Add cast in python.c
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
115 static int is_nonfunction (struct block_symbol *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct block_symbol *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct block_symbol *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242 static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270
271 static struct type *ada_find_any_type (const char *name);
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 /* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319 static char *ada_completer_word_break_characters =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
983 char *
984 ada_encode (const char *decoded)
985 {
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
988 const char *p;
989 int k;
990
991 if (decoded == NULL)
992 return NULL;
993
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
996
997 k = 0;
998 for (p = decoded; *p != '\0'; p += 1)
999 {
1000 if (*p == '.')
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
1005 else if (*p == '"')
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1010 mapping->encoded != NULL
1011 && !startswith (p, mapping->decoded); mapping += 1)
1012 ;
1013 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
1019 else
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
1024 }
1025
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
1028 }
1029
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
1034 char *
1035 ada_fold_name (const char *name)
1036 {
1037 static char *fold_buffer = NULL;
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1042
1043 if (name[0] == '\'')
1044 {
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
1047 }
1048 else
1049 {
1050 int i;
1051
1052 for (i = 0; i <= len; i += 1)
1053 fold_buffer[i] = tolower (name[i]);
1054 }
1055
1056 return fold_buffer;
1057 }
1058
1059 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061 static int
1062 is_lower_alphanum (const char c)
1063 {
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065 }
1066
1067 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
1074
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079 static void
1080 ada_remove_trailing_digits (const char *encoded, int *len)
1081 {
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
1085
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1093 *len = i - 2;
1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1095 *len = i - 1;
1096 }
1097 }
1098
1099 /* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102 static void
1103 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104 {
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
1110 the 'P' suffix. The second calls the first one after handling
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119 }
1120
1121 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123 static void
1124 ada_remove_Xbn_suffix (const char *encoded, int *len)
1125 {
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139 }
1140
1141 /* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
1144
1145 The resulting string is valid until the next call of ada_decode.
1146 If the string is unchanged by decoding, the original string pointer
1147 is returned. */
1148
1149 const char *
1150 ada_decode (const char *encoded)
1151 {
1152 int i, j;
1153 int len0;
1154 const char *p;
1155 char *decoded;
1156 int at_start_name;
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
1159
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
1163 if (startswith (encoded, "_ada_"))
1164 encoded += 5;
1165
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
1169 if (encoded[0] == '_' || encoded[0] == '<')
1170 goto Suppress;
1171
1172 len0 = strlen (encoded);
1173
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
1176
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
1183 {
1184 if (p[3] == 'X')
1185 len0 = p - encoded;
1186 else
1187 goto Suppress;
1188 }
1189
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1195 len0 -= 3;
1196
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1202 len0 -= 2;
1203
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1208 len0 -= 1;
1209
1210 /* Make decoded big enough for possible expansion by operator name. */
1211
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
1214
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1218 {
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
1227 }
1228
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
1238 /* Is this a symbol function? */
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
1242
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
1260 at_start_name = 0;
1261
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1266 i += 2;
1267
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
1290 of subprograms created by the compiler for each entry. The first
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1355 {
1356 /* Replace '__' by '.'. */
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
1362 else
1363 {
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
1370 }
1371 decoded[j] = '\000';
1372
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
1378 goto Suppress;
1379
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
1384
1385 Suppress:
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
1390 else
1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1392 return decoded;
1393
1394 }
1395
1396 /* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401 static struct htab *decoded_names_store;
1402
1403 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
1408 GSYMBOL).
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
1411 when a decoded name is cached in it. */
1412
1413 const char *
1414 ada_decode_symbol (const struct general_symbol_info *arg)
1415 {
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
1418 &gsymbol->language_specific.demangled_name;
1419
1420 if (!gsymbol->ada_mangled)
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
1423 struct obstack *obstack = gsymbol->language_specific.obstack;
1424
1425 gsymbol->ada_mangled = 1;
1426
1427 if (obstack != NULL)
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1430 else
1431 {
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
1439
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
1444 }
1445
1446 return *resultp;
1447 }
1448
1449 static char *
1450 ada_la_decode (const char *encoded, int options)
1451 {
1452 return xstrdup (ada_decode (encoded));
1453 }
1454
1455 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1456 suffixes that encode debugging information or leading _ada_ on
1457 SYM_NAME (see is_name_suffix commentary for the debugging
1458 information that is ignored). If WILD, then NAME need only match a
1459 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1460 either argument is NULL. */
1461
1462 static int
1463 match_name (const char *sym_name, const char *name, int wild)
1464 {
1465 if (sym_name == NULL || name == NULL)
1466 return 0;
1467 else if (wild)
1468 return wild_match (sym_name, name) == 0;
1469 else
1470 {
1471 int len_name = strlen (name);
1472
1473 return (strncmp (sym_name, name, len_name) == 0
1474 && is_name_suffix (sym_name + len_name))
1475 || (startswith (sym_name, "_ada_")
1476 && strncmp (sym_name + 5, name, len_name) == 0
1477 && is_name_suffix (sym_name + len_name + 5));
1478 }
1479 }
1480 \f
1481
1482 /* Arrays */
1483
1484 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1485 generated by the GNAT compiler to describe the index type used
1486 for each dimension of an array, check whether it follows the latest
1487 known encoding. If not, fix it up to conform to the latest encoding.
1488 Otherwise, do nothing. This function also does nothing if
1489 INDEX_DESC_TYPE is NULL.
1490
1491 The GNAT encoding used to describle the array index type evolved a bit.
1492 Initially, the information would be provided through the name of each
1493 field of the structure type only, while the type of these fields was
1494 described as unspecified and irrelevant. The debugger was then expected
1495 to perform a global type lookup using the name of that field in order
1496 to get access to the full index type description. Because these global
1497 lookups can be very expensive, the encoding was later enhanced to make
1498 the global lookup unnecessary by defining the field type as being
1499 the full index type description.
1500
1501 The purpose of this routine is to allow us to support older versions
1502 of the compiler by detecting the use of the older encoding, and by
1503 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1504 we essentially replace each field's meaningless type by the associated
1505 index subtype). */
1506
1507 void
1508 ada_fixup_array_indexes_type (struct type *index_desc_type)
1509 {
1510 int i;
1511
1512 if (index_desc_type == NULL)
1513 return;
1514 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1515
1516 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1517 to check one field only, no need to check them all). If not, return
1518 now.
1519
1520 If our INDEX_DESC_TYPE was generated using the older encoding,
1521 the field type should be a meaningless integer type whose name
1522 is not equal to the field name. */
1523 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1524 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1525 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1526 return;
1527
1528 /* Fixup each field of INDEX_DESC_TYPE. */
1529 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1530 {
1531 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1532 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1533
1534 if (raw_type)
1535 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1536 }
1537 }
1538
1539 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1540
1541 static char *bound_name[] = {
1542 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1543 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1544 };
1545
1546 /* Maximum number of array dimensions we are prepared to handle. */
1547
1548 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1549
1550
1551 /* The desc_* routines return primitive portions of array descriptors
1552 (fat pointers). */
1553
1554 /* The descriptor or array type, if any, indicated by TYPE; removes
1555 level of indirection, if needed. */
1556
1557 static struct type *
1558 desc_base_type (struct type *type)
1559 {
1560 if (type == NULL)
1561 return NULL;
1562 type = ada_check_typedef (type);
1563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1564 type = ada_typedef_target_type (type);
1565
1566 if (type != NULL
1567 && (TYPE_CODE (type) == TYPE_CODE_PTR
1568 || TYPE_CODE (type) == TYPE_CODE_REF))
1569 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1570 else
1571 return type;
1572 }
1573
1574 /* True iff TYPE indicates a "thin" array pointer type. */
1575
1576 static int
1577 is_thin_pntr (struct type *type)
1578 {
1579 return
1580 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1581 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1582 }
1583
1584 /* The descriptor type for thin pointer type TYPE. */
1585
1586 static struct type *
1587 thin_descriptor_type (struct type *type)
1588 {
1589 struct type *base_type = desc_base_type (type);
1590
1591 if (base_type == NULL)
1592 return NULL;
1593 if (is_suffix (ada_type_name (base_type), "___XVE"))
1594 return base_type;
1595 else
1596 {
1597 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1598
1599 if (alt_type == NULL)
1600 return base_type;
1601 else
1602 return alt_type;
1603 }
1604 }
1605
1606 /* A pointer to the array data for thin-pointer value VAL. */
1607
1608 static struct value *
1609 thin_data_pntr (struct value *val)
1610 {
1611 struct type *type = ada_check_typedef (value_type (val));
1612 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1613
1614 data_type = lookup_pointer_type (data_type);
1615
1616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1617 return value_cast (data_type, value_copy (val));
1618 else
1619 return value_from_longest (data_type, value_address (val));
1620 }
1621
1622 /* True iff TYPE indicates a "thick" array pointer type. */
1623
1624 static int
1625 is_thick_pntr (struct type *type)
1626 {
1627 type = desc_base_type (type);
1628 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1629 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1630 }
1631
1632 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1633 pointer to one, the type of its bounds data; otherwise, NULL. */
1634
1635 static struct type *
1636 desc_bounds_type (struct type *type)
1637 {
1638 struct type *r;
1639
1640 type = desc_base_type (type);
1641
1642 if (type == NULL)
1643 return NULL;
1644 else if (is_thin_pntr (type))
1645 {
1646 type = thin_descriptor_type (type);
1647 if (type == NULL)
1648 return NULL;
1649 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1650 if (r != NULL)
1651 return ada_check_typedef (r);
1652 }
1653 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1654 {
1655 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1656 if (r != NULL)
1657 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1658 }
1659 return NULL;
1660 }
1661
1662 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1663 one, a pointer to its bounds data. Otherwise NULL. */
1664
1665 static struct value *
1666 desc_bounds (struct value *arr)
1667 {
1668 struct type *type = ada_check_typedef (value_type (arr));
1669
1670 if (is_thin_pntr (type))
1671 {
1672 struct type *bounds_type =
1673 desc_bounds_type (thin_descriptor_type (type));
1674 LONGEST addr;
1675
1676 if (bounds_type == NULL)
1677 error (_("Bad GNAT array descriptor"));
1678
1679 /* NOTE: The following calculation is not really kosher, but
1680 since desc_type is an XVE-encoded type (and shouldn't be),
1681 the correct calculation is a real pain. FIXME (and fix GCC). */
1682 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1683 addr = value_as_long (arr);
1684 else
1685 addr = value_address (arr);
1686
1687 return
1688 value_from_longest (lookup_pointer_type (bounds_type),
1689 addr - TYPE_LENGTH (bounds_type));
1690 }
1691
1692 else if (is_thick_pntr (type))
1693 {
1694 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1695 _("Bad GNAT array descriptor"));
1696 struct type *p_bounds_type = value_type (p_bounds);
1697
1698 if (p_bounds_type
1699 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1700 {
1701 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1702
1703 if (TYPE_STUB (target_type))
1704 p_bounds = value_cast (lookup_pointer_type
1705 (ada_check_typedef (target_type)),
1706 p_bounds);
1707 }
1708 else
1709 error (_("Bad GNAT array descriptor"));
1710
1711 return p_bounds;
1712 }
1713 else
1714 return NULL;
1715 }
1716
1717 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1718 position of the field containing the address of the bounds data. */
1719
1720 static int
1721 fat_pntr_bounds_bitpos (struct type *type)
1722 {
1723 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1724 }
1725
1726 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1727 size of the field containing the address of the bounds data. */
1728
1729 static int
1730 fat_pntr_bounds_bitsize (struct type *type)
1731 {
1732 type = desc_base_type (type);
1733
1734 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1735 return TYPE_FIELD_BITSIZE (type, 1);
1736 else
1737 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1738 }
1739
1740 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1741 pointer to one, the type of its array data (a array-with-no-bounds type);
1742 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1743 data. */
1744
1745 static struct type *
1746 desc_data_target_type (struct type *type)
1747 {
1748 type = desc_base_type (type);
1749
1750 /* NOTE: The following is bogus; see comment in desc_bounds. */
1751 if (is_thin_pntr (type))
1752 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1753 else if (is_thick_pntr (type))
1754 {
1755 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1756
1757 if (data_type
1758 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1759 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1760 }
1761
1762 return NULL;
1763 }
1764
1765 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1766 its array data. */
1767
1768 static struct value *
1769 desc_data (struct value *arr)
1770 {
1771 struct type *type = value_type (arr);
1772
1773 if (is_thin_pntr (type))
1774 return thin_data_pntr (arr);
1775 else if (is_thick_pntr (type))
1776 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1777 _("Bad GNAT array descriptor"));
1778 else
1779 return NULL;
1780 }
1781
1782
1783 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1784 position of the field containing the address of the data. */
1785
1786 static int
1787 fat_pntr_data_bitpos (struct type *type)
1788 {
1789 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1790 }
1791
1792 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1793 size of the field containing the address of the data. */
1794
1795 static int
1796 fat_pntr_data_bitsize (struct type *type)
1797 {
1798 type = desc_base_type (type);
1799
1800 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1801 return TYPE_FIELD_BITSIZE (type, 0);
1802 else
1803 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1804 }
1805
1806 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1807 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1808 bound, if WHICH is 1. The first bound is I=1. */
1809
1810 static struct value *
1811 desc_one_bound (struct value *bounds, int i, int which)
1812 {
1813 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1814 _("Bad GNAT array descriptor bounds"));
1815 }
1816
1817 /* If BOUNDS is an array-bounds structure type, return the bit position
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1819 bound, if WHICH is 1. The first bound is I=1. */
1820
1821 static int
1822 desc_bound_bitpos (struct type *type, int i, int which)
1823 {
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1825 }
1826
1827 /* If BOUNDS is an array-bounds structure type, return the bit field size
1828 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1829 bound, if WHICH is 1. The first bound is I=1. */
1830
1831 static int
1832 desc_bound_bitsize (struct type *type, int i, int which)
1833 {
1834 type = desc_base_type (type);
1835
1836 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1838 else
1839 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1840 }
1841
1842 /* If TYPE is the type of an array-bounds structure, the type of its
1843 Ith bound (numbering from 1). Otherwise, NULL. */
1844
1845 static struct type *
1846 desc_index_type (struct type *type, int i)
1847 {
1848 type = desc_base_type (type);
1849
1850 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1851 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1852 else
1853 return NULL;
1854 }
1855
1856 /* The number of index positions in the array-bounds type TYPE.
1857 Return 0 if TYPE is NULL. */
1858
1859 static int
1860 desc_arity (struct type *type)
1861 {
1862 type = desc_base_type (type);
1863
1864 if (type != NULL)
1865 return TYPE_NFIELDS (type) / 2;
1866 return 0;
1867 }
1868
1869 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1870 an array descriptor type (representing an unconstrained array
1871 type). */
1872
1873 static int
1874 ada_is_direct_array_type (struct type *type)
1875 {
1876 if (type == NULL)
1877 return 0;
1878 type = ada_check_typedef (type);
1879 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1880 || ada_is_array_descriptor_type (type));
1881 }
1882
1883 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1884 * to one. */
1885
1886 static int
1887 ada_is_array_type (struct type *type)
1888 {
1889 while (type != NULL
1890 && (TYPE_CODE (type) == TYPE_CODE_PTR
1891 || TYPE_CODE (type) == TYPE_CODE_REF))
1892 type = TYPE_TARGET_TYPE (type);
1893 return ada_is_direct_array_type (type);
1894 }
1895
1896 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1897
1898 int
1899 ada_is_simple_array_type (struct type *type)
1900 {
1901 if (type == NULL)
1902 return 0;
1903 type = ada_check_typedef (type);
1904 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1905 || (TYPE_CODE (type) == TYPE_CODE_PTR
1906 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1907 == TYPE_CODE_ARRAY));
1908 }
1909
1910 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1911
1912 int
1913 ada_is_array_descriptor_type (struct type *type)
1914 {
1915 struct type *data_type = desc_data_target_type (type);
1916
1917 if (type == NULL)
1918 return 0;
1919 type = ada_check_typedef (type);
1920 return (data_type != NULL
1921 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1922 && desc_arity (desc_bounds_type (type)) > 0);
1923 }
1924
1925 /* Non-zero iff type is a partially mal-formed GNAT array
1926 descriptor. FIXME: This is to compensate for some problems with
1927 debugging output from GNAT. Re-examine periodically to see if it
1928 is still needed. */
1929
1930 int
1931 ada_is_bogus_array_descriptor (struct type *type)
1932 {
1933 return
1934 type != NULL
1935 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1936 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1937 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1938 && !ada_is_array_descriptor_type (type);
1939 }
1940
1941
1942 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1943 (fat pointer) returns the type of the array data described---specifically,
1944 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1945 in from the descriptor; otherwise, they are left unspecified. If
1946 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1947 returns NULL. The result is simply the type of ARR if ARR is not
1948 a descriptor. */
1949 struct type *
1950 ada_type_of_array (struct value *arr, int bounds)
1951 {
1952 if (ada_is_constrained_packed_array_type (value_type (arr)))
1953 return decode_constrained_packed_array_type (value_type (arr));
1954
1955 if (!ada_is_array_descriptor_type (value_type (arr)))
1956 return value_type (arr);
1957
1958 if (!bounds)
1959 {
1960 struct type *array_type =
1961 ada_check_typedef (desc_data_target_type (value_type (arr)));
1962
1963 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1964 TYPE_FIELD_BITSIZE (array_type, 0) =
1965 decode_packed_array_bitsize (value_type (arr));
1966
1967 return array_type;
1968 }
1969 else
1970 {
1971 struct type *elt_type;
1972 int arity;
1973 struct value *descriptor;
1974
1975 elt_type = ada_array_element_type (value_type (arr), -1);
1976 arity = ada_array_arity (value_type (arr));
1977
1978 if (elt_type == NULL || arity == 0)
1979 return ada_check_typedef (value_type (arr));
1980
1981 descriptor = desc_bounds (arr);
1982 if (value_as_long (descriptor) == 0)
1983 return NULL;
1984 while (arity > 0)
1985 {
1986 struct type *range_type = alloc_type_copy (value_type (arr));
1987 struct type *array_type = alloc_type_copy (value_type (arr));
1988 struct value *low = desc_one_bound (descriptor, arity, 0);
1989 struct value *high = desc_one_bound (descriptor, arity, 1);
1990
1991 arity -= 1;
1992 create_static_range_type (range_type, value_type (low),
1993 longest_to_int (value_as_long (low)),
1994 longest_to_int (value_as_long (high)));
1995 elt_type = create_array_type (array_type, elt_type, range_type);
1996
1997 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1998 {
1999 /* We need to store the element packed bitsize, as well as
2000 recompute the array size, because it was previously
2001 computed based on the unpacked element size. */
2002 LONGEST lo = value_as_long (low);
2003 LONGEST hi = value_as_long (high);
2004
2005 TYPE_FIELD_BITSIZE (elt_type, 0) =
2006 decode_packed_array_bitsize (value_type (arr));
2007 /* If the array has no element, then the size is already
2008 zero, and does not need to be recomputed. */
2009 if (lo < hi)
2010 {
2011 int array_bitsize =
2012 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2013
2014 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2015 }
2016 }
2017 }
2018
2019 return lookup_pointer_type (elt_type);
2020 }
2021 }
2022
2023 /* If ARR does not represent an array, returns ARR unchanged.
2024 Otherwise, returns either a standard GDB array with bounds set
2025 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2026 GDB array. Returns NULL if ARR is a null fat pointer. */
2027
2028 struct value *
2029 ada_coerce_to_simple_array_ptr (struct value *arr)
2030 {
2031 if (ada_is_array_descriptor_type (value_type (arr)))
2032 {
2033 struct type *arrType = ada_type_of_array (arr, 1);
2034
2035 if (arrType == NULL)
2036 return NULL;
2037 return value_cast (arrType, value_copy (desc_data (arr)));
2038 }
2039 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2040 return decode_constrained_packed_array (arr);
2041 else
2042 return arr;
2043 }
2044
2045 /* If ARR does not represent an array, returns ARR unchanged.
2046 Otherwise, returns a standard GDB array describing ARR (which may
2047 be ARR itself if it already is in the proper form). */
2048
2049 struct value *
2050 ada_coerce_to_simple_array (struct value *arr)
2051 {
2052 if (ada_is_array_descriptor_type (value_type (arr)))
2053 {
2054 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2055
2056 if (arrVal == NULL)
2057 error (_("Bounds unavailable for null array pointer."));
2058 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2059 return value_ind (arrVal);
2060 }
2061 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2062 return decode_constrained_packed_array (arr);
2063 else
2064 return arr;
2065 }
2066
2067 /* If TYPE represents a GNAT array type, return it translated to an
2068 ordinary GDB array type (possibly with BITSIZE fields indicating
2069 packing). For other types, is the identity. */
2070
2071 struct type *
2072 ada_coerce_to_simple_array_type (struct type *type)
2073 {
2074 if (ada_is_constrained_packed_array_type (type))
2075 return decode_constrained_packed_array_type (type);
2076
2077 if (ada_is_array_descriptor_type (type))
2078 return ada_check_typedef (desc_data_target_type (type));
2079
2080 return type;
2081 }
2082
2083 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2084
2085 static int
2086 ada_is_packed_array_type (struct type *type)
2087 {
2088 if (type == NULL)
2089 return 0;
2090 type = desc_base_type (type);
2091 type = ada_check_typedef (type);
2092 return
2093 ada_type_name (type) != NULL
2094 && strstr (ada_type_name (type), "___XP") != NULL;
2095 }
2096
2097 /* Non-zero iff TYPE represents a standard GNAT constrained
2098 packed-array type. */
2099
2100 int
2101 ada_is_constrained_packed_array_type (struct type *type)
2102 {
2103 return ada_is_packed_array_type (type)
2104 && !ada_is_array_descriptor_type (type);
2105 }
2106
2107 /* Non-zero iff TYPE represents an array descriptor for a
2108 unconstrained packed-array type. */
2109
2110 static int
2111 ada_is_unconstrained_packed_array_type (struct type *type)
2112 {
2113 return ada_is_packed_array_type (type)
2114 && ada_is_array_descriptor_type (type);
2115 }
2116
2117 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2118 return the size of its elements in bits. */
2119
2120 static long
2121 decode_packed_array_bitsize (struct type *type)
2122 {
2123 const char *raw_name;
2124 const char *tail;
2125 long bits;
2126
2127 /* Access to arrays implemented as fat pointers are encoded as a typedef
2128 of the fat pointer type. We need the name of the fat pointer type
2129 to do the decoding, so strip the typedef layer. */
2130 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2131 type = ada_typedef_target_type (type);
2132
2133 raw_name = ada_type_name (ada_check_typedef (type));
2134 if (!raw_name)
2135 raw_name = ada_type_name (desc_base_type (type));
2136
2137 if (!raw_name)
2138 return 0;
2139
2140 tail = strstr (raw_name, "___XP");
2141 gdb_assert (tail != NULL);
2142
2143 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2144 {
2145 lim_warning
2146 (_("could not understand bit size information on packed array"));
2147 return 0;
2148 }
2149
2150 return bits;
2151 }
2152
2153 /* Given that TYPE is a standard GDB array type with all bounds filled
2154 in, and that the element size of its ultimate scalar constituents
2155 (that is, either its elements, or, if it is an array of arrays, its
2156 elements' elements, etc.) is *ELT_BITS, return an identical type,
2157 but with the bit sizes of its elements (and those of any
2158 constituent arrays) recorded in the BITSIZE components of its
2159 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2160 in bits.
2161
2162 Note that, for arrays whose index type has an XA encoding where
2163 a bound references a record discriminant, getting that discriminant,
2164 and therefore the actual value of that bound, is not possible
2165 because none of the given parameters gives us access to the record.
2166 This function assumes that it is OK in the context where it is being
2167 used to return an array whose bounds are still dynamic and where
2168 the length is arbitrary. */
2169
2170 static struct type *
2171 constrained_packed_array_type (struct type *type, long *elt_bits)
2172 {
2173 struct type *new_elt_type;
2174 struct type *new_type;
2175 struct type *index_type_desc;
2176 struct type *index_type;
2177 LONGEST low_bound, high_bound;
2178
2179 type = ada_check_typedef (type);
2180 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2181 return type;
2182
2183 index_type_desc = ada_find_parallel_type (type, "___XA");
2184 if (index_type_desc)
2185 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2186 NULL);
2187 else
2188 index_type = TYPE_INDEX_TYPE (type);
2189
2190 new_type = alloc_type_copy (type);
2191 new_elt_type =
2192 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2193 elt_bits);
2194 create_array_type (new_type, new_elt_type, index_type);
2195 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2196 TYPE_NAME (new_type) = ada_type_name (type);
2197
2198 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2199 && is_dynamic_type (check_typedef (index_type)))
2200 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2201 low_bound = high_bound = 0;
2202 if (high_bound < low_bound)
2203 *elt_bits = TYPE_LENGTH (new_type) = 0;
2204 else
2205 {
2206 *elt_bits *= (high_bound - low_bound + 1);
2207 TYPE_LENGTH (new_type) =
2208 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2209 }
2210
2211 TYPE_FIXED_INSTANCE (new_type) = 1;
2212 return new_type;
2213 }
2214
2215 /* The array type encoded by TYPE, where
2216 ada_is_constrained_packed_array_type (TYPE). */
2217
2218 static struct type *
2219 decode_constrained_packed_array_type (struct type *type)
2220 {
2221 const char *raw_name = ada_type_name (ada_check_typedef (type));
2222 char *name;
2223 const char *tail;
2224 struct type *shadow_type;
2225 long bits;
2226
2227 if (!raw_name)
2228 raw_name = ada_type_name (desc_base_type (type));
2229
2230 if (!raw_name)
2231 return NULL;
2232
2233 name = (char *) alloca (strlen (raw_name) + 1);
2234 tail = strstr (raw_name, "___XP");
2235 type = desc_base_type (type);
2236
2237 memcpy (name, raw_name, tail - raw_name);
2238 name[tail - raw_name] = '\000';
2239
2240 shadow_type = ada_find_parallel_type_with_name (type, name);
2241
2242 if (shadow_type == NULL)
2243 {
2244 lim_warning (_("could not find bounds information on packed array"));
2245 return NULL;
2246 }
2247 shadow_type = check_typedef (shadow_type);
2248
2249 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2250 {
2251 lim_warning (_("could not understand bounds "
2252 "information on packed array"));
2253 return NULL;
2254 }
2255
2256 bits = decode_packed_array_bitsize (type);
2257 return constrained_packed_array_type (shadow_type, &bits);
2258 }
2259
2260 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2261 array, returns a simple array that denotes that array. Its type is a
2262 standard GDB array type except that the BITSIZEs of the array
2263 target types are set to the number of bits in each element, and the
2264 type length is set appropriately. */
2265
2266 static struct value *
2267 decode_constrained_packed_array (struct value *arr)
2268 {
2269 struct type *type;
2270
2271 /* If our value is a pointer, then dereference it. Likewise if
2272 the value is a reference. Make sure that this operation does not
2273 cause the target type to be fixed, as this would indirectly cause
2274 this array to be decoded. The rest of the routine assumes that
2275 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2276 and "value_ind" routines to perform the dereferencing, as opposed
2277 to using "ada_coerce_ref" or "ada_value_ind". */
2278 arr = coerce_ref (arr);
2279 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2280 arr = value_ind (arr);
2281
2282 type = decode_constrained_packed_array_type (value_type (arr));
2283 if (type == NULL)
2284 {
2285 error (_("can't unpack array"));
2286 return NULL;
2287 }
2288
2289 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2290 && ada_is_modular_type (value_type (arr)))
2291 {
2292 /* This is a (right-justified) modular type representing a packed
2293 array with no wrapper. In order to interpret the value through
2294 the (left-justified) packed array type we just built, we must
2295 first left-justify it. */
2296 int bit_size, bit_pos;
2297 ULONGEST mod;
2298
2299 mod = ada_modulus (value_type (arr)) - 1;
2300 bit_size = 0;
2301 while (mod > 0)
2302 {
2303 bit_size += 1;
2304 mod >>= 1;
2305 }
2306 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2307 arr = ada_value_primitive_packed_val (arr, NULL,
2308 bit_pos / HOST_CHAR_BIT,
2309 bit_pos % HOST_CHAR_BIT,
2310 bit_size,
2311 type);
2312 }
2313
2314 return coerce_unspec_val_to_type (arr, type);
2315 }
2316
2317
2318 /* The value of the element of packed array ARR at the ARITY indices
2319 given in IND. ARR must be a simple array. */
2320
2321 static struct value *
2322 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2323 {
2324 int i;
2325 int bits, elt_off, bit_off;
2326 long elt_total_bit_offset;
2327 struct type *elt_type;
2328 struct value *v;
2329
2330 bits = 0;
2331 elt_total_bit_offset = 0;
2332 elt_type = ada_check_typedef (value_type (arr));
2333 for (i = 0; i < arity; i += 1)
2334 {
2335 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2336 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2337 error
2338 (_("attempt to do packed indexing of "
2339 "something other than a packed array"));
2340 else
2341 {
2342 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2343 LONGEST lowerbound, upperbound;
2344 LONGEST idx;
2345
2346 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2347 {
2348 lim_warning (_("don't know bounds of array"));
2349 lowerbound = upperbound = 0;
2350 }
2351
2352 idx = pos_atr (ind[i]);
2353 if (idx < lowerbound || idx > upperbound)
2354 lim_warning (_("packed array index %ld out of bounds"),
2355 (long) idx);
2356 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2357 elt_total_bit_offset += (idx - lowerbound) * bits;
2358 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2359 }
2360 }
2361 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2362 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2363
2364 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2365 bits, elt_type);
2366 return v;
2367 }
2368
2369 /* Non-zero iff TYPE includes negative integer values. */
2370
2371 static int
2372 has_negatives (struct type *type)
2373 {
2374 switch (TYPE_CODE (type))
2375 {
2376 default:
2377 return 0;
2378 case TYPE_CODE_INT:
2379 return !TYPE_UNSIGNED (type);
2380 case TYPE_CODE_RANGE:
2381 return TYPE_LOW_BOUND (type) < 0;
2382 }
2383 }
2384
2385 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2386 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2387 the unpacked buffer.
2388
2389 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2390 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2391
2392 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2393 zero otherwise.
2394
2395 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2396
2397 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2398
2399 static void
2400 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2401 gdb_byte *unpacked, int unpacked_len,
2402 int is_big_endian, int is_signed_type,
2403 int is_scalar)
2404 {
2405 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2406 int src_idx; /* Index into the source area */
2407 int src_bytes_left; /* Number of source bytes left to process. */
2408 int srcBitsLeft; /* Number of source bits left to move */
2409 int unusedLS; /* Number of bits in next significant
2410 byte of source that are unused */
2411
2412 int unpacked_idx; /* Index into the unpacked buffer */
2413 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2414
2415 unsigned long accum; /* Staging area for bits being transferred */
2416 int accumSize; /* Number of meaningful bits in accum */
2417 unsigned char sign;
2418
2419 /* Transmit bytes from least to most significant; delta is the direction
2420 the indices move. */
2421 int delta = is_big_endian ? -1 : 1;
2422
2423 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2424 bits from SRC. .*/
2425 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2426 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2427 bit_size, unpacked_len);
2428
2429 srcBitsLeft = bit_size;
2430 src_bytes_left = src_len;
2431 unpacked_bytes_left = unpacked_len;
2432 sign = 0;
2433
2434 if (is_big_endian)
2435 {
2436 src_idx = src_len - 1;
2437 if (is_signed_type
2438 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2439 sign = ~0;
2440
2441 unusedLS =
2442 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2443 % HOST_CHAR_BIT;
2444
2445 if (is_scalar)
2446 {
2447 accumSize = 0;
2448 unpacked_idx = unpacked_len - 1;
2449 }
2450 else
2451 {
2452 /* Non-scalar values must be aligned at a byte boundary... */
2453 accumSize =
2454 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2455 /* ... And are placed at the beginning (most-significant) bytes
2456 of the target. */
2457 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2458 unpacked_bytes_left = unpacked_idx + 1;
2459 }
2460 }
2461 else
2462 {
2463 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2464
2465 src_idx = unpacked_idx = 0;
2466 unusedLS = bit_offset;
2467 accumSize = 0;
2468
2469 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2470 sign = ~0;
2471 }
2472
2473 accum = 0;
2474 while (src_bytes_left > 0)
2475 {
2476 /* Mask for removing bits of the next source byte that are not
2477 part of the value. */
2478 unsigned int unusedMSMask =
2479 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2480 1;
2481 /* Sign-extend bits for this byte. */
2482 unsigned int signMask = sign & ~unusedMSMask;
2483
2484 accum |=
2485 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2486 accumSize += HOST_CHAR_BIT - unusedLS;
2487 if (accumSize >= HOST_CHAR_BIT)
2488 {
2489 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
2490 accumSize -= HOST_CHAR_BIT;
2491 accum >>= HOST_CHAR_BIT;
2492 unpacked_bytes_left -= 1;
2493 unpacked_idx += delta;
2494 }
2495 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2496 unusedLS = 0;
2497 src_bytes_left -= 1;
2498 src_idx += delta;
2499 }
2500 while (unpacked_bytes_left > 0)
2501 {
2502 accum |= sign << accumSize;
2503 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
2504 accumSize -= HOST_CHAR_BIT;
2505 if (accumSize < 0)
2506 accumSize = 0;
2507 accum >>= HOST_CHAR_BIT;
2508 unpacked_bytes_left -= 1;
2509 unpacked_idx += delta;
2510 }
2511 }
2512
2513 /* Create a new value of type TYPE from the contents of OBJ starting
2514 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2515 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2516 assigning through the result will set the field fetched from.
2517 VALADDR is ignored unless OBJ is NULL, in which case,
2518 VALADDR+OFFSET must address the start of storage containing the
2519 packed value. The value returned in this case is never an lval.
2520 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2521
2522 struct value *
2523 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2524 long offset, int bit_offset, int bit_size,
2525 struct type *type)
2526 {
2527 struct value *v;
2528 const gdb_byte *src; /* First byte containing data to unpack */
2529 gdb_byte *unpacked;
2530 const int is_scalar = is_scalar_type (type);
2531 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2532 gdb_byte *staging = NULL;
2533 int staging_len = 0;
2534 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2535
2536 type = ada_check_typedef (type);
2537
2538 if (obj == NULL)
2539 src = valaddr + offset;
2540 else
2541 src = value_contents (obj) + offset;
2542
2543 if (is_dynamic_type (type))
2544 {
2545 /* The length of TYPE might by dynamic, so we need to resolve
2546 TYPE in order to know its actual size, which we then use
2547 to create the contents buffer of the value we return.
2548 The difficulty is that the data containing our object is
2549 packed, and therefore maybe not at a byte boundary. So, what
2550 we do, is unpack the data into a byte-aligned buffer, and then
2551 use that buffer as our object's value for resolving the type. */
2552 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2553 staging = (gdb_byte *) malloc (staging_len);
2554 make_cleanup (xfree, staging);
2555
2556 ada_unpack_from_contents (src, bit_offset, bit_size,
2557 staging, staging_len,
2558 is_big_endian, has_negatives (type),
2559 is_scalar);
2560 type = resolve_dynamic_type (type, staging, 0);
2561 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2562 {
2563 /* This happens when the length of the object is dynamic,
2564 and is actually smaller than the space reserved for it.
2565 For instance, in an array of variant records, the bit_size
2566 we're given is the array stride, which is constant and
2567 normally equal to the maximum size of its element.
2568 But, in reality, each element only actually spans a portion
2569 of that stride. */
2570 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2571 }
2572 }
2573
2574 if (obj == NULL)
2575 {
2576 v = allocate_value (type);
2577 src = valaddr + offset;
2578 }
2579 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2580 {
2581 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2582 gdb_byte *buf;
2583
2584 v = value_at (type, value_address (obj) + offset);
2585 buf = (gdb_byte *) alloca (src_len);
2586 read_memory (value_address (v), buf, src_len);
2587 src = buf;
2588 }
2589 else
2590 {
2591 v = allocate_value (type);
2592 src = value_contents (obj) + offset;
2593 }
2594
2595 if (obj != NULL)
2596 {
2597 long new_offset = offset;
2598
2599 set_value_component_location (v, obj);
2600 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2601 set_value_bitsize (v, bit_size);
2602 if (value_bitpos (v) >= HOST_CHAR_BIT)
2603 {
2604 ++new_offset;
2605 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2606 }
2607 set_value_offset (v, new_offset);
2608
2609 /* Also set the parent value. This is needed when trying to
2610 assign a new value (in inferior memory). */
2611 set_value_parent (v, obj);
2612 }
2613 else
2614 set_value_bitsize (v, bit_size);
2615 unpacked = value_contents_writeable (v);
2616
2617 if (bit_size == 0)
2618 {
2619 memset (unpacked, 0, TYPE_LENGTH (type));
2620 do_cleanups (old_chain);
2621 return v;
2622 }
2623
2624 if (staging != NULL && staging_len == TYPE_LENGTH (type))
2625 {
2626 /* Small short-cut: If we've unpacked the data into a buffer
2627 of the same size as TYPE's length, then we can reuse that,
2628 instead of doing the unpacking again. */
2629 memcpy (unpacked, staging, staging_len);
2630 }
2631 else
2632 ada_unpack_from_contents (src, bit_offset, bit_size,
2633 unpacked, TYPE_LENGTH (type),
2634 is_big_endian, has_negatives (type), is_scalar);
2635
2636 do_cleanups (old_chain);
2637 return v;
2638 }
2639
2640 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2641 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2642 not overlap. */
2643 static void
2644 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2645 int src_offset, int n, int bits_big_endian_p)
2646 {
2647 unsigned int accum, mask;
2648 int accum_bits, chunk_size;
2649
2650 target += targ_offset / HOST_CHAR_BIT;
2651 targ_offset %= HOST_CHAR_BIT;
2652 source += src_offset / HOST_CHAR_BIT;
2653 src_offset %= HOST_CHAR_BIT;
2654 if (bits_big_endian_p)
2655 {
2656 accum = (unsigned char) *source;
2657 source += 1;
2658 accum_bits = HOST_CHAR_BIT - src_offset;
2659
2660 while (n > 0)
2661 {
2662 int unused_right;
2663
2664 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2665 accum_bits += HOST_CHAR_BIT;
2666 source += 1;
2667 chunk_size = HOST_CHAR_BIT - targ_offset;
2668 if (chunk_size > n)
2669 chunk_size = n;
2670 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2671 mask = ((1 << chunk_size) - 1) << unused_right;
2672 *target =
2673 (*target & ~mask)
2674 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2675 n -= chunk_size;
2676 accum_bits -= chunk_size;
2677 target += 1;
2678 targ_offset = 0;
2679 }
2680 }
2681 else
2682 {
2683 accum = (unsigned char) *source >> src_offset;
2684 source += 1;
2685 accum_bits = HOST_CHAR_BIT - src_offset;
2686
2687 while (n > 0)
2688 {
2689 accum = accum + ((unsigned char) *source << accum_bits);
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 mask = ((1 << chunk_size) - 1) << targ_offset;
2696 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2697 n -= chunk_size;
2698 accum_bits -= chunk_size;
2699 accum >>= chunk_size;
2700 target += 1;
2701 targ_offset = 0;
2702 }
2703 }
2704 }
2705
2706 /* Store the contents of FROMVAL into the location of TOVAL.
2707 Return a new value with the location of TOVAL and contents of
2708 FROMVAL. Handles assignment into packed fields that have
2709 floating-point or non-scalar types. */
2710
2711 static struct value *
2712 ada_value_assign (struct value *toval, struct value *fromval)
2713 {
2714 struct type *type = value_type (toval);
2715 int bits = value_bitsize (toval);
2716
2717 toval = ada_coerce_ref (toval);
2718 fromval = ada_coerce_ref (fromval);
2719
2720 if (ada_is_direct_array_type (value_type (toval)))
2721 toval = ada_coerce_to_simple_array (toval);
2722 if (ada_is_direct_array_type (value_type (fromval)))
2723 fromval = ada_coerce_to_simple_array (fromval);
2724
2725 if (!deprecated_value_modifiable (toval))
2726 error (_("Left operand of assignment is not a modifiable lvalue."));
2727
2728 if (VALUE_LVAL (toval) == lval_memory
2729 && bits > 0
2730 && (TYPE_CODE (type) == TYPE_CODE_FLT
2731 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2732 {
2733 int len = (value_bitpos (toval)
2734 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2735 int from_size;
2736 gdb_byte *buffer = (gdb_byte *) alloca (len);
2737 struct value *val;
2738 CORE_ADDR to_addr = value_address (toval);
2739
2740 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2741 fromval = value_cast (type, fromval);
2742
2743 read_memory (to_addr, buffer, len);
2744 from_size = value_bitsize (fromval);
2745 if (from_size == 0)
2746 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2747 if (gdbarch_bits_big_endian (get_type_arch (type)))
2748 move_bits (buffer, value_bitpos (toval),
2749 value_contents (fromval), from_size - bits, bits, 1);
2750 else
2751 move_bits (buffer, value_bitpos (toval),
2752 value_contents (fromval), 0, bits, 0);
2753 write_memory_with_notification (to_addr, buffer, len);
2754
2755 val = value_copy (toval);
2756 memcpy (value_contents_raw (val), value_contents (fromval),
2757 TYPE_LENGTH (type));
2758 deprecated_set_value_type (val, type);
2759
2760 return val;
2761 }
2762
2763 return value_assign (toval, fromval);
2764 }
2765
2766
2767 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2768 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2769 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2770 COMPONENT, and not the inferior's memory. The current contents
2771 of COMPONENT are ignored.
2772
2773 Although not part of the initial design, this function also works
2774 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2775 had a null address, and COMPONENT had an address which is equal to
2776 its offset inside CONTAINER. */
2777
2778 static void
2779 value_assign_to_component (struct value *container, struct value *component,
2780 struct value *val)
2781 {
2782 LONGEST offset_in_container =
2783 (LONGEST) (value_address (component) - value_address (container));
2784 int bit_offset_in_container =
2785 value_bitpos (component) - value_bitpos (container);
2786 int bits;
2787
2788 val = value_cast (value_type (component), val);
2789
2790 if (value_bitsize (component) == 0)
2791 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2792 else
2793 bits = value_bitsize (component);
2794
2795 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2796 move_bits (value_contents_writeable (container) + offset_in_container,
2797 value_bitpos (container) + bit_offset_in_container,
2798 value_contents (val),
2799 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2800 bits, 1);
2801 else
2802 move_bits (value_contents_writeable (container) + offset_in_container,
2803 value_bitpos (container) + bit_offset_in_container,
2804 value_contents (val), 0, bits, 0);
2805 }
2806
2807 /* The value of the element of array ARR at the ARITY indices given in IND.
2808 ARR may be either a simple array, GNAT array descriptor, or pointer
2809 thereto. */
2810
2811 struct value *
2812 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2813 {
2814 int k;
2815 struct value *elt;
2816 struct type *elt_type;
2817
2818 elt = ada_coerce_to_simple_array (arr);
2819
2820 elt_type = ada_check_typedef (value_type (elt));
2821 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2822 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2823 return value_subscript_packed (elt, arity, ind);
2824
2825 for (k = 0; k < arity; k += 1)
2826 {
2827 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2828 error (_("too many subscripts (%d expected)"), k);
2829 elt = value_subscript (elt, pos_atr (ind[k]));
2830 }
2831 return elt;
2832 }
2833
2834 /* Assuming ARR is a pointer to a GDB array, the value of the element
2835 of *ARR at the ARITY indices given in IND.
2836 Does not read the entire array into memory.
2837
2838 Note: Unlike what one would expect, this function is used instead of
2839 ada_value_subscript for basically all non-packed array types. The reason
2840 for this is that a side effect of doing our own pointer arithmetics instead
2841 of relying on value_subscript is that there is no implicit typedef peeling.
2842 This is important for arrays of array accesses, where it allows us to
2843 preserve the fact that the array's element is an array access, where the
2844 access part os encoded in a typedef layer. */
2845
2846 static struct value *
2847 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2848 {
2849 int k;
2850 struct value *array_ind = ada_value_ind (arr);
2851 struct type *type
2852 = check_typedef (value_enclosing_type (array_ind));
2853
2854 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2855 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2856 return value_subscript_packed (array_ind, arity, ind);
2857
2858 for (k = 0; k < arity; k += 1)
2859 {
2860 LONGEST lwb, upb;
2861 struct value *lwb_value;
2862
2863 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2864 error (_("too many subscripts (%d expected)"), k);
2865 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2866 value_copy (arr));
2867 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2868 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2869 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2870 type = TYPE_TARGET_TYPE (type);
2871 }
2872
2873 return value_ind (arr);
2874 }
2875
2876 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2877 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2878 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2879 this array is LOW, as per Ada rules. */
2880 static struct value *
2881 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2882 int low, int high)
2883 {
2884 struct type *type0 = ada_check_typedef (type);
2885 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2886 struct type *index_type
2887 = create_static_range_type (NULL, base_index_type, low, high);
2888 struct type *slice_type =
2889 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2890 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2891 LONGEST base_low_pos, low_pos;
2892 CORE_ADDR base;
2893
2894 if (!discrete_position (base_index_type, low, &low_pos)
2895 || !discrete_position (base_index_type, base_low, &base_low_pos))
2896 {
2897 warning (_("unable to get positions in slice, use bounds instead"));
2898 low_pos = low;
2899 base_low_pos = base_low;
2900 }
2901
2902 base = value_as_address (array_ptr)
2903 + ((low_pos - base_low_pos)
2904 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2905 return value_at_lazy (slice_type, base);
2906 }
2907
2908
2909 static struct value *
2910 ada_value_slice (struct value *array, int low, int high)
2911 {
2912 struct type *type = ada_check_typedef (value_type (array));
2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2914 struct type *index_type
2915 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2916 struct type *slice_type =
2917 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2918 LONGEST low_pos, high_pos;
2919
2920 if (!discrete_position (base_index_type, low, &low_pos)
2921 || !discrete_position (base_index_type, high, &high_pos))
2922 {
2923 warning (_("unable to get positions in slice, use bounds instead"));
2924 low_pos = low;
2925 high_pos = high;
2926 }
2927
2928 return value_cast (slice_type,
2929 value_slice (array, low, high_pos - low_pos + 1));
2930 }
2931
2932 /* If type is a record type in the form of a standard GNAT array
2933 descriptor, returns the number of dimensions for type. If arr is a
2934 simple array, returns the number of "array of"s that prefix its
2935 type designation. Otherwise, returns 0. */
2936
2937 int
2938 ada_array_arity (struct type *type)
2939 {
2940 int arity;
2941
2942 if (type == NULL)
2943 return 0;
2944
2945 type = desc_base_type (type);
2946
2947 arity = 0;
2948 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2949 return desc_arity (desc_bounds_type (type));
2950 else
2951 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2952 {
2953 arity += 1;
2954 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2955 }
2956
2957 return arity;
2958 }
2959
2960 /* If TYPE is a record type in the form of a standard GNAT array
2961 descriptor or a simple array type, returns the element type for
2962 TYPE after indexing by NINDICES indices, or by all indices if
2963 NINDICES is -1. Otherwise, returns NULL. */
2964
2965 struct type *
2966 ada_array_element_type (struct type *type, int nindices)
2967 {
2968 type = desc_base_type (type);
2969
2970 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2971 {
2972 int k;
2973 struct type *p_array_type;
2974
2975 p_array_type = desc_data_target_type (type);
2976
2977 k = ada_array_arity (type);
2978 if (k == 0)
2979 return NULL;
2980
2981 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2982 if (nindices >= 0 && k > nindices)
2983 k = nindices;
2984 while (k > 0 && p_array_type != NULL)
2985 {
2986 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2987 k -= 1;
2988 }
2989 return p_array_type;
2990 }
2991 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2992 {
2993 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2994 {
2995 type = TYPE_TARGET_TYPE (type);
2996 nindices -= 1;
2997 }
2998 return type;
2999 }
3000
3001 return NULL;
3002 }
3003
3004 /* The type of nth index in arrays of given type (n numbering from 1).
