 return 1;
4564 }
4565
4566 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4567 duplicate other symbols in the list (The only case I know of where
4568 this happens is when object files containing stabs-in-ecoff are
4569 linked with files containing ordinary ecoff debugging symbols (or no
4570 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4571 Returns the number of items in the modified list. */
4572
4573 static int
4574 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4575 {
4576 int i, j;
4577
4578 /* We should never be called with less than 2 symbols, as there
4579 cannot be any extra symbol in that case. But it's easy to
4580 handle, since we have nothing to do in that case. */
4581 if (nsyms < 2)
4582 return nsyms;
4583
4584 i = 0;
4585 while (i < nsyms)
4586 {
4587 int remove_p = 0;
4588
4589 /* If two symbols have the same name and one of them is a stub type,
4590 the get rid of the stub. */
4591
4592 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4593 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4594 {
4595 for (j = 0; j < nsyms; j++)
4596 {
4597 if (j != i
4598 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4599 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4600 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4601 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4602 remove_p = 1;
4603 }
4604 }
4605
4606 /* Two symbols with the same name, same class and same address
4607 should be identical. */
4608
4609 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4610 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4611 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4612 {
4613 for (j = 0; j < nsyms; j += 1)
4614 {
4615 if (i != j
4616 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4617 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4618 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4619 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4620 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4621 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4622 remove_p = 1;
4623 }
4624 }
4625
4626 if (remove_p)
4627 {
4628 for (j = i + 1; j < nsyms; j += 1)
4629 syms[j - 1] = syms[j];
4630 nsyms -= 1;
4631 }
4632
4633 i += 1;
4634 }
4635
4636 /* If all the remaining symbols are identical enumerals, then
4637 just keep the first one and discard the rest.
4638
4639 Unlike what we did previously, we do not discard any entry
4640 unless they are ALL identical. This is because the symbol
4641 comparison is not a strict comparison, but rather a practical
4642 comparison. If all symbols are considered identical, then
4643 we can just go ahead and use the first one and discard the rest.
4644 But if we cannot reduce the list to a single element, we have
4645 to ask the user to disambiguate anyways. And if we have to
4646 present a multiple-choice menu, it's less confusing if the list
4647 isn't missing some choices that were identical and yet distinct. */
4648 if (symbols_are_identical_enums (syms, nsyms))
4649 nsyms = 1;
4650
4651 return nsyms;
4652 }
4653
4654 /* Given a type that corresponds to a renaming entity, use the type name
4655 to extract the scope (package name or function name, fully qualified,
4656 and following the GNAT encoding convention) where this renaming has been
4657 defined. The string returned needs to be deallocated after use. */
4658
4659 static char *
4660 xget_renaming_scope (struct type *renaming_type)
4661 {
4662 /* The renaming types adhere to the following convention:
4663 <scope>__<rename>___<XR extension>.
4664 So, to extract the scope, we search for the "___XR" extension,
4665 and then backtrack until we find the first "__". */
4666
4667 const char *name = type_name_no_tag (renaming_type);
4668 char *suffix = strstr (name, "___XR");
4669 char *last;
4670 int scope_len;
4671 char *scope;
4672
4673 /* Now, backtrack a bit until we find the first "__". Start looking
4674 at suffix - 3, as the <rename> part is at least one character long. */
4675
4676 for (last = suffix - 3; last > name; last--)
4677 if (last[0] == '_' && last[1] == '_')
4678 break;
4679
4680 /* Make a copy of scope and return it. */
4681
4682 scope_len = last - name;
4683 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4684
4685 strncpy (scope, name, scope_len);
4686 scope[scope_len] = '\0';
4687
4688 return scope;
4689 }
4690
4691 /* Return nonzero if NAME corresponds to a package name. */
4692
4693 static int
4694 is_package_name (const char *name)
4695 {
4696 /* Here, We take advantage of the fact that no symbols are generated
4697 for packages, while symbols are generated for each function.
4698 So the condition for NAME represent a package becomes equivalent
4699 to NAME not existing in our list of symbols. There is only one
4700 small complication with library-level functions (see below). */
4701
4702 char *fun_name;
4703
4704 /* If it is a function that has not been defined at library level,
4705 then we should be able to look it up in the symbols. */
4706 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4707 return 0;
4708
4709 /* Library-level function names start with "_ada_". See if function
4710 "_ada_" followed by NAME can be found. */
4711
4712 /* Do a quick check that NAME does not contain "__", since library-level
4713 functions names cannot contain "__" in them. */
4714 if (strstr (name, "__") != NULL)
4715 return 0;
4716
4717 fun_name = xstrprintf ("_ada_%s", name);
4718
4719 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4720 }
4721
4722 /* Return nonzero if SYM corresponds to a renaming entity that is
4723 not visible from FUNCTION_NAME. */
4724
4725 static int
4726 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4727 {
4728 char *scope;
4729
4730 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4731 return 0;
4732
4733 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4734
4735 make_cleanup (xfree, scope);
4736
4737 /* If the rename has been defined in a package, then it is visible. */
4738 if (is_package_name (scope))
4739 return 0;
4740
4741 /* Check that the rename is in the current function scope by checking
4742 that its name starts with SCOPE. */
4743
4744 /* If the function name starts with "_ada_", it means that it is
4745 a library-level function. Strip this prefix before doing the
4746 comparison, as the encoding for the renaming does not contain
4747 this prefix. */
4748 if (strncmp (function_name, "_ada_", 5) == 0)
4749 function_name += 5;
4750
4751 return (strncmp (function_name, scope, strlen (scope)) != 0);
4752 }
4753
4754 /* Remove entries from SYMS that corresponds to a renaming entity that
4755 is not visible from the function associated with CURRENT_BLOCK or
4756 that is superfluous due to the presence of more specific renaming
4757 information. Places surviving symbols in the initial entries of
4758 SYMS and returns the number of surviving symbols.
4759
4760 Rationale:
4761 First, in cases where an object renaming is implemented as a
4762 reference variable, GNAT may produce both the actual reference
4763 variable and the renaming encoding. In this case, we discard the
4764 latter.
4765
4766 Second, GNAT emits a type following a specified encoding for each renaming
4767 entity. Unfortunately, STABS currently does not support the definition
4768 of types that are local to a given lexical block, so all renamings types
4769 are emitted at library level. As a consequence, if an application
4770 contains two renaming entities using the same name, and a user tries to
4771 print the value of one of these entities, the result of the ada symbol
4772 lookup will also contain the wrong renaming type.
4773
4774 This function partially covers for this limitation by attempting to
4775 remove from the SYMS list renaming symbols that should be visible
4776 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4777 method with the current information available. The implementation
4778 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4779
4780 - When the user tries to print a rename in a function while there
4781 is another rename entity defined in a package: Normally, the
4782 rename in the function has precedence over the rename in the
4783 package, so the latter should be removed from the list. This is
4784 currently not the case.
4785
4786 - This function will incorrectly remove valid renames if
4787 the CURRENT_BLOCK corresponds to a function which symbol name
4788 has been changed by an "Export" pragma. As a consequence,
4789 the user will be unable to print such rename entities. */
4790
4791 static int
4792 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4793 int nsyms, const struct block *current_block)
4794 {
4795 struct symbol *current_function;
4796 const char *current_function_name;
4797 int i;
4798 int is_new_style_renaming;
4799
4800 /* If there is both a renaming foo___XR... encoded as a variable and
4801 a simple variable foo in the same block, discard the latter.
4802 First, zero out such symbols, then compress. */
4803 is_new_style_renaming = 0;
4804 for (i = 0; i < nsyms; i += 1)
4805 {
4806 struct symbol *sym = syms[i].sym;
4807 const struct block *block = syms[i].block;
4808 const char *name;
4809 const char *suffix;
4810
4811 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4812 continue;
4813 name = SYMBOL_LINKAGE_NAME (sym);
4814 suffix = strstr (name, "___XR");
4815
4816 if (suffix != NULL)
4817 {
4818 int name_len = suffix - name;
4819 int j;
4820
4821 is_new_style_renaming = 1;
4822 for (j = 0; j < nsyms; j += 1)
4823 if (i != j && syms[j].sym != NULL
4824 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4825 name_len) == 0
4826 && block == syms[j].block)
4827 syms[j].sym = NULL;
4828 }
4829 }
4830 if (is_new_style_renaming)
4831 {
4832 int j, k;
4833
4834 for (j = k = 0; j < nsyms; j += 1)
4835 if (syms[j].sym != NULL)
4836 {
4837 syms[k] = syms[j];
4838 k += 1;
4839 }
4840 return k;
4841 }
4842
4843 /* Extract the function name associated to CURRENT_BLOCK.
4844 Abort if unable to do so. */
4845
4846 if (current_block == NULL)
4847 return nsyms;
4848
4849 current_function = block_linkage_function (current_block);
4850 if (current_function == NULL)
4851 return nsyms;
4852
4853 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4854 if (current_function_name == NULL)
4855 return nsyms;
4856
4857 /* Check each of the symbols, and remove it from the list if it is
4858 a type corresponding to a renaming that is out of the scope of
4859 the current block. */
4860
4861 i = 0;
4862 while (i < nsyms)
4863 {
4864 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4865 == ADA_OBJECT_RENAMING
4866 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4867 {
4868 int j;
4869
4870 for (j = i + 1; j < nsyms; j += 1)
4871 syms[j - 1] = syms[j];
4872 nsyms -= 1;
4873 }
4874 else
4875 i += 1;
4876 }
4877
4878 return nsyms;
4879 }
4880
4881 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4882 whose name and domain match NAME and DOMAIN respectively.
4883 If no match was found, then extend the search to "enclosing"
4884 routines (in other words, if we're inside a nested function,
4885 search the symbols defined inside the enclosing functions).
4886 If WILD_MATCH_P is nonzero, perform the naming matching in
4887 "wild" mode (see function "wild_match" for more info).
4888
4889 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4890
4891 static void
4892 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4893 struct block *block, domain_enum domain,
4894 int wild_match_p)
4895 {
4896 int block_depth = 0;
4897
4898 while (block != NULL)
4899 {
4900 block_depth += 1;
4901 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4902 wild_match_p);
4903
4904 /* If we found a non-function match, assume that's the one. */
4905 if (is_nonfunction (defns_collected (obstackp, 0),
4906 num_defns_collected (obstackp)))
4907 return;
4908
4909 block = BLOCK_SUPERBLOCK (block);
4910 }
4911
4912 /* If no luck so far, try to find NAME as a local symbol in some lexically
4913 enclosing subprogram. */
4914 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4915 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4916 }
4917
4918 /* An object of this type is used as the user_data argument when
4919 calling the map_matching_symbols method. */
4920
4921 struct match_data
4922 {
4923 struct objfile *objfile;
4924 struct obstack *obstackp;
4925 struct symbol *arg_sym;
4926 int found_sym;
4927 };
4928
4929 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4930 to a list of symbols. DATA0 is a pointer to a struct match_data *
4931 containing the obstack that collects the symbol list, the file that SYM
4932 must come from, a flag indicating whether a non-argument symbol has
4933 been found in the current block, and the last argument symbol
4934 passed in SYM within the current block (if any). When SYM is null,
4935 marking the end of a block, the argument symbol is added if no
4936 other has been found. */
4937
4938 static int
4939 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4940 {
4941 struct match_data *data = (struct match_data *) data0;
4942
4943 if (sym == NULL)
4944 {
4945 if (!data->found_sym && data->arg_sym != NULL)
4946 add_defn_to_vec (data->obstackp,
4947 fixup_symbol_section (data->arg_sym, data->objfile),
4948 block);
4949 data->found_sym = 0;
4950 data->arg_sym = NULL;
4951 }
4952 else
4953 {
4954 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4955 return 0;
4956 else if (SYMBOL_IS_ARGUMENT (sym))
4957 data->arg_sym = sym;
4958 else
4959 {
4960 data->found_sym = 1;
4961 add_defn_to_vec (data->obstackp,
4962 fixup_symbol_section (sym, data->objfile),
4963 block);
4964 }
4965 }
4966 return 0;
4967 }
4968
4969 /* Compare STRING1 to STRING2, with results as for strcmp.
4970 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4971 implies compare_names (STRING1, STRING2) (they may differ as to
4972 what symbols compare equal). */
4973
4974 static int
4975 compare_names (const char *string1, const char *string2)
4976 {
4977 while (*string1 != '\0' && *string2 != '\0')
4978 {
4979 if (isspace (*string1) || isspace (*string2))
4980 return strcmp_iw_ordered (string1, string2);
4981 if (*string1 != *string2)
4982 break;
4983 string1 += 1;
4984 string2 += 1;
4985 }
4986 switch (*string1)
4987 {
4988 case '(':
4989 return strcmp_iw_ordered (string1, string2);
4990 case '_':
4991 if (*string2 == '\0')
4992 {
4993 if (is_name_suffix (string1))
4994 return 0;
4995 else
4996 return 1;
4997 }
4998 /* FALLTHROUGH */
4999 default:
5000 if (*string2 == '(')
5001 return strcmp_iw_ordered (string1, string2);
5002 else
5003 return *string1 - *string2;
5004 }
5005 }
5006
5007 /* Add to OBSTACKP all non-local symbols whose name and domain match
5008 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5009 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5010
5011 static void
5012 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5013 domain_enum domain, int global,
5014 int is_wild_match)
5015 {
5016 struct objfile *objfile;
5017 struct match_data data;
5018
5019 memset (&data, 0, sizeof data);
5020 data.obstackp = obstackp;
5021
5022 ALL_OBJFILES (objfile)
5023 {
5024 data.objfile = objfile;
5025
5026 if (is_wild_match)
5027 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5028 aux_add_nonlocal_symbols, &data,
5029 wild_match, NULL);
5030 else
5031 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5032 aux_add_nonlocal_symbols, &data,
5033 full_match, compare_names);
5034 }
5035
5036 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5037 {
5038 ALL_OBJFILES (objfile)
5039 {
5040 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5041 strcpy (name1, "_ada_");
5042 strcpy (name1 + sizeof ("_ada_") - 1, name);
5043 data.objfile = objfile;
5044 objfile->sf->qf->map_matching_symbols (name1, domain,
5045 objfile, global,
5046 aux_add_nonlocal_symbols,
5047 &data,
5048 full_match, compare_names);
5049 }
5050 }
5051 }
5052
5053 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5054 non-zero, enclosing scope and in global scopes, returning the number of
5055 matches.
5056 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5057 indicating the symbols found and the blocks and symbol tables (if
5058 any) in which they were found. This vector is transient---good only to
5059 the next call of ada_lookup_symbol_list.
5060
5061 When full_search is non-zero, any non-function/non-enumeral
5062 symbol match within the nest of blocks whose innermost member is BLOCK0,
5063 is the one match returned (no other matches in that or
5064 enclosing blocks is returned). If there are any matches in or
5065 surrounding BLOCK0, then these alone are returned.
5066
5067 Names prefixed with "standard__" are handled specially: "standard__"
5068 is first stripped off, and only static and global symbols are searched. */
5069
5070 static int
5071 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5072 domain_enum namespace,
5073 struct ada_symbol_info **results,
5074 int full_search)
5075 {
5076 struct symbol *sym;
5077 struct block *block;
5078 const char *name;
5079 const int wild_match_p = should_use_wild_match (name0);
5080 int cacheIfUnique;
5081 int ndefns;
5082
5083 obstack_free (&symbol_list_obstack, NULL);
5084 obstack_init (&symbol_list_obstack);
5085
5086 cacheIfUnique = 0;
5087
5088 /* Search specified block and its superiors. */
5089
5090 name = name0;
5091 block = (struct block *) block0; /* FIXME: No cast ought to be
5092 needed, but adding const will
5093 have a cascade effect. */
5094
5095 /* Special case: If the user specifies a symbol name inside package
5096 Standard, do a non-wild matching of the symbol name without
5097 the "standard__" prefix. This was primarily introduced in order
5098 to allow the user to specifically access the standard exceptions
5099 using, for instance, Standard.Constraint_Error when Constraint_Error
5100 is ambiguous (due to the user defining its own Constraint_Error
5101 entity inside its program). */
5102 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5103 {
5104 block = NULL;
5105 name = name0 + sizeof ("standard__") - 1;
5106 }
5107
5108 /* Check the non-global symbols. If we have ANY match, then we're done. */
5109
5110 if (block != NULL)
5111 {
5112 if (full_search)
5113 {
5114 ada_add_local_symbols (&symbol_list_obstack, name, block,
5115 namespace, wild_match_p);
5116 }
5117 else
5118 {
5119 /* In the !full_search case we're are being called by
5120 ada_iterate_over_symbols, and we don't want to search
5121 superblocks. */
5122 ada_add_block_symbols (&symbol_list_obstack, block, name,
5123 namespace, NULL, wild_match_p);
5124 }
5125 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5126 goto done;
5127 }
5128
5129 /* No non-global symbols found. Check our cache to see if we have
5130 already performed this search before. If we have, then return
5131 the same result. */
5132
5133 cacheIfUnique = 1;
5134 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5135 {
5136 if (sym != NULL)
5137 add_defn_to_vec (&symbol_list_obstack, sym, block);
5138 goto done;
5139 }
5140
5141 /* Search symbols from all global blocks. */
5142
5143 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5144 wild_match_p);
5145
5146 /* Now add symbols from all per-file blocks if we've gotten no hits
5147 (not strictly correct, but perhaps better than an error). */
5148
5149 if (num_defns_collected (&symbol_list_obstack) == 0)
5150 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5151 wild_match_p);
5152
5153 done:
5154 ndefns = num_defns_collected (&symbol_list_obstack);
5155 *results = defns_collected (&symbol_list_obstack, 1);
5156
5157 ndefns = remove_extra_symbols (*results, ndefns);
5158
5159 if (ndefns == 0 && full_search)
5160 cache_symbol (name0, namespace, NULL, NULL);
5161
5162 if (ndefns == 1 && full_search && cacheIfUnique)
5163 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5164
5165 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5166
5167 return ndefns;
5168 }
5169
5170 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5171 in global scopes, returning the number of matches, and setting *RESULTS
5172 to a vector of (SYM,BLOCK) tuples.
5173 See ada_lookup_symbol_list_worker for further details. */
5174
5175 int
5176 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5177 domain_enum domain, struct ada_symbol_info **results)
5178 {
5179 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5180 }
5181
5182 /* Implementation of the la_iterate_over_symbols method. */
5183
5184 static void
5185 ada_iterate_over_symbols (const struct block *block,
5186 const char *name, domain_enum domain,
5187 symbol_found_callback_ftype *callback,
5188 void *data)
5189 {
5190 int ndefs, i;
5191 struct ada_symbol_info *results;
5192
5193 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5194 for (i = 0; i < ndefs; ++i)
5195 {
5196 if (! (*callback) (results[i].sym, data))
5197 break;
5198 }
5199 }
5200
5201 /* If NAME is the name of an entity, return a string that should
5202 be used to look that entity up in Ada units. This string should
5203 be deallocated after use using xfree.
5204
5205 NAME can have any form that the "break" or "print" commands might
5206 recognize. In other words, it does not have to be the "natural"
5207 name, or the "encoded" name. */
5208
5209 char *
5210 ada_name_for_lookup (const char *name)
5211 {
5212 char *canon;
5213 int nlen = strlen (name);
5214
5215 if (name[0] == '<' && name[nlen - 1] == '>')
5216 {
5217 canon = xmalloc (nlen - 1);
5218 memcpy (canon, name + 1, nlen - 2);
5219 canon[nlen - 2] = '\0';
5220 }
5221 else
5222 canon = xstrdup (ada_encode (ada_fold_name (name)));
5223 return canon;
5224 }
5225
5226 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5227 to 1, but choosing the first symbol found if there are multiple
5228 choices.
5229
5230 The result is stored in *INFO, which must be non-NULL.
5231 If no match is found, INFO->SYM is set to NULL. */
5232
5233 void
5234 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5235 domain_enum namespace,
5236 struct ada_symbol_info *info)
5237 {
5238 struct ada_symbol_info *candidates;
5239 int n_candidates;
5240
5241 gdb_assert (info != NULL);
5242 memset (info, 0, sizeof (struct ada_symbol_info));
5243
5244 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5245 if (n_candidates == 0)
5246 return;
5247
5248 *info = candidates[0];
5249 info->sym = fixup_symbol_section (info->sym, NULL);
5250 }
5251
5252 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5253 scope and in global scopes, or NULL if none. NAME is folded and
5254 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5255 choosing the first symbol if there are multiple choices.
5256 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5257
5258 struct symbol *
5259 ada_lookup_symbol (const char *name, const struct block *block0,
5260 domain_enum namespace, int *is_a_field_of_this)
5261 {
5262 struct ada_symbol_info info;
5263
5264 if (is_a_field_of_this != NULL)
5265 *is_a_field_of_this = 0;
5266
5267 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5268 block0, namespace, &info);
5269 return info.sym;
5270 }
5271
5272 static struct symbol *
5273 ada_lookup_symbol_nonlocal (const char *name,
5274 const struct block *block,
5275 const domain_enum domain)
5276 {
5277 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5278 }
5279
5280
5281 /* True iff STR is a possible encoded suffix of a normal Ada name
5282 that is to be ignored for matching purposes. Suffixes of parallel
5283 names (e.g., XVE) are not included here. Currently, the possible suffixes
5284 are given by any of the regular expressions:
5285
5286 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5287 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5288 TKB [subprogram suffix for task bodies]
5289 _E[0-9]+[bs]$ [protected object entry suffixes]
5290 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5291
5292 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5293 match is performed. This sequence is used to differentiate homonyms,
5294 is an optional part of a valid name suffix. */
5295
5296 static int
5297 is_name_suffix (const char *str)
5298 {
5299 int k;
5300 const char *matching;
5301 const int len = strlen (str);
5302
5303 /* Skip optional leading __[0-9]+. */
5304
5305 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5306 {
5307 str += 3;
5308 while (isdigit (str[0]))
5309 str += 1;
5310 }
5311
5312 /* [.$][0-9]+ */
5313
5314 if (str[0] == '.' || str[0] == '$')
5315 {
5316 matching = str + 1;
5317 while (isdigit (matching[0]))
5318 matching += 1;
5319 if (matching[0] == '\0')
5320 return 1;
5321 }
5322
5323 /* ___[0-9]+ */
5324
5325 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5326 {
5327 matching = str + 3;
5328 while (isdigit (matching[0]))
5329 matching += 1;
5330 if (matching[0] == '\0')
5331 return 1;
5332 }
5333
5334 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5335
5336 if (strcmp (str, "TKB") == 0)
5337 return 1;
5338
5339 #if 0
5340 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5341 with a N at the end. Unfortunately, the compiler uses the same
5342 convention for other internal types it creates. So treating
5343 all entity names that end with an "N" as a name suffix causes
5344 some regressions. For instance, consider the case of an enumerated
5345 type. To support the 'Image attribute, it creates an array whose
5346 name ends with N.
5347 Having a single character like this as a suffix carrying some
5348 information is a bit risky. Perhaps we should change the encoding
5349 to be something like "_N" instead. In the meantime, do not do
5350 the following check. */
5351 /* Protected Object Subprograms */
5352 if (len == 1 && str [0] == 'N')
5353 return 1;
5354 #endif
5355
5356 /* _E[0-9]+[bs]$ */
5357 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5358 {
5359 matching = str + 3;
5360 while (isdigit (matching[0]))
5361 matching += 1;
5362 if ((matching[0] == 'b' || matching[0] == 's')
5363 && matching [1] == '\0')
5364 return 1;
5365 }
5366
5367 /* ??? We should not modify STR directly, as we are doing below. This
5368 is fine in this case, but may become problematic later if we find
5369 that this alternative did not work, and want to try matching
5370 another one from the begining of STR. Since we modified it, we
5371 won't be able to find the begining of the string anymore! */
5372 if (str[0] == 'X')
5373 {
5374 str += 1;
5375 while (str[0] != '_' && str[0] != '\0')
5376 {
5377 if (str[0] != 'n' && str[0] != 'b')
5378 return 0;
5379 str += 1;
5380 }
5381 }
5382
5383 if (str[0] == '\000')
5384 return 1;
5385
5386 if (str[0] == '_')
5387 {
5388 if (str[1] != '_' || str[2] == '\000')
5389 return 0;
5390 if (str[2] == '_')
5391 {
5392 if (strcmp (str + 3, "JM") == 0)
5393 return 1;
5394 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5395 the LJM suffix in favor of the JM one. But we will
5396 still accept LJM as a valid suffix for a reasonable
5397 amount of time, just to allow ourselves to debug programs
5398 compiled using an older version of GNAT. */
5399 if (strcmp (str + 3, "LJM") == 0)
5400 return 1;
5401 if (str[3] != 'X')
5402 return 0;
5403 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5404 || str[4] == 'U' || str[4] == 'P')
5405 return 1;
5406 if (str[4] == 'R' && str[5] != 'T')
5407 return 1;
5408 return 0;
5409 }
5410 if (!isdigit (str[2]))
5411 return 0;
5412 for (k = 3; str[k] != '\0'; k += 1)
5413 if (!isdigit (str[k]) && str[k] != '_')
5414 return 0;
5415 return 1;
5416 }
5417 if (str[0] == '$' && isdigit (str[1]))
5418 {
5419 for (k = 2; str[k] != '\0'; k += 1)
5420 if (!isdigit (str[k]) && str[k] != '_')
5421 return 0;
5422 return 1;
5423 }
5424 return 0;
5425 }
5426
5427 /* Return non-zero if the string starting at NAME and ending before
5428 NAME_END contains no capital letters. */
5429
5430 static int
5431 is_valid_name_for_wild_match (const char *name0)
5432 {
5433 const char *decoded_name = ada_decode (name0);
5434 int i;
5435
5436 /* If the decoded name starts with an angle bracket, it means that
5437 NAME0 does not follow the GNAT encoding format. It should then
5438 not be allowed as a possible wild match. */
5439 if (decoded_name[0] == '<')
5440 return 0;
5441
5442 for (i=0; decoded_name[i] != '\0'; i++)
5443 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5444 return 0;
5445
5446 return 1;
5447 }
5448
5449 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5450 that could start a simple name. Assumes that *NAMEP points into
5451 the string beginning at NAME0. */
5452
5453 static int
5454 advance_wild_match (const char **namep, const char *name0, int target0)
5455 {
5456 const char *name = *namep;
5457
5458 while (1)
5459 {
5460 int t0, t1;
5461
5462 t0 = *name;
5463 if (t0 == '_')
5464 {
5465 t1 = name[1];
5466 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5467 {
5468 name += 1;
5469 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5470 break;
5471 else
5472 name += 1;
5473 }
5474 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5475 || name[2] == target0))
5476 {
5477 name += 2;
5478 break;
5479 }
5480 else
5481 return 0;
5482 }
5483 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5484 name += 1;
5485 else
5486 return 0;
5487 }
5488
5489 *namep = name;
5490 return 1;
5491 }
5492
5493 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5494 informational suffixes of NAME (i.e., for which is_name_suffix is
5495 true). Assumes that PATN is a lower-cased Ada simple name. */
5496
5497 static int
5498 wild_match (const char *name, const char *patn)
5499 {
5500 const char *p;
5501 const char *name0 = name;
5502
5503 while (1)
5504 {
5505 const char *match = name;
5506
5507 if (*name == *patn)
5508 {
5509 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5510 if (*p != *name)
5511 break;
5512 if (*p == '\0' && is_name_suffix (name))
5513 return match != name0 && !is_valid_name_for_wild_match (name0);
5514
5515 if (name[-1] == '_')
5516 name -= 1;
5517 }
5518 if (!advance_wild_match (&name, name0, *patn))
5519 return 1;
5520 }
5521 }
5522
5523 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5524 informational suffix. */
5525
5526 static int
5527 full_match (const char *sym_name, const char *search_name)
5528 {
5529 return !match_name (sym_name, search_name, 0);
5530 }
5531
5532
5533 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5534 vector *defn_symbols, updating the list of symbols in OBSTACKP
5535 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5536 OBJFILE is the section containing BLOCK. */
5537
5538 static void
5539 ada_add_block_symbols (struct obstack *obstackp,
5540 struct block *block, const char *name,
5541 domain_enum domain, struct objfile *objfile,
5542 int wild)
5543 {
5544 struct block_iterator iter;
5545 int name_len = strlen (name);
5546 /* A matching argument symbol, if any. */
5547 struct symbol *arg_sym;
5548 /* Set true when we find a matching non-argument symbol. */
5549 int found_sym;
5550 struct symbol *sym;
5551
5552 arg_sym = NULL;
5553 found_sym = 0;
5554 if (wild)
5555 {
5556 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5557 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5558 {
5559 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5560 SYMBOL_DOMAIN (sym), domain)
5561 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5562 {
5563 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5564 continue;
5565 else if (SYMBOL_IS_ARGUMENT (sym))
5566 arg_sym = sym;
5567 else
5568 {
5569 found_sym = 1;
5570 add_defn_to_vec (obstackp,
5571 fixup_symbol_section (sym, objfile),
5572 block);
5573 }
5574 }
5575 }
5576 }
5577 else
5578 {
5579 for (sym = block_iter_match_first (block, name, full_match, &iter);
5580 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5581 {
5582 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5583 SYMBOL_DOMAIN (sym), domain))
5584 {
5585 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5586 {
5587 if (SYMBOL_IS_ARGUMENT (sym))
5588 arg_sym = sym;
5589 else
5590 {
5591 found_sym = 1;
5592 add_defn_to_vec (obstackp,
5593 fixup_symbol_section (sym, objfile),
5594 block);
5595 }
5596 }
5597 }
5598 }
5599 }
5600
5601 if (!found_sym && arg_sym != NULL)
5602 {
5603 add_defn_to_vec (obstackp,
5604 fixup_symbol_section (arg_sym, objfile),
5605 block);
5606 }
5607
5608 if (!wild)
5609 {
5610 arg_sym = NULL;
5611 found_sym = 0;
5612
5613 ALL_BLOCK_SYMBOLS (block, iter, sym)
5614 {
5615 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5616 SYMBOL_DOMAIN (sym), domain))
5617 {
5618 int cmp;
5619
5620 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5621 if (cmp == 0)
5622 {
5623 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5624 if (cmp == 0)
5625 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5626 name_len);
5627 }
5628
5629 if (cmp == 0
5630 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5631 {
5632 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5633 {
5634 if (SYMBOL_IS_ARGUMENT (sym))
5635 arg_sym = sym;
5636 else
5637 {
5638 found_sym = 1;
5639 add_defn_to_vec (obstackp,
5640 fixup_symbol_section (sym, objfile),
5641 block);
5642 }
5643 }
5644 }
5645 }
5646 }
5647
5648 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5649 They aren't parameters, right? */
5650 if (!found_sym && arg_sym != NULL)
5651 {
5652 add_defn_to_vec (obstackp,
5653 fixup_symbol_section (arg_sym, objfile),
5654 block);
5655 }
5656 }
5657 }
5658 \f
5659
5660 /* Symbol Completion */
5661
5662 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5663 name in a form that's appropriate for the completion. The result
5664 does not need to be deallocated, but is only good until the next call.
