* breakpoint.h (struct bp_location): Change type of section
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger. Copyright (C)
2
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59
60 #ifndef ADA_RETAIN_DOTS
61 #define ADA_RETAIN_DOTS 0
62 #endif
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static void extract_string (CORE_ADDR addr, char *buf);
73
74 static void modify_general_field (char *, LONGEST, int, int);
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *ensure_lval (struct value *, CORE_ADDR *);
109
110 static struct value *convert_actual (struct value *, struct type *,
111 CORE_ADDR *);
112
113 static struct value *make_array_descriptor (struct type *, struct value *,
114 CORE_ADDR *);
115
116 static void ada_add_block_symbols (struct obstack *,
117 struct block *, const char *,
118 domain_enum, struct objfile *, int);
119
120 static int is_nonfunction (struct ada_symbol_info *, int);
121
122 static void add_defn_to_vec (struct obstack *, struct symbol *,
123 struct block *);
124
125 static int num_defns_collected (struct obstack *);
126
127 static struct ada_symbol_info *defns_collected (struct obstack *, int);
128
129 static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
130 *, const char *, int,
131 domain_enum, int);
132
133 static struct symtab *symtab_for_sym (struct symbol *);
134
135 static struct value *resolve_subexp (struct expression **, int *, int,
136 struct type *);
137
138 static void replace_operator_with_call (struct expression **, int, int, int,
139 struct symbol *, struct block *);
140
141 static int possible_user_operator_p (enum exp_opcode, struct value **);
142
143 static char *ada_op_name (enum exp_opcode);
144
145 static const char *ada_decoded_op_name (enum exp_opcode);
146
147 static int numeric_type_p (struct type *);
148
149 static int integer_type_p (struct type *);
150
151 static int scalar_type_p (struct type *);
152
153 static int discrete_type_p (struct type *);
154
155 static enum ada_renaming_category parse_old_style_renaming (struct type *,
156 const char **,
157 int *,
158 const char **);
159
160 static struct symbol *find_old_style_renaming_symbol (const char *,
161 struct block *);
162
163 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
164 int, int, int *);
165
166 static struct value *evaluate_subexp (struct type *, struct expression *,
167 int *, enum noside);
168
169 static struct value *evaluate_subexp_type (struct expression *, int *);
170
171 static int is_dynamic_field (struct type *, int);
172
173 static struct type *to_fixed_variant_branch_type (struct type *,
174 const gdb_byte *,
175 CORE_ADDR, struct value *);
176
177 static struct type *to_fixed_array_type (struct type *, struct value *, int);
178
179 static struct type *to_fixed_range_type (char *, struct value *,
180 struct objfile *);
181
182 static struct type *to_static_fixed_type (struct type *);
183 static struct type *static_unwrap_type (struct type *type);
184
185 static struct value *unwrap_value (struct value *);
186
187 static struct type *packed_array_type (struct type *, long *);
188
189 static struct type *decode_packed_array_type (struct type *);
190
191 static struct value *decode_packed_array (struct value *);
192
193 static struct value *value_subscript_packed (struct value *, int,
194 struct value **);
195
196 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
197
198 static struct value *coerce_unspec_val_to_type (struct value *,
199 struct type *);
200
201 static struct value *get_var_value (char *, char *);
202
203 static int lesseq_defined_than (struct symbol *, struct symbol *);
204
205 static int equiv_types (struct type *, struct type *);
206
207 static int is_name_suffix (const char *);
208
209 static int wild_match (const char *, int, const char *);
210
211 static struct value *ada_coerce_ref (struct value *);
212
213 static LONGEST pos_atr (struct value *);
214
215 static struct value *value_pos_atr (struct value *);
216
217 static struct value *value_val_atr (struct type *, struct value *);
218
219 static struct symbol *standard_lookup (const char *, const struct block *,
220 domain_enum);
221
222 static struct value *ada_search_struct_field (char *, struct value *, int,
223 struct type *);
224
225 static struct value *ada_value_primitive_field (struct value *, int, int,
226 struct type *);
227
228 static int find_struct_field (char *, struct type *, int,
229 struct type **, int *, int *, int *, int *);
230
231 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
232 struct value *);
233
234 static struct value *ada_to_fixed_value (struct value *);
235
236 static int ada_resolve_function (struct ada_symbol_info *, int,
237 struct value **, int, const char *,
238 struct type *);
239
240 static struct value *ada_coerce_to_simple_array (struct value *);
241
242 static int ada_is_direct_array_type (struct type *);
243
244 static void ada_language_arch_info (struct gdbarch *,
245 struct language_arch_info *);
246
247 static void check_size (const struct type *);
248
249 static struct value *ada_index_struct_field (int, struct value *, int,
250 struct type *);
251
252 static struct value *assign_aggregate (struct value *, struct value *,
253 struct expression *, int *, enum noside);
254
255 static void aggregate_assign_from_choices (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *,
258 int, LONGEST, LONGEST);
259
260 static void aggregate_assign_positional (struct value *, struct value *,
261 struct expression *,
262 int *, LONGEST *, int *, int,
263 LONGEST, LONGEST);
264
265
266 static void aggregate_assign_others (struct value *, struct value *,
267 struct expression *,
268 int *, LONGEST *, int, LONGEST, LONGEST);
269
270
271 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
272
273
274 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
275 int *, enum noside);
276
277 static void ada_forward_operator_length (struct expression *, int, int *,
278 int *);
279 \f
280
281
282 /* Maximum-sized dynamic type. */
283 static unsigned int varsize_limit;
284
285 /* FIXME: brobecker/2003-09-17: No longer a const because it is
286 returned by a function that does not return a const char *. */
287 static char *ada_completer_word_break_characters =
288 #ifdef VMS
289 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
290 #else
291 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
292 #endif
293
294 /* The name of the symbol to use to get the name of the main subprogram. */
295 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
296 = "__gnat_ada_main_program_name";
297
298 /* Limit on the number of warnings to raise per expression evaluation. */
299 static int warning_limit = 2;
300
301 /* Number of warning messages issued; reset to 0 by cleanups after
302 expression evaluation. */
303 static int warnings_issued = 0;
304
305 static const char *known_runtime_file_name_patterns[] = {
306 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
307 };
308
309 static const char *known_auxiliary_function_name_patterns[] = {
310 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
311 };
312
313 /* Space for allocating results of ada_lookup_symbol_list. */
314 static struct obstack symbol_list_obstack;
315
316 /* Utilities */
317
318 /* Given DECODED_NAME a string holding a symbol name in its
319 decoded form (ie using the Ada dotted notation), returns
320 its unqualified name. */
321
322 static const char *
323 ada_unqualified_name (const char *decoded_name)
324 {
325 const char *result = strrchr (decoded_name, '.');
326
327 if (result != NULL)
328 result++; /* Skip the dot... */
329 else
330 result = decoded_name;
331
332 return result;
333 }
334
335 /* Return a string starting with '<', followed by STR, and '>'.
336 The result is good until the next call. */
337
338 static char *
339 add_angle_brackets (const char *str)
340 {
341 static char *result = NULL;
342
343 xfree (result);
344 result = (char *) xmalloc ((strlen (str) + 3) * sizeof (char));
345
346 sprintf (result, "<%s>", str);
347 return result;
348 }
349
350 static char *
351 ada_get_gdb_completer_word_break_characters (void)
352 {
353 return ada_completer_word_break_characters;
354 }
355
356 /* Print an array element index using the Ada syntax. */
357
358 static void
359 ada_print_array_index (struct value *index_value, struct ui_file *stream,
360 int format, enum val_prettyprint pretty)
361 {
362 LA_VALUE_PRINT (index_value, stream, format, pretty);
363 fprintf_filtered (stream, " => ");
364 }
365
366 /* Read the string located at ADDR from the inferior and store the
367 result into BUF. */
368
369 static void
370 extract_string (CORE_ADDR addr, char *buf)
371 {
372 int char_index = 0;
373
374 /* Loop, reading one byte at a time, until we reach the '\000'
375 end-of-string marker. */
376 do
377 {
378 target_read_memory (addr + char_index * sizeof (char),
379 buf + char_index * sizeof (char), sizeof (char));
380 char_index++;
381 }
382 while (buf[char_index - 1] != '\000');
383 }
384
385 /* Assuming VECT points to an array of *SIZE objects of size
386 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
387 updating *SIZE as necessary and returning the (new) array. */
388
389 void *
390 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
391 {
392 if (*size < min_size)
393 {
394 *size *= 2;
395 if (*size < min_size)
396 *size = min_size;
397 vect = xrealloc (vect, *size * element_size);
398 }
399 return vect;
400 }
401
402 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
403 suffix of FIELD_NAME beginning "___". */
404
405 static int
406 field_name_match (const char *field_name, const char *target)
407 {
408 int len = strlen (target);
409 return
410 (strncmp (field_name, target, len) == 0
411 && (field_name[len] == '\0'
412 || (strncmp (field_name + len, "___", 3) == 0
413 && strcmp (field_name + strlen (field_name) - 6,
414 "___XVN") != 0)));
415 }
416
417
418 /* Assuming TYPE is a TYPE_CODE_STRUCT, find the field whose name matches
419 FIELD_NAME, and return its index. This function also handles fields
420 whose name have ___ suffixes because the compiler sometimes alters
421 their name by adding such a suffix to represent fields with certain
422 constraints. If the field could not be found, return a negative
423 number if MAYBE_MISSING is set. Otherwise raise an error. */
424
425 int
426 ada_get_field_index (const struct type *type, const char *field_name,
427 int maybe_missing)
428 {
429 int fieldno;
430 for (fieldno = 0; fieldno < TYPE_NFIELDS (type); fieldno++)
431 if (field_name_match (TYPE_FIELD_NAME (type, fieldno), field_name))
432 return fieldno;
433
434 if (!maybe_missing)
435 error (_("Unable to find field %s in struct %s. Aborting"),
436 field_name, TYPE_NAME (type));
437
438 return -1;
439 }
440
441 /* The length of the prefix of NAME prior to any "___" suffix. */
442
443 int
444 ada_name_prefix_len (const char *name)
445 {
446 if (name == NULL)
447 return 0;
448 else
449 {
450 const char *p = strstr (name, "___");
451 if (p == NULL)
452 return strlen (name);
453 else
454 return p - name;
455 }
456 }
457
458 /* Return non-zero if SUFFIX is a suffix of STR.
459 Return zero if STR is null. */
460
461 static int
462 is_suffix (const char *str, const char *suffix)
463 {
464 int len1, len2;
465 if (str == NULL)
466 return 0;
467 len1 = strlen (str);
468 len2 = strlen (suffix);
469 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
470 }
471
472 /* Create a value of type TYPE whose contents come from VALADDR, if it
473 is non-null, and whose memory address (in the inferior) is
474 ADDRESS. */
475
476 struct value *
477 value_from_contents_and_address (struct type *type,
478 const gdb_byte *valaddr,
479 CORE_ADDR address)
480 {
481 struct value *v = allocate_value (type);
482 if (valaddr == NULL)
483 set_value_lazy (v, 1);
484 else
485 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
486 VALUE_ADDRESS (v) = address;
487 if (address != 0)
488 VALUE_LVAL (v) = lval_memory;
489 return v;
490 }
491
492 /* The contents of value VAL, treated as a value of type TYPE. The
493 result is an lval in memory if VAL is. */
494
495 static struct value *
496 coerce_unspec_val_to_type (struct value *val, struct type *type)
497 {
498 type = ada_check_typedef (type);
499 if (value_type (val) == type)
500 return val;
501 else
502 {
503 struct value *result;
504
505 /* Make sure that the object size is not unreasonable before
506 trying to allocate some memory for it. */
507 check_size (type);
508
509 result = allocate_value (type);
510 VALUE_LVAL (result) = VALUE_LVAL (val);
511 set_value_bitsize (result, value_bitsize (val));
512 set_value_bitpos (result, value_bitpos (val));
513 VALUE_ADDRESS (result) = VALUE_ADDRESS (val) + value_offset (val);
514 if (value_lazy (val)
515 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
516 set_value_lazy (result, 1);
517 else
518 memcpy (value_contents_raw (result), value_contents (val),
519 TYPE_LENGTH (type));
520 return result;
521 }
522 }
523
524 static const gdb_byte *
525 cond_offset_host (const gdb_byte *valaddr, long offset)
526 {
527 if (valaddr == NULL)
528 return NULL;
529 else
530 return valaddr + offset;
531 }
532
533 static CORE_ADDR
534 cond_offset_target (CORE_ADDR address, long offset)
535 {
536 if (address == 0)
537 return 0;
538 else
539 return address + offset;
540 }
541
542 /* Issue a warning (as for the definition of warning in utils.c, but
543 with exactly one argument rather than ...), unless the limit on the
544 number of warnings has passed during the evaluation of the current
545 expression. */
546
547 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
548 provided by "complaint". */
549 static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
550
551 static void
552 lim_warning (const char *format, ...)
553 {
554 va_list args;
555 va_start (args, format);
556
557 warnings_issued += 1;
558 if (warnings_issued <= warning_limit)
559 vwarning (format, args);
560
561 va_end (args);
562 }
563
564 /* Issue an error if the size of an object of type T is unreasonable,
565 i.e. if it would be a bad idea to allocate a value of this type in
566 GDB. */
567
568 static void
569 check_size (const struct type *type)
570 {
571 if (TYPE_LENGTH (type) > varsize_limit)
572 error (_("object size is larger than varsize-limit"));
573 }
574
575
576 /* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
577 gdbtypes.h, but some of the necessary definitions in that file
578 seem to have gone missing. */
579
580 /* Maximum value of a SIZE-byte signed integer type. */
581 static LONGEST
582 max_of_size (int size)
583 {
584 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
585 return top_bit | (top_bit - 1);
586 }
587
588 /* Minimum value of a SIZE-byte signed integer type. */
589 static LONGEST
590 min_of_size (int size)
591 {
592 return -max_of_size (size) - 1;
593 }
594
595 /* Maximum value of a SIZE-byte unsigned integer type. */
596 static ULONGEST
597 umax_of_size (int size)
598 {
599 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
600 return top_bit | (top_bit - 1);
601 }
602
603 /* Maximum value of integral type T, as a signed quantity. */
604 static LONGEST
605 max_of_type (struct type *t)
606 {
607 if (TYPE_UNSIGNED (t))
608 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
609 else
610 return max_of_size (TYPE_LENGTH (t));
611 }
612
613 /* Minimum value of integral type T, as a signed quantity. */
614 static LONGEST
615 min_of_type (struct type *t)
616 {
617 if (TYPE_UNSIGNED (t))
618 return 0;
619 else
620 return min_of_size (TYPE_LENGTH (t));
621 }
622
623 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
624 static LONGEST
625 discrete_type_high_bound (struct type *type)
626 {
627 switch (TYPE_CODE (type))
628 {
629 case TYPE_CODE_RANGE:
630 return TYPE_HIGH_BOUND (type);
631 case TYPE_CODE_ENUM:
632 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
633 case TYPE_CODE_BOOL:
634 return 1;
635 case TYPE_CODE_CHAR:
636 case TYPE_CODE_INT:
637 return max_of_type (type);
638 default:
639 error (_("Unexpected type in discrete_type_high_bound."));
640 }
641 }
642
643 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
644 static LONGEST
645 discrete_type_low_bound (struct type *type)
646 {
647 switch (TYPE_CODE (type))
648 {
649 case TYPE_CODE_RANGE:
650 return TYPE_LOW_BOUND (type);
651 case TYPE_CODE_ENUM:
652 return TYPE_FIELD_BITPOS (type, 0);
653 case TYPE_CODE_BOOL:
654 return 0;
655 case TYPE_CODE_CHAR:
656 case TYPE_CODE_INT:
657 return min_of_type (type);
658 default:
659 error (_("Unexpected type in discrete_type_low_bound."));
660 }
661 }
662
663 /* The identity on non-range types. For range types, the underlying
664 non-range scalar type. */
665
666 static struct type *
667 base_type (struct type *type)
668 {
669 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
670 {
671 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
672 return type;
673 type = TYPE_TARGET_TYPE (type);
674 }
675 return type;
676 }
677 \f
678
679 /* Language Selection */
680
681 /* If the main program is in Ada, return language_ada, otherwise return LANG
682 (the main program is in Ada iif the adainit symbol is found).
683
684 MAIN_PST is not used. */
685
686 enum language
687 ada_update_initial_language (enum language lang,
688 struct partial_symtab *main_pst)
689 {
690 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
691 (struct objfile *) NULL) != NULL)
692 return language_ada;
693
694 return lang;
695 }
696
697 /* If the main procedure is written in Ada, then return its name.
698 The result is good until the next call. Return NULL if the main
699 procedure doesn't appear to be in Ada. */
700
701 char *
702 ada_main_name (void)
703 {
704 struct minimal_symbol *msym;
705 CORE_ADDR main_program_name_addr;
706 static char main_program_name[1024];
707
708 /* For Ada, the name of the main procedure is stored in a specific
709 string constant, generated by the binder. Look for that symbol,
710 extract its address, and then read that string. If we didn't find
711 that string, then most probably the main procedure is not written
712 in Ada. */
713 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
714
715 if (msym != NULL)
716 {
717 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
718 if (main_program_name_addr == 0)
719 error (_("Invalid address for Ada main program name."));
720
721 extract_string (main_program_name_addr, main_program_name);
722 return main_program_name;
723 }
724
725 /* The main procedure doesn't seem to be in Ada. */
726 return NULL;
727 }
728 \f
729 /* Symbols */
730
731 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
732 of NULLs. */
733
734 const struct ada_opname_map ada_opname_table[] = {
735 {"Oadd", "\"+\"", BINOP_ADD},
736 {"Osubtract", "\"-\"", BINOP_SUB},
737 {"Omultiply", "\"*\"", BINOP_MUL},
738 {"Odivide", "\"/\"", BINOP_DIV},
739 {"Omod", "\"mod\"", BINOP_MOD},
740 {"Orem", "\"rem\"", BINOP_REM},
741 {"Oexpon", "\"**\"", BINOP_EXP},
742 {"Olt", "\"<\"", BINOP_LESS},
743 {"Ole", "\"<=\"", BINOP_LEQ},
744 {"Ogt", "\">\"", BINOP_GTR},
745 {"Oge", "\">=\"", BINOP_GEQ},
746 {"Oeq", "\"=\"", BINOP_EQUAL},
747 {"One", "\"/=\"", BINOP_NOTEQUAL},
748 {"Oand", "\"and\"", BINOP_BITWISE_AND},
749 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
750 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
751 {"Oconcat", "\"&\"", BINOP_CONCAT},
752 {"Oabs", "\"abs\"", UNOP_ABS},
753 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
754 {"Oadd", "\"+\"", UNOP_PLUS},
755 {"Osubtract", "\"-\"", UNOP_NEG},
756 {NULL, NULL}
757 };
758
759 /* Return non-zero if STR should be suppressed in info listings. */
760
761 static int
762 is_suppressed_name (const char *str)
763 {
764 if (strncmp (str, "_ada_", 5) == 0)
765 str += 5;
766 if (str[0] == '_' || str[0] == '\000')
767 return 1;
768 else
769 {
770 const char *p;
771 const char *suffix = strstr (str, "___");
772 if (suffix != NULL && suffix[3] != 'X')
773 return 1;
774 if (suffix == NULL)
775 suffix = str + strlen (str);
776 for (p = suffix - 1; p != str; p -= 1)
777 if (isupper (*p))
778 {
779 int i;
780 if (p[0] == 'X' && p[-1] != '_')
781 goto OK;
782 if (*p != 'O')
783 return 1;
784 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
785 if (strncmp (ada_opname_table[i].encoded, p,
786 strlen (ada_opname_table[i].encoded)) == 0)
787 goto OK;
788 return 1;
789 OK:;
790 }
791 return 0;
792 }
793 }
794
795 /* The "encoded" form of DECODED, according to GNAT conventions.
796 The result is valid until the next call to ada_encode. */
797
798 char *
799 ada_encode (const char *decoded)
800 {
801 static char *encoding_buffer = NULL;
802 static size_t encoding_buffer_size = 0;
803 const char *p;
804 int k;
805
806 if (decoded == NULL)
807 return NULL;
808
809 GROW_VECT (encoding_buffer, encoding_buffer_size,
810 2 * strlen (decoded) + 10);
811
812 k = 0;
813 for (p = decoded; *p != '\0'; p += 1)
814 {
815 if (!ADA_RETAIN_DOTS && *p == '.')
816 {
817 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
818 k += 2;
819 }
820 else if (*p == '"')
821 {
822 const struct ada_opname_map *mapping;
823
824 for (mapping = ada_opname_table;
825 mapping->encoded != NULL
826 && strncmp (mapping->decoded, p,
827 strlen (mapping->decoded)) != 0; mapping += 1)
828 ;
829 if (mapping->encoded == NULL)
830 error (_("invalid Ada operator name: %s"), p);
831 strcpy (encoding_buffer + k, mapping->encoded);
832 k += strlen (mapping->encoded);
833 break;
834 }
835 else
836 {
837 encoding_buffer[k] = *p;
838 k += 1;
839 }
840 }
841
842 encoding_buffer[k] = '\0';
843 return encoding_buffer;
844 }
845
846 /* Return NAME folded to lower case, or, if surrounded by single
847 quotes, unfolded, but with the quotes stripped away. Result good
848 to next call. */
849
850 char *
851 ada_fold_name (const char *name)
852 {
853 static char *fold_buffer = NULL;
854 static size_t fold_buffer_size = 0;
855
856 int len = strlen (name);
857 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
858
859 if (name[0] == '\'')
860 {
861 strncpy (fold_buffer, name + 1, len - 2);
862 fold_buffer[len - 2] = '\000';
863 }
864 else
865 {
866 int i;
867 for (i = 0; i <= len; i += 1)
868 fold_buffer[i] = tolower (name[i]);
869 }
870
871 return fold_buffer;
872 }
873
874 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
875
876 static int
877 is_lower_alphanum (const char c)
878 {
879 return (isdigit (c) || (isalpha (c) && islower (c)));
880 }
881
882 /* Remove either of these suffixes:
883 . .{DIGIT}+
884 . ${DIGIT}+
885 . ___{DIGIT}+
886 . __{DIGIT}+.
887 These are suffixes introduced by the compiler for entities such as
888 nested subprogram for instance, in order to avoid name clashes.
889 They do not serve any purpose for the debugger. */
890
891 static void
892 ada_remove_trailing_digits (const char *encoded, int *len)
893 {
894 if (*len > 1 && isdigit (encoded[*len - 1]))
895 {
896 int i = *len - 2;
897 while (i > 0 && isdigit (encoded[i]))
898 i--;
899 if (i >= 0 && encoded[i] == '.')
900 *len = i;
901 else if (i >= 0 && encoded[i] == '$')
902 *len = i;
903 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
904 *len = i - 2;
905 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
906 *len = i - 1;
907 }
908 }
909
910 /* Remove the suffix introduced by the compiler for protected object
911 subprograms. */
912
913 static void
914 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
915 {
916 /* Remove trailing N. */
917
918 /* Protected entry subprograms are broken into two
919 separate subprograms: The first one is unprotected, and has
920 a 'N' suffix; the second is the protected version, and has
921 the 'P' suffix. The second calls the first one after handling
922 the protection. Since the P subprograms are internally generated,
923 we leave these names undecoded, giving the user a clue that this
924 entity is internal. */
925
926 if (*len > 1
927 && encoded[*len - 1] == 'N'
928 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
929 *len = *len - 1;
930 }
931
932 /* If ENCODED follows the GNAT entity encoding conventions, then return
933 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
934 replaced by ENCODED.
935
936 The resulting string is valid until the next call of ada_decode.
937 If the string is unchanged by decoding, the original string pointer
938 is returned. */
939
940 const char *
941 ada_decode (const char *encoded)
942 {
943 int i, j;
944 int len0;
945 const char *p;
946 char *decoded;
947 int at_start_name;
948 static char *decoding_buffer = NULL;
949 static size_t decoding_buffer_size = 0;
950
951 /* The name of the Ada main procedure starts with "_ada_".
952 This prefix is not part of the decoded name, so skip this part
953 if we see this prefix. */
954 if (strncmp (encoded, "_ada_", 5) == 0)
955 encoded += 5;
956
957 /* If the name starts with '_', then it is not a properly encoded
958 name, so do not attempt to decode it. Similarly, if the name
959 starts with '<', the name should not be decoded. */
960 if (encoded[0] == '_' || encoded[0] == '<')
961 goto Suppress;
962
963 len0 = strlen (encoded);
964
965 ada_remove_trailing_digits (encoded, &len0);
966 ada_remove_po_subprogram_suffix (encoded, &len0);
967
968 /* Remove the ___X.* suffix if present. Do not forget to verify that
969 the suffix is located before the current "end" of ENCODED. We want
970 to avoid re-matching parts of ENCODED that have previously been
971 marked as discarded (by decrementing LEN0). */
972 p = strstr (encoded, "___");
973 if (p != NULL && p - encoded < len0 - 3)
974 {
975 if (p[3] == 'X')
976 len0 = p - encoded;
977 else
978 goto Suppress;
979 }
980
981 /* Remove any trailing TKB suffix. It tells us that this symbol
982 is for the body of a task, but that information does not actually
983 appear in the decoded name. */
984
985 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
986 len0 -= 3;
987
988 /* Remove trailing "B" suffixes. */
989 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
990
991 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
992 len0 -= 1;
993
994 /* Make decoded big enough for possible expansion by operator name. */
995
996 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
997 decoded = decoding_buffer;
998
999 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1000
1001 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1002 {
1003 i = len0 - 2;
1004 while ((i >= 0 && isdigit (encoded[i]))
1005 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1006 i -= 1;
1007 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1008 len0 = i - 1;
1009 else if (encoded[i] == '$')
1010 len0 = i;
1011 }
1012
1013 /* The first few characters that are not alphabetic are not part
1014 of any encoding we use, so we can copy them over verbatim. */
1015
1016 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1017 decoded[j] = encoded[i];
1018
1019 at_start_name = 1;
1020 while (i < len0)
1021 {
1022 /* Is this a symbol function? */
1023 if (at_start_name && encoded[i] == 'O')
1024 {
1025 int k;
1026 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1027 {
1028 int op_len = strlen (ada_opname_table[k].encoded);
1029 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1030 op_len - 1) == 0)
1031 && !isalnum (encoded[i + op_len]))
1032 {
1033 strcpy (decoded + j, ada_opname_table[k].decoded);
1034 at_start_name = 0;
1035 i += op_len;
1036 j += strlen (ada_opname_table[k].decoded);
1037 break;
1038 }
1039 }
1040 if (ada_opname_table[k].encoded != NULL)
1041 continue;
1042 }
1043 at_start_name = 0;
1044
1045 /* Replace "TK__" with "__", which will eventually be translated
1046 into "." (just below). */
1047
1048 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1049 i += 2;
1050
1051 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1052 be translated into "." (just below). These are internal names
1053 generated for anonymous blocks inside which our symbol is nested. */
1054
1055 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1056 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1057 && isdigit (encoded [i+4]))
1058 {
1059 int k = i + 5;
1060
1061 while (k < len0 && isdigit (encoded[k]))
1062 k++; /* Skip any extra digit. */
1063
1064 /* Double-check that the "__B_{DIGITS}+" sequence we found
1065 is indeed followed by "__". */
1066 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1067 i = k;
1068 }
1069
1070 /* Remove _E{DIGITS}+[sb] */
1071
1072 /* Just as for protected object subprograms, there are 2 categories
1073 of subprograms created by the compiler for each entry. The first
1074 one implements the actual entry code, and has a suffix following
1075 the convention above; the second one implements the barrier and
1076 uses the same convention as above, except that the 'E' is replaced
1077 by a 'B'.
1078
1079 Just as above, we do not decode the name of barrier functions
1080 to give the user a clue that the code he is debugging has been
1081 internally generated. */
1082
1083 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1084 && isdigit (encoded[i+2]))
1085 {
1086 int k = i + 3;
1087
1088 while (k < len0 && isdigit (encoded[k]))
1089 k++;
1090
1091 if (k < len0
1092 && (encoded[k] == 'b' || encoded[k] == 's'))
1093 {
1094 k++;
1095 /* Just as an extra precaution, make sure that if this
1096 suffix is followed by anything else, it is a '_'.
1097 Otherwise, we matched this sequence by accident. */
1098 if (k == len0
1099 || (k < len0 && encoded[k] == '_'))
1100 i = k;
1101 }
1102 }
1103
1104 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1105 the GNAT front-end in protected object subprograms. */
1106
1107 if (i < len0 + 3
1108 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1109 {
1110 /* Backtrack a bit up until we reach either the begining of
1111 the encoded name, or "__". Make sure that we only find
1112 digits or lowercase characters. */
1113 const char *ptr = encoded + i - 1;
1114
1115 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1116 ptr--;
1117 if (ptr < encoded
1118 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1119 i++;
1120 }
1121
1122 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1123 {
1124 /* This is a X[bn]* sequence not separated from the previous
1125 part of the name with a non-alpha-numeric character (in other
1126 words, immediately following an alpha-numeric character), then
1127 verify that it is placed at the end of the encoded name. If
1128 not, then the encoding is not valid and we should abort the
1129 decoding. Otherwise, just skip it, it is used in body-nested
1130 package names. */
1131 do
1132 i += 1;
1133 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1134 if (i < len0)
1135 goto Suppress;
1136 }
1137 else if (!ADA_RETAIN_DOTS
1138 && i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1139 {
1140 /* Replace '__' by '.'. */
1141 decoded[j] = '.';
1142 at_start_name = 1;
1143 i += 2;
1144 j += 1;
1145 }
1146 else
1147 {
1148 /* It's a character part of the decoded name, so just copy it
1149 over. */
1150 decoded[j] = encoded[i];
1151 i += 1;
1152 j += 1;
1153 }
1154 }
1155 decoded[j] = '\000';
1156
1157 /* Decoded names should never contain any uppercase character.
1158 Double-check this, and abort the decoding if we find one. */
1159
1160 for (i = 0; decoded[i] != '\0'; i += 1)
1161 if (isupper (decoded[i]) || decoded[i] == ' ')
1162 goto Suppress;
1163
1164 if (strcmp (decoded, encoded) == 0)
1165 return encoded;
1166 else
1167 return decoded;
1168
1169 Suppress:
1170 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1171 decoded = decoding_buffer;
1172 if (encoded[0] == '<')
1173 strcpy (decoded, encoded);
1174 else
1175 sprintf (decoded, "<%s>", encoded);
1176 return decoded;
1177
1178 }
1179
1180 /* Table for keeping permanent unique copies of decoded names. Once
1181 allocated, names in this table are never released. While this is a
1182 storage leak, it should not be significant unless there are massive
1183 changes in the set of decoded names in successive versions of a
1184 symbol table loaded during a single session. */
1185 static struct htab *decoded_names_store;
1186
1187 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1188 in the language-specific part of GSYMBOL, if it has not been
1189 previously computed. Tries to save the decoded name in the same
1190 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1191 in any case, the decoded symbol has a lifetime at least that of
1192 GSYMBOL).
1193 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1194 const, but nevertheless modified to a semantically equivalent form
1195 when a decoded name is cached in it.
1196 */
1197
1198 char *
1199 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1200 {
1201 char **resultp =
1202 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1203 if (*resultp == NULL)
1204 {
1205 const char *decoded = ada_decode (gsymbol->name);
1206 if (gsymbol->obj_section != NULL)
1207 {
1208 struct objfile *objf = gsymbol->obj_section->objfile;
1209 *resultp = obsavestring (decoded, strlen (decoded),
1210 &objf->objfile_obstack);
1211 }
1212 /* Sometimes, we can't find a corresponding objfile, in which
1213 case, we put the result on the heap. Since we only decode
1214 when needed, we hope this usually does not cause a
1215 significant memory leak (FIXME). */
1216 if (*resultp == NULL)
1217 {
1218 char **slot = (char **) htab_find_slot (decoded_names_store,
1219 decoded, INSERT);
1220 if (*slot == NULL)
1221 *slot = xstrdup (decoded);
1222 *resultp = *slot;
1223 }
1224 }
1225
1226 return *resultp;
1227 }
1228
1229 char *
1230 ada_la_decode (const char *encoded, int options)
1231 {
1232 return xstrdup (ada_decode (encoded));
1233 }
1234
1235 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1236 suffixes that encode debugging information or leading _ada_ on
1237 SYM_NAME (see is_name_suffix commentary for the debugging
1238 information that is ignored). If WILD, then NAME need only match a
1239 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1240 either argument is NULL. */
1241
1242 int
1243 ada_match_name (const char *sym_name, const char *name, int wild)
1244 {
1245 if (sym_name == NULL || name == NULL)
1246 return 0;
1247 else if (wild)
1248 return wild_match (name, strlen (name), sym_name);
1249 else
1250 {
1251 int len_name = strlen (name);
1252 return (strncmp (sym_name, name, len_name) == 0
1253 && is_name_suffix (sym_name + len_name))
1254 || (strncmp (sym_name, "_ada_", 5) == 0
1255 && strncmp (sym_name + 5, name, len_name) == 0
1256 && is_name_suffix (sym_name + len_name + 5));
1257 }
1258 }
1259
1260 /* True (non-zero) iff, in Ada mode, the symbol SYM should be
1261 suppressed in info listings. */
1262
1263 int
1264 ada_suppress_symbol_printing (struct symbol *sym)
1265 {
1266 if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN)
1267 return 1;
1268 else
1269 return is_suppressed_name (SYMBOL_LINKAGE_NAME (sym));
1270 }
1271 \f
1272
1273 /* Arrays */
1274
1275 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1276
1277 static char *bound_name[] = {
1278 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1279 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1280 };
1281
1282 /* Maximum number of array dimensions we are prepared to handle. */
1283
1284 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1285
1286 /* Like modify_field, but allows bitpos > wordlength. */
1287
1288 static void
1289 modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1290 {
1291 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
1292 }
1293
1294
1295 /* The desc_* routines return primitive portions of array descriptors
1296 (fat pointers). */
1297
1298 /* The descriptor or array type, if any, indicated by TYPE; removes
1299 level of indirection, if needed. */
1300
1301 static struct type *
1302 desc_base_type (struct type *type)
1303 {
1304 if (type == NULL)
1305 return NULL;
1306 type = ada_check_typedef (type);
1307 if (type != NULL
1308 && (TYPE_CODE (type) == TYPE_CODE_PTR
1309 || TYPE_CODE (type) == TYPE_CODE_REF))
1310 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1311 else
1312 return type;
1313 }
1314
1315 /* True iff TYPE indicates a "thin" array pointer type. */
1316
1317 static int
1318 is_thin_pntr (struct type *type)
1319 {
1320 return
1321 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1322 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1323 }
1324
1325 /* The descriptor type for thin pointer type TYPE. */
1326
1327 static struct type *
1328 thin_descriptor_type (struct type *type)
1329 {
1330 struct type *base_type = desc_base_type (type);
1331 if (base_type == NULL)
1332 return NULL;
1333 if (is_suffix (ada_type_name (base_type), "___XVE"))
1334 return base_type;
1335 else
1336 {
1337 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1338 if (alt_type == NULL)
1339 return base_type;
1340 else
1341 return alt_type;
1342 }
1343 }
1344
1345 /* A pointer to the array data for thin-pointer value VAL. */
1346
1347 static struct value *
1348 thin_data_pntr (struct value *val)
1349 {
1350 struct type *type = value_type (val);
1351 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1352 return value_cast (desc_data_type (thin_descriptor_type (type)),
1353 value_copy (val));
1354 else
1355 return value_from_longest (desc_data_type (thin_descriptor_type (type)),
1356 VALUE_ADDRESS (val) + value_offset (val));
1357 }
1358
1359 /* True iff TYPE indicates a "thick" array pointer type. */
1360
1361 static int
1362 is_thick_pntr (struct type *type)
1363 {
1364 type = desc_base_type (type);
1365 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1366 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1367 }
1368
1369 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1370 pointer to one, the type of its bounds data; otherwise, NULL. */
1371
1372 static struct type *
1373 desc_bounds_type (struct type *type)
1374 {
1375 struct type *r;
1376
1377 type = desc_base_type (type);
1378
1379 if (type == NULL)
1380 return NULL;
1381 else if (is_thin_pntr (type))
1382 {
1383 type = thin_descriptor_type (type);
1384 if (type == NULL)
1385 return NULL;
1386 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1387 if (r != NULL)
1388 return ada_check_typedef (r);
1389 }
1390 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1391 {
1392 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1393 if (r != NULL)
1394 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1395 }
1396 return NULL;
1397 }
1398
1399 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1400 one, a pointer to its bounds data. Otherwise NULL. */
1401
1402 static struct value *
1403 desc_bounds (struct value *arr)
1404 {
1405 struct type *type = ada_check_typedef (value_type (arr));
1406 if (is_thin_pntr (type))
1407 {
1408 struct type *bounds_type =
1409 desc_bounds_type (thin_descriptor_type (type));
1410 LONGEST addr;
1411
1412 if (bounds_type == NULL)
1413 error (_("Bad GNAT array descriptor"));
1414
1415 /* NOTE: The following calculation is not really kosher, but
1416 since desc_type is an XVE-encoded type (and shouldn't be),
1417 the correct calculation is a real pain. FIXME (and fix GCC). */
1418 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1419 addr = value_as_long (arr);
1420 else
1421 addr = VALUE_ADDRESS (arr) + value_offset (arr);
1422
1423 return
1424 value_from_longest (lookup_pointer_type (bounds_type),
1425 addr - TYPE_LENGTH (bounds_type));
1426 }
1427
1428 else if (is_thick_pntr (type))
1429 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1430 _("Bad GNAT array descriptor"));
1431 else
1432 return NULL;
1433 }
1434
1435 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1436 position of the field containing the address of the bounds data. */
1437
1438 static int
1439 fat_pntr_bounds_bitpos (struct type *type)
1440 {
1441 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1442 }
1443
1444 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1445 size of the field containing the address of the bounds data. */
1446
1447 static int
1448 fat_pntr_bounds_bitsize (struct type *type)
1449 {
1450 type = desc_base_type (type);
1451
1452 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1453 return TYPE_FIELD_BITSIZE (type, 1);
1454 else
1455 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1456 }
1457
1458 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1459 pointer to one, the type of its array data (a
1460 pointer-to-array-with-no-bounds type); otherwise, NULL. Use
1461 ada_type_of_array to get an array type with bounds data. */
1462
1463 static struct type *
1464 desc_data_type (struct type *type)
1465 {
1466 type = desc_base_type (type);
1467
1468 /* NOTE: The following is bogus; see comment in desc_bounds. */
1469 if (is_thin_pntr (type))
1470 return lookup_pointer_type
1471 (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
1472 else if (is_thick_pntr (type))
1473 return lookup_struct_elt_type (type, "P_ARRAY", 1);
1474 else
1475 return NULL;
1476 }
1477
1478 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1479 its array data. */
1480
1481 static struct value *
1482 desc_data (struct value *arr)
1483 {
1484 struct type *type = value_type (arr);
1485 if (is_thin_pntr (type))
1486 return thin_data_pntr (arr);
1487 else if (is_thick_pntr (type))
1488 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1489 _("Bad GNAT array descriptor"));
1490 else
1491 return NULL;
1492 }
1493
1494
1495 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1496 position of the field containing the address of the data. */
1497
1498 static int
1499 fat_pntr_data_bitpos (struct type *type)
1500 {
1501 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1502 }
1503
1504 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1505 size of the field containing the address of the data. */
1506
1507 static int
1508 fat_pntr_data_bitsize (struct type *type)
1509 {
1510 type = desc_base_type (type);
1511
1512 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1513 return TYPE_FIELD_BITSIZE (type, 0);
1514 else
1515 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1516 }
1517
1518 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1519 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1520 bound, if WHICH is 1. The first bound is I=1. */
1521
1522 static struct value *
1523 desc_one_bound (struct value *bounds, int i, int which)
1524 {
1525 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1526 _("Bad GNAT array descriptor bounds"));
1527 }
1528
1529 /* If BOUNDS is an array-bounds structure type, return the bit position
1530 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1531 bound, if WHICH is 1. The first bound is I=1. */
1532
1533 static int
1534 desc_bound_bitpos (struct type *type, int i, int which)
1535 {
1536 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1537 }
1538
1539 /* If BOUNDS is an array-bounds structure type, return the bit field size
1540 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1541 bound, if WHICH is 1. The first bound is I=1. */
1542
1543 static int
1544 desc_bound_bitsize (struct type *type, int i, int which)
1545 {
1546 type = desc_base_type (type);
1547
1548 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1549 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1550 else
1551 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1552 }
1553
1554 /* If TYPE is the type of an array-bounds structure, the type of its
1555 Ith bound (numbering from 1). Otherwise, NULL. */
1556
1557 static struct type *
1558 desc_index_type (struct type *type, int i)
1559 {
1560 type = desc_base_type (type);
1561
1562 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1563 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1564 else
1565 return NULL;
1566 }
1567
1568 /* The number of index positions in the array-bounds type TYPE.