3005 Does not examine memory. Throws an error if N is invalid or TYPE
3006 is not an array type. NAME is the name of the Ada attribute being
3007 evaluated ('range, 'first, 'last, or 'length); it is used in building
3008 the error message. */
3009
3010 static struct type *
3011 ada_index_type (struct type *type, int n, const char *name)
3012 {
3013 struct type *result_type;
3014
3015 type = desc_base_type (type);
3016
3017 if (n < 0 || n > ada_array_arity (type))
3018 error (_("invalid dimension number to '%s"), name);
3019
3020 if (ada_is_simple_array_type (type))
3021 {
3022 int i;
3023
3024 for (i = 1; i < n; i += 1)
3025 type = TYPE_TARGET_TYPE (type);
3026 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3027 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3028 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3029 perhaps stabsread.c would make more sense. */
3030 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3031 result_type = NULL;
3032 }
3033 else
3034 {
3035 result_type = desc_index_type (desc_bounds_type (type), n);
3036 if (result_type == NULL)
3037 error (_("attempt to take bound of something that is not an array"));
3038 }
3039
3040 return result_type;
3041 }
3042
3043 /* Given that arr is an array type, returns the lower bound of the
3044 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3045 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3046 array-descriptor type. It works for other arrays with bounds supplied
3047 by run-time quantities other than discriminants. */
3048
3049 static LONGEST
3050 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3051 {
3052 struct type *type, *index_type_desc, *index_type;
3053 int i;
3054
3055 gdb_assert (which == 0 || which == 1);
3056
3057 if (ada_is_constrained_packed_array_type (arr_type))
3058 arr_type = decode_constrained_packed_array_type (arr_type);
3059
3060 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3061 return (LONGEST) - which;
3062
3063 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3064 type = TYPE_TARGET_TYPE (arr_type);
3065 else
3066 type = arr_type;
3067
3068 if (TYPE_FIXED_INSTANCE (type))
3069 {
3070 /* The array has already been fixed, so we do not need to
3071 check the parallel ___XA type again. That encoding has
3072 already been applied, so ignore it now. */
3073 index_type_desc = NULL;
3074 }
3075 else
3076 {
3077 index_type_desc = ada_find_parallel_type (type, "___XA");
3078 ada_fixup_array_indexes_type (index_type_desc);
3079 }
3080
3081 if (index_type_desc != NULL)
3082 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3083 NULL);
3084 else
3085 {
3086 struct type *elt_type = check_typedef (type);
3087
3088 for (i = 1; i < n; i++)
3089 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3090
3091 index_type = TYPE_INDEX_TYPE (elt_type);
3092 }
3093
3094 return
3095 (LONGEST) (which == 0
3096 ? ada_discrete_type_low_bound (index_type)
3097 : ada_discrete_type_high_bound (index_type));
3098 }
3099
3100 /* Given that arr is an array value, returns the lower bound of the
3101 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3102 WHICH is 1. This routine will also work for arrays with bounds
3103 supplied by run-time quantities other than discriminants. */
3104
3105 static LONGEST
3106 ada_array_bound (struct value *arr, int n, int which)
3107 {
3108 struct type *arr_type;
3109
3110 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3111 arr = value_ind (arr);
3112 arr_type = value_enclosing_type (arr);
3113
3114 if (ada_is_constrained_packed_array_type (arr_type))
3115 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3116 else if (ada_is_simple_array_type (arr_type))
3117 return ada_array_bound_from_type (arr_type, n, which);
3118 else
3119 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3120 }
3121
3122 /* Given that arr is an array value, returns the length of the
3123 nth index. This routine will also work for arrays with bounds
3124 supplied by run-time quantities other than discriminants.
3125 Does not work for arrays indexed by enumeration types with representation
3126 clauses at the moment. */
3127
3128 static LONGEST
3129 ada_array_length (struct value *arr, int n)
3130 {
3131 struct type *arr_type, *index_type;
3132 int low, high;
3133
3134 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3135 arr = value_ind (arr);
3136 arr_type = value_enclosing_type (arr);
3137
3138 if (ada_is_constrained_packed_array_type (arr_type))
3139 return ada_array_length (decode_constrained_packed_array (arr), n);
3140
3141 if (ada_is_simple_array_type (arr_type))
3142 {
3143 low = ada_array_bound_from_type (arr_type, n, 0);
3144 high = ada_array_bound_from_type (arr_type, n, 1);
3145 }
3146 else
3147 {
3148 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3149 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3150 }
3151
3152 arr_type = check_typedef (arr_type);
3153 index_type = TYPE_INDEX_TYPE (arr_type);
3154 if (index_type != NULL)
3155 {
3156 struct type *base_type;
3157 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3158 base_type = TYPE_TARGET_TYPE (index_type);
3159 else
3160 base_type = index_type;
3161
3162 low = pos_atr (value_from_longest (base_type, low));
3163 high = pos_atr (value_from_longest (base_type, high));
3164 }
3165 return high - low + 1;
3166 }
3167
3168 /* An empty array whose type is that of ARR_TYPE (an array type),
3169 with bounds LOW to LOW-1. */
3170
3171 static struct value *
3172 empty_array (struct type *arr_type, int low)
3173 {
3174 struct type *arr_type0 = ada_check_typedef (arr_type);
3175 struct type *index_type
3176 = create_static_range_type
3177 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3178 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3179
3180 return allocate_value (create_array_type (NULL, elt_type, index_type));
3181 }
3182 \f
3183
3184 /* Name resolution */
3185
3186 /* The "decoded" name for the user-definable Ada operator corresponding
3187 to OP. */
3188
3189 static const char *
3190 ada_decoded_op_name (enum exp_opcode op)
3191 {
3192 int i;
3193
3194 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3195 {
3196 if (ada_opname_table[i].op == op)
3197 return ada_opname_table[i].decoded;
3198 }
3199 error (_("Could not find operator name for opcode"));
3200 }
3201
3202
3203 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3204 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3205 undefined namespace) and converts operators that are
3206 user-defined into appropriate function calls. If CONTEXT_TYPE is
3207 non-null, it provides a preferred result type [at the moment, only
3208 type void has any effect---causing procedures to be preferred over
3209 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3210 return type is preferred. May change (expand) *EXP. */
3211
3212 static void
3213 resolve (struct expression **expp, int void_context_p)
3214 {
3215 struct type *context_type = NULL;
3216 int pc = 0;
3217
3218 if (void_context_p)
3219 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3220
3221 resolve_subexp (expp, &pc, 1, context_type);
3222 }
3223
3224 /* Resolve the operator of the subexpression beginning at
3225 position *POS of *EXPP. "Resolving" consists of replacing
3226 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3227 with their resolutions, replacing built-in operators with
3228 function calls to user-defined operators, where appropriate, and,
3229 when DEPROCEDURE_P is non-zero, converting function-valued variables
3230 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3231 are as in ada_resolve, above. */
3232
3233 static struct value *
3234 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3235 struct type *context_type)
3236 {
3237 int pc = *pos;
3238 int i;
3239 struct expression *exp; /* Convenience: == *expp. */
3240 enum exp_opcode op = (*expp)->elts[pc].opcode;
3241 struct value **argvec; /* Vector of operand types (alloca'ed). */
3242 int nargs; /* Number of operands. */
3243 int oplen;
3244
3245 argvec = NULL;
3246 nargs = 0;
3247 exp = *expp;
3248
3249 /* Pass one: resolve operands, saving their types and updating *pos,
3250 if needed. */
3251 switch (op)
3252 {
3253 case OP_FUNCALL:
3254 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3255 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3256 *pos += 7;
3257 else
3258 {
3259 *pos += 3;
3260 resolve_subexp (expp, pos, 0, NULL);
3261 }
3262 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3263 break;
3264
3265 case UNOP_ADDR:
3266 *pos += 1;
3267 resolve_subexp (expp, pos, 0, NULL);
3268 break;
3269
3270 case UNOP_QUAL:
3271 *pos += 3;
3272 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3273 break;
3274
3275 case OP_ATR_MODULUS:
3276 case OP_ATR_SIZE:
3277 case OP_ATR_TAG:
3278 case OP_ATR_FIRST:
3279 case OP_ATR_LAST:
3280 case OP_ATR_LENGTH:
3281 case OP_ATR_POS:
3282 case OP_ATR_VAL:
3283 case OP_ATR_MIN:
3284 case OP_ATR_MAX:
3285 case TERNOP_IN_RANGE:
3286 case BINOP_IN_BOUNDS:
3287 case UNOP_IN_RANGE:
3288 case OP_AGGREGATE:
3289 case OP_OTHERS:
3290 case OP_CHOICES:
3291 case OP_POSITIONAL:
3292 case OP_DISCRETE_RANGE:
3293 case OP_NAME:
3294 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3295 *pos += oplen;
3296 break;
3297
3298 case BINOP_ASSIGN:
3299 {
3300 struct value *arg1;
3301
3302 *pos += 1;
3303 arg1 = resolve_subexp (expp, pos, 0, NULL);
3304 if (arg1 == NULL)
3305 resolve_subexp (expp, pos, 1, NULL);
3306 else
3307 resolve_subexp (expp, pos, 1, value_type (arg1));
3308 break;
3309 }
3310
3311 case UNOP_CAST:
3312 *pos += 3;
3313 nargs = 1;
3314 break;
3315
3316 case BINOP_ADD:
3317 case BINOP_SUB:
3318 case BINOP_MUL:
3319 case BINOP_DIV:
3320 case BINOP_REM:
3321 case BINOP_MOD:
3322 case BINOP_EXP:
3323 case BINOP_CONCAT:
3324 case BINOP_LOGICAL_AND:
3325 case BINOP_LOGICAL_OR:
3326 case BINOP_BITWISE_AND:
3327 case BINOP_BITWISE_IOR:
3328 case BINOP_BITWISE_XOR:
3329
3330 case BINOP_EQUAL:
3331 case BINOP_NOTEQUAL:
3332 case BINOP_LESS:
3333 case BINOP_GTR:
3334 case BINOP_LEQ:
3335 case BINOP_GEQ:
3336
3337 case BINOP_REPEAT:
3338 case BINOP_SUBSCRIPT:
3339 case BINOP_COMMA:
3340 *pos += 1;
3341 nargs = 2;
3342 break;
3343
3344 case UNOP_NEG:
3345 case UNOP_PLUS:
3346 case UNOP_LOGICAL_NOT:
3347 case UNOP_ABS:
3348 case UNOP_IND:
3349 *pos += 1;
3350 nargs = 1;
3351 break;
3352
3353 case OP_LONG:
3354 case OP_DOUBLE:
3355 case OP_VAR_VALUE:
3356 *pos += 4;
3357 break;
3358
3359 case OP_TYPE:
3360 case OP_BOOL:
3361 case OP_LAST:
3362 case OP_INTERNALVAR:
3363 *pos += 3;
3364 break;
3365
3366 case UNOP_MEMVAL:
3367 *pos += 3;
3368 nargs = 1;
3369 break;
3370
3371 case OP_REGISTER:
3372 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3373 break;
3374
3375 case STRUCTOP_STRUCT:
3376 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3377 nargs = 1;
3378 break;
3379
3380 case TERNOP_SLICE:
3381 *pos += 1;
3382 nargs = 3;
3383 break;
3384
3385 case OP_STRING:
3386 break;
3387
3388 default:
3389 error (_("Unexpected operator during name resolution"));
3390 }
3391
3392 argvec = XALLOCAVEC (struct value *, nargs + 1);
3393 for (i = 0; i < nargs; i += 1)
3394 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3395 argvec[i] = NULL;
3396 exp = *expp;
3397
3398 /* Pass two: perform any resolution on principal operator. */
3399 switch (op)
3400 {
3401 default:
3402 break;
3403
3404 case OP_VAR_VALUE:
3405 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3406 {
3407 struct block_symbol *candidates;
3408 int n_candidates;
3409
3410 n_candidates =
3411 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3412 (exp->elts[pc + 2].symbol),
3413 exp->elts[pc + 1].block, VAR_DOMAIN,
3414 &candidates);
3415
3416 if (n_candidates > 1)
3417 {
3418 /* Types tend to get re-introduced locally, so if there
3419 are any local symbols that are not types, first filter
3420 out all types. */
3421 int j;
3422 for (j = 0; j < n_candidates; j += 1)
3423 switch (SYMBOL_CLASS (candidates[j].symbol))
3424 {
3425 case LOC_REGISTER:
3426 case LOC_ARG:
3427 case LOC_REF_ARG:
3428 case LOC_REGPARM_ADDR:
3429 case LOC_LOCAL:
3430 case LOC_COMPUTED:
3431 goto FoundNonType;
3432 default:
3433 break;
3434 }
3435 FoundNonType:
3436 if (j < n_candidates)
3437 {
3438 j = 0;
3439 while (j < n_candidates)
3440 {
3441 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3442 {
3443 candidates[j] = candidates[n_candidates - 1];
3444 n_candidates -= 1;
3445 }
3446 else
3447 j += 1;
3448 }
3449 }
3450 }
3451
3452 if (n_candidates == 0)
3453 error (_("No definition found for %s"),
3454 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3455 else if (n_candidates == 1)
3456 i = 0;
3457 else if (deprocedure_p
3458 && !is_nonfunction (candidates, n_candidates))
3459 {
3460 i = ada_resolve_function
3461 (candidates, n_candidates, NULL, 0,
3462 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3463 context_type);
3464 if (i < 0)
3465 error (_("Could not find a match for %s"),
3466 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3467 }
3468 else
3469 {
3470 printf_filtered (_("Multiple matches for %s\n"),
3471 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3472 user_select_syms (candidates, n_candidates, 1);
3473 i = 0;
3474 }
3475
3476 exp->elts[pc + 1].block = candidates[i].block;
3477 exp->elts[pc + 2].symbol = candidates[i].symbol;
3478 if (innermost_block == NULL
3479 || contained_in (candidates[i].block, innermost_block))
3480 innermost_block = candidates[i].block;
3481 }
3482
3483 if (deprocedure_p
3484 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3485 == TYPE_CODE_FUNC))
3486 {
3487 replace_operator_with_call (expp, pc, 0, 0,
3488 exp->elts[pc + 2].symbol,
3489 exp->elts[pc + 1].block);
3490 exp = *expp;
3491 }
3492 break;
3493
3494 case OP_FUNCALL:
3495 {
3496 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3497 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3498 {
3499 struct block_symbol *candidates;
3500 int n_candidates;
3501
3502 n_candidates =
3503 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3504 (exp->elts[pc + 5].symbol),
3505 exp->elts[pc + 4].block, VAR_DOMAIN,
3506 &candidates);
3507 if (n_candidates == 1)
3508 i = 0;
3509 else
3510 {
3511 i = ada_resolve_function
3512 (candidates, n_candidates,
3513 argvec, nargs,
3514 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3515 context_type);
3516 if (i < 0)
3517 error (_("Could not find a match for %s"),
3518 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3519 }
3520
3521 exp->elts[pc + 4].block = candidates[i].block;
3522 exp->elts[pc + 5].symbol = candidates[i].symbol;
3523 if (innermost_block == NULL
3524 || contained_in (candidates[i].block, innermost_block))
3525 innermost_block = candidates[i].block;
3526 }
3527 }
3528 break;
3529 case BINOP_ADD:
3530 case BINOP_SUB:
3531 case BINOP_MUL:
3532 case BINOP_DIV:
3533 case BINOP_REM:
3534 case BINOP_MOD:
3535 case BINOP_CONCAT:
3536 case BINOP_BITWISE_AND:
3537 case BINOP_BITWISE_IOR:
3538 case BINOP_BITWISE_XOR:
3539 case BINOP_EQUAL:
3540 case BINOP_NOTEQUAL:
3541 case BINOP_LESS:
3542 case BINOP_GTR:
3543 case BINOP_LEQ:
3544 case BINOP_GEQ:
3545 case BINOP_EXP:
3546 case UNOP_NEG:
3547 case UNOP_PLUS:
3548 case UNOP_LOGICAL_NOT:
3549 case UNOP_ABS:
3550 if (possible_user_operator_p (op, argvec))
3551 {
3552 struct block_symbol *candidates;
3553 int n_candidates;
3554
3555 n_candidates =
3556 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3557 (struct block *) NULL, VAR_DOMAIN,
3558 &candidates);
3559 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3560 ada_decoded_op_name (op), NULL);
3561 if (i < 0)
3562 break;
3563
3564 replace_operator_with_call (expp, pc, nargs, 1,
3565 candidates[i].symbol,
3566 candidates[i].block);
3567 exp = *expp;
3568 }
3569 break;
3570
3571 case OP_TYPE:
3572 case OP_REGISTER:
3573 return NULL;
3574 }
3575
3576 *pos = pc;
3577 return evaluate_subexp_type (exp, pos);
3578 }
3579
3580 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3581 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3582 a non-pointer. */
3583 /* The term "match" here is rather loose. The match is heuristic and
3584 liberal. */
3585
3586 static int
3587 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3588 {
3589 ftype = ada_check_typedef (ftype);
3590 atype = ada_check_typedef (atype);
3591
3592 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3593 ftype = TYPE_TARGET_TYPE (ftype);
3594 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3595 atype = TYPE_TARGET_TYPE (atype);
3596
3597 switch (TYPE_CODE (ftype))
3598 {
3599 default:
3600 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3601 case TYPE_CODE_PTR:
3602 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3603 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3604 TYPE_TARGET_TYPE (atype), 0);
3605 else
3606 return (may_deref
3607 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3608 case TYPE_CODE_INT:
3609 case TYPE_CODE_ENUM:
3610 case TYPE_CODE_RANGE:
3611 switch (TYPE_CODE (atype))
3612 {
3613 case TYPE_CODE_INT:
3614 case TYPE_CODE_ENUM:
3615 case TYPE_CODE_RANGE:
3616 return 1;
3617 default:
3618 return 0;
3619 }
3620
3621 case TYPE_CODE_ARRAY:
3622 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3623 || ada_is_array_descriptor_type (atype));
3624
3625 case TYPE_CODE_STRUCT:
3626 if (ada_is_array_descriptor_type (ftype))
3627 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3628 || ada_is_array_descriptor_type (atype));
3629 else
3630 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3631 && !ada_is_array_descriptor_type (atype));
3632
3633 case TYPE_CODE_UNION:
3634 case TYPE_CODE_FLT:
3635 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3636 }
3637 }
3638
3639 /* Return non-zero if the formals of FUNC "sufficiently match" the
3640 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3641 may also be an enumeral, in which case it is treated as a 0-
3642 argument function. */
3643
3644 static int
3645 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3646 {
3647 int i;
3648 struct type *func_type = SYMBOL_TYPE (func);
3649
3650 if (SYMBOL_CLASS (func) == LOC_CONST
3651 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3652 return (n_actuals == 0);
3653 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3654 return 0;
3655
3656 if (TYPE_NFIELDS (func_type) != n_actuals)
3657 return 0;
3658
3659 for (i = 0; i < n_actuals; i += 1)
3660 {
3661 if (actuals[i] == NULL)
3662 return 0;
3663 else
3664 {
3665 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3666 i));
3667 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3668
3669 if (!ada_type_match (ftype, atype, 1))
3670 return 0;
3671 }
3672 }
3673 return 1;
3674 }
3675
3676 /* False iff function type FUNC_TYPE definitely does not produce a value
3677 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3678 FUNC_TYPE is not a valid function type with a non-null return type
3679 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3680
3681 static int
3682 return_match (struct type *func_type, struct type *context_type)
3683 {
3684 struct type *return_type;
3685
3686 if (func_type == NULL)
3687 return 1;
3688
3689 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3690 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3691 else
3692 return_type = get_base_type (func_type);
3693 if (return_type == NULL)
3694 return 1;
3695
3696 context_type = get_base_type (context_type);
3697
3698 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3699 return context_type == NULL || return_type == context_type;
3700 else if (context_type == NULL)
3701 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3702 else
3703 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3704 }
3705
3706
3707 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3708 function (if any) that matches the types of the NARGS arguments in
3709 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3710 that returns that type, then eliminate matches that don't. If
3711 CONTEXT_TYPE is void and there is at least one match that does not
3712 return void, eliminate all matches that do.
3713
3714 Asks the user if there is more than one match remaining. Returns -1
3715 if there is no such symbol or none is selected. NAME is used
3716 solely for messages. May re-arrange and modify SYMS in
3717 the process; the index returned is for the modified vector. */
3718
3719 static int
3720 ada_resolve_function (struct block_symbol syms[],
3721 int nsyms, struct value **args, int nargs,
3722 const char *name, struct type *context_type)
3723 {
3724 int fallback;
3725 int k;
3726 int m; /* Number of hits */
3727
3728 m = 0;
3729 /* In the first pass of the loop, we only accept functions matching
3730 context_type. If none are found, we add a second pass of the loop
3731 where every function is accepted. */
3732 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3733 {
3734 for (k = 0; k < nsyms; k += 1)
3735 {
3736 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3737
3738 if (ada_args_match (syms[k].symbol, args, nargs)
3739 && (fallback || return_match (type, context_type)))
3740 {
3741 syms[m] = syms[k];
3742 m += 1;
3743 }
3744 }
3745 }
3746
3747 /* If we got multiple matches, ask the user which one to use. Don't do this
3748 interactive thing during completion, though, as the purpose of the
3749 completion is providing a list of all possible matches. Prompting the
3750 user to filter it down would be completely unexpected in this case. */
3751 if (m == 0)
3752 return -1;
3753 else if (m > 1 && !parse_completion)
3754 {
3755 printf_filtered (_("Multiple matches for %s\n"), name);
3756 user_select_syms (syms, m, 1);
3757 return 0;
3758 }
3759 return 0;
3760 }
3761
3762 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3763 in a listing of choices during disambiguation (see sort_choices, below).
3764 The idea is that overloadings of a subprogram name from the
3765 same package should sort in their source order. We settle for ordering
3766 such symbols by their trailing number (__N or $N). */
3767
3768 static int
3769 encoded_ordered_before (const char *N0, const char *N1)
3770 {
3771 if (N1 == NULL)
3772 return 0;
3773 else if (N0 == NULL)
3774 return 1;
3775 else
3776 {
3777 int k0, k1;
3778
3779 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3780 ;
3781 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3782 ;
3783 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3784 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3785 {
3786 int n0, n1;
3787
3788 n0 = k0;
3789 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3790 n0 -= 1;
3791 n1 = k1;
3792 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3793 n1 -= 1;
3794 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3795 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3796 }
3797 return (strcmp (N0, N1) < 0);
3798 }
3799 }
3800
3801 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3802 encoded names. */
3803
3804 static void
3805 sort_choices (struct block_symbol syms[], int nsyms)
3806 {
3807 int i;
3808
3809 for (i = 1; i < nsyms; i += 1)
3810 {
3811 struct block_symbol sym = syms[i];
3812 int j;
3813
3814 for (j = i - 1; j >= 0; j -= 1)
3815 {
3816 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3817 SYMBOL_LINKAGE_NAME (sym.symbol)))
3818 break;
3819 syms[j + 1] = syms[j];
3820 }
3821 syms[j + 1] = sym;
3822 }
3823 }
3824
3825 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3826 by asking the user (if necessary), returning the number selected,
3827 and setting the first elements of SYMS items. Error if no symbols
3828 selected. */
3829
3830 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3831 to be re-integrated one of these days. */
3832
3833 int
3834 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3835 {
3836 int i;
3837 int *chosen = XALLOCAVEC (int , nsyms);
3838 int n_chosen;
3839 int first_choice = (max_results == 1) ? 1 : 2;
3840 const char *select_mode = multiple_symbols_select_mode ();
3841
3842 if (max_results < 1)
3843 error (_("Request to select 0 symbols!"));
3844 if (nsyms <= 1)
3845 return nsyms;
3846
3847 if (select_mode == multiple_symbols_cancel)
3848 error (_("\
3849 canceled because the command is ambiguous\n\
3850 See set/show multiple-symbol."));
3851
3852 /* If select_mode is "all", then return all possible symbols.
3853 Only do that if more than one symbol can be selected, of course.
3854 Otherwise, display the menu as usual. */
3855 if (select_mode == multiple_symbols_all && max_results > 1)
3856 return nsyms;
3857
3858 printf_unfiltered (_("[0] cancel\n"));
3859 if (max_results > 1)
3860 printf_unfiltered (_("[1] all\n"));
3861
3862 sort_choices (syms, nsyms);
3863
3864 for (i = 0; i < nsyms; i += 1)
3865 {
3866 if (syms[i].symbol == NULL)
3867 continue;
3868
3869 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3870 {
3871 struct symtab_and_line sal =
3872 find_function_start_sal (syms[i].symbol, 1);
3873
3874 if (sal.symtab == NULL)
3875 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3876 i + first_choice,
3877 SYMBOL_PRINT_NAME (syms[i].symbol),
3878 sal.line);
3879 else
3880 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3881 SYMBOL_PRINT_NAME (syms[i].symbol),
3882 symtab_to_filename_for_display (sal.symtab),
3883 sal.line);
3884 continue;
3885 }
3886 else
3887 {
3888 int is_enumeral =
3889 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3890 && SYMBOL_TYPE (syms[i].symbol) != NULL
3891 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3892 struct symtab *symtab = NULL;
3893
3894 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3895 symtab = symbol_symtab (syms[i].symbol);
3896
3897 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3898 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3899 i + first_choice,
3900 SYMBOL_PRINT_NAME (syms[i].symbol),
3901 symtab_to_filename_for_display (symtab),
3902 SYMBOL_LINE (syms[i].symbol));
3903 else if (is_enumeral
3904 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3905 {
3906 printf_unfiltered (("[%d] "), i + first_choice);
3907 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3908 gdb_stdout, -1, 0, &type_print_raw_options);
3909 printf_unfiltered (_("'(%s) (enumeral)\n"),
3910 SYMBOL_PRINT_NAME (syms[i].symbol));
3911 }
3912 else if (symtab != NULL)
3913 printf_unfiltered (is_enumeral
3914 ? _("[%d] %s in %s (enumeral)\n")
3915 : _("[%d] %s at %s:?\n"),
3916 i + first_choice,
3917 SYMBOL_PRINT_NAME (syms[i].symbol),
3918 symtab_to_filename_for_display (symtab));
3919 else
3920 printf_unfiltered (is_enumeral
3921 ? _("[%d] %s (enumeral)\n")
3922 : _("[%d] %s at ?\n"),
3923 i + first_choice,
3924 SYMBOL_PRINT_NAME (syms[i].symbol));
3925 }
3926 }
3927
3928 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3929 "overload-choice");
3930
3931 for (i = 0; i < n_chosen; i += 1)
3932 syms[i] = syms[chosen[i]];
3933
3934 return n_chosen;
3935 }
3936
3937 /* Read and validate a set of numeric choices from the user in the
3938 range 0 .. N_CHOICES-1. Place the results in increasing
3939 order in CHOICES[0 .. N-1], and return N.
3940
3941 The user types choices as a sequence of numbers on one line
3942 separated by blanks, encoding them as follows:
3943
3944 + A choice of 0 means to cancel the selection, throwing an error.
3945 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3946 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3947
3948 The user is not allowed to choose more than MAX_RESULTS values.
3949
3950 ANNOTATION_SUFFIX, if present, is used to annotate the input
3951 prompts (for use with the -f switch). */
3952
3953 int
3954 get_selections (int *choices, int n_choices, int max_results,
3955 int is_all_choice, char *annotation_suffix)
3956 {
3957 char *args;
3958 char *prompt;
3959 int n_chosen;
3960 int first_choice = is_all_choice ? 2 : 1;
3961
3962 prompt = getenv ("PS2");
3963 if (prompt == NULL)
3964 prompt = "> ";
3965
3966 args = command_line_input (prompt, 0, annotation_suffix);
3967
3968 if (args == NULL)
3969 error_no_arg (_("one or more choice numbers"));
3970
3971 n_chosen = 0;
3972
3973 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3974 order, as given in args. Choices are validated. */
3975 while (1)
3976 {
3977 char *args2;
3978 int choice, j;
3979
3980 args = skip_spaces (args);
3981 if (*args == '\0' && n_chosen == 0)
3982 error_no_arg (_("one or more choice numbers"));
3983 else if (*args == '\0')
3984 break;
3985
3986 choice = strtol (args, &args2, 10);
3987 if (args == args2 || choice < 0
3988 || choice > n_choices + first_choice - 1)
3989 error (_("Argument must be choice number"));
3990 args = args2;
3991
3992 if (choice == 0)
3993 error (_("cancelled"));
3994
3995 if (choice < first_choice)
3996 {
3997 n_chosen = n_choices;
3998 for (j = 0; j < n_choices; j += 1)
3999 choices[j] = j;
4000 break;
4001 }
4002 choice -= first_choice;
4003
4004 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4005 {
4006 }
4007
4008 if (j < 0 || choice != choices[j])
4009 {
4010 int k;
4011
4012 for (k = n_chosen - 1; k > j; k -= 1)
4013 choices[k + 1] = choices[k];
4014 choices[j + 1] = choice;
4015 n_chosen += 1;
4016 }
4017 }
4018
4019 if (n_chosen > max_results)
4020 error (_("Select no more than %d of the above"), max_results);
4021
4022 return n_chosen;
4023 }
4024
4025 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4026 on the function identified by SYM and BLOCK, and taking NARGS
4027 arguments. Update *EXPP as needed to hold more space. */
4028
4029 static void
4030 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4031 int oplen, struct symbol *sym,
4032 const struct block *block)
4033 {
4034 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4035 symbol, -oplen for operator being replaced). */
4036 struct expression *newexp = (struct expression *)
4037 xzalloc (sizeof (struct expression)
4038 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4039 struct expression *exp = *expp;
4040
4041 newexp->nelts = exp->nelts + 7 - oplen;
4042 newexp->language_defn = exp->language_defn;
4043 newexp->gdbarch = exp->gdbarch;
4044 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4045 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4046 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4047
4048 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4049 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4050
4051 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4052 newexp->elts[pc + 4].block = block;
4053 newexp->elts[pc + 5].symbol = sym;
4054
4055 *expp = newexp;
4056 xfree (exp);
4057 }
4058
4059 /* Type-class predicates */
4060
4061 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4062 or FLOAT). */
4063
4064 static int
4065 numeric_type_p (struct type *type)
4066 {
4067 if (type == NULL)
4068 return 0;
4069 else
4070 {
4071 switch (TYPE_CODE (type))
4072 {
4073 case TYPE_CODE_INT:
4074 case TYPE_CODE_FLT:
4075 return 1;
4076 case TYPE_CODE_RANGE:
4077 return (type == TYPE_TARGET_TYPE (type)
4078 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4079 default:
4080 return 0;
4081 }
4082 }
4083 }
4084
4085 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4086
4087 static int
4088 integer_type_p (struct type *type)
4089 {
4090 if (type == NULL)
4091 return 0;
4092 else
4093 {
4094 switch (TYPE_CODE (type))
4095 {
4096 case TYPE_CODE_INT:
4097 return 1;
4098 case TYPE_CODE_RANGE:
4099 return (type == TYPE_TARGET_TYPE (type)
4100 || integer_type_p (TYPE_TARGET_TYPE (type)));
4101 default:
4102 return 0;
4103 }
4104 }
4105 }
4106
4107 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4108
4109 static int
4110 scalar_type_p (struct type *type)
4111 {
4112 if (type == NULL)
4113 return 0;
4114 else
4115 {
4116 switch (TYPE_CODE (type))
4117 {
4118 case TYPE_CODE_INT:
4119 case TYPE_CODE_RANGE:
4120 case TYPE_CODE_ENUM:
4121 case TYPE_CODE_FLT:
4122 return 1;
4123 default:
4124 return 0;
4125 }
4126 }
4127 }
4128
4129 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4130
4131 static int
4132 discrete_type_p (struct type *type)
4133 {
4134 if (type == NULL)
4135 return 0;
4136 else
4137 {
4138 switch (TYPE_CODE (type))
4139 {
4140 case TYPE_CODE_INT:
4141 case TYPE_CODE_RANGE:
4142 case TYPE_CODE_ENUM:
4143 case TYPE_CODE_BOOL:
4144 return 1;
4145 default:
4146 return 0;
4147 }
4148 }
4149 }
4150
4151 /* Returns non-zero if OP with operands in the vector ARGS could be
4152 a user-defined function. Errs on the side of pre-defined operators
4153 (i.e., result 0). */
4154
4155 static int
4156 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4157 {
4158 struct type *type0 =
4159 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4160 struct type *type1 =
4161 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4162
4163 if (type0 == NULL)
4164 return 0;
4165
4166 switch (op)
4167 {
4168 default:
4169 return 0;
4170
4171 case BINOP_ADD:
4172 case BINOP_SUB:
4173 case BINOP_MUL:
4174 case BINOP_DIV:
4175 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4176
4177 case BINOP_REM:
4178 case BINOP_MOD:
4179 case BINOP_BITWISE_AND:
4180 case BINOP_BITWISE_IOR:
4181 case BINOP_BITWISE_XOR:
4182 return (!(integer_type_p (type0) && integer_type_p (type1)));
4183
4184 case BINOP_EQUAL:
4185 case BINOP_NOTEQUAL:
4186 case BINOP_LESS:
4187 case BINOP_GTR:
4188 case BINOP_LEQ:
4189 case BINOP_GEQ:
4190 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4191
4192 case BINOP_CONCAT:
4193 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4194
4195 case BINOP_EXP:
4196 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4197
4198 case UNOP_NEG:
4199 case UNOP_PLUS:
4200 case UNOP_LOGICAL_NOT:
4201 case UNOP_ABS:
4202 return (!numeric_type_p (type0));
4203
4204 }
4205 }
4206 \f
4207 /* Renaming */
4208
4209 /* NOTES:
4210
4211 1. In the following, we assume that a renaming type's name may
4212 have an ___XD suffix. It would be nice if this went away at some
4213 point.
4214 2. We handle both the (old) purely type-based representation of
4215 renamings and the (new) variable-based encoding. At some point,
4216 it is devoutly to be hoped that the former goes away
4217 (FIXME: hilfinger-2007-07-09).
4218 3. Subprogram renamings are not implemented, although the XRS
4219 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4220
4221 /* If SYM encodes a renaming,
4222
4223 <renaming> renames <renamed entity>,
4224
4225 sets *LEN to the length of the renamed entity's name,
4226 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4227 the string describing the subcomponent selected from the renamed
4228 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4229 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4230 are undefined). Otherwise, returns a value indicating the category
4231 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4232 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4233 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4234 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4235 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4236 may be NULL, in which case they are not assigned.
4237
4238 [Currently, however, GCC does not generate subprogram renamings.] */
4239
4240 enum ada_renaming_category
4241 ada_parse_renaming (struct symbol *sym,
4242 const char **renamed_entity, int *len,
4243 const char **renaming_expr)
4244 {
4245 enum ada_renaming_category kind;
4246 const char *info;
4247 const char *suffix;
4248
4249 if (sym == NULL)
4250 return ADA_NOT_RENAMING;
4251 switch (SYMBOL_CLASS (sym))
4252 {
4253 default:
4254 return ADA_NOT_RENAMING;
4255 case LOC_TYPEDEF:
4256 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4257 renamed_entity, len, renaming_expr);
4258 case LOC_LOCAL:
4259 case LOC_STATIC:
4260 case LOC_COMPUTED:
4261 case LOC_OPTIMIZED_OUT:
4262 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4263 if (info == NULL)
4264 return ADA_NOT_RENAMING;
4265 switch (info[5])
4266 {
4267 case '_':
4268 kind = ADA_OBJECT_RENAMING;
4269 info += 6;
4270 break;
4271 case 'E':
4272 kind = ADA_EXCEPTION_RENAMING;
4273 info += 7;
4274 break;
4275 case 'P':
4276 kind = ADA_PACKAGE_RENAMING;
4277 info += 7;
4278 break;
4279 case 'S':
4280 kind = ADA_SUBPROGRAM_RENAMING;
4281 info += 7;
4282 break;
4283 default:
4284 return ADA_NOT_RENAMING;
4285 }
4286 }
4287
4288 if (renamed_entity != NULL)
4289 *renamed_entity = info;
4290 suffix = strstr (info, "___XE");
4291 if (suffix == NULL || suffix == info)
4292 return ADA_NOT_RENAMING;
4293 if (len != NULL)
4294 *len = strlen (info) - strlen (suffix);
4295 suffix += 5;
4296 if (renaming_expr != NULL)
4297 *renaming_expr = suffix;
4298 return kind;
4299 }
4300
4301 /* Assuming TYPE encodes a renaming according to the old encoding in
4302 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4303 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4304 ADA_NOT_RENAMING otherwise. */
4305 static enum ada_renaming_category
4306 parse_old_style_renaming (struct type *type,
4307 const char **renamed_entity, int *len,
4308 const char **renaming_expr)
4309 {
4310 enum ada_renaming_category kind;
4311 const char *name;
4312 const char *info;
4313 const char *suffix;
4314
4315 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4316 || TYPE_NFIELDS (type) != 1)
4317 return ADA_NOT_RENAMING;
4318
4319 name = type_name_no_tag (type);
4320 if (name == NULL)
4321 return ADA_NOT_RENAMING;
4322
4323 name = strstr (name, "___XR");
4324 if (name == NULL)
4325 return ADA_NOT_RENAMING;
4326 switch (name[5])
4327 {
4328 case '\0':
4329 case '_':
4330 kind = ADA_OBJECT_RENAMING;
4331 break;
4332 case 'E':
4333 kind = ADA_EXCEPTION_RENAMING;
4334 break;
4335 case 'P':
4336 kind = ADA_PACKAGE_RENAMING;
4337 break;
4338 case 'S':
4339 kind = ADA_SUBPROGRAM_RENAMING;
4340 break;
4341 default:
4342 return ADA_NOT_RENAMING;
4343 }
4344
4345 info = TYPE_FIELD_NAME (type, 0);
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 if (renamed_entity != NULL)
4349 *renamed_entity = info;
4350 suffix = strstr (info, "___XE");
4351 if (renaming_expr != NULL)
4352 *renaming_expr = suffix + 5;
4353 if (suffix == NULL || suffix == info)
4354 return ADA_NOT_RENAMING;
4355 if (len != NULL)
4356 *len = suffix - info;
4357 return kind;
4358 }
4359
4360 /* Compute the value of the given RENAMING_SYM, which is expected to
4361 be a symbol encoding a renaming expression. BLOCK is the block
4362 used to evaluate the renaming. */
4363
4364 static struct value *
4365 ada_read_renaming_var_value (struct symbol *renaming_sym,
4366 const struct block *block)
4367 {
4368 const char *sym_name;
4369 struct expression *expr;
4370 struct value *value;
4371 struct cleanup *old_chain = NULL;
4372
4373 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4374 expr = parse_exp_1 (&sym_name, 0, block, 0);
4375 old_chain = make_cleanup (free_current_contents, &expr);
4376 value = evaluate_expression (expr);
4377
4378 do_cleanups (old_chain);
4379 return value;
4380 }
4381 \f
4382
4383 /* Evaluation: Function Calls */
4384
4385 /* Return an lvalue containing the value VAL. This is the identity on
4386 lvalues, and otherwise has the side-effect of allocating memory
4387 in the inferior where a copy of the value contents is copied. */
4388
4389 static struct value *
4390 ensure_lval (struct value *val)
4391 {
4392 if (VALUE_LVAL (val) == not_lval
4393 || VALUE_LVAL (val) == lval_internalvar)
4394 {
4395 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4396 const CORE_ADDR addr =
4397 value_as_long (value_allocate_space_in_inferior (len));
4398
4399 set_value_address (val, addr);
4400 VALUE_LVAL (val) = lval_memory;
4401 write_memory (addr, value_contents (val), len);
4402 }
4403
4404 return val;
4405 }
4406
4407 /* Return the value ACTUAL, converted to be an appropriate value for a
4408 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4409 allocating any necessary descriptors (fat pointers), or copies of
4410 values not residing in memory, updating it as needed. */
4411
4412 struct value *
4413 ada_convert_actual (struct value *actual, struct type *formal_type0)
4414 {
4415 struct type *actual_type = ada_check_typedef (value_type (actual));
4416 struct type *formal_type = ada_check_typedef (formal_type0);
4417 struct type *formal_target =
4418 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4419 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4420 struct type *actual_target =
4421 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4422 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4423
4424 if (ada_is_array_descriptor_type (formal_target)
4425 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4426 return make_array_descriptor (formal_type, actual);
4427 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4428 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4429 {
4430 struct value *result;
4431
4432 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4433 && ada_is_array_descriptor_type (actual_target))
4434 result = desc_data (actual);
4435 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4436 {
4437 if (VALUE_LVAL (actual) != lval_memory)
4438 {
4439 struct value *val;
4440
4441 actual_type = ada_check_typedef (value_type (actual));
4442 val = allocate_value (actual_type);
4443 memcpy ((char *) value_contents_raw (val),
4444 (char *) value_contents (actual),
4445 TYPE_LENGTH (actual_type));
4446 actual = ensure_lval (val);
4447 }
4448 result = value_addr (actual);
4449 }
4450 else
4451 return actual;
4452 return value_cast_pointers (formal_type, result, 0);
4453 }
4454 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4455 return ada_value_ind (actual);
4456 else if (ada_is_aligner_type (formal_type))
4457 {
4458 /* We need to turn this parameter into an aligner type
4459 as well. */
4460 struct value *aligner = allocate_value (formal_type);
4461 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4462
4463 value_assign_to_component (aligner, component, actual);
4464 return aligner;
4465 }
4466
4467 return actual;
4468 }
4469
4470 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4471 type TYPE. This is usually an inefficient no-op except on some targets
4472 (such as AVR) where the representation of a pointer and an address
4473 differs. */
4474
4475 static CORE_ADDR
4476 value_pointer (struct value *value, struct type *type)
4477 {
4478 struct gdbarch *gdbarch = get_type_arch (type);
4479 unsigned len = TYPE_LENGTH (type);
4480 gdb_byte *buf = (gdb_byte *) alloca (len);
4481 CORE_ADDR addr;
4482
4483 addr = value_address (value);
4484 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4485 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4486 return addr;
4487 }
4488
4489
4490 /* Push a descriptor of type TYPE for array value ARR on the stack at
4491 *SP, updating *SP to reflect the new descriptor. Return either
4492 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4493 to-descriptor type rather than a descriptor type), a struct value *
4494 representing a pointer to this descriptor. */
4495
4496 static struct value *
4497 make_array_descriptor (struct type *type, struct value *arr)
4498 {
4499 struct type *bounds_type = desc_bounds_type (type);
4500 struct type *desc_type = desc_base_type (type);
4501 struct value *descriptor = allocate_value (desc_type);
4502 struct value *bounds = allocate_value (bounds_type);
4503 int i;
4504
4505 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4506 i > 0; i -= 1)
4507 {
4508 modify_field (value_type (bounds), value_contents_writeable (bounds),
4509 ada_array_bound (arr, i, 0),
4510 desc_bound_bitpos (bounds_type, i, 0),
4511 desc_bound_bitsize (bounds_type, i, 0));
4512 modify_field (value_type (bounds), value_contents_writeable (bounds),
4513 ada_array_bound (arr, i, 1),
4514 desc_bound_bitpos (bounds_type, i, 1),
4515 desc_bound_bitsize (bounds_type, i, 1));
4516 }
4517
4518 bounds = ensure_lval (bounds);
4519
4520 modify_field (value_type (descriptor),
4521 value_contents_writeable (descriptor),
4522 value_pointer (ensure_lval (arr),
4523 TYPE_FIELD_TYPE (desc_type, 0)),
4524 fat_pntr_data_bitpos (desc_type),
4525 fat_pntr_data_bitsize (desc_type));
4526
4527 modify_field (value_type (descriptor),
4528 value_contents_writeable (descriptor),
4529 value_pointer (bounds,
4530 TYPE_FIELD_TYPE (desc_type, 1)),
4531 fat_pntr_bounds_bitpos (desc_type),
4532 fat_pntr_bounds_bitsize (desc_type));
4533
4534 descriptor = ensure_lval (descriptor);
4535
4536 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4537 return value_addr (descriptor);
4538 else
4539 return descriptor;
4540 }
4541 \f
4542 /* Symbol Cache Module */
4543
4544 /* Performance measurements made as of 2010-01-15 indicate that
4545 this cache does bring some noticeable improvements. Depending
4546 on the type of entity being printed, the cache can make it as much
4547 as an order of magnitude faster than without it.
4548
4549 The descriptive type DWARF extension has significantly reduced
4550 the need for this cache, at least when DWARF is being used. However,
4551 even in this case, some expensive name-based symbol searches are still
4552 sometimes necessary - to find an XVZ variable, mostly. */
4553
4554 /* Initialize the contents of SYM_CACHE. */
4555
4556 static void
4557 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4558 {
4559 obstack_init (&sym_cache->cache_space);
4560 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4561 }
4562
4563 /* Free the memory used by SYM_CACHE. */
4564
4565 static void
4566 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4567 {
4568 obstack_free (&sym_cache->cache_space, NULL);
4569 xfree (sym_cache);
4570 }
4571
4572 /* Return the symbol cache associated to the given program space PSPACE.
4573 If not allocated for this PSPACE yet, allocate and initialize one. */
4574
4575 static struct ada_symbol_cache *
4576 ada_get_symbol_cache (struct program_space *pspace)
4577 {
4578 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4579
4580 if (pspace_data->sym_cache == NULL)
4581 {
4582 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4583 ada_init_symbol_cache (pspace_data->sym_cache);
4584 }
4585
4586 return pspace_data->sym_cache;
4587 }
4588
4589 /* Clear all entries from the symbol cache. */
4590
4591 static void
4592 ada_clear_symbol_cache (void)
4593 {
4594 struct ada_symbol_cache *sym_cache
4595 = ada_get_symbol_cache (current_program_space);
4596
4597 obstack_free (&sym_cache->cache_space, NULL);
4598 ada_init_symbol_cache (sym_cache);
4599 }
4600
4601 /* Search our cache for an entry matching NAME and DOMAIN.
4602 Return it if found, or NULL otherwise. */
4603
4604 static struct cache_entry **
4605 find_entry (const char *name, domain_enum domain)
4606 {
4607 struct ada_symbol_cache *sym_cache
4608 = ada_get_symbol_cache (current_program_space);
4609 int h = msymbol_hash (name) % HASH_SIZE;
4610 struct cache_entry **e;
4611
4612 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4613 {
4614 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4615 return e;
4616 }
4617 return NULL;
4618 }
4619
4620 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4621 Return 1 if found, 0 otherwise.
