PR breakpoints/8554.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60
61 #include "psymtab.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static void modify_general_field (struct type *, char *, LONGEST, int, int);
72
73 static struct type *desc_base_type (struct type *);
74
75 static struct type *desc_bounds_type (struct type *);
76
77 static struct value *desc_bounds (struct value *);
78
79 static int fat_pntr_bounds_bitpos (struct type *);
80
81 static int fat_pntr_bounds_bitsize (struct type *);
82
83 static struct type *desc_data_target_type (struct type *);
84
85 static struct value *desc_data (struct value *);
86
87 static int fat_pntr_data_bitpos (struct type *);
88
89 static int fat_pntr_data_bitsize (struct type *);
90
91 static struct value *desc_one_bound (struct value *, int, int);
92
93 static int desc_bound_bitpos (struct type *, int, int);
94
95 static int desc_bound_bitsize (struct type *, int, int);
96
97 static struct type *desc_index_type (struct type *, int);
98
99 static int desc_arity (struct type *);
100
101 static int ada_type_match (struct type *, struct type *, int);
102
103 static int ada_args_match (struct symbol *, struct value **, int);
104
105 static struct value *ensure_lval (struct value *,
106 struct gdbarch *, CORE_ADDR *);
107
108 static struct value *make_array_descriptor (struct type *, struct value *,
109 struct gdbarch *, CORE_ADDR *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 struct block *, const char *,
113 domain_enum, struct objfile *, int);
114
115 static int is_nonfunction (struct ada_symbol_info *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (char *, struct value *,
169 struct type *);
170
171 static struct type *to_static_fixed_type (struct type *);
172 static struct type *static_unwrap_type (struct type *type);
173
174 static struct value *unwrap_value (struct value *);
175
176 static struct type *constrained_packed_array_type (struct type *, long *);
177
178 static struct type *decode_constrained_packed_array_type (struct type *);
179
180 static long decode_packed_array_bitsize (struct type *);
181
182 static struct value *decode_constrained_packed_array (struct value *);
183
184 static int ada_is_packed_array_type (struct type *);
185
186 static int ada_is_unconstrained_packed_array_type (struct type *);
187
188 static struct value *value_subscript_packed (struct value *, int,
189 struct value **);
190
191 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
192
193 static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
195
196 static struct value *get_var_value (char *, char *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int wild_match (const char *, int, const char *);
205
206 static struct value *ada_coerce_ref (struct value *);
207
208 static LONGEST pos_atr (struct value *);
209
210 static struct value *value_pos_atr (struct type *, struct value *);
211
212 static struct value *value_val_atr (struct type *, struct value *);
213
214 static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217 static struct value *ada_search_struct_field (char *, struct value *, int,
218 struct type *);
219
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223 static int find_struct_field (char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
227 struct value *);
228
229 static struct value *ada_to_fixed_value (struct value *);
230
231 static int ada_resolve_function (struct ada_symbol_info *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static struct value *ada_coerce_to_simple_array (struct value *);
236
237 static int ada_is_direct_array_type (struct type *);
238
239 static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
241
242 static void check_size (const struct type *);
243
244 static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247 static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *, int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274 \f
275
276
277 /* Maximum-sized dynamic type. */
278 static unsigned int varsize_limit;
279
280 /* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282 static char *ada_completer_word_break_characters =
283 #ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285 #else
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
287 #endif
288
289 /* The name of the symbol to use to get the name of the main subprogram. */
290 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
292
293 /* Limit on the number of warnings to raise per expression evaluation. */
294 static int warning_limit = 2;
295
296 /* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298 static int warnings_issued = 0;
299
300 static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302 };
303
304 static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306 };
307
308 /* Space for allocating results of ada_lookup_symbol_list. */
309 static struct obstack symbol_list_obstack;
310
311 /* Utilities */
312
313 /* Given DECODED_NAME a string holding a symbol name in its
314 decoded form (ie using the Ada dotted notation), returns
315 its unqualified name. */
316
317 static const char *
318 ada_unqualified_name (const char *decoded_name)
319 {
320 const char *result = strrchr (decoded_name, '.');
321
322 if (result != NULL)
323 result++; /* Skip the dot... */
324 else
325 result = decoded_name;
326
327 return result;
328 }
329
330 /* Return a string starting with '<', followed by STR, and '>'.
331 The result is good until the next call. */
332
333 static char *
334 add_angle_brackets (const char *str)
335 {
336 static char *result = NULL;
337
338 xfree (result);
339 result = xstrprintf ("<%s>", str);
340 return result;
341 }
342
343 static char *
344 ada_get_gdb_completer_word_break_characters (void)
345 {
346 return ada_completer_word_break_characters;
347 }
348
349 /* Print an array element index using the Ada syntax. */
350
351 static void
352 ada_print_array_index (struct value *index_value, struct ui_file *stream,
353 const struct value_print_options *options)
354 {
355 LA_VALUE_PRINT (index_value, stream, options);
356 fprintf_filtered (stream, " => ");
357 }
358
359 /* Assuming VECT points to an array of *SIZE objects of size
360 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
361 updating *SIZE as necessary and returning the (new) array. */
362
363 void *
364 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
365 {
366 if (*size < min_size)
367 {
368 *size *= 2;
369 if (*size < min_size)
370 *size = min_size;
371 vect = xrealloc (vect, *size * element_size);
372 }
373 return vect;
374 }
375
376 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
377 suffix of FIELD_NAME beginning "___". */
378
379 static int
380 field_name_match (const char *field_name, const char *target)
381 {
382 int len = strlen (target);
383 return
384 (strncmp (field_name, target, len) == 0
385 && (field_name[len] == '\0'
386 || (strncmp (field_name + len, "___", 3) == 0
387 && strcmp (field_name + strlen (field_name) - 6,
388 "___XVN") != 0)));
389 }
390
391
392 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
393 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
394 and return its index. This function also handles fields whose name
395 have ___ suffixes because the compiler sometimes alters their name
396 by adding such a suffix to represent fields with certain constraints.
397 If the field could not be found, return a negative number if
398 MAYBE_MISSING is set. Otherwise raise an error. */
399
400 int
401 ada_get_field_index (const struct type *type, const char *field_name,
402 int maybe_missing)
403 {
404 int fieldno;
405 struct type *struct_type = check_typedef ((struct type *) type);
406
407 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
408 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
409 return fieldno;
410
411 if (!maybe_missing)
412 error (_("Unable to find field %s in struct %s. Aborting"),
413 field_name, TYPE_NAME (struct_type));
414
415 return -1;
416 }
417
418 /* The length of the prefix of NAME prior to any "___" suffix. */
419
420 int
421 ada_name_prefix_len (const char *name)
422 {
423 if (name == NULL)
424 return 0;
425 else
426 {
427 const char *p = strstr (name, "___");
428 if (p == NULL)
429 return strlen (name);
430 else
431 return p - name;
432 }
433 }
434
435 /* Return non-zero if SUFFIX is a suffix of STR.
436 Return zero if STR is null. */
437
438 static int
439 is_suffix (const char *str, const char *suffix)
440 {
441 int len1, len2;
442 if (str == NULL)
443 return 0;
444 len1 = strlen (str);
445 len2 = strlen (suffix);
446 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
447 }
448
449 /* The contents of value VAL, treated as a value of type TYPE. The
450 result is an lval in memory if VAL is. */
451
452 static struct value *
453 coerce_unspec_val_to_type (struct value *val, struct type *type)
454 {
455 type = ada_check_typedef (type);
456 if (value_type (val) == type)
457 return val;
458 else
459 {
460 struct value *result;
461
462 /* Make sure that the object size is not unreasonable before
463 trying to allocate some memory for it. */
464 check_size (type);
465
466 result = allocate_value (type);
467 set_value_component_location (result, val);
468 set_value_bitsize (result, value_bitsize (val));
469 set_value_bitpos (result, value_bitpos (val));
470 set_value_address (result, value_address (val));
471 if (value_lazy (val)
472 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
473 set_value_lazy (result, 1);
474 else
475 memcpy (value_contents_raw (result), value_contents (val),
476 TYPE_LENGTH (type));
477 return result;
478 }
479 }
480
481 static const gdb_byte *
482 cond_offset_host (const gdb_byte *valaddr, long offset)
483 {
484 if (valaddr == NULL)
485 return NULL;
486 else
487 return valaddr + offset;
488 }
489
490 static CORE_ADDR
491 cond_offset_target (CORE_ADDR address, long offset)
492 {
493 if (address == 0)
494 return 0;
495 else
496 return address + offset;
497 }
498
499 /* Issue a warning (as for the definition of warning in utils.c, but
500 with exactly one argument rather than ...), unless the limit on the
501 number of warnings has passed during the evaluation of the current
502 expression. */
503
504 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
505 provided by "complaint". */
506 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
507
508 static void
509 lim_warning (const char *format, ...)
510 {
511 va_list args;
512 va_start (args, format);
513
514 warnings_issued += 1;
515 if (warnings_issued <= warning_limit)
516 vwarning (format, args);
517
518 va_end (args);
519 }
520
521 /* Issue an error if the size of an object of type T is unreasonable,
522 i.e. if it would be a bad idea to allocate a value of this type in
523 GDB. */
524
525 static void
526 check_size (const struct type *type)
527 {
528 if (TYPE_LENGTH (type) > varsize_limit)
529 error (_("object size is larger than varsize-limit"));
530 }
531
532
533 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
534 gdbtypes.h, but some of the necessary definitions in that file
535 seem to have gone missing. */
536
537 /* Maximum value of a SIZE-byte signed integer type. */
538 static LONGEST
539 max_of_size (int size)
540 {
541 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
542 return top_bit | (top_bit - 1);
543 }
544
545 /* Minimum value of a SIZE-byte signed integer type. */
546 static LONGEST
547 min_of_size (int size)
548 {
549 return -max_of_size (size) - 1;
550 }
551
552 /* Maximum value of a SIZE-byte unsigned integer type. */
553 static ULONGEST
554 umax_of_size (int size)
555 {
556 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
557 return top_bit | (top_bit - 1);
558 }
559
560 /* Maximum value of integral type T, as a signed quantity. */
561 static LONGEST
562 max_of_type (struct type *t)
563 {
564 if (TYPE_UNSIGNED (t))
565 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
566 else
567 return max_of_size (TYPE_LENGTH (t));
568 }
569
570 /* Minimum value of integral type T, as a signed quantity. */
571 static LONGEST
572 min_of_type (struct type *t)
573 {
574 if (TYPE_UNSIGNED (t))
575 return 0;
576 else
577 return min_of_size (TYPE_LENGTH (t));
578 }
579
580 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
581 LONGEST
582 ada_discrete_type_high_bound (struct type *type)
583 {
584 switch (TYPE_CODE (type))
585 {
586 case TYPE_CODE_RANGE:
587 return TYPE_HIGH_BOUND (type);
588 case TYPE_CODE_ENUM:
589 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
590 case TYPE_CODE_BOOL:
591 return 1;
592 case TYPE_CODE_CHAR:
593 case TYPE_CODE_INT:
594 return max_of_type (type);
595 default:
596 error (_("Unexpected type in ada_discrete_type_high_bound."));
597 }
598 }
599
600 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
601 LONGEST
602 ada_discrete_type_low_bound (struct type *type)
603 {
604 switch (TYPE_CODE (type))
605 {
606 case TYPE_CODE_RANGE:
607 return TYPE_LOW_BOUND (type);
608 case TYPE_CODE_ENUM:
609 return TYPE_FIELD_BITPOS (type, 0);
610 case TYPE_CODE_BOOL:
611 return 0;
612 case TYPE_CODE_CHAR:
613 case TYPE_CODE_INT:
614 return min_of_type (type);
615 default:
616 error (_("Unexpected type in ada_discrete_type_low_bound."));
617 }
618 }
619
620 /* The identity on non-range types. For range types, the underlying
621 non-range scalar type. */
622
623 static struct type *
624 base_type (struct type *type)
625 {
626 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
627 {
628 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
629 return type;
630 type = TYPE_TARGET_TYPE (type);
631 }
632 return type;
633 }
634 \f
635
636 /* Language Selection */
637
638 /* If the main program is in Ada, return language_ada, otherwise return LANG
639 (the main program is in Ada iif the adainit symbol is found). */
640
641 enum language
642 ada_update_initial_language (enum language lang)
643 {
644 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
645 (struct objfile *) NULL) != NULL)
646 return language_ada;
647
648 return lang;
649 }
650
651 /* If the main procedure is written in Ada, then return its name.
652 The result is good until the next call. Return NULL if the main
653 procedure doesn't appear to be in Ada. */
654
655 char *
656 ada_main_name (void)
657 {
658 struct minimal_symbol *msym;
659 static char *main_program_name = NULL;
660
661 /* For Ada, the name of the main procedure is stored in a specific
662 string constant, generated by the binder. Look for that symbol,
663 extract its address, and then read that string. If we didn't find
664 that string, then most probably the main procedure is not written
665 in Ada. */
666 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
667
668 if (msym != NULL)
669 {
670 CORE_ADDR main_program_name_addr;
671 int err_code;
672
673 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
674 if (main_program_name_addr == 0)
675 error (_("Invalid address for Ada main program name."));
676
677 xfree (main_program_name);
678 target_read_string (main_program_name_addr, &main_program_name,
679 1024, &err_code);
680
681 if (err_code != 0)
682 return NULL;
683 return main_program_name;
684 }
685
686 /* The main procedure doesn't seem to be in Ada. */
687 return NULL;
688 }
689 \f
690 /* Symbols */
691
692 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
693 of NULLs. */
694
695 const struct ada_opname_map ada_opname_table[] = {
696 {"Oadd", "\"+\"", BINOP_ADD},
697 {"Osubtract", "\"-\"", BINOP_SUB},
698 {"Omultiply", "\"*\"", BINOP_MUL},
699 {"Odivide", "\"/\"", BINOP_DIV},
700 {"Omod", "\"mod\"", BINOP_MOD},
701 {"Orem", "\"rem\"", BINOP_REM},
702 {"Oexpon", "\"**\"", BINOP_EXP},
703 {"Olt", "\"<\"", BINOP_LESS},
704 {"Ole", "\"<=\"", BINOP_LEQ},
705 {"Ogt", "\">\"", BINOP_GTR},
706 {"Oge", "\">=\"", BINOP_GEQ},
707 {"Oeq", "\"=\"", BINOP_EQUAL},
708 {"One", "\"/=\"", BINOP_NOTEQUAL},
709 {"Oand", "\"and\"", BINOP_BITWISE_AND},
710 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
711 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
712 {"Oconcat", "\"&\"", BINOP_CONCAT},
713 {"Oabs", "\"abs\"", UNOP_ABS},
714 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
715 {"Oadd", "\"+\"", UNOP_PLUS},
716 {"Osubtract", "\"-\"", UNOP_NEG},
717 {NULL, NULL}
718 };
719
720 /* The "encoded" form of DECODED, according to GNAT conventions.
721 The result is valid until the next call to ada_encode. */
722
723 char *
724 ada_encode (const char *decoded)
725 {
726 static char *encoding_buffer = NULL;
727 static size_t encoding_buffer_size = 0;
728 const char *p;
729 int k;
730
731 if (decoded == NULL)
732 return NULL;
733
734 GROW_VECT (encoding_buffer, encoding_buffer_size,
735 2 * strlen (decoded) + 10);
736
737 k = 0;
738 for (p = decoded; *p != '\0'; p += 1)
739 {
740 if (*p == '.')
741 {
742 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
743 k += 2;
744 }
745 else if (*p == '"')
746 {
747 const struct ada_opname_map *mapping;
748
749 for (mapping = ada_opname_table;
750 mapping->encoded != NULL
751 && strncmp (mapping->decoded, p,
752 strlen (mapping->decoded)) != 0; mapping += 1)
753 ;
754 if (mapping->encoded == NULL)
755 error (_("invalid Ada operator name: %s"), p);
756 strcpy (encoding_buffer + k, mapping->encoded);
757 k += strlen (mapping->encoded);
758 break;
759 }
760 else
761 {
762 encoding_buffer[k] = *p;
763 k += 1;
764 }
765 }
766
767 encoding_buffer[k] = '\0';
768 return encoding_buffer;
769 }
770
771 /* Return NAME folded to lower case, or, if surrounded by single
772 quotes, unfolded, but with the quotes stripped away. Result good
773 to next call. */
774
775 char *
776 ada_fold_name (const char *name)
777 {
778 static char *fold_buffer = NULL;
779 static size_t fold_buffer_size = 0;
780
781 int len = strlen (name);
782 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
783
784 if (name[0] == '\'')
785 {
786 strncpy (fold_buffer, name + 1, len - 2);
787 fold_buffer[len - 2] = '\000';
788 }
789 else
790 {
791 int i;
792 for (i = 0; i <= len; i += 1)
793 fold_buffer[i] = tolower (name[i]);
794 }
795
796 return fold_buffer;
797 }
798
799 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
800
801 static int
802 is_lower_alphanum (const char c)
803 {
804 return (isdigit (c) || (isalpha (c) && islower (c)));
805 }
806
807 /* Remove either of these suffixes:
808 . .{DIGIT}+
809 . ${DIGIT}+
810 . ___{DIGIT}+
811 . __{DIGIT}+.
812 These are suffixes introduced by the compiler for entities such as
813 nested subprogram for instance, in order to avoid name clashes.
814 They do not serve any purpose for the debugger. */
815
816 static void
817 ada_remove_trailing_digits (const char *encoded, int *len)
818 {
819 if (*len > 1 && isdigit (encoded[*len - 1]))
820 {
821 int i = *len - 2;
822 while (i > 0 && isdigit (encoded[i]))
823 i--;
824 if (i >= 0 && encoded[i] == '.')
825 *len = i;
826 else if (i >= 0 && encoded[i] == '$')
827 *len = i;
828 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
829 *len = i - 2;
830 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
831 *len = i - 1;
832 }
833 }
834
835 /* Remove the suffix introduced by the compiler for protected object
836 subprograms. */
837
838 static void
839 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
840 {
841 /* Remove trailing N. */
842
843 /* Protected entry subprograms are broken into two
844 separate subprograms: The first one is unprotected, and has
845 a 'N' suffix; the second is the protected version, and has
846 the 'P' suffix. The second calls the first one after handling
847 the protection. Since the P subprograms are internally generated,
848 we leave these names undecoded, giving the user a clue that this
849 entity is internal. */
850
851 if (*len > 1
852 && encoded[*len - 1] == 'N'
853 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
854 *len = *len - 1;
855 }
856
857 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
858
859 static void
860 ada_remove_Xbn_suffix (const char *encoded, int *len)
861 {
862 int i = *len - 1;
863
864 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
865 i--;
866
867 if (encoded[i] != 'X')
868 return;
869
870 if (i == 0)
871 return;
872
873 if (isalnum (encoded[i-1]))
874 *len = i;
875 }
876
877 /* If ENCODED follows the GNAT entity encoding conventions, then return
878 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
879 replaced by ENCODED.
880
881 The resulting string is valid until the next call of ada_decode.
882 If the string is unchanged by decoding, the original string pointer
883 is returned. */
884
885 const char *
886 ada_decode (const char *encoded)
887 {
888 int i, j;
889 int len0;
890 const char *p;
891 char *decoded;
892 int at_start_name;
893 static char *decoding_buffer = NULL;
894 static size_t decoding_buffer_size = 0;
895
896 /* The name of the Ada main procedure starts with "_ada_".
897 This prefix is not part of the decoded name, so skip this part
898 if we see this prefix. */
899 if (strncmp (encoded, "_ada_", 5) == 0)
900 encoded += 5;
901
902 /* If the name starts with '_', then it is not a properly encoded
903 name, so do not attempt to decode it. Similarly, if the name
904 starts with '<', the name should not be decoded. */
905 if (encoded[0] == '_' || encoded[0] == '<')
906 goto Suppress;
907
908 len0 = strlen (encoded);
909
910 ada_remove_trailing_digits (encoded, &len0);
911 ada_remove_po_subprogram_suffix (encoded, &len0);
912
913 /* Remove the ___X.* suffix if present. Do not forget to verify that
914 the suffix is located before the current "end" of ENCODED. We want
915 to avoid re-matching parts of ENCODED that have previously been
916 marked as discarded (by decrementing LEN0). */
917 p = strstr (encoded, "___");
918 if (p != NULL && p - encoded < len0 - 3)
919 {
920 if (p[3] == 'X')
921 len0 = p - encoded;
922 else
923 goto Suppress;
924 }
925
926 /* Remove any trailing TKB suffix. It tells us that this symbol
927 is for the body of a task, but that information does not actually
928 appear in the decoded name. */
929
930 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
931 len0 -= 3;
932
933 /* Remove any trailing TB suffix. The TB suffix is slightly different
934 from the TKB suffix because it is used for non-anonymous task
935 bodies. */
936
937 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
938 len0 -= 2;
939
940 /* Remove trailing "B" suffixes. */
941 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
942
943 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
944 len0 -= 1;
945
946 /* Make decoded big enough for possible expansion by operator name. */
947
948 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
949 decoded = decoding_buffer;
950
951 /* Remove trailing __{digit}+ or trailing ${digit}+. */
952
953 if (len0 > 1 && isdigit (encoded[len0 - 1]))
954 {
955 i = len0 - 2;
956 while ((i >= 0 && isdigit (encoded[i]))
957 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
958 i -= 1;
959 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
960 len0 = i - 1;
961 else if (encoded[i] == '$')
962 len0 = i;
963 }
964
965 /* The first few characters that are not alphabetic are not part
966 of any encoding we use, so we can copy them over verbatim. */
967
968 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
969 decoded[j] = encoded[i];
970
971 at_start_name = 1;
972 while (i < len0)
973 {
974 /* Is this a symbol function? */
975 if (at_start_name && encoded[i] == 'O')
976 {
977 int k;
978 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
979 {
980 int op_len = strlen (ada_opname_table[k].encoded);
981 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
982 op_len - 1) == 0)
983 && !isalnum (encoded[i + op_len]))
984 {
985 strcpy (decoded + j, ada_opname_table[k].decoded);
986 at_start_name = 0;
987 i += op_len;
988 j += strlen (ada_opname_table[k].decoded);
989 break;
990 }
991 }
992 if (ada_opname_table[k].encoded != NULL)
993 continue;
994 }
995 at_start_name = 0;
996
997 /* Replace "TK__" with "__", which will eventually be translated
998 into "." (just below). */
999
1000 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1001 i += 2;
1002
1003 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1004 be translated into "." (just below). These are internal names
1005 generated for anonymous blocks inside which our symbol is nested. */
1006
1007 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1008 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1009 && isdigit (encoded [i+4]))
1010 {
1011 int k = i + 5;
1012
1013 while (k < len0 && isdigit (encoded[k]))
1014 k++; /* Skip any extra digit. */
1015
1016 /* Double-check that the "__B_{DIGITS}+" sequence we found
1017 is indeed followed by "__". */
1018 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1019 i = k;
1020 }
1021
1022 /* Remove _E{DIGITS}+[sb] */
1023
1024 /* Just as for protected object subprograms, there are 2 categories
1025 of subprograms created by the compiler for each entry. The first
1026 one implements the actual entry code, and has a suffix following
1027 the convention above; the second one implements the barrier and
1028 uses the same convention as above, except that the 'E' is replaced
1029 by a 'B'.
1030
1031 Just as above, we do not decode the name of barrier functions
1032 to give the user a clue that the code he is debugging has been
1033 internally generated. */
1034
1035 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1036 && isdigit (encoded[i+2]))
1037 {
1038 int k = i + 3;
1039
1040 while (k < len0 && isdigit (encoded[k]))
1041 k++;
1042
1043 if (k < len0
1044 && (encoded[k] == 'b' || encoded[k] == 's'))
1045 {
1046 k++;
1047 /* Just as an extra precaution, make sure that if this
1048 suffix is followed by anything else, it is a '_'.
1049 Otherwise, we matched this sequence by accident. */
1050 if (k == len0
1051 || (k < len0 && encoded[k] == '_'))
1052 i = k;
1053 }
1054 }
1055
1056 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1057 the GNAT front-end in protected object subprograms. */
1058
1059 if (i < len0 + 3
1060 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1061 {
1062 /* Backtrack a bit up until we reach either the begining of
1063 the encoded name, or "__". Make sure that we only find
1064 digits or lowercase characters. */
1065 const char *ptr = encoded + i - 1;
1066
1067 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1068 ptr--;
1069 if (ptr < encoded
1070 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1071 i++;
1072 }
1073
1074 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1075 {
1076 /* This is a X[bn]* sequence not separated from the previous
1077 part of the name with a non-alpha-numeric character (in other
1078 words, immediately following an alpha-numeric character), then
1079 verify that it is placed at the end of the encoded name. If
1080 not, then the encoding is not valid and we should abort the
1081 decoding. Otherwise, just skip it, it is used in body-nested
1082 package names. */
1083 do
1084 i += 1;
1085 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1086 if (i < len0)
1087 goto Suppress;
1088 }
1089 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1090 {
1091 /* Replace '__' by '.'. */
1092 decoded[j] = '.';
1093 at_start_name = 1;
1094 i += 2;
1095 j += 1;
1096 }
1097 else
1098 {
1099 /* It's a character part of the decoded name, so just copy it
1100 over. */
1101 decoded[j] = encoded[i];
1102 i += 1;
1103 j += 1;
1104 }
1105 }
1106 decoded[j] = '\000';
1107
1108 /* Decoded names should never contain any uppercase character.
1109 Double-check this, and abort the decoding if we find one. */
1110
1111 for (i = 0; decoded[i] != '\0'; i += 1)
1112 if (isupper (decoded[i]) || decoded[i] == ' ')
1113 goto Suppress;
1114
1115 if (strcmp (decoded, encoded) == 0)
1116 return encoded;
1117 else
1118 return decoded;
1119
1120 Suppress:
1121 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1122 decoded = decoding_buffer;
1123 if (encoded[0] == '<')
1124 strcpy (decoded, encoded);
1125 else
1126 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1127 return decoded;
1128
1129 }
1130
1131 /* Table for keeping permanent unique copies of decoded names. Once
1132 allocated, names in this table are never released. While this is a
1133 storage leak, it should not be significant unless there are massive
1134 changes in the set of decoded names in successive versions of a
1135 symbol table loaded during a single session. */
1136 static struct htab *decoded_names_store;
1137
1138 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1139 in the language-specific part of GSYMBOL, if it has not been
1140 previously computed. Tries to save the decoded name in the same
1141 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1142 in any case, the decoded symbol has a lifetime at least that of
1143 GSYMBOL).
1144 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1145 const, but nevertheless modified to a semantically equivalent form
1146 when a decoded name is cached in it.
1147 */
1148
1149 char *
1150 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1151 {
1152 char **resultp =
1153 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1154 if (*resultp == NULL)
1155 {
1156 const char *decoded = ada_decode (gsymbol->name);
1157 if (gsymbol->obj_section != NULL)
1158 {
1159 struct objfile *objf = gsymbol->obj_section->objfile;
1160 *resultp = obsavestring (decoded, strlen (decoded),
1161 &objf->objfile_obstack);
1162 }
1163 /* Sometimes, we can't find a corresponding objfile, in which
1164 case, we put the result on the heap. Since we only decode
1165 when needed, we hope this usually does not cause a
1166 significant memory leak (FIXME). */
1167 if (*resultp == NULL)
1168 {
1169 char **slot = (char **) htab_find_slot (decoded_names_store,
1170 decoded, INSERT);
1171 if (*slot == NULL)
1172 *slot = xstrdup (decoded);
1173 *resultp = *slot;
1174 }
1175 }
1176
1177 return *resultp;
1178 }
1179
1180 static char *
1181 ada_la_decode (const char *encoded, int options)
1182 {
1183 return xstrdup (ada_decode (encoded));
1184 }
1185
1186 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1187 suffixes that encode debugging information or leading _ada_ on
1188 SYM_NAME (see is_name_suffix commentary for the debugging
1189 information that is ignored). If WILD, then NAME need only match a
1190 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1191 either argument is NULL. */
1192
1193 static int
1194 ada_match_name (const char *sym_name, const char *name, int wild)
1195 {
1196 if (sym_name == NULL || name == NULL)
1197 return 0;
1198 else if (wild)
1199 return wild_match (name, strlen (name), sym_name);
1200 else
1201 {
1202 int len_name = strlen (name);
1203 return (strncmp (sym_name, name, len_name) == 0
1204 && is_name_suffix (sym_name + len_name))
1205 || (strncmp (sym_name, "_ada_", 5) == 0
1206 && strncmp (sym_name + 5, name, len_name) == 0
1207 && is_name_suffix (sym_name + len_name + 5));
1208 }
1209 }
1210 \f
1211
1212 /* Arrays */
1213
1214 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1215
1216 static char *bound_name[] = {
1217 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1218 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1219 };
1220
1221 /* Maximum number of array dimensions we are prepared to handle. */
1222
1223 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1224
1225 /* Like modify_field, but allows bitpos > wordlength. */
1226
1227 static void
1228 modify_general_field (struct type *type, char *addr,
1229 LONGEST fieldval, int bitpos, int bitsize)
1230 {
1231 modify_field (type, addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1232 }
1233
1234
1235 /* The desc_* routines return primitive portions of array descriptors
1236 (fat pointers). */
1237
1238 /* The descriptor or array type, if any, indicated by TYPE; removes
1239 level of indirection, if needed. */
1240
1241 static struct type *
1242 desc_base_type (struct type *type)
1243 {
1244 if (type == NULL)
1245 return NULL;
1246 type = ada_check_typedef (type);
1247 if (type != NULL
1248 && (TYPE_CODE (type) == TYPE_CODE_PTR
1249 || TYPE_CODE (type) == TYPE_CODE_REF))
1250 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1251 else
1252 return type;
1253 }
1254
1255 /* True iff TYPE indicates a "thin" array pointer type. */
1256
1257 static int
1258 is_thin_pntr (struct type *type)
1259 {
1260 return
1261 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1262 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1263 }
1264
1265 /* The descriptor type for thin pointer type TYPE. */
1266
1267 static struct type *
1268 thin_descriptor_type (struct type *type)
1269 {
1270 struct type *base_type = desc_base_type (type);
1271 if (base_type == NULL)
1272 return NULL;
1273 if (is_suffix (ada_type_name (base_type), "___XVE"))
1274 return base_type;
1275 else
1276 {
1277 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1278 if (alt_type == NULL)
1279 return base_type;
1280 else
1281 return alt_type;
1282 }
1283 }
1284
1285 /* A pointer to the array data for thin-pointer value VAL. */
1286
1287 static struct value *
1288 thin_data_pntr (struct value *val)
1289 {
1290 struct type *type = value_type (val);
1291 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1292 data_type = lookup_pointer_type (data_type);
1293
1294 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1295 return value_cast (data_type, value_copy (val));
1296 else
1297 return value_from_longest (data_type, value_address (val));
1298 }
1299
1300 /* True iff TYPE indicates a "thick" array pointer type. */
1301
1302 static int
1303 is_thick_pntr (struct type *type)
1304 {
1305 type = desc_base_type (type);
1306 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1307 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1308 }
1309
1310 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1311 pointer to one, the type of its bounds data; otherwise, NULL. */
1312
1313 static struct type *
1314 desc_bounds_type (struct type *type)
1315 {
1316 struct type *r;
1317
1318 type = desc_base_type (type);
1319
1320 if (type == NULL)
1321 return NULL;
1322 else if (is_thin_pntr (type))
1323 {
1324 type = thin_descriptor_type (type);
1325 if (type == NULL)
1326 return NULL;
1327 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1328 if (r != NULL)
1329 return ada_check_typedef (r);
1330 }
1331 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1332 {
1333 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1334 if (r != NULL)
1335 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1336 }
1337 return NULL;
1338 }
1339
1340 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1341 one, a pointer to its bounds data. Otherwise NULL. */
1342
1343 static struct value *
1344 desc_bounds (struct value *arr)
1345 {
1346 struct type *type = ada_check_typedef (value_type (arr));
1347 if (is_thin_pntr (type))
1348 {
1349 struct type *bounds_type =
1350 desc_bounds_type (thin_descriptor_type (type));
1351 LONGEST addr;
1352
1353 if (bounds_type == NULL)
1354 error (_("Bad GNAT array descriptor"));
1355
1356 /* NOTE: The following calculation is not really kosher, but
1357 since desc_type is an XVE-encoded type (and shouldn't be),
1358 the correct calculation is a real pain. FIXME (and fix GCC). */
1359 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1360 addr = value_as_long (arr);
1361 else
1362 addr = value_address (arr);
1363
1364 return
1365 value_from_longest (lookup_pointer_type (bounds_type),
1366 addr - TYPE_LENGTH (bounds_type));
1367 }
1368
1369 else if (is_thick_pntr (type))
1370 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1371 _("Bad GNAT array descriptor"));
1372 else
1373 return NULL;
1374 }
1375
1376 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1377 position of the field containing the address of the bounds data. */
1378
1379 static int
1380 fat_pntr_bounds_bitpos (struct type *type)
1381 {
1382 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1383 }
1384
1385 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1386 size of the field containing the address of the bounds data. */
1387
1388 static int
1389 fat_pntr_bounds_bitsize (struct type *type)
1390 {
1391 type = desc_base_type (type);
1392
1393 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1394 return TYPE_FIELD_BITSIZE (type, 1);
1395 else
1396 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1397 }
1398
1399 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1400 pointer to one, the type of its array data (a array-with-no-bounds type);
1401 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1402 data. */
1403
1404 static struct type *
1405 desc_data_target_type (struct type *type)
1406 {
1407 type = desc_base_type (type);
1408
1409 /* NOTE: The following is bogus; see comment in desc_bounds. */
1410 if (is_thin_pntr (type))
1411 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1412 else if (is_thick_pntr (type))
1413 {
1414 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1415
1416 if (data_type
1417 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1418 return TYPE_TARGET_TYPE (data_type);
1419 }
1420
1421 return NULL;
1422 }
1423
1424 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1425 its array data. */
1426
1427 static struct value *
1428 desc_data (struct value *arr)
1429 {
1430 struct type *type = value_type (arr);
1431 if (is_thin_pntr (type))
1432 return thin_data_pntr (arr);
1433 else if (is_thick_pntr (type))
1434 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1435 _("Bad GNAT array descriptor"));
1436 else
1437 return NULL;
1438 }
1439
1440
1441 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1442 position of the field containing the address of the data. */
1443
1444 static int
1445 fat_pntr_data_bitpos (struct type *type)
1446 {
1447 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1448 }
1449
1450 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1451 size of the field containing the address of the data. */
1452
1453 static int
1454 fat_pntr_data_bitsize (struct type *type)
1455 {
1456 type = desc_base_type (type);
1457
1458 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1459 return TYPE_FIELD_BITSIZE (type, 0);
1460 else
1461 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1462 }
1463
1464 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1465 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1466 bound, if WHICH is 1. The first bound is I=1. */
1467
1468 static struct value *
1469 desc_one_bound (struct value *bounds, int i, int which)
1470 {
1471 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1472 _("Bad GNAT array descriptor bounds"));
1473 }
1474
1475 /* If BOUNDS is an array-bounds structure type, return the bit position
1476 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1477 bound, if WHICH is 1. The first bound is I=1. */
1478
1479 static int
1480 desc_bound_bitpos (struct type *type, int i, int which)
1481 {
1482 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1483 }
1484
1485 /* If BOUNDS is an array-bounds structure type, return the bit field size
1486 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1487 bound, if WHICH is 1. The first bound is I=1. */
1488
1489 static int
1490 desc_bound_bitsize (struct type *type, int i, int which)
1491 {
1492 type = desc_base_type (type);
1493
1494 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1495 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1496 else
1497 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1498 }
1499
1500 /* If TYPE is the type of an array-bounds structure, the type of its
1501 Ith bound (numbering from 1). Otherwise, NULL. */
1502
1503 static struct type *
1504 desc_index_type (struct type *type, int i)
1505 {
1506 type = desc_base_type (type);
1507
1508 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1509 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1510 else
1511 return NULL;
1512 }
1513
1514 /* The number of index positions in the array-bounds type TYPE.
1515 Return 0 if TYPE is NULL. */
1516
1517 static int
1518 desc_arity (struct type *type)
1519 {
1520 type = desc_base_type (type);
1521
1522 if (type != NULL)
1523 return TYPE_NFIELDS (type) / 2;
1524 return 0;
1525 }
1526
1527 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1528 an array descriptor type (representing an unconstrained array
1529 type). */
1530
1531 static int
1532 ada_is_direct_array_type (struct type *type)
1533 {
1534 if (type == NULL)
1535 return 0;
1536 type = ada_check_typedef (type);
1537 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1538 || ada_is_array_descriptor_type (type));
1539 }
1540
1541 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1542 * to one. */
1543
1544 static int
1545 ada_is_array_type (struct type *type)
1546 {
1547 while (type != NULL
1548 && (TYPE_CODE (type) == TYPE_CODE_PTR
1549 || TYPE_CODE (type) == TYPE_CODE_REF))
1550 type = TYPE_TARGET_TYPE (type);
1551 return ada_is_direct_array_type (type);
1552 }
1553
1554 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1555
1556 int
1557 ada_is_simple_array_type (struct type *type)
1558 {
1559 if (type == NULL)
1560 return 0;
1561 type = ada_check_typedef (type);
1562 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1563 || (TYPE_CODE (type) == TYPE_CODE_PTR
1564 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1565 }
1566
1567 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1568
1569 int
1570 ada_is_array_descriptor_type (struct type *type)
1571 {
1572 struct type *data_type = desc_data_target_type (type);
1573
1574 if (type == NULL)
1575 return 0;
1576 type = ada_check_typedef (type);
1577 return (data_type != NULL
1578 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1579 && desc_arity (desc_bounds_type (type)) > 0);
1580 }
1581
1582 /* Non-zero iff type is a partially mal-formed GNAT array
1583 descriptor. FIXME: This is to compensate for some problems with
1584 debugging output from GNAT. Re-examine periodically to see if it
1585 is still needed. */
1586
1587 int
1588 ada_is_bogus_array_descriptor (struct type *type)
1589 {
1590 return
1591 type != NULL
1592 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1593 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1594 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1595 && !ada_is_array_descriptor_type (type);
1596 }
1597
1598
1599 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1600 (fat pointer) returns the type of the array data described---specifically,
1601 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1602 in from the descriptor; otherwise, they are left unspecified. If
1603 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1604 returns NULL. The result is simply the type of ARR if ARR is not
1605 a descriptor. */
1606 struct type *
1607 ada_type_of_array (struct value *arr, int bounds)
1608 {
1609 if (ada_is_constrained_packed_array_type (value_type (arr)))
1610 return decode_constrained_packed_array_type (value_type (arr));
1611
1612 if (!ada_is_array_descriptor_type (value_type (arr)))
1613 return value_type (arr);
1614
1615 if (!bounds)
1616 {
1617 struct type *array_type =
1618 ada_check_typedef (desc_data_target_type (value_type (arr)));
1619
1620 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1621 TYPE_FIELD_BITSIZE (array_type, 0) =
1622 decode_packed_array_bitsize (value_type (arr));
1623
1624 return array_type;
1625 }
1626 else
1627 {
1628 struct type *elt_type;
1629 int arity;
1630 struct value *descriptor;
1631
1632 elt_type = ada_array_element_type (value_type (arr), -1);
1633 arity = ada_array_arity (value_type (arr));
1634
1635 if (elt_type == NULL || arity == 0)
1636 return ada_check_typedef (value_type (arr));
1637
1638 descriptor = desc_bounds (arr);
1639 if (value_as_long (descriptor) == 0)
1640 return NULL;
1641 while (arity > 0)
1642 {
1643 struct type *range_type = alloc_type_copy (value_type (arr));
1644 struct type *array_type = alloc_type_copy (value_type (arr));
1645 struct value *low = desc_one_bound (descriptor, arity, 0);
1646 struct value *high = desc_one_bound (descriptor, arity, 1);
1647 arity -= 1;
1648
1649 create_range_type (range_type, value_type (low),
1650 longest_to_int (value_as_long (low)),
1651 longest_to_int (value_as_long (high)));
1652 elt_type = create_array_type (array_type, elt_type, range_type);
1653
1654 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1655 TYPE_FIELD_BITSIZE (elt_type, 0) =
1656 decode_packed_array_bitsize (value_type (arr));
1657 }
1658
1659 return lookup_pointer_type (elt_type);
1660 }
1661 }
1662
1663 /* If ARR does not represent an array, returns ARR unchanged.
1664 Otherwise, returns either a standard GDB array with bounds set
1665 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1666 GDB array. Returns NULL if ARR is a null fat pointer. */
1667
1668 struct value *
1669 ada_coerce_to_simple_array_ptr (struct value *arr)
1670 {
1671 if (ada_is_array_descriptor_type (value_type (arr)))
1672 {
1673 struct type *arrType = ada_type_of_array (arr, 1);
1674 if (arrType == NULL)
1675 return NULL;
1676 return value_cast (arrType, value_copy (desc_data (arr)));
1677 }
1678 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1679 return decode_constrained_packed_array (arr);
1680 else
1681 return arr;
1682 }
1683
1684 /* If ARR does not represent an array, returns ARR unchanged.