5665
5666 TEXT_LEN is equal to the length of TEXT.
5667 Perform a wild match if WILD_MATCH_P is set.
5668 ENCODED_P should be set if TEXT represents the start of a symbol name
5669 in its encoded form. */
5670
5671 static const char *
5672 symbol_completion_match (const char *sym_name,
5673 const char *text, int text_len,
5674 int wild_match_p, int encoded_p)
5675 {
5676 const int verbatim_match = (text[0] == '<');
5677 int match = 0;
5678
5679 if (verbatim_match)
5680 {
5681 /* Strip the leading angle bracket. */
5682 text = text + 1;
5683 text_len--;
5684 }
5685
5686 /* First, test against the fully qualified name of the symbol. */
5687
5688 if (strncmp (sym_name, text, text_len) == 0)
5689 match = 1;
5690
5691 if (match && !encoded_p)
5692 {
5693 /* One needed check before declaring a positive match is to verify
5694 that iff we are doing a verbatim match, the decoded version
5695 of the symbol name starts with '<'. Otherwise, this symbol name
5696 is not a suitable completion. */
5697 const char *sym_name_copy = sym_name;
5698 int has_angle_bracket;
5699
5700 sym_name = ada_decode (sym_name);
5701 has_angle_bracket = (sym_name[0] == '<');
5702 match = (has_angle_bracket == verbatim_match);
5703 sym_name = sym_name_copy;
5704 }
5705
5706 if (match && !verbatim_match)
5707 {
5708 /* When doing non-verbatim match, another check that needs to
5709 be done is to verify that the potentially matching symbol name
5710 does not include capital letters, because the ada-mode would
5711 not be able to understand these symbol names without the
5712 angle bracket notation. */
5713 const char *tmp;
5714
5715 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5716 if (*tmp != '\0')
5717 match = 0;
5718 }
5719
5720 /* Second: Try wild matching... */
5721
5722 if (!match && wild_match_p)
5723 {
5724 /* Since we are doing wild matching, this means that TEXT
5725 may represent an unqualified symbol name. We therefore must
5726 also compare TEXT against the unqualified name of the symbol. */
5727 sym_name = ada_unqualified_name (ada_decode (sym_name));
5728
5729 if (strncmp (sym_name, text, text_len) == 0)
5730 match = 1;
5731 }
5732
5733 /* Finally: If we found a mach, prepare the result to return. */
5734
5735 if (!match)
5736 return NULL;
5737
5738 if (verbatim_match)
5739 sym_name = add_angle_brackets (sym_name);
5740
5741 if (!encoded_p)
5742 sym_name = ada_decode (sym_name);
5743
5744 return sym_name;
5745 }
5746
5747 /* A companion function to ada_make_symbol_completion_list().
5748 Check if SYM_NAME represents a symbol which name would be suitable
5749 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5750 it is appended at the end of the given string vector SV.
5751
5752 ORIG_TEXT is the string original string from the user command
5753 that needs to be completed. WORD is the entire command on which
5754 completion should be performed. These two parameters are used to
5755 determine which part of the symbol name should be added to the
5756 completion vector.
5757 if WILD_MATCH_P is set, then wild matching is performed.
5758 ENCODED_P should be set if TEXT represents a symbol name in its
5759 encoded formed (in which case the completion should also be
5760 encoded). */
5761
5762 static void
5763 symbol_completion_add (VEC(char_ptr) **sv,
5764 const char *sym_name,
5765 const char *text, int text_len,
5766 const char *orig_text, const char *word,
5767 int wild_match_p, int encoded_p)
5768 {
5769 const char *match = symbol_completion_match (sym_name, text, text_len,
5770 wild_match_p, encoded_p);
5771 char *completion;
5772
5773 if (match == NULL)
5774 return;
5775
5776 /* We found a match, so add the appropriate completion to the given
5777 string vector. */
5778
5779 if (word == orig_text)
5780 {
5781 completion = xmalloc (strlen (match) + 5);
5782 strcpy (completion, match);
5783 }
5784 else if (word > orig_text)
5785 {
5786 /* Return some portion of sym_name. */
5787 completion = xmalloc (strlen (match) + 5);
5788 strcpy (completion, match + (word - orig_text));
5789 }
5790 else
5791 {
5792 /* Return some of ORIG_TEXT plus sym_name. */
5793 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5794 strncpy (completion, word, orig_text - word);
5795 completion[orig_text - word] = '\0';
5796 strcat (completion, match);
5797 }
5798
5799 VEC_safe_push (char_ptr, *sv, completion);
5800 }
5801
5802 /* An object of this type is passed as the user_data argument to the
5803 expand_partial_symbol_names method. */
5804 struct add_partial_datum
5805 {
5806 VEC(char_ptr) **completions;
5807 const char *text;
5808 int text_len;
5809 const char *text0;
5810 const char *word;
5811 int wild_match;
5812 int encoded;
5813 };
5814
5815 /* A callback for expand_partial_symbol_names. */
5816 static int
5817 ada_expand_partial_symbol_name (const char *name, void *user_data)
5818 {
5819 struct add_partial_datum *data = user_data;
5820
5821 return symbol_completion_match (name, data->text, data->text_len,
5822 data->wild_match, data->encoded) != NULL;
5823 }
5824
5825 /* Return a list of possible symbol names completing TEXT0. WORD is
5826 the entire command on which completion is made. */
5827
5828 static VEC (char_ptr) *
5829 ada_make_symbol_completion_list (const char *text0, const char *word,
5830 enum type_code code)
5831 {
5832 char *text;
5833 int text_len;
5834 int wild_match_p;
5835 int encoded_p;
5836 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5837 struct symbol *sym;
5838 struct symtab *s;
5839 struct minimal_symbol *msymbol;
5840 struct objfile *objfile;
5841 struct block *b, *surrounding_static_block = 0;
5842 int i;
5843 struct block_iterator iter;
5844 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5845
5846 gdb_assert (code == TYPE_CODE_UNDEF);
5847
5848 if (text0[0] == '<')
5849 {
5850 text = xstrdup (text0);
5851 make_cleanup (xfree, text);
5852 text_len = strlen (text);
5853 wild_match_p = 0;
5854 encoded_p = 1;
5855 }
5856 else
5857 {
5858 text = xstrdup (ada_encode (text0));
5859 make_cleanup (xfree, text);
5860 text_len = strlen (text);
5861 for (i = 0; i < text_len; i++)
5862 text[i] = tolower (text[i]);
5863
5864 encoded_p = (strstr (text0, "__") != NULL);
5865 /* If the name contains a ".", then the user is entering a fully
5866 qualified entity name, and the match must not be done in wild
5867 mode. Similarly, if the user wants to complete what looks like
5868 an encoded name, the match must not be done in wild mode. */
5869 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5870 }
5871
5872 /* First, look at the partial symtab symbols. */
5873 {
5874 struct add_partial_datum data;
5875
5876 data.completions = &completions;
5877 data.text = text;
5878 data.text_len = text_len;
5879 data.text0 = text0;
5880 data.word = word;
5881 data.wild_match = wild_match_p;
5882 data.encoded = encoded_p;
5883 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5884 }
5885
5886 /* At this point scan through the misc symbol vectors and add each
5887 symbol you find to the list. Eventually we want to ignore
5888 anything that isn't a text symbol (everything else will be
5889 handled by the psymtab code above). */
5890
5891 ALL_MSYMBOLS (objfile, msymbol)
5892 {
5893 QUIT;
5894 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5895 text, text_len, text0, word, wild_match_p,
5896 encoded_p);
5897 }
5898
5899 /* Search upwards from currently selected frame (so that we can
5900 complete on local vars. */
5901
5902 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5903 {
5904 if (!BLOCK_SUPERBLOCK (b))
5905 surrounding_static_block = b; /* For elmin of dups */
5906
5907 ALL_BLOCK_SYMBOLS (b, iter, sym)
5908 {
5909 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5910 text, text_len, text0, word,
5911 wild_match_p, encoded_p);
5912 }
5913 }
5914
5915 /* Go through the symtabs and check the externs and statics for
5916 symbols which match. */
5917
5918 ALL_SYMTABS (objfile, s)
5919 {
5920 QUIT;
5921 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5922 ALL_BLOCK_SYMBOLS (b, iter, sym)
5923 {
5924 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5925 text, text_len, text0, word,
5926 wild_match_p, encoded_p);
5927 }
5928 }
5929
5930 ALL_SYMTABS (objfile, s)
5931 {
5932 QUIT;
5933 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5934 /* Don't do this block twice. */
5935 if (b == surrounding_static_block)
5936 continue;
5937 ALL_BLOCK_SYMBOLS (b, iter, sym)
5938 {
5939 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5940 text, text_len, text0, word,
5941 wild_match_p, encoded_p);
5942 }
5943 }
5944
5945 do_cleanups (old_chain);
5946 return completions;
5947 }
5948
5949 /* Field Access */
5950
5951 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5952 for tagged types. */
5953
5954 static int
5955 ada_is_dispatch_table_ptr_type (struct type *type)
5956 {
5957 const char *name;
5958
5959 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5960 return 0;
5961
5962 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5963 if (name == NULL)
5964 return 0;
5965
5966 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5967 }
5968
5969 /* Return non-zero if TYPE is an interface tag. */
5970
5971 static int
5972 ada_is_interface_tag (struct type *type)
5973 {
5974 const char *name = TYPE_NAME (type);
5975
5976 if (name == NULL)
5977 return 0;
5978
5979 return (strcmp (name, "ada__tags__interface_tag") == 0);
5980 }
5981
5982 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5983 to be invisible to users. */
5984
5985 int
5986 ada_is_ignored_field (struct type *type, int field_num)
5987 {
5988 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5989 return 1;
5990
5991 /* Check the name of that field. */
5992 {
5993 const char *name = TYPE_FIELD_NAME (type, field_num);
5994
5995 /* Anonymous field names should not be printed.
5996 brobecker/2007-02-20: I don't think this can actually happen
5997 but we don't want to print the value of annonymous fields anyway. */
5998 if (name == NULL)
5999 return 1;
6000
6001 /* Normally, fields whose name start with an underscore ("_")
6002 are fields that have been internally generated by the compiler,
6003 and thus should not be printed. The "_parent" field is special,
6004 however: This is a field internally generated by the compiler
6005 for tagged types, and it contains the components inherited from
6006 the parent type. This field should not be printed as is, but
6007 should not be ignored either. */
6008 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6009 return 1;
6010 }
6011
6012 /* If this is the dispatch table of a tagged type or an interface tag,
6013 then ignore. */
6014 if (ada_is_tagged_type (type, 1)
6015 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6016 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6017 return 1;
6018
6019 /* Not a special field, so it should not be ignored. */
6020 return 0;
6021 }
6022
6023 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6024 pointer or reference type whose ultimate target has a tag field. */
6025
6026 int
6027 ada_is_tagged_type (struct type *type, int refok)
6028 {
6029 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6030 }
6031
6032 /* True iff TYPE represents the type of X'Tag */
6033
6034 int
6035 ada_is_tag_type (struct type *type)
6036 {
6037 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6038 return 0;
6039 else
6040 {
6041 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6042
6043 return (name != NULL
6044 && strcmp (name, "ada__tags__dispatch_table") == 0);
6045 }
6046 }
6047
6048 /* The type of the tag on VAL. */
6049
6050 struct type *
6051 ada_tag_type (struct value *val)
6052 {
6053 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6054 }
6055
6056 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6057 retired at Ada 05). */
6058
6059 static int
6060 is_ada95_tag (struct value *tag)
6061 {
6062 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6063 }
6064
6065 /* The value of the tag on VAL. */
6066
6067 struct value *
6068 ada_value_tag (struct value *val)
6069 {
6070 return ada_value_struct_elt (val, "_tag", 0);
6071 }
6072
6073 /* The value of the tag on the object of type TYPE whose contents are
6074 saved at VALADDR, if it is non-null, or is at memory address
6075 ADDRESS. */
6076
6077 static struct value *
6078 value_tag_from_contents_and_address (struct type *type,
6079 const gdb_byte *valaddr,
6080 CORE_ADDR address)
6081 {
6082 int tag_byte_offset;
6083 struct type *tag_type;
6084
6085 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6086 NULL, NULL, NULL))
6087 {
6088 const gdb_byte *valaddr1 = ((valaddr == NULL)
6089 ? NULL
6090 : valaddr + tag_byte_offset);
6091 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6092
6093 return value_from_contents_and_address (tag_type, valaddr1, address1);
6094 }
6095 return NULL;
6096 }
6097
6098 static struct type *
6099 type_from_tag (struct value *tag)
6100 {
6101 const char *type_name = ada_tag_name (tag);
6102
6103 if (type_name != NULL)
6104 return ada_find_any_type (ada_encode (type_name));
6105 return NULL;
6106 }
6107
6108 /* Given a value OBJ of a tagged type, return a value of this
6109 type at the base address of the object. The base address, as
6110 defined in Ada.Tags, it is the address of the primary tag of
6111 the object, and therefore where the field values of its full
6112 view can be fetched. */
6113
6114 struct value *
6115 ada_tag_value_at_base_address (struct value *obj)
6116 {
6117 volatile struct gdb_exception e;
6118 struct value *val;
6119 LONGEST offset_to_top = 0;
6120 struct type *ptr_type, *obj_type;
6121 struct value *tag;
6122 CORE_ADDR base_address;
6123
6124 obj_type = value_type (obj);
6125
6126 /* It is the responsability of the caller to deref pointers. */
6127
6128 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6129 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6130 return obj;
6131
6132 tag = ada_value_tag (obj);
6133 if (!tag)
6134 return obj;
6135
6136 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6137
6138 if (is_ada95_tag (tag))
6139 return obj;
6140
6141 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6142 ptr_type = lookup_pointer_type (ptr_type);
6143 val = value_cast (ptr_type, tag);
6144 if (!val)
6145 return obj;
6146
6147 /* It is perfectly possible that an exception be raised while
6148 trying to determine the base address, just like for the tag;
6149 see ada_tag_name for more details. We do not print the error
6150 message for the same reason. */
6151
6152 TRY_CATCH (e, RETURN_MASK_ERROR)
6153 {
6154 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6155 }
6156
6157 if (e.reason < 0)
6158 return obj;
6159
6160 /* If offset is null, nothing to do. */
6161
6162 if (offset_to_top == 0)
6163 return obj;
6164
6165 /* -1 is a special case in Ada.Tags; however, what should be done
6166 is not quite clear from the documentation. So do nothing for
6167 now. */
6168
6169 if (offset_to_top == -1)
6170 return obj;
6171
6172 base_address = value_address (obj) - offset_to_top;
6173 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6174
6175 /* Make sure that we have a proper tag at the new address.
6176 Otherwise, offset_to_top is bogus (which can happen when
6177 the object is not initialized yet). */
6178
6179 if (!tag)
6180 return obj;
6181
6182 obj_type = type_from_tag (tag);
6183
6184 if (!obj_type)
6185 return obj;
6186
6187 return value_from_contents_and_address (obj_type, NULL, base_address);
6188 }
6189
6190 /* Return the "ada__tags__type_specific_data" type. */
6191
6192 static struct type *
6193 ada_get_tsd_type (struct inferior *inf)
6194 {
6195 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6196
6197 if (data->tsd_type == 0)
6198 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6199 return data->tsd_type;
6200 }
6201
6202 /* Return the TSD (type-specific data) associated to the given TAG.
6203 TAG is assumed to be the tag of a tagged-type entity.
6204
6205 May return NULL if we are unable to get the TSD. */
6206
6207 static struct value *
6208 ada_get_tsd_from_tag (struct value *tag)
6209 {
6210 struct value *val;
6211 struct type *type;
6212
6213 /* First option: The TSD is simply stored as a field of our TAG.
6214 Only older versions of GNAT would use this format, but we have
6215 to test it first, because there are no visible markers for
6216 the current approach except the absence of that field. */
6217
6218 val = ada_value_struct_elt (tag, "tsd", 1);
6219 if (val)
6220 return val;
6221
6222 /* Try the second representation for the dispatch table (in which
6223 there is no explicit 'tsd' field in the referent of the tag pointer,
6224 and instead the tsd pointer is stored just before the dispatch
6225 table. */
6226
6227 type = ada_get_tsd_type (current_inferior());
6228 if (type == NULL)
6229 return NULL;
6230 type = lookup_pointer_type (lookup_pointer_type (type));
6231 val = value_cast (type, tag);
6232 if (val == NULL)
6233 return NULL;
6234 return value_ind (value_ptradd (val, -1));
6235 }
6236
6237 /* Given the TSD of a tag (type-specific data), return a string
6238 containing the name of the associated type.
6239
6240 The returned value is good until the next call. May return NULL
6241 if we are unable to determine the tag name. */
6242
6243 static char *
6244 ada_tag_name_from_tsd (struct value *tsd)
6245 {
6246 static char name[1024];
6247 char *p;
6248 struct value *val;
6249
6250 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6251 if (val == NULL)
6252 return NULL;
6253 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6254 for (p = name; *p != '\0'; p += 1)
6255 if (isalpha (*p))
6256 *p = tolower (*p);
6257 return name;
6258 }
6259
6260 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6261 a C string.
6262
6263 Return NULL if the TAG is not an Ada tag, or if we were unable to
6264 determine the name of that tag. The result is good until the next
6265 call. */
6266
6267 const char *
6268 ada_tag_name (struct value *tag)
6269 {
6270 volatile struct gdb_exception e;
6271 char *name = NULL;
6272
6273 if (!ada_is_tag_type (value_type (tag)))
6274 return NULL;
6275
6276 /* It is perfectly possible that an exception be raised while trying
6277 to determine the TAG's name, even under normal circumstances:
6278 The associated variable may be uninitialized or corrupted, for
6279 instance. We do not let any exception propagate past this point.
6280 instead we return NULL.
6281
6282 We also do not print the error message either (which often is very
6283 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6284 the caller print a more meaningful message if necessary. */
6285 TRY_CATCH (e, RETURN_MASK_ERROR)
6286 {
6287 struct value *tsd = ada_get_tsd_from_tag (tag);
6288
6289 if (tsd != NULL)
6290 name = ada_tag_name_from_tsd (tsd);
6291 }
6292
6293 return name;
6294 }
6295
6296 /* The parent type of TYPE, or NULL if none. */
6297
6298 struct type *
6299 ada_parent_type (struct type *type)
6300 {
6301 int i;
6302
6303 type = ada_check_typedef (type);
6304
6305 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6306 return NULL;
6307
6308 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6309 if (ada_is_parent_field (type, i))
6310 {
6311 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6312
6313 /* If the _parent field is a pointer, then dereference it. */
6314 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6315 parent_type = TYPE_TARGET_TYPE (parent_type);
6316 /* If there is a parallel XVS type, get the actual base type. */
6317 parent_type = ada_get_base_type (parent_type);
6318
6319 return ada_check_typedef (parent_type);
6320 }
6321
6322 return NULL;
6323 }
6324
6325 /* True iff field number FIELD_NUM of structure type TYPE contains the
6326 parent-type (inherited) fields of a derived type. Assumes TYPE is
6327 a structure type with at least FIELD_NUM+1 fields. */
6328
6329 int
6330 ada_is_parent_field (struct type *type, int field_num)
6331 {
6332 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6333
6334 return (name != NULL
6335 && (strncmp (name, "PARENT", 6) == 0
6336 || strncmp (name, "_parent", 7) == 0));
6337 }
6338
6339 /* True iff field number FIELD_NUM of structure type TYPE is a
6340 transparent wrapper field (which should be silently traversed when doing
6341 field selection and flattened when printing). Assumes TYPE is a
6342 structure type with at least FIELD_NUM+1 fields. Such fields are always
6343 structures. */
6344
6345 int
6346 ada_is_wrapper_field (struct type *type, int field_num)
6347 {
6348 const char *name = TYPE_FIELD_NAME (type, field_num);
6349
6350 return (name != NULL
6351 && (strncmp (name, "PARENT", 6) == 0
6352 || strcmp (name, "REP") == 0
6353 || strncmp (name, "_parent", 7) == 0
6354 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6355 }
6356
6357 /* True iff field number FIELD_NUM of structure or union type TYPE
6358 is a variant wrapper. Assumes TYPE is a structure type with at least
6359 FIELD_NUM+1 fields. */
6360
6361 int
6362 ada_is_variant_part (struct type *type, int field_num)
6363 {
6364 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6365
6366 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6367 || (is_dynamic_field (type, field_num)
6368 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6369 == TYPE_CODE_UNION)));
6370 }
6371
6372 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6373 whose discriminants are contained in the record type OUTER_TYPE,
6374 returns the type of the controlling discriminant for the variant.
6375 May return NULL if the type could not be found. */
6376
6377 struct type *
6378 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6379 {
6380 char *name = ada_variant_discrim_name (var_type);
6381
6382 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6383 }
6384
6385 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6386 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6387 represents a 'when others' clause; otherwise 0. */
6388
6389 int
6390 ada_is_others_clause (struct type *type, int field_num)
6391 {
6392 const char *name = TYPE_FIELD_NAME (type, field_num);
6393
6394 return (name != NULL && name[0] == 'O');
6395 }
6396
6397 /* Assuming that TYPE0 is the type of the variant part of a record,
6398 returns the name of the discriminant controlling the variant.
6399 The value is valid until the next call to ada_variant_discrim_name. */
6400
6401 char *
6402 ada_variant_discrim_name (struct type *type0)
6403 {
6404 static char *result = NULL;
6405 static size_t result_len = 0;
6406 struct type *type;
6407 const char *name;
6408 const char *discrim_end;
6409 const char *discrim_start;
6410
6411 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6412 type = TYPE_TARGET_TYPE (type0);
6413 else
6414 type = type0;
6415
6416 name = ada_type_name (type);
6417
6418 if (name == NULL || name[0] == '\000')
6419 return "";
6420
6421 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6422 discrim_end -= 1)
6423 {
6424 if (strncmp (discrim_end, "___XVN", 6) == 0)
6425 break;
6426 }
6427 if (discrim_end == name)
6428 return "";
6429
6430 for (discrim_start = discrim_end; discrim_start != name + 3;
6431 discrim_start -= 1)
6432 {
6433 if (discrim_start == name + 1)
6434 return "";
6435 if ((discrim_start > name + 3
6436 && strncmp (discrim_start - 3, "___", 3) == 0)
6437 || discrim_start[-1] == '.')
6438 break;
6439 }
6440
6441 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6442 strncpy (result, discrim_start, discrim_end - discrim_start);
6443 result[discrim_end - discrim_start] = '\0';
6444 return result;
6445 }
6446
6447 /* Scan STR for a subtype-encoded number, beginning at position K.
6448 Put the position of the character just past the number scanned in
6449 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6450 Return 1 if there was a valid number at the given position, and 0
6451 otherwise. A "subtype-encoded" number consists of the absolute value
6452 in decimal, followed by the letter 'm' to indicate a negative number.
6453 Assumes 0m does not occur. */
6454
6455 int
6456 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6457 {
6458 ULONGEST RU;
6459
6460 if (!isdigit (str[k]))
6461 return 0;
6462
6463 /* Do it the hard way so as not to make any assumption about
6464 the relationship of unsigned long (%lu scan format code) and
6465 LONGEST. */
6466 RU = 0;
6467 while (isdigit (str[k]))
6468 {
6469 RU = RU * 10 + (str[k] - '0');
6470 k += 1;
6471 }
6472
6473 if (str[k] == 'm')
6474 {
6475 if (R != NULL)
6476 *R = (-(LONGEST) (RU - 1)) - 1;
6477 k += 1;
6478 }
6479 else if (R != NULL)
6480 *R = (LONGEST) RU;
6481
6482 /* NOTE on the above: Technically, C does not say what the results of
6483 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6484 number representable as a LONGEST (although either would probably work
6485 in most implementations). When RU>0, the locution in the then branch
6486 above is always equivalent to the negative of RU. */
6487
6488 if (new_k != NULL)
6489 *new_k = k;
6490 return 1;
6491 }
6492
6493 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6494 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6495 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6496
6497 int
6498 ada_in_variant (LONGEST val, struct type *type, int field_num)
6499 {
6500 const char *name = TYPE_FIELD_NAME (type, field_num);
6501 int p;
6502
6503 p = 0;
6504 while (1)
6505 {
6506 switch (name[p])
6507 {
6508 case '\0':
6509 return 0;
6510 case 'S':
6511 {
6512 LONGEST W;
6513
6514 if (!ada_scan_number (name, p + 1, &W, &p))
6515 return 0;
6516 if (val == W)
6517 return 1;
6518 break;
6519 }
6520 case 'R':
6521 {
6522 LONGEST L, U;
6523
6524 if (!ada_scan_number (name, p + 1, &L, &p)
6525 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6526 return 0;
6527 if (val >= L && val <= U)
6528 return 1;
6529 break;
6530 }
6531 case 'O':
6532 return 1;
6533 default:
6534 return 0;
6535 }
6536 }
6537 }
6538
6539 /* FIXME: Lots of redundancy below. Try to consolidate. */
6540
6541 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6542 ARG_TYPE, extract and return the value of one of its (non-static)
6543 fields. FIELDNO says which field. Differs from value_primitive_field
6544 only in that it can handle packed values of arbitrary type. */
6545
6546 static struct value *
6547 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6548 struct type *arg_type)
6549 {
6550 struct type *type;
6551
6552 arg_type = ada_check_typedef (arg_type);
6553 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6554
6555 /* Handle packed fields. */
6556
6557 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6558 {
6559 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6560 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6561
6562 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6563 offset + bit_pos / 8,
6564 bit_pos % 8, bit_size, type);
6565 }
6566 else
6567 return value_primitive_field (arg1, offset, fieldno, arg_type);
6568 }
6569
6570 /* Find field with name NAME in object of type TYPE. If found,
6571 set the following for each argument that is non-null:
6572 - *FIELD_TYPE_P to the field's type;
6573 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6574 an object of that type;
6575 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6576 - *BIT_SIZE_P to its size in bits if the field is packed, and
6577 0 otherwise;
6578 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6579 fields up to but not including the desired field, or by the total
6580 number of fields if not found. A NULL value of NAME never
6581 matches; the function just counts visible fields in this case.
6582
6583 Returns 1 if found, 0 otherwise. */
6584
6585 static int
6586 find_struct_field (const char *name, struct type *type, int offset,
6587 struct type **field_type_p,
6588 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6589 int *index_p)
6590 {
6591 int i;
6592
6593 type = ada_check_typedef (type);
6594
6595 if (field_type_p != NULL)
6596 *field_type_p = NULL;
6597 if (byte_offset_p != NULL)
6598 *byte_offset_p = 0;
6599 if (bit_offset_p != NULL)
6600 *bit_offset_p = 0;
6601 if (bit_size_p != NULL)
6602 *bit_size_p = 0;
6603
6604 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6605 {
6606 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6607 int fld_offset = offset + bit_pos / 8;
6608 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6609
6610 if (t_field_name == NULL)
6611 continue;
6612
6613 else if (name != NULL && field_name_match (t_field_name, name))
6614 {
6615 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6616
6617 if (field_type_p != NULL)
6618 *field_type_p = TYPE_FIELD_TYPE (type, i);
6619 if (byte_offset_p != NULL)
6620 *byte_offset_p = fld_offset;
6621 if (bit_offset_p != NULL)
6622 *bit_offset_p = bit_pos % 8;
6623 if (bit_size_p != NULL)
6624 *bit_size_p = bit_size;
6625 return 1;
6626 }
6627 else if (ada_is_wrapper_field (type, i))
6628 {
6629 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6630 field_type_p, byte_offset_p, bit_offset_p,
6631 bit_size_p, index_p))
6632 return 1;
6633 }
6634 else if (ada_is_variant_part (type, i))
6635 {
6636 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6637 fixed type?? */
6638 int j;
6639 struct type *field_type
6640 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6641
6642 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6643 {
6644 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6645 fld_offset
6646 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6647 field_type_p, byte_offset_p,
6648 bit_offset_p, bit_size_p, index_p))
6649 return 1;
6650 }
6651 }
6652 else if (index_p != NULL)
6653 *index_p += 1;
6654 }
6655 return 0;
6656 }
6657
6658 /* Number of user-visible fields in record type TYPE. */
6659
6660 static int
6661 num_visible_fields (struct type *type)
6662 {
6663 int n;
6664
6665 n = 0;
6666 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6667 return n;
6668 }
6669
6670 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6671 and search in it assuming it has (class) type TYPE.
6672 If found, return value, else return NULL.
6673
6674 Searches recursively through wrapper fields (e.g., '_parent'). */
6675
6676 static struct value *
6677 ada_search_struct_field (char *name, struct value *arg, int offset,
6678 struct type *type)
6679 {
6680 int i;
6681
6682 type = ada_check_typedef (type);
6683 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6684 {
6685 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6686
6687 if (t_field_name == NULL)
6688 continue;
6689
6690 else if (field_name_match (t_field_name, name))
6691 return ada_value_primitive_field (arg, offset, i, type);
6692
6693 else if (ada_is_wrapper_field (type, i))
6694 {
6695 struct value *v = /* Do not let indent join lines here. */
6696 ada_search_struct_field (name, arg,
6697 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6698 TYPE_FIELD_TYPE (type, i));
6699
6700 if (v != NULL)
6701 return v;
6702 }
6703
6704 else if (ada_is_variant_part (type, i))
6705 {
6706 /* PNH: Do we ever get here? See find_struct_field. */
6707 int j;
6708 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6709 i));
6710 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6711
6712 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6713 {
6714 struct value *v = ada_search_struct_field /* Force line
6715 break. */
6716 (name, arg,
6717 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6718 TYPE_FIELD_TYPE (field_type, j));
6719
6720 if (v != NULL)
6721 return v;
6722 }
6723 }
6724 }
6725 return NULL;
6726 }
6727
6728 static struct value *ada_index_struct_field_1 (int *, struct value *,
6729 int, struct type *);
6730
6731
6732 /* Return field #INDEX in ARG, where the index is that returned by
6733 * find_struct_field through its INDEX_P argument. Adjust the address
6734 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6735 * If found, return value, else return NULL. */
6736
6737 static struct value *
6738 ada_index_struct_field (int index, struct value *arg, int offset,
6739 struct type *type)
6740 {
6741 return ada_index_struct_field_1 (&index, arg, offset, type);
6742 }
6743
6744
6745 /* Auxiliary function for ada_index_struct_field. Like
6746 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6747 * *INDEX_P. */
6748
6749 static struct value *
6750 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6751 struct type *type)
6752 {
6753 int i;
6754 type = ada_check_typedef (type);
6755
6756 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6757 {
6758 if (TYPE_FIELD_NAME (type, i) == NULL)
6759 continue;
6760 else if (ada_is_wrapper_field (type, i))
6761 {
6762 struct value *v = /* Do not let indent join lines here. */
6763 ada_index_struct_field_1 (index_p, arg,
6764 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6765 TYPE_FIELD_TYPE (type, i));
6766
6767 if (v != NULL)
6768 return v;
6769 }
6770
6771 else if (ada_is_variant_part (type, i))
6772 {
6773 /* PNH: Do we ever get here? See ada_search_struct_field,
6774 find_struct_field. */
6775 error (_("Cannot assign this kind of variant record"));
6776 }
6777 else if (*index_p == 0)
6778 return ada_value_primitive_field (arg, offset, i, type);
6779 else
6780 *index_p -= 1;
6781 }
6782 return NULL;
6783 }
6784
6785 /* Given ARG, a value of type (pointer or reference to a)*
6786 structure/union, extract the component named NAME from the ultimate
6787 target structure/union and return it as a value with its
6788 appropriate type.