1569 Return 0 if TYPE is NULL. */
1570
1571 static int
1572 desc_arity (struct type *type)
1573 {
1574 type = desc_base_type (type);
1575
1576 if (type != NULL)
1577 return TYPE_NFIELDS (type) / 2;
1578 return 0;
1579 }
1580
1581 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1582 an array descriptor type (representing an unconstrained array
1583 type). */
1584
1585 static int
1586 ada_is_direct_array_type (struct type *type)
1587 {
1588 if (type == NULL)
1589 return 0;
1590 type = ada_check_typedef (type);
1591 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1592 || ada_is_array_descriptor_type (type));
1593 }
1594
1595 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1596 * to one. */
1597
1598 int
1599 ada_is_array_type (struct type *type)
1600 {
1601 while (type != NULL
1602 && (TYPE_CODE (type) == TYPE_CODE_PTR
1603 || TYPE_CODE (type) == TYPE_CODE_REF))
1604 type = TYPE_TARGET_TYPE (type);
1605 return ada_is_direct_array_type (type);
1606 }
1607
1608 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1609
1610 int
1611 ada_is_simple_array_type (struct type *type)
1612 {
1613 if (type == NULL)
1614 return 0;
1615 type = ada_check_typedef (type);
1616 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1617 || (TYPE_CODE (type) == TYPE_CODE_PTR
1618 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
1619 }
1620
1621 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1622
1623 int
1624 ada_is_array_descriptor_type (struct type *type)
1625 {
1626 struct type *data_type = desc_data_type (type);
1627
1628 if (type == NULL)
1629 return 0;
1630 type = ada_check_typedef (type);
1631 return
1632 data_type != NULL
1633 && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
1634 && TYPE_TARGET_TYPE (data_type) != NULL
1635 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
1636 || TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
1637 && desc_arity (desc_bounds_type (type)) > 0;
1638 }
1639
1640 /* Non-zero iff type is a partially mal-formed GNAT array
1641 descriptor. FIXME: This is to compensate for some problems with
1642 debugging output from GNAT. Re-examine periodically to see if it
1643 is still needed. */
1644
1645 int
1646 ada_is_bogus_array_descriptor (struct type *type)
1647 {
1648 return
1649 type != NULL
1650 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1651 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1652 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1653 && !ada_is_array_descriptor_type (type);
1654 }
1655
1656
1657 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1658 (fat pointer) returns the type of the array data described---specifically,
1659 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1660 in from the descriptor; otherwise, they are left unspecified. If
1661 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1662 returns NULL. The result is simply the type of ARR if ARR is not
1663 a descriptor. */
1664 struct type *
1665 ada_type_of_array (struct value *arr, int bounds)
1666 {
1667 if (ada_is_packed_array_type (value_type (arr)))
1668 return decode_packed_array_type (value_type (arr));
1669
1670 if (!ada_is_array_descriptor_type (value_type (arr)))
1671 return value_type (arr);
1672
1673 if (!bounds)
1674 return
1675 ada_check_typedef (TYPE_TARGET_TYPE (desc_data_type (value_type (arr))));
1676 else
1677 {
1678 struct type *elt_type;
1679 int arity;
1680 struct value *descriptor;
1681 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
1682
1683 elt_type = ada_array_element_type (value_type (arr), -1);
1684 arity = ada_array_arity (value_type (arr));
1685
1686 if (elt_type == NULL || arity == 0)
1687 return ada_check_typedef (value_type (arr));
1688
1689 descriptor = desc_bounds (arr);
1690 if (value_as_long (descriptor) == 0)
1691 return NULL;
1692 while (arity > 0)
1693 {
1694 struct type *range_type = alloc_type (objf);
1695 struct type *array_type = alloc_type (objf);
1696 struct value *low = desc_one_bound (descriptor, arity, 0);
1697 struct value *high = desc_one_bound (descriptor, arity, 1);
1698 arity -= 1;
1699
1700 create_range_type (range_type, value_type (low),
1701 longest_to_int (value_as_long (low)),
1702 longest_to_int (value_as_long (high)));
1703 elt_type = create_array_type (array_type, elt_type, range_type);
1704 }
1705
1706 return lookup_pointer_type (elt_type);
1707 }
1708 }
1709
1710 /* If ARR does not represent an array, returns ARR unchanged.
1711 Otherwise, returns either a standard GDB array with bounds set
1712 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1713 GDB array. Returns NULL if ARR is a null fat pointer. */
1714
1715 struct value *
1716 ada_coerce_to_simple_array_ptr (struct value *arr)
1717 {
1718 if (ada_is_array_descriptor_type (value_type (arr)))
1719 {
1720 struct type *arrType = ada_type_of_array (arr, 1);
1721 if (arrType == NULL)
1722 return NULL;
1723 return value_cast (arrType, value_copy (desc_data (arr)));
1724 }
1725 else if (ada_is_packed_array_type (value_type (arr)))
1726 return decode_packed_array (arr);
1727 else
1728 return arr;
1729 }
1730
1731 /* If ARR does not represent an array, returns ARR unchanged.
1732 Otherwise, returns a standard GDB array describing ARR (which may
1733 be ARR itself if it already is in the proper form). */
1734
1735 static struct value *
1736 ada_coerce_to_simple_array (struct value *arr)
1737 {
1738 if (ada_is_array_descriptor_type (value_type (arr)))
1739 {
1740 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1741 if (arrVal == NULL)
1742 error (_("Bounds unavailable for null array pointer."));
1743 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1744 return value_ind (arrVal);
1745 }
1746 else if (ada_is_packed_array_type (value_type (arr)))
1747 return decode_packed_array (arr);
1748 else
1749 return arr;
1750 }
1751
1752 /* If TYPE represents a GNAT array type, return it translated to an
1753 ordinary GDB array type (possibly with BITSIZE fields indicating
1754 packing). For other types, is the identity. */
1755
1756 struct type *
1757 ada_coerce_to_simple_array_type (struct type *type)
1758 {
1759 struct value *mark = value_mark ();
1760 struct value *dummy = value_from_longest (builtin_type_long, 0);
1761 struct type *result;
1762 deprecated_set_value_type (dummy, type);
1763 result = ada_type_of_array (dummy, 0);
1764 value_free_to_mark (mark);
1765 return result;
1766 }
1767
1768 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1769
1770 int
1771 ada_is_packed_array_type (struct type *type)
1772 {
1773 if (type == NULL)
1774 return 0;
1775 type = desc_base_type (type);
1776 type = ada_check_typedef (type);
1777 return
1778 ada_type_name (type) != NULL
1779 && strstr (ada_type_name (type), "___XP") != NULL;
1780 }
1781
1782 /* Given that TYPE is a standard GDB array type with all bounds filled
1783 in, and that the element size of its ultimate scalar constituents
1784 (that is, either its elements, or, if it is an array of arrays, its
1785 elements' elements, etc.) is *ELT_BITS, return an identical type,
1786 but with the bit sizes of its elements (and those of any
1787 constituent arrays) recorded in the BITSIZE components of its
1788 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1789 in bits. */
1790
1791 static struct type *
1792 packed_array_type (struct type *type, long *elt_bits)
1793 {
1794 struct type *new_elt_type;
1795 struct type *new_type;
1796 LONGEST low_bound, high_bound;
1797
1798 type = ada_check_typedef (type);
1799 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1800 return type;
1801
1802 new_type = alloc_type (TYPE_OBJFILE (type));
1803 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
1804 elt_bits);
1805 create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
1806 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1807 TYPE_NAME (new_type) = ada_type_name (type);
1808
1809 if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
1810 &low_bound, &high_bound) < 0)
1811 low_bound = high_bound = 0;
1812 if (high_bound < low_bound)
1813 *elt_bits = TYPE_LENGTH (new_type) = 0;
1814 else
1815 {
1816 *elt_bits *= (high_bound - low_bound + 1);
1817 TYPE_LENGTH (new_type) =
1818 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
1819 }
1820
1821 TYPE_FIXED_INSTANCE (new_type) = 1;
1822 return new_type;
1823 }
1824
1825 /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1826
1827 static struct type *
1828 decode_packed_array_type (struct type *type)
1829 {
1830 struct symbol *sym;
1831 struct block **blocks;
1832 char *raw_name = ada_type_name (ada_check_typedef (type));
1833 char *name;
1834 char *tail;
1835 struct type *shadow_type;
1836 long bits;
1837 int i, n;
1838
1839 if (!raw_name)
1840 raw_name = ada_type_name (desc_base_type (type));
1841
1842 if (!raw_name)
1843 return NULL;
1844
1845 name = (char *) alloca (strlen (raw_name) + 1);
1846 tail = strstr (raw_name, "___XP");
1847 type = desc_base_type (type);
1848
1849 memcpy (name, raw_name, tail - raw_name);
1850 name[tail - raw_name] = '\000';
1851
1852 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1853 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
1854 {
1855 lim_warning (_("could not find bounds information on packed array"));
1856 return NULL;
1857 }
1858 shadow_type = SYMBOL_TYPE (sym);
1859
1860 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1861 {
1862 lim_warning (_("could not understand bounds information on packed array"));
1863 return NULL;
1864 }
1865
1866 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1867 {
1868 lim_warning
1869 (_("could not understand bit size information on packed array"));
1870 return NULL;
1871 }
1872
1873 return packed_array_type (shadow_type, &bits);
1874 }
1875
1876 /* Given that ARR is a struct value *indicating a GNAT packed array,
1877 returns a simple array that denotes that array. Its type is a
1878 standard GDB array type except that the BITSIZEs of the array
1879 target types are set to the number of bits in each element, and the
1880 type length is set appropriately. */
1881
1882 static struct value *
1883 decode_packed_array (struct value *arr)
1884 {
1885 struct type *type;
1886
1887 arr = ada_coerce_ref (arr);
1888 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
1889 arr = ada_value_ind (arr);
1890
1891 type = decode_packed_array_type (value_type (arr));
1892 if (type == NULL)
1893 {
1894 error (_("can't unpack array"));
1895 return NULL;
1896 }
1897
1898 if (gdbarch_bits_big_endian (current_gdbarch)
1899 && ada_is_modular_type (value_type (arr)))
1900 {
1901 /* This is a (right-justified) modular type representing a packed
1902 array with no wrapper. In order to interpret the value through
1903 the (left-justified) packed array type we just built, we must
1904 first left-justify it. */
1905 int bit_size, bit_pos;
1906 ULONGEST mod;
1907
1908 mod = ada_modulus (value_type (arr)) - 1;
1909 bit_size = 0;
1910 while (mod > 0)
1911 {
1912 bit_size += 1;
1913 mod >>= 1;
1914 }
1915 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
1916 arr = ada_value_primitive_packed_val (arr, NULL,
1917 bit_pos / HOST_CHAR_BIT,
1918 bit_pos % HOST_CHAR_BIT,
1919 bit_size,
1920 type);
1921 }
1922
1923 return coerce_unspec_val_to_type (arr, type);
1924 }
1925
1926
1927 /* The value of the element of packed array ARR at the ARITY indices
1928 given in IND. ARR must be a simple array. */
1929
1930 static struct value *
1931 value_subscript_packed (struct value *arr, int arity, struct value **ind)
1932 {
1933 int i;
1934 int bits, elt_off, bit_off;
1935 long elt_total_bit_offset;
1936 struct type *elt_type;
1937 struct value *v;
1938
1939 bits = 0;
1940 elt_total_bit_offset = 0;
1941 elt_type = ada_check_typedef (value_type (arr));
1942 for (i = 0; i < arity; i += 1)
1943 {
1944 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
1945 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1946 error
1947 (_("attempt to do packed indexing of something other than a packed array"));
1948 else
1949 {
1950 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1951 LONGEST lowerbound, upperbound;
1952 LONGEST idx;
1953
1954 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1955 {
1956 lim_warning (_("don't know bounds of array"));
1957 lowerbound = upperbound = 0;
1958 }
1959
1960 idx = value_as_long (value_pos_atr (ind[i]));
1961 if (idx < lowerbound || idx > upperbound)
1962 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
1963 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1964 elt_total_bit_offset += (idx - lowerbound) * bits;
1965 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
1966 }
1967 }
1968 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1969 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
1970
1971 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
1972 bits, elt_type);
1973 return v;
1974 }
1975
1976 /* Non-zero iff TYPE includes negative integer values. */
1977
1978 static int
1979 has_negatives (struct type *type)
1980 {
1981 switch (TYPE_CODE (type))
1982 {
1983 default:
1984 return 0;
1985 case TYPE_CODE_INT:
1986 return !TYPE_UNSIGNED (type);
1987 case TYPE_CODE_RANGE:
1988 return TYPE_LOW_BOUND (type) < 0;
1989 }
1990 }
1991
1992
1993 /* Create a new value of type TYPE from the contents of OBJ starting
1994 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1995 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
1996 assigning through the result will set the field fetched from.
1997 VALADDR is ignored unless OBJ is NULL, in which case,
1998 VALADDR+OFFSET must address the start of storage containing the
1999 packed value. The value returned in this case is never an lval.
2000 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2001
2002 struct value *
2003 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2004 long offset, int bit_offset, int bit_size,
2005 struct type *type)
2006 {
2007 struct value *v;
2008 int src, /* Index into the source area */
2009 targ, /* Index into the target area */
2010 srcBitsLeft, /* Number of source bits left to move */
2011 nsrc, ntarg, /* Number of source and target bytes */
2012 unusedLS, /* Number of bits in next significant
2013 byte of source that are unused */
2014 accumSize; /* Number of meaningful bits in accum */
2015 unsigned char *bytes; /* First byte containing data to unpack */
2016 unsigned char *unpacked;
2017 unsigned long accum; /* Staging area for bits being transferred */
2018 unsigned char sign;
2019 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2020 /* Transmit bytes from least to most significant; delta is the direction
2021 the indices move. */
2022 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
2023
2024 type = ada_check_typedef (type);
2025
2026 if (obj == NULL)
2027 {
2028 v = allocate_value (type);
2029 bytes = (unsigned char *) (valaddr + offset);
2030 }
2031 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2032 {
2033 v = value_at (type,
2034 VALUE_ADDRESS (obj) + value_offset (obj) + offset);
2035 bytes = (unsigned char *) alloca (len);
2036 read_memory (VALUE_ADDRESS (v), bytes, len);
2037 }
2038 else
2039 {
2040 v = allocate_value (type);
2041 bytes = (unsigned char *) value_contents (obj) + offset;
2042 }
2043
2044 if (obj != NULL)
2045 {
2046 VALUE_LVAL (v) = VALUE_LVAL (obj);
2047 if (VALUE_LVAL (obj) == lval_internalvar)
2048 VALUE_LVAL (v) = lval_internalvar_component;
2049 VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + value_offset (obj) + offset;
2050 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2051 set_value_bitsize (v, bit_size);
2052 if (value_bitpos (v) >= HOST_CHAR_BIT)
2053 {
2054 VALUE_ADDRESS (v) += 1;
2055 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2056 }
2057 }
2058 else
2059 set_value_bitsize (v, bit_size);
2060 unpacked = (unsigned char *) value_contents (v);
2061
2062 srcBitsLeft = bit_size;
2063 nsrc = len;
2064 ntarg = TYPE_LENGTH (type);
2065 sign = 0;
2066 if (bit_size == 0)
2067 {
2068 memset (unpacked, 0, TYPE_LENGTH (type));
2069 return v;
2070 }
2071 else if (gdbarch_bits_big_endian (current_gdbarch))
2072 {
2073 src = len - 1;
2074 if (has_negatives (type)
2075 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2076 sign = ~0;
2077
2078 unusedLS =
2079 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2080 % HOST_CHAR_BIT;
2081
2082 switch (TYPE_CODE (type))
2083 {
2084 case TYPE_CODE_ARRAY:
2085 case TYPE_CODE_UNION:
2086 case TYPE_CODE_STRUCT:
2087 /* Non-scalar values must be aligned at a byte boundary... */
2088 accumSize =
2089 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2090 /* ... And are placed at the beginning (most-significant) bytes
2091 of the target. */
2092 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2093 break;
2094 default:
2095 accumSize = 0;
2096 targ = TYPE_LENGTH (type) - 1;
2097 break;
2098 }
2099 }
2100 else
2101 {
2102 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2103
2104 src = targ = 0;
2105 unusedLS = bit_offset;
2106 accumSize = 0;
2107
2108 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2109 sign = ~0;
2110 }
2111
2112 accum = 0;
2113 while (nsrc > 0)
2114 {
2115 /* Mask for removing bits of the next source byte that are not
2116 part of the value. */
2117 unsigned int unusedMSMask =
2118 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2119 1;
2120 /* Sign-extend bits for this byte. */
2121 unsigned int signMask = sign & ~unusedMSMask;
2122 accum |=
2123 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2124 accumSize += HOST_CHAR_BIT - unusedLS;
2125 if (accumSize >= HOST_CHAR_BIT)
2126 {
2127 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2128 accumSize -= HOST_CHAR_BIT;
2129 accum >>= HOST_CHAR_BIT;
2130 ntarg -= 1;
2131 targ += delta;
2132 }
2133 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2134 unusedLS = 0;
2135 nsrc -= 1;
2136 src += delta;
2137 }
2138 while (ntarg > 0)
2139 {
2140 accum |= sign << accumSize;
2141 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2142 accumSize -= HOST_CHAR_BIT;
2143 accum >>= HOST_CHAR_BIT;
2144 ntarg -= 1;
2145 targ += delta;
2146 }
2147
2148 return v;
2149 }
2150
2151 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2152 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2153 not overlap. */
2154 static void
2155 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2156 int src_offset, int n)
2157 {
2158 unsigned int accum, mask;
2159 int accum_bits, chunk_size;
2160
2161 target += targ_offset / HOST_CHAR_BIT;
2162 targ_offset %= HOST_CHAR_BIT;
2163 source += src_offset / HOST_CHAR_BIT;
2164 src_offset %= HOST_CHAR_BIT;
2165 if (gdbarch_bits_big_endian (current_gdbarch))
2166 {
2167 accum = (unsigned char) *source;
2168 source += 1;
2169 accum_bits = HOST_CHAR_BIT - src_offset;
2170
2171 while (n > 0)
2172 {
2173 int unused_right;
2174 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2175 accum_bits += HOST_CHAR_BIT;
2176 source += 1;
2177 chunk_size = HOST_CHAR_BIT - targ_offset;
2178 if (chunk_size > n)
2179 chunk_size = n;
2180 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2181 mask = ((1 << chunk_size) - 1) << unused_right;
2182 *target =
2183 (*target & ~mask)
2184 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2185 n -= chunk_size;
2186 accum_bits -= chunk_size;
2187 target += 1;
2188 targ_offset = 0;
2189 }
2190 }
2191 else
2192 {
2193 accum = (unsigned char) *source >> src_offset;
2194 source += 1;
2195 accum_bits = HOST_CHAR_BIT - src_offset;
2196
2197 while (n > 0)
2198 {
2199 accum = accum + ((unsigned char) *source << accum_bits);
2200 accum_bits += HOST_CHAR_BIT;
2201 source += 1;
2202 chunk_size = HOST_CHAR_BIT - targ_offset;
2203 if (chunk_size > n)
2204 chunk_size = n;
2205 mask = ((1 << chunk_size) - 1) << targ_offset;
2206 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2207 n -= chunk_size;
2208 accum_bits -= chunk_size;
2209 accum >>= chunk_size;
2210 target += 1;
2211 targ_offset = 0;
2212 }
2213 }
2214 }
2215
2216 /* Store the contents of FROMVAL into the location of TOVAL.
2217 Return a new value with the location of TOVAL and contents of
2218 FROMVAL. Handles assignment into packed fields that have
2219 floating-point or non-scalar types. */
2220
2221 static struct value *
2222 ada_value_assign (struct value *toval, struct value *fromval)
2223 {
2224 struct type *type = value_type (toval);
2225 int bits = value_bitsize (toval);
2226
2227 toval = ada_coerce_ref (toval);
2228 fromval = ada_coerce_ref (fromval);
2229
2230 if (ada_is_direct_array_type (value_type (toval)))
2231 toval = ada_coerce_to_simple_array (toval);
2232 if (ada_is_direct_array_type (value_type (fromval)))
2233 fromval = ada_coerce_to_simple_array (fromval);
2234
2235 if (!deprecated_value_modifiable (toval))
2236 error (_("Left operand of assignment is not a modifiable lvalue."));
2237
2238 if (VALUE_LVAL (toval) == lval_memory
2239 && bits > 0
2240 && (TYPE_CODE (type) == TYPE_CODE_FLT
2241 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2242 {
2243 int len = (value_bitpos (toval)
2244 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2245 int from_size;
2246 char *buffer = (char *) alloca (len);
2247 struct value *val;
2248 CORE_ADDR to_addr = VALUE_ADDRESS (toval) + value_offset (toval);
2249
2250 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2251 fromval = value_cast (type, fromval);
2252
2253 read_memory (to_addr, buffer, len);
2254 from_size = value_bitsize (fromval);
2255 if (from_size == 0)
2256 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2257 if (gdbarch_bits_big_endian (current_gdbarch))
2258 move_bits (buffer, value_bitpos (toval),
2259 value_contents (fromval), from_size - bits, bits);
2260 else
2261 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
2262 0, bits);
2263 write_memory (to_addr, buffer, len);
2264 if (deprecated_memory_changed_hook)
2265 deprecated_memory_changed_hook (to_addr, len);
2266
2267 val = value_copy (toval);
2268 memcpy (value_contents_raw (val), value_contents (fromval),
2269 TYPE_LENGTH (type));
2270 deprecated_set_value_type (val, type);
2271
2272 return val;
2273 }
2274
2275 return value_assign (toval, fromval);
2276 }
2277
2278
2279 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2280 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2281 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2282 * COMPONENT, and not the inferior's memory. The current contents
2283 * of COMPONENT are ignored. */
2284 static void
2285 value_assign_to_component (struct value *container, struct value *component,
2286 struct value *val)
2287 {
2288 LONGEST offset_in_container =
2289 (LONGEST) (VALUE_ADDRESS (component) + value_offset (component)
2290 - VALUE_ADDRESS (container) - value_offset (container));
2291 int bit_offset_in_container =
2292 value_bitpos (component) - value_bitpos (container);
2293 int bits;
2294
2295 val = value_cast (value_type (component), val);
2296
2297 if (value_bitsize (component) == 0)
2298 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2299 else
2300 bits = value_bitsize (component);
2301
2302 if (gdbarch_bits_big_endian (current_gdbarch))
2303 move_bits (value_contents_writeable (container) + offset_in_container,
2304 value_bitpos (container) + bit_offset_in_container,
2305 value_contents (val),
2306 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2307 bits);
2308 else
2309 move_bits (value_contents_writeable (container) + offset_in_container,
2310 value_bitpos (container) + bit_offset_in_container,
2311 value_contents (val), 0, bits);
2312 }
2313
2314 /* The value of the element of array ARR at the ARITY indices given in IND.
2315 ARR may be either a simple array, GNAT array descriptor, or pointer
2316 thereto. */
2317
2318 struct value *
2319 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2320 {
2321 int k;
2322 struct value *elt;
2323 struct type *elt_type;
2324
2325 elt = ada_coerce_to_simple_array (arr);
2326
2327 elt_type = ada_check_typedef (value_type (elt));
2328 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2329 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2330 return value_subscript_packed (elt, arity, ind);
2331
2332 for (k = 0; k < arity; k += 1)
2333 {
2334 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2335 error (_("too many subscripts (%d expected)"), k);
2336 elt = value_subscript (elt, value_pos_atr (ind[k]));
2337 }
2338 return elt;
2339 }
2340
2341 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2342 value of the element of *ARR at the ARITY indices given in
2343 IND. Does not read the entire array into memory. */
2344
2345 struct value *
2346 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2347 struct value **ind)
2348 {
2349 int k;
2350
2351 for (k = 0; k < arity; k += 1)
2352 {
2353 LONGEST lwb, upb;
2354 struct value *idx;
2355
2356 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2357 error (_("too many subscripts (%d expected)"), k);
2358 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2359 value_copy (arr));
2360 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2361 idx = value_pos_atr (ind[k]);
2362 if (lwb != 0)
2363 idx = value_sub (idx, value_from_longest (builtin_type_int, lwb));
2364 arr = value_add (arr, idx);
2365 type = TYPE_TARGET_TYPE (type);
2366 }
2367
2368 return value_ind (arr);
2369 }
2370
2371 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2372 actual type of ARRAY_PTR is ignored), returns a reference to
2373 the Ada slice of HIGH-LOW+1 elements starting at index LOW. The lower
2374 bound of this array is LOW, as per Ada rules. */
2375 static struct value *
2376 ada_value_slice_ptr (struct value *array_ptr, struct type *type,
2377 int low, int high)
2378 {
2379 CORE_ADDR base = value_as_address (array_ptr)
2380 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2381 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
2382 struct type *index_type =
2383 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
2384 low, high);
2385 struct type *slice_type =
2386 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2387 return value_from_pointer (lookup_reference_type (slice_type), base);
2388 }
2389
2390
2391 static struct value *
2392 ada_value_slice (struct value *array, int low, int high)
2393 {
2394 struct type *type = value_type (array);
2395 struct type *index_type =
2396 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2397 struct type *slice_type =
2398 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2399 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2400 }
2401
2402 /* If type is a record type in the form of a standard GNAT array
2403 descriptor, returns the number of dimensions for type. If arr is a
2404 simple array, returns the number of "array of"s that prefix its
2405 type designation. Otherwise, returns 0. */
2406
2407 int
2408 ada_array_arity (struct type *type)
2409 {
2410 int arity;
2411
2412 if (type == NULL)
2413 return 0;
2414
2415 type = desc_base_type (type);
2416
2417 arity = 0;
2418 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2419 return desc_arity (desc_bounds_type (type));
2420 else
2421 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2422 {
2423 arity += 1;
2424 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2425 }
2426
2427 return arity;
2428 }
2429
2430 /* If TYPE is a record type in the form of a standard GNAT array
2431 descriptor or a simple array type, returns the element type for
2432 TYPE after indexing by NINDICES indices, or by all indices if
2433 NINDICES is -1. Otherwise, returns NULL. */
2434
2435 struct type *
2436 ada_array_element_type (struct type *type, int nindices)
2437 {
2438 type = desc_base_type (type);
2439
2440 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2441 {
2442 int k;
2443 struct type *p_array_type;
2444
2445 p_array_type = desc_data_type (type);
2446
2447 k = ada_array_arity (type);
2448 if (k == 0)
2449 return NULL;
2450
2451 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2452 if (nindices >= 0 && k > nindices)
2453 k = nindices;
2454 p_array_type = TYPE_TARGET_TYPE (p_array_type);
2455 while (k > 0 && p_array_type != NULL)
2456 {
2457 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2458 k -= 1;
2459 }
2460 return p_array_type;
2461 }
2462 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2463 {
2464 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2465 {
2466 type = TYPE_TARGET_TYPE (type);
2467 nindices -= 1;
2468 }
2469 return type;
2470 }
2471
2472 return NULL;
2473 }
2474
2475 /* The type of nth index in arrays of given type (n numbering from 1).
2476 Does not examine memory. */
2477
2478 struct type *
2479 ada_index_type (struct type *type, int n)
2480 {
2481 struct type *result_type;
2482
2483 type = desc_base_type (type);
2484
2485 if (n > ada_array_arity (type))
2486 return NULL;
2487
2488 if (ada_is_simple_array_type (type))
2489 {
2490 int i;
2491
2492 for (i = 1; i < n; i += 1)
2493 type = TYPE_TARGET_TYPE (type);
2494 result_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
2495 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2496 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2497 perhaps stabsread.c would make more sense. */
2498 if (result_type == NULL || TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2499 result_type = builtin_type_int;
2500
2501 return result_type;
2502 }
2503 else
2504 return desc_index_type (desc_bounds_type (type), n);
2505 }
2506
2507 /* Given that arr is an array type, returns the lower bound of the
2508 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2509 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2510 array-descriptor type. If TYPEP is non-null, *TYPEP is set to the
2511 bounds type. It works for other arrays with bounds supplied by
2512 run-time quantities other than discriminants. */
2513
2514 static LONGEST
2515 ada_array_bound_from_type (struct type * arr_type, int n, int which,
2516 struct type ** typep)
2517 {
2518 struct type *type;
2519 struct type *index_type_desc;
2520
2521 if (ada_is_packed_array_type (arr_type))
2522 arr_type = decode_packed_array_type (arr_type);
2523
2524 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2525 {
2526 if (typep != NULL)
2527 *typep = builtin_type_int;
2528 return (LONGEST) - which;
2529 }
2530
2531 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2532 type = TYPE_TARGET_TYPE (arr_type);
2533 else
2534 type = arr_type;
2535
2536 index_type_desc = ada_find_parallel_type (type, "___XA");
2537 if (index_type_desc == NULL)
2538 {
2539 struct type *index_type;
2540
2541 while (n > 1)
2542 {
2543 type = TYPE_TARGET_TYPE (type);
2544 n -= 1;
2545 }
2546
2547 index_type = TYPE_INDEX_TYPE (type);
2548 if (typep != NULL)
2549 *typep = index_type;
2550
2551 /* The index type is either a range type or an enumerated type.
2552 For the range type, we have some macros that allow us to
2553 extract the value of the low and high bounds. But they
2554 do now work for enumerated types. The expressions used
2555 below work for both range and enum types. */
2556 return
2557 (LONGEST) (which == 0
2558 ? TYPE_FIELD_BITPOS (index_type, 0)
2559 : TYPE_FIELD_BITPOS (index_type,
2560 TYPE_NFIELDS (index_type) - 1));
2561 }
2562 else
2563 {
2564 struct type *index_type =
2565 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2566 NULL, TYPE_OBJFILE (arr_type));
2567
2568 if (typep != NULL)
2569 *typep = index_type;
2570
2571 return
2572 (LONGEST) (which == 0
2573 ? TYPE_LOW_BOUND (index_type)
2574 : TYPE_HIGH_BOUND (index_type));
2575 }
2576 }
2577
2578 /* Given that arr is an array value, returns the lower bound of the
2579 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2580 WHICH is 1. This routine will also work for arrays with bounds
2581 supplied by run-time quantities other than discriminants. */
2582
2583 struct value *
2584 ada_array_bound (struct value *arr, int n, int which)
2585 {
2586 struct type *arr_type = value_type (arr);
2587
2588 if (ada_is_packed_array_type (arr_type))
2589 return ada_array_bound (decode_packed_array (arr), n, which);
2590 else if (ada_is_simple_array_type (arr_type))
2591 {
2592 struct type *type;
2593 LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
2594 return value_from_longest (type, v);
2595 }
2596 else
2597 return desc_one_bound (desc_bounds (arr), n, which);
2598 }
2599
2600 /* Given that arr is an array value, returns the length of the
2601 nth index. This routine will also work for arrays with bounds
2602 supplied by run-time quantities other than discriminants.