1685 Otherwise, returns a standard GDB array describing ARR (which may
1686 be ARR itself if it already is in the proper form). */
1687
1688 static struct value *
1689 ada_coerce_to_simple_array (struct value *arr)
1690 {
1691 if (ada_is_array_descriptor_type (value_type (arr)))
1692 {
1693 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1694 if (arrVal == NULL)
1695 error (_("Bounds unavailable for null array pointer."));
1696 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1697 return value_ind (arrVal);
1698 }
1699 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1700 return decode_constrained_packed_array (arr);
1701 else
1702 return arr;
1703 }
1704
1705 /* If TYPE represents a GNAT array type, return it translated to an
1706 ordinary GDB array type (possibly with BITSIZE fields indicating
1707 packing). For other types, is the identity. */
1708
1709 struct type *
1710 ada_coerce_to_simple_array_type (struct type *type)
1711 {
1712 if (ada_is_constrained_packed_array_type (type))
1713 return decode_constrained_packed_array_type (type);
1714
1715 if (ada_is_array_descriptor_type (type))
1716 return ada_check_typedef (desc_data_target_type (type));
1717
1718 return type;
1719 }
1720
1721 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1722
1723 static int
1724 ada_is_packed_array_type (struct type *type)
1725 {
1726 if (type == NULL)
1727 return 0;
1728 type = desc_base_type (type);
1729 type = ada_check_typedef (type);
1730 return
1731 ada_type_name (type) != NULL
1732 && strstr (ada_type_name (type), "___XP") != NULL;
1733 }
1734
1735 /* Non-zero iff TYPE represents a standard GNAT constrained
1736 packed-array type. */
1737
1738 int
1739 ada_is_constrained_packed_array_type (struct type *type)
1740 {
1741 return ada_is_packed_array_type (type)
1742 && !ada_is_array_descriptor_type (type);
1743 }
1744
1745 /* Non-zero iff TYPE represents an array descriptor for a
1746 unconstrained packed-array type. */
1747
1748 static int
1749 ada_is_unconstrained_packed_array_type (struct type *type)
1750 {
1751 return ada_is_packed_array_type (type)
1752 && ada_is_array_descriptor_type (type);
1753 }
1754
1755 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1756 return the size of its elements in bits. */
1757
1758 static long
1759 decode_packed_array_bitsize (struct type *type)
1760 {
1761 char *raw_name = ada_type_name (ada_check_typedef (type));
1762 char *tail;
1763 long bits;
1764
1765 if (!raw_name)
1766 raw_name = ada_type_name (desc_base_type (type));
1767
1768 if (!raw_name)
1769 return 0;
1770
1771 tail = strstr (raw_name, "___XP");
1772
1773 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1774 {
1775 lim_warning
1776 (_("could not understand bit size information on packed array"));
1777 return 0;
1778 }
1779
1780 return bits;
1781 }
1782
1783 /* Given that TYPE is a standard GDB array type with all bounds filled
1784 in, and that the element size of its ultimate scalar constituents
1785 (that is, either its elements, or, if it is an array of arrays, its
1786 elements' elements, etc.) is *ELT_BITS, return an identical type,
1787 but with the bit sizes of its elements (and those of any
1788 constituent arrays) recorded in the BITSIZE components of its
1789 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1790 in bits. */
1791
1792 static struct type *
1793 constrained_packed_array_type (struct type *type, long *elt_bits)
1794 {
1795 struct type *new_elt_type;
1796 struct type *new_type;
1797 LONGEST low_bound, high_bound;
1798
1799 type = ada_check_typedef (type);
1800 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1801 return type;
1802
1803 new_type = alloc_type_copy (type);
1804 new_elt_type =
1805 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1806 elt_bits);
1807 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
1808 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1809 TYPE_NAME (new_type) = ada_type_name (type);
1810
1811 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
1812 &low_bound, &high_bound) < 0)
1813 low_bound = high_bound = 0;
1814 if (high_bound < low_bound)
1815 *elt_bits = TYPE_LENGTH (new_type) = 0;
1816 else
1817 {
1818 *elt_bits *= (high_bound - low_bound + 1);
1819 TYPE_LENGTH (new_type) =
1820 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1821 }
1822
1823 TYPE_FIXED_INSTANCE (new_type) = 1;
1824 return new_type;
1825 }
1826
1827 /* The array type encoded by TYPE, where
1828 ada_is_constrained_packed_array_type (TYPE). */
1829
1830 static struct type *
1831 decode_constrained_packed_array_type (struct type *type)
1832 {
1833 struct symbol *sym;
1834 struct block **blocks;
1835 char *raw_name = ada_type_name (ada_check_typedef (type));
1836 char *name;
1837 char *tail;
1838 struct type *shadow_type;
1839 long bits;
1840 int i, n;
1841
1842 if (!raw_name)
1843 raw_name = ada_type_name (desc_base_type (type));
1844
1845 if (!raw_name)
1846 return NULL;
1847
1848 name = (char *) alloca (strlen (raw_name) + 1);
1849 tail = strstr (raw_name, "___XP");
1850 type = desc_base_type (type);
1851
1852 memcpy (name, raw_name, tail - raw_name);
1853 name[tail - raw_name] = '\000';
1854
1855 shadow_type = ada_find_parallel_type_with_name (type, name);
1856
1857 if (shadow_type == NULL)
1858 {
1859 lim_warning (_("could not find bounds information on packed array"));
1860 return NULL;
1861 }
1862 CHECK_TYPEDEF (shadow_type);
1863
1864 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1865 {
1866 lim_warning (_("could not understand bounds information on packed array"));
1867 return NULL;
1868 }
1869
1870 bits = decode_packed_array_bitsize (type);
1871 return constrained_packed_array_type (shadow_type, &bits);
1872 }
1873
1874 /* Given that ARR is a struct value *indicating a GNAT constrained packed
1875 array, returns a simple array that denotes that array. Its type is a
1876 standard GDB array type except that the BITSIZEs of the array
1877 target types are set to the number of bits in each element, and the
1878 type length is set appropriately. */
1879
1880 static struct value *
1881 decode_constrained_packed_array (struct value *arr)
1882 {
1883 struct type *type;
1884
1885 arr = ada_coerce_ref (arr);
1886
1887 /* If our value is a pointer, then dererence it. Make sure that
1888 this operation does not cause the target type to be fixed, as
1889 this would indirectly cause this array to be decoded. The rest
1890 of the routine assumes that the array hasn't been decoded yet,
1891 so we use the basic "value_ind" routine to perform the dereferencing,
1892 as opposed to using "ada_value_ind". */
1893 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1894 arr = value_ind (arr);
1895
1896 type = decode_constrained_packed_array_type (value_type (arr));
1897 if (type == NULL)
1898 {
1899 error (_("can't unpack array"));
1900 return NULL;
1901 }
1902
1903 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
1904 && ada_is_modular_type (value_type (arr)))
1905 {
1906 /* This is a (right-justified) modular type representing a packed
1907 array with no wrapper. In order to interpret the value through
1908 the (left-justified) packed array type we just built, we must
1909 first left-justify it. */
1910 int bit_size, bit_pos;
1911 ULONGEST mod;
1912
1913 mod = ada_modulus (value_type (arr)) - 1;
1914 bit_size = 0;
1915 while (mod > 0)
1916 {
1917 bit_size += 1;
1918 mod >>= 1;
1919 }
1920 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1921 arr = ada_value_primitive_packed_val (arr, NULL,
1922 bit_pos / HOST_CHAR_BIT,
1923 bit_pos % HOST_CHAR_BIT,
1924 bit_size,
1925 type);
1926 }
1927
1928 return coerce_unspec_val_to_type (arr, type);
1929 }
1930
1931
1932 /* The value of the element of packed array ARR at the ARITY indices
1933 given in IND. ARR must be a simple array. */
1934
1935 static struct value *
1936 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1937 {
1938 int i;
1939 int bits, elt_off, bit_off;
1940 long elt_total_bit_offset;
1941 struct type *elt_type;
1942 struct value *v;
1943
1944 bits = 0;
1945 elt_total_bit_offset = 0;
1946 elt_type = ada_check_typedef (value_type (arr));
1947 for (i = 0; i < arity; i += 1)
1948 {
1949 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1950 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1951 error
1952 (_("attempt to do packed indexing of something other than a packed array"));
1953 else
1954 {
1955 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1956 LONGEST lowerbound, upperbound;
1957 LONGEST idx;
1958
1959 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1960 {
1961 lim_warning (_("don't know bounds of array"));
1962 lowerbound = upperbound = 0;
1963 }
1964
1965 idx = pos_atr (ind[i]);
1966 if (idx < lowerbound || idx > upperbound)
1967 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1968 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1969 elt_total_bit_offset += (idx - lowerbound) * bits;
1970 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1971 }
1972 }
1973 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1974 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1975
1976 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1977 bits, elt_type);
1978 return v;
1979 }
1980
1981 /* Non-zero iff TYPE includes negative integer values. */
1982
1983 static int
1984 has_negatives (struct type *type)
1985 {
1986 switch (TYPE_CODE (type))
1987 {
1988 default:
1989 return 0;
1990 case TYPE_CODE_INT:
1991 return !TYPE_UNSIGNED (type);
1992 case TYPE_CODE_RANGE:
1993 return TYPE_LOW_BOUND (type) < 0;
1994 }
1995 }
1996
1997
1998 /* Create a new value of type TYPE from the contents of OBJ starting
1999 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2000 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2001 assigning through the result will set the field fetched from.
2002 VALADDR is ignored unless OBJ is NULL, in which case,
2003 VALADDR+OFFSET must address the start of storage containing the
2004 packed value. The value returned in this case is never an lval.
2005 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2006
2007 struct value *
2008 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2009 long offset, int bit_offset, int bit_size,
2010 struct type *type)
2011 {
2012 struct value *v;
2013 int src, /* Index into the source area */
2014 targ, /* Index into the target area */
2015 srcBitsLeft, /* Number of source bits left to move */
2016 nsrc, ntarg, /* Number of source and target bytes */
2017 unusedLS, /* Number of bits in next significant
2018 byte of source that are unused */
2019 accumSize; /* Number of meaningful bits in accum */
2020 unsigned char *bytes; /* First byte containing data to unpack */
2021 unsigned char *unpacked;
2022 unsigned long accum; /* Staging area for bits being transferred */
2023 unsigned char sign;
2024 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2025 /* Transmit bytes from least to most significant; delta is the direction
2026 the indices move. */
2027 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2028
2029 type = ada_check_typedef (type);
2030
2031 if (obj == NULL)
2032 {
2033 v = allocate_value (type);
2034 bytes = (unsigned char *) (valaddr + offset);
2035 }
2036 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2037 {
2038 v = value_at (type,
2039 value_address (obj) + offset);
2040 bytes = (unsigned char *) alloca (len);
2041 read_memory (value_address (v), bytes, len);
2042 }
2043 else
2044 {
2045 v = allocate_value (type);
2046 bytes = (unsigned char *) value_contents (obj) + offset;
2047 }
2048
2049 if (obj != NULL)
2050 {
2051 CORE_ADDR new_addr;
2052 set_value_component_location (v, obj);
2053 new_addr = value_address (obj) + offset;
2054 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2055 set_value_bitsize (v, bit_size);
2056 if (value_bitpos (v) >= HOST_CHAR_BIT)
2057 {
2058 ++new_addr;
2059 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2060 }
2061 set_value_address (v, new_addr);
2062 }
2063 else
2064 set_value_bitsize (v, bit_size);
2065 unpacked = (unsigned char *) value_contents (v);
2066
2067 srcBitsLeft = bit_size;
2068 nsrc = len;
2069 ntarg = TYPE_LENGTH (type);
2070 sign = 0;
2071 if (bit_size == 0)
2072 {
2073 memset (unpacked, 0, TYPE_LENGTH (type));
2074 return v;
2075 }
2076 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2077 {
2078 src = len - 1;
2079 if (has_negatives (type)
2080 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2081 sign = ~0;
2082
2083 unusedLS =
2084 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2085 % HOST_CHAR_BIT;
2086
2087 switch (TYPE_CODE (type))
2088 {
2089 case TYPE_CODE_ARRAY:
2090 case TYPE_CODE_UNION:
2091 case TYPE_CODE_STRUCT:
2092 /* Non-scalar values must be aligned at a byte boundary... */
2093 accumSize =
2094 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2095 /* ... And are placed at the beginning (most-significant) bytes
2096 of the target. */
2097 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2098 ntarg = targ + 1;
2099 break;
2100 default:
2101 accumSize = 0;
2102 targ = TYPE_LENGTH (type) - 1;
2103 break;
2104 }
2105 }
2106 else
2107 {
2108 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2109
2110 src = targ = 0;
2111 unusedLS = bit_offset;
2112 accumSize = 0;
2113
2114 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2115 sign = ~0;
2116 }
2117
2118 accum = 0;
2119 while (nsrc > 0)
2120 {
2121 /* Mask for removing bits of the next source byte that are not
2122 part of the value. */
2123 unsigned int unusedMSMask =
2124 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2125 1;
2126 /* Sign-extend bits for this byte. */
2127 unsigned int signMask = sign & ~unusedMSMask;
2128 accum |=
2129 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2130 accumSize += HOST_CHAR_BIT - unusedLS;
2131 if (accumSize >= HOST_CHAR_BIT)
2132 {
2133 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2134 accumSize -= HOST_CHAR_BIT;
2135 accum >>= HOST_CHAR_BIT;
2136 ntarg -= 1;
2137 targ += delta;
2138 }
2139 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2140 unusedLS = 0;
2141 nsrc -= 1;
2142 src += delta;
2143 }
2144 while (ntarg > 0)
2145 {
2146 accum |= sign << accumSize;
2147 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2148 accumSize -= HOST_CHAR_BIT;
2149 accum >>= HOST_CHAR_BIT;
2150 ntarg -= 1;
2151 targ += delta;
2152 }
2153
2154 return v;
2155 }
2156
2157 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2158 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2159 not overlap. */
2160 static void
2161 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2162 int src_offset, int n, int bits_big_endian_p)
2163 {
2164 unsigned int accum, mask;
2165 int accum_bits, chunk_size;
2166
2167 target += targ_offset / HOST_CHAR_BIT;
2168 targ_offset %= HOST_CHAR_BIT;
2169 source += src_offset / HOST_CHAR_BIT;
2170 src_offset %= HOST_CHAR_BIT;
2171 if (bits_big_endian_p)
2172 {
2173 accum = (unsigned char) *source;
2174 source += 1;
2175 accum_bits = HOST_CHAR_BIT - src_offset;
2176
2177 while (n > 0)
2178 {
2179 int unused_right;
2180 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2181 accum_bits += HOST_CHAR_BIT;
2182 source += 1;
2183 chunk_size = HOST_CHAR_BIT - targ_offset;
2184 if (chunk_size > n)
2185 chunk_size = n;
2186 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2187 mask = ((1 << chunk_size) - 1) << unused_right;
2188 *target =
2189 (*target & ~mask)
2190 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2191 n -= chunk_size;
2192 accum_bits -= chunk_size;
2193 target += 1;
2194 targ_offset = 0;
2195 }
2196 }
2197 else
2198 {
2199 accum = (unsigned char) *source >> src_offset;
2200 source += 1;
2201 accum_bits = HOST_CHAR_BIT - src_offset;
2202
2203 while (n > 0)
2204 {
2205 accum = accum + ((unsigned char) *source << accum_bits);
2206 accum_bits += HOST_CHAR_BIT;
2207 source += 1;
2208 chunk_size = HOST_CHAR_BIT - targ_offset;
2209 if (chunk_size > n)
2210 chunk_size = n;
2211 mask = ((1 << chunk_size) - 1) << targ_offset;
2212 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2213 n -= chunk_size;
2214 accum_bits -= chunk_size;
2215 accum >>= chunk_size;
2216 target += 1;
2217 targ_offset = 0;
2218 }
2219 }
2220 }
2221
2222 /* Store the contents of FROMVAL into the location of TOVAL.
2223 Return a new value with the location of TOVAL and contents of
2224 FROMVAL. Handles assignment into packed fields that have
2225 floating-point or non-scalar types. */
2226
2227 static struct value *
2228 ada_value_assign (struct value *toval, struct value *fromval)
2229 {
2230 struct type *type = value_type (toval);
2231 int bits = value_bitsize (toval);
2232
2233 toval = ada_coerce_ref (toval);
2234 fromval = ada_coerce_ref (fromval);
2235
2236 if (ada_is_direct_array_type (value_type (toval)))
2237 toval = ada_coerce_to_simple_array (toval);
2238 if (ada_is_direct_array_type (value_type (fromval)))
2239 fromval = ada_coerce_to_simple_array (fromval);
2240
2241 if (!deprecated_value_modifiable (toval))
2242 error (_("Left operand of assignment is not a modifiable lvalue."));
2243
2244 if (VALUE_LVAL (toval) == lval_memory
2245 && bits > 0
2246 && (TYPE_CODE (type) == TYPE_CODE_FLT
2247 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2248 {
2249 int len = (value_bitpos (toval)
2250 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2251 int from_size;
2252 char *buffer = (char *) alloca (len);
2253 struct value *val;
2254 CORE_ADDR to_addr = value_address (toval);
2255
2256 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2257 fromval = value_cast (type, fromval);
2258
2259 read_memory (to_addr, buffer, len);
2260 from_size = value_bitsize (fromval);
2261 if (from_size == 0)
2262 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2263 if (gdbarch_bits_big_endian (get_type_arch (type)))
2264 move_bits (buffer, value_bitpos (toval),
2265 value_contents (fromval), from_size - bits, bits, 1);
2266 else
2267 move_bits (buffer, value_bitpos (toval),
2268 value_contents (fromval), 0, bits, 0);
2269 write_memory (to_addr, buffer, len);
2270 observer_notify_memory_changed (to_addr, len, buffer);
2271
2272 val = value_copy (toval);
2273 memcpy (value_contents_raw (val), value_contents (fromval),
2274 TYPE_LENGTH (type));
2275 deprecated_set_value_type (val, type);
2276
2277 return val;
2278 }
2279
2280 return value_assign (toval, fromval);
2281 }
2282
2283
2284 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2285 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2286 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2287 * COMPONENT, and not the inferior's memory. The current contents
2288 * of COMPONENT are ignored. */
2289 static void
2290 value_assign_to_component (struct value *container, struct value *component,
2291 struct value *val)
2292 {
2293 LONGEST offset_in_container =
2294 (LONGEST) (value_address (component) - value_address (container));
2295 int bit_offset_in_container =
2296 value_bitpos (component) - value_bitpos (container);
2297 int bits;
2298
2299 val = value_cast (value_type (component), val);
2300
2301 if (value_bitsize (component) == 0)
2302 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2303 else
2304 bits = value_bitsize (component);
2305
2306 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2307 move_bits (value_contents_writeable (container) + offset_in_container,
2308 value_bitpos (container) + bit_offset_in_container,
2309 value_contents (val),
2310 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2311 bits, 1);
2312 else
2313 move_bits (value_contents_writeable (container) + offset_in_container,
2314 value_bitpos (container) + bit_offset_in_container,
2315 value_contents (val), 0, bits, 0);
2316 }
2317
2318 /* The value of the element of array ARR at the ARITY indices given in IND.
2319 ARR may be either a simple array, GNAT array descriptor, or pointer
2320 thereto. */
2321
2322 struct value *
2323 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2324 {
2325 int k;
2326 struct value *elt;
2327 struct type *elt_type;
2328
2329 elt = ada_coerce_to_simple_array (arr);
2330
2331 elt_type = ada_check_typedef (value_type (elt));
2332 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2333 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2334 return value_subscript_packed (elt, arity, ind);
2335
2336 for (k = 0; k < arity; k += 1)
2337 {
2338 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2339 error (_("too many subscripts (%d expected)"), k);
2340 elt = value_subscript (elt, pos_atr (ind[k]));
2341 }
2342 return elt;
2343 }
2344
2345 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2346 value of the element of *ARR at the ARITY indices given in
2347 IND. Does not read the entire array into memory. */
2348
2349 static struct value *
2350 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2351 struct value **ind)
2352 {
2353 int k;
2354
2355 for (k = 0; k < arity; k += 1)
2356 {
2357 LONGEST lwb, upb;
2358
2359 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2360 error (_("too many subscripts (%d expected)"), k);
2361 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2362 value_copy (arr));
2363 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2364 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2365 type = TYPE_TARGET_TYPE (type);
2366 }
2367
2368 return value_ind (arr);
2369 }
2370
2371 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2372 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2373 elements starting at index LOW. The lower bound of this array is LOW, as
2374 per Ada rules. */
2375 static struct value *
2376 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2377 int low, int high)
2378 {
2379 CORE_ADDR base = value_as_address (array_ptr)
2380 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type)))
2381 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2382 struct type *index_type =
2383 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2384 low, high);
2385 struct type *slice_type =
2386 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2387 return value_at_lazy (slice_type, base);
2388 }
2389
2390
2391 static struct value *
2392 ada_value_slice (struct value *array, int low, int high)
2393 {
2394 struct type *type = value_type (array);
2395 struct type *index_type =
2396 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2397 struct type *slice_type =
2398 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2399 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2400 }
2401
2402 /* If type is a record type in the form of a standard GNAT array
2403 descriptor, returns the number of dimensions for type. If arr is a
2404 simple array, returns the number of "array of"s that prefix its
2405 type designation. Otherwise, returns 0. */
2406
2407 int
2408 ada_array_arity (struct type *type)
2409 {
2410 int arity;
2411
2412 if (type == NULL)
2413 return 0;
2414
2415 type = desc_base_type (type);
2416
2417 arity = 0;
2418 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2419 return desc_arity (desc_bounds_type (type));
2420 else
2421 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2422 {
2423 arity += 1;
2424 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2425 }
2426
2427 return arity;
2428 }
2429
2430 /* If TYPE is a record type in the form of a standard GNAT array
2431 descriptor or a simple array type, returns the element type for
2432 TYPE after indexing by NINDICES indices, or by all indices if
2433 NINDICES is -1. Otherwise, returns NULL. */
2434
2435 struct type *
2436 ada_array_element_type (struct type *type, int nindices)
2437 {
2438 type = desc_base_type (type);
2439
2440 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2441 {
2442 int k;
2443 struct type *p_array_type;
2444
2445 p_array_type = desc_data_target_type (type);
2446
2447 k = ada_array_arity (type);
2448 if (k == 0)
2449 return NULL;
2450
2451 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2452 if (nindices >= 0 && k > nindices)
2453 k = nindices;
2454 while (k > 0 && p_array_type != NULL)
2455 {
2456 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2457 k -= 1;
2458 }
2459 return p_array_type;
2460 }
2461 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2462 {
2463 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2464 {
2465 type = TYPE_TARGET_TYPE (type);
2466 nindices -= 1;
2467 }
2468 return type;
2469 }
2470
2471 return NULL;
2472 }
2473
2474 /* The type of nth index in arrays of given type (n numbering from 1).
2475 Does not examine memory. Throws an error if N is invalid or TYPE
2476 is not an array type. NAME is the name of the Ada attribute being
2477 evaluated ('range, 'first, 'last, or 'length); it is used in building
2478 the error message. */
2479
2480 static struct type *
2481 ada_index_type (struct type *type, int n, const char *name)
2482 {
2483 struct type *result_type;
2484
2485 type = desc_base_type (type);
2486
2487 if (n < 0 || n > ada_array_arity (type))
2488 error (_("invalid dimension number to '%s"), name);
2489
2490 if (ada_is_simple_array_type (type))
2491 {
2492 int i;
2493
2494 for (i = 1; i < n; i += 1)
2495 type = TYPE_TARGET_TYPE (type);
2496 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2497 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2498 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2499 perhaps stabsread.c would make more sense. */
2500 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2501 result_type = NULL;
2502 }
2503 else
2504 {
2505 result_type = desc_index_type (desc_bounds_type (type), n);
2506 if (result_type == NULL)
2507 error (_("attempt to take bound of something that is not an array"));
2508 }
2509
2510 return result_type;
2511 }
2512
2513 /* Given that arr is an array type, returns the lower bound of the
2514 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2515 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2516 array-descriptor type. It works for other arrays with bounds supplied
2517 by run-time quantities other than discriminants. */
2518
2519 static LONGEST
2520 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2521 {
2522 struct type *type, *elt_type, *index_type_desc, *index_type;
2523 int i;
2524
2525 gdb_assert (which == 0 || which == 1);
2526
2527 if (ada_is_constrained_packed_array_type (arr_type))
2528 arr_type = decode_constrained_packed_array_type (arr_type);
2529
2530 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2531 return (LONGEST) - which;
2532
2533 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2534 type = TYPE_TARGET_TYPE (arr_type);
2535 else
2536 type = arr_type;
2537
2538 elt_type = type;
2539 for (i = n; i > 1; i--)
2540 elt_type = TYPE_TARGET_TYPE (type);
2541
2542 index_type_desc = ada_find_parallel_type (type, "___XA");
2543 if (index_type_desc != NULL)
2544 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2545 NULL, TYPE_INDEX_TYPE (elt_type));
2546 else
2547 index_type = TYPE_INDEX_TYPE (elt_type);
2548
2549 return
2550 (LONGEST) (which == 0
2551 ? ada_discrete_type_low_bound (index_type)
2552 : ada_discrete_type_high_bound (index_type));
2553 }
2554
2555 /* Given that arr is an array value, returns the lower bound of the
2556 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2557 WHICH is 1. This routine will also work for arrays with bounds
2558 supplied by run-time quantities other than discriminants. */
2559
2560 static LONGEST
2561 ada_array_bound (struct value *arr, int n, int which)
2562 {
2563 struct type *arr_type = value_type (arr);
2564
2565 if (ada_is_constrained_packed_array_type (arr_type))
2566 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2567 else if (ada_is_simple_array_type (arr_type))
2568 return ada_array_bound_from_type (arr_type, n, which);
2569 else
2570 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2571 }
2572
2573 /* Given that arr is an array value, returns the length of the
2574 nth index. This routine will also work for arrays with bounds
2575 supplied by run-time quantities other than discriminants.
2576 Does not work for arrays indexed by enumeration types with representation
2577 clauses at the moment. */
2578
2579 static LONGEST
2580 ada_array_length (struct value *arr, int n)
2581 {
2582 struct type *arr_type = ada_check_typedef (value_type (arr));
2583
2584 if (ada_is_constrained_packed_array_type (arr_type))
2585 return ada_array_length (decode_constrained_packed_array (arr), n);
2586
2587 if (ada_is_simple_array_type (arr_type))
2588 return (ada_array_bound_from_type (arr_type, n, 1)
2589 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2590 else
2591 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2592 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2593 }
2594
2595 /* An empty array whose type is that of ARR_TYPE (an array type),
2596 with bounds LOW to LOW-1. */
2597
2598 static struct value *
2599 empty_array (struct type *arr_type, int low)
2600 {
2601 struct type *index_type =
2602 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2603 low, low - 1);
2604 struct type *elt_type = ada_array_element_type (arr_type, 1);
2605 return allocate_value (create_array_type (NULL, elt_type, index_type));
2606 }
2607 \f
2608
2609 /* Name resolution */
2610
2611 /* The "decoded" name for the user-definable Ada operator corresponding
2612 to OP. */
2613
2614 static const char *
2615 ada_decoded_op_name (enum exp_opcode op)
2616 {
2617 int i;
2618
2619 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2620 {
2621 if (ada_opname_table[i].op == op)
2622 return ada_opname_table[i].decoded;
2623 }
2624 error (_("Could not find operator name for opcode"));
2625 }
2626
2627
2628 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2629 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2630 undefined namespace) and converts operators that are
2631 user-defined into appropriate function calls. If CONTEXT_TYPE is
2632 non-null, it provides a preferred result type [at the moment, only
2633 type void has any effect---causing procedures to be preferred over
2634 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2635 return type is preferred. May change (expand) *EXP. */
2636
2637 static void
2638 resolve (struct expression **expp, int void_context_p)
2639 {
2640 struct type *context_type = NULL;
2641 int pc = 0;
2642
2643 if (void_context_p)
2644 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2645
2646 resolve_subexp (expp, &pc, 1, context_type);
2647 }
2648
2649 /* Resolve the operator of the subexpression beginning at
2650 position *POS of *EXPP. "Resolving" consists of replacing
2651 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2652 with their resolutions, replacing built-in operators with
2653 function calls to user-defined operators, where appropriate, and,
2654 when DEPROCEDURE_P is non-zero, converting function-valued variables
2655 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2656 are as in ada_resolve, above. */
2657
2658 static struct value *
2659 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2660 struct type *context_type)
2661 {
2662 int pc = *pos;
2663 int i;
2664 struct expression *exp; /* Convenience: == *expp. */
2665 enum exp_opcode op = (*expp)->elts[pc].opcode;
2666 struct value **argvec; /* Vector of operand types (alloca'ed). */
2667 int nargs; /* Number of operands. */
2668 int oplen;
2669
2670 argvec = NULL;
2671 nargs = 0;
2672 exp = *expp;
2673
2674 /* Pass one: resolve operands, saving their types and updating *pos,
2675 if needed. */
2676 switch (op)
2677 {
2678 case OP_FUNCALL:
2679 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2680 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2681 *pos += 7;
2682 else
2683 {
2684 *pos += 3;
2685 resolve_subexp (expp, pos, 0, NULL);
2686 }
2687 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2688 break;
2689
2690 case UNOP_ADDR:
2691 *pos += 1;
2692 resolve_subexp (expp, pos, 0, NULL);
2693 break;
2694
2695 case UNOP_QUAL:
2696 *pos += 3;
2697 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2698 break;
2699
2700 case OP_ATR_MODULUS:
2701 case OP_ATR_SIZE:
2702 case OP_ATR_TAG:
2703 case OP_ATR_FIRST:
2704 case OP_ATR_LAST:
2705 case OP_ATR_LENGTH:
2706 case OP_ATR_POS:
2707 case OP_ATR_VAL:
2708 case OP_ATR_MIN:
2709 case OP_ATR_MAX:
2710 case TERNOP_IN_RANGE:
2711 case BINOP_IN_BOUNDS:
2712 case UNOP_IN_RANGE:
2713 case OP_AGGREGATE:
2714 case OP_OTHERS:
2715 case OP_CHOICES:
2716 case OP_POSITIONAL:
2717 case OP_DISCRETE_RANGE:
2718 case OP_NAME:
2719 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2720 *pos += oplen;
2721 break;
2722
2723 case BINOP_ASSIGN:
2724 {
2725 struct value *arg1;
2726
2727 *pos += 1;
2728 arg1 = resolve_subexp (expp, pos, 0, NULL);
2729 if (arg1 == NULL)
2730 resolve_subexp (expp, pos, 1, NULL);
2731 else
2732 resolve_subexp (expp, pos, 1, value_type (arg1));
2733 break;
2734 }
2735
2736 case UNOP_CAST:
2737 *pos += 3;
2738 nargs = 1;
2739 break;
2740
2741 case BINOP_ADD:
2742 case BINOP_SUB:
2743 case BINOP_MUL:
2744 case BINOP_DIV:
2745 case BINOP_REM:
2746 case BINOP_MOD:
2747 case BINOP_EXP:
2748 case BINOP_CONCAT:
2749 case BINOP_LOGICAL_AND:
2750 case BINOP_LOGICAL_OR:
2751 case BINOP_BITWISE_AND:
2752 case BINOP_BITWISE_IOR:
2753 case BINOP_BITWISE_XOR:
2754
2755 case BINOP_EQUAL:
2756 case BINOP_NOTEQUAL:
2757 case BINOP_LESS:
2758 case BINOP_GTR:
2759 case BINOP_LEQ:
2760 case BINOP_GEQ:
2761
2762 case BINOP_REPEAT:
2763 case BINOP_SUBSCRIPT:
2764 case BINOP_COMMA:
2765 *pos += 1;
2766 nargs = 2;
2767 break;
2768
2769 case UNOP_NEG:
2770 case UNOP_PLUS:
2771 case UNOP_LOGICAL_NOT:
2772 case UNOP_ABS:
2773 case UNOP_IND:
2774 *pos += 1;
2775 nargs = 1;
2776 break;
2777
2778 case OP_LONG:
2779 case OP_DOUBLE:
2780 case OP_VAR_VALUE:
2781 *pos += 4;
2782 break;
2783
2784 case OP_TYPE:
2785 case OP_BOOL:
2786 case OP_LAST:
2787 case OP_INTERNALVAR:
2788 *pos += 3;
2789 break;
2790
2791 case UNOP_MEMVAL:
2792 *pos += 3;
2793 nargs = 1;
2794 break;
2795
2796 case OP_REGISTER:
2797 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2798 break;
2799
2800 case STRUCTOP_STRUCT:
2801 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2802 nargs = 1;
2803 break;
2804
2805 case TERNOP_SLICE:
2806 *pos += 1;
2807 nargs = 3;
2808 break;
2809
2810 case OP_STRING:
2811 break;
2812
2813 default:
2814 error (_("Unexpected operator during name resolution"));
2815 }
2816
2817 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2818 for (i = 0; i < nargs; i += 1)
2819 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2820 argvec[i] = NULL;
2821 exp = *expp;
2822
2823 /* Pass two: perform any resolution on principal operator. */
2824 switch (op)
2825 {
2826 default:
2827 break;
2828
2829 case OP_VAR_VALUE:
2830 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2831 {
2832 struct ada_symbol_info *candidates;
2833 int n_candidates;
2834
2835 n_candidates =
2836 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2837 (exp->elts[pc + 2].symbol),
2838 exp->elts[pc + 1].block, VAR_DOMAIN,
2839 &candidates);
2840
2841 if (n_candidates > 1)
2842 {
2843 /* Types tend to get re-introduced locally, so if there
2844 are any local symbols that are not types, first filter
2845 out all types. */
2846 int j;
2847 for (j = 0; j < n_candidates; j += 1)
2848 switch (SYMBOL_CLASS (candidates[j].sym))
2849 {
2850 case LOC_REGISTER:
2851 case LOC_ARG:
2852 case LOC_REF_ARG:
2853 case LOC_REGPARM_ADDR:
2854 case LOC_LOCAL:
2855 case LOC_COMPUTED:
2856 goto FoundNonType;
2857 default:
2858 break;
2859 }
2860 FoundNonType:
2861 if (j < n_candidates)
2862 {
2863 j = 0;
2864 while (j < n_candidates)
2865 {
2866 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2867 {
2868 candidates[j] = candidates[n_candidates - 1];
2869 n_candidates -= 1;
2870 }
2871 else
2872 j += 1;
2873 }
2874 }
2875 }
2876
2877 if (n_candidates == 0)
2878 error (_("No definition found for %s"),
2879 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2880 else if (n_candidates == 1)
2881 i = 0;
2882 else if (deprocedure_p
2883 && !is_nonfunction (candidates, n_candidates))
2884 {
2885 i = ada_resolve_function
2886 (candidates, n_candidates, NULL, 0,
2887 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2888 context_type);
2889 if (i < 0)
2890 error (_("Could not find a match for %s"),
2891 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2892 }
2893 else
2894 {
2895 printf_filtered (_("Multiple matches for %s\n"),
2896 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2897 user_select_syms (candidates, n_candidates, 1);
2898 i = 0;
2899 }
2900
2901 exp->elts[pc + 1].block = candidates[i].block;
2902 exp->elts[pc + 2].symbol = candidates[i].sym;
2903 if (innermost_block == NULL
2904 || contained_in (candidates[i].block, innermost_block))
2905 innermost_block = candidates[i].block;
2906 }
2907
2908 if (deprocedure_p
2909 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2910 == TYPE_CODE_FUNC))
2911 {
2912 replace_operator_with_call (expp, pc, 0, 0,
2913 exp->elts[pc + 2].symbol,
2914 exp->elts[pc + 1].block);
2915 exp = *expp;
2916 }
2917 break;
2918
2919 case OP_FUNCALL:
2920 {
2921 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2922 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2923 {
2924 struct ada_symbol_info *candidates;
2925 int n_candidates;
2926
2927 n_candidates =
2928 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2929 (exp->elts[pc + 5].symbol),
2930 exp->elts[pc + 4].block, VAR_DOMAIN,
2931 &candidates);
2932 if (n_candidates == 1)
2933 i = 0;
2934 else
2935 {
2936 i = ada_resolve_function
2937 (candidates, n_candidates,
2938 argvec, nargs,
2939 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2940 context_type);
2941 if (i < 0)
2942 error (_("Could not find a match for %s"),
2943 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2944 }
2945
2946 exp->elts[pc + 4].block = candidates[i].block;
2947 exp->elts[pc + 5].symbol = candidates[i].sym;
2948 if (innermost_block == NULL
2949 || contained_in (candidates[i].block, innermost_block))
2950 innermost_block = candidates[i].block;
2951 }
2952 }
2953 break;
2954 case BINOP_ADD:
2955 case BINOP_SUB:
2956 case BINOP_MUL:
2957 case BINOP_DIV:
2958 case BINOP_REM:
2959 case BINOP_MOD:
2960 case BINOP_CONCAT:
2961 case BINOP_BITWISE_AND:
2962 case BINOP_BITWISE_IOR:
2963 case BINOP_BITWISE_XOR:
2964 case BINOP_EQUAL:
2965 case BINOP_NOTEQUAL:
2966 case BINOP_LESS:
2967 case BINOP_GTR:
2968 case BINOP_LEQ:
2969 case BINOP_GEQ:
2970 case BINOP_EXP:
2971 case UNOP_NEG:
2972 case UNOP_PLUS:
2973 case UNOP_LOGICAL_NOT:
2974 case UNOP_ABS:
2975 if (possible_user_operator_p (op, argvec))
2976 {
2977 struct ada_symbol_info *candidates;
2978 int n_candidates;
2979
2980 n_candidates =
2981 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2982 (struct block *) NULL, VAR_DOMAIN,
2983 &candidates);
2984 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
2985 ada_decoded_op_name (op), NULL);
2986 if (i < 0)
2987 break;
2988
2989 replace_operator_with_call (expp, pc, nargs, 1,
2990 candidates[i].sym, candidates[i].block);
2991 exp = *expp;
2992 }
2993 break;
2994
2995 case OP_TYPE:
2996 case OP_REGISTER:
2997 return NULL;
2998 }
2999
3000 *pos = pc;
3001 return evaluate_subexp_type (exp, pos);
3002 }
3003
3004 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3005 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3006 a non-pointer. */
3007 /* The term "match" here is rather loose. The match is heuristic and
3008 liberal. */
3009
3010 static int
3011 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3012 {
3013 ftype = ada_check_typedef (ftype);
3014 atype = ada_check_typedef (atype);
3015
3016 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3017 ftype = TYPE_TARGET_TYPE (ftype);
3018 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3019 atype = TYPE_TARGET_TYPE (atype);
3020
3021 switch (TYPE_CODE (ftype))
3022 {
3023 default:
3024 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3025 case TYPE_CODE_PTR:
3026 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3027 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3028 TYPE_TARGET_TYPE (atype), 0);
3029 else
3030 return (may_deref
3031 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3032 case TYPE_CODE_INT:
3033 case TYPE_CODE_ENUM:
3034 case TYPE_CODE_RANGE:
3035 switch (TYPE_CODE (atype))
3036 {
3037 case TYPE_CODE_INT:
3038 case TYPE_CODE_ENUM:
3039 case TYPE_CODE_RANGE:
3040 return 1;
3041 default:
3042 return 0;
3043 }
3044
3045 case TYPE_CODE_ARRAY:
3046 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3047 || ada_is_array_descriptor_type (atype));
3048
3049 case TYPE_CODE_STRUCT:
3050 if (ada_is_array_descriptor_type (ftype))
3051 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3052 || ada_is_array_descriptor_type (atype));
3053 else
3054 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3055 && !ada_is_array_descriptor_type (atype));
3056
3057 case TYPE_CODE_UNION:
3058 case TYPE_CODE_FLT:
3059 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3060 }
3061 }
3062
3063 /* Return non-zero if the formals of FUNC "sufficiently match" the
3064 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3065 may also be an enumeral, in which case it is treated as a 0-
3066 argument function. */
3067
3068 static int
3069 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3070 {
3071 int i;
3072 struct type *func_type = SYMBOL_TYPE (func);
3073
3074 if (SYMBOL_CLASS (func) == LOC_CONST
3075 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3076 return (n_actuals == 0);
3077 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3078 return 0;
3079
3080 if (TYPE_NFIELDS (func_type) != n_actuals)
3081 return 0;
3082
3083 for (i = 0; i < n_actuals; i += 1)
3084 {
3085 if (actuals[i] == NULL)
3086 return 0;
3087 else
3088 {
3089 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3090 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3091
3092 if (!ada_type_match (ftype, atype, 1))
3093 return 0;
3094 }
3095 }
3096 return 1;
3097 }
3098
3099 /* False iff function type FUNC_TYPE definitely does not produce a value
3100 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3101 FUNC_TYPE is not a valid function type with a non-null return type
3102 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3103
3104 static int
3105 return_match (struct type *func_type, struct type *context_type)
3106 {
3107 struct type *return_type;
3108
3109 if (func_type == NULL)
3110 return 1;
3111
3112 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3113 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3114 else
3115 return_type = base_type (func_type);
3116 if (return_type == NULL)
3117 return 1;
3118
3119 context_type = base_type (context_type);
3120
3121 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3122 return context_type == NULL || return_type == context_type;
3123 else if (context_type == NULL)
3124 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3125 else
3126 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3127 }
3128
3129
3130 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3131 function (if any) that matches the types of the NARGS arguments in
3132 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3133 that returns that type, then eliminate matches that don't. If
3134 CONTEXT_TYPE is void and there is at least one match that does not
3135 return void, eliminate all matches that do.
