* ada-lang.c (desc_data_type): Remove, replace by ...
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 /* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64 #ifndef TRUNCATION_TOWARDS_ZERO
65 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66 #endif
67
68 static void extract_string (CORE_ADDR addr, char *buf);
69
70 static void modify_general_field (char *, LONGEST, int, int);
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static struct value *ensure_lval (struct value *, CORE_ADDR *);
105
106 static struct value *convert_actual (struct value *, struct type *,
107 CORE_ADDR *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *,
110 CORE_ADDR *);
111
112 static void ada_add_block_symbols (struct obstack *,
113 struct block *, const char *,
114 domain_enum, struct objfile *, int);
115
116 static int is_nonfunction (struct ada_symbol_info *, int);
117
118 static void add_defn_to_vec (struct obstack *, struct symbol *,
119 struct block *);
120
121 static int num_defns_collected (struct obstack *);
122
123 static struct ada_symbol_info *defns_collected (struct obstack *, int);
124
125 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
126 *, const char *, int,
127 domain_enum, int);
128
129 static struct value *resolve_subexp (struct expression **, int *, int,
130 struct type *);
131
132 static void replace_operator_with_call (struct expression **, int, int, int,
133 struct symbol *, struct block *);
134
135 static int possible_user_operator_p (enum exp_opcode, struct value **);
136
137 static char *ada_op_name (enum exp_opcode);
138
139 static const char *ada_decoded_op_name (enum exp_opcode);
140
141 static int numeric_type_p (struct type *);
142
143 static int integer_type_p (struct type *);
144
145 static int scalar_type_p (struct type *);
146
147 static int discrete_type_p (struct type *);
148
149 static enum ada_renaming_category parse_old_style_renaming (struct type *,
150 const char **,
151 int *,
152 const char **);
153
154 static struct symbol *find_old_style_renaming_symbol (const char *,
155 struct block *);
156
157 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
158 int, int, int *);
159
160 static struct value *evaluate_subexp (struct type *, struct expression *,
161 int *, enum noside);
162
163 static struct value *evaluate_subexp_type (struct expression *, int *);
164
165 static int is_dynamic_field (struct type *, int);
166
167 static struct type *to_fixed_variant_branch_type (struct type *,
168 const gdb_byte *,
169 CORE_ADDR, struct value *);
170
171 static struct type *to_fixed_array_type (struct type *, struct value *, int);
172
173 static struct type *to_fixed_range_type (char *, struct value *,
174 struct objfile *);
175
176 static struct type *to_static_fixed_type (struct type *);
177 static struct type *static_unwrap_type (struct type *type);
178
179 static struct value *unwrap_value (struct value *);
180
181 static struct type *packed_array_type (struct type *, long *);
182
183 static struct type *decode_packed_array_type (struct type *);
184
185 static struct value *decode_packed_array (struct value *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int wild_match (const char *, int, const char *);
204
205 static struct value *ada_coerce_ref (struct value *);
206
207 static LONGEST pos_atr (struct value *);
208
209 static struct value *value_pos_atr (struct type *, struct value *);
210
211 static struct value *value_val_atr (struct type *, struct value *);
212
213 static struct symbol *standard_lookup (const char *, const struct block *,
214 domain_enum);
215
216 static struct value *ada_search_struct_field (char *, struct value *, int,
217 struct type *);
218
219 static struct value *ada_value_primitive_field (struct value *, int, int,
220 struct type *);
221
222 static int find_struct_field (char *, struct type *, int,
223 struct type **, int *, int *, int *, int *);
224
225 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226 struct value *);
227
228 static struct value *ada_to_fixed_value (struct value *);
229
230 static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static struct value *ada_coerce_to_simple_array (struct value *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *, int *, enum noside);
248
249 static void aggregate_assign_from_choices (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *,
252 int, LONGEST, LONGEST);
253
254 static void aggregate_assign_positional (struct value *, struct value *,
255 struct expression *,
256 int *, LONGEST *, int *, int,
257 LONGEST, LONGEST);
258
259
260 static void aggregate_assign_others (struct value *, struct value *,
261 struct expression *,
262 int *, LONGEST *, int, LONGEST, LONGEST);
263
264
265 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
266
267
268 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
269 int *, enum noside);
270
271 static void ada_forward_operator_length (struct expression *, int, int *,
272 int *);
273 \f
274
275
276 /* Maximum-sized dynamic type. */
277 static unsigned int varsize_limit;
278
279 /* FIXME: brobecker/2003-09-17: No longer a const because it is
280 returned by a function that does not return a const char *. */
281 static char *ada_completer_word_break_characters =
282 #ifdef VMS
283 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
284 #else
285 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
286 #endif
287
288 /* The name of the symbol to use to get the name of the main subprogram. */
289 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
290 = "__gnat_ada_main_program_name";
291
292 /* Limit on the number of warnings to raise per expression evaluation. */
293 static int warning_limit = 2;
294
295 /* Number of warning messages issued; reset to 0 by cleanups after
296 expression evaluation. */
297 static int warnings_issued = 0;
298
299 static const char *known_runtime_file_name_patterns[] = {
300 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
301 };
302
303 static const char *known_auxiliary_function_name_patterns[] = {
304 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
305 };
306
307 /* Space for allocating results of ada_lookup_symbol_list. */
308 static struct obstack symbol_list_obstack;
309
310 /* Utilities */
311
312 /* Given DECODED_NAME a string holding a symbol name in its
313 decoded form (ie using the Ada dotted notation), returns
314 its unqualified name. */
315
316 static const char *
317 ada_unqualified_name (const char *decoded_name)
318 {
319 const char *result = strrchr (decoded_name, '.');
320
321 if (result != NULL)
322 result++; /* Skip the dot... */
323 else
324 result = decoded_name;
325
326 return result;
327 }
328
329 /* Return a string starting with '<', followed by STR, and '>'.
330 The result is good until the next call. */
331
332 static char *
333 add_angle_brackets (const char *str)
334 {
335 static char *result = NULL;
336
337 xfree (result);
338 result = xstrprintf ("<%s>", str);
339 return result;
340 }
341
342 static char *
343 ada_get_gdb_completer_word_break_characters (void)
344 {
345 return ada_completer_word_break_characters;
346 }
347
348 /* Print an array element index using the Ada syntax. */
349
350 static void
351 ada_print_array_index (struct value *index_value, struct ui_file *stream,
352 const struct value_print_options *options)
353 {
354 LA_VALUE_PRINT (index_value, stream, options);
355 fprintf_filtered (stream, " => ");
356 }
357
358 /* Read the string located at ADDR from the inferior and store the
359 result into BUF. */
360
361 static void
362 extract_string (CORE_ADDR addr, char *buf)
363 {
364 int char_index = 0;
365
366 /* Loop, reading one byte at a time, until we reach the '\000'
367 end-of-string marker. */
368 do
369 {
370 target_read_memory (addr + char_index * sizeof (char),
371 buf + char_index * sizeof (char), sizeof (char));
372 char_index++;
373 }
374 while (buf[char_index - 1] != '\000');
375 }
376
377 /* Assuming VECT points to an array of *SIZE objects of size
378 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
379 updating *SIZE as necessary and returning the (new) array. */
380
381 void *
382 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
383 {
384 if (*size < min_size)
385 {
386 *size *= 2;
387 if (*size < min_size)
388 *size = min_size;
389 vect = xrealloc (vect, *size * element_size);
390 }
391 return vect;
392 }
393
394 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
395 suffix of FIELD_NAME beginning "___". */
396
397 static int
398 field_name_match (const char *field_name, const char *target)
399 {
400 int len = strlen (target);
401 return
402 (strncmp (field_name, target, len) == 0
403 && (field_name[len] == '\0'
404 || (strncmp (field_name + len, "___", 3) == 0
405 && strcmp (field_name + strlen (field_name) - 6,
406 "___XVN") != 0)));
407 }
408
409
410 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
411 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
412 and return its index. This function also handles fields whose name
413 have ___ suffixes because the compiler sometimes alters their name
414 by adding such a suffix to represent fields with certain constraints.
415 If the field could not be found, return a negative number if
416 MAYBE_MISSING is set. Otherwise raise an error. */
417
418 int
419 ada_get_field_index (const struct type *type, const char *field_name,
420 int maybe_missing)
421 {
422 int fieldno;
423 struct type *struct_type = check_typedef ((struct type *) type);
424
425 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
426 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
427 return fieldno;
428
429 if (!maybe_missing)
430 error (_("Unable to find field %s in struct %s. Aborting"),
431 field_name, TYPE_NAME (struct_type));
432
433 return -1;
434 }
435
436 /* The length of the prefix of NAME prior to any "___" suffix. */
437
438 int
439 ada_name_prefix_len (const char *name)
440 {
441 if (name == NULL)
442 return 0;
443 else
444 {
445 const char *p = strstr (name, "___");
446 if (p == NULL)
447 return strlen (name);
448 else
449 return p - name;
450 }
451 }
452
453 /* Return non-zero if SUFFIX is a suffix of STR.
454 Return zero if STR is null. */
455
456 static int
457 is_suffix (const char *str, const char *suffix)
458 {
459 int len1, len2;
460 if (str == NULL)
461 return 0;
462 len1 = strlen (str);
463 len2 = strlen (suffix);
464 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
465 }
466
467 /* The contents of value VAL, treated as a value of type TYPE. The
468 result is an lval in memory if VAL is. */
469
470 static struct value *
471 coerce_unspec_val_to_type (struct value *val, struct type *type)
472 {
473 type = ada_check_typedef (type);
474 if (value_type (val) == type)
475 return val;
476 else
477 {
478 struct value *result;
479
480 /* Make sure that the object size is not unreasonable before
481 trying to allocate some memory for it. */
482 check_size (type);
483
484 result = allocate_value (type);
485 set_value_component_location (result, val);
486 set_value_bitsize (result, value_bitsize (val));
487 set_value_bitpos (result, value_bitpos (val));
488 VALUE_ADDRESS (result) += value_offset (val);
489 if (value_lazy (val)
490 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
491 set_value_lazy (result, 1);
492 else
493 memcpy (value_contents_raw (result), value_contents (val),
494 TYPE_LENGTH (type));
495 return result;
496 }
497 }
498
499 static const gdb_byte *
500 cond_offset_host (const gdb_byte *valaddr, long offset)
501 {
502 if (valaddr == NULL)
503 return NULL;
504 else
505 return valaddr + offset;
506 }
507
508 static CORE_ADDR
509 cond_offset_target (CORE_ADDR address, long offset)
510 {
511 if (address == 0)
512 return 0;
513 else
514 return address + offset;
515 }
516
517 /* Issue a warning (as for the definition of warning in utils.c, but
518 with exactly one argument rather than ...), unless the limit on the
519 number of warnings has passed during the evaluation of the current
520 expression. */
521
522 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
523 provided by "complaint". */
524 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
525
526 static void
527 lim_warning (const char *format, ...)
528 {
529 va_list args;
530 va_start (args, format);
531
532 warnings_issued += 1;
533 if (warnings_issued <= warning_limit)
534 vwarning (format, args);
535
536 va_end (args);
537 }
538
539 /* Issue an error if the size of an object of type T is unreasonable,
540 i.e. if it would be a bad idea to allocate a value of this type in
541 GDB. */
542
543 static void
544 check_size (const struct type *type)
545 {
546 if (TYPE_LENGTH (type) > varsize_limit)
547 error (_("object size is larger than varsize-limit"));
548 }
549
550
551 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
552 gdbtypes.h, but some of the necessary definitions in that file
553 seem to have gone missing. */
554
555 /* Maximum value of a SIZE-byte signed integer type. */
556 static LONGEST
557 max_of_size (int size)
558 {
559 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
560 return top_bit | (top_bit - 1);
561 }
562
563 /* Minimum value of a SIZE-byte signed integer type. */
564 static LONGEST
565 min_of_size (int size)
566 {
567 return -max_of_size (size) - 1;
568 }
569
570 /* Maximum value of a SIZE-byte unsigned integer type. */
571 static ULONGEST
572 umax_of_size (int size)
573 {
574 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
575 return top_bit | (top_bit - 1);
576 }
577
578 /* Maximum value of integral type T, as a signed quantity. */
579 static LONGEST
580 max_of_type (struct type *t)
581 {
582 if (TYPE_UNSIGNED (t))
583 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
584 else
585 return max_of_size (TYPE_LENGTH (t));
586 }
587
588 /* Minimum value of integral type T, as a signed quantity. */
589 static LONGEST
590 min_of_type (struct type *t)
591 {
592 if (TYPE_UNSIGNED (t))
593 return 0;
594 else
595 return min_of_size (TYPE_LENGTH (t));
596 }
597
598 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
599 static LONGEST
600 discrete_type_high_bound (struct type *type)
601 {
602 switch (TYPE_CODE (type))
603 {
604 case TYPE_CODE_RANGE:
605 return TYPE_HIGH_BOUND (type);
606 case TYPE_CODE_ENUM:
607 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
608 case TYPE_CODE_BOOL:
609 return 1;
610 case TYPE_CODE_CHAR:
611 case TYPE_CODE_INT:
612 return max_of_type (type);
613 default:
614 error (_("Unexpected type in discrete_type_high_bound."));
615 }
616 }
617
618 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
619 static LONGEST
620 discrete_type_low_bound (struct type *type)
621 {
622 switch (TYPE_CODE (type))
623 {
624 case TYPE_CODE_RANGE:
625 return TYPE_LOW_BOUND (type);
626 case TYPE_CODE_ENUM:
627 return TYPE_FIELD_BITPOS (type, 0);
628 case TYPE_CODE_BOOL:
629 return 0;
630 case TYPE_CODE_CHAR:
631 case TYPE_CODE_INT:
632 return min_of_type (type);
633 default:
634 error (_("Unexpected type in discrete_type_low_bound."));
635 }
636 }
637
638 /* The identity on non-range types. For range types, the underlying
639 non-range scalar type. */
640
641 static struct type *
642 base_type (struct type *type)
643 {
644 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
645 {
646 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
647 return type;
648 type = TYPE_TARGET_TYPE (type);
649 }
650 return type;
651 }
652 \f
653
654 /* Language Selection */
655
656 /* If the main program is in Ada, return language_ada, otherwise return LANG
657 (the main program is in Ada iif the adainit symbol is found).
658
659 MAIN_PST is not used. */
660
661 enum language
662 ada_update_initial_language (enum language lang,
663 struct partial_symtab *main_pst)
664 {
665 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
666 (struct objfile *) NULL) != NULL)
667 return language_ada;
668
669 return lang;
670 }
671
672 /* If the main procedure is written in Ada, then return its name.
673 The result is good until the next call. Return NULL if the main
674 procedure doesn't appear to be in Ada. */
675
676 char *
677 ada_main_name (void)
678 {
679 struct minimal_symbol *msym;
680 static char *main_program_name = NULL;
681
682 /* For Ada, the name of the main procedure is stored in a specific
683 string constant, generated by the binder. Look for that symbol,
684 extract its address, and then read that string. If we didn't find
685 that string, then most probably the main procedure is not written
686 in Ada. */
687 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
688
689 if (msym != NULL)
690 {
691 CORE_ADDR main_program_name_addr;
692 int err_code;
693
694 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
695 if (main_program_name_addr == 0)
696 error (_("Invalid address for Ada main program name."));
697
698 xfree (main_program_name);
699 target_read_string (main_program_name_addr, &main_program_name,
700 1024, &err_code);
701
702 if (err_code != 0)
703 return NULL;
704 return main_program_name;
705 }
706
707 /* The main procedure doesn't seem to be in Ada. */
708 return NULL;
709 }
710 \f
711 /* Symbols */
712
713 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
714 of NULLs. */
715
716 const struct ada_opname_map ada_opname_table[] = {
717 {"Oadd", "\"+\"", BINOP_ADD},
718 {"Osubtract", "\"-\"", BINOP_SUB},
719 {"Omultiply", "\"*\"", BINOP_MUL},
720 {"Odivide", "\"/\"", BINOP_DIV},
721 {"Omod", "\"mod\"", BINOP_MOD},
722 {"Orem", "\"rem\"", BINOP_REM},
723 {"Oexpon", "\"**\"", BINOP_EXP},
724 {"Olt", "\"<\"", BINOP_LESS},
725 {"Ole", "\"<=\"", BINOP_LEQ},
726 {"Ogt", "\">\"", BINOP_GTR},
727 {"Oge", "\">=\"", BINOP_GEQ},
728 {"Oeq", "\"=\"", BINOP_EQUAL},
729 {"One", "\"/=\"", BINOP_NOTEQUAL},
730 {"Oand", "\"and\"", BINOP_BITWISE_AND},
731 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
732 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
733 {"Oconcat", "\"&\"", BINOP_CONCAT},
734 {"Oabs", "\"abs\"", UNOP_ABS},
735 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
736 {"Oadd", "\"+\"", UNOP_PLUS},
737 {"Osubtract", "\"-\"", UNOP_NEG},
738 {NULL, NULL}
739 };
740
741 /* The "encoded" form of DECODED, according to GNAT conventions.
742 The result is valid until the next call to ada_encode. */
743
744 char *
745 ada_encode (const char *decoded)
746 {
747 static char *encoding_buffer = NULL;
748 static size_t encoding_buffer_size = 0;
749 const char *p;
750 int k;
751
752 if (decoded == NULL)
753 return NULL;
754
755 GROW_VECT (encoding_buffer, encoding_buffer_size,
756 2 * strlen (decoded) + 10);
757
758 k = 0;
759 for (p = decoded; *p != '\0'; p += 1)
760 {
761 if (*p == '.')
762 {
763 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
764 k += 2;
765 }
766 else if (*p == '"')
767 {
768 const struct ada_opname_map *mapping;
769
770 for (mapping = ada_opname_table;
771 mapping->encoded != NULL
772 && strncmp (mapping->decoded, p,
773 strlen (mapping->decoded)) != 0; mapping += 1)
774 ;
775 if (mapping->encoded == NULL)
776 error (_("invalid Ada operator name: %s"), p);
777 strcpy (encoding_buffer + k, mapping->encoded);
778 k += strlen (mapping->encoded);
779 break;
780 }
781 else
782 {
783 encoding_buffer[k] = *p;
784 k += 1;
785 }
786 }
787
788 encoding_buffer[k] = '\0';
789 return encoding_buffer;
790 }
791
792 /* Return NAME folded to lower case, or, if surrounded by single
793 quotes, unfolded, but with the quotes stripped away. Result good
794 to next call. */
795
796 char *
797 ada_fold_name (const char *name)
798 {
799 static char *fold_buffer = NULL;
800 static size_t fold_buffer_size = 0;
801
802 int len = strlen (name);
803 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
804
805 if (name[0] == '\'')
806 {
807 strncpy (fold_buffer, name + 1, len - 2);
808 fold_buffer[len - 2] = '\000';
809 }
810 else
811 {
812 int i;
813 for (i = 0; i <= len; i += 1)
814 fold_buffer[i] = tolower (name[i]);
815 }
816
817 return fold_buffer;
818 }
819
820 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
821
822 static int
823 is_lower_alphanum (const char c)
824 {
825 return (isdigit (c) || (isalpha (c) && islower (c)));
826 }
827
828 /* Remove either of these suffixes:
829 . .{DIGIT}+
830 . ${DIGIT}+
831 . ___{DIGIT}+
832 . __{DIGIT}+.
833 These are suffixes introduced by the compiler for entities such as
834 nested subprogram for instance, in order to avoid name clashes.
835 They do not serve any purpose for the debugger. */
836
837 static void
838 ada_remove_trailing_digits (const char *encoded, int *len)
839 {
840 if (*len > 1 && isdigit (encoded[*len - 1]))
841 {
842 int i = *len - 2;
843 while (i > 0 && isdigit (encoded[i]))
844 i--;
845 if (i >= 0 && encoded[i] == '.')
846 *len = i;
847 else if (i >= 0 && encoded[i] == '$')
848 *len = i;
849 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
850 *len = i - 2;
851 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
852 *len = i - 1;
853 }
854 }
855
856 /* Remove the suffix introduced by the compiler for protected object
857 subprograms. */
858
859 static void
860 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
861 {
862 /* Remove trailing N. */
863
864 /* Protected entry subprograms are broken into two
865 separate subprograms: The first one is unprotected, and has
866 a 'N' suffix; the second is the protected version, and has
867 the 'P' suffix. The second calls the first one after handling
868 the protection. Since the P subprograms are internally generated,
869 we leave these names undecoded, giving the user a clue that this
870 entity is internal. */
871
872 if (*len > 1
873 && encoded[*len - 1] == 'N'
874 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
875 *len = *len - 1;
876 }
877
878 /* If ENCODED follows the GNAT entity encoding conventions, then return
879 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
880 replaced by ENCODED.
881
882 The resulting string is valid until the next call of ada_decode.
883 If the string is unchanged by decoding, the original string pointer
884 is returned. */
885
886 const char *
887 ada_decode (const char *encoded)
888 {
889 int i, j;
890 int len0;
891 const char *p;
892 char *decoded;
893 int at_start_name;
894 static char *decoding_buffer = NULL;
895 static size_t decoding_buffer_size = 0;
896
897 /* The name of the Ada main procedure starts with "_ada_".
898 This prefix is not part of the decoded name, so skip this part
899 if we see this prefix. */
900 if (strncmp (encoded, "_ada_", 5) == 0)
901 encoded += 5;
902
903 /* If the name starts with '_', then it is not a properly encoded
904 name, so do not attempt to decode it. Similarly, if the name
905 starts with '<', the name should not be decoded. */
906 if (encoded[0] == '_' || encoded[0] == '<')
907 goto Suppress;
908
909 len0 = strlen (encoded);
910
911 ada_remove_trailing_digits (encoded, &len0);
912 ada_remove_po_subprogram_suffix (encoded, &len0);
913
914 /* Remove the ___X.* suffix if present. Do not forget to verify that
915 the suffix is located before the current "end" of ENCODED. We want
916 to avoid re-matching parts of ENCODED that have previously been
917 marked as discarded (by decrementing LEN0). */
918 p = strstr (encoded, "___");
919 if (p != NULL && p - encoded < len0 - 3)
920 {
921 if (p[3] == 'X')
922 len0 = p - encoded;
923 else
924 goto Suppress;
925 }
926
927 /* Remove any trailing TKB suffix. It tells us that this symbol
928 is for the body of a task, but that information does not actually
929 appear in the decoded name. */
930
931 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
932 len0 -= 3;
933
934 /* Remove trailing "B" suffixes. */
935 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
936
937 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
938 len0 -= 1;
939
940 /* Make decoded big enough for possible expansion by operator name. */
941
942 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
943 decoded = decoding_buffer;
944
945 /* Remove trailing __{digit}+ or trailing ${digit}+. */
946
947 if (len0 > 1 && isdigit (encoded[len0 - 1]))
948 {
949 i = len0 - 2;
950 while ((i >= 0 && isdigit (encoded[i]))
951 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
952 i -= 1;
953 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
954 len0 = i - 1;
955 else if (encoded[i] == '$')
956 len0 = i;
957 }
958
959 /* The first few characters that are not alphabetic are not part
960 of any encoding we use, so we can copy them over verbatim. */
961
962 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
963 decoded[j] = encoded[i];
964
965 at_start_name = 1;
966 while (i < len0)
967 {
968 /* Is this a symbol function? */
969 if (at_start_name && encoded[i] == 'O')
970 {
971 int k;
972 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
973 {
974 int op_len = strlen (ada_opname_table[k].encoded);
975 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
976 op_len - 1) == 0)
977 && !isalnum (encoded[i + op_len]))
978 {
979 strcpy (decoded + j, ada_opname_table[k].decoded);
980 at_start_name = 0;
981 i += op_len;
982 j += strlen (ada_opname_table[k].decoded);
983 break;
984 }
985 }
986 if (ada_opname_table[k].encoded != NULL)
987 continue;
988 }
989 at_start_name = 0;
990
991 /* Replace "TK__" with "__", which will eventually be translated
992 into "." (just below). */
993
994 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
995 i += 2;
996
997 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
998 be translated into "." (just below). These are internal names
999 generated for anonymous blocks inside which our symbol is nested. */
1000
1001 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1002 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1003 && isdigit (encoded [i+4]))
1004 {
1005 int k = i + 5;
1006
1007 while (k < len0 && isdigit (encoded[k]))
1008 k++; /* Skip any extra digit. */
1009
1010 /* Double-check that the "__B_{DIGITS}+" sequence we found
1011 is indeed followed by "__". */
1012 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1013 i = k;
1014 }
1015
1016 /* Remove _E{DIGITS}+[sb] */
1017
1018 /* Just as for protected object subprograms, there are 2 categories
1019 of subprograms created by the compiler for each entry. The first
1020 one implements the actual entry code, and has a suffix following
1021 the convention above; the second one implements the barrier and
1022 uses the same convention as above, except that the 'E' is replaced
1023 by a 'B'.
1024
1025 Just as above, we do not decode the name of barrier functions
1026 to give the user a clue that the code he is debugging has been
1027 internally generated. */
1028
1029 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1030 && isdigit (encoded[i+2]))
1031 {
1032 int k = i + 3;
1033
1034 while (k < len0 && isdigit (encoded[k]))
1035 k++;
1036
1037 if (k < len0
1038 && (encoded[k] == 'b' || encoded[k] == 's'))
1039 {
1040 k++;
1041 /* Just as an extra precaution, make sure that if this
1042 suffix is followed by anything else, it is a '_'.
1043 Otherwise, we matched this sequence by accident. */
1044 if (k == len0
1045 || (k < len0 && encoded[k] == '_'))
1046 i = k;
1047 }
1048 }
1049
1050 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1051 the GNAT front-end in protected object subprograms. */
1052
1053 if (i < len0 + 3
1054 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1055 {
1056 /* Backtrack a bit up until we reach either the begining of
1057 the encoded name, or "__". Make sure that we only find
1058 digits or lowercase characters. */
1059 const char *ptr = encoded + i - 1;
1060
1061 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1062 ptr--;
1063 if (ptr < encoded
1064 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1065 i++;
1066 }
1067
1068 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1069 {
1070 /* This is a X[bn]* sequence not separated from the previous
1071 part of the name with a non-alpha-numeric character (in other
1072 words, immediately following an alpha-numeric character), then
1073 verify that it is placed at the end of the encoded name. If
1074 not, then the encoding is not valid and we should abort the
1075 decoding. Otherwise, just skip it, it is used in body-nested
1076 package names. */
1077 do
1078 i += 1;
1079 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1080 if (i < len0)
1081 goto Suppress;
1082 }
1083 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1084 {
1085 /* Replace '__' by '.'. */
1086 decoded[j] = '.';
1087 at_start_name = 1;
1088 i += 2;
1089 j += 1;
1090 }
1091 else
1092 {
1093 /* It's a character part of the decoded name, so just copy it
1094 over. */
1095 decoded[j] = encoded[i];
1096 i += 1;
1097 j += 1;
1098 }
1099 }
1100 decoded[j] = '\000';
1101
1102 /* Decoded names should never contain any uppercase character.
1103 Double-check this, and abort the decoding if we find one. */
1104
1105 for (i = 0; decoded[i] != '\0'; i += 1)
1106 if (isupper (decoded[i]) || decoded[i] == ' ')
1107 goto Suppress;
1108
1109 if (strcmp (decoded, encoded) == 0)
1110 return encoded;
1111 else
1112 return decoded;
1113
1114 Suppress:
1115 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1116 decoded = decoding_buffer;
1117 if (encoded[0] == '<')
1118 strcpy (decoded, encoded);
1119 else
1120 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1121 return decoded;
1122
1123 }
1124
1125 /* Table for keeping permanent unique copies of decoded names. Once
1126 allocated, names in this table are never released. While this is a
1127 storage leak, it should not be significant unless there are massive
1128 changes in the set of decoded names in successive versions of a
1129 symbol table loaded during a single session. */
1130 static struct htab *decoded_names_store;
1131
1132 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1133 in the language-specific part of GSYMBOL, if it has not been
1134 previously computed. Tries to save the decoded name in the same
1135 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1136 in any case, the decoded symbol has a lifetime at least that of
1137 GSYMBOL).
1138 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1139 const, but nevertheless modified to a semantically equivalent form
1140 when a decoded name is cached in it.
1141 */
1142
1143 char *
1144 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1145 {
1146 char **resultp =
1147 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1148 if (*resultp == NULL)
1149 {
1150 const char *decoded = ada_decode (gsymbol->name);
1151 if (gsymbol->obj_section != NULL)
1152 {
1153 struct objfile *objf = gsymbol->obj_section->objfile;
1154 *resultp = obsavestring (decoded, strlen (decoded),
1155 &objf->objfile_obstack);
1156 }
1157 /* Sometimes, we can't find a corresponding objfile, in which
1158 case, we put the result on the heap. Since we only decode
1159 when needed, we hope this usually does not cause a
1160 significant memory leak (FIXME). */
1161 if (*resultp == NULL)
1162 {
1163 char **slot = (char **) htab_find_slot (decoded_names_store,
1164 decoded, INSERT);
1165 if (*slot == NULL)
1166 *slot = xstrdup (decoded);
1167 *resultp = *slot;
1168 }
1169 }
1170
1171 return *resultp;
1172 }
1173
1174 static char *
1175 ada_la_decode (const char *encoded, int options)
1176 {
1177 return xstrdup (ada_decode (encoded));
1178 }
1179
1180 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1181 suffixes that encode debugging information or leading _ada_ on
1182 SYM_NAME (see is_name_suffix commentary for the debugging
1183 information that is ignored). If WILD, then NAME need only match a
1184 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1185 either argument is NULL. */
1186
1187 static int
1188 ada_match_name (const char *sym_name, const char *name, int wild)
1189 {
1190 if (sym_name == NULL || name == NULL)
1191 return 0;
1192 else if (wild)
1193 return wild_match (name, strlen (name), sym_name);
1194 else
1195 {
1196 int len_name = strlen (name);
1197 return (strncmp (sym_name, name, len_name) == 0
1198 && is_name_suffix (sym_name + len_name))
1199 || (strncmp (sym_name, "_ada_", 5) == 0
1200 && strncmp (sym_name + 5, name, len_name) == 0
1201 && is_name_suffix (sym_name + len_name + 5));
1202 }
1203 }
1204 \f
1205
1206 /* Arrays */
1207
1208 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1209
1210 static char *bound_name[] = {
1211 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1212 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1213 };
1214
1215 /* Maximum number of array dimensions we are prepared to handle. */
1216
1217 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1218
1219 /* Like modify_field, but allows bitpos > wordlength. */
1220
1221 static void
1222 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1223 {
1224 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1225 }
1226
1227
1228 /* The desc_* routines return primitive portions of array descriptors
1229 (fat pointers). */
1230
1231 /* The descriptor or array type, if any, indicated by TYPE; removes
1232 level of indirection, if needed. */
1233
1234 static struct type *
1235 desc_base_type (struct type *type)
1236 {
1237 if (type == NULL)
1238 return NULL;
1239 type = ada_check_typedef (type);
1240 if (type != NULL
1241 && (TYPE_CODE (type) == TYPE_CODE_PTR
1242 || TYPE_CODE (type) == TYPE_CODE_REF))
1243 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1244 else
1245 return type;
1246 }
1247
1248 /* True iff TYPE indicates a "thin" array pointer type. */
1249
1250 static int
1251 is_thin_pntr (struct type *type)
1252 {
1253 return
1254 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1255 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1256 }
1257
1258 /* The descriptor type for thin pointer type TYPE. */
1259
1260 static struct type *
1261 thin_descriptor_type (struct type *type)
1262 {
1263 struct type *base_type = desc_base_type (type);
1264 if (base_type == NULL)
1265 return NULL;
1266 if (is_suffix (ada_type_name (base_type), "___XVE"))
1267 return base_type;
1268 else
1269 {
1270 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1271 if (alt_type == NULL)
1272 return base_type;
1273 else
1274 return alt_type;
1275 }
1276 }
1277
1278 /* A pointer to the array data for thin-pointer value VAL. */
1279
1280 static struct value *
1281 thin_data_pntr (struct value *val)
1282 {
1283 struct type *type = value_type (val);
1284 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1285 data_type = lookup_pointer_type (data_type);
1286
1287 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1288 return value_cast (data_type, value_copy (val));
1289 else
1290 return value_from_longest (data_type,
1291 VALUE_ADDRESS (val) + value_offset (val));
1292 }
1293
1294 /* True iff TYPE indicates a "thick" array pointer type. */
1295
1296 static int
1297 is_thick_pntr (struct type *type)
1298 {
1299 type = desc_base_type (type);
1300 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1301 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1302 }
1303
1304 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1305 pointer to one, the type of its bounds data; otherwise, NULL. */
1306
1307 static struct type *
1308 desc_bounds_type (struct type *type)
1309 {
1310 struct type *r;
1311
1312 type = desc_base_type (type);
1313
1314 if (type == NULL)
1315 return NULL;
1316 else if (is_thin_pntr (type))
1317 {
1318 type = thin_descriptor_type (type);
1319 if (type == NULL)
1320 return NULL;
1321 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1322 if (r != NULL)
1323 return ada_check_typedef (r);
1324 }
1325 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1326 {
1327 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1328 if (r != NULL)
1329 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1330 }
1331 return NULL;
1332 }
1333
1334 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1335 one, a pointer to its bounds data. Otherwise NULL. */
1336
1337 static struct value *
1338 desc_bounds (struct value *arr)
1339 {
1340 struct type *type = ada_check_typedef (value_type (arr));
1341 if (is_thin_pntr (type))
1342 {
1343 struct type *bounds_type =
1344 desc_bounds_type (thin_descriptor_type (type));
1345 LONGEST addr;
1346
1347 if (bounds_type == NULL)
1348 error (_("Bad GNAT array descriptor"));
1349
1350 /* NOTE: The following calculation is not really kosher, but
1351 since desc_type is an XVE-encoded type (and shouldn't be),
1352 the correct calculation is a real pain. FIXME (and fix GCC). */
1353 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1354 addr = value_as_long (arr);
1355 else
1356 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1357
1358 return
1359 value_from_longest (lookup_pointer_type (bounds_type),
1360 addr - TYPE_LENGTH (bounds_type));
1361 }
1362
1363 else if (is_thick_pntr (type))
1364 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1365 _("Bad GNAT array descriptor"));
1366 else
1367 return NULL;
1368 }
1369
1370 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1371 position of the field containing the address of the bounds data. */
1372
1373 static int
1374 fat_pntr_bounds_bitpos (struct type *type)
1375 {
1376 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1377 }
1378
1379 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1380 size of the field containing the address of the bounds data. */
1381
1382 static int
1383 fat_pntr_bounds_bitsize (struct type *type)
1384 {
1385 type = desc_base_type (type);
1386
1387 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1388 return TYPE_FIELD_BITSIZE (type, 1);
1389 else
1390 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1391 }
1392
1393 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1394 pointer to one, the type of its array data (a array-with-no-bounds type);
1395 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1396 data. */
1397
1398 static struct type *
1399 desc_data_target_type (struct type *type)
1400 {
1401 type = desc_base_type (type);
1402
1403 /* NOTE: The following is bogus; see comment in desc_bounds. */
1404 if (is_thin_pntr (type))
1405 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1406 else if (is_thick_pntr (type))
1407 {
1408 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1409
1410 if (data_type
1411 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1412 return TYPE_TARGET_TYPE (data_type);
1413 }
1414
1415 return NULL;
1416 }
1417
1418 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1419 its array data. */
1420
1421 static struct value *
1422 desc_data (struct value *arr)
1423 {
1424 struct type *type = value_type (arr);
1425 if (is_thin_pntr (type))
1426 return thin_data_pntr (arr);
1427 else if (is_thick_pntr (type))
1428 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1429 _("Bad GNAT array descriptor"));
1430 else
1431 return NULL;
1432 }
1433
1434
1435 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1436 position of the field containing the address of the data. */
1437
1438 static int
1439 fat_pntr_data_bitpos (struct type *type)
1440 {
1441 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1442 }
1443
1444 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1445 size of the field containing the address of the data. */
1446
1447 static int
1448 fat_pntr_data_bitsize (struct type *type)
1449 {
1450 type = desc_base_type (type);
1451
1452 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1453 return TYPE_FIELD_BITSIZE (type, 0);
1454 else
1455 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1456 }
1457
1458 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1459 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1460 bound, if WHICH is 1. The first bound is I=1. */
1461
1462 static struct value *
1463 desc_one_bound (struct value *bounds, int i, int which)
1464 {
1465 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1466 _("Bad GNAT array descriptor bounds"));
1467 }
1468
1469 /* If BOUNDS is an array-bounds structure type, return the bit position
1470 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1471 bound, if WHICH is 1. The first bound is I=1. */
1472
1473 static int
1474 desc_bound_bitpos (struct type *type, int i, int which)
1475 {
1476 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1477 }
1478
1479 /* If BOUNDS is an array-bounds structure type, return the bit field size
1480 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1481 bound, if WHICH is 1. The first bound is I=1. */
1482
1483 static int
1484 desc_bound_bitsize (struct type *type, int i, int which)
1485 {
1486 type = desc_base_type (type);
1487
1488 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1489 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1490 else
1491 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1492 }
1493
1494 /* If TYPE is the type of an array-bounds structure, the type of its
1495 Ith bound (numbering from 1). Otherwise, NULL. */
1496
1497 static struct type *
1498 desc_index_type (struct type *type, int i)
1499 {
1500 type = desc_base_type (type);
1501
1502 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1503 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1504 else
1505 return NULL;
1506 }
1507
1508 /* The number of index positions in the array-bounds type TYPE.