4622
4623 If an entry was found and SYM is not NULL, set *SYM to the entry's
4624 SYM. Same principle for BLOCK if not NULL. */
4625
4626 static int
4627 lookup_cached_symbol (const char *name, domain_enum domain,
4628 struct symbol **sym, const struct block **block)
4629 {
4630 struct cache_entry **e = find_entry (name, domain);
4631
4632 if (e == NULL)
4633 return 0;
4634 if (sym != NULL)
4635 *sym = (*e)->sym;
4636 if (block != NULL)
4637 *block = (*e)->block;
4638 return 1;
4639 }
4640
4641 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4642 in domain DOMAIN, save this result in our symbol cache. */
4643
4644 static void
4645 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4646 const struct block *block)
4647 {
4648 struct ada_symbol_cache *sym_cache
4649 = ada_get_symbol_cache (current_program_space);
4650 int h;
4651 char *copy;
4652 struct cache_entry *e;
4653
4654 /* Symbols for builtin types don't have a block.
4655 For now don't cache such symbols. */
4656 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4657 return;
4658
4659 /* If the symbol is a local symbol, then do not cache it, as a search
4660 for that symbol depends on the context. To determine whether
4661 the symbol is local or not, we check the block where we found it
4662 against the global and static blocks of its associated symtab. */
4663 if (sym
4664 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4665 GLOBAL_BLOCK) != block
4666 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4667 STATIC_BLOCK) != block)
4668 return;
4669
4670 h = msymbol_hash (name) % HASH_SIZE;
4671 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4672 sizeof (*e));
4673 e->next = sym_cache->root[h];
4674 sym_cache->root[h] = e;
4675 e->name = copy
4676 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4677 strcpy (copy, name);
4678 e->sym = sym;
4679 e->domain = domain;
4680 e->block = block;
4681 }
4682 \f
4683 /* Symbol Lookup */
4684
4685 /* Return nonzero if wild matching should be used when searching for
4686 all symbols matching LOOKUP_NAME.
4687
4688 LOOKUP_NAME is expected to be a symbol name after transformation
4689 for Ada lookups (see ada_name_for_lookup). */
4690
4691 static int
4692 should_use_wild_match (const char *lookup_name)
4693 {
4694 return (strstr (lookup_name, "__") == NULL);
4695 }
4696
4697 /* Return the result of a standard (literal, C-like) lookup of NAME in
4698 given DOMAIN, visible from lexical block BLOCK. */
4699
4700 static struct symbol *
4701 standard_lookup (const char *name, const struct block *block,
4702 domain_enum domain)
4703 {
4704 /* Initialize it just to avoid a GCC false warning. */
4705 struct block_symbol sym = {NULL, NULL};
4706
4707 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4708 return sym.symbol;
4709 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4710 cache_symbol (name, domain, sym.symbol, sym.block);
4711 return sym.symbol;
4712 }
4713
4714
4715 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4716 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4717 since they contend in overloading in the same way. */
4718 static int
4719 is_nonfunction (struct block_symbol syms[], int n)
4720 {
4721 int i;
4722
4723 for (i = 0; i < n; i += 1)
4724 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4725 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4726 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4727 return 1;
4728
4729 return 0;
4730 }
4731
4732 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4733 struct types. Otherwise, they may not. */
4734
4735 static int
4736 equiv_types (struct type *type0, struct type *type1)
4737 {
4738 if (type0 == type1)
4739 return 1;
4740 if (type0 == NULL || type1 == NULL
4741 || TYPE_CODE (type0) != TYPE_CODE (type1))
4742 return 0;
4743 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4744 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4745 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4746 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4747 return 1;
4748
4749 return 0;
4750 }
4751
4752 /* True iff SYM0 represents the same entity as SYM1, or one that is
4753 no more defined than that of SYM1. */
4754
4755 static int
4756 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4757 {
4758 if (sym0 == sym1)
4759 return 1;
4760 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4761 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4762 return 0;
4763
4764 switch (SYMBOL_CLASS (sym0))
4765 {
4766 case LOC_UNDEF:
4767 return 1;
4768 case LOC_TYPEDEF:
4769 {
4770 struct type *type0 = SYMBOL_TYPE (sym0);
4771 struct type *type1 = SYMBOL_TYPE (sym1);
4772 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4773 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4774 int len0 = strlen (name0);
4775
4776 return
4777 TYPE_CODE (type0) == TYPE_CODE (type1)
4778 && (equiv_types (type0, type1)
4779 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4780 && startswith (name1 + len0, "___XV")));
4781 }
4782 case LOC_CONST:
4783 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4784 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4785 default:
4786 return 0;
4787 }
4788 }
4789
4790 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4791 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4792
4793 static void
4794 add_defn_to_vec (struct obstack *obstackp,
4795 struct symbol *sym,
4796 const struct block *block)
4797 {
4798 int i;
4799 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4800
4801 /* Do not try to complete stub types, as the debugger is probably
4802 already scanning all symbols matching a certain name at the
4803 time when this function is called. Trying to replace the stub
4804 type by its associated full type will cause us to restart a scan
4805 which may lead to an infinite recursion. Instead, the client
4806 collecting the matching symbols will end up collecting several
4807 matches, with at least one of them complete. It can then filter
4808 out the stub ones if needed. */
4809
4810 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4811 {
4812 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4813 return;
4814 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4815 {
4816 prevDefns[i].symbol = sym;
4817 prevDefns[i].block = block;
4818 return;
4819 }
4820 }
4821
4822 {
4823 struct block_symbol info;
4824
4825 info.symbol = sym;
4826 info.block = block;
4827 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4828 }
4829 }
4830
4831 /* Number of block_symbol structures currently collected in current vector in
4832 OBSTACKP. */
4833
4834 static int
4835 num_defns_collected (struct obstack *obstackp)
4836 {
4837 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4838 }
4839
4840 /* Vector of block_symbol structures currently collected in current vector in
4841 OBSTACKP. If FINISH, close off the vector and return its final address. */
4842
4843 static struct block_symbol *
4844 defns_collected (struct obstack *obstackp, int finish)
4845 {
4846 if (finish)
4847 return (struct block_symbol *) obstack_finish (obstackp);
4848 else
4849 return (struct block_symbol *) obstack_base (obstackp);
4850 }
4851
4852 /* Return a bound minimal symbol matching NAME according to Ada
4853 decoding rules. Returns an invalid symbol if there is no such
4854 minimal symbol. Names prefixed with "standard__" are handled
4855 specially: "standard__" is first stripped off, and only static and
4856 global symbols are searched. */
4857
4858 struct bound_minimal_symbol
4859 ada_lookup_simple_minsym (const char *name)
4860 {
4861 struct bound_minimal_symbol result;
4862 struct objfile *objfile;
4863 struct minimal_symbol *msymbol;
4864 const int wild_match_p = should_use_wild_match (name);
4865
4866 memset (&result, 0, sizeof (result));
4867
4868 /* Special case: If the user specifies a symbol name inside package
4869 Standard, do a non-wild matching of the symbol name without
4870 the "standard__" prefix. This was primarily introduced in order
4871 to allow the user to specifically access the standard exceptions
4872 using, for instance, Standard.Constraint_Error when Constraint_Error
4873 is ambiguous (due to the user defining its own Constraint_Error
4874 entity inside its program). */
4875 if (startswith (name, "standard__"))
4876 name += sizeof ("standard__") - 1;
4877
4878 ALL_MSYMBOLS (objfile, msymbol)
4879 {
4880 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4881 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4882 {
4883 result.minsym = msymbol;
4884 result.objfile = objfile;
4885 break;
4886 }
4887 }
4888
4889 return result;
4890 }
4891
4892 /* For all subprograms that statically enclose the subprogram of the
4893 selected frame, add symbols matching identifier NAME in DOMAIN
4894 and their blocks to the list of data in OBSTACKP, as for
4895 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4896 with a wildcard prefix. */
4897
4898 static void
4899 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4900 const char *name, domain_enum domain,
4901 int wild_match_p)
4902 {
4903 }
4904
4905 /* True if TYPE is definitely an artificial type supplied to a symbol
4906 for which no debugging information was given in the symbol file. */
4907
4908 static int
4909 is_nondebugging_type (struct type *type)
4910 {
4911 const char *name = ada_type_name (type);
4912
4913 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4914 }
4915
4916 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4917 that are deemed "identical" for practical purposes.
4918
4919 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4920 types and that their number of enumerals is identical (in other
4921 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4922
4923 static int
4924 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4925 {
4926 int i;
4927
4928 /* The heuristic we use here is fairly conservative. We consider
4929 that 2 enumerate types are identical if they have the same
4930 number of enumerals and that all enumerals have the same
4931 underlying value and name. */
4932
4933 /* All enums in the type should have an identical underlying value. */
4934 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4935 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4936 return 0;
4937
4938 /* All enumerals should also have the same name (modulo any numerical
4939 suffix). */
4940 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4941 {
4942 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4943 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4944 int len_1 = strlen (name_1);
4945 int len_2 = strlen (name_2);
4946
4947 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4948 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4949 if (len_1 != len_2
4950 || strncmp (TYPE_FIELD_NAME (type1, i),
4951 TYPE_FIELD_NAME (type2, i),
4952 len_1) != 0)
4953 return 0;
4954 }
4955
4956 return 1;
4957 }
4958
4959 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4960 that are deemed "identical" for practical purposes. Sometimes,
4961 enumerals are not strictly identical, but their types are so similar
4962 that they can be considered identical.
4963
4964 For instance, consider the following code:
4965
4966 type Color is (Black, Red, Green, Blue, White);
4967 type RGB_Color is new Color range Red .. Blue;
4968
4969 Type RGB_Color is a subrange of an implicit type which is a copy
4970 of type Color. If we call that implicit type RGB_ColorB ("B" is
4971 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4972 As a result, when an expression references any of the enumeral
4973 by name (Eg. "print green"), the expression is technically
4974 ambiguous and the user should be asked to disambiguate. But
4975 doing so would only hinder the user, since it wouldn't matter
4976 what choice he makes, the outcome would always be the same.
4977 So, for practical purposes, we consider them as the same. */
4978
4979 static int
4980 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
4981 {
4982 int i;
4983
4984 /* Before performing a thorough comparison check of each type,
4985 we perform a series of inexpensive checks. We expect that these
4986 checks will quickly fail in the vast majority of cases, and thus
4987 help prevent the unnecessary use of a more expensive comparison.
4988 Said comparison also expects us to make some of these checks
4989 (see ada_identical_enum_types_p). */
4990
4991 /* Quick check: All symbols should have an enum type. */
4992 for (i = 0; i < nsyms; i++)
4993 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4994 return 0;
4995
4996 /* Quick check: They should all have the same value. */
4997 for (i = 1; i < nsyms; i++)
4998 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4999 return 0;
5000
5001 /* Quick check: They should all have the same number of enumerals. */
5002 for (i = 1; i < nsyms; i++)
5003 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5004 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5005 return 0;
5006
5007 /* All the sanity checks passed, so we might have a set of
5008 identical enumeration types. Perform a more complete
5009 comparison of the type of each symbol. */
5010 for (i = 1; i < nsyms; i++)
5011 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5012 SYMBOL_TYPE (syms[0].symbol)))
5013 return 0;
5014
5015 return 1;
5016 }
5017
5018 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5019 duplicate other symbols in the list (The only case I know of where
5020 this happens is when object files containing stabs-in-ecoff are
5021 linked with files containing ordinary ecoff debugging symbols (or no
5022 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5023 Returns the number of items in the modified list. */
5024
5025 static int
5026 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5027 {
5028 int i, j;
5029
5030 /* We should never be called with less than 2 symbols, as there
5031 cannot be any extra symbol in that case. But it's easy to
5032 handle, since we have nothing to do in that case. */
5033 if (nsyms < 2)
5034 return nsyms;
5035
5036 i = 0;
5037 while (i < nsyms)
5038 {
5039 int remove_p = 0;
5040
5041 /* If two symbols have the same name and one of them is a stub type,
5042 the get rid of the stub. */
5043
5044 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5045 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5046 {
5047 for (j = 0; j < nsyms; j++)
5048 {
5049 if (j != i
5050 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5051 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5052 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5053 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5054 remove_p = 1;
5055 }
5056 }
5057
5058 /* Two symbols with the same name, same class and same address
5059 should be identical. */
5060
5061 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5062 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5063 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5064 {
5065 for (j = 0; j < nsyms; j += 1)
5066 {
5067 if (i != j
5068 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5069 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5070 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5071 && SYMBOL_CLASS (syms[i].symbol)
5072 == SYMBOL_CLASS (syms[j].symbol)
5073 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5074 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5075 remove_p = 1;
5076 }
5077 }
5078
5079 if (remove_p)
5080 {
5081 for (j = i + 1; j < nsyms; j += 1)
5082 syms[j - 1] = syms[j];
5083 nsyms -= 1;
5084 }
5085
5086 i += 1;
5087 }
5088
5089 /* If all the remaining symbols are identical enumerals, then
5090 just keep the first one and discard the rest.
5091
5092 Unlike what we did previously, we do not discard any entry
5093 unless they are ALL identical. This is because the symbol
5094 comparison is not a strict comparison, but rather a practical
5095 comparison. If all symbols are considered identical, then
5096 we can just go ahead and use the first one and discard the rest.
5097 But if we cannot reduce the list to a single element, we have
5098 to ask the user to disambiguate anyways. And if we have to
5099 present a multiple-choice menu, it's less confusing if the list
5100 isn't missing some choices that were identical and yet distinct. */
5101 if (symbols_are_identical_enums (syms, nsyms))
5102 nsyms = 1;
5103
5104 return nsyms;
5105 }
5106
5107 /* Given a type that corresponds to a renaming entity, use the type name
5108 to extract the scope (package name or function name, fully qualified,
5109 and following the GNAT encoding convention) where this renaming has been
5110 defined. The string returned needs to be deallocated after use. */
5111
5112 static char *
5113 xget_renaming_scope (struct type *renaming_type)
5114 {
5115 /* The renaming types adhere to the following convention:
5116 <scope>__<rename>___<XR extension>.
5117 So, to extract the scope, we search for the "___XR" extension,
5118 and then backtrack until we find the first "__". */
5119
5120 const char *name = type_name_no_tag (renaming_type);
5121 const char *suffix = strstr (name, "___XR");
5122 const char *last;
5123 int scope_len;
5124 char *scope;
5125
5126 /* Now, backtrack a bit until we find the first "__". Start looking
5127 at suffix - 3, as the <rename> part is at least one character long. */
5128
5129 for (last = suffix - 3; last > name; last--)
5130 if (last[0] == '_' && last[1] == '_')
5131 break;
5132
5133 /* Make a copy of scope and return it. */
5134
5135 scope_len = last - name;
5136 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5137
5138 strncpy (scope, name, scope_len);
5139 scope[scope_len] = '\0';
5140
5141 return scope;
5142 }
5143
5144 /* Return nonzero if NAME corresponds to a package name. */
5145
5146 static int
5147 is_package_name (const char *name)
5148 {
5149 /* Here, We take advantage of the fact that no symbols are generated
5150 for packages, while symbols are generated for each function.
5151 So the condition for NAME represent a package becomes equivalent
5152 to NAME not existing in our list of symbols. There is only one
5153 small complication with library-level functions (see below). */
5154
5155 char *fun_name;
5156
5157 /* If it is a function that has not been defined at library level,
5158 then we should be able to look it up in the symbols. */
5159 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5160 return 0;
5161
5162 /* Library-level function names start with "_ada_". See if function
5163 "_ada_" followed by NAME can be found. */
5164
5165 /* Do a quick check that NAME does not contain "__", since library-level
5166 functions names cannot contain "__" in them. */
5167 if (strstr (name, "__") != NULL)
5168 return 0;
5169
5170 fun_name = xstrprintf ("_ada_%s", name);
5171
5172 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5173 }
5174
5175 /* Return nonzero if SYM corresponds to a renaming entity that is
5176 not visible from FUNCTION_NAME. */
5177
5178 static int
5179 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5180 {
5181 char *scope;
5182 struct cleanup *old_chain;
5183
5184 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5185 return 0;
5186
5187 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5188 old_chain = make_cleanup (xfree, scope);
5189
5190 /* If the rename has been defined in a package, then it is visible. */
5191 if (is_package_name (scope))
5192 {
5193 do_cleanups (old_chain);
5194 return 0;
5195 }
5196
5197 /* Check that the rename is in the current function scope by checking
5198 that its name starts with SCOPE. */
5199
5200 /* If the function name starts with "_ada_", it means that it is
5201 a library-level function. Strip this prefix before doing the
5202 comparison, as the encoding for the renaming does not contain
5203 this prefix. */
5204 if (startswith (function_name, "_ada_"))
5205 function_name += 5;
5206
5207 {
5208 int is_invisible = !startswith (function_name, scope);
5209
5210 do_cleanups (old_chain);
5211 return is_invisible;
5212 }
5213 }
5214
5215 /* Remove entries from SYMS that corresponds to a renaming entity that
5216 is not visible from the function associated with CURRENT_BLOCK or
5217 that is superfluous due to the presence of more specific renaming
5218 information. Places surviving symbols in the initial entries of
5219 SYMS and returns the number of surviving symbols.
5220
5221 Rationale:
5222 First, in cases where an object renaming is implemented as a
5223 reference variable, GNAT may produce both the actual reference
5224 variable and the renaming encoding. In this case, we discard the
5225 latter.
5226
5227 Second, GNAT emits a type following a specified encoding for each renaming
5228 entity. Unfortunately, STABS currently does not support the definition
5229 of types that are local to a given lexical block, so all renamings types
5230 are emitted at library level. As a consequence, if an application
5231 contains two renaming entities using the same name, and a user tries to
5232 print the value of one of these entities, the result of the ada symbol
5233 lookup will also contain the wrong renaming type.
5234
5235 This function partially covers for this limitation by attempting to
5236 remove from the SYMS list renaming symbols that should be visible
5237 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5238 method with the current information available. The implementation
5239 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5240
5241 - When the user tries to print a rename in a function while there
5242 is another rename entity defined in a package: Normally, the
5243 rename in the function has precedence over the rename in the
5244 package, so the latter should be removed from the list. This is
5245 currently not the case.
5246
5247 - This function will incorrectly remove valid renames if
5248 the CURRENT_BLOCK corresponds to a function which symbol name
5249 has been changed by an "Export" pragma. As a consequence,
5250 the user will be unable to print such rename entities. */
5251
5252 static int
5253 remove_irrelevant_renamings (struct block_symbol *syms,
5254 int nsyms, const struct block *current_block)
5255 {
5256 struct symbol *current_function;
5257 const char *current_function_name;
5258 int i;
5259 int is_new_style_renaming;
5260
5261 /* If there is both a renaming foo___XR... encoded as a variable and
5262 a simple variable foo in the same block, discard the latter.
5263 First, zero out such symbols, then compress. */
5264 is_new_style_renaming = 0;
5265 for (i = 0; i < nsyms; i += 1)
5266 {
5267 struct symbol *sym = syms[i].symbol;
5268 const struct block *block = syms[i].block;
5269 const char *name;
5270 const char *suffix;
5271
5272 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5273 continue;
5274 name = SYMBOL_LINKAGE_NAME (sym);
5275 suffix = strstr (name, "___XR");
5276
5277 if (suffix != NULL)
5278 {
5279 int name_len = suffix - name;
5280 int j;
5281
5282 is_new_style_renaming = 1;
5283 for (j = 0; j < nsyms; j += 1)
5284 if (i != j && syms[j].symbol != NULL
5285 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5286 name_len) == 0
5287 && block == syms[j].block)
5288 syms[j].symbol = NULL;
5289 }
5290 }
5291 if (is_new_style_renaming)
5292 {
5293 int j, k;
5294
5295 for (j = k = 0; j < nsyms; j += 1)
5296 if (syms[j].symbol != NULL)
5297 {
5298 syms[k] = syms[j];
5299 k += 1;
5300 }
5301 return k;
5302 }
5303
5304 /* Extract the function name associated to CURRENT_BLOCK.
5305 Abort if unable to do so. */
5306
5307 if (current_block == NULL)
5308 return nsyms;
5309
5310 current_function = block_linkage_function (current_block);
5311 if (current_function == NULL)
5312 return nsyms;
5313
5314 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5315 if (current_function_name == NULL)
5316 return nsyms;
5317
5318 /* Check each of the symbols, and remove it from the list if it is
5319 a type corresponding to a renaming that is out of the scope of
5320 the current block. */
5321
5322 i = 0;
5323 while (i < nsyms)
5324 {
5325 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5326 == ADA_OBJECT_RENAMING
5327 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5328 {
5329 int j;
5330
5331 for (j = i + 1; j < nsyms; j += 1)
5332 syms[j - 1] = syms[j];
5333 nsyms -= 1;
5334 }
5335 else
5336 i += 1;
5337 }
5338
5339 return nsyms;
5340 }
5341
5342 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5343 whose name and domain match NAME and DOMAIN respectively.
5344 If no match was found, then extend the search to "enclosing"
5345 routines (in other words, if we're inside a nested function,
5346 search the symbols defined inside the enclosing functions).
5347 If WILD_MATCH_P is nonzero, perform the naming matching in
5348 "wild" mode (see function "wild_match" for more info).
5349
5350 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5351
5352 static void
5353 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5354 const struct block *block, domain_enum domain,
5355 int wild_match_p)
5356 {
5357 int block_depth = 0;
5358
5359 while (block != NULL)
5360 {
5361 block_depth += 1;
5362 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5363 wild_match_p);
5364
5365 /* If we found a non-function match, assume that's the one. */
5366 if (is_nonfunction (defns_collected (obstackp, 0),
5367 num_defns_collected (obstackp)))
5368 return;
5369
5370 block = BLOCK_SUPERBLOCK (block);
5371 }
5372
5373 /* If no luck so far, try to find NAME as a local symbol in some lexically
5374 enclosing subprogram. */
5375 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5376 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5377 }
5378
5379 /* An object of this type is used as the user_data argument when
5380 calling the map_matching_symbols method. */
5381
5382 struct match_data
5383 {
5384 struct objfile *objfile;
5385 struct obstack *obstackp;
5386 struct symbol *arg_sym;
5387 int found_sym;
5388 };
5389
5390 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5391 to a list of symbols. DATA0 is a pointer to a struct match_data *
5392 containing the obstack that collects the symbol list, the file that SYM
5393 must come from, a flag indicating whether a non-argument symbol has
5394 been found in the current block, and the last argument symbol
5395 passed in SYM within the current block (if any). When SYM is null,
5396 marking the end of a block, the argument symbol is added if no
5397 other has been found. */
5398
5399 static int
5400 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5401 {
5402 struct match_data *data = (struct match_data *) data0;
5403
5404 if (sym == NULL)
5405 {
5406 if (!data->found_sym && data->arg_sym != NULL)
5407 add_defn_to_vec (data->obstackp,
5408 fixup_symbol_section (data->arg_sym, data->objfile),
5409 block);
5410 data->found_sym = 0;
5411 data->arg_sym = NULL;
5412 }
5413 else
5414 {
5415 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5416 return 0;
5417 else if (SYMBOL_IS_ARGUMENT (sym))
5418 data->arg_sym = sym;
5419 else
5420 {
5421 data->found_sym = 1;
5422 add_defn_to_vec (data->obstackp,
5423 fixup_symbol_section (sym, data->objfile),
5424 block);
5425 }
5426 }
5427 return 0;
5428 }
5429
5430 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5431 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5432 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5433 function "wild_match" for more information). Return whether we found such
5434 symbols. */
5435
5436 static int
5437 ada_add_block_renamings (struct obstack *obstackp,
5438 const struct block *block,
5439 const char *name,
5440 domain_enum domain,
5441 int wild_match_p)
5442 {
5443 struct using_direct *renaming;
5444 int defns_mark = num_defns_collected (obstackp);
5445
5446 for (renaming = block_using (block);
5447 renaming != NULL;
5448 renaming = renaming->next)
5449 {
5450 const char *r_name;
5451 int name_match;
5452
5453 /* Avoid infinite recursions: skip this renaming if we are actually
5454 already traversing it.
5455
5456 Currently, symbol lookup in Ada don't use the namespace machinery from
5457 C++/Fortran support: skip namespace imports that use them. */
5458 if (renaming->searched
5459 || (renaming->import_src != NULL
5460 && renaming->import_src[0] != '\0')
5461 || (renaming->import_dest != NULL
5462 && renaming->import_dest[0] != '\0'))
5463 continue;
5464 renaming->searched = 1;
5465
5466 /* TODO: here, we perform another name-based symbol lookup, which can
5467 pull its own multiple overloads. In theory, we should be able to do
5468 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5469 not a simple name. But in order to do this, we would need to enhance
5470 the DWARF reader to associate a symbol to this renaming, instead of a
5471 name. So, for now, we do something simpler: re-use the C++/Fortran
5472 namespace machinery. */
5473 r_name = (renaming->alias != NULL
5474 ? renaming->alias
5475 : renaming->declaration);
5476 name_match
5477 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5478 if (name_match == 0)
5479 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5480 1, NULL);
5481 renaming->searched = 0;
5482 }
5483 return num_defns_collected (obstackp) != defns_mark;
5484 }
5485
5486 /* Implements compare_names, but only applying the comparision using
5487 the given CASING. */
5488
5489 static int
5490 compare_names_with_case (const char *string1, const char *string2,
5491 enum case_sensitivity casing)
5492 {
5493 while (*string1 != '\0' && *string2 != '\0')
5494 {
5495 char c1, c2;
5496
5497 if (isspace (*string1) || isspace (*string2))
5498 return strcmp_iw_ordered (string1, string2);
5499
5500 if (casing == case_sensitive_off)
5501 {
5502 c1 = tolower (*string1);
5503 c2 = tolower (*string2);
5504 }
5505 else
5506 {
5507 c1 = *string1;
5508 c2 = *string2;
5509 }
5510 if (c1 != c2)
5511 break;
5512
5513 string1 += 1;
5514 string2 += 1;
5515 }
5516
5517 switch (*string1)
5518 {
5519 case '(':
5520 return strcmp_iw_ordered (string1, string2);
5521 case '_':
5522 if (*string2 == '\0')
5523 {
5524 if (is_name_suffix (string1))
5525 return 0;
5526 else
5527 return 1;
5528 }
5529 /* FALLTHROUGH */
5530 default:
5531 if (*string2 == '(')
5532 return strcmp_iw_ordered (string1, string2);
5533 else
5534 {
5535 if (casing == case_sensitive_off)
5536 return tolower (*string1) - tolower (*string2);
5537 else
5538 return *string1 - *string2;
5539 }
5540 }
5541 }
5542
5543 /* Compare STRING1 to STRING2, with results as for strcmp.
5544 Compatible with strcmp_iw_ordered in that...
5545
5546 strcmp_iw_ordered (STRING1, STRING2) <= 0
5547
5548 ... implies...
5549
5550 compare_names (STRING1, STRING2) <= 0
5551
5552 (they may differ as to what symbols compare equal). */
5553
5554 static int
5555 compare_names (const char *string1, const char *string2)
5556 {
5557 int result;
5558
5559 /* Similar to what strcmp_iw_ordered does, we need to perform
5560 a case-insensitive comparison first, and only resort to
5561 a second, case-sensitive, comparison if the first one was
5562 not sufficient to differentiate the two strings. */
5563
5564 result = compare_names_with_case (string1, string2, case_sensitive_off);
5565 if (result == 0)
5566 result = compare_names_with_case (string1, string2, case_sensitive_on);
5567
5568 return result;
5569 }
5570
5571 /* Add to OBSTACKP all non-local symbols whose name and domain match
5572 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5573 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5574
5575 static void
5576 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5577 domain_enum domain, int global,
5578 int is_wild_match)
5579 {
5580 struct objfile *objfile;
5581 struct compunit_symtab *cu;
5582 struct match_data data;
5583
5584 memset (&data, 0, sizeof data);
5585 data.obstackp = obstackp;
5586
5587 ALL_OBJFILES (objfile)
5588 {
5589 data.objfile = objfile;
5590
5591 if (is_wild_match)
5592 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5593 aux_add_nonlocal_symbols, &data,
5594 wild_match, NULL);
5595 else
5596 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5597 aux_add_nonlocal_symbols, &data,
5598 full_match, compare_names);
5599
5600 ALL_OBJFILE_COMPUNITS (objfile, cu)
5601 {
5602 const struct block *global_block
5603 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5604
5605 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5606 is_wild_match))
5607 data.found_sym = 1;
5608 }
5609 }
5610
5611 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5612 {
5613 ALL_OBJFILES (objfile)
5614 {
5615 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5616 strcpy (name1, "_ada_");
5617 strcpy (name1 + sizeof ("_ada_") - 1, name);
5618 data.objfile = objfile;
5619 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5620 global,
5621 aux_add_nonlocal_symbols,
5622 &data,
5623 full_match, compare_names);
5624 }
5625 }
5626 }
5627
5628 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5629 non-zero, enclosing scope and in global scopes, returning the number of
5630 matches. Add these to OBSTACKP.
5631
5632 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5633 symbol match within the nest of blocks whose innermost member is BLOCK,
5634 is the one match returned (no other matches in that or
5635 enclosing blocks is returned). If there are any matches in or
5636 surrounding BLOCK, then these alone are returned.
5637
5638 Names prefixed with "standard__" are handled specially: "standard__"
5639 is first stripped off, and only static and global symbols are searched.
5640
5641 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5642 to lookup global symbols. */
5643
5644 static void
5645 ada_add_all_symbols (struct obstack *obstackp,
5646 const struct block *block,
5647 const char *name,
5648 domain_enum domain,
5649 int full_search,
5650 int *made_global_lookup_p)
5651 {
5652 struct symbol *sym;
5653 const int wild_match_p = should_use_wild_match (name);
5654
5655 if (made_global_lookup_p)
5656 *made_global_lookup_p = 0;
5657
5658 /* Special case: If the user specifies a symbol name inside package
5659 Standard, do a non-wild matching of the symbol name without
5660 the "standard__" prefix. This was primarily introduced in order
5661 to allow the user to specifically access the standard exceptions
5662 using, for instance, Standard.Constraint_Error when Constraint_Error
5663 is ambiguous (due to the user defining its own Constraint_Error
5664 entity inside its program). */
5665 if (startswith (name, "standard__"))
5666 {
5667 block = NULL;
5668 name = name + sizeof ("standard__") - 1;
5669 }
5670
5671 /* Check the non-global symbols. If we have ANY match, then we're done. */
5672
5673 if (block != NULL)
5674 {
5675 if (full_search)
5676 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5677 else
5678 {
5679 /* In the !full_search case we're are being called by
5680 ada_iterate_over_symbols, and we don't want to search
5681 superblocks. */
5682 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5683 wild_match_p);
5684 }
5685 if (num_defns_collected (obstackp) > 0 || !full_search)
5686 return;
5687 }
5688
5689 /* No non-global symbols found. Check our cache to see if we have
5690 already performed this search before. If we have, then return
5691 the same result. */
5692
5693 if (lookup_cached_symbol (name, domain, &sym, &block))
5694 {
5695 if (sym != NULL)
5696 add_defn_to_vec (obstackp, sym, block);
5697 return;
5698 }
5699
5700 if (made_global_lookup_p)
5701 *made_global_lookup_p = 1;
5702
5703 /* Search symbols from all global blocks. */
5704
5705 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5706
5707 /* Now add symbols from all per-file blocks if we've gotten no hits
5708 (not strictly correct, but perhaps better than an error). */
5709
5710 if (num_defns_collected (obstackp) == 0)
5711 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5712 }
5713
5714 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5715 non-zero, enclosing scope and in global scopes, returning the number of
5716 matches.
5717 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5718 indicating the symbols found and the blocks and symbol tables (if
5719 any) in which they were found. This vector is transient---good only to
5720 the next call of ada_lookup_symbol_list.
5721
5722 When full_search is non-zero, any non-function/non-enumeral
5723 symbol match within the nest of blocks whose innermost member is BLOCK,
5724 is the one match returned (no other matches in that or
5725 enclosing blocks is returned). If there are any matches in or
5726 surrounding BLOCK, then these alone are returned.
5727
5728 Names prefixed with "standard__" are handled specially: "standard__"
5729 is first stripped off, and only static and global symbols are searched. */
5730
5731 static int
5732 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5733 domain_enum domain,
5734 struct block_symbol **results,
5735 int full_search)
5736 {
5737 const int wild_match_p = should_use_wild_match (name);
5738 int syms_from_global_search;
5739 int ndefns;
5740
5741 obstack_free (&symbol_list_obstack, NULL);
5742 obstack_init (&symbol_list_obstack);
5743 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5744 full_search, &syms_from_global_search);
5745
5746 ndefns = num_defns_collected (&symbol_list_obstack);
5747 *results = defns_collected (&symbol_list_obstack, 1);
5748
5749 ndefns = remove_extra_symbols (*results, ndefns);
5750
5751 if (ndefns == 0 && full_search && syms_from_global_search)
5752 cache_symbol (name, domain, NULL, NULL);
5753
5754 if (ndefns == 1 && full_search && syms_from_global_search)
5755 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5756
5757 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5758 return ndefns;
5759 }
5760
5761 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5762 in global scopes, returning the number of matches, and setting *RESULTS
5763 to a vector of (SYM,BLOCK) tuples.
5764 See ada_lookup_symbol_list_worker for further details. */
5765
5766 int
5767 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5768 domain_enum domain, struct block_symbol **results)
5769 {
5770 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5771 }
5772
5773 /* Implementation of the la_iterate_over_symbols method. */
5774
5775 static void
5776 ada_iterate_over_symbols (const struct block *block,
5777 const char *name, domain_enum domain,
5778 symbol_found_callback_ftype *callback,
5779 void *data)
5780 {
5781 int ndefs, i;
5782 struct block_symbol *results;
5783
5784 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5785 for (i = 0; i < ndefs; ++i)
5786 {
5787 if (! (*callback) (results[i].symbol, data))
5788 break;
5789 }
5790 }
5791
5792 /* If NAME is the name of an entity, return a string that should
5793 be used to look that entity up in Ada units. This string should
5794 be deallocated after use using xfree.
5795
5796 NAME can have any form that the "break" or "print" commands might
5797 recognize. In other words, it does not have to be the "natural"
5798 name, or the "encoded" name. */
5799
5800 char *
5801 ada_name_for_lookup (const char *name)
5802 {
5803 char *canon;
5804 int nlen = strlen (name);
5805
5806 if (name[0] == '<' && name[nlen - 1] == '>')
5807 {
5808 canon = (char *) xmalloc (nlen - 1);
5809 memcpy (canon, name + 1, nlen - 2);
5810 canon[nlen - 2] = '\0';
5811 }
5812 else
5813 canon = xstrdup (ada_encode (ada_fold_name (name)));
5814 return canon;
5815 }
5816
5817 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5818 to 1, but choosing the first symbol found if there are multiple
5819 choices.
5820
5821 The result is stored in *INFO, which must be non-NULL.
5822 If no match is found, INFO->SYM is set to NULL. */
5823
5824 void
5825 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5826 domain_enum domain,
5827 struct block_symbol *info)
5828 {
5829 struct block_symbol *candidates;
5830 int n_candidates;
5831
5832 gdb_assert (info != NULL);
5833 memset (info, 0, sizeof (struct block_symbol));
5834
5835 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5836 if (n_candidates == 0)
5837 return;
5838
5839 *info = candidates[0];
5840 info->symbol = fixup_symbol_section (info->symbol, NULL);
5841 }
5842
5843 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5844 scope and in global scopes, or NULL if none. NAME is folded and
5845 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5846 choosing the first symbol if there are multiple choices.
5847 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5848
5849 struct block_symbol
5850 ada_lookup_symbol (const char *name, const struct block *block0,
5851 domain_enum domain, int *is_a_field_of_this)
5852 {
5853 struct block_symbol info;
5854
5855 if (is_a_field_of_this != NULL)
5856 *is_a_field_of_this = 0;
5857
5858 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5859 block0, domain, &info);
5860 return info;
5861 }
5862
5863 static struct block_symbol
5864 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5865 const char *name,
5866 const struct block *block,
5867 const domain_enum domain)
5868 {
5869 struct block_symbol sym;
5870
5871 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5872 if (sym.symbol != NULL)
5873 return sym;
5874
5875 /* If we haven't found a match at this point, try the primitive
5876 types. In other languages, this search is performed before
5877 searching for global symbols in order to short-circuit that
5878 global-symbol search if it happens that the name corresponds
5879 to a primitive type. But we cannot do the same in Ada, because
5880 it is perfectly legitimate for a program to declare a type which
5881 has the same name as a standard type. If looking up a type in
5882 that situation, we have traditionally ignored the primitive type
5883 in favor of user-defined types. This is why, unlike most other
5884 languages, we search the primitive types this late and only after
5885 having searched the global symbols without success. */
5886
5887 if (domain == VAR_DOMAIN)
5888 {
5889 struct gdbarch *gdbarch;
5890
5891 if (block == NULL)
5892 gdbarch = target_gdbarch ();
5893 else
5894 gdbarch = block_gdbarch (block);
5895 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5896 if (sym.symbol != NULL)
5897 return sym;
5898 }
5899
5900 return (struct block_symbol) {NULL, NULL};
5901 }
5902
5903
5904 /* True iff STR is a possible encoded suffix of a normal Ada name
5905 that is to be ignored for matching purposes. Suffixes of parallel
5906 names (e.g., XVE) are not included here. Currently, the possible suffixes
5907 are given by any of the regular expressions:
5908
5909 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5910 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5911 TKB [subprogram suffix for task bodies]
5912 _E[0-9]+[bs]$ [protected object entry suffixes]
5913 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5914
5915 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5916 match is performed. This sequence is used to differentiate homonyms,
5917 is an optional part of a valid name suffix. */
5918
5919 static int
5920 is_name_suffix (const char *str)
5921 {
5922 int k;
5923 const char *matching;
5924 const int len = strlen (str);
5925
5926 /* Skip optional leading __[0-9]+. */
5927
5928 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5929 {
5930 str += 3;
5931 while (isdigit (str[0]))
5932 str += 1;
5933 }
5934
5935 /* [.$][0-9]+ */
5936
5937 if (str[0] == '.' || str[0] == '$')
5938 {
5939 matching = str + 1;
5940 while (isdigit (matching[0]))
5941 matching += 1;
5942 if (matching[0] == '\0')
5943 return 1;
5944 }
5945
5946 /* ___[0-9]+ */
5947
5948 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5949 {
5950 matching = str + 3;
5951 while (isdigit (matching[0]))
5952 matching += 1;
5953 if (matching[0] == '\0')
5954 return 1;
5955 }
5956
5957 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5958
5959 if (strcmp (str, "TKB") == 0)
5960 return 1;
5961
5962 #if 0
5963 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5964 with a N at the end. Unfortunately, the compiler uses the same
5965 convention for other internal types it creates. So treating
5966 all entity names that end with an "N" as a name suffix causes
5967 some regressions. For instance, consider the case of an enumerated
5968 type. To support the 'Image attribute, it creates an array whose
5969 name ends with N.
5970 Having a single character like this as a suffix carrying some
5971 information is a bit risky. Perhaps we should change the encoding
5972 to be something like "_N" instead. In the meantime, do not do
5973 the following check. */
5974 /* Protected Object Subprograms */
5975 if (len == 1 && str [0] == 'N')
5976 return 1;
5977 #endif
5978
5979 /* _E[0-9]+[bs]$ */
5980 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5981 {
5982 matching = str + 3;
5983 while (isdigit (matching[0]))
5984 matching += 1;
5985 if ((matching[0] == 'b' || matching[0] == 's')
5986 && matching [1] == '\0')
5987 return 1;
5988 }
5989
5990 /* ??? We should not modify STR directly, as we are doing below. This
5991 is fine in this case, but may become problematic later if we find
5992 that this alternative did not work, and want to try matching
5993 another one from the begining of STR. Since we modified it, we
5994 won't be able to find the begining of the string anymore! */
5995 if (str[0] == 'X')
5996 {
5997 str += 1;
5998 while (str[0] != '_' && str[0] != '\0')
5999 {
6000 if (str[0] != 'n' && str[0] != 'b')
6001 return 0;
6002 str += 1;
6003 }
6004 }
6005
6006 if (str[0] == '\000')
6007 return 1;
6008
6009 if (str[0] == '_')
6010 {
6011 if (str[1] != '_' || str[2] == '\000')
6012 return 0;
6013 if (str[2] == '_')
6014 {
6015 if (strcmp (str + 3, "JM") == 0)
6016 return 1;
6017 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6018 the LJM suffix in favor of the JM one. But we will
6019 still accept LJM as a valid suffix for a reasonable
6020 amount of time, just to allow ourselves to debug programs
6021 compiled using an older version of GNAT. */
6022 if (strcmp (str + 3, "LJM") == 0)
6023 return 1;
6024 if (str[3] != 'X')
6025 return 0;
6026 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6027 || str[4] == 'U' || str[4] == 'P')
6028 return 1;
6029 if (str[4] == 'R' && str[5] != 'T')
6030 return 1;
6031 return 0;
6032 }
6033 if (!isdigit (str[2]))
6034 return 0;
6035 for (k = 3; str[k] != '\0'; k += 1)
6036 if (!isdigit (str[k]) && str[k] != '_')
6037 return 0;
6038 return 1;
6039 }
6040 if (str[0] == '$' && isdigit (str[1]))
6041 {
6042 for (k = 2; str[k] != '\0'; k += 1)
6043 if (!isdigit (str[k]) && str[k] != '_')
6044 return 0;
6045 return 1;
6046 }
6047 return 0;
6048 }
6049
6050 /* Return non-zero if the string starting at NAME and ending before
6051 NAME_END contains no capital letters. */
6052
6053 static int
6054 is_valid_name_for_wild_match (const char *name0)
6055 {
6056 const char *decoded_name = ada_decode (name0);
6057 int i;
6058
6059 /* If the decoded name starts with an angle bracket, it means that
6060 NAME0 does not follow the GNAT encoding format. It should then
6061 not be allowed as a possible wild match. */
6062 if (decoded_name[0] == '<')
6063 return 0;
6064
6065 for (i=0; decoded_name[i] != '\0'; i++)
6066 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6067 return 0;
6068
6069 return 1;
6070 }
6071
6072 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6073 that could start a simple name. Assumes that *NAMEP points into
6074 the string beginning at NAME0. */
6075
6076 static int
6077 advance_wild_match (const char **namep, const char *name0, int target0)
6078 {
6079 const char *name = *namep;
6080
6081 while (1)
6082 {
6083 int t0, t1;
6084
6085 t0 = *name;
6086 if (t0 == '_')
6087 {
6088 t1 = name[1];
6089 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6090 {
6091 name += 1;
6092 if (name == name0 + 5 && startswith (name0, "_ada"))
6093 break;
6094 else
6095 name += 1;
6096 }
6097 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6098 || name[2] == target0))
6099 {
6100 name += 2;
6101 break;
6102 }
6103 else
6104 return 0;
6105 }
6106 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6107 name += 1;
6108 else
6109 return 0;
6110 }
6111
6112 *namep = name;
6113 return 1;
6114 }
6115
6116 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6117 informational suffixes of NAME (i.e., for which is_name_suffix is
6118 true). Assumes that PATN is a lower-cased Ada simple name. */
6119
6120 static int
6121 wild_match (const char *name, const char *patn)
6122 {
6123 const char *p;
6124 const char *name0 = name;
6125
6126 while (1)
6127 {
6128 const char *match = name;
6129
6130 if (*name == *patn)
6131 {
6132 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6133 if (*p != *name)
6134 break;
6135 if (*p == '\0' && is_name_suffix (name))
6136 return match != name0 && !is_valid_name_for_wild_match (name0);
6137
6138 if (name[-1] == '_')
6139 name -= 1;
6140 }
6141 if (!advance_wild_match (&name, name0, *patn))
6142 return 1;
6143 }
6144 }
6145
6146 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6147 informational suffix. */
6148
6149 static int
6150 full_match (const char *sym_name, const char *search_name)
6151 {
6152 return !match_name (sym_name, search_name, 0);
6153 }
6154
6155
6156 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6157 vector *defn_symbols, updating the list of symbols in OBSTACKP
6158 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6159 OBJFILE is the section containing BLOCK. */
6160
6161 static void
6162 ada_add_block_symbols (struct obstack *obstackp,
6163 const struct block *block, const char *name,
6164 domain_enum domain, struct objfile *objfile,
6165 int wild)
6166 {
6167 struct block_iterator iter;
6168 int name_len = strlen (name);
6169 /* A matching argument symbol, if any. */
6170 struct symbol *arg_sym;
6171 /* Set true when we find a matching non-argument symbol. */
6172 int found_sym;
6173 struct symbol *sym;
6174
6175 arg_sym = NULL;
6176 found_sym = 0;
6177 if (wild)
6178 {
6179 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6180 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6181 {
6182 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6183 SYMBOL_DOMAIN (sym), domain)
6184 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6185 {
6186 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6187 continue;
6188 else if (SYMBOL_IS_ARGUMENT (sym))
6189 arg_sym = sym;
6190 else
6191 {
6192 found_sym = 1;
6193 add_defn_to_vec (obstackp,
6194 fixup_symbol_section (sym, objfile),
6195 block);
6196 }
6197 }
6198 }
6199 }
6200 else
6201 {
6202 for (sym = block_iter_match_first (block, name, full_match, &iter);
6203 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6204 {
6205 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6206 SYMBOL_DOMAIN (sym), domain))
6207 {
6208 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6209 {
6210 if (SYMBOL_IS_ARGUMENT (sym))
6211 arg_sym = sym;
6212 else
6213 {
6214 found_sym = 1;
6215 add_defn_to_vec (obstackp,
6216 fixup_symbol_section (sym, objfile),
6217 block);
6218 }
6219 }
6220 }
6221 }
6222 }
6223
6224 /* Handle renamings. */
6225
6226 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6227 found_sym = 1;
6228
6229 if (!found_sym && arg_sym != NULL)
6230 {
6231 add_defn_to_vec (obstackp,
6232 fixup_symbol_section (arg_sym, objfile),
6233 block);
6234 }
6235
6236 if (!wild)
6237 {
6238 arg_sym = NULL;
6239 found_sym = 0;
6240
6241 ALL_BLOCK_SYMBOLS (block, iter, sym)
6242 {
6243 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6244 SYMBOL_DOMAIN (sym), domain))
6245 {
6246 int cmp;
6247
6248 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6249 if (cmp == 0)
6250 {
6251 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6252 if (cmp == 0)
6253 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6254 name_len);
6255 }
6256
6257 if (cmp == 0
6258 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6259 {
6260 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6261 {
6262 if (SYMBOL_IS_ARGUMENT (sym))
6263 arg_sym = sym;
6264 else
6265 {
6266 found_sym = 1;
6267 add_defn_to_vec (obstackp,
6268 fixup_symbol_section (sym, objfile),
6269 block);
6270 }
6271 }
6272 }
6273 }
6274 }
6275
6276 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6277 They aren't parameters, right? */
6278 if (!found_sym && arg_sym != NULL)
6279 {
6280 add_defn_to_vec (obstackp,
6281 fixup_symbol_section (arg_sym, objfile),
6282 block);
6283 }
6284 }
6285 }
6286 \f
6287
6288 /* Symbol Completion */
6289
6290 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6291 name in a form that's appropriate for the completion. The result
6292 does not need to be deallocated, but is only good until the next call.