3136
3137 Asks the user if there is more than one match remaining. Returns -1
3138 if there is no such symbol or none is selected. NAME is used
3139 solely for messages. May re-arrange and modify SYMS in
3140 the process; the index returned is for the modified vector. */
3141
3142 static int
3143 ada_resolve_function (struct ada_symbol_info syms[],
3144 int nsyms, struct value **args, int nargs,
3145 const char *name, struct type *context_type)
3146 {
3147 int fallback;
3148 int k;
3149 int m; /* Number of hits */
3150
3151 m = 0;
3152 /* In the first pass of the loop, we only accept functions matching
3153 context_type. If none are found, we add a second pass of the loop
3154 where every function is accepted. */
3155 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3156 {
3157 for (k = 0; k < nsyms; k += 1)
3158 {
3159 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3160
3161 if (ada_args_match (syms[k].sym, args, nargs)
3162 && (fallback || return_match (type, context_type)))
3163 {
3164 syms[m] = syms[k];
3165 m += 1;
3166 }
3167 }
3168 }
3169
3170 if (m == 0)
3171 return -1;
3172 else if (m > 1)
3173 {
3174 printf_filtered (_("Multiple matches for %s\n"), name);
3175 user_select_syms (syms, m, 1);
3176 return 0;
3177 }
3178 return 0;
3179 }
3180
3181 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3182 in a listing of choices during disambiguation (see sort_choices, below).
3183 The idea is that overloadings of a subprogram name from the
3184 same package should sort in their source order. We settle for ordering
3185 such symbols by their trailing number (__N or $N). */
3186
3187 static int
3188 encoded_ordered_before (char *N0, char *N1)
3189 {
3190 if (N1 == NULL)
3191 return 0;
3192 else if (N0 == NULL)
3193 return 1;
3194 else
3195 {
3196 int k0, k1;
3197 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3198 ;
3199 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3200 ;
3201 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3202 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3203 {
3204 int n0, n1;
3205 n0 = k0;
3206 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3207 n0 -= 1;
3208 n1 = k1;
3209 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3210 n1 -= 1;
3211 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3212 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3213 }
3214 return (strcmp (N0, N1) < 0);
3215 }
3216 }
3217
3218 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3219 encoded names. */
3220
3221 static void
3222 sort_choices (struct ada_symbol_info syms[], int nsyms)
3223 {
3224 int i;
3225 for (i = 1; i < nsyms; i += 1)
3226 {
3227 struct ada_symbol_info sym = syms[i];
3228 int j;
3229
3230 for (j = i - 1; j >= 0; j -= 1)
3231 {
3232 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3233 SYMBOL_LINKAGE_NAME (sym.sym)))
3234 break;
3235 syms[j + 1] = syms[j];
3236 }
3237 syms[j + 1] = sym;
3238 }
3239 }
3240
3241 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3242 by asking the user (if necessary), returning the number selected,
3243 and setting the first elements of SYMS items. Error if no symbols
3244 selected. */
3245
3246 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3247 to be re-integrated one of these days. */
3248
3249 int
3250 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3251 {
3252 int i;
3253 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3254 int n_chosen;
3255 int first_choice = (max_results == 1) ? 1 : 2;
3256 const char *select_mode = multiple_symbols_select_mode ();
3257
3258 if (max_results < 1)
3259 error (_("Request to select 0 symbols!"));
3260 if (nsyms <= 1)
3261 return nsyms;
3262
3263 if (select_mode == multiple_symbols_cancel)
3264 error (_("\
3265 canceled because the command is ambiguous\n\
3266 See set/show multiple-symbol."));
3267
3268 /* If select_mode is "all", then return all possible symbols.
3269 Only do that if more than one symbol can be selected, of course.
3270 Otherwise, display the menu as usual. */
3271 if (select_mode == multiple_symbols_all && max_results > 1)
3272 return nsyms;
3273
3274 printf_unfiltered (_("[0] cancel\n"));
3275 if (max_results > 1)
3276 printf_unfiltered (_("[1] all\n"));
3277
3278 sort_choices (syms, nsyms);
3279
3280 for (i = 0; i < nsyms; i += 1)
3281 {
3282 if (syms[i].sym == NULL)
3283 continue;
3284
3285 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3286 {
3287 struct symtab_and_line sal =
3288 find_function_start_sal (syms[i].sym, 1);
3289 if (sal.symtab == NULL)
3290 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3291 i + first_choice,
3292 SYMBOL_PRINT_NAME (syms[i].sym),
3293 sal.line);
3294 else
3295 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3296 SYMBOL_PRINT_NAME (syms[i].sym),
3297 sal.symtab->filename, sal.line);
3298 continue;
3299 }
3300 else
3301 {
3302 int is_enumeral =
3303 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3304 && SYMBOL_TYPE (syms[i].sym) != NULL
3305 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3306 struct symtab *symtab = syms[i].sym->symtab;
3307
3308 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3309 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3310 i + first_choice,
3311 SYMBOL_PRINT_NAME (syms[i].sym),
3312 symtab->filename, SYMBOL_LINE (syms[i].sym));
3313 else if (is_enumeral
3314 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3315 {
3316 printf_unfiltered (("[%d] "), i + first_choice);
3317 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3318 gdb_stdout, -1, 0);
3319 printf_unfiltered (_("'(%s) (enumeral)\n"),
3320 SYMBOL_PRINT_NAME (syms[i].sym));
3321 }
3322 else if (symtab != NULL)
3323 printf_unfiltered (is_enumeral
3324 ? _("[%d] %s in %s (enumeral)\n")
3325 : _("[%d] %s at %s:?\n"),
3326 i + first_choice,
3327 SYMBOL_PRINT_NAME (syms[i].sym),
3328 symtab->filename);
3329 else
3330 printf_unfiltered (is_enumeral
3331 ? _("[%d] %s (enumeral)\n")
3332 : _("[%d] %s at ?\n"),
3333 i + first_choice,
3334 SYMBOL_PRINT_NAME (syms[i].sym));
3335 }
3336 }
3337
3338 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3339 "overload-choice");
3340
3341 for (i = 0; i < n_chosen; i += 1)
3342 syms[i] = syms[chosen[i]];
3343
3344 return n_chosen;
3345 }
3346
3347 /* Read and validate a set of numeric choices from the user in the
3348 range 0 .. N_CHOICES-1. Place the results in increasing
3349 order in CHOICES[0 .. N-1], and return N.
3350
3351 The user types choices as a sequence of numbers on one line
3352 separated by blanks, encoding them as follows:
3353
3354 + A choice of 0 means to cancel the selection, throwing an error.
3355 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3356 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3357
3358 The user is not allowed to choose more than MAX_RESULTS values.
3359
3360 ANNOTATION_SUFFIX, if present, is used to annotate the input
3361 prompts (for use with the -f switch). */
3362
3363 int
3364 get_selections (int *choices, int n_choices, int max_results,
3365 int is_all_choice, char *annotation_suffix)
3366 {
3367 char *args;
3368 char *prompt;
3369 int n_chosen;
3370 int first_choice = is_all_choice ? 2 : 1;
3371
3372 prompt = getenv ("PS2");
3373 if (prompt == NULL)
3374 prompt = "> ";
3375
3376 args = command_line_input (prompt, 0, annotation_suffix);
3377
3378 if (args == NULL)
3379 error_no_arg (_("one or more choice numbers"));
3380
3381 n_chosen = 0;
3382
3383 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3384 order, as given in args. Choices are validated. */
3385 while (1)
3386 {
3387 char *args2;
3388 int choice, j;
3389
3390 while (isspace (*args))
3391 args += 1;
3392 if (*args == '\0' && n_chosen == 0)
3393 error_no_arg (_("one or more choice numbers"));
3394 else if (*args == '\0')
3395 break;
3396
3397 choice = strtol (args, &args2, 10);
3398 if (args == args2 || choice < 0
3399 || choice > n_choices + first_choice - 1)
3400 error (_("Argument must be choice number"));
3401 args = args2;
3402
3403 if (choice == 0)
3404 error (_("cancelled"));
3405
3406 if (choice < first_choice)
3407 {
3408 n_chosen = n_choices;
3409 for (j = 0; j < n_choices; j += 1)
3410 choices[j] = j;
3411 break;
3412 }
3413 choice -= first_choice;
3414
3415 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3416 {
3417 }
3418
3419 if (j < 0 || choice != choices[j])
3420 {
3421 int k;
3422 for (k = n_chosen - 1; k > j; k -= 1)
3423 choices[k + 1] = choices[k];
3424 choices[j + 1] = choice;
3425 n_chosen += 1;
3426 }
3427 }
3428
3429 if (n_chosen > max_results)
3430 error (_("Select no more than %d of the above"), max_results);
3431
3432 return n_chosen;
3433 }
3434
3435 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3436 on the function identified by SYM and BLOCK, and taking NARGS
3437 arguments. Update *EXPP as needed to hold more space. */
3438
3439 static void
3440 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3441 int oplen, struct symbol *sym,
3442 struct block *block)
3443 {
3444 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3445 symbol, -oplen for operator being replaced). */
3446 struct expression *newexp = (struct expression *)
3447 xmalloc (sizeof (struct expression)
3448 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3449 struct expression *exp = *expp;
3450
3451 newexp->nelts = exp->nelts + 7 - oplen;
3452 newexp->language_defn = exp->language_defn;
3453 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3454 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3455 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3456
3457 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3458 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3459
3460 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3461 newexp->elts[pc + 4].block = block;
3462 newexp->elts[pc + 5].symbol = sym;
3463
3464 *expp = newexp;
3465 xfree (exp);
3466 }
3467
3468 /* Type-class predicates */
3469
3470 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3471 or FLOAT). */
3472
3473 static int
3474 numeric_type_p (struct type *type)
3475 {
3476 if (type == NULL)
3477 return 0;
3478 else
3479 {
3480 switch (TYPE_CODE (type))
3481 {
3482 case TYPE_CODE_INT:
3483 case TYPE_CODE_FLT:
3484 return 1;
3485 case TYPE_CODE_RANGE:
3486 return (type == TYPE_TARGET_TYPE (type)
3487 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3488 default:
3489 return 0;
3490 }
3491 }
3492 }
3493
3494 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3495
3496 static int
3497 integer_type_p (struct type *type)
3498 {
3499 if (type == NULL)
3500 return 0;
3501 else
3502 {
3503 switch (TYPE_CODE (type))
3504 {
3505 case TYPE_CODE_INT:
3506 return 1;
3507 case TYPE_CODE_RANGE:
3508 return (type == TYPE_TARGET_TYPE (type)
3509 || integer_type_p (TYPE_TARGET_TYPE (type)));
3510 default:
3511 return 0;
3512 }
3513 }
3514 }
3515
3516 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3517
3518 static int
3519 scalar_type_p (struct type *type)
3520 {
3521 if (type == NULL)
3522 return 0;
3523 else
3524 {
3525 switch (TYPE_CODE (type))
3526 {
3527 case TYPE_CODE_INT:
3528 case TYPE_CODE_RANGE:
3529 case TYPE_CODE_ENUM:
3530 case TYPE_CODE_FLT:
3531 return 1;
3532 default:
3533 return 0;
3534 }
3535 }
3536 }
3537
3538 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3539
3540 static int
3541 discrete_type_p (struct type *type)
3542 {
3543 if (type == NULL)
3544 return 0;
3545 else
3546 {
3547 switch (TYPE_CODE (type))
3548 {
3549 case TYPE_CODE_INT:
3550 case TYPE_CODE_RANGE:
3551 case TYPE_CODE_ENUM:
3552 case TYPE_CODE_BOOL:
3553 return 1;
3554 default:
3555 return 0;
3556 }
3557 }
3558 }
3559
3560 /* Returns non-zero if OP with operands in the vector ARGS could be
3561 a user-defined function. Errs on the side of pre-defined operators
3562 (i.e., result 0). */
3563
3564 static int
3565 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3566 {
3567 struct type *type0 =
3568 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3569 struct type *type1 =
3570 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3571
3572 if (type0 == NULL)
3573 return 0;
3574
3575 switch (op)
3576 {
3577 default:
3578 return 0;
3579
3580 case BINOP_ADD:
3581 case BINOP_SUB:
3582 case BINOP_MUL:
3583 case BINOP_DIV:
3584 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3585
3586 case BINOP_REM:
3587 case BINOP_MOD:
3588 case BINOP_BITWISE_AND:
3589 case BINOP_BITWISE_IOR:
3590 case BINOP_BITWISE_XOR:
3591 return (!(integer_type_p (type0) && integer_type_p (type1)));
3592
3593 case BINOP_EQUAL:
3594 case BINOP_NOTEQUAL:
3595 case BINOP_LESS:
3596 case BINOP_GTR:
3597 case BINOP_LEQ:
3598 case BINOP_GEQ:
3599 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3600
3601 case BINOP_CONCAT:
3602 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3603
3604 case BINOP_EXP:
3605 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3606
3607 case UNOP_NEG:
3608 case UNOP_PLUS:
3609 case UNOP_LOGICAL_NOT:
3610 case UNOP_ABS:
3611 return (!numeric_type_p (type0));
3612
3613 }
3614 }
3615 \f
3616 /* Renaming */
3617
3618 /* NOTES:
3619
3620 1. In the following, we assume that a renaming type's name may
3621 have an ___XD suffix. It would be nice if this went away at some
3622 point.
3623 2. We handle both the (old) purely type-based representation of
3624 renamings and the (new) variable-based encoding. At some point,
3625 it is devoutly to be hoped that the former goes away
3626 (FIXME: hilfinger-2007-07-09).
3627 3. Subprogram renamings are not implemented, although the XRS
3628 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3629
3630 /* If SYM encodes a renaming,
3631
3632 <renaming> renames <renamed entity>,
3633
3634 sets *LEN to the length of the renamed entity's name,
3635 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3636 the string describing the subcomponent selected from the renamed
3637 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3638 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3639 are undefined). Otherwise, returns a value indicating the category
3640 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3641 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3642 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3643 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3644 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3645 may be NULL, in which case they are not assigned.
3646
3647 [Currently, however, GCC does not generate subprogram renamings.] */
3648
3649 enum ada_renaming_category
3650 ada_parse_renaming (struct symbol *sym,
3651 const char **renamed_entity, int *len,
3652 const char **renaming_expr)
3653 {
3654 enum ada_renaming_category kind;
3655 const char *info;
3656 const char *suffix;
3657
3658 if (sym == NULL)
3659 return ADA_NOT_RENAMING;
3660 switch (SYMBOL_CLASS (sym))
3661 {
3662 default:
3663 return ADA_NOT_RENAMING;
3664 case LOC_TYPEDEF:
3665 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3666 renamed_entity, len, renaming_expr);
3667 case LOC_LOCAL:
3668 case LOC_STATIC:
3669 case LOC_COMPUTED:
3670 case LOC_OPTIMIZED_OUT:
3671 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3672 if (info == NULL)
3673 return ADA_NOT_RENAMING;
3674 switch (info[5])
3675 {
3676 case '_':
3677 kind = ADA_OBJECT_RENAMING;
3678 info += 6;
3679 break;
3680 case 'E':
3681 kind = ADA_EXCEPTION_RENAMING;
3682 info += 7;
3683 break;
3684 case 'P':
3685 kind = ADA_PACKAGE_RENAMING;
3686 info += 7;
3687 break;
3688 case 'S':
3689 kind = ADA_SUBPROGRAM_RENAMING;
3690 info += 7;
3691 break;
3692 default:
3693 return ADA_NOT_RENAMING;
3694 }
3695 }
3696
3697 if (renamed_entity != NULL)
3698 *renamed_entity = info;
3699 suffix = strstr (info, "___XE");
3700 if (suffix == NULL || suffix == info)
3701 return ADA_NOT_RENAMING;
3702 if (len != NULL)
3703 *len = strlen (info) - strlen (suffix);
3704 suffix += 5;
3705 if (renaming_expr != NULL)
3706 *renaming_expr = suffix;
3707 return kind;
3708 }
3709
3710 /* Assuming TYPE encodes a renaming according to the old encoding in
3711 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3712 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3713 ADA_NOT_RENAMING otherwise. */
3714 static enum ada_renaming_category
3715 parse_old_style_renaming (struct type *type,
3716 const char **renamed_entity, int *len,
3717 const char **renaming_expr)
3718 {
3719 enum ada_renaming_category kind;
3720 const char *name;
3721 const char *info;
3722 const char *suffix;
3723
3724 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3725 || TYPE_NFIELDS (type) != 1)
3726 return ADA_NOT_RENAMING;
3727
3728 name = type_name_no_tag (type);
3729 if (name == NULL)
3730 return ADA_NOT_RENAMING;
3731
3732 name = strstr (name, "___XR");
3733 if (name == NULL)
3734 return ADA_NOT_RENAMING;
3735 switch (name[5])
3736 {
3737 case '\0':
3738 case '_':
3739 kind = ADA_OBJECT_RENAMING;
3740 break;
3741 case 'E':
3742 kind = ADA_EXCEPTION_RENAMING;
3743 break;
3744 case 'P':
3745 kind = ADA_PACKAGE_RENAMING;
3746 break;
3747 case 'S':
3748 kind = ADA_SUBPROGRAM_RENAMING;
3749 break;
3750 default:
3751 return ADA_NOT_RENAMING;
3752 }
3753
3754 info = TYPE_FIELD_NAME (type, 0);
3755 if (info == NULL)
3756 return ADA_NOT_RENAMING;
3757 if (renamed_entity != NULL)
3758 *renamed_entity = info;
3759 suffix = strstr (info, "___XE");
3760 if (renaming_expr != NULL)
3761 *renaming_expr = suffix + 5;
3762 if (suffix == NULL || suffix == info)
3763 return ADA_NOT_RENAMING;
3764 if (len != NULL)
3765 *len = suffix - info;
3766 return kind;
3767 }
3768
3769 \f
3770
3771 /* Evaluation: Function Calls */
3772
3773 /* Return an lvalue containing the value VAL. This is the identity on
3774 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3775 on the stack, using and updating *SP as the stack pointer, and
3776 returning an lvalue whose value_address points to the copy. */
3777
3778 static struct value *
3779 ensure_lval (struct value *val, struct gdbarch *gdbarch, CORE_ADDR *sp)
3780 {
3781 if (! VALUE_LVAL (val))
3782 {
3783 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3784
3785 /* The following is taken from the structure-return code in
3786 call_function_by_hand. FIXME: Therefore, some refactoring seems
3787 indicated. */
3788 if (gdbarch_inner_than (gdbarch, 1, 2))
3789 {
3790 /* Stack grows downward. Align SP and value_address (val) after
3791 reserving sufficient space. */
3792 *sp -= len;
3793 if (gdbarch_frame_align_p (gdbarch))
3794 *sp = gdbarch_frame_align (gdbarch, *sp);
3795 set_value_address (val, *sp);
3796 }
3797 else
3798 {
3799 /* Stack grows upward. Align the frame, allocate space, and
3800 then again, re-align the frame. */
3801 if (gdbarch_frame_align_p (gdbarch))
3802 *sp = gdbarch_frame_align (gdbarch, *sp);
3803 set_value_address (val, *sp);
3804 *sp += len;
3805 if (gdbarch_frame_align_p (gdbarch))
3806 *sp = gdbarch_frame_align (gdbarch, *sp);
3807 }
3808 VALUE_LVAL (val) = lval_memory;
3809
3810 write_memory (value_address (val), value_contents_raw (val), len);
3811 }
3812
3813 return val;
3814 }
3815
3816 /* Return the value ACTUAL, converted to be an appropriate value for a
3817 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3818 allocating any necessary descriptors (fat pointers), or copies of
3819 values not residing in memory, updating it as needed. */
3820
3821 struct value *
3822 ada_convert_actual (struct value *actual, struct type *formal_type0,
3823 struct gdbarch *gdbarch, CORE_ADDR *sp)
3824 {
3825 struct type *actual_type = ada_check_typedef (value_type (actual));
3826 struct type *formal_type = ada_check_typedef (formal_type0);
3827 struct type *formal_target =
3828 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3829 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3830 struct type *actual_target =
3831 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3832 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3833
3834 if (ada_is_array_descriptor_type (formal_target)
3835 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3836 return make_array_descriptor (formal_type, actual, gdbarch, sp);
3837 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3838 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3839 {
3840 struct value *result;
3841 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3842 && ada_is_array_descriptor_type (actual_target))
3843 result = desc_data (actual);
3844 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3845 {
3846 if (VALUE_LVAL (actual) != lval_memory)
3847 {
3848 struct value *val;
3849 actual_type = ada_check_typedef (value_type (actual));
3850 val = allocate_value (actual_type);
3851 memcpy ((char *) value_contents_raw (val),
3852 (char *) value_contents (actual),
3853 TYPE_LENGTH (actual_type));
3854 actual = ensure_lval (val, gdbarch, sp);
3855 }
3856 result = value_addr (actual);
3857 }
3858 else
3859 return actual;
3860 return value_cast_pointers (formal_type, result);
3861 }
3862 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3863 return ada_value_ind (actual);
3864
3865 return actual;
3866 }
3867
3868
3869 /* Push a descriptor of type TYPE for array value ARR on the stack at
3870 *SP, updating *SP to reflect the new descriptor. Return either
3871 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3872 to-descriptor type rather than a descriptor type), a struct value *
3873 representing a pointer to this descriptor. */
3874
3875 static struct value *
3876 make_array_descriptor (struct type *type, struct value *arr,
3877 struct gdbarch *gdbarch, CORE_ADDR *sp)
3878 {
3879 struct type *bounds_type = desc_bounds_type (type);
3880 struct type *desc_type = desc_base_type (type);
3881 struct value *descriptor = allocate_value (desc_type);
3882 struct value *bounds = allocate_value (bounds_type);
3883 int i;
3884
3885 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3886 {
3887 modify_general_field (value_type (bounds),
3888 value_contents_writeable (bounds),
3889 ada_array_bound (arr, i, 0),
3890 desc_bound_bitpos (bounds_type, i, 0),
3891 desc_bound_bitsize (bounds_type, i, 0));
3892 modify_general_field (value_type (bounds),
3893 value_contents_writeable (bounds),
3894 ada_array_bound (arr, i, 1),
3895 desc_bound_bitpos (bounds_type, i, 1),
3896 desc_bound_bitsize (bounds_type, i, 1));
3897 }
3898
3899 bounds = ensure_lval (bounds, gdbarch, sp);
3900
3901 modify_general_field (value_type (descriptor),
3902 value_contents_writeable (descriptor),
3903 value_address (ensure_lval (arr, gdbarch, sp)),
3904 fat_pntr_data_bitpos (desc_type),
3905 fat_pntr_data_bitsize (desc_type));
3906
3907 modify_general_field (value_type (descriptor),
3908 value_contents_writeable (descriptor),
3909 value_address (bounds),
3910 fat_pntr_bounds_bitpos (desc_type),
3911 fat_pntr_bounds_bitsize (desc_type));
3912
3913 descriptor = ensure_lval (descriptor, gdbarch, sp);
3914
3915 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3916 return value_addr (descriptor);
3917 else
3918 return descriptor;
3919 }
3920 \f
3921 /* Dummy definitions for an experimental caching module that is not
3922 * used in the public sources. */
3923
3924 static int
3925 lookup_cached_symbol (const char *name, domain_enum namespace,
3926 struct symbol **sym, struct block **block)
3927 {
3928 return 0;
3929 }
3930
3931 static void
3932 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3933 struct block *block)
3934 {
3935 }
3936 \f
3937 /* Symbol Lookup */
3938
3939 /* Return the result of a standard (literal, C-like) lookup of NAME in
3940 given DOMAIN, visible from lexical block BLOCK. */
3941
3942 static struct symbol *
3943 standard_lookup (const char *name, const struct block *block,
3944 domain_enum domain)
3945 {
3946 struct symbol *sym;
3947
3948 if (lookup_cached_symbol (name, domain, &sym, NULL))
3949 return sym;
3950 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3951 cache_symbol (name, domain, sym, block_found);
3952 return sym;
3953 }
3954
3955
3956 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3957 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3958 since they contend in overloading in the same way. */
3959 static int
3960 is_nonfunction (struct ada_symbol_info syms[], int n)
3961 {
3962 int i;
3963
3964 for (i = 0; i < n; i += 1)
3965 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3966 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3967 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
3968 return 1;
3969
3970 return 0;
3971 }
3972
3973 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
3974 struct types. Otherwise, they may not. */
3975
3976 static int
3977 equiv_types (struct type *type0, struct type *type1)
3978 {
3979 if (type0 == type1)
3980 return 1;
3981 if (type0 == NULL || type1 == NULL
3982 || TYPE_CODE (type0) != TYPE_CODE (type1))
3983 return 0;
3984 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
3985 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3986 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
3987 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
3988 return 1;
3989
3990 return 0;
3991 }
3992
3993 /* True iff SYM0 represents the same entity as SYM1, or one that is
3994 no more defined than that of SYM1. */
3995
3996 static int
3997 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
3998 {
3999 if (sym0 == sym1)
4000 return 1;
4001 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4002 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4003 return 0;
4004
4005 switch (SYMBOL_CLASS (sym0))
4006 {
4007 case LOC_UNDEF:
4008 return 1;
4009 case LOC_TYPEDEF:
4010 {
4011 struct type *type0 = SYMBOL_TYPE (sym0);
4012 struct type *type1 = SYMBOL_TYPE (sym1);
4013 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4014 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4015 int len0 = strlen (name0);
4016 return
4017 TYPE_CODE (type0) == TYPE_CODE (type1)
4018 && (equiv_types (type0, type1)
4019 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4020 && strncmp (name1 + len0, "___XV", 5) == 0));
4021 }
4022 case LOC_CONST:
4023 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4024 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4025 default:
4026 return 0;
4027 }
4028 }
4029
4030 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4031 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4032
4033 static void
4034 add_defn_to_vec (struct obstack *obstackp,
4035 struct symbol *sym,
4036 struct block *block)
4037 {
4038 int i;
4039 size_t tmp;
4040 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4041
4042 /* Do not try to complete stub types, as the debugger is probably
4043 already scanning all symbols matching a certain name at the
4044 time when this function is called. Trying to replace the stub
4045 type by its associated full type will cause us to restart a scan
4046 which may lead to an infinite recursion. Instead, the client
4047 collecting the matching symbols will end up collecting several
4048 matches, with at least one of them complete. It can then filter
4049 out the stub ones if needed. */
4050
4051 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4052 {
4053 if (lesseq_defined_than (sym, prevDefns[i].sym))
4054 return;
4055 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4056 {
4057 prevDefns[i].sym = sym;
4058 prevDefns[i].block = block;
4059 return;
4060 }
4061 }
4062
4063 {
4064 struct ada_symbol_info info;
4065
4066 info.sym = sym;
4067 info.block = block;
4068 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4069 }
4070 }
4071
4072 /* Number of ada_symbol_info structures currently collected in
4073 current vector in *OBSTACKP. */
4074
4075 static int
4076 num_defns_collected (struct obstack *obstackp)
4077 {
4078 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4079 }
4080
4081 /* Vector of ada_symbol_info structures currently collected in current
4082 vector in *OBSTACKP. If FINISH, close off the vector and return
4083 its final address. */
4084
4085 static struct ada_symbol_info *
4086 defns_collected (struct obstack *obstackp, int finish)
4087 {
4088 if (finish)
4089 return obstack_finish (obstackp);
4090 else
4091 return (struct ada_symbol_info *) obstack_base (obstackp);
4092 }
4093
4094 /* Return a minimal symbol matching NAME according to Ada decoding
4095 rules. Returns NULL if there is no such minimal symbol. Names
4096 prefixed with "standard__" are handled specially: "standard__" is
4097 first stripped off, and only static and global symbols are searched. */
4098
4099 struct minimal_symbol *
4100 ada_lookup_simple_minsym (const char *name)
4101 {
4102 struct objfile *objfile;
4103 struct minimal_symbol *msymbol;
4104 int wild_match;
4105
4106 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4107 {
4108 name += sizeof ("standard__") - 1;
4109 wild_match = 0;
4110 }
4111 else
4112 wild_match = (strstr (name, "__") == NULL);
4113
4114 ALL_MSYMBOLS (objfile, msymbol)
4115 {
4116 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4117 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4118 return msymbol;
4119 }
4120
4121 return NULL;
4122 }
4123
4124 /* For all subprograms that statically enclose the subprogram of the
4125 selected frame, add symbols matching identifier NAME in DOMAIN
4126 and their blocks to the list of data in OBSTACKP, as for
4127 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4128 wildcard prefix. */
4129
4130 static void
4131 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4132 const char *name, domain_enum namespace,
4133 int wild_match)
4134 {
4135 }
4136
4137 /* True if TYPE is definitely an artificial type supplied to a symbol
4138 for which no debugging information was given in the symbol file. */
4139
4140 static int
4141 is_nondebugging_type (struct type *type)
4142 {
4143 char *name = ada_type_name (type);
4144 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4145 }
4146
4147 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4148 duplicate other symbols in the list (The only case I know of where
4149 this happens is when object files containing stabs-in-ecoff are
4150 linked with files containing ordinary ecoff debugging symbols (or no
4151 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4152 Returns the number of items in the modified list. */
4153
4154 static int
4155 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4156 {
4157 int i, j;
4158
4159 i = 0;
4160 while (i < nsyms)
4161 {
4162 int remove = 0;
4163
4164 /* If two symbols have the same name and one of them is a stub type,
4165 the get rid of the stub. */
4166
4167 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4168 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4169 {
4170 for (j = 0; j < nsyms; j++)
4171 {
4172 if (j != i
4173 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4174 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4175 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4176 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4177 remove = 1;
4178 }
4179 }
4180
4181 /* Two symbols with the same name, same class and same address
4182 should be identical. */
4183
4184 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4185 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4186 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4187 {
4188 for (j = 0; j < nsyms; j += 1)
4189 {
4190 if (i != j
4191 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4192 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4193 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4194 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4195 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4196 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4197 remove = 1;
4198 }
4199 }
4200
4201 if (remove)
4202 {
4203 for (j = i + 1; j < nsyms; j += 1)
4204 syms[j - 1] = syms[j];
4205 nsyms -= 1;
4206 }
4207
4208 i += 1;
4209 }
4210 return nsyms;
4211 }
4212
4213 /* Given a type that corresponds to a renaming entity, use the type name
4214 to extract the scope (package name or function name, fully qualified,
4215 and following the GNAT encoding convention) where this renaming has been
4216 defined. The string returned needs to be deallocated after use. */
4217
4218 static char *
4219 xget_renaming_scope (struct type *renaming_type)
4220 {
4221 /* The renaming types adhere to the following convention:
4222 <scope>__<rename>___<XR extension>.
4223 So, to extract the scope, we search for the "___XR" extension,
4224 and then backtrack until we find the first "__". */
4225
4226 const char *name = type_name_no_tag (renaming_type);
4227 char *suffix = strstr (name, "___XR");
4228 char *last;
4229 int scope_len;
4230 char *scope;
4231
4232 /* Now, backtrack a bit until we find the first "__". Start looking
4233 at suffix - 3, as the <rename> part is at least one character long. */
4234
4235 for (last = suffix - 3; last > name; last--)
4236 if (last[0] == '_' && last[1] == '_')
4237 break;
4238
4239 /* Make a copy of scope and return it. */
4240
4241 scope_len = last - name;
4242 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4243
4244 strncpy (scope, name, scope_len);
4245 scope[scope_len] = '\0';
4246
4247 return scope;
4248 }
4249
4250 /* Return nonzero if NAME corresponds to a package name. */
4251
4252 static int
4253 is_package_name (const char *name)
4254 {
4255 /* Here, We take advantage of the fact that no symbols are generated
4256 for packages, while symbols are generated for each function.
4257 So the condition for NAME represent a package becomes equivalent
4258 to NAME not existing in our list of symbols. There is only one
4259 small complication with library-level functions (see below). */
4260
4261 char *fun_name;
4262
4263 /* If it is a function that has not been defined at library level,
4264 then we should be able to look it up in the symbols. */
4265 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4266 return 0;
4267
4268 /* Library-level function names start with "_ada_". See if function
4269 "_ada_" followed by NAME can be found. */
4270
4271 /* Do a quick check that NAME does not contain "__", since library-level
4272 functions names cannot contain "__" in them. */
4273 if (strstr (name, "__") != NULL)
4274 return 0;
4275
4276 fun_name = xstrprintf ("_ada_%s", name);
4277
4278 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4279 }
4280
4281 /* Return nonzero if SYM corresponds to a renaming entity that is
4282 not visible from FUNCTION_NAME. */
4283
4284 static int
4285 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4286 {
4287 char *scope;
4288
4289 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4290 return 0;
4291
4292 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4293
4294 make_cleanup (xfree, scope);
4295
4296 /* If the rename has been defined in a package, then it is visible. */
4297 if (is_package_name (scope))
4298 return 0;
4299
4300 /* Check that the rename is in the current function scope by checking
4301 that its name starts with SCOPE. */
4302
4303 /* If the function name starts with "_ada_", it means that it is
4304 a library-level function. Strip this prefix before doing the
4305 comparison, as the encoding for the renaming does not contain
4306 this prefix. */
4307 if (strncmp (function_name, "_ada_", 5) == 0)
4308 function_name += 5;
4309
4310 return (strncmp (function_name, scope, strlen (scope)) != 0);
4311 }
4312
4313 /* Remove entries from SYMS that corresponds to a renaming entity that
4314 is not visible from the function associated with CURRENT_BLOCK or
4315 that is superfluous due to the presence of more specific renaming
4316 information. Places surviving symbols in the initial entries of
4317 SYMS and returns the number of surviving symbols.
4318
4319 Rationale:
4320 First, in cases where an object renaming is implemented as a
4321 reference variable, GNAT may produce both the actual reference
4322 variable and the renaming encoding. In this case, we discard the
4323 latter.
4324
4325 Second, GNAT emits a type following a specified encoding for each renaming
4326 entity. Unfortunately, STABS currently does not support the definition
4327 of types that are local to a given lexical block, so all renamings types
4328 are emitted at library level. As a consequence, if an application
4329 contains two renaming entities using the same name, and a user tries to
4330 print the value of one of these entities, the result of the ada symbol
4331 lookup will also contain the wrong renaming type.
4332
4333 This function partially covers for this limitation by attempting to
4334 remove from the SYMS list renaming symbols that should be visible
4335 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4336 method with the current information available. The implementation
4337 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4338
4339 - When the user tries to print a rename in a function while there
4340 is another rename entity defined in a package: Normally, the
4341 rename in the function has precedence over the rename in the
4342 package, so the latter should be removed from the list. This is
4343 currently not the case.
4344
4345 - This function will incorrectly remove valid renames if
4346 the CURRENT_BLOCK corresponds to a function which symbol name
4347 has been changed by an "Export" pragma. As a consequence,
4348 the user will be unable to print such rename entities. */
4349
4350 static int
4351 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4352 int nsyms, const struct block *current_block)
4353 {
4354 struct symbol *current_function;
4355 char *current_function_name;
4356 int i;
4357 int is_new_style_renaming;
4358
4359 /* If there is both a renaming foo___XR... encoded as a variable and
4360 a simple variable foo in the same block, discard the latter.
4361 First, zero out such symbols, then compress. */
4362 is_new_style_renaming = 0;
4363 for (i = 0; i < nsyms; i += 1)
4364 {
4365 struct symbol *sym = syms[i].sym;
4366 struct block *block = syms[i].block;
4367 const char *name;
4368 const char *suffix;
4369
4370 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4371 continue;
4372 name = SYMBOL_LINKAGE_NAME (sym);
4373 suffix = strstr (name, "___XR");
4374
4375 if (suffix != NULL)
4376 {
4377 int name_len = suffix - name;
4378 int j;
4379 is_new_style_renaming = 1;
4380 for (j = 0; j < nsyms; j += 1)
4381 if (i != j && syms[j].sym != NULL
4382 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4383 name_len) == 0
4384 && block == syms[j].block)
4385 syms[j].sym = NULL;
4386 }
4387 }
4388 if (is_new_style_renaming)
4389 {
4390 int j, k;
4391
4392 for (j = k = 0; j < nsyms; j += 1)
4393 if (syms[j].sym != NULL)
4394 {
4395 syms[k] = syms[j];
4396 k += 1;
4397 }
4398 return k;
4399 }
4400
4401 /* Extract the function name associated to CURRENT_BLOCK.
4402 Abort if unable to do so. */
4403
4404 if (current_block == NULL)
4405 return nsyms;
4406
4407 current_function = block_linkage_function (current_block);
4408 if (current_function == NULL)
4409 return nsyms;
4410
4411 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4412 if (current_function_name == NULL)
4413 return nsyms;
4414
4415 /* Check each of the symbols, and remove it from the list if it is
4416 a type corresponding to a renaming that is out of the scope of
4417 the current block. */
4418
4419 i = 0;
4420 while (i < nsyms)
4421 {
4422 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4423 == ADA_OBJECT_RENAMING
4424 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4425 {
4426 int j;
4427 for (j = i + 1; j < nsyms; j += 1)
4428 syms[j - 1] = syms[j];
4429 nsyms -= 1;
4430 }
4431 else
4432 i += 1;
4433 }
4434
4435 return nsyms;
4436 }
4437
4438 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4439 whose name and domain match NAME and DOMAIN respectively.
4440 If no match was found, then extend the search to "enclosing"
4441 routines (in other words, if we're inside a nested function,
4442 search the symbols defined inside the enclosing functions).
4443
4444 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4445
4446 static void
4447 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4448 struct block *block, domain_enum domain,
4449 int wild_match)
4450 {
4451 int block_depth = 0;
4452
4453 while (block != NULL)
4454 {
4455 block_depth += 1;
4456 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4457
4458 /* If we found a non-function match, assume that's the one. */
4459 if (is_nonfunction (defns_collected (obstackp, 0),
4460 num_defns_collected (obstackp)))
4461 return;
4462
4463 block = BLOCK_SUPERBLOCK (block);
4464 }
4465
4466 /* If no luck so far, try to find NAME as a local symbol in some lexically
4467 enclosing subprogram. */
4468 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4469 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4470 }
4471
4472 /* An object of this type is used as the user_data argument when
4473 calling the map_ada_symtabs method. */
4474
4475 struct ada_psym_data
4476 {
4477 struct obstack *obstackp;
4478 const char *name;
4479 domain_enum domain;
4480 int global;
4481 int wild_match;
4482 };
4483
4484 /* Callback function for map_ada_symtabs. */
4485
4486 static void
4487 ada_add_psyms (struct objfile *objfile, struct symtab *s, void *user_data)
4488 {
4489 struct ada_psym_data *data = user_data;
4490 const int block_kind = data->global ? GLOBAL_BLOCK : STATIC_BLOCK;
4491 ada_add_block_symbols (data->obstackp,
4492 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4493 data->name, data->domain, objfile, data->wild_match);
4494 }
4495
4496 /* Add to OBSTACKP all non-local symbols whose name and domain match
4497 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4498 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4499
4500 static void
4501 ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4502 domain_enum domain, int global,
4503 int is_wild_match)
4504 {
4505 struct objfile *objfile;
4506 struct ada_psym_data data;
4507
4508 data.obstackp = obstackp;
4509 data.name = name;
4510 data.domain = domain;
4511 data.global = global;
4512 data.wild_match = is_wild_match;
4513
4514 ALL_OBJFILES (objfile)
4515 {
4516 if (objfile->sf)
4517 objfile->sf->qf->map_ada_symtabs (objfile, wild_match, is_name_suffix,
4518 ada_add_psyms, name,
4519 global, domain,
4520 is_wild_match, &data);
4521 }
4522 }
4523
4524 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4525 scope and in global scopes, returning the number of matches. Sets
4526 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4527 indicating the symbols found and the blocks and symbol tables (if
4528 any) in which they were found. This vector are transient---good only to
4529 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4530 symbol match within the nest of blocks whose innermost member is BLOCK0,
4531 is the one match returned (no other matches in that or
4532 enclosing blocks is returned). If there are any matches in or
4533 surrounding BLOCK0, then these alone are returned. Otherwise, the
4534 search extends to global and file-scope (static) symbol tables.