1509 Return 0 if TYPE is NULL. */
1510
1511 static int
1512 desc_arity (struct type *type)
1513 {
1514 type = desc_base_type (type);
1515
1516 if (type != NULL)
1517 return TYPE_NFIELDS (type) / 2;
1518 return 0;
1519 }
1520
1521 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1522 an array descriptor type (representing an unconstrained array
1523 type). */
1524
1525 static int
1526 ada_is_direct_array_type (struct type *type)
1527 {
1528 if (type == NULL)
1529 return 0;
1530 type = ada_check_typedef (type);
1531 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1532 || ada_is_array_descriptor_type (type));
1533 }
1534
1535 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1536 * to one. */
1537
1538 static int
1539 ada_is_array_type (struct type *type)
1540 {
1541 while (type != NULL
1542 && (TYPE_CODE (type) == TYPE_CODE_PTR
1543 || TYPE_CODE (type) == TYPE_CODE_REF))
1544 type = TYPE_TARGET_TYPE (type);
1545 return ada_is_direct_array_type (type);
1546 }
1547
1548 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1549
1550 int
1551 ada_is_simple_array_type (struct type *type)
1552 {
1553 if (type == NULL)
1554 return 0;
1555 type = ada_check_typedef (type);
1556 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1557 || (TYPE_CODE (type) == TYPE_CODE_PTR
1558 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1559 }
1560
1561 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1562
1563 int
1564 ada_is_array_descriptor_type (struct type *type)
1565 {
1566 struct type *data_type = desc_data_target_type (type);
1567
1568 if (type == NULL)
1569 return 0;
1570 type = ada_check_typedef (type);
1571 return (data_type != NULL
1572 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1573 && desc_arity (desc_bounds_type (type)) > 0);
1574 }
1575
1576 /* Non-zero iff type is a partially mal-formed GNAT array
1577 descriptor. FIXME: This is to compensate for some problems with
1578 debugging output from GNAT. Re-examine periodically to see if it
1579 is still needed. */
1580
1581 int
1582 ada_is_bogus_array_descriptor (struct type *type)
1583 {
1584 return
1585 type != NULL
1586 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1587 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1588 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1589 && !ada_is_array_descriptor_type (type);
1590 }
1591
1592
1593 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1594 (fat pointer) returns the type of the array data described---specifically,
1595 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1596 in from the descriptor; otherwise, they are left unspecified. If
1597 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1598 returns NULL. The result is simply the type of ARR if ARR is not
1599 a descriptor. */
1600 struct type *
1601 ada_type_of_array (struct value *arr, int bounds)
1602 {
1603 if (ada_is_packed_array_type (value_type (arr)))
1604 return decode_packed_array_type (value_type (arr));
1605
1606 if (!ada_is_array_descriptor_type (value_type (arr)))
1607 return value_type (arr);
1608
1609 if (!bounds)
1610 return
1611 ada_check_typedef (desc_data_target_type (value_type (arr)));
1612 else
1613 {
1614 struct type *elt_type;
1615 int arity;
1616 struct value *descriptor;
1617 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1618
1619 elt_type = ada_array_element_type (value_type (arr), -1);
1620 arity = ada_array_arity (value_type (arr));
1621
1622 if (elt_type == NULL || arity == 0)
1623 return ada_check_typedef (value_type (arr));
1624
1625 descriptor = desc_bounds (arr);
1626 if (value_as_long (descriptor) == 0)
1627 return NULL;
1628 while (arity > 0)
1629 {
1630 struct type *range_type = alloc_type (objf);
1631 struct type *array_type = alloc_type (objf);
1632 struct value *low = desc_one_bound (descriptor, arity, 0);
1633 struct value *high = desc_one_bound (descriptor, arity, 1);
1634 arity -= 1;
1635
1636 create_range_type (range_type, value_type (low),
1637 longest_to_int (value_as_long (low)),
1638 longest_to_int (value_as_long (high)));
1639 elt_type = create_array_type (array_type, elt_type, range_type);
1640 }
1641
1642 return lookup_pointer_type (elt_type);
1643 }
1644 }
1645
1646 /* If ARR does not represent an array, returns ARR unchanged.
1647 Otherwise, returns either a standard GDB array with bounds set
1648 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1649 GDB array. Returns NULL if ARR is a null fat pointer. */
1650
1651 struct value *
1652 ada_coerce_to_simple_array_ptr (struct value *arr)
1653 {
1654 if (ada_is_array_descriptor_type (value_type (arr)))
1655 {
1656 struct type *arrType = ada_type_of_array (arr, 1);
1657 if (arrType == NULL)
1658 return NULL;
1659 return value_cast (arrType, value_copy (desc_data (arr)));
1660 }
1661 else if (ada_is_packed_array_type (value_type (arr)))
1662 return decode_packed_array (arr);
1663 else
1664 return arr;
1665 }
1666
1667 /* If ARR does not represent an array, returns ARR unchanged.
1668 Otherwise, returns a standard GDB array describing ARR (which may
1669 be ARR itself if it already is in the proper form). */
1670
1671 static struct value *
1672 ada_coerce_to_simple_array (struct value *arr)
1673 {
1674 if (ada_is_array_descriptor_type (value_type (arr)))
1675 {
1676 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1677 if (arrVal == NULL)
1678 error (_("Bounds unavailable for null array pointer."));
1679 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1680 return value_ind (arrVal);
1681 }
1682 else if (ada_is_packed_array_type (value_type (arr)))
1683 return decode_packed_array (arr);
1684 else
1685 return arr;
1686 }
1687
1688 /* If TYPE represents a GNAT array type, return it translated to an
1689 ordinary GDB array type (possibly with BITSIZE fields indicating
1690 packing). For other types, is the identity. */
1691
1692 struct type *
1693 ada_coerce_to_simple_array_type (struct type *type)
1694 {
1695 if (ada_is_packed_array_type (type))
1696 return decode_packed_array_type (type);
1697
1698 if (ada_is_array_descriptor_type (type))
1699 return ada_check_typedef (desc_data_target_type (type));
1700
1701 return type;
1702 }
1703
1704 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1705
1706 int
1707 ada_is_packed_array_type (struct type *type)
1708 {
1709 if (type == NULL)
1710 return 0;
1711 type = desc_base_type (type);
1712 type = ada_check_typedef (type);
1713 return
1714 ada_type_name (type) != NULL
1715 && strstr (ada_type_name (type), "___XP") != NULL;
1716 }
1717
1718 /* Given that TYPE is a standard GDB array type with all bounds filled
1719 in, and that the element size of its ultimate scalar constituents
1720 (that is, either its elements, or, if it is an array of arrays, its
1721 elements' elements, etc.) is *ELT_BITS, return an identical type,
1722 but with the bit sizes of its elements (and those of any
1723 constituent arrays) recorded in the BITSIZE components of its
1724 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1725 in bits. */
1726
1727 static struct type *
1728 packed_array_type (struct type *type, long *elt_bits)
1729 {
1730 struct type *new_elt_type;
1731 struct type *new_type;
1732 LONGEST low_bound, high_bound;
1733
1734 type = ada_check_typedef (type);
1735 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1736 return type;
1737
1738 new_type = alloc_type (TYPE_OBJFILE (type));
1739 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1740 elt_bits);
1741 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1742 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1743 TYPE_NAME (new_type) = ada_type_name (type);
1744
1745 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1746 &low_bound, &high_bound) < 0)
1747 low_bound = high_bound = 0;
1748 if (high_bound < low_bound)
1749 *elt_bits = TYPE_LENGTH (new_type) = 0;
1750 else
1751 {
1752 *elt_bits *= (high_bound - low_bound + 1);
1753 TYPE_LENGTH (new_type) =
1754 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1755 }
1756
1757 TYPE_FIXED_INSTANCE (new_type) = 1;
1758 return new_type;
1759 }
1760
1761 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1762
1763 static struct type *
1764 decode_packed_array_type (struct type *type)
1765 {
1766 struct symbol *sym;
1767 struct block **blocks;
1768 char *raw_name = ada_type_name (ada_check_typedef (type));
1769 char *name;
1770 char *tail;
1771 struct type *shadow_type;
1772 long bits;
1773 int i, n;
1774
1775 if (!raw_name)
1776 raw_name = ada_type_name (desc_base_type (type));
1777
1778 if (!raw_name)
1779 return NULL;
1780
1781 name = (char *) alloca (strlen (raw_name) + 1);
1782 tail = strstr (raw_name, "___XP");
1783 type = desc_base_type (type);
1784
1785 memcpy (name, raw_name, tail - raw_name);
1786 name[tail - raw_name] = '\000';
1787
1788 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1789 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1790 {
1791 lim_warning (_("could not find bounds information on packed array"));
1792 return NULL;
1793 }
1794 shadow_type = SYMBOL_TYPE (sym);
1795 CHECK_TYPEDEF (shadow_type);
1796
1797 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1798 {
1799 lim_warning (_("could not understand bounds information on packed array"));
1800 return NULL;
1801 }
1802
1803 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1804 {
1805 lim_warning
1806 (_("could not understand bit size information on packed array"));
1807 return NULL;
1808 }
1809
1810 return packed_array_type (shadow_type, &bits);
1811 }
1812
1813 /* Given that ARR is a struct value *indicating a GNAT packed array,
1814 returns a simple array that denotes that array. Its type is a
1815 standard GDB array type except that the BITSIZEs of the array
1816 target types are set to the number of bits in each element, and the
1817 type length is set appropriately. */
1818
1819 static struct value *
1820 decode_packed_array (struct value *arr)
1821 {
1822 struct type *type;
1823
1824 arr = ada_coerce_ref (arr);
1825 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1826 arr = ada_value_ind (arr);
1827
1828 type = decode_packed_array_type (value_type (arr));
1829 if (type == NULL)
1830 {
1831 error (_("can't unpack array"));
1832 return NULL;
1833 }
1834
1835 if (gdbarch_bits_big_endian (current_gdbarch)
1836 && ada_is_modular_type (value_type (arr)))
1837 {
1838 /* This is a (right-justified) modular type representing a packed
1839 array with no wrapper. In order to interpret the value through
1840 the (left-justified) packed array type we just built, we must
1841 first left-justify it. */
1842 int bit_size, bit_pos;
1843 ULONGEST mod;
1844
1845 mod = ada_modulus (value_type (arr)) - 1;
1846 bit_size = 0;
1847 while (mod > 0)
1848 {
1849 bit_size += 1;
1850 mod >>= 1;
1851 }
1852 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1853 arr = ada_value_primitive_packed_val (arr, NULL,
1854 bit_pos / HOST_CHAR_BIT,
1855 bit_pos % HOST_CHAR_BIT,
1856 bit_size,
1857 type);
1858 }
1859
1860 return coerce_unspec_val_to_type (arr, type);
1861 }
1862
1863
1864 /* The value of the element of packed array ARR at the ARITY indices
1865 given in IND. ARR must be a simple array. */
1866
1867 static struct value *
1868 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1869 {
1870 int i;
1871 int bits, elt_off, bit_off;
1872 long elt_total_bit_offset;
1873 struct type *elt_type;
1874 struct value *v;
1875
1876 bits = 0;
1877 elt_total_bit_offset = 0;
1878 elt_type = ada_check_typedef (value_type (arr));
1879 for (i = 0; i < arity; i += 1)
1880 {
1881 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1882 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1883 error
1884 (_("attempt to do packed indexing of something other than a packed array"));
1885 else
1886 {
1887 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1888 LONGEST lowerbound, upperbound;
1889 LONGEST idx;
1890
1891 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1892 {
1893 lim_warning (_("don't know bounds of array"));
1894 lowerbound = upperbound = 0;
1895 }
1896
1897 idx = pos_atr (ind[i]);
1898 if (idx < lowerbound || idx > upperbound)
1899 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1900 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1901 elt_total_bit_offset += (idx - lowerbound) * bits;
1902 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1903 }
1904 }
1905 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1906 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1907
1908 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1909 bits, elt_type);
1910 return v;
1911 }
1912
1913 /* Non-zero iff TYPE includes negative integer values. */
1914
1915 static int
1916 has_negatives (struct type *type)
1917 {
1918 switch (TYPE_CODE (type))
1919 {
1920 default:
1921 return 0;
1922 case TYPE_CODE_INT:
1923 return !TYPE_UNSIGNED (type);
1924 case TYPE_CODE_RANGE:
1925 return TYPE_LOW_BOUND (type) < 0;
1926 }
1927 }
1928
1929
1930 /* Create a new value of type TYPE from the contents of OBJ starting
1931 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1932 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1933 assigning through the result will set the field fetched from.
1934 VALADDR is ignored unless OBJ is NULL, in which case,
1935 VALADDR+OFFSET must address the start of storage containing the
1936 packed value. The value returned in this case is never an lval.
1937 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
1938
1939 struct value *
1940 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
1941 long offset, int bit_offset, int bit_size,
1942 struct type *type)
1943 {
1944 struct value *v;
1945 int src, /* Index into the source area */
1946 targ, /* Index into the target area */
1947 srcBitsLeft, /* Number of source bits left to move */
1948 nsrc, ntarg, /* Number of source and target bytes */
1949 unusedLS, /* Number of bits in next significant
1950 byte of source that are unused */
1951 accumSize; /* Number of meaningful bits in accum */
1952 unsigned char *bytes; /* First byte containing data to unpack */
1953 unsigned char *unpacked;
1954 unsigned long accum; /* Staging area for bits being transferred */
1955 unsigned char sign;
1956 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
1957 /* Transmit bytes from least to most significant; delta is the direction
1958 the indices move. */
1959 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
1960
1961 type = ada_check_typedef (type);
1962
1963 if (obj == NULL)
1964 {
1965 v = allocate_value (type);
1966 bytes = (unsigned char *) (valaddr + offset);
1967 }
1968 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
1969 {
1970 v = value_at (type,
1971 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
1972 bytes = (unsigned char *) alloca (len);
1973 read_memory (VALUE_ADDRESS (v), bytes, len);
1974 }
1975 else
1976 {
1977 v = allocate_value (type);
1978 bytes = (unsigned char *) value_contents (obj) + offset;
1979 }
1980
1981 if (obj != NULL)
1982 {
1983 set_value_component_location (v, obj);
1984 VALUE_ADDRESS (v) += value_offset (obj) + offset;
1985 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1986 set_value_bitsize (v, bit_size);
1987 if (value_bitpos (v) >= HOST_CHAR_BIT)
1988 {
1989 VALUE_ADDRESS (v) += 1;
1990 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
1991 }
1992 }
1993 else
1994 set_value_bitsize (v, bit_size);
1995 unpacked = (unsigned char *) value_contents (v);
1996
1997 srcBitsLeft = bit_size;
1998 nsrc = len;
1999 ntarg = TYPE_LENGTH (type);
2000 sign = 0;
2001 if (bit_size == 0)
2002 {
2003 memset (unpacked, 0, TYPE_LENGTH (type));
2004 return v;
2005 }
2006 else if (gdbarch_bits_big_endian (current_gdbarch))
2007 {
2008 src = len - 1;
2009 if (has_negatives (type)
2010 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2011 sign = ~0;
2012
2013 unusedLS =
2014 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2015 % HOST_CHAR_BIT;
2016
2017 switch (TYPE_CODE (type))
2018 {
2019 case TYPE_CODE_ARRAY:
2020 case TYPE_CODE_UNION:
2021 case TYPE_CODE_STRUCT:
2022 /* Non-scalar values must be aligned at a byte boundary... */
2023 accumSize =
2024 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2025 /* ... And are placed at the beginning (most-significant) bytes
2026 of the target. */
2027 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2028 ntarg = targ + 1;
2029 break;
2030 default:
2031 accumSize = 0;
2032 targ = TYPE_LENGTH (type) - 1;
2033 break;
2034 }
2035 }
2036 else
2037 {
2038 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2039
2040 src = targ = 0;
2041 unusedLS = bit_offset;
2042 accumSize = 0;
2043
2044 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2045 sign = ~0;
2046 }
2047
2048 accum = 0;
2049 while (nsrc > 0)
2050 {
2051 /* Mask for removing bits of the next source byte that are not
2052 part of the value. */
2053 unsigned int unusedMSMask =
2054 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2055 1;
2056 /* Sign-extend bits for this byte. */
2057 unsigned int signMask = sign & ~unusedMSMask;
2058 accum |=
2059 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2060 accumSize += HOST_CHAR_BIT - unusedLS;
2061 if (accumSize >= HOST_CHAR_BIT)
2062 {
2063 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2064 accumSize -= HOST_CHAR_BIT;
2065 accum >>= HOST_CHAR_BIT;
2066 ntarg -= 1;
2067 targ += delta;
2068 }
2069 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2070 unusedLS = 0;
2071 nsrc -= 1;
2072 src += delta;
2073 }
2074 while (ntarg > 0)
2075 {
2076 accum |= sign << accumSize;
2077 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2078 accumSize -= HOST_CHAR_BIT;
2079 accum >>= HOST_CHAR_BIT;
2080 ntarg -= 1;
2081 targ += delta;
2082 }
2083
2084 return v;
2085 }
2086
2087 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2088 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2089 not overlap. */
2090 static void
2091 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2092 int src_offset, int n)
2093 {
2094 unsigned int accum, mask;
2095 int accum_bits, chunk_size;
2096
2097 target += targ_offset / HOST_CHAR_BIT;
2098 targ_offset %= HOST_CHAR_BIT;
2099 source += src_offset / HOST_CHAR_BIT;
2100 src_offset %= HOST_CHAR_BIT;
2101 if (gdbarch_bits_big_endian (current_gdbarch))
2102 {
2103 accum = (unsigned char) *source;
2104 source += 1;
2105 accum_bits = HOST_CHAR_BIT - src_offset;
2106
2107 while (n > 0)
2108 {
2109 int unused_right;
2110 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2111 accum_bits += HOST_CHAR_BIT;
2112 source += 1;
2113 chunk_size = HOST_CHAR_BIT - targ_offset;
2114 if (chunk_size > n)
2115 chunk_size = n;
2116 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2117 mask = ((1 << chunk_size) - 1) << unused_right;
2118 *target =
2119 (*target & ~mask)
2120 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2121 n -= chunk_size;
2122 accum_bits -= chunk_size;
2123 target += 1;
2124 targ_offset = 0;
2125 }
2126 }
2127 else
2128 {
2129 accum = (unsigned char) *source >> src_offset;
2130 source += 1;
2131 accum_bits = HOST_CHAR_BIT - src_offset;
2132
2133 while (n > 0)
2134 {
2135 accum = accum + ((unsigned char) *source << accum_bits);
2136 accum_bits += HOST_CHAR_BIT;
2137 source += 1;
2138 chunk_size = HOST_CHAR_BIT - targ_offset;
2139 if (chunk_size > n)
2140 chunk_size = n;
2141 mask = ((1 << chunk_size) - 1) << targ_offset;
2142 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2143 n -= chunk_size;
2144 accum_bits -= chunk_size;
2145 accum >>= chunk_size;
2146 target += 1;
2147 targ_offset = 0;
2148 }
2149 }
2150 }
2151
2152 /* Store the contents of FROMVAL into the location of TOVAL.
2153 Return a new value with the location of TOVAL and contents of
2154 FROMVAL. Handles assignment into packed fields that have
2155 floating-point or non-scalar types. */
2156
2157 static struct value *
2158 ada_value_assign (struct value *toval, struct value *fromval)
2159 {
2160 struct type *type = value_type (toval);
2161 int bits = value_bitsize (toval);
2162
2163 toval = ada_coerce_ref (toval);
2164 fromval = ada_coerce_ref (fromval);
2165
2166 if (ada_is_direct_array_type (value_type (toval)))
2167 toval = ada_coerce_to_simple_array (toval);
2168 if (ada_is_direct_array_type (value_type (fromval)))
2169 fromval = ada_coerce_to_simple_array (fromval);
2170
2171 if (!deprecated_value_modifiable (toval))
2172 error (_("Left operand of assignment is not a modifiable lvalue."));
2173
2174 if (VALUE_LVAL (toval) == lval_memory
2175 && bits > 0
2176 && (TYPE_CODE (type) == TYPE_CODE_FLT
2177 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2178 {
2179 int len = (value_bitpos (toval)
2180 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2181 int from_size;
2182 char *buffer = (char *) alloca (len);
2183 struct value *val;
2184 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2185
2186 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2187 fromval = value_cast (type, fromval);
2188
2189 read_memory (to_addr, buffer, len);
2190 from_size = value_bitsize (fromval);
2191 if (from_size == 0)
2192 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2193 if (gdbarch_bits_big_endian (current_gdbarch))
2194 move_bits (buffer, value_bitpos (toval),
2195 value_contents (fromval), from_size - bits, bits);
2196 else
2197 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2198 0, bits);
2199 write_memory (to_addr, buffer, len);
2200 if (deprecated_memory_changed_hook)
2201 deprecated_memory_changed_hook (to_addr, len);
2202
2203 val = value_copy (toval);
2204 memcpy (value_contents_raw (val), value_contents (fromval),
2205 TYPE_LENGTH (type));
2206 deprecated_set_value_type (val, type);
2207
2208 return val;
2209 }
2210
2211 return value_assign (toval, fromval);
2212 }
2213
2214
2215 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2216 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2217 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2218 * COMPONENT, and not the inferior's memory. The current contents
2219 * of COMPONENT are ignored. */
2220 static void
2221 value_assign_to_component (struct value *container, struct value *component,
2222 struct value *val)
2223 {
2224 LONGEST offset_in_container =
2225 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2226 - VALUE_ADDRESS (container) - value_offset (container));
2227 int bit_offset_in_container =
2228 value_bitpos (component) - value_bitpos (container);
2229 int bits;
2230
2231 val = value_cast (value_type (component), val);
2232
2233 if (value_bitsize (component) == 0)
2234 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2235 else
2236 bits = value_bitsize (component);
2237
2238 if (gdbarch_bits_big_endian (current_gdbarch))
2239 move_bits (value_contents_writeable (container) + offset_in_container,
2240 value_bitpos (container) + bit_offset_in_container,
2241 value_contents (val),
2242 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2243 bits);
2244 else
2245 move_bits (value_contents_writeable (container) + offset_in_container,
2246 value_bitpos (container) + bit_offset_in_container,
2247 value_contents (val), 0, bits);
2248 }
2249
2250 /* The value of the element of array ARR at the ARITY indices given in IND.
2251 ARR may be either a simple array, GNAT array descriptor, or pointer
2252 thereto. */
2253
2254 struct value *
2255 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2256 {
2257 int k;
2258 struct value *elt;
2259 struct type *elt_type;
2260
2261 elt = ada_coerce_to_simple_array (arr);
2262
2263 elt_type = ada_check_typedef (value_type (elt));
2264 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2265 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2266 return value_subscript_packed (elt, arity, ind);
2267
2268 for (k = 0; k < arity; k += 1)
2269 {
2270 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2271 error (_("too many subscripts (%d expected)"), k);
2272 elt = value_subscript (elt, value_pos_atr (builtin_type_int32, ind[k]));
2273 }
2274 return elt;
2275 }
2276
2277 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2278 value of the element of *ARR at the ARITY indices given in
2279 IND. Does not read the entire array into memory. */
2280
2281 static struct value *
2282 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2283 struct value **ind)
2284 {
2285 int k;
2286
2287 for (k = 0; k < arity; k += 1)
2288 {
2289 LONGEST lwb, upb;
2290 struct value *idx;
2291
2292 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2293 error (_("too many subscripts (%d expected)"), k);
2294 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2295 value_copy (arr));
2296 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2297 idx = value_pos_atr (builtin_type_int32, ind[k]);
2298 if (lwb != 0)
2299 idx = value_binop (idx, value_from_longest (value_type (idx), lwb),
2300 BINOP_SUB);
2301
2302 arr = value_ptradd (arr, idx);
2303 type = TYPE_TARGET_TYPE (type);
2304 }
2305
2306 return value_ind (arr);
2307 }
2308
2309 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2310 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2311 elements starting at index LOW. The lower bound of this array is LOW, as
2312 per Ada rules. */
2313 static struct value *
2314 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2315 int low, int high)
2316 {
2317 CORE_ADDR base = value_as_address (array_ptr)
2318 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2319 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2320 struct type *index_type =
2321 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2322 low, high);
2323 struct type *slice_type =
2324 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2325 return value_at_lazy (slice_type, base);
2326 }
2327
2328
2329 static struct value *
2330 ada_value_slice (struct value *array, int low, int high)
2331 {
2332 struct type *type = value_type (array);
2333 struct type *index_type =
2334 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2335 struct type *slice_type =
2336 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2337 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2338 }
2339
2340 /* If type is a record type in the form of a standard GNAT array
2341 descriptor, returns the number of dimensions for type. If arr is a
2342 simple array, returns the number of "array of"s that prefix its
2343 type designation. Otherwise, returns 0. */
2344
2345 int
2346 ada_array_arity (struct type *type)
2347 {
2348 int arity;
2349
2350 if (type == NULL)
2351 return 0;
2352
2353 type = desc_base_type (type);
2354
2355 arity = 0;
2356 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2357 return desc_arity (desc_bounds_type (type));
2358 else
2359 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2360 {
2361 arity += 1;
2362 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2363 }
2364
2365 return arity;
2366 }
2367
2368 /* If TYPE is a record type in the form of a standard GNAT array
2369 descriptor or a simple array type, returns the element type for
2370 TYPE after indexing by NINDICES indices, or by all indices if
2371 NINDICES is -1. Otherwise, returns NULL. */
2372
2373 struct type *
2374 ada_array_element_type (struct type *type, int nindices)
2375 {
2376 type = desc_base_type (type);
2377
2378 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2379 {
2380 int k;
2381 struct type *p_array_type;
2382
2383 p_array_type = desc_data_target_type (type);
2384
2385 k = ada_array_arity (type);
2386 if (k == 0)
2387 return NULL;
2388
2389 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2390 if (nindices >= 0 && k > nindices)
2391 k = nindices;
2392 while (k > 0 && p_array_type != NULL)
2393 {
2394 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2395 k -= 1;
2396 }
2397 return p_array_type;
2398 }
2399 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2400 {
2401 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2402 {
2403 type = TYPE_TARGET_TYPE (type);
2404 nindices -= 1;
2405 }
2406 return type;
2407 }
2408
2409 return NULL;
2410 }
2411
2412 /* The type of nth index in arrays of given type (n numbering from 1).
2413 Does not examine memory. */
2414
2415 struct type *
2416 ada_index_type (struct type *type, int n)
2417 {
2418 struct type *result_type;
2419
2420 type = desc_base_type (type);
2421
2422 if (n > ada_array_arity (type))
2423 return NULL;
2424
2425 if (ada_is_simple_array_type (type))
2426 {
2427 int i;
2428
2429 for (i = 1; i < n; i += 1)
2430 type = TYPE_TARGET_TYPE (type);
2431 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2432 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2433 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2434 perhaps stabsread.c would make more sense. */
2435 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2436 result_type = builtin_type_int32;
2437
2438 return result_type;
2439 }
2440 else
2441 return desc_index_type (desc_bounds_type (type), n);
2442 }
2443
2444 /* Given that arr is an array type, returns the lower bound of the
2445 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2446 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2447 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2448 bounds type. It works for other arrays with bounds supplied by
2449 run-time quantities other than discriminants. */
2450
2451 static LONGEST
2452 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2453 struct type ** typep)
2454 {
2455 struct type *type, *index_type_desc, *index_type;
2456 LONGEST retval;
2457
2458 gdb_assert (which == 0 || which == 1);
2459
2460 if (ada_is_packed_array_type (arr_type))
2461 arr_type = decode_packed_array_type (arr_type);
2462
2463 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2464 {
2465 if (typep != NULL)
2466 *typep = builtin_type_int32;
2467 return (LONGEST) - which;
2468 }
2469
2470 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2471 type = TYPE_TARGET_TYPE (arr_type);
2472 else
2473 type = arr_type;
2474
2475 index_type_desc = ada_find_parallel_type (type, "___XA");
2476 if (index_type_desc != NULL)
2477 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2478 NULL, TYPE_OBJFILE (arr_type));
2479 else
2480 {
2481 while (n > 1)
2482 {
2483 type = TYPE_TARGET_TYPE (type);
2484 n -= 1;
2485 }
2486
2487 index_type = TYPE_INDEX_TYPE (type);
2488 }
2489
2490 switch (TYPE_CODE (index_type))
2491 {
2492 case TYPE_CODE_RANGE:
2493 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2494 : TYPE_HIGH_BOUND (index_type);
2495 break;
2496 case TYPE_CODE_ENUM:
2497 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2498 : TYPE_FIELD_BITPOS (index_type,
2499 TYPE_NFIELDS (index_type) - 1);
2500 break;
2501 default:
2502 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2503 }
2504
2505 if (typep != NULL)
2506 *typep = index_type;
2507
2508 return retval;
2509 }
2510
2511 /* Given that arr is an array value, returns the lower bound of the
2512 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2513 WHICH is 1. This routine will also work for arrays with bounds
2514 supplied by run-time quantities other than discriminants. */
2515
2516 struct value *
2517 ada_array_bound (struct value *arr, int n, int which)
2518 {
2519 struct type *arr_type = value_type (arr);
2520
2521 if (ada_is_packed_array_type (arr_type))
2522 return ada_array_bound (decode_packed_array (arr), n, which);
2523 else if (ada_is_simple_array_type (arr_type))
2524 {
2525 struct type *type;
2526 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2527 return value_from_longest (type, v);
2528 }
2529 else
2530 return desc_one_bound (desc_bounds (arr), n, which);
2531 }
2532
2533 /* Given that arr is an array value, returns the length of the
2534 nth index. This routine will also work for arrays with bounds
2535 supplied by run-time quantities other than discriminants.
2536 Does not work for arrays indexed by enumeration types with representation
2537 clauses at the moment. */
2538
2539 static struct value *
2540 ada_array_length (struct value *arr, int n)
2541 {
2542 struct type *arr_type = ada_check_typedef (value_type (arr));
2543
2544 if (ada_is_packed_array_type (arr_type))
2545 return ada_array_length (decode_packed_array (arr), n);
2546
2547 if (ada_is_simple_array_type (arr_type))
2548 {
2549 struct type *type;
2550 LONGEST v =
2551 ada_array_bound_from_type (arr_type, n, 1, &type) -
2552 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2553 return value_from_longest (type, v);
2554 }
2555 else
2556 return
2557 value_from_longest (builtin_type_int32,
2558 value_as_long (desc_one_bound (desc_bounds (arr),
2559 n, 1))
2560 - value_as_long (desc_one_bound (desc_bounds (arr),
2561 n, 0)) + 1);
2562 }
2563
2564 /* An empty array whose type is that of ARR_TYPE (an array type),
2565 with bounds LOW to LOW-1. */
2566
2567 static struct value *
2568 empty_array (struct type *arr_type, int low)
2569 {
2570 struct type *index_type =
2571 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2572 low, low - 1);
2573 struct type *elt_type = ada_array_element_type (arr_type, 1);
2574 return allocate_value (create_array_type (NULL, elt_type, index_type));
2575 }
2576 \f
2577
2578 /* Name resolution */
2579
2580 /* The "decoded" name for the user-definable Ada operator corresponding
2581 to OP. */
2582
2583 static const char *
2584 ada_decoded_op_name (enum exp_opcode op)
2585 {
2586 int i;
2587
2588 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2589 {
2590 if (ada_opname_table[i].op == op)
2591 return ada_opname_table[i].decoded;
2592 }
2593 error (_("Could not find operator name for opcode"));
2594 }
2595
2596
2597 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2598 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2599 undefined namespace) and converts operators that are
2600 user-defined into appropriate function calls. If CONTEXT_TYPE is
2601 non-null, it provides a preferred result type [at the moment, only
2602 type void has any effect---causing procedures to be preferred over
2603 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2604 return type is preferred. May change (expand) *EXP. */
2605
2606 static void
2607 resolve (struct expression **expp, int void_context_p)
2608 {
2609 int pc;
2610 pc = 0;
2611 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2612 }
2613
2614 /* Resolve the operator of the subexpression beginning at
2615 position *POS of *EXPP. "Resolving" consists of replacing
2616 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2617 with their resolutions, replacing built-in operators with
2618 function calls to user-defined operators, where appropriate, and,
2619 when DEPROCEDURE_P is non-zero, converting function-valued variables
2620 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2621 are as in ada_resolve, above. */
2622
2623 static struct value *
2624 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2625 struct type *context_type)
2626 {
2627 int pc = *pos;
2628 int i;
2629 struct expression *exp; /* Convenience: == *expp. */
2630 enum exp_opcode op = (*expp)->elts[pc].opcode;
2631 struct value **argvec; /* Vector of operand types (alloca'ed). */
2632 int nargs; /* Number of operands. */
2633 int oplen;
2634
2635 argvec = NULL;
2636 nargs = 0;
2637 exp = *expp;
2638
2639 /* Pass one: resolve operands, saving their types and updating *pos,
2640 if needed. */
2641 switch (op)
2642 {
2643 case OP_FUNCALL:
2644 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2645 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2646 *pos += 7;
2647 else
2648 {
2649 *pos += 3;
2650 resolve_subexp (expp, pos, 0, NULL);
2651 }
2652 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2653 break;
2654
2655 case UNOP_ADDR:
2656 *pos += 1;
2657 resolve_subexp (expp, pos, 0, NULL);
2658 break;
2659
2660 case UNOP_QUAL:
2661 *pos += 3;
2662 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2663 break;
2664
2665 case OP_ATR_MODULUS:
2666 case OP_ATR_SIZE:
2667 case OP_ATR_TAG:
2668 case OP_ATR_FIRST:
2669 case OP_ATR_LAST:
2670 case OP_ATR_LENGTH:
2671 case OP_ATR_POS:
2672 case OP_ATR_VAL:
2673 case OP_ATR_MIN:
2674 case OP_ATR_MAX:
2675 case TERNOP_IN_RANGE:
2676 case BINOP_IN_BOUNDS:
2677 case UNOP_IN_RANGE:
2678 case OP_AGGREGATE:
2679 case OP_OTHERS:
2680 case OP_CHOICES:
2681 case OP_POSITIONAL:
2682 case OP_DISCRETE_RANGE:
2683 case OP_NAME:
2684 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2685 *pos += oplen;
2686 break;
2687
2688 case BINOP_ASSIGN:
2689 {
2690 struct value *arg1;
2691
2692 *pos += 1;
2693 arg1 = resolve_subexp (expp, pos, 0, NULL);
2694 if (arg1 == NULL)
2695 resolve_subexp (expp, pos, 1, NULL);
2696 else
2697 resolve_subexp (expp, pos, 1, value_type (arg1));
2698 break;
2699 }
2700
2701 case UNOP_CAST:
2702 *pos += 3;
2703 nargs = 1;
2704 break;
2705
2706 case BINOP_ADD:
2707 case BINOP_SUB:
2708 case BINOP_MUL:
2709 case BINOP_DIV:
2710 case BINOP_REM:
2711 case BINOP_MOD:
2712 case BINOP_EXP:
2713 case BINOP_CONCAT:
2714 case BINOP_LOGICAL_AND:
2715 case BINOP_LOGICAL_OR:
2716 case BINOP_BITWISE_AND:
2717 case BINOP_BITWISE_IOR:
2718 case BINOP_BITWISE_XOR:
2719
2720 case BINOP_EQUAL:
2721 case BINOP_NOTEQUAL:
2722 case BINOP_LESS:
2723 case BINOP_GTR:
2724 case BINOP_LEQ:
2725 case BINOP_GEQ:
2726
2727 case BINOP_REPEAT:
2728 case BINOP_SUBSCRIPT:
2729 case BINOP_COMMA:
2730 *pos += 1;
2731 nargs = 2;
2732 break;
2733
2734 case UNOP_NEG:
2735 case UNOP_PLUS:
2736 case UNOP_LOGICAL_NOT:
2737 case UNOP_ABS:
2738 case UNOP_IND:
2739 *pos += 1;
2740 nargs = 1;
2741 break;
2742
2743 case OP_LONG:
2744 case OP_DOUBLE:
2745 case OP_VAR_VALUE:
2746 *pos += 4;
2747 break;
2748
2749 case OP_TYPE:
2750 case OP_BOOL:
2751 case OP_LAST:
2752 case OP_INTERNALVAR:
2753 *pos += 3;
2754 break;
2755
2756 case UNOP_MEMVAL:
2757 *pos += 3;
2758 nargs = 1;
2759 break;
2760
2761 case OP_REGISTER:
2762 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2763 break;
2764
2765 case STRUCTOP_STRUCT:
2766 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2767 nargs = 1;
2768 break;
2769
2770 case TERNOP_SLICE:
2771 *pos += 1;
2772 nargs = 3;
2773 break;
2774
2775 case OP_STRING:
2776 break;
2777
2778 default:
2779 error (_("Unexpected operator during name resolution"));
2780 }
2781
2782 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2783 for (i = 0; i < nargs; i += 1)
2784 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2785 argvec[i] = NULL;
2786 exp = *expp;
2787
2788 /* Pass two: perform any resolution on principal operator. */
2789 switch (op)
2790 {
2791 default:
2792 break;
2793
2794 case OP_VAR_VALUE:
2795 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2796 {
2797 struct ada_symbol_info *candidates;
2798 int n_candidates;
2799
2800 n_candidates =
2801 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2802 (exp->elts[pc + 2].symbol),
2803 exp->elts[pc + 1].block, VAR_DOMAIN,
2804 &candidates);
2805
2806 if (n_candidates > 1)
2807 {
2808 /* Types tend to get re-introduced locally, so if there
2809 are any local symbols that are not types, first filter
2810 out all types. */
2811 int j;
2812 for (j = 0; j < n_candidates; j += 1)
2813 switch (SYMBOL_CLASS (candidates[j].sym))
2814 {
2815 case LOC_REGISTER:
2816 case LOC_ARG:
2817 case LOC_REF_ARG:
2818 case LOC_REGPARM_ADDR:
2819 case LOC_LOCAL:
2820 case LOC_COMPUTED:
2821 goto FoundNonType;
2822 default:
2823 break;
2824 }
2825 FoundNonType:
2826 if (j < n_candidates)
2827 {
2828 j = 0;
2829 while (j < n_candidates)
2830 {
2831 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2832 {
2833 candidates[j] = candidates[n_candidates - 1];
2834 n_candidates -= 1;
2835 }
2836 else
2837 j += 1;
2838 }
2839 }
2840 }
2841
2842 if (n_candidates == 0)
2843 error (_("No definition found for %s"),
2844 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2845 else if (n_candidates == 1)
2846 i = 0;
2847 else if (deprocedure_p
2848 && !is_nonfunction (candidates, n_candidates))
2849 {
2850 i = ada_resolve_function
2851 (candidates, n_candidates, NULL, 0,
2852 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2853 context_type);
2854 if (i < 0)
2855 error (_("Could not find a match for %s"),
2856 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2857 }
2858 else
2859 {
2860 printf_filtered (_("Multiple matches for %s\n"),
2861 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2862 user_select_syms (candidates, n_candidates, 1);
2863 i = 0;
2864 }
2865
2866 exp->elts[pc + 1].block = candidates[i].block;
2867 exp->elts[pc + 2].symbol = candidates[i].sym;
2868 if (innermost_block == NULL
2869 || contained_in (candidates[i].block, innermost_block))
2870 innermost_block = candidates[i].block;
2871 }
2872
2873 if (deprocedure_p
2874 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2875 == TYPE_CODE_FUNC))
2876 {
2877 replace_operator_with_call (expp, pc, 0, 0,
2878 exp->elts[pc + 2].symbol,
2879 exp->elts[pc + 1].block);
2880 exp = *expp;
2881 }
2882 break;
2883
2884 case OP_FUNCALL:
2885 {
2886 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2887 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2888 {
2889 struct ada_symbol_info *candidates;
2890 int n_candidates;
2891
2892 n_candidates =
2893 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2894 (exp->elts[pc + 5].symbol),
2895 exp->elts[pc + 4].block, VAR_DOMAIN,
2896 &candidates);
2897 if (n_candidates == 1)
2898 i = 0;
2899 else
2900 {
2901 i = ada_resolve_function
2902 (candidates, n_candidates,
2903 argvec, nargs,
2904 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2905 context_type);
2906 if (i < 0)
2907 error (_("Could not find a match for %s"),
2908 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2909 }
2910
2911 exp->elts[pc + 4].block = candidates[i].block;
2912 exp->elts[pc + 5].symbol = candidates[i].sym;
2913 if (innermost_block == NULL
2914 || contained_in (candidates[i].block, innermost_block))
2915 innermost_block = candidates[i].block;
2916 }
2917 }
2918 break;
2919 case BINOP_ADD:
2920 case BINOP_SUB:
2921 case BINOP_MUL:
2922 case BINOP_DIV:
2923 case BINOP_REM:
2924 case BINOP_MOD:
2925 case BINOP_CONCAT:
2926 case BINOP_BITWISE_AND:
2927 case BINOP_BITWISE_IOR:
2928 case BINOP_BITWISE_XOR:
2929 case BINOP_EQUAL:
2930 case BINOP_NOTEQUAL:
2931 case BINOP_LESS:
2932 case BINOP_GTR:
2933 case BINOP_LEQ:
2934 case BINOP_GEQ:
2935 case BINOP_EXP:
2936 case UNOP_NEG:
2937 case UNOP_PLUS:
2938 case UNOP_LOGICAL_NOT:
2939 case UNOP_ABS:
2940 if (possible_user_operator_p (op, argvec))
2941 {
2942 struct ada_symbol_info *candidates;
2943 int n_candidates;
2944
2945 n_candidates =
2946 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2947 (struct block *) NULL, VAR_DOMAIN,
2948 &candidates);
2949 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2950 ada_decoded_op_name (op), NULL);
2951 if (i < 0)
2952 break;
2953
2954 replace_operator_with_call (expp, pc, nargs, 1,
2955 candidates[i].sym, candidates[i].block);
2956 exp = *expp;
2957 }
2958 break;
2959
2960 case OP_TYPE:
2961 case OP_REGISTER:
2962 return NULL;
2963 }
2964
2965 *pos = pc;
2966 return evaluate_subexp_type (exp, pos);
2967 }
2968
2969 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
2970 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2971 a non-pointer. A type of 'void' (which is never a valid expression type)
2972 by convention matches anything. */
2973 /* The term "match" here is rather loose. The match is heuristic and
2974 liberal. FIXME: TOO liberal, in fact. */
2975
2976 static int
2977 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
2978 {
2979 ftype = ada_check_typedef (ftype);
2980 atype = ada_check_typedef (atype);
2981
2982 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2983 ftype = TYPE_TARGET_TYPE (ftype);
2984 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2985 atype = TYPE_TARGET_TYPE (atype);
2986
2987 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
2988 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2989 return 1;
2990
2991 switch (TYPE_CODE (ftype))
2992 {
2993 default:
2994 return 1;
2995 case TYPE_CODE_PTR:
2996 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
2997 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2998 TYPE_TARGET_TYPE (atype), 0);
2999 else
3000 return (may_deref
3001 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3002 case TYPE_CODE_INT:
3003 case TYPE_CODE_ENUM:
3004 case TYPE_CODE_RANGE:
3005 switch (TYPE_CODE (atype))
3006 {
3007 case TYPE_CODE_INT:
3008 case TYPE_CODE_ENUM:
3009 case TYPE_CODE_RANGE:
3010 return 1;
3011 default:
3012 return 0;
3013 }
3014
3015 case TYPE_CODE_ARRAY:
3016 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3017 || ada_is_array_descriptor_type (atype));
3018
3019 case TYPE_CODE_STRUCT:
3020 if (ada_is_array_descriptor_type (ftype))
3021 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3022 || ada_is_array_descriptor_type (atype));
3023 else
3024 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3025 && !ada_is_array_descriptor_type (atype));
3026
3027 case TYPE_CODE_UNION:
3028 case TYPE_CODE_FLT:
3029 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3030 }
3031 }
3032
3033 /* Return non-zero if the formals of FUNC "sufficiently match" the
3034 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3035 may also be an enumeral, in which case it is treated as a 0-
3036 argument function. */
3037
3038 static int
3039 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3040 {
3041 int i;
3042 struct type *func_type = SYMBOL_TYPE (func);
3043
3044 if (SYMBOL_CLASS (func) == LOC_CONST
3045 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3046 return (n_actuals == 0);
3047 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3048 return 0;
3049
3050 if (TYPE_NFIELDS (func_type) != n_actuals)
3051 return 0;
3052
3053 for (i = 0; i < n_actuals; i += 1)
3054 {
3055 if (actuals[i] == NULL)
3056 return 0;
3057 else
3058 {
3059 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3060 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3061
3062 if (!ada_type_match (ftype, atype, 1))
3063 return 0;
3064 }
3065 }
3066 return 1;
3067 }
3068
3069 /* False iff function type FUNC_TYPE definitely does not produce a value
3070 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3071 FUNC_TYPE is not a valid function type with a non-null return type
3072 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3073
3074 static int
3075 return_match (struct type *func_type, struct type *context_type)
3076 {
3077 struct type *return_type;
3078
3079 if (func_type == NULL)
3080 return 1;
3081
3082 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3083 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3084 else
3085 return_type = base_type (func_type);
3086 if (return_type == NULL)
3087 return 1;
3088
3089 context_type = base_type (context_type);
3090
3091 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3092 return context_type == NULL || return_type == context_type;
3093 else if (context_type == NULL)
3094 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3095 else
3096 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3097 }
3098
3099
3100 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3101 function (if any) that matches the types of the NARGS arguments in
3102 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3103 that returns that type, then eliminate matches that don't. If
3104 CONTEXT_TYPE is void and there is at least one match that does not
3105 return void, eliminate all matches that do.