6789
6790 The routine searches for NAME among all members of the structure itself
6791 and (recursively) among all members of any wrapper members
6792 (e.g., '_parent').
6793
6794 If NO_ERR, then simply return NULL in case of error, rather than
6795 calling error. */
6796
6797 struct value *
6798 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6799 {
6800 struct type *t, *t1;
6801 struct value *v;
6802
6803 v = NULL;
6804 t1 = t = ada_check_typedef (value_type (arg));
6805 if (TYPE_CODE (t) == TYPE_CODE_REF)
6806 {
6807 t1 = TYPE_TARGET_TYPE (t);
6808 if (t1 == NULL)
6809 goto BadValue;
6810 t1 = ada_check_typedef (t1);
6811 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6812 {
6813 arg = coerce_ref (arg);
6814 t = t1;
6815 }
6816 }
6817
6818 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6819 {
6820 t1 = TYPE_TARGET_TYPE (t);
6821 if (t1 == NULL)
6822 goto BadValue;
6823 t1 = ada_check_typedef (t1);
6824 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6825 {
6826 arg = value_ind (arg);
6827 t = t1;
6828 }
6829 else
6830 break;
6831 }
6832
6833 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6834 goto BadValue;
6835
6836 if (t1 == t)
6837 v = ada_search_struct_field (name, arg, 0, t);
6838 else
6839 {
6840 int bit_offset, bit_size, byte_offset;
6841 struct type *field_type;
6842 CORE_ADDR address;
6843
6844 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6845 address = value_address (ada_value_ind (arg));
6846 else
6847 address = value_address (ada_coerce_ref (arg));
6848
6849 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6850 if (find_struct_field (name, t1, 0,
6851 &field_type, &byte_offset, &bit_offset,
6852 &bit_size, NULL))
6853 {
6854 if (bit_size != 0)
6855 {
6856 if (TYPE_CODE (t) == TYPE_CODE_REF)
6857 arg = ada_coerce_ref (arg);
6858 else
6859 arg = ada_value_ind (arg);
6860 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6861 bit_offset, bit_size,
6862 field_type);
6863 }
6864 else
6865 v = value_at_lazy (field_type, address + byte_offset);
6866 }
6867 }
6868
6869 if (v != NULL || no_err)
6870 return v;
6871 else
6872 error (_("There is no member named %s."), name);
6873
6874 BadValue:
6875 if (no_err)
6876 return NULL;
6877 else
6878 error (_("Attempt to extract a component of "
6879 "a value that is not a record."));
6880 }
6881
6882 /* Given a type TYPE, look up the type of the component of type named NAME.
6883 If DISPP is non-null, add its byte displacement from the beginning of a
6884 structure (pointed to by a value) of type TYPE to *DISPP (does not
6885 work for packed fields).
6886
6887 Matches any field whose name has NAME as a prefix, possibly
6888 followed by "___".
6889
6890 TYPE can be either a struct or union. If REFOK, TYPE may also
6891 be a (pointer or reference)+ to a struct or union, and the
6892 ultimate target type will be searched.
6893
6894 Looks recursively into variant clauses and parent types.
6895
6896 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6897 TYPE is not a type of the right kind. */
6898
6899 static struct type *
6900 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6901 int noerr, int *dispp)
6902 {
6903 int i;
6904
6905 if (name == NULL)
6906 goto BadName;
6907
6908 if (refok && type != NULL)
6909 while (1)
6910 {
6911 type = ada_check_typedef (type);
6912 if (TYPE_CODE (type) != TYPE_CODE_PTR
6913 && TYPE_CODE (type) != TYPE_CODE_REF)
6914 break;
6915 type = TYPE_TARGET_TYPE (type);
6916 }
6917
6918 if (type == NULL
6919 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6920 && TYPE_CODE (type) != TYPE_CODE_UNION))
6921 {
6922 if (noerr)
6923 return NULL;
6924 else
6925 {
6926 target_terminal_ours ();
6927 gdb_flush (gdb_stdout);
6928 if (type == NULL)
6929 error (_("Type (null) is not a structure or union type"));
6930 else
6931 {
6932 /* XXX: type_sprint */
6933 fprintf_unfiltered (gdb_stderr, _("Type "));
6934 type_print (type, "", gdb_stderr, -1);
6935 error (_(" is not a structure or union type"));
6936 }
6937 }
6938 }
6939
6940 type = to_static_fixed_type (type);
6941
6942 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6943 {
6944 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6945 struct type *t;
6946 int disp;
6947
6948 if (t_field_name == NULL)
6949 continue;
6950
6951 else if (field_name_match (t_field_name, name))
6952 {
6953 if (dispp != NULL)
6954 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6955 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6956 }
6957
6958 else if (ada_is_wrapper_field (type, i))
6959 {
6960 disp = 0;
6961 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6962 0, 1, &disp);
6963 if (t != NULL)
6964 {
6965 if (dispp != NULL)
6966 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6967 return t;
6968 }
6969 }
6970
6971 else if (ada_is_variant_part (type, i))
6972 {
6973 int j;
6974 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6975 i));
6976
6977 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6978 {
6979 /* FIXME pnh 2008/01/26: We check for a field that is
6980 NOT wrapped in a struct, since the compiler sometimes
6981 generates these for unchecked variant types. Revisit
6982 if the compiler changes this practice. */
6983 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6984 disp = 0;
6985 if (v_field_name != NULL
6986 && field_name_match (v_field_name, name))
6987 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6988 else
6989 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6990 j),
6991 name, 0, 1, &disp);
6992
6993 if (t != NULL)
6994 {
6995 if (dispp != NULL)
6996 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6997 return t;
6998 }
6999 }
7000 }
7001
7002 }
7003
7004 BadName:
7005 if (!noerr)
7006 {
7007 target_terminal_ours ();
7008 gdb_flush (gdb_stdout);
7009 if (name == NULL)
7010 {
7011 /* XXX: type_sprint */
7012 fprintf_unfiltered (gdb_stderr, _("Type "));
7013 type_print (type, "", gdb_stderr, -1);
7014 error (_(" has no component named <null>"));
7015 }
7016 else
7017 {
7018 /* XXX: type_sprint */
7019 fprintf_unfiltered (gdb_stderr, _("Type "));
7020 type_print (type, "", gdb_stderr, -1);
7021 error (_(" has no component named %s"), name);
7022 }
7023 }
7024
7025 return NULL;
7026 }
7027
7028 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7029 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7030 represents an unchecked union (that is, the variant part of a
7031 record that is named in an Unchecked_Union pragma). */
7032
7033 static int
7034 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7035 {
7036 char *discrim_name = ada_variant_discrim_name (var_type);
7037
7038 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7039 == NULL);
7040 }
7041
7042
7043 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7044 within a value of type OUTER_TYPE that is stored in GDB at
7045 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7046 numbering from 0) is applicable. Returns -1 if none are. */
7047
7048 int
7049 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7050 const gdb_byte *outer_valaddr)
7051 {
7052 int others_clause;
7053 int i;
7054 char *discrim_name = ada_variant_discrim_name (var_type);
7055 struct value *outer;
7056 struct value *discrim;
7057 LONGEST discrim_val;
7058
7059 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7060 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7061 if (discrim == NULL)
7062 return -1;
7063 discrim_val = value_as_long (discrim);
7064
7065 others_clause = -1;
7066 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7067 {
7068 if (ada_is_others_clause (var_type, i))
7069 others_clause = i;
7070 else if (ada_in_variant (discrim_val, var_type, i))
7071 return i;
7072 }
7073
7074 return others_clause;
7075 }
7076 \f
7077
7078
7079 /* Dynamic-Sized Records */
7080
7081 /* Strategy: The type ostensibly attached to a value with dynamic size
7082 (i.e., a size that is not statically recorded in the debugging
7083 data) does not accurately reflect the size or layout of the value.
7084 Our strategy is to convert these values to values with accurate,
7085 conventional types that are constructed on the fly. */
7086
7087 /* There is a subtle and tricky problem here. In general, we cannot
7088 determine the size of dynamic records without its data. However,
7089 the 'struct value' data structure, which GDB uses to represent
7090 quantities in the inferior process (the target), requires the size
7091 of the type at the time of its allocation in order to reserve space
7092 for GDB's internal copy of the data. That's why the
7093 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7094 rather than struct value*s.
7095
7096 However, GDB's internal history variables ($1, $2, etc.) are
7097 struct value*s containing internal copies of the data that are not, in
7098 general, the same as the data at their corresponding addresses in
7099 the target. Fortunately, the types we give to these values are all
7100 conventional, fixed-size types (as per the strategy described
7101 above), so that we don't usually have to perform the
7102 'to_fixed_xxx_type' conversions to look at their values.
7103 Unfortunately, there is one exception: if one of the internal
7104 history variables is an array whose elements are unconstrained
7105 records, then we will need to create distinct fixed types for each
7106 element selected. */
7107
7108 /* The upshot of all of this is that many routines take a (type, host
7109 address, target address) triple as arguments to represent a value.
7110 The host address, if non-null, is supposed to contain an internal
7111 copy of the relevant data; otherwise, the program is to consult the
7112 target at the target address. */
7113
7114 /* Assuming that VAL0 represents a pointer value, the result of
7115 dereferencing it. Differs from value_ind in its treatment of
7116 dynamic-sized types. */
7117
7118 struct value *
7119 ada_value_ind (struct value *val0)
7120 {
7121 struct value *val = value_ind (val0);
7122
7123 if (ada_is_tagged_type (value_type (val), 0))
7124 val = ada_tag_value_at_base_address (val);
7125
7126 return ada_to_fixed_value (val);
7127 }
7128
7129 /* The value resulting from dereferencing any "reference to"
7130 qualifiers on VAL0. */
7131
7132 static struct value *
7133 ada_coerce_ref (struct value *val0)
7134 {
7135 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7136 {
7137 struct value *val = val0;
7138
7139 val = coerce_ref (val);
7140
7141 if (ada_is_tagged_type (value_type (val), 0))
7142 val = ada_tag_value_at_base_address (val);
7143
7144 return ada_to_fixed_value (val);
7145 }
7146 else
7147 return val0;
7148 }
7149
7150 /* Return OFF rounded upward if necessary to a multiple of
7151 ALIGNMENT (a power of 2). */
7152
7153 static unsigned int
7154 align_value (unsigned int off, unsigned int alignment)
7155 {
7156 return (off + alignment - 1) & ~(alignment - 1);
7157 }
7158
7159 /* Return the bit alignment required for field #F of template type TYPE. */
7160
7161 static unsigned int
7162 field_alignment (struct type *type, int f)
7163 {
7164 const char *name = TYPE_FIELD_NAME (type, f);
7165 int len;
7166 int align_offset;
7167
7168 /* The field name should never be null, unless the debugging information
7169 is somehow malformed. In this case, we assume the field does not
7170 require any alignment. */
7171 if (name == NULL)
7172 return 1;
7173
7174 len = strlen (name);
7175
7176 if (!isdigit (name[len - 1]))
7177 return 1;
7178
7179 if (isdigit (name[len - 2]))
7180 align_offset = len - 2;
7181 else
7182 align_offset = len - 1;
7183
7184 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7185 return TARGET_CHAR_BIT;
7186
7187 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7188 }
7189
7190 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7191
7192 static struct symbol *
7193 ada_find_any_type_symbol (const char *name)
7194 {
7195 struct symbol *sym;
7196
7197 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7198 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7199 return sym;
7200
7201 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7202 return sym;
7203 }
7204
7205 /* Find a type named NAME. Ignores ambiguity. This routine will look
7206 solely for types defined by debug info, it will not search the GDB
7207 primitive types. */
7208
7209 static struct type *
7210 ada_find_any_type (const char *name)
7211 {
7212 struct symbol *sym = ada_find_any_type_symbol (name);
7213
7214 if (sym != NULL)
7215 return SYMBOL_TYPE (sym);
7216
7217 return NULL;
7218 }
7219
7220 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7221 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7222 symbol, in which case it is returned. Otherwise, this looks for
7223 symbols whose name is that of NAME_SYM suffixed with "___XR".
7224 Return symbol if found, and NULL otherwise. */
7225
7226 struct symbol *
7227 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7228 {
7229 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7230 struct symbol *sym;
7231
7232 if (strstr (name, "___XR") != NULL)
7233 return name_sym;
7234
7235 sym = find_old_style_renaming_symbol (name, block);
7236
7237 if (sym != NULL)
7238 return sym;
7239
7240 /* Not right yet. FIXME pnh 7/20/2007. */
7241 sym = ada_find_any_type_symbol (name);
7242 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7243 return sym;
7244 else
7245 return NULL;
7246 }
7247
7248 static struct symbol *
7249 find_old_style_renaming_symbol (const char *name, const struct block *block)
7250 {
7251 const struct symbol *function_sym = block_linkage_function (block);
7252 char *rename;
7253
7254 if (function_sym != NULL)
7255 {
7256 /* If the symbol is defined inside a function, NAME is not fully
7257 qualified. This means we need to prepend the function name
7258 as well as adding the ``___XR'' suffix to build the name of
7259 the associated renaming symbol. */
7260 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7261 /* Function names sometimes contain suffixes used
7262 for instance to qualify nested subprograms. When building
7263 the XR type name, we need to make sure that this suffix is
7264 not included. So do not include any suffix in the function
7265 name length below. */
7266 int function_name_len = ada_name_prefix_len (function_name);
7267 const int rename_len = function_name_len + 2 /* "__" */
7268 + strlen (name) + 6 /* "___XR\0" */ ;
7269
7270 /* Strip the suffix if necessary. */
7271 ada_remove_trailing_digits (function_name, &function_name_len);
7272 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7273 ada_remove_Xbn_suffix (function_name, &function_name_len);
7274
7275 /* Library-level functions are a special case, as GNAT adds
7276 a ``_ada_'' prefix to the function name to avoid namespace
7277 pollution. However, the renaming symbols themselves do not
7278 have this prefix, so we need to skip this prefix if present. */
7279 if (function_name_len > 5 /* "_ada_" */
7280 && strstr (function_name, "_ada_") == function_name)
7281 {
7282 function_name += 5;
7283 function_name_len -= 5;
7284 }
7285
7286 rename = (char *) alloca (rename_len * sizeof (char));
7287 strncpy (rename, function_name, function_name_len);
7288 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7289 "__%s___XR", name);
7290 }
7291 else
7292 {
7293 const int rename_len = strlen (name) + 6;
7294
7295 rename = (char *) alloca (rename_len * sizeof (char));
7296 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7297 }
7298
7299 return ada_find_any_type_symbol (rename);
7300 }
7301
7302 /* Because of GNAT encoding conventions, several GDB symbols may match a
7303 given type name. If the type denoted by TYPE0 is to be preferred to
7304 that of TYPE1 for purposes of type printing, return non-zero;
7305 otherwise return 0. */
7306
7307 int
7308 ada_prefer_type (struct type *type0, struct type *type1)
7309 {
7310 if (type1 == NULL)
7311 return 1;
7312 else if (type0 == NULL)
7313 return 0;
7314 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7315 return 1;
7316 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7317 return 0;
7318 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7319 return 1;
7320 else if (ada_is_constrained_packed_array_type (type0))
7321 return 1;
7322 else if (ada_is_array_descriptor_type (type0)
7323 && !ada_is_array_descriptor_type (type1))
7324 return 1;
7325 else
7326 {
7327 const char *type0_name = type_name_no_tag (type0);
7328 const char *type1_name = type_name_no_tag (type1);
7329
7330 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7331 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7332 return 1;
7333 }
7334 return 0;
7335 }
7336
7337 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7338 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7339
7340 const char *
7341 ada_type_name (struct type *type)
7342 {
7343 if (type == NULL)
7344 return NULL;
7345 else if (TYPE_NAME (type) != NULL)
7346 return TYPE_NAME (type);
7347 else
7348 return TYPE_TAG_NAME (type);
7349 }
7350
7351 /* Search the list of "descriptive" types associated to TYPE for a type
7352 whose name is NAME. */
7353
7354 static struct type *
7355 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7356 {
7357 struct type *result;
7358
7359 /* If there no descriptive-type info, then there is no parallel type
7360 to be found. */
7361 if (!HAVE_GNAT_AUX_INFO (type))
7362 return NULL;
7363
7364 result = TYPE_DESCRIPTIVE_TYPE (type);
7365 while (result != NULL)
7366 {
7367 const char *result_name = ada_type_name (result);
7368
7369 if (result_name == NULL)
7370 {
7371 warning (_("unexpected null name on descriptive type"));
7372 return NULL;
7373 }
7374
7375 /* If the names match, stop. */
7376 if (strcmp (result_name, name) == 0)
7377 break;
7378
7379 /* Otherwise, look at the next item on the list, if any. */
7380 if (HAVE_GNAT_AUX_INFO (result))
7381 result = TYPE_DESCRIPTIVE_TYPE (result);
7382 else
7383 result = NULL;
7384 }
7385
7386 /* If we didn't find a match, see whether this is a packed array. With
7387 older compilers, the descriptive type information is either absent or
7388 irrelevant when it comes to packed arrays so the above lookup fails.
7389 Fall back to using a parallel lookup by name in this case. */
7390 if (result == NULL && ada_is_constrained_packed_array_type (type))
7391 return ada_find_any_type (name);
7392
7393 return result;
7394 }
7395
7396 /* Find a parallel type to TYPE with the specified NAME, using the
7397 descriptive type taken from the debugging information, if available,
7398 and otherwise using the (slower) name-based method. */
7399
7400 static struct type *
7401 ada_find_parallel_type_with_name (struct type *type, const char *name)
7402 {
7403 struct type *result = NULL;
7404
7405 if (HAVE_GNAT_AUX_INFO (type))
7406 result = find_parallel_type_by_descriptive_type (type, name);
7407 else
7408 result = ada_find_any_type (name);
7409
7410 return result;
7411 }
7412
7413 /* Same as above, but specify the name of the parallel type by appending
7414 SUFFIX to the name of TYPE. */
7415
7416 struct type *
7417 ada_find_parallel_type (struct type *type, const char *suffix)
7418 {
7419 char *name;
7420 const char *typename = ada_type_name (type);
7421 int len;
7422
7423 if (typename == NULL)
7424 return NULL;
7425
7426 len = strlen (typename);
7427
7428 name = (char *) alloca (len + strlen (suffix) + 1);
7429
7430 strcpy (name, typename);
7431 strcpy (name + len, suffix);
7432
7433 return ada_find_parallel_type_with_name (type, name);
7434 }
7435
7436 /* If TYPE is a variable-size record type, return the corresponding template
7437 type describing its fields. Otherwise, return NULL. */
7438
7439 static struct type *
7440 dynamic_template_type (struct type *type)
7441 {
7442 type = ada_check_typedef (type);
7443
7444 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7445 || ada_type_name (type) == NULL)
7446 return NULL;
7447 else
7448 {
7449 int len = strlen (ada_type_name (type));
7450
7451 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7452 return type;
7453 else
7454 return ada_find_parallel_type (type, "___XVE");
7455 }
7456 }
7457
7458 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7459 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7460
7461 static int
7462 is_dynamic_field (struct type *templ_type, int field_num)
7463 {
7464 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7465
7466 return name != NULL
7467 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7468 && strstr (name, "___XVL") != NULL;
7469 }
7470
7471 /* The index of the variant field of TYPE, or -1 if TYPE does not
7472 represent a variant record type. */
7473
7474 static int
7475 variant_field_index (struct type *type)
7476 {
7477 int f;
7478
7479 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7480 return -1;
7481
7482 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7483 {
7484 if (ada_is_variant_part (type, f))
7485 return f;
7486 }
7487 return -1;
7488 }
7489
7490 /* A record type with no fields. */
7491
7492 static struct type *
7493 empty_record (struct type *template)
7494 {
7495 struct type *type = alloc_type_copy (template);
7496
7497 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7498 TYPE_NFIELDS (type) = 0;
7499 TYPE_FIELDS (type) = NULL;
7500 INIT_CPLUS_SPECIFIC (type);
7501 TYPE_NAME (type) = "<empty>";
7502 TYPE_TAG_NAME (type) = NULL;
7503 TYPE_LENGTH (type) = 0;
7504 return type;
7505 }
7506
7507 /* An ordinary record type (with fixed-length fields) that describes
7508 the value of type TYPE at VALADDR or ADDRESS (see comments at
7509 the beginning of this section) VAL according to GNAT conventions.
7510 DVAL0 should describe the (portion of a) record that contains any
7511 necessary discriminants. It should be NULL if value_type (VAL) is
7512 an outer-level type (i.e., as opposed to a branch of a variant.) A
7513 variant field (unless unchecked) is replaced by a particular branch
7514 of the variant.
7515
7516 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7517 length are not statically known are discarded. As a consequence,
7518 VALADDR, ADDRESS and DVAL0 are ignored.
7519
7520 NOTE: Limitations: For now, we assume that dynamic fields and
7521 variants occupy whole numbers of bytes. However, they need not be
7522 byte-aligned. */
7523
7524 struct type *
7525 ada_template_to_fixed_record_type_1 (struct type *type,
7526 const gdb_byte *valaddr,
7527 CORE_ADDR address, struct value *dval0,
7528 int keep_dynamic_fields)
7529 {
7530 struct value *mark = value_mark ();
7531 struct value *dval;
7532 struct type *rtype;
7533 int nfields, bit_len;
7534 int variant_field;
7535 long off;
7536 int fld_bit_len;
7537 int f;
7538
7539 /* Compute the number of fields in this record type that are going
7540 to be processed: unless keep_dynamic_fields, this includes only
7541 fields whose position and length are static will be processed. */
7542 if (keep_dynamic_fields)
7543 nfields = TYPE_NFIELDS (type);
7544 else
7545 {
7546 nfields = 0;
7547 while (nfields < TYPE_NFIELDS (type)
7548 && !ada_is_variant_part (type, nfields)
7549 && !is_dynamic_field (type, nfields))
7550 nfields++;
7551 }
7552
7553 rtype = alloc_type_copy (type);
7554 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7555 INIT_CPLUS_SPECIFIC (rtype);
7556 TYPE_NFIELDS (rtype) = nfields;
7557 TYPE_FIELDS (rtype) = (struct field *)
7558 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7559 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7560 TYPE_NAME (rtype) = ada_type_name (type);
7561 TYPE_TAG_NAME (rtype) = NULL;
7562 TYPE_FIXED_INSTANCE (rtype) = 1;
7563
7564 off = 0;
7565 bit_len = 0;
7566 variant_field = -1;
7567
7568 for (f = 0; f < nfields; f += 1)
7569 {
7570 off = align_value (off, field_alignment (type, f))
7571 + TYPE_FIELD_BITPOS (type, f);
7572 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7573 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7574
7575 if (ada_is_variant_part (type, f))
7576 {
7577 variant_field = f;
7578 fld_bit_len = 0;
7579 }
7580 else if (is_dynamic_field (type, f))
7581 {
7582 const gdb_byte *field_valaddr = valaddr;
7583 CORE_ADDR field_address = address;
7584 struct type *field_type =
7585 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7586
7587 if (dval0 == NULL)
7588 {
7589 /* rtype's length is computed based on the run-time
7590 value of discriminants. If the discriminants are not
7591 initialized, the type size may be completely bogus and
7592 GDB may fail to allocate a value for it. So check the
7593 size first before creating the value. */
7594 check_size (rtype);
7595 dval = value_from_contents_and_address (rtype, valaddr, address);
7596 }
7597 else
7598 dval = dval0;
7599
7600 /* If the type referenced by this field is an aligner type, we need
7601 to unwrap that aligner type, because its size might not be set.
7602 Keeping the aligner type would cause us to compute the wrong
7603 size for this field, impacting the offset of the all the fields
7604 that follow this one. */
7605 if (ada_is_aligner_type (field_type))
7606 {
7607 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7608
7609 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7610 field_address = cond_offset_target (field_address, field_offset);
7611 field_type = ada_aligned_type (field_type);
7612 }
7613
7614 field_valaddr = cond_offset_host (field_valaddr,
7615 off / TARGET_CHAR_BIT);
7616 field_address = cond_offset_target (field_address,
7617 off / TARGET_CHAR_BIT);
7618
7619 /* Get the fixed type of the field. Note that, in this case,
7620 we do not want to get the real type out of the tag: if
7621 the current field is the parent part of a tagged record,
7622 we will get the tag of the object. Clearly wrong: the real
7623 type of the parent is not the real type of the child. We
7624 would end up in an infinite loop. */
7625 field_type = ada_get_base_type (field_type);
7626 field_type = ada_to_fixed_type (field_type, field_valaddr,
7627 field_address, dval, 0);
7628 /* If the field size is already larger than the maximum
7629 object size, then the record itself will necessarily
7630 be larger than the maximum object size. We need to make
7631 this check now, because the size might be so ridiculously
7632 large (due to an uninitialized variable in the inferior)
7633 that it would cause an overflow when adding it to the
7634 record size. */
7635 check_size (field_type);
7636
7637 TYPE_FIELD_TYPE (rtype, f) = field_type;
7638 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7639 /* The multiplication can potentially overflow. But because
7640 the field length has been size-checked just above, and
7641 assuming that the maximum size is a reasonable value,
7642 an overflow should not happen in practice. So rather than
7643 adding overflow recovery code to this already complex code,
7644 we just assume that it's not going to happen. */
7645 fld_bit_len =
7646 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7647 }
7648 else
7649 {
7650 /* Note: If this field's type is a typedef, it is important
7651 to preserve the typedef layer.
7652
7653 Otherwise, we might be transforming a typedef to a fat
7654 pointer (encoding a pointer to an unconstrained array),
7655 into a basic fat pointer (encoding an unconstrained
7656 array). As both types are implemented using the same
7657 structure, the typedef is the only clue which allows us
7658 to distinguish between the two options. Stripping it
7659 would prevent us from printing this field appropriately. */
7660 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7661 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7662 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7663 fld_bit_len =
7664 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7665 else
7666 {
7667 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7668
7669 /* We need to be careful of typedefs when computing
7670 the length of our field. If this is a typedef,
7671 get the length of the target type, not the length
7672 of the typedef. */
7673 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7674 field_type = ada_typedef_target_type (field_type);
7675
7676 fld_bit_len =
7677 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7678 }
7679 }
7680 if (off + fld_bit_len > bit_len)
7681 bit_len = off + fld_bit_len;
7682 off += fld_bit_len;
7683 TYPE_LENGTH (rtype) =
7684 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7685 }
7686
7687 /* We handle the variant part, if any, at the end because of certain
7688 odd cases in which it is re-ordered so as NOT to be the last field of
7689 the record. This can happen in the presence of representation
7690 clauses. */
7691 if (variant_field >= 0)
7692 {
7693 struct type *branch_type;
7694
7695 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7696
7697 if (dval0 == NULL)
7698 dval = value_from_contents_and_address (rtype, valaddr, address);
7699 else
7700 dval = dval0;
7701
7702 branch_type =
7703 to_fixed_variant_branch_type
7704 (TYPE_FIELD_TYPE (type, variant_field),
7705 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7706 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7707 if (branch_type == NULL)
7708 {
7709 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7710 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7711 TYPE_NFIELDS (rtype) -= 1;
7712 }
7713 else
7714 {
7715 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7716 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7717 fld_bit_len =
7718 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7719 TARGET_CHAR_BIT;
7720 if (off + fld_bit_len > bit_len)
7721 bit_len = off + fld_bit_len;
7722 TYPE_LENGTH (rtype) =
7723 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7724 }
7725 }
7726
7727 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7728 should contain the alignment of that record, which should be a strictly
7729 positive value. If null or negative, then something is wrong, most
7730 probably in the debug info. In that case, we don't round up the size
7731 of the resulting type. If this record is not part of another structure,
7732 the current RTYPE length might be good enough for our purposes. */
7733 if (TYPE_LENGTH (type) <= 0)
7734 {
7735 if (TYPE_NAME (rtype))
7736 warning (_("Invalid type size for `%s' detected: %d."),
7737 TYPE_NAME (rtype), TYPE_LENGTH (type));
7738 else
7739 warning (_("Invalid type size for <unnamed> detected: %d."),
7740 TYPE_LENGTH (type));
7741 }
7742 else
7743 {
7744 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7745 TYPE_LENGTH (type));
7746 }
7747
7748 value_free_to_mark (mark);
7749 if (TYPE_LENGTH (rtype) > varsize_limit)
7750 error (_("record type with dynamic size is larger than varsize-limit"));
7751 return rtype;
7752 }
7753
7754 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7755 of 1. */
7756
7757 static struct type *
7758 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7759 CORE_ADDR address, struct value *dval0)
7760 {
7761 return ada_template_to_fixed_record_type_1 (type, valaddr,
7762 address, dval0, 1);
7763 }
7764
7765 /* An ordinary record type in which ___XVL-convention fields and
7766 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7767 static approximations, containing all possible fields. Uses
7768 no runtime values. Useless for use in values, but that's OK,
7769 since the results are used only for type determinations. Works on both
7770 structs and unions. Representation note: to save space, we memorize
7771 the result of this function in the TYPE_TARGET_TYPE of the
7772 template type. */
7773
7774 static struct type *
7775 template_to_static_fixed_type (struct type *type0)
7776 {
7777 struct type *type;
7778 int nfields;
7779 int f;
7780
7781 if (TYPE_TARGET_TYPE (type0) != NULL)
7782 return TYPE_TARGET_TYPE (type0);
7783
7784 nfields = TYPE_NFIELDS (type0);
7785 type = type0;
7786
7787 for (f = 0; f < nfields; f += 1)
7788 {
7789 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7790 struct type *new_type;
7791
7792 if (is_dynamic_field (type0, f))
7793 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7794 else
7795 new_type = static_unwrap_type (field_type);
7796 if (type == type0 && new_type != field_type)
7797 {
7798 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7799 TYPE_CODE (type) = TYPE_CODE (type0);
7800 INIT_CPLUS_SPECIFIC (type);
7801 TYPE_NFIELDS (type) = nfields;
7802 TYPE_FIELDS (type) = (struct field *)
7803 TYPE_ALLOC (type, nfields * sizeof (struct field));
7804 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7805 sizeof (struct field) * nfields);
7806 TYPE_NAME (type) = ada_type_name (type0);
7807 TYPE_TAG_NAME (type) = NULL;
7808 TYPE_FIXED_INSTANCE (type) = 1;
7809 TYPE_LENGTH (type) = 0;
7810 }
7811 TYPE_FIELD_TYPE (type, f) = new_type;
7812 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7813 }
7814 return type;
7815 }
7816
7817 /* Given an object of type TYPE whose contents are at VALADDR and
7818 whose address in memory is ADDRESS, returns a revision of TYPE,
7819 which should be a non-dynamic-sized record, in which the variant
7820 part, if any, is replaced with the appropriate branch. Looks
7821 for discriminant values in DVAL0, which can be NULL if the record
7822 contains the necessary discriminant values. */
7823
7824 static struct type *
7825 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7826 CORE_ADDR address, struct value *dval0)
7827 {
7828 struct value *mark = value_mark ();
7829 struct value *dval;
7830 struct type *rtype;
7831 struct type *branch_type;
7832 int nfields = TYPE_NFIELDS (type);
7833 int variant_field = variant_field_index (type);
7834
7835 if (variant_field == -1)
7836 return type;
7837
7838 if (dval0 == NULL)
7839 dval = value_from_contents_and_address (type, valaddr, address);
7840 else
7841 dval = dval0;
7842
7843 rtype = alloc_type_copy (type);
7844 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7845 INIT_CPLUS_SPECIFIC (rtype);
7846 TYPE_NFIELDS (rtype) = nfields;
7847 TYPE_FIELDS (rtype) =
7848 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7849 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7850 sizeof (struct field) * nfields);
7851 TYPE_NAME (rtype) = ada_type_name (type);
7852 TYPE_TAG_NAME (rtype) = NULL;
7853 TYPE_FIXED_INSTANCE (rtype) = 1;
7854 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7855
7856 branch_type = to_fixed_variant_branch_type
7857 (TYPE_FIELD_TYPE (type, variant_field),
7858 cond_offset_host (valaddr,
7859 TYPE_FIELD_BITPOS (type, variant_field)
7860 / TARGET_CHAR_BIT),
7861 cond_offset_target (address,
7862 TYPE_FIELD_BITPOS (type, variant_field)
7863 / TARGET_CHAR_BIT), dval);
7864 if (branch_type == NULL)
7865 {
7866 int f;
7867
7868 for (f = variant_field + 1; f < nfields; f += 1)
7869 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7870 TYPE_NFIELDS (rtype) -= 1;
7871 }
7872 else
7873 {
7874 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7875 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7876 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7877 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7878 }
7879 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7880
7881 value_free_to_mark (mark);
7882 return rtype;
7883 }
7884
7885 /* An ordinary record type (with fixed-length fields) that describes
7886 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7887 beginning of this section]. Any necessary discriminants' values
7888 should be in DVAL, a record value; it may be NULL if the object
7889 at ADDR itself contains any necessary discriminant values.