2603 Does not work for arrays indexed by enumeration types with representation
2604 clauses at the moment. */
2605
2606 struct value *
2607 ada_array_length (struct value *arr, int n)
2608 {
2609 struct type *arr_type = ada_check_typedef (value_type (arr));
2610
2611 if (ada_is_packed_array_type (arr_type))
2612 return ada_array_length (decode_packed_array (arr), n);
2613
2614 if (ada_is_simple_array_type (arr_type))
2615 {
2616 struct type *type;
2617 LONGEST v =
2618 ada_array_bound_from_type (arr_type, n, 1, &type) -
2619 ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
2620 return value_from_longest (type, v);
2621 }
2622 else
2623 return
2624 value_from_longest (builtin_type_int,
2625 value_as_long (desc_one_bound (desc_bounds (arr),
2626 n, 1))
2627 - value_as_long (desc_one_bound (desc_bounds (arr),
2628 n, 0)) + 1);
2629 }
2630
2631 /* An empty array whose type is that of ARR_TYPE (an array type),
2632 with bounds LOW to LOW-1. */
2633
2634 static struct value *
2635 empty_array (struct type *arr_type, int low)
2636 {
2637 struct type *index_type =
2638 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2639 low, low - 1);
2640 struct type *elt_type = ada_array_element_type (arr_type, 1);
2641 return allocate_value (create_array_type (NULL, elt_type, index_type));
2642 }
2643 \f
2644
2645 /* Name resolution */
2646
2647 /* The "decoded" name for the user-definable Ada operator corresponding
2648 to OP. */
2649
2650 static const char *
2651 ada_decoded_op_name (enum exp_opcode op)
2652 {
2653 int i;
2654
2655 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2656 {
2657 if (ada_opname_table[i].op == op)
2658 return ada_opname_table[i].decoded;
2659 }
2660 error (_("Could not find operator name for opcode"));
2661 }
2662
2663
2664 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2665 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2666 undefined namespace) and converts operators that are
2667 user-defined into appropriate function calls. If CONTEXT_TYPE is
2668 non-null, it provides a preferred result type [at the moment, only
2669 type void has any effect---causing procedures to be preferred over
2670 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2671 return type is preferred. May change (expand) *EXP. */
2672
2673 static void
2674 resolve (struct expression **expp, int void_context_p)
2675 {
2676 int pc;
2677 pc = 0;
2678 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
2679 }
2680
2681 /* Resolve the operator of the subexpression beginning at
2682 position *POS of *EXPP. "Resolving" consists of replacing
2683 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2684 with their resolutions, replacing built-in operators with
2685 function calls to user-defined operators, where appropriate, and,
2686 when DEPROCEDURE_P is non-zero, converting function-valued variables
2687 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2688 are as in ada_resolve, above. */
2689
2690 static struct value *
2691 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2692 struct type *context_type)
2693 {
2694 int pc = *pos;
2695 int i;
2696 struct expression *exp; /* Convenience: == *expp. */
2697 enum exp_opcode op = (*expp)->elts[pc].opcode;
2698 struct value **argvec; /* Vector of operand types (alloca'ed). */
2699 int nargs; /* Number of operands. */
2700 int oplen;
2701
2702 argvec = NULL;
2703 nargs = 0;
2704 exp = *expp;
2705
2706 /* Pass one: resolve operands, saving their types and updating *pos,
2707 if needed. */
2708 switch (op)
2709 {
2710 case OP_FUNCALL:
2711 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2712 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2713 *pos += 7;
2714 else
2715 {
2716 *pos += 3;
2717 resolve_subexp (expp, pos, 0, NULL);
2718 }
2719 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2720 break;
2721
2722 case UNOP_ADDR:
2723 *pos += 1;
2724 resolve_subexp (expp, pos, 0, NULL);
2725 break;
2726
2727 case UNOP_QUAL:
2728 *pos += 3;
2729 resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
2730 break;
2731
2732 case OP_ATR_MODULUS:
2733 case OP_ATR_SIZE:
2734 case OP_ATR_TAG:
2735 case OP_ATR_FIRST:
2736 case OP_ATR_LAST:
2737 case OP_ATR_LENGTH:
2738 case OP_ATR_POS:
2739 case OP_ATR_VAL:
2740 case OP_ATR_MIN:
2741 case OP_ATR_MAX:
2742 case TERNOP_IN_RANGE:
2743 case BINOP_IN_BOUNDS:
2744 case UNOP_IN_RANGE:
2745 case OP_AGGREGATE:
2746 case OP_OTHERS:
2747 case OP_CHOICES:
2748 case OP_POSITIONAL:
2749 case OP_DISCRETE_RANGE:
2750 case OP_NAME:
2751 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2752 *pos += oplen;
2753 break;
2754
2755 case BINOP_ASSIGN:
2756 {
2757 struct value *arg1;
2758
2759 *pos += 1;
2760 arg1 = resolve_subexp (expp, pos, 0, NULL);
2761 if (arg1 == NULL)
2762 resolve_subexp (expp, pos, 1, NULL);
2763 else
2764 resolve_subexp (expp, pos, 1, value_type (arg1));
2765 break;
2766 }
2767
2768 case UNOP_CAST:
2769 *pos += 3;
2770 nargs = 1;
2771 break;
2772
2773 case BINOP_ADD:
2774 case BINOP_SUB:
2775 case BINOP_MUL:
2776 case BINOP_DIV:
2777 case BINOP_REM:
2778 case BINOP_MOD:
2779 case BINOP_EXP:
2780 case BINOP_CONCAT:
2781 case BINOP_LOGICAL_AND:
2782 case BINOP_LOGICAL_OR:
2783 case BINOP_BITWISE_AND:
2784 case BINOP_BITWISE_IOR:
2785 case BINOP_BITWISE_XOR:
2786
2787 case BINOP_EQUAL:
2788 case BINOP_NOTEQUAL:
2789 case BINOP_LESS:
2790 case BINOP_GTR:
2791 case BINOP_LEQ:
2792 case BINOP_GEQ:
2793
2794 case BINOP_REPEAT:
2795 case BINOP_SUBSCRIPT:
2796 case BINOP_COMMA:
2797 *pos += 1;
2798 nargs = 2;
2799 break;
2800
2801 case UNOP_NEG:
2802 case UNOP_PLUS:
2803 case UNOP_LOGICAL_NOT:
2804 case UNOP_ABS:
2805 case UNOP_IND:
2806 *pos += 1;
2807 nargs = 1;
2808 break;
2809
2810 case OP_LONG:
2811 case OP_DOUBLE:
2812 case OP_VAR_VALUE:
2813 *pos += 4;
2814 break;
2815
2816 case OP_TYPE:
2817 case OP_BOOL:
2818 case OP_LAST:
2819 case OP_INTERNALVAR:
2820 *pos += 3;
2821 break;
2822
2823 case UNOP_MEMVAL:
2824 *pos += 3;
2825 nargs = 1;
2826 break;
2827
2828 case OP_REGISTER:
2829 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2830 break;
2831
2832 case STRUCTOP_STRUCT:
2833 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2834 nargs = 1;
2835 break;
2836
2837 case TERNOP_SLICE:
2838 *pos += 1;
2839 nargs = 3;
2840 break;
2841
2842 case OP_STRING:
2843 break;
2844
2845 default:
2846 error (_("Unexpected operator during name resolution"));
2847 }
2848
2849 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
2850 for (i = 0; i < nargs; i += 1)
2851 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2852 argvec[i] = NULL;
2853 exp = *expp;
2854
2855 /* Pass two: perform any resolution on principal operator. */
2856 switch (op)
2857 {
2858 default:
2859 break;
2860
2861 case OP_VAR_VALUE:
2862 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
2863 {
2864 struct ada_symbol_info *candidates;
2865 int n_candidates;
2866
2867 n_candidates =
2868 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2869 (exp->elts[pc + 2].symbol),
2870 exp->elts[pc + 1].block, VAR_DOMAIN,
2871 &candidates);
2872
2873 if (n_candidates > 1)
2874 {
2875 /* Types tend to get re-introduced locally, so if there
2876 are any local symbols that are not types, first filter
2877 out all types. */
2878 int j;
2879 for (j = 0; j < n_candidates; j += 1)
2880 switch (SYMBOL_CLASS (candidates[j].sym))
2881 {
2882 case LOC_REGISTER:
2883 case LOC_ARG:
2884 case LOC_REF_ARG:
2885 case LOC_REGPARM_ADDR:
2886 case LOC_LOCAL:
2887 case LOC_COMPUTED:
2888 goto FoundNonType;
2889 default:
2890 break;
2891 }
2892 FoundNonType:
2893 if (j < n_candidates)
2894 {
2895 j = 0;
2896 while (j < n_candidates)
2897 {
2898 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2899 {
2900 candidates[j] = candidates[n_candidates - 1];
2901 n_candidates -= 1;
2902 }
2903 else
2904 j += 1;
2905 }
2906 }
2907 }
2908
2909 if (n_candidates == 0)
2910 error (_("No definition found for %s"),
2911 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2912 else if (n_candidates == 1)
2913 i = 0;
2914 else if (deprocedure_p
2915 && !is_nonfunction (candidates, n_candidates))
2916 {
2917 i = ada_resolve_function
2918 (candidates, n_candidates, NULL, 0,
2919 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2920 context_type);
2921 if (i < 0)
2922 error (_("Could not find a match for %s"),
2923 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2924 }
2925 else
2926 {
2927 printf_filtered (_("Multiple matches for %s\n"),
2928 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2929 user_select_syms (candidates, n_candidates, 1);
2930 i = 0;
2931 }
2932
2933 exp->elts[pc + 1].block = candidates[i].block;
2934 exp->elts[pc + 2].symbol = candidates[i].sym;
2935 if (innermost_block == NULL
2936 || contained_in (candidates[i].block, innermost_block))
2937 innermost_block = candidates[i].block;
2938 }
2939
2940 if (deprocedure_p
2941 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2942 == TYPE_CODE_FUNC))
2943 {
2944 replace_operator_with_call (expp, pc, 0, 0,
2945 exp->elts[pc + 2].symbol,
2946 exp->elts[pc + 1].block);
2947 exp = *expp;
2948 }
2949 break;
2950
2951 case OP_FUNCALL:
2952 {
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 {
2956 struct ada_symbol_info *candidates;
2957 int n_candidates;
2958
2959 n_candidates =
2960 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2961 (exp->elts[pc + 5].symbol),
2962 exp->elts[pc + 4].block, VAR_DOMAIN,
2963 &candidates);
2964 if (n_candidates == 1)
2965 i = 0;
2966 else
2967 {
2968 i = ada_resolve_function
2969 (candidates, n_candidates,
2970 argvec, nargs,
2971 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2972 context_type);
2973 if (i < 0)
2974 error (_("Could not find a match for %s"),
2975 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2976 }
2977
2978 exp->elts[pc + 4].block = candidates[i].block;
2979 exp->elts[pc + 5].symbol = candidates[i].sym;
2980 if (innermost_block == NULL
2981 || contained_in (candidates[i].block, innermost_block))
2982 innermost_block = candidates[i].block;
2983 }
2984 }
2985 break;
2986 case BINOP_ADD:
2987 case BINOP_SUB:
2988 case BINOP_MUL:
2989 case BINOP_DIV:
2990 case BINOP_REM:
2991 case BINOP_MOD:
2992 case BINOP_CONCAT:
2993 case BINOP_BITWISE_AND:
2994 case BINOP_BITWISE_IOR:
2995 case BINOP_BITWISE_XOR:
2996 case BINOP_EQUAL:
2997 case BINOP_NOTEQUAL:
2998 case BINOP_LESS:
2999 case BINOP_GTR:
3000 case BINOP_LEQ:
3001 case BINOP_GEQ:
3002 case BINOP_EXP:
3003 case UNOP_NEG:
3004 case UNOP_PLUS:
3005 case UNOP_LOGICAL_NOT:
3006 case UNOP_ABS:
3007 if (possible_user_operator_p (op, argvec))
3008 {
3009 struct ada_symbol_info *candidates;
3010 int n_candidates;
3011
3012 n_candidates =
3013 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3014 (struct block *) NULL, VAR_DOMAIN,
3015 &candidates);
3016 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3017 ada_decoded_op_name (op), NULL);
3018 if (i < 0)
3019 break;
3020
3021 replace_operator_with_call (expp, pc, nargs, 1,
3022 candidates[i].sym, candidates[i].block);
3023 exp = *expp;
3024 }
3025 break;
3026
3027 case OP_TYPE:
3028 case OP_REGISTER:
3029 return NULL;
3030 }
3031
3032 *pos = pc;
3033 return evaluate_subexp_type (exp, pos);
3034 }
3035
3036 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3037 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3038 a non-pointer. A type of 'void' (which is never a valid expression type)
3039 by convention matches anything. */
3040 /* The term "match" here is rather loose. The match is heuristic and
3041 liberal. FIXME: TOO liberal, in fact. */
3042
3043 static int
3044 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3045 {
3046 ftype = ada_check_typedef (ftype);
3047 atype = ada_check_typedef (atype);
3048
3049 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3050 ftype = TYPE_TARGET_TYPE (ftype);
3051 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3052 atype = TYPE_TARGET_TYPE (atype);
3053
3054 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
3055 || TYPE_CODE (atype) == TYPE_CODE_VOID)
3056 return 1;
3057
3058 switch (TYPE_CODE (ftype))
3059 {
3060 default:
3061 return 1;
3062 case TYPE_CODE_PTR:
3063 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3064 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3065 TYPE_TARGET_TYPE (atype), 0);
3066 else
3067 return (may_deref
3068 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3069 case TYPE_CODE_INT:
3070 case TYPE_CODE_ENUM:
3071 case TYPE_CODE_RANGE:
3072 switch (TYPE_CODE (atype))
3073 {
3074 case TYPE_CODE_INT:
3075 case TYPE_CODE_ENUM:
3076 case TYPE_CODE_RANGE:
3077 return 1;
3078 default:
3079 return 0;
3080 }
3081
3082 case TYPE_CODE_ARRAY:
3083 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3084 || ada_is_array_descriptor_type (atype));
3085
3086 case TYPE_CODE_STRUCT:
3087 if (ada_is_array_descriptor_type (ftype))
3088 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3089 || ada_is_array_descriptor_type (atype));
3090 else
3091 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3092 && !ada_is_array_descriptor_type (atype));
3093
3094 case TYPE_CODE_UNION:
3095 case TYPE_CODE_FLT:
3096 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3097 }
3098 }
3099
3100 /* Return non-zero if the formals of FUNC "sufficiently match" the
3101 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3102 may also be an enumeral, in which case it is treated as a 0-
3103 argument function. */
3104
3105 static int
3106 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3107 {
3108 int i;
3109 struct type *func_type = SYMBOL_TYPE (func);
3110
3111 if (SYMBOL_CLASS (func) == LOC_CONST
3112 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3113 return (n_actuals == 0);
3114 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3115 return 0;
3116
3117 if (TYPE_NFIELDS (func_type) != n_actuals)
3118 return 0;
3119
3120 for (i = 0; i < n_actuals; i += 1)
3121 {
3122 if (actuals[i] == NULL)
3123 return 0;
3124 else
3125 {
3126 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
3127 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3128
3129 if (!ada_type_match (ftype, atype, 1))
3130 return 0;
3131 }
3132 }
3133 return 1;
3134 }
3135
3136 /* False iff function type FUNC_TYPE definitely does not produce a value
3137 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3138 FUNC_TYPE is not a valid function type with a non-null return type
3139 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3140
3141 static int
3142 return_match (struct type *func_type, struct type *context_type)
3143 {
3144 struct type *return_type;
3145
3146 if (func_type == NULL)
3147 return 1;
3148
3149 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3150 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3151 else
3152 return_type = base_type (func_type);
3153 if (return_type == NULL)
3154 return 1;
3155
3156 context_type = base_type (context_type);
3157
3158 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3159 return context_type == NULL || return_type == context_type;
3160 else if (context_type == NULL)
3161 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3162 else
3163 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3164 }
3165
3166
3167 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3168 function (if any) that matches the types of the NARGS arguments in
3169 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3170 that returns that type, then eliminate matches that don't. If
3171 CONTEXT_TYPE is void and there is at least one match that does not
3172 return void, eliminate all matches that do.
3173
3174 Asks the user if there is more than one match remaining. Returns -1
3175 if there is no such symbol or none is selected. NAME is used
3176 solely for messages. May re-arrange and modify SYMS in
3177 the process; the index returned is for the modified vector. */
3178
3179 static int
3180 ada_resolve_function (struct ada_symbol_info syms[],
3181 int nsyms, struct value **args, int nargs,
3182 const char *name, struct type *context_type)
3183 {
3184 int k;
3185 int m; /* Number of hits */
3186 struct type *fallback;
3187 struct type *return_type;
3188
3189 return_type = context_type;
3190 if (context_type == NULL)
3191 fallback = builtin_type_void;
3192 else
3193 fallback = NULL;
3194
3195 m = 0;
3196 while (1)
3197 {
3198 for (k = 0; k < nsyms; k += 1)
3199 {
3200 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3201
3202 if (ada_args_match (syms[k].sym, args, nargs)
3203 && return_match (type, return_type))
3204 {
3205 syms[m] = syms[k];
3206 m += 1;
3207 }
3208 }
3209 if (m > 0 || return_type == fallback)
3210 break;
3211 else
3212 return_type = fallback;
3213 }
3214
3215 if (m == 0)
3216 return -1;
3217 else if (m > 1)
3218 {
3219 printf_filtered (_("Multiple matches for %s\n"), name);
3220 user_select_syms (syms, m, 1);
3221 return 0;
3222 }
3223 return 0;
3224 }
3225
3226 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3227 in a listing of choices during disambiguation (see sort_choices, below).
3228 The idea is that overloadings of a subprogram name from the
3229 same package should sort in their source order. We settle for ordering
3230 such symbols by their trailing number (__N or $N). */
3231
3232 static int
3233 encoded_ordered_before (char *N0, char *N1)
3234 {
3235 if (N1 == NULL)
3236 return 0;
3237 else if (N0 == NULL)
3238 return 1;
3239 else
3240 {
3241 int k0, k1;
3242 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3243 ;
3244 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3245 ;
3246 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3247 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3248 {
3249 int n0, n1;
3250 n0 = k0;
3251 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3252 n0 -= 1;
3253 n1 = k1;
3254 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3255 n1 -= 1;
3256 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3257 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3258 }
3259 return (strcmp (N0, N1) < 0);
3260 }
3261 }
3262
3263 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3264 encoded names. */
3265
3266 static void
3267 sort_choices (struct ada_symbol_info syms[], int nsyms)
3268 {
3269 int i;
3270 for (i = 1; i < nsyms; i += 1)
3271 {
3272 struct ada_symbol_info sym = syms[i];
3273 int j;
3274
3275 for (j = i - 1; j >= 0; j -= 1)
3276 {
3277 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3278 SYMBOL_LINKAGE_NAME (sym.sym)))
3279 break;
3280 syms[j + 1] = syms[j];
3281 }
3282 syms[j + 1] = sym;
3283 }
3284 }
3285
3286 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3287 by asking the user (if necessary), returning the number selected,
3288 and setting the first elements of SYMS items. Error if no symbols
3289 selected. */
3290
3291 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3292 to be re-integrated one of these days. */
3293
3294 int
3295 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3296 {
3297 int i;
3298 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3299 int n_chosen;
3300 int first_choice = (max_results == 1) ? 1 : 2;
3301 const char *select_mode = multiple_symbols_select_mode ();
3302
3303 if (max_results < 1)
3304 error (_("Request to select 0 symbols!"));
3305 if (nsyms <= 1)
3306 return nsyms;
3307
3308 if (select_mode == multiple_symbols_cancel)
3309 error (_("\
3310 canceled because the command is ambiguous\n\
3311 See set/show multiple-symbol."));
3312
3313 /* If select_mode is "all", then return all possible symbols.
3314 Only do that if more than one symbol can be selected, of course.
3315 Otherwise, display the menu as usual. */
3316 if (select_mode == multiple_symbols_all && max_results > 1)
3317 return nsyms;
3318
3319 printf_unfiltered (_("[0] cancel\n"));
3320 if (max_results > 1)
3321 printf_unfiltered (_("[1] all\n"));
3322
3323 sort_choices (syms, nsyms);
3324
3325 for (i = 0; i < nsyms; i += 1)
3326 {
3327 if (syms[i].sym == NULL)
3328 continue;
3329
3330 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3331 {
3332 struct symtab_and_line sal =
3333 find_function_start_sal (syms[i].sym, 1);
3334 if (sal.symtab == NULL)
3335 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3336 i + first_choice,
3337 SYMBOL_PRINT_NAME (syms[i].sym),
3338 sal.line);
3339 else
3340 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3341 SYMBOL_PRINT_NAME (syms[i].sym),
3342 sal.symtab->filename, sal.line);
3343 continue;
3344 }
3345 else
3346 {
3347 int is_enumeral =
3348 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3349 && SYMBOL_TYPE (syms[i].sym) != NULL
3350 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3351 struct symtab *symtab = symtab_for_sym (syms[i].sym);
3352
3353 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3354 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3355 i + first_choice,
3356 SYMBOL_PRINT_NAME (syms[i].sym),
3357 symtab->filename, SYMBOL_LINE (syms[i].sym));
3358 else if (is_enumeral
3359 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3360 {
3361 printf_unfiltered (("[%d] "), i + first_choice);
3362 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3363 gdb_stdout, -1, 0);
3364 printf_unfiltered (_("'(%s) (enumeral)\n"),
3365 SYMBOL_PRINT_NAME (syms[i].sym));
3366 }
3367 else if (symtab != NULL)
3368 printf_unfiltered (is_enumeral
3369 ? _("[%d] %s in %s (enumeral)\n")
3370 : _("[%d] %s at %s:?\n"),
3371 i + first_choice,
3372 SYMBOL_PRINT_NAME (syms[i].sym),
3373 symtab->filename);
3374 else
3375 printf_unfiltered (is_enumeral
3376 ? _("[%d] %s (enumeral)\n")
3377 : _("[%d] %s at ?\n"),
3378 i + first_choice,
3379 SYMBOL_PRINT_NAME (syms[i].sym));
3380 }
3381 }
3382
3383 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3384 "overload-choice");
3385
3386 for (i = 0; i < n_chosen; i += 1)
3387 syms[i] = syms[chosen[i]];
3388
3389 return n_chosen;
3390 }
3391
3392 /* Read and validate a set of numeric choices from the user in the
3393 range 0 .. N_CHOICES-1. Place the results in increasing
3394 order in CHOICES[0 .. N-1], and return N.
3395
3396 The user types choices as a sequence of numbers on one line
3397 separated by blanks, encoding them as follows:
3398
3399 + A choice of 0 means to cancel the selection, throwing an error.
3400 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3401 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3402
3403 The user is not allowed to choose more than MAX_RESULTS values.
3404
3405 ANNOTATION_SUFFIX, if present, is used to annotate the input
3406 prompts (for use with the -f switch). */
3407
3408 int
3409 get_selections (int *choices, int n_choices, int max_results,
3410 int is_all_choice, char *annotation_suffix)
3411 {
3412 char *args;
3413 char *prompt;
3414 int n_chosen;
3415 int first_choice = is_all_choice ? 2 : 1;
3416
3417 prompt = getenv ("PS2");
3418 if (prompt == NULL)
3419 prompt = "> ";
3420
3421 args = command_line_input (prompt, 0, annotation_suffix);
3422
3423 if (args == NULL)
3424 error_no_arg (_("one or more choice numbers"));
3425
3426 n_chosen = 0;
3427
3428 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3429 order, as given in args. Choices are validated. */
3430 while (1)
3431 {
3432 char *args2;
3433 int choice, j;
3434
3435 while (isspace (*args))
3436 args += 1;
3437 if (*args == '\0' && n_chosen == 0)
3438 error_no_arg (_("one or more choice numbers"));
3439 else if (*args == '\0')
3440 break;
3441
3442 choice = strtol (args, &args2, 10);
3443 if (args == args2 || choice < 0
3444 || choice > n_choices + first_choice - 1)
3445 error (_("Argument must be choice number"));
3446 args = args2;
3447
3448 if (choice == 0)
3449 error (_("cancelled"));
3450
3451 if (choice < first_choice)
3452 {
3453 n_chosen = n_choices;
3454 for (j = 0; j < n_choices; j += 1)
3455 choices[j] = j;
3456 break;
3457 }
3458 choice -= first_choice;
3459
3460 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3461 {
3462 }
3463
3464 if (j < 0 || choice != choices[j])
3465 {
3466 int k;
3467 for (k = n_chosen - 1; k > j; k -= 1)
3468 choices[k + 1] = choices[k];
3469 choices[j + 1] = choice;
3470 n_chosen += 1;
3471 }
3472 }
3473
3474 if (n_chosen > max_results)
3475 error (_("Select no more than %d of the above"), max_results);
3476
3477 return n_chosen;
3478 }
3479
3480 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3481 on the function identified by SYM and BLOCK, and taking NARGS
3482 arguments. Update *EXPP as needed to hold more space. */
3483
3484 static void
3485 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3486 int oplen, struct symbol *sym,
3487 struct block *block)
3488 {
3489 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3490 symbol, -oplen for operator being replaced). */
3491 struct expression *newexp = (struct expression *)
3492 xmalloc (sizeof (struct expression)
3493 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3494 struct expression *exp = *expp;
3495
3496 newexp->nelts = exp->nelts + 7 - oplen;
3497 newexp->language_defn = exp->language_defn;
3498 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3499 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3500 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3501
3502 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3503 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3504
3505 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3506 newexp->elts[pc + 4].block = block;
3507 newexp->elts[pc + 5].symbol = sym;
3508
3509 *expp = newexp;
3510 xfree (exp);
3511 }
3512
3513 /* Type-class predicates */
3514
3515 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3516 or FLOAT). */
3517
3518 static int
3519 numeric_type_p (struct type *type)
3520 {
3521 if (type == NULL)
3522 return 0;
3523 else
3524 {
3525 switch (TYPE_CODE (type))
3526 {
3527 case TYPE_CODE_INT:
3528 case TYPE_CODE_FLT:
3529 return 1;
3530 case TYPE_CODE_RANGE:
3531 return (type == TYPE_TARGET_TYPE (type)
3532 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3533 default:
3534 return 0;
3535 }
3536 }
3537 }
3538
3539 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3540
3541 static int
3542 integer_type_p (struct type *type)
3543 {
3544 if (type == NULL)
3545 return 0;
3546 else
3547 {
3548 switch (TYPE_CODE (type))
3549 {
3550 case TYPE_CODE_INT:
3551 return 1;
3552 case TYPE_CODE_RANGE:
3553 return (type == TYPE_TARGET_TYPE (type)
3554 || integer_type_p (TYPE_TARGET_TYPE (type)));
3555 default:
3556 return 0;
3557 }
3558 }
3559 }
3560
3561 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3562
3563 static int
3564 scalar_type_p (struct type *type)
3565 {
3566 if (type == NULL)
3567 return 0;
3568 else
3569 {
3570 switch (TYPE_CODE (type))
3571 {
3572 case TYPE_CODE_INT:
3573 case TYPE_CODE_RANGE:
3574 case TYPE_CODE_ENUM:
3575 case TYPE_CODE_FLT:
3576 return 1;
3577 default:
3578 return 0;
3579 }
3580 }
3581 }
3582
3583 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3584
3585 static int
3586 discrete_type_p (struct type *type)
3587 {
3588 if (type == NULL)
3589 return 0;
3590 else
3591 {
3592 switch (TYPE_CODE (type))
3593 {
3594 case TYPE_CODE_INT:
3595 case TYPE_CODE_RANGE:
3596 case TYPE_CODE_ENUM:
3597 return 1;
3598 default:
3599 return 0;
3600 }
3601 }
3602 }
3603
3604 /* Returns non-zero if OP with operands in the vector ARGS could be
3605 a user-defined function. Errs on the side of pre-defined operators
3606 (i.e., result 0). */
3607
3608 static int
3609 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3610 {
3611 struct type *type0 =
3612 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3613 struct type *type1 =
3614 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3615
3616 if (type0 == NULL)
3617 return 0;
3618
3619 switch (op)
3620 {
3621 default:
3622 return 0;
3623
3624 case BINOP_ADD:
3625 case BINOP_SUB:
3626 case BINOP_MUL:
3627 case BINOP_DIV:
3628 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3629
3630 case BINOP_REM:
3631 case BINOP_MOD:
3632 case BINOP_BITWISE_AND:
3633 case BINOP_BITWISE_IOR:
3634 case BINOP_BITWISE_XOR:
3635 return (!(integer_type_p (type0) && integer_type_p (type1)));
3636
3637 case BINOP_EQUAL:
3638 case BINOP_NOTEQUAL:
3639 case BINOP_LESS:
3640 case BINOP_GTR:
3641 case BINOP_LEQ:
3642 case BINOP_GEQ:
3643 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3644
3645 case BINOP_CONCAT:
3646 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3647
3648 case BINOP_EXP:
3649 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3650
3651 case UNOP_NEG:
3652 case UNOP_PLUS:
3653 case UNOP_LOGICAL_NOT:
3654 case UNOP_ABS:
3655 return (!numeric_type_p (type0));
3656
3657 }
3658 }
3659 \f
3660 /* Renaming */
3661
3662 /* NOTES:
3663
3664 1. In the following, we assume that a renaming type's name may
3665 have an ___XD suffix. It would be nice if this went away at some
3666 point.
3667 2. We handle both the (old) purely type-based representation of
3668 renamings and the (new) variable-based encoding. At some point,
3669 it is devoutly to be hoped that the former goes away
3670 (FIXME: hilfinger-2007-07-09).
3671 3. Subprogram renamings are not implemented, although the XRS
3672 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3673
3674 /* If SYM encodes a renaming,
3675
3676 <renaming> renames <renamed entity>,
3677
3678 sets *LEN to the length of the renamed entity's name,
3679 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3680 the string describing the subcomponent selected from the renamed
3681 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3682 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3683 are undefined). Otherwise, returns a value indicating the category
3684 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3685 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3686 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3687 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3688 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3689 may be NULL, in which case they are not assigned.
3690
3691 [Currently, however, GCC does not generate subprogram renamings.] */
3692
3693 enum ada_renaming_category
3694 ada_parse_renaming (struct symbol *sym,
3695 const char **renamed_entity, int *len,
3696 const char **renaming_expr)
3697 {
3698 enum ada_renaming_category kind;
3699 const char *info;
3700 const char *suffix;
3701
3702 if (sym == NULL)
3703 return ADA_NOT_RENAMING;
3704 switch (SYMBOL_CLASS (sym))
3705 {
3706 default:
3707 return ADA_NOT_RENAMING;
3708 case LOC_TYPEDEF:
3709 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3710 renamed_entity, len, renaming_expr);
3711 case LOC_LOCAL:
3712 case LOC_STATIC:
3713 case LOC_COMPUTED:
3714 case LOC_OPTIMIZED_OUT:
3715 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3716 if (info == NULL)
3717 return ADA_NOT_RENAMING;
3718 switch (info[5])
3719 {
3720 case '_':
3721 kind = ADA_OBJECT_RENAMING;
3722 info += 6;
3723 break;
3724 case 'E':
3725 kind = ADA_EXCEPTION_RENAMING;
3726 info += 7;
3727 break;
3728 case 'P':
3729 kind = ADA_PACKAGE_RENAMING;
3730 info += 7;
3731 break;
3732 case 'S':
3733 kind = ADA_SUBPROGRAM_RENAMING;
3734 info += 7;
3735 break;
3736 default:
3737 return ADA_NOT_RENAMING;
3738 }
3739 }
3740
3741 if (renamed_entity != NULL)
3742 *renamed_entity = info;
3743 suffix = strstr (info, "___XE");
3744 if (suffix == NULL || suffix == info)
3745 return ADA_NOT_RENAMING;
3746 if (len != NULL)
3747 *len = strlen (info) - strlen (suffix);
3748 suffix += 5;
3749 if (renaming_expr != NULL)
3750 *renaming_expr = suffix;
3751 return kind;
3752 }
3753
3754 /* Assuming TYPE encodes a renaming according to the old encoding in
3755 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3756 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3757 ADA_NOT_RENAMING otherwise. */
3758 static enum ada_renaming_category
3759 parse_old_style_renaming (struct type *type,
3760 const char **renamed_entity, int *len,
3761 const char **renaming_expr)
3762 {
3763 enum ada_renaming_category kind;
3764 const char *name;
3765 const char *info;
3766 const char *suffix;
3767
3768 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3769 || TYPE_NFIELDS (type) != 1)
3770 return ADA_NOT_RENAMING;
3771
3772 name = type_name_no_tag (type);
3773 if (name == NULL)
3774 return ADA_NOT_RENAMING;
3775
3776 name = strstr (name, "___XR");
3777 if (name == NULL)
3778 return ADA_NOT_RENAMING;
3779 switch (name[5])
3780 {
3781 case '\0':
3782 case '_':
3783 kind = ADA_OBJECT_RENAMING;
3784 break;
3785 case 'E':
3786 kind = ADA_EXCEPTION_RENAMING;
3787 break;
3788 case 'P':
3789 kind = ADA_PACKAGE_RENAMING;
3790 break;
3791 case 'S':
3792 kind = ADA_SUBPROGRAM_RENAMING;
3793 break;
3794 default:
3795 return ADA_NOT_RENAMING;
3796 }
3797
3798 info = TYPE_FIELD_NAME (type, 0);
3799 if (info == NULL)
3800 return ADA_NOT_RENAMING;
3801 if (renamed_entity != NULL)
3802 *renamed_entity = info;
3803 suffix = strstr (info, "___XE");
3804 if (renaming_expr != NULL)
3805 *renaming_expr = suffix + 5;
3806 if (suffix == NULL || suffix == info)
3807 return ADA_NOT_RENAMING;
3808 if (len != NULL)
3809 *len = suffix - info;
3810 return kind;
3811 }
3812
3813 \f
3814
3815 /* Evaluation: Function Calls */
3816
3817 /* Return an lvalue containing the value VAL. This is the identity on
3818 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3819 on the stack, using and updating *SP as the stack pointer, and
3820 returning an lvalue whose VALUE_ADDRESS points to the copy. */
3821
3822 static struct value *
3823 ensure_lval (struct value *val, CORE_ADDR *sp)
3824 {
3825 if (! VALUE_LVAL (val))
3826 {
3827 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3828
3829 /* The following is taken from the structure-return code in
3830 call_function_by_hand. FIXME: Therefore, some refactoring seems
3831 indicated. */
3832 if (gdbarch_inner_than (current_gdbarch, 1, 2))
3833 {
3834 /* Stack grows downward. Align SP and VALUE_ADDRESS (val) after
3835 reserving sufficient space. */
3836 *sp -= len;
3837 if (gdbarch_frame_align_p (current_gdbarch))
3838 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3839 VALUE_ADDRESS (val) = *sp;
3840 }
3841 else
3842 {
3843 /* Stack grows upward. Align the frame, allocate space, and
3844 then again, re-align the frame. */
3845 if (gdbarch_frame_align_p (current_gdbarch))
3846 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3847 VALUE_ADDRESS (val) = *sp;
3848 *sp += len;
3849 if (gdbarch_frame_align_p (current_gdbarch))
3850 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3851 }
3852 VALUE_LVAL (val) = lval_memory;
3853
3854 write_memory (VALUE_ADDRESS (val), value_contents_raw (val), len);
3855 }
3856
3857 return val;
3858 }
3859
3860 /* Return the value ACTUAL, converted to be an appropriate value for a
3861 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3862 allocating any necessary descriptors (fat pointers), or copies of
3863 values not residing in memory, updating it as needed. */
3864
3865 struct value *
3866 ada_convert_actual (struct value *actual, struct type *formal_type0,
3867 CORE_ADDR *sp)
3868 {
3869 struct type *actual_type = ada_check_typedef (value_type (actual));
3870 struct type *formal_type = ada_check_typedef (formal_type0);
3871 struct type *formal_target =
3872 TYPE_CODE (formal_type) == TYPE_CODE_PTR
3873 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
3874 struct type *actual_target =
3875 TYPE_CODE (actual_type) == TYPE_CODE_PTR
3876 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
3877
3878 if (ada_is_array_descriptor_type (formal_target)
3879 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3880 return make_array_descriptor (formal_type, actual, sp);
3881 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3882 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
3883 {
3884 struct value *result;
3885 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
3886 && ada_is_array_descriptor_type (actual_target))
3887 result = desc_data (actual);
3888 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
3889 {
3890 if (VALUE_LVAL (actual) != lval_memory)
3891 {
3892 struct value *val;
3893 actual_type = ada_check_typedef (value_type (actual));
3894 val = allocate_value (actual_type);
3895 memcpy ((char *) value_contents_raw (val),
3896 (char *) value_contents (actual),
3897 TYPE_LENGTH (actual_type));
3898 actual = ensure_lval (val, sp);
3899 }
3900 result = value_addr (actual);
3901 }
3902 else
3903 return actual;
3904 return value_cast_pointers (formal_type, result);
3905 }
3906 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3907 return ada_value_ind (actual);
3908
3909 return actual;
3910 }
3911
3912
3913 /* Push a descriptor of type TYPE for array value ARR on the stack at
3914 *SP, updating *SP to reflect the new descriptor. Return either
3915 an lvalue representing the new descriptor, or (if TYPE is a pointer-
3916 to-descriptor type rather than a descriptor type), a struct value *
3917 representing a pointer to this descriptor. */
3918
3919 static struct value *
3920 make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
3921 {
3922 struct type *bounds_type = desc_bounds_type (type);
3923 struct type *desc_type = desc_base_type (type);
3924 struct value *descriptor = allocate_value (desc_type);
3925 struct value *bounds = allocate_value (bounds_type);
3926 int i;
3927
3928 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
3929 {
3930 modify_general_field (value_contents_writeable (bounds),
3931 value_as_long (ada_array_bound (arr, i, 0)),
3932 desc_bound_bitpos (bounds_type, i, 0),
3933 desc_bound_bitsize (bounds_type, i, 0));
3934 modify_general_field (value_contents_writeable (bounds),
3935 value_as_long (ada_array_bound (arr, i, 1)),
3936 desc_bound_bitpos (bounds_type, i, 1),
3937 desc_bound_bitsize (bounds_type, i, 1));
3938 }
3939
3940 bounds = ensure_lval (bounds, sp);
3941
3942 modify_general_field (value_contents_writeable (descriptor),
3943 VALUE_ADDRESS (ensure_lval (arr, sp)),
3944 fat_pntr_data_bitpos (desc_type),
3945 fat_pntr_data_bitsize (desc_type));
3946
3947 modify_general_field (value_contents_writeable (descriptor),
3948 VALUE_ADDRESS (bounds),
3949 fat_pntr_bounds_bitpos (desc_type),
3950 fat_pntr_bounds_bitsize (desc_type));
3951
3952 descriptor = ensure_lval (descriptor, sp);
3953
3954 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3955 return value_addr (descriptor);
3956 else
3957 return descriptor;
3958 }
3959 \f
3960 /* Dummy definitions for an experimental caching module that is not
3961 * used in the public sources. */
3962
3963 static int
3964 lookup_cached_symbol (const char *name, domain_enum namespace,
3965 struct symbol **sym, struct block **block)
3966 {
3967 return 0;
3968 }
3969
3970 static void
3971 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
3972 struct block *block)
3973 {
3974 }
3975 \f
3976 /* Symbol Lookup */
3977
3978 /* Return the result of a standard (literal, C-like) lookup of NAME in
3979 given DOMAIN, visible from lexical block BLOCK. */
3980
3981 static struct symbol *
3982 standard_lookup (const char *name, const struct block *block,
3983 domain_enum domain)
3984 {
3985 struct symbol *sym;
3986
3987 if (lookup_cached_symbol (name, domain, &sym, NULL))
3988 return sym;
3989 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3990 cache_symbol (name, domain, sym, block_found);
3991 return sym;
3992 }
3993
3994
3995 /* Non-zero iff there is at least one non-function/non-enumeral symbol
3996 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3997 since they contend in overloading in the same way. */
3998 static int
3999 is_nonfunction (struct ada_symbol_info syms[], int n)
4000 {
4001 int i;
4002
4003 for (i = 0; i < n; i += 1)
4004 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4005 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4006 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4007 return 1;
4008
4009 return 0;
4010 }
4011
4012 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4013 struct types. Otherwise, they may not. */
4014
4015 static int
4016 equiv_types (struct type *type0, struct type *type1)
4017 {
4018 if (type0 == type1)
4019 return 1;
4020 if (type0 == NULL || type1 == NULL
4021 || TYPE_CODE (type0) != TYPE_CODE (type1))
4022 return 0;
4023 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4024 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4025 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4026 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4027 return 1;
4028
4029 return 0;
4030 }
4031
4032 /* True iff SYM0 represents the same entity as SYM1, or one that is
4033 no more defined than that of SYM1. */
4034
4035 static int
4036 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4037 {
4038 if (sym0 == sym1)
4039 return 1;
4040 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4041 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4042 return 0;
4043
4044 switch (SYMBOL_CLASS (sym0))
4045 {
4046 case LOC_UNDEF:
4047 return 1;
4048 case LOC_TYPEDEF:
4049 {
4050 struct type *type0 = SYMBOL_TYPE (sym0);
4051 struct type *type1 = SYMBOL_TYPE (sym1);
4052 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4053 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4054 int len0 = strlen (name0);
4055 return
4056 TYPE_CODE (type0) == TYPE_CODE (type1)
4057 && (equiv_types (type0, type1)
4058 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4059 && strncmp (name1 + len0, "___XV", 5) == 0));
4060 }
4061 case LOC_CONST:
4062 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4063 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4064 default:
4065 return 0;
4066 }
4067 }
4068
4069 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4070 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4071
4072 static void
4073 add_defn_to_vec (struct obstack *obstackp,
4074 struct symbol *sym,
4075 struct block *block)
4076 {
4077 int i;
4078 size_t tmp;
4079 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4080
4081 /* Do not try to complete stub types, as the debugger is probably
4082 already scanning all symbols matching a certain name at the
4083 time when this function is called. Trying to replace the stub
4084 type by its associated full type will cause us to restart a scan
4085 which may lead to an infinite recursion. Instead, the client
4086 collecting the matching symbols will end up collecting several
4087 matches, with at least one of them complete. It can then filter
4088 out the stub ones if needed. */
4089
4090 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4091 {
4092 if (lesseq_defined_than (sym, prevDefns[i].sym))
4093 return;
4094 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4095 {
4096 prevDefns[i].sym = sym;
4097 prevDefns[i].block = block;
4098 return;
4099 }
4100 }
4101
4102 {
4103 struct ada_symbol_info info;
4104
4105 info.sym = sym;
4106 info.block = block;
4107 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4108 }
4109 }
4110
4111 /* Number of ada_symbol_info structures currently collected in
4112 current vector in *OBSTACKP. */
4113
4114 static int
4115 num_defns_collected (struct obstack *obstackp)
4116 {
4117 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4118 }
4119
4120 /* Vector of ada_symbol_info structures currently collected in current
4121 vector in *OBSTACKP. If FINISH, close off the vector and return
4122 its final address. */
4123
4124 static struct ada_symbol_info *
4125 defns_collected (struct obstack *obstackp, int finish)
4126 {
4127 if (finish)
4128 return obstack_finish (obstackp);
4129 else
4130 return (struct ada_symbol_info *) obstack_base (obstackp);
4131 }
4132
4133 /* Look, in partial_symtab PST, for symbol NAME in given namespace.