6293
6294 TEXT_LEN is equal to the length of TEXT.
6295 Perform a wild match if WILD_MATCH_P is set.
6296 ENCODED_P should be set if TEXT represents the start of a symbol name
6297 in its encoded form. */
6298
6299 static const char *
6300 symbol_completion_match (const char *sym_name,
6301 const char *text, int text_len,
6302 int wild_match_p, int encoded_p)
6303 {
6304 const int verbatim_match = (text[0] == '<');
6305 int match = 0;
6306
6307 if (verbatim_match)
6308 {
6309 /* Strip the leading angle bracket. */
6310 text = text + 1;
6311 text_len--;
6312 }
6313
6314 /* First, test against the fully qualified name of the symbol. */
6315
6316 if (strncmp (sym_name, text, text_len) == 0)
6317 match = 1;
6318
6319 if (match && !encoded_p)
6320 {
6321 /* One needed check before declaring a positive match is to verify
6322 that iff we are doing a verbatim match, the decoded version
6323 of the symbol name starts with '<'. Otherwise, this symbol name
6324 is not a suitable completion. */
6325 const char *sym_name_copy = sym_name;
6326 int has_angle_bracket;
6327
6328 sym_name = ada_decode (sym_name);
6329 has_angle_bracket = (sym_name[0] == '<');
6330 match = (has_angle_bracket == verbatim_match);
6331 sym_name = sym_name_copy;
6332 }
6333
6334 if (match && !verbatim_match)
6335 {
6336 /* When doing non-verbatim match, another check that needs to
6337 be done is to verify that the potentially matching symbol name
6338 does not include capital letters, because the ada-mode would
6339 not be able to understand these symbol names without the
6340 angle bracket notation. */
6341 const char *tmp;
6342
6343 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6344 if (*tmp != '\0')
6345 match = 0;
6346 }
6347
6348 /* Second: Try wild matching... */
6349
6350 if (!match && wild_match_p)
6351 {
6352 /* Since we are doing wild matching, this means that TEXT
6353 may represent an unqualified symbol name. We therefore must
6354 also compare TEXT against the unqualified name of the symbol. */
6355 sym_name = ada_unqualified_name (ada_decode (sym_name));
6356
6357 if (strncmp (sym_name, text, text_len) == 0)
6358 match = 1;
6359 }
6360
6361 /* Finally: If we found a mach, prepare the result to return. */
6362
6363 if (!match)
6364 return NULL;
6365
6366 if (verbatim_match)
6367 sym_name = add_angle_brackets (sym_name);
6368
6369 if (!encoded_p)
6370 sym_name = ada_decode (sym_name);
6371
6372 return sym_name;
6373 }
6374
6375 /* A companion function to ada_make_symbol_completion_list().
6376 Check if SYM_NAME represents a symbol which name would be suitable
6377 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6378 it is appended at the end of the given string vector SV.
6379
6380 ORIG_TEXT is the string original string from the user command
6381 that needs to be completed. WORD is the entire command on which
6382 completion should be performed. These two parameters are used to
6383 determine which part of the symbol name should be added to the
6384 completion vector.
6385 if WILD_MATCH_P is set, then wild matching is performed.
6386 ENCODED_P should be set if TEXT represents a symbol name in its
6387 encoded formed (in which case the completion should also be
6388 encoded). */
6389
6390 static void
6391 symbol_completion_add (VEC(char_ptr) **sv,
6392 const char *sym_name,
6393 const char *text, int text_len,
6394 const char *orig_text, const char *word,
6395 int wild_match_p, int encoded_p)
6396 {
6397 const char *match = symbol_completion_match (sym_name, text, text_len,
6398 wild_match_p, encoded_p);
6399 char *completion;
6400
6401 if (match == NULL)
6402 return;
6403
6404 /* We found a match, so add the appropriate completion to the given
6405 string vector. */
6406
6407 if (word == orig_text)
6408 {
6409 completion = (char *) xmalloc (strlen (match) + 5);
6410 strcpy (completion, match);
6411 }
6412 else if (word > orig_text)
6413 {
6414 /* Return some portion of sym_name. */
6415 completion = (char *) xmalloc (strlen (match) + 5);
6416 strcpy (completion, match + (word - orig_text));
6417 }
6418 else
6419 {
6420 /* Return some of ORIG_TEXT plus sym_name. */
6421 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6422 strncpy (completion, word, orig_text - word);
6423 completion[orig_text - word] = '\0';
6424 strcat (completion, match);
6425 }
6426
6427 VEC_safe_push (char_ptr, *sv, completion);
6428 }
6429
6430 /* An object of this type is passed as the user_data argument to the
6431 expand_symtabs_matching method. */
6432 struct add_partial_datum
6433 {
6434 VEC(char_ptr) **completions;
6435 const char *text;
6436 int text_len;
6437 const char *text0;
6438 const char *word;
6439 int wild_match;
6440 int encoded;
6441 };
6442
6443 /* A callback for expand_symtabs_matching. */
6444
6445 static int
6446 ada_complete_symbol_matcher (const char *name, void *user_data)
6447 {
6448 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
6449
6450 return symbol_completion_match (name, data->text, data->text_len,
6451 data->wild_match, data->encoded) != NULL;
6452 }
6453
6454 /* Return a list of possible symbol names completing TEXT0. WORD is
6455 the entire command on which completion is made. */
6456
6457 static VEC (char_ptr) *
6458 ada_make_symbol_completion_list (const char *text0, const char *word,
6459 enum type_code code)
6460 {
6461 char *text;
6462 int text_len;
6463 int wild_match_p;
6464 int encoded_p;
6465 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6466 struct symbol *sym;
6467 struct compunit_symtab *s;
6468 struct minimal_symbol *msymbol;
6469 struct objfile *objfile;
6470 const struct block *b, *surrounding_static_block = 0;
6471 int i;
6472 struct block_iterator iter;
6473 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6474
6475 gdb_assert (code == TYPE_CODE_UNDEF);
6476
6477 if (text0[0] == '<')
6478 {
6479 text = xstrdup (text0);
6480 make_cleanup (xfree, text);
6481 text_len = strlen (text);
6482 wild_match_p = 0;
6483 encoded_p = 1;
6484 }
6485 else
6486 {
6487 text = xstrdup (ada_encode (text0));
6488 make_cleanup (xfree, text);
6489 text_len = strlen (text);
6490 for (i = 0; i < text_len; i++)
6491 text[i] = tolower (text[i]);
6492
6493 encoded_p = (strstr (text0, "__") != NULL);
6494 /* If the name contains a ".", then the user is entering a fully
6495 qualified entity name, and the match must not be done in wild
6496 mode. Similarly, if the user wants to complete what looks like
6497 an encoded name, the match must not be done in wild mode. */
6498 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6499 }
6500
6501 /* First, look at the partial symtab symbols. */
6502 {
6503 struct add_partial_datum data;
6504
6505 data.completions = &completions;
6506 data.text = text;
6507 data.text_len = text_len;
6508 data.text0 = text0;
6509 data.word = word;
6510 data.wild_match = wild_match_p;
6511 data.encoded = encoded_p;
6512 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6513 ALL_DOMAIN, &data);
6514 }
6515
6516 /* At this point scan through the misc symbol vectors and add each
6517 symbol you find to the list. Eventually we want to ignore
6518 anything that isn't a text symbol (everything else will be
6519 handled by the psymtab code above). */
6520
6521 ALL_MSYMBOLS (objfile, msymbol)
6522 {
6523 QUIT;
6524 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6525 text, text_len, text0, word, wild_match_p,
6526 encoded_p);
6527 }
6528
6529 /* Search upwards from currently selected frame (so that we can
6530 complete on local vars. */
6531
6532 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6533 {
6534 if (!BLOCK_SUPERBLOCK (b))
6535 surrounding_static_block = b; /* For elmin of dups */
6536
6537 ALL_BLOCK_SYMBOLS (b, iter, sym)
6538 {
6539 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6540 text, text_len, text0, word,
6541 wild_match_p, encoded_p);
6542 }
6543 }
6544
6545 /* Go through the symtabs and check the externs and statics for
6546 symbols which match. */
6547
6548 ALL_COMPUNITS (objfile, s)
6549 {
6550 QUIT;
6551 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6552 ALL_BLOCK_SYMBOLS (b, iter, sym)
6553 {
6554 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6555 text, text_len, text0, word,
6556 wild_match_p, encoded_p);
6557 }
6558 }
6559
6560 ALL_COMPUNITS (objfile, s)
6561 {
6562 QUIT;
6563 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6564 /* Don't do this block twice. */
6565 if (b == surrounding_static_block)
6566 continue;
6567 ALL_BLOCK_SYMBOLS (b, iter, sym)
6568 {
6569 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6570 text, text_len, text0, word,
6571 wild_match_p, encoded_p);
6572 }
6573 }
6574
6575 do_cleanups (old_chain);
6576 return completions;
6577 }
6578
6579 /* Field Access */
6580
6581 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6582 for tagged types. */
6583
6584 static int
6585 ada_is_dispatch_table_ptr_type (struct type *type)
6586 {
6587 const char *name;
6588
6589 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6590 return 0;
6591
6592 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6593 if (name == NULL)
6594 return 0;
6595
6596 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6597 }
6598
6599 /* Return non-zero if TYPE is an interface tag. */
6600
6601 static int
6602 ada_is_interface_tag (struct type *type)
6603 {
6604 const char *name = TYPE_NAME (type);
6605
6606 if (name == NULL)
6607 return 0;
6608
6609 return (strcmp (name, "ada__tags__interface_tag") == 0);
6610 }
6611
6612 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6613 to be invisible to users. */
6614
6615 int
6616 ada_is_ignored_field (struct type *type, int field_num)
6617 {
6618 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6619 return 1;
6620
6621 /* Check the name of that field. */
6622 {
6623 const char *name = TYPE_FIELD_NAME (type, field_num);
6624
6625 /* Anonymous field names should not be printed.
6626 brobecker/2007-02-20: I don't think this can actually happen
6627 but we don't want to print the value of annonymous fields anyway. */
6628 if (name == NULL)
6629 return 1;
6630
6631 /* Normally, fields whose name start with an underscore ("_")
6632 are fields that have been internally generated by the compiler,
6633 and thus should not be printed. The "_parent" field is special,
6634 however: This is a field internally generated by the compiler
6635 for tagged types, and it contains the components inherited from
6636 the parent type. This field should not be printed as is, but
6637 should not be ignored either. */
6638 if (name[0] == '_' && !startswith (name, "_parent"))
6639 return 1;
6640 }
6641
6642 /* If this is the dispatch table of a tagged type or an interface tag,
6643 then ignore. */
6644 if (ada_is_tagged_type (type, 1)
6645 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6646 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6647 return 1;
6648
6649 /* Not a special field, so it should not be ignored. */
6650 return 0;
6651 }
6652
6653 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6654 pointer or reference type whose ultimate target has a tag field. */
6655
6656 int
6657 ada_is_tagged_type (struct type *type, int refok)
6658 {
6659 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6660 }
6661
6662 /* True iff TYPE represents the type of X'Tag */
6663
6664 int
6665 ada_is_tag_type (struct type *type)
6666 {
6667 type = ada_check_typedef (type);
6668
6669 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6670 return 0;
6671 else
6672 {
6673 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6674
6675 return (name != NULL
6676 && strcmp (name, "ada__tags__dispatch_table") == 0);
6677 }
6678 }
6679
6680 /* The type of the tag on VAL. */
6681
6682 struct type *
6683 ada_tag_type (struct value *val)
6684 {
6685 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6686 }
6687
6688 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6689 retired at Ada 05). */
6690
6691 static int
6692 is_ada95_tag (struct value *tag)
6693 {
6694 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6695 }
6696
6697 /* The value of the tag on VAL. */
6698
6699 struct value *
6700 ada_value_tag (struct value *val)
6701 {
6702 return ada_value_struct_elt (val, "_tag", 0);
6703 }
6704
6705 /* The value of the tag on the object of type TYPE whose contents are
6706 saved at VALADDR, if it is non-null, or is at memory address
6707 ADDRESS. */
6708
6709 static struct value *
6710 value_tag_from_contents_and_address (struct type *type,
6711 const gdb_byte *valaddr,
6712 CORE_ADDR address)
6713 {
6714 int tag_byte_offset;
6715 struct type *tag_type;
6716
6717 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6718 NULL, NULL, NULL))
6719 {
6720 const gdb_byte *valaddr1 = ((valaddr == NULL)
6721 ? NULL
6722 : valaddr + tag_byte_offset);
6723 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6724
6725 return value_from_contents_and_address (tag_type, valaddr1, address1);
6726 }
6727 return NULL;
6728 }
6729
6730 static struct type *
6731 type_from_tag (struct value *tag)
6732 {
6733 const char *type_name = ada_tag_name (tag);
6734
6735 if (type_name != NULL)
6736 return ada_find_any_type (ada_encode (type_name));
6737 return NULL;
6738 }
6739
6740 /* Given a value OBJ of a tagged type, return a value of this
6741 type at the base address of the object. The base address, as
6742 defined in Ada.Tags, it is the address of the primary tag of
6743 the object, and therefore where the field values of its full
6744 view can be fetched. */
6745
6746 struct value *
6747 ada_tag_value_at_base_address (struct value *obj)
6748 {
6749 struct value *val;
6750 LONGEST offset_to_top = 0;
6751 struct type *ptr_type, *obj_type;
6752 struct value *tag;
6753 CORE_ADDR base_address;
6754
6755 obj_type = value_type (obj);
6756
6757 /* It is the responsability of the caller to deref pointers. */
6758
6759 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6760 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6761 return obj;
6762
6763 tag = ada_value_tag (obj);
6764 if (!tag)
6765 return obj;
6766
6767 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6768
6769 if (is_ada95_tag (tag))
6770 return obj;
6771
6772 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6773 ptr_type = lookup_pointer_type (ptr_type);
6774 val = value_cast (ptr_type, tag);
6775 if (!val)
6776 return obj;
6777
6778 /* It is perfectly possible that an exception be raised while
6779 trying to determine the base address, just like for the tag;
6780 see ada_tag_name for more details. We do not print the error
6781 message for the same reason. */
6782
6783 TRY
6784 {
6785 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6786 }
6787
6788 CATCH (e, RETURN_MASK_ERROR)
6789 {
6790 return obj;
6791 }
6792 END_CATCH
6793
6794 /* If offset is null, nothing to do. */
6795
6796 if (offset_to_top == 0)
6797 return obj;
6798
6799 /* -1 is a special case in Ada.Tags; however, what should be done
6800 is not quite clear from the documentation. So do nothing for
6801 now. */
6802
6803 if (offset_to_top == -1)
6804 return obj;
6805
6806 base_address = value_address (obj) - offset_to_top;
6807 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6808
6809 /* Make sure that we have a proper tag at the new address.
6810 Otherwise, offset_to_top is bogus (which can happen when
6811 the object is not initialized yet). */
6812
6813 if (!tag)
6814 return obj;
6815
6816 obj_type = type_from_tag (tag);
6817
6818 if (!obj_type)
6819 return obj;
6820
6821 return value_from_contents_and_address (obj_type, NULL, base_address);
6822 }
6823
6824 /* Return the "ada__tags__type_specific_data" type. */
6825
6826 static struct type *
6827 ada_get_tsd_type (struct inferior *inf)
6828 {
6829 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6830
6831 if (data->tsd_type == 0)
6832 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6833 return data->tsd_type;
6834 }
6835
6836 /* Return the TSD (type-specific data) associated to the given TAG.
6837 TAG is assumed to be the tag of a tagged-type entity.
6838
6839 May return NULL if we are unable to get the TSD. */
6840
6841 static struct value *
6842 ada_get_tsd_from_tag (struct value *tag)
6843 {
6844 struct value *val;
6845 struct type *type;
6846
6847 /* First option: The TSD is simply stored as a field of our TAG.
6848 Only older versions of GNAT would use this format, but we have
6849 to test it first, because there are no visible markers for
6850 the current approach except the absence of that field. */
6851
6852 val = ada_value_struct_elt (tag, "tsd", 1);
6853 if (val)
6854 return val;
6855
6856 /* Try the second representation for the dispatch table (in which
6857 there is no explicit 'tsd' field in the referent of the tag pointer,
6858 and instead the tsd pointer is stored just before the dispatch
6859 table. */
6860
6861 type = ada_get_tsd_type (current_inferior());
6862 if (type == NULL)
6863 return NULL;
6864 type = lookup_pointer_type (lookup_pointer_type (type));
6865 val = value_cast (type, tag);
6866 if (val == NULL)
6867 return NULL;
6868 return value_ind (value_ptradd (val, -1));
6869 }
6870
6871 /* Given the TSD of a tag (type-specific data), return a string
6872 containing the name of the associated type.
6873
6874 The returned value is good until the next call. May return NULL
6875 if we are unable to determine the tag name. */
6876
6877 static char *
6878 ada_tag_name_from_tsd (struct value *tsd)
6879 {
6880 static char name[1024];
6881 char *p;
6882 struct value *val;
6883
6884 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6885 if (val == NULL)
6886 return NULL;
6887 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6888 for (p = name; *p != '\0'; p += 1)
6889 if (isalpha (*p))
6890 *p = tolower (*p);
6891 return name;
6892 }
6893
6894 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6895 a C string.
6896
6897 Return NULL if the TAG is not an Ada tag, or if we were unable to
6898 determine the name of that tag. The result is good until the next
6899 call. */
6900
6901 const char *
6902 ada_tag_name (struct value *tag)
6903 {
6904 char *name = NULL;
6905
6906 if (!ada_is_tag_type (value_type (tag)))
6907 return NULL;
6908
6909 /* It is perfectly possible that an exception be raised while trying
6910 to determine the TAG's name, even under normal circumstances:
6911 The associated variable may be uninitialized or corrupted, for
6912 instance. We do not let any exception propagate past this point.
6913 instead we return NULL.
6914
6915 We also do not print the error message either (which often is very
6916 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6917 the caller print a more meaningful message if necessary. */
6918 TRY
6919 {
6920 struct value *tsd = ada_get_tsd_from_tag (tag);
6921
6922 if (tsd != NULL)
6923 name = ada_tag_name_from_tsd (tsd);
6924 }
6925 CATCH (e, RETURN_MASK_ERROR)
6926 {
6927 }
6928 END_CATCH
6929
6930 return name;
6931 }
6932
6933 /* The parent type of TYPE, or NULL if none. */
6934
6935 struct type *
6936 ada_parent_type (struct type *type)
6937 {
6938 int i;
6939
6940 type = ada_check_typedef (type);
6941
6942 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6943 return NULL;
6944
6945 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6946 if (ada_is_parent_field (type, i))
6947 {
6948 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6949
6950 /* If the _parent field is a pointer, then dereference it. */
6951 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6952 parent_type = TYPE_TARGET_TYPE (parent_type);
6953 /* If there is a parallel XVS type, get the actual base type. */
6954 parent_type = ada_get_base_type (parent_type);
6955
6956 return ada_check_typedef (parent_type);
6957 }
6958
6959 return NULL;
6960 }
6961
6962 /* True iff field number FIELD_NUM of structure type TYPE contains the
6963 parent-type (inherited) fields of a derived type. Assumes TYPE is
6964 a structure type with at least FIELD_NUM+1 fields. */
6965
6966 int
6967 ada_is_parent_field (struct type *type, int field_num)
6968 {
6969 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6970
6971 return (name != NULL
6972 && (startswith (name, "PARENT")
6973 || startswith (name, "_parent")));
6974 }
6975
6976 /* True iff field number FIELD_NUM of structure type TYPE is a
6977 transparent wrapper field (which should be silently traversed when doing
6978 field selection and flattened when printing). Assumes TYPE is a
6979 structure type with at least FIELD_NUM+1 fields. Such fields are always
6980 structures. */
6981
6982 int
6983 ada_is_wrapper_field (struct type *type, int field_num)
6984 {
6985 const char *name = TYPE_FIELD_NAME (type, field_num);
6986
6987 return (name != NULL
6988 && (startswith (name, "PARENT")
6989 || strcmp (name, "REP") == 0
6990 || startswith (name, "_parent")
6991 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6992 }
6993
6994 /* True iff field number FIELD_NUM of structure or union type TYPE
6995 is a variant wrapper. Assumes TYPE is a structure type with at least
6996 FIELD_NUM+1 fields. */
6997
6998 int
6999 ada_is_variant_part (struct type *type, int field_num)
7000 {
7001 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7002
7003 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7004 || (is_dynamic_field (type, field_num)
7005 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7006 == TYPE_CODE_UNION)));
7007 }
7008
7009 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7010 whose discriminants are contained in the record type OUTER_TYPE,
7011 returns the type of the controlling discriminant for the variant.
7012 May return NULL if the type could not be found. */
7013
7014 struct type *
7015 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7016 {
7017 char *name = ada_variant_discrim_name (var_type);
7018
7019 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
7020 }
7021
7022 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7023 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7024 represents a 'when others' clause; otherwise 0. */
7025
7026 int
7027 ada_is_others_clause (struct type *type, int field_num)
7028 {
7029 const char *name = TYPE_FIELD_NAME (type, field_num);
7030
7031 return (name != NULL && name[0] == 'O');
7032 }
7033
7034 /* Assuming that TYPE0 is the type of the variant part of a record,
7035 returns the name of the discriminant controlling the variant.
7036 The value is valid until the next call to ada_variant_discrim_name. */
7037
7038 char *
7039 ada_variant_discrim_name (struct type *type0)
7040 {
7041 static char *result = NULL;
7042 static size_t result_len = 0;
7043 struct type *type;
7044 const char *name;
7045 const char *discrim_end;
7046 const char *discrim_start;
7047
7048 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7049 type = TYPE_TARGET_TYPE (type0);
7050 else
7051 type = type0;
7052
7053 name = ada_type_name (type);
7054
7055 if (name == NULL || name[0] == '\000')
7056 return "";
7057
7058 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7059 discrim_end -= 1)
7060 {
7061 if (startswith (discrim_end, "___XVN"))
7062 break;
7063 }
7064 if (discrim_end == name)
7065 return "";
7066
7067 for (discrim_start = discrim_end; discrim_start != name + 3;
7068 discrim_start -= 1)
7069 {
7070 if (discrim_start == name + 1)
7071 return "";
7072 if ((discrim_start > name + 3
7073 && startswith (discrim_start - 3, "___"))
7074 || discrim_start[-1] == '.')
7075 break;
7076 }
7077
7078 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7079 strncpy (result, discrim_start, discrim_end - discrim_start);
7080 result[discrim_end - discrim_start] = '\0';
7081 return result;
7082 }
7083
7084 /* Scan STR for a subtype-encoded number, beginning at position K.
7085 Put the position of the character just past the number scanned in
7086 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7087 Return 1 if there was a valid number at the given position, and 0
7088 otherwise. A "subtype-encoded" number consists of the absolute value
7089 in decimal, followed by the letter 'm' to indicate a negative number.
7090 Assumes 0m does not occur. */
7091
7092 int
7093 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7094 {
7095 ULONGEST RU;
7096
7097 if (!isdigit (str[k]))
7098 return 0;
7099
7100 /* Do it the hard way so as not to make any assumption about
7101 the relationship of unsigned long (%lu scan format code) and
7102 LONGEST. */
7103 RU = 0;
7104 while (isdigit (str[k]))
7105 {
7106 RU = RU * 10 + (str[k] - '0');
7107 k += 1;
7108 }
7109
7110 if (str[k] == 'm')
7111 {
7112 if (R != NULL)
7113 *R = (-(LONGEST) (RU - 1)) - 1;
7114 k += 1;
7115 }
7116 else if (R != NULL)
7117 *R = (LONGEST) RU;
7118
7119 /* NOTE on the above: Technically, C does not say what the results of
7120 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7121 number representable as a LONGEST (although either would probably work
7122 in most implementations). When RU>0, the locution in the then branch
7123 above is always equivalent to the negative of RU. */
7124
7125 if (new_k != NULL)
7126 *new_k = k;
7127 return 1;
7128 }
7129
7130 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7131 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7132 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7133
7134 int
7135 ada_in_variant (LONGEST val, struct type *type, int field_num)
7136 {
7137 const char *name = TYPE_FIELD_NAME (type, field_num);
7138 int p;
7139
7140 p = 0;
7141 while (1)
7142 {
7143 switch (name[p])
7144 {
7145 case '\0':
7146 return 0;
7147 case 'S':
7148 {
7149 LONGEST W;
7150
7151 if (!ada_scan_number (name, p + 1, &W, &p))
7152 return 0;
7153 if (val == W)
7154 return 1;
7155 break;
7156 }
7157 case 'R':
7158 {
7159 LONGEST L, U;
7160
7161 if (!ada_scan_number (name, p + 1, &L, &p)
7162 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7163 return 0;
7164 if (val >= L && val <= U)
7165 return 1;
7166 break;
7167 }
7168 case 'O':
7169 return 1;
7170 default:
7171 return 0;
7172 }
7173 }
7174 }
7175
7176 /* FIXME: Lots of redundancy below. Try to consolidate. */
7177
7178 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7179 ARG_TYPE, extract and return the value of one of its (non-static)
7180 fields. FIELDNO says which field. Differs from value_primitive_field
7181 only in that it can handle packed values of arbitrary type. */
7182
7183 static struct value *
7184 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7185 struct type *arg_type)
7186 {
7187 struct type *type;
7188
7189 arg_type = ada_check_typedef (arg_type);
7190 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7191
7192 /* Handle packed fields. */
7193
7194 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7195 {
7196 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7197 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7198
7199 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7200 offset + bit_pos / 8,
7201 bit_pos % 8, bit_size, type);
7202 }
7203 else
7204 return value_primitive_field (arg1, offset, fieldno, arg_type);
7205 }
7206
7207 /* Find field with name NAME in object of type TYPE. If found,
7208 set the following for each argument that is non-null:
7209 - *FIELD_TYPE_P to the field's type;
7210 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7211 an object of that type;
7212 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7213 - *BIT_SIZE_P to its size in bits if the field is packed, and
7214 0 otherwise;
7215 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7216 fields up to but not including the desired field, or by the total
7217 number of fields if not found. A NULL value of NAME never
7218 matches; the function just counts visible fields in this case.
7219
7220 Returns 1 if found, 0 otherwise. */
7221
7222 static int
7223 find_struct_field (const char *name, struct type *type, int offset,
7224 struct type **field_type_p,
7225 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7226 int *index_p)
7227 {
7228 int i;
7229
7230 type = ada_check_typedef (type);
7231
7232 if (field_type_p != NULL)
7233 *field_type_p = NULL;
7234 if (byte_offset_p != NULL)
7235 *byte_offset_p = 0;
7236 if (bit_offset_p != NULL)
7237 *bit_offset_p = 0;
7238 if (bit_size_p != NULL)
7239 *bit_size_p = 0;
7240
7241 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7242 {
7243 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7244 int fld_offset = offset + bit_pos / 8;
7245 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7246
7247 if (t_field_name == NULL)
7248 continue;
7249
7250 else if (name != NULL && field_name_match (t_field_name, name))
7251 {
7252 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7253
7254 if (field_type_p != NULL)
7255 *field_type_p = TYPE_FIELD_TYPE (type, i);
7256 if (byte_offset_p != NULL)
7257 *byte_offset_p = fld_offset;
7258 if (bit_offset_p != NULL)
7259 *bit_offset_p = bit_pos % 8;
7260 if (bit_size_p != NULL)
7261 *bit_size_p = bit_size;
7262 return 1;
7263 }
7264 else if (ada_is_wrapper_field (type, i))
7265 {
7266 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7267 field_type_p, byte_offset_p, bit_offset_p,
7268 bit_size_p, index_p))
7269 return 1;
7270 }
7271 else if (ada_is_variant_part (type, i))
7272 {
7273 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7274 fixed type?? */
7275 int j;
7276 struct type *field_type
7277 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7278
7279 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7280 {
7281 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7282 fld_offset
7283 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7284 field_type_p, byte_offset_p,
7285 bit_offset_p, bit_size_p, index_p))
7286 return 1;
7287 }
7288 }
7289 else if (index_p != NULL)
7290 *index_p += 1;
7291 }
7292 return 0;
7293 }
7294
7295 /* Number of user-visible fields in record type TYPE. */
7296
7297 static int
7298 num_visible_fields (struct type *type)
7299 {
7300 int n;
7301
7302 n = 0;
7303 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7304 return n;
7305 }
7306
7307 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7308 and search in it assuming it has (class) type TYPE.
7309 If found, return value, else return NULL.
7310
7311 Searches recursively through wrapper fields (e.g., '_parent'). */
7312
7313 static struct value *
7314 ada_search_struct_field (const char *name, struct value *arg, int offset,
7315 struct type *type)
7316 {
7317 int i;
7318
7319 type = ada_check_typedef (type);
7320 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7321 {
7322 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7323
7324 if (t_field_name == NULL)
7325 continue;
7326
7327 else if (field_name_match (t_field_name, name))
7328 return ada_value_primitive_field (arg, offset, i, type);
7329
7330 else if (ada_is_wrapper_field (type, i))
7331 {
7332 struct value *v = /* Do not let indent join lines here. */
7333 ada_search_struct_field (name, arg,
7334 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7335 TYPE_FIELD_TYPE (type, i));
7336
7337 if (v != NULL)
7338 return v;
7339 }
7340
7341 else if (ada_is_variant_part (type, i))
7342 {
7343 /* PNH: Do we ever get here? See find_struct_field. */
7344 int j;
7345 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7346 i));
7347 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7348
7349 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7350 {
7351 struct value *v = ada_search_struct_field /* Force line
7352 break. */
7353 (name, arg,
7354 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7355 TYPE_FIELD_TYPE (field_type, j));
7356
7357 if (v != NULL)
7358 return v;
7359 }
7360 }
7361 }
7362 return NULL;
7363 }
7364
7365 static struct value *ada_index_struct_field_1 (int *, struct value *,
7366 int, struct type *);
7367
7368
7369 /* Return field #INDEX in ARG, where the index is that returned by
7370 * find_struct_field through its INDEX_P argument. Adjust the address
7371 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7372 * If found, return value, else return NULL. */
7373
7374 static struct value *
7375 ada_index_struct_field (int index, struct value *arg, int offset,
7376 struct type *type)
7377 {
7378 return ada_index_struct_field_1 (&index, arg, offset, type);
7379 }
7380
7381
7382 /* Auxiliary function for ada_index_struct_field. Like
7383 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7384 * *INDEX_P. */
7385
7386 static struct value *
7387 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7388 struct type *type)
7389 {
7390 int i;
7391 type = ada_check_typedef (type);
7392
7393 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7394 {
7395 if (TYPE_FIELD_NAME (type, i) == NULL)
7396 continue;
7397 else if (ada_is_wrapper_field (type, i))
7398 {
7399 struct value *v = /* Do not let indent join lines here. */
7400 ada_index_struct_field_1 (index_p, arg,
7401 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7402 TYPE_FIELD_TYPE (type, i));
7403
7404 if (v != NULL)
7405 return v;
7406 }
7407
7408 else if (ada_is_variant_part (type, i))
7409 {
7410 /* PNH: Do we ever get here? See ada_search_struct_field,
7411 find_struct_field. */
7412 error (_("Cannot assign this kind of variant record"));
7413 }
7414 else if (*index_p == 0)
7415 return ada_value_primitive_field (arg, offset, i, type);
7416 else
7417 *index_p -= 1;
7418 }
7419 return NULL;
7420 }
7421
7422 /* Given ARG, a value of type (pointer or reference to a)*
7423 structure/union, extract the component named NAME from the ultimate
7424 target structure/union and return it as a value with its
7425 appropriate type.
7426
7427 The routine searches for NAME among all members of the structure itself
7428 and (recursively) among all members of any wrapper members
7429 (e.g., '_parent').
7430
7431 If NO_ERR, then simply return NULL in case of error, rather than
7432 calling error. */
7433
7434 struct value *
7435 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7436 {
7437 struct type *t, *t1;
7438 struct value *v;
7439
7440 v = NULL;
7441 t1 = t = ada_check_typedef (value_type (arg));
7442 if (TYPE_CODE (t) == TYPE_CODE_REF)
7443 {
7444 t1 = TYPE_TARGET_TYPE (t);
7445 if (t1 == NULL)
7446 goto BadValue;
7447 t1 = ada_check_typedef (t1);
7448 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7449 {
7450 arg = coerce_ref (arg);
7451 t = t1;
7452 }
7453 }
7454
7455 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7456 {
7457 t1 = TYPE_TARGET_TYPE (t);
7458 if (t1 == NULL)
7459 goto BadValue;
7460 t1 = ada_check_typedef (t1);
7461 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7462 {
7463 arg = value_ind (arg);
7464 t = t1;
7465 }
7466 else
7467 break;
7468 }
7469
7470 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7471 goto BadValue;
7472
7473 if (t1 == t)
7474 v = ada_search_struct_field (name, arg, 0, t);
7475 else
7476 {
7477 int bit_offset, bit_size, byte_offset;
7478 struct type *field_type;
7479 CORE_ADDR address;
7480
7481 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7482 address = value_address (ada_value_ind (arg));
7483 else
7484 address = value_address (ada_coerce_ref (arg));
7485
7486 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7487 if (find_struct_field (name, t1, 0,
7488 &field_type, &byte_offset, &bit_offset,
7489 &bit_size, NULL))
7490 {
7491 if (bit_size != 0)
7492 {
7493 if (TYPE_CODE (t) == TYPE_CODE_REF)
7494 arg = ada_coerce_ref (arg);
7495 else
7496 arg = ada_value_ind (arg);
7497 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7498 bit_offset, bit_size,
7499 field_type);
7500 }
7501 else
7502 v = value_at_lazy (field_type, address + byte_offset);
7503 }
7504 }
7505
7506 if (v != NULL || no_err)
7507 return v;
7508 else
7509 error (_("There is no member named %s."), name);
7510
7511 BadValue:
7512 if (no_err)
7513 return NULL;
7514 else
7515 error (_("Attempt to extract a component of "
7516 "a value that is not a record."));
7517 }
7518
7519 /* Given a type TYPE, look up the type of the component of type named NAME.
7520 If DISPP is non-null, add its byte displacement from the beginning of a
7521 structure (pointed to by a value) of type TYPE to *DISPP (does not
7522 work for packed fields).
7523
7524 Matches any field whose name has NAME as a prefix, possibly
7525 followed by "___".
7526
7527 TYPE can be either a struct or union. If REFOK, TYPE may also
7528 be a (pointer or reference)+ to a struct or union, and the
7529 ultimate target type will be searched.
7530
7531 Looks recursively into variant clauses and parent types.
7532
7533 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7534 TYPE is not a type of the right kind. */
7535
7536 static struct type *
7537 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7538 int noerr, int *dispp)
7539 {
7540 int i;
7541
7542 if (name == NULL)
7543 goto BadName;
7544
7545 if (refok && type != NULL)
7546 while (1)
7547 {
7548 type = ada_check_typedef (type);
7549 if (TYPE_CODE (type) != TYPE_CODE_PTR
7550 && TYPE_CODE (type) != TYPE_CODE_REF)
7551 break;
7552 type = TYPE_TARGET_TYPE (type);
7553 }
7554
7555 if (type == NULL
7556 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7557 && TYPE_CODE (type) != TYPE_CODE_UNION))
7558 {
7559 if (noerr)
7560 return NULL;
7561 else
7562 {
7563 target_terminal_ours ();
7564 gdb_flush (gdb_stdout);
7565 if (type == NULL)
7566 error (_("Type (null) is not a structure or union type"));
7567 else
7568 {
7569 /* XXX: type_sprint */
7570 fprintf_unfiltered (gdb_stderr, _("Type "));
7571 type_print (type, "", gdb_stderr, -1);
7572 error (_(" is not a structure or union type"));
7573 }
7574 }
7575 }
7576
7577 type = to_static_fixed_type (type);
7578
7579 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7580 {
7581 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7582 struct type *t;
7583 int disp;
7584
7585 if (t_field_name == NULL)
7586 continue;
7587
7588 else if (field_name_match (t_field_name, name))
7589 {
7590 if (dispp != NULL)
7591 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7592 return TYPE_FIELD_TYPE (type, i);
7593 }
7594
7595 else if (ada_is_wrapper_field (type, i))
7596 {
7597 disp = 0;
7598 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7599 0, 1, &disp);
7600 if (t != NULL)
7601 {
7602 if (dispp != NULL)
7603 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7604 return t;
7605 }
7606 }
7607
7608 else if (ada_is_variant_part (type, i))
7609 {
7610 int j;
7611 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7612 i));
7613
7614 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7615 {
7616 /* FIXME pnh 2008/01/26: We check for a field that is
7617 NOT wrapped in a struct, since the compiler sometimes
7618 generates these for unchecked variant types. Revisit
7619 if the compiler changes this practice. */
7620 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7621 disp = 0;
7622 if (v_field_name != NULL
7623 && field_name_match (v_field_name, name))
7624 t = TYPE_FIELD_TYPE (field_type, j);
7625 else
7626 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7627 j),
7628 name, 0, 1, &disp);
7629
7630 if (t != NULL)
7631 {
7632 if (dispp != NULL)
7633 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7634 return t;
7635 }
7636 }
7637 }
7638
7639 }
7640
7641 BadName:
7642 if (!noerr)
7643 {
7644 target_terminal_ours ();
7645 gdb_flush (gdb_stdout);
7646 if (name == NULL)
7647 {
7648 /* XXX: type_sprint */
7649 fprintf_unfiltered (gdb_stderr, _("Type "));
7650 type_print (type, "", gdb_stderr, -1);
7651 error (_(" has no component named <null>"));
7652 }
7653 else
7654 {
7655 /* XXX: type_sprint */
7656 fprintf_unfiltered (gdb_stderr, _("Type "));
7657 type_print (type, "", gdb_stderr, -1);
7658 error (_(" has no component named %s"), name);
7659 }
7660 }
7661
7662 return NULL;
7663 }
7664
7665 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7666 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7667 represents an unchecked union (that is, the variant part of a
7668 record that is named in an Unchecked_Union pragma). */
7669
7670 static int
7671 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7672 {
7673 char *discrim_name = ada_variant_discrim_name (var_type);
7674
7675 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7676 == NULL);
7677 }
7678
7679
7680 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7681 within a value of type OUTER_TYPE that is stored in GDB at
7682 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7683 numbering from 0) is applicable. Returns -1 if none are. */
7684
7685 int
7686 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7687 const gdb_byte *outer_valaddr)
7688 {
7689 int others_clause;
7690 int i;
7691 char *discrim_name = ada_variant_discrim_name (var_type);
7692 struct value *outer;
7693 struct value *discrim;
7694 LONGEST discrim_val;
7695
7696 /* Using plain value_from_contents_and_address here causes problems
7697 because we will end up trying to resolve a type that is currently
7698 being constructed. */
7699 outer = value_from_contents_and_address_unresolved (outer_type,
7700 outer_valaddr, 0);
7701 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7702 if (discrim == NULL)
7703 return -1;
7704 discrim_val = value_as_long (discrim);
7705
7706 others_clause = -1;
7707 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7708 {
7709 if (ada_is_others_clause (var_type, i))
7710 others_clause = i;
7711 else if (ada_in_variant (discrim_val, var_type, i))
7712 return i;
7713 }
7714
7715 return others_clause;
7716 }
7717 \f
7718
7719
7720 /* Dynamic-Sized Records */
7721
7722 /* Strategy: The type ostensibly attached to a value with dynamic size
7723 (i.e., a size that is not statically recorded in the debugging
7724 data) does not accurately reflect the size or layout of the value.
7725 Our strategy is to convert these values to values with accurate,
7726 conventional types that are constructed on the fly. */
7727
7728 /* There is a subtle and tricky problem here. In general, we cannot
7729 determine the size of dynamic records without its data. However,
7730 the 'struct value' data structure, which GDB uses to represent
7731 quantities in the inferior process (the target), requires the size
7732 of the type at the time of its allocation in order to reserve space
7733 for GDB's internal copy of the data. That's why the
7734 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7735 rather than struct value*s.
7736
7737 However, GDB's internal history variables ($1, $2, etc.) are
7738 struct value*s containing internal copies of the data that are not, in
7739 general, the same as the data at their corresponding addresses in
7740 the target. Fortunately, the types we give to these values are all
7741 conventional, fixed-size types (as per the strategy described
7742 above), so that we don't usually have to perform the
7743 'to_fixed_xxx_type' conversions to look at their values.
7744 Unfortunately, there is one exception: if one of the internal
7745 history variables is an array whose elements are unconstrained
7746 records, then we will need to create distinct fixed types for each
7747 element selected. */
7748
7749 /* The upshot of all of this is that many routines take a (type, host
7750 address, target address) triple as arguments to represent a value.
7751 The host address, if non-null, is supposed to contain an internal
7752 copy of the relevant data; otherwise, the program is to consult the
7753 target at the target address. */
7754
7755 /* Assuming that VAL0 represents a pointer value, the result of
7756 dereferencing it. Differs from value_ind in its treatment of
7757 dynamic-sized types. */
7758
7759 struct value *
7760 ada_value_ind (struct value *val0)
7761 {
7762 struct value *val = value_ind (val0);
7763
7764 if (ada_is_tagged_type (value_type (val), 0))
7765 val = ada_tag_value_at_base_address (val);
7766
7767 return ada_to_fixed_value (val);
7768 }
7769
7770 /* The value resulting from dereferencing any "reference to"
7771 qualifiers on VAL0. */
7772
7773 static struct value *
7774 ada_coerce_ref (struct value *val0)
7775 {
7776 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7777 {
7778 struct value *val = val0;
7779
7780 val = coerce_ref (val);
7781
7782 if (ada_is_tagged_type (value_type (val), 0))
7783 val = ada_tag_value_at_base_address (val);
7784
7785 return ada_to_fixed_value (val);
7786 }
7787 else
7788 return val0;
7789 }
7790
7791 /* Return OFF rounded upward if necessary to a multiple of
7792 ALIGNMENT (a power of 2). */
7793
7794 static unsigned int
7795 align_value (unsigned int off, unsigned int alignment)
7796 {
7797 return (off + alignment - 1) & ~(alignment - 1);
7798 }
7799
7800 /* Return the bit alignment required for field #F of template type TYPE. */
7801
7802 static unsigned int
7803 field_alignment (struct type *type, int f)
7804 {
7805 const char *name = TYPE_FIELD_NAME (type, f);
7806 int len;
7807 int align_offset;
7808
7809 /* The field name should never be null, unless the debugging information
7810 is somehow malformed. In this case, we assume the field does not
7811 require any alignment. */
7812 if (name == NULL)
7813 return 1;
7814
7815 len = strlen (name);
7816
7817 if (!isdigit (name[len - 1]))
7818 return 1;
7819
7820 if (isdigit (name[len - 2]))
7821 align_offset = len - 2;
7822 else
7823 align_offset = len - 1;
7824
7825 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7826 return TARGET_CHAR_BIT;
7827
7828 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7829 }
7830
7831 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7832
7833 static struct symbol *
7834 ada_find_any_type_symbol (const char *name)
7835 {
7836 struct symbol *sym;
7837
7838 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7839 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7840 return sym;
7841
7842 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7843 return sym;
7844 }
7845
7846 /* Find a type named NAME. Ignores ambiguity. This routine will look
7847 solely for types defined by debug info, it will not search the GDB
7848 primitive types. */
7849
7850 static struct type *
7851 ada_find_any_type (const char *name)
7852 {
7853 struct symbol *sym = ada_find_any_type_symbol (name);
7854
7855 if (sym != NULL)
7856 return SYMBOL_TYPE (sym);
7857
7858 return NULL;
7859 }
7860
7861 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7862 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7863 symbol, in which case it is returned. Otherwise, this looks for
7864 symbols whose name is that of NAME_SYM suffixed with "___XR".
7865 Return symbol if found, and NULL otherwise. */
7866
7867 struct symbol *
7868 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7869 {
7870 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7871 struct symbol *sym;
7872
7873 if (strstr (name, "___XR") != NULL)
7874 return name_sym;
7875
7876 sym = find_old_style_renaming_symbol (name, block);
7877
7878 if (sym != NULL)
7879 return sym;
7880
7881 /* Not right yet. FIXME pnh 7/20/2007. */
7882 sym = ada_find_any_type_symbol (name);
7883 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7884 return sym;
7885 else
7886 return NULL;
7887 }
7888
7889 static struct symbol *
7890 find_old_style_renaming_symbol (const char *name, const struct block *block)
7891 {
7892 const struct symbol *function_sym = block_linkage_function (block);
7893 char *rename;
7894
7895 if (function_sym != NULL)
7896 {
7897 /* If the symbol is defined inside a function, NAME is not fully
7898 qualified. This means we need to prepend the function name
7899 as well as adding the ``___XR'' suffix to build the name of
7900 the associated renaming symbol. */
7901 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7902 /* Function names sometimes contain suffixes used
7903 for instance to qualify nested subprograms. When building
7904 the XR type name, we need to make sure that this suffix is
7905 not included. So do not include any suffix in the function
7906 name length below. */
7907 int function_name_len = ada_name_prefix_len (function_name);
7908 const int rename_len = function_name_len + 2 /* "__" */
7909 + strlen (name) + 6 /* "___XR\0" */ ;
7910
7911 /* Strip the suffix if necessary. */
7912 ada_remove_trailing_digits (function_name, &function_name_len);
7913 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7914 ada_remove_Xbn_suffix (function_name, &function_name_len);
7915
7916 /* Library-level functions are a special case, as GNAT adds
7917 a ``_ada_'' prefix to the function name to avoid namespace
7918 pollution. However, the renaming symbols themselves do not
7919 have this prefix, so we need to skip this prefix if present. */
7920 if (function_name_len > 5 /* "_ada_" */
7921 && strstr (function_name, "_ada_") == function_name)
7922 {
7923 function_name += 5;
7924 function_name_len -= 5;
7925 }
7926
7927 rename = (char *) alloca (rename_len * sizeof (char));
7928 strncpy (rename, function_name, function_name_len);
7929 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7930 "__%s___XR", name);
7931 }
7932 else
7933 {
7934 const int rename_len = strlen (name) + 6;
7935
7936 rename = (char *) alloca (rename_len * sizeof (char));
7937 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7938 }
7939
7940 return ada_find_any_type_symbol (rename);
7941 }
7942
7943 /* Because of GNAT encoding conventions, several GDB symbols may match a
7944 given type name. If the type denoted by TYPE0 is to be preferred to
7945 that of TYPE1 for purposes of type printing, return non-zero;
7946 otherwise return 0. */
7947
7948 int
7949 ada_prefer_type (struct type *type0, struct type *type1)
7950 {
7951 if (type1 == NULL)
7952 return 1;
7953 else if (type0 == NULL)
7954 return 0;
7955 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7956 return 1;
7957 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7958 return 0;
7959 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7960 return 1;
7961 else if (ada_is_constrained_packed_array_type (type0))
7962 return 1;
7963 else if (ada_is_array_descriptor_type (type0)
7964 && !ada_is_array_descriptor_type (type1))
7965 return 1;
7966 else
7967 {
7968 const char *type0_name = type_name_no_tag (type0);
7969 const char *type1_name = type_name_no_tag (type1);
7970
7971 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7972 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7973 return 1;
7974 }
7975 return 0;
7976 }
7977
7978 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7979 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7980
7981 const char *
7982 ada_type_name (struct type *type)
7983 {
7984 if (type == NULL)
7985 return NULL;
7986 else if (TYPE_NAME (type) != NULL)
7987 return TYPE_NAME (type);
7988 else
7989 return TYPE_TAG_NAME (type);
7990 }
7991
7992 /* Search the list of "descriptive" types associated to TYPE for a type
7993 whose name is NAME. */
7994
7995 static struct type *
7996 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7997 {
7998 struct type *result, *tmp;
7999
8000 if (ada_ignore_descriptive_types_p)
8001 return NULL;
8002
8003 /* If there no descriptive-type info, then there is no parallel type
8004 to be found. */
8005 if (!HAVE_GNAT_AUX_INFO (type))
8006 return NULL;
8007
8008 result = TYPE_DESCRIPTIVE_TYPE (type);
8009 while (result != NULL)
8010 {
8011 const char *result_name = ada_type_name (result);
8012
8013 if (result_name == NULL)
8014 {
8015 warning (_("unexpected null name on descriptive type"));
8016 return NULL;
8017 }
8018
8019 /* If the names match, stop. */
8020 if (strcmp (result_name, name) == 0)
8021 break;
8022
8023 /* Otherwise, look at the next item on the list, if any. */
8024 if (HAVE_GNAT_AUX_INFO (result))
8025 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8026 else
8027 tmp = NULL;
8028
8029 /* If not found either, try after having resolved the typedef. */
8030 if (tmp != NULL)
8031 result = tmp;
8032 else
8033 {
8034 result = check_typedef (result);
8035 if (HAVE_GNAT_AUX_INFO (result))
8036 result = TYPE_DESCRIPTIVE_TYPE (result);
8037 else
8038 result = NULL;
8039 }
8040 }
8041
8042 /* If we didn't find a match, see whether this is a packed array. With
8043 older compilers, the descriptive type information is either absent or
8044 irrelevant when it comes to packed arrays so the above lookup fails.