7890 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7891 values from the record are needed. Except in the case that DVAL,
7892 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7893 unchecked) is replaced by a particular branch of the variant.
7894
7895 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7896 is questionable and may be removed. It can arise during the
7897 processing of an unconstrained-array-of-record type where all the
7898 variant branches have exactly the same size. This is because in
7899 such cases, the compiler does not bother to use the XVS convention
7900 when encoding the record. I am currently dubious of this
7901 shortcut and suspect the compiler should be altered. FIXME. */
7902
7903 static struct type *
7904 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7905 CORE_ADDR address, struct value *dval)
7906 {
7907 struct type *templ_type;
7908
7909 if (TYPE_FIXED_INSTANCE (type0))
7910 return type0;
7911
7912 templ_type = dynamic_template_type (type0);
7913
7914 if (templ_type != NULL)
7915 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7916 else if (variant_field_index (type0) >= 0)
7917 {
7918 if (dval == NULL && valaddr == NULL && address == 0)
7919 return type0;
7920 return to_record_with_fixed_variant_part (type0, valaddr, address,
7921 dval);
7922 }
7923 else
7924 {
7925 TYPE_FIXED_INSTANCE (type0) = 1;
7926 return type0;
7927 }
7928
7929 }
7930
7931 /* An ordinary record type (with fixed-length fields) that describes
7932 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7933 union type. Any necessary discriminants' values should be in DVAL,
7934 a record value. That is, this routine selects the appropriate
7935 branch of the union at ADDR according to the discriminant value
7936 indicated in the union's type name. Returns VAR_TYPE0 itself if
7937 it represents a variant subject to a pragma Unchecked_Union. */
7938
7939 static struct type *
7940 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7941 CORE_ADDR address, struct value *dval)
7942 {
7943 int which;
7944 struct type *templ_type;
7945 struct type *var_type;
7946
7947 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7948 var_type = TYPE_TARGET_TYPE (var_type0);
7949 else
7950 var_type = var_type0;
7951
7952 templ_type = ada_find_parallel_type (var_type, "___XVU");
7953
7954 if (templ_type != NULL)
7955 var_type = templ_type;
7956
7957 if (is_unchecked_variant (var_type, value_type (dval)))
7958 return var_type0;
7959 which =
7960 ada_which_variant_applies (var_type,
7961 value_type (dval), value_contents (dval));
7962
7963 if (which < 0)
7964 return empty_record (var_type);
7965 else if (is_dynamic_field (var_type, which))
7966 return to_fixed_record_type
7967 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7968 valaddr, address, dval);
7969 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7970 return
7971 to_fixed_record_type
7972 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7973 else
7974 return TYPE_FIELD_TYPE (var_type, which);
7975 }
7976
7977 /* Assuming that TYPE0 is an array type describing the type of a value
7978 at ADDR, and that DVAL describes a record containing any
7979 discriminants used in TYPE0, returns a type for the value that
7980 contains no dynamic components (that is, no components whose sizes
7981 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7982 true, gives an error message if the resulting type's size is over
7983 varsize_limit. */
7984
7985 static struct type *
7986 to_fixed_array_type (struct type *type0, struct value *dval,
7987 int ignore_too_big)
7988 {
7989 struct type *index_type_desc;
7990 struct type *result;
7991 int constrained_packed_array_p;
7992
7993 type0 = ada_check_typedef (type0);
7994 if (TYPE_FIXED_INSTANCE (type0))
7995 return type0;
7996
7997 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7998 if (constrained_packed_array_p)
7999 type0 = decode_constrained_packed_array_type (type0);
8000
8001 index_type_desc = ada_find_parallel_type (type0, "___XA");
8002 ada_fixup_array_indexes_type (index_type_desc);
8003 if (index_type_desc == NULL)
8004 {
8005 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8006
8007 /* NOTE: elt_type---the fixed version of elt_type0---should never
8008 depend on the contents of the array in properly constructed
8009 debugging data. */
8010 /* Create a fixed version of the array element type.
8011 We're not providing the address of an element here,
8012 and thus the actual object value cannot be inspected to do
8013 the conversion. This should not be a problem, since arrays of
8014 unconstrained objects are not allowed. In particular, all
8015 the elements of an array of a tagged type should all be of
8016 the same type specified in the debugging info. No need to
8017 consult the object tag. */
8018 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8019
8020 /* Make sure we always create a new array type when dealing with
8021 packed array types, since we're going to fix-up the array
8022 type length and element bitsize a little further down. */
8023 if (elt_type0 == elt_type && !constrained_packed_array_p)
8024 result = type0;
8025 else
8026 result = create_array_type (alloc_type_copy (type0),
8027 elt_type, TYPE_INDEX_TYPE (type0));
8028 }
8029 else
8030 {
8031 int i;
8032 struct type *elt_type0;
8033
8034 elt_type0 = type0;
8035 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8036 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8037
8038 /* NOTE: result---the fixed version of elt_type0---should never
8039 depend on the contents of the array in properly constructed
8040 debugging data. */
8041 /* Create a fixed version of the array element type.
8042 We're not providing the address of an element here,
8043 and thus the actual object value cannot be inspected to do
8044 the conversion. This should not be a problem, since arrays of
8045 unconstrained objects are not allowed. In particular, all
8046 the elements of an array of a tagged type should all be of
8047 the same type specified in the debugging info. No need to
8048 consult the object tag. */
8049 result =
8050 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8051
8052 elt_type0 = type0;
8053 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8054 {
8055 struct type *range_type =
8056 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8057
8058 result = create_array_type (alloc_type_copy (elt_type0),
8059 result, range_type);
8060 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8061 }
8062 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8063 error (_("array type with dynamic size is larger than varsize-limit"));
8064 }
8065
8066 /* We want to preserve the type name. This can be useful when
8067 trying to get the type name of a value that has already been
8068 printed (for instance, if the user did "print VAR; whatis $". */
8069 TYPE_NAME (result) = TYPE_NAME (type0);
8070
8071 if (constrained_packed_array_p)
8072 {
8073 /* So far, the resulting type has been created as if the original
8074 type was a regular (non-packed) array type. As a result, the
8075 bitsize of the array elements needs to be set again, and the array
8076 length needs to be recomputed based on that bitsize. */
8077 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8078 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8079
8080 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8081 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8082 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8083 TYPE_LENGTH (result)++;
8084 }
8085
8086 TYPE_FIXED_INSTANCE (result) = 1;
8087 return result;
8088 }
8089
8090
8091 /* A standard type (containing no dynamically sized components)
8092 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8093 DVAL describes a record containing any discriminants used in TYPE0,
8094 and may be NULL if there are none, or if the object of type TYPE at
8095 ADDRESS or in VALADDR contains these discriminants.
8096
8097 If CHECK_TAG is not null, in the case of tagged types, this function
8098 attempts to locate the object's tag and use it to compute the actual
8099 type. However, when ADDRESS is null, we cannot use it to determine the
8100 location of the tag, and therefore compute the tagged type's actual type.
8101 So we return the tagged type without consulting the tag. */
8102
8103 static struct type *
8104 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8105 CORE_ADDR address, struct value *dval, int check_tag)
8106 {
8107 type = ada_check_typedef (type);
8108 switch (TYPE_CODE (type))
8109 {
8110 default:
8111 return type;
8112 case TYPE_CODE_STRUCT:
8113 {
8114 struct type *static_type = to_static_fixed_type (type);
8115 struct type *fixed_record_type =
8116 to_fixed_record_type (type, valaddr, address, NULL);
8117
8118 /* If STATIC_TYPE is a tagged type and we know the object's address,
8119 then we can determine its tag, and compute the object's actual
8120 type from there. Note that we have to use the fixed record
8121 type (the parent part of the record may have dynamic fields
8122 and the way the location of _tag is expressed may depend on
8123 them). */
8124
8125 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8126 {
8127 struct value *tag =
8128 value_tag_from_contents_and_address
8129 (fixed_record_type,
8130 valaddr,
8131 address);
8132 struct type *real_type = type_from_tag (tag);
8133 struct value *obj =
8134 value_from_contents_and_address (fixed_record_type,
8135 valaddr,
8136 address);
8137 if (real_type != NULL)
8138 return to_fixed_record_type
8139 (real_type, NULL,
8140 value_address (ada_tag_value_at_base_address (obj)), NULL);
8141 }
8142
8143 /* Check to see if there is a parallel ___XVZ variable.
8144 If there is, then it provides the actual size of our type. */
8145 else if (ada_type_name (fixed_record_type) != NULL)
8146 {
8147 const char *name = ada_type_name (fixed_record_type);
8148 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8149 int xvz_found = 0;
8150 LONGEST size;
8151
8152 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8153 size = get_int_var_value (xvz_name, &xvz_found);
8154 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8155 {
8156 fixed_record_type = copy_type (fixed_record_type);
8157 TYPE_LENGTH (fixed_record_type) = size;
8158
8159 /* The FIXED_RECORD_TYPE may have be a stub. We have
8160 observed this when the debugging info is STABS, and
8161 apparently it is something that is hard to fix.
8162
8163 In practice, we don't need the actual type definition
8164 at all, because the presence of the XVZ variable allows us
8165 to assume that there must be a XVS type as well, which we
8166 should be able to use later, when we need the actual type
8167 definition.
8168
8169 In the meantime, pretend that the "fixed" type we are
8170 returning is NOT a stub, because this can cause trouble
8171 when using this type to create new types targeting it.
8172 Indeed, the associated creation routines often check
8173 whether the target type is a stub and will try to replace
8174 it, thus using a type with the wrong size. This, in turn,
8175 might cause the new type to have the wrong size too.
8176 Consider the case of an array, for instance, where the size
8177 of the array is computed from the number of elements in
8178 our array multiplied by the size of its element. */
8179 TYPE_STUB (fixed_record_type) = 0;
8180 }
8181 }
8182 return fixed_record_type;
8183 }
8184 case TYPE_CODE_ARRAY:
8185 return to_fixed_array_type (type, dval, 1);
8186 case TYPE_CODE_UNION:
8187 if (dval == NULL)
8188 return type;
8189 else
8190 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8191 }
8192 }
8193
8194 /* The same as ada_to_fixed_type_1, except that it preserves the type
8195 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8196
8197 The typedef layer needs be preserved in order to differentiate between
8198 arrays and array pointers when both types are implemented using the same
8199 fat pointer. In the array pointer case, the pointer is encoded as
8200 a typedef of the pointer type. For instance, considering:
8201
8202 type String_Access is access String;
8203 S1 : String_Access := null;
8204
8205 To the debugger, S1 is defined as a typedef of type String. But
8206 to the user, it is a pointer. So if the user tries to print S1,
8207 we should not dereference the array, but print the array address
8208 instead.
8209
8210 If we didn't preserve the typedef layer, we would lose the fact that
8211 the type is to be presented as a pointer (needs de-reference before
8212 being printed). And we would also use the source-level type name. */
8213
8214 struct type *
8215 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8216 CORE_ADDR address, struct value *dval, int check_tag)
8217
8218 {
8219 struct type *fixed_type =
8220 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8221
8222 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8223 then preserve the typedef layer.
8224
8225 Implementation note: We can only check the main-type portion of
8226 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8227 from TYPE now returns a type that has the same instance flags
8228 as TYPE. For instance, if TYPE is a "typedef const", and its
8229 target type is a "struct", then the typedef elimination will return
8230 a "const" version of the target type. See check_typedef for more
8231 details about how the typedef layer elimination is done.
8232
8233 brobecker/2010-11-19: It seems to me that the only case where it is
8234 useful to preserve the typedef layer is when dealing with fat pointers.
8235 Perhaps, we could add a check for that and preserve the typedef layer
8236 only in that situation. But this seems unecessary so far, probably
8237 because we call check_typedef/ada_check_typedef pretty much everywhere.
8238 */
8239 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8240 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8241 == TYPE_MAIN_TYPE (fixed_type)))
8242 return type;
8243
8244 return fixed_type;
8245 }
8246
8247 /* A standard (static-sized) type corresponding as well as possible to
8248 TYPE0, but based on no runtime data. */
8249
8250 static struct type *
8251 to_static_fixed_type (struct type *type0)
8252 {
8253 struct type *type;
8254
8255 if (type0 == NULL)
8256 return NULL;
8257
8258 if (TYPE_FIXED_INSTANCE (type0))
8259 return type0;
8260
8261 type0 = ada_check_typedef (type0);
8262
8263 switch (TYPE_CODE (type0))
8264 {
8265 default:
8266 return type0;
8267 case TYPE_CODE_STRUCT:
8268 type = dynamic_template_type (type0);
8269 if (type != NULL)
8270 return template_to_static_fixed_type (type);
8271 else
8272 return template_to_static_fixed_type (type0);
8273 case TYPE_CODE_UNION:
8274 type = ada_find_parallel_type (type0, "___XVU");
8275 if (type != NULL)
8276 return template_to_static_fixed_type (type);
8277 else
8278 return template_to_static_fixed_type (type0);
8279 }
8280 }
8281
8282 /* A static approximation of TYPE with all type wrappers removed. */
8283
8284 static struct type *
8285 static_unwrap_type (struct type *type)
8286 {
8287 if (ada_is_aligner_type (type))
8288 {
8289 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8290 if (ada_type_name (type1) == NULL)
8291 TYPE_NAME (type1) = ada_type_name (type);
8292
8293 return static_unwrap_type (type1);
8294 }
8295 else
8296 {
8297 struct type *raw_real_type = ada_get_base_type (type);
8298
8299 if (raw_real_type == type)
8300 return type;
8301 else
8302 return to_static_fixed_type (raw_real_type);
8303 }
8304 }
8305
8306 /* In some cases, incomplete and private types require
8307 cross-references that are not resolved as records (for example,
8308 type Foo;
8309 type FooP is access Foo;
8310 V: FooP;
8311 type Foo is array ...;
8312 ). In these cases, since there is no mechanism for producing
8313 cross-references to such types, we instead substitute for FooP a
8314 stub enumeration type that is nowhere resolved, and whose tag is
8315 the name of the actual type. Call these types "non-record stubs". */
8316
8317 /* A type equivalent to TYPE that is not a non-record stub, if one
8318 exists, otherwise TYPE. */
8319
8320 struct type *
8321 ada_check_typedef (struct type *type)
8322 {
8323 if (type == NULL)
8324 return NULL;
8325
8326 /* If our type is a typedef type of a fat pointer, then we're done.
8327 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8328 what allows us to distinguish between fat pointers that represent
8329 array types, and fat pointers that represent array access types
8330 (in both cases, the compiler implements them as fat pointers). */
8331 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8332 && is_thick_pntr (ada_typedef_target_type (type)))
8333 return type;
8334
8335 CHECK_TYPEDEF (type);
8336 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8337 || !TYPE_STUB (type)
8338 || TYPE_TAG_NAME (type) == NULL)
8339 return type;
8340 else
8341 {
8342 const char *name = TYPE_TAG_NAME (type);
8343 struct type *type1 = ada_find_any_type (name);
8344
8345 if (type1 == NULL)
8346 return type;
8347
8348 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8349 stubs pointing to arrays, as we don't create symbols for array
8350 types, only for the typedef-to-array types). If that's the case,
8351 strip the typedef layer. */
8352 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8353 type1 = ada_check_typedef (type1);
8354
8355 return type1;
8356 }
8357 }
8358
8359 /* A value representing the data at VALADDR/ADDRESS as described by
8360 type TYPE0, but with a standard (static-sized) type that correctly
8361 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8362 type, then return VAL0 [this feature is simply to avoid redundant
8363 creation of struct values]. */
8364
8365 static struct value *
8366 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8367 struct value *val0)
8368 {
8369 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8370
8371 if (type == type0 && val0 != NULL)
8372 return val0;
8373 else
8374 return value_from_contents_and_address (type, 0, address);
8375 }
8376
8377 /* A value representing VAL, but with a standard (static-sized) type
8378 that correctly describes it. Does not necessarily create a new
8379 value. */
8380
8381 struct value *
8382 ada_to_fixed_value (struct value *val)
8383 {
8384 val = unwrap_value (val);
8385 val = ada_to_fixed_value_create (value_type (val),
8386 value_address (val),
8387 val);
8388 return val;
8389 }
8390 \f
8391
8392 /* Attributes */
8393
8394 /* Table mapping attribute numbers to names.
8395 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8396
8397 static const char *attribute_names[] = {
8398 "<?>",
8399
8400 "first",
8401 "last",
8402 "length",
8403 "image",
8404 "max",
8405 "min",
8406 "modulus",
8407 "pos",
8408 "size",
8409 "tag",
8410 "val",
8411 0
8412 };
8413
8414 const char *
8415 ada_attribute_name (enum exp_opcode n)
8416 {
8417 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8418 return attribute_names[n - OP_ATR_FIRST + 1];
8419 else
8420 return attribute_names[0];
8421 }
8422
8423 /* Evaluate the 'POS attribute applied to ARG. */
8424
8425 static LONGEST
8426 pos_atr (struct value *arg)
8427 {
8428 struct value *val = coerce_ref (arg);
8429 struct type *type = value_type (val);
8430
8431 if (!discrete_type_p (type))
8432 error (_("'POS only defined on discrete types"));
8433
8434 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8435 {
8436 int i;
8437 LONGEST v = value_as_long (val);
8438
8439 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8440 {
8441 if (v == TYPE_FIELD_ENUMVAL (type, i))
8442 return i;
8443 }
8444 error (_("enumeration value is invalid: can't find 'POS"));
8445 }
8446 else
8447 return value_as_long (val);
8448 }
8449
8450 static struct value *
8451 value_pos_atr (struct type *type, struct value *arg)
8452 {
8453 return value_from_longest (type, pos_atr (arg));
8454 }
8455
8456 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8457
8458 static struct value *
8459 value_val_atr (struct type *type, struct value *arg)
8460 {
8461 if (!discrete_type_p (type))
8462 error (_("'VAL only defined on discrete types"));
8463 if (!integer_type_p (value_type (arg)))
8464 error (_("'VAL requires integral argument"));
8465
8466 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8467 {
8468 long pos = value_as_long (arg);
8469
8470 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8471 error (_("argument to 'VAL out of range"));
8472 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8473 }
8474 else
8475 return value_from_longest (type, value_as_long (arg));
8476 }
8477 \f
8478
8479 /* Evaluation */
8480
8481 /* True if TYPE appears to be an Ada character type.
8482 [At the moment, this is true only for Character and Wide_Character;
8483 It is a heuristic test that could stand improvement]. */
8484
8485 int
8486 ada_is_character_type (struct type *type)
8487 {
8488 const char *name;
8489
8490 /* If the type code says it's a character, then assume it really is,
8491 and don't check any further. */
8492 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8493 return 1;
8494
8495 /* Otherwise, assume it's a character type iff it is a discrete type
8496 with a known character type name. */
8497 name = ada_type_name (type);
8498 return (name != NULL
8499 && (TYPE_CODE (type) == TYPE_CODE_INT
8500 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8501 && (strcmp (name, "character") == 0
8502 || strcmp (name, "wide_character") == 0
8503 || strcmp (name, "wide_wide_character") == 0
8504 || strcmp (name, "unsigned char") == 0));
8505 }
8506
8507 /* True if TYPE appears to be an Ada string type. */
8508
8509 int
8510 ada_is_string_type (struct type *type)
8511 {
8512 type = ada_check_typedef (type);
8513 if (type != NULL
8514 && TYPE_CODE (type) != TYPE_CODE_PTR
8515 && (ada_is_simple_array_type (type)
8516 || ada_is_array_descriptor_type (type))
8517 && ada_array_arity (type) == 1)
8518 {
8519 struct type *elttype = ada_array_element_type (type, 1);
8520
8521 return ada_is_character_type (elttype);
8522 }
8523 else
8524 return 0;
8525 }
8526
8527 /* The compiler sometimes provides a parallel XVS type for a given
8528 PAD type. Normally, it is safe to follow the PAD type directly,
8529 but older versions of the compiler have a bug that causes the offset
8530 of its "F" field to be wrong. Following that field in that case
8531 would lead to incorrect results, but this can be worked around
8532 by ignoring the PAD type and using the associated XVS type instead.
8533
8534 Set to True if the debugger should trust the contents of PAD types.
8535 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8536 static int trust_pad_over_xvs = 1;
8537
8538 /* True if TYPE is a struct type introduced by the compiler to force the
8539 alignment of a value. Such types have a single field with a
8540 distinctive name. */
8541
8542 int
8543 ada_is_aligner_type (struct type *type)
8544 {
8545 type = ada_check_typedef (type);
8546
8547 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8548 return 0;
8549
8550 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8551 && TYPE_NFIELDS (type) == 1
8552 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8553 }
8554
8555 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8556 the parallel type. */
8557
8558 struct type *
8559 ada_get_base_type (struct type *raw_type)
8560 {
8561 struct type *real_type_namer;
8562 struct type *raw_real_type;
8563
8564 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8565 return raw_type;
8566
8567 if (ada_is_aligner_type (raw_type))
8568 /* The encoding specifies that we should always use the aligner type.
8569 So, even if this aligner type has an associated XVS type, we should
8570 simply ignore it.
8571
8572 According to the compiler gurus, an XVS type parallel to an aligner
8573 type may exist because of a stabs limitation. In stabs, aligner
8574 types are empty because the field has a variable-sized type, and
8575 thus cannot actually be used as an aligner type. As a result,
8576 we need the associated parallel XVS type to decode the type.
8577 Since the policy in the compiler is to not change the internal
8578 representation based on the debugging info format, we sometimes
8579 end up having a redundant XVS type parallel to the aligner type. */
8580 return raw_type;
8581
8582 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8583 if (real_type_namer == NULL
8584 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8585 || TYPE_NFIELDS (real_type_namer) != 1)
8586 return raw_type;
8587
8588 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8589 {
8590 /* This is an older encoding form where the base type needs to be
8591 looked up by name. We prefer the newer enconding because it is
8592 more efficient. */
8593 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8594 if (raw_real_type == NULL)
8595 return raw_type;
8596 else
8597 return raw_real_type;
8598 }
8599
8600 /* The field in our XVS type is a reference to the base type. */
8601 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8602 }
8603
8604 /* The type of value designated by TYPE, with all aligners removed. */
8605
8606 struct type *
8607 ada_aligned_type (struct type *type)
8608 {
8609 if (ada_is_aligner_type (type))
8610 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8611 else
8612 return ada_get_base_type (type);
8613 }
8614
8615
8616 /* The address of the aligned value in an object at address VALADDR
8617 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8618
8619 const gdb_byte *
8620 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8621 {
8622 if (ada_is_aligner_type (type))
8623 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8624 valaddr +
8625 TYPE_FIELD_BITPOS (type,
8626 0) / TARGET_CHAR_BIT);
8627 else
8628 return valaddr;
8629 }
8630
8631
8632
8633 /* The printed representation of an enumeration literal with encoded
8634 name NAME. The value is good to the next call of ada_enum_name. */
8635 const char *
8636 ada_enum_name (const char *name)
8637 {
8638 static char *result;
8639 static size_t result_len = 0;
8640 char *tmp;
8641
8642 /* First, unqualify the enumeration name:
8643 1. Search for the last '.' character. If we find one, then skip
8644 all the preceding characters, the unqualified name starts
8645 right after that dot.