3106
3107 Asks the user if there is more than one match remaining. Returns -1
3108 if there is no such symbol or none is selected. NAME is used
3109 solely for messages. May re-arrange and modify SYMS in
3110 the process; the index returned is for the modified vector. */
3111
3112 static int
3113 ada_resolve_function (struct ada_symbol_info syms[],
3114 int nsyms, struct value **args, int nargs,
3115 const char *name, struct type *context_type)
3116 {
3117 int k;
3118 int m; /* Number of hits */
3119 struct type *fallback;
3120 struct type *return_type;
3121
3122 return_type = context_type;
3123 if (context_type == NULL)
3124 fallback = builtin_type_void;
3125 else
3126 fallback = NULL;
3127
3128 m = 0;
3129 while (1)
3130 {
3131 for (k = 0; k < nsyms; k += 1)
3132 {
3133 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3134
3135 if (ada_args_match (syms[k].sym, args, nargs)
3136 && return_match (type, return_type))
3137 {
3138 syms[m] = syms[k];
3139 m += 1;
3140 }
3141 }
3142 if (m > 0 || return_type == fallback)
3143 break;
3144 else
3145 return_type = fallback;
3146 }
3147
3148 if (m == 0)
3149 return -1;
3150 else if (m > 1)
3151 {
3152 printf_filtered (_("Multiple matches for %s\n"), name);
3153 user_select_syms (syms, m, 1);
3154 return 0;
3155 }
3156 return 0;
3157 }
3158
3159 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3160 in a listing of choices during disambiguation (see sort_choices, below).
3161 The idea is that overloadings of a subprogram name from the
3162 same package should sort in their source order. We settle for ordering
3163 such symbols by their trailing number (__N or $N). */
3164
3165 static int
3166 encoded_ordered_before (char *N0, char *N1)
3167 {
3168 if (N1 == NULL)
3169 return 0;
3170 else if (N0 == NULL)
3171 return 1;
3172 else
3173 {
3174 int k0, k1;
3175 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3176 ;
3177 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3178 ;
3179 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3180 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3181 {
3182 int n0, n1;
3183 n0 = k0;
3184 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3185 n0 -= 1;
3186 n1 = k1;
3187 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3188 n1 -= 1;
3189 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3190 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3191 }
3192 return (strcmp (N0, N1) < 0);
3193 }
3194 }
3195
3196 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3197 encoded names. */
3198
3199 static void
3200 sort_choices (struct ada_symbol_info syms[], int nsyms)
3201 {
3202 int i;
3203 for (i = 1; i < nsyms; i += 1)
3204 {
3205 struct ada_symbol_info sym = syms[i];
3206 int j;
3207
3208 for (j = i - 1; j >= 0; j -= 1)
3209 {
3210 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3211 SYMBOL_LINKAGE_NAME (sym.sym)))
3212 break;
3213 syms[j + 1] = syms[j];
3214 }
3215 syms[j + 1] = sym;
3216 }
3217 }
3218
3219 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3220 by asking the user (if necessary), returning the number selected,
3221 and setting the first elements of SYMS items. Error if no symbols
3222 selected. */
3223
3224 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3225 to be re-integrated one of these days. */
3226
3227 int
3228 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3229 {
3230 int i;
3231 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3232 int n_chosen;
3233 int first_choice = (max_results == 1) ? 1 : 2;
3234 const char *select_mode = multiple_symbols_select_mode ();
3235
3236 if (max_results < 1)
3237 error (_("Request to select 0 symbols!"));
3238 if (nsyms <= 1)
3239 return nsyms;
3240
3241 if (select_mode == multiple_symbols_cancel)
3242 error (_("\
3243 canceled because the command is ambiguous\n\
3244 See set/show multiple-symbol."));
3245
3246 /* If select_mode is "all", then return all possible symbols.
3247 Only do that if more than one symbol can be selected, of course.
3248 Otherwise, display the menu as usual. */
3249 if (select_mode == multiple_symbols_all && max_results > 1)
3250 return nsyms;
3251
3252 printf_unfiltered (_("[0] cancel\n"));
3253 if (max_results > 1)
3254 printf_unfiltered (_("[1] all\n"));
3255
3256 sort_choices (syms, nsyms);
3257
3258 for (i = 0; i < nsyms; i += 1)
3259 {
3260 if (syms[i].sym == NULL)
3261 continue;
3262
3263 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3264 {
3265 struct symtab_and_line sal =
3266 find_function_start_sal (syms[i].sym, 1);
3267 if (sal.symtab == NULL)
3268 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3269 i + first_choice,
3270 SYMBOL_PRINT_NAME (syms[i].sym),
3271 sal.line);
3272 else
3273 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3274 SYMBOL_PRINT_NAME (syms[i].sym),
3275 sal.symtab->filename, sal.line);
3276 continue;
3277 }
3278 else
3279 {
3280 int is_enumeral =
3281 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3282 && SYMBOL_TYPE (syms[i].sym) != NULL
3283 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3284 struct symtab *symtab = syms[i].sym->symtab;
3285
3286 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3287 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3288 i + first_choice,
3289 SYMBOL_PRINT_NAME (syms[i].sym),
3290 symtab->filename, SYMBOL_LINE (syms[i].sym));
3291 else if (is_enumeral
3292 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3293 {
3294 printf_unfiltered (("[%d] "), i + first_choice);
3295 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3296 gdb_stdout, -1, 0);
3297 printf_unfiltered (_("'(%s) (enumeral)\n"),
3298 SYMBOL_PRINT_NAME (syms[i].sym));
3299 }
3300 else if (symtab != NULL)
3301 printf_unfiltered (is_enumeral
3302 ? _("[%d] %s in %s (enumeral)\n")
3303 : _("[%d] %s at %s:?\n"),
3304 i + first_choice,
3305 SYMBOL_PRINT_NAME (syms[i].sym),
3306 symtab->filename);
3307 else
3308 printf_unfiltered (is_enumeral
3309 ? _("[%d] %s (enumeral)\n")
3310 : _("[%d] %s at ?\n"),
3311 i + first_choice,
3312 SYMBOL_PRINT_NAME (syms[i].sym));
3313 }
3314 }
3315
3316 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3317 "overload-choice");
3318
3319 for (i = 0; i < n_chosen; i += 1)
3320 syms[i] = syms[chosen[i]];
3321
3322 return n_chosen;
3323 }
3324
3325 /* Read and validate a set of numeric choices from the user in the
3326 range 0 .. N_CHOICES-1. Place the results in increasing
3327 order in CHOICES[0 .. N-1], and return N.
3328
3329 The user types choices as a sequence of numbers on one line
3330 separated by blanks, encoding them as follows:
3331
3332 + A choice of 0 means to cancel the selection, throwing an error.
3333 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3334 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3335
3336 The user is not allowed to choose more than MAX_RESULTS values.
3337
3338 ANNOTATION_SUFFIX, if present, is used to annotate the input
3339 prompts (for use with the -f switch). */
3340
3341 int
3342 get_selections (int *choices, int n_choices, int max_results,
3343 int is_all_choice, char *annotation_suffix)
3344 {
3345 char *args;
3346 char *prompt;
3347 int n_chosen;
3348 int first_choice = is_all_choice ? 2 : 1;
3349
3350 prompt = getenv ("PS2");
3351 if (prompt == NULL)
3352 prompt = "> ";
3353
3354 args = command_line_input (prompt, 0, annotation_suffix);
3355
3356 if (args == NULL)
3357 error_no_arg (_("one or more choice numbers"));
3358
3359 n_chosen = 0;
3360
3361 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3362 order, as given in args. Choices are validated. */
3363 while (1)
3364 {
3365 char *args2;
3366 int choice, j;
3367
3368 while (isspace (*args))
3369 args += 1;
3370 if (*args == '\0' && n_chosen == 0)
3371 error_no_arg (_("one or more choice numbers"));
3372 else if (*args == '\0')
3373 break;
3374
3375 choice = strtol (args, &args2, 10);
3376 if (args == args2 || choice < 0
3377 || choice > n_choices + first_choice - 1)
3378 error (_("Argument must be choice number"));
3379 args = args2;
3380
3381 if (choice == 0)
3382 error (_("cancelled"));
3383
3384 if (choice < first_choice)
3385 {
3386 n_chosen = n_choices;
3387 for (j = 0; j < n_choices; j += 1)
3388 choices[j] = j;
3389 break;
3390 }
3391 choice -= first_choice;
3392
3393 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3394 {
3395 }
3396
3397 if (j < 0 || choice != choices[j])
3398 {
3399 int k;
3400 for (k = n_chosen - 1; k > j; k -= 1)
3401 choices[k + 1] = choices[k];
3402 choices[j + 1] = choice;
3403 n_chosen += 1;
3404 }
3405 }
3406
3407 if (n_chosen > max_results)
3408 error (_("Select no more than %d of the above"), max_results);
3409
3410 return n_chosen;
3411 }
3412
3413 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3414 on the function identified by SYM and BLOCK, and taking NARGS
3415 arguments. Update *EXPP as needed to hold more space. */
3416
3417 static void
3418 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3419 int oplen, struct symbol *sym,
3420 struct block *block)
3421 {
3422 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3423 symbol, -oplen for operator being replaced). */
3424 struct expression *newexp = (struct expression *)
3425 xmalloc (sizeof (struct expression)
3426 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3427 struct expression *exp = *expp;
3428
3429 newexp->nelts = exp->nelts + 7 - oplen;
3430 newexp->language_defn = exp->language_defn;
3431 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3432 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3433 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3434
3435 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3436 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3437
3438 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3439 newexp->elts[pc + 4].block = block;
3440 newexp->elts[pc + 5].symbol = sym;
3441
3442 *expp = newexp;
3443 xfree (exp);
3444 }
3445
3446 /* Type-class predicates */
3447
3448 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3449 or FLOAT). */
3450
3451 static int
3452 numeric_type_p (struct type *type)
3453 {
3454 if (type == NULL)
3455 return 0;
3456 else
3457 {
3458 switch (TYPE_CODE (type))
3459 {
3460 case TYPE_CODE_INT:
3461 case TYPE_CODE_FLT:
3462 return 1;
3463 case TYPE_CODE_RANGE:
3464 return (type == TYPE_TARGET_TYPE (type)
3465 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3466 default:
3467 return 0;
3468 }
3469 }
3470 }
3471
3472 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3473
3474 static int
3475 integer_type_p (struct type *type)
3476 {
3477 if (type == NULL)
3478 return 0;
3479 else
3480 {
3481 switch (TYPE_CODE (type))
3482 {
3483 case TYPE_CODE_INT:
3484 return 1;
3485 case TYPE_CODE_RANGE:
3486 return (type == TYPE_TARGET_TYPE (type)
3487 || integer_type_p (TYPE_TARGET_TYPE (type)));
3488 default:
3489 return 0;
3490 }
3491 }
3492 }
3493
3494 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3495
3496 static int
3497 scalar_type_p (struct type *type)
3498 {
3499 if (type == NULL)
3500 return 0;
3501 else
3502 {
3503 switch (TYPE_CODE (type))
3504 {
3505 case TYPE_CODE_INT:
3506 case TYPE_CODE_RANGE:
3507 case TYPE_CODE_ENUM:
3508 case TYPE_CODE_FLT:
3509 return 1;
3510 default:
3511 return 0;
3512 }
3513 }
3514 }
3515
3516 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3517
3518 static int
3519 discrete_type_p (struct type *type)
3520 {
3521 if (type == NULL)
3522 return 0;
3523 else
3524 {
3525 switch (TYPE_CODE (type))
3526 {
3527 case TYPE_CODE_INT:
3528 case TYPE_CODE_RANGE:
3529 case TYPE_CODE_ENUM:
3530 return 1;
3531 default:
3532 return 0;
3533 }
3534 }
3535 }
3536
3537 /* Returns non-zero if OP with operands in the vector ARGS could be
3538 a user-defined function. Errs on the side of pre-defined operators
3539 (i.e., result 0). */
3540
3541 static int
3542 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3543 {
3544 struct type *type0 =
3545 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3546 struct type *type1 =
3547 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3548
3549 if (type0 == NULL)
3550 return 0;
3551
3552 switch (op)
3553 {
3554 default:
3555 return 0;
3556
3557 case BINOP_ADD:
3558 case BINOP_SUB:
3559 case BINOP_MUL:
3560 case BINOP_DIV:
3561 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3562
3563 case BINOP_REM:
3564 case BINOP_MOD:
3565 case BINOP_BITWISE_AND:
3566 case BINOP_BITWISE_IOR:
3567 case BINOP_BITWISE_XOR:
3568 return (!(integer_type_p (type0) && integer_type_p (type1)));
3569
3570 case BINOP_EQUAL:
3571 case BINOP_NOTEQUAL:
3572 case BINOP_LESS:
3573 case BINOP_GTR:
3574 case BINOP_LEQ:
3575 case BINOP_GEQ:
3576 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3577
3578 case BINOP_CONCAT:
3579 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3580
3581 case BINOP_EXP:
3582 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3583
3584 case UNOP_NEG:
3585 case UNOP_PLUS:
3586 case UNOP_LOGICAL_NOT:
3587 case UNOP_ABS:
3588 return (!numeric_type_p (type0));
3589
3590 }
3591 }
3592 \f
3593 /* Renaming */
3594
3595 /* NOTES:
3596
3597 1. In the following, we assume that a renaming type's name may
3598 have an ___XD suffix. It would be nice if this went away at some
3599 point.
3600 2. We handle both the (old) purely type-based representation of
3601 renamings and the (new) variable-based encoding. At some point,
3602 it is devoutly to be hoped that the former goes away
3603 (FIXME: hilfinger-2007-07-09).
3604 3. Subprogram renamings are not implemented, although the XRS
3605 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3606
3607 /* If SYM encodes a renaming,
3608
3609 <renaming> renames <renamed entity>,
3610
3611 sets *LEN to the length of the renamed entity's name,
3612 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3613 the string describing the subcomponent selected from the renamed
3614 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3615 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3616 are undefined). Otherwise, returns a value indicating the category
3617 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3618 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3619 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3620 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3621 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3622 may be NULL, in which case they are not assigned.
3623
3624 [Currently, however, GCC does not generate subprogram renamings.] */
3625
3626 enum ada_renaming_category
3627 ada_parse_renaming (struct symbol *sym,
3628 const char **renamed_entity, int *len,
3629 const char **renaming_expr)
3630 {
3631 enum ada_renaming_category kind;
3632 const char *info;
3633 const char *suffix;
3634
3635 if (sym == NULL)
3636 return ADA_NOT_RENAMING;
3637 switch (SYMBOL_CLASS (sym))
3638 {
3639 default:
3640 return ADA_NOT_RENAMING;
3641 case LOC_TYPEDEF:
3642 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3643 renamed_entity, len, renaming_expr);
3644 case LOC_LOCAL:
3645 case LOC_STATIC:
3646 case LOC_COMPUTED:
3647 case LOC_OPTIMIZED_OUT:
3648 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3649 if (info == NULL)
3650 return ADA_NOT_RENAMING;
3651 switch (info[5])
3652 {
3653 case '_':
3654 kind = ADA_OBJECT_RENAMING;
3655 info += 6;
3656 break;
3657 case 'E':
3658 kind = ADA_EXCEPTION_RENAMING;
3659 info += 7;
3660 break;
3661 case 'P':
3662 kind = ADA_PACKAGE_RENAMING;
3663 info += 7;
3664 break;
3665 case 'S':
3666 kind = ADA_SUBPROGRAM_RENAMING;
3667 info += 7;
3668 break;
3669 default:
3670 return ADA_NOT_RENAMING;
3671 }
3672 }
3673
3674 if (renamed_entity != NULL)
3675 *renamed_entity = info;
3676 suffix = strstr (info, "___XE");
3677 if (suffix == NULL || suffix == info)
3678 return ADA_NOT_RENAMING;
3679 if (len != NULL)
3680 *len = strlen (info) - strlen (suffix);
3681 suffix += 5;
3682 if (renaming_expr != NULL)
3683 *renaming_expr = suffix;
3684 return kind;
3685 }
3686
3687 /* Assuming TYPE encodes a renaming according to the old encoding in
3688 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3689 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3690 ADA_NOT_RENAMING otherwise. */
3691 static enum ada_renaming_category
3692 parse_old_style_renaming (struct type *type,
3693 const char **renamed_entity, int *len,
3694 const char **renaming_expr)
3695 {
3696 enum ada_renaming_category kind;
3697 const char *name;
3698 const char *info;
3699 const char *suffix;
3700
3701 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3702 || TYPE_NFIELDS (type) != 1)
3703 return ADA_NOT_RENAMING;
3704
3705 name = type_name_no_tag (type);
3706 if (name == NULL)
3707 return ADA_NOT_RENAMING;
3708
3709 name = strstr (name, "___XR");
3710 if (name == NULL)
3711 return ADA_NOT_RENAMING;
3712 switch (name[5])
3713 {
3714 case '\0':
3715 case '_':
3716 kind = ADA_OBJECT_RENAMING;
3717 break;
3718 case 'E':
3719 kind = ADA_EXCEPTION_RENAMING;
3720 break;
3721 case 'P':
3722 kind = ADA_PACKAGE_RENAMING;
3723 break;
3724 case 'S':
3725 kind = ADA_SUBPROGRAM_RENAMING;
3726 break;
3727 default:
3728 return ADA_NOT_RENAMING;
3729 }
3730
3731 info = TYPE_FIELD_NAME (type, 0);
3732 if (info == NULL)
3733 return ADA_NOT_RENAMING;
3734 if (renamed_entity != NULL)
3735 *renamed_entity = info;
3736 suffix = strstr (info, "___XE");
3737 if (renaming_expr != NULL)
3738 *renaming_expr = suffix + 5;
3739 if (suffix == NULL || suffix == info)
3740 return ADA_NOT_RENAMING;
3741 if (len != NULL)
3742 *len = suffix - info;
3743 return kind;
3744 }
3745
3746 \f
3747
3748 /* Evaluation: Function Calls */
3749
3750 /* Return an lvalue containing the value VAL. This is the identity on
3751 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3752 on the stack, using and updating *SP as the stack pointer, and
3753 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3754
3755 static struct value *
3756 ensure_lval (struct value *val, CORE_ADDR *sp)
3757 {
3758 if (! VALUE_LVAL (val))
3759 {
3760 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3761
3762 /* The following is taken from the structure-return code in
3763 call_function_by_hand. FIXME: Therefore, some refactoring seems
3764 indicated. */
3765 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3766 {
3767 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3768 reserving sufficient space. */
3769 *sp -= len;
3770 if (gdbarch_frame_align_p (current_gdbarch))
3771 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3772 VALUE_ADDRESS (val) = *sp;
3773 }
3774 else
3775 {
3776 /* Stack grows upward. Align the frame, allocate space, and
3777 then again, re-align the frame. */
3778 if (gdbarch_frame_align_p (current_gdbarch))
3779 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3780 VALUE_ADDRESS (val) = *sp;
3781 *sp += len;
3782 if (gdbarch_frame_align_p (current_gdbarch))
3783 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3784 }
3785 VALUE_LVAL (val) = lval_memory;
3786
3787 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3788 }
3789
3790 return val;
3791 }
3792
3793 /* Return the value ACTUAL, converted to be an appropriate value for a
3794 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3795 allocating any necessary descriptors (fat pointers), or copies of
3796 values not residing in memory, updating it as needed. */
3797
3798 struct value *
3799 ada_convert_actual (struct value *actual, struct type *formal_type0,
3800 CORE_ADDR *sp)
3801 {
3802 struct type *actual_type = ada_check_typedef (value_type (actual));
3803 struct type *formal_type = ada_check_typedef (formal_type0);
3804 struct type *formal_target =
3805 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3806 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3807 struct type *actual_target =
3808 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3809 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3810
3811 if (ada_is_array_descriptor_type (formal_target)
3812 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3813 return make_array_descriptor (formal_type, actual, sp);
3814 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3815 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3816 {
3817 struct value *result;
3818 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3819 && ada_is_array_descriptor_type (actual_target))
3820 result = desc_data (actual);
3821 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3822 {
3823 if (VALUE_LVAL (actual) != lval_memory)
3824 {
3825 struct value *val;
3826 actual_type = ada_check_typedef (value_type (actual));
3827 val = allocate_value (actual_type);
3828 memcpy ((char *) value_contents_raw (val),
3829 (char *) value_contents (actual),
3830 TYPE_LENGTH (actual_type));
3831 actual = ensure_lval (val, sp);
3832 }
3833 result = value_addr (actual);
3834 }
3835 else
3836 return actual;
3837 return value_cast_pointers (formal_type, result);
3838 }
3839 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3840 return ada_value_ind (actual);
3841
3842 return actual;
3843 }
3844
3845
3846 /* Push a descriptor of type TYPE for array value ARR on the stack at
3847 *SP, updating *SP to reflect the new descriptor. Return either
3848 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3849 to-descriptor type rather than a descriptor type), a struct value *
3850 representing a pointer to this descriptor. */
3851
3852 static struct value *
3853 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3854 {
3855 struct type *bounds_type = desc_bounds_type (type);
3856 struct type *desc_type = desc_base_type (type);
3857 struct value *descriptor = allocate_value (desc_type);
3858 struct value *bounds = allocate_value (bounds_type);
3859 int i;
3860
3861 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3862 {
3863 modify_general_field (value_contents_writeable (bounds),
3864 value_as_long (ada_array_bound (arr, i, 0)),
3865 desc_bound_bitpos (bounds_type, i, 0),
3866 desc_bound_bitsize (bounds_type, i, 0));
3867 modify_general_field (value_contents_writeable (bounds),
3868 value_as_long (ada_array_bound (arr, i, 1)),
3869 desc_bound_bitpos (bounds_type, i, 1),
3870 desc_bound_bitsize (bounds_type, i, 1));
3871 }
3872
3873 bounds = ensure_lval (bounds, sp);
3874
3875 modify_general_field (value_contents_writeable (descriptor),
3876 VALUE_ADDRESS (ensure_lval (arr, sp)),
3877 fat_pntr_data_bitpos (desc_type),
3878 fat_pntr_data_bitsize (desc_type));
3879
3880 modify_general_field (value_contents_writeable (descriptor),
3881 VALUE_ADDRESS (bounds),
3882 fat_pntr_bounds_bitpos (desc_type),
3883 fat_pntr_bounds_bitsize (desc_type));
3884
3885 descriptor = ensure_lval (descriptor, sp);
3886
3887 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3888 return value_addr (descriptor);
3889 else
3890 return descriptor;
3891 }
3892 \f
3893 /* Dummy definitions for an experimental caching module that is not
3894 * used in the public sources. */
3895
3896 static int
3897 lookup_cached_symbol (const char *name, domain_enum namespace,
3898 struct symbol **sym, struct block **block)
3899 {
3900 return 0;
3901 }
3902
3903 static void
3904 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3905 struct block *block)
3906 {
3907 }
3908 \f
3909 /* Symbol Lookup */
3910
3911 /* Return the result of a standard (literal, C-like) lookup of NAME in
3912 given DOMAIN, visible from lexical block BLOCK. */
3913
3914 static struct symbol *
3915 standard_lookup (const char *name, const struct block *block,
3916 domain_enum domain)
3917 {
3918 struct symbol *sym;
3919
3920 if (lookup_cached_symbol (name, domain, &sym, NULL))
3921 return sym;
3922 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3923 cache_symbol (name, domain, sym, block_found);
3924 return sym;
3925 }
3926
3927
3928 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3929 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3930 since they contend in overloading in the same way. */
3931 static int
3932 is_nonfunction (struct ada_symbol_info syms[], int n)
3933 {
3934 int i;
3935
3936 for (i = 0; i < n; i += 1)
3937 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3938 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3939 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3940 return 1;
3941
3942 return 0;
3943 }
3944
3945 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3946 struct types. Otherwise, they may not. */
3947
3948 static int
3949 equiv_types (struct type *type0, struct type *type1)
3950 {
3951 if (type0 == type1)
3952 return 1;
3953 if (type0 == NULL || type1 == NULL
3954 || TYPE_CODE (type0) != TYPE_CODE (type1))
3955 return 0;
3956 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3957 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3958 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3959 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3960 return 1;
3961
3962 return 0;
3963 }
3964
3965 /* True iff SYM0 represents the same entity as SYM1, or one that is
3966 no more defined than that of SYM1. */
3967
3968 static int
3969 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3970 {
3971 if (sym0 == sym1)
3972 return 1;
3973 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
3974 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3975 return 0;
3976
3977 switch (SYMBOL_CLASS (sym0))
3978 {
3979 case LOC_UNDEF:
3980 return 1;
3981 case LOC_TYPEDEF:
3982 {
3983 struct type *type0 = SYMBOL_TYPE (sym0);
3984 struct type *type1 = SYMBOL_TYPE (sym1);
3985 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3986 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3987 int len0 = strlen (name0);
3988 return
3989 TYPE_CODE (type0) == TYPE_CODE (type1)
3990 && (equiv_types (type0, type1)
3991 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3992 && strncmp (name1 + len0, "___XV", 5) == 0));
3993 }
3994 case LOC_CONST:
3995 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
3996 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
3997 default:
3998 return 0;
3999 }
4000 }
4001
4002 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4003 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4004
4005 static void
4006 add_defn_to_vec (struct obstack *obstackp,
4007 struct symbol *sym,
4008 struct block *block)
4009 {
4010 int i;
4011 size_t tmp;
4012 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4013
4014 /* Do not try to complete stub types, as the debugger is probably
4015 already scanning all symbols matching a certain name at the
4016 time when this function is called. Trying to replace the stub
4017 type by its associated full type will cause us to restart a scan
4018 which may lead to an infinite recursion. Instead, the client
4019 collecting the matching symbols will end up collecting several
4020 matches, with at least one of them complete. It can then filter
4021 out the stub ones if needed. */
4022
4023 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4024 {
4025 if (lesseq_defined_than (sym, prevDefns[i].sym))
4026 return;
4027 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4028 {
4029 prevDefns[i].sym = sym;
4030 prevDefns[i].block = block;
4031 return;
4032 }
4033 }
4034
4035 {
4036 struct ada_symbol_info info;
4037
4038 info.sym = sym;
4039 info.block = block;
4040 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4041 }
4042 }
4043
4044 /* Number of ada_symbol_info structures currently collected in
4045 current vector in *OBSTACKP. */
4046
4047 static int
4048 num_defns_collected (struct obstack *obstackp)
4049 {
4050 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4051 }
4052
4053 /* Vector of ada_symbol_info structures currently collected in current
4054 vector in *OBSTACKP. If FINISH, close off the vector and return
4055 its final address. */
4056
4057 static struct ada_symbol_info *
4058 defns_collected (struct obstack *obstackp, int finish)
4059 {
4060 if (finish)
4061 return obstack_finish (obstackp);
4062 else
4063 return (struct ada_symbol_info *) obstack_base (obstackp);
4064 }
4065
4066 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4067 Check the global symbols if GLOBAL, the static symbols if not.
4068 Do wild-card match if WILD. */
4069
4070 static struct partial_symbol *
4071 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4072 int global, domain_enum namespace, int wild)
4073 {
4074 struct partial_symbol **start;
4075 int name_len = strlen (name);
4076 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4077 int i;
4078
4079 if (length == 0)
4080 {
4081 return (NULL);
4082 }
4083
4084 start = (global ?
4085 pst->objfile->global_psymbols.list + pst->globals_offset :
4086 pst->objfile->static_psymbols.list + pst->statics_offset);
4087
4088 if (wild)
4089 {
4090 for (i = 0; i < length; i += 1)
4091 {
4092 struct partial_symbol *psym = start[i];
4093
4094 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4095 SYMBOL_DOMAIN (psym), namespace)
4096 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4097 return psym;
4098 }
4099 return NULL;
4100 }
4101 else
4102 {
4103 if (global)
4104 {
4105 int U;
4106 i = 0;
4107 U = length - 1;
4108 while (U - i > 4)
4109 {
4110 int M = (U + i) >> 1;
4111 struct partial_symbol *psym = start[M];
4112 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4113 i = M + 1;
4114 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4115 U = M - 1;
4116 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4117 i = M + 1;
4118 else
4119 U = M;
4120 }
4121 }
4122 else
4123 i = 0;
4124
4125 while (i < length)
4126 {
4127 struct partial_symbol *psym = start[i];
4128
4129 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4130 SYMBOL_DOMAIN (psym), namespace))
4131 {
4132 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4133
4134 if (cmp < 0)
4135 {
4136 if (global)
4137 break;
4138 }
4139 else if (cmp == 0
4140 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4141 + name_len))
4142 return psym;
4143 }
4144 i += 1;
4145 }
4146
4147 if (global)
4148 {
4149 int U;
4150 i = 0;
4151 U = length - 1;
4152 while (U - i > 4)
4153 {
4154 int M = (U + i) >> 1;
4155 struct partial_symbol *psym = start[M];
4156 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4157 i = M + 1;
4158 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4159 U = M - 1;
4160 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4161 i = M + 1;
4162 else
4163 U = M;
4164 }
4165 }
4166 else
4167 i = 0;
4168
4169 while (i < length)
4170 {
4171 struct partial_symbol *psym = start[i];
4172
4173 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4174 SYMBOL_DOMAIN (psym), namespace))
4175 {
4176 int cmp;
4177
4178 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4179 if (cmp == 0)
4180 {
4181 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4182 if (cmp == 0)
4183 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4184 name_len);
4185 }
4186
4187 if (cmp < 0)
4188 {
4189 if (global)
4190 break;
4191 }
4192 else if (cmp == 0
4193 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4194 + name_len + 5))
4195 return psym;
4196 }
4197 i += 1;
4198 }
4199 }
4200 return NULL;
4201 }
4202
4203 /* Return a minimal symbol matching NAME according to Ada decoding
4204 rules. Returns NULL if there is no such minimal symbol. Names
4205 prefixed with "standard__" are handled specially: "standard__" is
4206 first stripped off, and only static and global symbols are searched. */
4207
4208 struct minimal_symbol *
4209 ada_lookup_simple_minsym (const char *name)
4210 {
4211 struct objfile *objfile;
4212 struct minimal_symbol *msymbol;
4213 int wild_match;
4214
4215 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4216 {
4217 name += sizeof ("standard__") - 1;
4218 wild_match = 0;
4219 }
4220 else
4221 wild_match = (strstr (name, "__") == NULL);
4222
4223 ALL_MSYMBOLS (objfile, msymbol)
4224 {
4225 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4226 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4227 return msymbol;
4228 }
4229
4230 return NULL;
4231 }
4232
4233 /* For all subprograms that statically enclose the subprogram of the
4234 selected frame, add symbols matching identifier NAME in DOMAIN
4235 and their blocks to the list of data in OBSTACKP, as for
4236 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4237 wildcard prefix. */
4238
4239 static void
4240 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4241 const char *name, domain_enum namespace,
4242 int wild_match)
4243 {
4244 }
4245
4246 /* True if TYPE is definitely an artificial type supplied to a symbol
4247 for which no debugging information was given in the symbol file. */
4248
4249 static int
4250 is_nondebugging_type (struct type *type)
4251 {
4252 char *name = ada_type_name (type);
4253 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4254 }
4255
4256 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4257 duplicate other symbols in the list (The only case I know of where
4258 this happens is when object files containing stabs-in-ecoff are
4259 linked with files containing ordinary ecoff debugging symbols (or no
4260 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4261 Returns the number of items in the modified list. */
4262
4263 static int
4264 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4265 {
4266 int i, j;
4267
4268 i = 0;
4269 while (i < nsyms)
4270 {
4271 int remove = 0;
4272
4273 /* If two symbols have the same name and one of them is a stub type,
4274 the get rid of the stub. */
4275
4276 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4277 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4278 {
4279 for (j = 0; j < nsyms; j++)
4280 {
4281 if (j != i
4282 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4283 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4284 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4285 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4286 remove = 1;
4287 }
4288 }
4289
4290 /* Two symbols with the same name, same class and same address
4291 should be identical. */
4292
4293 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4294 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4295 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4296 {
4297 for (j = 0; j < nsyms; j += 1)
4298 {
4299 if (i != j
4300 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4301 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4302 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4303 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4304 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4305 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4306 remove = 1;
4307 }
4308 }
4309
4310 if (remove)
4311 {
4312 for (j = i + 1; j < nsyms; j += 1)
4313 syms[j - 1] = syms[j];
4314 nsyms -= 1;
4315 }
4316
4317 i += 1;
4318 }
4319 return nsyms;
4320 }
4321
4322 /* Given a type that corresponds to a renaming entity, use the type name
4323 to extract the scope (package name or function name, fully qualified,
4324 and following the GNAT encoding convention) where this renaming has been
4325 defined. The string returned needs to be deallocated after use. */
4326
4327 static char *
4328 xget_renaming_scope (struct type *renaming_type)
4329 {
4330 /* The renaming types adhere to the following convention:
4331 <scope>__<rename>___<XR extension>.
4332 So, to extract the scope, we search for the "___XR" extension,
4333 and then backtrack until we find the first "__". */
4334
4335 const char *name = type_name_no_tag (renaming_type);
4336 char *suffix = strstr (name, "___XR");
4337 char *last;
4338 int scope_len;
4339 char *scope;
4340
4341 /* Now, backtrack a bit until we find the first "__". Start looking
4342 at suffix - 3, as the <rename> part is at least one character long. */
4343
4344 for (last = suffix - 3; last > name; last--)
4345 if (last[0] == '_' && last[1] == '_')
4346 break;
4347
4348 /* Make a copy of scope and return it. */
4349
4350 scope_len = last - name;
4351 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4352
4353 strncpy (scope, name, scope_len);
4354 scope[scope_len] = '\0';
4355
4356 return scope;
4357 }
4358
4359 /* Return nonzero if NAME corresponds to a package name. */
4360
4361 static int
4362 is_package_name (const char *name)
4363 {
4364 /* Here, We take advantage of the fact that no symbols are generated
4365 for packages, while symbols are generated for each function.