8045 Fall back to using a parallel lookup by name in this case. */
8046 if (result == NULL && ada_is_constrained_packed_array_type (type))
8047 return ada_find_any_type (name);
8048
8049 return result;
8050 }
8051
8052 /* Find a parallel type to TYPE with the specified NAME, using the
8053 descriptive type taken from the debugging information, if available,
8054 and otherwise using the (slower) name-based method. */
8055
8056 static struct type *
8057 ada_find_parallel_type_with_name (struct type *type, const char *name)
8058 {
8059 struct type *result = NULL;
8060
8061 if (HAVE_GNAT_AUX_INFO (type))
8062 result = find_parallel_type_by_descriptive_type (type, name);
8063 else
8064 result = ada_find_any_type (name);
8065
8066 return result;
8067 }
8068
8069 /* Same as above, but specify the name of the parallel type by appending
8070 SUFFIX to the name of TYPE. */
8071
8072 struct type *
8073 ada_find_parallel_type (struct type *type, const char *suffix)
8074 {
8075 char *name;
8076 const char *type_name = ada_type_name (type);
8077 int len;
8078
8079 if (type_name == NULL)
8080 return NULL;
8081
8082 len = strlen (type_name);
8083
8084 name = (char *) alloca (len + strlen (suffix) + 1);
8085
8086 strcpy (name, type_name);
8087 strcpy (name + len, suffix);
8088
8089 return ada_find_parallel_type_with_name (type, name);
8090 }
8091
8092 /* If TYPE is a variable-size record type, return the corresponding template
8093 type describing its fields. Otherwise, return NULL. */
8094
8095 static struct type *
8096 dynamic_template_type (struct type *type)
8097 {
8098 type = ada_check_typedef (type);
8099
8100 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8101 || ada_type_name (type) == NULL)
8102 return NULL;
8103 else
8104 {
8105 int len = strlen (ada_type_name (type));
8106
8107 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8108 return type;
8109 else
8110 return ada_find_parallel_type (type, "___XVE");
8111 }
8112 }
8113
8114 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8115 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8116
8117 static int
8118 is_dynamic_field (struct type *templ_type, int field_num)
8119 {
8120 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8121
8122 return name != NULL
8123 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8124 && strstr (name, "___XVL") != NULL;
8125 }
8126
8127 /* The index of the variant field of TYPE, or -1 if TYPE does not
8128 represent a variant record type. */
8129
8130 static int
8131 variant_field_index (struct type *type)
8132 {
8133 int f;
8134
8135 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8136 return -1;
8137
8138 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8139 {
8140 if (ada_is_variant_part (type, f))
8141 return f;
8142 }
8143 return -1;
8144 }
8145
8146 /* A record type with no fields. */
8147
8148 static struct type *
8149 empty_record (struct type *templ)
8150 {
8151 struct type *type = alloc_type_copy (templ);
8152
8153 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8154 TYPE_NFIELDS (type) = 0;
8155 TYPE_FIELDS (type) = NULL;
8156 INIT_CPLUS_SPECIFIC (type);
8157 TYPE_NAME (type) = "<empty>";
8158 TYPE_TAG_NAME (type) = NULL;
8159 TYPE_LENGTH (type) = 0;
8160 return type;
8161 }
8162
8163 /* An ordinary record type (with fixed-length fields) that describes
8164 the value of type TYPE at VALADDR or ADDRESS (see comments at
8165 the beginning of this section) VAL according to GNAT conventions.
8166 DVAL0 should describe the (portion of a) record that contains any
8167 necessary discriminants. It should be NULL if value_type (VAL) is
8168 an outer-level type (i.e., as opposed to a branch of a variant.) A
8169 variant field (unless unchecked) is replaced by a particular branch
8170 of the variant.
8171
8172 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8173 length are not statically known are discarded. As a consequence,
8174 VALADDR, ADDRESS and DVAL0 are ignored.
8175
8176 NOTE: Limitations: For now, we assume that dynamic fields and
8177 variants occupy whole numbers of bytes. However, they need not be
8178 byte-aligned. */
8179
8180 struct type *
8181 ada_template_to_fixed_record_type_1 (struct type *type,
8182 const gdb_byte *valaddr,
8183 CORE_ADDR address, struct value *dval0,
8184 int keep_dynamic_fields)
8185 {
8186 struct value *mark = value_mark ();
8187 struct value *dval;
8188 struct type *rtype;
8189 int nfields, bit_len;
8190 int variant_field;
8191 long off;
8192 int fld_bit_len;
8193 int f;
8194
8195 /* Compute the number of fields in this record type that are going
8196 to be processed: unless keep_dynamic_fields, this includes only
8197 fields whose position and length are static will be processed. */
8198 if (keep_dynamic_fields)
8199 nfields = TYPE_NFIELDS (type);
8200 else
8201 {
8202 nfields = 0;
8203 while (nfields < TYPE_NFIELDS (type)
8204 && !ada_is_variant_part (type, nfields)
8205 && !is_dynamic_field (type, nfields))
8206 nfields++;
8207 }
8208
8209 rtype = alloc_type_copy (type);
8210 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8211 INIT_CPLUS_SPECIFIC (rtype);
8212 TYPE_NFIELDS (rtype) = nfields;
8213 TYPE_FIELDS (rtype) = (struct field *)
8214 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8215 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8216 TYPE_NAME (rtype) = ada_type_name (type);
8217 TYPE_TAG_NAME (rtype) = NULL;
8218 TYPE_FIXED_INSTANCE (rtype) = 1;
8219
8220 off = 0;
8221 bit_len = 0;
8222 variant_field = -1;
8223
8224 for (f = 0; f < nfields; f += 1)
8225 {
8226 off = align_value (off, field_alignment (type, f))
8227 + TYPE_FIELD_BITPOS (type, f);
8228 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8229 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8230
8231 if (ada_is_variant_part (type, f))
8232 {
8233 variant_field = f;
8234 fld_bit_len = 0;
8235 }
8236 else if (is_dynamic_field (type, f))
8237 {
8238 const gdb_byte *field_valaddr = valaddr;
8239 CORE_ADDR field_address = address;
8240 struct type *field_type =
8241 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8242
8243 if (dval0 == NULL)
8244 {
8245 /* rtype's length is computed based on the run-time
8246 value of discriminants. If the discriminants are not
8247 initialized, the type size may be completely bogus and
8248 GDB may fail to allocate a value for it. So check the
8249 size first before creating the value. */
8250 ada_ensure_varsize_limit (rtype);
8251 /* Using plain value_from_contents_and_address here
8252 causes problems because we will end up trying to
8253 resolve a type that is currently being
8254 constructed. */
8255 dval = value_from_contents_and_address_unresolved (rtype,
8256 valaddr,
8257 address);
8258 rtype = value_type (dval);
8259 }
8260 else
8261 dval = dval0;
8262
8263 /* If the type referenced by this field is an aligner type, we need
8264 to unwrap that aligner type, because its size might not be set.
8265 Keeping the aligner type would cause us to compute the wrong
8266 size for this field, impacting the offset of the all the fields
8267 that follow this one. */
8268 if (ada_is_aligner_type (field_type))
8269 {
8270 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8271
8272 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8273 field_address = cond_offset_target (field_address, field_offset);
8274 field_type = ada_aligned_type (field_type);
8275 }
8276
8277 field_valaddr = cond_offset_host (field_valaddr,
8278 off / TARGET_CHAR_BIT);
8279 field_address = cond_offset_target (field_address,
8280 off / TARGET_CHAR_BIT);
8281
8282 /* Get the fixed type of the field. Note that, in this case,
8283 we do not want to get the real type out of the tag: if
8284 the current field is the parent part of a tagged record,
8285 we will get the tag of the object. Clearly wrong: the real
8286 type of the parent is not the real type of the child. We
8287 would end up in an infinite loop. */
8288 field_type = ada_get_base_type (field_type);
8289 field_type = ada_to_fixed_type (field_type, field_valaddr,
8290 field_address, dval, 0);
8291 /* If the field size is already larger than the maximum
8292 object size, then the record itself will necessarily
8293 be larger than the maximum object size. We need to make
8294 this check now, because the size might be so ridiculously
8295 large (due to an uninitialized variable in the inferior)
8296 that it would cause an overflow when adding it to the
8297 record size. */
8298 ada_ensure_varsize_limit (field_type);
8299
8300 TYPE_FIELD_TYPE (rtype, f) = field_type;
8301 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8302 /* The multiplication can potentially overflow. But because
8303 the field length has been size-checked just above, and
8304 assuming that the maximum size is a reasonable value,
8305 an overflow should not happen in practice. So rather than
8306 adding overflow recovery code to this already complex code,
8307 we just assume that it's not going to happen. */
8308 fld_bit_len =
8309 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8310 }
8311 else
8312 {
8313 /* Note: If this field's type is a typedef, it is important
8314 to preserve the typedef layer.
8315
8316 Otherwise, we might be transforming a typedef to a fat
8317 pointer (encoding a pointer to an unconstrained array),
8318 into a basic fat pointer (encoding an unconstrained
8319 array). As both types are implemented using the same
8320 structure, the typedef is the only clue which allows us
8321 to distinguish between the two options. Stripping it
8322 would prevent us from printing this field appropriately. */
8323 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8324 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8325 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8326 fld_bit_len =
8327 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8328 else
8329 {
8330 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8331
8332 /* We need to be careful of typedefs when computing
8333 the length of our field. If this is a typedef,
8334 get the length of the target type, not the length
8335 of the typedef. */
8336 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8337 field_type = ada_typedef_target_type (field_type);
8338
8339 fld_bit_len =
8340 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8341 }
8342 }
8343 if (off + fld_bit_len > bit_len)
8344 bit_len = off + fld_bit_len;
8345 off += fld_bit_len;
8346 TYPE_LENGTH (rtype) =
8347 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8348 }
8349
8350 /* We handle the variant part, if any, at the end because of certain
8351 odd cases in which it is re-ordered so as NOT to be the last field of
8352 the record. This can happen in the presence of representation
8353 clauses. */
8354 if (variant_field >= 0)
8355 {
8356 struct type *branch_type;
8357
8358 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8359
8360 if (dval0 == NULL)
8361 {
8362 /* Using plain value_from_contents_and_address here causes
8363 problems because we will end up trying to resolve a type
8364 that is currently being constructed. */
8365 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8366 address);
8367 rtype = value_type (dval);
8368 }
8369 else
8370 dval = dval0;
8371
8372 branch_type =
8373 to_fixed_variant_branch_type
8374 (TYPE_FIELD_TYPE (type, variant_field),
8375 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8376 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8377 if (branch_type == NULL)
8378 {
8379 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8380 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8381 TYPE_NFIELDS (rtype) -= 1;
8382 }
8383 else
8384 {
8385 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8386 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8387 fld_bit_len =
8388 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8389 TARGET_CHAR_BIT;
8390 if (off + fld_bit_len > bit_len)
8391 bit_len = off + fld_bit_len;
8392 TYPE_LENGTH (rtype) =
8393 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8394 }
8395 }
8396
8397 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8398 should contain the alignment of that record, which should be a strictly
8399 positive value. If null or negative, then something is wrong, most
8400 probably in the debug info. In that case, we don't round up the size
8401 of the resulting type. If this record is not part of another structure,
8402 the current RTYPE length might be good enough for our purposes. */
8403 if (TYPE_LENGTH (type) <= 0)
8404 {
8405 if (TYPE_NAME (rtype))
8406 warning (_("Invalid type size for `%s' detected: %d."),
8407 TYPE_NAME (rtype), TYPE_LENGTH (type));
8408 else
8409 warning (_("Invalid type size for <unnamed> detected: %d."),
8410 TYPE_LENGTH (type));
8411 }
8412 else
8413 {
8414 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8415 TYPE_LENGTH (type));
8416 }
8417
8418 value_free_to_mark (mark);
8419 if (TYPE_LENGTH (rtype) > varsize_limit)
8420 error (_("record type with dynamic size is larger than varsize-limit"));
8421 return rtype;
8422 }
8423
8424 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8425 of 1. */
8426
8427 static struct type *
8428 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8429 CORE_ADDR address, struct value *dval0)
8430 {
8431 return ada_template_to_fixed_record_type_1 (type, valaddr,
8432 address, dval0, 1);
8433 }
8434
8435 /* An ordinary record type in which ___XVL-convention fields and
8436 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8437 static approximations, containing all possible fields. Uses
8438 no runtime values. Useless for use in values, but that's OK,
8439 since the results are used only for type determinations. Works on both
8440 structs and unions. Representation note: to save space, we memorize
8441 the result of this function in the TYPE_TARGET_TYPE of the
8442 template type. */
8443
8444 static struct type *
8445 template_to_static_fixed_type (struct type *type0)
8446 {
8447 struct type *type;
8448 int nfields;
8449 int f;
8450
8451 /* No need no do anything if the input type is already fixed. */
8452 if (TYPE_FIXED_INSTANCE (type0))
8453 return type0;
8454
8455 /* Likewise if we already have computed the static approximation. */
8456 if (TYPE_TARGET_TYPE (type0) != NULL)
8457 return TYPE_TARGET_TYPE (type0);
8458
8459 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8460 type = type0;
8461 nfields = TYPE_NFIELDS (type0);
8462
8463 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8464 recompute all over next time. */
8465 TYPE_TARGET_TYPE (type0) = type;
8466
8467 for (f = 0; f < nfields; f += 1)
8468 {
8469 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8470 struct type *new_type;
8471
8472 if (is_dynamic_field (type0, f))
8473 {
8474 field_type = ada_check_typedef (field_type);
8475 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8476 }
8477 else
8478 new_type = static_unwrap_type (field_type);
8479
8480 if (new_type != field_type)
8481 {
8482 /* Clone TYPE0 only the first time we get a new field type. */
8483 if (type == type0)
8484 {
8485 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8486 TYPE_CODE (type) = TYPE_CODE (type0);
8487 INIT_CPLUS_SPECIFIC (type);
8488 TYPE_NFIELDS (type) = nfields;
8489 TYPE_FIELDS (type) = (struct field *)
8490 TYPE_ALLOC (type, nfields * sizeof (struct field));
8491 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8492 sizeof (struct field) * nfields);
8493 TYPE_NAME (type) = ada_type_name (type0);
8494 TYPE_TAG_NAME (type) = NULL;
8495 TYPE_FIXED_INSTANCE (type) = 1;
8496 TYPE_LENGTH (type) = 0;
8497 }
8498 TYPE_FIELD_TYPE (type, f) = new_type;
8499 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8500 }
8501 }
8502
8503 return type;
8504 }
8505
8506 /* Given an object of type TYPE whose contents are at VALADDR and
8507 whose address in memory is ADDRESS, returns a revision of TYPE,
8508 which should be a non-dynamic-sized record, in which the variant
8509 part, if any, is replaced with the appropriate branch. Looks
8510 for discriminant values in DVAL0, which can be NULL if the record
8511 contains the necessary discriminant values. */
8512
8513 static struct type *
8514 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8515 CORE_ADDR address, struct value *dval0)
8516 {
8517 struct value *mark = value_mark ();
8518 struct value *dval;
8519 struct type *rtype;
8520 struct type *branch_type;
8521 int nfields = TYPE_NFIELDS (type);
8522 int variant_field = variant_field_index (type);
8523
8524 if (variant_field == -1)
8525 return type;
8526
8527 if (dval0 == NULL)
8528 {
8529 dval = value_from_contents_and_address (type, valaddr, address);
8530 type = value_type (dval);
8531 }
8532 else
8533 dval = dval0;
8534
8535 rtype = alloc_type_copy (type);
8536 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8537 INIT_CPLUS_SPECIFIC (rtype);
8538 TYPE_NFIELDS (rtype) = nfields;
8539 TYPE_FIELDS (rtype) =
8540 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8541 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8542 sizeof (struct field) * nfields);
8543 TYPE_NAME (rtype) = ada_type_name (type);
8544 TYPE_TAG_NAME (rtype) = NULL;
8545 TYPE_FIXED_INSTANCE (rtype) = 1;
8546 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8547
8548 branch_type = to_fixed_variant_branch_type
8549 (TYPE_FIELD_TYPE (type, variant_field),
8550 cond_offset_host (valaddr,
8551 TYPE_FIELD_BITPOS (type, variant_field)
8552 / TARGET_CHAR_BIT),
8553 cond_offset_target (address,
8554 TYPE_FIELD_BITPOS (type, variant_field)
8555 / TARGET_CHAR_BIT), dval);
8556 if (branch_type == NULL)
8557 {
8558 int f;
8559
8560 for (f = variant_field + 1; f < nfields; f += 1)
8561 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8562 TYPE_NFIELDS (rtype) -= 1;
8563 }
8564 else
8565 {
8566 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8567 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8568 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8569 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8570 }
8571 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8572
8573 value_free_to_mark (mark);
8574 return rtype;
8575 }
8576
8577 /* An ordinary record type (with fixed-length fields) that describes
8578 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8579 beginning of this section]. Any necessary discriminants' values
8580 should be in DVAL, a record value; it may be NULL if the object
8581 at ADDR itself contains any necessary discriminant values.
8582 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8583 values from the record are needed. Except in the case that DVAL,
8584 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8585 unchecked) is replaced by a particular branch of the variant.
8586
8587 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8588 is questionable and may be removed. It can arise during the
8589 processing of an unconstrained-array-of-record type where all the
8590 variant branches have exactly the same size. This is because in
8591 such cases, the compiler does not bother to use the XVS convention
8592 when encoding the record. I am currently dubious of this
8593 shortcut and suspect the compiler should be altered. FIXME. */
8594
8595 static struct type *
8596 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8597 CORE_ADDR address, struct value *dval)
8598 {
8599 struct type *templ_type;
8600
8601 if (TYPE_FIXED_INSTANCE (type0))
8602 return type0;
8603
8604 templ_type = dynamic_template_type (type0);
8605
8606 if (templ_type != NULL)
8607 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8608 else if (variant_field_index (type0) >= 0)
8609 {
8610 if (dval == NULL && valaddr == NULL && address == 0)
8611 return type0;
8612 return to_record_with_fixed_variant_part (type0, valaddr, address,
8613 dval);
8614 }
8615 else
8616 {
8617 TYPE_FIXED_INSTANCE (type0) = 1;
8618 return type0;
8619 }
8620
8621 }
8622
8623 /* An ordinary record type (with fixed-length fields) that describes
8624 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8625 union type. Any necessary discriminants' values should be in DVAL,
8626 a record value. That is, this routine selects the appropriate
8627 branch of the union at ADDR according to the discriminant value
8628 indicated in the union's type name. Returns VAR_TYPE0 itself if
8629 it represents a variant subject to a pragma Unchecked_Union. */
8630
8631 static struct type *
8632 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8633 CORE_ADDR address, struct value *dval)
8634 {
8635 int which;
8636 struct type *templ_type;
8637 struct type *var_type;
8638
8639 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8640 var_type = TYPE_TARGET_TYPE (var_type0);
8641 else
8642 var_type = var_type0;
8643
8644 templ_type = ada_find_parallel_type (var_type, "___XVU");
8645
8646 if (templ_type != NULL)
8647 var_type = templ_type;
8648
8649 if (is_unchecked_variant (var_type, value_type (dval)))
8650 return var_type0;
8651 which =
8652 ada_which_variant_applies (var_type,
8653 value_type (dval), value_contents (dval));
8654
8655 if (which < 0)
8656 return empty_record (var_type);
8657 else if (is_dynamic_field (var_type, which))
8658 return to_fixed_record_type
8659 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8660 valaddr, address, dval);
8661 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8662 return
8663 to_fixed_record_type
8664 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8665 else
8666 return TYPE_FIELD_TYPE (var_type, which);
8667 }
8668
8669 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8670 ENCODING_TYPE, a type following the GNAT conventions for discrete
8671 type encodings, only carries redundant information. */
8672
8673 static int
8674 ada_is_redundant_range_encoding (struct type *range_type,
8675 struct type *encoding_type)
8676 {
8677 struct type *fixed_range_type;
8678 const char *bounds_str;
8679 int n;
8680 LONGEST lo, hi;
8681
8682 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8683
8684 if (TYPE_CODE (get_base_type (range_type))
8685 != TYPE_CODE (get_base_type (encoding_type)))
8686 {
8687 /* The compiler probably used a simple base type to describe
8688 the range type instead of the range's actual base type,
8689 expecting us to get the real base type from the encoding
8690 anyway. In this situation, the encoding cannot be ignored
8691 as redundant. */
8692 return 0;
8693 }
8694
8695 if (is_dynamic_type (range_type))
8696 return 0;
8697
8698 if (TYPE_NAME (encoding_type) == NULL)
8699 return 0;
8700
8701 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8702 if (bounds_str == NULL)
8703 return 0;
8704
8705 n = 8; /* Skip "___XDLU_". */
8706 if (!ada_scan_number (bounds_str, n, &lo, &n))
8707 return 0;
8708 if (TYPE_LOW_BOUND (range_type) != lo)
8709 return 0;
8710
8711 n += 2; /* Skip the "__" separator between the two bounds. */
8712 if (!ada_scan_number (bounds_str, n, &hi, &n))
8713 return 0;
8714 if (TYPE_HIGH_BOUND (range_type) != hi)
8715 return 0;
8716
8717 return 1;
8718 }
8719
8720 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8721 a type following the GNAT encoding for describing array type
8722 indices, only carries redundant information. */
8723
8724 static int
8725 ada_is_redundant_index_type_desc (struct type *array_type,
8726 struct type *desc_type)
8727 {
8728 struct type *this_layer = check_typedef (array_type);
8729 int i;
8730
8731 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8732 {
8733 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8734 TYPE_FIELD_TYPE (desc_type, i)))
8735 return 0;
8736 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8737 }
8738
8739 return 1;
8740 }
8741
8742 /* Assuming that TYPE0 is an array type describing the type of a value
8743 at ADDR, and that DVAL describes a record containing any
8744 discriminants used in TYPE0, returns a type for the value that
8745 contains no dynamic components (that is, no components whose sizes
8746 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8747 true, gives an error message if the resulting type's size is over
8748 varsize_limit. */
8749
8750 static struct type *
8751 to_fixed_array_type (struct type *type0, struct value *dval,
8752 int ignore_too_big)
8753 {
8754 struct type *index_type_desc;
8755 struct type *result;
8756 int constrained_packed_array_p;
8757 static const char *xa_suffix = "___XA";
8758
8759 type0 = ada_check_typedef (type0);
8760 if (TYPE_FIXED_INSTANCE (type0))
8761 return type0;
8762
8763 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8764 if (constrained_packed_array_p)
8765 type0 = decode_constrained_packed_array_type (type0);
8766
8767 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8768
8769 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8770 encoding suffixed with 'P' may still be generated. If so,
8771 it should be used to find the XA type. */
8772
8773 if (index_type_desc == NULL)
8774 {
8775 const char *type_name = ada_type_name (type0);
8776
8777 if (type_name != NULL)
8778 {
8779 const int len = strlen (type_name);
8780 char *name = (char *) alloca (len + strlen (xa_suffix));
8781
8782 if (type_name[len - 1] == 'P')
8783 {
8784 strcpy (name, type_name);
8785 strcpy (name + len - 1, xa_suffix);
8786 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8787 }
8788 }
8789 }
8790
8791 ada_fixup_array_indexes_type (index_type_desc);
8792 if (index_type_desc != NULL
8793 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8794 {
8795 /* Ignore this ___XA parallel type, as it does not bring any
8796 useful information. This allows us to avoid creating fixed
8797 versions of the array's index types, which would be identical
8798 to the original ones. This, in turn, can also help avoid
8799 the creation of fixed versions of the array itself. */
8800 index_type_desc = NULL;
8801 }
8802
8803 if (index_type_desc == NULL)
8804 {
8805 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8806
8807 /* NOTE: elt_type---the fixed version of elt_type0---should never
8808 depend on the contents of the array in properly constructed
8809 debugging data. */
8810 /* Create a fixed version of the array element type.
8811 We're not providing the address of an element here,
8812 and thus the actual object value cannot be inspected to do
8813 the conversion. This should not be a problem, since arrays of
8814 unconstrained objects are not allowed. In particular, all
8815 the elements of an array of a tagged type should all be of
8816 the same type specified in the debugging info. No need to
8817 consult the object tag. */
8818 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8819
8820 /* Make sure we always create a new array type when dealing with
8821 packed array types, since we're going to fix-up the array
8822 type length and element bitsize a little further down. */
8823 if (elt_type0 == elt_type && !constrained_packed_array_p)
8824 result = type0;
8825 else
8826 result = create_array_type (alloc_type_copy (type0),
8827 elt_type, TYPE_INDEX_TYPE (type0));
8828 }
8829 else
8830 {
8831 int i;
8832 struct type *elt_type0;
8833
8834 elt_type0 = type0;
8835 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8836 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8837
8838 /* NOTE: result---the fixed version of elt_type0---should never
8839 depend on the contents of the array in properly constructed
8840 debugging data. */
8841 /* Create a fixed version of the array element type.
8842 We're not providing the address of an element here,
8843 and thus the actual object value cannot be inspected to do
8844 the conversion. This should not be a problem, since arrays of
8845 unconstrained objects are not allowed. In particular, all
8846 the elements of an array of a tagged type should all be of
8847 the same type specified in the debugging info. No need to
8848 consult the object tag. */
8849 result =
8850 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8851
8852 elt_type0 = type0;
8853 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8854 {
8855 struct type *range_type =
8856 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8857
8858 result = create_array_type (alloc_type_copy (elt_type0),
8859 result, range_type);
8860 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8861 }
8862 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8863 error (_("array type with dynamic size is larger than varsize-limit"));
8864 }
8865
8866 /* We want to preserve the type name. This can be useful when
8867 trying to get the type name of a value that has already been
8868 printed (for instance, if the user did "print VAR; whatis $". */
8869 TYPE_NAME (result) = TYPE_NAME (type0);
8870
8871 if (constrained_packed_array_p)
8872 {
8873 /* So far, the resulting type has been created as if the original
8874 type was a regular (non-packed) array type. As a result, the
8875 bitsize of the array elements needs to be set again, and the array
8876 length needs to be recomputed based on that bitsize. */
8877 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8878 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8879
8880 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8881 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8882 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8883 TYPE_LENGTH (result)++;
8884 }
8885
8886 TYPE_FIXED_INSTANCE (result) = 1;
8887 return result;
8888 }
8889
8890
8891 /* A standard type (containing no dynamically sized components)
8892 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8893 DVAL describes a record containing any discriminants used in TYPE0,
8894 and may be NULL if there are none, or if the object of type TYPE at
8895 ADDRESS or in VALADDR contains these discriminants.
8896
8897 If CHECK_TAG is not null, in the case of tagged types, this function
8898 attempts to locate the object's tag and use it to compute the actual
8899 type. However, when ADDRESS is null, we cannot use it to determine the
8900 location of the tag, and therefore compute the tagged type's actual type.
8901 So we return the tagged type without consulting the tag. */
8902
8903 static struct type *
8904 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8905 CORE_ADDR address, struct value *dval, int check_tag)
8906 {
8907 type = ada_check_typedef (type);
8908 switch (TYPE_CODE (type))
8909 {
8910 default:
8911 return type;
8912 case TYPE_CODE_STRUCT:
8913 {
8914 struct type *static_type = to_static_fixed_type (type);
8915 struct type *fixed_record_type =
8916 to_fixed_record_type (type, valaddr, address, NULL);
8917
8918 /* If STATIC_TYPE is a tagged type and we know the object's address,
8919 then we can determine its tag, and compute the object's actual
8920 type from there. Note that we have to use the fixed record
8921 type (the parent part of the record may have dynamic fields
8922 and the way the location of _tag is expressed may depend on
8923 them). */
8924
8925 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8926 {
8927 struct value *tag =
8928 value_tag_from_contents_and_address
8929 (fixed_record_type,
8930 valaddr,
8931 address);
8932 struct type *real_type = type_from_tag (tag);
8933 struct value *obj =
8934 value_from_contents_and_address (fixed_record_type,
8935 valaddr,
8936 address);
8937 fixed_record_type = value_type (obj);
8938 if (real_type != NULL)
8939 return to_fixed_record_type
8940 (real_type, NULL,
8941 value_address (ada_tag_value_at_base_address (obj)), NULL);
8942 }
8943
8944 /* Check to see if there is a parallel ___XVZ variable.
8945 If there is, then it provides the actual size of our type. */
8946 else if (ada_type_name (fixed_record_type) != NULL)
8947 {
8948 const char *name = ada_type_name (fixed_record_type);
8949 char *xvz_name
8950 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8951 int xvz_found = 0;
8952 LONGEST size;
8953
8954 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8955 size = get_int_var_value (xvz_name, &xvz_found);
8956 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8957 {
8958 fixed_record_type = copy_type (fixed_record_type);
8959 TYPE_LENGTH (fixed_record_type) = size;
8960
8961 /* The FIXED_RECORD_TYPE may have be a stub. We have
8962 observed this when the debugging info is STABS, and
8963 apparently it is something that is hard to fix.
8964
8965 In practice, we don't need the actual type definition
8966 at all, because the presence of the XVZ variable allows us
8967 to assume that there must be a XVS type as well, which we
8968 should be able to use later, when we need the actual type
8969 definition.
8970
8971 In the meantime, pretend that the "fixed" type we are
8972 returning is NOT a stub, because this can cause trouble
8973 when using this type to create new types targeting it.
8974 Indeed, the associated creation routines often check
8975 whether the target type is a stub and will try to replace
8976 it, thus using a type with the wrong size. This, in turn,
8977 might cause the new type to have the wrong size too.
8978 Consider the case of an array, for instance, where the size
8979 of the array is computed from the number of elements in
8980 our array multiplied by the size of its element. */
8981 TYPE_STUB (fixed_record_type) = 0;
8982 }
8983 }
8984 return fixed_record_type;
8985 }
8986 case TYPE_CODE_ARRAY:
8987 return to_fixed_array_type (type, dval, 1);
8988 case TYPE_CODE_UNION:
8989 if (dval == NULL)
8990 return type;
8991 else
8992 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8993 }
8994 }
8995
8996 /* The same as ada_to_fixed_type_1, except that it preserves the type
8997 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8998
8999 The typedef layer needs be preserved in order to differentiate between
9000 arrays and array pointers when both types are implemented using the same
9001 fat pointer. In the array pointer case, the pointer is encoded as
9002 a typedef of the pointer type. For instance, considering:
9003
9004 type String_Access is access String;
9005 S1 : String_Access := null;
9006
9007 To the debugger, S1 is defined as a typedef of type String. But
9008 to the user, it is a pointer. So if the user tries to print S1,
9009 we should not dereference the array, but print the array address
9010 instead.
9011
9012 If we didn't preserve the typedef layer, we would lose the fact that
9013 the type is to be presented as a pointer (needs de-reference before
9014 being printed). And we would also use the source-level type name. */
9015
9016 struct type *
9017 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9018 CORE_ADDR address, struct value *dval, int check_tag)
9019
9020 {
9021 struct type *fixed_type =
9022 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9023
9024 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9025 then preserve the typedef layer.
9026
9027 Implementation note: We can only check the main-type portion of
9028 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9029 from TYPE now returns a type that has the same instance flags
9030 as TYPE. For instance, if TYPE is a "typedef const", and its
9031 target type is a "struct", then the typedef elimination will return
9032 a "const" version of the target type. See check_typedef for more
9033 details about how the typedef layer elimination is done.
9034
9035 brobecker/2010-11-19: It seems to me that the only case where it is
9036 useful to preserve the typedef layer is when dealing with fat pointers.
9037 Perhaps, we could add a check for that and preserve the typedef layer
9038 only in that situation. But this seems unecessary so far, probably
9039 because we call check_typedef/ada_check_typedef pretty much everywhere.
9040 */
9041 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9042 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9043 == TYPE_MAIN_TYPE (fixed_type)))
9044 return type;
9045
9046 return fixed_type;
9047 }
9048
9049 /* A standard (static-sized) type corresponding as well as possible to
9050 TYPE0, but based on no runtime data. */
9051
9052 static struct type *
9053 to_static_fixed_type (struct type *type0)
9054 {
9055 struct type *type;
9056
9057 if (type0 == NULL)
9058 return NULL;
9059
9060 if (TYPE_FIXED_INSTANCE (type0))
9061 return type0;
9062
9063 type0 = ada_check_typedef (type0);
9064
9065 switch (TYPE_CODE (type0))
9066 {
9067 default:
9068 return type0;
9069 case TYPE_CODE_STRUCT:
9070 type = dynamic_template_type (type0);
9071 if (type != NULL)
9072 return template_to_static_fixed_type (type);
9073 else
9074 return template_to_static_fixed_type (type0);
9075 case TYPE_CODE_UNION:
9076 type = ada_find_parallel_type (type0, "___XVU");
9077 if (type != NULL)
9078 return template_to_static_fixed_type (type);
9079 else
9080 return template_to_static_fixed_type (type0);
9081 }
9082 }
9083
9084 /* A static approximation of TYPE with all type wrappers removed. */
9085
9086 static struct type *
9087 static_unwrap_type (struct type *type)
9088 {
9089 if (ada_is_aligner_type (type))
9090 {
9091 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9092 if (ada_type_name (type1) == NULL)
9093 TYPE_NAME (type1) = ada_type_name (type);
9094
9095 return static_unwrap_type (type1);
9096 }
9097 else
9098 {
9099 struct type *raw_real_type = ada_get_base_type (type);
9100
9101 if (raw_real_type == type)
9102 return type;
9103 else
9104 return to_static_fixed_type (raw_real_type);
9105 }
9106 }
9107
9108 /* In some cases, incomplete and private types require
9109 cross-references that are not resolved as records (for example,
9110 type Foo;
9111 type FooP is access Foo;
9112 V: FooP;
9113 type Foo is array ...;
9114 ). In these cases, since there is no mechanism for producing
9115 cross-references to such types, we instead substitute for FooP a
9116 stub enumeration type that is nowhere resolved, and whose tag is
9117 the name of the actual type. Call these types "non-record stubs". */
9118
9119 /* A type equivalent to TYPE that is not a non-record stub, if one
9120 exists, otherwise TYPE. */
9121
9122 struct type *
9123 ada_check_typedef (struct type *type)
9124 {
9125 if (type == NULL)
9126 return NULL;
9127
9128 /* If our type is a typedef type of a fat pointer, then we're done.
9129 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9130 what allows us to distinguish between fat pointers that represent
9131 array types, and fat pointers that represent array access types
9132 (in both cases, the compiler implements them as fat pointers). */
9133 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9134 && is_thick_pntr (ada_typedef_target_type (type)))
9135 return type;
9136
9137 type = check_typedef (type);
9138 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9139 || !TYPE_STUB (type)
9140 || TYPE_TAG_NAME (type) == NULL)
9141 return type;
9142 else
9143 {
9144 const char *name = TYPE_TAG_NAME (type);
9145 struct type *type1 = ada_find_any_type (name);
9146
9147 if (type1 == NULL)
9148 return type;
9149
9150 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9151 stubs pointing to arrays, as we don't create symbols for array
9152 types, only for the typedef-to-array types). If that's the case,
9153 strip the typedef layer. */
9154 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9155 type1 = ada_check_typedef (type1);
9156
9157 return type1;
9158 }
9159 }
9160
9161 /* A value representing the data at VALADDR/ADDRESS as described by
9162 type TYPE0, but with a standard (static-sized) type that correctly
9163 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9164 type, then return VAL0 [this feature is simply to avoid redundant
9165 creation of struct values]. */
9166
9167 static struct value *
9168 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9169 struct value *val0)
9170 {
9171 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9172
9173 if (type == type0 && val0 != NULL)
9174 return val0;
9175 else
9176 return value_from_contents_and_address (type, 0, address);
9177 }
9178
9179 /* A value representing VAL, but with a standard (static-sized) type
9180 that correctly describes it. Does not necessarily create a new
9181 value. */
9182
9183 struct value *
9184 ada_to_fixed_value (struct value *val)
9185 {
9186 val = unwrap_value (val);
9187 val = ada_to_fixed_value_create (value_type (val),
9188 value_address (val),
9189 val);
9190 return val;
9191 }
9192 \f
9193
9194 /* Attributes */
9195
9196 /* Table mapping attribute numbers to names.
9197 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9198
9199 static const char *attribute_names[] = {
9200 "<?>",
9201
9202 "first",
9203 "last",
9204 "length",
9205 "image",
9206 "max",
9207 "min",
9208 "modulus",
9209 "pos",
9210 "size",
9211 "tag",
9212 "val",
9213 0
9214 };
9215
9216 const char *
9217 ada_attribute_name (enum exp_opcode n)
9218 {
9219 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9220 return attribute_names[n - OP_ATR_FIRST + 1];
9221 else
9222 return attribute_names[0];
9223 }
9224
9225 /* Evaluate the 'POS attribute applied to ARG. */
9226
9227 static LONGEST
9228 pos_atr (struct value *arg)
9229 {
9230 struct value *val = coerce_ref (arg);
9231 struct type *type = value_type (val);
9232 LONGEST result;
9233
9234 if (!discrete_type_p (type))
9235 error (_("'POS only defined on discrete types"));
9236
9237 if (!discrete_position (type, value_as_long (val), &result))
9238 error (_("enumeration value is invalid: can't find 'POS"));
9239
9240 return result;
9241 }
9242
9243 static struct value *
9244 value_pos_atr (struct type *type, struct value *arg)
9245 {
9246 return value_from_longest (type, pos_atr (arg));
9247 }
9248
9249 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9250
9251 static struct value *
9252 value_val_atr (struct type *type, struct value *arg)
9253 {
9254 if (!discrete_type_p (type))
9255 error (_("'VAL only defined on discrete types"));
9256 if (!integer_type_p (value_type (arg)))
9257 error (_("'VAL requires integral argument"));
9258
9259 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9260 {
9261 long pos = value_as_long (arg);
9262
9263 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9264 error (_("argument to 'VAL out of range"));
9265 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9266 }
9267 else
9268 return value_from_longest (type, value_as_long (arg));
9269 }
9270 \f
9271
9272 /* Evaluation */
9273
9274 /* True if TYPE appears to be an Ada character type.
9275 [At the moment, this is true only for Character and Wide_Character;
9276 It is a heuristic test that could stand improvement]. */
9277
9278 int
9279 ada_is_character_type (struct type *type)
9280 {
9281 const char *name;
9282
9283 /* If the type code says it's a character, then assume it really is,
9284 and don't check any further. */
9285 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9286 return 1;
9287
9288 /* Otherwise, assume it's a character type iff it is a discrete type
9289 with a known character type name. */
9290 name = ada_type_name (type);
9291 return (name != NULL
9292 && (TYPE_CODE (type) == TYPE_CODE_INT
9293 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9294 && (strcmp (name, "character") == 0
9295 || strcmp (name, "wide_character") == 0
9296 || strcmp (name, "wide_wide_character") == 0
9297 || strcmp (name, "unsigned char") == 0));
9298 }
9299
9300 /* True if TYPE appears to be an Ada string type. */
9301
9302 int
9303 ada_is_string_type (struct type *type)
9304 {
9305 type = ada_check_typedef (type);
9306 if (type != NULL
9307 && TYPE_CODE (type) != TYPE_CODE_PTR
9308 && (ada_is_simple_array_type (type)
9309 || ada_is_array_descriptor_type (type))
9310 && ada_array_arity (type) == 1)
9311 {
9312 struct type *elttype = ada_array_element_type (type, 1);
9313
9314 return ada_is_character_type (elttype);
9315 }
9316 else
9317 return 0;
9318 }
9319
9320 /* The compiler sometimes provides a parallel XVS type for a given
9321 PAD type. Normally, it is safe to follow the PAD type directly,
9322 but older versions of the compiler have a bug that causes the offset
9323 of its "F" field to be wrong. Following that field in that case
9324 would lead to incorrect results, but this can be worked around
9325 by ignoring the PAD type and using the associated XVS type instead.
9326
9327 Set to True if the debugger should trust the contents of PAD types.
9328 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9329 static int trust_pad_over_xvs = 1;
9330
9331 /* True if TYPE is a struct type introduced by the compiler to force the
9332 alignment of a value. Such types have a single field with a
9333 distinctive name. */
9334
9335 int
9336 ada_is_aligner_type (struct type *type)
9337 {
9338 type = ada_check_typedef (type);
9339
9340 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9341 return 0;
9342
9343 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9344 && TYPE_NFIELDS (type) == 1
9345 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9346 }
9347
9348 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9349 the parallel type. */
9350
9351 struct type *
9352 ada_get_base_type (struct type *raw_type)
9353 {
9354 struct type *real_type_namer;
9355 struct type *raw_real_type;
9356
9357 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9358 return raw_type;
9359
9360 if (ada_is_aligner_type (raw_type))
9361 /* The encoding specifies that we should always use the aligner type.
9362 So, even if this aligner type has an associated XVS type, we should
9363 simply ignore it.
9364
9365 According to the compiler gurus, an XVS type parallel to an aligner
9366 type may exist because of a stabs limitation. In stabs, aligner
9367 types are empty because the field has a variable-sized type, and
9368 thus cannot actually be used as an aligner type. As a result,
9369 we need the associated parallel XVS type to decode the type.
9370 Since the policy in the compiler is to not change the internal
9371 representation based on the debugging info format, we sometimes
9372 end up having a redundant XVS type parallel to the aligner type. */
9373 return raw_type;
9374
9375 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9376 if (real_type_namer == NULL
9377 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9378 || TYPE_NFIELDS (real_type_namer) != 1)
9379 return raw_type;
9380
9381 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9382 {
9383 /* This is an older encoding form where the base type needs to be
9384 looked up by name. We prefer the newer enconding because it is
9385 more efficient. */
9386 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9387 if (raw_real_type == NULL)
9388 return raw_type;
9389 else
9390 return raw_real_type;
9391 }
9392
9393 /* The field in our XVS type is a reference to the base type. */
9394 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9395 }
9396
9397 /* The type of value designated by TYPE, with all aligners removed. */
9398
9399 struct type *
9400 ada_aligned_type (struct type *type)
9401 {
9402 if (ada_is_aligner_type (type))
9403 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9404 else
9405 return ada_get_base_type (type);
9406 }
9407
9408
9409 /* The address of the aligned value in an object at address VALADDR
9410 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9411
9412 const gdb_byte *
9413 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9414 {
9415 if (ada_is_aligner_type (type))
9416 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9417 valaddr +
9418 TYPE_FIELD_BITPOS (type,
9419 0) / TARGET_CHAR_BIT);
9420 else
9421 return valaddr;
9422 }
9423
9424
9425
9426 /* The printed representation of an enumeration literal with encoded
9427 name NAME. The value is good to the next call of ada_enum_name. */
9428 const char *
9429 ada_enum_name (const char *name)
9430 {
9431 static char *result;
9432 static size_t result_len = 0;
9433 const char *tmp;
9434
9435 /* First, unqualify the enumeration name:
9436 1. Search for the last '.' character. If we find one, then skip
9437 all the preceding characters, the unqualified name starts
9438 right after that dot.