8646 2. Otherwise, we may be debugging on a target where the compiler
8647 translates dots into "__". Search forward for double underscores,
8648 but stop searching when we hit an overloading suffix, which is
8649 of the form "__" followed by digits. */
8650
8651 tmp = strrchr (name, '.');
8652 if (tmp != NULL)
8653 name = tmp + 1;
8654 else
8655 {
8656 while ((tmp = strstr (name, "__")) != NULL)
8657 {
8658 if (isdigit (tmp[2]))
8659 break;
8660 else
8661 name = tmp + 2;
8662 }
8663 }
8664
8665 if (name[0] == 'Q')
8666 {
8667 int v;
8668
8669 if (name[1] == 'U' || name[1] == 'W')
8670 {
8671 if (sscanf (name + 2, "%x", &v) != 1)
8672 return name;
8673 }
8674 else
8675 return name;
8676
8677 GROW_VECT (result, result_len, 16);
8678 if (isascii (v) && isprint (v))
8679 xsnprintf (result, result_len, "'%c'", v);
8680 else if (name[1] == 'U')
8681 xsnprintf (result, result_len, "[\"%02x\"]", v);
8682 else
8683 xsnprintf (result, result_len, "[\"%04x\"]", v);
8684
8685 return result;
8686 }
8687 else
8688 {
8689 tmp = strstr (name, "__");
8690 if (tmp == NULL)
8691 tmp = strstr (name, "$");
8692 if (tmp != NULL)
8693 {
8694 GROW_VECT (result, result_len, tmp - name + 1);
8695 strncpy (result, name, tmp - name);
8696 result[tmp - name] = '\0';
8697 return result;
8698 }
8699
8700 return name;
8701 }
8702 }
8703
8704 /* Evaluate the subexpression of EXP starting at *POS as for
8705 evaluate_type, updating *POS to point just past the evaluated
8706 expression. */
8707
8708 static struct value *
8709 evaluate_subexp_type (struct expression *exp, int *pos)
8710 {
8711 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8712 }
8713
8714 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8715 value it wraps. */
8716
8717 static struct value *
8718 unwrap_value (struct value *val)
8719 {
8720 struct type *type = ada_check_typedef (value_type (val));
8721
8722 if (ada_is_aligner_type (type))
8723 {
8724 struct value *v = ada_value_struct_elt (val, "F", 0);
8725 struct type *val_type = ada_check_typedef (value_type (v));
8726
8727 if (ada_type_name (val_type) == NULL)
8728 TYPE_NAME (val_type) = ada_type_name (type);
8729
8730 return unwrap_value (v);
8731 }
8732 else
8733 {
8734 struct type *raw_real_type =
8735 ada_check_typedef (ada_get_base_type (type));
8736
8737 /* If there is no parallel XVS or XVE type, then the value is
8738 already unwrapped. Return it without further modification. */
8739 if ((type == raw_real_type)
8740 && ada_find_parallel_type (type, "___XVE") == NULL)
8741 return val;
8742
8743 return
8744 coerce_unspec_val_to_type
8745 (val, ada_to_fixed_type (raw_real_type, 0,
8746 value_address (val),
8747 NULL, 1));
8748 }
8749 }
8750
8751 static struct value *
8752 cast_to_fixed (struct type *type, struct value *arg)
8753 {
8754 LONGEST val;
8755
8756 if (type == value_type (arg))
8757 return arg;
8758 else if (ada_is_fixed_point_type (value_type (arg)))
8759 val = ada_float_to_fixed (type,
8760 ada_fixed_to_float (value_type (arg),
8761 value_as_long (arg)));
8762 else
8763 {
8764 DOUBLEST argd = value_as_double (arg);
8765
8766 val = ada_float_to_fixed (type, argd);
8767 }
8768
8769 return value_from_longest (type, val);
8770 }
8771
8772 static struct value *
8773 cast_from_fixed (struct type *type, struct value *arg)
8774 {
8775 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8776 value_as_long (arg));
8777
8778 return value_from_double (type, val);
8779 }
8780
8781 /* Given two array types T1 and T2, return nonzero iff both arrays
8782 contain the same number of elements. */
8783
8784 static int
8785 ada_same_array_size_p (struct type *t1, struct type *t2)
8786 {
8787 LONGEST lo1, hi1, lo2, hi2;
8788
8789 /* Get the array bounds in order to verify that the size of
8790 the two arrays match. */
8791 if (!get_array_bounds (t1, &lo1, &hi1)
8792 || !get_array_bounds (t2, &lo2, &hi2))
8793 error (_("unable to determine array bounds"));
8794
8795 /* To make things easier for size comparison, normalize a bit
8796 the case of empty arrays by making sure that the difference
8797 between upper bound and lower bound is always -1. */
8798 if (lo1 > hi1)
8799 hi1 = lo1 - 1;
8800 if (lo2 > hi2)
8801 hi2 = lo2 - 1;
8802
8803 return (hi1 - lo1 == hi2 - lo2);
8804 }
8805
8806 /* Assuming that VAL is an array of integrals, and TYPE represents
8807 an array with the same number of elements, but with wider integral
8808 elements, return an array "casted" to TYPE. In practice, this
8809 means that the returned array is built by casting each element
8810 of the original array into TYPE's (wider) element type. */
8811
8812 static struct value *
8813 ada_promote_array_of_integrals (struct type *type, struct value *val)
8814 {
8815 struct type *elt_type = TYPE_TARGET_TYPE (type);
8816 LONGEST lo, hi;
8817 struct value *res;
8818 LONGEST i;
8819
8820 /* Verify that both val and type are arrays of scalars, and
8821 that the size of val's elements is smaller than the size
8822 of type's element. */
8823 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8824 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8825 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8826 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8827 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8828 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8829
8830 if (!get_array_bounds (type, &lo, &hi))
8831 error (_("unable to determine array bounds"));
8832
8833 res = allocate_value (type);
8834
8835 /* Promote each array element. */
8836 for (i = 0; i < hi - lo + 1; i++)
8837 {
8838 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8839
8840 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8841 value_contents_all (elt), TYPE_LENGTH (elt_type));
8842 }
8843
8844 return res;
8845 }
8846
8847 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8848 return the converted value. */
8849
8850 static struct value *
8851 coerce_for_assign (struct type *type, struct value *val)
8852 {
8853 struct type *type2 = value_type (val);
8854
8855 if (type == type2)
8856 return val;
8857
8858 type2 = ada_check_typedef (type2);
8859 type = ada_check_typedef (type);
8860
8861 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8862 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8863 {
8864 val = ada_value_ind (val);
8865 type2 = value_type (val);
8866 }
8867
8868 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8869 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8870 {
8871 if (!ada_same_array_size_p (type, type2))
8872 error (_("cannot assign arrays of different length"));
8873
8874 if (is_integral_type (TYPE_TARGET_TYPE (type))
8875 && is_integral_type (TYPE_TARGET_TYPE (type2))
8876 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8877 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8878 {
8879 /* Allow implicit promotion of the array elements to
8880 a wider type. */
8881 return ada_promote_array_of_integrals (type, val);
8882 }
8883
8884 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8885 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8886 error (_("Incompatible types in assignment"));
8887 deprecated_set_value_type (val, type);
8888 }
8889 return val;
8890 }
8891
8892 static struct value *
8893 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8894 {
8895 struct value *val;
8896 struct type *type1, *type2;
8897 LONGEST v, v1, v2;
8898
8899 arg1 = coerce_ref (arg1);
8900 arg2 = coerce_ref (arg2);
8901 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8902 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8903
8904 if (TYPE_CODE (type1) != TYPE_CODE_INT
8905 || TYPE_CODE (type2) != TYPE_CODE_INT)
8906 return value_binop (arg1, arg2, op);
8907
8908 switch (op)
8909 {
8910 case BINOP_MOD:
8911 case BINOP_DIV:
8912 case BINOP_REM:
8913 break;
8914 default:
8915 return value_binop (arg1, arg2, op);
8916 }
8917
8918 v2 = value_as_long (arg2);
8919 if (v2 == 0)
8920 error (_("second operand of %s must not be zero."), op_string (op));
8921
8922 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8923 return value_binop (arg1, arg2, op);
8924
8925 v1 = value_as_long (arg1);
8926 switch (op)
8927 {
8928 case BINOP_DIV:
8929 v = v1 / v2;
8930 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8931 v += v > 0 ? -1 : 1;
8932 break;
8933 case BINOP_REM:
8934 v = v1 % v2;
8935 if (v * v1 < 0)
8936 v -= v2;
8937 break;
8938 default:
8939 /* Should not reach this point. */
8940 v = 0;
8941 }
8942
8943 val = allocate_value (type1);
8944 store_unsigned_integer (value_contents_raw (val),
8945 TYPE_LENGTH (value_type (val)),
8946 gdbarch_byte_order (get_type_arch (type1)), v);
8947 return val;
8948 }
8949
8950 static int
8951 ada_value_equal (struct value *arg1, struct value *arg2)
8952 {
8953 if (ada_is_direct_array_type (value_type (arg1))
8954 || ada_is_direct_array_type (value_type (arg2)))
8955 {
8956 /* Automatically dereference any array reference before
8957 we attempt to perform the comparison. */
8958 arg1 = ada_coerce_ref (arg1);
8959 arg2 = ada_coerce_ref (arg2);
8960
8961 arg1 = ada_coerce_to_simple_array (arg1);
8962 arg2 = ada_coerce_to_simple_array (arg2);
8963 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8964 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8965 error (_("Attempt to compare array with non-array"));
8966 /* FIXME: The following works only for types whose
8967 representations use all bits (no padding or undefined bits)
8968 and do not have user-defined equality. */
8969 return
8970 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8971 && memcmp (value_contents (arg1), value_contents (arg2),
8972 TYPE_LENGTH (value_type (arg1))) == 0;
8973 }
8974 return value_equal (arg1, arg2);
8975 }
8976
8977 /* Total number of component associations in the aggregate starting at
8978 index PC in EXP. Assumes that index PC is the start of an
8979 OP_AGGREGATE. */
8980
8981 static int
8982 num_component_specs (struct expression *exp, int pc)
8983 {
8984 int n, m, i;
8985
8986 m = exp->elts[pc + 1].longconst;
8987 pc += 3;
8988 n = 0;
8989 for (i = 0; i < m; i += 1)
8990 {
8991 switch (exp->elts[pc].opcode)
8992 {
8993 default:
8994 n += 1;
8995 break;
8996 case OP_CHOICES:
8997 n += exp->elts[pc + 1].longconst;
8998 break;
8999 }
9000 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9001 }
9002 return n;
9003 }
9004
9005 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9006 component of LHS (a simple array or a record), updating *POS past
9007 the expression, assuming that LHS is contained in CONTAINER. Does
9008 not modify the inferior's memory, nor does it modify LHS (unless
9009 LHS == CONTAINER). */
9010
9011 static void
9012 assign_component (struct value *container, struct value *lhs, LONGEST index,
9013 struct expression *exp, int *pos)
9014 {
9015 struct value *mark = value_mark ();
9016 struct value *elt;
9017
9018 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9019 {
9020 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9021 struct value *index_val = value_from_longest (index_type, index);
9022
9023 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9024 }
9025 else
9026 {
9027 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9028 elt = ada_to_fixed_value (elt);
9029 }
9030
9031 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9032 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9033 else
9034 value_assign_to_component (container, elt,
9035 ada_evaluate_subexp (NULL, exp, pos,
9036 EVAL_NORMAL));
9037
9038 value_free_to_mark (mark);
9039 }
9040
9041 /* Assuming that LHS represents an lvalue having a record or array
9042 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9043 of that aggregate's value to LHS, advancing *POS past the
9044 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9045 lvalue containing LHS (possibly LHS itself). Does not modify
9046 the inferior's memory, nor does it modify the contents of
9047 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9048
9049 static struct value *
9050 assign_aggregate (struct value *container,
9051 struct value *lhs, struct expression *exp,
9052 int *pos, enum noside noside)
9053 {
9054 struct type *lhs_type;
9055 int n = exp->elts[*pos+1].longconst;
9056 LONGEST low_index, high_index;
9057 int num_specs;
9058 LONGEST *indices;
9059 int max_indices, num_indices;
9060 int i;
9061
9062 *pos += 3;
9063 if (noside != EVAL_NORMAL)
9064 {
9065 for (i = 0; i < n; i += 1)
9066 ada_evaluate_subexp (NULL, exp, pos, noside);
9067 return container;
9068 }
9069
9070 container = ada_coerce_ref (container);
9071 if (ada_is_direct_array_type (value_type (container)))
9072 container = ada_coerce_to_simple_array (container);
9073 lhs = ada_coerce_ref (lhs);
9074 if (!deprecated_value_modifiable (lhs))
9075 error (_("Left operand of assignment is not a modifiable lvalue."));
9076
9077 lhs_type = value_type (lhs);
9078 if (ada_is_direct_array_type (lhs_type))
9079 {
9080 lhs = ada_coerce_to_simple_array (lhs);
9081 lhs_type = value_type (lhs);
9082 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9083 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9084 }
9085 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9086 {
9087 low_index = 0;
9088 high_index = num_visible_fields (lhs_type) - 1;
9089 }
9090 else
9091 error (_("Left-hand side must be array or record."));
9092
9093 num_specs = num_component_specs (exp, *pos - 3);
9094 max_indices = 4 * num_specs + 4;
9095 indices = alloca (max_indices * sizeof (indices[0]));
9096 indices[0] = indices[1] = low_index - 1;
9097 indices[2] = indices[3] = high_index + 1;
9098 num_indices = 4;
9099
9100 for (i = 0; i < n; i += 1)
9101 {
9102 switch (exp->elts[*pos].opcode)
9103 {
9104 case OP_CHOICES:
9105 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9106 &num_indices, max_indices,
9107 low_index, high_index);
9108 break;
9109 case OP_POSITIONAL:
9110 aggregate_assign_positional (container, lhs, exp, pos, indices,
9111 &num_indices, max_indices,
9112 low_index, high_index);
9113 break;
9114 case OP_OTHERS:
9115 if (i != n-1)
9116 error (_("Misplaced 'others' clause"));
9117 aggregate_assign_others (container, lhs, exp, pos, indices,
9118 num_indices, low_index, high_index);
9119 break;
9120 default:
9121 error (_("Internal error: bad aggregate clause"));
9122 }
9123 }
9124
9125 return container;
9126 }
9127
9128 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9129 construct at *POS, updating *POS past the construct, given that
9130 the positions are relative to lower bound LOW, where HIGH is the
9131 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9132 updating *NUM_INDICES as needed. CONTAINER is as for
9133 assign_aggregate. */
9134 static void
9135 aggregate_assign_positional (struct value *container,
9136 struct value *lhs, struct expression *exp,
9137 int *pos, LONGEST *indices, int *num_indices,
9138 int max_indices, LONGEST low, LONGEST high)
9139 {
9140 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9141
9142 if (ind - 1 == high)
9143 warning (_("Extra components in aggregate ignored."));
9144 if (ind <= high)
9145 {
9146 add_component_interval (ind, ind, indices, num_indices, max_indices);
9147 *pos += 3;
9148 assign_component (container, lhs, ind, exp, pos);
9149 }
9150 else
9151 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9152 }
9153
9154 /* Assign into the components of LHS indexed by the OP_CHOICES
9155 construct at *POS, updating *POS past the construct, given that
9156 the allowable indices are LOW..HIGH. Record the indices assigned
9157 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9158 needed. CONTAINER is as for assign_aggregate. */
9159 static void
9160 aggregate_assign_from_choices (struct value *container,
9161 struct value *lhs, struct expression *exp,
9162 int *pos, LONGEST *indices, int *num_indices,
9163 int max_indices, LONGEST low, LONGEST high)
9164 {
9165 int j;
9166 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9167 int choice_pos, expr_pc;
9168 int is_array = ada_is_direct_array_type (value_type (lhs));
9169
9170 choice_pos = *pos += 3;
9171
9172 for (j = 0; j < n_choices; j += 1)
9173 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9174 expr_pc = *pos;
9175 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9176
9177 for (j = 0; j < n_choices; j += 1)
9178 {
9179 LONGEST lower, upper;
9180 enum exp_opcode op = exp->elts[choice_pos].opcode;
9181
9182 if (op == OP_DISCRETE_RANGE)
9183 {
9184 choice_pos += 1;
9185 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9186 EVAL_NORMAL));
9187 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9188 EVAL_NORMAL));
9189 }
9190 else if (is_array)
9191 {
9192 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9193 EVAL_NORMAL));
9194 upper = lower;
9195 }
9196 else
9197 {
9198 int ind;
9199 const char *name;
9200
9201 switch (op)
9202 {
9203 case OP_NAME:
9204 name = &exp->elts[choice_pos + 2].string;
9205 break;
9206 case OP_VAR_VALUE:
9207 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9208 break;
9209 default:
9210 error (_("Invalid record component association."));
9211 }
9212 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9213 ind = 0;
9214 if (! find_struct_field (name, value_type (lhs), 0,
9215 NULL, NULL, NULL, NULL, &ind))
9216 error (_("Unknown component name: %s."), name);
9217 lower = upper = ind;
9218 }
9219
9220 if (lower <= upper && (lower < low || upper > high))
9221 error (_("Index in component association out of bounds."));
9222
9223 add_component_interval (lower, upper, indices, num_indices,
9224 max_indices);
9225 while (lower <= upper)
9226 {
9227 int pos1;
9228
9229 pos1 = expr_pc;
9230 assign_component (container, lhs, lower, exp, &pos1);
9231 lower += 1;
9232 }
9233 }
9234 }
9235
9236 /* Assign the value of the expression in the OP_OTHERS construct in
9237 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9238 have not been previously assigned. The index intervals already assigned
9239 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9240 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9241 static void
9242 aggregate_assign_others (struct value *container,
9243 struct value *lhs, struct expression *exp,
9244 int *pos, LONGEST *indices, int num_indices,
9245 LONGEST low, LONGEST high)
9246 {
9247 int i;
9248 int expr_pc = *pos + 1;
9249
9250 for (i = 0; i < num_indices - 2; i += 2)
9251 {
9252 LONGEST ind;
9253
9254 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9255 {
9256 int localpos;
9257
9258 localpos = expr_pc;
9259 assign_component (container, lhs, ind, exp, &localpos);
9260 }
9261 }
9262 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9263 }
9264
9265 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9266 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9267 modifying *SIZE as needed. It is an error if *SIZE exceeds
9268 MAX_SIZE. The resulting intervals do not overlap. */
9269 static void
9270 add_component_interval (LONGEST low, LONGEST high,
9271 LONGEST* indices, int *size, int max_size)
9272 {
9273 int i, j;
9274
9275 for (i = 0; i < *size; i += 2) {
9276 if (high >= indices[i] && low <= indices[i + 1])
9277 {
9278 int kh;
9279
9280 for (kh = i + 2; kh < *size; kh += 2)
9281 if (high < indices[kh])
9282 break;
9283 if (low < indices[i])
9284 indices[i] = low;
9285 indices[i + 1] = indices[kh - 1];
9286 if (high > indices[i + 1])
9287 indices[i + 1] = high;
9288 memcpy (indices + i + 2, indices + kh, *size - kh);
9289 *size -= kh - i - 2;
9290 return;
9291 }
9292 else if (high < indices[i])
9293 break;
9294 }
9295
9296 if (*size == max_size)
9297 error (_("Internal error: miscounted aggregate components."));
9298 *size += 2;
9299 for (j = *size-1; j >= i+2; j -= 1)
9300 indices[j] = indices[j - 2];
9301 indices[i] = low;
9302 indices[i + 1] = high;
9303 }
9304
9305 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9306 is different. */
9307
9308 static struct value *
9309 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9310 {
9311 if (type == ada_check_typedef (value_type (arg2)))
9312 return arg2;
9313
9314 if (ada_is_fixed_point_type (type))
9315 return (cast_to_fixed (type, arg2));
9316
9317 if (ada_is_fixed_point_type (value_type (arg2)))
9318 return cast_from_fixed (type, arg2);
9319
9320 return value_cast (type, arg2);
9321 }
9322
9323 /* Evaluating Ada expressions, and printing their result.
9324 ------------------------------------------------------
9325
9326 1. Introduction:
9327 ----------------
9328
9329 We usually evaluate an Ada expression in order to print its value.
9330 We also evaluate an expression in order to print its type, which
9331 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9332 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9333 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9334 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9335 similar.
9336
9337 Evaluating expressions is a little more complicated for Ada entities
9338 than it is for entities in languages such as C. The main reason for
9339 this is that Ada provides types whose definition might be dynamic.
9340 One example of such types is variant records. Or another example
9341 would be an array whose bounds can only be known at run time.
9342
9343 The following description is a general guide as to what should be
9344 done (and what should NOT be done) in order to evaluate an expression
9345 involving such types, and when. This does not cover how the semantic
9346 information is encoded by GNAT as this is covered separatly. For the
9347 document used as the reference for the GNAT encoding, see exp_dbug.ads
9348 in the GNAT sources.
9349
9350 Ideally, we should embed each part of this description next to its
9351 associated code. Unfortunately, the amount of code is so vast right
9352 now that it's hard to see whether the code handling a particular
9353 situation might be duplicated or not. One day, when the code is
9354 cleaned up, this guide might become redundant with the comments
9355 inserted in the code, and we might want to remove it.
9356
9357 2. ``Fixing'' an Entity, the Simple Case:
9358 -----------------------------------------
9359
9360 When evaluating Ada expressions, the tricky issue is that they may
9361 reference entities whose type contents and size are not statically
9362 known. Consider for instance a variant record:
9363
9364 type Rec (Empty : Boolean := True) is record
9365 case Empty is
9366 when True => null;
9367 when False => Value : Integer;
9368 end case;
9369 end record;
9370 Yes : Rec := (Empty => False, Value => 1);
9371 No : Rec := (empty => True);
9372
9373 The size and contents of that record depends on the value of the
9374 descriminant (Rec.Empty). At this point, neither the debugging
9375 information nor the associated type structure in GDB are able to
9376 express such dynamic types. So what the debugger does is to create
9377 "fixed" versions of the type that applies to the specific object.
9378 We also informally refer to this opperation as "fixing" an object,
9379 which means creating its associated fixed type.
9380
9381 Example: when printing the value of variable "Yes" above, its fixed
9382 type would look like this:
9383
9384 type Rec is record
9385 Empty : Boolean;
9386 Value : Integer;
9387 end record;
9388
9389 On the other hand, if we printed the value of "No", its fixed type
9390 would become:
9391
9392 type Rec is record
9393 Empty : Boolean;
9394 end record;
9395
9396 Things become a little more complicated when trying to fix an entity
9397 with a dynamic type that directly contains another dynamic type,
9398 such as an array of variant records, for instance. There are
9399 two possible cases: Arrays, and records.
9400
9401 3. ``Fixing'' Arrays:
9402 ---------------------
9403
9404 The type structure in GDB describes an array in terms of its bounds,
9405 and the type of its elements. By design, all elements in the array
9406 have the same type and we cannot represent an array of variant elements
9407 using the current type structure in GDB. When fixing an array,
9408 we cannot fix the array element, as we would potentially need one
9409 fixed type per element of the array. As a result, the best we can do
9410 when fixing an array is to produce an array whose bounds and size
9411 are correct (allowing us to read it from memory), but without having
9412 touched its element type. Fixing each element will be done later,
9413 when (if) necessary.
9414
9415 Arrays are a little simpler to handle than records, because the same
9416 amount of memory is allocated for each element of the array, even if
9417 the amount of space actually used by each element differs from element
9418 to element. Consider for instance the following array of type Rec:
9419
9420 type Rec_Array is array (1 .. 2) of Rec;
9421
9422 The actual amount of memory occupied by each element might be different
9423 from element to element, depending on the value of their discriminant.
9424 But the amount of space reserved for each element in the array remains
9425 fixed regardless. So we simply need to compute that size using
9426 the debugging information available, from which we can then determine
9427 the array size (we multiply the number of elements of the array by
9428 the size of each element).
9429
9430 The simplest case is when we have an array of a constrained element
9431 type. For instance, consider the following type declarations:
9432
9433 type Bounded_String (Max_Size : Integer) is
9434 Length : Integer;
9435 Buffer : String (1 .. Max_Size);
9436 end record;
9437 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9438
9439 In this case, the compiler describes the array as an array of
9440 variable-size elements (identified by its XVS suffix) for which
9441 the size can be read in the parallel XVZ variable.
9442
9443 In the case of an array of an unconstrained element type, the compiler
9444 wraps the array element inside a private PAD type. This type should not
9445 be shown to the user, and must be "unwrap"'ed before printing. Note
9446 that we also use the adjective "aligner" in our code to designate
9447 these wrapper types.
9448
9449 In some cases, the size allocated for each element is statically
9450 known. In that case, the PAD type already has the correct size,
9451 and the array element should remain unfixed.
9452
9453 But there are cases when this size is not statically known.
9454 For instance, assuming that "Five" is an integer variable:
9455
9456 type Dynamic is array (1 .. Five) of Integer;
9457 type Wrapper (Has_Length : Boolean := False) is record
9458 Data : Dynamic;
9459 case Has_Length is
9460 when True => Length : Integer;
9461 when False => null;
9462 end case;
9463 end record;
9464 type Wrapper_Array is array (1 .. 2) of Wrapper;
9465
9466 Hello : Wrapper_Array := (others => (Has_Length => True,
9467 Data => (others => 17),
9468 Length => 1));
9469
9470
9471 The debugging info would describe variable Hello as being an
9472 array of a PAD type. The size of that PAD type is not statically
9473 known, but can be determined using a parallel XVZ variable.
9474 In that case, a copy of the PAD type with the correct size should
9475 be used for the fixed array.
9476
9477 3. ``Fixing'' record type objects:
9478 ----------------------------------
9479
9480 Things are slightly different from arrays in the case of dynamic
9481 record types. In this case, in order to compute the associated
9482 fixed type, we need to determine the size and offset of each of
9483 its components. This, in turn, requires us to compute the fixed
9484 type of each of these components.
9485
9486 Consider for instance the example:
9487
9488 type Bounded_String (Max_Size : Natural) is record
9489 Str : String (1 .. Max_Size);
9490 Length : Natural;
9491 end record;
9492 My_String : Bounded_String (Max_Size => 10);
9493
9494 In that case, the position of field "Length" depends on the size
9495 of field Str, which itself depends on the value of the Max_Size
9496 discriminant. In order to fix the type of variable My_String,
9497 we need to fix the type of field Str. Therefore, fixing a variant
9498 record requires us to fix each of its components.
9499
9500 However, if a component does not have a dynamic size, the component
9501 should not be fixed. In particular, fields that use a PAD type
9502 should not fixed. Here is an example where this might happen
9503 (assuming type Rec above):
9504
9505 type Container (Big : Boolean) is record
9506 First : Rec;
9507 After : Integer;
9508 case Big is
9509 when True => Another : Integer;
9510 when False => null;
9511 end case;
9512 end record;
9513 My_Container : Container := (Big => False,
9514 First => (Empty => True),
9515 After => 42);
9516
9517 In that example, the compiler creates a PAD type for component First,
9518 whose size is constant, and then positions the component After just
9519 right after it. The offset of component After is therefore constant
9520 in this case.
9521
9522 The debugger computes the position of each field based on an algorithm
9523 that uses, among other things, the actual position and size of the field
9524 preceding it. Let's now imagine that the user is trying to print
9525 the value of My_Container. If the type fixing was recursive, we would
9526 end up computing the offset of field After based on the size of the
9527 fixed version of field First. And since in our example First has
9528 only one actual field, the size of the fixed type is actually smaller
9529 than the amount of space allocated to that field, and thus we would
9530 compute the wrong offset of field After.
9531
9532 To make things more complicated, we need to watch out for dynamic
9533 components of variant records (identified by the ___XVL suffix in
9534 the component name). Even if the target type is a PAD type, the size
9535 of that type might not be statically known. So the PAD type needs
9536 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9537 we might end up with the wrong size for our component. This can be
9538 observed with the following type declarations:
9539
9540 type Octal is new Integer range 0 .. 7;
9541 type Octal_Array is array (Positive range <>) of Octal;
9542 pragma Pack (Octal_Array);
9543
9544 type Octal_Buffer (Size : Positive) is record
9545 Buffer : Octal_Array (1 .. Size);
9546 Length : Integer;
9547 end record;
9548
9549 In that case, Buffer is a PAD type whose size is unset and needs
9550 to be computed by fixing the unwrapped type.
9551
9552 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9553 ----------------------------------------------------------
9554
9555 Lastly, when should the sub-elements of an entity that remained unfixed
9556 thus far, be actually fixed?
9557
9558 The answer is: Only when referencing that element. For instance
9559 when selecting one component of a record, this specific component
9560 should be fixed at that point in time. Or when printing the value
9561 of a record, each component should be fixed before its value gets
9562 printed. Similarly for arrays, the element of the array should be
9563 fixed when printing each element of the array, or when extracting
9564 one element out of that array. On the other hand, fixing should
9565 not be performed on the elements when taking a slice of an array!
9566
9567 Note that one of the side-effects of miscomputing the offset and
9568 size of each field is that we end up also miscomputing the size
9569 of the containing type. This can have adverse results when computing
9570 the value of an entity. GDB fetches the value of an entity based
9571 on the size of its type, and thus a wrong size causes GDB to fetch
9572 the wrong amount of memory. In the case where the computed size is
9573 too small, GDB fetches too little data to print the value of our
9574 entiry. Results in this case as unpredicatble, as we usually read
9575 past the buffer containing the data =:-o. */
9576
9577 /* Implement the evaluate_exp routine in the exp_descriptor structure
9578 for the Ada language. */
9579
9580 static struct value *
9581 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9582 int *pos, enum noside noside)
9583 {
9584 enum exp_opcode op;
9585 int tem;
9586 int pc;
9587 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9588 struct type *type;
9589 int nargs, oplen;
9590 struct value **argvec;
9591
9592 pc = *pos;
9593 *pos += 1;
9594 op = exp->elts[pc].opcode;
9595
9596 switch (op)
9597 {
9598 default:
9599 *pos -= 1;
9600 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9601
9602 if (noside == EVAL_NORMAL)
9603 arg1 = unwrap_value (arg1);
9604
9605 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9606 then we need to perform the conversion manually, because
9607 evaluate_subexp_standard doesn't do it. This conversion is
9608 necessary in Ada because the different kinds of float/fixed
9609 types in Ada have different representations.
9610
9611 Similarly, we need to perform the conversion from OP_LONG
9612 ourselves. */
9613 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9614 arg1 = ada_value_cast (expect_type, arg1, noside);
9615
9616 return arg1;
9617
9618 case OP_STRING:
9619 {
9620 struct value *result;
9621
9622 *pos -= 1;
9623 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9624 /* The result type will have code OP_STRING, bashed there from
9625 OP_ARRAY. Bash it back. */
9626 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9627 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9628 return result;
9629 }
9630
9631 case UNOP_CAST:
9632 (*pos) += 2;
9633 type = exp->elts[pc + 1].type;
9634 arg1 = evaluate_subexp (type, exp, pos, noside);
9635 if (noside == EVAL_SKIP)
9636 goto nosideret;
9637 arg1 = ada_value_cast (type, arg1, noside);
9638 return arg1;
9639
9640 case UNOP_QUAL:
9641 (*pos) += 2;
9642 type = exp->elts[pc + 1].type;
9643 return ada_evaluate_subexp (type, exp, pos, noside);
9644
9645 case BINOP_ASSIGN:
9646 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9647 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9648 {
9649 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9650 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9651 return arg1;
9652 return ada_value_assign (arg1, arg1);
9653 }
9654 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9655 except if the lhs of our assignment is a convenience variable.
9656 In the case of assigning to a convenience variable, the lhs
9657 should be exactly the result of the evaluation of the rhs. */
9658 type = value_type (arg1);
9659 if (VALUE_LVAL (arg1) == lval_internalvar)
9660 type = NULL;
9661 arg2 = evaluate_subexp (type, exp, pos, noside);
9662 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9663 return arg1;
9664 if (ada_is_fixed_point_type (value_type (arg1)))
9665 arg2 = cast_to_fixed (value_type (arg1), arg2);
9666 else if (ada_is_fixed_point_type (value_type (arg2)))
9667 error
9668 (_("Fixed-point values must be assigned to fixed-point variables"));
9669 else
9670 arg2 = coerce_for_assign (value_type (arg1), arg2);
9671 return ada_value_assign (arg1, arg2);
9672
9673 case BINOP_ADD:
9674 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9675 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9676 if (noside == EVAL_SKIP)
9677 goto nosideret;
9678 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9679 return (value_from_longest
9680 (value_type (arg1),
9681 value_as_long (arg1) + value_as_long (arg2)));
9682 if ((ada_is_fixed_point_type (value_type (arg1))
9683 || ada_is_fixed_point_type (value_type (arg2)))
9684 && value_type (arg1) != value_type (arg2))
9685 error (_("Operands of fixed-point addition must have the same type"));
9686 /* Do the addition, and cast the result to the type of the first
9687 argument. We cannot cast the result to a reference type, so if
9688 ARG1 is a reference type, find its underlying type. */
9689 type = value_type (arg1);
9690 while (TYPE_CODE (type) == TYPE_CODE_REF)
9691 type = TYPE_TARGET_TYPE (type);
9692 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9693 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9694
9695 case BINOP_SUB:
9696 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9697 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9698 if (noside == EVAL_SKIP)
9699 goto nosideret;
9700 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9701 return (value_from_longest
9702 (value_type (arg1),
9703 value_as_long (arg1) - value_as_long (arg2)));
9704 if ((ada_is_fixed_point_type (value_type (arg1))
9705 || ada_is_fixed_point_type (value_type (arg2)))
9706 && value_type (arg1) != value_type (arg2))
9707 error (_("Operands of fixed-point subtraction "
9708 "must have the same type"));
9709 /* Do the substraction, and cast the result to the type of the first
9710 argument. We cannot cast the result to a reference type, so if
9711 ARG1 is a reference type, find its underlying type. */
9712 type = value_type (arg1);
9713 while (TYPE_CODE (type) == TYPE_CODE_REF)
9714 type = TYPE_TARGET_TYPE (type);
9715 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9716 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9717
9718 case BINOP_MUL:
9719 case BINOP_DIV:
9720 case BINOP_REM:
9721 case BINOP_MOD:
9722 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9723 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9724 if (noside == EVAL_SKIP)
9725 goto nosideret;
9726 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9727 {
9728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9729 return value_zero (value_type (arg1), not_lval);
9730 }
9731 else
9732 {
9733 type = builtin_type (exp->gdbarch)->builtin_double;
9734 if (ada_is_fixed_point_type (value_type (arg1)))
9735 arg1 = cast_from_fixed (type, arg1);
9736 if (ada_is_fixed_point_type (value_type (arg2)))
9737 arg2 = cast_from_fixed (type, arg2);
9738 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9739 return ada_value_binop (arg1, arg2, op);
9740 }
9741
9742 case BINOP_EQUAL:
9743 case BINOP_NOTEQUAL:
9744 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9745 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9746 if (noside == EVAL_SKIP)
9747 goto nosideret;
9748 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9749 tem = 0;
9750 else
9751 {
9752 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9753 tem = ada_value_equal (arg1, arg2);
9754 }
9755 if (op == BINOP_NOTEQUAL)
9756 tem = !tem;
9757 type = language_bool_type (exp->language_defn, exp->gdbarch);
9758 return value_from_longest (type, (LONGEST) tem);
9759
9760 case UNOP_NEG:
9761 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9762 if (noside == EVAL_SKIP)
9763 goto nosideret;
9764 else if (ada_is_fixed_point_type (value_type (arg1)))
9765 return value_cast (value_type (arg1), value_neg (arg1));
9766 else
9767 {
9768 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9769 return value_neg (arg1);
9770 }
9771
9772 case BINOP_LOGICAL_AND:
9773 case BINOP_LOGICAL_OR:
9774 case UNOP_LOGICAL_NOT:
9775 {
9776 struct value *val;
9777
9778 *pos -= 1;
9779 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9780 type = language_bool_type (exp->language_defn, exp->gdbarch);
9781 return value_cast (type, val);
9782 }
9783
9784 case BINOP_BITWISE_AND:
9785 case BINOP_BITWISE_IOR:
9786 case BINOP_BITWISE_XOR:
9787 {
9788 struct value *val;
9789
9790 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9791 *pos = pc;
9792 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9793
9794 return value_cast (value_type (arg1), val);
9795 }
9796
9797 case OP_VAR_VALUE:
9798 *pos -= 1;
9799
9800 if (noside == EVAL_SKIP)
9801 {
9802 *pos += 4;
9803 goto nosideret;
9804 }
9805 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9806 /* Only encountered when an unresolved symbol occurs in a
9807 context other than a function call, in which case, it is
9808 invalid. */
9809 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9810 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9811 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9812 {
9813 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9814 /* Check to see if this is a tagged type. We also need to handle
9815 the case where the type is a reference to a tagged type, but
9816 we have to be careful to exclude pointers to tagged types.