4134 Check the global symbols if GLOBAL, the static symbols if not.
4135 Do wild-card match if WILD. */
4136
4137 static struct partial_symbol *
4138 ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4139 int global, domain_enum namespace, int wild)
4140 {
4141 struct partial_symbol **start;
4142 int name_len = strlen (name);
4143 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4144 int i;
4145
4146 if (length == 0)
4147 {
4148 return (NULL);
4149 }
4150
4151 start = (global ?
4152 pst->objfile->global_psymbols.list + pst->globals_offset :
4153 pst->objfile->static_psymbols.list + pst->statics_offset);
4154
4155 if (wild)
4156 {
4157 for (i = 0; i < length; i += 1)
4158 {
4159 struct partial_symbol *psym = start[i];
4160
4161 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4162 SYMBOL_DOMAIN (psym), namespace)
4163 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
4164 return psym;
4165 }
4166 return NULL;
4167 }
4168 else
4169 {
4170 if (global)
4171 {
4172 int U;
4173 i = 0;
4174 U = length - 1;
4175 while (U - i > 4)
4176 {
4177 int M = (U + i) >> 1;
4178 struct partial_symbol *psym = start[M];
4179 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4180 i = M + 1;
4181 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4182 U = M - 1;
4183 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4184 i = M + 1;
4185 else
4186 U = M;
4187 }
4188 }
4189 else
4190 i = 0;
4191
4192 while (i < length)
4193 {
4194 struct partial_symbol *psym = start[i];
4195
4196 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4197 SYMBOL_DOMAIN (psym), namespace))
4198 {
4199 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4200
4201 if (cmp < 0)
4202 {
4203 if (global)
4204 break;
4205 }
4206 else if (cmp == 0
4207 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4208 + name_len))
4209 return psym;
4210 }
4211 i += 1;
4212 }
4213
4214 if (global)
4215 {
4216 int U;
4217 i = 0;
4218 U = length - 1;
4219 while (U - i > 4)
4220 {
4221 int M = (U + i) >> 1;
4222 struct partial_symbol *psym = start[M];
4223 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4224 i = M + 1;
4225 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4226 U = M - 1;
4227 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4228 i = M + 1;
4229 else
4230 U = M;
4231 }
4232 }
4233 else
4234 i = 0;
4235
4236 while (i < length)
4237 {
4238 struct partial_symbol *psym = start[i];
4239
4240 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4241 SYMBOL_DOMAIN (psym), namespace))
4242 {
4243 int cmp;
4244
4245 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4246 if (cmp == 0)
4247 {
4248 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4249 if (cmp == 0)
4250 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
4251 name_len);
4252 }
4253
4254 if (cmp < 0)
4255 {
4256 if (global)
4257 break;
4258 }
4259 else if (cmp == 0
4260 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
4261 + name_len + 5))
4262 return psym;
4263 }
4264 i += 1;
4265 }
4266 }
4267 return NULL;
4268 }
4269
4270 /* Find a symbol table containing symbol SYM or NULL if none. */
4271
4272 static struct symtab *
4273 symtab_for_sym (struct symbol *sym)
4274 {
4275 struct symtab *s;
4276 struct objfile *objfile;
4277 struct block *b;
4278 struct symbol *tmp_sym;
4279 struct dict_iterator iter;
4280 int j;
4281
4282 ALL_PRIMARY_SYMTABS (objfile, s)
4283 {
4284 switch (SYMBOL_CLASS (sym))
4285 {
4286 case LOC_CONST:
4287 case LOC_STATIC:
4288 case LOC_TYPEDEF:
4289 case LOC_REGISTER:
4290 case LOC_LABEL:
4291 case LOC_BLOCK:
4292 case LOC_CONST_BYTES:
4293 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4294 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4295 return s;
4296 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4297 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4298 return s;
4299 break;
4300 default:
4301 break;
4302 }
4303 switch (SYMBOL_CLASS (sym))
4304 {
4305 case LOC_REGISTER:
4306 case LOC_ARG:
4307 case LOC_REF_ARG:
4308 case LOC_REGPARM_ADDR:
4309 case LOC_LOCAL:
4310 case LOC_TYPEDEF:
4311 case LOC_COMPUTED:
4312 for (j = FIRST_LOCAL_BLOCK;
4313 j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
4314 {
4315 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
4316 ALL_BLOCK_SYMBOLS (b, iter, tmp_sym) if (sym == tmp_sym)
4317 return s;
4318 }
4319 break;
4320 default:
4321 break;
4322 }
4323 }
4324 return NULL;
4325 }
4326
4327 /* Return a minimal symbol matching NAME according to Ada decoding
4328 rules. Returns NULL if there is no such minimal symbol. Names
4329 prefixed with "standard__" are handled specially: "standard__" is
4330 first stripped off, and only static and global symbols are searched. */
4331
4332 struct minimal_symbol *
4333 ada_lookup_simple_minsym (const char *name)
4334 {
4335 struct objfile *objfile;
4336 struct minimal_symbol *msymbol;
4337 int wild_match;
4338
4339 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4340 {
4341 name += sizeof ("standard__") - 1;
4342 wild_match = 0;
4343 }
4344 else
4345 wild_match = (strstr (name, "__") == NULL);
4346
4347 ALL_MSYMBOLS (objfile, msymbol)
4348 {
4349 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4350 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4351 return msymbol;
4352 }
4353
4354 return NULL;
4355 }
4356
4357 /* For all subprograms that statically enclose the subprogram of the
4358 selected frame, add symbols matching identifier NAME in DOMAIN
4359 and their blocks to the list of data in OBSTACKP, as for
4360 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4361 wildcard prefix. */
4362
4363 static void
4364 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4365 const char *name, domain_enum namespace,
4366 int wild_match)
4367 {
4368 }
4369
4370 /* True if TYPE is definitely an artificial type supplied to a symbol
4371 for which no debugging information was given in the symbol file. */
4372
4373 static int
4374 is_nondebugging_type (struct type *type)
4375 {
4376 char *name = ada_type_name (type);
4377 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4378 }
4379
4380 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4381 duplicate other symbols in the list (The only case I know of where
4382 this happens is when object files containing stabs-in-ecoff are
4383 linked with files containing ordinary ecoff debugging symbols (or no
4384 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4385 Returns the number of items in the modified list. */
4386
4387 static int
4388 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4389 {
4390 int i, j;
4391
4392 i = 0;
4393 while (i < nsyms)
4394 {
4395 if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4396 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4397 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4398 {
4399 for (j = 0; j < nsyms; j += 1)
4400 {
4401 if (i != j
4402 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4403 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4404 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4405 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4406 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4407 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4408 {
4409 int k;
4410 for (k = i + 1; k < nsyms; k += 1)
4411 syms[k - 1] = syms[k];
4412 nsyms -= 1;
4413 goto NextSymbol;
4414 }
4415 }
4416 }
4417 i += 1;
4418 NextSymbol:
4419 ;
4420 }
4421 return nsyms;
4422 }
4423
4424 /* Given a type that corresponds to a renaming entity, use the type name
4425 to extract the scope (package name or function name, fully qualified,
4426 and following the GNAT encoding convention) where this renaming has been
4427 defined. The string returned needs to be deallocated after use. */
4428
4429 static char *
4430 xget_renaming_scope (struct type *renaming_type)
4431 {
4432 /* The renaming types adhere to the following convention:
4433 <scope>__<rename>___<XR extension>.
4434 So, to extract the scope, we search for the "___XR" extension,
4435 and then backtrack until we find the first "__". */
4436
4437 const char *name = type_name_no_tag (renaming_type);
4438 char *suffix = strstr (name, "___XR");
4439 char *last;
4440 int scope_len;
4441 char *scope;
4442
4443 /* Now, backtrack a bit until we find the first "__". Start looking
4444 at suffix - 3, as the <rename> part is at least one character long. */
4445
4446 for (last = suffix - 3; last > name; last--)
4447 if (last[0] == '_' && last[1] == '_')
4448 break;
4449
4450 /* Make a copy of scope and return it. */
4451
4452 scope_len = last - name;
4453 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4454
4455 strncpy (scope, name, scope_len);
4456 scope[scope_len] = '\0';
4457
4458 return scope;
4459 }
4460
4461 /* Return nonzero if NAME corresponds to a package name. */
4462
4463 static int
4464 is_package_name (const char *name)
4465 {
4466 /* Here, We take advantage of the fact that no symbols are generated
4467 for packages, while symbols are generated for each function.
4468 So the condition for NAME represent a package becomes equivalent
4469 to NAME not existing in our list of symbols. There is only one
4470 small complication with library-level functions (see below). */
4471
4472 char *fun_name;
4473
4474 /* If it is a function that has not been defined at library level,
4475 then we should be able to look it up in the symbols. */
4476 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4477 return 0;
4478
4479 /* Library-level function names start with "_ada_". See if function
4480 "_ada_" followed by NAME can be found. */
4481
4482 /* Do a quick check that NAME does not contain "__", since library-level
4483 functions names cannot contain "__" in them. */
4484 if (strstr (name, "__") != NULL)
4485 return 0;
4486
4487 fun_name = xstrprintf ("_ada_%s", name);
4488
4489 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4490 }
4491
4492 /* Return nonzero if SYM corresponds to a renaming entity that is
4493 not visible from FUNCTION_NAME. */
4494
4495 static int
4496 old_renaming_is_invisible (const struct symbol *sym, char *function_name)
4497 {
4498 char *scope;
4499
4500 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4501 return 0;
4502
4503 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4504
4505 make_cleanup (xfree, scope);
4506
4507 /* If the rename has been defined in a package, then it is visible. */
4508 if (is_package_name (scope))
4509 return 0;
4510
4511 /* Check that the rename is in the current function scope by checking
4512 that its name starts with SCOPE. */
4513
4514 /* If the function name starts with "_ada_", it means that it is
4515 a library-level function. Strip this prefix before doing the
4516 comparison, as the encoding for the renaming does not contain
4517 this prefix. */
4518 if (strncmp (function_name, "_ada_", 5) == 0)
4519 function_name += 5;
4520
4521 return (strncmp (function_name, scope, strlen (scope)) != 0);
4522 }
4523
4524 /* Remove entries from SYMS that corresponds to a renaming entity that
4525 is not visible from the function associated with CURRENT_BLOCK or
4526 that is superfluous due to the presence of more specific renaming
4527 information. Places surviving symbols in the initial entries of
4528 SYMS and returns the number of surviving symbols.
4529
4530 Rationale:
4531 First, in cases where an object renaming is implemented as a
4532 reference variable, GNAT may produce both the actual reference
4533 variable and the renaming encoding. In this case, we discard the
4534 latter.
4535
4536 Second, GNAT emits a type following a specified encoding for each renaming
4537 entity. Unfortunately, STABS currently does not support the definition
4538 of types that are local to a given lexical block, so all renamings types
4539 are emitted at library level. As a consequence, if an application
4540 contains two renaming entities using the same name, and a user tries to
4541 print the value of one of these entities, the result of the ada symbol
4542 lookup will also contain the wrong renaming type.
4543
4544 This function partially covers for this limitation by attempting to
4545 remove from the SYMS list renaming symbols that should be visible
4546 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4547 method with the current information available. The implementation
4548 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4549
4550 - When the user tries to print a rename in a function while there
4551 is another rename entity defined in a package: Normally, the
4552 rename in the function has precedence over the rename in the
4553 package, so the latter should be removed from the list. This is
4554 currently not the case.
4555
4556 - This function will incorrectly remove valid renames if
4557 the CURRENT_BLOCK corresponds to a function which symbol name
4558 has been changed by an "Export" pragma. As a consequence,
4559 the user will be unable to print such rename entities. */
4560
4561 static int
4562 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4563 int nsyms, const struct block *current_block)
4564 {
4565 struct symbol *current_function;
4566 char *current_function_name;
4567 int i;
4568 int is_new_style_renaming;
4569
4570 /* If there is both a renaming foo___XR... encoded as a variable and
4571 a simple variable foo in the same block, discard the latter.
4572 First, zero out such symbols, then compress. */
4573 is_new_style_renaming = 0;
4574 for (i = 0; i < nsyms; i += 1)
4575 {
4576 struct symbol *sym = syms[i].sym;
4577 struct block *block = syms[i].block;
4578 const char *name;
4579 const char *suffix;
4580
4581 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4582 continue;
4583 name = SYMBOL_LINKAGE_NAME (sym);
4584 suffix = strstr (name, "___XR");
4585
4586 if (suffix != NULL)
4587 {
4588 int name_len = suffix - name;
4589 int j;
4590 is_new_style_renaming = 1;
4591 for (j = 0; j < nsyms; j += 1)
4592 if (i != j && syms[j].sym != NULL
4593 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4594 name_len) == 0
4595 && block == syms[j].block)
4596 syms[j].sym = NULL;
4597 }
4598 }
4599 if (is_new_style_renaming)
4600 {
4601 int j, k;
4602
4603 for (j = k = 0; j < nsyms; j += 1)
4604 if (syms[j].sym != NULL)
4605 {
4606 syms[k] = syms[j];
4607 k += 1;
4608 }
4609 return k;
4610 }
4611
4612 /* Extract the function name associated to CURRENT_BLOCK.
4613 Abort if unable to do so. */
4614
4615 if (current_block == NULL)
4616 return nsyms;
4617
4618 current_function = block_linkage_function (current_block);
4619 if (current_function == NULL)
4620 return nsyms;
4621
4622 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4623 if (current_function_name == NULL)
4624 return nsyms;
4625
4626 /* Check each of the symbols, and remove it from the list if it is
4627 a type corresponding to a renaming that is out of the scope of
4628 the current block. */
4629
4630 i = 0;
4631 while (i < nsyms)
4632 {
4633 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4634 == ADA_OBJECT_RENAMING
4635 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4636 {
4637 int j;
4638 for (j = i + 1; j < nsyms; j += 1)
4639 syms[j - 1] = syms[j];
4640 nsyms -= 1;
4641 }
4642 else
4643 i += 1;
4644 }
4645
4646 return nsyms;
4647 }
4648
4649 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4650 scope and in global scopes, returning the number of matches. Sets
4651 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4652 indicating the symbols found and the blocks and symbol tables (if
4653 any) in which they were found. This vector are transient---good only to
4654 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4655 symbol match within the nest of blocks whose innermost member is BLOCK0,
4656 is the one match returned (no other matches in that or
4657 enclosing blocks is returned). If there are any matches in or
4658 surrounding BLOCK0, then these alone are returned. Otherwise, the
4659 search extends to global and file-scope (static) symbol tables.
4660 Names prefixed with "standard__" are handled specially: "standard__"
4661 is first stripped off, and only static and global symbols are searched. */
4662
4663 int
4664 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4665 domain_enum namespace,
4666 struct ada_symbol_info **results)
4667 {
4668 struct symbol *sym;
4669 struct symtab *s;
4670 struct partial_symtab *ps;
4671 struct blockvector *bv;
4672 struct objfile *objfile;
4673 struct block *block;
4674 const char *name;
4675 struct minimal_symbol *msymbol;
4676 int wild_match;
4677 int cacheIfUnique;
4678 int block_depth;
4679 int ndefns;
4680
4681 obstack_free (&symbol_list_obstack, NULL);
4682 obstack_init (&symbol_list_obstack);
4683
4684 cacheIfUnique = 0;
4685
4686 /* Search specified block and its superiors. */
4687
4688 wild_match = (strstr (name0, "__") == NULL);
4689 name = name0;
4690 block = (struct block *) block0; /* FIXME: No cast ought to be
4691 needed, but adding const will
4692 have a cascade effect. */
4693 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4694 {
4695 wild_match = 0;
4696 block = NULL;
4697 name = name0 + sizeof ("standard__") - 1;
4698 }
4699
4700 block_depth = 0;
4701 while (block != NULL)
4702 {
4703 block_depth += 1;
4704 ada_add_block_symbols (&symbol_list_obstack, block, name,
4705 namespace, NULL, wild_match);
4706
4707 /* If we found a non-function match, assume that's the one. */
4708 if (is_nonfunction (defns_collected (&symbol_list_obstack, 0),
4709 num_defns_collected (&symbol_list_obstack)))
4710 goto done;
4711
4712 block = BLOCK_SUPERBLOCK (block);
4713 }
4714
4715 /* If no luck so far, try to find NAME as a local symbol in some lexically
4716 enclosing subprogram. */
4717 if (num_defns_collected (&symbol_list_obstack) == 0 && block_depth > 2)
4718 add_symbols_from_enclosing_procs (&symbol_list_obstack,
4719 name, namespace, wild_match);
4720
4721 /* If we found ANY matches among non-global symbols, we're done. */
4722
4723 if (num_defns_collected (&symbol_list_obstack) > 0)
4724 goto done;
4725
4726 cacheIfUnique = 1;
4727 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4728 {
4729 if (sym != NULL)
4730 add_defn_to_vec (&symbol_list_obstack, sym, block);
4731 goto done;
4732 }
4733
4734 /* Now add symbols from all global blocks: symbol tables, minimal symbol
4735 tables, and psymtab's. */
4736
4737 ALL_PRIMARY_SYMTABS (objfile, s)
4738 {
4739 QUIT;
4740 bv = BLOCKVECTOR (s);
4741 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4742 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4743 objfile, wild_match);
4744 }
4745
4746 if (namespace == VAR_DOMAIN)
4747 {
4748 ALL_MSYMBOLS (objfile, msymbol)
4749 {
4750 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match))
4751 {
4752 switch (MSYMBOL_TYPE (msymbol))
4753 {
4754 case mst_solib_trampoline:
4755 break;
4756 default:
4757 s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
4758 if (s != NULL)
4759 {
4760 int ndefns0 = num_defns_collected (&symbol_list_obstack);
4761 QUIT;
4762 bv = BLOCKVECTOR (s);
4763 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4764 ada_add_block_symbols (&symbol_list_obstack, block,
4765 SYMBOL_LINKAGE_NAME (msymbol),
4766 namespace, objfile, wild_match);
4767
4768 if (num_defns_collected (&symbol_list_obstack) == ndefns0)
4769 {
4770 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4771 ada_add_block_symbols (&symbol_list_obstack, block,
4772 SYMBOL_LINKAGE_NAME (msymbol),
4773 namespace, objfile,
4774 wild_match);
4775 }
4776 }
4777 }
4778 }
4779 }
4780 }
4781
4782 ALL_PSYMTABS (objfile, ps)
4783 {
4784 QUIT;
4785 if (!ps->readin
4786 && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
4787 {
4788 s = PSYMTAB_TO_SYMTAB (ps);
4789 if (!s->primary)
4790 continue;
4791 bv = BLOCKVECTOR (s);
4792 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
4793 ada_add_block_symbols (&symbol_list_obstack, block, name,
4794 namespace, objfile, wild_match);
4795 }
4796 }
4797
4798 /* Now add symbols from all per-file blocks if we've gotten no hits
4799 (Not strictly correct, but perhaps better than an error).
4800 Do the symtabs first, then check the psymtabs. */
4801
4802 if (num_defns_collected (&symbol_list_obstack) == 0)
4803 {
4804
4805 ALL_PRIMARY_SYMTABS (objfile, s)
4806 {
4807 QUIT;
4808 bv = BLOCKVECTOR (s);
4809 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4810 ada_add_block_symbols (&symbol_list_obstack, block, name, namespace,
4811 objfile, wild_match);
4812 }
4813
4814 ALL_PSYMTABS (objfile, ps)
4815 {
4816 QUIT;
4817 if (!ps->readin
4818 && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
4819 {
4820 s = PSYMTAB_TO_SYMTAB (ps);
4821 bv = BLOCKVECTOR (s);
4822 if (!s->primary)
4823 continue;
4824 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
4825 ada_add_block_symbols (&symbol_list_obstack, block, name,
4826 namespace, objfile, wild_match);
4827 }
4828 }
4829 }
4830
4831 done:
4832 ndefns = num_defns_collected (&symbol_list_obstack);
4833 *results = defns_collected (&symbol_list_obstack, 1);
4834
4835 ndefns = remove_extra_symbols (*results, ndefns);
4836
4837 if (ndefns == 0)
4838 cache_symbol (name0, namespace, NULL, NULL);
4839
4840 if (ndefns == 1 && cacheIfUnique)
4841 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
4842
4843 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
4844
4845 return ndefns;
4846 }
4847
4848 struct symbol *
4849 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
4850 domain_enum namespace, struct block **block_found)
4851 {
4852 struct ada_symbol_info *candidates;
4853 int n_candidates;
4854
4855 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
4856
4857 if (n_candidates == 0)
4858 return NULL;
4859
4860 if (block_found != NULL)
4861 *block_found = candidates[0].block;
4862
4863 return fixup_symbol_section (candidates[0].sym, NULL);
4864 }
4865
4866 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4867 scope and in global scopes, or NULL if none. NAME is folded and
4868 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4869 choosing the first symbol if there are multiple choices.
4870 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4871 table in which the symbol was found (in both cases, these
4872 assignments occur only if the pointers are non-null). */
4873 struct symbol *
4874 ada_lookup_symbol (const char *name, const struct block *block0,
4875 domain_enum namespace, int *is_a_field_of_this)
4876 {
4877 if (is_a_field_of_this != NULL)
4878 *is_a_field_of_this = 0;
4879
4880 return
4881 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
4882 block0, namespace, NULL);
4883 }
4884
4885 static struct symbol *
4886 ada_lookup_symbol_nonlocal (const char *name,
4887 const char *linkage_name,
4888 const struct block *block,
4889 const domain_enum domain)
4890 {
4891 if (linkage_name == NULL)
4892 linkage_name = name;
4893 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
4894 NULL);
4895 }
4896
4897
4898 /* True iff STR is a possible encoded suffix of a normal Ada name
4899 that is to be ignored for matching purposes. Suffixes of parallel
4900 names (e.g., XVE) are not included here. Currently, the possible suffixes
4901 are given by either of the regular expression:
4902
4903 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4904 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4905 _E[0-9]+[bs]$ [protected object entry suffixes]
4906 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
4907
4908 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4909 match is performed. This sequence is used to differentiate homonyms,
4910 is an optional part of a valid name suffix. */
4911
4912 static int
4913 is_name_suffix (const char *str)
4914 {
4915 int k;
4916 const char *matching;
4917 const int len = strlen (str);
4918
4919 /* Skip optional leading __[0-9]+. */
4920
4921 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4922 {
4923 str += 3;
4924 while (isdigit (str[0]))
4925 str += 1;
4926 }
4927
4928 /* [.$][0-9]+ */
4929
4930 if (str[0] == '.' || str[0] == '$')
4931 {
4932 matching = str + 1;
4933 while (isdigit (matching[0]))
4934 matching += 1;
4935 if (matching[0] == '\0')
4936 return 1;
4937 }
4938
4939 /* ___[0-9]+ */
4940
4941 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4942 {
4943 matching = str + 3;
4944 while (isdigit (matching[0]))
4945 matching += 1;
4946 if (matching[0] == '\0')
4947 return 1;
4948 }
4949
4950 #if 0
4951 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4952 with a N at the end. Unfortunately, the compiler uses the same
4953 convention for other internal types it creates. So treating
4954 all entity names that end with an "N" as a name suffix causes
4955 some regressions. For instance, consider the case of an enumerated
4956 type. To support the 'Image attribute, it creates an array whose
4957 name ends with N.
4958 Having a single character like this as a suffix carrying some
4959 information is a bit risky. Perhaps we should change the encoding
4960 to be something like "_N" instead. In the meantime, do not do
4961 the following check. */
4962 /* Protected Object Subprograms */
4963 if (len == 1 && str [0] == 'N')
4964 return 1;
4965 #endif
4966
4967 /* _E[0-9]+[bs]$ */
4968 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4969 {
4970 matching = str + 3;
4971 while (isdigit (matching[0]))
4972 matching += 1;
4973 if ((matching[0] == 'b' || matching[0] == 's')
4974 && matching [1] == '\0')
4975 return 1;
4976 }
4977
4978 /* ??? We should not modify STR directly, as we are doing below. This
4979 is fine in this case, but may become problematic later if we find
4980 that this alternative did not work, and want to try matching
4981 another one from the begining of STR. Since we modified it, we
4982 won't be able to find the begining of the string anymore! */
4983 if (str[0] == 'X')
4984 {
4985 str += 1;
4986 while (str[0] != '_' && str[0] != '\0')
4987 {
4988 if (str[0] != 'n' && str[0] != 'b')
4989 return 0;
4990 str += 1;
4991 }
4992 }
4993
4994 if (str[0] == '\000')
4995 return 1;
4996
4997 if (str[0] == '_')
4998 {
4999 if (str[1] != '_' || str[2] == '\000')
5000 return 0;
5001 if (str[2] == '_')
5002 {
5003 if (strcmp (str + 3, "JM") == 0)
5004 return 1;
5005 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5006 the LJM suffix in favor of the JM one. But we will
5007 still accept LJM as a valid suffix for a reasonable
5008 amount of time, just to allow ourselves to debug programs
5009 compiled using an older version of GNAT. */
5010 if (strcmp (str + 3, "LJM") == 0)
5011 return 1;
5012 if (str[3] != 'X')
5013 return 0;
5014 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5015 || str[4] == 'U' || str[4] == 'P')
5016 return 1;
5017 if (str[4] == 'R' && str[5] != 'T')
5018 return 1;
5019 return 0;
5020 }
5021 if (!isdigit (str[2]))
5022 return 0;
5023 for (k = 3; str[k] != '\0'; k += 1)
5024 if (!isdigit (str[k]) && str[k] != '_')
5025 return 0;
5026 return 1;
5027 }
5028 if (str[0] == '$' && isdigit (str[1]))
5029 {
5030 for (k = 2; str[k] != '\0'; k += 1)
5031 if (!isdigit (str[k]) && str[k] != '_')
5032 return 0;
5033 return 1;
5034 }
5035 return 0;
5036 }
5037
5038 /* Return nonzero if the given string starts with a dot ('.')
5039 followed by zero or more digits.
5040
5041 Note: brobecker/2003-11-10: A forward declaration has not been
5042 added at the begining of this file yet, because this function
5043 is only used to work around a problem found during wild matching
5044 when trying to match minimal symbol names against symbol names
5045 obtained from dwarf-2 data. This function is therefore currently
5046 only used in wild_match() and is likely to be deleted when the
5047 problem in dwarf-2 is fixed. */
5048
5049 static int
5050 is_dot_digits_suffix (const char *str)
5051 {
5052 if (str[0] != '.')
5053 return 0;
5054
5055 str++;
5056 while (isdigit (str[0]))
5057 str++;
5058 return (str[0] == '\0');
5059 }
5060
5061 /* Return non-zero if the string starting at NAME and ending before
5062 NAME_END contains no capital letters. */
5063
5064 static int
5065 is_valid_name_for_wild_match (const char *name0)
5066 {
5067 const char *decoded_name = ada_decode (name0);
5068 int i;
5069
5070 for (i=0; decoded_name[i] != '\0'; i++)
5071 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5072 return 0;
5073
5074 return 1;
5075 }
5076
5077 /* True if NAME represents a name of the form A1.A2....An, n>=1 and
5078 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
5079 informational suffixes of NAME (i.e., for which is_name_suffix is
5080 true). */
5081
5082 static int
5083 wild_match (const char *patn0, int patn_len, const char *name0)
5084 {
5085 int name_len;
5086 char *name;
5087 char *name_start;
5088 char *patn;
5089
5090 /* FIXME: brobecker/2003-11-10: For some reason, the symbol name
5091 stored in the symbol table for nested function names is sometimes
5092 different from the name of the associated entity stored in
5093 the dwarf-2 data: This is the case for nested subprograms, where
5094 the minimal symbol name contains a trailing ".[:digit:]+" suffix,
5095 while the symbol name from the dwarf-2 data does not.
5096
5097 Although the DWARF-2 standard documents that entity names stored
5098 in the dwarf-2 data should be identical to the name as seen in
5099 the source code, GNAT takes a different approach as we already use
5100 a special encoding mechanism to convey the information so that
5101 a C debugger can still use the information generated to debug
5102 Ada programs. A corollary is that the symbol names in the dwarf-2
5103 data should match the names found in the symbol table. I therefore
5104 consider this issue as a compiler defect.
5105
5106 Until the compiler is properly fixed, we work-around the problem
5107 by ignoring such suffixes during the match. We do so by making
5108 a copy of PATN0 and NAME0, and then by stripping such a suffix
5109 if present. We then perform the match on the resulting strings. */
5110 {
5111 char *dot;
5112 name_len = strlen (name0);
5113
5114 name = name_start = (char *) alloca ((name_len + 1) * sizeof (char));
5115 strcpy (name, name0);
5116 dot = strrchr (name, '.');
5117 if (dot != NULL && is_dot_digits_suffix (dot))
5118 *dot = '\0';
5119
5120 patn = (char *) alloca ((patn_len + 1) * sizeof (char));
5121 strncpy (patn, patn0, patn_len);
5122 patn[patn_len] = '\0';
5123 dot = strrchr (patn, '.');
5124 if (dot != NULL && is_dot_digits_suffix (dot))
5125 {
5126 *dot = '\0';
5127 patn_len = dot - patn;
5128 }
5129 }
5130
5131 /* Now perform the wild match. */
5132
5133 name_len = strlen (name);
5134 if (name_len >= patn_len + 5 && strncmp (name, "_ada_", 5) == 0
5135 && strncmp (patn, name + 5, patn_len) == 0
5136 && is_name_suffix (name + patn_len + 5))
5137 return 1;
5138
5139 while (name_len >= patn_len)
5140 {
5141 if (strncmp (patn, name, patn_len) == 0
5142 && is_name_suffix (name + patn_len))
5143 return (name == name_start || is_valid_name_for_wild_match (name0));
5144 do
5145 {
5146 name += 1;
5147 name_len -= 1;
5148 }
5149 while (name_len > 0
5150 && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
5151 if (name_len <= 0)
5152 return 0;
5153 if (name[0] == '_')
5154 {
5155 if (!islower (name[2]))
5156 return 0;
5157 name += 2;
5158 name_len -= 2;
5159 }
5160 else
5161 {
5162 if (!islower (name[1]))
5163 return 0;
5164 name += 1;
5165 name_len -= 1;
5166 }
5167 }
5168
5169 return 0;
5170 }
5171
5172
5173 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5174 vector *defn_symbols, updating the list of symbols in OBSTACKP
5175 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5176 OBJFILE is the section containing BLOCK.
5177 SYMTAB is recorded with each symbol added. */
5178
5179 static void
5180 ada_add_block_symbols (struct obstack *obstackp,
5181 struct block *block, const char *name,
5182 domain_enum domain, struct objfile *objfile,
5183 int wild)
5184 {
5185 struct dict_iterator iter;
5186 int name_len = strlen (name);
5187 /* A matching argument symbol, if any. */
5188 struct symbol *arg_sym;
5189 /* Set true when we find a matching non-argument symbol. */
5190 int found_sym;
5191 struct symbol *sym;
5192
5193 arg_sym = NULL;
5194 found_sym = 0;
5195 if (wild)
5196 {
5197 struct symbol *sym;
5198 ALL_BLOCK_SYMBOLS (block, iter, sym)
5199 {
5200 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5201 SYMBOL_DOMAIN (sym), domain)
5202 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
5203 {
5204 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5205 continue;
5206 else if (SYMBOL_IS_ARGUMENT (sym))
5207 arg_sym = sym;
5208 else
5209 {
5210 found_sym = 1;
5211 add_defn_to_vec (obstackp,
5212 fixup_symbol_section (sym, objfile),
5213 block);
5214 }
5215 }
5216 }
5217 }
5218 else
5219 {
5220 ALL_BLOCK_SYMBOLS (block, iter, sym)
5221 {
5222 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5223 SYMBOL_DOMAIN (sym), domain))
5224 {
5225 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
5226 if (cmp == 0
5227 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
5228 {
5229 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5230 {
5231 if (SYMBOL_IS_ARGUMENT (sym))
5232 arg_sym = sym;
5233 else
5234 {
5235 found_sym = 1;
5236 add_defn_to_vec (obstackp,
5237 fixup_symbol_section (sym, objfile),
5238 block);
5239 }
5240 }
5241 }
5242 }
5243 }
5244 }
5245
5246 if (!found_sym && arg_sym != NULL)
5247 {
5248 add_defn_to_vec (obstackp,
5249 fixup_symbol_section (arg_sym, objfile),
5250 block);
5251 }
5252
5253 if (!wild)
5254 {
5255 arg_sym = NULL;
5256 found_sym = 0;
5257
5258 ALL_BLOCK_SYMBOLS (block, iter, sym)
5259 {
5260 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5261 SYMBOL_DOMAIN (sym), domain))
5262 {
5263 int cmp;
5264
5265 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5266 if (cmp == 0)
5267 {
5268 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5269 if (cmp == 0)
5270 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5271 name_len);
5272 }
5273
5274 if (cmp == 0
5275 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5276 {
5277 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5278 {
5279 if (SYMBOL_IS_ARGUMENT (sym))
5280 arg_sym = sym;
5281 else
5282 {
5283 found_sym = 1;
5284 add_defn_to_vec (obstackp,
5285 fixup_symbol_section (sym, objfile),
5286 block);
5287 }
5288 }
5289 }
5290 }
5291 }
5292
5293 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5294 They aren't parameters, right? */
5295 if (!found_sym && arg_sym != NULL)
5296 {
5297 add_defn_to_vec (obstackp,
5298 fixup_symbol_section (arg_sym, objfile),
5299 block);
5300 }
5301 }
5302 }
5303 \f
5304
5305 /* Symbol Completion */
5306
5307 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5308 name in a form that's appropriate for the completion. The result
5309 does not need to be deallocated, but is only good until the next call.