4535 Names prefixed with "standard__" are handled specially: "standard__"
4536 is first stripped off, and only static and global symbols are searched. */
4537
4538 int
4539 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4540 domain_enum namespace,
4541 struct ada_symbol_info **results)
4542 {
4543 struct symbol *sym;
4544 struct block *block;
4545 const char *name;
4546 int wild_match;
4547 int cacheIfUnique;
4548 int ndefns;
4549
4550 obstack_free (&symbol_list_obstack, NULL);
4551 obstack_init (&symbol_list_obstack);
4552
4553 cacheIfUnique = 0;
4554
4555 /* Search specified block and its superiors. */
4556
4557 wild_match = (strstr (name0, "__") == NULL);
4558 name = name0;
4559 block = (struct block *) block0; /* FIXME: No cast ought to be
4560 needed, but adding const will
4561 have a cascade effect. */
4562
4563 /* Special case: If the user specifies a symbol name inside package
4564 Standard, do a non-wild matching of the symbol name without
4565 the "standard__" prefix. This was primarily introduced in order
4566 to allow the user to specifically access the standard exceptions
4567 using, for instance, Standard.Constraint_Error when Constraint_Error
4568 is ambiguous (due to the user defining its own Constraint_Error
4569 entity inside its program). */
4570 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4571 {
4572 wild_match = 0;
4573 block = NULL;
4574 name = name0 + sizeof ("standard__") - 1;
4575 }
4576
4577 /* Check the non-global symbols. If we have ANY match, then we're done. */
4578
4579 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4580 wild_match);
4581 if (num_defns_collected (&symbol_list_obstack) > 0)
4582 goto done;
4583
4584 /* No non-global symbols found. Check our cache to see if we have
4585 already performed this search before. If we have, then return
4586 the same result. */
4587
4588 cacheIfUnique = 1;
4589 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4590 {
4591 if (sym != NULL)
4592 add_defn_to_vec (&symbol_list_obstack, sym, block);
4593 goto done;
4594 }
4595
4596 /* Search symbols from all global blocks. */
4597
4598 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4599 wild_match);
4600
4601 /* Now add symbols from all per-file blocks if we've gotten no hits
4602 (not strictly correct, but perhaps better than an error). */
4603
4604 if (num_defns_collected (&symbol_list_obstack) == 0)
4605 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4606 wild_match);
4607
4608 done:
4609 ndefns = num_defns_collected (&symbol_list_obstack);
4610 *results = defns_collected (&symbol_list_obstack, 1);
4611
4612 ndefns = remove_extra_symbols (*results, ndefns);
4613
4614 if (ndefns == 0)
4615 cache_symbol (name0, namespace, NULL, NULL);
4616
4617 if (ndefns == 1 && cacheIfUnique)
4618 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4619
4620 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4621
4622 return ndefns;
4623 }
4624
4625 struct symbol *
4626 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4627 domain_enum namespace, struct block **block_found)
4628 {
4629 struct ada_symbol_info *candidates;
4630 int n_candidates;
4631
4632 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4633
4634 if (n_candidates == 0)
4635 return NULL;
4636
4637 if (block_found != NULL)
4638 *block_found = candidates[0].block;
4639
4640 return fixup_symbol_section (candidates[0].sym, NULL);
4641 }
4642
4643 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4644 scope and in global scopes, or NULL if none. NAME is folded and
4645 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4646 choosing the first symbol if there are multiple choices.
4647 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4648 table in which the symbol was found (in both cases, these
4649 assignments occur only if the pointers are non-null). */
4650 struct symbol *
4651 ada_lookup_symbol (const char *name, const struct block *block0,
4652 domain_enum namespace, int *is_a_field_of_this)
4653 {
4654 if (is_a_field_of_this != NULL)
4655 *is_a_field_of_this = 0;
4656
4657 return
4658 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4659 block0, namespace, NULL);
4660 }
4661
4662 static struct symbol *
4663 ada_lookup_symbol_nonlocal (const char *name,
4664 const struct block *block,
4665 const domain_enum domain)
4666 {
4667 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
4668 }
4669
4670
4671 /* True iff STR is a possible encoded suffix of a normal Ada name
4672 that is to be ignored for matching purposes. Suffixes of parallel
4673 names (e.g., XVE) are not included here. Currently, the possible suffixes
4674 are given by any of the regular expressions:
4675
4676 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4677 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4678 _E[0-9]+[bs]$ [protected object entry suffixes]
4679 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4680
4681 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4682 match is performed. This sequence is used to differentiate homonyms,
4683 is an optional part of a valid name suffix. */
4684
4685 static int
4686 is_name_suffix (const char *str)
4687 {
4688 int k;
4689 const char *matching;
4690 const int len = strlen (str);
4691
4692 /* Skip optional leading __[0-9]+. */
4693
4694 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4695 {
4696 str += 3;
4697 while (isdigit (str[0]))
4698 str += 1;
4699 }
4700
4701 /* [.$][0-9]+ */
4702
4703 if (str[0] == '.' || str[0] == '$')
4704 {
4705 matching = str + 1;
4706 while (isdigit (matching[0]))
4707 matching += 1;
4708 if (matching[0] == '\0')
4709 return 1;
4710 }
4711
4712 /* ___[0-9]+ */
4713
4714 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4715 {
4716 matching = str + 3;
4717 while (isdigit (matching[0]))
4718 matching += 1;
4719 if (matching[0] == '\0')
4720 return 1;
4721 }
4722
4723 #if 0
4724 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4725 with a N at the end. Unfortunately, the compiler uses the same
4726 convention for other internal types it creates. So treating
4727 all entity names that end with an "N" as a name suffix causes
4728 some regressions. For instance, consider the case of an enumerated
4729 type. To support the 'Image attribute, it creates an array whose
4730 name ends with N.
4731 Having a single character like this as a suffix carrying some
4732 information is a bit risky. Perhaps we should change the encoding
4733 to be something like "_N" instead. In the meantime, do not do
4734 the following check. */
4735 /* Protected Object Subprograms */
4736 if (len == 1 && str [0] == 'N')
4737 return 1;
4738 #endif
4739
4740 /* _E[0-9]+[bs]$ */
4741 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4742 {
4743 matching = str + 3;
4744 while (isdigit (matching[0]))
4745 matching += 1;
4746 if ((matching[0] == 'b' || matching[0] == 's')
4747 && matching [1] == '\0')
4748 return 1;
4749 }
4750
4751 /* ??? We should not modify STR directly, as we are doing below. This
4752 is fine in this case, but may become problematic later if we find
4753 that this alternative did not work, and want to try matching
4754 another one from the begining of STR. Since we modified it, we
4755 won't be able to find the begining of the string anymore! */
4756 if (str[0] == 'X')
4757 {
4758 str += 1;
4759 while (str[0] != '_' && str[0] != '\0')
4760 {
4761 if (str[0] != 'n' && str[0] != 'b')
4762 return 0;
4763 str += 1;
4764 }
4765 }
4766
4767 if (str[0] == '\000')
4768 return 1;
4769
4770 if (str[0] == '_')
4771 {
4772 if (str[1] != '_' || str[2] == '\000')
4773 return 0;
4774 if (str[2] == '_')
4775 {
4776 if (strcmp (str + 3, "JM") == 0)
4777 return 1;
4778 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4779 the LJM suffix in favor of the JM one. But we will
4780 still accept LJM as a valid suffix for a reasonable
4781 amount of time, just to allow ourselves to debug programs
4782 compiled using an older version of GNAT. */
4783 if (strcmp (str + 3, "LJM") == 0)
4784 return 1;
4785 if (str[3] != 'X')
4786 return 0;
4787 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4788 || str[4] == 'U' || str[4] == 'P')
4789 return 1;
4790 if (str[4] == 'R' && str[5] != 'T')
4791 return 1;
4792 return 0;
4793 }
4794 if (!isdigit (str[2]))
4795 return 0;
4796 for (k = 3; str[k] != '\0'; k += 1)
4797 if (!isdigit (str[k]) && str[k] != '_')
4798 return 0;
4799 return 1;
4800 }
4801 if (str[0] == '$' && isdigit (str[1]))
4802 {
4803 for (k = 2; str[k] != '\0'; k += 1)
4804 if (!isdigit (str[k]) && str[k] != '_')
4805 return 0;
4806 return 1;
4807 }
4808 return 0;
4809 }
4810
4811 /* Return non-zero if the string starting at NAME and ending before
4812 NAME_END contains no capital letters. */
4813
4814 static int
4815 is_valid_name_for_wild_match (const char *name0)
4816 {
4817 const char *decoded_name = ada_decode (name0);
4818 int i;
4819
4820 /* If the decoded name starts with an angle bracket, it means that
4821 NAME0 does not follow the GNAT encoding format. It should then
4822 not be allowed as a possible wild match. */
4823 if (decoded_name[0] == '<')
4824 return 0;
4825
4826 for (i=0; decoded_name[i] != '\0'; i++)
4827 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4828 return 0;
4829
4830 return 1;
4831 }
4832
4833 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
4834 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4835 informational suffixes of NAME (i.e., for which is_name_suffix is
4836 true). */
4837
4838 static int
4839 wild_match (const char *patn0, int patn_len, const char *name0)
4840 {
4841 char* match;
4842 const char* start;
4843 start = name0;
4844 while (1)
4845 {
4846 match = strstr (start, patn0);
4847 if (match == NULL)
4848 return 0;
4849 if ((match == name0
4850 || match[-1] == '.'
4851 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4852 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4853 && is_name_suffix (match + patn_len))
4854 return (match == name0 || is_valid_name_for_wild_match (name0));
4855 start = match + 1;
4856 }
4857 }
4858
4859 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4860 vector *defn_symbols, updating the list of symbols in OBSTACKP
4861 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4862 OBJFILE is the section containing BLOCK.
4863 SYMTAB is recorded with each symbol added. */
4864
4865 static void
4866 ada_add_block_symbols (struct obstack *obstackp,
4867 struct block *block, const char *name,
4868 domain_enum domain, struct objfile *objfile,
4869 int wild)
4870 {
4871 struct dict_iterator iter;
4872 int name_len = strlen (name);
4873 /* A matching argument symbol, if any. */
4874 struct symbol *arg_sym;
4875 /* Set true when we find a matching non-argument symbol. */
4876 int found_sym;
4877 struct symbol *sym;
4878
4879 arg_sym = NULL;
4880 found_sym = 0;
4881 if (wild)
4882 {
4883 struct symbol *sym;
4884 ALL_BLOCK_SYMBOLS (block, iter, sym)
4885 {
4886 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4887 SYMBOL_DOMAIN (sym), domain)
4888 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
4889 {
4890 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4891 continue;
4892 else if (SYMBOL_IS_ARGUMENT (sym))
4893 arg_sym = sym;
4894 else
4895 {
4896 found_sym = 1;
4897 add_defn_to_vec (obstackp,
4898 fixup_symbol_section (sym, objfile),
4899 block);
4900 }
4901 }
4902 }
4903 }
4904 else
4905 {
4906 ALL_BLOCK_SYMBOLS (block, iter, sym)
4907 {
4908 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4909 SYMBOL_DOMAIN (sym), domain))
4910 {
4911 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4912 if (cmp == 0
4913 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4914 {
4915 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4916 {
4917 if (SYMBOL_IS_ARGUMENT (sym))
4918 arg_sym = sym;
4919 else
4920 {
4921 found_sym = 1;
4922 add_defn_to_vec (obstackp,
4923 fixup_symbol_section (sym, objfile),
4924 block);
4925 }
4926 }
4927 }
4928 }
4929 }
4930 }
4931
4932 if (!found_sym && arg_sym != NULL)
4933 {
4934 add_defn_to_vec (obstackp,
4935 fixup_symbol_section (arg_sym, objfile),
4936 block);
4937 }
4938
4939 if (!wild)
4940 {
4941 arg_sym = NULL;
4942 found_sym = 0;
4943
4944 ALL_BLOCK_SYMBOLS (block, iter, sym)
4945 {
4946 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4947 SYMBOL_DOMAIN (sym), domain))
4948 {
4949 int cmp;
4950
4951 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
4952 if (cmp == 0)
4953 {
4954 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
4955 if (cmp == 0)
4956 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
4957 name_len);
4958 }
4959
4960 if (cmp == 0
4961 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
4962 {
4963 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4964 {
4965 if (SYMBOL_IS_ARGUMENT (sym))
4966 arg_sym = sym;
4967 else
4968 {
4969 found_sym = 1;
4970 add_defn_to_vec (obstackp,
4971 fixup_symbol_section (sym, objfile),
4972 block);
4973 }
4974 }
4975 }
4976 }
4977 }
4978
4979 /* NOTE: This really shouldn't be needed for _ada_ symbols.
4980 They aren't parameters, right? */
4981 if (!found_sym && arg_sym != NULL)
4982 {
4983 add_defn_to_vec (obstackp,
4984 fixup_symbol_section (arg_sym, objfile),
4985 block);
4986 }
4987 }
4988 }
4989 \f
4990
4991 /* Symbol Completion */
4992
4993 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
4994 name in a form that's appropriate for the completion. The result
4995 does not need to be deallocated, but is only good until the next call.
4996
4997 TEXT_LEN is equal to the length of TEXT.
4998 Perform a wild match if WILD_MATCH is set.
4999 ENCODED should be set if TEXT represents the start of a symbol name
5000 in its encoded form. */
5001
5002 static const char *
5003 symbol_completion_match (const char *sym_name,
5004 const char *text, int text_len,
5005 int wild_match, int encoded)
5006 {
5007 char *result;
5008 const int verbatim_match = (text[0] == '<');
5009 int match = 0;
5010
5011 if (verbatim_match)
5012 {
5013 /* Strip the leading angle bracket. */
5014 text = text + 1;
5015 text_len--;
5016 }
5017
5018 /* First, test against the fully qualified name of the symbol. */
5019
5020 if (strncmp (sym_name, text, text_len) == 0)
5021 match = 1;
5022
5023 if (match && !encoded)
5024 {
5025 /* One needed check before declaring a positive match is to verify
5026 that iff we are doing a verbatim match, the decoded version
5027 of the symbol name starts with '<'. Otherwise, this symbol name
5028 is not a suitable completion. */
5029 const char *sym_name_copy = sym_name;
5030 int has_angle_bracket;
5031
5032 sym_name = ada_decode (sym_name);
5033 has_angle_bracket = (sym_name[0] == '<');
5034 match = (has_angle_bracket == verbatim_match);
5035 sym_name = sym_name_copy;
5036 }
5037
5038 if (match && !verbatim_match)
5039 {
5040 /* When doing non-verbatim match, another check that needs to
5041 be done is to verify that the potentially matching symbol name
5042 does not include capital letters, because the ada-mode would
5043 not be able to understand these symbol names without the
5044 angle bracket notation. */
5045 const char *tmp;
5046
5047 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5048 if (*tmp != '\0')
5049 match = 0;
5050 }
5051
5052 /* Second: Try wild matching... */
5053
5054 if (!match && wild_match)
5055 {
5056 /* Since we are doing wild matching, this means that TEXT
5057 may represent an unqualified symbol name. We therefore must
5058 also compare TEXT against the unqualified name of the symbol. */
5059 sym_name = ada_unqualified_name (ada_decode (sym_name));
5060
5061 if (strncmp (sym_name, text, text_len) == 0)
5062 match = 1;
5063 }
5064
5065 /* Finally: If we found a mach, prepare the result to return. */
5066
5067 if (!match)
5068 return NULL;
5069
5070 if (verbatim_match)
5071 sym_name = add_angle_brackets (sym_name);
5072
5073 if (!encoded)
5074 sym_name = ada_decode (sym_name);
5075
5076 return sym_name;
5077 }
5078
5079 DEF_VEC_P (char_ptr);
5080
5081 /* A companion function to ada_make_symbol_completion_list().
5082 Check if SYM_NAME represents a symbol which name would be suitable
5083 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5084 it is appended at the end of the given string vector SV.
5085
5086 ORIG_TEXT is the string original string from the user command
5087 that needs to be completed. WORD is the entire command on which
5088 completion should be performed. These two parameters are used to
5089 determine which part of the symbol name should be added to the
5090 completion vector.
5091 if WILD_MATCH is set, then wild matching is performed.
5092 ENCODED should be set if TEXT represents a symbol name in its
5093 encoded formed (in which case the completion should also be
5094 encoded). */
5095
5096 static void
5097 symbol_completion_add (VEC(char_ptr) **sv,
5098 const char *sym_name,
5099 const char *text, int text_len,
5100 const char *orig_text, const char *word,
5101 int wild_match, int encoded)
5102 {
5103 const char *match = symbol_completion_match (sym_name, text, text_len,
5104 wild_match, encoded);
5105 char *completion;
5106
5107 if (match == NULL)
5108 return;
5109
5110 /* We found a match, so add the appropriate completion to the given
5111 string vector. */
5112
5113 if (word == orig_text)
5114 {
5115 completion = xmalloc (strlen (match) + 5);
5116 strcpy (completion, match);
5117 }
5118 else if (word > orig_text)
5119 {
5120 /* Return some portion of sym_name. */
5121 completion = xmalloc (strlen (match) + 5);
5122 strcpy (completion, match + (word - orig_text));
5123 }
5124 else
5125 {
5126 /* Return some of ORIG_TEXT plus sym_name. */
5127 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5128 strncpy (completion, word, orig_text - word);
5129 completion[orig_text - word] = '\0';
5130 strcat (completion, match);
5131 }
5132
5133 VEC_safe_push (char_ptr, *sv, completion);
5134 }
5135
5136 /* An object of this type is passed as the user_data argument to the
5137 map_partial_symbol_names method. */
5138 struct add_partial_datum
5139 {
5140 VEC(char_ptr) **completions;
5141 char *text;
5142 int text_len;
5143 char *text0;
5144 char *word;
5145 int wild_match;
5146 int encoded;
5147 };
5148
5149 /* A callback for map_partial_symbol_names. */
5150 static void
5151 ada_add_partial_symbol_completions (const char *name, void *user_data)
5152 {
5153 struct add_partial_datum *data = user_data;
5154 symbol_completion_add (data->completions, name,
5155 data->text, data->text_len, data->text0, data->word,
5156 data->wild_match, data->encoded);
5157 }
5158
5159 /* Return a list of possible symbol names completing TEXT0. The list
5160 is NULL terminated. WORD is the entire command on which completion
5161 is made. */
5162
5163 static char **
5164 ada_make_symbol_completion_list (char *text0, char *word)
5165 {
5166 char *text;
5167 int text_len;
5168 int wild_match;
5169 int encoded;
5170 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5171 struct symbol *sym;
5172 struct symtab *s;
5173 struct minimal_symbol *msymbol;
5174 struct objfile *objfile;
5175 struct block *b, *surrounding_static_block = 0;
5176 int i;
5177 struct dict_iterator iter;
5178
5179 if (text0[0] == '<')
5180 {
5181 text = xstrdup (text0);
5182 make_cleanup (xfree, text);
5183 text_len = strlen (text);
5184 wild_match = 0;
5185 encoded = 1;
5186 }
5187 else
5188 {
5189 text = xstrdup (ada_encode (text0));
5190 make_cleanup (xfree, text);
5191 text_len = strlen (text);
5192 for (i = 0; i < text_len; i++)
5193 text[i] = tolower (text[i]);
5194
5195 encoded = (strstr (text0, "__") != NULL);
5196 /* If the name contains a ".", then the user is entering a fully
5197 qualified entity name, and the match must not be done in wild
5198 mode. Similarly, if the user wants to complete what looks like
5199 an encoded name, the match must not be done in wild mode. */
5200 wild_match = (strchr (text0, '.') == NULL && !encoded);
5201 }
5202
5203 /* First, look at the partial symtab symbols. */
5204 {
5205 struct add_partial_datum data;
5206
5207 data.completions = &completions;
5208 data.text = text;
5209 data.text_len = text_len;
5210 data.text0 = text0;
5211 data.word = word;
5212 data.wild_match = wild_match;
5213 data.encoded = encoded;
5214 map_partial_symbol_names (ada_add_partial_symbol_completions, &data);
5215 }
5216
5217 /* At this point scan through the misc symbol vectors and add each
5218 symbol you find to the list. Eventually we want to ignore
5219 anything that isn't a text symbol (everything else will be
5220 handled by the psymtab code above). */
5221
5222 ALL_MSYMBOLS (objfile, msymbol)
5223 {
5224 QUIT;
5225 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5226 text, text_len, text0, word, wild_match, encoded);
5227 }
5228
5229 /* Search upwards from currently selected frame (so that we can
5230 complete on local vars. */
5231
5232 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5233 {
5234 if (!BLOCK_SUPERBLOCK (b))
5235 surrounding_static_block = b; /* For elmin of dups */
5236
5237 ALL_BLOCK_SYMBOLS (b, iter, sym)
5238 {
5239 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5240 text, text_len, text0, word,
5241 wild_match, encoded);
5242 }
5243 }
5244
5245 /* Go through the symtabs and check the externs and statics for
5246 symbols which match. */
5247
5248 ALL_SYMTABS (objfile, s)
5249 {
5250 QUIT;
5251 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5252 ALL_BLOCK_SYMBOLS (b, iter, sym)
5253 {
5254 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5255 text, text_len, text0, word,
5256 wild_match, encoded);
5257 }
5258 }
5259
5260 ALL_SYMTABS (objfile, s)
5261 {
5262 QUIT;
5263 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5264 /* Don't do this block twice. */
5265 if (b == surrounding_static_block)
5266 continue;
5267 ALL_BLOCK_SYMBOLS (b, iter, sym)
5268 {
5269 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5270 text, text_len, text0, word,
5271 wild_match, encoded);
5272 }
5273 }
5274
5275 /* Append the closing NULL entry. */
5276 VEC_safe_push (char_ptr, completions, NULL);
5277
5278 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5279 return the copy. It's unfortunate that we have to make a copy
5280 of an array that we're about to destroy, but there is nothing much
5281 we can do about it. Fortunately, it's typically not a very large
5282 array. */
5283 {
5284 const size_t completions_size =
5285 VEC_length (char_ptr, completions) * sizeof (char *);
5286 char **result = malloc (completions_size);
5287
5288 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5289
5290 VEC_free (char_ptr, completions);
5291 return result;
5292 }
5293 }
5294
5295 /* Field Access */
5296
5297 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5298 for tagged types. */
5299
5300 static int
5301 ada_is_dispatch_table_ptr_type (struct type *type)
5302 {
5303 char *name;
5304
5305 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5306 return 0;
5307
5308 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5309 if (name == NULL)
5310 return 0;
5311
5312 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5313 }
5314
5315 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5316 to be invisible to users. */
5317
5318 int
5319 ada_is_ignored_field (struct type *type, int field_num)
5320 {
5321 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5322 return 1;
5323
5324 /* Check the name of that field. */
5325 {
5326 const char *name = TYPE_FIELD_NAME (type, field_num);
5327
5328 /* Anonymous field names should not be printed.
5329 brobecker/2007-02-20: I don't think this can actually happen
5330 but we don't want to print the value of annonymous fields anyway. */
5331 if (name == NULL)
5332 return 1;
5333
5334 /* A field named "_parent" is internally generated by GNAT for
5335 tagged types, and should not be printed either. */
5336 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5337 return 1;
5338 }
5339
5340 /* If this is the dispatch table of a tagged type, then ignore. */
5341 if (ada_is_tagged_type (type, 1)
5342 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5343 return 1;
5344
5345 /* Not a special field, so it should not be ignored. */
5346 return 0;
5347 }
5348
5349 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5350 pointer or reference type whose ultimate target has a tag field. */
5351
5352 int
5353 ada_is_tagged_type (struct type *type, int refok)
5354 {
5355 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5356 }
5357
5358 /* True iff TYPE represents the type of X'Tag */
5359
5360 int
5361 ada_is_tag_type (struct type *type)
5362 {
5363 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5364 return 0;
5365 else
5366 {
5367 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5368 return (name != NULL
5369 && strcmp (name, "ada__tags__dispatch_table") == 0);
5370 }
5371 }
5372
5373 /* The type of the tag on VAL. */
5374
5375 struct type *
5376 ada_tag_type (struct value *val)
5377 {
5378 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5379 }
5380
5381 /* The value of the tag on VAL. */
5382
5383 struct value *
5384 ada_value_tag (struct value *val)
5385 {
5386 return ada_value_struct_elt (val, "_tag", 0);
5387 }
5388
5389 /* The value of the tag on the object of type TYPE whose contents are
5390 saved at VALADDR, if it is non-null, or is at memory address
5391 ADDRESS. */
5392
5393 static struct value *
5394 value_tag_from_contents_and_address (struct type *type,
5395 const gdb_byte *valaddr,
5396 CORE_ADDR address)
5397 {
5398 int tag_byte_offset, dummy1, dummy2;
5399 struct type *tag_type;
5400 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5401 NULL, NULL, NULL))
5402 {
5403 const gdb_byte *valaddr1 = ((valaddr == NULL)
5404 ? NULL
5405 : valaddr + tag_byte_offset);
5406 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5407
5408 return value_from_contents_and_address (tag_type, valaddr1, address1);
5409 }
5410 return NULL;
5411 }
5412
5413 static struct type *
5414 type_from_tag (struct value *tag)
5415 {
5416 const char *type_name = ada_tag_name (tag);
5417 if (type_name != NULL)
5418 return ada_find_any_type (ada_encode (type_name));
5419 return NULL;
5420 }
5421
5422 struct tag_args
5423 {
5424 struct value *tag;
5425 char *name;
5426 };
5427
5428
5429 static int ada_tag_name_1 (void *);
5430 static int ada_tag_name_2 (struct tag_args *);
5431
5432 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5433 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5434 The value stored in ARGS->name is valid until the next call to
5435 ada_tag_name_1. */
5436
5437 static int
5438 ada_tag_name_1 (void *args0)
5439 {
5440 struct tag_args *args = (struct tag_args *) args0;
5441 static char name[1024];
5442 char *p;
5443 struct value *val;
5444 args->name = NULL;
5445 val = ada_value_struct_elt (args->tag, "tsd", 1);
5446 if (val == NULL)
5447 return ada_tag_name_2 (args);
5448 val = ada_value_struct_elt (val, "expanded_name", 1);
5449 if (val == NULL)
5450 return 0;
5451 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5452 for (p = name; *p != '\0'; p += 1)
5453 if (isalpha (*p))
5454 *p = tolower (*p);
5455 args->name = name;
5456 return 0;
5457 }
5458
5459 /* Utility function for ada_tag_name_1 that tries the second
5460 representation for the dispatch table (in which there is no
5461 explicit 'tsd' field in the referent of the tag pointer, and instead
5462 the tsd pointer is stored just before the dispatch table. */
5463
5464 static int
5465 ada_tag_name_2 (struct tag_args *args)
5466 {
5467 struct type *info_type;
5468 static char name[1024];
5469 char *p;
5470 struct value *val, *valp;
5471
5472 args->name = NULL;
5473 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5474 if (info_type == NULL)
5475 return 0;
5476 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5477 valp = value_cast (info_type, args->tag);
5478 if (valp == NULL)
5479 return 0;
5480 val = value_ind (value_ptradd (valp, -1));
5481 if (val == NULL)
5482 return 0;
5483 val = ada_value_struct_elt (val, "expanded_name", 1);
5484 if (val == NULL)
5485 return 0;
5486 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5487 for (p = name; *p != '\0'; p += 1)
5488 if (isalpha (*p))
5489 *p = tolower (*p);
5490 args->name = name;
5491 return 0;
5492 }
5493
5494 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5495 * a C string. */
5496
5497 const char *
5498 ada_tag_name (struct value *tag)
5499 {
5500 struct tag_args args;
5501 if (!ada_is_tag_type (value_type (tag)))
5502 return NULL;
5503 args.tag = tag;
5504 args.name = NULL;
5505 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5506 return args.name;
5507 }
5508
5509 /* The parent type of TYPE, or NULL if none. */
5510
5511 struct type *
5512 ada_parent_type (struct type *type)
5513 {
5514 int i;
5515
5516 type = ada_check_typedef (type);
5517
5518 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5519 return NULL;
5520
5521 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5522 if (ada_is_parent_field (type, i))
5523 {
5524 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5525
5526 /* If the _parent field is a pointer, then dereference it. */
5527 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5528 parent_type = TYPE_TARGET_TYPE (parent_type);
5529 /* If there is a parallel XVS type, get the actual base type. */
5530 parent_type = ada_get_base_type (parent_type);
5531
5532 return ada_check_typedef (parent_type);
5533 }
5534
5535 return NULL;
5536 }
5537
5538 /* True iff field number FIELD_NUM of structure type TYPE contains the
5539 parent-type (inherited) fields of a derived type. Assumes TYPE is
5540 a structure type with at least FIELD_NUM+1 fields. */
5541
5542 int
5543 ada_is_parent_field (struct type *type, int field_num)
5544 {
5545 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5546 return (name != NULL
5547 && (strncmp (name, "PARENT", 6) == 0
5548 || strncmp (name, "_parent", 7) == 0));
5549 }
5550
5551 /* True iff field number FIELD_NUM of structure type TYPE is a
5552 transparent wrapper field (which should be silently traversed when doing
5553 field selection and flattened when printing). Assumes TYPE is a
5554 structure type with at least FIELD_NUM+1 fields. Such fields are always
5555 structures. */
5556
5557 int
5558 ada_is_wrapper_field (struct type *type, int field_num)
5559 {
5560 const char *name = TYPE_FIELD_NAME (type, field_num);
5561 return (name != NULL
5562 && (strncmp (name, "PARENT", 6) == 0
5563 || strcmp (name, "REP") == 0
5564 || strncmp (name, "_parent", 7) == 0
5565 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5566 }
5567
5568 /* True iff field number FIELD_NUM of structure or union type TYPE
5569 is a variant wrapper. Assumes TYPE is a structure type with at least
5570 FIELD_NUM+1 fields. */
5571
5572 int
5573 ada_is_variant_part (struct type *type, int field_num)
5574 {
5575 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5576 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5577 || (is_dynamic_field (type, field_num)
5578 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5579 == TYPE_CODE_UNION)));
5580 }
5581
5582 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5583 whose discriminants are contained in the record type OUTER_TYPE,
5584 returns the type of the controlling discriminant for the variant.
5585 May return NULL if the type could not be found. */
5586
5587 struct type *
5588 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5589 {
5590 char *name = ada_variant_discrim_name (var_type);
5591 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5592 }
5593
5594 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5595 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5596 represents a 'when others' clause; otherwise 0. */
5597
5598 int
5599 ada_is_others_clause (struct type *type, int field_num)
5600 {
5601 const char *name = TYPE_FIELD_NAME (type, field_num);
5602 return (name != NULL && name[0] == 'O');
5603 }
5604
5605 /* Assuming that TYPE0 is the type of the variant part of a record,
5606 returns the name of the discriminant controlling the variant.
5607 The value is valid until the next call to ada_variant_discrim_name. */
5608
5609 char *
5610 ada_variant_discrim_name (struct type *type0)
5611 {
5612 static char *result = NULL;
5613 static size_t result_len = 0;
5614 struct type *type;
5615 const char *name;
5616 const char *discrim_end;
5617 const char *discrim_start;
5618
5619 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5620 type = TYPE_TARGET_TYPE (type0);
5621 else
5622 type = type0;
5623
5624 name = ada_type_name (type);
5625
5626 if (name == NULL || name[0] == '\000')
5627 return "";
5628
5629 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5630 discrim_end -= 1)
5631 {
5632 if (strncmp (discrim_end, "___XVN", 6) == 0)
5633 break;
5634 }
5635 if (discrim_end == name)
5636 return "";
5637
5638 for (discrim_start = discrim_end; discrim_start != name + 3;
5639 discrim_start -= 1)
5640 {
5641 if (discrim_start == name + 1)
5642 return "";
5643 if ((discrim_start > name + 3
5644 && strncmp (discrim_start - 3, "___", 3) == 0)
5645 || discrim_start[-1] == '.')
5646 break;
5647 }
5648
5649 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5650 strncpy (result, discrim_start, discrim_end - discrim_start);
5651 result[discrim_end - discrim_start] = '\0';
5652 return result;
5653 }
5654
5655 /* Scan STR for a subtype-encoded number, beginning at position K.
5656 Put the position of the character just past the number scanned in
5657 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5658 Return 1 if there was a valid number at the given position, and 0
5659 otherwise. A "subtype-encoded" number consists of the absolute value
5660 in decimal, followed by the letter 'm' to indicate a negative number.
5661 Assumes 0m does not occur. */
5662
5663 int
5664 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5665 {
5666 ULONGEST RU;
5667
5668 if (!isdigit (str[k]))
5669 return 0;
5670
5671 /* Do it the hard way so as not to make any assumption about
5672 the relationship of unsigned long (%lu scan format code) and
5673 LONGEST. */
5674 RU = 0;
5675 while (isdigit (str[k]))
5676 {
5677 RU = RU * 10 + (str[k] - '0');
5678 k += 1;
5679 }
5680
5681 if (str[k] == 'm')
5682 {
5683 if (R != NULL)
5684 *R = (-(LONGEST) (RU - 1)) - 1;
5685 k += 1;
5686 }
5687 else if (R != NULL)
5688 *R = (LONGEST) RU;
5689
5690 /* NOTE on the above: Technically, C does not say what the results of
5691 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5692 number representable as a LONGEST (although either would probably work
5693 in most implementations). When RU>0, the locution in the then branch
5694 above is always equivalent to the negative of RU. */
5695
5696 if (new_k != NULL)
5697 *new_k = k;
5698 return 1;
5699 }
5700
5701 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5702 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5703 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
5704
5705 int
5706 ada_in_variant (LONGEST val, struct type *type, int field_num)
5707 {
5708 const char *name = TYPE_FIELD_NAME (type, field_num);
5709 int p;
5710
5711 p = 0;
5712 while (1)
5713 {
5714 switch (name[p])
5715 {
5716 case '\0':
5717 return 0;
5718 case 'S':
5719 {
5720 LONGEST W;
5721 if (!ada_scan_number (name, p + 1, &W, &p))
5722 return 0;
5723 if (val == W)
5724 return 1;
5725 break;
5726 }
5727 case 'R':
5728 {
5729 LONGEST L, U;
5730 if (!ada_scan_number (name, p + 1, &L, &p)
5731 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5732 return 0;
5733 if (val >= L && val <= U)
5734 return 1;
5735 break;
5736 }
5737 case 'O':
5738 return 1;
5739 default:
5740 return 0;
5741 }
5742 }
5743 }
5744
5745 /* FIXME: Lots of redundancy below. Try to consolidate. */
5746
5747 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5748 ARG_TYPE, extract and return the value of one of its (non-static)
5749 fields. FIELDNO says which field. Differs from value_primitive_field
5750 only in that it can handle packed values of arbitrary type. */
5751
5752 static struct value *
5753 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
5754 struct type *arg_type)
5755 {
5756 struct type *type;
5757
5758 arg_type = ada_check_typedef (arg_type);
5759 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5760
5761 /* Handle packed fields. */
5762
5763 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5764 {
5765 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5766 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
5767
5768 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
5769 offset + bit_pos / 8,
5770 bit_pos % 8, bit_size, type);
5771 }
5772 else
5773 return value_primitive_field (arg1, offset, fieldno, arg_type);
5774 }
5775
5776 /* Find field with name NAME in object of type TYPE. If found,
5777 set the following for each argument that is non-null:
5778 - *FIELD_TYPE_P to the field's type;
5779 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5780 an object of that type;
5781 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5782 - *BIT_SIZE_P to its size in bits if the field is packed, and
5783 0 otherwise;
5784 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5785 fields up to but not including the desired field, or by the total
5786 number of fields if not found. A NULL value of NAME never
5787 matches; the function just counts visible fields in this case.
5788
5789 Returns 1 if found, 0 otherwise. */
5790
5791 static int
5792 find_struct_field (char *name, struct type *type, int offset,
5793 struct type **field_type_p,
5794 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5795 int *index_p)
5796 {
5797 int i;
5798
5799 type = ada_check_typedef (type);
5800
5801 if (field_type_p != NULL)
5802 *field_type_p = NULL;
5803 if (byte_offset_p != NULL)
5804 *byte_offset_p = 0;
5805 if (bit_offset_p != NULL)
5806 *bit_offset_p = 0;
5807 if (bit_size_p != NULL)
5808 *bit_size_p = 0;
5809
5810 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5811 {
5812 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5813 int fld_offset = offset + bit_pos / 8;
5814 char *t_field_name = TYPE_FIELD_NAME (type, i);
5815
5816 if (t_field_name == NULL)
5817 continue;
5818
5819 else if (name != NULL && field_name_match (t_field_name, name))
5820 {
5821 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5822 if (field_type_p != NULL)
5823 *field_type_p = TYPE_FIELD_TYPE (type, i);
5824 if (byte_offset_p != NULL)
5825 *byte_offset_p = fld_offset;
5826 if (bit_offset_p != NULL)
5827 *bit_offset_p = bit_pos % 8;
5828 if (bit_size_p != NULL)
5829 *bit_size_p = bit_size;
5830 return 1;
5831 }
5832 else if (ada_is_wrapper_field (type, i))
5833 {
5834 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5835 field_type_p, byte_offset_p, bit_offset_p,
5836 bit_size_p, index_p))
5837 return 1;
5838 }
5839 else if (ada_is_variant_part (type, i))
5840 {
5841 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5842 fixed type?? */
5843 int j;
5844 struct type *field_type
5845 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5846
5847 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5848 {
5849 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5850 fld_offset
5851 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5852 field_type_p, byte_offset_p,
5853 bit_offset_p, bit_size_p, index_p))
5854 return 1;
5855 }
5856 }
5857 else if (index_p != NULL)
5858 *index_p += 1;
5859 }
5860 return 0;
5861 }
5862
5863 /* Number of user-visible fields in record type TYPE. */
5864
5865 static int
5866 num_visible_fields (struct type *type)
5867 {
5868 int n;
5869 n = 0;
5870 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5871 return n;
5872 }
5873
5874 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
5875 and search in it assuming it has (class) type TYPE.
5876 If found, return value, else return NULL.
5877
5878 Searches recursively through wrapper fields (e.g., '_parent'). */
5879
5880 static struct value *
5881 ada_search_struct_field (char *name, struct value *arg, int offset,
5882 struct type *type)
5883 {
5884 int i;
5885 type = ada_check_typedef (type);
5886
5887 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5888 {
5889 char *t_field_name = TYPE_FIELD_NAME (type, i);
5890
5891 if (t_field_name == NULL)
5892 continue;
5893
5894 else if (field_name_match (t_field_name, name))
5895 return ada_value_primitive_field (arg, offset, i, type);
5896
5897 else if (ada_is_wrapper_field (type, i))
5898 {
5899 struct value *v = /* Do not let indent join lines here. */
5900 ada_search_struct_field (name, arg,
5901 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5902 TYPE_FIELD_TYPE (type, i));
5903 if (v != NULL)
5904 return v;
5905 }
5906
5907 else if (ada_is_variant_part (type, i))
5908 {
5909 /* PNH: Do we ever get here? See find_struct_field. */
5910 int j;
5911 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5912 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5913
5914 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
5915 {
5916 struct value *v = ada_search_struct_field /* Force line break. */
5917 (name, arg,
5918 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5919 TYPE_FIELD_TYPE (field_type, j));
5920 if (v != NULL)
5921 return v;
5922 }
5923 }
5924 }
5925 return NULL;
5926 }
5927
5928 static struct value *ada_index_struct_field_1 (int *, struct value *,
5929 int, struct type *);
5930
5931
5932 /* Return field #INDEX in ARG, where the index is that returned by
5933 * find_struct_field through its INDEX_P argument. Adjust the address
5934 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
5935 * If found, return value, else return NULL. */
5936
5937 static struct value *
5938 ada_index_struct_field (int index, struct value *arg, int offset,
5939 struct type *type)
5940 {
5941 return ada_index_struct_field_1 (&index, arg, offset, type);
5942 }
5943
5944
5945 /* Auxiliary function for ada_index_struct_field. Like
5946 * ada_index_struct_field, but takes index from *INDEX_P and modifies
5947 * *INDEX_P. */
5948
5949 static struct value *
5950 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
5951 struct type *type)
5952 {
5953 int i;
5954 type = ada_check_typedef (type);
5955
5956 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5957 {
5958 if (TYPE_FIELD_NAME (type, i) == NULL)
5959 continue;
5960 else if (ada_is_wrapper_field (type, i))
5961 {
5962 struct value *v = /* Do not let indent join lines here. */
5963 ada_index_struct_field_1 (index_p, arg,
5964 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5965 TYPE_FIELD_TYPE (type, i));
5966 if (v != NULL)
5967 return v;
5968 }
5969
5970 else if (ada_is_variant_part (type, i))
5971 {
5972 /* PNH: Do we ever get here? See ada_search_struct_field,
5973 find_struct_field. */
5974 error (_("Cannot assign this kind of variant record"));
5975 }
5976 else if (*index_p == 0)
5977 return ada_value_primitive_field (arg, offset, i, type);
5978 else
5979 *index_p -= 1;
5980 }
5981 return NULL;
5982 }
5983
5984 /* Given ARG, a value of type (pointer or reference to a)*
5985 structure/union, extract the component named NAME from the ultimate
5986 target structure/union and return it as a value with its
5987 appropriate type.