4366 So the condition for NAME represent a package becomes equivalent
4367 to NAME not existing in our list of symbols. There is only one
4368 small complication with library-level functions (see below). */
4369
4370 char *fun_name;
4371
4372 /* If it is a function that has not been defined at library level,
4373 then we should be able to look it up in the symbols. */
4374 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4375 return 0;
4376
4377 /* Library-level function names start with "_ada_". See if function
4378 "_ada_" followed by NAME can be found. */
4379
4380 /* Do a quick check that NAME does not contain "__", since library-level
4381 functions names cannot contain "__" in them. */
4382 if (strstr (name, "__") != NULL)
4383 return 0;
4384
4385 fun_name = xstrprintf ("_ada_%s", name);
4386
4387 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4388 }
4389
4390 /* Return nonzero if SYM corresponds to a renaming entity that is
4391 not visible from FUNCTION_NAME. */
4392
4393 static int
4394 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4395 {
4396 char *scope;
4397
4398 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4399 return 0;
4400
4401 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4402
4403 make_cleanup (xfree, scope);
4404
4405 /* If the rename has been defined in a package, then it is visible. */
4406 if (is_package_name (scope))
4407 return 0;
4408
4409 /* Check that the rename is in the current function scope by checking
4410 that its name starts with SCOPE. */
4411
4412 /* If the function name starts with "_ada_", it means that it is
4413 a library-level function. Strip this prefix before doing the
4414 comparison, as the encoding for the renaming does not contain
4415 this prefix. */
4416 if (strncmp (function_name, "_ada_", 5) == 0)
4417 function_name += 5;
4418
4419 return (strncmp (function_name, scope, strlen (scope)) != 0);
4420 }
4421
4422 /* Remove entries from SYMS that corresponds to a renaming entity that
4423 is not visible from the function associated with CURRENT_BLOCK or
4424 that is superfluous due to the presence of more specific renaming
4425 information. Places surviving symbols in the initial entries of
4426 SYMS and returns the number of surviving symbols.
4427
4428 Rationale:
4429 First, in cases where an object renaming is implemented as a
4430 reference variable, GNAT may produce both the actual reference
4431 variable and the renaming encoding. In this case, we discard the
4432 latter.
4433
4434 Second, GNAT emits a type following a specified encoding for each renaming
4435 entity. Unfortunately, STABS currently does not support the definition
4436 of types that are local to a given lexical block, so all renamings types
4437 are emitted at library level. As a consequence, if an application
4438 contains two renaming entities using the same name, and a user tries to
4439 print the value of one of these entities, the result of the ada symbol
4440 lookup will also contain the wrong renaming type.
4441
4442 This function partially covers for this limitation by attempting to
4443 remove from the SYMS list renaming symbols that should be visible
4444 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4445 method with the current information available. The implementation
4446 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4447
4448 - When the user tries to print a rename in a function while there
4449 is another rename entity defined in a package: Normally, the
4450 rename in the function has precedence over the rename in the
4451 package, so the latter should be removed from the list. This is
4452 currently not the case.
4453
4454 - This function will incorrectly remove valid renames if
4455 the CURRENT_BLOCK corresponds to a function which symbol name
4456 has been changed by an "Export" pragma. As a consequence,
4457 the user will be unable to print such rename entities. */
4458
4459 static int
4460 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4461 int nsyms, const struct block *current_block)
4462 {
4463 struct symbol *current_function;
4464 char *current_function_name;
4465 int i;
4466 int is_new_style_renaming;
4467
4468 /* If there is both a renaming foo___XR... encoded as a variable and
4469 a simple variable foo in the same block, discard the latter.
4470 First, zero out such symbols, then compress. */
4471 is_new_style_renaming = 0;
4472 for (i = 0; i < nsyms; i += 1)
4473 {
4474 struct symbol *sym = syms[i].sym;
4475 struct block *block = syms[i].block;
4476 const char *name;
4477 const char *suffix;
4478
4479 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4480 continue;
4481 name = SYMBOL_LINKAGE_NAME (sym);
4482 suffix = strstr (name, "___XR");
4483
4484 if (suffix != NULL)
4485 {
4486 int name_len = suffix - name;
4487 int j;
4488 is_new_style_renaming = 1;
4489 for (j = 0; j < nsyms; j += 1)
4490 if (i != j && syms[j].sym != NULL
4491 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4492 name_len) == 0
4493 && block == syms[j].block)
4494 syms[j].sym = NULL;
4495 }
4496 }
4497 if (is_new_style_renaming)
4498 {
4499 int j, k;
4500
4501 for (j = k = 0; j < nsyms; j += 1)
4502 if (syms[j].sym != NULL)
4503 {
4504 syms[k] = syms[j];
4505 k += 1;
4506 }
4507 return k;
4508 }
4509
4510 /* Extract the function name associated to CURRENT_BLOCK.
4511 Abort if unable to do so. */
4512
4513 if (current_block == NULL)
4514 return nsyms;
4515
4516 current_function = block_linkage_function (current_block);
4517 if (current_function == NULL)
4518 return nsyms;
4519
4520 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4521 if (current_function_name == NULL)
4522 return nsyms;
4523
4524 /* Check each of the symbols, and remove it from the list if it is
4525 a type corresponding to a renaming that is out of the scope of
4526 the current block. */
4527
4528 i = 0;
4529 while (i < nsyms)
4530 {
4531 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4532 == ADA_OBJECT_RENAMING
4533 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4534 {
4535 int j;
4536 for (j = i + 1; j < nsyms; j += 1)
4537 syms[j - 1] = syms[j];
4538 nsyms -= 1;
4539 }
4540 else
4541 i += 1;
4542 }
4543
4544 return nsyms;
4545 }
4546
4547 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4548 whose name and domain match NAME and DOMAIN respectively.
4549 If no match was found, then extend the search to "enclosing"
4550 routines (in other words, if we're inside a nested function,
4551 search the symbols defined inside the enclosing functions).
4552
4553 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4554
4555 static void
4556 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4557 struct block *block, domain_enum domain,
4558 int wild_match)
4559 {
4560 int block_depth = 0;
4561
4562 while (block != NULL)
4563 {
4564 block_depth += 1;
4565 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4566
4567 /* If we found a non-function match, assume that's the one. */
4568 if (is_nonfunction (defns_collected (obstackp, 0),
4569 num_defns_collected (obstackp)))
4570 return;
4571
4572 block = BLOCK_SUPERBLOCK (block);
4573 }
4574
4575 /* If no luck so far, try to find NAME as a local symbol in some lexically
4576 enclosing subprogram. */
4577 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4578 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4579 }
4580
4581 /* Add to OBSTACKP all non-local symbols whose name and domain match
4582 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4583 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4584
4585 static void
4586 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4587 domain_enum domain, int global,
4588 int wild_match)
4589 {
4590 struct objfile *objfile;
4591 struct partial_symtab *ps;
4592
4593 ALL_PSYMTABS (objfile, ps)
4594 {
4595 QUIT;
4596 if (ps->readin
4597 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4598 {
4599 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4600 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4601
4602 if (s == NULL || !s->primary)
4603 continue;
4604 ada_add_block_symbols (obstackp,
4605 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4606 name, domain, objfile, wild_match);
4607 }
4608 }
4609 }
4610
4611 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4612 scope and in global scopes, returning the number of matches. Sets
4613 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4614 indicating the symbols found and the blocks and symbol tables (if
4615 any) in which they were found. This vector are transient---good only to
4616 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4617 symbol match within the nest of blocks whose innermost member is BLOCK0,
4618 is the one match returned (no other matches in that or
4619 enclosing blocks is returned). If there are any matches in or
4620 surrounding BLOCK0, then these alone are returned. Otherwise, the
4621 search extends to global and file-scope (static) symbol tables.
4622 Names prefixed with "standard__" are handled specially: "standard__"
4623 is first stripped off, and only static and global symbols are searched. */
4624
4625 int
4626 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4627 domain_enum namespace,
4628 struct ada_symbol_info **results)
4629 {
4630 struct symbol *sym;
4631 struct block *block;
4632 const char *name;
4633 int wild_match;
4634 int cacheIfUnique;
4635 int ndefns;
4636
4637 obstack_free (&symbol_list_obstack, NULL);
4638 obstack_init (&symbol_list_obstack);
4639
4640 cacheIfUnique = 0;
4641
4642 /* Search specified block and its superiors. */
4643
4644 wild_match = (strstr (name0, "__") == NULL);
4645 name = name0;
4646 block = (struct block *) block0; /* FIXME: No cast ought to be
4647 needed, but adding const will
4648 have a cascade effect. */
4649
4650 /* Special case: If the user specifies a symbol name inside package
4651 Standard, do a non-wild matching of the symbol name without
4652 the "standard__" prefix. This was primarily introduced in order
4653 to allow the user to specifically access the standard exceptions
4654 using, for instance, Standard.Constraint_Error when Constraint_Error
4655 is ambiguous (due to the user defining its own Constraint_Error
4656 entity inside its program). */
4657 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4658 {
4659 wild_match = 0;
4660 block = NULL;
4661 name = name0 + sizeof ("standard__") - 1;
4662 }
4663
4664 /* Check the non-global symbols. If we have ANY match, then we're done. */
4665
4666 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4667 wild_match);
4668 if (num_defns_collected (&symbol_list_obstack) > 0)
4669 goto done;
4670
4671 /* No non-global symbols found. Check our cache to see if we have
4672 already performed this search before. If we have, then return
4673 the same result. */
4674
4675 cacheIfUnique = 1;
4676 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4677 {
4678 if (sym != NULL)
4679 add_defn_to_vec (&symbol_list_obstack, sym, block);
4680 goto done;
4681 }
4682
4683 /* Search symbols from all global blocks. */
4684
4685 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4686 wild_match);
4687
4688 /* Now add symbols from all per-file blocks if we've gotten no hits
4689 (not strictly correct, but perhaps better than an error). */
4690
4691 if (num_defns_collected (&symbol_list_obstack) == 0)
4692 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4693 wild_match);
4694
4695 done:
4696 ndefns = num_defns_collected (&symbol_list_obstack);
4697 *results = defns_collected (&symbol_list_obstack, 1);
4698
4699 ndefns = remove_extra_symbols (*results, ndefns);
4700
4701 if (ndefns == 0)
4702 cache_symbol (name0, namespace, NULL, NULL);
4703
4704 if (ndefns == 1 && cacheIfUnique)
4705 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4706
4707 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4708
4709 return ndefns;
4710 }
4711
4712 struct symbol *
4713 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4714 domain_enum namespace, struct block **block_found)
4715 {
4716 struct ada_symbol_info *candidates;
4717 int n_candidates;
4718
4719 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4720
4721 if (n_candidates == 0)
4722 return NULL;
4723
4724 if (block_found != NULL)
4725 *block_found = candidates[0].block;
4726
4727 return fixup_symbol_section (candidates[0].sym, NULL);
4728 }
4729
4730 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4731 scope and in global scopes, or NULL if none. NAME is folded and
4732 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4733 choosing the first symbol if there are multiple choices.
4734 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4735 table in which the symbol was found (in both cases, these
4736 assignments occur only if the pointers are non-null). */
4737 struct symbol *
4738 ada_lookup_symbol (const char *name, const struct block *block0,
4739 domain_enum namespace, int *is_a_field_of_this)
4740 {
4741 if (is_a_field_of_this != NULL)
4742 *is_a_field_of_this = 0;
4743
4744 return
4745 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4746 block0, namespace, NULL);
4747 }
4748
4749 static struct symbol *
4750 ada_lookup_symbol_nonlocal (const char *name,
4751 const char *linkage_name,
4752 const struct block *block,
4753 const domain_enum domain)
4754 {
4755 if (linkage_name == NULL)
4756 linkage_name = name;
4757 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4758 NULL);
4759 }
4760
4761
4762 /* True iff STR is a possible encoded suffix of a normal Ada name
4763 that is to be ignored for matching purposes. Suffixes of parallel
4764 names (e.g., XVE) are not included here. Currently, the possible suffixes
4765 are given by any of the regular expressions:
4766
4767 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4768 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4769 _E[0-9]+[bs]$ [protected object entry suffixes]
4770 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4771
4772 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4773 match is performed. This sequence is used to differentiate homonyms,
4774 is an optional part of a valid name suffix. */
4775
4776 static int
4777 is_name_suffix (const char *str)
4778 {
4779 int k;
4780 const char *matching;
4781 const int len = strlen (str);
4782
4783 /* Skip optional leading __[0-9]+. */
4784
4785 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4786 {
4787 str += 3;
4788 while (isdigit (str[0]))
4789 str += 1;
4790 }
4791
4792 /* [.$][0-9]+ */
4793
4794 if (str[0] == '.' || str[0] == '$')
4795 {
4796 matching = str + 1;
4797 while (isdigit (matching[0]))
4798 matching += 1;
4799 if (matching[0] == '\0')
4800 return 1;
4801 }
4802
4803 /* ___[0-9]+ */
4804
4805 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4806 {
4807 matching = str + 3;
4808 while (isdigit (matching[0]))
4809 matching += 1;
4810 if (matching[0] == '\0')
4811 return 1;
4812 }
4813
4814 #if 0
4815 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4816 with a N at the end. Unfortunately, the compiler uses the same
4817 convention for other internal types it creates. So treating
4818 all entity names that end with an "N" as a name suffix causes
4819 some regressions. For instance, consider the case of an enumerated
4820 type. To support the 'Image attribute, it creates an array whose
4821 name ends with N.
4822 Having a single character like this as a suffix carrying some
4823 information is a bit risky. Perhaps we should change the encoding
4824 to be something like "_N" instead. In the meantime, do not do
4825 the following check. */
4826 /* Protected Object Subprograms */
4827 if (len == 1 && str [0] == 'N')
4828 return 1;
4829 #endif
4830
4831 /* _E[0-9]+[bs]$ */
4832 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4833 {
4834 matching = str + 3;
4835 while (isdigit (matching[0]))
4836 matching += 1;
4837 if ((matching[0] == 'b' || matching[0] == 's')
4838 && matching [1] == '\0')
4839 return 1;
4840 }
4841
4842 /* ??? We should not modify STR directly, as we are doing below. This
4843 is fine in this case, but may become problematic later if we find
4844 that this alternative did not work, and want to try matching
4845 another one from the begining of STR. Since we modified it, we
4846 won't be able to find the begining of the string anymore! */
4847 if (str[0] == 'X')
4848 {
4849 str += 1;
4850 while (str[0] != '_' && str[0] != '\0')
4851 {
4852 if (str[0] != 'n' && str[0] != 'b')
4853 return 0;
4854 str += 1;
4855 }
4856 }
4857
4858 if (str[0] == '\000')
4859 return 1;
4860
4861 if (str[0] == '_')
4862 {
4863 if (str[1] != '_' || str[2] == '\000')
4864 return 0;
4865 if (str[2] == '_')
4866 {
4867 if (strcmp (str + 3, "JM") == 0)
4868 return 1;
4869 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4870 the LJM suffix in favor of the JM one. But we will
4871 still accept LJM as a valid suffix for a reasonable
4872 amount of time, just to allow ourselves to debug programs
4873 compiled using an older version of GNAT. */
4874 if (strcmp (str + 3, "LJM") == 0)
4875 return 1;
4876 if (str[3] != 'X')
4877 return 0;
4878 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4879 || str[4] == 'U' || str[4] == 'P')
4880 return 1;
4881 if (str[4] == 'R' && str[5] != 'T')
4882 return 1;
4883 return 0;
4884 }
4885 if (!isdigit (str[2]))
4886 return 0;
4887 for (k = 3; str[k] != '\0'; k += 1)
4888 if (!isdigit (str[k]) && str[k] != '_')
4889 return 0;
4890 return 1;
4891 }
4892 if (str[0] == '$' && isdigit (str[1]))
4893 {
4894 for (k = 2; str[k] != '\0'; k += 1)
4895 if (!isdigit (str[k]) && str[k] != '_')
4896 return 0;
4897 return 1;
4898 }
4899 return 0;
4900 }
4901
4902 /* Return non-zero if the string starting at NAME and ending before
4903 NAME_END contains no capital letters. */
4904
4905 static int
4906 is_valid_name_for_wild_match (const char *name0)
4907 {
4908 const char *decoded_name = ada_decode (name0);
4909 int i;
4910
4911 /* If the decoded name starts with an angle bracket, it means that
4912 NAME0 does not follow the GNAT encoding format. It should then
4913 not be allowed as a possible wild match. */
4914 if (decoded_name[0] == '<')
4915 return 0;
4916
4917 for (i=0; decoded_name[i] != '\0'; i++)
4918 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4919 return 0;
4920
4921 return 1;
4922 }
4923
4924 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4925 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4926 informational suffixes of NAME (i.e., for which is_name_suffix is
4927 true). */
4928
4929 static int
4930 wild_match (const char *patn0, int patn_len, const char *name0)
4931 {
4932 char* match;
4933 const char* start;
4934 start = name0;
4935 while (1)
4936 {
4937 match = strstr (start, patn0);
4938 if (match == NULL)
4939 return 0;
4940 if ((match == name0
4941 || match[-1] == '.'
4942 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4943 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4944 && is_name_suffix (match + patn_len))
4945 return (match == name0 || is_valid_name_for_wild_match (name0));
4946 start = match + 1;
4947 }
4948 }
4949
4950 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4951 vector *defn_symbols, updating the list of symbols in OBSTACKP
4952 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4953 OBJFILE is the section containing BLOCK.
4954 SYMTAB is recorded with each symbol added. */
4955
4956 static void
4957 ada_add_block_symbols (struct obstack *obstackp,
4958 struct block *block, const char *name,
4959 domain_enum domain, struct objfile *objfile,
4960 int wild)
4961 {
4962 struct dict_iterator iter;
4963 int name_len = strlen (name);
4964 /* A matching argument symbol, if any. */
4965 struct symbol *arg_sym;
4966 /* Set true when we find a matching non-argument symbol. */
4967 int found_sym;
4968 struct symbol *sym;
4969
4970 arg_sym = NULL;
4971 found_sym = 0;
4972 if (wild)
4973 {
4974 struct symbol *sym;
4975 ALL_BLOCK_SYMBOLS (block, iter, sym)
4976 {
4977 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4978 SYMBOL_DOMAIN (sym), domain)
4979 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4980 {
4981 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4982 continue;
4983 else if (SYMBOL_IS_ARGUMENT (sym))
4984 arg_sym = sym;
4985 else
4986 {
4987 found_sym = 1;
4988 add_defn_to_vec (obstackp,
4989 fixup_symbol_section (sym, objfile),
4990 block);
4991 }
4992 }
4993 }
4994 }
4995 else
4996 {
4997 ALL_BLOCK_SYMBOLS (block, iter, sym)
4998 {
4999 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5000 SYMBOL_DOMAIN (sym), domain))
5001 {
5002 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5003 if (cmp == 0
5004 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5005 {
5006 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5007 {
5008 if (SYMBOL_IS_ARGUMENT (sym))
5009 arg_sym = sym;
5010 else
5011 {
5012 found_sym = 1;
5013 add_defn_to_vec (obstackp,
5014 fixup_symbol_section (sym, objfile),
5015 block);
5016 }
5017 }
5018 }
5019 }
5020 }
5021 }
5022
5023 if (!found_sym && arg_sym != NULL)
5024 {
5025 add_defn_to_vec (obstackp,
5026 fixup_symbol_section (arg_sym, objfile),
5027 block);
5028 }
5029
5030 if (!wild)
5031 {
5032 arg_sym = NULL;
5033 found_sym = 0;
5034
5035 ALL_BLOCK_SYMBOLS (block, iter, sym)
5036 {
5037 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5038 SYMBOL_DOMAIN (sym), domain))
5039 {
5040 int cmp;
5041
5042 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5043 if (cmp == 0)
5044 {
5045 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5046 if (cmp == 0)
5047 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5048 name_len);
5049 }
5050
5051 if (cmp == 0
5052 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5053 {
5054 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5055 {
5056 if (SYMBOL_IS_ARGUMENT (sym))
5057 arg_sym = sym;
5058 else
5059 {
5060 found_sym = 1;
5061 add_defn_to_vec (obstackp,
5062 fixup_symbol_section (sym, objfile),
5063 block);
5064 }
5065 }
5066 }
5067 }
5068 }
5069
5070 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5071 They aren't parameters, right? */
5072 if (!found_sym && arg_sym != NULL)
5073 {
5074 add_defn_to_vec (obstackp,
5075 fixup_symbol_section (arg_sym, objfile),
5076 block);
5077 }
5078 }
5079 }
5080 \f
5081
5082 /* Symbol Completion */
5083
5084 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5085 name in a form that's appropriate for the completion. The result
5086 does not need to be deallocated, but is only good until the next call.
5087
5088 TEXT_LEN is equal to the length of TEXT.
5089 Perform a wild match if WILD_MATCH is set.
5090 ENCODED should be set if TEXT represents the start of a symbol name
5091 in its encoded form. */
5092
5093 static const char *
5094 symbol_completion_match (const char *sym_name,
5095 const char *text, int text_len,
5096 int wild_match, int encoded)
5097 {
5098 char *result;
5099 const int verbatim_match = (text[0] == '<');
5100 int match = 0;
5101
5102 if (verbatim_match)
5103 {
5104 /* Strip the leading angle bracket. */
5105 text = text + 1;
5106 text_len--;
5107 }
5108
5109 /* First, test against the fully qualified name of the symbol. */
5110
5111 if (strncmp (sym_name, text, text_len) == 0)
5112 match = 1;
5113
5114 if (match && !encoded)
5115 {
5116 /* One needed check before declaring a positive match is to verify
5117 that iff we are doing a verbatim match, the decoded version
5118 of the symbol name starts with '<'. Otherwise, this symbol name
5119 is not a suitable completion. */
5120 const char *sym_name_copy = sym_name;
5121 int has_angle_bracket;
5122
5123 sym_name = ada_decode (sym_name);
5124 has_angle_bracket = (sym_name[0] == '<');
5125 match = (has_angle_bracket == verbatim_match);
5126 sym_name = sym_name_copy;
5127 }
5128
5129 if (match && !verbatim_match)
5130 {
5131 /* When doing non-verbatim match, another check that needs to
5132 be done is to verify that the potentially matching symbol name
5133 does not include capital letters, because the ada-mode would
5134 not be able to understand these symbol names without the
5135 angle bracket notation. */
5136 const char *tmp;
5137
5138 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5139 if (*tmp != '\0')
5140 match = 0;
5141 }
5142
5143 /* Second: Try wild matching... */
5144
5145 if (!match && wild_match)
5146 {
5147 /* Since we are doing wild matching, this means that TEXT
5148 may represent an unqualified symbol name. We therefore must
5149 also compare TEXT against the unqualified name of the symbol. */
5150 sym_name = ada_unqualified_name (ada_decode (sym_name));
5151
5152 if (strncmp (sym_name, text, text_len) == 0)
5153 match = 1;
5154 }
5155
5156 /* Finally: If we found a mach, prepare the result to return. */
5157
5158 if (!match)
5159 return NULL;
5160
5161 if (verbatim_match)
5162 sym_name = add_angle_brackets (sym_name);
5163
5164 if (!encoded)
5165 sym_name = ada_decode (sym_name);
5166
5167 return sym_name;
5168 }
5169
5170 typedef char *char_ptr;
5171 DEF_VEC_P (char_ptr);
5172
5173 /* A companion function to ada_make_symbol_completion_list().
5174 Check if SYM_NAME represents a symbol which name would be suitable
5175 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5176 it is appended at the end of the given string vector SV.
5177
5178 ORIG_TEXT is the string original string from the user command
5179 that needs to be completed. WORD is the entire command on which
5180 completion should be performed. These two parameters are used to
5181 determine which part of the symbol name should be added to the
5182 completion vector.
5183 if WILD_MATCH is set, then wild matching is performed.
5184 ENCODED should be set if TEXT represents a symbol name in its
5185 encoded formed (in which case the completion should also be
5186 encoded). */
5187
5188 static void
5189 symbol_completion_add (VEC(char_ptr) **sv,
5190 const char *sym_name,
5191 const char *text, int text_len,
5192 const char *orig_text, const char *word,
5193 int wild_match, int encoded)
5194 {
5195 const char *match = symbol_completion_match (sym_name, text, text_len,
5196 wild_match, encoded);
5197 char *completion;
5198
5199 if (match == NULL)
5200 return;
5201
5202 /* We found a match, so add the appropriate completion to the given
5203 string vector. */
5204
5205 if (word == orig_text)
5206 {
5207 completion = xmalloc (strlen (match) + 5);
5208 strcpy (completion, match);
5209 }
5210 else if (word > orig_text)
5211 {
5212 /* Return some portion of sym_name. */
5213 completion = xmalloc (strlen (match) + 5);
5214 strcpy (completion, match + (word - orig_text));
5215 }
5216 else
5217 {
5218 /* Return some of ORIG_TEXT plus sym_name. */
5219 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5220 strncpy (completion, word, orig_text - word);
5221 completion[orig_text - word] = '\0';
5222 strcat (completion, match);
5223 }
5224
5225 VEC_safe_push (char_ptr, *sv, completion);
5226 }
5227
5228 /* Return a list of possible symbol names completing TEXT0. The list
5229 is NULL terminated. WORD is the entire command on which completion
5230 is made. */
5231
5232 static char **
5233 ada_make_symbol_completion_list (char *text0, char *word)
5234 {
5235 char *text;
5236 int text_len;
5237 int wild_match;
5238 int encoded;
5239 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5240 struct symbol *sym;
5241 struct symtab *s;
5242 struct partial_symtab *ps;
5243 struct minimal_symbol *msymbol;
5244 struct objfile *objfile;
5245 struct block *b, *surrounding_static_block = 0;
5246 int i;
5247 struct dict_iterator iter;
5248
5249 if (text0[0] == '<')
5250 {
5251 text = xstrdup (text0);
5252 make_cleanup (xfree, text);
5253 text_len = strlen (text);
5254 wild_match = 0;
5255 encoded = 1;
5256 }
5257 else
5258 {
5259 text = xstrdup (ada_encode (text0));
5260 make_cleanup (xfree, text);
5261 text_len = strlen (text);
5262 for (i = 0; i < text_len; i++)
5263 text[i] = tolower (text[i]);
5264
5265 encoded = (strstr (text0, "__") != NULL);
5266 /* If the name contains a ".", then the user is entering a fully
5267 qualified entity name, and the match must not be done in wild
5268 mode. Similarly, if the user wants to complete what looks like
5269 an encoded name, the match must not be done in wild mode. */
5270 wild_match = (strchr (text0, '.') == NULL && !encoded);
5271 }
5272
5273 /* First, look at the partial symtab symbols. */
5274 ALL_PSYMTABS (objfile, ps)
5275 {
5276 struct partial_symbol **psym;
5277
5278 /* If the psymtab's been read in we'll get it when we search
5279 through the blockvector. */
5280 if (ps->readin)
5281 continue;
5282
5283 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5284 psym < (objfile->global_psymbols.list + ps->globals_offset
5285 + ps->n_global_syms); psym++)
5286 {
5287 QUIT;
5288 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5289 text, text_len, text0, word,
5290 wild_match, encoded);
5291 }
5292
5293 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5294 psym < (objfile->static_psymbols.list + ps->statics_offset
5295 + ps->n_static_syms); psym++)
5296 {
5297 QUIT;
5298 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5299 text, text_len, text0, word,
5300 wild_match, encoded);
5301 }
5302 }
5303
5304 /* At this point scan through the misc symbol vectors and add each
5305 symbol you find to the list. Eventually we want to ignore
5306 anything that isn't a text symbol (everything else will be
5307 handled by the psymtab code above). */
5308
5309 ALL_MSYMBOLS (objfile, msymbol)
5310 {
5311 QUIT;
5312 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5313 text, text_len, text0, word, wild_match, encoded);
5314 }
5315
5316 /* Search upwards from currently selected frame (so that we can
5317 complete on local vars. */
5318
5319 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5320 {
5321 if (!BLOCK_SUPERBLOCK (b))
5322 surrounding_static_block = b; /* For elmin of dups */
5323
5324 ALL_BLOCK_SYMBOLS (b, iter, sym)
5325 {
5326 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5327 text, text_len, text0, word,
5328 wild_match, encoded);
5329 }
5330 }
5331
5332 /* Go through the symtabs and check the externs and statics for
5333 symbols which match. */
5334
5335 ALL_SYMTABS (objfile, s)
5336 {
5337 QUIT;
5338 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5339 ALL_BLOCK_SYMBOLS (b, iter, sym)
5340 {
5341 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5342 text, text_len, text0, word,
5343 wild_match, encoded);
5344 }
5345 }
5346
5347 ALL_SYMTABS (objfile, s)
5348 {
5349 QUIT;
5350 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5351 /* Don't do this block twice. */
5352 if (b == surrounding_static_block)
5353 continue;
5354 ALL_BLOCK_SYMBOLS (b, iter, sym)
5355 {
5356 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5357 text, text_len, text0, word,
5358 wild_match, encoded);
5359 }
5360 }
5361
5362 /* Append the closing NULL entry. */
5363 VEC_safe_push (char_ptr, completions, NULL);
5364
5365 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5366 return the copy. It's unfortunate that we have to make a copy
5367 of an array that we're about to destroy, but there is nothing much
5368 we can do about it. Fortunately, it's typically not a very large
5369 array. */
5370 {
5371 const size_t completions_size =
5372 VEC_length (char_ptr, completions) * sizeof (char *);
5373 char **result = malloc (completions_size);
5374
5375 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5376
5377 VEC_free (char_ptr, completions);
5378 return result;
5379 }
5380 }
5381
5382 /* Field Access */
5383
5384 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5385 for tagged types. */
5386
5387 static int
5388 ada_is_dispatch_table_ptr_type (struct type *type)
5389 {
5390 char *name;
5391
5392 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5393 return 0;
5394
5395 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5396 if (name == NULL)
5397 return 0;
5398
5399 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5400 }
5401
5402 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5403 to be invisible to users. */
5404
5405 int
5406 ada_is_ignored_field (struct type *type, int field_num)
5407 {
5408 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5409 return 1;
5410
5411 /* Check the name of that field. */
5412 {
5413 const char *name = TYPE_FIELD_NAME (type, field_num);
5414
5415 /* Anonymous field names should not be printed.
5416 brobecker/2007-02-20: I don't think this can actually happen
5417 but we don't want to print the value of annonymous fields anyway. */
5418 if (name == NULL)
5419 return 1;
5420
5421 /* A field named "_parent" is internally generated by GNAT for
5422 tagged types, and should not be printed either. */
5423 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5424 return 1;
5425 }
5426
5427 /* If this is the dispatch table of a tagged type, then ignore. */
5428 if (ada_is_tagged_type (type, 1)
5429 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5430 return 1;
5431
5432 /* Not a special field, so it should not be ignored. */
5433 return 0;
5434 }
5435
5436 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5437 pointer or reference type whose ultimate target has a tag field. */
5438
5439 int
5440 ada_is_tagged_type (struct type *type, int refok)
5441 {
5442 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5443 }
5444
5445 /* True iff TYPE represents the type of X'Tag */
5446
5447 int
5448 ada_is_tag_type (struct type *type)
5449 {
5450 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5451 return 0;
5452 else
5453 {
5454 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5455 return (name != NULL
5456 && strcmp (name, "ada__tags__dispatch_table") == 0);
5457 }
5458 }
5459
5460 /* The type of the tag on VAL. */
5461
5462 struct type *
5463 ada_tag_type (struct value *val)
5464 {
5465 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5466 }
5467
5468 /* The value of the tag on VAL. */
5469
5470 struct value *
5471 ada_value_tag (struct value *val)
5472 {
5473 return ada_value_struct_elt (val, "_tag", 0);
5474 }
5475
5476 /* The value of the tag on the object of type TYPE whose contents are
5477 saved at VALADDR, if it is non-null, or is at memory address
5478 ADDRESS. */
5479
5480 static struct value *
5481 value_tag_from_contents_and_address (struct type *type,
5482 const gdb_byte *valaddr,
5483 CORE_ADDR address)
5484 {
5485 int tag_byte_offset, dummy1, dummy2;
5486 struct type *tag_type;
5487 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5488 NULL, NULL, NULL))
5489 {
5490 const gdb_byte *valaddr1 = ((valaddr == NULL)
5491 ? NULL
5492 : valaddr + tag_byte_offset);
5493 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5494
5495 return value_from_contents_and_address (tag_type, valaddr1, address1);
5496 }
5497 return NULL;
5498 }
5499
5500 static struct type *
5501 type_from_tag (struct value *tag)
5502 {
5503 const char *type_name = ada_tag_name (tag);
5504 if (type_name != NULL)
5505 return ada_find_any_type (ada_encode (type_name));
5506 return NULL;
5507 }
5508
5509 struct tag_args
5510 {
5511 struct value *tag;
5512 char *name;
5513 };
5514
5515
5516 static int ada_tag_name_1 (void *);
5517 static int ada_tag_name_2 (struct tag_args *);
5518
5519 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5520 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5521 The value stored in ARGS->name is valid until the next call to
5522 ada_tag_name_1. */
5523
5524 static int
5525 ada_tag_name_1 (void *args0)
5526 {
5527 struct tag_args *args = (struct tag_args *) args0;
5528 static char name[1024];
5529 char *p;
5530 struct value *val;
5531 args->name = NULL;
5532 val = ada_value_struct_elt (args->tag, "tsd", 1);
5533 if (val == NULL)
5534 return ada_tag_name_2 (args);
5535 val = ada_value_struct_elt (val, "expanded_name", 1);
5536 if (val == NULL)
5537 return 0;
5538 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5539 for (p = name; *p != '\0'; p += 1)
5540 if (isalpha (*p))
5541 *p = tolower (*p);
5542 args->name = name;
5543 return 0;
5544 }
5545
5546 /* Utility function for ada_tag_name_1 that tries the second
5547 representation for the dispatch table (in which there is no
5548 explicit 'tsd' field in the referent of the tag pointer, and instead
5549 the tsd pointer is stored just before the dispatch table. */
5550
5551 static int
5552 ada_tag_name_2 (struct tag_args *args)
5553 {
5554 struct type *info_type;
5555 static char name[1024];
5556 char *p;
5557 struct value *val, *valp;
5558
5559 args->name = NULL;
5560 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5561 if (info_type == NULL)
5562 return 0;
5563 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5564 valp = value_cast (info_type, args->tag);
5565 if (valp == NULL)
5566 return 0;
5567 val = value_ind (value_ptradd (valp,
5568 value_from_longest (builtin_type_int8, -1)));
5569 if (val == NULL)
5570 return 0;
5571 val = ada_value_struct_elt (val, "expanded_name", 1);
5572 if (val == NULL)
5573 return 0;
5574 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5575 for (p = name; *p != '\0'; p += 1)
5576 if (isalpha (*p))
5577 *p = tolower (*p);
5578 args->name = name;
5579 return 0;
5580 }
5581
5582 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5583 * a C string. */
5584
5585 const char *
5586 ada_tag_name (struct value *tag)
5587 {
5588 struct tag_args args;
5589 if (!ada_is_tag_type (value_type (tag)))
5590 return NULL;
5591 args.tag = tag;
5592 args.name = NULL;
5593 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5594 return args.name;
5595 }
5596
5597 /* The parent type of TYPE, or NULL if none. */
5598
5599 struct type *
5600 ada_parent_type (struct type *type)
5601 {
5602 int i;
5603
5604 type = ada_check_typedef (type);
5605
5606 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5607 return NULL;
5608
5609 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5610 if (ada_is_parent_field (type, i))
5611 {
5612 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5613
5614 /* If the _parent field is a pointer, then dereference it. */
5615 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5616 parent_type = TYPE_TARGET_TYPE (parent_type);
5617 /* If there is a parallel XVS type, get the actual base type. */
5618 parent_type = ada_get_base_type (parent_type);
5619
5620 return ada_check_typedef (parent_type);
5621 }
5622
5623 return NULL;
5624 }
5625
5626 /* True iff field number FIELD_NUM of structure type TYPE contains the
5627 parent-type (inherited) fields of a derived type. Assumes TYPE is
5628 a structure type with at least FIELD_NUM+1 fields. */
5629
5630 int
5631 ada_is_parent_field (struct type *type, int field_num)
5632 {
5633 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5634 return (name != NULL
5635 && (strncmp (name, "PARENT", 6) == 0
5636 || strncmp (name, "_parent", 7) == 0));
5637 }
5638
5639 /* True iff field number FIELD_NUM of structure type TYPE is a
5640 transparent wrapper field (which should be silently traversed when doing
5641 field selection and flattened when printing). Assumes TYPE is a
5642 structure type with at least FIELD_NUM+1 fields. Such fields are always
5643 structures. */
5644
5645 int
5646 ada_is_wrapper_field (struct type *type, int field_num)
5647 {
5648 const char *name = TYPE_FIELD_NAME (type, field_num);
5649 return (name != NULL
5650 && (strncmp (name, "PARENT", 6) == 0
5651 || strcmp (name, "REP") == 0
5652 || strncmp (name, "_parent", 7) == 0
5653 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5654 }
5655
5656 /* True iff field number FIELD_NUM of structure or union type TYPE
5657 is a variant wrapper. Assumes TYPE is a structure type with at least
5658 FIELD_NUM+1 fields. */
5659
5660 int
5661 ada_is_variant_part (struct type *type, int field_num)
5662 {
5663 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5664 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5665 || (is_dynamic_field (type, field_num)
5666 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5667 == TYPE_CODE_UNION)));
5668 }
5669
5670 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5671 whose discriminants are contained in the record type OUTER_TYPE,
5672 returns the type of the controlling discriminant for the variant. */
5673
5674 struct type *
5675 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5676 {
5677 char *name = ada_variant_discrim_name (var_type);
5678 struct type *type =
5679 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5680 if (type == NULL)
5681 return builtin_type_int32;
5682 else
5683 return type;
5684 }
5685
5686 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5687 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5688 represents a 'when others' clause; otherwise 0. */
5689
5690 int
5691 ada_is_others_clause (struct type *type, int field_num)
5692 {
5693 const char *name = TYPE_FIELD_NAME (type, field_num);
5694 return (name != NULL && name[0] == 'O');
5695 }
5696
5697 /* Assuming that TYPE0 is the type of the variant part of a record,
5698 returns the name of the discriminant controlling the variant.
5699 The value is valid until the next call to ada_variant_discrim_name. */
5700
5701 char *
5702 ada_variant_discrim_name (struct type *type0)
5703 {
5704 static char *result = NULL;
5705 static size_t result_len = 0;
5706 struct type *type;
5707 const char *name;
5708 const char *discrim_end;
5709 const char *discrim_start;
5710
5711 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5712 type = TYPE_TARGET_TYPE (type0);
5713 else
5714 type = type0;
5715
5716 name = ada_type_name (type);
5717
5718 if (name == NULL || name[0] == '\000')
5719 return "";
5720
5721 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5722 discrim_end -= 1)
5723 {
5724 if (strncmp (discrim_end, "___XVN", 6) == 0)
5725 break;
5726 }
5727 if (discrim_end == name)
5728 return "";
5729
5730 for (discrim_start = discrim_end; discrim_start != name + 3;
5731 discrim_start -= 1)
5732 {
5733 if (discrim_start == name + 1)
5734 return "";
5735 if ((discrim_start > name + 3
5736 && strncmp (discrim_start - 3, "___", 3) == 0)
5737 || discrim_start[-1] == '.')
5738 break;
5739 }
5740
5741 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5742 strncpy (result, discrim_start, discrim_end - discrim_start);
5743 result[discrim_end - discrim_start] = '\0';
5744 return result;
5745 }
5746
5747 /* Scan STR for a subtype-encoded number, beginning at position K.