5310
5311 TEXT_LEN is equal to the length of TEXT.
5312 Perform a wild match if WILD_MATCH is set.
5313 ENCODED should be set if TEXT represents the start of a symbol name
5314 in its encoded form. */
5315
5316 static const char *
5317 symbol_completion_match (const char *sym_name,
5318 const char *text, int text_len,
5319 int wild_match, int encoded)
5320 {
5321 char *result;
5322 const int verbatim_match = (text[0] == '<');
5323 int match = 0;
5324
5325 if (verbatim_match)
5326 {
5327 /* Strip the leading angle bracket. */
5328 text = text + 1;
5329 text_len--;
5330 }
5331
5332 /* First, test against the fully qualified name of the symbol. */
5333
5334 if (strncmp (sym_name, text, text_len) == 0)
5335 match = 1;
5336
5337 if (match && !encoded)
5338 {
5339 /* One needed check before declaring a positive match is to verify
5340 that iff we are doing a verbatim match, the decoded version
5341 of the symbol name starts with '<'. Otherwise, this symbol name
5342 is not a suitable completion. */
5343 const char *sym_name_copy = sym_name;
5344 int has_angle_bracket;
5345
5346 sym_name = ada_decode (sym_name);
5347 has_angle_bracket = (sym_name[0] == '<');
5348 match = (has_angle_bracket == verbatim_match);
5349 sym_name = sym_name_copy;
5350 }
5351
5352 if (match && !verbatim_match)
5353 {
5354 /* When doing non-verbatim match, another check that needs to
5355 be done is to verify that the potentially matching symbol name
5356 does not include capital letters, because the ada-mode would
5357 not be able to understand these symbol names without the
5358 angle bracket notation. */
5359 const char *tmp;
5360
5361 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5362 if (*tmp != '\0')
5363 match = 0;
5364 }
5365
5366 /* Second: Try wild matching... */
5367
5368 if (!match && wild_match)
5369 {
5370 /* Since we are doing wild matching, this means that TEXT
5371 may represent an unqualified symbol name. We therefore must
5372 also compare TEXT against the unqualified name of the symbol. */
5373 sym_name = ada_unqualified_name (ada_decode (sym_name));
5374
5375 if (strncmp (sym_name, text, text_len) == 0)
5376 match = 1;
5377 }
5378
5379 /* Finally: If we found a mach, prepare the result to return. */
5380
5381 if (!match)
5382 return NULL;
5383
5384 if (verbatim_match)
5385 sym_name = add_angle_brackets (sym_name);
5386
5387 if (!encoded)
5388 sym_name = ada_decode (sym_name);
5389
5390 return sym_name;
5391 }
5392
5393 typedef char *char_ptr;
5394 DEF_VEC_P (char_ptr);
5395
5396 /* A companion function to ada_make_symbol_completion_list().
5397 Check if SYM_NAME represents a symbol which name would be suitable
5398 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5399 it is appended at the end of the given string vector SV.
5400
5401 ORIG_TEXT is the string original string from the user command
5402 that needs to be completed. WORD is the entire command on which
5403 completion should be performed. These two parameters are used to
5404 determine which part of the symbol name should be added to the
5405 completion vector.
5406 if WILD_MATCH is set, then wild matching is performed.
5407 ENCODED should be set if TEXT represents a symbol name in its
5408 encoded formed (in which case the completion should also be
5409 encoded). */
5410
5411 static void
5412 symbol_completion_add (VEC(char_ptr) **sv,
5413 const char *sym_name,
5414 const char *text, int text_len,
5415 const char *orig_text, const char *word,
5416 int wild_match, int encoded)
5417 {
5418 const char *match = symbol_completion_match (sym_name, text, text_len,
5419 wild_match, encoded);
5420 char *completion;
5421
5422 if (match == NULL)
5423 return;
5424
5425 /* We found a match, so add the appropriate completion to the given
5426 string vector. */
5427
5428 if (word == orig_text)
5429 {
5430 completion = xmalloc (strlen (match) + 5);
5431 strcpy (completion, match);
5432 }
5433 else if (word > orig_text)
5434 {
5435 /* Return some portion of sym_name. */
5436 completion = xmalloc (strlen (match) + 5);
5437 strcpy (completion, match + (word - orig_text));
5438 }
5439 else
5440 {
5441 /* Return some of ORIG_TEXT plus sym_name. */
5442 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5443 strncpy (completion, word, orig_text - word);
5444 completion[orig_text - word] = '\0';
5445 strcat (completion, match);
5446 }
5447
5448 VEC_safe_push (char_ptr, *sv, completion);
5449 }
5450
5451 /* Return a list of possible symbol names completing TEXT0. The list
5452 is NULL terminated. WORD is the entire command on which completion
5453 is made. */
5454
5455 static char **
5456 ada_make_symbol_completion_list (char *text0, char *word)
5457 {
5458 char *text;
5459 int text_len;
5460 int wild_match;
5461 int encoded;
5462 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5463 struct symbol *sym;
5464 struct symtab *s;
5465 struct partial_symtab *ps;
5466 struct minimal_symbol *msymbol;
5467 struct objfile *objfile;
5468 struct block *b, *surrounding_static_block = 0;
5469 int i;
5470 struct dict_iterator iter;
5471
5472 if (text0[0] == '<')
5473 {
5474 text = xstrdup (text0);
5475 make_cleanup (xfree, text);
5476 text_len = strlen (text);
5477 wild_match = 0;
5478 encoded = 1;
5479 }
5480 else
5481 {
5482 text = xstrdup (ada_encode (text0));
5483 make_cleanup (xfree, text);
5484 text_len = strlen (text);
5485 for (i = 0; i < text_len; i++)
5486 text[i] = tolower (text[i]);
5487
5488 encoded = (strstr (text0, "__") != NULL);
5489 /* If the name contains a ".", then the user is entering a fully
5490 qualified entity name, and the match must not be done in wild
5491 mode. Similarly, if the user wants to complete what looks like
5492 an encoded name, the match must not be done in wild mode. */
5493 wild_match = (strchr (text0, '.') == NULL && !encoded);
5494 }
5495
5496 /* First, look at the partial symtab symbols. */
5497 ALL_PSYMTABS (objfile, ps)
5498 {
5499 struct partial_symbol **psym;
5500
5501 /* If the psymtab's been read in we'll get it when we search
5502 through the blockvector. */
5503 if (ps->readin)
5504 continue;
5505
5506 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5507 psym < (objfile->global_psymbols.list + ps->globals_offset
5508 + ps->n_global_syms); psym++)
5509 {
5510 QUIT;
5511 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5512 text, text_len, text0, word,
5513 wild_match, encoded);
5514 }
5515
5516 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5517 psym < (objfile->static_psymbols.list + ps->statics_offset
5518 + ps->n_static_syms); psym++)
5519 {
5520 QUIT;
5521 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
5522 text, text_len, text0, word,
5523 wild_match, encoded);
5524 }
5525 }
5526
5527 /* At this point scan through the misc symbol vectors and add each
5528 symbol you find to the list. Eventually we want to ignore
5529 anything that isn't a text symbol (everything else will be
5530 handled by the psymtab code above). */
5531
5532 ALL_MSYMBOLS (objfile, msymbol)
5533 {
5534 QUIT;
5535 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5536 text, text_len, text0, word, wild_match, encoded);
5537 }
5538
5539 /* Search upwards from currently selected frame (so that we can
5540 complete on local vars. */
5541
5542 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5543 {
5544 if (!BLOCK_SUPERBLOCK (b))
5545 surrounding_static_block = b; /* For elmin of dups */
5546
5547 ALL_BLOCK_SYMBOLS (b, iter, sym)
5548 {
5549 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5550 text, text_len, text0, word,
5551 wild_match, encoded);
5552 }
5553 }
5554
5555 /* Go through the symtabs and check the externs and statics for
5556 symbols which match. */
5557
5558 ALL_SYMTABS (objfile, s)
5559 {
5560 QUIT;
5561 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5562 ALL_BLOCK_SYMBOLS (b, iter, sym)
5563 {
5564 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5565 text, text_len, text0, word,
5566 wild_match, encoded);
5567 }
5568 }
5569
5570 ALL_SYMTABS (objfile, s)
5571 {
5572 QUIT;
5573 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5574 /* Don't do this block twice. */
5575 if (b == surrounding_static_block)
5576 continue;
5577 ALL_BLOCK_SYMBOLS (b, iter, sym)
5578 {
5579 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5580 text, text_len, text0, word,
5581 wild_match, encoded);
5582 }
5583 }
5584
5585 /* Append the closing NULL entry. */
5586 VEC_safe_push (char_ptr, completions, NULL);
5587
5588 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5589 return the copy. It's unfortunate that we have to make a copy
5590 of an array that we're about to destroy, but there is nothing much
5591 we can do about it. Fortunately, it's typically not a very large
5592 array. */
5593 {
5594 const size_t completions_size =
5595 VEC_length (char_ptr, completions) * sizeof (char *);
5596 char **result = malloc (completions_size);
5597
5598 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5599
5600 VEC_free (char_ptr, completions);
5601 return result;
5602 }
5603 }
5604
5605 /* Field Access */
5606
5607 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5608 for tagged types. */
5609
5610 static int
5611 ada_is_dispatch_table_ptr_type (struct type *type)
5612 {
5613 char *name;
5614
5615 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5616 return 0;
5617
5618 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5619 if (name == NULL)
5620 return 0;
5621
5622 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5623 }
5624
5625 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5626 to be invisible to users. */
5627
5628 int
5629 ada_is_ignored_field (struct type *type, int field_num)
5630 {
5631 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5632 return 1;
5633
5634 /* Check the name of that field. */
5635 {
5636 const char *name = TYPE_FIELD_NAME (type, field_num);
5637
5638 /* Anonymous field names should not be printed.
5639 brobecker/2007-02-20: I don't think this can actually happen
5640 but we don't want to print the value of annonymous fields anyway. */
5641 if (name == NULL)
5642 return 1;
5643
5644 /* A field named "_parent" is internally generated by GNAT for
5645 tagged types, and should not be printed either. */
5646 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5647 return 1;
5648 }
5649
5650 /* If this is the dispatch table of a tagged type, then ignore. */
5651 if (ada_is_tagged_type (type, 1)
5652 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5653 return 1;
5654
5655 /* Not a special field, so it should not be ignored. */
5656 return 0;
5657 }
5658
5659 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5660 pointer or reference type whose ultimate target has a tag field. */
5661
5662 int
5663 ada_is_tagged_type (struct type *type, int refok)
5664 {
5665 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5666 }
5667
5668 /* True iff TYPE represents the type of X'Tag */
5669
5670 int
5671 ada_is_tag_type (struct type *type)
5672 {
5673 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5674 return 0;
5675 else
5676 {
5677 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5678 return (name != NULL
5679 && strcmp (name, "ada__tags__dispatch_table") == 0);
5680 }
5681 }
5682
5683 /* The type of the tag on VAL. */
5684
5685 struct type *
5686 ada_tag_type (struct value *val)
5687 {
5688 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5689 }
5690
5691 /* The value of the tag on VAL. */
5692
5693 struct value *
5694 ada_value_tag (struct value *val)
5695 {
5696 return ada_value_struct_elt (val, "_tag", 0);
5697 }
5698
5699 /* The value of the tag on the object of type TYPE whose contents are
5700 saved at VALADDR, if it is non-null, or is at memory address
5701 ADDRESS. */
5702
5703 static struct value *
5704 value_tag_from_contents_and_address (struct type *type,
5705 const gdb_byte *valaddr,
5706 CORE_ADDR address)
5707 {
5708 int tag_byte_offset, dummy1, dummy2;
5709 struct type *tag_type;
5710 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5711 NULL, NULL, NULL))
5712 {
5713 const gdb_byte *valaddr1 = ((valaddr == NULL)
5714 ? NULL
5715 : valaddr + tag_byte_offset);
5716 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5717
5718 return value_from_contents_and_address (tag_type, valaddr1, address1);
5719 }
5720 return NULL;
5721 }
5722
5723 static struct type *
5724 type_from_tag (struct value *tag)
5725 {
5726 const char *type_name = ada_tag_name (tag);
5727 if (type_name != NULL)
5728 return ada_find_any_type (ada_encode (type_name));
5729 return NULL;
5730 }
5731
5732 struct tag_args
5733 {
5734 struct value *tag;
5735 char *name;
5736 };
5737
5738
5739 static int ada_tag_name_1 (void *);
5740 static int ada_tag_name_2 (struct tag_args *);
5741
5742 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
5743 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5744 The value stored in ARGS->name is valid until the next call to
5745 ada_tag_name_1. */
5746
5747 static int
5748 ada_tag_name_1 (void *args0)
5749 {
5750 struct tag_args *args = (struct tag_args *) args0;
5751 static char name[1024];
5752 char *p;
5753 struct value *val;
5754 args->name = NULL;
5755 val = ada_value_struct_elt (args->tag, "tsd", 1);
5756 if (val == NULL)
5757 return ada_tag_name_2 (args);
5758 val = ada_value_struct_elt (val, "expanded_name", 1);
5759 if (val == NULL)
5760 return 0;
5761 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5762 for (p = name; *p != '\0'; p += 1)
5763 if (isalpha (*p))
5764 *p = tolower (*p);
5765 args->name = name;
5766 return 0;
5767 }
5768
5769 /* Utility function for ada_tag_name_1 that tries the second
5770 representation for the dispatch table (in which there is no
5771 explicit 'tsd' field in the referent of the tag pointer, and instead
5772 the tsd pointer is stored just before the dispatch table. */
5773
5774 static int
5775 ada_tag_name_2 (struct tag_args *args)
5776 {
5777 struct type *info_type;
5778 static char name[1024];
5779 char *p;
5780 struct value *val, *valp;
5781
5782 args->name = NULL;
5783 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5784 if (info_type == NULL)
5785 return 0;
5786 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5787 valp = value_cast (info_type, args->tag);
5788 if (valp == NULL)
5789 return 0;
5790 val = value_ind (value_add (valp, value_from_longest (builtin_type_int, -1)));
5791 if (val == NULL)
5792 return 0;
5793 val = ada_value_struct_elt (val, "expanded_name", 1);
5794 if (val == NULL)
5795 return 0;
5796 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5797 for (p = name; *p != '\0'; p += 1)
5798 if (isalpha (*p))
5799 *p = tolower (*p);
5800 args->name = name;
5801 return 0;
5802 }
5803
5804 /* The type name of the dynamic type denoted by the 'tag value TAG, as
5805 * a C string. */
5806
5807 const char *
5808 ada_tag_name (struct value *tag)
5809 {
5810 struct tag_args args;
5811 if (!ada_is_tag_type (value_type (tag)))
5812 return NULL;
5813 args.tag = tag;
5814 args.name = NULL;
5815 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5816 return args.name;
5817 }
5818
5819 /* The parent type of TYPE, or NULL if none. */
5820
5821 struct type *
5822 ada_parent_type (struct type *type)
5823 {
5824 int i;
5825
5826 type = ada_check_typedef (type);
5827
5828 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5829 return NULL;
5830
5831 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5832 if (ada_is_parent_field (type, i))
5833 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
5834
5835 return NULL;
5836 }
5837
5838 /* True iff field number FIELD_NUM of structure type TYPE contains the
5839 parent-type (inherited) fields of a derived type. Assumes TYPE is
5840 a structure type with at least FIELD_NUM+1 fields. */
5841
5842 int
5843 ada_is_parent_field (struct type *type, int field_num)
5844 {
5845 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5846 return (name != NULL
5847 && (strncmp (name, "PARENT", 6) == 0
5848 || strncmp (name, "_parent", 7) == 0));
5849 }
5850
5851 /* True iff field number FIELD_NUM of structure type TYPE is a
5852 transparent wrapper field (which should be silently traversed when doing
5853 field selection and flattened when printing). Assumes TYPE is a
5854 structure type with at least FIELD_NUM+1 fields. Such fields are always
5855 structures. */
5856
5857 int
5858 ada_is_wrapper_field (struct type *type, int field_num)
5859 {
5860 const char *name = TYPE_FIELD_NAME (type, field_num);
5861 return (name != NULL
5862 && (strncmp (name, "PARENT", 6) == 0
5863 || strcmp (name, "REP") == 0
5864 || strncmp (name, "_parent", 7) == 0
5865 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
5866 }
5867
5868 /* True iff field number FIELD_NUM of structure or union type TYPE
5869 is a variant wrapper. Assumes TYPE is a structure type with at least
5870 FIELD_NUM+1 fields. */
5871
5872 int
5873 ada_is_variant_part (struct type *type, int field_num)
5874 {
5875 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5876 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
5877 || (is_dynamic_field (type, field_num)
5878 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5879 == TYPE_CODE_UNION)));
5880 }
5881
5882 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
5883 whose discriminants are contained in the record type OUTER_TYPE,
5884 returns the type of the controlling discriminant for the variant. */
5885
5886 struct type *
5887 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
5888 {
5889 char *name = ada_variant_discrim_name (var_type);
5890 struct type *type =
5891 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
5892 if (type == NULL)
5893 return builtin_type_int;
5894 else
5895 return type;
5896 }
5897
5898 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
5899 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
5900 represents a 'when others' clause; otherwise 0. */
5901
5902 int
5903 ada_is_others_clause (struct type *type, int field_num)
5904 {
5905 const char *name = TYPE_FIELD_NAME (type, field_num);
5906 return (name != NULL && name[0] == 'O');
5907 }
5908
5909 /* Assuming that TYPE0 is the type of the variant part of a record,
5910 returns the name of the discriminant controlling the variant.
5911 The value is valid until the next call to ada_variant_discrim_name. */
5912
5913 char *
5914 ada_variant_discrim_name (struct type *type0)
5915 {
5916 static char *result = NULL;
5917 static size_t result_len = 0;
5918 struct type *type;
5919 const char *name;
5920 const char *discrim_end;
5921 const char *discrim_start;
5922
5923 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5924 type = TYPE_TARGET_TYPE (type0);
5925 else
5926 type = type0;
5927
5928 name = ada_type_name (type);
5929
5930 if (name == NULL || name[0] == '\000')
5931 return "";
5932
5933 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5934 discrim_end -= 1)
5935 {
5936 if (strncmp (discrim_end, "___XVN", 6) == 0)
5937 break;
5938 }
5939 if (discrim_end == name)
5940 return "";
5941
5942 for (discrim_start = discrim_end; discrim_start != name + 3;
5943 discrim_start -= 1)
5944 {
5945 if (discrim_start == name + 1)
5946 return "";
5947 if ((discrim_start > name + 3
5948 && strncmp (discrim_start - 3, "___", 3) == 0)
5949 || discrim_start[-1] == '.')
5950 break;
5951 }
5952
5953 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5954 strncpy (result, discrim_start, discrim_end - discrim_start);
5955 result[discrim_end - discrim_start] = '\0';
5956 return result;
5957 }
5958
5959 /* Scan STR for a subtype-encoded number, beginning at position K.
5960 Put the position of the character just past the number scanned in
5961 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5962 Return 1 if there was a valid number at the given position, and 0
5963 otherwise. A "subtype-encoded" number consists of the absolute value
5964 in decimal, followed by the letter 'm' to indicate a negative number.
5965 Assumes 0m does not occur. */
5966
5967 int
5968 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
5969 {
5970 ULONGEST RU;
5971
5972 if (!isdigit (str[k]))
5973 return 0;
5974
5975 /* Do it the hard way so as not to make any assumption about
5976 the relationship of unsigned long (%lu scan format code) and
5977 LONGEST. */
5978 RU = 0;
5979 while (isdigit (str[k]))
5980 {
5981 RU = RU * 10 + (str[k] - '0');
5982 k += 1;
5983 }
5984
5985 if (str[k] == 'm')
5986 {
5987 if (R != NULL)
5988 *R = (-(LONGEST) (RU - 1)) - 1;
5989 k += 1;
5990 }
5991 else if (R != NULL)
5992 *R = (LONGEST) RU;
5993
5994 /* NOTE on the above: Technically, C does not say what the results of
5995 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5996 number representable as a LONGEST (although either would probably work
5997 in most implementations). When RU>0, the locution in the then branch
5998 above is always equivalent to the negative of RU. */
5999
6000 if (new_k != NULL)
6001 *new_k = k;
6002 return 1;
6003 }
6004
6005 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6006 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6007 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6008
6009 int
6010 ada_in_variant (LONGEST val, struct type *type, int field_num)
6011 {
6012 const char *name = TYPE_FIELD_NAME (type, field_num);
6013 int p;
6014
6015 p = 0;
6016 while (1)
6017 {
6018 switch (name[p])
6019 {
6020 case '\0':
6021 return 0;
6022 case 'S':
6023 {
6024 LONGEST W;
6025 if (!ada_scan_number (name, p + 1, &W, &p))
6026 return 0;
6027 if (val == W)
6028 return 1;
6029 break;
6030 }
6031 case 'R':
6032 {
6033 LONGEST L, U;
6034 if (!ada_scan_number (name, p + 1, &L, &p)
6035 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6036 return 0;
6037 if (val >= L && val <= U)
6038 return 1;
6039 break;
6040 }
6041 case 'O':
6042 return 1;
6043 default:
6044 return 0;
6045 }
6046 }
6047 }
6048
6049 /* FIXME: Lots of redundancy below. Try to consolidate. */
6050
6051 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6052 ARG_TYPE, extract and return the value of one of its (non-static)
6053 fields. FIELDNO says which field. Differs from value_primitive_field
6054 only in that it can handle packed values of arbitrary type. */
6055
6056 static struct value *
6057 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6058 struct type *arg_type)
6059 {
6060 struct type *type;
6061
6062 arg_type = ada_check_typedef (arg_type);
6063 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6064
6065 /* Handle packed fields. */
6066
6067 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6068 {
6069 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6070 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6071
6072 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6073 offset + bit_pos / 8,
6074 bit_pos % 8, bit_size, type);
6075 }
6076 else
6077 return value_primitive_field (arg1, offset, fieldno, arg_type);
6078 }
6079
6080 /* Find field with name NAME in object of type TYPE. If found,
6081 set the following for each argument that is non-null:
6082 - *FIELD_TYPE_P to the field's type;
6083 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6084 an object of that type;
6085 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6086 - *BIT_SIZE_P to its size in bits if the field is packed, and
6087 0 otherwise;
6088 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6089 fields up to but not including the desired field, or by the total
6090 number of fields if not found. A NULL value of NAME never
6091 matches; the function just counts visible fields in this case.
6092
6093 Returns 1 if found, 0 otherwise. */
6094
6095 static int
6096 find_struct_field (char *name, struct type *type, int offset,
6097 struct type **field_type_p,
6098 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6099 int *index_p)
6100 {
6101 int i;
6102
6103 type = ada_check_typedef (type);
6104
6105 if (field_type_p != NULL)
6106 *field_type_p = NULL;
6107 if (byte_offset_p != NULL)
6108 *byte_offset_p = 0;
6109 if (bit_offset_p != NULL)
6110 *bit_offset_p = 0;
6111 if (bit_size_p != NULL)
6112 *bit_size_p = 0;
6113
6114 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6115 {
6116 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6117 int fld_offset = offset + bit_pos / 8;
6118 char *t_field_name = TYPE_FIELD_NAME (type, i);
6119
6120 if (t_field_name == NULL)
6121 continue;
6122
6123 else if (name != NULL && field_name_match (t_field_name, name))
6124 {
6125 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6126 if (field_type_p != NULL)
6127 *field_type_p = TYPE_FIELD_TYPE (type, i);
6128 if (byte_offset_p != NULL)
6129 *byte_offset_p = fld_offset;
6130 if (bit_offset_p != NULL)
6131 *bit_offset_p = bit_pos % 8;
6132 if (bit_size_p != NULL)
6133 *bit_size_p = bit_size;
6134 return 1;
6135 }
6136 else if (ada_is_wrapper_field (type, i))
6137 {
6138 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6139 field_type_p, byte_offset_p, bit_offset_p,
6140 bit_size_p, index_p))
6141 return 1;
6142 }
6143 else if (ada_is_variant_part (type, i))
6144 {
6145 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6146 fixed type?? */
6147 int j;
6148 struct type *field_type
6149 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6150
6151 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6152 {
6153 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6154 fld_offset
6155 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6156 field_type_p, byte_offset_p,
6157 bit_offset_p, bit_size_p, index_p))
6158 return 1;
6159 }
6160 }
6161 else if (index_p != NULL)
6162 *index_p += 1;
6163 }
6164 return 0;
6165 }
6166
6167 /* Number of user-visible fields in record type TYPE. */
6168
6169 static int
6170 num_visible_fields (struct type *type)
6171 {
6172 int n;
6173 n = 0;
6174 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6175 return n;
6176 }
6177
6178 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6179 and search in it assuming it has (class) type TYPE.
6180 If found, return value, else return NULL.
6181
6182 Searches recursively through wrapper fields (e.g., '_parent'). */
6183
6184 static struct value *
6185 ada_search_struct_field (char *name, struct value *arg, int offset,
6186 struct type *type)
6187 {
6188 int i;
6189 type = ada_check_typedef (type);
6190
6191 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6192 {
6193 char *t_field_name = TYPE_FIELD_NAME (type, i);
6194
6195 if (t_field_name == NULL)
6196 continue;
6197
6198 else if (field_name_match (t_field_name, name))
6199 return ada_value_primitive_field (arg, offset, i, type);
6200
6201 else if (ada_is_wrapper_field (type, i))
6202 {
6203 struct value *v = /* Do not let indent join lines here. */
6204 ada_search_struct_field (name, arg,
6205 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6206 TYPE_FIELD_TYPE (type, i));
6207 if (v != NULL)
6208 return v;
6209 }
6210
6211 else if (ada_is_variant_part (type, i))
6212 {
6213 /* PNH: Do we ever get here? See find_struct_field. */
6214 int j;
6215 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6216 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6217
6218 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6219 {
6220 struct value *v = ada_search_struct_field /* Force line break. */
6221 (name, arg,
6222 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6223 TYPE_FIELD_TYPE (field_type, j));
6224 if (v != NULL)
6225 return v;
6226 }
6227 }
6228 }
6229 return NULL;
6230 }
6231
6232 static struct value *ada_index_struct_field_1 (int *, struct value *,
6233 int, struct type *);
6234
6235
6236 /* Return field #INDEX in ARG, where the index is that returned by
6237 * find_struct_field through its INDEX_P argument. Adjust the address
6238 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6239 * If found, return value, else return NULL. */
6240
6241 static struct value *
6242 ada_index_struct_field (int index, struct value *arg, int offset,
6243 struct type *type)
6244 {
6245 return ada_index_struct_field_1 (&index, arg, offset, type);
6246 }
6247
6248
6249 /* Auxiliary function for ada_index_struct_field. Like
6250 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6251 * *INDEX_P. */
6252
6253 static struct value *
6254 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6255 struct type *type)
6256 {
6257 int i;
6258 type = ada_check_typedef (type);
6259
6260 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6261 {
6262 if (TYPE_FIELD_NAME (type, i) == NULL)
6263 continue;
6264 else if (ada_is_wrapper_field (type, i))
6265 {
6266 struct value *v = /* Do not let indent join lines here. */
6267 ada_index_struct_field_1 (index_p, arg,
6268 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6269 TYPE_FIELD_TYPE (type, i));
6270 if (v != NULL)
6271 return v;
6272 }
6273
6274 else if (ada_is_variant_part (type, i))
6275 {
6276 /* PNH: Do we ever get here? See ada_search_struct_field,
6277 find_struct_field. */
6278 error (_("Cannot assign this kind of variant record"));
6279 }
6280 else if (*index_p == 0)
6281 return ada_value_primitive_field (arg, offset, i, type);
6282 else
6283 *index_p -= 1;
6284 }
6285 return NULL;
6286 }
6287
6288 /* Given ARG, a value of type (pointer or reference to a)*
6289 structure/union, extract the component named NAME from the ultimate
6290 target structure/union and return it as a value with its
6291 appropriate type. If ARG is a pointer or reference and the field
6292 is not packed, returns a reference to the field, otherwise the
6293 value of the field (an lvalue if ARG is an lvalue).
6294
6295 The routine searches for NAME among all members of the structure itself
6296 and (recursively) among all members of any wrapper members
6297 (e.g., '_parent').
6298
6299 If NO_ERR, then simply return NULL in case of error, rather than
6300 calling error. */
6301
6302 struct value *
6303 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6304 {
6305 struct type *t, *t1;
6306 struct value *v;
6307
6308 v = NULL;
6309 t1 = t = ada_check_typedef (value_type (arg));
6310 if (TYPE_CODE (t) == TYPE_CODE_REF)
6311 {
6312 t1 = TYPE_TARGET_TYPE (t);
6313 if (t1 == NULL)
6314 goto BadValue;
6315 t1 = ada_check_typedef (t1);
6316 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6317 {
6318 arg = coerce_ref (arg);
6319 t = t1;
6320 }
6321 }
6322
6323 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6324 {
6325 t1 = TYPE_TARGET_TYPE (t);
6326 if (t1 == NULL)
6327 goto BadValue;
6328 t1 = ada_check_typedef (t1);
6329 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6330 {
6331 arg = value_ind (arg);
6332 t = t1;
6333 }
6334 else
6335 break;
6336 }
6337
6338 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6339 goto BadValue;
6340
6341 if (t1 == t)
6342 v = ada_search_struct_field (name, arg, 0, t);
6343 else
6344 {
6345 int bit_offset, bit_size, byte_offset;
6346 struct type *field_type;
6347 CORE_ADDR address;
6348
6349 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6350 address = value_as_address (arg);
6351 else
6352 address = unpack_pointer (t, value_contents (arg));
6353
6354 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6355 if (find_struct_field (name, t1, 0,
6356 &field_type, &byte_offset, &bit_offset,
6357 &bit_size, NULL))
6358 {
6359 if (bit_size != 0)
6360 {
6361 if (TYPE_CODE (t) == TYPE_CODE_REF)
6362 arg = ada_coerce_ref (arg);
6363 else
6364 arg = ada_value_ind (arg);
6365 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6366 bit_offset, bit_size,
6367 field_type);
6368 }
6369 else
6370 v = value_from_pointer (lookup_reference_type (field_type),
6371 address + byte_offset);
6372 }
6373 }
6374
6375 if (v != NULL || no_err)
6376 return v;
6377 else
6378 error (_("There is no member named %s."), name);
6379
6380 BadValue:
6381 if (no_err)
6382 return NULL;
6383 else
6384 error (_("Attempt to extract a component of a value that is not a record."));
6385 }
6386
6387 /* Given a type TYPE, look up the type of the component of type named NAME.
6388 If DISPP is non-null, add its byte displacement from the beginning of a
6389 structure (pointed to by a value) of type TYPE to *DISPP (does not
6390 work for packed fields).
6391
6392 Matches any field whose name has NAME as a prefix, possibly
6393 followed by "___".
6394
6395 TYPE can be either a struct or union. If REFOK, TYPE may also
6396 be a (pointer or reference)+ to a struct or union, and the
6397 ultimate target type will be searched.
6398
6399 Looks recursively into variant clauses and parent types.
6400
6401 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6402 TYPE is not a type of the right kind. */
6403
6404 static struct type *
6405 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6406 int noerr, int *dispp)
6407 {
6408 int i;
6409
6410 if (name == NULL)
6411 goto BadName;
6412
6413 if (refok && type != NULL)
6414 while (1)
6415 {
6416 type = ada_check_typedef (type);
6417 if (TYPE_CODE (type) != TYPE_CODE_PTR
6418 && TYPE_CODE (type) != TYPE_CODE_REF)
6419 break;
6420 type = TYPE_TARGET_TYPE (type);
6421 }
6422
6423 if (type == NULL
6424 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6425 && TYPE_CODE (type) != TYPE_CODE_UNION))
6426 {
6427 if (noerr)
6428 return NULL;
6429 else
6430 {
6431 target_terminal_ours ();
6432 gdb_flush (gdb_stdout);
6433 if (type == NULL)
6434 error (_("Type (null) is not a structure or union type"));
6435 else
6436 {
6437 /* XXX: type_sprint */
6438 fprintf_unfiltered (gdb_stderr, _("Type "));
6439 type_print (type, "", gdb_stderr, -1);
6440 error (_(" is not a structure or union type"));
6441 }
6442 }
6443 }
6444
6445 type = to_static_fixed_type (type);
6446
6447 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6448 {
6449 char *t_field_name = TYPE_FIELD_NAME (type, i);
6450 struct type *t;
6451 int disp;
6452
6453 if (t_field_name == NULL)
6454 continue;
6455
6456 else if (field_name_match (t_field_name, name))
6457 {
6458 if (dispp != NULL)
6459 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6460 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6461 }
6462
6463 else if (ada_is_wrapper_field (type, i))
6464 {
6465 disp = 0;
6466 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6467 0, 1, &disp);
6468 if (t != NULL)
6469 {
6470 if (dispp != NULL)
6471 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6472 return t;
6473 }
6474 }
6475
6476 else if (ada_is_variant_part (type, i))
6477 {
6478 int j;
6479 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6480
6481 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6482 {
6483 disp = 0;
6484 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6485 name, 0, 1, &disp);
6486 if (t != NULL)
6487 {
6488 if (dispp != NULL)
6489 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6490 return t;
6491 }
6492 }
6493 }
6494
6495 }
6496
6497 BadName:
6498 if (!noerr)
6499 {
6500 target_terminal_ours ();
6501 gdb_flush (gdb_stdout);
6502 if (name == NULL)
6503 {
6504 /* XXX: type_sprint */
6505 fprintf_unfiltered (gdb_stderr, _("Type "));
6506 type_print (type, "", gdb_stderr, -1);
6507 error (_(" has no component named <null>"));
6508 }
6509 else
6510 {
6511 /* XXX: type_sprint */
6512 fprintf_unfiltered (gdb_stderr, _("Type "));
6513 type_print (type, "", gdb_stderr, -1);
6514 error (_(" has no component named %s"), name);
6515 }
6516 }
6517
6518 return NULL;
6519 }
6520
6521 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6522 within a value of type OUTER_TYPE that is stored in GDB at
6523 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6524 numbering from 0) is applicable. Returns -1 if none are. */
6525
6526 int
6527 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6528 const gdb_byte *outer_valaddr)
6529 {
6530 int others_clause;
6531 int i;
6532 char *discrim_name = ada_variant_discrim_name (var_type);
6533 struct value *outer;
6534 struct value *discrim;
6535 LONGEST discrim_val;
6536
6537 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6538 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6539 if (discrim == NULL)
6540 return -1;
6541 discrim_val = value_as_long (discrim);
6542
6543 others_clause = -1;
6544 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6545 {
6546 if (ada_is_others_clause (var_type, i))
6547 others_clause = i;
6548 else if (ada_in_variant (discrim_val, var_type, i))
6549 return i;
6550 }
6551
6552 return others_clause;
6553 }
6554 \f
6555
6556
6557 /* Dynamic-Sized Records */
6558
6559 /* Strategy: The type ostensibly attached to a value with dynamic size
6560 (i.e., a size that is not statically recorded in the debugging
6561 data) does not accurately reflect the size or layout of the value.
6562 Our strategy is to convert these values to values with accurate,
6563 conventional types that are constructed on the fly. */
6564
6565 /* There is a subtle and tricky problem here. In general, we cannot
6566 determine the size of dynamic records without its data. However,
6567 the 'struct value' data structure, which GDB uses to represent
6568 quantities in the inferior process (the target), requires the size
6569 of the type at the time of its allocation in order to reserve space
6570 for GDB's internal copy of the data. That's why the
6571 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6572 rather than struct value*s.
6573
6574 However, GDB's internal history variables ($1, $2, etc.) are
6575 struct value*s containing internal copies of the data that are not, in
6576 general, the same as the data at their corresponding addresses in
6577 the target. Fortunately, the types we give to these values are all
6578 conventional, fixed-size types (as per the strategy described
6579 above), so that we don't usually have to perform the
6580 'to_fixed_xxx_type' conversions to look at their values.
6581 Unfortunately, there is one exception: if one of the internal
6582 history variables is an array whose elements are unconstrained
6583 records, then we will need to create distinct fixed types for each
6584 element selected. */
6585
6586 /* The upshot of all of this is that many routines take a (type, host
6587 address, target address) triple as arguments to represent a value.