5988
5989 The routine searches for NAME among all members of the structure itself
5990 and (recursively) among all members of any wrapper members
5991 (e.g., '_parent').
5992
5993 If NO_ERR, then simply return NULL in case of error, rather than
5994 calling error. */
5995
5996 struct value *
5997 ada_value_struct_elt (struct value *arg, char *name, int no_err)
5998 {
5999 struct type *t, *t1;
6000 struct value *v;
6001
6002 v = NULL;
6003 t1 = t = ada_check_typedef (value_type (arg));
6004 if (TYPE_CODE (t) == TYPE_CODE_REF)
6005 {
6006 t1 = TYPE_TARGET_TYPE (t);
6007 if (t1 == NULL)
6008 goto BadValue;
6009 t1 = ada_check_typedef (t1);
6010 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6011 {
6012 arg = coerce_ref (arg);
6013 t = t1;
6014 }
6015 }
6016
6017 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6018 {
6019 t1 = TYPE_TARGET_TYPE (t);
6020 if (t1 == NULL)
6021 goto BadValue;
6022 t1 = ada_check_typedef (t1);
6023 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6024 {
6025 arg = value_ind (arg);
6026 t = t1;
6027 }
6028 else
6029 break;
6030 }
6031
6032 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6033 goto BadValue;
6034
6035 if (t1 == t)
6036 v = ada_search_struct_field (name, arg, 0, t);
6037 else
6038 {
6039 int bit_offset, bit_size, byte_offset;
6040 struct type *field_type;
6041 CORE_ADDR address;
6042
6043 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6044 address = value_as_address (arg);
6045 else
6046 address = unpack_pointer (t, value_contents (arg));
6047
6048 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6049 if (find_struct_field (name, t1, 0,
6050 &field_type, &byte_offset, &bit_offset,
6051 &bit_size, NULL))
6052 {
6053 if (bit_size != 0)
6054 {
6055 if (TYPE_CODE (t) == TYPE_CODE_REF)
6056 arg = ada_coerce_ref (arg);
6057 else
6058 arg = ada_value_ind (arg);
6059 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6060 bit_offset, bit_size,
6061 field_type);
6062 }
6063 else
6064 v = value_at_lazy (field_type, address + byte_offset);
6065 }
6066 }
6067
6068 if (v != NULL || no_err)
6069 return v;
6070 else
6071 error (_("There is no member named %s."), name);
6072
6073 BadValue:
6074 if (no_err)
6075 return NULL;
6076 else
6077 error (_("Attempt to extract a component of a value that is not a record."));
6078 }
6079
6080 /* Given a type TYPE, look up the type of the component of type named NAME.
6081 If DISPP is non-null, add its byte displacement from the beginning of a
6082 structure (pointed to by a value) of type TYPE to *DISPP (does not
6083 work for packed fields).
6084
6085 Matches any field whose name has NAME as a prefix, possibly
6086 followed by "___".
6087
6088 TYPE can be either a struct or union. If REFOK, TYPE may also
6089 be a (pointer or reference)+ to a struct or union, and the
6090 ultimate target type will be searched.
6091
6092 Looks recursively into variant clauses and parent types.
6093
6094 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6095 TYPE is not a type of the right kind. */
6096
6097 static struct type *
6098 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6099 int noerr, int *dispp)
6100 {
6101 int i;
6102
6103 if (name == NULL)
6104 goto BadName;
6105
6106 if (refok && type != NULL)
6107 while (1)
6108 {
6109 type = ada_check_typedef (type);
6110 if (TYPE_CODE (type) != TYPE_CODE_PTR
6111 && TYPE_CODE (type) != TYPE_CODE_REF)
6112 break;
6113 type = TYPE_TARGET_TYPE (type);
6114 }
6115
6116 if (type == NULL
6117 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6118 && TYPE_CODE (type) != TYPE_CODE_UNION))
6119 {
6120 if (noerr)
6121 return NULL;
6122 else
6123 {
6124 target_terminal_ours ();
6125 gdb_flush (gdb_stdout);
6126 if (type == NULL)
6127 error (_("Type (null) is not a structure or union type"));
6128 else
6129 {
6130 /* XXX: type_sprint */
6131 fprintf_unfiltered (gdb_stderr, _("Type "));
6132 type_print (type, "", gdb_stderr, -1);
6133 error (_(" is not a structure or union type"));
6134 }
6135 }
6136 }
6137
6138 type = to_static_fixed_type (type);
6139
6140 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6141 {
6142 char *t_field_name = TYPE_FIELD_NAME (type, i);
6143 struct type *t;
6144 int disp;
6145
6146 if (t_field_name == NULL)
6147 continue;
6148
6149 else if (field_name_match (t_field_name, name))
6150 {
6151 if (dispp != NULL)
6152 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6153 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6154 }
6155
6156 else if (ada_is_wrapper_field (type, i))
6157 {
6158 disp = 0;
6159 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6160 0, 1, &disp);
6161 if (t != NULL)
6162 {
6163 if (dispp != NULL)
6164 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6165 return t;
6166 }
6167 }
6168
6169 else if (ada_is_variant_part (type, i))
6170 {
6171 int j;
6172 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6173
6174 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6175 {
6176 /* FIXME pnh 2008/01/26: We check for a field that is
6177 NOT wrapped in a struct, since the compiler sometimes
6178 generates these for unchecked variant types. Revisit
6179 if the compiler changes this practice. */
6180 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6181 disp = 0;
6182 if (v_field_name != NULL
6183 && field_name_match (v_field_name, name))
6184 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6185 else
6186 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6187 name, 0, 1, &disp);
6188
6189 if (t != NULL)
6190 {
6191 if (dispp != NULL)
6192 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6193 return t;
6194 }
6195 }
6196 }
6197
6198 }
6199
6200 BadName:
6201 if (!noerr)
6202 {
6203 target_terminal_ours ();
6204 gdb_flush (gdb_stdout);
6205 if (name == NULL)
6206 {
6207 /* XXX: type_sprint */
6208 fprintf_unfiltered (gdb_stderr, _("Type "));
6209 type_print (type, "", gdb_stderr, -1);
6210 error (_(" has no component named <null>"));
6211 }
6212 else
6213 {
6214 /* XXX: type_sprint */
6215 fprintf_unfiltered (gdb_stderr, _("Type "));
6216 type_print (type, "", gdb_stderr, -1);
6217 error (_(" has no component named %s"), name);
6218 }
6219 }
6220
6221 return NULL;
6222 }
6223
6224 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6225 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6226 represents an unchecked union (that is, the variant part of a
6227 record that is named in an Unchecked_Union pragma). */
6228
6229 static int
6230 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6231 {
6232 char *discrim_name = ada_variant_discrim_name (var_type);
6233 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6234 == NULL);
6235 }
6236
6237
6238 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6239 within a value of type OUTER_TYPE that is stored in GDB at
6240 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6241 numbering from 0) is applicable. Returns -1 if none are. */
6242
6243 int
6244 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6245 const gdb_byte *outer_valaddr)
6246 {
6247 int others_clause;
6248 int i;
6249 char *discrim_name = ada_variant_discrim_name (var_type);
6250 struct value *outer;
6251 struct value *discrim;
6252 LONGEST discrim_val;
6253
6254 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6255 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6256 if (discrim == NULL)
6257 return -1;
6258 discrim_val = value_as_long (discrim);
6259
6260 others_clause = -1;
6261 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6262 {
6263 if (ada_is_others_clause (var_type, i))
6264 others_clause = i;
6265 else if (ada_in_variant (discrim_val, var_type, i))
6266 return i;
6267 }
6268
6269 return others_clause;
6270 }
6271 \f
6272
6273
6274 /* Dynamic-Sized Records */
6275
6276 /* Strategy: The type ostensibly attached to a value with dynamic size
6277 (i.e., a size that is not statically recorded in the debugging
6278 data) does not accurately reflect the size or layout of the value.
6279 Our strategy is to convert these values to values with accurate,
6280 conventional types that are constructed on the fly. */
6281
6282 /* There is a subtle and tricky problem here. In general, we cannot
6283 determine the size of dynamic records without its data. However,
6284 the 'struct value' data structure, which GDB uses to represent
6285 quantities in the inferior process (the target), requires the size
6286 of the type at the time of its allocation in order to reserve space
6287 for GDB's internal copy of the data. That's why the
6288 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6289 rather than struct value*s.
6290
6291 However, GDB's internal history variables ($1, $2, etc.) are
6292 struct value*s containing internal copies of the data that are not, in
6293 general, the same as the data at their corresponding addresses in
6294 the target. Fortunately, the types we give to these values are all
6295 conventional, fixed-size types (as per the strategy described
6296 above), so that we don't usually have to perform the
6297 'to_fixed_xxx_type' conversions to look at their values.
6298 Unfortunately, there is one exception: if one of the internal
6299 history variables is an array whose elements are unconstrained
6300 records, then we will need to create distinct fixed types for each
6301 element selected. */
6302
6303 /* The upshot of all of this is that many routines take a (type, host
6304 address, target address) triple as arguments to represent a value.
6305 The host address, if non-null, is supposed to contain an internal
6306 copy of the relevant data; otherwise, the program is to consult the
6307 target at the target address. */
6308
6309 /* Assuming that VAL0 represents a pointer value, the result of
6310 dereferencing it. Differs from value_ind in its treatment of
6311 dynamic-sized types. */
6312
6313 struct value *
6314 ada_value_ind (struct value *val0)
6315 {
6316 struct value *val = unwrap_value (value_ind (val0));
6317 return ada_to_fixed_value (val);
6318 }
6319
6320 /* The value resulting from dereferencing any "reference to"
6321 qualifiers on VAL0. */
6322
6323 static struct value *
6324 ada_coerce_ref (struct value *val0)
6325 {
6326 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6327 {
6328 struct value *val = val0;
6329 val = coerce_ref (val);
6330 val = unwrap_value (val);
6331 return ada_to_fixed_value (val);
6332 }
6333 else
6334 return val0;
6335 }
6336
6337 /* Return OFF rounded upward if necessary to a multiple of
6338 ALIGNMENT (a power of 2). */
6339
6340 static unsigned int
6341 align_value (unsigned int off, unsigned int alignment)
6342 {
6343 return (off + alignment - 1) & ~(alignment - 1);
6344 }
6345
6346 /* Return the bit alignment required for field #F of template type TYPE. */
6347
6348 static unsigned int
6349 field_alignment (struct type *type, int f)
6350 {
6351 const char *name = TYPE_FIELD_NAME (type, f);
6352 int len;
6353 int align_offset;
6354
6355 /* The field name should never be null, unless the debugging information
6356 is somehow malformed. In this case, we assume the field does not
6357 require any alignment. */
6358 if (name == NULL)
6359 return 1;
6360
6361 len = strlen (name);
6362
6363 if (!isdigit (name[len - 1]))
6364 return 1;
6365
6366 if (isdigit (name[len - 2]))
6367 align_offset = len - 2;
6368 else
6369 align_offset = len - 1;
6370
6371 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6372 return TARGET_CHAR_BIT;
6373
6374 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6375 }
6376
6377 /* Find a symbol named NAME. Ignores ambiguity. */
6378
6379 struct symbol *
6380 ada_find_any_symbol (const char *name)
6381 {
6382 struct symbol *sym;
6383
6384 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6385 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6386 return sym;
6387
6388 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6389 return sym;
6390 }
6391
6392 /* Find a type named NAME. Ignores ambiguity. This routine will look
6393 solely for types defined by debug info, it will not search the GDB
6394 primitive types. */
6395
6396 struct type *
6397 ada_find_any_type (const char *name)
6398 {
6399 struct symbol *sym = ada_find_any_symbol (name);
6400
6401 if (sym != NULL)
6402 return SYMBOL_TYPE (sym);
6403
6404 return NULL;
6405 }
6406
6407 /* Given NAME and an associated BLOCK, search all symbols for
6408 NAME suffixed with "___XR", which is the ``renaming'' symbol
6409 associated to NAME. Return this symbol if found, return
6410 NULL otherwise. */
6411
6412 struct symbol *
6413 ada_find_renaming_symbol (const char *name, struct block *block)
6414 {
6415 struct symbol *sym;
6416
6417 sym = find_old_style_renaming_symbol (name, block);
6418
6419 if (sym != NULL)
6420 return sym;
6421
6422 /* Not right yet. FIXME pnh 7/20/2007. */
6423 sym = ada_find_any_symbol (name);
6424 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6425 return sym;
6426 else
6427 return NULL;
6428 }
6429
6430 static struct symbol *
6431 find_old_style_renaming_symbol (const char *name, struct block *block)
6432 {
6433 const struct symbol *function_sym = block_linkage_function (block);
6434 char *rename;
6435
6436 if (function_sym != NULL)
6437 {
6438 /* If the symbol is defined inside a function, NAME is not fully
6439 qualified. This means we need to prepend the function name
6440 as well as adding the ``___XR'' suffix to build the name of
6441 the associated renaming symbol. */
6442 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6443 /* Function names sometimes contain suffixes used
6444 for instance to qualify nested subprograms. When building
6445 the XR type name, we need to make sure that this suffix is
6446 not included. So do not include any suffix in the function
6447 name length below. */
6448 int function_name_len = ada_name_prefix_len (function_name);
6449 const int rename_len = function_name_len + 2 /* "__" */
6450 + strlen (name) + 6 /* "___XR\0" */ ;
6451
6452 /* Strip the suffix if necessary. */
6453 ada_remove_trailing_digits (function_name, &function_name_len);
6454 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6455 ada_remove_Xbn_suffix (function_name, &function_name_len);
6456
6457 /* Library-level functions are a special case, as GNAT adds
6458 a ``_ada_'' prefix to the function name to avoid namespace
6459 pollution. However, the renaming symbols themselves do not
6460 have this prefix, so we need to skip this prefix if present. */
6461 if (function_name_len > 5 /* "_ada_" */
6462 && strstr (function_name, "_ada_") == function_name)
6463 {
6464 function_name += 5;
6465 function_name_len -= 5;
6466 }
6467
6468 rename = (char *) alloca (rename_len * sizeof (char));
6469 strncpy (rename, function_name, function_name_len);
6470 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6471 "__%s___XR", name);
6472 }
6473 else
6474 {
6475 const int rename_len = strlen (name) + 6;
6476 rename = (char *) alloca (rename_len * sizeof (char));
6477 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
6478 }
6479
6480 return ada_find_any_symbol (rename);
6481 }
6482
6483 /* Because of GNAT encoding conventions, several GDB symbols may match a
6484 given type name. If the type denoted by TYPE0 is to be preferred to
6485 that of TYPE1 for purposes of type printing, return non-zero;
6486 otherwise return 0. */
6487
6488 int
6489 ada_prefer_type (struct type *type0, struct type *type1)
6490 {
6491 if (type1 == NULL)
6492 return 1;
6493 else if (type0 == NULL)
6494 return 0;
6495 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6496 return 1;
6497 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6498 return 0;
6499 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6500 return 1;
6501 else if (ada_is_constrained_packed_array_type (type0))
6502 return 1;
6503 else if (ada_is_array_descriptor_type (type0)
6504 && !ada_is_array_descriptor_type (type1))
6505 return 1;
6506 else
6507 {
6508 const char *type0_name = type_name_no_tag (type0);
6509 const char *type1_name = type_name_no_tag (type1);
6510
6511 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6512 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6513 return 1;
6514 }
6515 return 0;
6516 }
6517
6518 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6519 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6520
6521 char *
6522 ada_type_name (struct type *type)
6523 {
6524 if (type == NULL)
6525 return NULL;
6526 else if (TYPE_NAME (type) != NULL)
6527 return TYPE_NAME (type);
6528 else
6529 return TYPE_TAG_NAME (type);
6530 }
6531
6532 /* Search the list of "descriptive" types associated to TYPE for a type
6533 whose name is NAME. */
6534
6535 static struct type *
6536 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6537 {
6538 struct type *result;
6539
6540 /* If there no descriptive-type info, then there is no parallel type
6541 to be found. */
6542 if (!HAVE_GNAT_AUX_INFO (type))
6543 return NULL;
6544
6545 result = TYPE_DESCRIPTIVE_TYPE (type);
6546 while (result != NULL)
6547 {
6548 char *result_name = ada_type_name (result);
6549
6550 if (result_name == NULL)
6551 {
6552 warning (_("unexpected null name on descriptive type"));
6553 return NULL;
6554 }
6555
6556 /* If the names match, stop. */
6557 if (strcmp (result_name, name) == 0)
6558 break;
6559
6560 /* Otherwise, look at the next item on the list, if any. */
6561 if (HAVE_GNAT_AUX_INFO (result))
6562 result = TYPE_DESCRIPTIVE_TYPE (result);
6563 else
6564 result = NULL;
6565 }
6566
6567 /* If we didn't find a match, see whether this is a packed array. With
6568 older compilers, the descriptive type information is either absent or
6569 irrelevant when it comes to packed arrays so the above lookup fails.
6570 Fall back to using a parallel lookup by name in this case. */
6571 if (result == NULL && ada_is_constrained_packed_array_type (type))
6572 return ada_find_any_type (name);
6573
6574 return result;
6575 }
6576
6577 /* Find a parallel type to TYPE with the specified NAME, using the
6578 descriptive type taken from the debugging information, if available,
6579 and otherwise using the (slower) name-based method. */
6580
6581 static struct type *
6582 ada_find_parallel_type_with_name (struct type *type, const char *name)
6583 {
6584 struct type *result = NULL;
6585
6586 if (HAVE_GNAT_AUX_INFO (type))
6587 result = find_parallel_type_by_descriptive_type (type, name);
6588 else
6589 result = ada_find_any_type (name);
6590
6591 return result;
6592 }
6593
6594 /* Same as above, but specify the name of the parallel type by appending
6595 SUFFIX to the name of TYPE. */
6596
6597 struct type *
6598 ada_find_parallel_type (struct type *type, const char *suffix)
6599 {
6600 char *name, *typename = ada_type_name (type);
6601 int len;
6602
6603 if (typename == NULL)
6604 return NULL;
6605
6606 len = strlen (typename);
6607
6608 name = (char *) alloca (len + strlen (suffix) + 1);
6609
6610 strcpy (name, typename);
6611 strcpy (name + len, suffix);
6612
6613 return ada_find_parallel_type_with_name (type, name);
6614 }
6615
6616 /* If TYPE is a variable-size record type, return the corresponding template
6617 type describing its fields. Otherwise, return NULL. */
6618
6619 static struct type *
6620 dynamic_template_type (struct type *type)
6621 {
6622 type = ada_check_typedef (type);
6623
6624 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6625 || ada_type_name (type) == NULL)
6626 return NULL;
6627 else
6628 {
6629 int len = strlen (ada_type_name (type));
6630 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6631 return type;
6632 else
6633 return ada_find_parallel_type (type, "___XVE");
6634 }
6635 }
6636
6637 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6638 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6639
6640 static int
6641 is_dynamic_field (struct type *templ_type, int field_num)
6642 {
6643 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6644 return name != NULL
6645 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6646 && strstr (name, "___XVL") != NULL;
6647 }
6648
6649 /* The index of the variant field of TYPE, or -1 if TYPE does not
6650 represent a variant record type. */
6651
6652 static int
6653 variant_field_index (struct type *type)
6654 {
6655 int f;
6656
6657 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6658 return -1;
6659
6660 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6661 {
6662 if (ada_is_variant_part (type, f))
6663 return f;
6664 }
6665 return -1;
6666 }
6667
6668 /* A record type with no fields. */
6669
6670 static struct type *
6671 empty_record (struct type *template)
6672 {
6673 struct type *type = alloc_type_copy (template);
6674 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6675 TYPE_NFIELDS (type) = 0;
6676 TYPE_FIELDS (type) = NULL;
6677 INIT_CPLUS_SPECIFIC (type);
6678 TYPE_NAME (type) = "<empty>";
6679 TYPE_TAG_NAME (type) = NULL;
6680 TYPE_LENGTH (type) = 0;
6681 return type;
6682 }
6683
6684 /* An ordinary record type (with fixed-length fields) that describes
6685 the value of type TYPE at VALADDR or ADDRESS (see comments at
6686 the beginning of this section) VAL according to GNAT conventions.
6687 DVAL0 should describe the (portion of a) record that contains any
6688 necessary discriminants. It should be NULL if value_type (VAL) is
6689 an outer-level type (i.e., as opposed to a branch of a variant.) A
6690 variant field (unless unchecked) is replaced by a particular branch
6691 of the variant.
6692
6693 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6694 length are not statically known are discarded. As a consequence,
6695 VALADDR, ADDRESS and DVAL0 are ignored.
6696
6697 NOTE: Limitations: For now, we assume that dynamic fields and
6698 variants occupy whole numbers of bytes. However, they need not be
6699 byte-aligned. */
6700
6701 struct type *
6702 ada_template_to_fixed_record_type_1 (struct type *type,
6703 const gdb_byte *valaddr,
6704 CORE_ADDR address, struct value *dval0,
6705 int keep_dynamic_fields)
6706 {
6707 struct value *mark = value_mark ();
6708 struct value *dval;
6709 struct type *rtype;
6710 int nfields, bit_len;
6711 int variant_field;
6712 long off;
6713 int fld_bit_len, bit_incr;
6714 int f;
6715
6716 /* Compute the number of fields in this record type that are going
6717 to be processed: unless keep_dynamic_fields, this includes only
6718 fields whose position and length are static will be processed. */
6719 if (keep_dynamic_fields)
6720 nfields = TYPE_NFIELDS (type);
6721 else
6722 {
6723 nfields = 0;
6724 while (nfields < TYPE_NFIELDS (type)
6725 && !ada_is_variant_part (type, nfields)
6726 && !is_dynamic_field (type, nfields))
6727 nfields++;
6728 }
6729
6730 rtype = alloc_type_copy (type);
6731 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6732 INIT_CPLUS_SPECIFIC (rtype);
6733 TYPE_NFIELDS (rtype) = nfields;
6734 TYPE_FIELDS (rtype) = (struct field *)
6735 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6736 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6737 TYPE_NAME (rtype) = ada_type_name (type);
6738 TYPE_TAG_NAME (rtype) = NULL;
6739 TYPE_FIXED_INSTANCE (rtype) = 1;
6740
6741 off = 0;
6742 bit_len = 0;
6743 variant_field = -1;
6744
6745 for (f = 0; f < nfields; f += 1)
6746 {
6747 off = align_value (off, field_alignment (type, f))
6748 + TYPE_FIELD_BITPOS (type, f);
6749 TYPE_FIELD_BITPOS (rtype, f) = off;
6750 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6751
6752 if (ada_is_variant_part (type, f))
6753 {
6754 variant_field = f;
6755 fld_bit_len = bit_incr = 0;
6756 }
6757 else if (is_dynamic_field (type, f))
6758 {
6759 const gdb_byte *field_valaddr = valaddr;
6760 CORE_ADDR field_address = address;
6761 struct type *field_type =
6762 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6763
6764 if (dval0 == NULL)
6765 {
6766 /* rtype's length is computed based on the run-time
6767 value of discriminants. If the discriminants are not
6768 initialized, the type size may be completely bogus and
6769 GDB may fail to allocate a value for it. So check the
6770 size first before creating the value. */
6771 check_size (rtype);
6772 dval = value_from_contents_and_address (rtype, valaddr, address);
6773 }
6774 else
6775 dval = dval0;
6776
6777 /* If the type referenced by this field is an aligner type, we need
6778 to unwrap that aligner type, because its size might not be set.
6779 Keeping the aligner type would cause us to compute the wrong
6780 size for this field, impacting the offset of the all the fields
6781 that follow this one. */
6782 if (ada_is_aligner_type (field_type))
6783 {
6784 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6785
6786 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6787 field_address = cond_offset_target (field_address, field_offset);
6788 field_type = ada_aligned_type (field_type);
6789 }
6790
6791 field_valaddr = cond_offset_host (field_valaddr,
6792 off / TARGET_CHAR_BIT);
6793 field_address = cond_offset_target (field_address,
6794 off / TARGET_CHAR_BIT);
6795
6796 /* Get the fixed type of the field. Note that, in this case,
6797 we do not want to get the real type out of the tag: if
6798 the current field is the parent part of a tagged record,
6799 we will get the tag of the object. Clearly wrong: the real
6800 type of the parent is not the real type of the child. We
6801 would end up in an infinite loop. */
6802 field_type = ada_get_base_type (field_type);
6803 field_type = ada_to_fixed_type (field_type, field_valaddr,
6804 field_address, dval, 0);
6805
6806 TYPE_FIELD_TYPE (rtype, f) = field_type;
6807 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6808 bit_incr = fld_bit_len =
6809 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6810 }
6811 else
6812 {
6813 struct type *field_type = TYPE_FIELD_TYPE (type, f);
6814
6815 TYPE_FIELD_TYPE (rtype, f) = field_type;
6816 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6817 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6818 bit_incr = fld_bit_len =
6819 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6820 else
6821 bit_incr = fld_bit_len =
6822 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
6823 }
6824 if (off + fld_bit_len > bit_len)
6825 bit_len = off + fld_bit_len;
6826 off += bit_incr;
6827 TYPE_LENGTH (rtype) =
6828 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6829 }
6830
6831 /* We handle the variant part, if any, at the end because of certain
6832 odd cases in which it is re-ordered so as NOT to be the last field of
6833 the record. This can happen in the presence of representation
6834 clauses. */
6835 if (variant_field >= 0)
6836 {
6837 struct type *branch_type;
6838
6839 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6840
6841 if (dval0 == NULL)
6842 dval = value_from_contents_and_address (rtype, valaddr, address);
6843 else
6844 dval = dval0;
6845
6846 branch_type =
6847 to_fixed_variant_branch_type
6848 (TYPE_FIELD_TYPE (type, variant_field),
6849 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6850 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6851 if (branch_type == NULL)
6852 {
6853 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6854 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6855 TYPE_NFIELDS (rtype) -= 1;
6856 }
6857 else
6858 {
6859 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6860 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6861 fld_bit_len =
6862 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6863 TARGET_CHAR_BIT;
6864 if (off + fld_bit_len > bit_len)
6865 bit_len = off + fld_bit_len;
6866 TYPE_LENGTH (rtype) =
6867 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6868 }
6869 }
6870
6871 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6872 should contain the alignment of that record, which should be a strictly
6873 positive value. If null or negative, then something is wrong, most
6874 probably in the debug info. In that case, we don't round up the size
6875 of the resulting type. If this record is not part of another structure,
6876 the current RTYPE length might be good enough for our purposes. */
6877 if (TYPE_LENGTH (type) <= 0)
6878 {
6879 if (TYPE_NAME (rtype))
6880 warning (_("Invalid type size for `%s' detected: %d."),
6881 TYPE_NAME (rtype), TYPE_LENGTH (type));
6882 else
6883 warning (_("Invalid type size for <unnamed> detected: %d."),
6884 TYPE_LENGTH (type));
6885 }
6886 else
6887 {
6888 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6889 TYPE_LENGTH (type));
6890 }
6891
6892 value_free_to_mark (mark);
6893 if (TYPE_LENGTH (rtype) > varsize_limit)
6894 error (_("record type with dynamic size is larger than varsize-limit"));
6895 return rtype;
6896 }
6897
6898 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6899 of 1. */
6900
6901 static struct type *
6902 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
6903 CORE_ADDR address, struct value *dval0)
6904 {
6905 return ada_template_to_fixed_record_type_1 (type, valaddr,
6906 address, dval0, 1);
6907 }
6908
6909 /* An ordinary record type in which ___XVL-convention fields and
6910 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6911 static approximations, containing all possible fields. Uses
6912 no runtime values. Useless for use in values, but that's OK,
6913 since the results are used only for type determinations. Works on both
6914 structs and unions. Representation note: to save space, we memorize
6915 the result of this function in the TYPE_TARGET_TYPE of the
6916 template type. */
6917
6918 static struct type *
6919 template_to_static_fixed_type (struct type *type0)
6920 {
6921 struct type *type;
6922 int nfields;
6923 int f;
6924
6925 if (TYPE_TARGET_TYPE (type0) != NULL)
6926 return TYPE_TARGET_TYPE (type0);
6927
6928 nfields = TYPE_NFIELDS (type0);
6929 type = type0;
6930
6931 for (f = 0; f < nfields; f += 1)
6932 {
6933 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
6934 struct type *new_type;
6935
6936 if (is_dynamic_field (type0, f))
6937 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
6938 else
6939 new_type = static_unwrap_type (field_type);
6940 if (type == type0 && new_type != field_type)
6941 {
6942 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
6943 TYPE_CODE (type) = TYPE_CODE (type0);
6944 INIT_CPLUS_SPECIFIC (type);
6945 TYPE_NFIELDS (type) = nfields;
6946 TYPE_FIELDS (type) = (struct field *)
6947 TYPE_ALLOC (type, nfields * sizeof (struct field));
6948 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6949 sizeof (struct field) * nfields);
6950 TYPE_NAME (type) = ada_type_name (type0);
6951 TYPE_TAG_NAME (type) = NULL;
6952 TYPE_FIXED_INSTANCE (type) = 1;
6953 TYPE_LENGTH (type) = 0;
6954 }
6955 TYPE_FIELD_TYPE (type, f) = new_type;
6956 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
6957 }
6958 return type;
6959 }
6960
6961 /* Given an object of type TYPE whose contents are at VALADDR and
6962 whose address in memory is ADDRESS, returns a revision of TYPE,
6963 which should be a non-dynamic-sized record, in which the variant
6964 part, if any, is replaced with the appropriate branch. Looks
6965 for discriminant values in DVAL0, which can be NULL if the record
6966 contains the necessary discriminant values. */
6967
6968 static struct type *
6969 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
6970 CORE_ADDR address, struct value *dval0)
6971 {
6972 struct value *mark = value_mark ();
6973 struct value *dval;
6974 struct type *rtype;
6975 struct type *branch_type;
6976 int nfields = TYPE_NFIELDS (type);
6977 int variant_field = variant_field_index (type);
6978
6979 if (variant_field == -1)
6980 return type;
6981
6982 if (dval0 == NULL)
6983 dval = value_from_contents_and_address (type, valaddr, address);
6984 else
6985 dval = dval0;
6986
6987 rtype = alloc_type_copy (type);
6988 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6989 INIT_CPLUS_SPECIFIC (rtype);
6990 TYPE_NFIELDS (rtype) = nfields;
6991 TYPE_FIELDS (rtype) =
6992 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6993 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
6994 sizeof (struct field) * nfields);
6995 TYPE_NAME (rtype) = ada_type_name (type);
6996 TYPE_TAG_NAME (rtype) = NULL;
6997 TYPE_FIXED_INSTANCE (rtype) = 1;
6998 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
6999
7000 branch_type = to_fixed_variant_branch_type
7001 (TYPE_FIELD_TYPE (type, variant_field),
7002 cond_offset_host (valaddr,
7003 TYPE_FIELD_BITPOS (type, variant_field)
7004 / TARGET_CHAR_BIT),
7005 cond_offset_target (address,
7006 TYPE_FIELD_BITPOS (type, variant_field)
7007 / TARGET_CHAR_BIT), dval);
7008 if (branch_type == NULL)
7009 {
7010 int f;
7011 for (f = variant_field + 1; f < nfields; f += 1)
7012 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7013 TYPE_NFIELDS (rtype) -= 1;
7014 }
7015 else
7016 {
7017 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7018 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7019 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7020 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7021 }
7022 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7023
7024 value_free_to_mark (mark);
7025 return rtype;
7026 }
7027
7028 /* An ordinary record type (with fixed-length fields) that describes
7029 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7030 beginning of this section]. Any necessary discriminants' values
7031 should be in DVAL, a record value; it may be NULL if the object
7032 at ADDR itself contains any necessary discriminant values.
7033 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7034 values from the record are needed. Except in the case that DVAL,
7035 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7036 unchecked) is replaced by a particular branch of the variant.
7037
7038 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7039 is questionable and may be removed. It can arise during the
7040 processing of an unconstrained-array-of-record type where all the
7041 variant branches have exactly the same size. This is because in
7042 such cases, the compiler does not bother to use the XVS convention
7043 when encoding the record. I am currently dubious of this
7044 shortcut and suspect the compiler should be altered. FIXME. */
7045
7046 static struct type *
7047 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7048 CORE_ADDR address, struct value *dval)
7049 {
7050 struct type *templ_type;
7051
7052 if (TYPE_FIXED_INSTANCE (type0))
7053 return type0;
7054
7055 templ_type = dynamic_template_type (type0);
7056
7057 if (templ_type != NULL)
7058 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7059 else if (variant_field_index (type0) >= 0)
7060 {
7061 if (dval == NULL && valaddr == NULL && address == 0)
7062 return type0;
7063 return to_record_with_fixed_variant_part (type0, valaddr, address,
7064 dval);
7065 }
7066 else
7067 {
7068 TYPE_FIXED_INSTANCE (type0) = 1;
7069 return type0;
7070 }
7071
7072 }
7073
7074 /* An ordinary record type (with fixed-length fields) that describes
7075 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7076 union type. Any necessary discriminants' values should be in DVAL,
7077 a record value. That is, this routine selects the appropriate
7078 branch of the union at ADDR according to the discriminant value
7079 indicated in the union's type name. Returns VAR_TYPE0 itself if
7080 it represents a variant subject to a pragma Unchecked_Union. */
7081
7082 static struct type *
7083 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7084 CORE_ADDR address, struct value *dval)
7085 {
7086 int which;
7087 struct type *templ_type;
7088 struct type *var_type;
7089
7090 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7091 var_type = TYPE_TARGET_TYPE (var_type0);
7092 else
7093 var_type = var_type0;
7094
7095 templ_type = ada_find_parallel_type (var_type, "___XVU");
7096
7097 if (templ_type != NULL)
7098 var_type = templ_type;
7099
7100 if (is_unchecked_variant (var_type, value_type (dval)))
7101 return var_type0;
7102 which =
7103 ada_which_variant_applies (var_type,
7104 value_type (dval), value_contents (dval));
7105
7106 if (which < 0)
7107 return empty_record (var_type);
7108 else if (is_dynamic_field (var_type, which))
7109 return to_fixed_record_type
7110 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7111 valaddr, address, dval);
7112 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7113 return
7114 to_fixed_record_type
7115 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7116 else
7117 return TYPE_FIELD_TYPE (var_type, which);
7118 }
7119
7120 /* Assuming that TYPE0 is an array type describing the type of a value
7121 at ADDR, and that DVAL describes a record containing any
7122 discriminants used in TYPE0, returns a type for the value that
7123 contains no dynamic components (that is, no components whose sizes
7124 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7125 true, gives an error message if the resulting type's size is over
7126 varsize_limit. */
7127
7128 static struct type *
7129 to_fixed_array_type (struct type *type0, struct value *dval,
7130 int ignore_too_big)
7131 {
7132 struct type *index_type_desc;
7133 struct type *result;
7134 int constrained_packed_array_p;
7135
7136 if (TYPE_FIXED_INSTANCE (type0))
7137 return type0;
7138
7139 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7140 if (constrained_packed_array_p)
7141 type0 = decode_constrained_packed_array_type (type0);
7142
7143 index_type_desc = ada_find_parallel_type (type0, "___XA");
7144 if (index_type_desc == NULL)
7145 {
7146 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7147 /* NOTE: elt_type---the fixed version of elt_type0---should never
7148 depend on the contents of the array in properly constructed
7149 debugging data. */
7150 /* Create a fixed version of the array element type.
7151 We're not providing the address of an element here,
7152 and thus the actual object value cannot be inspected to do
7153 the conversion. This should not be a problem, since arrays of
7154 unconstrained objects are not allowed. In particular, all
7155 the elements of an array of a tagged type should all be of
7156 the same type specified in the debugging info. No need to
7157 consult the object tag. */
7158 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7159
7160 /* Make sure we always create a new array type when dealing with
7161 packed array types, since we're going to fix-up the array
7162 type length and element bitsize a little further down. */
7163 if (elt_type0 == elt_type && !constrained_packed_array_p)
7164 result = type0;
7165 else
7166 result = create_array_type (alloc_type_copy (type0),
7167 elt_type, TYPE_INDEX_TYPE (type0));
7168 }
7169 else
7170 {
7171 int i;
7172 struct type *elt_type0;
7173
7174 elt_type0 = type0;
7175 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7176 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7177
7178 /* NOTE: result---the fixed version of elt_type0---should never
7179 depend on the contents of the array in properly constructed
7180 debugging data. */
7181 /* Create a fixed version of the array element type.
7182 We're not providing the address of an element here,
7183 and thus the actual object value cannot be inspected to do
7184 the conversion. This should not be a problem, since arrays of
7185 unconstrained objects are not allowed. In particular, all
7186 the elements of an array of a tagged type should all be of
7187 the same type specified in the debugging info. No need to
7188 consult the object tag. */
7189 result =
7190 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7191
7192 elt_type0 = type0;
7193 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7194 {
7195 struct type *range_type =
7196 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7197 dval, TYPE_INDEX_TYPE (elt_type0));
7198 result = create_array_type (alloc_type_copy (elt_type0),
7199 result, range_type);
7200 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7201 }
7202 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7203 error (_("array type with dynamic size is larger than varsize-limit"));
7204 }
7205
7206 if (constrained_packed_array_p)
7207 {
7208 /* So far, the resulting type has been created as if the original
7209 type was a regular (non-packed) array type. As a result, the
7210 bitsize of the array elements needs to be set again, and the array
7211 length needs to be recomputed based on that bitsize. */
7212 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7213 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7214
7215 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7216 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7217 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7218 TYPE_LENGTH (result)++;
7219 }
7220
7221 TYPE_FIXED_INSTANCE (result) = 1;
7222 return result;
7223 }
7224
7225
7226 /* A standard type (containing no dynamically sized components)
7227 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7228 DVAL describes a record containing any discriminants used in TYPE0,
7229 and may be NULL if there are none, or if the object of type TYPE at
7230 ADDRESS or in VALADDR contains these discriminants.
7231
7232 If CHECK_TAG is not null, in the case of tagged types, this function
7233 attempts to locate the object's tag and use it to compute the actual
7234 type. However, when ADDRESS is null, we cannot use it to determine the
7235 location of the tag, and therefore compute the tagged type's actual type.
7236 So we return the tagged type without consulting the tag. */
7237
7238 static struct type *
7239 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7240 CORE_ADDR address, struct value *dval, int check_tag)
7241 {
7242 type = ada_check_typedef (type);
7243 switch (TYPE_CODE (type))
7244 {
7245 default:
7246 return type;
7247 case TYPE_CODE_STRUCT:
7248 {
7249 struct type *static_type = to_static_fixed_type (type);
7250 struct type *fixed_record_type =
7251 to_fixed_record_type (type, valaddr, address, NULL);
7252 /* If STATIC_TYPE is a tagged type and we know the object's address,
7253 then we can determine its tag, and compute the object's actual
7254 type from there. Note that we have to use the fixed record
7255 type (the parent part of the record may have dynamic fields
7256 and the way the location of _tag is expressed may depend on
7257 them). */
7258
7259 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7260 {
7261 struct type *real_type =
7262 type_from_tag (value_tag_from_contents_and_address
7263 (fixed_record_type,
7264 valaddr,
7265 address));
7266 if (real_type != NULL)
7267 return to_fixed_record_type (real_type, valaddr, address, NULL);
7268 }
7269
7270 /* Check to see if there is a parallel ___XVZ variable.
7271 If there is, then it provides the actual size of our type. */
7272 else if (ada_type_name (fixed_record_type) != NULL)
7273 {
7274 char *name = ada_type_name (fixed_record_type);
7275 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7276 int xvz_found = 0;
7277 LONGEST size;
7278
7279 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7280 size = get_int_var_value (xvz_name, &xvz_found);
7281 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7282 {
7283 fixed_record_type = copy_type (fixed_record_type);
7284 TYPE_LENGTH (fixed_record_type) = size;
7285
7286 /* The FIXED_RECORD_TYPE may have be a stub. We have
7287 observed this when the debugging info is STABS, and
7288 apparently it is something that is hard to fix.
7289
7290 In practice, we don't need the actual type definition
7291 at all, because the presence of the XVZ variable allows us
7292 to assume that there must be a XVS type as well, which we
7293 should be able to use later, when we need the actual type
7294 definition.
7295
7296 In the meantime, pretend that the "fixed" type we are
7297 returning is NOT a stub, because this can cause trouble
7298 when using this type to create new types targeting it.