5748 Put the position of the character just past the number scanned in
5749 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5750 Return 1 if there was a valid number at the given position, and 0
5751 otherwise. A "subtype-encoded" number consists of the absolute value
5752 in decimal, followed by the letter 'm' to indicate a negative number.
5753 Assumes 0m does not occur. */
5754
5755 int
5756 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5757 {
5758 ULONGEST RU;
5759
5760 if (!isdigit (str[k]))
5761 return 0;
5762
5763 /* Do it the hard way so as not to make any assumption about
5764 the relationship of unsigned long (%lu scan format code) and
5765 LONGEST. */
5766 RU = 0;
5767 while (isdigit (str[k]))
5768 {
5769 RU = RU * 10 + (str[k] - '0');
5770 k += 1;
5771 }
5772
5773 if (str[k] == 'm')
5774 {
5775 if (R != NULL)
5776 *R = (-(LONGEST) (RU - 1)) - 1;
5777 k += 1;
5778 }
5779 else if (R != NULL)
5780 *R = (LONGEST) RU;
5781
5782 /* NOTE on the above: Technically, C does not say what the results of
5783 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5784 number representable as a LONGEST (although either would probably work
5785 in most implementations). When RU>0, the locution in the then branch
5786 above is always equivalent to the negative of RU. */
5787
5788 if (new_k != NULL)
5789 *new_k = k;
5790 return 1;
5791 }
5792
5793 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5794 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5795 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5796
5797 int
5798 ada_in_variant (LONGEST val, struct type *type, int field_num)
5799 {
5800 const char *name = TYPE_FIELD_NAME (type, field_num);
5801 int p;
5802
5803 p = 0;
5804 while (1)
5805 {
5806 switch (name[p])
5807 {
5808 case '\0':
5809 return 0;
5810 case 'S':
5811 {
5812 LONGEST W;
5813 if (!ada_scan_number (name, p + 1, &W, &p))
5814 return 0;
5815 if (val == W)
5816 return 1;
5817 break;
5818 }
5819 case 'R':
5820 {
5821 LONGEST L, U;
5822 if (!ada_scan_number (name, p + 1, &L, &p)
5823 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5824 return 0;
5825 if (val >= L && val <= U)
5826 return 1;
5827 break;
5828 }
5829 case 'O':
5830 return 1;
5831 default:
5832 return 0;
5833 }
5834 }
5835 }
5836
5837 /* FIXME: Lots of redundancy below. Try to consolidate. */
5838
5839 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5840 ARG_TYPE, extract and return the value of one of its (non-static)
5841 fields. FIELDNO says which field. Differs from value_primitive_field
5842 only in that it can handle packed values of arbitrary type. */
5843
5844 static struct value *
5845 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5846 struct type *arg_type)
5847 {
5848 struct type *type;
5849
5850 arg_type = ada_check_typedef (arg_type);
5851 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5852
5853 /* Handle packed fields. */
5854
5855 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5856 {
5857 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5858 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5859
5860 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5861 offset + bit_pos / 8,
5862 bit_pos % 8, bit_size, type);
5863 }
5864 else
5865 return value_primitive_field (arg1, offset, fieldno, arg_type);
5866 }
5867
5868 /* Find field with name NAME in object of type TYPE. If found,
5869 set the following for each argument that is non-null:
5870 - *FIELD_TYPE_P to the field's type;
5871 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5872 an object of that type;
5873 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5874 - *BIT_SIZE_P to its size in bits if the field is packed, and
5875 0 otherwise;
5876 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5877 fields up to but not including the desired field, or by the total
5878 number of fields if not found. A NULL value of NAME never
5879 matches; the function just counts visible fields in this case.
5880
5881 Returns 1 if found, 0 otherwise. */
5882
5883 static int
5884 find_struct_field (char *name, struct type *type, int offset,
5885 struct type **field_type_p,
5886 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5887 int *index_p)
5888 {
5889 int i;
5890
5891 type = ada_check_typedef (type);
5892
5893 if (field_type_p != NULL)
5894 *field_type_p = NULL;
5895 if (byte_offset_p != NULL)
5896 *byte_offset_p = 0;
5897 if (bit_offset_p != NULL)
5898 *bit_offset_p = 0;
5899 if (bit_size_p != NULL)
5900 *bit_size_p = 0;
5901
5902 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5903 {
5904 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5905 int fld_offset = offset + bit_pos / 8;
5906 char *t_field_name = TYPE_FIELD_NAME (type, i);
5907
5908 if (t_field_name == NULL)
5909 continue;
5910
5911 else if (name != NULL && field_name_match (t_field_name, name))
5912 {
5913 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5914 if (field_type_p != NULL)
5915 *field_type_p = TYPE_FIELD_TYPE (type, i);
5916 if (byte_offset_p != NULL)
5917 *byte_offset_p = fld_offset;
5918 if (bit_offset_p != NULL)
5919 *bit_offset_p = bit_pos % 8;
5920 if (bit_size_p != NULL)
5921 *bit_size_p = bit_size;
5922 return 1;
5923 }
5924 else if (ada_is_wrapper_field (type, i))
5925 {
5926 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5927 field_type_p, byte_offset_p, bit_offset_p,
5928 bit_size_p, index_p))
5929 return 1;
5930 }
5931 else if (ada_is_variant_part (type, i))
5932 {
5933 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5934 fixed type?? */
5935 int j;
5936 struct type *field_type
5937 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5938
5939 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5940 {
5941 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5942 fld_offset
5943 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5944 field_type_p, byte_offset_p,
5945 bit_offset_p, bit_size_p, index_p))
5946 return 1;
5947 }
5948 }
5949 else if (index_p != NULL)
5950 *index_p += 1;
5951 }
5952 return 0;
5953 }
5954
5955 /* Number of user-visible fields in record type TYPE. */
5956
5957 static int
5958 num_visible_fields (struct type *type)
5959 {
5960 int n;
5961 n = 0;
5962 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5963 return n;
5964 }
5965
5966 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5967 and search in it assuming it has (class) type TYPE.
5968 If found, return value, else return NULL.
5969
5970 Searches recursively through wrapper fields (e.g., '_parent'). */
5971
5972 static struct value *
5973 ada_search_struct_field (char *name, struct value *arg, int offset,
5974 struct type *type)
5975 {
5976 int i;
5977 type = ada_check_typedef (type);
5978
5979 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5980 {
5981 char *t_field_name = TYPE_FIELD_NAME (type, i);
5982
5983 if (t_field_name == NULL)
5984 continue;
5985
5986 else if (field_name_match (t_field_name, name))
5987 return ada_value_primitive_field (arg, offset, i, type);
5988
5989 else if (ada_is_wrapper_field (type, i))
5990 {
5991 struct value *v = /* Do not let indent join lines here. */
5992 ada_search_struct_field (name, arg,
5993 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5994 TYPE_FIELD_TYPE (type, i));
5995 if (v != NULL)
5996 return v;
5997 }
5998
5999 else if (ada_is_variant_part (type, i))
6000 {
6001 /* PNH: Do we ever get here? See find_struct_field. */
6002 int j;
6003 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6004 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6005
6006 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6007 {
6008 struct value *v = ada_search_struct_field /* Force line break. */
6009 (name, arg,
6010 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6011 TYPE_FIELD_TYPE (field_type, j));
6012 if (v != NULL)
6013 return v;
6014 }
6015 }
6016 }
6017 return NULL;
6018 }
6019
6020 static struct value *ada_index_struct_field_1 (int *, struct value *,
6021 int, struct type *);
6022
6023
6024 /* Return field #INDEX in ARG, where the index is that returned by
6025 * find_struct_field through its INDEX_P argument. Adjust the address
6026 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6027 * If found, return value, else return NULL. */
6028
6029 static struct value *
6030 ada_index_struct_field (int index, struct value *arg, int offset,
6031 struct type *type)
6032 {
6033 return ada_index_struct_field_1 (&index, arg, offset, type);
6034 }
6035
6036
6037 /* Auxiliary function for ada_index_struct_field. Like
6038 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6039 * *INDEX_P. */
6040
6041 static struct value *
6042 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6043 struct type *type)
6044 {
6045 int i;
6046 type = ada_check_typedef (type);
6047
6048 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6049 {
6050 if (TYPE_FIELD_NAME (type, i) == NULL)
6051 continue;
6052 else if (ada_is_wrapper_field (type, i))
6053 {
6054 struct value *v = /* Do not let indent join lines here. */
6055 ada_index_struct_field_1 (index_p, arg,
6056 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6057 TYPE_FIELD_TYPE (type, i));
6058 if (v != NULL)
6059 return v;
6060 }
6061
6062 else if (ada_is_variant_part (type, i))
6063 {
6064 /* PNH: Do we ever get here? See ada_search_struct_field,
6065 find_struct_field. */
6066 error (_("Cannot assign this kind of variant record"));
6067 }
6068 else if (*index_p == 0)
6069 return ada_value_primitive_field (arg, offset, i, type);
6070 else
6071 *index_p -= 1;
6072 }
6073 return NULL;
6074 }
6075
6076 /* Given ARG, a value of type (pointer or reference to a)*
6077 structure/union, extract the component named NAME from the ultimate
6078 target structure/union and return it as a value with its
6079 appropriate type.
6080
6081 The routine searches for NAME among all members of the structure itself
6082 and (recursively) among all members of any wrapper members
6083 (e.g., '_parent').
6084
6085 If NO_ERR, then simply return NULL in case of error, rather than
6086 calling error. */
6087
6088 struct value *
6089 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6090 {
6091 struct type *t, *t1;
6092 struct value *v;
6093
6094 v = NULL;
6095 t1 = t = ada_check_typedef (value_type (arg));
6096 if (TYPE_CODE (t) == TYPE_CODE_REF)
6097 {
6098 t1 = TYPE_TARGET_TYPE (t);
6099 if (t1 == NULL)
6100 goto BadValue;
6101 t1 = ada_check_typedef (t1);
6102 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6103 {
6104 arg = coerce_ref (arg);
6105 t = t1;
6106 }
6107 }
6108
6109 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6110 {
6111 t1 = TYPE_TARGET_TYPE (t);
6112 if (t1 == NULL)
6113 goto BadValue;
6114 t1 = ada_check_typedef (t1);
6115 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6116 {
6117 arg = value_ind (arg);
6118 t = t1;
6119 }
6120 else
6121 break;
6122 }
6123
6124 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6125 goto BadValue;
6126
6127 if (t1 == t)
6128 v = ada_search_struct_field (name, arg, 0, t);
6129 else
6130 {
6131 int bit_offset, bit_size, byte_offset;
6132 struct type *field_type;
6133 CORE_ADDR address;
6134
6135 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6136 address = value_as_address (arg);
6137 else
6138 address = unpack_pointer (t, value_contents (arg));
6139
6140 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6141 if (find_struct_field (name, t1, 0,
6142 &field_type, &byte_offset, &bit_offset,
6143 &bit_size, NULL))
6144 {
6145 if (bit_size != 0)
6146 {
6147 if (TYPE_CODE (t) == TYPE_CODE_REF)
6148 arg = ada_coerce_ref (arg);
6149 else
6150 arg = ada_value_ind (arg);
6151 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6152 bit_offset, bit_size,
6153 field_type);
6154 }
6155 else
6156 v = value_at_lazy (field_type, address + byte_offset);
6157 }
6158 }
6159
6160 if (v != NULL || no_err)
6161 return v;
6162 else
6163 error (_("There is no member named %s."), name);
6164
6165 BadValue:
6166 if (no_err)
6167 return NULL;
6168 else
6169 error (_("Attempt to extract a component of a value that is not a record."));
6170 }
6171
6172 /* Given a type TYPE, look up the type of the component of type named NAME.
6173 If DISPP is non-null, add its byte displacement from the beginning of a
6174 structure (pointed to by a value) of type TYPE to *DISPP (does not
6175 work for packed fields).
6176
6177 Matches any field whose name has NAME as a prefix, possibly
6178 followed by "___".
6179
6180 TYPE can be either a struct or union. If REFOK, TYPE may also
6181 be a (pointer or reference)+ to a struct or union, and the
6182 ultimate target type will be searched.
6183
6184 Looks recursively into variant clauses and parent types.
6185
6186 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6187 TYPE is not a type of the right kind. */
6188
6189 static struct type *
6190 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6191 int noerr, int *dispp)
6192 {
6193 int i;
6194
6195 if (name == NULL)
6196 goto BadName;
6197
6198 if (refok && type != NULL)
6199 while (1)
6200 {
6201 type = ada_check_typedef (type);
6202 if (TYPE_CODE (type) != TYPE_CODE_PTR
6203 && TYPE_CODE (type) != TYPE_CODE_REF)
6204 break;
6205 type = TYPE_TARGET_TYPE (type);
6206 }
6207
6208 if (type == NULL
6209 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6210 && TYPE_CODE (type) != TYPE_CODE_UNION))
6211 {
6212 if (noerr)
6213 return NULL;
6214 else
6215 {
6216 target_terminal_ours ();
6217 gdb_flush (gdb_stdout);
6218 if (type == NULL)
6219 error (_("Type (null) is not a structure or union type"));
6220 else
6221 {
6222 /* XXX: type_sprint */
6223 fprintf_unfiltered (gdb_stderr, _("Type "));
6224 type_print (type, "", gdb_stderr, -1);
6225 error (_(" is not a structure or union type"));
6226 }
6227 }
6228 }
6229
6230 type = to_static_fixed_type (type);
6231
6232 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6233 {
6234 char *t_field_name = TYPE_FIELD_NAME (type, i);
6235 struct type *t;
6236 int disp;
6237
6238 if (t_field_name == NULL)
6239 continue;
6240
6241 else if (field_name_match (t_field_name, name))
6242 {
6243 if (dispp != NULL)
6244 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6245 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6246 }
6247
6248 else if (ada_is_wrapper_field (type, i))
6249 {
6250 disp = 0;
6251 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6252 0, 1, &disp);
6253 if (t != NULL)
6254 {
6255 if (dispp != NULL)
6256 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6257 return t;
6258 }
6259 }
6260
6261 else if (ada_is_variant_part (type, i))
6262 {
6263 int j;
6264 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6265
6266 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6267 {
6268 /* FIXME pnh 2008/01/26: We check for a field that is
6269 NOT wrapped in a struct, since the compiler sometimes
6270 generates these for unchecked variant types. Revisit
6271 if the compiler changes this practice. */
6272 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6273 disp = 0;
6274 if (v_field_name != NULL
6275 && field_name_match (v_field_name, name))
6276 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6277 else
6278 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6279 name, 0, 1, &disp);
6280
6281 if (t != NULL)
6282 {
6283 if (dispp != NULL)
6284 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6285 return t;
6286 }
6287 }
6288 }
6289
6290 }
6291
6292 BadName:
6293 if (!noerr)
6294 {
6295 target_terminal_ours ();
6296 gdb_flush (gdb_stdout);
6297 if (name == NULL)
6298 {
6299 /* XXX: type_sprint */
6300 fprintf_unfiltered (gdb_stderr, _("Type "));
6301 type_print (type, "", gdb_stderr, -1);
6302 error (_(" has no component named <null>"));
6303 }
6304 else
6305 {
6306 /* XXX: type_sprint */
6307 fprintf_unfiltered (gdb_stderr, _("Type "));
6308 type_print (type, "", gdb_stderr, -1);
6309 error (_(" has no component named %s"), name);
6310 }
6311 }
6312
6313 return NULL;
6314 }
6315
6316 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6317 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6318 represents an unchecked union (that is, the variant part of a
6319 record that is named in an Unchecked_Union pragma). */
6320
6321 static int
6322 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6323 {
6324 char *discrim_name = ada_variant_discrim_name (var_type);
6325 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6326 == NULL);
6327 }
6328
6329
6330 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6331 within a value of type OUTER_TYPE that is stored in GDB at
6332 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6333 numbering from 0) is applicable. Returns -1 if none are. */
6334
6335 int
6336 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6337 const gdb_byte *outer_valaddr)
6338 {
6339 int others_clause;
6340 int i;
6341 char *discrim_name = ada_variant_discrim_name (var_type);
6342 struct value *outer;
6343 struct value *discrim;
6344 LONGEST discrim_val;
6345
6346 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6347 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6348 if (discrim == NULL)
6349 return -1;
6350 discrim_val = value_as_long (discrim);
6351
6352 others_clause = -1;
6353 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6354 {
6355 if (ada_is_others_clause (var_type, i))
6356 others_clause = i;
6357 else if (ada_in_variant (discrim_val, var_type, i))
6358 return i;
6359 }
6360
6361 return others_clause;
6362 }
6363 \f
6364
6365
6366 /* Dynamic-Sized Records */
6367
6368 /* Strategy: The type ostensibly attached to a value with dynamic size
6369 (i.e., a size that is not statically recorded in the debugging
6370 data) does not accurately reflect the size or layout of the value.
6371 Our strategy is to convert these values to values with accurate,
6372 conventional types that are constructed on the fly. */
6373
6374 /* There is a subtle and tricky problem here. In general, we cannot
6375 determine the size of dynamic records without its data. However,
6376 the 'struct value' data structure, which GDB uses to represent
6377 quantities in the inferior process (the target), requires the size
6378 of the type at the time of its allocation in order to reserve space
6379 for GDB's internal copy of the data. That's why the
6380 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6381 rather than struct value*s.
6382
6383 However, GDB's internal history variables ($1, $2, etc.) are
6384 struct value*s containing internal copies of the data that are not, in
6385 general, the same as the data at their corresponding addresses in
6386 the target. Fortunately, the types we give to these values are all
6387 conventional, fixed-size types (as per the strategy described
6388 above), so that we don't usually have to perform the
6389 'to_fixed_xxx_type' conversions to look at their values.
6390 Unfortunately, there is one exception: if one of the internal
6391 history variables is an array whose elements are unconstrained
6392 records, then we will need to create distinct fixed types for each
6393 element selected. */
6394
6395 /* The upshot of all of this is that many routines take a (type, host
6396 address, target address) triple as arguments to represent a value.
6397 The host address, if non-null, is supposed to contain an internal
6398 copy of the relevant data; otherwise, the program is to consult the
6399 target at the target address. */
6400
6401 /* Assuming that VAL0 represents a pointer value, the result of
6402 dereferencing it. Differs from value_ind in its treatment of
6403 dynamic-sized types. */
6404
6405 struct value *
6406 ada_value_ind (struct value *val0)
6407 {
6408 struct value *val = unwrap_value (value_ind (val0));
6409 return ada_to_fixed_value (val);
6410 }
6411
6412 /* The value resulting from dereferencing any "reference to"
6413 qualifiers on VAL0. */
6414
6415 static struct value *
6416 ada_coerce_ref (struct value *val0)
6417 {
6418 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6419 {
6420 struct value *val = val0;
6421 val = coerce_ref (val);
6422 val = unwrap_value (val);
6423 return ada_to_fixed_value (val);
6424 }
6425 else
6426 return val0;
6427 }
6428
6429 /* Return OFF rounded upward if necessary to a multiple of
6430 ALIGNMENT (a power of 2). */
6431
6432 static unsigned int
6433 align_value (unsigned int off, unsigned int alignment)
6434 {
6435 return (off + alignment - 1) & ~(alignment - 1);
6436 }
6437
6438 /* Return the bit alignment required for field #F of template type TYPE. */
6439
6440 static unsigned int
6441 field_alignment (struct type *type, int f)
6442 {
6443 const char *name = TYPE_FIELD_NAME (type, f);
6444 int len;
6445 int align_offset;
6446
6447 /* The field name should never be null, unless the debugging information
6448 is somehow malformed. In this case, we assume the field does not
6449 require any alignment. */
6450 if (name == NULL)
6451 return 1;
6452
6453 len = strlen (name);
6454
6455 if (!isdigit (name[len - 1]))
6456 return 1;
6457
6458 if (isdigit (name[len - 2]))
6459 align_offset = len - 2;
6460 else
6461 align_offset = len - 1;
6462
6463 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6464 return TARGET_CHAR_BIT;
6465
6466 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6467 }
6468
6469 /* Find a symbol named NAME. Ignores ambiguity. */
6470
6471 struct symbol *
6472 ada_find_any_symbol (const char *name)
6473 {
6474 struct symbol *sym;
6475
6476 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6477 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6478 return sym;
6479
6480 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6481 return sym;
6482 }
6483
6484 /* Find a type named NAME. Ignores ambiguity. */
6485
6486 struct type *
6487 ada_find_any_type (const char *name)
6488 {
6489 struct symbol *sym = ada_find_any_symbol (name);
6490 struct type *type = NULL;
6491
6492 if (sym != NULL)
6493 type = SYMBOL_TYPE (sym);
6494
6495 if (type == NULL)
6496 type = language_lookup_primitive_type_by_name
6497 (language_def (language_ada), current_gdbarch, name);
6498
6499 return type;
6500 }
6501
6502 /* Given NAME and an associated BLOCK, search all symbols for
6503 NAME suffixed with "___XR", which is the ``renaming'' symbol
6504 associated to NAME. Return this symbol if found, return
6505 NULL otherwise. */
6506
6507 struct symbol *
6508 ada_find_renaming_symbol (const char *name, struct block *block)
6509 {
6510 struct symbol *sym;
6511
6512 sym = find_old_style_renaming_symbol (name, block);
6513
6514 if (sym != NULL)
6515 return sym;
6516
6517 /* Not right yet. FIXME pnh 7/20/2007. */
6518 sym = ada_find_any_symbol (name);
6519 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6520 return sym;
6521 else
6522 return NULL;
6523 }
6524
6525 static struct symbol *
6526 find_old_style_renaming_symbol (const char *name, struct block *block)
6527 {
6528 const struct symbol *function_sym = block_linkage_function (block);
6529 char *rename;
6530
6531 if (function_sym != NULL)
6532 {
6533 /* If the symbol is defined inside a function, NAME is not fully
6534 qualified. This means we need to prepend the function name
6535 as well as adding the ``___XR'' suffix to build the name of
6536 the associated renaming symbol. */
6537 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6538 /* Function names sometimes contain suffixes used
6539 for instance to qualify nested subprograms. When building
6540 the XR type name, we need to make sure that this suffix is
6541 not included. So do not include any suffix in the function
6542 name length below. */
6543 const int function_name_len = ada_name_prefix_len (function_name);
6544 const int rename_len = function_name_len + 2 /* "__" */
6545 + strlen (name) + 6 /* "___XR\0" */ ;
6546
6547 /* Strip the suffix if necessary. */
6548 function_name[function_name_len] = '\0';
6549
6550 /* Library-level functions are a special case, as GNAT adds
6551 a ``_ada_'' prefix to the function name to avoid namespace
6552 pollution. However, the renaming symbols themselves do not
6553 have this prefix, so we need to skip this prefix if present. */
6554 if (function_name_len > 5 /* "_ada_" */
6555 && strstr (function_name, "_ada_") == function_name)
6556 function_name = function_name + 5;
6557
6558 rename = (char *) alloca (rename_len * sizeof (char));
6559 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6560 function_name, name);
6561 }
6562 else
6563 {
6564 const int rename_len = strlen (name) + 6;
6565 rename = (char *) alloca (rename_len * sizeof (char));
6566 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6567 }
6568
6569 return ada_find_any_symbol (rename);
6570 }
6571
6572 /* Because of GNAT encoding conventions, several GDB symbols may match a
6573 given type name. If the type denoted by TYPE0 is to be preferred to
6574 that of TYPE1 for purposes of type printing, return non-zero;
6575 otherwise return 0. */
6576
6577 int
6578 ada_prefer_type (struct type *type0, struct type *type1)
6579 {
6580 if (type1 == NULL)
6581 return 1;
6582 else if (type0 == NULL)
6583 return 0;
6584 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6585 return 1;
6586 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6587 return 0;
6588 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6589 return 1;
6590 else if (ada_is_packed_array_type (type0))
6591 return 1;
6592 else if (ada_is_array_descriptor_type (type0)
6593 && !ada_is_array_descriptor_type (type1))
6594 return 1;
6595 else
6596 {
6597 const char *type0_name = type_name_no_tag (type0);
6598 const char *type1_name = type_name_no_tag (type1);
6599
6600 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6601 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6602 return 1;
6603 }
6604 return 0;
6605 }
6606
6607 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6608 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6609
6610 char *
6611 ada_type_name (struct type *type)
6612 {
6613 if (type == NULL)
6614 return NULL;
6615 else if (TYPE_NAME (type) != NULL)
6616 return TYPE_NAME (type);
6617 else
6618 return TYPE_TAG_NAME (type);
6619 }
6620
6621 /* Find a parallel type to TYPE whose name is formed by appending
6622 SUFFIX to the name of TYPE. */
6623
6624 struct type *
6625 ada_find_parallel_type (struct type *type, const char *suffix)
6626 {
6627 static char *name;
6628 static size_t name_len = 0;
6629 int len;
6630 char *typename = ada_type_name (type);
6631
6632 if (typename == NULL)
6633 return NULL;
6634
6635 len = strlen (typename);
6636
6637 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6638
6639 strcpy (name, typename);
6640 strcpy (name + len, suffix);
6641
6642 return ada_find_any_type (name);
6643 }
6644
6645
6646 /* If TYPE is a variable-size record type, return the corresponding template
6647 type describing its fields. Otherwise, return NULL. */
6648
6649 static struct type *
6650 dynamic_template_type (struct type *type)
6651 {
6652 type = ada_check_typedef (type);
6653
6654 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6655 || ada_type_name (type) == NULL)
6656 return NULL;
6657 else
6658 {
6659 int len = strlen (ada_type_name (type));
6660 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6661 return type;
6662 else
6663 return ada_find_parallel_type (type, "___XVE");
6664 }
6665 }
6666
6667 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6668 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6669
6670 static int
6671 is_dynamic_field (struct type *templ_type, int field_num)
6672 {
6673 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6674 return name != NULL
6675 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6676 && strstr (name, "___XVL") != NULL;
6677 }
6678
6679 /* The index of the variant field of TYPE, or -1 if TYPE does not
6680 represent a variant record type. */
6681
6682 static int
6683 variant_field_index (struct type *type)
6684 {
6685 int f;
6686
6687 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6688 return -1;
6689
6690 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6691 {
6692 if (ada_is_variant_part (type, f))
6693 return f;
6694 }
6695 return -1;
6696 }
6697
6698 /* A record type with no fields. */
6699
6700 static struct type *
6701 empty_record (struct objfile *objfile)
6702 {
6703 struct type *type = alloc_type (objfile);
6704 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6705 TYPE_NFIELDS (type) = 0;
6706 TYPE_FIELDS (type) = NULL;
6707 INIT_CPLUS_SPECIFIC (type);
6708 TYPE_NAME (type) = "<empty>";
6709 TYPE_TAG_NAME (type) = NULL;
6710 TYPE_LENGTH (type) = 0;
6711 return type;
6712 }
6713
6714 /* An ordinary record type (with fixed-length fields) that describes
6715 the value of type TYPE at VALADDR or ADDRESS (see comments at
6716 the beginning of this section) VAL according to GNAT conventions.
6717 DVAL0 should describe the (portion of a) record that contains any
6718 necessary discriminants. It should be NULL if value_type (VAL) is
6719 an outer-level type (i.e., as opposed to a branch of a variant.) A
6720 variant field (unless unchecked) is replaced by a particular branch
6721 of the variant.
6722
6723 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6724 length are not statically known are discarded. As a consequence,
6725 VALADDR, ADDRESS and DVAL0 are ignored.
6726
6727 NOTE: Limitations: For now, we assume that dynamic fields and
6728 variants occupy whole numbers of bytes. However, they need not be
6729 byte-aligned. */
6730
6731 struct type *
6732 ada_template_to_fixed_record_type_1 (struct type *type,
6733 const gdb_byte *valaddr,
6734 CORE_ADDR address, struct value *dval0,
6735 int keep_dynamic_fields)
6736 {
6737 struct value *mark = value_mark ();
6738 struct value *dval;
6739 struct type *rtype;
6740 int nfields, bit_len;
6741 int variant_field;
6742 long off;
6743 int fld_bit_len, bit_incr;
6744 int f;
6745
6746 /* Compute the number of fields in this record type that are going
6747 to be processed: unless keep_dynamic_fields, this includes only
6748 fields whose position and length are static will be processed. */
6749 if (keep_dynamic_fields)
6750 nfields = TYPE_NFIELDS (type);
6751 else
6752 {
6753 nfields = 0;
6754 while (nfields < TYPE_NFIELDS (type)
6755 && !ada_is_variant_part (type, nfields)
6756 && !is_dynamic_field (type, nfields))
6757 nfields++;
6758 }
6759
6760 rtype = alloc_type (TYPE_OBJFILE (type));
6761 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6762 INIT_CPLUS_SPECIFIC (rtype);
6763 TYPE_NFIELDS (rtype) = nfields;
6764 TYPE_FIELDS (rtype) = (struct field *)
6765 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6766 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6767 TYPE_NAME (rtype) = ada_type_name (type);
6768 TYPE_TAG_NAME (rtype) = NULL;
6769 TYPE_FIXED_INSTANCE (rtype) = 1;
6770
6771 off = 0;
6772 bit_len = 0;
6773 variant_field = -1;
6774
6775 for (f = 0; f < nfields; f += 1)
6776 {
6777 off = align_value (off, field_alignment (type, f))
6778 + TYPE_FIELD_BITPOS (type, f);
6779 TYPE_FIELD_BITPOS (rtype, f) = off;
6780 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6781
6782 if (ada_is_variant_part (type, f))
6783 {
6784 variant_field = f;
6785 fld_bit_len = bit_incr = 0;
6786 }
6787 else if (is_dynamic_field (type, f))
6788 {
6789 if (dval0 == NULL)
6790 {
6791 /* rtype's length is computed based on the run-time
6792 value of discriminants. If the discriminants are not
6793 initialized, the type size may be completely bogus and
6794 GDB may fail to allocate a value for it. So check the
6795 size first before creating the value. */
6796 check_size (rtype);
6797 dval = value_from_contents_and_address (rtype, valaddr, address);
6798 }
6799 else
6800 dval = dval0;
6801
6802 /* Get the fixed type of the field. Note that, in this case, we
6803 do not want to get the real type out of the tag: if the current
6804 field is the parent part of a tagged record, we will get the
6805 tag of the object. Clearly wrong: the real type of the parent
6806 is not the real type of the child. We would end up in an infinite
6807 loop. */
6808 TYPE_FIELD_TYPE (rtype, f) =
6809 ada_to_fixed_type
6810 (ada_get_base_type
6811 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6812 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6813 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6814 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6815 bit_incr = fld_bit_len =
6816 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6817 }
6818 else
6819 {
6820 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6821 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6822 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6823 bit_incr = fld_bit_len =
6824 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6825 else
6826 bit_incr = fld_bit_len =
6827 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6828 }
6829 if (off + fld_bit_len > bit_len)
6830 bit_len = off + fld_bit_len;
6831 off += bit_incr;
6832 TYPE_LENGTH (rtype) =
6833 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6834 }
6835
6836 /* We handle the variant part, if any, at the end because of certain
6837 odd cases in which it is re-ordered so as NOT to be the last field of
6838 the record. This can happen in the presence of representation
6839 clauses. */
6840 if (variant_field >= 0)
6841 {
6842 struct type *branch_type;
6843
6844 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6845
6846 if (dval0 == NULL)
6847 dval = value_from_contents_and_address (rtype, valaddr, address);
6848 else
6849 dval = dval0;
6850
6851 branch_type =
6852 to_fixed_variant_branch_type
6853 (TYPE_FIELD_TYPE (type, variant_field),
6854 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6855 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6856 if (branch_type == NULL)
6857 {
6858 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6859 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6860 TYPE_NFIELDS (rtype) -= 1;
6861 }
6862 else
6863 {
6864 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6865 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6866 fld_bit_len =
6867 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6868 TARGET_CHAR_BIT;
6869 if (off + fld_bit_len > bit_len)
6870 bit_len = off + fld_bit_len;
6871 TYPE_LENGTH (rtype) =
6872 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6873 }
6874 }
6875
6876 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6877 should contain the alignment of that record, which should be a strictly
6878 positive value. If null or negative, then something is wrong, most
6879 probably in the debug info. In that case, we don't round up the size
6880 of the resulting type. If this record is not part of another structure,
6881 the current RTYPE length might be good enough for our purposes. */
6882 if (TYPE_LENGTH (type) <= 0)
6883 {
6884 if (TYPE_NAME (rtype))
6885 warning (_("Invalid type size for `%s' detected: %d."),
6886 TYPE_NAME (rtype), TYPE_LENGTH (type));
6887 else
6888 warning (_("Invalid type size for <unnamed> detected: %d."),
6889 TYPE_LENGTH (type));
6890 }
6891 else
6892 {
6893 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6894 TYPE_LENGTH (type));
6895 }
6896
6897 value_free_to_mark (mark);
6898 if (TYPE_LENGTH (rtype) > varsize_limit)
6899 error (_("record type with dynamic size is larger than varsize-limit"));
6900 return rtype;
6901 }
6902
6903 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6904 of 1. */
6905
6906 static struct type *
6907 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6908 CORE_ADDR address, struct value *dval0)
6909 {
6910 return ada_template_to_fixed_record_type_1 (type, valaddr,
6911 address, dval0, 1);
6912 }
6913
6914 /* An ordinary record type in which ___XVL-convention fields and
6915 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6916 static approximations, containing all possible fields. Uses
6917 no runtime values. Useless for use in values, but that's OK,
6918 since the results are used only for type determinations. Works on both
6919 structs and unions. Representation note: to save space, we memorize
6920 the result of this function in the TYPE_TARGET_TYPE of the
6921 template type. */
6922
6923 static struct type *
6924 template_to_static_fixed_type (struct type *type0)
6925 {
6926 struct type *type;
6927 int nfields;
6928 int f;
6929
6930 if (TYPE_TARGET_TYPE (type0) != NULL)
6931 return TYPE_TARGET_TYPE (type0);
6932
6933 nfields = TYPE_NFIELDS (type0);
6934 type = type0;
6935
6936 for (f = 0; f < nfields; f += 1)
6937 {
6938 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6939 struct type *new_type;
6940
6941 if (is_dynamic_field (type0, f))
6942 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6943 else
6944 new_type = static_unwrap_type (field_type);
6945 if (type == type0 && new_type != field_type)
6946 {
6947 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6948 TYPE_CODE (type) = TYPE_CODE (type0);
6949 INIT_CPLUS_SPECIFIC (type);
6950 TYPE_NFIELDS (type) = nfields;
6951 TYPE_FIELDS (type) = (struct field *)
6952 TYPE_ALLOC (type, nfields * sizeof (struct field));
6953 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6954 sizeof (struct field) * nfields);
6955 TYPE_NAME (type) = ada_type_name (type0);
6956 TYPE_TAG_NAME (type) = NULL;
6957 TYPE_FIXED_INSTANCE (type) = 1;
6958 TYPE_LENGTH (type) = 0;
6959 }
6960 TYPE_FIELD_TYPE (type, f) = new_type;
6961 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6962 }
6963 return type;
6964 }
6965
6966 /* Given an object of type TYPE whose contents are at VALADDR and
6967 whose address in memory is ADDRESS, returns a revision of TYPE,
6968 which should be a non-dynamic-sized record, in which the variant
6969 part, if any, is replaced with the appropriate branch. Looks
6970 for discriminant values in DVAL0, which can be NULL if the record
6971 contains the necessary discriminant values. */
6972
6973 static struct type *
6974 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6975 CORE_ADDR address, struct value *dval0)
6976 {
6977 struct value *mark = value_mark ();
6978 struct value *dval;
6979 struct type *rtype;
6980 struct type *branch_type;
6981 int nfields = TYPE_NFIELDS (type);
6982 int variant_field = variant_field_index (type);
6983
6984 if (variant_field == -1)
6985 return type;
6986
6987 if (dval0 == NULL)
6988 dval = value_from_contents_and_address (type, valaddr, address);
6989 else
6990 dval = dval0;
6991
6992 rtype = alloc_type (TYPE_OBJFILE (type));
6993 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6994 INIT_CPLUS_SPECIFIC (rtype);
6995 TYPE_NFIELDS (rtype) = nfields;
6996 TYPE_FIELDS (rtype) =
6997 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6998 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6999 sizeof (struct field) * nfields);
7000 TYPE_NAME (rtype) = ada_type_name (type);
7001 TYPE_TAG_NAME (rtype) = NULL;
7002 TYPE_FIXED_INSTANCE (rtype) = 1;
7003 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7004
7005 branch_type = to_fixed_variant_branch_type
7006 (TYPE_FIELD_TYPE (type, variant_field),
7007 cond_offset_host (valaddr,
7008 TYPE_FIELD_BITPOS (type, variant_field)
7009 / TARGET_CHAR_BIT),
7010 cond_offset_target (address,
7011 TYPE_FIELD_BITPOS (type, variant_field)
7012 / TARGET_CHAR_BIT), dval);
7013 if (branch_type == NULL)
7014 {
7015 int f;
7016 for (f = variant_field + 1; f < nfields; f += 1)
7017 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7018 TYPE_NFIELDS (rtype) -= 1;
7019 }
7020 else
7021 {
7022 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7023 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7024 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7025 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7026 }
7027 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7028
7029 value_free_to_mark (mark);
7030 return rtype;
7031 }
7032
7033 /* An ordinary record type (with fixed-length fields) that describes
7034 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7035 beginning of this section]. Any necessary discriminants' values
7036 should be in DVAL, a record value; it may be NULL if the object
7037 at ADDR itself contains any necessary discriminant values.
7038 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7039 values from the record are needed. Except in the case that DVAL,
7040 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7041 unchecked) is replaced by a particular branch of the variant.