6588 The host address, if non-null, is supposed to contain an internal
6589 copy of the relevant data; otherwise, the program is to consult the
6590 target at the target address. */
6591
6592 /* Assuming that VAL0 represents a pointer value, the result of
6593 dereferencing it. Differs from value_ind in its treatment of
6594 dynamic-sized types. */
6595
6596 struct value *
6597 ada_value_ind (struct value *val0)
6598 {
6599 struct value *val = unwrap_value (value_ind (val0));
6600 return ada_to_fixed_value (val);
6601 }
6602
6603 /* The value resulting from dereferencing any "reference to"
6604 qualifiers on VAL0. */
6605
6606 static struct value *
6607 ada_coerce_ref (struct value *val0)
6608 {
6609 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6610 {
6611 struct value *val = val0;
6612 val = coerce_ref (val);
6613 val = unwrap_value (val);
6614 return ada_to_fixed_value (val);
6615 }
6616 else
6617 return val0;
6618 }
6619
6620 /* Return OFF rounded upward if necessary to a multiple of
6621 ALIGNMENT (a power of 2). */
6622
6623 static unsigned int
6624 align_value (unsigned int off, unsigned int alignment)
6625 {
6626 return (off + alignment - 1) & ~(alignment - 1);
6627 }
6628
6629 /* Return the bit alignment required for field #F of template type TYPE. */
6630
6631 static unsigned int
6632 field_alignment (struct type *type, int f)
6633 {
6634 const char *name = TYPE_FIELD_NAME (type, f);
6635 int len;
6636 int align_offset;
6637
6638 /* The field name should never be null, unless the debugging information
6639 is somehow malformed. In this case, we assume the field does not
6640 require any alignment. */
6641 if (name == NULL)
6642 return 1;
6643
6644 len = strlen (name);
6645
6646 if (!isdigit (name[len - 1]))
6647 return 1;
6648
6649 if (isdigit (name[len - 2]))
6650 align_offset = len - 2;
6651 else
6652 align_offset = len - 1;
6653
6654 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6655 return TARGET_CHAR_BIT;
6656
6657 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6658 }
6659
6660 /* Find a symbol named NAME. Ignores ambiguity. */
6661
6662 struct symbol *
6663 ada_find_any_symbol (const char *name)
6664 {
6665 struct symbol *sym;
6666
6667 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6668 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6669 return sym;
6670
6671 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6672 return sym;
6673 }
6674
6675 /* Find a type named NAME. Ignores ambiguity. */
6676
6677 struct type *
6678 ada_find_any_type (const char *name)
6679 {
6680 struct symbol *sym = ada_find_any_symbol (name);
6681
6682 if (sym != NULL)
6683 return SYMBOL_TYPE (sym);
6684
6685 return NULL;
6686 }
6687
6688 /* Given NAME and an associated BLOCK, search all symbols for
6689 NAME suffixed with "___XR", which is the ``renaming'' symbol
6690 associated to NAME. Return this symbol if found, return
6691 NULL otherwise. */
6692
6693 struct symbol *
6694 ada_find_renaming_symbol (const char *name, struct block *block)
6695 {
6696 struct symbol *sym;
6697
6698 sym = find_old_style_renaming_symbol (name, block);
6699
6700 if (sym != NULL)
6701 return sym;
6702
6703 /* Not right yet. FIXME pnh 7/20/2007. */
6704 sym = ada_find_any_symbol (name);
6705 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6706 return sym;
6707 else
6708 return NULL;
6709 }
6710
6711 static struct symbol *
6712 find_old_style_renaming_symbol (const char *name, struct block *block)
6713 {
6714 const struct symbol *function_sym = block_linkage_function (block);
6715 char *rename;
6716
6717 if (function_sym != NULL)
6718 {
6719 /* If the symbol is defined inside a function, NAME is not fully
6720 qualified. This means we need to prepend the function name
6721 as well as adding the ``___XR'' suffix to build the name of
6722 the associated renaming symbol. */
6723 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
6724 /* Function names sometimes contain suffixes used
6725 for instance to qualify nested subprograms. When building
6726 the XR type name, we need to make sure that this suffix is
6727 not included. So do not include any suffix in the function
6728 name length below. */
6729 const int function_name_len = ada_name_prefix_len (function_name);
6730 const int rename_len = function_name_len + 2 /* "__" */
6731 + strlen (name) + 6 /* "___XR\0" */ ;
6732
6733 /* Strip the suffix if necessary. */
6734 function_name[function_name_len] = '\0';
6735
6736 /* Library-level functions are a special case, as GNAT adds
6737 a ``_ada_'' prefix to the function name to avoid namespace
6738 pollution. However, the renaming symbols themselves do not
6739 have this prefix, so we need to skip this prefix if present. */
6740 if (function_name_len > 5 /* "_ada_" */
6741 && strstr (function_name, "_ada_") == function_name)
6742 function_name = function_name + 5;
6743
6744 rename = (char *) alloca (rename_len * sizeof (char));
6745 sprintf (rename, "%s__%s___XR", function_name, name);
6746 }
6747 else
6748 {
6749 const int rename_len = strlen (name) + 6;
6750 rename = (char *) alloca (rename_len * sizeof (char));
6751 sprintf (rename, "%s___XR", name);
6752 }
6753
6754 return ada_find_any_symbol (rename);
6755 }
6756
6757 /* Because of GNAT encoding conventions, several GDB symbols may match a
6758 given type name. If the type denoted by TYPE0 is to be preferred to
6759 that of TYPE1 for purposes of type printing, return non-zero;
6760 otherwise return 0. */
6761
6762 int
6763 ada_prefer_type (struct type *type0, struct type *type1)
6764 {
6765 if (type1 == NULL)
6766 return 1;
6767 else if (type0 == NULL)
6768 return 0;
6769 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6770 return 1;
6771 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6772 return 0;
6773 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6774 return 1;
6775 else if (ada_is_packed_array_type (type0))
6776 return 1;
6777 else if (ada_is_array_descriptor_type (type0)
6778 && !ada_is_array_descriptor_type (type1))
6779 return 1;
6780 else
6781 {
6782 const char *type0_name = type_name_no_tag (type0);
6783 const char *type1_name = type_name_no_tag (type1);
6784
6785 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6786 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6787 return 1;
6788 }
6789 return 0;
6790 }
6791
6792 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
6793 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6794
6795 char *
6796 ada_type_name (struct type *type)
6797 {
6798 if (type == NULL)
6799 return NULL;
6800 else if (TYPE_NAME (type) != NULL)
6801 return TYPE_NAME (type);
6802 else
6803 return TYPE_TAG_NAME (type);
6804 }
6805
6806 /* Find a parallel type to TYPE whose name is formed by appending
6807 SUFFIX to the name of TYPE. */
6808
6809 struct type *
6810 ada_find_parallel_type (struct type *type, const char *suffix)
6811 {
6812 static char *name;
6813 static size_t name_len = 0;
6814 int len;
6815 char *typename = ada_type_name (type);
6816
6817 if (typename == NULL)
6818 return NULL;
6819
6820 len = strlen (typename);
6821
6822 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
6823
6824 strcpy (name, typename);
6825 strcpy (name + len, suffix);
6826
6827 return ada_find_any_type (name);
6828 }
6829
6830
6831 /* If TYPE is a variable-size record type, return the corresponding template
6832 type describing its fields. Otherwise, return NULL. */
6833
6834 static struct type *
6835 dynamic_template_type (struct type *type)
6836 {
6837 type = ada_check_typedef (type);
6838
6839 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
6840 || ada_type_name (type) == NULL)
6841 return NULL;
6842 else
6843 {
6844 int len = strlen (ada_type_name (type));
6845 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6846 return type;
6847 else
6848 return ada_find_parallel_type (type, "___XVE");
6849 }
6850 }
6851
6852 /* Assuming that TEMPL_TYPE is a union or struct type, returns
6853 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
6854
6855 static int
6856 is_dynamic_field (struct type *templ_type, int field_num)
6857 {
6858 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
6859 return name != NULL
6860 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6861 && strstr (name, "___XVL") != NULL;
6862 }
6863
6864 /* The index of the variant field of TYPE, or -1 if TYPE does not
6865 represent a variant record type. */
6866
6867 static int
6868 variant_field_index (struct type *type)
6869 {
6870 int f;
6871
6872 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6873 return -1;
6874
6875 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6876 {
6877 if (ada_is_variant_part (type, f))
6878 return f;
6879 }
6880 return -1;
6881 }
6882
6883 /* A record type with no fields. */
6884
6885 static struct type *
6886 empty_record (struct objfile *objfile)
6887 {
6888 struct type *type = alloc_type (objfile);
6889 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6890 TYPE_NFIELDS (type) = 0;
6891 TYPE_FIELDS (type) = NULL;
6892 TYPE_NAME (type) = "<empty>";
6893 TYPE_TAG_NAME (type) = NULL;
6894 TYPE_LENGTH (type) = 0;
6895 return type;
6896 }
6897
6898 /* An ordinary record type (with fixed-length fields) that describes
6899 the value of type TYPE at VALADDR or ADDRESS (see comments at
6900 the beginning of this section) VAL according to GNAT conventions.
6901 DVAL0 should describe the (portion of a) record that contains any
6902 necessary discriminants. It should be NULL if value_type (VAL) is
6903 an outer-level type (i.e., as opposed to a branch of a variant.) A
6904 variant field (unless unchecked) is replaced by a particular branch
6905 of the variant.
6906
6907 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6908 length are not statically known are discarded. As a consequence,
6909 VALADDR, ADDRESS and DVAL0 are ignored.
6910
6911 NOTE: Limitations: For now, we assume that dynamic fields and
6912 variants occupy whole numbers of bytes. However, they need not be
6913 byte-aligned. */
6914
6915 struct type *
6916 ada_template_to_fixed_record_type_1 (struct type *type,
6917 const gdb_byte *valaddr,
6918 CORE_ADDR address, struct value *dval0,
6919 int keep_dynamic_fields)
6920 {
6921 struct value *mark = value_mark ();
6922 struct value *dval;
6923 struct type *rtype;
6924 int nfields, bit_len;
6925 int variant_field;
6926 long off;
6927 int fld_bit_len, bit_incr;
6928 int f;
6929
6930 /* Compute the number of fields in this record type that are going
6931 to be processed: unless keep_dynamic_fields, this includes only
6932 fields whose position and length are static will be processed. */
6933 if (keep_dynamic_fields)
6934 nfields = TYPE_NFIELDS (type);
6935 else
6936 {
6937 nfields = 0;
6938 while (nfields < TYPE_NFIELDS (type)
6939 && !ada_is_variant_part (type, nfields)
6940 && !is_dynamic_field (type, nfields))
6941 nfields++;
6942 }
6943
6944 rtype = alloc_type (TYPE_OBJFILE (type));
6945 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6946 INIT_CPLUS_SPECIFIC (rtype);
6947 TYPE_NFIELDS (rtype) = nfields;
6948 TYPE_FIELDS (rtype) = (struct field *)
6949 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6950 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6951 TYPE_NAME (rtype) = ada_type_name (type);
6952 TYPE_TAG_NAME (rtype) = NULL;
6953 TYPE_FIXED_INSTANCE (rtype) = 1;
6954
6955 off = 0;
6956 bit_len = 0;
6957 variant_field = -1;
6958
6959 for (f = 0; f < nfields; f += 1)
6960 {
6961 off = align_value (off, field_alignment (type, f))
6962 + TYPE_FIELD_BITPOS (type, f);
6963 TYPE_FIELD_BITPOS (rtype, f) = off;
6964 TYPE_FIELD_BITSIZE (rtype, f) = 0;
6965
6966 if (ada_is_variant_part (type, f))
6967 {
6968 variant_field = f;
6969 fld_bit_len = bit_incr = 0;
6970 }
6971 else if (is_dynamic_field (type, f))
6972 {
6973 if (dval0 == NULL)
6974 dval = value_from_contents_and_address (rtype, valaddr, address);
6975 else
6976 dval = dval0;
6977
6978 /* Get the fixed type of the field. Note that, in this case, we
6979 do not want to get the real type out of the tag: if the current
6980 field is the parent part of a tagged record, we will get the
6981 tag of the object. Clearly wrong: the real type of the parent
6982 is not the real type of the child. We would end up in an infinite
6983 loop. */
6984 TYPE_FIELD_TYPE (rtype, f) =
6985 ada_to_fixed_type
6986 (ada_get_base_type
6987 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
6988 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6989 cond_offset_target (address, off / TARGET_CHAR_BIT), dval, 0);
6990 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6991 bit_incr = fld_bit_len =
6992 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6993 }
6994 else
6995 {
6996 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6997 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6998 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6999 bit_incr = fld_bit_len =
7000 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7001 else
7002 bit_incr = fld_bit_len =
7003 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
7004 }
7005 if (off + fld_bit_len > bit_len)
7006 bit_len = off + fld_bit_len;
7007 off += bit_incr;
7008 TYPE_LENGTH (rtype) =
7009 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7010 }
7011
7012 /* We handle the variant part, if any, at the end because of certain
7013 odd cases in which it is re-ordered so as NOT the last field of
7014 the record. This can happen in the presence of representation
7015 clauses. */
7016 if (variant_field >= 0)
7017 {
7018 struct type *branch_type;
7019
7020 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7021
7022 if (dval0 == NULL)
7023 dval = value_from_contents_and_address (rtype, valaddr, address);
7024 else
7025 dval = dval0;
7026
7027 branch_type =
7028 to_fixed_variant_branch_type
7029 (TYPE_FIELD_TYPE (type, variant_field),
7030 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7031 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7032 if (branch_type == NULL)
7033 {
7034 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7035 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7036 TYPE_NFIELDS (rtype) -= 1;
7037 }
7038 else
7039 {
7040 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7041 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7042 fld_bit_len =
7043 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7044 TARGET_CHAR_BIT;
7045 if (off + fld_bit_len > bit_len)
7046 bit_len = off + fld_bit_len;
7047 TYPE_LENGTH (rtype) =
7048 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7049 }
7050 }
7051
7052 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7053 should contain the alignment of that record, which should be a strictly
7054 positive value. If null or negative, then something is wrong, most
7055 probably in the debug info. In that case, we don't round up the size
7056 of the resulting type. If this record is not part of another structure,
7057 the current RTYPE length might be good enough for our purposes. */
7058 if (TYPE_LENGTH (type) <= 0)
7059 {
7060 if (TYPE_NAME (rtype))
7061 warning (_("Invalid type size for `%s' detected: %d."),
7062 TYPE_NAME (rtype), TYPE_LENGTH (type));
7063 else
7064 warning (_("Invalid type size for <unnamed> detected: %d."),
7065 TYPE_LENGTH (type));
7066 }
7067 else
7068 {
7069 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7070 TYPE_LENGTH (type));
7071 }
7072
7073 value_free_to_mark (mark);
7074 if (TYPE_LENGTH (rtype) > varsize_limit)
7075 error (_("record type with dynamic size is larger than varsize-limit"));
7076 return rtype;
7077 }
7078
7079 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7080 of 1. */
7081
7082 static struct type *
7083 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7084 CORE_ADDR address, struct value *dval0)
7085 {
7086 return ada_template_to_fixed_record_type_1 (type, valaddr,
7087 address, dval0, 1);
7088 }
7089
7090 /* An ordinary record type in which ___XVL-convention fields and
7091 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7092 static approximations, containing all possible fields. Uses
7093 no runtime values. Useless for use in values, but that's OK,
7094 since the results are used only for type determinations. Works on both
7095 structs and unions. Representation note: to save space, we memorize
7096 the result of this function in the TYPE_TARGET_TYPE of the
7097 template type. */
7098
7099 static struct type *
7100 template_to_static_fixed_type (struct type *type0)
7101 {
7102 struct type *type;
7103 int nfields;
7104 int f;
7105
7106 if (TYPE_TARGET_TYPE (type0) != NULL)
7107 return TYPE_TARGET_TYPE (type0);
7108
7109 nfields = TYPE_NFIELDS (type0);
7110 type = type0;
7111
7112 for (f = 0; f < nfields; f += 1)
7113 {
7114 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7115 struct type *new_type;
7116
7117 if (is_dynamic_field (type0, f))
7118 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7119 else
7120 new_type = static_unwrap_type (field_type);
7121 if (type == type0 && new_type != field_type)
7122 {
7123 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
7124 TYPE_CODE (type) = TYPE_CODE (type0);
7125 INIT_CPLUS_SPECIFIC (type);
7126 TYPE_NFIELDS (type) = nfields;
7127 TYPE_FIELDS (type) = (struct field *)
7128 TYPE_ALLOC (type, nfields * sizeof (struct field));
7129 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7130 sizeof (struct field) * nfields);
7131 TYPE_NAME (type) = ada_type_name (type0);
7132 TYPE_TAG_NAME (type) = NULL;
7133 TYPE_FIXED_INSTANCE (type) = 1;
7134 TYPE_LENGTH (type) = 0;
7135 }
7136 TYPE_FIELD_TYPE (type, f) = new_type;
7137 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7138 }
7139 return type;
7140 }
7141
7142 /* Given an object of type TYPE whose contents are at VALADDR and
7143 whose address in memory is ADDRESS, returns a revision of TYPE --
7144 a non-dynamic-sized record with a variant part -- in which
7145 the variant part is replaced with the appropriate branch. Looks
7146 for discriminant values in DVAL0, which can be NULL if the record
7147 contains the necessary discriminant values. */
7148
7149 static struct type *
7150 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7151 CORE_ADDR address, struct value *dval0)
7152 {
7153 struct value *mark = value_mark ();
7154 struct value *dval;
7155 struct type *rtype;
7156 struct type *branch_type;
7157 int nfields = TYPE_NFIELDS (type);
7158 int variant_field = variant_field_index (type);
7159
7160 if (variant_field == -1)
7161 return type;
7162
7163 if (dval0 == NULL)
7164 dval = value_from_contents_and_address (type, valaddr, address);
7165 else
7166 dval = dval0;
7167
7168 rtype = alloc_type (TYPE_OBJFILE (type));
7169 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7170 INIT_CPLUS_SPECIFIC (rtype);
7171 TYPE_NFIELDS (rtype) = nfields;
7172 TYPE_FIELDS (rtype) =
7173 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7174 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7175 sizeof (struct field) * nfields);
7176 TYPE_NAME (rtype) = ada_type_name (type);
7177 TYPE_TAG_NAME (rtype) = NULL;
7178 TYPE_FIXED_INSTANCE (rtype) = 1;
7179 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7180
7181 branch_type = to_fixed_variant_branch_type
7182 (TYPE_FIELD_TYPE (type, variant_field),
7183 cond_offset_host (valaddr,
7184 TYPE_FIELD_BITPOS (type, variant_field)
7185 / TARGET_CHAR_BIT),
7186 cond_offset_target (address,
7187 TYPE_FIELD_BITPOS (type, variant_field)
7188 / TARGET_CHAR_BIT), dval);
7189 if (branch_type == NULL)
7190 {
7191 int f;
7192 for (f = variant_field + 1; f < nfields; f += 1)
7193 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7194 TYPE_NFIELDS (rtype) -= 1;
7195 }
7196 else
7197 {
7198 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7199 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7200 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7201 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7202 }
7203 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7204
7205 value_free_to_mark (mark);
7206 return rtype;
7207 }
7208
7209 /* An ordinary record type (with fixed-length fields) that describes
7210 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7211 beginning of this section]. Any necessary discriminants' values
7212 should be in DVAL, a record value; it may be NULL if the object
7213 at ADDR itself contains any necessary discriminant values.
7214 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7215 values from the record are needed. Except in the case that DVAL,
7216 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7217 unchecked) is replaced by a particular branch of the variant.
7218
7219 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7220 is questionable and may be removed. It can arise during the
7221 processing of an unconstrained-array-of-record type where all the
7222 variant branches have exactly the same size. This is because in
7223 such cases, the compiler does not bother to use the XVS convention
7224 when encoding the record. I am currently dubious of this
7225 shortcut and suspect the compiler should be altered. FIXME. */
7226
7227 static struct type *
7228 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7229 CORE_ADDR address, struct value *dval)
7230 {
7231 struct type *templ_type;
7232
7233 if (TYPE_FIXED_INSTANCE (type0))
7234 return type0;
7235
7236 templ_type = dynamic_template_type (type0);
7237
7238 if (templ_type != NULL)
7239 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7240 else if (variant_field_index (type0) >= 0)
7241 {
7242 if (dval == NULL && valaddr == NULL && address == 0)
7243 return type0;
7244 return to_record_with_fixed_variant_part (type0, valaddr, address,
7245 dval);
7246 }
7247 else
7248 {
7249 TYPE_FIXED_INSTANCE (type0) = 1;
7250 return type0;
7251 }
7252
7253 }
7254
7255 /* An ordinary record type (with fixed-length fields) that describes
7256 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7257 union type. Any necessary discriminants' values should be in DVAL,
7258 a record value. That is, this routine selects the appropriate
7259 branch of the union at ADDR according to the discriminant value
7260 indicated in the union's type name. */
7261
7262 static struct type *
7263 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7264 CORE_ADDR address, struct value *dval)
7265 {
7266 int which;
7267 struct type *templ_type;
7268 struct type *var_type;
7269
7270 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7271 var_type = TYPE_TARGET_TYPE (var_type0);
7272 else
7273 var_type = var_type0;
7274
7275 templ_type = ada_find_parallel_type (var_type, "___XVU");
7276
7277 if (templ_type != NULL)
7278 var_type = templ_type;
7279
7280 which =
7281 ada_which_variant_applies (var_type,
7282 value_type (dval), value_contents (dval));
7283
7284 if (which < 0)
7285 return empty_record (TYPE_OBJFILE (var_type));
7286 else if (is_dynamic_field (var_type, which))
7287 return to_fixed_record_type
7288 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7289 valaddr, address, dval);
7290 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7291 return
7292 to_fixed_record_type
7293 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7294 else
7295 return TYPE_FIELD_TYPE (var_type, which);
7296 }
7297
7298 /* Assuming that TYPE0 is an array type describing the type of a value
7299 at ADDR, and that DVAL describes a record containing any
7300 discriminants used in TYPE0, returns a type for the value that
7301 contains no dynamic components (that is, no components whose sizes
7302 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7303 true, gives an error message if the resulting type's size is over
7304 varsize_limit. */
7305
7306 static struct type *
7307 to_fixed_array_type (struct type *type0, struct value *dval,
7308 int ignore_too_big)
7309 {
7310 struct type *index_type_desc;
7311 struct type *result;
7312
7313 if (ada_is_packed_array_type (type0) /* revisit? */
7314 || TYPE_FIXED_INSTANCE (type0))
7315 return type0;
7316
7317 index_type_desc = ada_find_parallel_type (type0, "___XA");
7318 if (index_type_desc == NULL)
7319 {
7320 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7321 /* NOTE: elt_type---the fixed version of elt_type0---should never
7322 depend on the contents of the array in properly constructed
7323 debugging data. */
7324 /* Create a fixed version of the array element type.
7325 We're not providing the address of an element here,
7326 and thus the actual object value cannot be inspected to do
7327 the conversion. This should not be a problem, since arrays of
7328 unconstrained objects are not allowed. In particular, all
7329 the elements of an array of a tagged type should all be of
7330 the same type specified in the debugging info. No need to
7331 consult the object tag. */
7332 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7333
7334 if (elt_type0 == elt_type)
7335 result = type0;
7336 else
7337 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7338 elt_type, TYPE_INDEX_TYPE (type0));
7339 }
7340 else
7341 {
7342 int i;
7343 struct type *elt_type0;
7344
7345 elt_type0 = type0;
7346 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7347 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7348
7349 /* NOTE: result---the fixed version of elt_type0---should never
7350 depend on the contents of the array in properly constructed
7351 debugging data. */
7352 /* Create a fixed version of the array element type.
7353 We're not providing the address of an element here,
7354 and thus the actual object value cannot be inspected to do
7355 the conversion. This should not be a problem, since arrays of
7356 unconstrained objects are not allowed. In particular, all
7357 the elements of an array of a tagged type should all be of
7358 the same type specified in the debugging info. No need to
7359 consult the object tag. */
7360 result =
7361 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7362 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7363 {
7364 struct type *range_type =
7365 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7366 dval, TYPE_OBJFILE (type0));
7367 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7368 result, range_type);
7369 }
7370 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7371 error (_("array type with dynamic size is larger than varsize-limit"));
7372 }
7373
7374 TYPE_FIXED_INSTANCE (result) = 1;
7375 return result;
7376 }
7377
7378
7379 /* A standard type (containing no dynamically sized components)
7380 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7381 DVAL describes a record containing any discriminants used in TYPE0,
7382 and may be NULL if there are none, or if the object of type TYPE at
7383 ADDRESS or in VALADDR contains these discriminants.
7384
7385 If CHECK_TAG is not null, in the case of tagged types, this function
7386 attempts to locate the object's tag and use it to compute the actual
7387 type. However, when ADDRESS is null, we cannot use it to determine the
7388 location of the tag, and therefore compute the tagged type's actual type.
7389 So we return the tagged type without consulting the tag. */
7390
7391 static struct type *
7392 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7393 CORE_ADDR address, struct value *dval, int check_tag)
7394 {
7395 type = ada_check_typedef (type);
7396 switch (TYPE_CODE (type))
7397 {
7398 default:
7399 return type;
7400 case TYPE_CODE_STRUCT:
7401 {
7402 struct type *static_type = to_static_fixed_type (type);
7403 struct type *fixed_record_type =
7404 to_fixed_record_type (type, valaddr, address, NULL);
7405 /* If STATIC_TYPE is a tagged type and we know the object's address,
7406 then we can determine its tag, and compute the object's actual
7407 type from there. Note that we have to use the fixed record
7408 type (the parent part of the record may have dynamic fields
7409 and the way the location of _tag is expressed may depend on
7410 them). */
7411
7412 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7413 {
7414 struct type *real_type =
7415 type_from_tag (value_tag_from_contents_and_address
7416 (fixed_record_type,
7417 valaddr,
7418 address));
7419 if (real_type != NULL)
7420 return to_fixed_record_type (real_type, valaddr, address, NULL);
7421 }
7422 return fixed_record_type;
7423 }
7424 case TYPE_CODE_ARRAY:
7425 return to_fixed_array_type (type, dval, 1);
7426 case TYPE_CODE_UNION:
7427 if (dval == NULL)
7428 return type;
7429 else
7430 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7431 }
7432 }
7433
7434 /* The same as ada_to_fixed_type_1, except that it preserves the type
7435 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7436 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7437
7438 struct type *
7439 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7440 CORE_ADDR address, struct value *dval, int check_tag)
7441
7442 {
7443 struct type *fixed_type =
7444 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7445
7446 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7447 && TYPE_TARGET_TYPE (type) == fixed_type)
7448 return type;
7449
7450 return fixed_type;
7451 }
7452
7453 /* A standard (static-sized) type corresponding as well as possible to
7454 TYPE0, but based on no runtime data. */
7455
7456 static struct type *
7457 to_static_fixed_type (struct type *type0)
7458 {
7459 struct type *type;
7460
7461 if (type0 == NULL)
7462 return NULL;
7463
7464 if (TYPE_FIXED_INSTANCE (type0))
7465 return type0;
7466
7467 type0 = ada_check_typedef (type0);
7468
7469 switch (TYPE_CODE (type0))
7470 {
7471 default:
7472 return type0;
7473 case TYPE_CODE_STRUCT:
7474 type = dynamic_template_type (type0);
7475 if (type != NULL)
7476 return template_to_static_fixed_type (type);
7477 else
7478 return template_to_static_fixed_type (type0);
7479 case TYPE_CODE_UNION:
7480 type = ada_find_parallel_type (type0, "___XVU");
7481 if (type != NULL)
7482 return template_to_static_fixed_type (type);
7483 else
7484 return template_to_static_fixed_type (type0);
7485 }
7486 }
7487
7488 /* A static approximation of TYPE with all type wrappers removed. */
7489
7490 static struct type *
7491 static_unwrap_type (struct type *type)
7492 {
7493 if (ada_is_aligner_type (type))
7494 {
7495 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
7496 if (ada_type_name (type1) == NULL)
7497 TYPE_NAME (type1) = ada_type_name (type);
7498
7499 return static_unwrap_type (type1);
7500 }
7501 else
7502 {
7503 struct type *raw_real_type = ada_get_base_type (type);
7504 if (raw_real_type == type)
7505 return type;
7506 else
7507 return to_static_fixed_type (raw_real_type);
7508 }
7509 }
7510
7511 /* In some cases, incomplete and private types require
7512 cross-references that are not resolved as records (for example,
7513 type Foo;
7514 type FooP is access Foo;
7515 V: FooP;
7516 type Foo is array ...;
7517 ). In these cases, since there is no mechanism for producing
7518 cross-references to such types, we instead substitute for FooP a
7519 stub enumeration type that is nowhere resolved, and whose tag is
7520 the name of the actual type. Call these types "non-record stubs". */
7521
7522 /* A type equivalent to TYPE that is not a non-record stub, if one
7523 exists, otherwise TYPE. */
7524
7525 struct type *
7526 ada_check_typedef (struct type *type)
7527 {
7528 if (type == NULL)
7529 return NULL;
7530
7531 CHECK_TYPEDEF (type);
7532 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
7533 || !TYPE_STUB (type)
7534 || TYPE_TAG_NAME (type) == NULL)
7535 return type;
7536 else
7537 {
7538 char *name = TYPE_TAG_NAME (type);
7539 struct type *type1 = ada_find_any_type (name);
7540 return (type1 == NULL) ? type : type1;
7541 }
7542 }
7543
7544 /* A value representing the data at VALADDR/ADDRESS as described by
7545 type TYPE0, but with a standard (static-sized) type that correctly
7546 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7547 type, then return VAL0 [this feature is simply to avoid redundant
7548 creation of struct values]. */
7549
7550 static struct value *
7551 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7552 struct value *val0)
7553 {
7554 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
7555 if (type == type0 && val0 != NULL)
7556 return val0;
7557 else
7558 return value_from_contents_and_address (type, 0, address);
7559 }
7560
7561 /* A value representing VAL, but with a standard (static-sized) type
7562 that correctly describes it. Does not necessarily create a new
7563 value. */
7564
7565 static struct value *
7566 ada_to_fixed_value (struct value *val)
7567 {
7568 return ada_to_fixed_value_create (value_type (val),
7569 VALUE_ADDRESS (val) + value_offset (val),
7570 val);
7571 }
7572
7573 /* A value representing VAL, but with a standard (static-sized) type
7574 chosen to approximate the real type of VAL as well as possible, but
7575 without consulting any runtime values. For Ada dynamic-sized
7576 types, therefore, the type of the result is likely to be inaccurate. */
7577
7578 struct value *
7579 ada_to_static_fixed_value (struct value *val)
7580 {
7581 struct type *type =
7582 to_static_fixed_type (static_unwrap_type (value_type (val)));
7583 if (type == value_type (val))
7584 return val;
7585 else
7586 return coerce_unspec_val_to_type (val, type);
7587 }
7588 \f
7589
7590 /* Attributes */
7591
7592 /* Table mapping attribute numbers to names.
7593 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
7594
7595 static const char *attribute_names[] = {
7596 "<?>",
7597
7598 "first",
7599 "last",
7600 "length",
7601 "image",
7602 "max",
7603 "min",
7604 "modulus",
7605 "pos",
7606 "size",
7607 "tag",
7608 "val",
7609 0
7610 };
7611
7612 const char *
7613 ada_attribute_name (enum exp_opcode n)
7614 {
7615 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7616 return attribute_names[n - OP_ATR_FIRST + 1];
7617 else
7618 return attribute_names[0];
7619 }
7620
7621 /* Evaluate the 'POS attribute applied to ARG. */
7622
7623 static LONGEST
7624 pos_atr (struct value *arg)
7625 {
7626 struct value *val = coerce_ref (arg);
7627 struct type *type = value_type (val);
7628
7629 if (!discrete_type_p (type))
7630 error (_("'POS only defined on discrete types"));
7631
7632 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7633 {
7634 int i;
7635 LONGEST v = value_as_long (val);
7636
7637 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7638 {
7639 if (v == TYPE_FIELD_BITPOS (type, i))
7640 return i;
7641 }
7642 error (_("enumeration value is invalid: can't find 'POS"));
7643 }
7644 else
7645 return value_as_long (val);
7646 }
7647
7648 static struct value *
7649 value_pos_atr (struct value *arg)
7650 {
7651 return value_from_longest (builtin_type_int, pos_atr (arg));
7652 }
7653
7654 /* Evaluate the TYPE'VAL attribute applied to ARG. */
7655
7656 static struct value *
7657 value_val_atr (struct type *type, struct value *arg)
7658 {
7659 if (!discrete_type_p (type))
7660 error (_("'VAL only defined on discrete types"));
7661 if (!integer_type_p (value_type (arg)))
7662 error (_("'VAL requires integral argument"));
7663
7664 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7665 {
7666 long pos = value_as_long (arg);
7667 if (pos < 0 || pos >= TYPE_NFIELDS (type))
7668 error (_("argument to 'VAL out of range"));
7669 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
7670 }
7671 else
7672 return value_from_longest (type, value_as_long (arg));
7673 }
7674 \f
7675
7676 /* Evaluation */
7677
7678 /* True if TYPE appears to be an Ada character type.
7679 [At the moment, this is true only for Character and Wide_Character;
7680 It is a heuristic test that could stand improvement]. */
7681
7682 int
7683 ada_is_character_type (struct type *type)
7684 {
7685 const char *name;
7686
7687 /* If the type code says it's a character, then assume it really is,
7688 and don't check any further. */
7689 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7690 return 1;
7691
7692 /* Otherwise, assume it's a character type iff it is a discrete type
7693 with a known character type name. */
7694 name = ada_type_name (type);
7695 return (name != NULL
7696 && (TYPE_CODE (type) == TYPE_CODE_INT
7697 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7698 && (strcmp (name, "character") == 0
7699 || strcmp (name, "wide_character") == 0
7700 || strcmp (name, "wide_wide_character") == 0
7701 || strcmp (name, "unsigned char") == 0));
7702 }
7703
7704 /* True if TYPE appears to be an Ada string type. */
7705
7706 int
7707 ada_is_string_type (struct type *type)
7708 {
7709 type = ada_check_typedef (type);
7710 if (type != NULL
7711 && TYPE_CODE (type) != TYPE_CODE_PTR
7712 && (ada_is_simple_array_type (type)
7713 || ada_is_array_descriptor_type (type))
7714 && ada_array_arity (type) == 1)
7715 {
7716 struct type *elttype = ada_array_element_type (type, 1);
7717
7718 return ada_is_character_type (elttype);
7719 }
7720 else
7721 return 0;
7722 }
7723
7724
7725 /* True if TYPE is a struct type introduced by the compiler to force the
7726 alignment of a value. Such types have a single field with a
7727 distinctive name. */
7728
7729 int
7730 ada_is_aligner_type (struct type *type)
7731 {
7732 type = ada_check_typedef (type);
7733
7734 /* If we can find a parallel XVS type, then the XVS type should
7735 be used instead of this type. And hence, this is not an aligner
7736 type. */
7737 if (ada_find_parallel_type (type, "___XVS") != NULL)
7738 return 0;
7739
7740 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
7741 && TYPE_NFIELDS (type) == 1
7742 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
7743 }
7744
7745 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
7746 the parallel type. */
7747
7748 struct type *
7749 ada_get_base_type (struct type *raw_type)
7750 {
7751 struct type *real_type_namer;
7752 struct type *raw_real_type;
7753
7754 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7755 return raw_type;
7756
7757 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
7758 if (real_type_namer == NULL
7759 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7760 || TYPE_NFIELDS (real_type_namer) != 1)
7761 return raw_type;
7762
7763 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
7764 if (raw_real_type == NULL)
7765 return raw_type;
7766 else
7767 return raw_real_type;
7768 }
7769
7770 /* The type of value designated by TYPE, with all aligners removed. */
7771
7772 struct type *
7773 ada_aligned_type (struct type *type)
7774 {
7775 if (ada_is_aligner_type (type))
7776 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7777 else
7778 return ada_get_base_type (type);
7779 }
7780
7781
7782 /* The address of the aligned value in an object at address VALADDR
7783 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
7784
7785 const gdb_byte *
7786 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
7787 {
7788 if (ada_is_aligner_type (type))
7789 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
7790 valaddr +
7791 TYPE_FIELD_BITPOS (type,
7792 0) / TARGET_CHAR_BIT);
7793 else
7794 return valaddr;
7795 }
7796
7797
7798
7799 /* The printed representation of an enumeration literal with encoded
7800 name NAME. The value is good to the next call of ada_enum_name. */
7801 const char *
7802 ada_enum_name (const char *name)
7803 {
7804 static char *result;
7805 static size_t result_len = 0;
7806 char *tmp;
7807
7808 /* First, unqualify the enumeration name:
7809 1. Search for the last '.' character. If we find one, then skip
7810 all the preceeding characters, the unqualified name starts
7811 right after that dot.