9439 2. Otherwise, we may be debugging on a target where the compiler
9440 translates dots into "__". Search forward for double underscores,
9441 but stop searching when we hit an overloading suffix, which is
9442 of the form "__" followed by digits. */
9443
9444 tmp = strrchr (name, '.');
9445 if (tmp != NULL)
9446 name = tmp + 1;
9447 else
9448 {
9449 while ((tmp = strstr (name, "__")) != NULL)
9450 {
9451 if (isdigit (tmp[2]))
9452 break;
9453 else
9454 name = tmp + 2;
9455 }
9456 }
9457
9458 if (name[0] == 'Q')
9459 {
9460 int v;
9461
9462 if (name[1] == 'U' || name[1] == 'W')
9463 {
9464 if (sscanf (name + 2, "%x", &v) != 1)
9465 return name;
9466 }
9467 else
9468 return name;
9469
9470 GROW_VECT (result, result_len, 16);
9471 if (isascii (v) && isprint (v))
9472 xsnprintf (result, result_len, "'%c'", v);
9473 else if (name[1] == 'U')
9474 xsnprintf (result, result_len, "[\"%02x\"]", v);
9475 else
9476 xsnprintf (result, result_len, "[\"%04x\"]", v);
9477
9478 return result;
9479 }
9480 else
9481 {
9482 tmp = strstr (name, "__");
9483 if (tmp == NULL)
9484 tmp = strstr (name, "$");
9485 if (tmp != NULL)
9486 {
9487 GROW_VECT (result, result_len, tmp - name + 1);
9488 strncpy (result, name, tmp - name);
9489 result[tmp - name] = '\0';
9490 return result;
9491 }
9492
9493 return name;
9494 }
9495 }
9496
9497 /* Evaluate the subexpression of EXP starting at *POS as for
9498 evaluate_type, updating *POS to point just past the evaluated
9499 expression. */
9500
9501 static struct value *
9502 evaluate_subexp_type (struct expression *exp, int *pos)
9503 {
9504 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9505 }
9506
9507 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9508 value it wraps. */
9509
9510 static struct value *
9511 unwrap_value (struct value *val)
9512 {
9513 struct type *type = ada_check_typedef (value_type (val));
9514
9515 if (ada_is_aligner_type (type))
9516 {
9517 struct value *v = ada_value_struct_elt (val, "F", 0);
9518 struct type *val_type = ada_check_typedef (value_type (v));
9519
9520 if (ada_type_name (val_type) == NULL)
9521 TYPE_NAME (val_type) = ada_type_name (type);
9522
9523 return unwrap_value (v);
9524 }
9525 else
9526 {
9527 struct type *raw_real_type =
9528 ada_check_typedef (ada_get_base_type (type));
9529
9530 /* If there is no parallel XVS or XVE type, then the value is
9531 already unwrapped. Return it without further modification. */
9532 if ((type == raw_real_type)
9533 && ada_find_parallel_type (type, "___XVE") == NULL)
9534 return val;
9535
9536 return
9537 coerce_unspec_val_to_type
9538 (val, ada_to_fixed_type (raw_real_type, 0,
9539 value_address (val),
9540 NULL, 1));
9541 }
9542 }
9543
9544 static struct value *
9545 cast_to_fixed (struct type *type, struct value *arg)
9546 {
9547 LONGEST val;
9548
9549 if (type == value_type (arg))
9550 return arg;
9551 else if (ada_is_fixed_point_type (value_type (arg)))
9552 val = ada_float_to_fixed (type,
9553 ada_fixed_to_float (value_type (arg),
9554 value_as_long (arg)));
9555 else
9556 {
9557 DOUBLEST argd = value_as_double (arg);
9558
9559 val = ada_float_to_fixed (type, argd);
9560 }
9561
9562 return value_from_longest (type, val);
9563 }
9564
9565 static struct value *
9566 cast_from_fixed (struct type *type, struct value *arg)
9567 {
9568 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9569 value_as_long (arg));
9570
9571 return value_from_double (type, val);
9572 }
9573
9574 /* Given two array types T1 and T2, return nonzero iff both arrays
9575 contain the same number of elements. */
9576
9577 static int
9578 ada_same_array_size_p (struct type *t1, struct type *t2)
9579 {
9580 LONGEST lo1, hi1, lo2, hi2;
9581
9582 /* Get the array bounds in order to verify that the size of
9583 the two arrays match. */
9584 if (!get_array_bounds (t1, &lo1, &hi1)
9585 || !get_array_bounds (t2, &lo2, &hi2))
9586 error (_("unable to determine array bounds"));
9587
9588 /* To make things easier for size comparison, normalize a bit
9589 the case of empty arrays by making sure that the difference
9590 between upper bound and lower bound is always -1. */
9591 if (lo1 > hi1)
9592 hi1 = lo1 - 1;
9593 if (lo2 > hi2)
9594 hi2 = lo2 - 1;
9595
9596 return (hi1 - lo1 == hi2 - lo2);
9597 }
9598
9599 /* Assuming that VAL is an array of integrals, and TYPE represents
9600 an array with the same number of elements, but with wider integral
9601 elements, return an array "casted" to TYPE. In practice, this
9602 means that the returned array is built by casting each element
9603 of the original array into TYPE's (wider) element type. */
9604
9605 static struct value *
9606 ada_promote_array_of_integrals (struct type *type, struct value *val)
9607 {
9608 struct type *elt_type = TYPE_TARGET_TYPE (type);
9609 LONGEST lo, hi;
9610 struct value *res;
9611 LONGEST i;
9612
9613 /* Verify that both val and type are arrays of scalars, and
9614 that the size of val's elements is smaller than the size
9615 of type's element. */
9616 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9617 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9618 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9619 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9620 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9621 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9622
9623 if (!get_array_bounds (type, &lo, &hi))
9624 error (_("unable to determine array bounds"));
9625
9626 res = allocate_value (type);
9627
9628 /* Promote each array element. */
9629 for (i = 0; i < hi - lo + 1; i++)
9630 {
9631 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9632
9633 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9634 value_contents_all (elt), TYPE_LENGTH (elt_type));
9635 }
9636
9637 return res;
9638 }
9639
9640 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9641 return the converted value. */
9642
9643 static struct value *
9644 coerce_for_assign (struct type *type, struct value *val)
9645 {
9646 struct type *type2 = value_type (val);
9647
9648 if (type == type2)
9649 return val;
9650
9651 type2 = ada_check_typedef (type2);
9652 type = ada_check_typedef (type);
9653
9654 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9655 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9656 {
9657 val = ada_value_ind (val);
9658 type2 = value_type (val);
9659 }
9660
9661 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9662 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9663 {
9664 if (!ada_same_array_size_p (type, type2))
9665 error (_("cannot assign arrays of different length"));
9666
9667 if (is_integral_type (TYPE_TARGET_TYPE (type))
9668 && is_integral_type (TYPE_TARGET_TYPE (type2))
9669 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9670 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9671 {
9672 /* Allow implicit promotion of the array elements to
9673 a wider type. */
9674 return ada_promote_array_of_integrals (type, val);
9675 }
9676
9677 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9678 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9679 error (_("Incompatible types in assignment"));
9680 deprecated_set_value_type (val, type);
9681 }
9682 return val;
9683 }
9684
9685 static struct value *
9686 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9687 {
9688 struct value *val;
9689 struct type *type1, *type2;
9690 LONGEST v, v1, v2;
9691
9692 arg1 = coerce_ref (arg1);
9693 arg2 = coerce_ref (arg2);
9694 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9695 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9696
9697 if (TYPE_CODE (type1) != TYPE_CODE_INT
9698 || TYPE_CODE (type2) != TYPE_CODE_INT)
9699 return value_binop (arg1, arg2, op);
9700
9701 switch (op)
9702 {
9703 case BINOP_MOD:
9704 case BINOP_DIV:
9705 case BINOP_REM:
9706 break;
9707 default:
9708 return value_binop (arg1, arg2, op);
9709 }
9710
9711 v2 = value_as_long (arg2);
9712 if (v2 == 0)
9713 error (_("second operand of %s must not be zero."), op_string (op));
9714
9715 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9716 return value_binop (arg1, arg2, op);
9717
9718 v1 = value_as_long (arg1);
9719 switch (op)
9720 {
9721 case BINOP_DIV:
9722 v = v1 / v2;
9723 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9724 v += v > 0 ? -1 : 1;
9725 break;
9726 case BINOP_REM:
9727 v = v1 % v2;
9728 if (v * v1 < 0)
9729 v -= v2;
9730 break;
9731 default:
9732 /* Should not reach this point. */
9733 v = 0;
9734 }
9735
9736 val = allocate_value (type1);
9737 store_unsigned_integer (value_contents_raw (val),
9738 TYPE_LENGTH (value_type (val)),
9739 gdbarch_byte_order (get_type_arch (type1)), v);
9740 return val;
9741 }
9742
9743 static int
9744 ada_value_equal (struct value *arg1, struct value *arg2)
9745 {
9746 if (ada_is_direct_array_type (value_type (arg1))
9747 || ada_is_direct_array_type (value_type (arg2)))
9748 {
9749 /* Automatically dereference any array reference before
9750 we attempt to perform the comparison. */
9751 arg1 = ada_coerce_ref (arg1);
9752 arg2 = ada_coerce_ref (arg2);
9753
9754 arg1 = ada_coerce_to_simple_array (arg1);
9755 arg2 = ada_coerce_to_simple_array (arg2);
9756 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9757 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9758 error (_("Attempt to compare array with non-array"));
9759 /* FIXME: The following works only for types whose
9760 representations use all bits (no padding or undefined bits)
9761 and do not have user-defined equality. */
9762 return
9763 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9764 && memcmp (value_contents (arg1), value_contents (arg2),
9765 TYPE_LENGTH (value_type (arg1))) == 0;
9766 }
9767 return value_equal (arg1, arg2);
9768 }
9769
9770 /* Total number of component associations in the aggregate starting at
9771 index PC in EXP. Assumes that index PC is the start of an
9772 OP_AGGREGATE. */
9773
9774 static int
9775 num_component_specs (struct expression *exp, int pc)
9776 {
9777 int n, m, i;
9778
9779 m = exp->elts[pc + 1].longconst;
9780 pc += 3;
9781 n = 0;
9782 for (i = 0; i < m; i += 1)
9783 {
9784 switch (exp->elts[pc].opcode)
9785 {
9786 default:
9787 n += 1;
9788 break;
9789 case OP_CHOICES:
9790 n += exp->elts[pc + 1].longconst;
9791 break;
9792 }
9793 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9794 }
9795 return n;
9796 }
9797
9798 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9799 component of LHS (a simple array or a record), updating *POS past
9800 the expression, assuming that LHS is contained in CONTAINER. Does
9801 not modify the inferior's memory, nor does it modify LHS (unless
9802 LHS == CONTAINER). */
9803
9804 static void
9805 assign_component (struct value *container, struct value *lhs, LONGEST index,
9806 struct expression *exp, int *pos)
9807 {
9808 struct value *mark = value_mark ();
9809 struct value *elt;
9810
9811 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9812 {
9813 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9814 struct value *index_val = value_from_longest (index_type, index);
9815
9816 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9817 }
9818 else
9819 {
9820 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9821 elt = ada_to_fixed_value (elt);
9822 }
9823
9824 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9825 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9826 else
9827 value_assign_to_component (container, elt,
9828 ada_evaluate_subexp (NULL, exp, pos,
9829 EVAL_NORMAL));
9830
9831 value_free_to_mark (mark);
9832 }
9833
9834 /* Assuming that LHS represents an lvalue having a record or array
9835 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9836 of that aggregate's value to LHS, advancing *POS past the
9837 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9838 lvalue containing LHS (possibly LHS itself). Does not modify
9839 the inferior's memory, nor does it modify the contents of
9840 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9841
9842 static struct value *
9843 assign_aggregate (struct value *container,
9844 struct value *lhs, struct expression *exp,
9845 int *pos, enum noside noside)
9846 {
9847 struct type *lhs_type;
9848 int n = exp->elts[*pos+1].longconst;
9849 LONGEST low_index, high_index;
9850 int num_specs;
9851 LONGEST *indices;
9852 int max_indices, num_indices;
9853 int i;
9854
9855 *pos += 3;
9856 if (noside != EVAL_NORMAL)
9857 {
9858 for (i = 0; i < n; i += 1)
9859 ada_evaluate_subexp (NULL, exp, pos, noside);
9860 return container;
9861 }
9862
9863 container = ada_coerce_ref (container);
9864 if (ada_is_direct_array_type (value_type (container)))
9865 container = ada_coerce_to_simple_array (container);
9866 lhs = ada_coerce_ref (lhs);
9867 if (!deprecated_value_modifiable (lhs))
9868 error (_("Left operand of assignment is not a modifiable lvalue."));
9869
9870 lhs_type = value_type (lhs);
9871 if (ada_is_direct_array_type (lhs_type))
9872 {
9873 lhs = ada_coerce_to_simple_array (lhs);
9874 lhs_type = value_type (lhs);
9875 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9876 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9877 }
9878 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9879 {
9880 low_index = 0;
9881 high_index = num_visible_fields (lhs_type) - 1;
9882 }
9883 else
9884 error (_("Left-hand side must be array or record."));
9885
9886 num_specs = num_component_specs (exp, *pos - 3);
9887 max_indices = 4 * num_specs + 4;
9888 indices = XALLOCAVEC (LONGEST, max_indices);
9889 indices[0] = indices[1] = low_index - 1;
9890 indices[2] = indices[3] = high_index + 1;
9891 num_indices = 4;
9892
9893 for (i = 0; i < n; i += 1)
9894 {
9895 switch (exp->elts[*pos].opcode)
9896 {
9897 case OP_CHOICES:
9898 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9899 &num_indices, max_indices,
9900 low_index, high_index);
9901 break;
9902 case OP_POSITIONAL:
9903 aggregate_assign_positional (container, lhs, exp, pos, indices,
9904 &num_indices, max_indices,
9905 low_index, high_index);
9906 break;
9907 case OP_OTHERS:
9908 if (i != n-1)
9909 error (_("Misplaced 'others' clause"));
9910 aggregate_assign_others (container, lhs, exp, pos, indices,
9911 num_indices, low_index, high_index);
9912 break;
9913 default:
9914 error (_("Internal error: bad aggregate clause"));
9915 }
9916 }
9917
9918 return container;
9919 }
9920
9921 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9922 construct at *POS, updating *POS past the construct, given that
9923 the positions are relative to lower bound LOW, where HIGH is the
9924 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9925 updating *NUM_INDICES as needed. CONTAINER is as for
9926 assign_aggregate. */
9927 static void
9928 aggregate_assign_positional (struct value *container,
9929 struct value *lhs, struct expression *exp,
9930 int *pos, LONGEST *indices, int *num_indices,
9931 int max_indices, LONGEST low, LONGEST high)
9932 {
9933 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9934
9935 if (ind - 1 == high)
9936 warning (_("Extra components in aggregate ignored."));
9937 if (ind <= high)
9938 {
9939 add_component_interval (ind, ind, indices, num_indices, max_indices);
9940 *pos += 3;
9941 assign_component (container, lhs, ind, exp, pos);
9942 }
9943 else
9944 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9945 }
9946
9947 /* Assign into the components of LHS indexed by the OP_CHOICES
9948 construct at *POS, updating *POS past the construct, given that
9949 the allowable indices are LOW..HIGH. Record the indices assigned
9950 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9951 needed. CONTAINER is as for assign_aggregate. */
9952 static void
9953 aggregate_assign_from_choices (struct value *container,
9954 struct value *lhs, struct expression *exp,
9955 int *pos, LONGEST *indices, int *num_indices,
9956 int max_indices, LONGEST low, LONGEST high)
9957 {
9958 int j;
9959 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9960 int choice_pos, expr_pc;
9961 int is_array = ada_is_direct_array_type (value_type (lhs));
9962
9963 choice_pos = *pos += 3;
9964
9965 for (j = 0; j < n_choices; j += 1)
9966 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9967 expr_pc = *pos;
9968 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9969
9970 for (j = 0; j < n_choices; j += 1)
9971 {
9972 LONGEST lower, upper;
9973 enum exp_opcode op = exp->elts[choice_pos].opcode;
9974
9975 if (op == OP_DISCRETE_RANGE)
9976 {
9977 choice_pos += 1;
9978 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9979 EVAL_NORMAL));
9980 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9981 EVAL_NORMAL));
9982 }
9983 else if (is_array)
9984 {
9985 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9986 EVAL_NORMAL));
9987 upper = lower;
9988 }
9989 else
9990 {
9991 int ind;
9992 const char *name;
9993
9994 switch (op)
9995 {
9996 case OP_NAME:
9997 name = &exp->elts[choice_pos + 2].string;
9998 break;
9999 case OP_VAR_VALUE:
10000 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10001 break;
10002 default:
10003 error (_("Invalid record component association."));
10004 }
10005 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10006 ind = 0;
10007 if (! find_struct_field (name, value_type (lhs), 0,
10008 NULL, NULL, NULL, NULL, &ind))
10009 error (_("Unknown component name: %s."), name);
10010 lower = upper = ind;
10011 }
10012
10013 if (lower <= upper && (lower < low || upper > high))
10014 error (_("Index in component association out of bounds."));
10015
10016 add_component_interval (lower, upper, indices, num_indices,
10017 max_indices);
10018 while (lower <= upper)
10019 {
10020 int pos1;
10021
10022 pos1 = expr_pc;
10023 assign_component (container, lhs, lower, exp, &pos1);
10024 lower += 1;
10025 }
10026 }
10027 }
10028
10029 /* Assign the value of the expression in the OP_OTHERS construct in
10030 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10031 have not been previously assigned. The index intervals already assigned
10032 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10033 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10034 static void
10035 aggregate_assign_others (struct value *container,
10036 struct value *lhs, struct expression *exp,
10037 int *pos, LONGEST *indices, int num_indices,
10038 LONGEST low, LONGEST high)
10039 {
10040 int i;
10041 int expr_pc = *pos + 1;
10042
10043 for (i = 0; i < num_indices - 2; i += 2)
10044 {
10045 LONGEST ind;
10046
10047 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10048 {
10049 int localpos;
10050
10051 localpos = expr_pc;
10052 assign_component (container, lhs, ind, exp, &localpos);
10053 }
10054 }
10055 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10056 }
10057
10058 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10059 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10060 modifying *SIZE as needed. It is an error if *SIZE exceeds
10061 MAX_SIZE. The resulting intervals do not overlap. */
10062 static void
10063 add_component_interval (LONGEST low, LONGEST high,
10064 LONGEST* indices, int *size, int max_size)
10065 {
10066 int i, j;
10067
10068 for (i = 0; i < *size; i += 2) {
10069 if (high >= indices[i] && low <= indices[i + 1])
10070 {
10071 int kh;
10072
10073 for (kh = i + 2; kh < *size; kh += 2)
10074 if (high < indices[kh])
10075 break;
10076 if (low < indices[i])
10077 indices[i] = low;
10078 indices[i + 1] = indices[kh - 1];
10079 if (high > indices[i + 1])
10080 indices[i + 1] = high;
10081 memcpy (indices + i + 2, indices + kh, *size - kh);
10082 *size -= kh - i - 2;
10083 return;
10084 }
10085 else if (high < indices[i])
10086 break;
10087 }
10088
10089 if (*size == max_size)
10090 error (_("Internal error: miscounted aggregate components."));
10091 *size += 2;
10092 for (j = *size-1; j >= i+2; j -= 1)
10093 indices[j] = indices[j - 2];
10094 indices[i] = low;
10095 indices[i + 1] = high;
10096 }
10097
10098 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10099 is different. */
10100
10101 static struct value *
10102 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10103 {
10104 if (type == ada_check_typedef (value_type (arg2)))
10105 return arg2;
10106
10107 if (ada_is_fixed_point_type (type))
10108 return (cast_to_fixed (type, arg2));
10109
10110 if (ada_is_fixed_point_type (value_type (arg2)))
10111 return cast_from_fixed (type, arg2);
10112
10113 return value_cast (type, arg2);
10114 }
10115
10116 /* Evaluating Ada expressions, and printing their result.
10117 ------------------------------------------------------
10118
10119 1. Introduction:
10120 ----------------
10121
10122 We usually evaluate an Ada expression in order to print its value.
10123 We also evaluate an expression in order to print its type, which
10124 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10125 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10126 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10127 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10128 similar.
10129
10130 Evaluating expressions is a little more complicated for Ada entities
10131 than it is for entities in languages such as C. The main reason for
10132 this is that Ada provides types whose definition might be dynamic.
10133 One example of such types is variant records. Or another example
10134 would be an array whose bounds can only be known at run time.
10135
10136 The following description is a general guide as to what should be
10137 done (and what should NOT be done) in order to evaluate an expression
10138 involving such types, and when. This does not cover how the semantic
10139 information is encoded by GNAT as this is covered separatly. For the
10140 document used as the reference for the GNAT encoding, see exp_dbug.ads
10141 in the GNAT sources.
10142
10143 Ideally, we should embed each part of this description next to its
10144 associated code. Unfortunately, the amount of code is so vast right
10145 now that it's hard to see whether the code handling a particular
10146 situation might be duplicated or not. One day, when the code is
10147 cleaned up, this guide might become redundant with the comments
10148 inserted in the code, and we might want to remove it.
10149
10150 2. ``Fixing'' an Entity, the Simple Case:
10151 -----------------------------------------
10152
10153 When evaluating Ada expressions, the tricky issue is that they may
10154 reference entities whose type contents and size are not statically
10155 known. Consider for instance a variant record:
10156
10157 type Rec (Empty : Boolean := True) is record
10158 case Empty is
10159 when True => null;
10160 when False => Value : Integer;
10161 end case;
10162 end record;
10163 Yes : Rec := (Empty => False, Value => 1);
10164 No : Rec := (empty => True);
10165
10166 The size and contents of that record depends on the value of the
10167 descriminant (Rec.Empty). At this point, neither the debugging
10168 information nor the associated type structure in GDB are able to
10169 express such dynamic types. So what the debugger does is to create
10170 "fixed" versions of the type that applies to the specific object.
10171 We also informally refer to this opperation as "fixing" an object,
10172 which means creating its associated fixed type.
10173
10174 Example: when printing the value of variable "Yes" above, its fixed
10175 type would look like this:
10176
10177 type Rec is record
10178 Empty : Boolean;
10179 Value : Integer;
10180 end record;
10181
10182 On the other hand, if we printed the value of "No", its fixed type
10183 would become:
10184
10185 type Rec is record
10186 Empty : Boolean;
10187 end record;
10188
10189 Things become a little more complicated when trying to fix an entity
10190 with a dynamic type that directly contains another dynamic type,
10191 such as an array of variant records, for instance. There are
10192 two possible cases: Arrays, and records.
10193
10194 3. ``Fixing'' Arrays:
10195 ---------------------
10196
10197 The type structure in GDB describes an array in terms of its bounds,
10198 and the type of its elements. By design, all elements in the array
10199 have the same type and we cannot represent an array of variant elements
10200 using the current type structure in GDB. When fixing an array,
10201 we cannot fix the array element, as we would potentially need one
10202 fixed type per element of the array. As a result, the best we can do
10203 when fixing an array is to produce an array whose bounds and size
10204 are correct (allowing us to read it from memory), but without having
10205 touched its element type. Fixing each element will be done later,
10206 when (if) necessary.
10207
10208 Arrays are a little simpler to handle than records, because the same
10209 amount of memory is allocated for each element of the array, even if
10210 the amount of space actually used by each element differs from element
10211 to element. Consider for instance the following array of type Rec:
10212
10213 type Rec_Array is array (1 .. 2) of Rec;
10214
10215 The actual amount of memory occupied by each element might be different
10216 from element to element, depending on the value of their discriminant.
10217 But the amount of space reserved for each element in the array remains
10218 fixed regardless. So we simply need to compute that size using
10219 the debugging information available, from which we can then determine
10220 the array size (we multiply the number of elements of the array by
10221 the size of each element).
10222
10223 The simplest case is when we have an array of a constrained element
10224 type. For instance, consider the following type declarations:
10225
10226 type Bounded_String (Max_Size : Integer) is
10227 Length : Integer;
10228 Buffer : String (1 .. Max_Size);
10229 end record;
10230 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10231
10232 In this case, the compiler describes the array as an array of
10233 variable-size elements (identified by its XVS suffix) for which
10234 the size can be read in the parallel XVZ variable.
10235
10236 In the case of an array of an unconstrained element type, the compiler
10237 wraps the array element inside a private PAD type. This type should not
10238 be shown to the user, and must be "unwrap"'ed before printing. Note
10239 that we also use the adjective "aligner" in our code to designate
10240 these wrapper types.
10241
10242 In some cases, the size allocated for each element is statically
10243 known. In that case, the PAD type already has the correct size,
10244 and the array element should remain unfixed.
10245
10246 But there are cases when this size is not statically known.
10247 For instance, assuming that "Five" is an integer variable:
10248
10249 type Dynamic is array (1 .. Five) of Integer;
10250 type Wrapper (Has_Length : Boolean := False) is record
10251 Data : Dynamic;
10252 case Has_Length is
10253 when True => Length : Integer;
10254 when False => null;
10255 end case;
10256 end record;
10257 type Wrapper_Array is array (1 .. 2) of Wrapper;
10258
10259 Hello : Wrapper_Array := (others => (Has_Length => True,
10260 Data => (others => 17),
10261 Length => 1));
10262
10263
10264 The debugging info would describe variable Hello as being an
10265 array of a PAD type. The size of that PAD type is not statically
10266 known, but can be determined using a parallel XVZ variable.
10267 In that case, a copy of the PAD type with the correct size should
10268 be used for the fixed array.
10269
10270 3. ``Fixing'' record type objects:
10271 ----------------------------------
10272
10273 Things are slightly different from arrays in the case of dynamic
10274 record types. In this case, in order to compute the associated
10275 fixed type, we need to determine the size and offset of each of
10276 its components. This, in turn, requires us to compute the fixed
10277 type of each of these components.
10278
10279 Consider for instance the example:
10280
10281 type Bounded_String (Max_Size : Natural) is record
10282 Str : String (1 .. Max_Size);
10283 Length : Natural;
10284 end record;
10285 My_String : Bounded_String (Max_Size => 10);
10286
10287 In that case, the position of field "Length" depends on the size
10288 of field Str, which itself depends on the value of the Max_Size
10289 discriminant. In order to fix the type of variable My_String,
10290 we need to fix the type of field Str. Therefore, fixing a variant
10291 record requires us to fix each of its components.
10292
10293 However, if a component does not have a dynamic size, the component
10294 should not be fixed. In particular, fields that use a PAD type
10295 should not fixed. Here is an example where this might happen
10296 (assuming type Rec above):
10297
10298 type Container (Big : Boolean) is record
10299 First : Rec;
10300 After : Integer;
10301 case Big is
10302 when True => Another : Integer;
10303 when False => null;
10304 end case;
10305 end record;
10306 My_Container : Container := (Big => False,
10307 First => (Empty => True),
10308 After => 42);
10309
10310 In that example, the compiler creates a PAD type for component First,
10311 whose size is constant, and then positions the component After just
10312 right after it. The offset of component After is therefore constant
10313 in this case.
10314
10315 The debugger computes the position of each field based on an algorithm
10316 that uses, among other things, the actual position and size of the field
10317 preceding it. Let's now imagine that the user is trying to print
10318 the value of My_Container. If the type fixing was recursive, we would
10319 end up computing the offset of field After based on the size of the
10320 fixed version of field First. And since in our example First has
10321 only one actual field, the size of the fixed type is actually smaller
10322 than the amount of space allocated to that field, and thus we would
10323 compute the wrong offset of field After.
10324
10325 To make things more complicated, we need to watch out for dynamic
10326 components of variant records (identified by the ___XVL suffix in
10327 the component name). Even if the target type is a PAD type, the size
10328 of that type might not be statically known. So the PAD type needs
10329 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10330 we might end up with the wrong size for our component. This can be
10331 observed with the following type declarations:
10332
10333 type Octal is new Integer range 0 .. 7;
10334 type Octal_Array is array (Positive range <>) of Octal;
10335 pragma Pack (Octal_Array);
10336
10337 type Octal_Buffer (Size : Positive) is record
10338 Buffer : Octal_Array (1 .. Size);
10339 Length : Integer;
10340 end record;
10341
10342 In that case, Buffer is a PAD type whose size is unset and needs
10343 to be computed by fixing the unwrapped type.
10344
10345 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10346 ----------------------------------------------------------
10347
10348 Lastly, when should the sub-elements of an entity that remained unfixed
10349 thus far, be actually fixed?
10350
10351 The answer is: Only when referencing that element. For instance
10352 when selecting one component of a record, this specific component
10353 should be fixed at that point in time. Or when printing the value
10354 of a record, each component should be fixed before its value gets
10355 printed. Similarly for arrays, the element of the array should be
10356 fixed when printing each element of the array, or when extracting
10357 one element out of that array. On the other hand, fixing should
10358 not be performed on the elements when taking a slice of an array!
10359
10360 Note that one of the side-effects of miscomputing the offset and
10361 size of each field is that we end up also miscomputing the size
10362 of the containing type. This can have adverse results when computing
10363 the value of an entity. GDB fetches the value of an entity based
10364 on the size of its type, and thus a wrong size causes GDB to fetch
10365 the wrong amount of memory. In the case where the computed size is
10366 too small, GDB fetches too little data to print the value of our
10367 entiry. Results in this case as unpredicatble, as we usually read
10368 past the buffer containing the data =:-o. */
10369
10370 /* Implement the evaluate_exp routine in the exp_descriptor structure
10371 for the Ada language. */
10372
10373 static struct value *
10374 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10375 int *pos, enum noside noside)
10376 {
10377 enum exp_opcode op;
10378 int tem;
10379 int pc;
10380 int preeval_pos;
10381 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10382 struct type *type;
10383 int nargs, oplen;
10384 struct value **argvec;
10385
10386 pc = *pos;
10387 *pos += 1;
10388 op = exp->elts[pc].opcode;
10389
10390 switch (op)
10391 {
10392 default:
10393 *pos -= 1;
10394 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10395
10396 if (noside == EVAL_NORMAL)
10397 arg1 = unwrap_value (arg1);
10398
10399 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10400 then we need to perform the conversion manually, because
10401 evaluate_subexp_standard doesn't do it. This conversion is
10402 necessary in Ada because the different kinds of float/fixed
10403 types in Ada have different representations.
10404
10405 Similarly, we need to perform the conversion from OP_LONG
10406 ourselves. */
10407 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10408 arg1 = ada_value_cast (expect_type, arg1, noside);
10409
10410 return arg1;
10411
10412 case OP_STRING:
10413 {
10414 struct value *result;
10415
10416 *pos -= 1;
10417 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10418 /* The result type will have code OP_STRING, bashed there from
10419 OP_ARRAY. Bash it back. */
10420 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10421 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10422 return result;
10423 }
10424
10425 case UNOP_CAST:
10426 (*pos) += 2;
10427 type = exp->elts[pc + 1].type;
10428 arg1 = evaluate_subexp (type, exp, pos, noside);
10429 if (noside == EVAL_SKIP)
10430 goto nosideret;
10431 arg1 = ada_value_cast (type, arg1, noside);
10432 return arg1;
10433
10434 case UNOP_QUAL:
10435 (*pos) += 2;
10436 type = exp->elts[pc + 1].type;
10437 return ada_evaluate_subexp (type, exp, pos, noside);
10438
10439 case BINOP_ASSIGN:
10440 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10441 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10442 {
10443 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10444 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10445 return arg1;
10446 return ada_value_assign (arg1, arg1);
10447 }
10448 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10449 except if the lhs of our assignment is a convenience variable.
10450 In the case of assigning to a convenience variable, the lhs
10451 should be exactly the result of the evaluation of the rhs. */
10452 type = value_type (arg1);
10453 if (VALUE_LVAL (arg1) == lval_internalvar)
10454 type = NULL;
10455 arg2 = evaluate_subexp (type, exp, pos, noside);
10456 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10457 return arg1;
10458 if (ada_is_fixed_point_type (value_type (arg1)))
10459 arg2 = cast_to_fixed (value_type (arg1), arg2);
10460 else if (ada_is_fixed_point_type (value_type (arg2)))
10461 error
10462 (_("Fixed-point values must be assigned to fixed-point variables"));
10463 else
10464 arg2 = coerce_for_assign (value_type (arg1), arg2);
10465 return ada_value_assign (arg1, arg2);
10466
10467 case BINOP_ADD:
10468 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10469 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10470 if (noside == EVAL_SKIP)
10471 goto nosideret;
10472 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10473 return (value_from_longest
10474 (value_type (arg1),
10475 value_as_long (arg1) + value_as_long (arg2)));
10476 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10477 return (value_from_longest
10478 (value_type (arg2),
10479 value_as_long (arg1) + value_as_long (arg2)));
10480 if ((ada_is_fixed_point_type (value_type (arg1))
10481 || ada_is_fixed_point_type (value_type (arg2)))
10482 && value_type (arg1) != value_type (arg2))
10483 error (_("Operands of fixed-point addition must have the same type"));
10484 /* Do the addition, and cast the result to the type of the first
10485 argument. We cannot cast the result to a reference type, so if
10486 ARG1 is a reference type, find its underlying type. */
10487 type = value_type (arg1);
10488 while (TYPE_CODE (type) == TYPE_CODE_REF)
10489 type = TYPE_TARGET_TYPE (type);
10490 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10491 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10492
10493 case BINOP_SUB:
10494 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10495 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10496 if (noside == EVAL_SKIP)
10497 goto nosideret;
10498 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10499 return (value_from_longest
10500 (value_type (arg1),
10501 value_as_long (arg1) - value_as_long (arg2)));
10502 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10503 return (value_from_longest
10504 (value_type (arg2),
10505 value_as_long (arg1) - value_as_long (arg2)));
10506 if ((ada_is_fixed_point_type (value_type (arg1))
10507 || ada_is_fixed_point_type (value_type (arg2)))
10508 && value_type (arg1) != value_type (arg2))
10509 error (_("Operands of fixed-point subtraction "
10510 "must have the same type"));
10511 /* Do the substraction, and cast the result to the type of the first
10512 argument. We cannot cast the result to a reference type, so if
10513 ARG1 is a reference type, find its underlying type. */
10514 type = value_type (arg1);
10515 while (TYPE_CODE (type) == TYPE_CODE_REF)
10516 type = TYPE_TARGET_TYPE (type);
10517 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10518 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10519
10520 case BINOP_MUL:
10521 case BINOP_DIV:
10522 case BINOP_REM:
10523 case BINOP_MOD:
10524 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10525 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10526 if (noside == EVAL_SKIP)
10527 goto nosideret;
10528 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10529 {
10530 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10531 return value_zero (value_type (arg1), not_lval);
10532 }
10533 else
10534 {
10535 type = builtin_type (exp->gdbarch)->builtin_double;
10536 if (ada_is_fixed_point_type (value_type (arg1)))
10537 arg1 = cast_from_fixed (type, arg1);
10538 if (ada_is_fixed_point_type (value_type (arg2)))
10539 arg2 = cast_from_fixed (type, arg2);
10540 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10541 return ada_value_binop (arg1, arg2, op);
10542 }
10543
10544 case BINOP_EQUAL:
10545 case BINOP_NOTEQUAL:
10546 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10547 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10548 if (noside == EVAL_SKIP)
10549 goto nosideret;
10550 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10551 tem = 0;
10552 else
10553 {
10554 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10555 tem = ada_value_equal (arg1, arg2);
10556 }
10557 if (op == BINOP_NOTEQUAL)
10558 tem = !tem;
10559 type = language_bool_type (exp->language_defn, exp->gdbarch);
10560 return value_from_longest (type, (LONGEST) tem);
10561
10562 case UNOP_NEG:
10563 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10564 if (noside == EVAL_SKIP)
10565 goto nosideret;
10566 else if (ada_is_fixed_point_type (value_type (arg1)))
10567 return value_cast (value_type (arg1), value_neg (arg1));
10568 else
10569 {
10570 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10571 return value_neg (arg1);
10572 }
10573
10574 case BINOP_LOGICAL_AND:
10575 case BINOP_LOGICAL_OR:
10576 case UNOP_LOGICAL_NOT:
10577 {
10578 struct value *val;
10579
10580 *pos -= 1;
10581 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10582 type = language_bool_type (exp->language_defn, exp->gdbarch);
10583 return value_cast (type, val);
10584 }
10585
10586 case BINOP_BITWISE_AND:
10587 case BINOP_BITWISE_IOR:
10588 case BINOP_BITWISE_XOR:
10589 {
10590 struct value *val;
10591
10592 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10593 *pos = pc;
10594 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10595
10596 return value_cast (value_type (arg1), val);
10597 }
10598
10599 case OP_VAR_VALUE:
10600 *pos -= 1;
10601
10602 if (noside == EVAL_SKIP)
10603 {
10604 *pos += 4;
10605 goto nosideret;
10606 }
10607
10608 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10609 /* Only encountered when an unresolved symbol occurs in a
10610 context other than a function call, in which case, it is
10611 invalid. */
10612 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10613 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10614
10615 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10616 {
10617 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10618 /* Check to see if this is a tagged type. We also need to handle
10619 the case where the type is a reference to a tagged type, but
10620 we have to be careful to exclude pointers to tagged types.
10621 The latter should be shown as usual (as a pointer), whereas
10622 a reference should mostly be transparent to the user. */
10623 if (ada_is_tagged_type (type, 0)
10624 || (TYPE_CODE (type) == TYPE_CODE_REF
10625 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10626 {
10627 /* Tagged types are a little special in the fact that the real
10628 type is dynamic and can only be determined by inspecting the
10629 object's tag. This means that we need to get the object's
10630 value first (EVAL_NORMAL) and then extract the actual object
10631 type from its tag.
10632
10633 Note that we cannot skip the final step where we extract
10634 the object type from its tag, because the EVAL_NORMAL phase
10635 results in dynamic components being resolved into fixed ones.
10636 This can cause problems when trying to print the type
10637 description of tagged types whose parent has a dynamic size:
10638 We use the type name of the "_parent" component in order
10639 to print the name of the ancestor type in the type description.
10640 If that component had a dynamic size, the resolution into
10641 a fixed type would result in the loss of that type name,
10642 thus preventing us from printing the name of the ancestor
10643 type in the type description. */
10644 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10645
10646 if (TYPE_CODE (type) != TYPE_CODE_REF)
10647 {
10648 struct type *actual_type;
10649
10650 actual_type = type_from_tag (ada_value_tag (arg1));
10651 if (actual_type == NULL)
10652 /* If, for some reason, we were unable to determine
10653 the actual type from the tag, then use the static
10654 approximation that we just computed as a fallback.
10655 This can happen if the debugging information is
10656 incomplete, for instance. */
10657 actual_type = type;
10658 return value_zero (actual_type, not_lval);
10659 }
10660 else
10661 {
10662 /* In the case of a ref, ada_coerce_ref takes care
10663 of determining the actual type. But the evaluation
10664 should return a ref as it should be valid to ask
10665 for its address; so rebuild a ref after coerce. */
10666 arg1 = ada_coerce_ref (arg1);
10667 return value_ref (arg1);
10668 }
10669 }
10670
10671 /* Records and unions for which GNAT encodings have been
10672 generated need to be statically fixed as well.
10673 Otherwise, non-static fixing produces a type where
10674 all dynamic properties are removed, which prevents "ptype"
10675 from being able to completely describe the type.
10676 For instance, a case statement in a variant record would be
10677 replaced by the relevant components based on the actual
10678 value of the discriminants. */
10679 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10680 && dynamic_template_type (type) != NULL)
10681 || (TYPE_CODE (type) == TYPE_CODE_UNION
10682 && ada_find_parallel_type (type, "___XVU") != NULL))
10683 {
10684 *pos += 4;
10685 return value_zero (to_static_fixed_type (type), not_lval);
10686 }
10687 }
10688
10689 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10690 return ada_to_fixed_value (arg1);
10691
10692 case OP_FUNCALL:
10693 (*pos) += 2;
10694
10695 /* Allocate arg vector, including space for the function to be
10696 called in argvec[0] and a terminating NULL. */
10697 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10698 argvec = XALLOCAVEC (struct value *, nargs + 2);
10699
10700 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10701 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10702 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10703 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10704 else
10705 {
10706 for (tem = 0; tem <= nargs; tem += 1)
10707 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10708 argvec[tem] = 0;
10709
10710 if (noside == EVAL_SKIP)
10711 goto nosideret;
10712 }
10713
10714 if (ada_is_constrained_packed_array_type
10715 (desc_base_type (value_type (argvec[0]))))
10716 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10717 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10718 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10719 /* This is a packed array that has already been fixed, and
10720 therefore already coerced to a simple array. Nothing further
10721 to do. */
10722 ;
10723 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10724 {
10725 /* Make sure we dereference references so that all the code below
10726 feels like it's really handling the referenced value. Wrapping
10727 types (for alignment) may be there, so make sure we strip them as
10728 well. */
10729 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10730 }
10731 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10732 && VALUE_LVAL (argvec[0]) == lval_memory)
10733 argvec[0] = value_addr (argvec[0]);
10734
10735 type = ada_check_typedef (value_type (argvec[0]));
10736
10737 /* Ada allows us to implicitly dereference arrays when subscripting
10738 them. So, if this is an array typedef (encoding use for array
10739 access types encoded as fat pointers), strip it now. */
10740 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10741 type = ada_typedef_target_type (type);
10742
10743 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10744 {
10745 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10746 {
10747 case TYPE_CODE_FUNC:
10748 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10749 break;
10750 case TYPE_CODE_ARRAY:
10751 break;
10752 case TYPE_CODE_STRUCT:
10753 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10754 argvec[0] = ada_value_ind (argvec[0]);
10755 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10756 break;
10757 default:
10758 error (_("cannot subscript or call something of type `%s'"),
10759 ada_type_name (value_type (argvec[0])));
10760 break;
10761 }
10762 }
10763
10764 switch (TYPE_CODE (type))
10765 {
10766 case TYPE_CODE_FUNC:
10767 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10768 {
10769 struct type *rtype = TYPE_TARGET_TYPE (type);
10770
10771 if (TYPE_GNU_IFUNC (type))
10772 return allocate_value (TYPE_TARGET_TYPE (rtype));
10773 return allocate_value (rtype);
10774 }
10775 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10776 case TYPE_CODE_INTERNAL_FUNCTION:
10777 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10778 /* We don't know anything about what the internal
10779 function might return, but we have to return
10780 something. */
10781 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10782 not_lval);
10783 else
10784 return call_internal_function (exp->gdbarch, exp->language_defn,
10785 argvec[0], nargs, argvec + 1);
10786
10787 case TYPE_CODE_STRUCT:
10788 {
10789 int arity;
10790
10791 arity = ada_array_arity (type);
10792 type = ada_array_element_type (type, nargs);
10793 if (type == NULL)
10794 error (_("cannot subscript or call a record"));
10795 if (arity != nargs)
10796 error (_("wrong number of subscripts; expecting %d"), arity);
10797 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10798 return value_zero (ada_aligned_type (type), lval_memory);
10799 return
10800 unwrap_value (ada_value_subscript
10801 (argvec[0], nargs, argvec + 1));
10802 }
10803 case TYPE_CODE_ARRAY:
10804 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10805 {
10806 type = ada_array_element_type (type, nargs);
10807 if (type == NULL)
10808 error (_("element type of array unknown"));
10809 else
10810 return value_zero (ada_aligned_type (type), lval_memory);
10811 }
10812 return
10813 unwrap_value (ada_value_subscript
10814 (ada_coerce_to_simple_array (argvec[0]),
10815 nargs, argvec + 1));
10816 case TYPE_CODE_PTR: /* Pointer to array */
10817 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10818 {
10819 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10820 type = ada_array_element_type (type, nargs);
10821 if (type == NULL)
10822 error (_("element type of array unknown"));
10823 else
10824 return value_zero (ada_aligned_type (type), lval_memory);
10825 }
10826 return
10827 unwrap_value (ada_value_ptr_subscript (argvec[0],
10828 nargs, argvec + 1));
10829
10830 default:
10831 error (_("Attempt to index or call something other than an "
10832 "array or function"));
10833 }
10834
10835 case TERNOP_SLICE:
10836 {
10837 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10838 struct value *low_bound_val =
10839 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10840 struct value *high_bound_val =
10841 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10842 LONGEST low_bound;
10843 LONGEST high_bound;
10844
10845 low_bound_val = coerce_ref (low_bound_val);
10846 high_bound_val = coerce_ref (high_bound_val);
10847 low_bound = value_as_long (low_bound_val);
10848 high_bound = value_as_long (high_bound_val);
10849
10850 if (noside == EVAL_SKIP)
10851 goto nosideret;
10852
10853 /* If this is a reference to an aligner type, then remove all
10854 the aligners. */
10855 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10856 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10857 TYPE_TARGET_TYPE (value_type (array)) =
10858 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10859
10860 if (ada_is_constrained_packed_array_type (value_type (array)))
10861 error (_("cannot slice a packed array"));
10862
10863 /* If this is a reference to an array or an array lvalue,
10864 convert to a pointer. */
10865 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10866 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10867 && VALUE_LVAL (array) == lval_memory))
10868 array = value_addr (array);
10869
10870 if (noside == EVAL_AVOID_SIDE_EFFECTS
10871 && ada_is_array_descriptor_type (ada_check_typedef
10872 (value_type (array))))
10873 return empty_array (ada_type_of_array (array, 0), low_bound);
10874
10875 array = ada_coerce_to_simple_array_ptr (array);
10876
10877 /* If we have more than one level of pointer indirection,
10878 dereference the value until we get only one level. */
10879 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10880 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10881 == TYPE_CODE_PTR))
10882 array = value_ind (array);
10883
10884 /* Make sure we really do have an array type before going further,
10885 to avoid a SEGV when trying to get the index type or the target
10886 type later down the road if the debug info generated by
10887 the compiler is incorrect or incomplete. */
10888 if (!ada_is_simple_array_type (value_type (array)))
10889 error (_("cannot take slice of non-array"));
10890
10891 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10892 == TYPE_CODE_PTR)
10893 {
10894 struct type *type0 = ada_check_typedef (value_type (array));
10895
10896 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10897 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10898 else
10899 {
10900 struct type *arr_type0 =
10901 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10902
10903 return ada_value_slice_from_ptr (array, arr_type0,
10904 longest_to_int (low_bound),
10905 longest_to_int (high_bound));
10906 }
10907 }
10908 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10909 return array;
10910 else if (high_bound < low_bound)
10911 return empty_array (value_type (array), low_bound);
10912 else
10913 return ada_value_slice (array, longest_to_int (low_bound),
10914 longest_to_int (high_bound));
10915 }
10916
10917 case UNOP_IN_RANGE:
10918 (*pos) += 2;
10919 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10920 type = check_typedef (exp->elts[pc + 1].type);
10921
10922 if (noside == EVAL_SKIP)
10923 goto nosideret;
10924
10925 switch (TYPE_CODE (type))
10926 {
10927 default:
10928 lim_warning (_("Membership test incompletely implemented; "
10929 "always returns true"));
10930 type = language_bool_type (exp->language_defn, exp->gdbarch);
10931 return value_from_longest (type, (LONGEST) 1);
10932
10933 case TYPE_CODE_RANGE:
10934 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10935 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10936 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10937 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10938 type = language_bool_type (exp->language_defn, exp->gdbarch);
10939 return
10940 value_from_longest (type,
10941 (value_less (arg1, arg3)
10942 || value_equal (arg1, arg3))
10943 && (value_less (arg2, arg1)
10944 || value_equal (arg2, arg1)));
10945 }
10946
10947 case BINOP_IN_BOUNDS:
10948 (*pos) += 2;
10949 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10950 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10951
10952 if (noside == EVAL_SKIP)
10953 goto nosideret;
10954
10955 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10956 {
10957 type = language_bool_type (exp->language_defn, exp->gdbarch);
10958 return value_zero (type, not_lval);
10959 }
10960
10961 tem = longest_to_int (exp->elts[pc + 1].longconst);
10962
10963 type = ada_index_type (value_type (arg2), tem, "range");
10964 if (!type)
10965 type = value_type (arg1);
10966
10967 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10968 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10969
10970 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10971 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10972 type = language_bool_type (exp->language_defn, exp->gdbarch);
10973 return
10974 value_from_longest (type,
10975 (value_less (arg1, arg3)
10976 || value_equal (arg1, arg3))
10977 && (value_less (arg2, arg1)
10978 || value_equal (arg2, arg1)));
10979
10980 case TERNOP_IN_RANGE:
10981 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10982 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10983 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10984
10985 if (noside == EVAL_SKIP)
10986 goto nosideret;
10987
10988 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10989 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10990 type = language_bool_type (exp->language_defn, exp->gdbarch);
10991 return
10992 value_from_longest (type,
10993 (value_less (arg1, arg3)
10994 || value_equal (arg1, arg3))
10995 && (value_less (arg2, arg1)
10996 || value_equal (arg2, arg1)));
10997
10998 case OP_ATR_FIRST:
10999 case OP_ATR_LAST:
11000 case OP_ATR_LENGTH:
11001 {
11002 struct type *type_arg;
11003
11004 if (exp->elts[*pos].opcode == OP_TYPE)
11005 {
11006 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11007 arg1 = NULL;
11008 type_arg = check_typedef (exp->elts[pc + 2].type);
11009 }
11010 else
11011 {
11012 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11013 type_arg = NULL;
11014 }
11015
11016 if (exp->elts[*pos].opcode != OP_LONG)
11017 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11018 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11019 *pos += 4;
11020
11021 if (noside == EVAL_SKIP)
11022 goto nosideret;
11023
11024 if (type_arg == NULL)
11025 {
11026 arg1 = ada_coerce_ref (arg1);
11027
11028 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11029 arg1 = ada_coerce_to_simple_array (arg1);
11030
11031 if (op == OP_ATR_LENGTH)
11032 type = builtin_type (exp->gdbarch)->builtin_int;
11033 else
11034 {
11035 type = ada_index_type (value_type (arg1), tem,
11036 ada_attribute_name (op));
11037 if (type == NULL)
11038 type = builtin_type (exp->gdbarch)->builtin_int;
11039 }
11040
11041 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11042 return allocate_value (type);
11043
11044 switch (op)
11045 {
11046 default: /* Should never happen. */
11047 error (_("unexpected attribute encountered"));
11048 case OP_ATR_FIRST:
11049 return value_from_longest
11050 (type, ada_array_bound (arg1, tem, 0));
11051 case OP_ATR_LAST:
11052 return value_from_longest
11053 (type, ada_array_bound (arg1, tem, 1));
11054 case OP_ATR_LENGTH:
11055 return value_from_longest
11056 (type, ada_array_length (arg1, tem));
11057 }
11058 }
11059 else if (discrete_type_p (type_arg))
11060 {
11061 struct type *range_type;
11062 const char *name = ada_type_name (type_arg);
11063
11064 range_type = NULL;
11065 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11066 range_type = to_fixed_range_type (type_arg, NULL);
11067 if (range_type == NULL)
11068 range_type = type_arg;
11069 switch (op)
11070 {
11071 default:
11072 error (_("unexpected attribute encountered"));
11073 case OP_ATR_FIRST:
11074 return value_from_longest
11075 (range_type, ada_discrete_type_low_bound (range_type));
11076 case OP_ATR_LAST:
11077 return value_from_longest
11078 (range_type, ada_discrete_type_high_bound (range_type));
11079 case OP_ATR_LENGTH:
11080 error (_("the 'length attribute applies only to array types"));
11081 }
11082 }
11083 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11084 error (_("unimplemented type attribute"));
11085 else
11086 {
11087 LONGEST low, high;
11088
11089 if (ada_is_constrained_packed_array_type (type_arg))
11090 type_arg = decode_constrained_packed_array_type (type_arg);
11091
11092 if (op == OP_ATR_LENGTH)
11093 type = builtin_type (exp->gdbarch)->builtin_int;
11094 else
11095 {
11096 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11097 if (type == NULL)
11098 type = builtin_type (exp->gdbarch)->builtin_int;
11099 }
11100
11101 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11102 return allocate_value (type);
11103
11104 switch (op)
11105 {
11106 default:
11107 error (_("unexpected attribute encountered"));
11108 case OP_ATR_FIRST:
11109 low = ada_array_bound_from_type (type_arg, tem, 0);
11110 return value_from_longest (type, low);
11111 case OP_ATR_LAST:
11112 high = ada_array_bound_from_type (type_arg, tem, 1);
11113 return value_from_longest (type, high);
11114 case OP_ATR_LENGTH:
11115 low = ada_array_bound_from_type (type_arg, tem, 0);
11116 high = ada_array_bound_from_type (type_arg, tem, 1);
11117 return value_from_longest (type, high - low + 1);
11118 }
11119 }
11120 }
11121
11122 case OP_ATR_TAG:
11123 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11124 if (noside == EVAL_SKIP)
11125 goto nosideret;
11126
11127 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11128 return value_zero (ada_tag_type (arg1), not_lval);
11129
11130 return ada_value_tag (arg1);
11131
11132 case OP_ATR_MIN:
11133 case OP_ATR_MAX:
11134 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11135 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11136 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11137 if (noside == EVAL_SKIP)
11138 goto nosideret;
11139 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11140 return value_zero (value_type (arg1), not_lval);
11141 else
11142 {
11143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11144 return value_binop (arg1, arg2,
11145 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11146 }
11147
11148 case OP_ATR_MODULUS:
11149 {
11150 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11151
11152 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11153 if (noside == EVAL_SKIP)
11154 goto nosideret;
11155
11156 if (!ada_is_modular_type (type_arg))
11157 error (_("'modulus must be applied to modular type"));
11158
11159 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11160 ada_modulus (type_arg));
11161 }
11162
11163
11164 case OP_ATR_POS:
11165 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11166 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11167 if (noside == EVAL_SKIP)
11168 goto nosideret;
11169 type = builtin_type (exp->gdbarch)->builtin_int;
11170 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11171 return value_zero (type, not_lval);
11172 else
11173 return value_pos_atr (type, arg1);
11174
11175 case OP_ATR_SIZE:
11176 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11177 type = value_type (arg1);
11178
11179 /* If the argument is a reference, then dereference its type, since
11180 the user is really asking for the size of the actual object,
11181 not the size of the pointer. */
11182 if (TYPE_CODE (type) == TYPE_CODE_REF)
11183 type = TYPE_TARGET_TYPE (type);
11184
11185 if (noside == EVAL_SKIP)
11186 goto nosideret;
11187 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11188 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11189 else
11190 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11191 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11192
11193 case OP_ATR_VAL:
11194 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11195 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11196 type = exp->elts[pc + 2].type;
11197 if (noside == EVAL_SKIP)
11198 goto nosideret;
11199 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11200 return value_zero (type, not_lval);
11201 else
11202 return value_val_atr (type, arg1);
11203
11204 case BINOP_EXP:
11205 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11206 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11207 if (noside == EVAL_SKIP)
11208 goto nosideret;
11209 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11210 return value_zero (value_type (arg1), not_lval);
11211 else
11212 {
11213 /* For integer exponentiation operations,
11214 only promote the first argument. */
11215 if (is_integral_type (value_type (arg2)))
11216 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11217 else
11218 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11219
11220 return value_binop (arg1, arg2, op);
11221 }
11222
11223 case UNOP_PLUS:
11224 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11225 if (noside == EVAL_SKIP)
11226 goto nosideret;
11227 else
11228 return arg1;
11229
11230 case UNOP_ABS:
11231 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11232 if (noside == EVAL_SKIP)
11233 goto nosideret;
11234 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11235 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11236 return value_neg (arg1);
11237 else
11238 return arg1;
11239
11240 case UNOP_IND:
11241 preeval_pos = *pos;
11242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11243 if (noside == EVAL_SKIP)
11244 goto nosideret;
11245 type = ada_check_typedef (value_type (arg1));
11246 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11247 {
11248 if (ada_is_array_descriptor_type (type))
11249 /* GDB allows dereferencing GNAT array descriptors. */
11250 {
11251 struct type *arrType = ada_type_of_array (arg1, 0);
11252
11253 if (arrType == NULL)
11254 error (_("Attempt to dereference null array pointer."));
11255 return value_at_lazy (arrType, 0);
11256 }
11257 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11258 || TYPE_CODE (type) == TYPE_CODE_REF
11259 /* In C you can dereference an array to get the 1st elt. */
11260 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11261 {
11262 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11263 only be determined by inspecting the object's tag.