9817 The latter should be shown as usual (as a pointer), whereas
9818 a reference should mostly be transparent to the user. */
9819 if (ada_is_tagged_type (type, 0)
9820 || (TYPE_CODE(type) == TYPE_CODE_REF
9821 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9822 {
9823 /* Tagged types are a little special in the fact that the real
9824 type is dynamic and can only be determined by inspecting the
9825 object's tag. This means that we need to get the object's
9826 value first (EVAL_NORMAL) and then extract the actual object
9827 type from its tag.
9828
9829 Note that we cannot skip the final step where we extract
9830 the object type from its tag, because the EVAL_NORMAL phase
9831 results in dynamic components being resolved into fixed ones.
9832 This can cause problems when trying to print the type
9833 description of tagged types whose parent has a dynamic size:
9834 We use the type name of the "_parent" component in order
9835 to print the name of the ancestor type in the type description.
9836 If that component had a dynamic size, the resolution into
9837 a fixed type would result in the loss of that type name,
9838 thus preventing us from printing the name of the ancestor
9839 type in the type description. */
9840 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9841
9842 if (TYPE_CODE (type) != TYPE_CODE_REF)
9843 {
9844 struct type *actual_type;
9845
9846 actual_type = type_from_tag (ada_value_tag (arg1));
9847 if (actual_type == NULL)
9848 /* If, for some reason, we were unable to determine
9849 the actual type from the tag, then use the static
9850 approximation that we just computed as a fallback.
9851 This can happen if the debugging information is
9852 incomplete, for instance. */
9853 actual_type = type;
9854 return value_zero (actual_type, not_lval);
9855 }
9856 else
9857 {
9858 /* In the case of a ref, ada_coerce_ref takes care
9859 of determining the actual type. But the evaluation
9860 should return a ref as it should be valid to ask
9861 for its address; so rebuild a ref after coerce. */
9862 arg1 = ada_coerce_ref (arg1);
9863 return value_ref (arg1);
9864 }
9865 }
9866
9867 *pos += 4;
9868 return value_zero
9869 (to_static_fixed_type
9870 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9871 not_lval);
9872 }
9873 else
9874 {
9875 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9876 return ada_to_fixed_value (arg1);
9877 }
9878
9879 case OP_FUNCALL:
9880 (*pos) += 2;
9881
9882 /* Allocate arg vector, including space for the function to be
9883 called in argvec[0] and a terminating NULL. */
9884 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9885 argvec =
9886 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9887
9888 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9889 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9890 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9891 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9892 else
9893 {
9894 for (tem = 0; tem <= nargs; tem += 1)
9895 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9896 argvec[tem] = 0;
9897
9898 if (noside == EVAL_SKIP)
9899 goto nosideret;
9900 }
9901
9902 if (ada_is_constrained_packed_array_type
9903 (desc_base_type (value_type (argvec[0]))))
9904 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9905 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9906 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9907 /* This is a packed array that has already been fixed, and
9908 therefore already coerced to a simple array. Nothing further
9909 to do. */
9910 ;
9911 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9912 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9913 && VALUE_LVAL (argvec[0]) == lval_memory))
9914 argvec[0] = value_addr (argvec[0]);
9915
9916 type = ada_check_typedef (value_type (argvec[0]));
9917
9918 /* Ada allows us to implicitly dereference arrays when subscripting
9919 them. So, if this is an array typedef (encoding use for array
9920 access types encoded as fat pointers), strip it now. */
9921 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9922 type = ada_typedef_target_type (type);
9923
9924 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9925 {
9926 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9927 {
9928 case TYPE_CODE_FUNC:
9929 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9930 break;
9931 case TYPE_CODE_ARRAY:
9932 break;
9933 case TYPE_CODE_STRUCT:
9934 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9935 argvec[0] = ada_value_ind (argvec[0]);
9936 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9937 break;
9938 default:
9939 error (_("cannot subscript or call something of type `%s'"),
9940 ada_type_name (value_type (argvec[0])));
9941 break;
9942 }
9943 }
9944
9945 switch (TYPE_CODE (type))
9946 {
9947 case TYPE_CODE_FUNC:
9948 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9949 {
9950 struct type *rtype = TYPE_TARGET_TYPE (type);
9951
9952 if (TYPE_GNU_IFUNC (type))
9953 return allocate_value (TYPE_TARGET_TYPE (rtype));
9954 return allocate_value (rtype);
9955 }
9956 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9957 case TYPE_CODE_INTERNAL_FUNCTION:
9958 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9959 /* We don't know anything about what the internal
9960 function might return, but we have to return
9961 something. */
9962 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9963 not_lval);
9964 else
9965 return call_internal_function (exp->gdbarch, exp->language_defn,
9966 argvec[0], nargs, argvec + 1);
9967
9968 case TYPE_CODE_STRUCT:
9969 {
9970 int arity;
9971
9972 arity = ada_array_arity (type);
9973 type = ada_array_element_type (type, nargs);
9974 if (type == NULL)
9975 error (_("cannot subscript or call a record"));
9976 if (arity != nargs)
9977 error (_("wrong number of subscripts; expecting %d"), arity);
9978 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9979 return value_zero (ada_aligned_type (type), lval_memory);
9980 return
9981 unwrap_value (ada_value_subscript
9982 (argvec[0], nargs, argvec + 1));
9983 }
9984 case TYPE_CODE_ARRAY:
9985 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9986 {
9987 type = ada_array_element_type (type, nargs);
9988 if (type == NULL)
9989 error (_("element type of array unknown"));
9990 else
9991 return value_zero (ada_aligned_type (type), lval_memory);
9992 }
9993 return
9994 unwrap_value (ada_value_subscript
9995 (ada_coerce_to_simple_array (argvec[0]),
9996 nargs, argvec + 1));
9997 case TYPE_CODE_PTR: /* Pointer to array */
9998 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9999 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10000 {
10001 type = ada_array_element_type (type, nargs);
10002 if (type == NULL)
10003 error (_("element type of array unknown"));
10004 else
10005 return value_zero (ada_aligned_type (type), lval_memory);
10006 }
10007 return
10008 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10009 nargs, argvec + 1));
10010
10011 default:
10012 error (_("Attempt to index or call something other than an "
10013 "array or function"));
10014 }
10015
10016 case TERNOP_SLICE:
10017 {
10018 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10019 struct value *low_bound_val =
10020 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10021 struct value *high_bound_val =
10022 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10023 LONGEST low_bound;
10024 LONGEST high_bound;
10025
10026 low_bound_val = coerce_ref (low_bound_val);
10027 high_bound_val = coerce_ref (high_bound_val);
10028 low_bound = pos_atr (low_bound_val);
10029 high_bound = pos_atr (high_bound_val);
10030
10031 if (noside == EVAL_SKIP)
10032 goto nosideret;
10033
10034 /* If this is a reference to an aligner type, then remove all
10035 the aligners. */
10036 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10037 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10038 TYPE_TARGET_TYPE (value_type (array)) =
10039 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10040
10041 if (ada_is_constrained_packed_array_type (value_type (array)))
10042 error (_("cannot slice a packed array"));
10043
10044 /* If this is a reference to an array or an array lvalue,
10045 convert to a pointer. */
10046 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10047 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10048 && VALUE_LVAL (array) == lval_memory))
10049 array = value_addr (array);
10050
10051 if (noside == EVAL_AVOID_SIDE_EFFECTS
10052 && ada_is_array_descriptor_type (ada_check_typedef
10053 (value_type (array))))
10054 return empty_array (ada_type_of_array (array, 0), low_bound);
10055
10056 array = ada_coerce_to_simple_array_ptr (array);
10057
10058 /* If we have more than one level of pointer indirection,
10059 dereference the value until we get only one level. */
10060 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10061 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10062 == TYPE_CODE_PTR))
10063 array = value_ind (array);
10064
10065 /* Make sure we really do have an array type before going further,
10066 to avoid a SEGV when trying to get the index type or the target
10067 type later down the road if the debug info generated by
10068 the compiler is incorrect or incomplete. */
10069 if (!ada_is_simple_array_type (value_type (array)))
10070 error (_("cannot take slice of non-array"));
10071
10072 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10073 == TYPE_CODE_PTR)
10074 {
10075 struct type *type0 = ada_check_typedef (value_type (array));
10076
10077 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10078 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10079 else
10080 {
10081 struct type *arr_type0 =
10082 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10083
10084 return ada_value_slice_from_ptr (array, arr_type0,
10085 longest_to_int (low_bound),
10086 longest_to_int (high_bound));
10087 }
10088 }
10089 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10090 return array;
10091 else if (high_bound < low_bound)
10092 return empty_array (value_type (array), low_bound);
10093 else
10094 return ada_value_slice (array, longest_to_int (low_bound),
10095 longest_to_int (high_bound));
10096 }
10097
10098 case UNOP_IN_RANGE:
10099 (*pos) += 2;
10100 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10101 type = check_typedef (exp->elts[pc + 1].type);
10102
10103 if (noside == EVAL_SKIP)
10104 goto nosideret;
10105
10106 switch (TYPE_CODE (type))
10107 {
10108 default:
10109 lim_warning (_("Membership test incompletely implemented; "
10110 "always returns true"));
10111 type = language_bool_type (exp->language_defn, exp->gdbarch);
10112 return value_from_longest (type, (LONGEST) 1);
10113
10114 case TYPE_CODE_RANGE:
10115 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10116 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10117 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10118 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10119 type = language_bool_type (exp->language_defn, exp->gdbarch);
10120 return
10121 value_from_longest (type,
10122 (value_less (arg1, arg3)
10123 || value_equal (arg1, arg3))
10124 && (value_less (arg2, arg1)
10125 || value_equal (arg2, arg1)));
10126 }
10127
10128 case BINOP_IN_BOUNDS:
10129 (*pos) += 2;
10130 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10131 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10132
10133 if (noside == EVAL_SKIP)
10134 goto nosideret;
10135
10136 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10137 {
10138 type = language_bool_type (exp->language_defn, exp->gdbarch);
10139 return value_zero (type, not_lval);
10140 }
10141
10142 tem = longest_to_int (exp->elts[pc + 1].longconst);
10143
10144 type = ada_index_type (value_type (arg2), tem, "range");
10145 if (!type)
10146 type = value_type (arg1);
10147
10148 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10149 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10150
10151 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10152 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10153 type = language_bool_type (exp->language_defn, exp->gdbarch);
10154 return
10155 value_from_longest (type,
10156 (value_less (arg1, arg3)
10157 || value_equal (arg1, arg3))
10158 && (value_less (arg2, arg1)
10159 || value_equal (arg2, arg1)));
10160
10161 case TERNOP_IN_RANGE:
10162 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10163 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10164 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10165
10166 if (noside == EVAL_SKIP)
10167 goto nosideret;
10168
10169 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10170 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10171 type = language_bool_type (exp->language_defn, exp->gdbarch);
10172 return
10173 value_from_longest (type,
10174 (value_less (arg1, arg3)
10175 || value_equal (arg1, arg3))
10176 && (value_less (arg2, arg1)
10177 || value_equal (arg2, arg1)));
10178
10179 case OP_ATR_FIRST:
10180 case OP_ATR_LAST:
10181 case OP_ATR_LENGTH:
10182 {
10183 struct type *type_arg;
10184
10185 if (exp->elts[*pos].opcode == OP_TYPE)
10186 {
10187 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10188 arg1 = NULL;
10189 type_arg = check_typedef (exp->elts[pc + 2].type);
10190 }
10191 else
10192 {
10193 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10194 type_arg = NULL;
10195 }
10196
10197 if (exp->elts[*pos].opcode != OP_LONG)
10198 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10199 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10200 *pos += 4;
10201
10202 if (noside == EVAL_SKIP)
10203 goto nosideret;
10204
10205 if (type_arg == NULL)
10206 {
10207 arg1 = ada_coerce_ref (arg1);
10208
10209 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10210 arg1 = ada_coerce_to_simple_array (arg1);
10211
10212 type = ada_index_type (value_type (arg1), tem,
10213 ada_attribute_name (op));
10214 if (type == NULL)
10215 type = builtin_type (exp->gdbarch)->builtin_int;
10216
10217 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10218 return allocate_value (type);
10219
10220 switch (op)
10221 {
10222 default: /* Should never happen. */
10223 error (_("unexpected attribute encountered"));
10224 case OP_ATR_FIRST:
10225 return value_from_longest
10226 (type, ada_array_bound (arg1, tem, 0));
10227 case OP_ATR_LAST:
10228 return value_from_longest
10229 (type, ada_array_bound (arg1, tem, 1));
10230 case OP_ATR_LENGTH:
10231 return value_from_longest
10232 (type, ada_array_length (arg1, tem));
10233 }
10234 }
10235 else if (discrete_type_p (type_arg))
10236 {
10237 struct type *range_type;
10238 const char *name = ada_type_name (type_arg);
10239
10240 range_type = NULL;
10241 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10242 range_type = to_fixed_range_type (type_arg, NULL);
10243 if (range_type == NULL)
10244 range_type = type_arg;
10245 switch (op)
10246 {
10247 default:
10248 error (_("unexpected attribute encountered"));
10249 case OP_ATR_FIRST:
10250 return value_from_longest
10251 (range_type, ada_discrete_type_low_bound (range_type));
10252 case OP_ATR_LAST:
10253 return value_from_longest
10254 (range_type, ada_discrete_type_high_bound (range_type));
10255 case OP_ATR_LENGTH:
10256 error (_("the 'length attribute applies only to array types"));
10257 }
10258 }
10259 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10260 error (_("unimplemented type attribute"));
10261 else
10262 {
10263 LONGEST low, high;
10264
10265 if (ada_is_constrained_packed_array_type (type_arg))
10266 type_arg = decode_constrained_packed_array_type (type_arg);
10267
10268 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10269 if (type == NULL)
10270 type = builtin_type (exp->gdbarch)->builtin_int;
10271
10272 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10273 return allocate_value (type);
10274
10275 switch (op)
10276 {
10277 default:
10278 error (_("unexpected attribute encountered"));
10279 case OP_ATR_FIRST:
10280 low = ada_array_bound_from_type (type_arg, tem, 0);
10281 return value_from_longest (type, low);
10282 case OP_ATR_LAST:
10283 high = ada_array_bound_from_type (type_arg, tem, 1);
10284 return value_from_longest (type, high);
10285 case OP_ATR_LENGTH:
10286 low = ada_array_bound_from_type (type_arg, tem, 0);
10287 high = ada_array_bound_from_type (type_arg, tem, 1);
10288 return value_from_longest (type, high - low + 1);
10289 }
10290 }
10291 }
10292
10293 case OP_ATR_TAG:
10294 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10295 if (noside == EVAL_SKIP)
10296 goto nosideret;
10297
10298 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10299 return value_zero (ada_tag_type (arg1), not_lval);
10300
10301 return ada_value_tag (arg1);
10302
10303 case OP_ATR_MIN:
10304 case OP_ATR_MAX:
10305 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10306 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10307 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10308 if (noside == EVAL_SKIP)
10309 goto nosideret;
10310 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10311 return value_zero (value_type (arg1), not_lval);
10312 else
10313 {
10314 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10315 return value_binop (arg1, arg2,
10316 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10317 }
10318
10319 case OP_ATR_MODULUS:
10320 {
10321 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10322
10323 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10324 if (noside == EVAL_SKIP)
10325 goto nosideret;
10326
10327 if (!ada_is_modular_type (type_arg))
10328 error (_("'modulus must be applied to modular type"));
10329
10330 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10331 ada_modulus (type_arg));
10332 }
10333
10334
10335 case OP_ATR_POS:
10336 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10337 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10338 if (noside == EVAL_SKIP)
10339 goto nosideret;
10340 type = builtin_type (exp->gdbarch)->builtin_int;
10341 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10342 return value_zero (type, not_lval);
10343 else
10344 return value_pos_atr (type, arg1);
10345
10346 case OP_ATR_SIZE:
10347 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10348 type = value_type (arg1);
10349
10350 /* If the argument is a reference, then dereference its type, since
10351 the user is really asking for the size of the actual object,
10352 not the size of the pointer. */
10353 if (TYPE_CODE (type) == TYPE_CODE_REF)
10354 type = TYPE_TARGET_TYPE (type);
10355
10356 if (noside == EVAL_SKIP)
10357 goto nosideret;
10358 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10359 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10360 else
10361 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10362 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10363
10364 case OP_ATR_VAL:
10365 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10366 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10367 type = exp->elts[pc + 2].type;
10368 if (noside == EVAL_SKIP)
10369 goto nosideret;
10370 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10371 return value_zero (type, not_lval);
10372 else
10373 return value_val_atr (type, arg1);
10374
10375 case BINOP_EXP:
10376 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10377 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10378 if (noside == EVAL_SKIP)
10379 goto nosideret;
10380 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10381 return value_zero (value_type (arg1), not_lval);
10382 else
10383 {
10384 /* For integer exponentiation operations,
10385 only promote the first argument. */
10386 if (is_integral_type (value_type (arg2)))
10387 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10388 else
10389 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10390
10391 return value_binop (arg1, arg2, op);
10392 }
10393
10394 case UNOP_PLUS:
10395 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10396 if (noside == EVAL_SKIP)
10397 goto nosideret;
10398 else
10399 return arg1;
10400
10401 case UNOP_ABS:
10402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10403 if (noside == EVAL_SKIP)
10404 goto nosideret;
10405 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10406 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10407 return value_neg (arg1);
10408 else
10409 return arg1;
10410
10411 case UNOP_IND:
10412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10413 if (noside == EVAL_SKIP)
10414 goto nosideret;
10415 type = ada_check_typedef (value_type (arg1));
10416 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10417 {
10418 if (ada_is_array_descriptor_type (type))
10419 /* GDB allows dereferencing GNAT array descriptors. */
10420 {
10421 struct type *arrType = ada_type_of_array (arg1, 0);
10422
10423 if (arrType == NULL)
10424 error (_("Attempt to dereference null array pointer."));
10425 return value_at_lazy (arrType, 0);
10426 }
10427 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10428 || TYPE_CODE (type) == TYPE_CODE_REF
10429 /* In C you can dereference an array to get the 1st elt. */
10430 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10431 {
10432 type = to_static_fixed_type
10433 (ada_aligned_type
10434 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10435 check_size (type);
10436 return value_zero (type, lval_memory);
10437 }
10438 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10439 {
10440 /* GDB allows dereferencing an int. */
10441 if (expect_type == NULL)
10442 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10443 lval_memory);
10444 else
10445 {
10446 expect_type =
10447 to_static_fixed_type (ada_aligned_type (expect_type));
10448 return value_zero (expect_type, lval_memory);
10449 }
10450 }
10451 else
10452 error (_("Attempt to take contents of a non-pointer value."));
10453 }
10454 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10455 type = ada_check_typedef (value_type (arg1));
10456
10457 if (TYPE_CODE (type) == TYPE_CODE_INT)
10458 /* GDB allows dereferencing an int. If we were given
10459 the expect_type, then use that as the target type.
10460 Otherwise, assume that the target type is an int. */
10461 {
10462 if (expect_type != NULL)
10463 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10464 arg1));
10465 else
10466 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10467 (CORE_ADDR) value_as_address (arg1));
10468 }
10469
10470 if (ada_is_array_descriptor_type (type))
10471 /* GDB allows dereferencing GNAT array descriptors. */
10472 return ada_coerce_to_simple_array (arg1);
10473 else
10474 return ada_value_ind (arg1);
10475
10476 case STRUCTOP_STRUCT:
10477 tem = longest_to_int (exp->elts[pc + 1].longconst);
10478 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10479 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10480 if (noside == EVAL_SKIP)
10481 goto nosideret;
10482 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10483 {
10484 struct type *type1 = value_type (arg1);
10485
10486 if (ada_is_tagged_type (type1, 1))
10487 {
10488 type = ada_lookup_struct_elt_type (type1,
10489 &exp->elts[pc + 2].string,
10490 1, 1, NULL);
10491 if (type == NULL)
10492 /* In this case, we assume that the field COULD exist
10493 in some extension of the type. Return an object of
10494 "type" void, which will match any formal
10495 (see ada_type_match). */
10496 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10497 lval_memory);
10498 }
10499 else
10500 type =
10501 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10502 0, NULL);
10503
10504 return value_zero (ada_aligned_type (type), lval_memory);
10505 }
10506 else
10507 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10508 arg1 = unwrap_value (arg1);
10509 return ada_to_fixed_value (arg1);
10510
10511 case OP_TYPE:
10512 /* The value is not supposed to be used. This is here to make it
10513 easier to accommodate expressions that contain types. */
10514 (*pos) += 2;
10515 if (noside == EVAL_SKIP)
10516 goto nosideret;
10517 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10518 return allocate_value (exp->elts[pc + 1].type);
10519 else
10520 error (_("Attempt to use a type name as an expression"));
10521
10522 case OP_AGGREGATE:
10523 case OP_CHOICES:
10524 case OP_OTHERS:
10525 case OP_DISCRETE_RANGE:
10526 case OP_POSITIONAL:
10527 case OP_NAME:
10528 if (noside == EVAL_NORMAL)
10529 switch (op)
10530 {
10531 case OP_NAME:
10532 error (_("Undefined name, ambiguous name, or renaming used in "
10533 "component association: %s."), &exp->elts[pc+2].string);
10534 case OP_AGGREGATE:
10535 error (_("Aggregates only allowed on the right of an assignment"));
10536 default:
10537 internal_error (__FILE__, __LINE__,
10538 _("aggregate apparently mangled"));
10539 }
10540
10541 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10542 *pos += oplen - 1;
10543 for (tem = 0; tem < nargs; tem += 1)
10544 ada_evaluate_subexp (NULL, exp, pos, noside);
10545 goto nosideret;
10546 }
10547
10548 nosideret:
10549 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10550 }
10551 \f
10552
10553 /* Fixed point */
10554
10555 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10556 type name that encodes the 'small and 'delta information.
10557 Otherwise, return NULL. */
10558
10559 static const char *
10560 fixed_type_info (struct type *type)
10561 {
10562 const char *name = ada_type_name (type);
10563 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10564
10565 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10566 {
10567 const char *tail = strstr (name, "___XF_");
10568
10569 if (tail == NULL)
10570 return NULL;
10571 else
10572 return tail + 5;
10573 }
10574 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10575 return fixed_type_info (TYPE_TARGET_TYPE (type));
10576 else
10577 return NULL;
10578 }
10579
10580 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10581
10582 int
10583 ada_is_fixed_point_type (struct type *type)
10584 {
10585 return fixed_type_info (type) != NULL;
10586 }
10587
10588 /* Return non-zero iff TYPE represents a System.Address type. */
10589
10590 int
10591 ada_is_system_address_type (struct type *type)
10592 {
10593 return (TYPE_NAME (type)
10594 && strcmp (TYPE_NAME (type), "system__address") == 0);
10595 }
10596
10597 /* Assuming that TYPE is the representation of an Ada fixed-point
10598 type, return its delta, or -1 if the type is malformed and the
10599 delta cannot be determined. */
10600
10601 DOUBLEST
10602 ada_delta (struct type *type)
10603 {
10604 const char *encoding = fixed_type_info (type);
10605 DOUBLEST num, den;
10606
10607 /* Strictly speaking, num and den are encoded as integer. However,
10608 they may not fit into a long, and they will have to be converted
10609 to DOUBLEST anyway. So scan them as DOUBLEST. */
10610 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10611 &num, &den) < 2)
10612 return -1.0;
10613 else
10614 return num / den;
10615 }
10616
10617 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10618 factor ('SMALL value) associated with the type. */
10619
10620 static DOUBLEST
10621 scaling_factor (struct type *type)
10622 {
10623 const char *encoding = fixed_type_info (type);
10624 DOUBLEST num0, den0, num1, den1;
10625 int n;
10626
10627 /* Strictly speaking, num's and den's are encoded as integer. However,
10628 they may not fit into a long, and they will have to be converted
10629 to DOUBLEST anyway. So scan them as DOUBLEST. */
10630 n = sscanf (encoding,
10631 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10632 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10633 &num0, &den0, &num1, &den1);
10634
10635 if (n < 2)
10636 return 1.0;
10637 else if (n == 4)
10638 return num1 / den1;
10639 else
10640 return num0 / den0;
10641 }
10642
10643
10644 /* Assuming that X is the representation of a value of fixed-point
10645 type TYPE, return its floating-point equivalent. */
10646
10647 DOUBLEST
10648 ada_fixed_to_float (struct type *type, LONGEST x)
10649 {
10650 return (DOUBLEST) x *scaling_factor (type);
10651 }
10652
10653 /* The representation of a fixed-point value of type TYPE
10654 corresponding to the value X. */
10655
10656 LONGEST
10657 ada_float_to_fixed (struct type *type, DOUBLEST x)
10658 {
10659 return (LONGEST) (x / scaling_factor (type) + 0.5);
10660 }
10661
10662 \f
10663
10664 /* Range types */
10665
10666 /* Scan STR beginning at position K for a discriminant name, and
10667 return the value of that discriminant field of DVAL in *PX. If
10668 PNEW_K is not null, put the position of the character beyond the
10669 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10670 not alter *PX and *PNEW_K if unsuccessful. */
10671
10672 static int
10673 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10674 int *pnew_k)
10675 {
10676 static char *bound_buffer = NULL;
10677 static size_t bound_buffer_len = 0;
10678 char *bound;
10679 char *pend;
10680 struct value *bound_val;
10681
10682 if (dval == NULL || str == NULL || str[k] == '\0')
10683 return 0;
10684
10685 pend = strstr (str + k, "__");
10686 if (pend == NULL)
10687 {
10688 bound = str + k;
10689 k += strlen (bound);
10690 }
10691 else
10692 {
10693 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10694 bound = bound_buffer;
10695 strncpy (bound_buffer, str + k, pend - (str + k));
10696 bound[pend - (str + k)] = '\0';
10697 k = pend - str;
10698 }
10699
10700 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10701 if (bound_val == NULL)
10702 return 0;
10703
10704 *px = value_as_long (bound_val);
10705 if (pnew_k != NULL)
10706 *pnew_k = k;
10707 return 1;
10708 }
10709
10710 /* Value of variable named NAME in the current environment. If
10711 no such variable found, then if ERR_MSG is null, returns 0, and
10712 otherwise causes an error with message ERR_MSG. */
10713
10714 static struct value *
10715 get_var_value (char *name, char *err_msg)
10716 {
10717 struct ada_symbol_info *syms;
10718 int nsyms;
10719
10720 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10721 &syms);
10722
10723 if (nsyms != 1)
10724 {
10725 if (err_msg == NULL)
10726 return 0;
10727 else
10728 error (("%s"), err_msg);
10729 }
10730
10731 return value_of_variable (syms[0].sym, syms[0].block);
10732 }
10733
10734 /* Value of integer variable named NAME in the current environment. If
10735 no such variable found, returns 0, and sets *FLAG to 0. If
10736 successful, sets *FLAG to 1. */
10737
10738 LONGEST
10739 get_int_var_value (char *name, int *flag)
10740 {
10741 struct value *var_val = get_var_value (name, 0);
10742
10743 if (var_val == 0)
10744 {
10745 if (flag != NULL)
10746 *flag = 0;
10747 return 0;
10748 }
10749 else
10750 {
10751 if (flag != NULL)
10752 *flag = 1;
10753 return value_as_long (var_val);
10754 }
10755 }
10756
10757
10758 /* Return a range type whose base type is that of the range type named
10759 NAME in the current environment, and whose bounds are calculated
10760 from NAME according to the GNAT range encoding conventions.
10761 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10762 corresponding range type from debug information; fall back to using it
10763 if symbol lookup fails. If a new type must be created, allocate it
10764 like ORIG_TYPE was. The bounds information, in general, is encoded
10765 in NAME, the base type given in the named range type. */
10766
10767 static struct type *
10768 to_fixed_range_type (struct type *raw_type, struct value *dval)
10769 {
10770 const char *name;
10771 struct type *base_type;
10772 char *subtype_info;
10773
10774 gdb_assert (raw_type != NULL);
10775 gdb_assert (TYPE_NAME (raw_type) != NULL);
10776
10777 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10778 base_type = TYPE_TARGET_TYPE (raw_type);
10779 else
10780 base_type = raw_type;
10781
10782 name = TYPE_NAME (raw_type);
10783 subtype_info = strstr (name, "___XD");
10784 if (subtype_info == NULL)
10785 {
10786 LONGEST L = ada_discrete_type_low_bound (raw_type);
10787 LONGEST U = ada_discrete_type_high_bound (raw_type);
10788
10789 if (L < INT_MIN || U > INT_MAX)
10790 return raw_type;
10791 else
10792 return create_range_type (alloc_type_copy (raw_type), raw_type,
10793 ada_discrete_type_low_bound (raw_type),
10794 ada_discrete_type_high_bound (raw_type));
10795 }
10796 else
10797 {
10798 static char *name_buf = NULL;
10799 static size_t name_len = 0;
10800 int prefix_len = subtype_info - name;
10801 LONGEST L, U;
10802 struct type *type;
10803 char *bounds_str;
10804 int n;
10805
10806 GROW_VECT (name_buf, name_len, prefix_len + 5);
10807 strncpy (name_buf, name, prefix_len);
10808 name_buf[prefix_len] = '\0';
10809
10810 subtype_info += 5;
10811 bounds_str = strchr (subtype_info, '_');
10812 n = 1;
10813
10814 if (*subtype_info == 'L')
10815 {
10816 if (!ada_scan_number (bounds_str, n, &L, &n)
10817 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10818 return raw_type;
10819 if (bounds_str[n] == '_')
10820 n += 2;
10821 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10822 n += 1;
10823 subtype_info += 1;
10824 }
10825 else
10826 {
10827 int ok;
10828
10829 strcpy (name_buf + prefix_len, "___L");
10830 L = get_int_var_value (name_buf, &ok);
10831 if (!ok)
10832 {
10833 lim_warning (_("Unknown lower bound, using 1."));
10834 L = 1;
10835 }
10836 }
10837
10838 if (*subtype_info == 'U')
10839 {
10840 if (!ada_scan_number (bounds_str, n, &U, &n)
10841 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10842 return raw_type;
10843 }
10844 else
10845 {
10846 int ok;
10847
10848 strcpy (name_buf + prefix_len, "___U");
10849 U = get_int_var_value (name_buf, &ok);
10850 if (!ok)
10851 {
10852 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10853 U = L;
10854 }
10855 }
10856
10857 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10858 TYPE_NAME (type) = name;
10859 return type;
10860 }
10861 }
10862
10863 /* True iff NAME is the name of a range type. */
10864
10865 int
10866 ada_is_range_type_name (const char *name)
10867 {
10868 return (name != NULL && strstr (name, "___XD"));
10869 }
10870 \f
10871
10872 /* Modular types */
10873
10874 /* True iff TYPE is an Ada modular type. */
10875
10876 int
10877 ada_is_modular_type (struct type *type)
10878 {
10879 struct type *subranged_type = get_base_type (type);
10880
10881 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10882 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10883 && TYPE_UNSIGNED (subranged_type));
10884 }
10885
10886 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10887
10888 ULONGEST
10889 ada_modulus (struct type *type)
10890 {
10891 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10892 }
10893 \f
10894
10895 /* Ada exception catchpoint support:
10896 ---------------------------------
10897
10898 We support 3 kinds of exception catchpoints:
10899 . catchpoints on Ada exceptions
10900 . catchpoints on unhandled Ada exceptions
10901 . catchpoints on failed assertions
10902
10903 Exceptions raised during failed assertions, or unhandled exceptions
10904 could perfectly be caught with the general catchpoint on Ada exceptions.