7812 2. Otherwise, we may be debugging on a target where the compiler
7813 translates dots into "__". Search forward for double underscores,
7814 but stop searching when we hit an overloading suffix, which is
7815 of the form "__" followed by digits. */
7816
7817 tmp = strrchr (name, '.');
7818 if (tmp != NULL)
7819 name = tmp + 1;
7820 else
7821 {
7822 while ((tmp = strstr (name, "__")) != NULL)
7823 {
7824 if (isdigit (tmp[2]))
7825 break;
7826 else
7827 name = tmp + 2;
7828 }
7829 }
7830
7831 if (name[0] == 'Q')
7832 {
7833 int v;
7834 if (name[1] == 'U' || name[1] == 'W')
7835 {
7836 if (sscanf (name + 2, "%x", &v) != 1)
7837 return name;
7838 }
7839 else
7840 return name;
7841
7842 GROW_VECT (result, result_len, 16);
7843 if (isascii (v) && isprint (v))
7844 sprintf (result, "'%c'", v);
7845 else if (name[1] == 'U')
7846 sprintf (result, "[\"%02x\"]", v);
7847 else
7848 sprintf (result, "[\"%04x\"]", v);
7849
7850 return result;
7851 }
7852 else
7853 {
7854 tmp = strstr (name, "__");
7855 if (tmp == NULL)
7856 tmp = strstr (name, "$");
7857 if (tmp != NULL)
7858 {
7859 GROW_VECT (result, result_len, tmp - name + 1);
7860 strncpy (result, name, tmp - name);
7861 result[tmp - name] = '\0';
7862 return result;
7863 }
7864
7865 return name;
7866 }
7867 }
7868
7869 static struct value *
7870 evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
7871 enum noside noside)
7872 {
7873 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7874 (expect_type, exp, pos, noside);
7875 }
7876
7877 /* Evaluate the subexpression of EXP starting at *POS as for
7878 evaluate_type, updating *POS to point just past the evaluated
7879 expression. */
7880
7881 static struct value *
7882 evaluate_subexp_type (struct expression *exp, int *pos)
7883 {
7884 return (*exp->language_defn->la_exp_desc->evaluate_exp)
7885 (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
7886 }
7887
7888 /* If VAL is wrapped in an aligner or subtype wrapper, return the
7889 value it wraps. */
7890
7891 static struct value *
7892 unwrap_value (struct value *val)
7893 {
7894 struct type *type = ada_check_typedef (value_type (val));
7895 if (ada_is_aligner_type (type))
7896 {
7897 struct value *v = ada_value_struct_elt (val, "F", 0);
7898 struct type *val_type = ada_check_typedef (value_type (v));
7899 if (ada_type_name (val_type) == NULL)
7900 TYPE_NAME (val_type) = ada_type_name (type);
7901
7902 return unwrap_value (v);
7903 }
7904 else
7905 {
7906 struct type *raw_real_type =
7907 ada_check_typedef (ada_get_base_type (type));
7908
7909 if (type == raw_real_type)
7910 return val;
7911
7912 return
7913 coerce_unspec_val_to_type
7914 (val, ada_to_fixed_type (raw_real_type, 0,
7915 VALUE_ADDRESS (val) + value_offset (val),
7916 NULL, 1));
7917 }
7918 }
7919
7920 static struct value *
7921 cast_to_fixed (struct type *type, struct value *arg)
7922 {
7923 LONGEST val;
7924
7925 if (type == value_type (arg))
7926 return arg;
7927 else if (ada_is_fixed_point_type (value_type (arg)))
7928 val = ada_float_to_fixed (type,
7929 ada_fixed_to_float (value_type (arg),
7930 value_as_long (arg)));
7931 else
7932 {
7933 DOUBLEST argd =
7934 value_as_double (value_cast (builtin_type_double, value_copy (arg)));
7935 val = ada_float_to_fixed (type, argd);
7936 }
7937
7938 return value_from_longest (type, val);
7939 }
7940
7941 static struct value *
7942 cast_from_fixed_to_double (struct value *arg)
7943 {
7944 DOUBLEST val = ada_fixed_to_float (value_type (arg),
7945 value_as_long (arg));
7946 return value_from_double (builtin_type_double, val);
7947 }
7948
7949 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7950 return the converted value. */
7951
7952 static struct value *
7953 coerce_for_assign (struct type *type, struct value *val)
7954 {
7955 struct type *type2 = value_type (val);
7956 if (type == type2)
7957 return val;
7958
7959 type2 = ada_check_typedef (type2);
7960 type = ada_check_typedef (type);
7961
7962 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7963 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7964 {
7965 val = ada_value_ind (val);
7966 type2 = value_type (val);
7967 }
7968
7969 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
7970 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7971 {
7972 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
7973 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7974 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
7975 error (_("Incompatible types in assignment"));
7976 deprecated_set_value_type (val, type);
7977 }
7978 return val;
7979 }
7980
7981 static struct value *
7982 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7983 {
7984 struct value *val;
7985 struct type *type1, *type2;
7986 LONGEST v, v1, v2;
7987
7988 arg1 = coerce_ref (arg1);
7989 arg2 = coerce_ref (arg2);
7990 type1 = base_type (ada_check_typedef (value_type (arg1)));
7991 type2 = base_type (ada_check_typedef (value_type (arg2)));
7992
7993 if (TYPE_CODE (type1) != TYPE_CODE_INT
7994 || TYPE_CODE (type2) != TYPE_CODE_INT)
7995 return value_binop (arg1, arg2, op);
7996
7997 switch (op)
7998 {
7999 case BINOP_MOD:
8000 case BINOP_DIV:
8001 case BINOP_REM:
8002 break;
8003 default:
8004 return value_binop (arg1, arg2, op);
8005 }
8006
8007 v2 = value_as_long (arg2);
8008 if (v2 == 0)
8009 error (_("second operand of %s must not be zero."), op_string (op));
8010
8011 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8012 return value_binop (arg1, arg2, op);
8013
8014 v1 = value_as_long (arg1);
8015 switch (op)
8016 {
8017 case BINOP_DIV:
8018 v = v1 / v2;
8019 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8020 v += v > 0 ? -1 : 1;
8021 break;
8022 case BINOP_REM:
8023 v = v1 % v2;
8024 if (v * v1 < 0)
8025 v -= v2;
8026 break;
8027 default:
8028 /* Should not reach this point. */
8029 v = 0;
8030 }
8031
8032 val = allocate_value (type1);
8033 store_unsigned_integer (value_contents_raw (val),
8034 TYPE_LENGTH (value_type (val)), v);
8035 return val;
8036 }
8037
8038 static int
8039 ada_value_equal (struct value *arg1, struct value *arg2)
8040 {
8041 if (ada_is_direct_array_type (value_type (arg1))
8042 || ada_is_direct_array_type (value_type (arg2)))
8043 {
8044 /* Automatically dereference any array reference before
8045 we attempt to perform the comparison. */
8046 arg1 = ada_coerce_ref (arg1);
8047 arg2 = ada_coerce_ref (arg2);
8048
8049 arg1 = ada_coerce_to_simple_array (arg1);
8050 arg2 = ada_coerce_to_simple_array (arg2);
8051 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8052 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8053 error (_("Attempt to compare array with non-array"));
8054 /* FIXME: The following works only for types whose
8055 representations use all bits (no padding or undefined bits)
8056 and do not have user-defined equality. */
8057 return
8058 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8059 && memcmp (value_contents (arg1), value_contents (arg2),
8060 TYPE_LENGTH (value_type (arg1))) == 0;
8061 }
8062 return value_equal (arg1, arg2);
8063 }
8064
8065 /* Total number of component associations in the aggregate starting at
8066 index PC in EXP. Assumes that index PC is the start of an
8067 OP_AGGREGATE. */
8068
8069 static int
8070 num_component_specs (struct expression *exp, int pc)
8071 {
8072 int n, m, i;
8073 m = exp->elts[pc + 1].longconst;
8074 pc += 3;
8075 n = 0;
8076 for (i = 0; i < m; i += 1)
8077 {
8078 switch (exp->elts[pc].opcode)
8079 {
8080 default:
8081 n += 1;
8082 break;
8083 case OP_CHOICES:
8084 n += exp->elts[pc + 1].longconst;
8085 break;
8086 }
8087 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8088 }
8089 return n;
8090 }
8091
8092 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8093 component of LHS (a simple array or a record), updating *POS past
8094 the expression, assuming that LHS is contained in CONTAINER. Does
8095 not modify the inferior's memory, nor does it modify LHS (unless
8096 LHS == CONTAINER). */
8097
8098 static void
8099 assign_component (struct value *container, struct value *lhs, LONGEST index,
8100 struct expression *exp, int *pos)
8101 {
8102 struct value *mark = value_mark ();
8103 struct value *elt;
8104 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8105 {
8106 struct value *index_val = value_from_longest (builtin_type_int, index);
8107 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8108 }
8109 else
8110 {
8111 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8112 elt = ada_to_fixed_value (unwrap_value (elt));
8113 }
8114
8115 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8116 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8117 else
8118 value_assign_to_component (container, elt,
8119 ada_evaluate_subexp (NULL, exp, pos,
8120 EVAL_NORMAL));
8121
8122 value_free_to_mark (mark);
8123 }
8124
8125 /* Assuming that LHS represents an lvalue having a record or array
8126 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8127 of that aggregate's value to LHS, advancing *POS past the
8128 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8129 lvalue containing LHS (possibly LHS itself). Does not modify
8130 the inferior's memory, nor does it modify the contents of
8131 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8132
8133 static struct value *
8134 assign_aggregate (struct value *container,
8135 struct value *lhs, struct expression *exp,
8136 int *pos, enum noside noside)
8137 {
8138 struct type *lhs_type;
8139 int n = exp->elts[*pos+1].longconst;
8140 LONGEST low_index, high_index;
8141 int num_specs;
8142 LONGEST *indices;
8143 int max_indices, num_indices;
8144 int is_array_aggregate;
8145 int i;
8146 struct value *mark = value_mark ();
8147
8148 *pos += 3;
8149 if (noside != EVAL_NORMAL)
8150 {
8151 int i;
8152 for (i = 0; i < n; i += 1)
8153 ada_evaluate_subexp (NULL, exp, pos, noside);
8154 return container;
8155 }
8156
8157 container = ada_coerce_ref (container);
8158 if (ada_is_direct_array_type (value_type (container)))
8159 container = ada_coerce_to_simple_array (container);
8160 lhs = ada_coerce_ref (lhs);
8161 if (!deprecated_value_modifiable (lhs))
8162 error (_("Left operand of assignment is not a modifiable lvalue."));
8163
8164 lhs_type = value_type (lhs);
8165 if (ada_is_direct_array_type (lhs_type))
8166 {
8167 lhs = ada_coerce_to_simple_array (lhs);
8168 lhs_type = value_type (lhs);
8169 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8170 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8171 is_array_aggregate = 1;
8172 }
8173 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8174 {
8175 low_index = 0;
8176 high_index = num_visible_fields (lhs_type) - 1;
8177 is_array_aggregate = 0;
8178 }
8179 else
8180 error (_("Left-hand side must be array or record."));
8181
8182 num_specs = num_component_specs (exp, *pos - 3);
8183 max_indices = 4 * num_specs + 4;
8184 indices = alloca (max_indices * sizeof (indices[0]));
8185 indices[0] = indices[1] = low_index - 1;
8186 indices[2] = indices[3] = high_index + 1;
8187 num_indices = 4;
8188
8189 for (i = 0; i < n; i += 1)
8190 {
8191 switch (exp->elts[*pos].opcode)
8192 {
8193 case OP_CHOICES:
8194 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8195 &num_indices, max_indices,
8196 low_index, high_index);
8197 break;
8198 case OP_POSITIONAL:
8199 aggregate_assign_positional (container, lhs, exp, pos, indices,
8200 &num_indices, max_indices,
8201 low_index, high_index);
8202 break;
8203 case OP_OTHERS:
8204 if (i != n-1)
8205 error (_("Misplaced 'others' clause"));
8206 aggregate_assign_others (container, lhs, exp, pos, indices,
8207 num_indices, low_index, high_index);
8208 break;
8209 default:
8210 error (_("Internal error: bad aggregate clause"));
8211 }
8212 }
8213
8214 return container;
8215 }
8216
8217 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8218 construct at *POS, updating *POS past the construct, given that
8219 the positions are relative to lower bound LOW, where HIGH is the
8220 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8221 updating *NUM_INDICES as needed. CONTAINER is as for
8222 assign_aggregate. */
8223 static void
8224 aggregate_assign_positional (struct value *container,
8225 struct value *lhs, struct expression *exp,
8226 int *pos, LONGEST *indices, int *num_indices,
8227 int max_indices, LONGEST low, LONGEST high)
8228 {
8229 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8230
8231 if (ind - 1 == high)
8232 warning (_("Extra components in aggregate ignored."));
8233 if (ind <= high)
8234 {
8235 add_component_interval (ind, ind, indices, num_indices, max_indices);
8236 *pos += 3;
8237 assign_component (container, lhs, ind, exp, pos);
8238 }
8239 else
8240 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8241 }
8242
8243 /* Assign into the components of LHS indexed by the OP_CHOICES
8244 construct at *POS, updating *POS past the construct, given that
8245 the allowable indices are LOW..HIGH. Record the indices assigned
8246 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8247 needed. CONTAINER is as for assign_aggregate. */
8248 static void
8249 aggregate_assign_from_choices (struct value *container,
8250 struct value *lhs, struct expression *exp,
8251 int *pos, LONGEST *indices, int *num_indices,
8252 int max_indices, LONGEST low, LONGEST high)
8253 {
8254 int j;
8255 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8256 int choice_pos, expr_pc;
8257 int is_array = ada_is_direct_array_type (value_type (lhs));
8258
8259 choice_pos = *pos += 3;
8260
8261 for (j = 0; j < n_choices; j += 1)
8262 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8263 expr_pc = *pos;
8264 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8265
8266 for (j = 0; j < n_choices; j += 1)
8267 {
8268 LONGEST lower, upper;
8269 enum exp_opcode op = exp->elts[choice_pos].opcode;
8270 if (op == OP_DISCRETE_RANGE)
8271 {
8272 choice_pos += 1;
8273 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8274 EVAL_NORMAL));
8275 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8276 EVAL_NORMAL));
8277 }
8278 else if (is_array)
8279 {
8280 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8281 EVAL_NORMAL));
8282 upper = lower;
8283 }
8284 else
8285 {
8286 int ind;
8287 char *name;
8288 switch (op)
8289 {
8290 case OP_NAME:
8291 name = &exp->elts[choice_pos + 2].string;
8292 break;
8293 case OP_VAR_VALUE:
8294 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8295 break;
8296 default:
8297 error (_("Invalid record component association."));
8298 }
8299 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8300 ind = 0;
8301 if (! find_struct_field (name, value_type (lhs), 0,
8302 NULL, NULL, NULL, NULL, &ind))
8303 error (_("Unknown component name: %s."), name);
8304 lower = upper = ind;
8305 }
8306
8307 if (lower <= upper && (lower < low || upper > high))
8308 error (_("Index in component association out of bounds."));
8309
8310 add_component_interval (lower, upper, indices, num_indices,
8311 max_indices);
8312 while (lower <= upper)
8313 {
8314 int pos1;
8315 pos1 = expr_pc;
8316 assign_component (container, lhs, lower, exp, &pos1);
8317 lower += 1;
8318 }
8319 }
8320 }
8321
8322 /* Assign the value of the expression in the OP_OTHERS construct in
8323 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8324 have not been previously assigned. The index intervals already assigned
8325 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8326 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8327 static void
8328 aggregate_assign_others (struct value *container,
8329 struct value *lhs, struct expression *exp,
8330 int *pos, LONGEST *indices, int num_indices,
8331 LONGEST low, LONGEST high)
8332 {
8333 int i;
8334 int expr_pc = *pos+1;
8335
8336 for (i = 0; i < num_indices - 2; i += 2)
8337 {
8338 LONGEST ind;
8339 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8340 {
8341 int pos;
8342 pos = expr_pc;
8343 assign_component (container, lhs, ind, exp, &pos);
8344 }
8345 }
8346 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8347 }
8348
8349 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8350 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8351 modifying *SIZE as needed. It is an error if *SIZE exceeds
8352 MAX_SIZE. The resulting intervals do not overlap. */
8353 static void
8354 add_component_interval (LONGEST low, LONGEST high,
8355 LONGEST* indices, int *size, int max_size)
8356 {
8357 int i, j;
8358 for (i = 0; i < *size; i += 2) {
8359 if (high >= indices[i] && low <= indices[i + 1])
8360 {
8361 int kh;
8362 for (kh = i + 2; kh < *size; kh += 2)
8363 if (high < indices[kh])
8364 break;
8365 if (low < indices[i])
8366 indices[i] = low;
8367 indices[i + 1] = indices[kh - 1];
8368 if (high > indices[i + 1])
8369 indices[i + 1] = high;
8370 memcpy (indices + i + 2, indices + kh, *size - kh);
8371 *size -= kh - i - 2;
8372 return;
8373 }
8374 else if (high < indices[i])
8375 break;
8376 }
8377
8378 if (*size == max_size)
8379 error (_("Internal error: miscounted aggregate components."));
8380 *size += 2;
8381 for (j = *size-1; j >= i+2; j -= 1)
8382 indices[j] = indices[j - 2];
8383 indices[i] = low;
8384 indices[i + 1] = high;
8385 }
8386
8387 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8388 is different. */
8389
8390 static struct value *
8391 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8392 {
8393 if (type == ada_check_typedef (value_type (arg2)))
8394 return arg2;
8395
8396 if (ada_is_fixed_point_type (type))
8397 return (cast_to_fixed (type, arg2));
8398
8399 if (ada_is_fixed_point_type (value_type (arg2)))
8400 return value_cast (type, cast_from_fixed_to_double (arg2));
8401
8402 return value_cast (type, arg2);
8403 }
8404
8405 static struct value *
8406 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
8407 int *pos, enum noside noside)
8408 {
8409 enum exp_opcode op;
8410 int tem, tem2, tem3;
8411 int pc;
8412 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8413 struct type *type;
8414 int nargs, oplen;
8415 struct value **argvec;
8416
8417 pc = *pos;
8418 *pos += 1;
8419 op = exp->elts[pc].opcode;
8420
8421 switch (op)
8422 {
8423 default:
8424 *pos -= 1;
8425 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8426 arg1 = unwrap_value (arg1);
8427
8428 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8429 then we need to perform the conversion manually, because
8430 evaluate_subexp_standard doesn't do it. This conversion is
8431 necessary in Ada because the different kinds of float/fixed
8432 types in Ada have different representations.
8433
8434 Similarly, we need to perform the conversion from OP_LONG
8435 ourselves. */
8436 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8437 arg1 = ada_value_cast (expect_type, arg1, noside);
8438
8439 return arg1;
8440
8441 case OP_STRING:
8442 {
8443 struct value *result;
8444 *pos -= 1;
8445 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8446 /* The result type will have code OP_STRING, bashed there from
8447 OP_ARRAY. Bash it back. */
8448 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8449 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
8450 return result;
8451 }
8452
8453 case UNOP_CAST:
8454 (*pos) += 2;
8455 type = exp->elts[pc + 1].type;
8456 arg1 = evaluate_subexp (type, exp, pos, noside);
8457 if (noside == EVAL_SKIP)
8458 goto nosideret;
8459 arg1 = ada_value_cast (type, arg1, noside);
8460 return arg1;
8461
8462 case UNOP_QUAL:
8463 (*pos) += 2;
8464 type = exp->elts[pc + 1].type;
8465 return ada_evaluate_subexp (type, exp, pos, noside);
8466
8467 case BINOP_ASSIGN:
8468 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8469 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8470 {
8471 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8472 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8473 return arg1;
8474 return ada_value_assign (arg1, arg1);
8475 }
8476 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8477 except if the lhs of our assignment is a convenience variable.
8478 In the case of assigning to a convenience variable, the lhs
8479 should be exactly the result of the evaluation of the rhs. */
8480 type = value_type (arg1);
8481 if (VALUE_LVAL (arg1) == lval_internalvar)
8482 type = NULL;
8483 arg2 = evaluate_subexp (type, exp, pos, noside);
8484 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8485 return arg1;
8486 if (ada_is_fixed_point_type (value_type (arg1)))
8487 arg2 = cast_to_fixed (value_type (arg1), arg2);
8488 else if (ada_is_fixed_point_type (value_type (arg2)))
8489 error
8490 (_("Fixed-point values must be assigned to fixed-point variables"));
8491 else
8492 arg2 = coerce_for_assign (value_type (arg1), arg2);
8493 return ada_value_assign (arg1, arg2);
8494
8495 case BINOP_ADD:
8496 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8497 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8498 if (noside == EVAL_SKIP)
8499 goto nosideret;
8500 if ((ada_is_fixed_point_type (value_type (arg1))
8501 || ada_is_fixed_point_type (value_type (arg2)))
8502 && value_type (arg1) != value_type (arg2))
8503 error (_("Operands of fixed-point addition must have the same type"));
8504 /* Do the addition, and cast the result to the type of the first
8505 argument. We cannot cast the result to a reference type, so if
8506 ARG1 is a reference type, find its underlying type. */
8507 type = value_type (arg1);
8508 while (TYPE_CODE (type) == TYPE_CODE_REF)
8509 type = TYPE_TARGET_TYPE (type);
8510 return value_cast (type, value_add (arg1, arg2));
8511
8512 case BINOP_SUB:
8513 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8514 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8515 if (noside == EVAL_SKIP)
8516 goto nosideret;
8517 if ((ada_is_fixed_point_type (value_type (arg1))
8518 || ada_is_fixed_point_type (value_type (arg2)))
8519 && value_type (arg1) != value_type (arg2))
8520 error (_("Operands of fixed-point subtraction must have the same type"));
8521 /* Do the substraction, and cast the result to the type of the first
8522 argument. We cannot cast the result to a reference type, so if
8523 ARG1 is a reference type, find its underlying type. */
8524 type = value_type (arg1);
8525 while (TYPE_CODE (type) == TYPE_CODE_REF)
8526 type = TYPE_TARGET_TYPE (type);
8527 return value_cast (type, value_sub (arg1, arg2));
8528
8529 case BINOP_MUL:
8530 case BINOP_DIV:
8531 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8532 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8533 if (noside == EVAL_SKIP)
8534 goto nosideret;
8535 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8536 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8537 return value_zero (value_type (arg1), not_lval);
8538 else
8539 {
8540 if (ada_is_fixed_point_type (value_type (arg1)))
8541 arg1 = cast_from_fixed_to_double (arg1);
8542 if (ada_is_fixed_point_type (value_type (arg2)))
8543 arg2 = cast_from_fixed_to_double (arg2);
8544 return ada_value_binop (arg1, arg2, op);
8545 }
8546
8547 case BINOP_REM:
8548 case BINOP_MOD:
8549 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8550 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8551 if (noside == EVAL_SKIP)
8552 goto nosideret;
8553 else if (noside == EVAL_AVOID_SIDE_EFFECTS
8554 && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
8555 return value_zero (value_type (arg1), not_lval);
8556 else
8557 return ada_value_binop (arg1, arg2, op);
8558
8559 case BINOP_EQUAL:
8560 case BINOP_NOTEQUAL:
8561 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8562 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
8563 if (noside == EVAL_SKIP)
8564 goto nosideret;
8565 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8566 tem = 0;
8567 else
8568 tem = ada_value_equal (arg1, arg2);
8569 if (op == BINOP_NOTEQUAL)
8570 tem = !tem;
8571 return value_from_longest (LA_BOOL_TYPE, (LONGEST) tem);
8572
8573 case UNOP_NEG:
8574 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8575 if (noside == EVAL_SKIP)
8576 goto nosideret;
8577 else if (ada_is_fixed_point_type (value_type (arg1)))
8578 return value_cast (value_type (arg1), value_neg (arg1));
8579 else
8580 return value_neg (arg1);
8581
8582 case BINOP_LOGICAL_AND:
8583 case BINOP_LOGICAL_OR:
8584 case UNOP_LOGICAL_NOT:
8585 {
8586 struct value *val;
8587
8588 *pos -= 1;
8589 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8590 return value_cast (LA_BOOL_TYPE, val);
8591 }
8592
8593 case BINOP_BITWISE_AND:
8594 case BINOP_BITWISE_IOR:
8595 case BINOP_BITWISE_XOR:
8596 {
8597 struct value *val;
8598
8599 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8600 *pos = pc;
8601 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8602
8603 return value_cast (value_type (arg1), val);
8604 }
8605
8606 case OP_VAR_VALUE:
8607 *pos -= 1;
8608
8609 /* Tagged types are a little special in the fact that the real type
8610 is dynamic and can only be determined by inspecting the object
8611 value. So even if we're support to do an EVAL_AVOID_SIDE_EFFECTS
8612 evaluation, we force an EVAL_NORMAL evaluation for tagged types. */
8613 if (noside == EVAL_AVOID_SIDE_EFFECTS
8614 && ada_is_tagged_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol), 1))
8615 noside = EVAL_NORMAL;
8616
8617 if (noside == EVAL_SKIP)
8618 {
8619 *pos += 4;
8620 goto nosideret;
8621 }
8622 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
8623 /* Only encountered when an unresolved symbol occurs in a
8624 context other than a function call, in which case, it is
8625 invalid. */
8626 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8627 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
8628 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8629 {
8630 *pos += 4;
8631 return value_zero
8632 (to_static_fixed_type
8633 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8634 not_lval);
8635 }
8636 else
8637 {
8638 arg1 =
8639 unwrap_value (evaluate_subexp_standard
8640 (expect_type, exp, pos, noside));
8641 return ada_to_fixed_value (arg1);
8642 }
8643
8644 case OP_FUNCALL:
8645 (*pos) += 2;
8646
8647 /* Allocate arg vector, including space for the function to be
8648 called in argvec[0] and a terminating NULL. */
8649 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8650 argvec =
8651 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8652
8653 if (exp->elts[*pos].opcode == OP_VAR_VALUE
8654 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
8655 error (_("Unexpected unresolved symbol, %s, during evaluation"),
8656 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8657 else
8658 {
8659 for (tem = 0; tem <= nargs; tem += 1)
8660 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8661 argvec[tem] = 0;
8662
8663 if (noside == EVAL_SKIP)
8664 goto nosideret;
8665 }
8666
8667 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
8668 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
8669 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8670 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8671 && VALUE_LVAL (argvec[0]) == lval_memory))
8672 argvec[0] = value_addr (argvec[0]);
8673
8674 type = ada_check_typedef (value_type (argvec[0]));
8675 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8676 {
8677 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
8678 {
8679 case TYPE_CODE_FUNC:
8680 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8681 break;
8682 case TYPE_CODE_ARRAY:
8683 break;
8684 case TYPE_CODE_STRUCT:
8685 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8686 argvec[0] = ada_value_ind (argvec[0]);
8687 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
8688 break;
8689 default:
8690 error (_("cannot subscript or call something of type `%s'"),
8691 ada_type_name (value_type (argvec[0])));
8692 break;
8693 }
8694 }
8695
8696 switch (TYPE_CODE (type))
8697 {
8698 case TYPE_CODE_FUNC:
8699 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8700 return allocate_value (TYPE_TARGET_TYPE (type));
8701 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8702 case TYPE_CODE_STRUCT:
8703 {
8704 int arity;
8705
8706 arity = ada_array_arity (type);
8707 type = ada_array_element_type (type, nargs);
8708 if (type == NULL)
8709 error (_("cannot subscript or call a record"));
8710 if (arity != nargs)
8711 error (_("wrong number of subscripts; expecting %d"), arity);
8712 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8713 return value_zero (ada_aligned_type (type), lval_memory);
8714 return
8715 unwrap_value (ada_value_subscript
8716 (argvec[0], nargs, argvec + 1));
8717 }
8718 case TYPE_CODE_ARRAY:
8719 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8720 {
8721 type = ada_array_element_type (type, nargs);
8722 if (type == NULL)
8723 error (_("element type of array unknown"));
8724 else
8725 return value_zero (ada_aligned_type (type), lval_memory);
8726 }
8727 return
8728 unwrap_value (ada_value_subscript
8729 (ada_coerce_to_simple_array (argvec[0]),
8730 nargs, argvec + 1));
8731 case TYPE_CODE_PTR: /* Pointer to array */
8732 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8733 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8734 {
8735 type = ada_array_element_type (type, nargs);
8736 if (type == NULL)
8737 error (_("element type of array unknown"));
8738 else
8739 return value_zero (ada_aligned_type (type), lval_memory);
8740 }
8741 return
8742 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8743 nargs, argvec + 1));
8744
8745 default:
8746 error (_("Attempt to index or call something other than an "
8747 "array or function"));
8748 }
8749
8750 case TERNOP_SLICE:
8751 {
8752 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8753 struct value *low_bound_val =
8754 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8755 struct value *high_bound_val =
8756 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8757 LONGEST low_bound;
8758 LONGEST high_bound;
8759 low_bound_val = coerce_ref (low_bound_val);
8760 high_bound_val = coerce_ref (high_bound_val);
8761 low_bound = pos_atr (low_bound_val);
8762 high_bound = pos_atr (high_bound_val);
8763
8764 if (noside == EVAL_SKIP)
8765 goto nosideret;
8766
8767 /* If this is a reference to an aligner type, then remove all
8768 the aligners. */
8769 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8770 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8771 TYPE_TARGET_TYPE (value_type (array)) =
8772 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
8773
8774 if (ada_is_packed_array_type (value_type (array)))
8775 error (_("cannot slice a packed array"));
8776
8777 /* If this is a reference to an array or an array lvalue,
8778 convert to a pointer. */
8779 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8780 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
8781 && VALUE_LVAL (array) == lval_memory))
8782 array = value_addr (array);
8783
8784 if (noside == EVAL_AVOID_SIDE_EFFECTS
8785 && ada_is_array_descriptor_type (ada_check_typedef
8786 (value_type (array))))
8787 return empty_array (ada_type_of_array (array, 0), low_bound);
8788
8789 array = ada_coerce_to_simple_array_ptr (array);
8790
8791 /* If we have more than one level of pointer indirection,
8792 dereference the value until we get only one level. */
8793 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8794 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
8795 == TYPE_CODE_PTR))
8796 array = value_ind (array);
8797
8798 /* Make sure we really do have an array type before going further,
8799 to avoid a SEGV when trying to get the index type or the target
8800 type later down the road if the debug info generated by
8801 the compiler is incorrect or incomplete. */
8802 if (!ada_is_simple_array_type (value_type (array)))
8803 error (_("cannot take slice of non-array"));
8804
8805 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
8806 {
8807 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
8808 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
8809 low_bound);
8810 else
8811 {
8812 struct type *arr_type0 =
8813 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
8814 NULL, 1);
8815 return ada_value_slice_ptr (array, arr_type0,
8816 longest_to_int (low_bound),
8817 longest_to_int (high_bound));
8818 }
8819 }
8820 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8821 return array;
8822 else if (high_bound < low_bound)
8823 return empty_array (value_type (array), low_bound);
8824 else
8825 return ada_value_slice (array, longest_to_int (low_bound),
8826 longest_to_int (high_bound));
8827 }
8828
8829 case UNOP_IN_RANGE:
8830 (*pos) += 2;
8831 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8832 type = exp->elts[pc + 1].type;
8833
8834 if (noside == EVAL_SKIP)
8835 goto nosideret;
8836
8837 switch (TYPE_CODE (type))
8838 {
8839 default:
8840 lim_warning (_("Membership test incompletely implemented; "
8841 "always returns true"));
8842 return value_from_longest (builtin_type_int, (LONGEST) 1);
8843
8844 case TYPE_CODE_RANGE:
8845 arg2 = value_from_longest (builtin_type_int, TYPE_LOW_BOUND (type));
8846 arg3 = value_from_longest (builtin_type_int,
8847 TYPE_HIGH_BOUND (type));
8848 return
8849 value_from_longest (builtin_type_int,
8850 (value_less (arg1, arg3)
8851 || value_equal (arg1, arg3))
8852 && (value_less (arg2, arg1)
8853 || value_equal (arg2, arg1)));
8854 }
8855
8856 case BINOP_IN_BOUNDS:
8857 (*pos) += 2;
8858 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8859 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8860
8861 if (noside == EVAL_SKIP)
8862 goto nosideret;
8863
8864 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8865 return value_zero (builtin_type_int, not_lval);
8866
8867 tem = longest_to_int (exp->elts[pc + 1].longconst);
8868
8869 if (tem < 1 || tem > ada_array_arity (value_type (arg2)))
8870 error (_("invalid dimension number to 'range"));
8871
8872 arg3 = ada_array_bound (arg2, tem, 1);
8873 arg2 = ada_array_bound (arg2, tem, 0);
8874
8875 return
8876 value_from_longest (builtin_type_int,
8877 (value_less (arg1, arg3)
8878 || value_equal (arg1, arg3))
8879 && (value_less (arg2, arg1)
8880 || value_equal (arg2, arg1)));
8881
8882 case TERNOP_IN_RANGE:
8883 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8884 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8885 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8886
8887 if (noside == EVAL_SKIP)
8888 goto nosideret;
8889
8890 return
8891 value_from_longest (builtin_type_int,
8892 (value_less (arg1, arg3)
8893 || value_equal (arg1, arg3))
8894 && (value_less (arg2, arg1)
8895 || value_equal (arg2, arg1)));
8896
8897 case OP_ATR_FIRST:
8898 case OP_ATR_LAST:
8899 case OP_ATR_LENGTH:
8900 {
8901 struct type *type_arg;
8902 if (exp->elts[*pos].opcode == OP_TYPE)
8903 {
8904 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
8905 arg1 = NULL;
8906 type_arg = exp->elts[pc + 2].type;
8907 }
8908 else
8909 {
8910 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8911 type_arg = NULL;
8912 }
8913
8914 if (exp->elts[*pos].opcode != OP_LONG)
8915 error (_("Invalid operand to '%s"), ada_attribute_name (op));
8916 tem = longest_to_int (exp->elts[*pos + 2].longconst);
8917 *pos += 4;
8918
8919 if (noside == EVAL_SKIP)
8920 goto nosideret;
8921
8922 if (type_arg == NULL)
8923 {
8924 arg1 = ada_coerce_ref (arg1);
8925
8926 if (ada_is_packed_array_type (value_type (arg1)))
8927 arg1 = ada_coerce_to_simple_array (arg1);
8928
8929 if (tem < 1 || tem > ada_array_arity (value_type (arg1)))
8930 error (_("invalid dimension number to '%s"),
8931 ada_attribute_name (op));
8932
8933 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8934 {
8935 type = ada_index_type (value_type (arg1), tem);
8936 if (type == NULL)
8937 error
8938 (_("attempt to take bound of something that is not an array"));
8939 return allocate_value (type);
8940 }
8941
8942 switch (op)
8943 {
8944 default: /* Should never happen. */
8945 error (_("unexpected attribute encountered"));
8946 case OP_ATR_FIRST:
8947 return ada_array_bound (arg1, tem, 0);
8948 case OP_ATR_LAST:
8949 return ada_array_bound (arg1, tem, 1);
8950 case OP_ATR_LENGTH:
8951 return ada_array_length (arg1, tem);
8952 }
8953 }
8954 else if (discrete_type_p (type_arg))
8955 {
8956 struct type *range_type;
8957 char *name = ada_type_name (type_arg);
8958 range_type = NULL;
8959 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
8960 range_type =
8961 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
8962 if (range_type == NULL)
8963 range_type = type_arg;
8964 switch (op)
8965 {
8966 default:
8967 error (_("unexpected attribute encountered"));
8968 case OP_ATR_FIRST:
8969 return value_from_longest
8970 (range_type, discrete_type_low_bound (range_type));
8971 case OP_ATR_LAST:
8972 return value_from_longest
8973 (range_type, discrete_type_high_bound (range_type));
8974 case OP_ATR_LENGTH:
8975 error (_("the 'length attribute applies only to array types"));
8976 }
8977 }
8978 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
8979 error (_("unimplemented type attribute"));
8980 else
8981 {
8982 LONGEST low, high;
8983
8984 if (ada_is_packed_array_type (type_arg))
8985 type_arg = decode_packed_array_type (type_arg);
8986
8987 if (tem < 1 || tem > ada_array_arity (type_arg))
8988 error (_("invalid dimension number to '%s"),
8989 ada_attribute_name (op));
8990
8991 type = ada_index_type (type_arg, tem);
8992 if (type == NULL)
8993 error
8994 (_("attempt to take bound of something that is not an array"));
8995 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8996 return allocate_value (type);
8997
8998 switch (op)
8999 {
9000 default:
9001 error (_("unexpected attribute encountered"));
9002 case OP_ATR_FIRST:
9003 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9004 return value_from_longest (type, low);
9005 case OP_ATR_LAST:
9006 high = ada_array_bound_from_type (type_arg, tem, 1, &type);
9007 return value_from_longest (type, high);
9008 case OP_ATR_LENGTH:
9009 low = ada_array_bound_from_type (type_arg, tem, 0, &type);
9010 high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
9011 return value_from_longest (type, high - low + 1);
9012 }
9013 }
9014 }
9015
9016 case OP_ATR_TAG:
9017 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9018 if (noside == EVAL_SKIP)
9019 goto nosideret;
9020
9021 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9022 return value_zero (ada_tag_type (arg1), not_lval);
9023
9024 return ada_value_tag (arg1);
9025
9026 case OP_ATR_MIN:
9027 case OP_ATR_MAX:
9028 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9029 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9030 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9031 if (noside == EVAL_SKIP)
9032 goto nosideret;
9033 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9034 return value_zero (value_type (arg1), not_lval);
9035 else
9036 return value_binop (arg1, arg2,
9037 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9038
9039 case OP_ATR_MODULUS:
9040 {
9041 struct type *type_arg = exp->elts[pc + 2].type;
9042 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9043
9044 if (noside == EVAL_SKIP)
9045 goto nosideret;
9046
9047 if (!ada_is_modular_type (type_arg))
9048 error (_("'modulus must be applied to modular type"));
9049
9050 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9051 ada_modulus (type_arg));
9052 }
9053
9054
9055 case OP_ATR_POS:
9056 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9057 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9058 if (noside == EVAL_SKIP)
9059 goto nosideret;
9060 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9061 return value_zero (builtin_type_int, not_lval);
9062 else
9063 return value_pos_atr (arg1);
9064
9065 case OP_ATR_SIZE:
9066 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9067 if (noside == EVAL_SKIP)
9068 goto nosideret;
9069 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9070 return value_zero (builtin_type_int, not_lval);
9071 else
9072 return value_from_longest (builtin_type_int,
9073 TARGET_CHAR_BIT
9074 * TYPE_LENGTH (value_type (arg1)));
9075
9076 case OP_ATR_VAL:
9077 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9078 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9079 type = exp->elts[pc + 2].type;
9080 if (noside == EVAL_SKIP)
9081 goto nosideret;
9082 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9083 return value_zero (type, not_lval);
9084 else
9085 return value_val_atr (type, arg1);
9086
9087 case BINOP_EXP:
9088 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9089 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9090 if (noside == EVAL_SKIP)
9091 goto nosideret;
9092 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9093 return value_zero (value_type (arg1), not_lval);
9094 else
9095 return value_binop (arg1, arg2, op);
9096
9097 case UNOP_PLUS:
9098 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9099 if (noside == EVAL_SKIP)
9100 goto nosideret;
9101 else
9102 return arg1;
9103
9104 case UNOP_ABS:
9105 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9106 if (noside == EVAL_SKIP)
9107 goto nosideret;
9108 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9109 return value_neg (arg1);
9110 else
9111 return arg1;
9112
9113 case UNOP_IND:
9114 if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
9115 expect_type = TYPE_TARGET_TYPE (ada_check_typedef (expect_type));
9116 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
9117 if (noside == EVAL_SKIP)
9118 goto nosideret;
9119 type = ada_check_typedef (value_type (arg1));
9120 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9121 {
9122 if (ada_is_array_descriptor_type (type))
9123 /* GDB allows dereferencing GNAT array descriptors. */
9124 {
9125 struct type *arrType = ada_type_of_array (arg1, 0);
9126 if (arrType == NULL)
9127 error (_("Attempt to dereference null array pointer."));
9128 return value_at_lazy (arrType, 0);
9129 }
9130 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9131 || TYPE_CODE (type) == TYPE_CODE_REF
9132 /* In C you can dereference an array to get the 1st elt. */
9133 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
9134 {
9135 type = to_static_fixed_type
9136 (ada_aligned_type
9137 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9138 check_size (type);
9139 return value_zero (type, lval_memory);
9140 }
9141 else if (TYPE_CODE (type) == TYPE_CODE_INT)
9142 /* GDB allows dereferencing an int. */
9143 return value_zero (builtin_type_int, lval_memory);
9144 else
9145 error (_("Attempt to take contents of a non-pointer value."));
9146 }
9147 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
9148 type = ada_check_typedef (value_type (arg1));
9149
9150 if (ada_is_array_descriptor_type (type))
9151 /* GDB allows dereferencing GNAT array descriptors. */
9152 return ada_coerce_to_simple_array (arg1);
9153 else
9154 return ada_value_ind (arg1);
9155
9156 case STRUCTOP_STRUCT:
9157 tem = longest_to_int (exp->elts[pc + 1].longconst);
9158 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9159 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9160 if (noside == EVAL_SKIP)
9161 goto nosideret;
9162 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9163 {
9164 struct type *type1 = value_type (arg1);
9165 if (ada_is_tagged_type (type1, 1))
9166 {
9167 type = ada_lookup_struct_elt_type (type1,
9168 &exp->elts[pc + 2].string,
9169 1, 1, NULL);
9170 if (type == NULL)
9171 /* In this case, we assume that the field COULD exist
9172 in some extension of the type. Return an object of
9173 "type" void, which will match any formal
9174 (see ada_type_match). */
9175 return value_zero (builtin_type_void, lval_memory);
9176 }
9177 else
9178 type =
9179 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9180 0, NULL);
9181
9182 return value_zero (ada_aligned_type (type), lval_memory);
9183 }
9184 else
9185 return
9186 ada_to_fixed_value (unwrap_value
9187 (ada_value_struct_elt
9188 (arg1, &exp->elts[pc + 2].string, 0)));
9189 case OP_TYPE:
9190 /* The value is not supposed to be used. This is here to make it
9191 easier to accommodate expressions that contain types. */
9192 (*pos) += 2;
9193 if (noside == EVAL_SKIP)
9194 goto nosideret;
9195 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9196 return allocate_value (exp->elts[pc + 1].type);
9197 else
9198 error (_("Attempt to use a type name as an expression"));
9199
9200 case OP_AGGREGATE:
9201 case OP_CHOICES:
9202 case OP_OTHERS:
9203 case OP_DISCRETE_RANGE:
9204 case OP_POSITIONAL:
9205 case OP_NAME:
9206 if (noside == EVAL_NORMAL)
9207 switch (op)
9208 {
9209 case OP_NAME:
9210 error (_("Undefined name, ambiguous name, or renaming used in "
9211 "component association: %s."), &exp->elts[pc+2].string);
9212 case OP_AGGREGATE:
9213 error (_("Aggregates only allowed on the right of an assignment"));
9214 default:
9215 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
9216 }
9217
9218 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9219 *pos += oplen - 1;
9220 for (tem = 0; tem < nargs; tem += 1)
9221 ada_evaluate_subexp (NULL, exp, pos, noside);
9222 goto nosideret;
9223 }
9224
9225 nosideret:
9226 return value_from_longest (builtin_type_long, (LONGEST) 1);
9227 }
9228 \f
9229
9230 /* Fixed point */
9231
9232 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
9233 type name that encodes the 'small and 'delta information.