7042
7043 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7044 is questionable and may be removed. It can arise during the
7045 processing of an unconstrained-array-of-record type where all the
7046 variant branches have exactly the same size. This is because in
7047 such cases, the compiler does not bother to use the XVS convention
7048 when encoding the record. I am currently dubious of this
7049 shortcut and suspect the compiler should be altered. FIXME. */
7050
7051 static struct type *
7052 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7053 CORE_ADDR address, struct value *dval)
7054 {
7055 struct type *templ_type;
7056
7057 if (TYPE_FIXED_INSTANCE (type0))
7058 return type0;
7059
7060 templ_type = dynamic_template_type (type0);
7061
7062 if (templ_type != NULL)
7063 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7064 else if (variant_field_index (type0) >= 0)
7065 {
7066 if (dval == NULL && valaddr == NULL && address == 0)
7067 return type0;
7068 return to_record_with_fixed_variant_part (type0, valaddr, address,
7069 dval);
7070 }
7071 else
7072 {
7073 TYPE_FIXED_INSTANCE (type0) = 1;
7074 return type0;
7075 }
7076
7077 }
7078
7079 /* An ordinary record type (with fixed-length fields) that describes
7080 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7081 union type. Any necessary discriminants' values should be in DVAL,
7082 a record value. That is, this routine selects the appropriate
7083 branch of the union at ADDR according to the discriminant value
7084 indicated in the union's type name. Returns VAR_TYPE0 itself if
7085 it represents a variant subject to a pragma Unchecked_Union. */
7086
7087 static struct type *
7088 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7089 CORE_ADDR address, struct value *dval)
7090 {
7091 int which;
7092 struct type *templ_type;
7093 struct type *var_type;
7094
7095 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7096 var_type = TYPE_TARGET_TYPE (var_type0);
7097 else
7098 var_type = var_type0;
7099
7100 templ_type = ada_find_parallel_type (var_type, "___XVU");
7101
7102 if (templ_type != NULL)
7103 var_type = templ_type;
7104
7105 if (is_unchecked_variant (var_type, value_type (dval)))
7106 return var_type0;
7107 which =
7108 ada_which_variant_applies (var_type,
7109 value_type (dval), value_contents (dval));
7110
7111 if (which < 0)
7112 return empty_record (TYPE_OBJFILE (var_type));
7113 else if (is_dynamic_field (var_type, which))
7114 return to_fixed_record_type
7115 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7116 valaddr, address, dval);
7117 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7118 return
7119 to_fixed_record_type
7120 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7121 else
7122 return TYPE_FIELD_TYPE (var_type, which);
7123 }
7124
7125 /* Assuming that TYPE0 is an array type describing the type of a value
7126 at ADDR, and that DVAL describes a record containing any
7127 discriminants used in TYPE0, returns a type for the value that
7128 contains no dynamic components (that is, no components whose sizes
7129 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7130 true, gives an error message if the resulting type's size is over
7131 varsize_limit. */
7132
7133 static struct type *
7134 to_fixed_array_type (struct type *type0, struct value *dval,
7135 int ignore_too_big)
7136 {
7137 struct type *index_type_desc;
7138 struct type *result;
7139
7140 if (ada_is_packed_array_type (type0) /* revisit? */
7141 || TYPE_FIXED_INSTANCE (type0))
7142 return type0;
7143
7144 index_type_desc = ada_find_parallel_type (type0, "___XA");
7145 if (index_type_desc == NULL)
7146 {
7147 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7148 /* NOTE: elt_type---the fixed version of elt_type0---should never
7149 depend on the contents of the array in properly constructed
7150 debugging data. */
7151 /* Create a fixed version of the array element type.
7152 We're not providing the address of an element here,
7153 and thus the actual object value cannot be inspected to do
7154 the conversion. This should not be a problem, since arrays of
7155 unconstrained objects are not allowed. In particular, all
7156 the elements of an array of a tagged type should all be of
7157 the same type specified in the debugging info. No need to
7158 consult the object tag. */
7159 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7160
7161 if (elt_type0 == elt_type)
7162 result = type0;
7163 else
7164 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7165 elt_type, TYPE_INDEX_TYPE (type0));
7166 }
7167 else
7168 {
7169 int i;
7170 struct type *elt_type0;
7171
7172 elt_type0 = type0;
7173 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7174 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7175
7176 /* NOTE: result---the fixed version of elt_type0---should never
7177 depend on the contents of the array in properly constructed
7178 debugging data. */
7179 /* Create a fixed version of the array element type.
7180 We're not providing the address of an element here,
7181 and thus the actual object value cannot be inspected to do
7182 the conversion. This should not be a problem, since arrays of
7183 unconstrained objects are not allowed. In particular, all
7184 the elements of an array of a tagged type should all be of
7185 the same type specified in the debugging info. No need to
7186 consult the object tag. */
7187 result =
7188 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7189 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7190 {
7191 struct type *range_type =
7192 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7193 dval, TYPE_OBJFILE (type0));
7194 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7195 result, range_type);
7196 }
7197 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7198 error (_("array type with dynamic size is larger than varsize-limit"));
7199 }
7200
7201 TYPE_FIXED_INSTANCE (result) = 1;
7202 return result;
7203 }
7204
7205
7206 /* A standard type (containing no dynamically sized components)
7207 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7208 DVAL describes a record containing any discriminants used in TYPE0,
7209 and may be NULL if there are none, or if the object of type TYPE at
7210 ADDRESS or in VALADDR contains these discriminants.
7211
7212 If CHECK_TAG is not null, in the case of tagged types, this function
7213 attempts to locate the object's tag and use it to compute the actual
7214 type. However, when ADDRESS is null, we cannot use it to determine the
7215 location of the tag, and therefore compute the tagged type's actual type.
7216 So we return the tagged type without consulting the tag. */
7217
7218 static struct type *
7219 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7220 CORE_ADDR address, struct value *dval, int check_tag)
7221 {
7222 type = ada_check_typedef (type);
7223 switch (TYPE_CODE (type))
7224 {
7225 default:
7226 return type;
7227 case TYPE_CODE_STRUCT:
7228 {
7229 struct type *static_type = to_static_fixed_type (type);
7230 struct type *fixed_record_type =
7231 to_fixed_record_type (type, valaddr, address, NULL);
7232 /* If STATIC_TYPE is a tagged type and we know the object's address,
7233 then we can determine its tag, and compute the object's actual
7234 type from there. Note that we have to use the fixed record
7235 type (the parent part of the record may have dynamic fields
7236 and the way the location of _tag is expressed may depend on
7237 them). */
7238
7239 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7240 {
7241 struct type *real_type =
7242 type_from_tag (value_tag_from_contents_and_address
7243 (fixed_record_type,
7244 valaddr,
7245 address));
7246 if (real_type != NULL)
7247 return to_fixed_record_type (real_type, valaddr, address, NULL);
7248 }
7249
7250 /* Check to see if there is a parallel ___XVZ variable.
7251 If there is, then it provides the actual size of our type. */
7252 else if (ada_type_name (fixed_record_type) != NULL)
7253 {
7254 char *name = ada_type_name (fixed_record_type);
7255 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7256 int xvz_found = 0;
7257 LONGEST size;
7258
7259 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7260 size = get_int_var_value (xvz_name, &xvz_found);
7261 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7262 {
7263 fixed_record_type = copy_type (fixed_record_type);
7264 TYPE_LENGTH (fixed_record_type) = size;
7265
7266 /* The FIXED_RECORD_TYPE may have be a stub. We have
7267 observed this when the debugging info is STABS, and
7268 apparently it is something that is hard to fix.
7269
7270 In practice, we don't need the actual type definition
7271 at all, because the presence of the XVZ variable allows us
7272 to assume that there must be a XVS type as well, which we
7273 should be able to use later, when we need the actual type
7274 definition.
7275
7276 In the meantime, pretend that the "fixed" type we are
7277 returning is NOT a stub, because this can cause trouble
7278 when using this type to create new types targeting it.
7279 Indeed, the associated creation routines often check
7280 whether the target type is a stub and will try to replace
7281 it, thus using a type with the wrong size. This, in turn,
7282 might cause the new type to have the wrong size too.
7283 Consider the case of an array, for instance, where the size
7284 of the array is computed from the number of elements in
7285 our array multiplied by the size of its element. */
7286 TYPE_STUB (fixed_record_type) = 0;
7287 }
7288 }
7289 return fixed_record_type;
7290 }
7291 case TYPE_CODE_ARRAY:
7292 return to_fixed_array_type (type, dval, 1);
7293 case TYPE_CODE_UNION:
7294 if (dval == NULL)
7295 return type;
7296 else
7297 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7298 }
7299 }
7300
7301 /* The same as ada_to_fixed_type_1, except that it preserves the type
7302 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7303 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7304
7305 struct type *
7306 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7307 CORE_ADDR address, struct value *dval, int check_tag)
7308
7309 {
7310 struct type *fixed_type =
7311 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7312
7313 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7314 && TYPE_TARGET_TYPE (type) == fixed_type)
7315 return type;
7316
7317 return fixed_type;
7318 }
7319
7320 /* A standard (static-sized) type corresponding as well as possible to
7321 TYPE0, but based on no runtime data. */
7322
7323 static struct type *
7324 to_static_fixed_type (struct type *type0)
7325 {
7326 struct type *type;
7327
7328 if (type0 == NULL)
7329 return NULL;
7330
7331 if (TYPE_FIXED_INSTANCE (type0))
7332 return type0;
7333
7334 type0 = ada_check_typedef (type0);
7335
7336 switch (TYPE_CODE (type0))
7337 {
7338 default:
7339 return type0;
7340 case TYPE_CODE_STRUCT:
7341 type = dynamic_template_type (type0);
7342 if (type != NULL)
7343 return template_to_static_fixed_type (type);
7344 else
7345 return template_to_static_fixed_type (type0);
7346 case TYPE_CODE_UNION:
7347 type = ada_find_parallel_type (type0, "___XVU");
7348 if (type != NULL)
7349 return template_to_static_fixed_type (type);
7350 else
7351 return template_to_static_fixed_type (type0);
7352 }
7353 }
7354
7355 /* A static approximation of TYPE with all type wrappers removed. */
7356
7357 static struct type *
7358 static_unwrap_type (struct type *type)
7359 {
7360 if (ada_is_aligner_type (type))
7361 {
7362 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7363 if (ada_type_name (type1) == NULL)
7364 TYPE_NAME (type1) = ada_type_name (type);
7365
7366 return static_unwrap_type (type1);
7367 }
7368 else
7369 {
7370 struct type *raw_real_type = ada_get_base_type (type);
7371 if (raw_real_type == type)
7372 return type;
7373 else
7374 return to_static_fixed_type (raw_real_type);
7375 }
7376 }
7377
7378 /* In some cases, incomplete and private types require
7379 cross-references that are not resolved as records (for example,
7380 type Foo;
7381 type FooP is access Foo;
7382 V: FooP;
7383 type Foo is array ...;
7384 ). In these cases, since there is no mechanism for producing
7385 cross-references to such types, we instead substitute for FooP a
7386 stub enumeration type that is nowhere resolved, and whose tag is
7387 the name of the actual type. Call these types "non-record stubs". */
7388
7389 /* A type equivalent to TYPE that is not a non-record stub, if one
7390 exists, otherwise TYPE. */
7391
7392 struct type *
7393 ada_check_typedef (struct type *type)
7394 {
7395 if (type == NULL)
7396 return NULL;
7397
7398 CHECK_TYPEDEF (type);
7399 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7400 || !TYPE_STUB (type)
7401 || TYPE_TAG_NAME (type) == NULL)
7402 return type;
7403 else
7404 {
7405 char *name = TYPE_TAG_NAME (type);
7406 struct type *type1 = ada_find_any_type (name);
7407 return (type1 == NULL) ? type : type1;
7408 }
7409 }
7410
7411 /* A value representing the data at VALADDR/ADDRESS as described by
7412 type TYPE0, but with a standard (static-sized) type that correctly
7413 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7414 type, then return VAL0 [this feature is simply to avoid redundant
7415 creation of struct values]. */
7416
7417 static struct value *
7418 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7419 struct value *val0)
7420 {
7421 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7422 if (type == type0 && val0 != NULL)
7423 return val0;
7424 else
7425 return value_from_contents_and_address (type, 0, address);
7426 }
7427
7428 /* A value representing VAL, but with a standard (static-sized) type
7429 that correctly describes it. Does not necessarily create a new
7430 value. */
7431
7432 static struct value *
7433 ada_to_fixed_value (struct value *val)
7434 {
7435 return ada_to_fixed_value_create (value_type (val),
7436 VALUE_ADDRESS (val) + value_offset (val),
7437 val);
7438 }
7439
7440 /* A value representing VAL, but with a standard (static-sized) type
7441 chosen to approximate the real type of VAL as well as possible, but
7442 without consulting any runtime values. For Ada dynamic-sized
7443 types, therefore, the type of the result is likely to be inaccurate. */
7444
7445 static struct value *
7446 ada_to_static_fixed_value (struct value *val)
7447 {
7448 struct type *type =
7449 to_static_fixed_type (static_unwrap_type (value_type (val)));
7450 if (type == value_type (val))
7451 return val;
7452 else
7453 return coerce_unspec_val_to_type (val, type);
7454 }
7455 \f
7456
7457 /* Attributes */
7458
7459 /* Table mapping attribute numbers to names.
7460 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7461
7462 static const char *attribute_names[] = {
7463 "<?>",
7464
7465 "first",
7466 "last",
7467 "length",
7468 "image",
7469 "max",
7470 "min",
7471 "modulus",
7472 "pos",
7473 "size",
7474 "tag",
7475 "val",
7476 0
7477 };
7478
7479 const char *
7480 ada_attribute_name (enum exp_opcode n)
7481 {
7482 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7483 return attribute_names[n - OP_ATR_FIRST + 1];
7484 else
7485 return attribute_names[0];
7486 }
7487
7488 /* Evaluate the 'POS attribute applied to ARG. */
7489
7490 static LONGEST
7491 pos_atr (struct value *arg)
7492 {
7493 struct value *val = coerce_ref (arg);
7494 struct type *type = value_type (val);
7495
7496 if (!discrete_type_p (type))
7497 error (_("'POS only defined on discrete types"));
7498
7499 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7500 {
7501 int i;
7502 LONGEST v = value_as_long (val);
7503
7504 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7505 {
7506 if (v == TYPE_FIELD_BITPOS (type, i))
7507 return i;
7508 }
7509 error (_("enumeration value is invalid: can't find 'POS"));
7510 }
7511 else
7512 return value_as_long (val);
7513 }
7514
7515 static struct value *
7516 value_pos_atr (struct type *type, struct value *arg)
7517 {
7518 return value_from_longest (type, pos_atr (arg));
7519 }
7520
7521 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7522
7523 static struct value *
7524 value_val_atr (struct type *type, struct value *arg)
7525 {
7526 if (!discrete_type_p (type))
7527 error (_("'VAL only defined on discrete types"));
7528 if (!integer_type_p (value_type (arg)))
7529 error (_("'VAL requires integral argument"));
7530
7531 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7532 {
7533 long pos = value_as_long (arg);
7534 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7535 error (_("argument to 'VAL out of range"));
7536 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7537 }
7538 else
7539 return value_from_longest (type, value_as_long (arg));
7540 }
7541 \f
7542
7543 /* Evaluation */
7544
7545 /* True if TYPE appears to be an Ada character type.
7546 [At the moment, this is true only for Character and Wide_Character;
7547 It is a heuristic test that could stand improvement]. */
7548
7549 int
7550 ada_is_character_type (struct type *type)
7551 {
7552 const char *name;
7553
7554 /* If the type code says it's a character, then assume it really is,
7555 and don't check any further. */
7556 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7557 return 1;
7558
7559 /* Otherwise, assume it's a character type iff it is a discrete type
7560 with a known character type name. */
7561 name = ada_type_name (type);
7562 return (name != NULL
7563 && (TYPE_CODE (type) == TYPE_CODE_INT
7564 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7565 && (strcmp (name, "character") == 0
7566 || strcmp (name, "wide_character") == 0
7567 || strcmp (name, "wide_wide_character") == 0
7568 || strcmp (name, "unsigned char") == 0));
7569 }
7570
7571 /* True if TYPE appears to be an Ada string type. */
7572
7573 int
7574 ada_is_string_type (struct type *type)
7575 {
7576 type = ada_check_typedef (type);
7577 if (type != NULL
7578 && TYPE_CODE (type) != TYPE_CODE_PTR
7579 && (ada_is_simple_array_type (type)
7580 || ada_is_array_descriptor_type (type))
7581 && ada_array_arity (type) == 1)
7582 {
7583 struct type *elttype = ada_array_element_type (type, 1);
7584
7585 return ada_is_character_type (elttype);
7586 }
7587 else
7588 return 0;
7589 }
7590
7591
7592 /* True if TYPE is a struct type introduced by the compiler to force the
7593 alignment of a value. Such types have a single field with a
7594 distinctive name. */
7595
7596 int
7597 ada_is_aligner_type (struct type *type)
7598 {
7599 type = ada_check_typedef (type);
7600
7601 /* If we can find a parallel XVS type, then the XVS type should
7602 be used instead of this type. And hence, this is not an aligner
7603 type. */
7604 if (ada_find_parallel_type (type, "___XVS") != NULL)
7605 return 0;
7606
7607 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7608 && TYPE_NFIELDS (type) == 1
7609 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7610 }
7611
7612 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7613 the parallel type. */
7614
7615 struct type *
7616 ada_get_base_type (struct type *raw_type)
7617 {
7618 struct type *real_type_namer;
7619 struct type *raw_real_type;
7620
7621 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7622 return raw_type;
7623
7624 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7625 if (real_type_namer == NULL
7626 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7627 || TYPE_NFIELDS (real_type_namer) != 1)
7628 return raw_type;
7629
7630 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7631 if (raw_real_type == NULL)
7632 return raw_type;
7633 else
7634 return raw_real_type;
7635 }
7636
7637 /* The type of value designated by TYPE, with all aligners removed. */
7638
7639 struct type *
7640 ada_aligned_type (struct type *type)
7641 {
7642 if (ada_is_aligner_type (type))
7643 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7644 else
7645 return ada_get_base_type (type);
7646 }
7647
7648
7649 /* The address of the aligned value in an object at address VALADDR
7650 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7651
7652 const gdb_byte *
7653 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7654 {
7655 if (ada_is_aligner_type (type))
7656 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7657 valaddr +
7658 TYPE_FIELD_BITPOS (type,
7659 0) / TARGET_CHAR_BIT);
7660 else
7661 return valaddr;
7662 }
7663
7664
7665
7666 /* The printed representation of an enumeration literal with encoded
7667 name NAME. The value is good to the next call of ada_enum_name. */
7668 const char *
7669 ada_enum_name (const char *name)
7670 {
7671 static char *result;
7672 static size_t result_len = 0;
7673 char *tmp;
7674
7675 /* First, unqualify the enumeration name:
7676 1. Search for the last '.' character. If we find one, then skip
7677 all the preceeding characters, the unqualified name starts
7678 right after that dot.
7679 2. Otherwise, we may be debugging on a target where the compiler
7680 translates dots into "__". Search forward for double underscores,
7681 but stop searching when we hit an overloading suffix, which is
7682 of the form "__" followed by digits. */
7683
7684 tmp = strrchr (name, '.');
7685 if (tmp != NULL)
7686 name = tmp + 1;
7687 else
7688 {
7689 while ((tmp = strstr (name, "__")) != NULL)
7690 {
7691 if (isdigit (tmp[2]))
7692 break;
7693 else
7694 name = tmp + 2;
7695 }
7696 }
7697
7698 if (name[0] == 'Q')
7699 {
7700 int v;
7701 if (name[1] == 'U' || name[1] == 'W')
7702 {
7703 if (sscanf (name + 2, "%x", &v) != 1)
7704 return name;
7705 }
7706 else
7707 return name;
7708
7709 GROW_VECT (result, result_len, 16);
7710 if (isascii (v) && isprint (v))
7711 xsnprintf (result, result_len, "'%c'", v);
7712 else if (name[1] == 'U')
7713 xsnprintf (result, result_len, "[\"%02x\"]", v);
7714 else
7715 xsnprintf (result, result_len, "[\"%04x\"]", v);
7716
7717 return result;
7718 }
7719 else
7720 {
7721 tmp = strstr (name, "__");
7722 if (tmp == NULL)
7723 tmp = strstr (name, "$");
7724 if (tmp != NULL)
7725 {
7726 GROW_VECT (result, result_len, tmp - name + 1);
7727 strncpy (result, name, tmp - name);
7728 result[tmp - name] = '\0';
7729 return result;
7730 }
7731
7732 return name;
7733 }
7734 }
7735
7736 static struct value *
7737 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7738 enum noside noside)
7739 {
7740 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7741 (expect_type, exp, pos, noside);
7742 }
7743
7744 /* Evaluate the subexpression of EXP starting at *POS as for
7745 evaluate_type, updating *POS to point just past the evaluated
7746 expression. */
7747
7748 static struct value *
7749 evaluate_subexp_type (struct expression *exp, int *pos)
7750 {
7751 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7752 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7753 }
7754
7755 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7756 value it wraps. */
7757
7758 static struct value *
7759 unwrap_value (struct value *val)
7760 {
7761 struct type *type = ada_check_typedef (value_type (val));
7762 if (ada_is_aligner_type (type))
7763 {
7764 struct value *v = ada_value_struct_elt (val, "F", 0);
7765 struct type *val_type = ada_check_typedef (value_type (v));
7766 if (ada_type_name (val_type) == NULL)
7767 TYPE_NAME (val_type) = ada_type_name (type);
7768
7769 return unwrap_value (v);
7770 }
7771 else
7772 {
7773 struct type *raw_real_type =
7774 ada_check_typedef (ada_get_base_type (type));
7775
7776 if (type == raw_real_type)
7777 return val;
7778
7779 return
7780 coerce_unspec_val_to_type
7781 (val, ada_to_fixed_type (raw_real_type, 0,
7782 VALUE_ADDRESS (val) + value_offset (val),
7783 NULL, 1));
7784 }
7785 }
7786
7787 static struct value *
7788 cast_to_fixed (struct type *type, struct value *arg)
7789 {
7790 LONGEST val;
7791
7792 if (type == value_type (arg))
7793 return arg;
7794 else if (ada_is_fixed_point_type (value_type (arg)))
7795 val = ada_float_to_fixed (type,
7796 ada_fixed_to_float (value_type (arg),
7797 value_as_long (arg)));
7798 else
7799 {
7800 DOUBLEST argd = value_as_double (arg);
7801 val = ada_float_to_fixed (type, argd);
7802 }
7803
7804 return value_from_longest (type, val);
7805 }
7806
7807 static struct value *
7808 cast_from_fixed (struct type *type, struct value *arg)
7809 {
7810 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7811 value_as_long (arg));
7812 return value_from_double (type, val);
7813 }
7814
7815 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7816 return the converted value. */
7817
7818 static struct value *
7819 coerce_for_assign (struct type *type, struct value *val)
7820 {
7821 struct type *type2 = value_type (val);
7822 if (type == type2)
7823 return val;
7824
7825 type2 = ada_check_typedef (type2);
7826 type = ada_check_typedef (type);
7827
7828 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7829 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7830 {
7831 val = ada_value_ind (val);
7832 type2 = value_type (val);
7833 }
7834
7835 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7836 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7837 {
7838 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7839 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7840 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7841 error (_("Incompatible types in assignment"));
7842 deprecated_set_value_type (val, type);
7843 }
7844 return val;
7845 }
7846
7847 static struct value *
7848 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7849 {
7850 struct value *val;
7851 struct type *type1, *type2;
7852 LONGEST v, v1, v2;
7853
7854 arg1 = coerce_ref (arg1);
7855 arg2 = coerce_ref (arg2);
7856 type1 = base_type (ada_check_typedef (value_type (arg1)));
7857 type2 = base_type (ada_check_typedef (value_type (arg2)));
7858
7859 if (TYPE_CODE (type1) != TYPE_CODE_INT
7860 || TYPE_CODE (type2) != TYPE_CODE_INT)
7861 return value_binop (arg1, arg2, op);
7862
7863 switch (op)
7864 {
7865 case BINOP_MOD:
7866 case BINOP_DIV:
7867 case BINOP_REM:
7868 break;
7869 default:
7870 return value_binop (arg1, arg2, op);
7871 }
7872
7873 v2 = value_as_long (arg2);
7874 if (v2 == 0)
7875 error (_("second operand of %s must not be zero."), op_string (op));
7876
7877 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7878 return value_binop (arg1, arg2, op);
7879
7880 v1 = value_as_long (arg1);
7881 switch (op)
7882 {
7883 case BINOP_DIV:
7884 v = v1 / v2;
7885 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7886 v += v > 0 ? -1 : 1;
7887 break;
7888 case BINOP_REM:
7889 v = v1 % v2;
7890 if (v * v1 < 0)
7891 v -= v2;
7892 break;
7893 default:
7894 /* Should not reach this point. */
7895 v = 0;
7896 }
7897
7898 val = allocate_value (type1);
7899 store_unsigned_integer (value_contents_raw (val),
7900 TYPE_LENGTH (value_type (val)), v);
7901 return val;
7902 }
7903
7904 static int
7905 ada_value_equal (struct value *arg1, struct value *arg2)
7906 {
7907 if (ada_is_direct_array_type (value_type (arg1))
7908 || ada_is_direct_array_type (value_type (arg2)))
7909 {
7910 /* Automatically dereference any array reference before
7911 we attempt to perform the comparison. */
7912 arg1 = ada_coerce_ref (arg1);
7913 arg2 = ada_coerce_ref (arg2);
7914
7915 arg1 = ada_coerce_to_simple_array (arg1);
7916 arg2 = ada_coerce_to_simple_array (arg2);
7917 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7918 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7919 error (_("Attempt to compare array with non-array"));
7920 /* FIXME: The following works only for types whose
7921 representations use all bits (no padding or undefined bits)
7922 and do not have user-defined equality. */
7923 return
7924 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7925 && memcmp (value_contents (arg1), value_contents (arg2),
7926 TYPE_LENGTH (value_type (arg1))) == 0;
7927 }
7928 return value_equal (arg1, arg2);
7929 }
7930
7931 /* Total number of component associations in the aggregate starting at
7932 index PC in EXP. Assumes that index PC is the start of an
7933 OP_AGGREGATE. */
7934
7935 static int
7936 num_component_specs (struct expression *exp, int pc)
7937 {
7938 int n, m, i;
7939 m = exp->elts[pc + 1].longconst;
7940 pc += 3;
7941 n = 0;
7942 for (i = 0; i < m; i += 1)
7943 {
7944 switch (exp->elts[pc].opcode)
7945 {
7946 default:
7947 n += 1;
7948 break;
7949 case OP_CHOICES:
7950 n += exp->elts[pc + 1].longconst;
7951 break;
7952 }
7953 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7954 }
7955 return n;
7956 }
7957
7958 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7959 component of LHS (a simple array or a record), updating *POS past
7960 the expression, assuming that LHS is contained in CONTAINER. Does
7961 not modify the inferior's memory, nor does it modify LHS (unless
7962 LHS == CONTAINER). */
7963
7964 static void
7965 assign_component (struct value *container, struct value *lhs, LONGEST index,
7966 struct expression *exp, int *pos)
7967 {
7968 struct value *mark = value_mark ();
7969 struct value *elt;
7970 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
7971 {
7972 struct value *index_val = value_from_longest (builtin_type_int32, index);
7973 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
7974 }
7975 else
7976 {
7977 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
7978 elt = ada_to_fixed_value (unwrap_value (elt));
7979 }
7980
7981 if (exp->elts[*pos].opcode == OP_AGGREGATE)
7982 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
7983 else
7984 value_assign_to_component (container, elt,
7985 ada_evaluate_subexp (NULL, exp, pos,
7986 EVAL_NORMAL));
7987
7988 value_free_to_mark (mark);
7989 }
7990
7991 /* Assuming that LHS represents an lvalue having a record or array
7992 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
7993 of that aggregate's value to LHS, advancing *POS past the
7994 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
7995 lvalue containing LHS (possibly LHS itself). Does not modify
7996 the inferior's memory, nor does it modify the contents of
7997 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
7998
7999 static struct value *
8000 assign_aggregate (struct value *container,
8001 struct value *lhs, struct expression *exp,
8002 int *pos, enum noside noside)
8003 {
8004 struct type *lhs_type;
8005 int n = exp->elts[*pos+1].longconst;
8006 LONGEST low_index, high_index;
8007 int num_specs;
8008 LONGEST *indices;
8009 int max_indices, num_indices;
8010 int is_array_aggregate;
8011 int i;
8012 struct value *mark = value_mark ();
8013
8014 *pos += 3;
8015 if (noside != EVAL_NORMAL)
8016 {
8017 int i;
8018 for (i = 0; i < n; i += 1)
8019 ada_evaluate_subexp (NULL, exp, pos, noside);
8020 return container;
8021 }
8022
8023 container = ada_coerce_ref (container);
8024 if (ada_is_direct_array_type (value_type (container)))
8025 container = ada_coerce_to_simple_array (container);
8026 lhs = ada_coerce_ref (lhs);
8027 if (!deprecated_value_modifiable (lhs))
8028 error (_("Left operand of assignment is not a modifiable lvalue."));
8029
8030 lhs_type = value_type (lhs);
8031 if (ada_is_direct_array_type (lhs_type))
8032 {
8033 lhs = ada_coerce_to_simple_array (lhs);
8034 lhs_type = value_type (lhs);
8035 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8036 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8037 is_array_aggregate = 1;
8038 }
8039 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8040 {
8041 low_index = 0;
8042 high_index = num_visible_fields (lhs_type) - 1;
8043 is_array_aggregate = 0;
8044 }
8045 else
8046 error (_("Left-hand side must be array or record."));
8047
8048 num_specs = num_component_specs (exp, *pos - 3);
8049 max_indices = 4 * num_specs + 4;
8050 indices = alloca (max_indices * sizeof (indices[0]));
8051 indices[0] = indices[1] = low_index - 1;
8052 indices[2] = indices[3] = high_index + 1;
8053 num_indices = 4;
8054
8055 for (i = 0; i < n; i += 1)
8056 {
8057 switch (exp->elts[*pos].opcode)
8058 {
8059 case OP_CHOICES:
8060 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8061 &num_indices, max_indices,
8062 low_index, high_index);
8063 break;
8064 case OP_POSITIONAL:
8065 aggregate_assign_positional (container, lhs, exp, pos, indices,
8066 &num_indices, max_indices,
8067 low_index, high_index);
8068 break;
8069 case OP_OTHERS:
8070 if (i != n-1)
8071 error (_("Misplaced 'others' clause"));
8072 aggregate_assign_others (container, lhs, exp, pos, indices,
8073 num_indices, low_index, high_index);
8074 break;
8075 default:
8076 error (_("Internal error: bad aggregate clause"));
8077 }
8078 }
8079
8080 return container;
8081 }
8082
8083 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8084 construct at *POS, updating *POS past the construct, given that
8085 the positions are relative to lower bound LOW, where HIGH is the
8086 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8087 updating *NUM_INDICES as needed. CONTAINER is as for
8088 assign_aggregate. */
8089 static void
8090 aggregate_assign_positional (struct value *container,
8091 struct value *lhs, struct expression *exp,
8092 int *pos, LONGEST *indices, int *num_indices,
8093 int max_indices, LONGEST low, LONGEST high)
8094 {
8095 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8096
8097 if (ind - 1 == high)
8098 warning (_("Extra components in aggregate ignored."));
8099 if (ind <= high)
8100 {
8101 add_component_interval (ind, ind, indices, num_indices, max_indices);
8102 *pos += 3;
8103 assign_component (container, lhs, ind, exp, pos);
8104 }
8105 else
8106 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8107 }
8108
8109 /* Assign into the components of LHS indexed by the OP_CHOICES
8110 construct at *POS, updating *POS past the construct, given that
8111 the allowable indices are LOW..HIGH. Record the indices assigned
8112 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8113 needed. CONTAINER is as for assign_aggregate. */
8114 static void
8115 aggregate_assign_from_choices (struct value *container,
8116 struct value *lhs, struct expression *exp,
8117 int *pos, LONGEST *indices, int *num_indices,
8118 int max_indices, LONGEST low, LONGEST high)
8119 {
8120 int j;
8121 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8122 int choice_pos, expr_pc;
8123 int is_array = ada_is_direct_array_type (value_type (lhs));
8124
8125 choice_pos = *pos += 3;
8126
8127 for (j = 0; j < n_choices; j += 1)
8128 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8129 expr_pc = *pos;
8130 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8131
8132 for (j = 0; j < n_choices; j += 1)
8133 {
8134 LONGEST lower, upper;
8135 enum exp_opcode op = exp->elts[choice_pos].opcode;
8136 if (op == OP_DISCRETE_RANGE)
8137 {
8138 choice_pos += 1;
8139 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8140 EVAL_NORMAL));
8141 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8142 EVAL_NORMAL));
8143 }
8144 else if (is_array)
8145 {
8146 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8147 EVAL_NORMAL));
8148 upper = lower;
8149 }
8150 else
8151 {
8152 int ind;
8153 char *name;
8154 switch (op)
8155 {
8156 case OP_NAME:
8157 name = &exp->elts[choice_pos + 2].string;
8158 break;
8159 case OP_VAR_VALUE:
8160 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8161 break;
8162 default:
8163 error (_("Invalid record component association."));
8164 }
8165 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8166 ind = 0;
8167 if (! find_struct_field (name, value_type (lhs), 0,
8168 NULL, NULL, NULL, NULL, &ind))
8169 error (_("Unknown component name: %s."), name);
8170 lower = upper = ind;
8171 }
8172
8173 if (lower <= upper && (lower < low || upper > high))
8174 error (_("Index in component association out of bounds."));
8175
8176 add_component_interval (lower, upper, indices, num_indices,
8177 max_indices);
8178 while (lower <= upper)
8179 {
8180 int pos1;
8181 pos1 = expr_pc;
8182 assign_component (container, lhs, lower, exp, &pos1);
8183 lower += 1;
8184 }
8185 }
8186 }
8187
8188 /* Assign the value of the expression in the OP_OTHERS construct in
8189 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8190 have not been previously assigned. The index intervals already assigned
8191 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8192 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8193 static void
8194 aggregate_assign_others (struct value *container,
8195 struct value *lhs, struct expression *exp,
8196 int *pos, LONGEST *indices, int num_indices,
8197 LONGEST low, LONGEST high)
8198 {
8199 int i;
8200 int expr_pc = *pos+1;
8201
8202 for (i = 0; i < num_indices - 2; i += 2)
8203 {
8204 LONGEST ind;
8205 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8206 {
8207 int pos;
8208 pos = expr_pc;
8209 assign_component (container, lhs, ind, exp, &pos);
8210 }
8211 }
8212 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8213 }
8214
8215 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8216 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8217 modifying *SIZE as needed. It is an error if *SIZE exceeds
8218 MAX_SIZE. The resulting intervals do not overlap. */
8219 static void
8220 add_component_interval (LONGEST low, LONGEST high,
8221 LONGEST* indices, int *size, int max_size)
8222 {
8223 int i, j;
8224 for (i = 0; i < *size; i += 2) {
8225 if (high >= indices[i] && low <= indices[i + 1])
8226 {
8227 int kh;
8228 for (kh = i + 2; kh < *size; kh += 2)
8229 if (high < indices[kh])
8230 break;
8231 if (low < indices[i])
8232 indices[i] = low;
8233 indices[i + 1] = indices[kh - 1];
8234 if (high > indices[i + 1])
8235 indices[i + 1] = high;
8236 memcpy (indices + i + 2, indices + kh, *size - kh);
8237 *size -= kh - i - 2;
8238 return;
8239 }
8240 else if (high < indices[i])
8241 break;
8242 }
8243
8244 if (*size == max_size)
8245 error (_("Internal error: miscounted aggregate components."));
8246 *size += 2;
8247 for (j = *size-1; j >= i+2; j -= 1)
8248 indices[j] = indices[j - 2];
8249 indices[i] = low;
8250 indices[i + 1] = high;
8251 }
8252
8253 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8254 is different. */
8255
8256 static struct value *
8257 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8258 {
8259 if (type == ada_check_typedef (value_type (arg2)))
8260 return arg2;
8261
8262 if (ada_is_fixed_point_type (type))
8263 return (cast_to_fixed (type, arg2));
8264
8265 if (ada_is_fixed_point_type (value_type (arg2)))
8266 return cast_from_fixed (type, arg2);
8267
8268 return value_cast (type, arg2);
8269 }
8270
8271 static struct value *
8272 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8273 int *pos, enum noside noside)
8274 {
8275 enum exp_opcode op;
8276 int tem, tem2, tem3;
8277 int pc;
8278 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8279 struct type *type;
8280 int nargs, oplen;
8281 struct value **argvec;
8282
8283 pc = *pos;
8284 *pos += 1;
8285 op = exp->elts[pc].opcode;
8286
8287 switch (op)
8288 {
8289 default:
8290 *pos -= 1;
8291 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8292 arg1 = unwrap_value (arg1);
8293
8294 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8295 then we need to perform the conversion manually, because
8296 evaluate_subexp_standard doesn't do it. This conversion is
8297 necessary in Ada because the different kinds of float/fixed
8298 types in Ada have different representations.
8299
8300 Similarly, we need to perform the conversion from OP_LONG
8301 ourselves. */
8302 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8303 arg1 = ada_value_cast (expect_type, arg1, noside);
8304
8305 return arg1;
8306
8307 case OP_STRING:
8308 {
8309 struct value *result;
8310 *pos -= 1;
8311 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8312 /* The result type will have code OP_STRING, bashed there from
8313 OP_ARRAY. Bash it back. */
8314 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8315 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8316 return result;
8317 }
8318
8319 case UNOP_CAST:
8320 (*pos) += 2;
8321 type = exp->elts[pc + 1].type;
8322 arg1 = evaluate_subexp (type, exp, pos, noside);
8323 if (noside == EVAL_SKIP)
8324 goto nosideret;
8325 arg1 = ada_value_cast (type, arg1, noside);
8326 return arg1;
8327
8328 case UNOP_QUAL:
8329 (*pos) += 2;
8330 type = exp->elts[pc + 1].type;
8331 return ada_evaluate_subexp (type, exp, pos, noside);
8332
8333 case BINOP_ASSIGN:
8334 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8335 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8336 {
8337 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8338 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8339 return arg1;
8340 return ada_value_assign (arg1, arg1);
8341 }
8342 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8343 except if the lhs of our assignment is a convenience variable.