7299 Indeed, the associated creation routines often check
7300 whether the target type is a stub and will try to replace
7301 it, thus using a type with the wrong size. This, in turn,
7302 might cause the new type to have the wrong size too.
7303 Consider the case of an array, for instance, where the size
7304 of the array is computed from the number of elements in
7305 our array multiplied by the size of its element. */
7306 TYPE_STUB (fixed_record_type) = 0;
7307 }
7308 }
7309 return fixed_record_type;
7310 }
7311 case TYPE_CODE_ARRAY:
7312 return to_fixed_array_type (type, dval, 1);
7313 case TYPE_CODE_UNION:
7314 if (dval == NULL)
7315 return type;
7316 else
7317 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7318 }
7319 }
7320
7321 /* The same as ada_to_fixed_type_1, except that it preserves the type
7322 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7323 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7324
7325 struct type *
7326 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7327 CORE_ADDR address, struct value *dval, int check_tag)
7328
7329 {
7330 struct type *fixed_type =
7331 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7332
7333 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7334 && TYPE_TARGET_TYPE (type) == fixed_type)
7335 return type;
7336
7337 return fixed_type;
7338 }
7339
7340 /* A standard (static-sized) type corresponding as well as possible to
7341 TYPE0, but based on no runtime data. */
7342
7343 static struct type *
7344 to_static_fixed_type (struct type *type0)
7345 {
7346 struct type *type;
7347
7348 if (type0 == NULL)
7349 return NULL;
7350
7351 if (TYPE_FIXED_INSTANCE (type0))
7352 return type0;
7353
7354 type0 = ada_check_typedef (type0);
7355
7356 switch (TYPE_CODE (type0))
7357 {
7358 default:
7359 return type0;
7360 case TYPE_CODE_STRUCT:
7361 type = dynamic_template_type (type0);
7362 if (type != NULL)
7363 return template_to_static_fixed_type (type);
7364 else
7365 return template_to_static_fixed_type (type0);
7366 case TYPE_CODE_UNION:
7367 type = ada_find_parallel_type (type0, "___XVU");
7368 if (type != NULL)
7369 return template_to_static_fixed_type (type);
7370 else
7371 return template_to_static_fixed_type (type0);
7372 }
7373 }
7374
7375 /* A static approximation of TYPE with all type wrappers removed. */
7376
7377 static struct type *
7378 static_unwrap_type (struct type *type)
7379 {
7380 if (ada_is_aligner_type (type))
7381 {
7382 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7383 if (ada_type_name (type1) == NULL)
7384 TYPE_NAME (type1) = ada_type_name (type);
7385
7386 return static_unwrap_type (type1);
7387 }
7388 else
7389 {
7390 struct type *raw_real_type = ada_get_base_type (type);
7391 if (raw_real_type == type)
7392 return type;
7393 else
7394 return to_static_fixed_type (raw_real_type);
7395 }
7396 }
7397
7398 /* In some cases, incomplete and private types require
7399 cross-references that are not resolved as records (for example,
7400 type Foo;
7401 type FooP is access Foo;
7402 V: FooP;
7403 type Foo is array ...;
7404 ). In these cases, since there is no mechanism for producing
7405 cross-references to such types, we instead substitute for FooP a
7406 stub enumeration type that is nowhere resolved, and whose tag is
7407 the name of the actual type. Call these types "non-record stubs". */
7408
7409 /* A type equivalent to TYPE that is not a non-record stub, if one
7410 exists, otherwise TYPE. */
7411
7412 struct type *
7413 ada_check_typedef (struct type *type)
7414 {
7415 if (type == NULL)
7416 return NULL;
7417
7418 CHECK_TYPEDEF (type);
7419 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7420 || !TYPE_STUB (type)
7421 || TYPE_TAG_NAME (type) == NULL)
7422 return type;
7423 else
7424 {
7425 char *name = TYPE_TAG_NAME (type);
7426 struct type *type1 = ada_find_any_type (name);
7427 return (type1 == NULL) ? type : type1;
7428 }
7429 }
7430
7431 /* A value representing the data at VALADDR/ADDRESS as described by
7432 type TYPE0, but with a standard (static-sized) type that correctly
7433 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7434 type, then return VAL0 [this feature is simply to avoid redundant
7435 creation of struct values]. */
7436
7437 static struct value *
7438 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7439 struct value *val0)
7440 {
7441 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7442 if (type == type0 && val0 != NULL)
7443 return val0;
7444 else
7445 return value_from_contents_and_address (type, 0, address);
7446 }
7447
7448 /* A value representing VAL, but with a standard (static-sized) type
7449 that correctly describes it. Does not necessarily create a new
7450 value. */
7451
7452 static struct value *
7453 ada_to_fixed_value (struct value *val)
7454 {
7455 return ada_to_fixed_value_create (value_type (val),
7456 value_address (val),
7457 val);
7458 }
7459 \f
7460
7461 /* Attributes */
7462
7463 /* Table mapping attribute numbers to names.
7464 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7465
7466 static const char *attribute_names[] = {
7467 "<?>",
7468
7469 "first",
7470 "last",
7471 "length",
7472 "image",
7473 "max",
7474 "min",
7475 "modulus",
7476 "pos",
7477 "size",
7478 "tag",
7479 "val",
7480 0
7481 };
7482
7483 const char *
7484 ada_attribute_name (enum exp_opcode n)
7485 {
7486 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7487 return attribute_names[n - OP_ATR_FIRST + 1];
7488 else
7489 return attribute_names[0];
7490 }
7491
7492 /* Evaluate the 'POS attribute applied to ARG. */
7493
7494 static LONGEST
7495 pos_atr (struct value *arg)
7496 {
7497 struct value *val = coerce_ref (arg);
7498 struct type *type = value_type (val);
7499
7500 if (!discrete_type_p (type))
7501 error (_("'POS only defined on discrete types"));
7502
7503 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7504 {
7505 int i;
7506 LONGEST v = value_as_long (val);
7507
7508 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7509 {
7510 if (v == TYPE_FIELD_BITPOS (type, i))
7511 return i;
7512 }
7513 error (_("enumeration value is invalid: can't find 'POS"));
7514 }
7515 else
7516 return value_as_long (val);
7517 }
7518
7519 static struct value *
7520 value_pos_atr (struct type *type, struct value *arg)
7521 {
7522 return value_from_longest (type, pos_atr (arg));
7523 }
7524
7525 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7526
7527 static struct value *
7528 value_val_atr (struct type *type, struct value *arg)
7529 {
7530 if (!discrete_type_p (type))
7531 error (_("'VAL only defined on discrete types"));
7532 if (!integer_type_p (value_type (arg)))
7533 error (_("'VAL requires integral argument"));
7534
7535 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7536 {
7537 long pos = value_as_long (arg);
7538 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7539 error (_("argument to 'VAL out of range"));
7540 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7541 }
7542 else
7543 return value_from_longest (type, value_as_long (arg));
7544 }
7545 \f
7546
7547 /* Evaluation */
7548
7549 /* True if TYPE appears to be an Ada character type.
7550 [At the moment, this is true only for Character and Wide_Character;
7551 It is a heuristic test that could stand improvement]. */
7552
7553 int
7554 ada_is_character_type (struct type *type)
7555 {
7556 const char *name;
7557
7558 /* If the type code says it's a character, then assume it really is,
7559 and don't check any further. */
7560 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7561 return 1;
7562
7563 /* Otherwise, assume it's a character type iff it is a discrete type
7564 with a known character type name. */
7565 name = ada_type_name (type);
7566 return (name != NULL
7567 && (TYPE_CODE (type) == TYPE_CODE_INT
7568 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7569 && (strcmp (name, "character") == 0
7570 || strcmp (name, "wide_character") == 0
7571 || strcmp (name, "wide_wide_character") == 0
7572 || strcmp (name, "unsigned char") == 0));
7573 }
7574
7575 /* True if TYPE appears to be an Ada string type. */
7576
7577 int
7578 ada_is_string_type (struct type *type)
7579 {
7580 type = ada_check_typedef (type);
7581 if (type != NULL
7582 && TYPE_CODE (type) != TYPE_CODE_PTR
7583 && (ada_is_simple_array_type (type)
7584 || ada_is_array_descriptor_type (type))
7585 && ada_array_arity (type) == 1)
7586 {
7587 struct type *elttype = ada_array_element_type (type, 1);
7588
7589 return ada_is_character_type (elttype);
7590 }
7591 else
7592 return 0;
7593 }
7594
7595 /* The compiler sometimes provides a parallel XVS type for a given
7596 PAD type. Normally, it is safe to follow the PAD type directly,
7597 but older versions of the compiler have a bug that causes the offset
7598 of its "F" field to be wrong. Following that field in that case
7599 would lead to incorrect results, but this can be worked around
7600 by ignoring the PAD type and using the associated XVS type instead.
7601
7602 Set to True if the debugger should trust the contents of PAD types.
7603 Otherwise, ignore the PAD type if there is a parallel XVS type. */
7604 static int trust_pad_over_xvs = 1;
7605
7606 /* True if TYPE is a struct type introduced by the compiler to force the
7607 alignment of a value. Such types have a single field with a
7608 distinctive name. */
7609
7610 int
7611 ada_is_aligner_type (struct type *type)
7612 {
7613 type = ada_check_typedef (type);
7614
7615 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
7616 return 0;
7617
7618 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7619 && TYPE_NFIELDS (type) == 1
7620 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7621 }
7622
7623 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7624 the parallel type. */
7625
7626 struct type *
7627 ada_get_base_type (struct type *raw_type)
7628 {
7629 struct type *real_type_namer;
7630 struct type *raw_real_type;
7631
7632 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7633 return raw_type;
7634
7635 if (ada_is_aligner_type (raw_type))
7636 /* The encoding specifies that we should always use the aligner type.
7637 So, even if this aligner type has an associated XVS type, we should
7638 simply ignore it.
7639
7640 According to the compiler gurus, an XVS type parallel to an aligner
7641 type may exist because of a stabs limitation. In stabs, aligner
7642 types are empty because the field has a variable-sized type, and
7643 thus cannot actually be used as an aligner type. As a result,
7644 we need the associated parallel XVS type to decode the type.
7645 Since the policy in the compiler is to not change the internal
7646 representation based on the debugging info format, we sometimes
7647 end up having a redundant XVS type parallel to the aligner type. */
7648 return raw_type;
7649
7650 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7651 if (real_type_namer == NULL
7652 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7653 || TYPE_NFIELDS (real_type_namer) != 1)
7654 return raw_type;
7655
7656 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
7657 {
7658 /* This is an older encoding form where the base type needs to be
7659 looked up by name. We prefer the newer enconding because it is
7660 more efficient. */
7661 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7662 if (raw_real_type == NULL)
7663 return raw_type;
7664 else
7665 return raw_real_type;
7666 }
7667
7668 /* The field in our XVS type is a reference to the base type. */
7669 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
7670 }
7671
7672 /* The type of value designated by TYPE, with all aligners removed. */
7673
7674 struct type *
7675 ada_aligned_type (struct type *type)
7676 {
7677 if (ada_is_aligner_type (type))
7678 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7679 else
7680 return ada_get_base_type (type);
7681 }
7682
7683
7684 /* The address of the aligned value in an object at address VALADDR
7685 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7686
7687 const gdb_byte *
7688 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7689 {
7690 if (ada_is_aligner_type (type))
7691 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7692 valaddr +
7693 TYPE_FIELD_BITPOS (type,
7694 0) / TARGET_CHAR_BIT);
7695 else
7696 return valaddr;
7697 }
7698
7699
7700
7701 /* The printed representation of an enumeration literal with encoded
7702 name NAME. The value is good to the next call of ada_enum_name. */
7703 const char *
7704 ada_enum_name (const char *name)
7705 {
7706 static char *result;
7707 static size_t result_len = 0;
7708 char *tmp;
7709
7710 /* First, unqualify the enumeration name:
7711 1. Search for the last '.' character. If we find one, then skip
7712 all the preceeding characters, the unqualified name starts
7713 right after that dot.
7714 2. Otherwise, we may be debugging on a target where the compiler
7715 translates dots into "__". Search forward for double underscores,
7716 but stop searching when we hit an overloading suffix, which is
7717 of the form "__" followed by digits. */
7718
7719 tmp = strrchr (name, '.');
7720 if (tmp != NULL)
7721 name = tmp + 1;
7722 else
7723 {
7724 while ((tmp = strstr (name, "__")) != NULL)
7725 {
7726 if (isdigit (tmp[2]))
7727 break;
7728 else
7729 name = tmp + 2;
7730 }
7731 }
7732
7733 if (name[0] == 'Q')
7734 {
7735 int v;
7736 if (name[1] == 'U' || name[1] == 'W')
7737 {
7738 if (sscanf (name + 2, "%x", &v) != 1)
7739 return name;
7740 }
7741 else
7742 return name;
7743
7744 GROW_VECT (result, result_len, 16);
7745 if (isascii (v) && isprint (v))
7746 xsnprintf (result, result_len, "'%c'", v);
7747 else if (name[1] == 'U')
7748 xsnprintf (result, result_len, "[\"%02x\"]", v);
7749 else
7750 xsnprintf (result, result_len, "[\"%04x\"]", v);
7751
7752 return result;
7753 }
7754 else
7755 {
7756 tmp = strstr (name, "__");
7757 if (tmp == NULL)
7758 tmp = strstr (name, "$");
7759 if (tmp != NULL)
7760 {
7761 GROW_VECT (result, result_len, tmp - name + 1);
7762 strncpy (result, name, tmp - name);
7763 result[tmp - name] = '\0';
7764 return result;
7765 }
7766
7767 return name;
7768 }
7769 }
7770
7771 /* Evaluate the subexpression of EXP starting at *POS as for
7772 evaluate_type, updating *POS to point just past the evaluated
7773 expression. */
7774
7775 static struct value *
7776 evaluate_subexp_type (struct expression *exp, int *pos)
7777 {
7778 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7779 }
7780
7781 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7782 value it wraps. */
7783
7784 static struct value *
7785 unwrap_value (struct value *val)
7786 {
7787 struct type *type = ada_check_typedef (value_type (val));
7788 if (ada_is_aligner_type (type))
7789 {
7790 struct value *v = ada_value_struct_elt (val, "F", 0);
7791 struct type *val_type = ada_check_typedef (value_type (v));
7792 if (ada_type_name (val_type) == NULL)
7793 TYPE_NAME (val_type) = ada_type_name (type);
7794
7795 return unwrap_value (v);
7796 }
7797 else
7798 {
7799 struct type *raw_real_type =
7800 ada_check_typedef (ada_get_base_type (type));
7801
7802 /* If there is no parallel XVS or XVE type, then the value is
7803 already unwrapped. Return it without further modification. */
7804 if ((type == raw_real_type)
7805 && ada_find_parallel_type (type, "___XVE") == NULL)
7806 return val;
7807
7808 return
7809 coerce_unspec_val_to_type
7810 (val, ada_to_fixed_type (raw_real_type, 0,
7811 value_address (val),
7812 NULL, 1));
7813 }
7814 }
7815
7816 static struct value *
7817 cast_to_fixed (struct type *type, struct value *arg)
7818 {
7819 LONGEST val;
7820
7821 if (type == value_type (arg))
7822 return arg;
7823 else if (ada_is_fixed_point_type (value_type (arg)))
7824 val = ada_float_to_fixed (type,
7825 ada_fixed_to_float (value_type (arg),
7826 value_as_long (arg)));
7827 else
7828 {
7829 DOUBLEST argd = value_as_double (arg);
7830 val = ada_float_to_fixed (type, argd);
7831 }
7832
7833 return value_from_longest (type, val);
7834 }
7835
7836 static struct value *
7837 cast_from_fixed (struct type *type, struct value *arg)
7838 {
7839 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7840 value_as_long (arg));
7841 return value_from_double (type, val);
7842 }
7843
7844 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7845 return the converted value. */
7846
7847 static struct value *
7848 coerce_for_assign (struct type *type, struct value *val)
7849 {
7850 struct type *type2 = value_type (val);
7851 if (type == type2)
7852 return val;
7853
7854 type2 = ada_check_typedef (type2);
7855 type = ada_check_typedef (type);
7856
7857 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7858 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7859 {
7860 val = ada_value_ind (val);
7861 type2 = value_type (val);
7862 }
7863
7864 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7865 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7866 {
7867 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7868 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7869 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7870 error (_("Incompatible types in assignment"));
7871 deprecated_set_value_type (val, type);
7872 }
7873 return val;
7874 }
7875
7876 static struct value *
7877 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7878 {
7879 struct value *val;
7880 struct type *type1, *type2;
7881 LONGEST v, v1, v2;
7882
7883 arg1 = coerce_ref (arg1);
7884 arg2 = coerce_ref (arg2);
7885 type1 = base_type (ada_check_typedef (value_type (arg1)));
7886 type2 = base_type (ada_check_typedef (value_type (arg2)));
7887
7888 if (TYPE_CODE (type1) != TYPE_CODE_INT
7889 || TYPE_CODE (type2) != TYPE_CODE_INT)
7890 return value_binop (arg1, arg2, op);
7891
7892 switch (op)
7893 {
7894 case BINOP_MOD:
7895 case BINOP_DIV:
7896 case BINOP_REM:
7897 break;
7898 default:
7899 return value_binop (arg1, arg2, op);
7900 }
7901
7902 v2 = value_as_long (arg2);
7903 if (v2 == 0)
7904 error (_("second operand of %s must not be zero."), op_string (op));
7905
7906 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7907 return value_binop (arg1, arg2, op);
7908
7909 v1 = value_as_long (arg1);
7910 switch (op)
7911 {
7912 case BINOP_DIV:
7913 v = v1 / v2;
7914 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7915 v += v > 0 ? -1 : 1;
7916 break;
7917 case BINOP_REM:
7918 v = v1 % v2;
7919 if (v * v1 < 0)
7920 v -= v2;
7921 break;
7922 default:
7923 /* Should not reach this point. */
7924 v = 0;
7925 }
7926
7927 val = allocate_value (type1);
7928 store_unsigned_integer (value_contents_raw (val),
7929 TYPE_LENGTH (value_type (val)),
7930 gdbarch_byte_order (get_type_arch (type1)), v);
7931 return val;
7932 }
7933
7934 static int
7935 ada_value_equal (struct value *arg1, struct value *arg2)
7936 {
7937 if (ada_is_direct_array_type (value_type (arg1))
7938 || ada_is_direct_array_type (value_type (arg2)))
7939 {
7940 /* Automatically dereference any array reference before
7941 we attempt to perform the comparison. */
7942 arg1 = ada_coerce_ref (arg1);
7943 arg2 = ada_coerce_ref (arg2);
7944
7945 arg1 = ada_coerce_to_simple_array (arg1);
7946 arg2 = ada_coerce_to_simple_array (arg2);
7947 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7948 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
7949 error (_("Attempt to compare array with non-array"));
7950 /* FIXME: The following works only for types whose
7951 representations use all bits (no padding or undefined bits)
7952 and do not have user-defined equality. */
7953 return
7954 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
7955 && memcmp (value_contents (arg1), value_contents (arg2),
7956 TYPE_LENGTH (value_type (arg1))) == 0;
7957 }
7958 return value_equal (arg1, arg2);
7959 }
7960
7961 /* Total number of component associations in the aggregate starting at
7962 index PC in EXP. Assumes that index PC is the start of an
7963 OP_AGGREGATE. */
7964
7965 static int
7966 num_component_specs (struct expression *exp, int pc)
7967 {
7968 int n, m, i;
7969 m = exp->elts[pc + 1].longconst;
7970 pc += 3;
7971 n = 0;
7972 for (i = 0; i < m; i += 1)
7973 {
7974 switch (exp->elts[pc].opcode)
7975 {
7976 default:
7977 n += 1;
7978 break;
7979 case OP_CHOICES:
7980 n += exp->elts[pc + 1].longconst;
7981 break;
7982 }
7983 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7984 }
7985 return n;
7986 }
7987
7988 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
7989 component of LHS (a simple array or a record), updating *POS past
7990 the expression, assuming that LHS is contained in CONTAINER. Does
7991 not modify the inferior's memory, nor does it modify LHS (unless
7992 LHS == CONTAINER). */
7993
7994 static void
7995 assign_component (struct value *container, struct value *lhs, LONGEST index,
7996 struct expression *exp, int *pos)
7997 {
7998 struct value *mark = value_mark ();
7999 struct value *elt;
8000 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8001 {
8002 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8003 struct value *index_val = value_from_longest (index_type, index);
8004 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8005 }
8006 else
8007 {
8008 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8009 elt = ada_to_fixed_value (unwrap_value (elt));
8010 }
8011
8012 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8013 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8014 else
8015 value_assign_to_component (container, elt,
8016 ada_evaluate_subexp (NULL, exp, pos,
8017 EVAL_NORMAL));
8018
8019 value_free_to_mark (mark);
8020 }
8021
8022 /* Assuming that LHS represents an lvalue having a record or array
8023 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8024 of that aggregate's value to LHS, advancing *POS past the
8025 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8026 lvalue containing LHS (possibly LHS itself). Does not modify
8027 the inferior's memory, nor does it modify the contents of
8028 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8029
8030 static struct value *
8031 assign_aggregate (struct value *container,
8032 struct value *lhs, struct expression *exp,
8033 int *pos, enum noside noside)
8034 {
8035 struct type *lhs_type;
8036 int n = exp->elts[*pos+1].longconst;
8037 LONGEST low_index, high_index;
8038 int num_specs;
8039 LONGEST *indices;
8040 int max_indices, num_indices;
8041 int is_array_aggregate;
8042 int i;
8043 struct value *mark = value_mark ();
8044
8045 *pos += 3;
8046 if (noside != EVAL_NORMAL)
8047 {
8048 int i;
8049 for (i = 0; i < n; i += 1)
8050 ada_evaluate_subexp (NULL, exp, pos, noside);
8051 return container;
8052 }
8053
8054 container = ada_coerce_ref (container);
8055 if (ada_is_direct_array_type (value_type (container)))
8056 container = ada_coerce_to_simple_array (container);
8057 lhs = ada_coerce_ref (lhs);
8058 if (!deprecated_value_modifiable (lhs))
8059 error (_("Left operand of assignment is not a modifiable lvalue."));
8060
8061 lhs_type = value_type (lhs);
8062 if (ada_is_direct_array_type (lhs_type))
8063 {
8064 lhs = ada_coerce_to_simple_array (lhs);
8065 lhs_type = value_type (lhs);
8066 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8067 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8068 is_array_aggregate = 1;
8069 }
8070 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8071 {
8072 low_index = 0;
8073 high_index = num_visible_fields (lhs_type) - 1;
8074 is_array_aggregate = 0;
8075 }
8076 else
8077 error (_("Left-hand side must be array or record."));
8078
8079 num_specs = num_component_specs (exp, *pos - 3);
8080 max_indices = 4 * num_specs + 4;
8081 indices = alloca (max_indices * sizeof (indices[0]));
8082 indices[0] = indices[1] = low_index - 1;
8083 indices[2] = indices[3] = high_index + 1;
8084 num_indices = 4;
8085
8086 for (i = 0; i < n; i += 1)
8087 {
8088 switch (exp->elts[*pos].opcode)
8089 {
8090 case OP_CHOICES:
8091 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8092 &num_indices, max_indices,
8093 low_index, high_index);
8094 break;
8095 case OP_POSITIONAL:
8096 aggregate_assign_positional (container, lhs, exp, pos, indices,
8097 &num_indices, max_indices,
8098 low_index, high_index);
8099 break;
8100 case OP_OTHERS:
8101 if (i != n-1)
8102 error (_("Misplaced 'others' clause"));
8103 aggregate_assign_others (container, lhs, exp, pos, indices,
8104 num_indices, low_index, high_index);
8105 break;
8106 default:
8107 error (_("Internal error: bad aggregate clause"));
8108 }
8109 }
8110
8111 return container;
8112 }
8113
8114 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8115 construct at *POS, updating *POS past the construct, given that
8116 the positions are relative to lower bound LOW, where HIGH is the
8117 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8118 updating *NUM_INDICES as needed. CONTAINER is as for
8119 assign_aggregate. */
8120 static void
8121 aggregate_assign_positional (struct value *container,
8122 struct value *lhs, struct expression *exp,
8123 int *pos, LONGEST *indices, int *num_indices,
8124 int max_indices, LONGEST low, LONGEST high)
8125 {
8126 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8127
8128 if (ind - 1 == high)
8129 warning (_("Extra components in aggregate ignored."));
8130 if (ind <= high)
8131 {
8132 add_component_interval (ind, ind, indices, num_indices, max_indices);
8133 *pos += 3;
8134 assign_component (container, lhs, ind, exp, pos);
8135 }
8136 else
8137 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8138 }
8139
8140 /* Assign into the components of LHS indexed by the OP_CHOICES
8141 construct at *POS, updating *POS past the construct, given that
8142 the allowable indices are LOW..HIGH. Record the indices assigned
8143 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8144 needed. CONTAINER is as for assign_aggregate. */
8145 static void
8146 aggregate_assign_from_choices (struct value *container,
8147 struct value *lhs, struct expression *exp,
8148 int *pos, LONGEST *indices, int *num_indices,
8149 int max_indices, LONGEST low, LONGEST high)
8150 {
8151 int j;
8152 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8153 int choice_pos, expr_pc;
8154 int is_array = ada_is_direct_array_type (value_type (lhs));
8155
8156 choice_pos = *pos += 3;
8157
8158 for (j = 0; j < n_choices; j += 1)
8159 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8160 expr_pc = *pos;
8161 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8162
8163 for (j = 0; j < n_choices; j += 1)
8164 {
8165 LONGEST lower, upper;
8166 enum exp_opcode op = exp->elts[choice_pos].opcode;
8167 if (op == OP_DISCRETE_RANGE)
8168 {
8169 choice_pos += 1;
8170 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8171 EVAL_NORMAL));
8172 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8173 EVAL_NORMAL));
8174 }
8175 else if (is_array)
8176 {
8177 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8178 EVAL_NORMAL));
8179 upper = lower;
8180 }
8181 else
8182 {
8183 int ind;
8184 char *name;
8185 switch (op)
8186 {
8187 case OP_NAME:
8188 name = &exp->elts[choice_pos + 2].string;
8189 break;
8190 case OP_VAR_VALUE:
8191 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8192 break;
8193 default:
8194 error (_("Invalid record component association."));
8195 }
8196 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8197 ind = 0;
8198 if (! find_struct_field (name, value_type (lhs), 0,
8199 NULL, NULL, NULL, NULL, &ind))
8200 error (_("Unknown component name: %s."), name);
8201 lower = upper = ind;
8202 }
8203
8204 if (lower <= upper && (lower < low || upper > high))
8205 error (_("Index in component association out of bounds."));
8206
8207 add_component_interval (lower, upper, indices, num_indices,
8208 max_indices);
8209 while (lower <= upper)
8210 {
8211 int pos1;
8212 pos1 = expr_pc;
8213 assign_component (container, lhs, lower, exp, &pos1);
8214 lower += 1;
8215 }
8216 }
8217 }
8218
8219 /* Assign the value of the expression in the OP_OTHERS construct in
8220 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8221 have not been previously assigned. The index intervals already assigned
8222 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8223 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8224 static void
8225 aggregate_assign_others (struct value *container,
8226 struct value *lhs, struct expression *exp,
8227 int *pos, LONGEST *indices, int num_indices,
8228 LONGEST low, LONGEST high)
8229 {
8230 int i;
8231 int expr_pc = *pos+1;
8232
8233 for (i = 0; i < num_indices - 2; i += 2)
8234 {
8235 LONGEST ind;
8236 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8237 {
8238 int pos;
8239 pos = expr_pc;
8240 assign_component (container, lhs, ind, exp, &pos);
8241 }
8242 }
8243 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8244 }
8245
8246 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8247 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8248 modifying *SIZE as needed. It is an error if *SIZE exceeds
8249 MAX_SIZE. The resulting intervals do not overlap. */
8250 static void
8251 add_component_interval (LONGEST low, LONGEST high,
8252 LONGEST* indices, int *size, int max_size)
8253 {
8254 int i, j;
8255 for (i = 0; i < *size; i += 2) {
8256 if (high >= indices[i] && low <= indices[i + 1])
8257 {
8258 int kh;
8259 for (kh = i + 2; kh < *size; kh += 2)
8260 if (high < indices[kh])
8261 break;
8262 if (low < indices[i])
8263 indices[i] = low;
8264 indices[i + 1] = indices[kh - 1];
8265 if (high > indices[i + 1])
8266 indices[i + 1] = high;
8267 memcpy (indices + i + 2, indices + kh, *size - kh);
8268 *size -= kh - i - 2;
8269 return;
8270 }
8271 else if (high < indices[i])
8272 break;
8273 }
8274
8275 if (*size == max_size)
8276 error (_("Internal error: miscounted aggregate components."));
8277 *size += 2;
8278 for (j = *size-1; j >= i+2; j -= 1)
8279 indices[j] = indices[j - 2];
8280 indices[i] = low;
8281 indices[i + 1] = high;
8282 }
8283
8284 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8285 is different. */
8286
8287 static struct value *
8288 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8289 {
8290 if (type == ada_check_typedef (value_type (arg2)))
8291 return arg2;
8292
8293 if (ada_is_fixed_point_type (type))
8294 return (cast_to_fixed (type, arg2));
8295
8296 if (ada_is_fixed_point_type (value_type (arg2)))
8297 return cast_from_fixed (type, arg2);
8298
8299 return value_cast (type, arg2);
8300 }
8301
8302 /* Evaluating Ada expressions, and printing their result.
8303 ------------------------------------------------------
8304
8305 1. Introduction:
8306 ----------------
8307
8308 We usually evaluate an Ada expression in order to print its value.
8309 We also evaluate an expression in order to print its type, which
8310 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8311 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8312 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8313 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8314 similar.
8315
8316 Evaluating expressions is a little more complicated for Ada entities
8317 than it is for entities in languages such as C. The main reason for
8318 this is that Ada provides types whose definition might be dynamic.
8319 One example of such types is variant records. Or another example
8320 would be an array whose bounds can only be known at run time.
8321
8322 The following description is a general guide as to what should be
8323 done (and what should NOT be done) in order to evaluate an expression
8324 involving such types, and when. This does not cover how the semantic
8325 information is encoded by GNAT as this is covered separatly. For the
8326 document used as the reference for the GNAT encoding, see exp_dbug.ads
8327 in the GNAT sources.
8328
8329 Ideally, we should embed each part of this description next to its
8330 associated code. Unfortunately, the amount of code is so vast right
8331 now that it's hard to see whether the code handling a particular
8332 situation might be duplicated or not. One day, when the code is
8333 cleaned up, this guide might become redundant with the comments
8334 inserted in the code, and we might want to remove it.
8335
8336 2. ``Fixing'' an Entity, the Simple Case:
8337 -----------------------------------------
8338
8339 When evaluating Ada expressions, the tricky issue is that they may
8340 reference entities whose type contents and size are not statically
8341 known. Consider for instance a variant record:
8342
8343 type Rec (Empty : Boolean := True) is record
8344 case Empty is
8345 when True => null;
8346 when False => Value : Integer;
8347 end case;
8348 end record;
8349 Yes : Rec := (Empty => False, Value => 1);
8350 No : Rec := (empty => True);
8351
8352 The size and contents of that record depends on the value of the
8353 descriminant (Rec.Empty). At this point, neither the debugging
8354 information nor the associated type structure in GDB are able to
8355 express such dynamic types. So what the debugger does is to create
8356 "fixed" versions of the type that applies to the specific object.
8357 We also informally refer to this opperation as "fixing" an object,
8358 which means creating its associated fixed type.
8359
8360 Example: when printing the value of variable "Yes" above, its fixed
8361 type would look like this:
8362
8363 type Rec is record
8364 Empty : Boolean;
8365 Value : Integer;
8366 end record;
8367
8368 On the other hand, if we printed the value of "No", its fixed type
8369 would become:
8370
8371 type Rec is record
8372 Empty : Boolean;
8373 end record;
8374
8375 Things become a little more complicated when trying to fix an entity
8376 with a dynamic type that directly contains another dynamic type,
8377 such as an array of variant records, for instance. There are
8378 two possible cases: Arrays, and records.
8379
8380 3. ``Fixing'' Arrays:
8381 ---------------------
8382
8383 The type structure in GDB describes an array in terms of its bounds,
8384 and the type of its elements. By design, all elements in the array
8385 have the same type and we cannot represent an array of variant elements
8386 using the current type structure in GDB. When fixing an array,
8387 we cannot fix the array element, as we would potentially need one
8388 fixed type per element of the array. As a result, the best we can do
8389 when fixing an array is to produce an array whose bounds and size
8390 are correct (allowing us to read it from memory), but without having
8391 touched its element type. Fixing each element will be done later,
8392 when (if) necessary.
8393
8394 Arrays are a little simpler to handle than records, because the same
8395 amount of memory is allocated for each element of the array, even if
8396 the amount of space actually used by each element differs from element
8397 to element. Consider for instance the following array of type Rec:
8398
8399 type Rec_Array is array (1 .. 2) of Rec;
8400
8401 The actual amount of memory occupied by each element might be different
8402 from element to element, depending on the value of their discriminant.
8403 But the amount of space reserved for each element in the array remains
8404 fixed regardless. So we simply need to compute that size using
8405 the debugging information available, from which we can then determine
8406 the array size (we multiply the number of elements of the array by
8407 the size of each element).
8408
8409 The simplest case is when we have an array of a constrained element
8410 type. For instance, consider the following type declarations:
8411
8412 type Bounded_String (Max_Size : Integer) is
8413 Length : Integer;
8414 Buffer : String (1 .. Max_Size);
8415 end record;
8416 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8417
8418 In this case, the compiler describes the array as an array of
8419 variable-size elements (identified by its XVS suffix) for which
8420 the size can be read in the parallel XVZ variable.
8421
8422 In the case of an array of an unconstrained element type, the compiler
8423 wraps the array element inside a private PAD type. This type should not
8424 be shown to the user, and must be "unwrap"'ed before printing. Note
8425 that we also use the adjective "aligner" in our code to designate
8426 these wrapper types.
8427
8428 In some cases, the size allocated for each element is statically
8429 known. In that case, the PAD type already has the correct size,
8430 and the array element should remain unfixed.
8431
8432 But there are cases when this size is not statically known.
8433 For instance, assuming that "Five" is an integer variable:
8434
8435 type Dynamic is array (1 .. Five) of Integer;
8436 type Wrapper (Has_Length : Boolean := False) is record
8437 Data : Dynamic;
8438 case Has_Length is
8439 when True => Length : Integer;
8440 when False => null;
8441 end case;
8442 end record;
8443 type Wrapper_Array is array (1 .. 2) of Wrapper;
8444
8445 Hello : Wrapper_Array := (others => (Has_Length => True,
8446 Data => (others => 17),
8447 Length => 1));
8448
8449
8450 The debugging info would describe variable Hello as being an
8451 array of a PAD type. The size of that PAD type is not statically
8452 known, but can be determined using a parallel XVZ variable.
8453 In that case, a copy of the PAD type with the correct size should
8454 be used for the fixed array.
8455
8456 3. ``Fixing'' record type objects:
8457 ----------------------------------
8458
8459 Things are slightly different from arrays in the case of dynamic
8460 record types. In this case, in order to compute the associated
8461 fixed type, we need to determine the size and offset of each of
8462 its components. This, in turn, requires us to compute the fixed
8463 type of each of these components.
8464
8465 Consider for instance the example:
8466
8467 type Bounded_String (Max_Size : Natural) is record
8468 Str : String (1 .. Max_Size);
8469 Length : Natural;
8470 end record;
8471 My_String : Bounded_String (Max_Size => 10);
8472
8473 In that case, the position of field "Length" depends on the size
8474 of field Str, which itself depends on the value of the Max_Size
8475 discriminant. In order to fix the type of variable My_String,
8476 we need to fix the type of field Str. Therefore, fixing a variant
8477 record requires us to fix each of its components.
8478
8479 However, if a component does not have a dynamic size, the component
8480 should not be fixed. In particular, fields that use a PAD type
8481 should not fixed. Here is an example where this might happen
8482 (assuming type Rec above):
8483
8484 type Container (Big : Boolean) is record
8485 First : Rec;
8486 After : Integer;
8487 case Big is
8488 when True => Another : Integer;
8489 when False => null;
8490 end case;
8491 end record;
8492 My_Container : Container := (Big => False,
8493 First => (Empty => True),
8494 After => 42);
8495
8496 In that example, the compiler creates a PAD type for component First,
8497 whose size is constant, and then positions the component After just
8498 right after it. The offset of component After is therefore constant
8499 in this case.
8500
8501 The debugger computes the position of each field based on an algorithm
8502 that uses, among other things, the actual position and size of the field
8503 preceding it. Let's now imagine that the user is trying to print
8504 the value of My_Container. If the type fixing was recursive, we would
8505 end up computing the offset of field After based on the size of the
8506 fixed version of field First. And since in our example First has
8507 only one actual field, the size of the fixed type is actually smaller
8508 than the amount of space allocated to that field, and thus we would
8509 compute the wrong offset of field After.
8510
8511 To make things more complicated, we need to watch out for dynamic
8512 components of variant records (identified by the ___XVL suffix in
8513 the component name). Even if the target type is a PAD type, the size
8514 of that type might not be statically known. So the PAD type needs
8515 to be unwrapped and the resulting type needs to be fixed. Otherwise,
8516 we might end up with the wrong size for our component. This can be
8517 observed with the following type declarations:
8518
8519 type Octal is new Integer range 0 .. 7;
8520 type Octal_Array is array (Positive range <>) of Octal;
8521 pragma Pack (Octal_Array);
8522
8523 type Octal_Buffer (Size : Positive) is record
8524 Buffer : Octal_Array (1 .. Size);
8525 Length : Integer;
8526 end record;
8527
8528 In that case, Buffer is a PAD type whose size is unset and needs
8529 to be computed by fixing the unwrapped type.
8530
8531 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
8532 ----------------------------------------------------------
8533
8534 Lastly, when should the sub-elements of an entity that remained unfixed
8535 thus far, be actually fixed?
8536
8537 The answer is: Only when referencing that element. For instance
8538 when selecting one component of a record, this specific component
8539 should be fixed at that point in time. Or when printing the value
8540 of a record, each component should be fixed before its value gets
8541 printed. Similarly for arrays, the element of the array should be
8542 fixed when printing each element of the array, or when extracting
8543 one element out of that array. On the other hand, fixing should
8544 not be performed on the elements when taking a slice of an array!
8545
8546 Note that one of the side-effects of miscomputing the offset and
8547 size of each field is that we end up also miscomputing the size
8548 of the containing type. This can have adverse results when computing
8549 the value of an entity. GDB fetches the value of an entity based
8550 on the size of its type, and thus a wrong size causes GDB to fetch
8551 the wrong amount of memory. In the case where the computed size is
8552 too small, GDB fetches too little data to print the value of our
8553 entiry. Results in this case as unpredicatble, as we usually read
8554 past the buffer containing the data =:-o. */
8555
8556 /* Implement the evaluate_exp routine in the exp_descriptor structure
8557 for the Ada language. */
8558
8559 static struct value *
8560 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8561 int *pos, enum noside noside)
8562 {
8563 enum exp_opcode op;
8564 int tem, tem2, tem3;
8565 int pc;
8566 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8567 struct type *type;
8568 int nargs, oplen;
8569 struct value **argvec;
8570
8571 pc = *pos;
8572 *pos += 1;
8573 op = exp->elts[pc].opcode;
8574
8575 switch (op)
8576 {
8577 default:
8578 *pos -= 1;
8579 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8580 arg1 = unwrap_value (arg1);
8581
8582 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8583 then we need to perform the conversion manually, because
8584 evaluate_subexp_standard doesn't do it. This conversion is
8585 necessary in Ada because the different kinds of float/fixed
8586 types in Ada have different representations.
8587
8588 Similarly, we need to perform the conversion from OP_LONG
8589 ourselves. */
8590 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8591 arg1 = ada_value_cast (expect_type, arg1, noside);
8592
8593 return arg1;
8594
8595 case OP_STRING:
8596 {
8597 struct value *result;
8598 *pos -= 1;
8599 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8600 /* The result type will have code OP_STRING, bashed there from
8601 OP_ARRAY. Bash it back. */
8602 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8603 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8604 return result;
8605 }
8606
8607 case UNOP_CAST:
8608 (*pos) += 2;
8609 type = exp->elts[pc + 1].type;
8610 arg1 = evaluate_subexp (type, exp, pos, noside);
8611 if (noside == EVAL_SKIP)
8612 goto nosideret;
8613 arg1 = ada_value_cast (type, arg1, noside);
8614 return arg1;
8615
8616 case UNOP_QUAL:
8617 (*pos) += 2;
8618 type = exp->elts[pc + 1].type;
8619 return ada_evaluate_subexp (type, exp, pos, noside);
8620
8621 case BINOP_ASSIGN:
8622 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8623 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8624 {
8625 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8626 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8627 return arg1;
8628 return ada_value_assign (arg1, arg1);
8629 }
8630 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8631 except if the lhs of our assignment is a convenience variable.