11264 This means that we need to evaluate completely the
11265 expression in order to get its type. */
11266
11267 if ((TYPE_CODE (type) == TYPE_CODE_REF
11268 || TYPE_CODE (type) == TYPE_CODE_PTR)
11269 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11270 {
11271 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11272 EVAL_NORMAL);
11273 type = value_type (ada_value_ind (arg1));
11274 }
11275 else
11276 {
11277 type = to_static_fixed_type
11278 (ada_aligned_type
11279 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11280 }
11281 ada_ensure_varsize_limit (type);
11282 return value_zero (type, lval_memory);
11283 }
11284 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11285 {
11286 /* GDB allows dereferencing an int. */
11287 if (expect_type == NULL)
11288 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11289 lval_memory);
11290 else
11291 {
11292 expect_type =
11293 to_static_fixed_type (ada_aligned_type (expect_type));
11294 return value_zero (expect_type, lval_memory);
11295 }
11296 }
11297 else
11298 error (_("Attempt to take contents of a non-pointer value."));
11299 }
11300 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11301 type = ada_check_typedef (value_type (arg1));
11302
11303 if (TYPE_CODE (type) == TYPE_CODE_INT)
11304 /* GDB allows dereferencing an int. If we were given
11305 the expect_type, then use that as the target type.
11306 Otherwise, assume that the target type is an int. */
11307 {
11308 if (expect_type != NULL)
11309 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11310 arg1));
11311 else
11312 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11313 (CORE_ADDR) value_as_address (arg1));
11314 }
11315
11316 if (ada_is_array_descriptor_type (type))
11317 /* GDB allows dereferencing GNAT array descriptors. */
11318 return ada_coerce_to_simple_array (arg1);
11319 else
11320 return ada_value_ind (arg1);
11321
11322 case STRUCTOP_STRUCT:
11323 tem = longest_to_int (exp->elts[pc + 1].longconst);
11324 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11325 preeval_pos = *pos;
11326 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11327 if (noside == EVAL_SKIP)
11328 goto nosideret;
11329 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11330 {
11331 struct type *type1 = value_type (arg1);
11332
11333 if (ada_is_tagged_type (type1, 1))
11334 {
11335 type = ada_lookup_struct_elt_type (type1,
11336 &exp->elts[pc + 2].string,
11337 1, 1, NULL);
11338
11339 /* If the field is not found, check if it exists in the
11340 extension of this object's type. This means that we
11341 need to evaluate completely the expression. */
11342
11343 if (type == NULL)
11344 {
11345 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11346 EVAL_NORMAL);
11347 arg1 = ada_value_struct_elt (arg1,
11348 &exp->elts[pc + 2].string,
11349 0);
11350 arg1 = unwrap_value (arg1);
11351 type = value_type (ada_to_fixed_value (arg1));
11352 }
11353 }
11354 else
11355 type =
11356 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11357 0, NULL);
11358
11359 return value_zero (ada_aligned_type (type), lval_memory);
11360 }
11361 else
11362 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11363 arg1 = unwrap_value (arg1);
11364 return ada_to_fixed_value (arg1);
11365
11366 case OP_TYPE:
11367 /* The value is not supposed to be used. This is here to make it
11368 easier to accommodate expressions that contain types. */
11369 (*pos) += 2;
11370 if (noside == EVAL_SKIP)
11371 goto nosideret;
11372 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11373 return allocate_value (exp->elts[pc + 1].type);
11374 else
11375 error (_("Attempt to use a type name as an expression"));
11376
11377 case OP_AGGREGATE:
11378 case OP_CHOICES:
11379 case OP_OTHERS:
11380 case OP_DISCRETE_RANGE:
11381 case OP_POSITIONAL:
11382 case OP_NAME:
11383 if (noside == EVAL_NORMAL)
11384 switch (op)
11385 {
11386 case OP_NAME:
11387 error (_("Undefined name, ambiguous name, or renaming used in "
11388 "component association: %s."), &exp->elts[pc+2].string);
11389 case OP_AGGREGATE:
11390 error (_("Aggregates only allowed on the right of an assignment"));
11391 default:
11392 internal_error (__FILE__, __LINE__,
11393 _("aggregate apparently mangled"));
11394 }
11395
11396 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11397 *pos += oplen - 1;
11398 for (tem = 0; tem < nargs; tem += 1)
11399 ada_evaluate_subexp (NULL, exp, pos, noside);
11400 goto nosideret;
11401 }
11402
11403 nosideret:
11404 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11405 }
11406 \f
11407
11408 /* Fixed point */
11409
11410 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11411 type name that encodes the 'small and 'delta information.
11412 Otherwise, return NULL. */
11413
11414 static const char *
11415 fixed_type_info (struct type *type)
11416 {
11417 const char *name = ada_type_name (type);
11418 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11419
11420 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11421 {
11422 const char *tail = strstr (name, "___XF_");
11423
11424 if (tail == NULL)
11425 return NULL;
11426 else
11427 return tail + 5;
11428 }
11429 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11430 return fixed_type_info (TYPE_TARGET_TYPE (type));
11431 else
11432 return NULL;
11433 }
11434
11435 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11436
11437 int
11438 ada_is_fixed_point_type (struct type *type)
11439 {
11440 return fixed_type_info (type) != NULL;
11441 }
11442
11443 /* Return non-zero iff TYPE represents a System.Address type. */
11444
11445 int
11446 ada_is_system_address_type (struct type *type)
11447 {
11448 return (TYPE_NAME (type)
11449 && strcmp (TYPE_NAME (type), "system__address") == 0);
11450 }
11451
11452 /* Assuming that TYPE is the representation of an Ada fixed-point
11453 type, return its delta, or -1 if the type is malformed and the
11454 delta cannot be determined. */
11455
11456 DOUBLEST
11457 ada_delta (struct type *type)
11458 {
11459 const char *encoding = fixed_type_info (type);
11460 DOUBLEST num, den;
11461
11462 /* Strictly speaking, num and den are encoded as integer. However,
11463 they may not fit into a long, and they will have to be converted
11464 to DOUBLEST anyway. So scan them as DOUBLEST. */
11465 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11466 &num, &den) < 2)
11467 return -1.0;
11468 else
11469 return num / den;
11470 }
11471
11472 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11473 factor ('SMALL value) associated with the type. */
11474
11475 static DOUBLEST
11476 scaling_factor (struct type *type)
11477 {
11478 const char *encoding = fixed_type_info (type);
11479 DOUBLEST num0, den0, num1, den1;
11480 int n;
11481
11482 /* Strictly speaking, num's and den's are encoded as integer. However,
11483 they may not fit into a long, and they will have to be converted
11484 to DOUBLEST anyway. So scan them as DOUBLEST. */
11485 n = sscanf (encoding,
11486 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11487 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11488 &num0, &den0, &num1, &den1);
11489
11490 if (n < 2)
11491 return 1.0;
11492 else if (n == 4)
11493 return num1 / den1;
11494 else
11495 return num0 / den0;
11496 }
11497
11498
11499 /* Assuming that X is the representation of a value of fixed-point
11500 type TYPE, return its floating-point equivalent. */
11501
11502 DOUBLEST
11503 ada_fixed_to_float (struct type *type, LONGEST x)
11504 {
11505 return (DOUBLEST) x *scaling_factor (type);
11506 }
11507
11508 /* The representation of a fixed-point value of type TYPE
11509 corresponding to the value X. */
11510
11511 LONGEST
11512 ada_float_to_fixed (struct type *type, DOUBLEST x)
11513 {
11514 return (LONGEST) (x / scaling_factor (type) + 0.5);
11515 }
11516
11517 \f
11518
11519 /* Range types */
11520
11521 /* Scan STR beginning at position K for a discriminant name, and
11522 return the value of that discriminant field of DVAL in *PX. If
11523 PNEW_K is not null, put the position of the character beyond the
11524 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11525 not alter *PX and *PNEW_K if unsuccessful. */
11526
11527 static int
11528 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11529 int *pnew_k)
11530 {
11531 static char *bound_buffer = NULL;
11532 static size_t bound_buffer_len = 0;
11533 const char *pstart, *pend, *bound;
11534 struct value *bound_val;
11535
11536 if (dval == NULL || str == NULL || str[k] == '\0')
11537 return 0;
11538
11539 pstart = str + k;
11540 pend = strstr (pstart, "__");
11541 if (pend == NULL)
11542 {
11543 bound = pstart;
11544 k += strlen (bound);
11545 }
11546 else
11547 {
11548 int len = pend - pstart;
11549
11550 /* Strip __ and beyond. */
11551 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11552 strncpy (bound_buffer, pstart, len);
11553 bound_buffer[len] = '\0';
11554
11555 bound = bound_buffer;
11556 k = pend - str;
11557 }
11558
11559 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11560 if (bound_val == NULL)
11561 return 0;
11562
11563 *px = value_as_long (bound_val);
11564 if (pnew_k != NULL)
11565 *pnew_k = k;
11566 return 1;
11567 }
11568
11569 /* Value of variable named NAME in the current environment. If
11570 no such variable found, then if ERR_MSG is null, returns 0, and
11571 otherwise causes an error with message ERR_MSG. */
11572
11573 static struct value *
11574 get_var_value (char *name, char *err_msg)
11575 {
11576 struct block_symbol *syms;
11577 int nsyms;
11578
11579 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11580 &syms);
11581
11582 if (nsyms != 1)
11583 {
11584 if (err_msg == NULL)
11585 return 0;
11586 else
11587 error (("%s"), err_msg);
11588 }
11589
11590 return value_of_variable (syms[0].symbol, syms[0].block);
11591 }
11592
11593 /* Value of integer variable named NAME in the current environment. If
11594 no such variable found, returns 0, and sets *FLAG to 0. If
11595 successful, sets *FLAG to 1. */
11596
11597 LONGEST
11598 get_int_var_value (char *name, int *flag)
11599 {
11600 struct value *var_val = get_var_value (name, 0);
11601
11602 if (var_val == 0)
11603 {
11604 if (flag != NULL)
11605 *flag = 0;
11606 return 0;
11607 }
11608 else
11609 {
11610 if (flag != NULL)
11611 *flag = 1;
11612 return value_as_long (var_val);
11613 }
11614 }
11615
11616
11617 /* Return a range type whose base type is that of the range type named
11618 NAME in the current environment, and whose bounds are calculated
11619 from NAME according to the GNAT range encoding conventions.
11620 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11621 corresponding range type from debug information; fall back to using it
11622 if symbol lookup fails. If a new type must be created, allocate it
11623 like ORIG_TYPE was. The bounds information, in general, is encoded
11624 in NAME, the base type given in the named range type. */
11625
11626 static struct type *
11627 to_fixed_range_type (struct type *raw_type, struct value *dval)
11628 {
11629 const char *name;
11630 struct type *base_type;
11631 const char *subtype_info;
11632
11633 gdb_assert (raw_type != NULL);
11634 gdb_assert (TYPE_NAME (raw_type) != NULL);
11635
11636 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11637 base_type = TYPE_TARGET_TYPE (raw_type);
11638 else
11639 base_type = raw_type;
11640
11641 name = TYPE_NAME (raw_type);
11642 subtype_info = strstr (name, "___XD");
11643 if (subtype_info == NULL)
11644 {
11645 LONGEST L = ada_discrete_type_low_bound (raw_type);
11646 LONGEST U = ada_discrete_type_high_bound (raw_type);
11647
11648 if (L < INT_MIN || U > INT_MAX)
11649 return raw_type;
11650 else
11651 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11652 L, U);
11653 }
11654 else
11655 {
11656 static char *name_buf = NULL;
11657 static size_t name_len = 0;
11658 int prefix_len = subtype_info - name;
11659 LONGEST L, U;
11660 struct type *type;
11661 const char *bounds_str;
11662 int n;
11663
11664 GROW_VECT (name_buf, name_len, prefix_len + 5);
11665 strncpy (name_buf, name, prefix_len);
11666 name_buf[prefix_len] = '\0';
11667
11668 subtype_info += 5;
11669 bounds_str = strchr (subtype_info, '_');
11670 n = 1;
11671
11672 if (*subtype_info == 'L')
11673 {
11674 if (!ada_scan_number (bounds_str, n, &L, &n)
11675 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11676 return raw_type;
11677 if (bounds_str[n] == '_')
11678 n += 2;
11679 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11680 n += 1;
11681 subtype_info += 1;
11682 }
11683 else
11684 {
11685 int ok;
11686
11687 strcpy (name_buf + prefix_len, "___L");
11688 L = get_int_var_value (name_buf, &ok);
11689 if (!ok)
11690 {
11691 lim_warning (_("Unknown lower bound, using 1."));
11692 L = 1;
11693 }
11694 }
11695
11696 if (*subtype_info == 'U')
11697 {
11698 if (!ada_scan_number (bounds_str, n, &U, &n)
11699 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11700 return raw_type;
11701 }
11702 else
11703 {
11704 int ok;
11705
11706 strcpy (name_buf + prefix_len, "___U");
11707 U = get_int_var_value (name_buf, &ok);
11708 if (!ok)
11709 {
11710 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11711 U = L;
11712 }
11713 }
11714
11715 type = create_static_range_type (alloc_type_copy (raw_type),
11716 base_type, L, U);
11717 TYPE_NAME (type) = name;
11718 return type;
11719 }
11720 }
11721
11722 /* True iff NAME is the name of a range type. */
11723
11724 int
11725 ada_is_range_type_name (const char *name)
11726 {
11727 return (name != NULL && strstr (name, "___XD"));
11728 }
11729 \f
11730
11731 /* Modular types */
11732
11733 /* True iff TYPE is an Ada modular type. */
11734
11735 int
11736 ada_is_modular_type (struct type *type)
11737 {
11738 struct type *subranged_type = get_base_type (type);
11739
11740 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11741 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11742 && TYPE_UNSIGNED (subranged_type));
11743 }
11744
11745 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11746
11747 ULONGEST
11748 ada_modulus (struct type *type)
11749 {
11750 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11751 }
11752 \f
11753
11754 /* Ada exception catchpoint support:
11755 ---------------------------------
11756
11757 We support 3 kinds of exception catchpoints:
11758 . catchpoints on Ada exceptions
11759 . catchpoints on unhandled Ada exceptions
11760 . catchpoints on failed assertions
11761
11762 Exceptions raised during failed assertions, or unhandled exceptions
11763 could perfectly be caught with the general catchpoint on Ada exceptions.
11764 However, we can easily differentiate these two special cases, and having
11765 the option to distinguish these two cases from the rest can be useful
11766 to zero-in on certain situations.
11767
11768 Exception catchpoints are a specialized form of breakpoint,
11769 since they rely on inserting breakpoints inside known routines
11770 of the GNAT runtime. The implementation therefore uses a standard
11771 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11772 of breakpoint_ops.
11773
11774 Support in the runtime for exception catchpoints have been changed
11775 a few times already, and these changes affect the implementation
11776 of these catchpoints. In order to be able to support several
11777 variants of the runtime, we use a sniffer that will determine
11778 the runtime variant used by the program being debugged. */
11779
11780 /* Ada's standard exceptions.
11781
11782 The Ada 83 standard also defined Numeric_Error. But there so many
11783 situations where it was unclear from the Ada 83 Reference Manual
11784 (RM) whether Constraint_Error or Numeric_Error should be raised,
11785 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11786 Interpretation saying that anytime the RM says that Numeric_Error
11787 should be raised, the implementation may raise Constraint_Error.
11788 Ada 95 went one step further and pretty much removed Numeric_Error
11789 from the list of standard exceptions (it made it a renaming of
11790 Constraint_Error, to help preserve compatibility when compiling
11791 an Ada83 compiler). As such, we do not include Numeric_Error from
11792 this list of standard exceptions. */
11793
11794 static char *standard_exc[] = {
11795 "constraint_error",
11796 "program_error",
11797 "storage_error",
11798 "tasking_error"
11799 };
11800
11801 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11802
11803 /* A structure that describes how to support exception catchpoints
11804 for a given executable. */
11805
11806 struct exception_support_info
11807 {
11808 /* The name of the symbol to break on in order to insert
11809 a catchpoint on exceptions. */
11810 const char *catch_exception_sym;
11811
11812 /* The name of the symbol to break on in order to insert
11813 a catchpoint on unhandled exceptions. */
11814 const char *catch_exception_unhandled_sym;
11815
11816 /* The name of the symbol to break on in order to insert
11817 a catchpoint on failed assertions. */
11818 const char *catch_assert_sym;
11819
11820 /* Assuming that the inferior just triggered an unhandled exception
11821 catchpoint, this function is responsible for returning the address
11822 in inferior memory where the name of that exception is stored.
11823 Return zero if the address could not be computed. */
11824 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11825 };
11826
11827 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11828 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11829
11830 /* The following exception support info structure describes how to
11831 implement exception catchpoints with the latest version of the
11832 Ada runtime (as of 2007-03-06). */
11833
11834 static const struct exception_support_info default_exception_support_info =
11835 {
11836 "__gnat_debug_raise_exception", /* catch_exception_sym */
11837 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11838 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11839 ada_unhandled_exception_name_addr
11840 };
11841
11842 /* The following exception support info structure describes how to
11843 implement exception catchpoints with a slightly older version
11844 of the Ada runtime. */
11845
11846 static const struct exception_support_info exception_support_info_fallback =
11847 {
11848 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11849 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11850 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11851 ada_unhandled_exception_name_addr_from_raise
11852 };
11853
11854 /* Return nonzero if we can detect the exception support routines
11855 described in EINFO.
11856
11857 This function errors out if an abnormal situation is detected
11858 (for instance, if we find the exception support routines, but
11859 that support is found to be incomplete). */
11860
11861 static int
11862 ada_has_this_exception_support (const struct exception_support_info *einfo)
11863 {
11864 struct symbol *sym;
11865
11866 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11867 that should be compiled with debugging information. As a result, we
11868 expect to find that symbol in the symtabs. */
11869
11870 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11871 if (sym == NULL)
11872 {
11873 /* Perhaps we did not find our symbol because the Ada runtime was
11874 compiled without debugging info, or simply stripped of it.
11875 It happens on some GNU/Linux distributions for instance, where
11876 users have to install a separate debug package in order to get
11877 the runtime's debugging info. In that situation, let the user
11878 know why we cannot insert an Ada exception catchpoint.
11879
11880 Note: Just for the purpose of inserting our Ada exception
11881 catchpoint, we could rely purely on the associated minimal symbol.
11882 But we would be operating in degraded mode anyway, since we are
11883 still lacking the debugging info needed later on to extract
11884 the name of the exception being raised (this name is printed in
11885 the catchpoint message, and is also used when trying to catch
11886 a specific exception). We do not handle this case for now. */
11887 struct bound_minimal_symbol msym
11888 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11889
11890 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11891 error (_("Your Ada runtime appears to be missing some debugging "
11892 "information.\nCannot insert Ada exception catchpoint "
11893 "in this configuration."));
11894
11895 return 0;
11896 }
11897
11898 /* Make sure that the symbol we found corresponds to a function. */
11899
11900 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11901 error (_("Symbol \"%s\" is not a function (class = %d)"),
11902 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11903
11904 return 1;
11905 }
11906
11907 /* Inspect the Ada runtime and determine which exception info structure
11908 should be used to provide support for exception catchpoints.
11909
11910 This function will always set the per-inferior exception_info,
11911 or raise an error. */
11912
11913 static void
11914 ada_exception_support_info_sniffer (void)
11915 {
11916 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11917
11918 /* If the exception info is already known, then no need to recompute it. */
11919 if (data->exception_info != NULL)
11920 return;
11921
11922 /* Check the latest (default) exception support info. */
11923 if (ada_has_this_exception_support (&default_exception_support_info))
11924 {
11925 data->exception_info = &default_exception_support_info;
11926 return;
11927 }
11928
11929 /* Try our fallback exception suport info. */
11930 if (ada_has_this_exception_support (&exception_support_info_fallback))
11931 {
11932 data->exception_info = &exception_support_info_fallback;
11933 return;
11934 }
11935
11936 /* Sometimes, it is normal for us to not be able to find the routine
11937 we are looking for. This happens when the program is linked with
11938 the shared version of the GNAT runtime, and the program has not been
11939 started yet. Inform the user of these two possible causes if
11940 applicable. */
11941
11942 if (ada_update_initial_language (language_unknown) != language_ada)
11943 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11944
11945 /* If the symbol does not exist, then check that the program is
11946 already started, to make sure that shared libraries have been
11947 loaded. If it is not started, this may mean that the symbol is
11948 in a shared library. */
11949
11950 if (ptid_get_pid (inferior_ptid) == 0)
11951 error (_("Unable to insert catchpoint. Try to start the program first."));
11952
11953 /* At this point, we know that we are debugging an Ada program and
11954 that the inferior has been started, but we still are not able to
11955 find the run-time symbols. That can mean that we are in
11956 configurable run time mode, or that a-except as been optimized
11957 out by the linker... In any case, at this point it is not worth
11958 supporting this feature. */
11959
11960 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11961 }
11962
11963 /* True iff FRAME is very likely to be that of a function that is
11964 part of the runtime system. This is all very heuristic, but is
11965 intended to be used as advice as to what frames are uninteresting
11966 to most users. */
11967
11968 static int
11969 is_known_support_routine (struct frame_info *frame)
11970 {
11971 struct symtab_and_line sal;
11972 char *func_name;
11973 enum language func_lang;
11974 int i;
11975 const char *fullname;
11976
11977 /* If this code does not have any debugging information (no symtab),
11978 This cannot be any user code. */
11979
11980 find_frame_sal (frame, &sal);
11981 if (sal.symtab == NULL)
11982 return 1;
11983
11984 /* If there is a symtab, but the associated source file cannot be
11985 located, then assume this is not user code: Selecting a frame
11986 for which we cannot display the code would not be very helpful
11987 for the user. This should also take care of case such as VxWorks
11988 where the kernel has some debugging info provided for a few units. */
11989
11990 fullname = symtab_to_fullname (sal.symtab);
11991 if (access (fullname, R_OK) != 0)
11992 return 1;
11993
11994 /* Check the unit filename againt the Ada runtime file naming.
11995 We also check the name of the objfile against the name of some
11996 known system libraries that sometimes come with debugging info
11997 too. */
11998
11999 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12000 {
12001 re_comp (known_runtime_file_name_patterns[i]);
12002 if (re_exec (lbasename (sal.symtab->filename)))
12003 return 1;
12004 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12005 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12006 return 1;
12007 }
12008
12009 /* Check whether the function is a GNAT-generated entity. */
12010
12011 find_frame_funname (frame, &func_name, &func_lang, NULL);
12012 if (func_name == NULL)
12013 return 1;
12014
12015 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12016 {
12017 re_comp (known_auxiliary_function_name_patterns[i]);
12018 if (re_exec (func_name))
12019 {
12020 xfree (func_name);
12021 return 1;
12022 }
12023 }
12024
12025 xfree (func_name);
12026 return 0;
12027 }
12028
12029 /* Find the first frame that contains debugging information and that is not
12030 part of the Ada run-time, starting from FI and moving upward. */
12031
12032 void
12033 ada_find_printable_frame (struct frame_info *fi)
12034 {
12035 for (; fi != NULL; fi = get_prev_frame (fi))
12036 {
12037 if (!is_known_support_routine (fi))
12038 {
12039 select_frame (fi);
12040 break;
12041 }
12042 }
12043
12044 }
12045
12046 /* Assuming that the inferior just triggered an unhandled exception
12047 catchpoint, return the address in inferior memory where the name
12048 of the exception is stored.
12049
12050 Return zero if the address could not be computed. */
12051
12052 static CORE_ADDR
12053 ada_unhandled_exception_name_addr (void)
12054 {
12055 return parse_and_eval_address ("e.full_name");
12056 }
12057
12058 /* Same as ada_unhandled_exception_name_addr, except that this function
12059 should be used when the inferior uses an older version of the runtime,
12060 where the exception name needs to be extracted from a specific frame
12061 several frames up in the callstack. */
12062
12063 static CORE_ADDR
12064 ada_unhandled_exception_name_addr_from_raise (void)
12065 {
12066 int frame_level;
12067 struct frame_info *fi;
12068 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12069 struct cleanup *old_chain;
12070
12071 /* To determine the name of this exception, we need to select
12072 the frame corresponding to RAISE_SYM_NAME. This frame is
12073 at least 3 levels up, so we simply skip the first 3 frames
12074 without checking the name of their associated function. */
12075 fi = get_current_frame ();
12076 for (frame_level = 0; frame_level < 3; frame_level += 1)
12077 if (fi != NULL)
12078 fi = get_prev_frame (fi);
12079
12080 old_chain = make_cleanup (null_cleanup, NULL);
12081 while (fi != NULL)
12082 {
12083 char *func_name;
12084 enum language func_lang;
12085
12086 find_frame_funname (fi, &func_name, &func_lang, NULL);
12087 if (func_name != NULL)
12088 {
12089 make_cleanup (xfree, func_name);
12090
12091 if (strcmp (func_name,
12092 data->exception_info->catch_exception_sym) == 0)
12093 break; /* We found the frame we were looking for... */
12094 fi = get_prev_frame (fi);
12095 }
12096 }
12097 do_cleanups (old_chain);
12098
12099 if (fi == NULL)
12100 return 0;
12101
12102 select_frame (fi);
12103 return parse_and_eval_address ("id.full_name");
12104 }
12105
12106 /* Assuming the inferior just triggered an Ada exception catchpoint
12107 (of any type), return the address in inferior memory where the name
12108 of the exception is stored, if applicable.
12109
12110 Return zero if the address could not be computed, or if not relevant. */
12111
12112 static CORE_ADDR
12113 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12114 struct breakpoint *b)
12115 {
12116 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12117
12118 switch (ex)
12119 {
12120 case ada_catch_exception:
12121 return (parse_and_eval_address ("e.full_name"));
12122 break;
12123
12124 case ada_catch_exception_unhandled:
12125 return data->exception_info->unhandled_exception_name_addr ();
12126 break;
12127
12128 case ada_catch_assert:
12129 return 0; /* Exception name is not relevant in this case. */
12130 break;
12131
12132 default:
12133 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12134 break;
12135 }
12136
12137 return 0; /* Should never be reached. */
12138 }
12139
12140 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12141 any error that ada_exception_name_addr_1 might cause to be thrown.
12142 When an error is intercepted, a warning with the error message is printed,
12143 and zero is returned. */
12144
12145 static CORE_ADDR
12146 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12147 struct breakpoint *b)
12148 {
12149 CORE_ADDR result = 0;
12150
12151 TRY
12152 {
12153 result = ada_exception_name_addr_1 (ex, b);
12154 }
12155
12156 CATCH (e, RETURN_MASK_ERROR)
12157 {
12158 warning (_("failed to get exception name: %s"), e.message);
12159 return 0;
12160 }
12161 END_CATCH
12162
12163 return result;
12164 }
12165
12166 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12167
12168 /* Ada catchpoints.
12169
12170 In the case of catchpoints on Ada exceptions, the catchpoint will
12171 stop the target on every exception the program throws. When a user
12172 specifies the name of a specific exception, we translate this
12173 request into a condition expression (in text form), and then parse
12174 it into an expression stored in each of the catchpoint's locations.
12175 We then use this condition to check whether the exception that was
12176 raised is the one the user is interested in. If not, then the
12177 target is resumed again. We store the name of the requested
12178 exception, in order to be able to re-set the condition expression
12179 when symbols change. */
12180
12181 /* An instance of this type is used to represent an Ada catchpoint
12182 breakpoint location. It includes a "struct bp_location" as a kind
12183 of base class; users downcast to "struct bp_location *" when
12184 needed. */
12185
12186 struct ada_catchpoint_location
12187 {
12188 /* The base class. */
12189 struct bp_location base;
12190
12191 /* The condition that checks whether the exception that was raised
12192 is the specific exception the user specified on catchpoint
12193 creation. */
12194 struct expression *excep_cond_expr;
12195 };
12196
12197 /* Implement the DTOR method in the bp_location_ops structure for all
12198 Ada exception catchpoint kinds. */
12199
12200 static void
12201 ada_catchpoint_location_dtor (struct bp_location *bl)
12202 {
12203 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12204
12205 xfree (al->excep_cond_expr);
12206 }
12207
12208 /* The vtable to be used in Ada catchpoint locations. */
12209
12210 static const struct bp_location_ops ada_catchpoint_location_ops =
12211 {
12212 ada_catchpoint_location_dtor
12213 };
12214
12215 /* An instance of this type is used to represent an Ada catchpoint.
12216 It includes a "struct breakpoint" as a kind of base class; users
12217 downcast to "struct breakpoint *" when needed. */
12218
12219 struct ada_catchpoint
12220 {
12221 /* The base class. */
12222 struct breakpoint base;
12223
12224 /* The name of the specific exception the user specified. */
12225 char *excep_string;
12226 };
12227
12228 /* Parse the exception condition string in the context of each of the
12229 catchpoint's locations, and store them for later evaluation. */
12230
12231 static void
12232 create_excep_cond_exprs (struct ada_catchpoint *c)
12233 {
12234 struct cleanup *old_chain;
12235 struct bp_location *bl;
12236 char *cond_string;
12237
12238 /* Nothing to do if there's no specific exception to catch. */
12239 if (c->excep_string == NULL)
12240 return;
12241
12242 /* Same if there are no locations... */
12243 if (c->base.loc == NULL)
12244 return;
12245
12246 /* Compute the condition expression in text form, from the specific
12247 expection we want to catch. */
12248 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12249 old_chain = make_cleanup (xfree, cond_string);
12250
12251 /* Iterate over all the catchpoint's locations, and parse an
12252 expression for each. */
12253 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12254 {
12255 struct ada_catchpoint_location *ada_loc
12256 = (struct ada_catchpoint_location *) bl;
12257 struct expression *exp = NULL;
12258
12259 if (!bl->shlib_disabled)
12260 {
12261 const char *s;
12262
12263 s = cond_string;
12264 TRY
12265 {
12266 exp = parse_exp_1 (&s, bl->address,
12267 block_for_pc (bl->address), 0);
12268 }
12269 CATCH (e, RETURN_MASK_ERROR)
12270 {
12271 warning (_("failed to reevaluate internal exception condition "
12272 "for catchpoint %d: %s"),
12273 c->base.number, e.message);
12274 /* There is a bug in GCC on sparc-solaris when building with
12275 optimization which causes EXP to change unexpectedly
12276 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12277 The problem should be fixed starting with GCC 4.9.
12278 In the meantime, work around it by forcing EXP back
12279 to NULL. */
12280 exp = NULL;
12281 }
12282 END_CATCH
12283 }
12284
12285 ada_loc->excep_cond_expr = exp;
12286 }
12287
12288 do_cleanups (old_chain);
12289 }
12290
12291 /* Implement the DTOR method in the breakpoint_ops structure for all
12292 exception catchpoint kinds. */
12293
12294 static void
12295 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12296 {
12297 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12298
12299 xfree (c->excep_string);
12300
12301 bkpt_breakpoint_ops.dtor (b);
12302 }
12303
12304 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12305 structure for all exception catchpoint kinds. */
12306
12307 static struct bp_location *
12308 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12309 struct breakpoint *self)
12310 {
12311 struct ada_catchpoint_location *loc;
12312
12313 loc = XNEW (struct ada_catchpoint_location);
12314 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12315 loc->excep_cond_expr = NULL;
12316 return &loc->base;
12317 }
12318
12319 /* Implement the RE_SET method in the breakpoint_ops structure for all
12320 exception catchpoint kinds. */
12321
12322 static void
12323 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12324 {
12325 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12326
12327 /* Call the base class's method. This updates the catchpoint's
12328 locations. */
12329 bkpt_breakpoint_ops.re_set (b);
12330
12331 /* Reparse the exception conditional expressions. One for each
12332 location. */
12333 create_excep_cond_exprs (c);
12334 }
12335
12336 /* Returns true if we should stop for this breakpoint hit. If the
12337 user specified a specific exception, we only want to cause a stop
12338 if the program thrown that exception. */
12339
12340 static int
12341 should_stop_exception (const struct bp_location *bl)
12342 {
12343 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12344 const struct ada_catchpoint_location *ada_loc
12345 = (const struct ada_catchpoint_location *) bl;
12346 int stop;
12347
12348 /* With no specific exception, should always stop. */
12349 if (c->excep_string == NULL)
12350 return 1;
12351
12352 if (ada_loc->excep_cond_expr == NULL)
12353 {
12354 /* We will have a NULL expression if back when we were creating
12355 the expressions, this location's had failed to parse. */
12356 return 1;
12357 }
12358
12359 stop = 1;
12360 TRY
12361 {
12362 struct value *mark;
12363
12364 mark = value_mark ();
12365 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12366 value_free_to_mark (mark);
12367 }
12368 CATCH (ex, RETURN_MASK_ALL)
12369 {
12370 exception_fprintf (gdb_stderr, ex,
12371 _("Error in testing exception condition:\n"));
12372 }
12373 END_CATCH
12374
12375 return stop;
12376 }
12377
12378 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12379 for all exception catchpoint kinds. */
12380
12381 static void
12382 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12383 {
12384 bs->stop = should_stop_exception (bs->bp_location_at);
12385 }
12386
12387 /* Implement the PRINT_IT method in the breakpoint_ops structure
12388 for all exception catchpoint kinds. */
12389
12390 static enum print_stop_action
12391 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12392 {
12393 struct ui_out *uiout = current_uiout;
12394 struct breakpoint *b = bs->breakpoint_at;
12395
12396 annotate_catchpoint (b->number);
12397
12398 if (ui_out_is_mi_like_p (uiout))
12399 {
12400 ui_out_field_string (uiout, "reason",
12401 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12402 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12403 }
12404
12405 ui_out_text (uiout,
12406 b->disposition == disp_del ? "\nTemporary catchpoint "
12407 : "\nCatchpoint ");
12408 ui_out_field_int (uiout, "bkptno", b->number);
12409 ui_out_text (uiout, ", ");
12410
12411 switch (ex)
12412 {
12413 case ada_catch_exception:
12414 case ada_catch_exception_unhandled:
12415 {
12416 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12417 char exception_name[256];
12418
12419 if (addr != 0)
12420 {
12421 read_memory (addr, (gdb_byte *) exception_name,
12422 sizeof (exception_name) - 1);
12423 exception_name [sizeof (exception_name) - 1] = '\0';
12424 }
12425 else
12426 {
12427 /* For some reason, we were unable to read the exception
12428 name. This could happen if the Runtime was compiled
12429 without debugging info, for instance. In that case,
12430 just replace the exception name by the generic string
12431 "exception" - it will read as "an exception" in the
12432 notification we are about to print. */
12433 memcpy (exception_name, "exception", sizeof ("exception"));
12434 }
12435 /* In the case of unhandled exception breakpoints, we print
12436 the exception name as "unhandled EXCEPTION_NAME", to make
12437 it clearer to the user which kind of catchpoint just got
12438 hit. We used ui_out_text to make sure that this extra
12439 info does not pollute the exception name in the MI case. */
12440 if (ex == ada_catch_exception_unhandled)
12441 ui_out_text (uiout, "unhandled ");
12442 ui_out_field_string (uiout, "exception-name", exception_name);
12443 }
12444 break;
12445 case ada_catch_assert:
12446 /* In this case, the name of the exception is not really
12447 important. Just print "failed assertion" to make it clearer
12448 that his program just hit an assertion-failure catchpoint.
12449 We used ui_out_text because this info does not belong in
12450 the MI output. */
12451 ui_out_text (uiout, "failed assertion");
12452 break;
12453 }
12454 ui_out_text (uiout, " at ");
12455 ada_find_printable_frame (get_current_frame ());
12456
12457 return PRINT_SRC_AND_LOC;
12458 }
12459
12460 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12461 for all exception catchpoint kinds. */
12462
12463 static void
12464 print_one_exception (enum ada_exception_catchpoint_kind ex,
12465 struct breakpoint *b, struct bp_location **last_loc)
12466 {
12467 struct ui_out *uiout = current_uiout;
12468 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12469 struct value_print_options opts;
12470
12471 get_user_print_options (&opts);
12472 if (opts.addressprint)
12473 {
12474 annotate_field (4);
12475 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12476 }
12477
12478 annotate_field (5);
12479 *last_loc = b->loc;
12480 switch (ex)
12481 {
12482 case ada_catch_exception:
12483 if (c->excep_string != NULL)
12484 {
12485 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12486
12487 ui_out_field_string (uiout, "what", msg);
12488 xfree (msg);
12489 }
12490 else
12491 ui_out_field_string (uiout, "what", "all Ada exceptions");
12492
12493 break;
12494
12495 case ada_catch_exception_unhandled:
12496 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12497 break;
12498
12499 case ada_catch_assert:
12500 ui_out_field_string (uiout, "what", "failed Ada assertions");
12501 break;
12502
12503 default:
12504 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12505 break;
12506 }
12507 }
12508
12509 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12510 for all exception catchpoint kinds. */
12511
12512 static void
12513 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12514 struct breakpoint *b)
12515 {
12516 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12517 struct ui_out *uiout = current_uiout;
12518
12519 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12520 : _("Catchpoint "));
12521 ui_out_field_int (uiout, "bkptno", b->number);
12522 ui_out_text (uiout, ": ");
12523
12524 switch (ex)
12525 {
12526 case ada_catch_exception:
12527 if (c->excep_string != NULL)
12528 {
12529 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12530 struct cleanup *old_chain = make_cleanup (xfree, info);
12531
12532 ui_out_text (uiout, info);
12533 do_cleanups (old_chain);
12534 }
12535 else
12536 ui_out_text (uiout, _("all Ada exceptions"));
12537 break;
12538
12539 case ada_catch_exception_unhandled:
12540 ui_out_text (uiout, _("unhandled Ada exceptions"));
12541 break;
12542
12543 case ada_catch_assert:
12544 ui_out_text (uiout, _("failed Ada assertions"));
12545 break;
12546
12547 default:
12548 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12549 break;
12550 }
12551 }
12552
12553 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12554 for all exception catchpoint kinds. */
12555
12556 static void
12557 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12558 struct breakpoint *b, struct ui_file *fp)
12559 {
12560 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12561
12562 switch (ex)
12563 {
12564 case ada_catch_exception:
12565 fprintf_filtered (fp, "catch exception");
12566 if (c->excep_string != NULL)
12567 fprintf_filtered (fp, " %s", c->excep_string);
12568 break;
12569
12570 case ada_catch_exception_unhandled:
12571 fprintf_filtered (fp, "catch exception unhandled");
12572 break;
12573
12574 case ada_catch_assert:
12575 fprintf_filtered (fp, "catch assert");
12576 break;
12577
12578 default:
12579 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12580 }
12581 print_recreate_thread (b, fp);
12582 }
12583
12584 /* Virtual table for "catch exception" breakpoints. */
12585
12586 static void
12587 dtor_catch_exception (struct breakpoint *b)
12588 {
12589 dtor_exception (ada_catch_exception, b);
12590 }
12591
12592 static struct bp_location *
12593 allocate_location_catch_exception (struct breakpoint *self)
12594 {
12595 return allocate_location_exception (ada_catch_exception, self);
12596 }
12597
12598 static void
12599 re_set_catch_exception (struct breakpoint *b)
12600 {
12601 re_set_exception (ada_catch_exception, b);
12602 }
12603
12604 static void
12605 check_status_catch_exception (bpstat bs)
12606 {
12607 check_status_exception (ada_catch_exception, bs);
12608 }
12609
12610 static enum print_stop_action
12611 print_it_catch_exception (bpstat bs)
12612 {
12613 return print_it_exception (ada_catch_exception, bs);
12614 }
12615
12616 static void
12617 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12618 {
12619 print_one_exception (ada_catch_exception, b, last_loc);
12620 }
12621
12622 static void
12623 print_mention_catch_exception (struct breakpoint *b)
12624 {
12625 print_mention_exception (ada_catch_exception, b);
12626 }
12627
12628 static void
12629 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12630 {
12631 print_recreate_exception (ada_catch_exception, b, fp);
12632 }
12633
12634 static struct breakpoint_ops catch_exception_breakpoint_ops;
12635
12636 /* Virtual table for "catch exception unhandled" breakpoints. */
12637
12638 static void
12639 dtor_catch_exception_unhandled (struct breakpoint *b)
12640 {
12641 dtor_exception (ada_catch_exception_unhandled, b);
12642 }
12643
12644 static struct bp_location *
12645 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12646 {
12647 return allocate_location_exception (ada_catch_exception_unhandled, self);
12648 }
12649
12650 static void
12651 re_set_catch_exception_unhandled (struct breakpoint *b)
12652 {
12653 re_set_exception (ada_catch_exception_unhandled, b);
12654 }
12655
12656 static void
12657 check_status_catch_exception_unhandled (bpstat bs)
12658 {
12659 check_status_exception (ada_catch_exception_unhandled, bs);
12660 }
12661
12662 static enum print_stop_action
12663 print_it_catch_exception_unhandled (bpstat bs)
12664 {
12665 return print_it_exception (ada_catch_exception_unhandled, bs);
12666 }
12667
12668 static void
12669 print_one_catch_exception_unhandled (struct breakpoint *b,
12670 struct bp_location **last_loc)
12671 {
12672 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12673 }
12674
12675 static void
12676 print_mention_catch_exception_unhandled (struct breakpoint *b)
12677 {
12678 print_mention_exception (ada_catch_exception_unhandled, b);
12679 }
12680
12681 static void
12682 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12683 struct ui_file *fp)
12684 {
12685 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12686 }
12687
12688 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12689
12690 /* Virtual table for "catch assert" breakpoints. */
12691
12692 static void
12693 dtor_catch_assert (struct breakpoint *b)
12694 {
12695 dtor_exception (ada_catch_assert, b);
12696 }
12697
12698 static struct bp_location *
12699 allocate_location_catch_assert (struct breakpoint *self)
12700 {
12701 return allocate_location_exception (ada_catch_assert, self);
12702 }
12703
12704 static void
12705 re_set_catch_assert (struct breakpoint *b)
12706 {
12707 re_set_exception (ada_catch_assert, b);
12708 }
12709
12710 static void
12711 check_status_catch_assert (bpstat bs)
12712 {
12713 check_status_exception (ada_catch_assert, bs);
12714 }
12715
12716 static enum print_stop_action
12717 print_it_catch_assert (bpstat bs)
12718 {
12719 return print_it_exception (ada_catch_assert, bs);
12720 }
12721
12722 static void
12723 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12724 {
12725 print_one_exception (ada_catch_assert, b, last_loc);
12726 }
12727
12728 static void
12729 print_mention_catch_assert (struct breakpoint *b)
12730 {
12731 print_mention_exception (ada_catch_assert, b);
12732 }
12733
12734 static void
12735 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12736 {
12737 print_recreate_exception (ada_catch_assert, b, fp);
12738 }
12739
12740 static struct breakpoint_ops catch_assert_breakpoint_ops;
12741
12742 /* Return a newly allocated copy of the first space-separated token
12743 in ARGSP, and then adjust ARGSP to point immediately after that
12744 token.