8344 In the case of assigning to a convenience variable, the lhs
8345 should be exactly the result of the evaluation of the rhs. */
8346 type = value_type (arg1);
8347 if (VALUE_LVAL (arg1) == lval_internalvar)
8348 type = NULL;
8349 arg2 = evaluate_subexp (type, exp, pos, noside);
8350 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8351 return arg1;
8352 if (ada_is_fixed_point_type (value_type (arg1)))
8353 arg2 = cast_to_fixed (value_type (arg1), arg2);
8354 else if (ada_is_fixed_point_type (value_type (arg2)))
8355 error
8356 (_("Fixed-point values must be assigned to fixed-point variables"));
8357 else
8358 arg2 = coerce_for_assign (value_type (arg1), arg2);
8359 return ada_value_assign (arg1, arg2);
8360
8361 case BINOP_ADD:
8362 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8363 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8364 if (noside == EVAL_SKIP)
8365 goto nosideret;
8366 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8367 return (value_from_longest
8368 (value_type (arg1),
8369 value_as_long (arg1) + value_as_long (arg2)));
8370 if ((ada_is_fixed_point_type (value_type (arg1))
8371 || ada_is_fixed_point_type (value_type (arg2)))
8372 && value_type (arg1) != value_type (arg2))
8373 error (_("Operands of fixed-point addition must have the same type"));
8374 /* Do the addition, and cast the result to the type of the first
8375 argument. We cannot cast the result to a reference type, so if
8376 ARG1 is a reference type, find its underlying type. */
8377 type = value_type (arg1);
8378 while (TYPE_CODE (type) == TYPE_CODE_REF)
8379 type = TYPE_TARGET_TYPE (type);
8380 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8381 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8382
8383 case BINOP_SUB:
8384 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8385 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8386 if (noside == EVAL_SKIP)
8387 goto nosideret;
8388 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8389 return (value_from_longest
8390 (value_type (arg1),
8391 value_as_long (arg1) - value_as_long (arg2)));
8392 if ((ada_is_fixed_point_type (value_type (arg1))
8393 || ada_is_fixed_point_type (value_type (arg2)))
8394 && value_type (arg1) != value_type (arg2))
8395 error (_("Operands of fixed-point subtraction must have the same type"));
8396 /* Do the substraction, and cast the result to the type of the first
8397 argument. We cannot cast the result to a reference type, so if
8398 ARG1 is a reference type, find its underlying type. */
8399 type = value_type (arg1);
8400 while (TYPE_CODE (type) == TYPE_CODE_REF)
8401 type = TYPE_TARGET_TYPE (type);
8402 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8403 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8404
8405 case BINOP_MUL:
8406 case BINOP_DIV:
8407 case BINOP_REM:
8408 case BINOP_MOD:
8409 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8410 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8411 if (noside == EVAL_SKIP)
8412 goto nosideret;
8413 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8414 {
8415 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8416 return value_zero (value_type (arg1), not_lval);
8417 }
8418 else
8419 {
8420 type = builtin_type (exp->gdbarch)->builtin_double;
8421 if (ada_is_fixed_point_type (value_type (arg1)))
8422 arg1 = cast_from_fixed (type, arg1);
8423 if (ada_is_fixed_point_type (value_type (arg2)))
8424 arg2 = cast_from_fixed (type, arg2);
8425 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8426 return ada_value_binop (arg1, arg2, op);
8427 }
8428
8429 case BINOP_EQUAL:
8430 case BINOP_NOTEQUAL:
8431 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8432 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8433 if (noside == EVAL_SKIP)
8434 goto nosideret;
8435 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8436 tem = 0;
8437 else
8438 {
8439 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8440 tem = ada_value_equal (arg1, arg2);
8441 }
8442 if (op == BINOP_NOTEQUAL)
8443 tem = !tem;
8444 type = language_bool_type (exp->language_defn, exp->gdbarch);
8445 return value_from_longest (type, (LONGEST) tem);
8446
8447 case UNOP_NEG:
8448 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8449 if (noside == EVAL_SKIP)
8450 goto nosideret;
8451 else if (ada_is_fixed_point_type (value_type (arg1)))
8452 return value_cast (value_type (arg1), value_neg (arg1));
8453 else
8454 {
8455 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8456 return value_neg (arg1);
8457 }
8458
8459 case BINOP_LOGICAL_AND:
8460 case BINOP_LOGICAL_OR:
8461 case UNOP_LOGICAL_NOT:
8462 {
8463 struct value *val;
8464
8465 *pos -= 1;
8466 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8467 type = language_bool_type (exp->language_defn, exp->gdbarch);
8468 return value_cast (type, val);
8469 }
8470
8471 case BINOP_BITWISE_AND:
8472 case BINOP_BITWISE_IOR:
8473 case BINOP_BITWISE_XOR:
8474 {
8475 struct value *val;
8476
8477 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8478 *pos = pc;
8479 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8480
8481 return value_cast (value_type (arg1), val);
8482 }
8483
8484 case OP_VAR_VALUE:
8485 *pos -= 1;
8486
8487 if (noside == EVAL_SKIP)
8488 {
8489 *pos += 4;
8490 goto nosideret;
8491 }
8492 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8493 /* Only encountered when an unresolved symbol occurs in a
8494 context other than a function call, in which case, it is
8495 invalid. */
8496 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8497 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8498 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8499 {
8500 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8501 if (ada_is_tagged_type (type, 0))
8502 {
8503 /* Tagged types are a little special in the fact that the real
8504 type is dynamic and can only be determined by inspecting the
8505 object's tag. This means that we need to get the object's
8506 value first (EVAL_NORMAL) and then extract the actual object
8507 type from its tag.
8508
8509 Note that we cannot skip the final step where we extract
8510 the object type from its tag, because the EVAL_NORMAL phase
8511 results in dynamic components being resolved into fixed ones.
8512 This can cause problems when trying to print the type
8513 description of tagged types whose parent has a dynamic size:
8514 We use the type name of the "_parent" component in order
8515 to print the name of the ancestor type in the type description.
8516 If that component had a dynamic size, the resolution into
8517 a fixed type would result in the loss of that type name,
8518 thus preventing us from printing the name of the ancestor
8519 type in the type description. */
8520 struct type *actual_type;
8521
8522 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8523 actual_type = type_from_tag (ada_value_tag (arg1));
8524 if (actual_type == NULL)
8525 /* If, for some reason, we were unable to determine
8526 the actual type from the tag, then use the static
8527 approximation that we just computed as a fallback.
8528 This can happen if the debugging information is
8529 incomplete, for instance. */
8530 actual_type = type;
8531
8532 return value_zero (actual_type, not_lval);
8533 }
8534
8535 *pos += 4;
8536 return value_zero
8537 (to_static_fixed_type
8538 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8539 not_lval);
8540 }
8541 else
8542 {
8543 arg1 =
8544 unwrap_value (evaluate_subexp_standard
8545 (expect_type, exp, pos, noside));
8546 return ada_to_fixed_value (arg1);
8547 }
8548
8549 case OP_FUNCALL:
8550 (*pos) += 2;
8551
8552 /* Allocate arg vector, including space for the function to be
8553 called in argvec[0] and a terminating NULL. */
8554 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8555 argvec =
8556 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8557
8558 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8559 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8560 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8561 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8562 else
8563 {
8564 for (tem = 0; tem <= nargs; tem += 1)
8565 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8566 argvec[tem] = 0;
8567
8568 if (noside == EVAL_SKIP)
8569 goto nosideret;
8570 }
8571
8572 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8573 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8574 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8575 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8576 && VALUE_LVAL (argvec[0]) == lval_memory))
8577 argvec[0] = value_addr (argvec[0]);
8578
8579 type = ada_check_typedef (value_type (argvec[0]));
8580 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8581 {
8582 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8583 {
8584 case TYPE_CODE_FUNC:
8585 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8586 break;
8587 case TYPE_CODE_ARRAY:
8588 break;
8589 case TYPE_CODE_STRUCT:
8590 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8591 argvec[0] = ada_value_ind (argvec[0]);
8592 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8593 break;
8594 default:
8595 error (_("cannot subscript or call something of type `%s'"),
8596 ada_type_name (value_type (argvec[0])));
8597 break;
8598 }
8599 }
8600
8601 switch (TYPE_CODE (type))
8602 {
8603 case TYPE_CODE_FUNC:
8604 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8605 return allocate_value (TYPE_TARGET_TYPE (type));
8606 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8607 case TYPE_CODE_STRUCT:
8608 {
8609 int arity;
8610
8611 arity = ada_array_arity (type);
8612 type = ada_array_element_type (type, nargs);
8613 if (type == NULL)
8614 error (_("cannot subscript or call a record"));
8615 if (arity != nargs)
8616 error (_("wrong number of subscripts; expecting %d"), arity);
8617 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8618 return value_zero (ada_aligned_type (type), lval_memory);
8619 return
8620 unwrap_value (ada_value_subscript
8621 (argvec[0], nargs, argvec + 1));
8622 }
8623 case TYPE_CODE_ARRAY:
8624 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8625 {
8626 type = ada_array_element_type (type, nargs);
8627 if (type == NULL)
8628 error (_("element type of array unknown"));
8629 else
8630 return value_zero (ada_aligned_type (type), lval_memory);
8631 }
8632 return
8633 unwrap_value (ada_value_subscript
8634 (ada_coerce_to_simple_array (argvec[0]),
8635 nargs, argvec + 1));
8636 case TYPE_CODE_PTR: /* Pointer to array */
8637 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8638 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8639 {
8640 type = ada_array_element_type (type, nargs);
8641 if (type == NULL)
8642 error (_("element type of array unknown"));
8643 else
8644 return value_zero (ada_aligned_type (type), lval_memory);
8645 }
8646 return
8647 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8648 nargs, argvec + 1));
8649
8650 default:
8651 error (_("Attempt to index or call something other than an "
8652 "array or function"));
8653 }
8654
8655 case TERNOP_SLICE:
8656 {
8657 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8658 struct value *low_bound_val =
8659 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8660 struct value *high_bound_val =
8661 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8662 LONGEST low_bound;
8663 LONGEST high_bound;
8664 low_bound_val = coerce_ref (low_bound_val);
8665 high_bound_val = coerce_ref (high_bound_val);
8666 low_bound = pos_atr (low_bound_val);
8667 high_bound = pos_atr (high_bound_val);
8668
8669 if (noside == EVAL_SKIP)
8670 goto nosideret;
8671
8672 /* If this is a reference to an aligner type, then remove all
8673 the aligners. */
8674 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8675 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8676 TYPE_TARGET_TYPE (value_type (array)) =
8677 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8678
8679 if (ada_is_packed_array_type (value_type (array)))
8680 error (_("cannot slice a packed array"));
8681
8682 /* If this is a reference to an array or an array lvalue,
8683 convert to a pointer. */
8684 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8685 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8686 && VALUE_LVAL (array) == lval_memory))
8687 array = value_addr (array);
8688
8689 if (noside == EVAL_AVOID_SIDE_EFFECTS
8690 && ada_is_array_descriptor_type (ada_check_typedef
8691 (value_type (array))))
8692 return empty_array (ada_type_of_array (array, 0), low_bound);
8693
8694 array = ada_coerce_to_simple_array_ptr (array);
8695
8696 /* If we have more than one level of pointer indirection,
8697 dereference the value until we get only one level. */
8698 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8699 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8700 == TYPE_CODE_PTR))
8701 array = value_ind (array);
8702
8703 /* Make sure we really do have an array type before going further,
8704 to avoid a SEGV when trying to get the index type or the target
8705 type later down the road if the debug info generated by
8706 the compiler is incorrect or incomplete. */
8707 if (!ada_is_simple_array_type (value_type (array)))
8708 error (_("cannot take slice of non-array"));
8709
8710 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8711 {
8712 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8713 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8714 low_bound);
8715 else
8716 {
8717 struct type *arr_type0 =
8718 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8719 NULL, 1);
8720 return ada_value_slice_from_ptr (array, arr_type0,
8721 longest_to_int (low_bound),
8722 longest_to_int (high_bound));
8723 }
8724 }
8725 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8726 return array;
8727 else if (high_bound < low_bound)
8728 return empty_array (value_type (array), low_bound);
8729 else
8730 return ada_value_slice (array, longest_to_int (low_bound),
8731 longest_to_int (high_bound));
8732 }
8733
8734 case UNOP_IN_RANGE:
8735 (*pos) += 2;
8736 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8737 type = check_typedef (exp->elts[pc + 1].type);
8738
8739 if (noside == EVAL_SKIP)
8740 goto nosideret;
8741
8742 switch (TYPE_CODE (type))
8743 {
8744 default:
8745 lim_warning (_("Membership test incompletely implemented; "
8746 "always returns true"));
8747 type = language_bool_type (exp->language_defn, exp->gdbarch);
8748 return value_from_longest (type, (LONGEST) 1);
8749
8750 case TYPE_CODE_RANGE:
8751 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
8752 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
8753 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8754 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8755 type = language_bool_type (exp->language_defn, exp->gdbarch);
8756 return
8757 value_from_longest (type,
8758 (value_less (arg1, arg3)
8759 || value_equal (arg1, arg3))
8760 && (value_less (arg2, arg1)
8761 || value_equal (arg2, arg1)));
8762 }
8763
8764 case BINOP_IN_BOUNDS:
8765 (*pos) += 2;
8766 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8767 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8768
8769 if (noside == EVAL_SKIP)
8770 goto nosideret;
8771
8772 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8773 {
8774 type = language_bool_type (exp->language_defn, exp->gdbarch);
8775 return value_zero (type, not_lval);
8776 }
8777
8778 tem = longest_to_int (exp->elts[pc + 1].longconst);
8779
8780 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8781 error (_("invalid dimension number to 'range"));
8782
8783 arg3 = ada_array_bound (arg2, tem, 1);
8784 arg2 = ada_array_bound (arg2, tem, 0);
8785
8786 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8787 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8788 type = language_bool_type (exp->language_defn, exp->gdbarch);
8789 return
8790 value_from_longest (type,
8791 (value_less (arg1, arg3)
8792 || value_equal (arg1, arg3))
8793 && (value_less (arg2, arg1)
8794 || value_equal (arg2, arg1)));
8795
8796 case TERNOP_IN_RANGE:
8797 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8798 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8799 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8800
8801 if (noside == EVAL_SKIP)
8802 goto nosideret;
8803
8804 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8805 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
8806 type = language_bool_type (exp->language_defn, exp->gdbarch);
8807 return
8808 value_from_longest (type,
8809 (value_less (arg1, arg3)
8810 || value_equal (arg1, arg3))
8811 && (value_less (arg2, arg1)
8812 || value_equal (arg2, arg1)));
8813
8814 case OP_ATR_FIRST:
8815 case OP_ATR_LAST:
8816 case OP_ATR_LENGTH:
8817 {
8818 struct type *type_arg;
8819 if (exp->elts[*pos].opcode == OP_TYPE)
8820 {
8821 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8822 arg1 = NULL;
8823 type_arg = check_typedef (exp->elts[pc + 2].type);
8824 }
8825 else
8826 {
8827 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8828 type_arg = NULL;
8829 }
8830
8831 if (exp->elts[*pos].opcode != OP_LONG)
8832 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8833 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8834 *pos += 4;
8835
8836 if (noside == EVAL_SKIP)
8837 goto nosideret;
8838
8839 if (type_arg == NULL)
8840 {
8841 arg1 = ada_coerce_ref (arg1);
8842
8843 if (ada_is_packed_array_type (value_type (arg1)))
8844 arg1 = ada_coerce_to_simple_array (arg1);
8845
8846 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8847 error (_("invalid dimension number to '%s"),
8848 ada_attribute_name (op));
8849
8850 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8851 {
8852 type = ada_index_type (value_type (arg1), tem);
8853 if (type == NULL)
8854 error
8855 (_("attempt to take bound of something that is not an array"));
8856 return allocate_value (type);
8857 }
8858
8859 switch (op)
8860 {
8861 default: /* Should never happen. */
8862 error (_("unexpected attribute encountered"));
8863 case OP_ATR_FIRST:
8864 return ada_array_bound (arg1, tem, 0);
8865 case OP_ATR_LAST:
8866 return ada_array_bound (arg1, tem, 1);
8867 case OP_ATR_LENGTH:
8868 return ada_array_length (arg1, tem);
8869 }
8870 }
8871 else if (discrete_type_p (type_arg))
8872 {
8873 struct type *range_type;
8874 char *name = ada_type_name (type_arg);
8875 range_type = NULL;
8876 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8877 range_type =
8878 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8879 if (range_type == NULL)
8880 range_type = type_arg;
8881 switch (op)
8882 {
8883 default:
8884 error (_("unexpected attribute encountered"));
8885 case OP_ATR_FIRST:
8886 return value_from_longest
8887 (range_type, discrete_type_low_bound (range_type));
8888 case OP_ATR_LAST:
8889 return value_from_longest
8890 (range_type, discrete_type_high_bound (range_type));
8891 case OP_ATR_LENGTH:
8892 error (_("the 'length attribute applies only to array types"));
8893 }
8894 }
8895 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8896 error (_("unimplemented type attribute"));
8897 else
8898 {
8899 LONGEST low, high;
8900
8901 if (ada_is_packed_array_type (type_arg))
8902 type_arg = decode_packed_array_type (type_arg);
8903
8904 if (tem < 1 || tem > ada_array_arity (type_arg))
8905 error (_("invalid dimension number to '%s"),
8906 ada_attribute_name (op));
8907
8908 type = ada_index_type (type_arg, tem);
8909 if (type == NULL)
8910 error
8911 (_("attempt to take bound of something that is not an array"));
8912 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8913 return allocate_value (type);
8914
8915 switch (op)
8916 {
8917 default:
8918 error (_("unexpected attribute encountered"));
8919 case OP_ATR_FIRST:
8920 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8921 return value_from_longest (type, low);
8922 case OP_ATR_LAST:
8923 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
8924 return value_from_longest (type, high);
8925 case OP_ATR_LENGTH:
8926 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
8927 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
8928 return value_from_longest (type, high - low + 1);
8929 }
8930 }
8931 }
8932
8933 case OP_ATR_TAG:
8934 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8935 if (noside == EVAL_SKIP)
8936 goto nosideret;
8937
8938 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8939 return value_zero (ada_tag_type (arg1), not_lval);
8940
8941 return ada_value_tag (arg1);
8942
8943 case OP_ATR_MIN:
8944 case OP_ATR_MAX:
8945 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8946 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8947 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8948 if (noside == EVAL_SKIP)
8949 goto nosideret;
8950 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8951 return value_zero (value_type (arg1), not_lval);
8952 else
8953 {
8954 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8955 return value_binop (arg1, arg2,
8956 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
8957 }
8958
8959 case OP_ATR_MODULUS:
8960 {
8961 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
8962 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8963
8964 if (noside == EVAL_SKIP)
8965 goto nosideret;
8966
8967 if (!ada_is_modular_type (type_arg))
8968 error (_("'modulus must be applied to modular type"));
8969
8970 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
8971 ada_modulus (type_arg));
8972 }
8973
8974
8975 case OP_ATR_POS:
8976 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8977 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8978 if (noside == EVAL_SKIP)
8979 goto nosideret;
8980 type = builtin_type (exp->gdbarch)->builtin_int;
8981 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8982 return value_zero (type, not_lval);
8983 else
8984 return value_pos_atr (type, arg1);
8985
8986 case OP_ATR_SIZE:
8987 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8988 type = value_type (arg1);
8989
8990 /* If the argument is a reference, then dereference its type, since
8991 the user is really asking for the size of the actual object,
8992 not the size of the pointer. */
8993 if (TYPE_CODE (type) == TYPE_CODE_REF)
8994 type = TYPE_TARGET_TYPE (type);
8995
8996 if (noside == EVAL_SKIP)
8997 goto nosideret;
8998 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8999 return value_zero (builtin_type_int32, not_lval);
9000 else
9001 return value_from_longest (builtin_type_int32,
9002 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9003
9004 case OP_ATR_VAL:
9005 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9006 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9007 type = exp->elts[pc + 2].type;
9008 if (noside == EVAL_SKIP)
9009 goto nosideret;
9010 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9011 return value_zero (type, not_lval);
9012 else
9013 return value_val_atr (type, arg1);
9014
9015 case BINOP_EXP:
9016 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9017 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9018 if (noside == EVAL_SKIP)
9019 goto nosideret;
9020 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9021 return value_zero (value_type (arg1), not_lval);
9022 else
9023 {
9024 /* For integer exponentiation operations,
9025 only promote the first argument. */
9026 if (is_integral_type (value_type (arg2)))
9027 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9028 else
9029 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9030
9031 return value_binop (arg1, arg2, op);
9032 }
9033
9034 case UNOP_PLUS:
9035 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9036 if (noside == EVAL_SKIP)
9037 goto nosideret;
9038 else
9039 return arg1;
9040
9041 case UNOP_ABS:
9042 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9043 if (noside == EVAL_SKIP)
9044 goto nosideret;
9045 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9046 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9047 return value_neg (arg1);
9048 else
9049 return arg1;
9050
9051 case UNOP_IND:
9052 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9053 if (noside == EVAL_SKIP)
9054 goto nosideret;
9055 type = ada_check_typedef (value_type (arg1));
9056 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9057 {
9058 if (ada_is_array_descriptor_type (type))
9059 /* GDB allows dereferencing GNAT array descriptors. */
9060 {
9061 struct type *arrType = ada_type_of_array (arg1, 0);
9062 if (arrType == NULL)
9063 error (_("Attempt to dereference null array pointer."));
9064 return value_at_lazy (arrType, 0);
9065 }
9066 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9067 || TYPE_CODE (type) == TYPE_CODE_REF
9068 /* In C you can dereference an array to get the 1st elt. */
9069 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9070 {
9071 type = to_static_fixed_type
9072 (ada_aligned_type
9073 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9074 check_size (type);
9075 return value_zero (type, lval_memory);
9076 }
9077 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9078 {
9079 /* GDB allows dereferencing an int. */
9080 if (expect_type == NULL)
9081 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9082 lval_memory);
9083 else
9084 {
9085 expect_type =
9086 to_static_fixed_type (ada_aligned_type (expect_type));
9087 return value_zero (expect_type, lval_memory);
9088 }
9089 }
9090 else
9091 error (_("Attempt to take contents of a non-pointer value."));
9092 }
9093 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9094 type = ada_check_typedef (value_type (arg1));
9095
9096 if (TYPE_CODE (type) == TYPE_CODE_INT)
9097 /* GDB allows dereferencing an int. If we were given
9098 the expect_type, then use that as the target type.
9099 Otherwise, assume that the target type is an int. */
9100 {
9101 if (expect_type != NULL)
9102 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9103 arg1));
9104 else
9105 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9106 (CORE_ADDR) value_as_address (arg1));
9107 }
9108
9109 if (ada_is_array_descriptor_type (type))
9110 /* GDB allows dereferencing GNAT array descriptors. */
9111 return ada_coerce_to_simple_array (arg1);
9112 else
9113 return ada_value_ind (arg1);
9114
9115 case STRUCTOP_STRUCT:
9116 tem = longest_to_int (exp->elts[pc + 1].longconst);
9117 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9118 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9119 if (noside == EVAL_SKIP)
9120 goto nosideret;
9121 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9122 {
9123 struct type *type1 = value_type (arg1);
9124 if (ada_is_tagged_type (type1, 1))
9125 {
9126 type = ada_lookup_struct_elt_type (type1,
9127 &exp->elts[pc + 2].string,
9128 1, 1, NULL);
9129 if (type == NULL)
9130 /* In this case, we assume that the field COULD exist
9131 in some extension of the type. Return an object of
9132 "type" void, which will match any formal
9133 (see ada_type_match). */
9134 return value_zero (builtin_type_void, lval_memory);
9135 }
9136 else
9137 type =
9138 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9139 0, NULL);
9140
9141 return value_zero (ada_aligned_type (type), lval_memory);
9142 }
9143 else
9144 return
9145 ada_to_fixed_value (unwrap_value
9146 (ada_value_struct_elt
9147 (arg1, &exp->elts[pc + 2].string, 0)));
9148 case OP_TYPE:
9149 /* The value is not supposed to be used. This is here to make it
9150 easier to accommodate expressions that contain types. */
9151 (*pos) += 2;
9152 if (noside == EVAL_SKIP)
9153 goto nosideret;
9154 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9155 return allocate_value (exp->elts[pc + 1].type);
9156 else
9157 error (_("Attempt to use a type name as an expression"));
9158
9159 case OP_AGGREGATE:
9160 case OP_CHOICES:
9161 case OP_OTHERS:
9162 case OP_DISCRETE_RANGE:
9163 case OP_POSITIONAL:
9164 case OP_NAME:
9165 if (noside == EVAL_NORMAL)
9166 switch (op)
9167 {
9168 case OP_NAME:
9169 error (_("Undefined name, ambiguous name, or renaming used in "
9170 "component association: %s."), &exp->elts[pc+2].string);
9171 case OP_AGGREGATE:
9172 error (_("Aggregates only allowed on the right of an assignment"));
9173 default:
9174 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9175 }
9176
9177 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9178 *pos += oplen - 1;
9179 for (tem = 0; tem < nargs; tem += 1)
9180 ada_evaluate_subexp (NULL, exp, pos, noside);
9181 goto nosideret;
9182 }
9183
9184 nosideret:
9185 return value_from_longest (builtin_type_int8, (LONGEST) 1);
9186 }
9187 \f
9188
9189 /* Fixed point */
9190
9191 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9192 type name that encodes the 'small and 'delta information.
9193 Otherwise, return NULL. */
9194
9195 static const char *
9196 fixed_type_info (struct type *type)
9197 {
9198 const char *name = ada_type_name (type);
9199 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9200
9201 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9202 {
9203 const char *tail = strstr (name, "___XF_");
9204 if (tail == NULL)
9205 return NULL;
9206 else
9207 return tail + 5;
9208 }
9209 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9210 return fixed_type_info (TYPE_TARGET_TYPE (type));
9211 else
9212 return NULL;
9213 }
9214
9215 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9216
9217 int
9218 ada_is_fixed_point_type (struct type *type)
9219 {
9220 return fixed_type_info (type) != NULL;
9221 }
9222
9223 /* Return non-zero iff TYPE represents a System.Address type. */
9224
9225 int
9226 ada_is_system_address_type (struct type *type)
9227 {
9228 return (TYPE_NAME (type)
9229 && strcmp (TYPE_NAME (type), "system__address") == 0);
9230 }
9231
9232 /* Assuming that TYPE is the representation of an Ada fixed-point
9233 type, return its delta, or -1 if the type is malformed and the
9234 delta cannot be determined. */
9235
9236 DOUBLEST
9237 ada_delta (struct type *type)
9238 {
9239 const char *encoding = fixed_type_info (type);
9240 DOUBLEST num, den;
9241
9242 /* Strictly speaking, num and den are encoded as integer. However,
9243 they may not fit into a long, and they will have to be converted
9244 to DOUBLEST anyway. So scan them as DOUBLEST. */
9245 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9246 &num, &den) < 2)
9247 return -1.0;
9248 else
9249 return num / den;
9250 }
9251
9252 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9253 factor ('SMALL value) associated with the type. */
9254
9255 static DOUBLEST
9256 scaling_factor (struct type *type)
9257 {
9258 const char *encoding = fixed_type_info (type);
9259 DOUBLEST num0, den0, num1, den1;
9260 int n;
9261
9262 /* Strictly speaking, num's and den's are encoded as integer. However,
9263 they may not fit into a long, and they will have to be converted
9264 to DOUBLEST anyway. So scan them as DOUBLEST. */
9265 n = sscanf (encoding,
9266 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9267 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9268 &num0, &den0, &num1, &den1);
9269
9270 if (n < 2)
9271 return 1.0;
9272 else if (n == 4)
9273 return num1 / den1;
9274 else
9275 return num0 / den0;
9276 }
9277
9278
9279 /* Assuming that X is the representation of a value of fixed-point
9280 type TYPE, return its floating-point equivalent. */
9281
9282 DOUBLEST
9283 ada_fixed_to_float (struct type *type, LONGEST x)
9284 {
9285 return (DOUBLEST) x *scaling_factor (type);
9286 }
9287
9288 /* The representation of a fixed-point value of type TYPE
9289 corresponding to the value X. */
9290
9291 LONGEST
9292 ada_float_to_fixed (struct type *type, DOUBLEST x)
9293 {
9294 return (LONGEST) (x / scaling_factor (type) + 0.5);
9295 }
9296
9297
9298 /* VAX floating formats */
9299
9300 /* Non-zero iff TYPE represents one of the special VAX floating-point
9301 types. */
9302
9303 int
9304 ada_is_vax_floating_type (struct type *type)
9305 {
9306 int name_len =
9307 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9308 return
9309 name_len > 6
9310 && (TYPE_CODE (type) == TYPE_CODE_INT
9311 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9312 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9313 }
9314
9315 /* The type of special VAX floating-point type this is, assuming
9316 ada_is_vax_floating_point. */
9317
9318 int
9319 ada_vax_float_type_suffix (struct type *type)
9320 {
9321 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9322 }
9323
9324 /* A value representing the special debugging function that outputs
9325 VAX floating-point values of the type represented by TYPE. Assumes
9326 ada_is_vax_floating_type (TYPE). */
9327
9328 struct value *
9329 ada_vax_float_print_function (struct type *type)
9330 {
9331 switch (ada_vax_float_type_suffix (type))
9332 {
9333 case 'F':
9334 return get_var_value ("DEBUG_STRING_F", 0);
9335 case 'D':
9336 return get_var_value ("DEBUG_STRING_D", 0);
9337 case 'G':
9338 return get_var_value ("DEBUG_STRING_G", 0);
9339 default:
9340 error (_("invalid VAX floating-point type"));
9341 }
9342 }
9343 \f
9344
9345 /* Range types */
9346
9347 /* Scan STR beginning at position K for a discriminant name, and
9348 return the value of that discriminant field of DVAL in *PX. If
9349 PNEW_K is not null, put the position of the character beyond the
9350 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9351 not alter *PX and *PNEW_K if unsuccessful. */
9352
9353 static int
9354 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9355 int *pnew_k)
9356 {
9357 static char *bound_buffer = NULL;
9358 static size_t bound_buffer_len = 0;
9359 char *bound;
9360 char *pend;
9361 struct value *bound_val;
9362
9363 if (dval == NULL || str == NULL || str[k] == '\0')
9364 return 0;
9365
9366 pend = strstr (str + k, "__");
9367 if (pend == NULL)
9368 {
9369 bound = str + k;
9370 k += strlen (bound);
9371 }
9372 else
9373 {
9374 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9375 bound = bound_buffer;
9376 strncpy (bound_buffer, str + k, pend - (str + k));
9377 bound[pend - (str + k)] = '\0';
9378 k = pend - str;
9379 }
9380
9381 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9382 if (bound_val == NULL)
9383 return 0;
9384
9385 *px = value_as_long (bound_val);
9386 if (pnew_k != NULL)
9387 *pnew_k = k;
9388 return 1;
9389 }
9390
9391 /* Value of variable named NAME in the current environment. If
9392 no such variable found, then if ERR_MSG is null, returns 0, and
9393 otherwise causes an error with message ERR_MSG. */
9394
9395 static struct value *
9396 get_var_value (char *name, char *err_msg)
9397 {
9398 struct ada_symbol_info *syms;
9399 int nsyms;
9400
9401 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9402 &syms);
9403
9404 if (nsyms != 1)
9405 {
9406 if (err_msg == NULL)
9407 return 0;
9408 else
9409 error (("%s"), err_msg);
9410 }
9411
9412 return value_of_variable (syms[0].sym, syms[0].block);
9413 }
9414
9415 /* Value of integer variable named NAME in the current environment. If
9416 no such variable found, returns 0, and sets *FLAG to 0. If
9417 successful, sets *FLAG to 1. */
9418
9419 LONGEST
9420 get_int_var_value (char *name, int *flag)
9421 {
9422 struct value *var_val = get_var_value (name, 0);
9423
9424 if (var_val == 0)
9425 {
9426 if (flag != NULL)
9427 *flag = 0;
9428 return 0;
9429 }
9430 else
9431 {
9432 if (flag != NULL)
9433 *flag = 1;
9434 return value_as_long (var_val);
9435 }
9436 }
9437
9438
9439 /* Return a range type whose base type is that of the range type named
9440 NAME in the current environment, and whose bounds are calculated
9441 from NAME according to the GNAT range encoding conventions.
9442 Extract discriminant values, if needed, from DVAL. If a new type
9443 must be created, allocate in OBJFILE's space. The bounds
9444 information, in general, is encoded in NAME, the base type given in
9445 the named range type. */
9446
9447 static struct type *
9448 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9449 {
9450 struct type *raw_type = ada_find_any_type (name);
9451 struct type *base_type;
9452 char *subtype_info;
9453
9454 if (raw_type == NULL)
9455 base_type = builtin_type_int32;
9456 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9457 base_type = TYPE_TARGET_TYPE (raw_type);
9458 else
9459 base_type = raw_type;
9460
9461 subtype_info = strstr (name, "___XD");
9462 if (subtype_info == NULL)
9463 {
9464 LONGEST L = discrete_type_low_bound (raw_type);
9465 LONGEST U = discrete_type_high_bound (raw_type);
9466 if (L < INT_MIN || U > INT_MAX)
9467 return raw_type;
9468 else
9469 return create_range_type (alloc_type (objfile), raw_type,
9470 discrete_type_low_bound (raw_type),
9471 discrete_type_high_bound (raw_type));
9472 }
9473 else
9474 {
9475 static char *name_buf = NULL;
9476 static size_t name_len = 0;
9477 int prefix_len = subtype_info - name;
9478 LONGEST L, U;
9479 struct type *type;
9480 char *bounds_str;
9481 int n;
9482
9483 GROW_VECT (name_buf, name_len, prefix_len + 5);
9484 strncpy (name_buf, name, prefix_len);
9485 name_buf[prefix_len] = '\0';
9486
9487 subtype_info += 5;
9488 bounds_str = strchr (subtype_info, '_');
9489 n = 1;
9490
9491 if (*subtype_info == 'L')
9492 {
9493 if (!ada_scan_number (bounds_str, n, &L, &n)
9494 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9495 return raw_type;
9496 if (bounds_str[n] == '_')
9497 n += 2;
9498 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9499 n += 1;
9500 subtype_info += 1;
9501 }
9502 else
9503 {
9504 int ok;
9505 strcpy (name_buf + prefix_len, "___L");
9506 L = get_int_var_value (name_buf, &ok);
9507 if (!ok)
9508 {
9509 lim_warning (_("Unknown lower bound, using 1."));
9510 L = 1;
9511 }
9512 }
9513
9514 if (*subtype_info == 'U')
9515 {
9516 if (!ada_scan_number (bounds_str, n, &U, &n)
9517 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9518 return raw_type;
9519 }
9520 else
9521 {
9522 int ok;
9523 strcpy (name_buf + prefix_len, "___U");
9524 U = get_int_var_value (name_buf, &ok);
9525 if (!ok)
9526 {
9527 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9528 U = L;
9529 }
9530 }
9531
9532 if (objfile == NULL)
9533 objfile = TYPE_OBJFILE (base_type);
9534 type = create_range_type (alloc_type (objfile), base_type, L, U);
9535 TYPE_NAME (type) = name;
9536 return type;
9537 }
9538 }
9539
9540 /* True iff NAME is the name of a range type. */
9541
9542 int
9543 ada_is_range_type_name (const char *name)
9544 {
9545 return (name != NULL && strstr (name, "___XD"));
9546 }
9547 \f
9548
9549 /* Modular types */
9550
9551 /* True iff TYPE is an Ada modular type. */
9552
9553 int
9554 ada_is_modular_type (struct type *type)
9555 {
9556 struct type *subranged_type = base_type (type);
9557
9558 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9559 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9560 && TYPE_UNSIGNED (subranged_type));
9561 }
9562
9563 /* Try to determine the lower and upper bounds of the given modular type
9564 using the type name only. Return non-zero and set L and U as the lower
9565 and upper bounds (respectively) if successful. */
9566
9567 int
9568 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9569 {
9570 char *name = ada_type_name (type);
9571 char *suffix;
9572 int k;
9573 LONGEST U;
9574
9575 if (name == NULL)
9576 return 0;
9577
9578 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9579 we are looking for static bounds, which means an __XDLU suffix.
9580 Moreover, we know that the lower bound of modular types is always
9581 zero, so the actual suffix should start with "__XDLU_0__", and
9582 then be followed by the upper bound value. */
9583 suffix = strstr (name, "__XDLU_0__");
9584 if (suffix == NULL)
9585 return 0;
9586 k = 10;
9587 if (!ada_scan_number (suffix, k, &U, NULL))
9588 return 0;
9589
9590 *modulus = (ULONGEST) U + 1;
9591 return 1;
9592 }
9593
9594 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9595
9596 ULONGEST
9597 ada_modulus (struct type *type)
9598 {
9599 ULONGEST modulus;
9600
9601 /* Normally, the modulus of a modular type is equal to the value of
9602 its upper bound + 1. However, the upper bound is currently stored
9603 as an int, which is not always big enough to hold the actual bound
9604 value. To workaround this, try to take advantage of the encoding
9605 that GNAT uses with with discrete types. To avoid some unnecessary
9606 parsing, we do this only when the size of TYPE is greater than
9607 the size of the field holding the bound. */
9608 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9609 && ada_modulus_from_name (type, &modulus))
9610 return modulus;
9611
9612 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
9613 }
9614 \f
9615
9616 /* Ada exception catchpoint support:
9617 ---------------------------------
9618
9619 We support 3 kinds of exception catchpoints:
9620 . catchpoints on Ada exceptions
9621 . catchpoints on unhandled Ada exceptions
9622 . catchpoints on failed assertions
9623
9624 Exceptions raised during failed assertions, or unhandled exceptions
9625 could perfectly be caught with the general catchpoint on Ada exceptions.
9626 However, we can easily differentiate these two special cases, and having
9627 the option to distinguish these two cases from the rest can be useful
9628 to zero-in on certain situations.
9629
9630 Exception catchpoints are a specialized form of breakpoint,
9631 since they rely on inserting breakpoints inside known routines
9632 of the GNAT runtime. The implementation therefore uses a standard
9633 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9634 of breakpoint_ops.
9635
9636 Support in the runtime for exception catchpoints have been changed
9637 a few times already, and these changes affect the implementation
9638 of these catchpoints. In order to be able to support several
9639 variants of the runtime, we use a sniffer that will determine
9640 the runtime variant used by the program being debugged.
9641
9642 At this time, we do not support the use of conditions on Ada exception
9643 catchpoints. The COND and COND_STRING fields are therefore set
9644 to NULL (most of the time, see below).
9645
9646 Conditions where EXP_STRING, COND, and COND_STRING are used:
9647
9648 When a user specifies the name of a specific exception in the case
9649 of catchpoints on Ada exceptions, we store the name of that exception
9650 in the EXP_STRING. We then translate this request into an actual
9651 condition stored in COND_STRING, and then parse it into an expression
9652 stored in COND. */
9653
9654 /* The different types of catchpoints that we introduced for catching
9655 Ada exceptions. */
9656
9657 enum exception_catchpoint_kind
9658 {
9659 ex_catch_exception,
9660 ex_catch_exception_unhandled,
9661 ex_catch_assert
9662 };
9663
9664 /* Ada's standard exceptions. */
9665
9666 static char *standard_exc[] = {
9667 "constraint_error",
9668 "program_error",
9669 "storage_error",
9670 "tasking_error"
9671 };
9672
9673 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9674
9675 /* A structure that describes how to support exception catchpoints
9676 for a given executable. */
9677
9678 struct exception_support_info
9679 {
9680 /* The name of the symbol to break on in order to insert
9681 a catchpoint on exceptions. */
9682 const char *catch_exception_sym;
9683
9684 /* The name of the symbol to break on in order to insert
9685 a catchpoint on unhandled exceptions. */
9686 const char *catch_exception_unhandled_sym;
9687
9688 /* The name of the symbol to break on in order to insert
9689 a catchpoint on failed assertions. */
9690 const char *catch_assert_sym;
9691
9692 /* Assuming that the inferior just triggered an unhandled exception
9693 catchpoint, this function is responsible for returning the address
9694 in inferior memory where the name of that exception is stored.
9695 Return zero if the address could not be computed. */
9696 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9697 };
9698
9699 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9700 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9701
9702 /* The following exception support info structure describes how to
9703 implement exception catchpoints with the latest version of the
9704 Ada runtime (as of 2007-03-06). */
9705
9706 static const struct exception_support_info default_exception_support_info =
9707 {
9708 "__gnat_debug_raise_exception", /* catch_exception_sym */
9709 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9710 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9711 ada_unhandled_exception_name_addr
9712 };
9713
9714 /* The following exception support info structure describes how to
9715 implement exception catchpoints with a slightly older version
9716 of the Ada runtime. */
9717
9718 static const struct exception_support_info exception_support_info_fallback =
9719 {
9720 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9721 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9722 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9723 ada_unhandled_exception_name_addr_from_raise
9724 };
9725
9726 /* For each executable, we sniff which exception info structure to use
9727 and cache it in the following global variable. */
9728
9729 static const struct exception_support_info *exception_info = NULL;
9730
9731 /* Inspect the Ada runtime and determine which exception info structure
9732 should be used to provide support for exception catchpoints.