8632 In the case of assigning to a convenience variable, the lhs
8633 should be exactly the result of the evaluation of the rhs. */
8634 type = value_type (arg1);
8635 if (VALUE_LVAL (arg1) == lval_internalvar)
8636 type = NULL;
8637 arg2 = evaluate_subexp (type, exp, pos, noside);
8638 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8639 return arg1;
8640 if (ada_is_fixed_point_type (value_type (arg1)))
8641 arg2 = cast_to_fixed (value_type (arg1), arg2);
8642 else if (ada_is_fixed_point_type (value_type (arg2)))
8643 error
8644 (_("Fixed-point values must be assigned to fixed-point variables"));
8645 else
8646 arg2 = coerce_for_assign (value_type (arg1), arg2);
8647 return ada_value_assign (arg1, arg2);
8648
8649 case BINOP_ADD:
8650 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8651 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8652 if (noside == EVAL_SKIP)
8653 goto nosideret;
8654 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8655 return (value_from_longest
8656 (value_type (arg1),
8657 value_as_long (arg1) + value_as_long (arg2)));
8658 if ((ada_is_fixed_point_type (value_type (arg1))
8659 || ada_is_fixed_point_type (value_type (arg2)))
8660 && value_type (arg1) != value_type (arg2))
8661 error (_("Operands of fixed-point addition must have the same type"));
8662 /* Do the addition, and cast the result to the type of the first
8663 argument. We cannot cast the result to a reference type, so if
8664 ARG1 is a reference type, find its underlying type. */
8665 type = value_type (arg1);
8666 while (TYPE_CODE (type) == TYPE_CODE_REF)
8667 type = TYPE_TARGET_TYPE (type);
8668 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8669 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
8670
8671 case BINOP_SUB:
8672 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8673 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8674 if (noside == EVAL_SKIP)
8675 goto nosideret;
8676 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8677 return (value_from_longest
8678 (value_type (arg1),
8679 value_as_long (arg1) - value_as_long (arg2)));
8680 if ((ada_is_fixed_point_type (value_type (arg1))
8681 || ada_is_fixed_point_type (value_type (arg2)))
8682 && value_type (arg1) != value_type (arg2))
8683 error (_("Operands of fixed-point subtraction must have the same type"));
8684 /* Do the substraction, and cast the result to the type of the first
8685 argument. We cannot cast the result to a reference type, so if
8686 ARG1 is a reference type, find its underlying type. */
8687 type = value_type (arg1);
8688 while (TYPE_CODE (type) == TYPE_CODE_REF)
8689 type = TYPE_TARGET_TYPE (type);
8690 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8691 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
8692
8693 case BINOP_MUL:
8694 case BINOP_DIV:
8695 case BINOP_REM:
8696 case BINOP_MOD:
8697 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8698 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8699 if (noside == EVAL_SKIP)
8700 goto nosideret;
8701 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8702 {
8703 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8704 return value_zero (value_type (arg1), not_lval);
8705 }
8706 else
8707 {
8708 type = builtin_type (exp->gdbarch)->builtin_double;
8709 if (ada_is_fixed_point_type (value_type (arg1)))
8710 arg1 = cast_from_fixed (type, arg1);
8711 if (ada_is_fixed_point_type (value_type (arg2)))
8712 arg2 = cast_from_fixed (type, arg2);
8713 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8714 return ada_value_binop (arg1, arg2, op);
8715 }
8716
8717 case BINOP_EQUAL:
8718 case BINOP_NOTEQUAL:
8719 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8720 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8721 if (noside == EVAL_SKIP)
8722 goto nosideret;
8723 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8724 tem = 0;
8725 else
8726 {
8727 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8728 tem = ada_value_equal (arg1, arg2);
8729 }
8730 if (op == BINOP_NOTEQUAL)
8731 tem = !tem;
8732 type = language_bool_type (exp->language_defn, exp->gdbarch);
8733 return value_from_longest (type, (LONGEST) tem);
8734
8735 case UNOP_NEG:
8736 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8737 if (noside == EVAL_SKIP)
8738 goto nosideret;
8739 else if (ada_is_fixed_point_type (value_type (arg1)))
8740 return value_cast (value_type (arg1), value_neg (arg1));
8741 else
8742 {
8743 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8744 return value_neg (arg1);
8745 }
8746
8747 case BINOP_LOGICAL_AND:
8748 case BINOP_LOGICAL_OR:
8749 case UNOP_LOGICAL_NOT:
8750 {
8751 struct value *val;
8752
8753 *pos -= 1;
8754 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8755 type = language_bool_type (exp->language_defn, exp->gdbarch);
8756 return value_cast (type, val);
8757 }
8758
8759 case BINOP_BITWISE_AND:
8760 case BINOP_BITWISE_IOR:
8761 case BINOP_BITWISE_XOR:
8762 {
8763 struct value *val;
8764
8765 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8766 *pos = pc;
8767 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8768
8769 return value_cast (value_type (arg1), val);
8770 }
8771
8772 case OP_VAR_VALUE:
8773 *pos -= 1;
8774
8775 if (noside == EVAL_SKIP)
8776 {
8777 *pos += 4;
8778 goto nosideret;
8779 }
8780 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8781 /* Only encountered when an unresolved symbol occurs in a
8782 context other than a function call, in which case, it is
8783 invalid. */
8784 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8785 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8786 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8787 {
8788 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8789 /* Check to see if this is a tagged type. We also need to handle
8790 the case where the type is a reference to a tagged type, but
8791 we have to be careful to exclude pointers to tagged types.
8792 The latter should be shown as usual (as a pointer), whereas
8793 a reference should mostly be transparent to the user. */
8794 if (ada_is_tagged_type (type, 0)
8795 || (TYPE_CODE(type) == TYPE_CODE_REF
8796 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
8797 {
8798 /* Tagged types are a little special in the fact that the real
8799 type is dynamic and can only be determined by inspecting the
8800 object's tag. This means that we need to get the object's
8801 value first (EVAL_NORMAL) and then extract the actual object
8802 type from its tag.
8803
8804 Note that we cannot skip the final step where we extract
8805 the object type from its tag, because the EVAL_NORMAL phase
8806 results in dynamic components being resolved into fixed ones.
8807 This can cause problems when trying to print the type
8808 description of tagged types whose parent has a dynamic size:
8809 We use the type name of the "_parent" component in order
8810 to print the name of the ancestor type in the type description.
8811 If that component had a dynamic size, the resolution into
8812 a fixed type would result in the loss of that type name,
8813 thus preventing us from printing the name of the ancestor
8814 type in the type description. */
8815 struct type *actual_type;
8816
8817 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
8818 actual_type = type_from_tag (ada_value_tag (arg1));
8819 if (actual_type == NULL)
8820 /* If, for some reason, we were unable to determine
8821 the actual type from the tag, then use the static
8822 approximation that we just computed as a fallback.
8823 This can happen if the debugging information is
8824 incomplete, for instance. */
8825 actual_type = type;
8826
8827 return value_zero (actual_type, not_lval);
8828 }
8829
8830 *pos += 4;
8831 return value_zero
8832 (to_static_fixed_type
8833 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8834 not_lval);
8835 }
8836 else
8837 {
8838 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8839 arg1 = unwrap_value (arg1);
8840 return ada_to_fixed_value (arg1);
8841 }
8842
8843 case OP_FUNCALL:
8844 (*pos) += 2;
8845
8846 /* Allocate arg vector, including space for the function to be
8847 called in argvec[0] and a terminating NULL. */
8848 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8849 argvec =
8850 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8851
8852 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8853 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8854 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8855 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8856 else
8857 {
8858 for (tem = 0; tem <= nargs; tem += 1)
8859 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8860 argvec[tem] = 0;
8861
8862 if (noside == EVAL_SKIP)
8863 goto nosideret;
8864 }
8865
8866 if (ada_is_constrained_packed_array_type
8867 (desc_base_type (value_type (argvec[0]))))
8868 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8869 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8870 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8871 /* This is a packed array that has already been fixed, and
8872 therefore already coerced to a simple array. Nothing further
8873 to do. */
8874 ;
8875 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8876 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8877 && VALUE_LVAL (argvec[0]) == lval_memory))
8878 argvec[0] = value_addr (argvec[0]);
8879
8880 type = ada_check_typedef (value_type (argvec[0]));
8881 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8882 {
8883 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8884 {
8885 case TYPE_CODE_FUNC:
8886 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8887 break;
8888 case TYPE_CODE_ARRAY:
8889 break;
8890 case TYPE_CODE_STRUCT:
8891 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8892 argvec[0] = ada_value_ind (argvec[0]);
8893 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8894 break;
8895 default:
8896 error (_("cannot subscript or call something of type `%s'"),
8897 ada_type_name (value_type (argvec[0])));
8898 break;
8899 }
8900 }
8901
8902 switch (TYPE_CODE (type))
8903 {
8904 case TYPE_CODE_FUNC:
8905 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8906 return allocate_value (TYPE_TARGET_TYPE (type));
8907 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8908 case TYPE_CODE_STRUCT:
8909 {
8910 int arity;
8911
8912 arity = ada_array_arity (type);
8913 type = ada_array_element_type (type, nargs);
8914 if (type == NULL)
8915 error (_("cannot subscript or call a record"));
8916 if (arity != nargs)
8917 error (_("wrong number of subscripts; expecting %d"), arity);
8918 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8919 return value_zero (ada_aligned_type (type), lval_memory);
8920 return
8921 unwrap_value (ada_value_subscript
8922 (argvec[0], nargs, argvec + 1));
8923 }
8924 case TYPE_CODE_ARRAY:
8925 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8926 {
8927 type = ada_array_element_type (type, nargs);
8928 if (type == NULL)
8929 error (_("element type of array unknown"));
8930 else
8931 return value_zero (ada_aligned_type (type), lval_memory);
8932 }
8933 return
8934 unwrap_value (ada_value_subscript
8935 (ada_coerce_to_simple_array (argvec[0]),
8936 nargs, argvec + 1));
8937 case TYPE_CODE_PTR: /* Pointer to array */
8938 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8939 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8940 {
8941 type = ada_array_element_type (type, nargs);
8942 if (type == NULL)
8943 error (_("element type of array unknown"));
8944 else
8945 return value_zero (ada_aligned_type (type), lval_memory);
8946 }
8947 return
8948 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8949 nargs, argvec + 1));
8950
8951 default:
8952 error (_("Attempt to index or call something other than an "
8953 "array or function"));
8954 }
8955
8956 case TERNOP_SLICE:
8957 {
8958 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8959 struct value *low_bound_val =
8960 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8961 struct value *high_bound_val =
8962 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8963 LONGEST low_bound;
8964 LONGEST high_bound;
8965 low_bound_val = coerce_ref (low_bound_val);
8966 high_bound_val = coerce_ref (high_bound_val);
8967 low_bound = pos_atr (low_bound_val);
8968 high_bound = pos_atr (high_bound_val);
8969
8970 if (noside == EVAL_SKIP)
8971 goto nosideret;
8972
8973 /* If this is a reference to an aligner type, then remove all
8974 the aligners. */
8975 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8976 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8977 TYPE_TARGET_TYPE (value_type (array)) =
8978 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8979
8980 if (ada_is_constrained_packed_array_type (value_type (array)))
8981 error (_("cannot slice a packed array"));
8982
8983 /* If this is a reference to an array or an array lvalue,
8984 convert to a pointer. */
8985 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8986 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8987 && VALUE_LVAL (array) == lval_memory))
8988 array = value_addr (array);
8989
8990 if (noside == EVAL_AVOID_SIDE_EFFECTS
8991 && ada_is_array_descriptor_type (ada_check_typedef
8992 (value_type (array))))
8993 return empty_array (ada_type_of_array (array, 0), low_bound);
8994
8995 array = ada_coerce_to_simple_array_ptr (array);
8996
8997 /* If we have more than one level of pointer indirection,
8998 dereference the value until we get only one level. */
8999 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9000 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9001 == TYPE_CODE_PTR))
9002 array = value_ind (array);
9003
9004 /* Make sure we really do have an array type before going further,
9005 to avoid a SEGV when trying to get the index type or the target
9006 type later down the road if the debug info generated by
9007 the compiler is incorrect or incomplete. */
9008 if (!ada_is_simple_array_type (value_type (array)))
9009 error (_("cannot take slice of non-array"));
9010
9011 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
9012 {
9013 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9014 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
9015 low_bound);
9016 else
9017 {
9018 struct type *arr_type0 =
9019 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
9020 NULL, 1);
9021 return ada_value_slice_from_ptr (array, arr_type0,
9022 longest_to_int (low_bound),
9023 longest_to_int (high_bound));
9024 }
9025 }
9026 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9027 return array;
9028 else if (high_bound < low_bound)
9029 return empty_array (value_type (array), low_bound);
9030 else
9031 return ada_value_slice (array, longest_to_int (low_bound),
9032 longest_to_int (high_bound));
9033 }
9034
9035 case UNOP_IN_RANGE:
9036 (*pos) += 2;
9037 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9038 type = check_typedef (exp->elts[pc + 1].type);
9039
9040 if (noside == EVAL_SKIP)
9041 goto nosideret;
9042
9043 switch (TYPE_CODE (type))
9044 {
9045 default:
9046 lim_warning (_("Membership test incompletely implemented; "
9047 "always returns true"));
9048 type = language_bool_type (exp->language_defn, exp->gdbarch);
9049 return value_from_longest (type, (LONGEST) 1);
9050
9051 case TYPE_CODE_RANGE:
9052 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9053 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9054 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9055 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9056 type = language_bool_type (exp->language_defn, exp->gdbarch);
9057 return
9058 value_from_longest (type,
9059 (value_less (arg1, arg3)
9060 || value_equal (arg1, arg3))
9061 && (value_less (arg2, arg1)
9062 || value_equal (arg2, arg1)));
9063 }
9064
9065 case BINOP_IN_BOUNDS:
9066 (*pos) += 2;
9067 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9068 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9069
9070 if (noside == EVAL_SKIP)
9071 goto nosideret;
9072
9073 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9074 {
9075 type = language_bool_type (exp->language_defn, exp->gdbarch);
9076 return value_zero (type, not_lval);
9077 }
9078
9079 tem = longest_to_int (exp->elts[pc + 1].longconst);
9080
9081 type = ada_index_type (value_type (arg2), tem, "range");
9082 if (!type)
9083 type = value_type (arg1);
9084
9085 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9086 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9087
9088 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9089 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9090 type = language_bool_type (exp->language_defn, exp->gdbarch);
9091 return
9092 value_from_longest (type,
9093 (value_less (arg1, arg3)
9094 || value_equal (arg1, arg3))
9095 && (value_less (arg2, arg1)
9096 || value_equal (arg2, arg1)));
9097
9098 case TERNOP_IN_RANGE:
9099 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9100 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9101 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9102
9103 if (noside == EVAL_SKIP)
9104 goto nosideret;
9105
9106 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9107 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9108 type = language_bool_type (exp->language_defn, exp->gdbarch);
9109 return
9110 value_from_longest (type,
9111 (value_less (arg1, arg3)
9112 || value_equal (arg1, arg3))
9113 && (value_less (arg2, arg1)
9114 || value_equal (arg2, arg1)));
9115
9116 case OP_ATR_FIRST:
9117 case OP_ATR_LAST:
9118 case OP_ATR_LENGTH:
9119 {
9120 struct type *type_arg;
9121 if (exp->elts[*pos].opcode == OP_TYPE)
9122 {
9123 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9124 arg1 = NULL;
9125 type_arg = check_typedef (exp->elts[pc + 2].type);
9126 }
9127 else
9128 {
9129 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9130 type_arg = NULL;
9131 }
9132
9133 if (exp->elts[*pos].opcode != OP_LONG)
9134 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9135 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9136 *pos += 4;
9137
9138 if (noside == EVAL_SKIP)
9139 goto nosideret;
9140
9141 if (type_arg == NULL)
9142 {
9143 arg1 = ada_coerce_ref (arg1);
9144
9145 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9146 arg1 = ada_coerce_to_simple_array (arg1);
9147
9148 type = ada_index_type (value_type (arg1), tem,
9149 ada_attribute_name (op));
9150 if (type == NULL)
9151 type = builtin_type (exp->gdbarch)->builtin_int;
9152
9153 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9154 return allocate_value (type);
9155
9156 switch (op)
9157 {
9158 default: /* Should never happen. */
9159 error (_("unexpected attribute encountered"));
9160 case OP_ATR_FIRST:
9161 return value_from_longest
9162 (type, ada_array_bound (arg1, tem, 0));
9163 case OP_ATR_LAST:
9164 return value_from_longest
9165 (type, ada_array_bound (arg1, tem, 1));
9166 case OP_ATR_LENGTH:
9167 return value_from_longest
9168 (type, ada_array_length (arg1, tem));
9169 }
9170 }
9171 else if (discrete_type_p (type_arg))
9172 {
9173 struct type *range_type;
9174 char *name = ada_type_name (type_arg);
9175 range_type = NULL;
9176 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9177 range_type = to_fixed_range_type (name, NULL, type_arg);
9178 if (range_type == NULL)
9179 range_type = type_arg;
9180 switch (op)
9181 {
9182 default:
9183 error (_("unexpected attribute encountered"));
9184 case OP_ATR_FIRST:
9185 return value_from_longest
9186 (range_type, ada_discrete_type_low_bound (range_type));
9187 case OP_ATR_LAST:
9188 return value_from_longest
9189 (range_type, ada_discrete_type_high_bound (range_type));
9190 case OP_ATR_LENGTH:
9191 error (_("the 'length attribute applies only to array types"));
9192 }
9193 }
9194 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9195 error (_("unimplemented type attribute"));
9196 else
9197 {
9198 LONGEST low, high;
9199
9200 if (ada_is_constrained_packed_array_type (type_arg))
9201 type_arg = decode_constrained_packed_array_type (type_arg);
9202
9203 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9204 if (type == NULL)
9205 type = builtin_type (exp->gdbarch)->builtin_int;
9206
9207 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9208 return allocate_value (type);
9209
9210 switch (op)
9211 {
9212 default:
9213 error (_("unexpected attribute encountered"));
9214 case OP_ATR_FIRST:
9215 low = ada_array_bound_from_type (type_arg, tem, 0);
9216 return value_from_longest (type, low);
9217 case OP_ATR_LAST:
9218 high = ada_array_bound_from_type (type_arg, tem, 1);
9219 return value_from_longest (type, high);
9220 case OP_ATR_LENGTH:
9221 low = ada_array_bound_from_type (type_arg, tem, 0);
9222 high = ada_array_bound_from_type (type_arg, tem, 1);
9223 return value_from_longest (type, high - low + 1);
9224 }
9225 }
9226 }
9227
9228 case OP_ATR_TAG:
9229 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9230 if (noside == EVAL_SKIP)
9231 goto nosideret;
9232
9233 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9234 return value_zero (ada_tag_type (arg1), not_lval);
9235
9236 return ada_value_tag (arg1);
9237
9238 case OP_ATR_MIN:
9239 case OP_ATR_MAX:
9240 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9241 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9242 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9243 if (noside == EVAL_SKIP)
9244 goto nosideret;
9245 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9246 return value_zero (value_type (arg1), not_lval);
9247 else
9248 {
9249 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9250 return value_binop (arg1, arg2,
9251 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9252 }
9253
9254 case OP_ATR_MODULUS:
9255 {
9256 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9257 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9258
9259 if (noside == EVAL_SKIP)
9260 goto nosideret;
9261
9262 if (!ada_is_modular_type (type_arg))
9263 error (_("'modulus must be applied to modular type"));
9264
9265 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9266 ada_modulus (type_arg));
9267 }
9268
9269
9270 case OP_ATR_POS:
9271 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9272 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9273 if (noside == EVAL_SKIP)
9274 goto nosideret;
9275 type = builtin_type (exp->gdbarch)->builtin_int;
9276 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9277 return value_zero (type, not_lval);
9278 else
9279 return value_pos_atr (type, arg1);
9280
9281 case OP_ATR_SIZE:
9282 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9283 type = value_type (arg1);
9284
9285 /* If the argument is a reference, then dereference its type, since
9286 the user is really asking for the size of the actual object,
9287 not the size of the pointer. */
9288 if (TYPE_CODE (type) == TYPE_CODE_REF)
9289 type = TYPE_TARGET_TYPE (type);
9290
9291 if (noside == EVAL_SKIP)
9292 goto nosideret;
9293 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9294 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9295 else
9296 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9297 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9298
9299 case OP_ATR_VAL:
9300 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9301 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9302 type = exp->elts[pc + 2].type;
9303 if (noside == EVAL_SKIP)
9304 goto nosideret;
9305 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9306 return value_zero (type, not_lval);
9307 else
9308 return value_val_atr (type, arg1);
9309
9310 case BINOP_EXP:
9311 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9312 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9313 if (noside == EVAL_SKIP)
9314 goto nosideret;
9315 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9316 return value_zero (value_type (arg1), not_lval);
9317 else
9318 {
9319 /* For integer exponentiation operations,
9320 only promote the first argument. */
9321 if (is_integral_type (value_type (arg2)))
9322 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9323 else
9324 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9325
9326 return value_binop (arg1, arg2, op);
9327 }
9328
9329 case UNOP_PLUS:
9330 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9331 if (noside == EVAL_SKIP)
9332 goto nosideret;
9333 else
9334 return arg1;
9335
9336 case UNOP_ABS:
9337 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9338 if (noside == EVAL_SKIP)
9339 goto nosideret;
9340 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9341 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9342 return value_neg (arg1);
9343 else
9344 return arg1;
9345
9346 case UNOP_IND:
9347 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9348 if (noside == EVAL_SKIP)
9349 goto nosideret;
9350 type = ada_check_typedef (value_type (arg1));
9351 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9352 {
9353 if (ada_is_array_descriptor_type (type))
9354 /* GDB allows dereferencing GNAT array descriptors. */
9355 {
9356 struct type *arrType = ada_type_of_array (arg1, 0);
9357 if (arrType == NULL)
9358 error (_("Attempt to dereference null array pointer."));
9359 return value_at_lazy (arrType, 0);
9360 }
9361 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9362 || TYPE_CODE (type) == TYPE_CODE_REF
9363 /* In C you can dereference an array to get the 1st elt. */
9364 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9365 {
9366 type = to_static_fixed_type
9367 (ada_aligned_type
9368 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9369 check_size (type);
9370 return value_zero (type, lval_memory);
9371 }
9372 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9373 {
9374 /* GDB allows dereferencing an int. */
9375 if (expect_type == NULL)
9376 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9377 lval_memory);
9378 else
9379 {
9380 expect_type =
9381 to_static_fixed_type (ada_aligned_type (expect_type));
9382 return value_zero (expect_type, lval_memory);
9383 }
9384 }
9385 else
9386 error (_("Attempt to take contents of a non-pointer value."));
9387 }
9388 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9389 type = ada_check_typedef (value_type (arg1));
9390
9391 if (TYPE_CODE (type) == TYPE_CODE_INT)
9392 /* GDB allows dereferencing an int. If we were given
9393 the expect_type, then use that as the target type.
9394 Otherwise, assume that the target type is an int. */
9395 {
9396 if (expect_type != NULL)
9397 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9398 arg1));
9399 else
9400 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9401 (CORE_ADDR) value_as_address (arg1));
9402 }
9403
9404 if (ada_is_array_descriptor_type (type))
9405 /* GDB allows dereferencing GNAT array descriptors. */
9406 return ada_coerce_to_simple_array (arg1);
9407 else
9408 return ada_value_ind (arg1);
9409
9410 case STRUCTOP_STRUCT:
9411 tem = longest_to_int (exp->elts[pc + 1].longconst);
9412 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9413 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9414 if (noside == EVAL_SKIP)
9415 goto nosideret;
9416 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9417 {
9418 struct type *type1 = value_type (arg1);
9419 if (ada_is_tagged_type (type1, 1))
9420 {
9421 type = ada_lookup_struct_elt_type (type1,
9422 &exp->elts[pc + 2].string,
9423 1, 1, NULL);
9424 if (type == NULL)
9425 /* In this case, we assume that the field COULD exist
9426 in some extension of the type. Return an object of
9427 "type" void, which will match any formal
9428 (see ada_type_match). */
9429 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9430 lval_memory);
9431 }
9432 else
9433 type =
9434 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9435 0, NULL);
9436
9437 return value_zero (ada_aligned_type (type), lval_memory);
9438 }
9439 else
9440 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9441 arg1 = unwrap_value (arg1);
9442 return ada_to_fixed_value (arg1);
9443
9444 case OP_TYPE:
9445 /* The value is not supposed to be used. This is here to make it
9446 easier to accommodate expressions that contain types. */
9447 (*pos) += 2;
9448 if (noside == EVAL_SKIP)
9449 goto nosideret;
9450 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9451 return allocate_value (exp->elts[pc + 1].type);
9452 else
9453 error (_("Attempt to use a type name as an expression"));
9454
9455 case OP_AGGREGATE:
9456 case OP_CHOICES:
9457 case OP_OTHERS:
9458 case OP_DISCRETE_RANGE:
9459 case OP_POSITIONAL:
9460 case OP_NAME:
9461 if (noside == EVAL_NORMAL)
9462 switch (op)
9463 {
9464 case OP_NAME:
9465 error (_("Undefined name, ambiguous name, or renaming used in "
9466 "component association: %s."), &exp->elts[pc+2].string);
9467 case OP_AGGREGATE:
9468 error (_("Aggregates only allowed on the right of an assignment"));
9469 default:
9470 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9471 }
9472
9473 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9474 *pos += oplen - 1;
9475 for (tem = 0; tem < nargs; tem += 1)
9476 ada_evaluate_subexp (NULL, exp, pos, noside);
9477 goto nosideret;
9478 }
9479
9480 nosideret:
9481 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
9482 }
9483 \f
9484
9485 /* Fixed point */
9486
9487 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9488 type name that encodes the 'small and 'delta information.
9489 Otherwise, return NULL. */
9490
9491 static const char *
9492 fixed_type_info (struct type *type)
9493 {
9494 const char *name = ada_type_name (type);
9495 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9496
9497 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9498 {
9499 const char *tail = strstr (name, "___XF_");
9500 if (tail == NULL)
9501 return NULL;
9502 else
9503 return tail + 5;
9504 }
9505 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9506 return fixed_type_info (TYPE_TARGET_TYPE (type));
9507 else
9508 return NULL;
9509 }
9510
9511 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9512
9513 int
9514 ada_is_fixed_point_type (struct type *type)
9515 {
9516 return fixed_type_info (type) != NULL;
9517 }
9518
9519 /* Return non-zero iff TYPE represents a System.Address type. */
9520
9521 int
9522 ada_is_system_address_type (struct type *type)
9523 {
9524 return (TYPE_NAME (type)
9525 && strcmp (TYPE_NAME (type), "system__address") == 0);
9526 }
9527
9528 /* Assuming that TYPE is the representation of an Ada fixed-point
9529 type, return its delta, or -1 if the type is malformed and the
9530 delta cannot be determined. */
9531
9532 DOUBLEST
9533 ada_delta (struct type *type)
9534 {
9535 const char *encoding = fixed_type_info (type);
9536 DOUBLEST num, den;
9537
9538 /* Strictly speaking, num and den are encoded as integer. However,
9539 they may not fit into a long, and they will have to be converted
9540 to DOUBLEST anyway. So scan them as DOUBLEST. */
9541 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9542 &num, &den) < 2)
9543 return -1.0;
9544 else
9545 return num / den;
9546 }
9547
9548 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9549 factor ('SMALL value) associated with the type. */
9550
9551 static DOUBLEST
9552 scaling_factor (struct type *type)
9553 {
9554 const char *encoding = fixed_type_info (type);
9555 DOUBLEST num0, den0, num1, den1;
9556 int n;
9557
9558 /* Strictly speaking, num's and den's are encoded as integer. However,
9559 they may not fit into a long, and they will have to be converted
9560 to DOUBLEST anyway. So scan them as DOUBLEST. */
9561 n = sscanf (encoding,
9562 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9563 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9564 &num0, &den0, &num1, &den1);
9565
9566 if (n < 2)
9567 return 1.0;
9568 else if (n == 4)
9569 return num1 / den1;
9570 else
9571 return num0 / den0;
9572 }
9573
9574
9575 /* Assuming that X is the representation of a value of fixed-point
9576 type TYPE, return its floating-point equivalent. */
9577
9578 DOUBLEST
9579 ada_fixed_to_float (struct type *type, LONGEST x)
9580 {
9581 return (DOUBLEST) x *scaling_factor (type);
9582 }
9583
9584 /* The representation of a fixed-point value of type TYPE
9585 corresponding to the value X. */
9586
9587 LONGEST
9588 ada_float_to_fixed (struct type *type, DOUBLEST x)
9589 {
9590 return (LONGEST) (x / scaling_factor (type) + 0.5);
9591 }
9592
9593 \f
9594
9595 /* Range types */
9596
9597 /* Scan STR beginning at position K for a discriminant name, and
9598 return the value of that discriminant field of DVAL in *PX. If
9599 PNEW_K is not null, put the position of the character beyond the
9600 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9601 not alter *PX and *PNEW_K if unsuccessful. */
9602
9603 static int
9604 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9605 int *pnew_k)
9606 {
9607 static char *bound_buffer = NULL;
9608 static size_t bound_buffer_len = 0;
9609 char *bound;
9610 char *pend;
9611 struct value *bound_val;
9612
9613 if (dval == NULL || str == NULL || str[k] == '\0')
9614 return 0;
9615
9616 pend = strstr (str + k, "__");
9617 if (pend == NULL)
9618 {
9619 bound = str + k;
9620 k += strlen (bound);
9621 }
9622 else
9623 {
9624 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9625 bound = bound_buffer;
9626 strncpy (bound_buffer, str + k, pend - (str + k));
9627 bound[pend - (str + k)] = '\0';
9628 k = pend - str;
9629 }
9630
9631 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9632 if (bound_val == NULL)
9633 return 0;
9634
9635 *px = value_as_long (bound_val);
9636 if (pnew_k != NULL)
9637 *pnew_k = k;
9638 return 1;
9639 }
9640
9641 /* Value of variable named NAME in the current environment. If
9642 no such variable found, then if ERR_MSG is null, returns 0, and
9643 otherwise causes an error with message ERR_MSG. */
9644
9645 static struct value *
9646 get_var_value (char *name, char *err_msg)
9647 {
9648 struct ada_symbol_info *syms;
9649 int nsyms;
9650
9651 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9652 &syms);
9653
9654 if (nsyms != 1)
9655 {
9656 if (err_msg == NULL)
9657 return 0;
9658 else
9659 error (("%s"), err_msg);
9660 }
9661
9662 return value_of_variable (syms[0].sym, syms[0].block);
9663 }
9664
9665 /* Value of integer variable named NAME in the current environment. If
9666 no such variable found, returns 0, and sets *FLAG to 0. If
9667 successful, sets *FLAG to 1. */
9668
9669 LONGEST
9670 get_int_var_value (char *name, int *flag)
9671 {
9672 struct value *var_val = get_var_value (name, 0);
9673
9674 if (var_val == 0)
9675 {
9676 if (flag != NULL)
9677 *flag = 0;
9678 return 0;
9679 }
9680 else
9681 {
9682 if (flag != NULL)
9683 *flag = 1;
9684 return value_as_long (var_val);
9685 }
9686 }
9687
9688
9689 /* Return a range type whose base type is that of the range type named
9690 NAME in the current environment, and whose bounds are calculated
9691 from NAME according to the GNAT range encoding conventions.
9692 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
9693 corresponding range type from debug information; fall back to using it
9694 if symbol lookup fails. If a new type must be created, allocate it
9695 like ORIG_TYPE was. The bounds information, in general, is encoded
9696 in NAME, the base type given in the named range type. */
9697
9698 static struct type *
9699 to_fixed_range_type (char *name, struct value *dval, struct type *orig_type)
9700 {
9701 struct type *raw_type = ada_find_any_type (name);
9702 struct type *base_type;
9703 char *subtype_info;
9704
9705 /* Fall back to the original type if symbol lookup failed. */
9706 if (raw_type == NULL)
9707 raw_type = orig_type;
9708
9709 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9710 base_type = TYPE_TARGET_TYPE (raw_type);
9711 else
9712 base_type = raw_type;
9713
9714 subtype_info = strstr (name, "___XD");
9715 if (subtype_info == NULL)
9716 {
9717 LONGEST L = ada_discrete_type_low_bound (raw_type);
9718 LONGEST U = ada_discrete_type_high_bound (raw_type);
9719 if (L < INT_MIN || U > INT_MAX)
9720 return raw_type;
9721 else
9722 return create_range_type (alloc_type_copy (orig_type), raw_type,
9723 ada_discrete_type_low_bound (raw_type),
9724 ada_discrete_type_high_bound (raw_type));
9725 }
9726 else
9727 {
9728 static char *name_buf = NULL;
9729 static size_t name_len = 0;
9730 int prefix_len = subtype_info - name;
9731 LONGEST L, U;
9732 struct type *type;
9733 char *bounds_str;
9734 int n;
9735
9736 GROW_VECT (name_buf, name_len, prefix_len + 5);
9737 strncpy (name_buf, name, prefix_len);
9738 name_buf[prefix_len] = '\0';
9739
9740 subtype_info += 5;
9741 bounds_str = strchr (subtype_info, '_');
9742 n = 1;
9743
9744 if (*subtype_info == 'L')
9745 {
9746 if (!ada_scan_number (bounds_str, n, &L, &n)
9747 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9748 return raw_type;
9749 if (bounds_str[n] == '_')
9750 n += 2;
9751 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9752 n += 1;
9753 subtype_info += 1;
9754 }
9755 else
9756 {
9757 int ok;
9758 strcpy (name_buf + prefix_len, "___L");
9759 L = get_int_var_value (name_buf, &ok);
9760 if (!ok)
9761 {
9762 lim_warning (_("Unknown lower bound, using 1."));
9763 L = 1;
9764 }
9765 }
9766
9767 if (*subtype_info == 'U')
9768 {
9769 if (!ada_scan_number (bounds_str, n, &U, &n)
9770 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9771 return raw_type;
9772 }
9773 else
9774 {
9775 int ok;
9776 strcpy (name_buf + prefix_len, "___U");
9777 U = get_int_var_value (name_buf, &ok);
9778 if (!ok)
9779 {
9780 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9781 U = L;
9782 }
9783 }
9784
9785 type = create_range_type (alloc_type_copy (orig_type), base_type, L, U);
9786 TYPE_NAME (type) = name;
9787 return type;
9788 }
9789 }
9790
9791 /* True iff NAME is the name of a range type. */
9792
9793 int
9794 ada_is_range_type_name (const char *name)
9795 {
9796 return (name != NULL && strstr (name, "___XD"));
9797 }
9798 \f
9799
9800 /* Modular types */
9801
9802 /* True iff TYPE is an Ada modular type. */
9803
9804 int
9805 ada_is_modular_type (struct type *type)
9806 {
9807 struct type *subranged_type = base_type (type);
9808
9809 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9810 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9811 && TYPE_UNSIGNED (subranged_type));
9812 }
9813
9814 /* Try to determine the lower and upper bounds of the given modular type
9815 using the type name only. Return non-zero and set L and U as the lower
9816 and upper bounds (respectively) if successful. */
9817
9818 int
9819 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9820 {
9821 char *name = ada_type_name (type);
9822 char *suffix;
9823 int k;
9824 LONGEST U;
9825
9826 if (name == NULL)
9827 return 0;
9828
9829 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9830 we are looking for static bounds, which means an __XDLU suffix.
9831 Moreover, we know that the lower bound of modular types is always
9832 zero, so the actual suffix should start with "__XDLU_0__", and
9833 then be followed by the upper bound value. */
9834 suffix = strstr (name, "__XDLU_0__");
9835 if (suffix == NULL)
9836 return 0;
9837 k = 10;
9838 if (!ada_scan_number (suffix, k, &U, NULL))
9839 return 0;
9840
9841 *modulus = (ULONGEST) U + 1;
9842 return 1;
9843 }
9844
9845 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9846
9847 ULONGEST
9848 ada_modulus (struct type *type)
9849 {
9850 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9851 }
9852 \f
9853
9854 /* Ada exception catchpoint support:
9855 ---------------------------------
9856
9857 We support 3 kinds of exception catchpoints:
9858 . catchpoints on Ada exceptions
9859 . catchpoints on unhandled Ada exceptions
9860 . catchpoints on failed assertions
9861
9862 Exceptions raised during failed assertions, or unhandled exceptions
9863 could perfectly be caught with the general catchpoint on Ada exceptions.
9864 However, we can easily differentiate these two special cases, and having
9865 the option to distinguish these two cases from the rest can be useful
9866 to zero-in on certain situations.
9867
9868 Exception catchpoints are a specialized form of breakpoint,
9869 since they rely on inserting breakpoints inside known routines
9870 of the GNAT runtime. The implementation therefore uses a standard
9871 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9872 of breakpoint_ops.
9873
9874 Support in the runtime for exception catchpoints have been changed
9875 a few times already, and these changes affect the implementation
9876 of these catchpoints. In order to be able to support several
9877 variants of the runtime, we use a sniffer that will determine
9878 the runtime variant used by the program being debugged.
9879
9880 At this time, we do not support the use of conditions on Ada exception
9881 catchpoints. The COND and COND_STRING fields are therefore set
9882 to NULL (most of the time, see below).
9883
9884 Conditions where EXP_STRING, COND, and COND_STRING are used:
9885
9886 When a user specifies the name of a specific exception in the case
9887 of catchpoints on Ada exceptions, we store the name of that exception
9888 in the EXP_STRING. We then translate this request into an actual
9889 condition stored in COND_STRING, and then parse it into an expression
9890 stored in COND. */
9891
9892 /* The different types of catchpoints that we introduced for catching
9893 Ada exceptions. */
9894
9895 enum exception_catchpoint_kind
9896 {
9897 ex_catch_exception,
9898 ex_catch_exception_unhandled,
9899 ex_catch_assert
9900 };
9901
9902 /* Ada's standard exceptions. */
9903
9904 static char *standard_exc[] = {
9905 "constraint_error",
9906 "program_error",
9907 "storage_error",
9908 "tasking_error"
9909 };
9910
9911 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9912
9913 /* A structure that describes how to support exception catchpoints
9914 for a given executable. */
9915
9916 struct exception_support_info
9917 {
9918 /* The name of the symbol to break on in order to insert
9919 a catchpoint on exceptions. */
9920 const char *catch_exception_sym;
9921
9922 /* The name of the symbol to break on in order to insert
9923 a catchpoint on unhandled exceptions. */
9924 const char *catch_exception_unhandled_sym;
9925
9926 /* The name of the symbol to break on in order to insert
9927 a catchpoint on failed assertions. */
9928 const char *catch_assert_sym;
9929
9930 /* Assuming that the inferior just triggered an unhandled exception
9931 catchpoint, this function is responsible for returning the address
9932 in inferior memory where the name of that exception is stored.
9933 Return zero if the address could not be computed. */
9934 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9935 };
9936
9937 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9938 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9939
9940 /* The following exception support info structure describes how to
9941 implement exception catchpoints with the latest version of the
9942 Ada runtime (as of 2007-03-06). */
9943
9944 static const struct exception_support_info default_exception_support_info =
9945 {
9946 "__gnat_debug_raise_exception", /* catch_exception_sym */
9947 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9948 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9949 ada_unhandled_exception_name_addr
9950 };
9951
9952 /* The following exception support info structure describes how to
9953 implement exception catchpoints with a slightly older version
9954 of the Ada runtime. */
9955
9956 static const struct exception_support_info exception_support_info_fallback =
9957 {
9958 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9959 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9960 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9961 ada_unhandled_exception_name_addr_from_raise
9962 };
9963
9964 /* For each executable, we sniff which exception info structure to use
9965 and cache it in the following global variable. */
9966
9967 static const struct exception_support_info *exception_info = NULL;
9968
9969 /* Inspect the Ada runtime and determine which exception info structure
9970 should be used to provide support for exception catchpoints.