10905 However, we can easily differentiate these two special cases, and having
10906 the option to distinguish these two cases from the rest can be useful
10907 to zero-in on certain situations.
10908
10909 Exception catchpoints are a specialized form of breakpoint,
10910 since they rely on inserting breakpoints inside known routines
10911 of the GNAT runtime. The implementation therefore uses a standard
10912 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10913 of breakpoint_ops.
10914
10915 Support in the runtime for exception catchpoints have been changed
10916 a few times already, and these changes affect the implementation
10917 of these catchpoints. In order to be able to support several
10918 variants of the runtime, we use a sniffer that will determine
10919 the runtime variant used by the program being debugged. */
10920
10921 /* The different types of catchpoints that we introduced for catching
10922 Ada exceptions. */
10923
10924 enum exception_catchpoint_kind
10925 {
10926 ex_catch_exception,
10927 ex_catch_exception_unhandled,
10928 ex_catch_assert
10929 };
10930
10931 /* Ada's standard exceptions. */
10932
10933 static char *standard_exc[] = {
10934 "constraint_error",
10935 "program_error",
10936 "storage_error",
10937 "tasking_error"
10938 };
10939
10940 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10941
10942 /* A structure that describes how to support exception catchpoints
10943 for a given executable. */
10944
10945 struct exception_support_info
10946 {
10947 /* The name of the symbol to break on in order to insert
10948 a catchpoint on exceptions. */
10949 const char *catch_exception_sym;
10950
10951 /* The name of the symbol to break on in order to insert
10952 a catchpoint on unhandled exceptions. */
10953 const char *catch_exception_unhandled_sym;
10954
10955 /* The name of the symbol to break on in order to insert
10956 a catchpoint on failed assertions. */
10957 const char *catch_assert_sym;
10958
10959 /* Assuming that the inferior just triggered an unhandled exception
10960 catchpoint, this function is responsible for returning the address
10961 in inferior memory where the name of that exception is stored.
10962 Return zero if the address could not be computed. */
10963 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10964 };
10965
10966 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10967 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10968
10969 /* The following exception support info structure describes how to
10970 implement exception catchpoints with the latest version of the
10971 Ada runtime (as of 2007-03-06). */
10972
10973 static const struct exception_support_info default_exception_support_info =
10974 {
10975 "__gnat_debug_raise_exception", /* catch_exception_sym */
10976 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10977 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10978 ada_unhandled_exception_name_addr
10979 };
10980
10981 /* The following exception support info structure describes how to
10982 implement exception catchpoints with a slightly older version
10983 of the Ada runtime. */
10984
10985 static const struct exception_support_info exception_support_info_fallback =
10986 {
10987 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10988 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10989 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10990 ada_unhandled_exception_name_addr_from_raise
10991 };
10992
10993 /* Return nonzero if we can detect the exception support routines
10994 described in EINFO.
10995
10996 This function errors out if an abnormal situation is detected
10997 (for instance, if we find the exception support routines, but
10998 that support is found to be incomplete). */
10999
11000 static int
11001 ada_has_this_exception_support (const struct exception_support_info *einfo)
11002 {
11003 struct symbol *sym;
11004
11005 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11006 that should be compiled with debugging information. As a result, we
11007 expect to find that symbol in the symtabs. */
11008
11009 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11010 if (sym == NULL)
11011 {
11012 /* Perhaps we did not find our symbol because the Ada runtime was
11013 compiled without debugging info, or simply stripped of it.
11014 It happens on some GNU/Linux distributions for instance, where
11015 users have to install a separate debug package in order to get
11016 the runtime's debugging info. In that situation, let the user
11017 know why we cannot insert an Ada exception catchpoint.
11018
11019 Note: Just for the purpose of inserting our Ada exception
11020 catchpoint, we could rely purely on the associated minimal symbol.
11021 But we would be operating in degraded mode anyway, since we are
11022 still lacking the debugging info needed later on to extract
11023 the name of the exception being raised (this name is printed in
11024 the catchpoint message, and is also used when trying to catch
11025 a specific exception). We do not handle this case for now. */
11026 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11027 error (_("Your Ada runtime appears to be missing some debugging "
11028 "information.\nCannot insert Ada exception catchpoint "
11029 "in this configuration."));
11030
11031 return 0;
11032 }
11033
11034 /* Make sure that the symbol we found corresponds to a function. */
11035
11036 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11037 error (_("Symbol \"%s\" is not a function (class = %d)"),
11038 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11039
11040 return 1;
11041 }
11042
11043 /* Inspect the Ada runtime and determine which exception info structure
11044 should be used to provide support for exception catchpoints.
11045
11046 This function will always set the per-inferior exception_info,
11047 or raise an error. */
11048
11049 static void
11050 ada_exception_support_info_sniffer (void)
11051 {
11052 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11053
11054 /* If the exception info is already known, then no need to recompute it. */
11055 if (data->exception_info != NULL)
11056 return;
11057
11058 /* Check the latest (default) exception support info. */
11059 if (ada_has_this_exception_support (&default_exception_support_info))
11060 {
11061 data->exception_info = &default_exception_support_info;
11062 return;
11063 }
11064
11065 /* Try our fallback exception suport info. */
11066 if (ada_has_this_exception_support (&exception_support_info_fallback))
11067 {
11068 data->exception_info = &exception_support_info_fallback;
11069 return;
11070 }
11071
11072 /* Sometimes, it is normal for us to not be able to find the routine
11073 we are looking for. This happens when the program is linked with
11074 the shared version of the GNAT runtime, and the program has not been
11075 started yet. Inform the user of these two possible causes if
11076 applicable. */
11077
11078 if (ada_update_initial_language (language_unknown) != language_ada)
11079 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11080
11081 /* If the symbol does not exist, then check that the program is
11082 already started, to make sure that shared libraries have been
11083 loaded. If it is not started, this may mean that the symbol is
11084 in a shared library. */
11085
11086 if (ptid_get_pid (inferior_ptid) == 0)
11087 error (_("Unable to insert catchpoint. Try to start the program first."));
11088
11089 /* At this point, we know that we are debugging an Ada program and
11090 that the inferior has been started, but we still are not able to
11091 find the run-time symbols. That can mean that we are in
11092 configurable run time mode, or that a-except as been optimized
11093 out by the linker... In any case, at this point it is not worth
11094 supporting this feature. */
11095
11096 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11097 }
11098
11099 /* True iff FRAME is very likely to be that of a function that is
11100 part of the runtime system. This is all very heuristic, but is
11101 intended to be used as advice as to what frames are uninteresting
11102 to most users. */
11103
11104 static int
11105 is_known_support_routine (struct frame_info *frame)
11106 {
11107 struct symtab_and_line sal;
11108 const char *func_name;
11109 enum language func_lang;
11110 int i;
11111 const char *fullname;
11112
11113 /* If this code does not have any debugging information (no symtab),
11114 This cannot be any user code. */
11115
11116 find_frame_sal (frame, &sal);
11117 if (sal.symtab == NULL)
11118 return 1;
11119
11120 /* If there is a symtab, but the associated source file cannot be
11121 located, then assume this is not user code: Selecting a frame
11122 for which we cannot display the code would not be very helpful
11123 for the user. This should also take care of case such as VxWorks
11124 where the kernel has some debugging info provided for a few units. */
11125
11126 fullname = symtab_to_fullname (sal.symtab);
11127 if (access (fullname, R_OK) != 0)
11128 return 1;
11129
11130 /* Check the unit filename againt the Ada runtime file naming.
11131 We also check the name of the objfile against the name of some
11132 known system libraries that sometimes come with debugging info
11133 too. */
11134
11135 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11136 {
11137 re_comp (known_runtime_file_name_patterns[i]);
11138 if (re_exec (lbasename (sal.symtab->filename)))
11139 return 1;
11140 if (sal.symtab->objfile != NULL
11141 && re_exec (sal.symtab->objfile->name))
11142 return 1;
11143 }
11144
11145 /* Check whether the function is a GNAT-generated entity. */
11146
11147 find_frame_funname (frame, &func_name, &func_lang, NULL);
11148 if (func_name == NULL)
11149 return 1;
11150
11151 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11152 {
11153 re_comp (known_auxiliary_function_name_patterns[i]);
11154 if (re_exec (func_name))
11155 return 1;
11156 }
11157
11158 return 0;
11159 }
11160
11161 /* Find the first frame that contains debugging information and that is not
11162 part of the Ada run-time, starting from FI and moving upward. */
11163
11164 void
11165 ada_find_printable_frame (struct frame_info *fi)
11166 {
11167 for (; fi != NULL; fi = get_prev_frame (fi))
11168 {
11169 if (!is_known_support_routine (fi))
11170 {
11171 select_frame (fi);
11172 break;
11173 }
11174 }
11175
11176 }
11177
11178 /* Assuming that the inferior just triggered an unhandled exception
11179 catchpoint, return the address in inferior memory where the name
11180 of the exception is stored.
11181
11182 Return zero if the address could not be computed. */
11183
11184 static CORE_ADDR
11185 ada_unhandled_exception_name_addr (void)
11186 {
11187 return parse_and_eval_address ("e.full_name");
11188 }
11189
11190 /* Same as ada_unhandled_exception_name_addr, except that this function
11191 should be used when the inferior uses an older version of the runtime,
11192 where the exception name needs to be extracted from a specific frame
11193 several frames up in the callstack. */
11194
11195 static CORE_ADDR
11196 ada_unhandled_exception_name_addr_from_raise (void)
11197 {
11198 int frame_level;
11199 struct frame_info *fi;
11200 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11201
11202 /* To determine the name of this exception, we need to select
11203 the frame corresponding to RAISE_SYM_NAME. This frame is
11204 at least 3 levels up, so we simply skip the first 3 frames
11205 without checking the name of their associated function. */
11206 fi = get_current_frame ();
11207 for (frame_level = 0; frame_level < 3; frame_level += 1)
11208 if (fi != NULL)
11209 fi = get_prev_frame (fi);
11210
11211 while (fi != NULL)
11212 {
11213 const char *func_name;
11214 enum language func_lang;
11215
11216 find_frame_funname (fi, &func_name, &func_lang, NULL);
11217 if (func_name != NULL
11218 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
11219 break; /* We found the frame we were looking for... */
11220 fi = get_prev_frame (fi);
11221 }
11222
11223 if (fi == NULL)
11224 return 0;
11225
11226 select_frame (fi);
11227 return parse_and_eval_address ("id.full_name");
11228 }
11229
11230 /* Assuming the inferior just triggered an Ada exception catchpoint
11231 (of any type), return the address in inferior memory where the name
11232 of the exception is stored, if applicable.
11233
11234 Return zero if the address could not be computed, or if not relevant. */
11235
11236 static CORE_ADDR
11237 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11238 struct breakpoint *b)
11239 {
11240 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11241
11242 switch (ex)
11243 {
11244 case ex_catch_exception:
11245 return (parse_and_eval_address ("e.full_name"));
11246 break;
11247
11248 case ex_catch_exception_unhandled:
11249 return data->exception_info->unhandled_exception_name_addr ();
11250 break;
11251
11252 case ex_catch_assert:
11253 return 0; /* Exception name is not relevant in this case. */
11254 break;
11255
11256 default:
11257 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11258 break;
11259 }
11260
11261 return 0; /* Should never be reached. */
11262 }
11263
11264 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11265 any error that ada_exception_name_addr_1 might cause to be thrown.
11266 When an error is intercepted, a warning with the error message is printed,
11267 and zero is returned. */
11268
11269 static CORE_ADDR
11270 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11271 struct breakpoint *b)
11272 {
11273 volatile struct gdb_exception e;
11274 CORE_ADDR result = 0;
11275
11276 TRY_CATCH (e, RETURN_MASK_ERROR)
11277 {
11278 result = ada_exception_name_addr_1 (ex, b);
11279 }
11280
11281 if (e.reason < 0)
11282 {
11283 warning (_("failed to get exception name: %s"), e.message);
11284 return 0;
11285 }
11286
11287 return result;
11288 }
11289
11290 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11291 char *, char **,
11292 const struct breakpoint_ops **);
11293 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11294
11295 /* Ada catchpoints.
11296
11297 In the case of catchpoints on Ada exceptions, the catchpoint will
11298 stop the target on every exception the program throws. When a user
11299 specifies the name of a specific exception, we translate this
11300 request into a condition expression (in text form), and then parse
11301 it into an expression stored in each of the catchpoint's locations.
11302 We then use this condition to check whether the exception that was
11303 raised is the one the user is interested in. If not, then the
11304 target is resumed again. We store the name of the requested
11305 exception, in order to be able to re-set the condition expression
11306 when symbols change. */
11307
11308 /* An instance of this type is used to represent an Ada catchpoint
11309 breakpoint location. It includes a "struct bp_location" as a kind
11310 of base class; users downcast to "struct bp_location *" when
11311 needed. */
11312
11313 struct ada_catchpoint_location
11314 {
11315 /* The base class. */
11316 struct bp_location base;
11317
11318 /* The condition that checks whether the exception that was raised
11319 is the specific exception the user specified on catchpoint
11320 creation. */
11321 struct expression *excep_cond_expr;
11322 };
11323
11324 /* Implement the DTOR method in the bp_location_ops structure for all
11325 Ada exception catchpoint kinds. */
11326
11327 static void
11328 ada_catchpoint_location_dtor (struct bp_location *bl)
11329 {
11330 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11331
11332 xfree (al->excep_cond_expr);
11333 }
11334
11335 /* The vtable to be used in Ada catchpoint locations. */
11336
11337 static const struct bp_location_ops ada_catchpoint_location_ops =
11338 {
11339 ada_catchpoint_location_dtor
11340 };
11341
11342 /* An instance of this type is used to represent an Ada catchpoint.
11343 It includes a "struct breakpoint" as a kind of base class; users
11344 downcast to "struct breakpoint *" when needed. */
11345
11346 struct ada_catchpoint
11347 {
11348 /* The base class. */
11349 struct breakpoint base;
11350
11351 /* The name of the specific exception the user specified. */
11352 char *excep_string;
11353 };
11354
11355 /* Parse the exception condition string in the context of each of the
11356 catchpoint's locations, and store them for later evaluation. */
11357
11358 static void
11359 create_excep_cond_exprs (struct ada_catchpoint *c)
11360 {
11361 struct cleanup *old_chain;
11362 struct bp_location *bl;
11363 char *cond_string;
11364
11365 /* Nothing to do if there's no specific exception to catch. */
11366 if (c->excep_string == NULL)
11367 return;
11368
11369 /* Same if there are no locations... */
11370 if (c->base.loc == NULL)
11371 return;
11372
11373 /* Compute the condition expression in text form, from the specific
11374 expection we want to catch. */
11375 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11376 old_chain = make_cleanup (xfree, cond_string);
11377
11378 /* Iterate over all the catchpoint's locations, and parse an
11379 expression for each. */
11380 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11381 {
11382 struct ada_catchpoint_location *ada_loc
11383 = (struct ada_catchpoint_location *) bl;
11384 struct expression *exp = NULL;
11385
11386 if (!bl->shlib_disabled)
11387 {
11388 volatile struct gdb_exception e;
11389 const char *s;
11390
11391 s = cond_string;
11392 TRY_CATCH (e, RETURN_MASK_ERROR)
11393 {
11394 exp = parse_exp_1 (&s, bl->address,
11395 block_for_pc (bl->address), 0);
11396 }
11397 if (e.reason < 0)
11398 warning (_("failed to reevaluate internal exception condition "
11399 "for catchpoint %d: %s"),
11400 c->base.number, e.message);
11401 }
11402
11403 ada_loc->excep_cond_expr = exp;
11404 }
11405
11406 do_cleanups (old_chain);
11407 }
11408
11409 /* Implement the DTOR method in the breakpoint_ops structure for all
11410 exception catchpoint kinds. */
11411
11412 static void
11413 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11414 {
11415 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11416
11417 xfree (c->excep_string);
11418
11419 bkpt_breakpoint_ops.dtor (b);
11420 }
11421
11422 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11423 structure for all exception catchpoint kinds. */
11424
11425 static struct bp_location *
11426 allocate_location_exception (enum exception_catchpoint_kind ex,
11427 struct breakpoint *self)
11428 {
11429 struct ada_catchpoint_location *loc;
11430
11431 loc = XNEW (struct ada_catchpoint_location);
11432 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11433 loc->excep_cond_expr = NULL;
11434 return &loc->base;
11435 }
11436
11437 /* Implement the RE_SET method in the breakpoint_ops structure for all
11438 exception catchpoint kinds. */
11439
11440 static void
11441 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11442 {
11443 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11444
11445 /* Call the base class's method. This updates the catchpoint's
11446 locations. */
11447 bkpt_breakpoint_ops.re_set (b);
11448
11449 /* Reparse the exception conditional expressions. One for each
11450 location. */
11451 create_excep_cond_exprs (c);
11452 }
11453
11454 /* Returns true if we should stop for this breakpoint hit. If the
11455 user specified a specific exception, we only want to cause a stop
11456 if the program thrown that exception. */
11457
11458 static int
11459 should_stop_exception (const struct bp_location *bl)
11460 {
11461 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11462 const struct ada_catchpoint_location *ada_loc
11463 = (const struct ada_catchpoint_location *) bl;
11464 volatile struct gdb_exception ex;
11465 int stop;
11466
11467 /* With no specific exception, should always stop. */
11468 if (c->excep_string == NULL)
11469 return 1;
11470
11471 if (ada_loc->excep_cond_expr == NULL)
11472 {
11473 /* We will have a NULL expression if back when we were creating
11474 the expressions, this location's had failed to parse. */
11475 return 1;
11476 }
11477
11478 stop = 1;
11479 TRY_CATCH (ex, RETURN_MASK_ALL)
11480 {
11481 struct value *mark;
11482
11483 mark = value_mark ();
11484 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11485 value_free_to_mark (mark);
11486 }
11487 if (ex.reason < 0)
11488 exception_fprintf (gdb_stderr, ex,
11489 _("Error in testing exception condition:\n"));
11490 return stop;
11491 }
11492
11493 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11494 for all exception catchpoint kinds. */
11495
11496 static void
11497 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11498 {
11499 bs->stop = should_stop_exception (bs->bp_location_at);
11500 }
11501
11502 /* Implement the PRINT_IT method in the breakpoint_ops structure
11503 for all exception catchpoint kinds. */
11504
11505 static enum print_stop_action
11506 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11507 {
11508 struct ui_out *uiout = current_uiout;
11509 struct breakpoint *b = bs->breakpoint_at;
11510
11511 annotate_catchpoint (b->number);
11512
11513 if (ui_out_is_mi_like_p (uiout))
11514 {
11515 ui_out_field_string (uiout, "reason",
11516 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11517 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11518 }
11519
11520 ui_out_text (uiout,
11521 b->disposition == disp_del ? "\nTemporary catchpoint "
11522 : "\nCatchpoint ");
11523 ui_out_field_int (uiout, "bkptno", b->number);
11524 ui_out_text (uiout, ", ");
11525
11526 switch (ex)
11527 {
11528 case ex_catch_exception:
11529 case ex_catch_exception_unhandled:
11530 {
11531 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11532 char exception_name[256];
11533
11534 if (addr != 0)
11535 {
11536 read_memory (addr, (gdb_byte *) exception_name,
11537 sizeof (exception_name) - 1);
11538 exception_name [sizeof (exception_name) - 1] = '\0';
11539 }
11540 else
11541 {
11542 /* For some reason, we were unable to read the exception
11543 name. This could happen if the Runtime was compiled
11544 without debugging info, for instance. In that case,
11545 just replace the exception name by the generic string
11546 "exception" - it will read as "an exception" in the
11547 notification we are about to print. */
11548 memcpy (exception_name, "exception", sizeof ("exception"));
11549 }
11550 /* In the case of unhandled exception breakpoints, we print
11551 the exception name as "unhandled EXCEPTION_NAME", to make
11552 it clearer to the user which kind of catchpoint just got
11553 hit. We used ui_out_text to make sure that this extra
11554 info does not pollute the exception name in the MI case. */
11555 if (ex == ex_catch_exception_unhandled)
11556 ui_out_text (uiout, "unhandled ");
11557 ui_out_field_string (uiout, "exception-name", exception_name);
11558 }
11559 break;
11560 case ex_catch_assert:
11561 /* In this case, the name of the exception is not really
11562 important. Just print "failed assertion" to make it clearer
11563 that his program just hit an assertion-failure catchpoint.
11564 We used ui_out_text because this info does not belong in
11565 the MI output. */
11566 ui_out_text (uiout, "failed assertion");
11567 break;
11568 }
11569 ui_out_text (uiout, " at ");
11570 ada_find_printable_frame (get_current_frame ());
11571
11572 return PRINT_SRC_AND_LOC;
11573 }
11574
11575 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11576 for all exception catchpoint kinds. */
11577
11578 static void
11579 print_one_exception (enum exception_catchpoint_kind ex,
11580 struct breakpoint *b, struct bp_location **last_loc)
11581 {
11582 struct ui_out *uiout = current_uiout;
11583 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11584 struct value_print_options opts;
11585
11586 get_user_print_options (&opts);
11587 if (opts.addressprint)
11588 {
11589 annotate_field (4);
11590 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11591 }
11592
11593 annotate_field (5);
11594 *last_loc = b->loc;
11595 switch (ex)
11596 {
11597 case ex_catch_exception:
11598 if (c->excep_string != NULL)
11599 {
11600 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11601
11602 ui_out_field_string (uiout, "what", msg);
11603 xfree (msg);
11604 }
11605 else
11606 ui_out_field_string (uiout, "what", "all Ada exceptions");
11607
11608 break;
11609
11610 case ex_catch_exception_unhandled:
11611 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11612 break;
11613
11614 case ex_catch_assert:
11615 ui_out_field_string (uiout, "what", "failed Ada assertions");
11616 break;
11617
11618 default:
11619 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11620 break;
11621 }
11622 }
11623
11624 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11625 for all exception catchpoint kinds. */
11626
11627 static void
11628 print_mention_exception (enum exception_catchpoint_kind ex,
11629 struct breakpoint *b)
11630 {
11631 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11632 struct ui_out *uiout = current_uiout;
11633
11634 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11635 : _("Catchpoint "));
11636 ui_out_field_int (uiout, "bkptno", b->number);
11637 ui_out_text (uiout, ": ");
11638
11639 switch (ex)
11640 {
11641 case ex_catch_exception:
11642 if (c->excep_string != NULL)
11643 {
11644 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11645 struct cleanup *old_chain = make_cleanup (xfree, info);
11646
11647 ui_out_text (uiout, info);
11648 do_cleanups (old_chain);
11649 }
11650 else
11651 ui_out_text (uiout, _("all Ada exceptions"));
11652 break;
11653
11654 case ex_catch_exception_unhandled:
11655 ui_out_text (uiout, _("unhandled Ada exceptions"));
11656 break;
11657
11658 case ex_catch_assert:
11659 ui_out_text (uiout, _("failed Ada assertions"));
11660 break;
11661
11662 default:
11663 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11664 break;
11665 }
11666 }
11667
11668 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11669 for all exception catchpoint kinds. */
11670
11671 static void
11672 print_recreate_exception (enum exception_catchpoint_kind ex,
11673 struct breakpoint *b, struct ui_file *fp)
11674 {
11675 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11676
11677 switch (ex)
11678 {
11679 case ex_catch_exception:
11680 fprintf_filtered (fp, "catch exception");
11681 if (c->excep_string != NULL)
11682 fprintf_filtered (fp, " %s", c->excep_string);
11683 break;
11684
11685 case ex_catch_exception_unhandled:
11686 fprintf_filtered (fp, "catch exception unhandled");
11687 break;
11688
11689 case ex_catch_assert:
11690 fprintf_filtered (fp, "catch assert");
11691 break;
11692
11693 default:
11694 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11695 }
11696 print_recreate_thread (b, fp);
11697 }
11698
11699 /* Virtual table for "catch exception" breakpoints. */
11700
11701 static void
11702 dtor_catch_exception (struct breakpoint *b)
11703 {
11704 dtor_exception (ex_catch_exception, b);
11705 }
11706
11707 static struct bp_location *
11708 allocate_location_catch_exception (struct breakpoint *self)
11709 {
11710 return allocate_location_exception (ex_catch_exception, self);
11711 }
11712
11713 static void
11714 re_set_catch_exception (struct breakpoint *b)
11715 {
11716 re_set_exception (ex_catch_exception, b);
11717 }
11718
11719 static void
11720 check_status_catch_exception (bpstat bs)
11721 {
11722 check_status_exception (ex_catch_exception, bs);
11723 }
11724
11725 static enum print_stop_action
11726 print_it_catch_exception (bpstat bs)
11727 {
11728 return print_it_exception (ex_catch_exception, bs);
11729 }
11730
11731 static void
11732 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11733 {
11734 print_one_exception (ex_catch_exception, b, last_loc);
11735 }
11736
11737 static void
11738 print_mention_catch_exception (struct breakpoint *b)
11739 {
11740 print_mention_exception (ex_catch_exception, b);
11741 }
11742
11743 static void
11744 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11745 {
11746 print_recreate_exception (ex_catch_exception, b, fp);
11747 }
11748
11749 static struct breakpoint_ops catch_exception_breakpoint_ops;
11750
11751 /* Virtual table for "catch exception unhandled" breakpoints. */
11752
11753 static void
11754 dtor_catch_exception_unhandled (struct breakpoint *b)
11755 {
11756 dtor_exception (ex_catch_exception_unhandled, b);
11757 }
11758
11759 static struct bp_location *
11760 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11761 {
11762 return allocate_location_exception (ex_catch_exception_unhandled, self);
11763 }
11764
11765 static void
11766 re_set_catch_exception_unhandled (struct breakpoint *b)
11767 {
11768 re_set_exception (ex_catch_exception_unhandled, b);
11769 }
11770
11771 static void
11772 check_status_catch_exception_unhandled (bpstat bs)
11773 {
11774 check_status_exception (ex_catch_exception_unhandled, bs);
11775 }
11776
11777 static enum print_stop_action
11778 print_it_catch_exception_unhandled (bpstat bs)
11779 {
11780 return print_it_exception (ex_catch_exception_unhandled, bs);
11781 }
11782
11783 static void
11784 print_one_catch_exception_unhandled (struct breakpoint *b,
11785 struct bp_location **last_loc)
11786 {
11787 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11788 }
11789
11790 static void
11791 print_mention_catch_exception_unhandled (struct breakpoint *b)
11792 {
11793 print_mention_exception (ex_catch_exception_unhandled, b);
11794 }
11795
11796 static void
11797 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11798 struct ui_file *fp)
11799 {
11800 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11801 }
11802
11803 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11804
11805 /* Virtual table for "catch assert" breakpoints. */
11806
11807 static void
11808 dtor_catch_assert (struct breakpoint *b)
11809 {
11810 dtor_exception (ex_catch_assert, b);
11811 }
11812
11813 static struct bp_location *
11814 allocate_location_catch_assert (struct breakpoint *self)
11815 {
11816 return allocate_location_exception (ex_catch_assert, self);
11817 }
11818
11819 static void
11820 re_set_catch_assert (struct breakpoint *b)
11821 {
11822 re_set_exception (ex_catch_assert, b);
11823 }
11824
11825 static void
11826 check_status_catch_assert (bpstat bs)
11827 {
11828 check_status_exception (ex_catch_assert, bs);
11829 }
11830
11831 static enum print_stop_action
11832 print_it_catch_assert (bpstat bs)
11833 {
11834 return print_it_exception (ex_catch_assert, bs);
11835 }
11836
11837 static void
11838 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11839 {
11840 print_one_exception (ex_catch_assert, b, last_loc);
11841 }
11842
11843 static void
11844 print_mention_catch_assert (struct breakpoint *b)
11845 {
11846 print_mention_exception (ex_catch_assert, b);
11847 }
11848
11849 static void
11850 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11851 {
11852 print_recreate_exception (ex_catch_assert, b, fp);
11853 }
11854
11855 static struct breakpoint_ops catch_assert_breakpoint_ops;
11856
11857 /* Return a newly allocated copy of the first space-separated token
11858 in ARGSP, and then adjust ARGSP to point immediately after that
11859 token.
11860
11861 Return NULL if ARGPS does not contain any more tokens. */
11862
11863 static char *
11864 ada_get_next_arg (char **argsp)
11865 {
11866 char *args = *argsp;
11867 char *end;
11868 char *result;
11869
11870 args = skip_spaces (args);
11871 if (args[0] == '\0')
11872 return NULL; /* No more arguments. */
11873
11874 /* Find the end of the current argument. */
11875
11876 end = skip_to_space (args);
11877
11878 /* Adjust ARGSP to point to the start of the next argument. */
11879
11880 *argsp = end;
11881
11882 /* Make a copy of the current argument and return it. */
11883
11884 result = xmalloc (end - args + 1);
11885 strncpy (result, args, end - args);
11886 result[end - args] = '\0';
11887
11888 return result;
11889 }
11890
11891 /* Split the arguments specified in a "catch exception" command.
11892 Set EX to the appropriate catchpoint type.
11893 Set EXCEP_STRING to the name of the specific exception if
11894 specified by the user.