9733
9734 This function will always set exception_info, or raise an error. */
9735
9736 static void
9737 ada_exception_support_info_sniffer (void)
9738 {
9739 struct symbol *sym;
9740
9741 /* If the exception info is already known, then no need to recompute it. */
9742 if (exception_info != NULL)
9743 return;
9744
9745 /* Check the latest (default) exception support info. */
9746 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9747 NULL, VAR_DOMAIN);
9748 if (sym != NULL)
9749 {
9750 exception_info = &default_exception_support_info;
9751 return;
9752 }
9753
9754 /* Try our fallback exception suport info. */
9755 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9756 NULL, VAR_DOMAIN);
9757 if (sym != NULL)
9758 {
9759 exception_info = &exception_support_info_fallback;
9760 return;
9761 }
9762
9763 /* Sometimes, it is normal for us to not be able to find the routine
9764 we are looking for. This happens when the program is linked with
9765 the shared version of the GNAT runtime, and the program has not been
9766 started yet. Inform the user of these two possible causes if
9767 applicable. */
9768
9769 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9770 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9771
9772 /* If the symbol does not exist, then check that the program is
9773 already started, to make sure that shared libraries have been
9774 loaded. If it is not started, this may mean that the symbol is
9775 in a shared library. */
9776
9777 if (ptid_get_pid (inferior_ptid) == 0)
9778 error (_("Unable to insert catchpoint. Try to start the program first."));
9779
9780 /* At this point, we know that we are debugging an Ada program and
9781 that the inferior has been started, but we still are not able to
9782 find the run-time symbols. That can mean that we are in
9783 configurable run time mode, or that a-except as been optimized
9784 out by the linker... In any case, at this point it is not worth
9785 supporting this feature. */
9786
9787 error (_("Cannot insert catchpoints in this configuration."));
9788 }
9789
9790 /* An observer of "executable_changed" events.
9791 Its role is to clear certain cached values that need to be recomputed
9792 each time a new executable is loaded by GDB. */
9793
9794 static void
9795 ada_executable_changed_observer (void)
9796 {
9797 /* If the executable changed, then it is possible that the Ada runtime
9798 is different. So we need to invalidate the exception support info
9799 cache. */
9800 exception_info = NULL;
9801 }
9802
9803 /* Return the name of the function at PC, NULL if could not find it.
9804 This function only checks the debugging information, not the symbol
9805 table. */
9806
9807 static char *
9808 function_name_from_pc (CORE_ADDR pc)
9809 {
9810 char *func_name;
9811
9812 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9813 return NULL;
9814
9815 return func_name;
9816 }
9817
9818 /* True iff FRAME is very likely to be that of a function that is
9819 part of the runtime system. This is all very heuristic, but is
9820 intended to be used as advice as to what frames are uninteresting
9821 to most users. */
9822
9823 static int
9824 is_known_support_routine (struct frame_info *frame)
9825 {
9826 struct symtab_and_line sal;
9827 char *func_name;
9828 int i;
9829
9830 /* If this code does not have any debugging information (no symtab),
9831 This cannot be any user code. */
9832
9833 find_frame_sal (frame, &sal);
9834 if (sal.symtab == NULL)
9835 return 1;
9836
9837 /* If there is a symtab, but the associated source file cannot be
9838 located, then assume this is not user code: Selecting a frame
9839 for which we cannot display the code would not be very helpful
9840 for the user. This should also take care of case such as VxWorks
9841 where the kernel has some debugging info provided for a few units. */
9842
9843 if (symtab_to_fullname (sal.symtab) == NULL)
9844 return 1;
9845
9846 /* Check the unit filename againt the Ada runtime file naming.
9847 We also check the name of the objfile against the name of some
9848 known system libraries that sometimes come with debugging info
9849 too. */
9850
9851 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9852 {
9853 re_comp (known_runtime_file_name_patterns[i]);
9854 if (re_exec (sal.symtab->filename))
9855 return 1;
9856 if (sal.symtab->objfile != NULL
9857 && re_exec (sal.symtab->objfile->name))
9858 return 1;
9859 }
9860
9861 /* Check whether the function is a GNAT-generated entity. */
9862
9863 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9864 if (func_name == NULL)
9865 return 1;
9866
9867 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9868 {
9869 re_comp (known_auxiliary_function_name_patterns[i]);
9870 if (re_exec (func_name))
9871 return 1;
9872 }
9873
9874 return 0;
9875 }
9876
9877 /* Find the first frame that contains debugging information and that is not
9878 part of the Ada run-time, starting from FI and moving upward. */
9879
9880 void
9881 ada_find_printable_frame (struct frame_info *fi)
9882 {
9883 for (; fi != NULL; fi = get_prev_frame (fi))
9884 {
9885 if (!is_known_support_routine (fi))
9886 {
9887 select_frame (fi);
9888 break;
9889 }
9890 }
9891
9892 }
9893
9894 /* Assuming that the inferior just triggered an unhandled exception
9895 catchpoint, return the address in inferior memory where the name
9896 of the exception is stored.
9897
9898 Return zero if the address could not be computed. */
9899
9900 static CORE_ADDR
9901 ada_unhandled_exception_name_addr (void)
9902 {
9903 return parse_and_eval_address ("e.full_name");
9904 }
9905
9906 /* Same as ada_unhandled_exception_name_addr, except that this function
9907 should be used when the inferior uses an older version of the runtime,
9908 where the exception name needs to be extracted from a specific frame
9909 several frames up in the callstack. */
9910
9911 static CORE_ADDR
9912 ada_unhandled_exception_name_addr_from_raise (void)
9913 {
9914 int frame_level;
9915 struct frame_info *fi;
9916
9917 /* To determine the name of this exception, we need to select
9918 the frame corresponding to RAISE_SYM_NAME. This frame is
9919 at least 3 levels up, so we simply skip the first 3 frames
9920 without checking the name of their associated function. */
9921 fi = get_current_frame ();
9922 for (frame_level = 0; frame_level < 3; frame_level += 1)
9923 if (fi != NULL)
9924 fi = get_prev_frame (fi);
9925
9926 while (fi != NULL)
9927 {
9928 const char *func_name =
9929 function_name_from_pc (get_frame_address_in_block (fi));
9930 if (func_name != NULL
9931 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9932 break; /* We found the frame we were looking for... */
9933 fi = get_prev_frame (fi);
9934 }
9935
9936 if (fi == NULL)
9937 return 0;
9938
9939 select_frame (fi);
9940 return parse_and_eval_address ("id.full_name");
9941 }
9942
9943 /* Assuming the inferior just triggered an Ada exception catchpoint
9944 (of any type), return the address in inferior memory where the name
9945 of the exception is stored, if applicable.
9946
9947 Return zero if the address could not be computed, or if not relevant. */
9948
9949 static CORE_ADDR
9950 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9951 struct breakpoint *b)
9952 {
9953 switch (ex)
9954 {
9955 case ex_catch_exception:
9956 return (parse_and_eval_address ("e.full_name"));
9957 break;
9958
9959 case ex_catch_exception_unhandled:
9960 return exception_info->unhandled_exception_name_addr ();
9961 break;
9962
9963 case ex_catch_assert:
9964 return 0; /* Exception name is not relevant in this case. */
9965 break;
9966
9967 default:
9968 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9969 break;
9970 }
9971
9972 return 0; /* Should never be reached. */
9973 }
9974
9975 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9976 any error that ada_exception_name_addr_1 might cause to be thrown.
9977 When an error is intercepted, a warning with the error message is printed,
9978 and zero is returned. */
9979
9980 static CORE_ADDR
9981 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9982 struct breakpoint *b)
9983 {
9984 struct gdb_exception e;
9985 CORE_ADDR result = 0;
9986
9987 TRY_CATCH (e, RETURN_MASK_ERROR)
9988 {
9989 result = ada_exception_name_addr_1 (ex, b);
9990 }
9991
9992 if (e.reason < 0)
9993 {
9994 warning (_("failed to get exception name: %s"), e.message);
9995 return 0;
9996 }
9997
9998 return result;
9999 }
10000
10001 /* Implement the PRINT_IT method in the breakpoint_ops structure
10002 for all exception catchpoint kinds. */
10003
10004 static enum print_stop_action
10005 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10006 {
10007 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10008 char exception_name[256];
10009
10010 if (addr != 0)
10011 {
10012 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10013 exception_name [sizeof (exception_name) - 1] = '\0';
10014 }
10015
10016 ada_find_printable_frame (get_current_frame ());
10017
10018 annotate_catchpoint (b->number);
10019 switch (ex)
10020 {
10021 case ex_catch_exception:
10022 if (addr != 0)
10023 printf_filtered (_("\nCatchpoint %d, %s at "),
10024 b->number, exception_name);
10025 else
10026 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10027 break;
10028 case ex_catch_exception_unhandled:
10029 if (addr != 0)
10030 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10031 b->number, exception_name);
10032 else
10033 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10034 b->number);
10035 break;
10036 case ex_catch_assert:
10037 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10038 b->number);
10039 break;
10040 }
10041
10042 return PRINT_SRC_AND_LOC;
10043 }
10044
10045 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10046 for all exception catchpoint kinds. */
10047
10048 static void
10049 print_one_exception (enum exception_catchpoint_kind ex,
10050 struct breakpoint *b, CORE_ADDR *last_addr)
10051 {
10052 struct value_print_options opts;
10053
10054 get_user_print_options (&opts);
10055 if (opts.addressprint)
10056 {
10057 annotate_field (4);
10058 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10059 }
10060
10061 annotate_field (5);
10062 *last_addr = b->loc->address;
10063 switch (ex)
10064 {
10065 case ex_catch_exception:
10066 if (b->exp_string != NULL)
10067 {
10068 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10069
10070 ui_out_field_string (uiout, "what", msg);
10071 xfree (msg);
10072 }
10073 else
10074 ui_out_field_string (uiout, "what", "all Ada exceptions");
10075
10076 break;
10077
10078 case ex_catch_exception_unhandled:
10079 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10080 break;
10081
10082 case ex_catch_assert:
10083 ui_out_field_string (uiout, "what", "failed Ada assertions");
10084 break;
10085
10086 default:
10087 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10088 break;
10089 }
10090 }
10091
10092 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10093 for all exception catchpoint kinds. */
10094
10095 static void
10096 print_mention_exception (enum exception_catchpoint_kind ex,
10097 struct breakpoint *b)
10098 {
10099 switch (ex)
10100 {
10101 case ex_catch_exception:
10102 if (b->exp_string != NULL)
10103 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10104 b->number, b->exp_string);
10105 else
10106 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10107
10108 break;
10109
10110 case ex_catch_exception_unhandled:
10111 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10112 b->number);
10113 break;
10114
10115 case ex_catch_assert:
10116 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10117 break;
10118
10119 default:
10120 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10121 break;
10122 }
10123 }
10124
10125 /* Virtual table for "catch exception" breakpoints. */
10126
10127 static enum print_stop_action
10128 print_it_catch_exception (struct breakpoint *b)
10129 {
10130 return print_it_exception (ex_catch_exception, b);
10131 }
10132
10133 static void
10134 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10135 {
10136 print_one_exception (ex_catch_exception, b, last_addr);
10137 }
10138
10139 static void
10140 print_mention_catch_exception (struct breakpoint *b)
10141 {
10142 print_mention_exception (ex_catch_exception, b);
10143 }
10144
10145 static struct breakpoint_ops catch_exception_breakpoint_ops =
10146 {
10147 NULL, /* insert */
10148 NULL, /* remove */
10149 NULL, /* breakpoint_hit */
10150 print_it_catch_exception,
10151 print_one_catch_exception,
10152 print_mention_catch_exception
10153 };
10154
10155 /* Virtual table for "catch exception unhandled" breakpoints. */
10156
10157 static enum print_stop_action
10158 print_it_catch_exception_unhandled (struct breakpoint *b)
10159 {
10160 return print_it_exception (ex_catch_exception_unhandled, b);
10161 }
10162
10163 static void
10164 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10165 {
10166 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10167 }
10168
10169 static void
10170 print_mention_catch_exception_unhandled (struct breakpoint *b)
10171 {
10172 print_mention_exception (ex_catch_exception_unhandled, b);
10173 }
10174
10175 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10176 NULL, /* insert */
10177 NULL, /* remove */
10178 NULL, /* breakpoint_hit */
10179 print_it_catch_exception_unhandled,
10180 print_one_catch_exception_unhandled,
10181 print_mention_catch_exception_unhandled
10182 };
10183
10184 /* Virtual table for "catch assert" breakpoints. */
10185
10186 static enum print_stop_action
10187 print_it_catch_assert (struct breakpoint *b)
10188 {
10189 return print_it_exception (ex_catch_assert, b);
10190 }
10191
10192 static void
10193 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10194 {
10195 print_one_exception (ex_catch_assert, b, last_addr);
10196 }
10197
10198 static void
10199 print_mention_catch_assert (struct breakpoint *b)
10200 {
10201 print_mention_exception (ex_catch_assert, b);
10202 }
10203
10204 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10205 NULL, /* insert */
10206 NULL, /* remove */
10207 NULL, /* breakpoint_hit */
10208 print_it_catch_assert,
10209 print_one_catch_assert,
10210 print_mention_catch_assert
10211 };
10212
10213 /* Return non-zero if B is an Ada exception catchpoint. */
10214
10215 int
10216 ada_exception_catchpoint_p (struct breakpoint *b)
10217 {
10218 return (b->ops == &catch_exception_breakpoint_ops
10219 || b->ops == &catch_exception_unhandled_breakpoint_ops
10220 || b->ops == &catch_assert_breakpoint_ops);
10221 }
10222
10223 /* Return a newly allocated copy of the first space-separated token
10224 in ARGSP, and then adjust ARGSP to point immediately after that
10225 token.
10226
10227 Return NULL if ARGPS does not contain any more tokens. */
10228
10229 static char *
10230 ada_get_next_arg (char **argsp)
10231 {
10232 char *args = *argsp;
10233 char *end;
10234 char *result;
10235
10236 /* Skip any leading white space. */
10237
10238 while (isspace (*args))
10239 args++;
10240
10241 if (args[0] == '\0')
10242 return NULL; /* No more arguments. */
10243
10244 /* Find the end of the current argument. */
10245
10246 end = args;
10247 while (*end != '\0' && !isspace (*end))
10248 end++;
10249
10250 /* Adjust ARGSP to point to the start of the next argument. */
10251
10252 *argsp = end;
10253
10254 /* Make a copy of the current argument and return it. */
10255
10256 result = xmalloc (end - args + 1);
10257 strncpy (result, args, end - args);
10258 result[end - args] = '\0';
10259
10260 return result;
10261 }
10262
10263 /* Split the arguments specified in a "catch exception" command.
10264 Set EX to the appropriate catchpoint type.
10265 Set EXP_STRING to the name of the specific exception if
10266 specified by the user. */
10267
10268 static void
10269 catch_ada_exception_command_split (char *args,
10270 enum exception_catchpoint_kind *ex,
10271 char **exp_string)
10272 {
10273 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10274 char *exception_name;
10275
10276 exception_name = ada_get_next_arg (&args);
10277 make_cleanup (xfree, exception_name);
10278
10279 /* Check that we do not have any more arguments. Anything else
10280 is unexpected. */
10281
10282 while (isspace (*args))
10283 args++;
10284
10285 if (args[0] != '\0')
10286 error (_("Junk at end of expression"));
10287
10288 discard_cleanups (old_chain);
10289
10290 if (exception_name == NULL)
10291 {
10292 /* Catch all exceptions. */
10293 *ex = ex_catch_exception;
10294 *exp_string = NULL;
10295 }
10296 else if (strcmp (exception_name, "unhandled") == 0)
10297 {
10298 /* Catch unhandled exceptions. */
10299 *ex = ex_catch_exception_unhandled;
10300 *exp_string = NULL;
10301 }
10302 else
10303 {
10304 /* Catch a specific exception. */
10305 *ex = ex_catch_exception;
10306 *exp_string = exception_name;
10307 }
10308 }
10309
10310 /* Return the name of the symbol on which we should break in order to
10311 implement a catchpoint of the EX kind. */
10312
10313 static const char *
10314 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10315 {
10316 gdb_assert (exception_info != NULL);
10317
10318 switch (ex)
10319 {
10320 case ex_catch_exception:
10321 return (exception_info->catch_exception_sym);
10322 break;
10323 case ex_catch_exception_unhandled:
10324 return (exception_info->catch_exception_unhandled_sym);
10325 break;
10326 case ex_catch_assert:
10327 return (exception_info->catch_assert_sym);
10328 break;
10329 default:
10330 internal_error (__FILE__, __LINE__,
10331 _("unexpected catchpoint kind (%d)"), ex);
10332 }
10333 }
10334
10335 /* Return the breakpoint ops "virtual table" used for catchpoints
10336 of the EX kind. */
10337
10338 static struct breakpoint_ops *
10339 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10340 {
10341 switch (ex)
10342 {
10343 case ex_catch_exception:
10344 return (&catch_exception_breakpoint_ops);
10345 break;
10346 case ex_catch_exception_unhandled:
10347 return (&catch_exception_unhandled_breakpoint_ops);
10348 break;
10349 case ex_catch_assert:
10350 return (&catch_assert_breakpoint_ops);
10351 break;
10352 default:
10353 internal_error (__FILE__, __LINE__,
10354 _("unexpected catchpoint kind (%d)"), ex);
10355 }
10356 }
10357
10358 /* Return the condition that will be used to match the current exception
10359 being raised with the exception that the user wants to catch. This
10360 assumes that this condition is used when the inferior just triggered
10361 an exception catchpoint.
10362
10363 The string returned is a newly allocated string that needs to be
10364 deallocated later. */
10365
10366 static char *
10367 ada_exception_catchpoint_cond_string (const char *exp_string)
10368 {
10369 int i;
10370
10371 /* The standard exceptions are a special case. They are defined in
10372 runtime units that have been compiled without debugging info; if
10373 EXP_STRING is the not-fully-qualified name of a standard
10374 exception (e.g. "constraint_error") then, during the evaluation
10375 of the condition expression, the symbol lookup on this name would
10376 *not* return this standard exception. The catchpoint condition
10377 may then be set only on user-defined exceptions which have the
10378 same not-fully-qualified name (e.g. my_package.constraint_error).
10379
10380 To avoid this unexcepted behavior, these standard exceptions are
10381 systematically prefixed by "standard". This means that "catch
10382 exception constraint_error" is rewritten into "catch exception
10383 standard.constraint_error".
10384
10385 If an exception named contraint_error is defined in another package of
10386 the inferior program, then the only way to specify this exception as a
10387 breakpoint condition is to use its fully-qualified named:
10388 e.g. my_package.constraint_error. */
10389
10390 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10391 {
10392 if (strcmp (standard_exc [i], exp_string) == 0)
10393 {
10394 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10395 exp_string);
10396 }
10397 }
10398 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10399 }
10400
10401 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10402
10403 static struct expression *
10404 ada_parse_catchpoint_condition (char *cond_string,
10405 struct symtab_and_line sal)
10406 {
10407 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10408 }
10409
10410 /* Return the symtab_and_line that should be used to insert an exception
10411 catchpoint of the TYPE kind.
10412
10413 EX_STRING should contain the name of a specific exception
10414 that the catchpoint should catch, or NULL otherwise.
10415
10416 The idea behind all the remaining parameters is that their names match
10417 the name of certain fields in the breakpoint structure that are used to
10418 handle exception catchpoints. This function returns the value to which
10419 these fields should be set, depending on the type of catchpoint we need
10420 to create.
10421
10422 If COND and COND_STRING are both non-NULL, any value they might
10423 hold will be free'ed, and then replaced by newly allocated ones.
10424 These parameters are left untouched otherwise. */
10425
10426 static struct symtab_and_line
10427 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10428 char **addr_string, char **cond_string,
10429 struct expression **cond, struct breakpoint_ops **ops)
10430 {
10431 const char *sym_name;
10432 struct symbol *sym;
10433 struct symtab_and_line sal;
10434
10435 /* First, find out which exception support info to use. */
10436 ada_exception_support_info_sniffer ();
10437
10438 /* Then lookup the function on which we will break in order to catch
10439 the Ada exceptions requested by the user. */
10440
10441 sym_name = ada_exception_sym_name (ex);
10442 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10443
10444 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10445 that should be compiled with debugging information. As a result, we
10446 expect to find that symbol in the symtabs. If we don't find it, then
10447 the target most likely does not support Ada exceptions, or we cannot
10448 insert exception breakpoints yet, because the GNAT runtime hasn't been
10449 loaded yet. */
10450
10451 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10452 in such a way that no debugging information is produced for the symbol
10453 we are looking for. In this case, we could search the minimal symbols
10454 as a fall-back mechanism. This would still be operating in degraded
10455 mode, however, as we would still be missing the debugging information
10456 that is needed in order to extract the name of the exception being
10457 raised (this name is printed in the catchpoint message, and is also
10458 used when trying to catch a specific exception). We do not handle
10459 this case for now. */
10460
10461 if (sym == NULL)
10462 error (_("Unable to break on '%s' in this configuration."), sym_name);
10463
10464 /* Make sure that the symbol we found corresponds to a function. */
10465 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10466 error (_("Symbol \"%s\" is not a function (class = %d)"),
10467 sym_name, SYMBOL_CLASS (sym));
10468
10469 sal = find_function_start_sal (sym, 1);
10470
10471 /* Set ADDR_STRING. */
10472
10473 *addr_string = xstrdup (sym_name);
10474
10475 /* Set the COND and COND_STRING (if not NULL). */
10476
10477 if (cond_string != NULL && cond != NULL)
10478 {
10479 if (*cond_string != NULL)
10480 {
10481 xfree (*cond_string);
10482 *cond_string = NULL;
10483 }
10484 if (*cond != NULL)
10485 {
10486 xfree (*cond);
10487 *cond = NULL;
10488 }
10489 if (exp_string != NULL)
10490 {
10491 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10492 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10493 }
10494 }
10495
10496 /* Set OPS. */
10497 *ops = ada_exception_breakpoint_ops (ex);
10498
10499 return sal;
10500 }
10501
10502 /* Parse the arguments (ARGS) of the "catch exception" command.
10503
10504 Set TYPE to the appropriate exception catchpoint type.
10505 If the user asked the catchpoint to catch only a specific
10506 exception, then save the exception name in ADDR_STRING.
10507
10508 See ada_exception_sal for a description of all the remaining
10509 function arguments of this function. */
10510
10511 struct symtab_and_line
10512 ada_decode_exception_location (char *args, char **addr_string,
10513 char **exp_string, char **cond_string,
10514 struct expression **cond,
10515 struct breakpoint_ops **ops)
10516 {
10517 enum exception_catchpoint_kind ex;
10518
10519 catch_ada_exception_command_split (args, &ex, exp_string);
10520 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10521 cond, ops);
10522 }
10523
10524 struct symtab_and_line
10525 ada_decode_assert_location (char *args, char **addr_string,
10526 struct breakpoint_ops **ops)
10527 {
10528 /* Check that no argument where provided at the end of the command. */
10529
10530 if (args != NULL)
10531 {
10532 while (isspace (*args))
10533 args++;
10534 if (*args != '\0')
10535 error (_("Junk at end of arguments."));
10536 }
10537
10538 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10539 ops);
10540 }
10541
10542 /* Operators */
10543 /* Information about operators given special treatment in functions
10544 below. */
10545 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10546
10547 #define ADA_OPERATORS \
10548 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10549 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10550 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10551 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10552 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10553 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10554 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10555 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10556 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10557 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10558 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10559 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10560 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10561 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10562 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10563 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10564 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10565 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10566 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10567
10568 static void
10569 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10570 {
10571 switch (exp->elts[pc - 1].opcode)
10572 {
10573 default:
10574 operator_length_standard (exp, pc, oplenp, argsp);
10575 break;
10576
10577 #define OP_DEFN(op, len, args, binop) \
10578 case op: *oplenp = len; *argsp = args; break;
10579 ADA_OPERATORS;
10580 #undef OP_DEFN
10581
10582 case OP_AGGREGATE:
10583 *oplenp = 3;
10584 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10585 break;
10586
10587 case OP_CHOICES:
10588 *oplenp = 3;
10589 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10590 break;
10591 }
10592 }
10593
10594 static char *
10595 ada_op_name (enum exp_opcode opcode)
10596 {
10597 switch (opcode)
10598 {
10599 default:
10600 return op_name_standard (opcode);
10601
10602 #define OP_DEFN(op, len, args, binop) case op: return #op;
10603 ADA_OPERATORS;
10604 #undef OP_DEFN
10605
10606 case OP_AGGREGATE:
10607 return "OP_AGGREGATE";
10608 case OP_CHOICES:
10609 return "OP_CHOICES";
10610 case OP_NAME:
10611 return "OP_NAME";
10612 }
10613 }
10614
10615 /* As for operator_length, but assumes PC is pointing at the first
10616 element of the operator, and gives meaningful results only for the
10617 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10618
10619 static void
10620 ada_forward_operator_length (struct expression *exp, int pc,
10621 int *oplenp, int *argsp)
10622 {
10623 switch (exp->elts[pc].opcode)
10624 {
10625 default:
10626 *oplenp = *argsp = 0;
10627 break;
10628
10629 #define OP_DEFN(op, len, args, binop) \
10630 case op: *oplenp = len; *argsp = args; break;
10631 ADA_OPERATORS;
10632 #undef OP_DEFN
10633
10634 case OP_AGGREGATE:
10635 *oplenp = 3;
10636 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10637 break;
10638
10639 case OP_CHOICES:
10640 *oplenp = 3;
10641 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10642 break;
10643
10644 case OP_STRING:
10645 case OP_NAME:
10646 {
10647 int len = longest_to_int (exp->elts[pc + 1].longconst);
10648 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10649 *argsp = 0;
10650 break;
10651 }
10652 }
10653 }
10654
10655 static int
10656 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10657 {
10658 enum exp_opcode op = exp->elts[elt].opcode;
10659 int oplen, nargs;
10660 int pc = elt;
10661 int i;
10662
10663 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10664
10665 switch (op)
10666 {
10667 /* Ada attributes ('Foo). */
10668 case OP_ATR_FIRST:
10669 case OP_ATR_LAST:
10670 case OP_ATR_LENGTH:
10671 case OP_ATR_IMAGE:
10672 case OP_ATR_MAX:
10673 case OP_ATR_MIN:
10674 case OP_ATR_MODULUS:
10675 case OP_ATR_POS:
10676 case OP_ATR_SIZE:
10677 case OP_ATR_TAG:
10678 case OP_ATR_VAL:
10679 break;
10680
10681 case UNOP_IN_RANGE:
10682 case UNOP_QUAL:
10683 /* XXX: gdb_sprint_host_address, type_sprint */
10684 fprintf_filtered (stream, _("Type @"));
10685 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10686 fprintf_filtered (stream, " (");
10687 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10688 fprintf_filtered (stream, ")");
10689 break;
10690 case BINOP_IN_BOUNDS:
10691 fprintf_filtered (stream, " (%d)",
10692 longest_to_int (exp->elts[pc + 2].longconst));
10693 break;
10694 case TERNOP_IN_RANGE:
10695 break;
10696
10697 case OP_AGGREGATE:
10698 case OP_OTHERS:
10699 case OP_DISCRETE_RANGE:
10700 case OP_POSITIONAL:
10701 case OP_CHOICES:
10702 break;
10703
10704 case OP_NAME:
10705 case OP_STRING:
10706 {
10707 char *name = &exp->elts[elt + 2].string;
10708 int len = longest_to_int (exp->elts[elt + 1].longconst);
10709 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10710 break;
10711 }
10712
10713 default:
10714 return dump_subexp_body_standard (exp, stream, elt);
10715 }
10716
10717 elt += oplen;
10718 for (i = 0; i < nargs; i += 1)
10719 elt = dump_subexp (exp, stream, elt);
10720
10721 return elt;
10722 }
10723
10724 /* The Ada extension of print_subexp (q.v.). */
10725
10726 static void
10727 ada_print_subexp (struct expression *exp, int *pos,
10728 struct ui_file *stream, enum precedence prec)
10729 {
10730 int oplen, nargs, i;
10731 int pc = *pos;
10732 enum exp_opcode op = exp->elts[pc].opcode;
10733
10734 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10735
10736 *pos += oplen;
10737 switch (op)
10738 {
10739 default:
10740 *pos -= oplen;
10741 print_subexp_standard (exp, pos, stream, prec);
10742 return;
10743
10744 case OP_VAR_VALUE:
10745 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10746 return;
10747
10748 case BINOP_IN_BOUNDS:
10749 /* XXX: sprint_subexp */
10750 print_subexp (exp, pos, stream, PREC_SUFFIX);
10751 fputs_filtered (" in ", stream);
10752 print_subexp (exp, pos, stream, PREC_SUFFIX);
10753 fputs_filtered ("'range", stream);
10754 if (exp->elts[pc + 1].longconst > 1)
10755 fprintf_filtered (stream, "(%ld)",
10756 (long) exp->elts[pc + 1].longconst);
10757 return;
10758
10759 case TERNOP_IN_RANGE:
10760 if (prec >= PREC_EQUAL)
10761 fputs_filtered ("(", stream);
10762 /* XXX: sprint_subexp */
10763 print_subexp (exp, pos, stream, PREC_SUFFIX);
10764 fputs_filtered (" in ", stream);
10765 print_subexp (exp, pos, stream, PREC_EQUAL);
10766 fputs_filtered (" .. ", stream);
10767 print_subexp (exp, pos, stream, PREC_EQUAL);
10768 if (prec >= PREC_EQUAL)
10769 fputs_filtered (")", stream);
10770 return;
10771
10772 case OP_ATR_FIRST:
10773 case OP_ATR_LAST:
10774 case OP_ATR_LENGTH:
10775 case OP_ATR_IMAGE:
10776 case OP_ATR_MAX:
10777 case OP_ATR_MIN:
10778 case OP_ATR_MODULUS:
10779 case OP_ATR_POS:
10780 case OP_ATR_SIZE:
10781 case OP_ATR_TAG:
10782 case OP_ATR_VAL:
10783 if (exp->elts[*pos].opcode == OP_TYPE)
10784 {
10785 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10786 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10787 *pos += 3;
10788 }
10789 else
10790 print_subexp (exp, pos, stream, PREC_SUFFIX);
10791 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10792 if (nargs > 1)
10793 {
10794 int tem;
10795 for (tem = 1; tem < nargs; tem += 1)
10796 {
10797 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10798 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10799 }
10800 fputs_filtered (")", stream);
10801 }
10802 return;
10803
10804 case UNOP_QUAL:
10805 type_print (exp->elts[pc + 1].type, "", stream, 0);
10806 fputs_filtered ("'(", stream);
10807 print_subexp (exp, pos, stream, PREC_PREFIX);
10808 fputs_filtered (")", stream);
10809 return;
10810
10811 case UNOP_IN_RANGE:
10812 /* XXX: sprint_subexp */
10813 print_subexp (exp, pos, stream, PREC_SUFFIX);
10814 fputs_filtered (" in ", stream);
10815 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10816 return;
10817
10818 case OP_DISCRETE_RANGE:
10819 print_subexp (exp, pos, stream, PREC_SUFFIX);
10820 fputs_filtered ("..", stream);
10821 print_subexp (exp, pos, stream, PREC_SUFFIX);
10822 return;
10823
10824 case OP_OTHERS:
10825 fputs_filtered ("others => ", stream);
10826 print_subexp (exp, pos, stream, PREC_SUFFIX);
10827 return;
10828
10829 case OP_CHOICES:
10830 for (i = 0; i < nargs-1; i += 1)
10831 {
10832 if (i > 0)
10833 fputs_filtered ("|", stream);
10834 print_subexp (exp, pos, stream, PREC_SUFFIX);
10835 }
10836 fputs_filtered (" => ", stream);
10837 print_subexp (exp, pos, stream, PREC_SUFFIX);
10838 return;
10839
10840 case OP_POSITIONAL:
10841 print_subexp (exp, pos, stream, PREC_SUFFIX);
10842 return;
10843
10844 case OP_AGGREGATE:
10845 fputs_filtered ("(", stream);
10846 for (i = 0; i < nargs; i += 1)
10847 {
10848 if (i > 0)
10849 fputs_filtered (", ", stream);
10850 print_subexp (exp, pos, stream, PREC_SUFFIX);
10851 }
10852 fputs_filtered (")", stream);
10853 return;
10854 }
10855 }
10856
10857 /* Table mapping opcodes into strings for printing operators
10858 and precedences of the operators. */
10859
10860 static const struct op_print ada_op_print_tab[] = {
10861 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10862 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10863 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10864 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10865 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10866 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10867 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10868 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10869 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10870 {">=", BINOP_GEQ, PREC_ORDER, 0},
10871 {">", BINOP_GTR, PREC_ORDER, 0},
10872 {"<", BINOP_LESS, PREC_ORDER, 0},
10873 {">>", BINOP_RSH, PREC_SHIFT, 0},
10874 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10875 {"+", BINOP_ADD, PREC_ADD, 0},
10876 {"-", BINOP_SUB, PREC_ADD, 0},
10877 {"&", BINOP_CONCAT, PREC_ADD, 0},
10878 {"*", BINOP_MUL, PREC_MUL, 0},
10879 {"/", BINOP_DIV, PREC_MUL, 0},
10880 {"rem", BINOP_REM, PREC_MUL, 0},
10881 {"mod", BINOP_MOD, PREC_MUL, 0},
10882 {"**", BINOP_EXP, PREC_REPEAT, 0},
10883 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10884 {"-", UNOP_NEG, PREC_PREFIX, 0},
10885 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10886 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10887 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10888 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10889 {".all", UNOP_IND, PREC_SUFFIX, 1},
10890 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10891 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10892 {NULL, 0, 0, 0}
10893 };
10894 \f
10895 enum ada_primitive_types {
10896 ada_primitive_type_int,
10897 ada_primitive_type_long,
10898 ada_primitive_type_short,
10899 ada_primitive_type_char,
10900 ada_primitive_type_float,
10901 ada_primitive_type_double,
10902 ada_primitive_type_void,
10903 ada_primitive_type_long_long,
10904 ada_primitive_type_long_double,
10905 ada_primitive_type_natural,
10906 ada_primitive_type_positive,
10907 ada_primitive_type_system_address,
10908 nr_ada_primitive_types
10909 };
10910
10911 static void
10912 ada_language_arch_info (struct gdbarch *gdbarch,
10913 struct language_arch_info *lai)
10914 {
10915 const struct builtin_type *builtin = builtin_type (gdbarch);
10916 lai->primitive_type_vector
10917 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10918 struct type *);
10919 lai->primitive_type_vector [ada_primitive_type_int] =
10920 init_type (TYPE_CODE_INT,
10921 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10922 0, "integer", (struct objfile *) NULL);
10923 lai->primitive_type_vector [ada_primitive_type_long] =
10924 init_type (TYPE_CODE_INT,
10925 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10926 0, "long_integer", (struct objfile *) NULL);
10927 lai->primitive_type_vector [ada_primitive_type_short] =
10928 init_type (TYPE_CODE_INT,
10929 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10930 0, "short_integer", (struct objfile *) NULL);
10931 lai->string_char_type =
10932 lai->primitive_type_vector [ada_primitive_type_char] =
10933 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10934 0, "character", (struct objfile *) NULL);
10935 lai->primitive_type_vector [ada_primitive_type_float] =
10936 init_type (TYPE_CODE_FLT,
10937 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10938 0, "float", (struct objfile *) NULL);
10939 lai->primitive_type_vector [ada_primitive_type_double] =
10940 init_type (TYPE_CODE_FLT,
10941 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10942 0, "long_float", (struct objfile *) NULL);
10943 lai->primitive_type_vector [ada_primitive_type_long_long] =
10944 init_type (TYPE_CODE_INT,
10945 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10946 0, "long_long_integer", (struct objfile *) NULL);
10947 lai->primitive_type_vector [ada_primitive_type_long_double] =
10948 init_type (TYPE_CODE_FLT,
10949 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10950 0, "long_long_float", (struct objfile *) NULL);
10951 lai->primitive_type_vector [ada_primitive_type_natural] =
10952 init_type (TYPE_CODE_INT,
10953 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10954 0, "natural", (struct objfile *) NULL);
10955 lai->primitive_type_vector [ada_primitive_type_positive] =
10956 init_type (TYPE_CODE_INT,
10957 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10958 0, "positive", (struct objfile *) NULL);
10959 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10960
10961 lai->primitive_type_vector [ada_primitive_type_system_address] =
10962 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10963 (struct objfile *) NULL));
10964 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10965 = "system__address";
10966
10967 lai->bool_type_symbol = NULL;
10968 lai->bool_type_default = builtin->builtin_bool;
10969 }
10970 \f
10971 /* Language vector */
10972
10973 /* Not really used, but needed in the ada_language_defn. */
10974
10975 static void
10976 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
10977 {
10978 ada_emit_char (c, type, stream, quoter, 1);
10979 }
10980
10981 static int
10982 parse (void)
10983 {
10984 warnings_issued = 0;
10985 return ada_parse ();
10986 }
10987
10988 static const struct exp_descriptor ada_exp_descriptor = {
10989 ada_print_subexp,
10990 ada_operator_length,
10991 ada_op_name,
10992 ada_dump_subexp_body,
10993 ada_evaluate_subexp
10994 };
10995
10996 const struct language_defn ada_language_defn = {
10997 "ada", /* Language name */
10998 language_ada,
10999 range_check_off,
11000 type_check_off,
11001 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11002 that's not quite what this means. */
11003 array_row_major,
11004 macro_expansion_no,
11005 &ada_exp_descriptor,
11006 parse,
11007 ada_error,
11008 resolve,
11009 ada_printchar, /* Print a character constant */
11010 ada_printstr, /* Function to print string constant */
11011 emit_char, /* Function to print single char (not used) */
11012 ada_print_type, /* Print a type using appropriate syntax */
11013 default_print_typedef, /* Print a typedef using appropriate syntax */
11014 ada_val_print, /* Print a value using appropriate syntax */
11015 ada_value_print, /* Print a top-level value */
11016 NULL, /* Language specific skip_trampoline */
11017 NULL, /* name_of_this */
11018 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11019 basic_lookup_transparent_type, /* lookup_transparent_type */
11020 ada_la_decode, /* Language specific symbol demangler */
11021 NULL, /* Language specific class_name_from_physname */
11022 ada_op_print_tab, /* expression operators for printing */
11023 0, /* c-style arrays */
11024 1, /* String lower bound */
11025 ada_get_gdb_completer_word_break_characters,
11026 ada_make_symbol_completion_list,
11027 ada_language_arch_info,
11028 ada_print_array_index,
11029 default_pass_by_reference,
11030 c_get_string,
11031 LANG_MAGIC
11032 };
11033
11034 /* Provide a prototype to silence -Wmissing-prototypes. */
11035 extern initialize_file_ftype _initialize_ada_language;
11036
11037 void
11038 _initialize_ada_language (void)
11039 {
11040 add_language (&ada_language_defn);
11041
11042 varsize_limit = 65536;
11043
11044 obstack_init (&symbol_list_obstack);
11045
11046 decoded_names_store = htab_create_alloc
11047 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11048 NULL, xcalloc, xfree);
11049
11050 observer_attach_executable_changed (ada_executable_changed_observer);
11051 }
This page took 0.406746 seconds and 5 git commands to generate.