9971
9972 This function will always set exception_info, or raise an error. */
9973
9974 static void
9975 ada_exception_support_info_sniffer (void)
9976 {
9977 struct symbol *sym;
9978
9979 /* If the exception info is already known, then no need to recompute it. */
9980 if (exception_info != NULL)
9981 return;
9982
9983 /* Check the latest (default) exception support info. */
9984 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9985 NULL, VAR_DOMAIN);
9986 if (sym != NULL)
9987 {
9988 exception_info = &default_exception_support_info;
9989 return;
9990 }
9991
9992 /* Try our fallback exception suport info. */
9993 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9994 NULL, VAR_DOMAIN);
9995 if (sym != NULL)
9996 {
9997 exception_info = &exception_support_info_fallback;
9998 return;
9999 }
10000
10001 /* Sometimes, it is normal for us to not be able to find the routine
10002 we are looking for. This happens when the program is linked with
10003 the shared version of the GNAT runtime, and the program has not been
10004 started yet. Inform the user of these two possible causes if
10005 applicable. */
10006
10007 if (ada_update_initial_language (language_unknown) != language_ada)
10008 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10009
10010 /* If the symbol does not exist, then check that the program is
10011 already started, to make sure that shared libraries have been
10012 loaded. If it is not started, this may mean that the symbol is
10013 in a shared library. */
10014
10015 if (ptid_get_pid (inferior_ptid) == 0)
10016 error (_("Unable to insert catchpoint. Try to start the program first."));
10017
10018 /* At this point, we know that we are debugging an Ada program and
10019 that the inferior has been started, but we still are not able to
10020 find the run-time symbols. That can mean that we are in
10021 configurable run time mode, or that a-except as been optimized
10022 out by the linker... In any case, at this point it is not worth
10023 supporting this feature. */
10024
10025 error (_("Cannot insert catchpoints in this configuration."));
10026 }
10027
10028 /* An observer of "executable_changed" events.
10029 Its role is to clear certain cached values that need to be recomputed
10030 each time a new executable is loaded by GDB. */
10031
10032 static void
10033 ada_executable_changed_observer (void)
10034 {
10035 /* If the executable changed, then it is possible that the Ada runtime
10036 is different. So we need to invalidate the exception support info
10037 cache. */
10038 exception_info = NULL;
10039 }
10040
10041 /* True iff FRAME is very likely to be that of a function that is
10042 part of the runtime system. This is all very heuristic, but is
10043 intended to be used as advice as to what frames are uninteresting
10044 to most users. */
10045
10046 static int
10047 is_known_support_routine (struct frame_info *frame)
10048 {
10049 struct symtab_and_line sal;
10050 char *func_name;
10051 enum language func_lang;
10052 int i;
10053
10054 /* If this code does not have any debugging information (no symtab),
10055 This cannot be any user code. */
10056
10057 find_frame_sal (frame, &sal);
10058 if (sal.symtab == NULL)
10059 return 1;
10060
10061 /* If there is a symtab, but the associated source file cannot be
10062 located, then assume this is not user code: Selecting a frame
10063 for which we cannot display the code would not be very helpful
10064 for the user. This should also take care of case such as VxWorks
10065 where the kernel has some debugging info provided for a few units. */
10066
10067 if (symtab_to_fullname (sal.symtab) == NULL)
10068 return 1;
10069
10070 /* Check the unit filename againt the Ada runtime file naming.
10071 We also check the name of the objfile against the name of some
10072 known system libraries that sometimes come with debugging info
10073 too. */
10074
10075 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10076 {
10077 re_comp (known_runtime_file_name_patterns[i]);
10078 if (re_exec (sal.symtab->filename))
10079 return 1;
10080 if (sal.symtab->objfile != NULL
10081 && re_exec (sal.symtab->objfile->name))
10082 return 1;
10083 }
10084
10085 /* Check whether the function is a GNAT-generated entity. */
10086
10087 find_frame_funname (frame, &func_name, &func_lang);
10088 if (func_name == NULL)
10089 return 1;
10090
10091 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10092 {
10093 re_comp (known_auxiliary_function_name_patterns[i]);
10094 if (re_exec (func_name))
10095 return 1;
10096 }
10097
10098 return 0;
10099 }
10100
10101 /* Find the first frame that contains debugging information and that is not
10102 part of the Ada run-time, starting from FI and moving upward. */
10103
10104 void
10105 ada_find_printable_frame (struct frame_info *fi)
10106 {
10107 for (; fi != NULL; fi = get_prev_frame (fi))
10108 {
10109 if (!is_known_support_routine (fi))
10110 {
10111 select_frame (fi);
10112 break;
10113 }
10114 }
10115
10116 }
10117
10118 /* Assuming that the inferior just triggered an unhandled exception
10119 catchpoint, return the address in inferior memory where the name
10120 of the exception is stored.
10121
10122 Return zero if the address could not be computed. */
10123
10124 static CORE_ADDR
10125 ada_unhandled_exception_name_addr (void)
10126 {
10127 return parse_and_eval_address ("e.full_name");
10128 }
10129
10130 /* Same as ada_unhandled_exception_name_addr, except that this function
10131 should be used when the inferior uses an older version of the runtime,
10132 where the exception name needs to be extracted from a specific frame
10133 several frames up in the callstack. */
10134
10135 static CORE_ADDR
10136 ada_unhandled_exception_name_addr_from_raise (void)
10137 {
10138 int frame_level;
10139 struct frame_info *fi;
10140
10141 /* To determine the name of this exception, we need to select
10142 the frame corresponding to RAISE_SYM_NAME. This frame is
10143 at least 3 levels up, so we simply skip the first 3 frames
10144 without checking the name of their associated function. */
10145 fi = get_current_frame ();
10146 for (frame_level = 0; frame_level < 3; frame_level += 1)
10147 if (fi != NULL)
10148 fi = get_prev_frame (fi);
10149
10150 while (fi != NULL)
10151 {
10152 char *func_name;
10153 enum language func_lang;
10154
10155 find_frame_funname (fi, &func_name, &func_lang);
10156 if (func_name != NULL
10157 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
10158 break; /* We found the frame we were looking for... */
10159 fi = get_prev_frame (fi);
10160 }
10161
10162 if (fi == NULL)
10163 return 0;
10164
10165 select_frame (fi);
10166 return parse_and_eval_address ("id.full_name");
10167 }
10168
10169 /* Assuming the inferior just triggered an Ada exception catchpoint
10170 (of any type), return the address in inferior memory where the name
10171 of the exception is stored, if applicable.
10172
10173 Return zero if the address could not be computed, or if not relevant. */
10174
10175 static CORE_ADDR
10176 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10177 struct breakpoint *b)
10178 {
10179 switch (ex)
10180 {
10181 case ex_catch_exception:
10182 return (parse_and_eval_address ("e.full_name"));
10183 break;
10184
10185 case ex_catch_exception_unhandled:
10186 return exception_info->unhandled_exception_name_addr ();
10187 break;
10188
10189 case ex_catch_assert:
10190 return 0; /* Exception name is not relevant in this case. */
10191 break;
10192
10193 default:
10194 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10195 break;
10196 }
10197
10198 return 0; /* Should never be reached. */
10199 }
10200
10201 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10202 any error that ada_exception_name_addr_1 might cause to be thrown.
10203 When an error is intercepted, a warning with the error message is printed,
10204 and zero is returned. */
10205
10206 static CORE_ADDR
10207 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10208 struct breakpoint *b)
10209 {
10210 struct gdb_exception e;
10211 CORE_ADDR result = 0;
10212
10213 TRY_CATCH (e, RETURN_MASK_ERROR)
10214 {
10215 result = ada_exception_name_addr_1 (ex, b);
10216 }
10217
10218 if (e.reason < 0)
10219 {
10220 warning (_("failed to get exception name: %s"), e.message);
10221 return 0;
10222 }
10223
10224 return result;
10225 }
10226
10227 /* Implement the PRINT_IT method in the breakpoint_ops structure
10228 for all exception catchpoint kinds. */
10229
10230 static enum print_stop_action
10231 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10232 {
10233 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10234 char exception_name[256];
10235
10236 if (addr != 0)
10237 {
10238 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10239 exception_name [sizeof (exception_name) - 1] = '\0';
10240 }
10241
10242 ada_find_printable_frame (get_current_frame ());
10243
10244 annotate_catchpoint (b->number);
10245 switch (ex)
10246 {
10247 case ex_catch_exception:
10248 if (addr != 0)
10249 printf_filtered (_("\nCatchpoint %d, %s at "),
10250 b->number, exception_name);
10251 else
10252 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10253 break;
10254 case ex_catch_exception_unhandled:
10255 if (addr != 0)
10256 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10257 b->number, exception_name);
10258 else
10259 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10260 b->number);
10261 break;
10262 case ex_catch_assert:
10263 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10264 b->number);
10265 break;
10266 }
10267
10268 return PRINT_SRC_AND_LOC;
10269 }
10270
10271 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10272 for all exception catchpoint kinds. */
10273
10274 static void
10275 print_one_exception (enum exception_catchpoint_kind ex,
10276 struct breakpoint *b, struct bp_location **last_loc)
10277 {
10278 struct value_print_options opts;
10279
10280 get_user_print_options (&opts);
10281 if (opts.addressprint)
10282 {
10283 annotate_field (4);
10284 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
10285 }
10286
10287 annotate_field (5);
10288 *last_loc = b->loc;
10289 switch (ex)
10290 {
10291 case ex_catch_exception:
10292 if (b->exp_string != NULL)
10293 {
10294 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10295
10296 ui_out_field_string (uiout, "what", msg);
10297 xfree (msg);
10298 }
10299 else
10300 ui_out_field_string (uiout, "what", "all Ada exceptions");
10301
10302 break;
10303
10304 case ex_catch_exception_unhandled:
10305 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10306 break;
10307
10308 case ex_catch_assert:
10309 ui_out_field_string (uiout, "what", "failed Ada assertions");
10310 break;
10311
10312 default:
10313 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10314 break;
10315 }
10316 }
10317
10318 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10319 for all exception catchpoint kinds. */
10320
10321 static void
10322 print_mention_exception (enum exception_catchpoint_kind ex,
10323 struct breakpoint *b)
10324 {
10325 switch (ex)
10326 {
10327 case ex_catch_exception:
10328 if (b->exp_string != NULL)
10329 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10330 b->number, b->exp_string);
10331 else
10332 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10333
10334 break;
10335
10336 case ex_catch_exception_unhandled:
10337 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10338 b->number);
10339 break;
10340
10341 case ex_catch_assert:
10342 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10343 break;
10344
10345 default:
10346 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10347 break;
10348 }
10349 }
10350
10351 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10352 for all exception catchpoint kinds. */
10353
10354 static void
10355 print_recreate_exception (enum exception_catchpoint_kind ex,
10356 struct breakpoint *b, struct ui_file *fp)
10357 {
10358 switch (ex)
10359 {
10360 case ex_catch_exception:
10361 fprintf_filtered (fp, "catch exception");
10362 if (b->exp_string != NULL)
10363 fprintf_filtered (fp, " %s", b->exp_string);
10364 break;
10365
10366 case ex_catch_exception_unhandled:
10367 fprintf_filtered (fp, "catch unhandled");
10368 break;
10369
10370 case ex_catch_assert:
10371 fprintf_filtered (fp, "catch assert");
10372 break;
10373
10374 default:
10375 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10376 }
10377 }
10378
10379 /* Virtual table for "catch exception" breakpoints. */
10380
10381 static enum print_stop_action
10382 print_it_catch_exception (struct breakpoint *b)
10383 {
10384 return print_it_exception (ex_catch_exception, b);
10385 }
10386
10387 static void
10388 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
10389 {
10390 print_one_exception (ex_catch_exception, b, last_loc);
10391 }
10392
10393 static void
10394 print_mention_catch_exception (struct breakpoint *b)
10395 {
10396 print_mention_exception (ex_catch_exception, b);
10397 }
10398
10399 static void
10400 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10401 {
10402 print_recreate_exception (ex_catch_exception, b, fp);
10403 }
10404
10405 static struct breakpoint_ops catch_exception_breakpoint_ops =
10406 {
10407 NULL, /* insert */
10408 NULL, /* remove */
10409 NULL, /* breakpoint_hit */
10410 print_it_catch_exception,
10411 print_one_catch_exception,
10412 print_mention_catch_exception,
10413 print_recreate_catch_exception
10414 };
10415
10416 /* Virtual table for "catch exception unhandled" breakpoints. */
10417
10418 static enum print_stop_action
10419 print_it_catch_exception_unhandled (struct breakpoint *b)
10420 {
10421 return print_it_exception (ex_catch_exception_unhandled, b);
10422 }
10423
10424 static void
10425 print_one_catch_exception_unhandled (struct breakpoint *b,
10426 struct bp_location **last_loc)
10427 {
10428 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
10429 }
10430
10431 static void
10432 print_mention_catch_exception_unhandled (struct breakpoint *b)
10433 {
10434 print_mention_exception (ex_catch_exception_unhandled, b);
10435 }
10436
10437 static void
10438 print_recreate_catch_exception_unhandled (struct breakpoint *b,
10439 struct ui_file *fp)
10440 {
10441 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10442 }
10443
10444 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10445 NULL, /* insert */
10446 NULL, /* remove */
10447 NULL, /* breakpoint_hit */
10448 print_it_catch_exception_unhandled,
10449 print_one_catch_exception_unhandled,
10450 print_mention_catch_exception_unhandled,
10451 print_recreate_catch_exception_unhandled
10452 };
10453
10454 /* Virtual table for "catch assert" breakpoints. */
10455
10456 static enum print_stop_action
10457 print_it_catch_assert (struct breakpoint *b)
10458 {
10459 return print_it_exception (ex_catch_assert, b);
10460 }
10461
10462 static void
10463 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
10464 {
10465 print_one_exception (ex_catch_assert, b, last_loc);
10466 }
10467
10468 static void
10469 print_mention_catch_assert (struct breakpoint *b)
10470 {
10471 print_mention_exception (ex_catch_assert, b);
10472 }
10473
10474 static void
10475 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
10476 {
10477 print_recreate_exception (ex_catch_assert, b, fp);
10478 }
10479
10480 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10481 NULL, /* insert */
10482 NULL, /* remove */
10483 NULL, /* breakpoint_hit */
10484 print_it_catch_assert,
10485 print_one_catch_assert,
10486 print_mention_catch_assert,
10487 print_recreate_catch_assert
10488 };
10489
10490 /* Return non-zero if B is an Ada exception catchpoint. */
10491
10492 int
10493 ada_exception_catchpoint_p (struct breakpoint *b)
10494 {
10495 return (b->ops == &catch_exception_breakpoint_ops
10496 || b->ops == &catch_exception_unhandled_breakpoint_ops
10497 || b->ops == &catch_assert_breakpoint_ops);
10498 }
10499
10500 /* Return a newly allocated copy of the first space-separated token
10501 in ARGSP, and then adjust ARGSP to point immediately after that
10502 token.
10503
10504 Return NULL if ARGPS does not contain any more tokens. */
10505
10506 static char *
10507 ada_get_next_arg (char **argsp)
10508 {
10509 char *args = *argsp;
10510 char *end;
10511 char *result;
10512
10513 /* Skip any leading white space. */
10514
10515 while (isspace (*args))
10516 args++;
10517
10518 if (args[0] == '\0')
10519 return NULL; /* No more arguments. */
10520
10521 /* Find the end of the current argument. */
10522
10523 end = args;
10524 while (*end != '\0' && !isspace (*end))
10525 end++;
10526
10527 /* Adjust ARGSP to point to the start of the next argument. */
10528
10529 *argsp = end;
10530
10531 /* Make a copy of the current argument and return it. */
10532
10533 result = xmalloc (end - args + 1);
10534 strncpy (result, args, end - args);
10535 result[end - args] = '\0';
10536
10537 return result;
10538 }
10539
10540 /* Split the arguments specified in a "catch exception" command.
10541 Set EX to the appropriate catchpoint type.
10542 Set EXP_STRING to the name of the specific exception if
10543 specified by the user. */
10544
10545 static void
10546 catch_ada_exception_command_split (char *args,
10547 enum exception_catchpoint_kind *ex,
10548 char **exp_string)
10549 {
10550 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10551 char *exception_name;
10552
10553 exception_name = ada_get_next_arg (&args);
10554 make_cleanup (xfree, exception_name);
10555
10556 /* Check that we do not have any more arguments. Anything else
10557 is unexpected. */
10558
10559 while (isspace (*args))
10560 args++;
10561
10562 if (args[0] != '\0')
10563 error (_("Junk at end of expression"));
10564
10565 discard_cleanups (old_chain);
10566
10567 if (exception_name == NULL)
10568 {
10569 /* Catch all exceptions. */
10570 *ex = ex_catch_exception;
10571 *exp_string = NULL;
10572 }
10573 else if (strcmp (exception_name, "unhandled") == 0)
10574 {
10575 /* Catch unhandled exceptions. */
10576 *ex = ex_catch_exception_unhandled;
10577 *exp_string = NULL;
10578 }
10579 else
10580 {
10581 /* Catch a specific exception. */
10582 *ex = ex_catch_exception;
10583 *exp_string = exception_name;
10584 }
10585 }
10586
10587 /* Return the name of the symbol on which we should break in order to
10588 implement a catchpoint of the EX kind. */
10589
10590 static const char *
10591 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10592 {
10593 gdb_assert (exception_info != NULL);
10594
10595 switch (ex)
10596 {
10597 case ex_catch_exception:
10598 return (exception_info->catch_exception_sym);
10599 break;
10600 case ex_catch_exception_unhandled:
10601 return (exception_info->catch_exception_unhandled_sym);
10602 break;
10603 case ex_catch_assert:
10604 return (exception_info->catch_assert_sym);
10605 break;
10606 default:
10607 internal_error (__FILE__, __LINE__,
10608 _("unexpected catchpoint kind (%d)"), ex);
10609 }
10610 }
10611
10612 /* Return the breakpoint ops "virtual table" used for catchpoints
10613 of the EX kind. */
10614
10615 static struct breakpoint_ops *
10616 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10617 {
10618 switch (ex)
10619 {
10620 case ex_catch_exception:
10621 return (&catch_exception_breakpoint_ops);
10622 break;
10623 case ex_catch_exception_unhandled:
10624 return (&catch_exception_unhandled_breakpoint_ops);
10625 break;
10626 case ex_catch_assert:
10627 return (&catch_assert_breakpoint_ops);
10628 break;
10629 default:
10630 internal_error (__FILE__, __LINE__,
10631 _("unexpected catchpoint kind (%d)"), ex);
10632 }
10633 }
10634
10635 /* Return the condition that will be used to match the current exception
10636 being raised with the exception that the user wants to catch. This
10637 assumes that this condition is used when the inferior just triggered
10638 an exception catchpoint.
10639
10640 The string returned is a newly allocated string that needs to be
10641 deallocated later. */
10642
10643 static char *
10644 ada_exception_catchpoint_cond_string (const char *exp_string)
10645 {
10646 int i;
10647
10648 /* The standard exceptions are a special case. They are defined in
10649 runtime units that have been compiled without debugging info; if
10650 EXP_STRING is the not-fully-qualified name of a standard
10651 exception (e.g. "constraint_error") then, during the evaluation
10652 of the condition expression, the symbol lookup on this name would
10653 *not* return this standard exception. The catchpoint condition
10654 may then be set only on user-defined exceptions which have the
10655 same not-fully-qualified name (e.g. my_package.constraint_error).
10656
10657 To avoid this unexcepted behavior, these standard exceptions are
10658 systematically prefixed by "standard". This means that "catch
10659 exception constraint_error" is rewritten into "catch exception
10660 standard.constraint_error".
10661
10662 If an exception named contraint_error is defined in another package of
10663 the inferior program, then the only way to specify this exception as a
10664 breakpoint condition is to use its fully-qualified named:
10665 e.g. my_package.constraint_error. */
10666
10667 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10668 {
10669 if (strcmp (standard_exc [i], exp_string) == 0)
10670 {
10671 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10672 exp_string);
10673 }
10674 }
10675 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10676 }
10677
10678 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10679
10680 static struct expression *
10681 ada_parse_catchpoint_condition (char *cond_string,
10682 struct symtab_and_line sal)
10683 {
10684 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10685 }
10686
10687 /* Return the symtab_and_line that should be used to insert an exception
10688 catchpoint of the TYPE kind.
10689
10690 EX_STRING should contain the name of a specific exception
10691 that the catchpoint should catch, or NULL otherwise.
10692
10693 The idea behind all the remaining parameters is that their names match
10694 the name of certain fields in the breakpoint structure that are used to
10695 handle exception catchpoints. This function returns the value to which
10696 these fields should be set, depending on the type of catchpoint we need
10697 to create.
10698
10699 If COND and COND_STRING are both non-NULL, any value they might
10700 hold will be free'ed, and then replaced by newly allocated ones.
10701 These parameters are left untouched otherwise. */
10702
10703 static struct symtab_and_line
10704 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10705 char **addr_string, char **cond_string,
10706 struct expression **cond, struct breakpoint_ops **ops)
10707 {
10708 const char *sym_name;
10709 struct symbol *sym;
10710 struct symtab_and_line sal;
10711
10712 /* First, find out which exception support info to use. */
10713 ada_exception_support_info_sniffer ();
10714
10715 /* Then lookup the function on which we will break in order to catch
10716 the Ada exceptions requested by the user. */
10717
10718 sym_name = ada_exception_sym_name (ex);
10719 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10720
10721 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10722 that should be compiled with debugging information. As a result, we
10723 expect to find that symbol in the symtabs. If we don't find it, then
10724 the target most likely does not support Ada exceptions, or we cannot
10725 insert exception breakpoints yet, because the GNAT runtime hasn't been
10726 loaded yet. */
10727
10728 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10729 in such a way that no debugging information is produced for the symbol
10730 we are looking for. In this case, we could search the minimal symbols
10731 as a fall-back mechanism. This would still be operating in degraded
10732 mode, however, as we would still be missing the debugging information
10733 that is needed in order to extract the name of the exception being
10734 raised (this name is printed in the catchpoint message, and is also
10735 used when trying to catch a specific exception). We do not handle
10736 this case for now. */
10737
10738 if (sym == NULL)
10739 error (_("Unable to break on '%s' in this configuration."), sym_name);
10740
10741 /* Make sure that the symbol we found corresponds to a function. */
10742 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10743 error (_("Symbol \"%s\" is not a function (class = %d)"),
10744 sym_name, SYMBOL_CLASS (sym));
10745
10746 sal = find_function_start_sal (sym, 1);
10747
10748 /* Set ADDR_STRING. */
10749
10750 *addr_string = xstrdup (sym_name);
10751
10752 /* Set the COND and COND_STRING (if not NULL). */
10753
10754 if (cond_string != NULL && cond != NULL)
10755 {
10756 if (*cond_string != NULL)
10757 {
10758 xfree (*cond_string);
10759 *cond_string = NULL;
10760 }
10761 if (*cond != NULL)
10762 {
10763 xfree (*cond);
10764 *cond = NULL;
10765 }
10766 if (exp_string != NULL)
10767 {
10768 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10769 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10770 }
10771 }
10772
10773 /* Set OPS. */
10774 *ops = ada_exception_breakpoint_ops (ex);
10775
10776 return sal;
10777 }
10778
10779 /* Parse the arguments (ARGS) of the "catch exception" command.
10780
10781 Set TYPE to the appropriate exception catchpoint type.
10782 If the user asked the catchpoint to catch only a specific
10783 exception, then save the exception name in ADDR_STRING.
10784
10785 See ada_exception_sal for a description of all the remaining
10786 function arguments of this function. */
10787
10788 struct symtab_and_line
10789 ada_decode_exception_location (char *args, char **addr_string,
10790 char **exp_string, char **cond_string,
10791 struct expression **cond,
10792 struct breakpoint_ops **ops)
10793 {
10794 enum exception_catchpoint_kind ex;
10795
10796 catch_ada_exception_command_split (args, &ex, exp_string);
10797 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10798 cond, ops);
10799 }
10800
10801 struct symtab_and_line
10802 ada_decode_assert_location (char *args, char **addr_string,
10803 struct breakpoint_ops **ops)
10804 {
10805 /* Check that no argument where provided at the end of the command. */
10806
10807 if (args != NULL)
10808 {
10809 while (isspace (*args))
10810 args++;
10811 if (*args != '\0')
10812 error (_("Junk at end of arguments."));
10813 }
10814
10815 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10816 ops);
10817 }
10818
10819 /* Operators */
10820 /* Information about operators given special treatment in functions
10821 below. */
10822 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10823
10824 #define ADA_OPERATORS \
10825 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10826 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10827 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10828 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10829 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10830 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10831 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10832 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10833 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10834 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10835 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10836 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10837 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10838 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10839 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10840 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10841 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10842 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10843 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10844
10845 static void
10846 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10847 {
10848 switch (exp->elts[pc - 1].opcode)
10849 {
10850 default:
10851 operator_length_standard (exp, pc, oplenp, argsp);
10852 break;
10853
10854 #define OP_DEFN(op, len, args, binop) \
10855 case op: *oplenp = len; *argsp = args; break;
10856 ADA_OPERATORS;
10857 #undef OP_DEFN
10858
10859 case OP_AGGREGATE:
10860 *oplenp = 3;
10861 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10862 break;
10863
10864 case OP_CHOICES:
10865 *oplenp = 3;
10866 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10867 break;
10868 }
10869 }
10870
10871 static char *
10872 ada_op_name (enum exp_opcode opcode)
10873 {
10874 switch (opcode)
10875 {
10876 default:
10877 return op_name_standard (opcode);
10878
10879 #define OP_DEFN(op, len, args, binop) case op: return #op;
10880 ADA_OPERATORS;
10881 #undef OP_DEFN
10882
10883 case OP_AGGREGATE:
10884 return "OP_AGGREGATE";
10885 case OP_CHOICES:
10886 return "OP_CHOICES";
10887 case OP_NAME:
10888 return "OP_NAME";
10889 }
10890 }
10891
10892 /* As for operator_length, but assumes PC is pointing at the first
10893 element of the operator, and gives meaningful results only for the
10894 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10895
10896 static void
10897 ada_forward_operator_length (struct expression *exp, int pc,
10898 int *oplenp, int *argsp)
10899 {
10900 switch (exp->elts[pc].opcode)
10901 {
10902 default:
10903 *oplenp = *argsp = 0;
10904 break;
10905
10906 #define OP_DEFN(op, len, args, binop) \
10907 case op: *oplenp = len; *argsp = args; break;
10908 ADA_OPERATORS;
10909 #undef OP_DEFN
10910
10911 case OP_AGGREGATE:
10912 *oplenp = 3;
10913 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10914 break;
10915
10916 case OP_CHOICES:
10917 *oplenp = 3;
10918 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10919 break;
10920
10921 case OP_STRING:
10922 case OP_NAME:
10923 {
10924 int len = longest_to_int (exp->elts[pc + 1].longconst);
10925 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10926 *argsp = 0;
10927 break;
10928 }
10929 }
10930 }
10931
10932 static int
10933 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10934 {
10935 enum exp_opcode op = exp->elts[elt].opcode;
10936 int oplen, nargs;
10937 int pc = elt;
10938 int i;
10939
10940 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10941
10942 switch (op)
10943 {
10944 /* Ada attributes ('Foo). */
10945 case OP_ATR_FIRST:
10946 case OP_ATR_LAST:
10947 case OP_ATR_LENGTH:
10948 case OP_ATR_IMAGE:
10949 case OP_ATR_MAX:
10950 case OP_ATR_MIN:
10951 case OP_ATR_MODULUS:
10952 case OP_ATR_POS:
10953 case OP_ATR_SIZE:
10954 case OP_ATR_TAG:
10955 case OP_ATR_VAL:
10956 break;
10957
10958 case UNOP_IN_RANGE:
10959 case UNOP_QUAL:
10960 /* XXX: gdb_sprint_host_address, type_sprint */
10961 fprintf_filtered (stream, _("Type @"));
10962 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10963 fprintf_filtered (stream, " (");
10964 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10965 fprintf_filtered (stream, ")");
10966 break;
10967 case BINOP_IN_BOUNDS:
10968 fprintf_filtered (stream, " (%d)",
10969 longest_to_int (exp->elts[pc + 2].longconst));
10970 break;
10971 case TERNOP_IN_RANGE:
10972 break;
10973
10974 case OP_AGGREGATE:
10975 case OP_OTHERS:
10976 case OP_DISCRETE_RANGE:
10977 case OP_POSITIONAL:
10978 case OP_CHOICES:
10979 break;
10980
10981 case OP_NAME:
10982 case OP_STRING:
10983 {
10984 char *name = &exp->elts[elt + 2].string;
10985 int len = longest_to_int (exp->elts[elt + 1].longconst);
10986 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10987 break;
10988 }
10989
10990 default:
10991 return dump_subexp_body_standard (exp, stream, elt);
10992 }
10993
10994 elt += oplen;
10995 for (i = 0; i < nargs; i += 1)
10996 elt = dump_subexp (exp, stream, elt);
10997
10998 return elt;
10999 }
11000
11001 /* The Ada extension of print_subexp (q.v.). */
11002
11003 static void
11004 ada_print_subexp (struct expression *exp, int *pos,
11005 struct ui_file *stream, enum precedence prec)
11006 {
11007 int oplen, nargs, i;
11008 int pc = *pos;
11009 enum exp_opcode op = exp->elts[pc].opcode;
11010
11011 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11012
11013 *pos += oplen;
11014 switch (op)
11015 {
11016 default:
11017 *pos -= oplen;
11018 print_subexp_standard (exp, pos, stream, prec);
11019 return;
11020
11021 case OP_VAR_VALUE:
11022 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11023 return;
11024
11025 case BINOP_IN_BOUNDS:
11026 /* XXX: sprint_subexp */
11027 print_subexp (exp, pos, stream, PREC_SUFFIX);
11028 fputs_filtered (" in ", stream);
11029 print_subexp (exp, pos, stream, PREC_SUFFIX);
11030 fputs_filtered ("'range", stream);
11031 if (exp->elts[pc + 1].longconst > 1)
11032 fprintf_filtered (stream, "(%ld)",
11033 (long) exp->elts[pc + 1].longconst);
11034 return;
11035
11036 case TERNOP_IN_RANGE:
11037 if (prec >= PREC_EQUAL)
11038 fputs_filtered ("(", stream);
11039 /* XXX: sprint_subexp */
11040 print_subexp (exp, pos, stream, PREC_SUFFIX);
11041 fputs_filtered (" in ", stream);
11042 print_subexp (exp, pos, stream, PREC_EQUAL);
11043 fputs_filtered (" .. ", stream);
11044 print_subexp (exp, pos, stream, PREC_EQUAL);
11045 if (prec >= PREC_EQUAL)
11046 fputs_filtered (")", stream);
11047 return;
11048
11049 case OP_ATR_FIRST:
11050 case OP_ATR_LAST:
11051 case OP_ATR_LENGTH:
11052 case OP_ATR_IMAGE:
11053 case OP_ATR_MAX:
11054 case OP_ATR_MIN:
11055 case OP_ATR_MODULUS:
11056 case OP_ATR_POS:
11057 case OP_ATR_SIZE:
11058 case OP_ATR_TAG:
11059 case OP_ATR_VAL:
11060 if (exp->elts[*pos].opcode == OP_TYPE)
11061 {
11062 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11063 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11064 *pos += 3;
11065 }
11066 else
11067 print_subexp (exp, pos, stream, PREC_SUFFIX);
11068 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11069 if (nargs > 1)
11070 {
11071 int tem;
11072 for (tem = 1; tem < nargs; tem += 1)
11073 {
11074 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11075 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11076 }
11077 fputs_filtered (")", stream);
11078 }
11079 return;
11080
11081 case UNOP_QUAL:
11082 type_print (exp->elts[pc + 1].type, "", stream, 0);
11083 fputs_filtered ("'(", stream);
11084 print_subexp (exp, pos, stream, PREC_PREFIX);
11085 fputs_filtered (")", stream);
11086 return;
11087
11088 case UNOP_IN_RANGE:
11089 /* XXX: sprint_subexp */
11090 print_subexp (exp, pos, stream, PREC_SUFFIX);
11091 fputs_filtered (" in ", stream);
11092 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11093 return;
11094
11095 case OP_DISCRETE_RANGE:
11096 print_subexp (exp, pos, stream, PREC_SUFFIX);
11097 fputs_filtered ("..", stream);
11098 print_subexp (exp, pos, stream, PREC_SUFFIX);
11099 return;
11100
11101 case OP_OTHERS:
11102 fputs_filtered ("others => ", stream);
11103 print_subexp (exp, pos, stream, PREC_SUFFIX);
11104 return;
11105
11106 case OP_CHOICES:
11107 for (i = 0; i < nargs-1; i += 1)
11108 {
11109 if (i > 0)
11110 fputs_filtered ("|", stream);
11111 print_subexp (exp, pos, stream, PREC_SUFFIX);
11112 }
11113 fputs_filtered (" => ", stream);
11114 print_subexp (exp, pos, stream, PREC_SUFFIX);
11115 return;
11116
11117 case OP_POSITIONAL:
11118 print_subexp (exp, pos, stream, PREC_SUFFIX);
11119 return;
11120
11121 case OP_AGGREGATE:
11122 fputs_filtered ("(", stream);
11123 for (i = 0; i < nargs; i += 1)
11124 {
11125 if (i > 0)
11126 fputs_filtered (", ", stream);
11127 print_subexp (exp, pos, stream, PREC_SUFFIX);
11128 }
11129 fputs_filtered (")", stream);
11130 return;
11131 }
11132 }
11133
11134 /* Table mapping opcodes into strings for printing operators
11135 and precedences of the operators. */
11136
11137 static const struct op_print ada_op_print_tab[] = {
11138 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11139 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11140 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11141 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11142 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11143 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11144 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11145 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11146 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11147 {">=", BINOP_GEQ, PREC_ORDER, 0},
11148 {">", BINOP_GTR, PREC_ORDER, 0},
11149 {"<", BINOP_LESS, PREC_ORDER, 0},
11150 {">>", BINOP_RSH, PREC_SHIFT, 0},
11151 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11152 {"+", BINOP_ADD, PREC_ADD, 0},
11153 {"-", BINOP_SUB, PREC_ADD, 0},
11154 {"&", BINOP_CONCAT, PREC_ADD, 0},
11155 {"*", BINOP_MUL, PREC_MUL, 0},
11156 {"/", BINOP_DIV, PREC_MUL, 0},
11157 {"rem", BINOP_REM, PREC_MUL, 0},
11158 {"mod", BINOP_MOD, PREC_MUL, 0},
11159 {"**", BINOP_EXP, PREC_REPEAT, 0},
11160 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11161 {"-", UNOP_NEG, PREC_PREFIX, 0},
11162 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11163 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11164 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11165 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
11166 {".all", UNOP_IND, PREC_SUFFIX, 1},
11167 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11168 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
11169 {NULL, 0, 0, 0}
11170 };
11171 \f
11172 enum ada_primitive_types {
11173 ada_primitive_type_int,
11174 ada_primitive_type_long,
11175 ada_primitive_type_short,
11176 ada_primitive_type_char,
11177 ada_primitive_type_float,
11178 ada_primitive_type_double,
11179 ada_primitive_type_void,
11180 ada_primitive_type_long_long,
11181 ada_primitive_type_long_double,
11182 ada_primitive_type_natural,
11183 ada_primitive_type_positive,
11184 ada_primitive_type_system_address,
11185 nr_ada_primitive_types
11186 };
11187
11188 static void
11189 ada_language_arch_info (struct gdbarch *gdbarch,
11190 struct language_arch_info *lai)
11191 {
11192 const struct builtin_type *builtin = builtin_type (gdbarch);
11193 lai->primitive_type_vector
11194 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
11195 struct type *);
11196
11197 lai->primitive_type_vector [ada_primitive_type_int]
11198 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11199 0, "integer");
11200 lai->primitive_type_vector [ada_primitive_type_long]
11201 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11202 0, "long_integer");
11203 lai->primitive_type_vector [ada_primitive_type_short]
11204 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11205 0, "short_integer");
11206 lai->string_char_type
11207 = lai->primitive_type_vector [ada_primitive_type_char]
11208 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11209 lai->primitive_type_vector [ada_primitive_type_float]
11210 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11211 "float", NULL);
11212 lai->primitive_type_vector [ada_primitive_type_double]
11213 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11214 "long_float", NULL);
11215 lai->primitive_type_vector [ada_primitive_type_long_long]
11216 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11217 0, "long_long_integer");
11218 lai->primitive_type_vector [ada_primitive_type_long_double]
11219 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11220 "long_long_float", NULL);
11221 lai->primitive_type_vector [ada_primitive_type_natural]
11222 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11223 0, "natural");
11224 lai->primitive_type_vector [ada_primitive_type_positive]
11225 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11226 0, "positive");
11227 lai->primitive_type_vector [ada_primitive_type_void]
11228 = builtin->builtin_void;
11229
11230 lai->primitive_type_vector [ada_primitive_type_system_address]
11231 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
11232 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11233 = "system__address";
11234
11235 lai->bool_type_symbol = NULL;
11236 lai->bool_type_default = builtin->builtin_bool;
11237 }
11238 \f
11239 /* Language vector */
11240
11241 /* Not really used, but needed in the ada_language_defn. */
11242
11243 static void
11244 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
11245 {
11246 ada_emit_char (c, type, stream, quoter, 1);
11247 }
11248
11249 static int
11250 parse (void)
11251 {
11252 warnings_issued = 0;
11253 return ada_parse ();
11254 }
11255
11256 static const struct exp_descriptor ada_exp_descriptor = {
11257 ada_print_subexp,
11258 ada_operator_length,
11259 ada_op_name,
11260 ada_dump_subexp_body,
11261 ada_evaluate_subexp
11262 };
11263
11264 const struct language_defn ada_language_defn = {
11265 "ada", /* Language name */
11266 language_ada,
11267 range_check_off,
11268 type_check_off,
11269 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11270 that's not quite what this means. */
11271 array_row_major,
11272 macro_expansion_no,
11273 &ada_exp_descriptor,
11274 parse,
11275 ada_error,
11276 resolve,
11277 ada_printchar, /* Print a character constant */
11278 ada_printstr, /* Function to print string constant */
11279 emit_char, /* Function to print single char (not used) */
11280 ada_print_type, /* Print a type using appropriate syntax */
11281 default_print_typedef, /* Print a typedef using appropriate syntax */
11282 ada_val_print, /* Print a value using appropriate syntax */
11283 ada_value_print, /* Print a top-level value */
11284 NULL, /* Language specific skip_trampoline */
11285 NULL, /* name_of_this */
11286 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11287 basic_lookup_transparent_type, /* lookup_transparent_type */
11288 ada_la_decode, /* Language specific symbol demangler */
11289 NULL, /* Language specific class_name_from_physname */
11290 ada_op_print_tab, /* expression operators for printing */
11291 0, /* c-style arrays */
11292 1, /* String lower bound */
11293 ada_get_gdb_completer_word_break_characters,
11294 ada_make_symbol_completion_list,
11295 ada_language_arch_info,
11296 ada_print_array_index,
11297 default_pass_by_reference,
11298 c_get_string,
11299 LANG_MAGIC
11300 };
11301
11302 /* Provide a prototype to silence -Wmissing-prototypes. */
11303 extern initialize_file_ftype _initialize_ada_language;
11304
11305 /* Command-list for the "set/show ada" prefix command. */
11306 static struct cmd_list_element *set_ada_list;
11307 static struct cmd_list_element *show_ada_list;
11308
11309 /* Implement the "set ada" prefix command. */
11310
11311 static void
11312 set_ada_command (char *arg, int from_tty)
11313 {
11314 printf_unfiltered (_(\
11315 "\"set ada\" must be followed by the name of a setting.\n"));
11316 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11317 }
11318
11319 /* Implement the "show ada" prefix command. */
11320
11321 static void
11322 show_ada_command (char *args, int from_tty)
11323 {
11324 cmd_show_list (show_ada_list, from_tty, "");
11325 }
11326
11327 void
11328 _initialize_ada_language (void)
11329 {
11330 add_language (&ada_language_defn);
11331
11332 add_prefix_cmd ("ada", no_class, set_ada_command,
11333 _("Prefix command for changing Ada-specfic settings"),
11334 &set_ada_list, "set ada ", 0, &setlist);
11335
11336 add_prefix_cmd ("ada", no_class, show_ada_command,
11337 _("Generic command for showing Ada-specific settings."),
11338 &show_ada_list, "show ada ", 0, &showlist);
11339
11340 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11341 &trust_pad_over_xvs, _("\
11342 Enable or disable an optimization trusting PAD types over XVS types"), _("\
11343 Show whether an optimization trusting PAD types over XVS types is activated"),
11344 _("\
11345 This is related to the encoding used by the GNAT compiler. The debugger\n\
11346 should normally trust the contents of PAD types, but certain older versions\n\
11347 of GNAT have a bug that sometimes causes the information in the PAD type\n\
11348 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11349 work around this bug. It is always safe to turn this option \"off\", but\n\
11350 this incurs a slight performance penalty, so it is recommended to NOT change\n\
11351 this option to \"off\" unless necessary."),
11352 NULL, NULL, &set_ada_list, &show_ada_list);
11353
11354 varsize_limit = 65536;
11355
11356 obstack_init (&symbol_list_obstack);
11357
11358 decoded_names_store = htab_create_alloc
11359 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11360 NULL, xcalloc, xfree);
11361
11362 observer_attach_executable_changed (ada_executable_changed_observer);
11363 }
This page took 0.269928 seconds and 5 git commands to generate.