12745
12746 Return NULL if ARGPS does not contain any more tokens. */
12747
12748 static char *
12749 ada_get_next_arg (char **argsp)
12750 {
12751 char *args = *argsp;
12752 char *end;
12753 char *result;
12754
12755 args = skip_spaces (args);
12756 if (args[0] == '\0')
12757 return NULL; /* No more arguments. */
12758
12759 /* Find the end of the current argument. */
12760
12761 end = skip_to_space (args);
12762
12763 /* Adjust ARGSP to point to the start of the next argument. */
12764
12765 *argsp = end;
12766
12767 /* Make a copy of the current argument and return it. */
12768
12769 result = (char *) xmalloc (end - args + 1);
12770 strncpy (result, args, end - args);
12771 result[end - args] = '\0';
12772
12773 return result;
12774 }
12775
12776 /* Split the arguments specified in a "catch exception" command.
12777 Set EX to the appropriate catchpoint type.
12778 Set EXCEP_STRING to the name of the specific exception if
12779 specified by the user.
12780 If a condition is found at the end of the arguments, the condition
12781 expression is stored in COND_STRING (memory must be deallocated
12782 after use). Otherwise COND_STRING is set to NULL. */
12783
12784 static void
12785 catch_ada_exception_command_split (char *args,
12786 enum ada_exception_catchpoint_kind *ex,
12787 char **excep_string,
12788 char **cond_string)
12789 {
12790 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12791 char *exception_name;
12792 char *cond = NULL;
12793
12794 exception_name = ada_get_next_arg (&args);
12795 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12796 {
12797 /* This is not an exception name; this is the start of a condition
12798 expression for a catchpoint on all exceptions. So, "un-get"
12799 this token, and set exception_name to NULL. */
12800 xfree (exception_name);
12801 exception_name = NULL;
12802 args -= 2;
12803 }
12804 make_cleanup (xfree, exception_name);
12805
12806 /* Check to see if we have a condition. */
12807
12808 args = skip_spaces (args);
12809 if (startswith (args, "if")
12810 && (isspace (args[2]) || args[2] == '\0'))
12811 {
12812 args += 2;
12813 args = skip_spaces (args);
12814
12815 if (args[0] == '\0')
12816 error (_("Condition missing after `if' keyword"));
12817 cond = xstrdup (args);
12818 make_cleanup (xfree, cond);
12819
12820 args += strlen (args);
12821 }
12822
12823 /* Check that we do not have any more arguments. Anything else
12824 is unexpected. */
12825
12826 if (args[0] != '\0')
12827 error (_("Junk at end of expression"));
12828
12829 discard_cleanups (old_chain);
12830
12831 if (exception_name == NULL)
12832 {
12833 /* Catch all exceptions. */
12834 *ex = ada_catch_exception;
12835 *excep_string = NULL;
12836 }
12837 else if (strcmp (exception_name, "unhandled") == 0)
12838 {
12839 /* Catch unhandled exceptions. */
12840 *ex = ada_catch_exception_unhandled;
12841 *excep_string = NULL;
12842 }
12843 else
12844 {
12845 /* Catch a specific exception. */
12846 *ex = ada_catch_exception;
12847 *excep_string = exception_name;
12848 }
12849 *cond_string = cond;
12850 }
12851
12852 /* Return the name of the symbol on which we should break in order to
12853 implement a catchpoint of the EX kind. */
12854
12855 static const char *
12856 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12857 {
12858 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12859
12860 gdb_assert (data->exception_info != NULL);
12861
12862 switch (ex)
12863 {
12864 case ada_catch_exception:
12865 return (data->exception_info->catch_exception_sym);
12866 break;
12867 case ada_catch_exception_unhandled:
12868 return (data->exception_info->catch_exception_unhandled_sym);
12869 break;
12870 case ada_catch_assert:
12871 return (data->exception_info->catch_assert_sym);
12872 break;
12873 default:
12874 internal_error (__FILE__, __LINE__,
12875 _("unexpected catchpoint kind (%d)"), ex);
12876 }
12877 }
12878
12879 /* Return the breakpoint ops "virtual table" used for catchpoints
12880 of the EX kind. */
12881
12882 static const struct breakpoint_ops *
12883 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12884 {
12885 switch (ex)
12886 {
12887 case ada_catch_exception:
12888 return (&catch_exception_breakpoint_ops);
12889 break;
12890 case ada_catch_exception_unhandled:
12891 return (&catch_exception_unhandled_breakpoint_ops);
12892 break;
12893 case ada_catch_assert:
12894 return (&catch_assert_breakpoint_ops);
12895 break;
12896 default:
12897 internal_error (__FILE__, __LINE__,
12898 _("unexpected catchpoint kind (%d)"), ex);
12899 }
12900 }
12901
12902 /* Return the condition that will be used to match the current exception
12903 being raised with the exception that the user wants to catch. This
12904 assumes that this condition is used when the inferior just triggered
12905 an exception catchpoint.
12906
12907 The string returned is a newly allocated string that needs to be
12908 deallocated later. */
12909
12910 static char *
12911 ada_exception_catchpoint_cond_string (const char *excep_string)
12912 {
12913 int i;
12914
12915 /* The standard exceptions are a special case. They are defined in
12916 runtime units that have been compiled without debugging info; if
12917 EXCEP_STRING is the not-fully-qualified name of a standard
12918 exception (e.g. "constraint_error") then, during the evaluation
12919 of the condition expression, the symbol lookup on this name would
12920 *not* return this standard exception. The catchpoint condition
12921 may then be set only on user-defined exceptions which have the
12922 same not-fully-qualified name (e.g. my_package.constraint_error).
12923
12924 To avoid this unexcepted behavior, these standard exceptions are
12925 systematically prefixed by "standard". This means that "catch
12926 exception constraint_error" is rewritten into "catch exception
12927 standard.constraint_error".
12928
12929 If an exception named contraint_error is defined in another package of
12930 the inferior program, then the only way to specify this exception as a
12931 breakpoint condition is to use its fully-qualified named:
12932 e.g. my_package.constraint_error. */
12933
12934 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12935 {
12936 if (strcmp (standard_exc [i], excep_string) == 0)
12937 {
12938 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12939 excep_string);
12940 }
12941 }
12942 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12943 }
12944
12945 /* Return the symtab_and_line that should be used to insert an exception
12946 catchpoint of the TYPE kind.
12947
12948 EXCEP_STRING should contain the name of a specific exception that
12949 the catchpoint should catch, or NULL otherwise.
12950
12951 ADDR_STRING returns the name of the function where the real
12952 breakpoint that implements the catchpoints is set, depending on the
12953 type of catchpoint we need to create. */
12954
12955 static struct symtab_and_line
12956 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12957 char **addr_string, const struct breakpoint_ops **ops)
12958 {
12959 const char *sym_name;
12960 struct symbol *sym;
12961
12962 /* First, find out which exception support info to use. */
12963 ada_exception_support_info_sniffer ();
12964
12965 /* Then lookup the function on which we will break in order to catch
12966 the Ada exceptions requested by the user. */
12967 sym_name = ada_exception_sym_name (ex);
12968 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12969
12970 /* We can assume that SYM is not NULL at this stage. If the symbol
12971 did not exist, ada_exception_support_info_sniffer would have
12972 raised an exception.
12973
12974 Also, ada_exception_support_info_sniffer should have already
12975 verified that SYM is a function symbol. */
12976 gdb_assert (sym != NULL);
12977 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12978
12979 /* Set ADDR_STRING. */
12980 *addr_string = xstrdup (sym_name);
12981
12982 /* Set OPS. */
12983 *ops = ada_exception_breakpoint_ops (ex);
12984
12985 return find_function_start_sal (sym, 1);
12986 }
12987
12988 /* Create an Ada exception catchpoint.
12989
12990 EX_KIND is the kind of exception catchpoint to be created.
12991
12992 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12993 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12994 of the exception to which this catchpoint applies. When not NULL,
12995 the string must be allocated on the heap, and its deallocation
12996 is no longer the responsibility of the caller.
12997
12998 COND_STRING, if not NULL, is the catchpoint condition. This string
12999 must be allocated on the heap, and its deallocation is no longer
13000 the responsibility of the caller.
13001
13002 TEMPFLAG, if nonzero, means that the underlying breakpoint
13003 should be temporary.
13004
13005 FROM_TTY is the usual argument passed to all commands implementations. */
13006
13007 void
13008 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13009 enum ada_exception_catchpoint_kind ex_kind,
13010 char *excep_string,
13011 char *cond_string,
13012 int tempflag,
13013 int disabled,
13014 int from_tty)
13015 {
13016 struct ada_catchpoint *c;
13017 char *addr_string = NULL;
13018 const struct breakpoint_ops *ops = NULL;
13019 struct symtab_and_line sal
13020 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13021
13022 c = XNEW (struct ada_catchpoint);
13023 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
13024 ops, tempflag, disabled, from_tty);
13025 c->excep_string = excep_string;
13026 create_excep_cond_exprs (c);
13027 if (cond_string != NULL)
13028 set_breakpoint_condition (&c->base, cond_string, from_tty);
13029 install_breakpoint (0, &c->base, 1);
13030 }
13031
13032 /* Implement the "catch exception" command. */
13033
13034 static void
13035 catch_ada_exception_command (char *arg, int from_tty,
13036 struct cmd_list_element *command)
13037 {
13038 struct gdbarch *gdbarch = get_current_arch ();
13039 int tempflag;
13040 enum ada_exception_catchpoint_kind ex_kind;
13041 char *excep_string = NULL;
13042 char *cond_string = NULL;
13043
13044 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13045
13046 if (!arg)
13047 arg = "";
13048 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13049 &cond_string);
13050 create_ada_exception_catchpoint (gdbarch, ex_kind,
13051 excep_string, cond_string,
13052 tempflag, 1 /* enabled */,
13053 from_tty);
13054 }
13055
13056 /* Split the arguments specified in a "catch assert" command.
13057
13058 ARGS contains the command's arguments (or the empty string if
13059 no arguments were passed).
13060
13061 If ARGS contains a condition, set COND_STRING to that condition
13062 (the memory needs to be deallocated after use). */
13063
13064 static void
13065 catch_ada_assert_command_split (char *args, char **cond_string)
13066 {
13067 args = skip_spaces (args);
13068
13069 /* Check whether a condition was provided. */
13070 if (startswith (args, "if")
13071 && (isspace (args[2]) || args[2] == '\0'))
13072 {
13073 args += 2;
13074 args = skip_spaces (args);
13075 if (args[0] == '\0')
13076 error (_("condition missing after `if' keyword"));
13077 *cond_string = xstrdup (args);
13078 }
13079
13080 /* Otherwise, there should be no other argument at the end of
13081 the command. */
13082 else if (args[0] != '\0')
13083 error (_("Junk at end of arguments."));
13084 }
13085
13086 /* Implement the "catch assert" command. */
13087
13088 static void
13089 catch_assert_command (char *arg, int from_tty,
13090 struct cmd_list_element *command)
13091 {
13092 struct gdbarch *gdbarch = get_current_arch ();
13093 int tempflag;
13094 char *cond_string = NULL;
13095
13096 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13097
13098 if (!arg)
13099 arg = "";
13100 catch_ada_assert_command_split (arg, &cond_string);
13101 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13102 NULL, cond_string,
13103 tempflag, 1 /* enabled */,
13104 from_tty);
13105 }
13106
13107 /* Return non-zero if the symbol SYM is an Ada exception object. */
13108
13109 static int
13110 ada_is_exception_sym (struct symbol *sym)
13111 {
13112 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13113
13114 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13115 && SYMBOL_CLASS (sym) != LOC_BLOCK
13116 && SYMBOL_CLASS (sym) != LOC_CONST
13117 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13118 && type_name != NULL && strcmp (type_name, "exception") == 0);
13119 }
13120
13121 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13122 Ada exception object. This matches all exceptions except the ones
13123 defined by the Ada language. */
13124
13125 static int
13126 ada_is_non_standard_exception_sym (struct symbol *sym)
13127 {
13128 int i;
13129
13130 if (!ada_is_exception_sym (sym))
13131 return 0;
13132
13133 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13134 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13135 return 0; /* A standard exception. */
13136
13137 /* Numeric_Error is also a standard exception, so exclude it.
13138 See the STANDARD_EXC description for more details as to why
13139 this exception is not listed in that array. */
13140 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13141 return 0;
13142
13143 return 1;
13144 }
13145
13146 /* A helper function for qsort, comparing two struct ada_exc_info
13147 objects.
13148
13149 The comparison is determined first by exception name, and then
13150 by exception address. */
13151
13152 static int
13153 compare_ada_exception_info (const void *a, const void *b)
13154 {
13155 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13156 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13157 int result;
13158
13159 result = strcmp (exc_a->name, exc_b->name);
13160 if (result != 0)
13161 return result;
13162
13163 if (exc_a->addr < exc_b->addr)
13164 return -1;
13165 if (exc_a->addr > exc_b->addr)
13166 return 1;
13167
13168 return 0;
13169 }
13170
13171 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13172 routine, but keeping the first SKIP elements untouched.
13173
13174 All duplicates are also removed. */
13175
13176 static void
13177 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13178 int skip)
13179 {
13180 struct ada_exc_info *to_sort
13181 = VEC_address (ada_exc_info, *exceptions) + skip;
13182 int to_sort_len
13183 = VEC_length (ada_exc_info, *exceptions) - skip;
13184 int i, j;
13185
13186 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13187 compare_ada_exception_info);
13188
13189 for (i = 1, j = 1; i < to_sort_len; i++)
13190 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13191 to_sort[j++] = to_sort[i];
13192 to_sort_len = j;
13193 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13194 }
13195
13196 /* A function intended as the "name_matcher" callback in the struct
13197 quick_symbol_functions' expand_symtabs_matching method.
13198
13199 SEARCH_NAME is the symbol's search name.
13200
13201 If USER_DATA is not NULL, it is a pointer to a regext_t object
13202 used to match the symbol (by natural name). Otherwise, when USER_DATA
13203 is null, no filtering is performed, and all symbols are a positive
13204 match. */
13205
13206 static int
13207 ada_exc_search_name_matches (const char *search_name, void *user_data)
13208 {
13209 regex_t *preg = (regex_t *) user_data;
13210
13211 if (preg == NULL)
13212 return 1;
13213
13214 /* In Ada, the symbol "search name" is a linkage name, whereas
13215 the regular expression used to do the matching refers to
13216 the natural name. So match against the decoded name. */
13217 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13218 }
13219
13220 /* Add all exceptions defined by the Ada standard whose name match
13221 a regular expression.
13222
13223 If PREG is not NULL, then this regexp_t object is used to
13224 perform the symbol name matching. Otherwise, no name-based
13225 filtering is performed.
13226
13227 EXCEPTIONS is a vector of exceptions to which matching exceptions
13228 gets pushed. */
13229
13230 static void
13231 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13232 {
13233 int i;
13234
13235 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13236 {
13237 if (preg == NULL
13238 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13239 {
13240 struct bound_minimal_symbol msymbol
13241 = ada_lookup_simple_minsym (standard_exc[i]);
13242
13243 if (msymbol.minsym != NULL)
13244 {
13245 struct ada_exc_info info
13246 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13247
13248 VEC_safe_push (ada_exc_info, *exceptions, &info);
13249 }
13250 }
13251 }
13252 }
13253
13254 /* Add all Ada exceptions defined locally and accessible from the given
13255 FRAME.
13256
13257 If PREG is not NULL, then this regexp_t object is used to
13258 perform the symbol name matching. Otherwise, no name-based
13259 filtering is performed.
13260
13261 EXCEPTIONS is a vector of exceptions to which matching exceptions
13262 gets pushed. */
13263
13264 static void
13265 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13266 VEC(ada_exc_info) **exceptions)
13267 {
13268 const struct block *block = get_frame_block (frame, 0);
13269
13270 while (block != 0)
13271 {
13272 struct block_iterator iter;
13273 struct symbol *sym;
13274
13275 ALL_BLOCK_SYMBOLS (block, iter, sym)
13276 {
13277 switch (SYMBOL_CLASS (sym))
13278 {
13279 case LOC_TYPEDEF:
13280 case LOC_BLOCK:
13281 case LOC_CONST:
13282 break;
13283 default:
13284 if (ada_is_exception_sym (sym))
13285 {
13286 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13287 SYMBOL_VALUE_ADDRESS (sym)};
13288
13289 VEC_safe_push (ada_exc_info, *exceptions, &info);
13290 }
13291 }
13292 }
13293 if (BLOCK_FUNCTION (block) != NULL)
13294 break;
13295 block = BLOCK_SUPERBLOCK (block);
13296 }
13297 }
13298
13299 /* Add all exceptions defined globally whose name name match
13300 a regular expression, excluding standard exceptions.
13301
13302 The reason we exclude standard exceptions is that they need
13303 to be handled separately: Standard exceptions are defined inside
13304 a runtime unit which is normally not compiled with debugging info,
13305 and thus usually do not show up in our symbol search. However,
13306 if the unit was in fact built with debugging info, we need to
13307 exclude them because they would duplicate the entry we found
13308 during the special loop that specifically searches for those
13309 standard exceptions.
13310
13311 If PREG is not NULL, then this regexp_t object is used to
13312 perform the symbol name matching. Otherwise, no name-based
13313 filtering is performed.
13314
13315 EXCEPTIONS is a vector of exceptions to which matching exceptions
13316 gets pushed. */
13317
13318 static void
13319 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13320 {
13321 struct objfile *objfile;
13322 struct compunit_symtab *s;
13323
13324 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13325 VARIABLES_DOMAIN, preg);
13326
13327 ALL_COMPUNITS (objfile, s)
13328 {
13329 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13330 int i;
13331
13332 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13333 {
13334 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13335 struct block_iterator iter;
13336 struct symbol *sym;
13337
13338 ALL_BLOCK_SYMBOLS (b, iter, sym)
13339 if (ada_is_non_standard_exception_sym (sym)
13340 && (preg == NULL
13341 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13342 0, NULL, 0) == 0))
13343 {
13344 struct ada_exc_info info
13345 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13346
13347 VEC_safe_push (ada_exc_info, *exceptions, &info);
13348 }
13349 }
13350 }
13351 }
13352
13353 /* Implements ada_exceptions_list with the regular expression passed
13354 as a regex_t, rather than a string.
13355
13356 If not NULL, PREG is used to filter out exceptions whose names
13357 do not match. Otherwise, all exceptions are listed. */
13358
13359 static VEC(ada_exc_info) *
13360 ada_exceptions_list_1 (regex_t *preg)
13361 {
13362 VEC(ada_exc_info) *result = NULL;
13363 struct cleanup *old_chain
13364 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13365 int prev_len;
13366
13367 /* First, list the known standard exceptions. These exceptions
13368 need to be handled separately, as they are usually defined in
13369 runtime units that have been compiled without debugging info. */
13370
13371 ada_add_standard_exceptions (preg, &result);
13372
13373 /* Next, find all exceptions whose scope is local and accessible
13374 from the currently selected frame. */
13375
13376 if (has_stack_frames ())
13377 {
13378 prev_len = VEC_length (ada_exc_info, result);
13379 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13380 &result);
13381 if (VEC_length (ada_exc_info, result) > prev_len)
13382 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13383 }
13384
13385 /* Add all exceptions whose scope is global. */
13386
13387 prev_len = VEC_length (ada_exc_info, result);
13388 ada_add_global_exceptions (preg, &result);
13389 if (VEC_length (ada_exc_info, result) > prev_len)
13390 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13391
13392 discard_cleanups (old_chain);
13393 return result;
13394 }
13395
13396 /* Return a vector of ada_exc_info.
13397
13398 If REGEXP is NULL, all exceptions are included in the result.
13399 Otherwise, it should contain a valid regular expression,
13400 and only the exceptions whose names match that regular expression
13401 are included in the result.
13402
13403 The exceptions are sorted in the following order:
13404 - Standard exceptions (defined by the Ada language), in
13405 alphabetical order;
13406 - Exceptions only visible from the current frame, in
13407 alphabetical order;
13408 - Exceptions whose scope is global, in alphabetical order. */
13409
13410 VEC(ada_exc_info) *
13411 ada_exceptions_list (const char *regexp)
13412 {
13413 VEC(ada_exc_info) *result = NULL;
13414 struct cleanup *old_chain = NULL;
13415 regex_t reg;
13416
13417 if (regexp != NULL)
13418 old_chain = compile_rx_or_error (&reg, regexp,
13419 _("invalid regular expression"));
13420
13421 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13422
13423 if (old_chain != NULL)
13424 do_cleanups (old_chain);
13425 return result;
13426 }
13427
13428 /* Implement the "info exceptions" command. */
13429
13430 static void
13431 info_exceptions_command (char *regexp, int from_tty)
13432 {
13433 VEC(ada_exc_info) *exceptions;
13434 struct cleanup *cleanup;
13435 struct gdbarch *gdbarch = get_current_arch ();
13436 int ix;
13437 struct ada_exc_info *info;
13438
13439 exceptions = ada_exceptions_list (regexp);
13440 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13441
13442 if (regexp != NULL)
13443 printf_filtered
13444 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13445 else
13446 printf_filtered (_("All defined Ada exceptions:\n"));
13447
13448 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13449 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13450
13451 do_cleanups (cleanup);
13452 }
13453
13454 /* Operators */
13455 /* Information about operators given special treatment in functions
13456 below. */
13457 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13458
13459 #define ADA_OPERATORS \
13460 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13461 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13462 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13463 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13464 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13465 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13466 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13467 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13468 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13469 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13470 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13471 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13472 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13473 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13474 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13475 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13476 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13477 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13478 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13479
13480 static void
13481 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13482 int *argsp)
13483 {
13484 switch (exp->elts[pc - 1].opcode)
13485 {
13486 default:
13487 operator_length_standard (exp, pc, oplenp, argsp);
13488 break;
13489
13490 #define OP_DEFN(op, len, args, binop) \
13491 case op: *oplenp = len; *argsp = args; break;
13492 ADA_OPERATORS;
13493 #undef OP_DEFN
13494
13495 case OP_AGGREGATE:
13496 *oplenp = 3;
13497 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13498 break;
13499
13500 case OP_CHOICES:
13501 *oplenp = 3;
13502 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13503 break;
13504 }
13505 }
13506
13507 /* Implementation of the exp_descriptor method operator_check. */
13508
13509 static int
13510 ada_operator_check (struct expression *exp, int pos,
13511 int (*objfile_func) (struct objfile *objfile, void *data),
13512 void *data)
13513 {
13514 const union exp_element *const elts = exp->elts;
13515 struct type *type = NULL;
13516
13517 switch (elts[pos].opcode)
13518 {
13519 case UNOP_IN_RANGE:
13520 case UNOP_QUAL:
13521 type = elts[pos + 1].type;
13522 break;
13523
13524 default:
13525 return operator_check_standard (exp, pos, objfile_func, data);
13526 }
13527
13528 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13529
13530 if (type && TYPE_OBJFILE (type)
13531 && (*objfile_func) (TYPE_OBJFILE (type), data))
13532 return 1;
13533
13534 return 0;
13535 }
13536
13537 static char *
13538 ada_op_name (enum exp_opcode opcode)
13539 {
13540 switch (opcode)
13541 {
13542 default:
13543 return op_name_standard (opcode);
13544
13545 #define OP_DEFN(op, len, args, binop) case op: return #op;
13546 ADA_OPERATORS;
13547 #undef OP_DEFN
13548
13549 case OP_AGGREGATE:
13550 return "OP_AGGREGATE";
13551 case OP_CHOICES:
13552 return "OP_CHOICES";
13553 case OP_NAME:
13554 return "OP_NAME";
13555 }
13556 }
13557
13558 /* As for operator_length, but assumes PC is pointing at the first
13559 element of the operator, and gives meaningful results only for the
13560 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13561
13562 static void
13563 ada_forward_operator_length (struct expression *exp, int pc,
13564 int *oplenp, int *argsp)
13565 {
13566 switch (exp->elts[pc].opcode)
13567 {
13568 default:
13569 *oplenp = *argsp = 0;
13570 break;
13571
13572 #define OP_DEFN(op, len, args, binop) \
13573 case op: *oplenp = len; *argsp = args; break;
13574 ADA_OPERATORS;
13575 #undef OP_DEFN
13576
13577 case OP_AGGREGATE:
13578 *oplenp = 3;
13579 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13580 break;
13581
13582 case OP_CHOICES:
13583 *oplenp = 3;
13584 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13585 break;
13586
13587 case OP_STRING:
13588 case OP_NAME:
13589 {
13590 int len = longest_to_int (exp->elts[pc + 1].longconst);
13591
13592 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13593 *argsp = 0;
13594 break;
13595 }
13596 }
13597 }
13598
13599 static int
13600 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13601 {
13602 enum exp_opcode op = exp->elts[elt].opcode;
13603 int oplen, nargs;
13604 int pc = elt;
13605 int i;
13606
13607 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13608
13609 switch (op)
13610 {
13611 /* Ada attributes ('Foo). */
13612 case OP_ATR_FIRST:
13613 case OP_ATR_LAST:
13614 case OP_ATR_LENGTH:
13615 case OP_ATR_IMAGE:
13616 case OP_ATR_MAX:
13617 case OP_ATR_MIN:
13618 case OP_ATR_MODULUS:
13619 case OP_ATR_POS:
13620 case OP_ATR_SIZE:
13621 case OP_ATR_TAG:
13622 case OP_ATR_VAL:
13623 break;
13624
13625 case UNOP_IN_RANGE:
13626 case UNOP_QUAL:
13627 /* XXX: gdb_sprint_host_address, type_sprint */
13628 fprintf_filtered (stream, _("Type @"));
13629 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13630 fprintf_filtered (stream, " (");
13631 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13632 fprintf_filtered (stream, ")");
13633 break;
13634 case BINOP_IN_BOUNDS:
13635 fprintf_filtered (stream, " (%d)",
13636 longest_to_int (exp->elts[pc + 2].longconst));
13637 break;
13638 case TERNOP_IN_RANGE:
13639 break;
13640
13641 case OP_AGGREGATE:
13642 case OP_OTHERS:
13643 case OP_DISCRETE_RANGE:
13644 case OP_POSITIONAL:
13645 case OP_CHOICES:
13646 break;
13647
13648 case OP_NAME:
13649 case OP_STRING:
13650 {
13651 char *name = &exp->elts[elt + 2].string;
13652 int len = longest_to_int (exp->elts[elt + 1].longconst);
13653
13654 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13655 break;
13656 }
13657
13658 default:
13659 return dump_subexp_body_standard (exp, stream, elt);
13660 }
13661
13662 elt += oplen;
13663 for (i = 0; i < nargs; i += 1)
13664 elt = dump_subexp (exp, stream, elt);
13665
13666 return elt;
13667 }
13668
13669 /* The Ada extension of print_subexp (q.v.). */
13670
13671 static void
13672 ada_print_subexp (struct expression *exp, int *pos,
13673 struct ui_file *stream, enum precedence prec)
13674 {
13675 int oplen, nargs, i;
13676 int pc = *pos;
13677 enum exp_opcode op = exp->elts[pc].opcode;
13678
13679 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13680
13681 *pos += oplen;
13682 switch (op)
13683 {
13684 default:
13685 *pos -= oplen;
13686 print_subexp_standard (exp, pos, stream, prec);
13687 return;
13688
13689 case OP_VAR_VALUE:
13690 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13691 return;
13692
13693 case BINOP_IN_BOUNDS:
13694 /* XXX: sprint_subexp */
13695 print_subexp (exp, pos, stream, PREC_SUFFIX);
13696 fputs_filtered (" in ", stream);
13697 print_subexp (exp, pos, stream, PREC_SUFFIX);
13698 fputs_filtered ("'range", stream);
13699 if (exp->elts[pc + 1].longconst > 1)
13700 fprintf_filtered (stream, "(%ld)",
13701 (long) exp->elts[pc + 1].longconst);
13702 return;
13703
13704 case TERNOP_IN_RANGE:
13705 if (prec >= PREC_EQUAL)
13706 fputs_filtered ("(", stream);
13707 /* XXX: sprint_subexp */
13708 print_subexp (exp, pos, stream, PREC_SUFFIX);
13709 fputs_filtered (" in ", stream);
13710 print_subexp (exp, pos, stream, PREC_EQUAL);
13711 fputs_filtered (" .. ", stream);
13712 print_subexp (exp, pos, stream, PREC_EQUAL);
13713 if (prec >= PREC_EQUAL)
13714 fputs_filtered (")", stream);
13715 return;
13716
13717 case OP_ATR_FIRST:
13718 case OP_ATR_LAST:
13719 case OP_ATR_LENGTH:
13720 case OP_ATR_IMAGE:
13721 case OP_ATR_MAX:
13722 case OP_ATR_MIN:
13723 case OP_ATR_MODULUS:
13724 case OP_ATR_POS:
13725 case OP_ATR_SIZE:
13726 case OP_ATR_TAG:
13727 case OP_ATR_VAL:
13728 if (exp->elts[*pos].opcode == OP_TYPE)
13729 {
13730 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13731 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13732 &type_print_raw_options);
13733 *pos += 3;
13734 }
13735 else
13736 print_subexp (exp, pos, stream, PREC_SUFFIX);
13737 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13738 if (nargs > 1)
13739 {
13740 int tem;
13741
13742 for (tem = 1; tem < nargs; tem += 1)
13743 {
13744 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13745 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13746 }
13747 fputs_filtered (")", stream);
13748 }
13749 return;
13750
13751 case UNOP_QUAL:
13752 type_print (exp->elts[pc + 1].type, "", stream, 0);
13753 fputs_filtered ("'(", stream);
13754 print_subexp (exp, pos, stream, PREC_PREFIX);
13755 fputs_filtered (")", stream);
13756 return;
13757
13758 case UNOP_IN_RANGE:
13759 /* XXX: sprint_subexp */
13760 print_subexp (exp, pos, stream, PREC_SUFFIX);
13761 fputs_filtered (" in ", stream);
13762 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13763 &type_print_raw_options);
13764 return;
13765
13766 case OP_DISCRETE_RANGE:
13767 print_subexp (exp, pos, stream, PREC_SUFFIX);
13768 fputs_filtered ("..", stream);
13769 print_subexp (exp, pos, stream, PREC_SUFFIX);
13770 return;
13771
13772 case OP_OTHERS:
13773 fputs_filtered ("others => ", stream);
13774 print_subexp (exp, pos, stream, PREC_SUFFIX);
13775 return;
13776
13777 case OP_CHOICES:
13778 for (i = 0; i < nargs-1; i += 1)
13779 {
13780 if (i > 0)
13781 fputs_filtered ("|", stream);
13782 print_subexp (exp, pos, stream, PREC_SUFFIX);
13783 }
13784 fputs_filtered (" => ", stream);
13785 print_subexp (exp, pos, stream, PREC_SUFFIX);
13786 return;
13787
13788 case OP_POSITIONAL:
13789 print_subexp (exp, pos, stream, PREC_SUFFIX);
13790 return;
13791
13792 case OP_AGGREGATE:
13793 fputs_filtered ("(", stream);
13794 for (i = 0; i < nargs; i += 1)
13795 {
13796 if (i > 0)
13797 fputs_filtered (", ", stream);
13798 print_subexp (exp, pos, stream, PREC_SUFFIX);
13799 }
13800 fputs_filtered (")", stream);
13801 return;
13802 }
13803 }
13804
13805 /* Table mapping opcodes into strings for printing operators
13806 and precedences of the operators. */
13807
13808 static const struct op_print ada_op_print_tab[] = {
13809 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13810 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13811 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13812 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13813 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13814 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13815 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13816 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13817 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13818 {">=", BINOP_GEQ, PREC_ORDER, 0},
13819 {">", BINOP_GTR, PREC_ORDER, 0},
13820 {"<", BINOP_LESS, PREC_ORDER, 0},
13821 {">>", BINOP_RSH, PREC_SHIFT, 0},
13822 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13823 {"+", BINOP_ADD, PREC_ADD, 0},
13824 {"-", BINOP_SUB, PREC_ADD, 0},
13825 {"&", BINOP_CONCAT, PREC_ADD, 0},
13826 {"*", BINOP_MUL, PREC_MUL, 0},
13827 {"/", BINOP_DIV, PREC_MUL, 0},
13828 {"rem", BINOP_REM, PREC_MUL, 0},
13829 {"mod", BINOP_MOD, PREC_MUL, 0},
13830 {"**", BINOP_EXP, PREC_REPEAT, 0},
13831 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13832 {"-", UNOP_NEG, PREC_PREFIX, 0},
13833 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13834 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13835 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13836 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13837 {".all", UNOP_IND, PREC_SUFFIX, 1},
13838 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13839 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13840 {NULL, OP_NULL, PREC_SUFFIX, 0}
13841 };
13842 \f
13843 enum ada_primitive_types {
13844 ada_primitive_type_int,
13845 ada_primitive_type_long,
13846 ada_primitive_type_short,
13847 ada_primitive_type_char,
13848 ada_primitive_type_float,
13849 ada_primitive_type_double,
13850 ada_primitive_type_void,
13851 ada_primitive_type_long_long,
13852 ada_primitive_type_long_double,
13853 ada_primitive_type_natural,
13854 ada_primitive_type_positive,
13855 ada_primitive_type_system_address,
13856 nr_ada_primitive_types
13857 };
13858
13859 static void
13860 ada_language_arch_info (struct gdbarch *gdbarch,
13861 struct language_arch_info *lai)
13862 {
13863 const struct builtin_type *builtin = builtin_type (gdbarch);
13864
13865 lai->primitive_type_vector
13866 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13867 struct type *);
13868
13869 lai->primitive_type_vector [ada_primitive_type_int]
13870 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13871 0, "integer");
13872 lai->primitive_type_vector [ada_primitive_type_long]
13873 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13874 0, "long_integer");
13875 lai->primitive_type_vector [ada_primitive_type_short]
13876 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13877 0, "short_integer");
13878 lai->string_char_type
13879 = lai->primitive_type_vector [ada_primitive_type_char]
13880 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13881 lai->primitive_type_vector [ada_primitive_type_float]
13882 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13883 "float", NULL);
13884 lai->primitive_type_vector [ada_primitive_type_double]
13885 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13886 "long_float", NULL);
13887 lai->primitive_type_vector [ada_primitive_type_long_long]
13888 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13889 0, "long_long_integer");
13890 lai->primitive_type_vector [ada_primitive_type_long_double]
13891 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13892 "long_long_float", NULL);
13893 lai->primitive_type_vector [ada_primitive_type_natural]
13894 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13895 0, "natural");
13896 lai->primitive_type_vector [ada_primitive_type_positive]
13897 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13898 0, "positive");
13899 lai->primitive_type_vector [ada_primitive_type_void]
13900 = builtin->builtin_void;
13901
13902 lai->primitive_type_vector [ada_primitive_type_system_address]
13903 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13904 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13905 = "system__address";
13906
13907 lai->bool_type_symbol = NULL;
13908 lai->bool_type_default = builtin->builtin_bool;
13909 }
13910 \f
13911 /* Language vector */
13912
13913 /* Not really used, but needed in the ada_language_defn. */
13914
13915 static void
13916 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13917 {
13918 ada_emit_char (c, type, stream, quoter, 1);
13919 }
13920
13921 static int
13922 parse (struct parser_state *ps)
13923 {
13924 warnings_issued = 0;
13925 return ada_parse (ps);
13926 }
13927
13928 static const struct exp_descriptor ada_exp_descriptor = {
13929 ada_print_subexp,
13930 ada_operator_length,
13931 ada_operator_check,
13932 ada_op_name,
13933 ada_dump_subexp_body,
13934 ada_evaluate_subexp
13935 };
13936
13937 /* Implement the "la_get_symbol_name_cmp" language_defn method
13938 for Ada. */
13939
13940 static symbol_name_cmp_ftype
13941 ada_get_symbol_name_cmp (const char *lookup_name)
13942 {
13943 if (should_use_wild_match (lookup_name))
13944 return wild_match;
13945 else
13946 return compare_names;
13947 }
13948
13949 /* Implement the "la_read_var_value" language_defn method for Ada. */
13950
13951 static struct value *
13952 ada_read_var_value (struct symbol *var, const struct block *var_block,
13953 struct frame_info *frame)
13954 {
13955 const struct block *frame_block = NULL;
13956 struct symbol *renaming_sym = NULL;
13957
13958 /* The only case where default_read_var_value is not sufficient
13959 is when VAR is a renaming... */
13960 if (frame)
13961 frame_block = get_frame_block (frame, NULL);
13962 if (frame_block)
13963 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13964 if (renaming_sym != NULL)
13965 return ada_read_renaming_var_value (renaming_sym, frame_block);
13966
13967 /* This is a typical case where we expect the default_read_var_value
13968 function to work. */
13969 return default_read_var_value (var, var_block, frame);
13970 }
13971
13972 const struct language_defn ada_language_defn = {
13973 "ada", /* Language name */
13974 "Ada",
13975 language_ada,
13976 range_check_off,
13977 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13978 that's not quite what this means. */
13979 array_row_major,
13980 macro_expansion_no,
13981 &ada_exp_descriptor,
13982 parse,
13983 ada_error,
13984 resolve,
13985 ada_printchar, /* Print a character constant */
13986 ada_printstr, /* Function to print string constant */
13987 emit_char, /* Function to print single char (not used) */
13988 ada_print_type, /* Print a type using appropriate syntax */
13989 ada_print_typedef, /* Print a typedef using appropriate syntax */
13990 ada_val_print, /* Print a value using appropriate syntax */
13991 ada_value_print, /* Print a top-level value */
13992 ada_read_var_value, /* la_read_var_value */
13993 NULL, /* Language specific skip_trampoline */
13994 NULL, /* name_of_this */
13995 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13996 basic_lookup_transparent_type, /* lookup_transparent_type */
13997 ada_la_decode, /* Language specific symbol demangler */
13998 NULL, /* Language specific
13999 class_name_from_physname */
14000 ada_op_print_tab, /* expression operators for printing */
14001 0, /* c-style arrays */
14002 1, /* String lower bound */
14003 ada_get_gdb_completer_word_break_characters,
14004 ada_make_symbol_completion_list,
14005 ada_language_arch_info,
14006 ada_print_array_index,
14007 default_pass_by_reference,
14008 c_get_string,
14009 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
14010 ada_iterate_over_symbols,
14011 &ada_varobj_ops,
14012 NULL,
14013 NULL,
14014 LANG_MAGIC
14015 };
14016
14017 /* Provide a prototype to silence -Wmissing-prototypes. */
14018 extern initialize_file_ftype _initialize_ada_language;
14019
14020 /* Command-list for the "set/show ada" prefix command. */
14021 static struct cmd_list_element *set_ada_list;
14022 static struct cmd_list_element *show_ada_list;
14023
14024 /* Implement the "set ada" prefix command. */
14025
14026 static void
14027 set_ada_command (char *arg, int from_tty)
14028 {
14029 printf_unfiltered (_(\
14030 "\"set ada\" must be followed by the name of a setting.\n"));
14031 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14032 }
14033
14034 /* Implement the "show ada" prefix command. */
14035
14036 static void
14037 show_ada_command (char *args, int from_tty)
14038 {
14039 cmd_show_list (show_ada_list, from_tty, "");
14040 }
14041
14042 static void
14043 initialize_ada_catchpoint_ops (void)
14044 {
14045 struct breakpoint_ops *ops;
14046
14047 initialize_breakpoint_ops ();
14048
14049 ops = &catch_exception_breakpoint_ops;
14050 *ops = bkpt_breakpoint_ops;
14051 ops->dtor = dtor_catch_exception;
14052 ops->allocate_location = allocate_location_catch_exception;
14053 ops->re_set = re_set_catch_exception;
14054 ops->check_status = check_status_catch_exception;
14055 ops->print_it = print_it_catch_exception;
14056 ops->print_one = print_one_catch_exception;
14057 ops->print_mention = print_mention_catch_exception;
14058 ops->print_recreate = print_recreate_catch_exception;
14059
14060 ops = &catch_exception_unhandled_breakpoint_ops;
14061 *ops = bkpt_breakpoint_ops;
14062 ops->dtor = dtor_catch_exception_unhandled;
14063 ops->allocate_location = allocate_location_catch_exception_unhandled;
14064 ops->re_set = re_set_catch_exception_unhandled;
14065 ops->check_status = check_status_catch_exception_unhandled;
14066 ops->print_it = print_it_catch_exception_unhandled;
14067 ops->print_one = print_one_catch_exception_unhandled;
14068 ops->print_mention = print_mention_catch_exception_unhandled;
14069 ops->print_recreate = print_recreate_catch_exception_unhandled;
14070
14071 ops = &catch_assert_breakpoint_ops;
14072 *ops = bkpt_breakpoint_ops;
14073 ops->dtor = dtor_catch_assert;
14074 ops->allocate_location = allocate_location_catch_assert;
14075 ops->re_set = re_set_catch_assert;
14076 ops->check_status = check_status_catch_assert;
14077 ops->print_it = print_it_catch_assert;
14078 ops->print_one = print_one_catch_assert;
14079 ops->print_mention = print_mention_catch_assert;
14080 ops->print_recreate = print_recreate_catch_assert;
14081 }
14082
14083 /* This module's 'new_objfile' observer. */
14084
14085 static void
14086 ada_new_objfile_observer (struct objfile *objfile)
14087 {
14088 ada_clear_symbol_cache ();
14089 }
14090
14091 /* This module's 'free_objfile' observer. */
14092
14093 static void
14094 ada_free_objfile_observer (struct objfile *objfile)
14095 {
14096 ada_clear_symbol_cache ();
14097 }
14098
14099 void
14100 _initialize_ada_language (void)
14101 {
14102 add_language (&ada_language_defn);
14103
14104 initialize_ada_catchpoint_ops ();
14105
14106 add_prefix_cmd ("ada", no_class, set_ada_command,
14107 _("Prefix command for changing Ada-specfic settings"),
14108 &set_ada_list, "set ada ", 0, &setlist);
14109
14110 add_prefix_cmd ("ada", no_class, show_ada_command,
14111 _("Generic command for showing Ada-specific settings."),
14112 &show_ada_list, "show ada ", 0, &showlist);
14113
14114 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14115 &trust_pad_over_xvs, _("\
14116 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14117 Show whether an optimization trusting PAD types over XVS types is activated"),
14118 _("\
14119 This is related to the encoding used by the GNAT compiler. The debugger\n\
14120 should normally trust the contents of PAD types, but certain older versions\n\
14121 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14122 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14123 work around this bug. It is always safe to turn this option \"off\", but\n\
14124 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14125 this option to \"off\" unless necessary."),
14126 NULL, NULL, &set_ada_list, &show_ada_list);
14127
14128 add_catch_command ("exception", _("\
14129 Catch Ada exceptions, when raised.\n\
14130 With an argument, catch only exceptions with the given name."),
14131 catch_ada_exception_command,
14132 NULL,
14133 CATCH_PERMANENT,
14134 CATCH_TEMPORARY);
14135 add_catch_command ("assert", _("\
14136 Catch failed Ada assertions, when raised.\n\
14137 With an argument, catch only exceptions with the given name."),
14138 catch_assert_command,
14139 NULL,
14140 CATCH_PERMANENT,
14141 CATCH_TEMPORARY);
14142
14143 varsize_limit = 65536;
14144
14145 add_info ("exceptions", info_exceptions_command,
14146 _("\
14147 List all Ada exception names.\n\
14148 If a regular expression is passed as an argument, only those matching\n\
14149 the regular expression are listed."));
14150
14151 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14152 _("Set Ada maintenance-related variables."),
14153 &maint_set_ada_cmdlist, "maintenance set ada ",
14154 0/*allow-unknown*/, &maintenance_set_cmdlist);
14155
14156 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14157 _("Show Ada maintenance-related variables"),
14158 &maint_show_ada_cmdlist, "maintenance show ada ",
14159 0/*allow-unknown*/, &maintenance_show_cmdlist);
14160
14161 add_setshow_boolean_cmd
14162 ("ignore-descriptive-types", class_maintenance,
14163 &ada_ignore_descriptive_types_p,
14164 _("Set whether descriptive types generated by GNAT should be ignored."),
14165 _("Show whether descriptive types generated by GNAT should be ignored."),
14166 _("\
14167 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14168 DWARF attribute."),
14169 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14170
14171 obstack_init (&symbol_list_obstack);
14172
14173 decoded_names_store = htab_create_alloc
14174 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14175 NULL, xcalloc, xfree);
14176
14177 /* The ada-lang observers. */
14178 observer_attach_new_objfile (ada_new_objfile_observer);
14179 observer_attach_free_objfile (ada_free_objfile_observer);
14180 observer_attach_inferior_exit (ada_inferior_exit);
14181
14182 /* Setup various context-specific data. */
14183 ada_inferior_data
14184 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14185 ada_pspace_data_handle
14186 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14187 }
This page took 0.359773 seconds and 4 git commands to generate.