11895 If a condition is found at the end of the arguments, the condition
11896 expression is stored in COND_STRING (memory must be deallocated
11897 after use). Otherwise COND_STRING is set to NULL. */
11898
11899 static void
11900 catch_ada_exception_command_split (char *args,
11901 enum exception_catchpoint_kind *ex,
11902 char **excep_string,
11903 char **cond_string)
11904 {
11905 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11906 char *exception_name;
11907 char *cond = NULL;
11908
11909 exception_name = ada_get_next_arg (&args);
11910 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11911 {
11912 /* This is not an exception name; this is the start of a condition
11913 expression for a catchpoint on all exceptions. So, "un-get"
11914 this token, and set exception_name to NULL. */
11915 xfree (exception_name);
11916 exception_name = NULL;
11917 args -= 2;
11918 }
11919 make_cleanup (xfree, exception_name);
11920
11921 /* Check to see if we have a condition. */
11922
11923 args = skip_spaces (args);
11924 if (strncmp (args, "if", 2) == 0
11925 && (isspace (args[2]) || args[2] == '\0'))
11926 {
11927 args += 2;
11928 args = skip_spaces (args);
11929
11930 if (args[0] == '\0')
11931 error (_("Condition missing after `if' keyword"));
11932 cond = xstrdup (args);
11933 make_cleanup (xfree, cond);
11934
11935 args += strlen (args);
11936 }
11937
11938 /* Check that we do not have any more arguments. Anything else
11939 is unexpected. */
11940
11941 if (args[0] != '\0')
11942 error (_("Junk at end of expression"));
11943
11944 discard_cleanups (old_chain);
11945
11946 if (exception_name == NULL)
11947 {
11948 /* Catch all exceptions. */
11949 *ex = ex_catch_exception;
11950 *excep_string = NULL;
11951 }
11952 else if (strcmp (exception_name, "unhandled") == 0)
11953 {
11954 /* Catch unhandled exceptions. */
11955 *ex = ex_catch_exception_unhandled;
11956 *excep_string = NULL;
11957 }
11958 else
11959 {
11960 /* Catch a specific exception. */
11961 *ex = ex_catch_exception;
11962 *excep_string = exception_name;
11963 }
11964 *cond_string = cond;
11965 }
11966
11967 /* Return the name of the symbol on which we should break in order to
11968 implement a catchpoint of the EX kind. */
11969
11970 static const char *
11971 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11972 {
11973 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11974
11975 gdb_assert (data->exception_info != NULL);
11976
11977 switch (ex)
11978 {
11979 case ex_catch_exception:
11980 return (data->exception_info->catch_exception_sym);
11981 break;
11982 case ex_catch_exception_unhandled:
11983 return (data->exception_info->catch_exception_unhandled_sym);
11984 break;
11985 case ex_catch_assert:
11986 return (data->exception_info->catch_assert_sym);
11987 break;
11988 default:
11989 internal_error (__FILE__, __LINE__,
11990 _("unexpected catchpoint kind (%d)"), ex);
11991 }
11992 }
11993
11994 /* Return the breakpoint ops "virtual table" used for catchpoints
11995 of the EX kind. */
11996
11997 static const struct breakpoint_ops *
11998 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11999 {
12000 switch (ex)
12001 {
12002 case ex_catch_exception:
12003 return (&catch_exception_breakpoint_ops);
12004 break;
12005 case ex_catch_exception_unhandled:
12006 return (&catch_exception_unhandled_breakpoint_ops);
12007 break;
12008 case ex_catch_assert:
12009 return (&catch_assert_breakpoint_ops);
12010 break;
12011 default:
12012 internal_error (__FILE__, __LINE__,
12013 _("unexpected catchpoint kind (%d)"), ex);
12014 }
12015 }
12016
12017 /* Return the condition that will be used to match the current exception
12018 being raised with the exception that the user wants to catch. This
12019 assumes that this condition is used when the inferior just triggered
12020 an exception catchpoint.
12021
12022 The string returned is a newly allocated string that needs to be
12023 deallocated later. */
12024
12025 static char *
12026 ada_exception_catchpoint_cond_string (const char *excep_string)
12027 {
12028 int i;
12029
12030 /* The standard exceptions are a special case. They are defined in
12031 runtime units that have been compiled without debugging info; if
12032 EXCEP_STRING is the not-fully-qualified name of a standard
12033 exception (e.g. "constraint_error") then, during the evaluation
12034 of the condition expression, the symbol lookup on this name would
12035 *not* return this standard exception. The catchpoint condition
12036 may then be set only on user-defined exceptions which have the
12037 same not-fully-qualified name (e.g. my_package.constraint_error).
12038
12039 To avoid this unexcepted behavior, these standard exceptions are
12040 systematically prefixed by "standard". This means that "catch
12041 exception constraint_error" is rewritten into "catch exception
12042 standard.constraint_error".
12043
12044 If an exception named contraint_error is defined in another package of
12045 the inferior program, then the only way to specify this exception as a
12046 breakpoint condition is to use its fully-qualified named:
12047 e.g. my_package.constraint_error. */
12048
12049 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12050 {
12051 if (strcmp (standard_exc [i], excep_string) == 0)
12052 {
12053 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12054 excep_string);
12055 }
12056 }
12057 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12058 }
12059
12060 /* Return the symtab_and_line that should be used to insert an exception
12061 catchpoint of the TYPE kind.
12062
12063 EXCEP_STRING should contain the name of a specific exception that
12064 the catchpoint should catch, or NULL otherwise.
12065
12066 ADDR_STRING returns the name of the function where the real
12067 breakpoint that implements the catchpoints is set, depending on the
12068 type of catchpoint we need to create. */
12069
12070 static struct symtab_and_line
12071 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
12072 char **addr_string, const struct breakpoint_ops **ops)
12073 {
12074 const char *sym_name;
12075 struct symbol *sym;
12076
12077 /* First, find out which exception support info to use. */
12078 ada_exception_support_info_sniffer ();
12079
12080 /* Then lookup the function on which we will break in order to catch
12081 the Ada exceptions requested by the user. */
12082 sym_name = ada_exception_sym_name (ex);
12083 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12084
12085 /* We can assume that SYM is not NULL at this stage. If the symbol
12086 did not exist, ada_exception_support_info_sniffer would have
12087 raised an exception.
12088
12089 Also, ada_exception_support_info_sniffer should have already
12090 verified that SYM is a function symbol. */
12091 gdb_assert (sym != NULL);
12092 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12093
12094 /* Set ADDR_STRING. */
12095 *addr_string = xstrdup (sym_name);
12096
12097 /* Set OPS. */
12098 *ops = ada_exception_breakpoint_ops (ex);
12099
12100 return find_function_start_sal (sym, 1);
12101 }
12102
12103 /* Parse the arguments (ARGS) of the "catch exception" command.
12104
12105 If the user asked the catchpoint to catch only a specific
12106 exception, then save the exception name in ADDR_STRING.
12107
12108 If the user provided a condition, then set COND_STRING to
12109 that condition expression (the memory must be deallocated
12110 after use). Otherwise, set COND_STRING to NULL.
12111
12112 See ada_exception_sal for a description of all the remaining
12113 function arguments of this function. */
12114
12115 static struct symtab_and_line
12116 ada_decode_exception_location (char *args, char **addr_string,
12117 char **excep_string,
12118 char **cond_string,
12119 const struct breakpoint_ops **ops)
12120 {
12121 enum exception_catchpoint_kind ex;
12122
12123 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
12124 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12125 }
12126
12127 /* Create an Ada exception catchpoint. */
12128
12129 static void
12130 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12131 struct symtab_and_line sal,
12132 char *addr_string,
12133 char *excep_string,
12134 char *cond_string,
12135 const struct breakpoint_ops *ops,
12136 int tempflag,
12137 int from_tty)
12138 {
12139 struct ada_catchpoint *c;
12140
12141 c = XNEW (struct ada_catchpoint);
12142 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12143 ops, tempflag, from_tty);
12144 c->excep_string = excep_string;
12145 create_excep_cond_exprs (c);
12146 if (cond_string != NULL)
12147 set_breakpoint_condition (&c->base, cond_string, from_tty);
12148 install_breakpoint (0, &c->base, 1);
12149 }
12150
12151 /* Implement the "catch exception" command. */
12152
12153 static void
12154 catch_ada_exception_command (char *arg, int from_tty,
12155 struct cmd_list_element *command)
12156 {
12157 struct gdbarch *gdbarch = get_current_arch ();
12158 int tempflag;
12159 struct symtab_and_line sal;
12160 char *addr_string = NULL;
12161 char *excep_string = NULL;
12162 char *cond_string = NULL;
12163 const struct breakpoint_ops *ops = NULL;
12164
12165 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12166
12167 if (!arg)
12168 arg = "";
12169 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12170 &cond_string, &ops);
12171 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12172 excep_string, cond_string, ops,
12173 tempflag, from_tty);
12174 }
12175
12176 /* Assuming that ARGS contains the arguments of a "catch assert"
12177 command, parse those arguments and return a symtab_and_line object
12178 for a failed assertion catchpoint.
12179
12180 Set ADDR_STRING to the name of the function where the real
12181 breakpoint that implements the catchpoint is set.
12182
12183 If ARGS contains a condition, set COND_STRING to that condition
12184 (the memory needs to be deallocated after use). Otherwise, set
12185 COND_STRING to NULL. */
12186
12187 static struct symtab_and_line
12188 ada_decode_assert_location (char *args, char **addr_string,
12189 char **cond_string,
12190 const struct breakpoint_ops **ops)
12191 {
12192 args = skip_spaces (args);
12193
12194 /* Check whether a condition was provided. */
12195 if (strncmp (args, "if", 2) == 0
12196 && (isspace (args[2]) || args[2] == '\0'))
12197 {
12198 args += 2;
12199 args = skip_spaces (args);
12200 if (args[0] == '\0')
12201 error (_("condition missing after `if' keyword"));
12202 *cond_string = xstrdup (args);
12203 }
12204
12205 /* Otherwise, there should be no other argument at the end of
12206 the command. */
12207 else if (args[0] != '\0')
12208 error (_("Junk at end of arguments."));
12209
12210 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
12211 }
12212
12213 /* Implement the "catch assert" command. */
12214
12215 static void
12216 catch_assert_command (char *arg, int from_tty,
12217 struct cmd_list_element *command)
12218 {
12219 struct gdbarch *gdbarch = get_current_arch ();
12220 int tempflag;
12221 struct symtab_and_line sal;
12222 char *addr_string = NULL;
12223 char *cond_string = NULL;
12224 const struct breakpoint_ops *ops = NULL;
12225
12226 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12227
12228 if (!arg)
12229 arg = "";
12230 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
12231 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12232 NULL, cond_string, ops, tempflag,
12233 from_tty);
12234 }
12235 /* Operators */
12236 /* Information about operators given special treatment in functions
12237 below. */
12238 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12239
12240 #define ADA_OPERATORS \
12241 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12242 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12243 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12244 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12245 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12246 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12247 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12248 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12249 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12250 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12251 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12252 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12253 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12254 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12255 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12256 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12257 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12258 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12259 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12260
12261 static void
12262 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12263 int *argsp)
12264 {
12265 switch (exp->elts[pc - 1].opcode)
12266 {
12267 default:
12268 operator_length_standard (exp, pc, oplenp, argsp);
12269 break;
12270
12271 #define OP_DEFN(op, len, args, binop) \
12272 case op: *oplenp = len; *argsp = args; break;
12273 ADA_OPERATORS;
12274 #undef OP_DEFN
12275
12276 case OP_AGGREGATE:
12277 *oplenp = 3;
12278 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12279 break;
12280
12281 case OP_CHOICES:
12282 *oplenp = 3;
12283 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12284 break;
12285 }
12286 }
12287
12288 /* Implementation of the exp_descriptor method operator_check. */
12289
12290 static int
12291 ada_operator_check (struct expression *exp, int pos,
12292 int (*objfile_func) (struct objfile *objfile, void *data),
12293 void *data)
12294 {
12295 const union exp_element *const elts = exp->elts;
12296 struct type *type = NULL;
12297
12298 switch (elts[pos].opcode)
12299 {
12300 case UNOP_IN_RANGE:
12301 case UNOP_QUAL:
12302 type = elts[pos + 1].type;
12303 break;
12304
12305 default:
12306 return operator_check_standard (exp, pos, objfile_func, data);
12307 }
12308
12309 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12310
12311 if (type && TYPE_OBJFILE (type)
12312 && (*objfile_func) (TYPE_OBJFILE (type), data))
12313 return 1;
12314
12315 return 0;
12316 }
12317
12318 static char *
12319 ada_op_name (enum exp_opcode opcode)
12320 {
12321 switch (opcode)
12322 {
12323 default:
12324 return op_name_standard (opcode);
12325
12326 #define OP_DEFN(op, len, args, binop) case op: return #op;
12327 ADA_OPERATORS;
12328 #undef OP_DEFN
12329
12330 case OP_AGGREGATE:
12331 return "OP_AGGREGATE";
12332 case OP_CHOICES:
12333 return "OP_CHOICES";
12334 case OP_NAME:
12335 return "OP_NAME";
12336 }
12337 }
12338
12339 /* As for operator_length, but assumes PC is pointing at the first
12340 element of the operator, and gives meaningful results only for the
12341 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12342
12343 static void
12344 ada_forward_operator_length (struct expression *exp, int pc,
12345 int *oplenp, int *argsp)
12346 {
12347 switch (exp->elts[pc].opcode)
12348 {
12349 default:
12350 *oplenp = *argsp = 0;
12351 break;
12352
12353 #define OP_DEFN(op, len, args, binop) \
12354 case op: *oplenp = len; *argsp = args; break;
12355 ADA_OPERATORS;
12356 #undef OP_DEFN
12357
12358 case OP_AGGREGATE:
12359 *oplenp = 3;
12360 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12361 break;
12362
12363 case OP_CHOICES:
12364 *oplenp = 3;
12365 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12366 break;
12367
12368 case OP_STRING:
12369 case OP_NAME:
12370 {
12371 int len = longest_to_int (exp->elts[pc + 1].longconst);
12372
12373 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12374 *argsp = 0;
12375 break;
12376 }
12377 }
12378 }
12379
12380 static int
12381 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12382 {
12383 enum exp_opcode op = exp->elts[elt].opcode;
12384 int oplen, nargs;
12385 int pc = elt;
12386 int i;
12387
12388 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12389
12390 switch (op)
12391 {
12392 /* Ada attributes ('Foo). */
12393 case OP_ATR_FIRST:
12394 case OP_ATR_LAST:
12395 case OP_ATR_LENGTH:
12396 case OP_ATR_IMAGE:
12397 case OP_ATR_MAX:
12398 case OP_ATR_MIN:
12399 case OP_ATR_MODULUS:
12400 case OP_ATR_POS:
12401 case OP_ATR_SIZE:
12402 case OP_ATR_TAG:
12403 case OP_ATR_VAL:
12404 break;
12405
12406 case UNOP_IN_RANGE:
12407 case UNOP_QUAL:
12408 /* XXX: gdb_sprint_host_address, type_sprint */
12409 fprintf_filtered (stream, _("Type @"));
12410 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12411 fprintf_filtered (stream, " (");
12412 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12413 fprintf_filtered (stream, ")");
12414 break;
12415 case BINOP_IN_BOUNDS:
12416 fprintf_filtered (stream, " (%d)",
12417 longest_to_int (exp->elts[pc + 2].longconst));
12418 break;
12419 case TERNOP_IN_RANGE:
12420 break;
12421
12422 case OP_AGGREGATE:
12423 case OP_OTHERS:
12424 case OP_DISCRETE_RANGE:
12425 case OP_POSITIONAL:
12426 case OP_CHOICES:
12427 break;
12428
12429 case OP_NAME:
12430 case OP_STRING:
12431 {
12432 char *name = &exp->elts[elt + 2].string;
12433 int len = longest_to_int (exp->elts[elt + 1].longconst);
12434
12435 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12436 break;
12437 }
12438
12439 default:
12440 return dump_subexp_body_standard (exp, stream, elt);
12441 }
12442
12443 elt += oplen;
12444 for (i = 0; i < nargs; i += 1)
12445 elt = dump_subexp (exp, stream, elt);
12446
12447 return elt;
12448 }
12449
12450 /* The Ada extension of print_subexp (q.v.). */
12451
12452 static void
12453 ada_print_subexp (struct expression *exp, int *pos,
12454 struct ui_file *stream, enum precedence prec)
12455 {
12456 int oplen, nargs, i;
12457 int pc = *pos;
12458 enum exp_opcode op = exp->elts[pc].opcode;
12459
12460 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12461
12462 *pos += oplen;
12463 switch (op)
12464 {
12465 default:
12466 *pos -= oplen;
12467 print_subexp_standard (exp, pos, stream, prec);
12468 return;
12469
12470 case OP_VAR_VALUE:
12471 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12472 return;
12473
12474 case BINOP_IN_BOUNDS:
12475 /* XXX: sprint_subexp */
12476 print_subexp (exp, pos, stream, PREC_SUFFIX);
12477 fputs_filtered (" in ", stream);
12478 print_subexp (exp, pos, stream, PREC_SUFFIX);
12479 fputs_filtered ("'range", stream);
12480 if (exp->elts[pc + 1].longconst > 1)
12481 fprintf_filtered (stream, "(%ld)",
12482 (long) exp->elts[pc + 1].longconst);
12483 return;
12484
12485 case TERNOP_IN_RANGE:
12486 if (prec >= PREC_EQUAL)
12487 fputs_filtered ("(", stream);
12488 /* XXX: sprint_subexp */
12489 print_subexp (exp, pos, stream, PREC_SUFFIX);
12490 fputs_filtered (" in ", stream);
12491 print_subexp (exp, pos, stream, PREC_EQUAL);
12492 fputs_filtered (" .. ", stream);
12493 print_subexp (exp, pos, stream, PREC_EQUAL);
12494 if (prec >= PREC_EQUAL)
12495 fputs_filtered (")", stream);
12496 return;
12497
12498 case OP_ATR_FIRST:
12499 case OP_ATR_LAST:
12500 case OP_ATR_LENGTH:
12501 case OP_ATR_IMAGE:
12502 case OP_ATR_MAX:
12503 case OP_ATR_MIN:
12504 case OP_ATR_MODULUS:
12505 case OP_ATR_POS:
12506 case OP_ATR_SIZE:
12507 case OP_ATR_TAG:
12508 case OP_ATR_VAL:
12509 if (exp->elts[*pos].opcode == OP_TYPE)
12510 {
12511 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12512 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12513 &type_print_raw_options);
12514 *pos += 3;
12515 }
12516 else
12517 print_subexp (exp, pos, stream, PREC_SUFFIX);
12518 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12519 if (nargs > 1)
12520 {
12521 int tem;
12522
12523 for (tem = 1; tem < nargs; tem += 1)
12524 {
12525 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12526 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12527 }
12528 fputs_filtered (")", stream);
12529 }
12530 return;
12531
12532 case UNOP_QUAL:
12533 type_print (exp->elts[pc + 1].type, "", stream, 0);
12534 fputs_filtered ("'(", stream);
12535 print_subexp (exp, pos, stream, PREC_PREFIX);
12536 fputs_filtered (")", stream);
12537 return;
12538
12539 case UNOP_IN_RANGE:
12540 /* XXX: sprint_subexp */
12541 print_subexp (exp, pos, stream, PREC_SUFFIX);
12542 fputs_filtered (" in ", stream);
12543 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12544 &type_print_raw_options);
12545 return;
12546
12547 case OP_DISCRETE_RANGE:
12548 print_subexp (exp, pos, stream, PREC_SUFFIX);
12549 fputs_filtered ("..", stream);
12550 print_subexp (exp, pos, stream, PREC_SUFFIX);
12551 return;
12552
12553 case OP_OTHERS:
12554 fputs_filtered ("others => ", stream);
12555 print_subexp (exp, pos, stream, PREC_SUFFIX);
12556 return;
12557
12558 case OP_CHOICES:
12559 for (i = 0; i < nargs-1; i += 1)
12560 {
12561 if (i > 0)
12562 fputs_filtered ("|", stream);
12563 print_subexp (exp, pos, stream, PREC_SUFFIX);
12564 }
12565 fputs_filtered (" => ", stream);
12566 print_subexp (exp, pos, stream, PREC_SUFFIX);
12567 return;
12568
12569 case OP_POSITIONAL:
12570 print_subexp (exp, pos, stream, PREC_SUFFIX);
12571 return;
12572
12573 case OP_AGGREGATE:
12574 fputs_filtered ("(", stream);
12575 for (i = 0; i < nargs; i += 1)
12576 {
12577 if (i > 0)
12578 fputs_filtered (", ", stream);
12579 print_subexp (exp, pos, stream, PREC_SUFFIX);
12580 }
12581 fputs_filtered (")", stream);
12582 return;
12583 }
12584 }
12585
12586 /* Table mapping opcodes into strings for printing operators
12587 and precedences of the operators. */
12588
12589 static const struct op_print ada_op_print_tab[] = {
12590 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12591 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12592 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12593 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12594 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12595 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12596 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12597 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12598 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12599 {">=", BINOP_GEQ, PREC_ORDER, 0},
12600 {">", BINOP_GTR, PREC_ORDER, 0},
12601 {"<", BINOP_LESS, PREC_ORDER, 0},
12602 {">>", BINOP_RSH, PREC_SHIFT, 0},
12603 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12604 {"+", BINOP_ADD, PREC_ADD, 0},
12605 {"-", BINOP_SUB, PREC_ADD, 0},
12606 {"&", BINOP_CONCAT, PREC_ADD, 0},
12607 {"*", BINOP_MUL, PREC_MUL, 0},
12608 {"/", BINOP_DIV, PREC_MUL, 0},
12609 {"rem", BINOP_REM, PREC_MUL, 0},
12610 {"mod", BINOP_MOD, PREC_MUL, 0},
12611 {"**", BINOP_EXP, PREC_REPEAT, 0},
12612 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12613 {"-", UNOP_NEG, PREC_PREFIX, 0},
12614 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12615 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12616 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12617 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12618 {".all", UNOP_IND, PREC_SUFFIX, 1},
12619 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12620 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12621 {NULL, 0, 0, 0}
12622 };
12623 \f
12624 enum ada_primitive_types {
12625 ada_primitive_type_int,
12626 ada_primitive_type_long,
12627 ada_primitive_type_short,
12628 ada_primitive_type_char,
12629 ada_primitive_type_float,
12630 ada_primitive_type_double,
12631 ada_primitive_type_void,
12632 ada_primitive_type_long_long,
12633 ada_primitive_type_long_double,
12634 ada_primitive_type_natural,
12635 ada_primitive_type_positive,
12636 ada_primitive_type_system_address,
12637 nr_ada_primitive_types
12638 };
12639
12640 static void
12641 ada_language_arch_info (struct gdbarch *gdbarch,
12642 struct language_arch_info *lai)
12643 {
12644 const struct builtin_type *builtin = builtin_type (gdbarch);
12645
12646 lai->primitive_type_vector
12647 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12648 struct type *);
12649
12650 lai->primitive_type_vector [ada_primitive_type_int]
12651 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12652 0, "integer");
12653 lai->primitive_type_vector [ada_primitive_type_long]
12654 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12655 0, "long_integer");
12656 lai->primitive_type_vector [ada_primitive_type_short]
12657 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12658 0, "short_integer");
12659 lai->string_char_type
12660 = lai->primitive_type_vector [ada_primitive_type_char]
12661 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12662 lai->primitive_type_vector [ada_primitive_type_float]
12663 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12664 "float", NULL);
12665 lai->primitive_type_vector [ada_primitive_type_double]
12666 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12667 "long_float", NULL);
12668 lai->primitive_type_vector [ada_primitive_type_long_long]
12669 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12670 0, "long_long_integer");
12671 lai->primitive_type_vector [ada_primitive_type_long_double]
12672 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12673 "long_long_float", NULL);
12674 lai->primitive_type_vector [ada_primitive_type_natural]
12675 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12676 0, "natural");
12677 lai->primitive_type_vector [ada_primitive_type_positive]
12678 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12679 0, "positive");
12680 lai->primitive_type_vector [ada_primitive_type_void]
12681 = builtin->builtin_void;
12682
12683 lai->primitive_type_vector [ada_primitive_type_system_address]
12684 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12685 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12686 = "system__address";
12687
12688 lai->bool_type_symbol = NULL;
12689 lai->bool_type_default = builtin->builtin_bool;
12690 }
12691 \f
12692 /* Language vector */
12693
12694 /* Not really used, but needed in the ada_language_defn. */
12695
12696 static void
12697 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12698 {
12699 ada_emit_char (c, type, stream, quoter, 1);
12700 }
12701
12702 static int
12703 parse (void)
12704 {
12705 warnings_issued = 0;
12706 return ada_parse ();
12707 }
12708
12709 static const struct exp_descriptor ada_exp_descriptor = {
12710 ada_print_subexp,
12711 ada_operator_length,
12712 ada_operator_check,
12713 ada_op_name,
12714 ada_dump_subexp_body,
12715 ada_evaluate_subexp
12716 };
12717
12718 /* Implement the "la_get_symbol_name_cmp" language_defn method
12719 for Ada. */
12720
12721 static symbol_name_cmp_ftype
12722 ada_get_symbol_name_cmp (const char *lookup_name)
12723 {
12724 if (should_use_wild_match (lookup_name))
12725 return wild_match;
12726 else
12727 return compare_names;
12728 }
12729
12730 /* Implement the "la_read_var_value" language_defn method for Ada. */
12731
12732 static struct value *
12733 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12734 {
12735 struct block *frame_block = NULL;
12736 struct symbol *renaming_sym = NULL;
12737
12738 /* The only case where default_read_var_value is not sufficient
12739 is when VAR is a renaming... */
12740 if (frame)
12741 frame_block = get_frame_block (frame, NULL);
12742 if (frame_block)
12743 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12744 if (renaming_sym != NULL)
12745 return ada_read_renaming_var_value (renaming_sym, frame_block);
12746
12747 /* This is a typical case where we expect the default_read_var_value
12748 function to work. */
12749 return default_read_var_value (var, frame);
12750 }
12751
12752 const struct language_defn ada_language_defn = {
12753 "ada", /* Language name */
12754 language_ada,
12755 range_check_off,
12756 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12757 that's not quite what this means. */
12758 array_row_major,
12759 macro_expansion_no,
12760 &ada_exp_descriptor,
12761 parse,
12762 ada_error,
12763 resolve,
12764 ada_printchar, /* Print a character constant */
12765 ada_printstr, /* Function to print string constant */
12766 emit_char, /* Function to print single char (not used) */
12767 ada_print_type, /* Print a type using appropriate syntax */
12768 ada_print_typedef, /* Print a typedef using appropriate syntax */
12769 ada_val_print, /* Print a value using appropriate syntax */
12770 ada_value_print, /* Print a top-level value */
12771 ada_read_var_value, /* la_read_var_value */
12772 NULL, /* Language specific skip_trampoline */
12773 NULL, /* name_of_this */
12774 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12775 basic_lookup_transparent_type, /* lookup_transparent_type */
12776 ada_la_decode, /* Language specific symbol demangler */
12777 NULL, /* Language specific
12778 class_name_from_physname */
12779 ada_op_print_tab, /* expression operators for printing */
12780 0, /* c-style arrays */
12781 1, /* String lower bound */
12782 ada_get_gdb_completer_word_break_characters,
12783 ada_make_symbol_completion_list,
12784 ada_language_arch_info,
12785 ada_print_array_index,
12786 default_pass_by_reference,
12787 c_get_string,
12788 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12789 ada_iterate_over_symbols,
12790 LANG_MAGIC
12791 };
12792
12793 /* Provide a prototype to silence -Wmissing-prototypes. */
12794 extern initialize_file_ftype _initialize_ada_language;
12795
12796 /* Command-list for the "set/show ada" prefix command. */
12797 static struct cmd_list_element *set_ada_list;
12798 static struct cmd_list_element *show_ada_list;
12799
12800 /* Implement the "set ada" prefix command. */
12801
12802 static void
12803 set_ada_command (char *arg, int from_tty)
12804 {
12805 printf_unfiltered (_(\
12806 "\"set ada\" must be followed by the name of a setting.\n"));
12807 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12808 }
12809
12810 /* Implement the "show ada" prefix command. */
12811
12812 static void
12813 show_ada_command (char *args, int from_tty)
12814 {
12815 cmd_show_list (show_ada_list, from_tty, "");
12816 }
12817
12818 static void
12819 initialize_ada_catchpoint_ops (void)
12820 {
12821 struct breakpoint_ops *ops;
12822
12823 initialize_breakpoint_ops ();
12824
12825 ops = &catch_exception_breakpoint_ops;
12826 *ops = bkpt_breakpoint_ops;
12827 ops->dtor = dtor_catch_exception;
12828 ops->allocate_location = allocate_location_catch_exception;
12829 ops->re_set = re_set_catch_exception;
12830 ops->check_status = check_status_catch_exception;
12831 ops->print_it = print_it_catch_exception;
12832 ops->print_one = print_one_catch_exception;
12833 ops->print_mention = print_mention_catch_exception;
12834 ops->print_recreate = print_recreate_catch_exception;
12835
12836 ops = &catch_exception_unhandled_breakpoint_ops;
12837 *ops = bkpt_breakpoint_ops;
12838 ops->dtor = dtor_catch_exception_unhandled;
12839 ops->allocate_location = allocate_location_catch_exception_unhandled;
12840 ops->re_set = re_set_catch_exception_unhandled;
12841 ops->check_status = check_status_catch_exception_unhandled;
12842 ops->print_it = print_it_catch_exception_unhandled;
12843 ops->print_one = print_one_catch_exception_unhandled;
12844 ops->print_mention = print_mention_catch_exception_unhandled;
12845 ops->print_recreate = print_recreate_catch_exception_unhandled;
12846
12847 ops = &catch_assert_breakpoint_ops;
12848 *ops = bkpt_breakpoint_ops;
12849 ops->dtor = dtor_catch_assert;
12850 ops->allocate_location = allocate_location_catch_assert;
12851 ops->re_set = re_set_catch_assert;
12852 ops->check_status = check_status_catch_assert;
12853 ops->print_it = print_it_catch_assert;
12854 ops->print_one = print_one_catch_assert;
12855 ops->print_mention = print_mention_catch_assert;
12856 ops->print_recreate = print_recreate_catch_assert;
12857 }
12858
12859 void
12860 _initialize_ada_language (void)
12861 {
12862 add_language (&ada_language_defn);
12863
12864 initialize_ada_catchpoint_ops ();
12865
12866 add_prefix_cmd ("ada", no_class, set_ada_command,
12867 _("Prefix command for changing Ada-specfic settings"),
12868 &set_ada_list, "set ada ", 0, &setlist);
12869
12870 add_prefix_cmd ("ada", no_class, show_ada_command,
12871 _("Generic command for showing Ada-specific settings."),
12872 &show_ada_list, "show ada ", 0, &showlist);
12873
12874 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12875 &trust_pad_over_xvs, _("\
12876 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12877 Show whether an optimization trusting PAD types over XVS types is activated"),
12878 _("\
12879 This is related to the encoding used by the GNAT compiler. The debugger\n\
12880 should normally trust the contents of PAD types, but certain older versions\n\
12881 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12882 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12883 work around this bug. It is always safe to turn this option \"off\", but\n\
12884 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12885 this option to \"off\" unless necessary."),
12886 NULL, NULL, &set_ada_list, &show_ada_list);
12887
12888 add_catch_command ("exception", _("\
12889 Catch Ada exceptions, when raised.\n\
12890 With an argument, catch only exceptions with the given name."),
12891 catch_ada_exception_command,
12892 NULL,
12893 CATCH_PERMANENT,
12894 CATCH_TEMPORARY);
12895 add_catch_command ("assert", _("\
12896 Catch failed Ada assertions, when raised.\n\
12897 With an argument, catch only exceptions with the given name."),
12898 catch_assert_command,
12899 NULL,
12900 CATCH_PERMANENT,
12901 CATCH_TEMPORARY);
12902
12903 varsize_limit = 65536;
12904
12905 obstack_init (&symbol_list_obstack);
12906
12907 decoded_names_store = htab_create_alloc
12908 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12909 NULL, xcalloc, xfree);
12910
12911 /* Setup per-inferior data. */
12912 observer_attach_inferior_exit (ada_inferior_exit);
12913 ada_inferior_data
12914 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
12915 }
This page took 0.302086 seconds and 4 git commands to generate.