9234 Otherwise, return NULL. */
9235
9236 static const char *
9237 fixed_type_info (struct type *type)
9238 {
9239 const char *name = ada_type_name (type);
9240 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9241
9242 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9243 {
9244 const char *tail = strstr (name, "___XF_");
9245 if (tail == NULL)
9246 return NULL;
9247 else
9248 return tail + 5;
9249 }
9250 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9251 return fixed_type_info (TYPE_TARGET_TYPE (type));
9252 else
9253 return NULL;
9254 }
9255
9256 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
9257
9258 int
9259 ada_is_fixed_point_type (struct type *type)
9260 {
9261 return fixed_type_info (type) != NULL;
9262 }
9263
9264 /* Return non-zero iff TYPE represents a System.Address type. */
9265
9266 int
9267 ada_is_system_address_type (struct type *type)
9268 {
9269 return (TYPE_NAME (type)
9270 && strcmp (TYPE_NAME (type), "system__address") == 0);
9271 }
9272
9273 /* Assuming that TYPE is the representation of an Ada fixed-point
9274 type, return its delta, or -1 if the type is malformed and the
9275 delta cannot be determined. */
9276
9277 DOUBLEST
9278 ada_delta (struct type *type)
9279 {
9280 const char *encoding = fixed_type_info (type);
9281 long num, den;
9282
9283 if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
9284 return -1.0;
9285 else
9286 return (DOUBLEST) num / (DOUBLEST) den;
9287 }
9288
9289 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
9290 factor ('SMALL value) associated with the type. */
9291
9292 static DOUBLEST
9293 scaling_factor (struct type *type)
9294 {
9295 const char *encoding = fixed_type_info (type);
9296 unsigned long num0, den0, num1, den1;
9297 int n;
9298
9299 n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);
9300
9301 if (n < 2)
9302 return 1.0;
9303 else if (n == 4)
9304 return (DOUBLEST) num1 / (DOUBLEST) den1;
9305 else
9306 return (DOUBLEST) num0 / (DOUBLEST) den0;
9307 }
9308
9309
9310 /* Assuming that X is the representation of a value of fixed-point
9311 type TYPE, return its floating-point equivalent. */
9312
9313 DOUBLEST
9314 ada_fixed_to_float (struct type *type, LONGEST x)
9315 {
9316 return (DOUBLEST) x *scaling_factor (type);
9317 }
9318
9319 /* The representation of a fixed-point value of type TYPE
9320 corresponding to the value X. */
9321
9322 LONGEST
9323 ada_float_to_fixed (struct type *type, DOUBLEST x)
9324 {
9325 return (LONGEST) (x / scaling_factor (type) + 0.5);
9326 }
9327
9328
9329 /* VAX floating formats */
9330
9331 /* Non-zero iff TYPE represents one of the special VAX floating-point
9332 types. */
9333
9334 int
9335 ada_is_vax_floating_type (struct type *type)
9336 {
9337 int name_len =
9338 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
9339 return
9340 name_len > 6
9341 && (TYPE_CODE (type) == TYPE_CODE_INT
9342 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9343 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
9344 }
9345
9346 /* The type of special VAX floating-point type this is, assuming
9347 ada_is_vax_floating_point. */
9348
9349 int
9350 ada_vax_float_type_suffix (struct type *type)
9351 {
9352 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
9353 }
9354
9355 /* A value representing the special debugging function that outputs
9356 VAX floating-point values of the type represented by TYPE. Assumes
9357 ada_is_vax_floating_type (TYPE). */
9358
9359 struct value *
9360 ada_vax_float_print_function (struct type *type)
9361 {
9362 switch (ada_vax_float_type_suffix (type))
9363 {
9364 case 'F':
9365 return get_var_value ("DEBUG_STRING_F", 0);
9366 case 'D':
9367 return get_var_value ("DEBUG_STRING_D", 0);
9368 case 'G':
9369 return get_var_value ("DEBUG_STRING_G", 0);
9370 default:
9371 error (_("invalid VAX floating-point type"));
9372 }
9373 }
9374 \f
9375
9376 /* Range types */
9377
9378 /* Scan STR beginning at position K for a discriminant name, and
9379 return the value of that discriminant field of DVAL in *PX. If
9380 PNEW_K is not null, put the position of the character beyond the
9381 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
9382 not alter *PX and *PNEW_K if unsuccessful. */
9383
9384 static int
9385 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
9386 int *pnew_k)
9387 {
9388 static char *bound_buffer = NULL;
9389 static size_t bound_buffer_len = 0;
9390 char *bound;
9391 char *pend;
9392 struct value *bound_val;
9393
9394 if (dval == NULL || str == NULL || str[k] == '\0')
9395 return 0;
9396
9397 pend = strstr (str + k, "__");
9398 if (pend == NULL)
9399 {
9400 bound = str + k;
9401 k += strlen (bound);
9402 }
9403 else
9404 {
9405 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
9406 bound = bound_buffer;
9407 strncpy (bound_buffer, str + k, pend - (str + k));
9408 bound[pend - (str + k)] = '\0';
9409 k = pend - str;
9410 }
9411
9412 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
9413 if (bound_val == NULL)
9414 return 0;
9415
9416 *px = value_as_long (bound_val);
9417 if (pnew_k != NULL)
9418 *pnew_k = k;
9419 return 1;
9420 }
9421
9422 /* Value of variable named NAME in the current environment. If
9423 no such variable found, then if ERR_MSG is null, returns 0, and
9424 otherwise causes an error with message ERR_MSG. */
9425
9426 static struct value *
9427 get_var_value (char *name, char *err_msg)
9428 {
9429 struct ada_symbol_info *syms;
9430 int nsyms;
9431
9432 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9433 &syms);
9434
9435 if (nsyms != 1)
9436 {
9437 if (err_msg == NULL)
9438 return 0;
9439 else
9440 error (("%s"), err_msg);
9441 }
9442
9443 return value_of_variable (syms[0].sym, syms[0].block);
9444 }
9445
9446 /* Value of integer variable named NAME in the current environment. If
9447 no such variable found, returns 0, and sets *FLAG to 0. If
9448 successful, sets *FLAG to 1. */
9449
9450 LONGEST
9451 get_int_var_value (char *name, int *flag)
9452 {
9453 struct value *var_val = get_var_value (name, 0);
9454
9455 if (var_val == 0)
9456 {
9457 if (flag != NULL)
9458 *flag = 0;
9459 return 0;
9460 }
9461 else
9462 {
9463 if (flag != NULL)
9464 *flag = 1;
9465 return value_as_long (var_val);
9466 }
9467 }
9468
9469
9470 /* Return a range type whose base type is that of the range type named
9471 NAME in the current environment, and whose bounds are calculated
9472 from NAME according to the GNAT range encoding conventions.
9473 Extract discriminant values, if needed, from DVAL. If a new type
9474 must be created, allocate in OBJFILE's space. The bounds
9475 information, in general, is encoded in NAME, the base type given in
9476 the named range type. */
9477
9478 static struct type *
9479 to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
9480 {
9481 struct type *raw_type = ada_find_any_type (name);
9482 struct type *base_type;
9483 char *subtype_info;
9484
9485 if (raw_type == NULL)
9486 base_type = builtin_type_int;
9487 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9488 base_type = TYPE_TARGET_TYPE (raw_type);
9489 else
9490 base_type = raw_type;
9491
9492 subtype_info = strstr (name, "___XD");
9493 if (subtype_info == NULL)
9494 {
9495 LONGEST L = discrete_type_low_bound (raw_type);
9496 LONGEST U = discrete_type_high_bound (raw_type);
9497 if (L < INT_MIN || U > INT_MAX)
9498 return raw_type;
9499 else
9500 return create_range_type (alloc_type (objfile), raw_type,
9501 discrete_type_low_bound (raw_type),
9502 discrete_type_high_bound (raw_type));
9503 }
9504 else
9505 {
9506 static char *name_buf = NULL;
9507 static size_t name_len = 0;
9508 int prefix_len = subtype_info - name;
9509 LONGEST L, U;
9510 struct type *type;
9511 char *bounds_str;
9512 int n;
9513
9514 GROW_VECT (name_buf, name_len, prefix_len + 5);
9515 strncpy (name_buf, name, prefix_len);
9516 name_buf[prefix_len] = '\0';
9517
9518 subtype_info += 5;
9519 bounds_str = strchr (subtype_info, '_');
9520 n = 1;
9521
9522 if (*subtype_info == 'L')
9523 {
9524 if (!ada_scan_number (bounds_str, n, &L, &n)
9525 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9526 return raw_type;
9527 if (bounds_str[n] == '_')
9528 n += 2;
9529 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9530 n += 1;
9531 subtype_info += 1;
9532 }
9533 else
9534 {
9535 int ok;
9536 strcpy (name_buf + prefix_len, "___L");
9537 L = get_int_var_value (name_buf, &ok);
9538 if (!ok)
9539 {
9540 lim_warning (_("Unknown lower bound, using 1."));
9541 L = 1;
9542 }
9543 }
9544
9545 if (*subtype_info == 'U')
9546 {
9547 if (!ada_scan_number (bounds_str, n, &U, &n)
9548 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9549 return raw_type;
9550 }
9551 else
9552 {
9553 int ok;
9554 strcpy (name_buf + prefix_len, "___U");
9555 U = get_int_var_value (name_buf, &ok);
9556 if (!ok)
9557 {
9558 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
9559 U = L;
9560 }
9561 }
9562
9563 if (objfile == NULL)
9564 objfile = TYPE_OBJFILE (base_type);
9565 type = create_range_type (alloc_type (objfile), base_type, L, U);
9566 TYPE_NAME (type) = name;
9567 return type;
9568 }
9569 }
9570
9571 /* True iff NAME is the name of a range type. */
9572
9573 int
9574 ada_is_range_type_name (const char *name)
9575 {
9576 return (name != NULL && strstr (name, "___XD"));
9577 }
9578 \f
9579
9580 /* Modular types */
9581
9582 /* True iff TYPE is an Ada modular type. */
9583
9584 int
9585 ada_is_modular_type (struct type *type)
9586 {
9587 struct type *subranged_type = base_type (type);
9588
9589 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
9590 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
9591 && TYPE_UNSIGNED (subranged_type));
9592 }
9593
9594 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9595
9596 ULONGEST
9597 ada_modulus (struct type * type)
9598 {
9599 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
9600 }
9601 \f
9602
9603 /* Ada exception catchpoint support:
9604 ---------------------------------
9605
9606 We support 3 kinds of exception catchpoints:
9607 . catchpoints on Ada exceptions
9608 . catchpoints on unhandled Ada exceptions
9609 . catchpoints on failed assertions
9610
9611 Exceptions raised during failed assertions, or unhandled exceptions
9612 could perfectly be caught with the general catchpoint on Ada exceptions.
9613 However, we can easily differentiate these two special cases, and having
9614 the option to distinguish these two cases from the rest can be useful
9615 to zero-in on certain situations.
9616
9617 Exception catchpoints are a specialized form of breakpoint,
9618 since they rely on inserting breakpoints inside known routines
9619 of the GNAT runtime. The implementation therefore uses a standard
9620 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9621 of breakpoint_ops.
9622
9623 Support in the runtime for exception catchpoints have been changed
9624 a few times already, and these changes affect the implementation
9625 of these catchpoints. In order to be able to support several
9626 variants of the runtime, we use a sniffer that will determine
9627 the runtime variant used by the program being debugged.
9628
9629 At this time, we do not support the use of conditions on Ada exception
9630 catchpoints. The COND and COND_STRING fields are therefore set
9631 to NULL (most of the time, see below).
9632
9633 Conditions where EXP_STRING, COND, and COND_STRING are used:
9634
9635 When a user specifies the name of a specific exception in the case
9636 of catchpoints on Ada exceptions, we store the name of that exception
9637 in the EXP_STRING. We then translate this request into an actual
9638 condition stored in COND_STRING, and then parse it into an expression
9639 stored in COND. */
9640
9641 /* The different types of catchpoints that we introduced for catching
9642 Ada exceptions. */
9643
9644 enum exception_catchpoint_kind
9645 {
9646 ex_catch_exception,
9647 ex_catch_exception_unhandled,
9648 ex_catch_assert
9649 };
9650
9651 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9652
9653 /* A structure that describes how to support exception catchpoints
9654 for a given executable. */
9655
9656 struct exception_support_info
9657 {
9658 /* The name of the symbol to break on in order to insert
9659 a catchpoint on exceptions. */
9660 const char *catch_exception_sym;
9661
9662 /* The name of the symbol to break on in order to insert
9663 a catchpoint on unhandled exceptions. */
9664 const char *catch_exception_unhandled_sym;
9665
9666 /* The name of the symbol to break on in order to insert
9667 a catchpoint on failed assertions. */
9668 const char *catch_assert_sym;
9669
9670 /* Assuming that the inferior just triggered an unhandled exception
9671 catchpoint, this function is responsible for returning the address
9672 in inferior memory where the name of that exception is stored.
9673 Return zero if the address could not be computed. */
9674 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9675 };
9676
9677 static CORE_ADDR ada_unhandled_exception_name_addr (void);
9678 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9679
9680 /* The following exception support info structure describes how to
9681 implement exception catchpoints with the latest version of the
9682 Ada runtime (as of 2007-03-06). */
9683
9684 static const struct exception_support_info default_exception_support_info =
9685 {
9686 "__gnat_debug_raise_exception", /* catch_exception_sym */
9687 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9688 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9689 ada_unhandled_exception_name_addr
9690 };
9691
9692 /* The following exception support info structure describes how to
9693 implement exception catchpoints with a slightly older version
9694 of the Ada runtime. */
9695
9696 static const struct exception_support_info exception_support_info_fallback =
9697 {
9698 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9699 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9700 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9701 ada_unhandled_exception_name_addr_from_raise
9702 };
9703
9704 /* For each executable, we sniff which exception info structure to use
9705 and cache it in the following global variable. */
9706
9707 static const struct exception_support_info *exception_info = NULL;
9708
9709 /* Inspect the Ada runtime and determine which exception info structure
9710 should be used to provide support for exception catchpoints.
9711
9712 This function will always set exception_info, or raise an error. */
9713
9714 static void
9715 ada_exception_support_info_sniffer (void)
9716 {
9717 struct symbol *sym;
9718
9719 /* If the exception info is already known, then no need to recompute it. */
9720 if (exception_info != NULL)
9721 return;
9722
9723 /* Check the latest (default) exception support info. */
9724 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
9725 NULL, VAR_DOMAIN);
9726 if (sym != NULL)
9727 {
9728 exception_info = &default_exception_support_info;
9729 return;
9730 }
9731
9732 /* Try our fallback exception suport info. */
9733 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
9734 NULL, VAR_DOMAIN);
9735 if (sym != NULL)
9736 {
9737 exception_info = &exception_support_info_fallback;
9738 return;
9739 }
9740
9741 /* Sometimes, it is normal for us to not be able to find the routine
9742 we are looking for. This happens when the program is linked with
9743 the shared version of the GNAT runtime, and the program has not been
9744 started yet. Inform the user of these two possible causes if
9745 applicable. */
9746
9747 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
9748 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
9749
9750 /* If the symbol does not exist, then check that the program is
9751 already started, to make sure that shared libraries have been
9752 loaded. If it is not started, this may mean that the symbol is
9753 in a shared library. */
9754
9755 if (ptid_get_pid (inferior_ptid) == 0)
9756 error (_("Unable to insert catchpoint. Try to start the program first."));
9757
9758 /* At this point, we know that we are debugging an Ada program and
9759 that the inferior has been started, but we still are not able to
9760 find the run-time symbols. That can mean that we are in
9761 configurable run time mode, or that a-except as been optimized
9762 out by the linker... In any case, at this point it is not worth
9763 supporting this feature. */
9764
9765 error (_("Cannot insert catchpoints in this configuration."));
9766 }
9767
9768 /* An observer of "executable_changed" events.
9769 Its role is to clear certain cached values that need to be recomputed
9770 each time a new executable is loaded by GDB. */
9771
9772 static void
9773 ada_executable_changed_observer (void)
9774 {
9775 /* If the executable changed, then it is possible that the Ada runtime
9776 is different. So we need to invalidate the exception support info
9777 cache. */
9778 exception_info = NULL;
9779 }
9780
9781 /* Return the name of the function at PC, NULL if could not find it.
9782 This function only checks the debugging information, not the symbol
9783 table. */
9784
9785 static char *
9786 function_name_from_pc (CORE_ADDR pc)
9787 {
9788 char *func_name;
9789
9790 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
9791 return NULL;
9792
9793 return func_name;
9794 }
9795
9796 /* True iff FRAME is very likely to be that of a function that is
9797 part of the runtime system. This is all very heuristic, but is
9798 intended to be used as advice as to what frames are uninteresting
9799 to most users. */
9800
9801 static int
9802 is_known_support_routine (struct frame_info *frame)
9803 {
9804 struct symtab_and_line sal;
9805 char *func_name;
9806 int i;
9807
9808 /* If this code does not have any debugging information (no symtab),
9809 This cannot be any user code. */
9810
9811 find_frame_sal (frame, &sal);
9812 if (sal.symtab == NULL)
9813 return 1;
9814
9815 /* If there is a symtab, but the associated source file cannot be
9816 located, then assume this is not user code: Selecting a frame
9817 for which we cannot display the code would not be very helpful
9818 for the user. This should also take care of case such as VxWorks
9819 where the kernel has some debugging info provided for a few units. */
9820
9821 if (symtab_to_fullname (sal.symtab) == NULL)
9822 return 1;
9823
9824 /* Check the unit filename againt the Ada runtime file naming.
9825 We also check the name of the objfile against the name of some
9826 known system libraries that sometimes come with debugging info
9827 too. */
9828
9829 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
9830 {
9831 re_comp (known_runtime_file_name_patterns[i]);
9832 if (re_exec (sal.symtab->filename))
9833 return 1;
9834 if (sal.symtab->objfile != NULL
9835 && re_exec (sal.symtab->objfile->name))
9836 return 1;
9837 }
9838
9839 /* Check whether the function is a GNAT-generated entity. */
9840
9841 func_name = function_name_from_pc (get_frame_address_in_block (frame));
9842 if (func_name == NULL)
9843 return 1;
9844
9845 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
9846 {
9847 re_comp (known_auxiliary_function_name_patterns[i]);
9848 if (re_exec (func_name))
9849 return 1;
9850 }
9851
9852 return 0;
9853 }
9854
9855 /* Find the first frame that contains debugging information and that is not
9856 part of the Ada run-time, starting from FI and moving upward. */
9857
9858 static void
9859 ada_find_printable_frame (struct frame_info *fi)
9860 {
9861 for (; fi != NULL; fi = get_prev_frame (fi))
9862 {
9863 if (!is_known_support_routine (fi))
9864 {
9865 select_frame (fi);
9866 break;
9867 }
9868 }
9869
9870 }
9871
9872 /* Assuming that the inferior just triggered an unhandled exception
9873 catchpoint, return the address in inferior memory where the name
9874 of the exception is stored.
9875
9876 Return zero if the address could not be computed. */
9877
9878 static CORE_ADDR
9879 ada_unhandled_exception_name_addr (void)
9880 {
9881 return parse_and_eval_address ("e.full_name");
9882 }
9883
9884 /* Same as ada_unhandled_exception_name_addr, except that this function
9885 should be used when the inferior uses an older version of the runtime,
9886 where the exception name needs to be extracted from a specific frame
9887 several frames up in the callstack. */
9888
9889 static CORE_ADDR
9890 ada_unhandled_exception_name_addr_from_raise (void)
9891 {
9892 int frame_level;
9893 struct frame_info *fi;
9894
9895 /* To determine the name of this exception, we need to select
9896 the frame corresponding to RAISE_SYM_NAME. This frame is
9897 at least 3 levels up, so we simply skip the first 3 frames
9898 without checking the name of their associated function. */
9899 fi = get_current_frame ();
9900 for (frame_level = 0; frame_level < 3; frame_level += 1)
9901 if (fi != NULL)
9902 fi = get_prev_frame (fi);
9903
9904 while (fi != NULL)
9905 {
9906 const char *func_name =
9907 function_name_from_pc (get_frame_address_in_block (fi));
9908 if (func_name != NULL
9909 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
9910 break; /* We found the frame we were looking for... */
9911 fi = get_prev_frame (fi);
9912 }
9913
9914 if (fi == NULL)
9915 return 0;
9916
9917 select_frame (fi);
9918 return parse_and_eval_address ("id.full_name");
9919 }
9920
9921 /* Assuming the inferior just triggered an Ada exception catchpoint
9922 (of any type), return the address in inferior memory where the name
9923 of the exception is stored, if applicable.
9924
9925 Return zero if the address could not be computed, or if not relevant. */
9926
9927 static CORE_ADDR
9928 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
9929 struct breakpoint *b)
9930 {
9931 switch (ex)
9932 {
9933 case ex_catch_exception:
9934 return (parse_and_eval_address ("e.full_name"));
9935 break;
9936
9937 case ex_catch_exception_unhandled:
9938 return exception_info->unhandled_exception_name_addr ();
9939 break;
9940
9941 case ex_catch_assert:
9942 return 0; /* Exception name is not relevant in this case. */
9943 break;
9944
9945 default:
9946 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
9947 break;
9948 }
9949
9950 return 0; /* Should never be reached. */
9951 }
9952
9953 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
9954 any error that ada_exception_name_addr_1 might cause to be thrown.
9955 When an error is intercepted, a warning with the error message is printed,
9956 and zero is returned. */
9957
9958 static CORE_ADDR
9959 ada_exception_name_addr (enum exception_catchpoint_kind ex,
9960 struct breakpoint *b)
9961 {
9962 struct gdb_exception e;
9963 CORE_ADDR result = 0;
9964
9965 TRY_CATCH (e, RETURN_MASK_ERROR)
9966 {
9967 result = ada_exception_name_addr_1 (ex, b);
9968 }
9969
9970 if (e.reason < 0)
9971 {
9972 warning (_("failed to get exception name: %s"), e.message);
9973 return 0;
9974 }
9975
9976 return result;
9977 }
9978
9979 /* Implement the PRINT_IT method in the breakpoint_ops structure
9980 for all exception catchpoint kinds. */
9981
9982 static enum print_stop_action
9983 print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
9984 {
9985 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
9986 char exception_name[256];
9987
9988 if (addr != 0)
9989 {
9990 read_memory (addr, exception_name, sizeof (exception_name) - 1);
9991 exception_name [sizeof (exception_name) - 1] = '\0';
9992 }
9993
9994 ada_find_printable_frame (get_current_frame ());
9995
9996 annotate_catchpoint (b->number);
9997 switch (ex)
9998 {
9999 case ex_catch_exception:
10000 if (addr != 0)
10001 printf_filtered (_("\nCatchpoint %d, %s at "),
10002 b->number, exception_name);
10003 else
10004 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10005 break;
10006 case ex_catch_exception_unhandled:
10007 if (addr != 0)
10008 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10009 b->number, exception_name);
10010 else
10011 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10012 b->number);
10013 break;
10014 case ex_catch_assert:
10015 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10016 b->number);
10017 break;
10018 }
10019
10020 return PRINT_SRC_AND_LOC;
10021 }
10022
10023 /* Implement the PRINT_ONE method in the breakpoint_ops structure
10024 for all exception catchpoint kinds. */
10025
10026 static void
10027 print_one_exception (enum exception_catchpoint_kind ex,
10028 struct breakpoint *b, CORE_ADDR *last_addr)
10029 {
10030 if (addressprint)
10031 {
10032 annotate_field (4);
10033 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10034 }
10035
10036 annotate_field (5);
10037 *last_addr = b->loc->address;
10038 switch (ex)
10039 {
10040 case ex_catch_exception:
10041 if (b->exp_string != NULL)
10042 {
10043 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10044
10045 ui_out_field_string (uiout, "what", msg);
10046 xfree (msg);
10047 }
10048 else
10049 ui_out_field_string (uiout, "what", "all Ada exceptions");
10050
10051 break;
10052
10053 case ex_catch_exception_unhandled:
10054 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10055 break;
10056
10057 case ex_catch_assert:
10058 ui_out_field_string (uiout, "what", "failed Ada assertions");
10059 break;
10060
10061 default:
10062 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10063 break;
10064 }
10065 }
10066
10067 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
10068 for all exception catchpoint kinds. */
10069
10070 static void
10071 print_mention_exception (enum exception_catchpoint_kind ex,
10072 struct breakpoint *b)
10073 {
10074 switch (ex)
10075 {
10076 case ex_catch_exception:
10077 if (b->exp_string != NULL)
10078 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10079 b->number, b->exp_string);
10080 else
10081 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10082
10083 break;
10084
10085 case ex_catch_exception_unhandled:
10086 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10087 b->number);
10088 break;
10089
10090 case ex_catch_assert:
10091 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10092 break;
10093
10094 default:
10095 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10096 break;
10097 }
10098 }
10099
10100 /* Virtual table for "catch exception" breakpoints. */
10101
10102 static enum print_stop_action
10103 print_it_catch_exception (struct breakpoint *b)
10104 {
10105 return print_it_exception (ex_catch_exception, b);
10106 }
10107
10108 static void
10109 print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10110 {
10111 print_one_exception (ex_catch_exception, b, last_addr);
10112 }
10113
10114 static void
10115 print_mention_catch_exception (struct breakpoint *b)
10116 {
10117 print_mention_exception (ex_catch_exception, b);
10118 }
10119
10120 static struct breakpoint_ops catch_exception_breakpoint_ops =
10121 {
10122 print_it_catch_exception,
10123 print_one_catch_exception,
10124 print_mention_catch_exception
10125 };
10126
10127 /* Virtual table for "catch exception unhandled" breakpoints. */
10128
10129 static enum print_stop_action
10130 print_it_catch_exception_unhandled (struct breakpoint *b)
10131 {
10132 return print_it_exception (ex_catch_exception_unhandled, b);
10133 }
10134
10135 static void
10136 print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10137 {
10138 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10139 }
10140
10141 static void
10142 print_mention_catch_exception_unhandled (struct breakpoint *b)
10143 {
10144 print_mention_exception (ex_catch_exception_unhandled, b);
10145 }
10146
10147 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
10148 print_it_catch_exception_unhandled,
10149 print_one_catch_exception_unhandled,
10150 print_mention_catch_exception_unhandled
10151 };
10152
10153 /* Virtual table for "catch assert" breakpoints. */
10154
10155 static enum print_stop_action
10156 print_it_catch_assert (struct breakpoint *b)
10157 {
10158 return print_it_exception (ex_catch_assert, b);
10159 }
10160
10161 static void
10162 print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10163 {
10164 print_one_exception (ex_catch_assert, b, last_addr);
10165 }
10166
10167 static void
10168 print_mention_catch_assert (struct breakpoint *b)
10169 {
10170 print_mention_exception (ex_catch_assert, b);
10171 }
10172
10173 static struct breakpoint_ops catch_assert_breakpoint_ops = {
10174 print_it_catch_assert,
10175 print_one_catch_assert,
10176 print_mention_catch_assert
10177 };
10178
10179 /* Return non-zero if B is an Ada exception catchpoint. */
10180
10181 int
10182 ada_exception_catchpoint_p (struct breakpoint *b)
10183 {
10184 return (b->ops == &catch_exception_breakpoint_ops
10185 || b->ops == &catch_exception_unhandled_breakpoint_ops
10186 || b->ops == &catch_assert_breakpoint_ops);
10187 }
10188
10189 /* Return a newly allocated copy of the first space-separated token
10190 in ARGSP, and then adjust ARGSP to point immediately after that
10191 token.
10192
10193 Return NULL if ARGPS does not contain any more tokens. */
10194
10195 static char *
10196 ada_get_next_arg (char **argsp)
10197 {
10198 char *args = *argsp;
10199 char *end;
10200 char *result;
10201
10202 /* Skip any leading white space. */
10203
10204 while (isspace (*args))
10205 args++;
10206
10207 if (args[0] == '\0')
10208 return NULL; /* No more arguments. */
10209
10210 /* Find the end of the current argument. */
10211
10212 end = args;
10213 while (*end != '\0' && !isspace (*end))
10214 end++;
10215
10216 /* Adjust ARGSP to point to the start of the next argument. */
10217
10218 *argsp = end;
10219
10220 /* Make a copy of the current argument and return it. */
10221
10222 result = xmalloc (end - args + 1);
10223 strncpy (result, args, end - args);
10224 result[end - args] = '\0';
10225
10226 return result;
10227 }
10228
10229 /* Split the arguments specified in a "catch exception" command.
10230 Set EX to the appropriate catchpoint type.
10231 Set EXP_STRING to the name of the specific exception if
10232 specified by the user. */
10233
10234 static void
10235 catch_ada_exception_command_split (char *args,
10236 enum exception_catchpoint_kind *ex,
10237 char **exp_string)
10238 {
10239 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10240 char *exception_name;
10241
10242 exception_name = ada_get_next_arg (&args);
10243 make_cleanup (xfree, exception_name);
10244
10245 /* Check that we do not have any more arguments. Anything else
10246 is unexpected. */
10247
10248 while (isspace (*args))
10249 args++;
10250
10251 if (args[0] != '\0')
10252 error (_("Junk at end of expression"));
10253
10254 discard_cleanups (old_chain);
10255
10256 if (exception_name == NULL)
10257 {
10258 /* Catch all exceptions. */
10259 *ex = ex_catch_exception;
10260 *exp_string = NULL;
10261 }
10262 else if (strcmp (exception_name, "unhandled") == 0)
10263 {
10264 /* Catch unhandled exceptions. */
10265 *ex = ex_catch_exception_unhandled;
10266 *exp_string = NULL;
10267 }
10268 else
10269 {
10270 /* Catch a specific exception. */
10271 *ex = ex_catch_exception;
10272 *exp_string = exception_name;
10273 }
10274 }
10275
10276 /* Return the name of the symbol on which we should break in order to
10277 implement a catchpoint of the EX kind. */
10278
10279 static const char *
10280 ada_exception_sym_name (enum exception_catchpoint_kind ex)
10281 {
10282 gdb_assert (exception_info != NULL);
10283
10284 switch (ex)
10285 {
10286 case ex_catch_exception:
10287 return (exception_info->catch_exception_sym);
10288 break;
10289 case ex_catch_exception_unhandled:
10290 return (exception_info->catch_exception_unhandled_sym);
10291 break;
10292 case ex_catch_assert:
10293 return (exception_info->catch_assert_sym);
10294 break;
10295 default:
10296 internal_error (__FILE__, __LINE__,
10297 _("unexpected catchpoint kind (%d)"), ex);
10298 }
10299 }
10300
10301 /* Return the breakpoint ops "virtual table" used for catchpoints
10302 of the EX kind. */
10303
10304 static struct breakpoint_ops *
10305 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
10306 {
10307 switch (ex)
10308 {
10309 case ex_catch_exception:
10310 return (&catch_exception_breakpoint_ops);
10311 break;
10312 case ex_catch_exception_unhandled:
10313 return (&catch_exception_unhandled_breakpoint_ops);
10314 break;
10315 case ex_catch_assert:
10316 return (&catch_assert_breakpoint_ops);
10317 break;
10318 default:
10319 internal_error (__FILE__, __LINE__,
10320 _("unexpected catchpoint kind (%d)"), ex);
10321 }
10322 }
10323
10324 /* Return the condition that will be used to match the current exception
10325 being raised with the exception that the user wants to catch. This
10326 assumes that this condition is used when the inferior just triggered
10327 an exception catchpoint.
10328
10329 The string returned is a newly allocated string that needs to be
10330 deallocated later. */
10331
10332 static char *
10333 ada_exception_catchpoint_cond_string (const char *exp_string)
10334 {
10335 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10336 }
10337
10338 /* Return the expression corresponding to COND_STRING evaluated at SAL. */
10339
10340 static struct expression *
10341 ada_parse_catchpoint_condition (char *cond_string,
10342 struct symtab_and_line sal)
10343 {
10344 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10345 }
10346
10347 /* Return the symtab_and_line that should be used to insert an exception
10348 catchpoint of the TYPE kind.
10349
10350 EX_STRING should contain the name of a specific exception
10351 that the catchpoint should catch, or NULL otherwise.
10352
10353 The idea behind all the remaining parameters is that their names match
10354 the name of certain fields in the breakpoint structure that are used to
10355 handle exception catchpoints. This function returns the value to which
10356 these fields should be set, depending on the type of catchpoint we need
10357 to create.
10358
10359 If COND and COND_STRING are both non-NULL, any value they might
10360 hold will be free'ed, and then replaced by newly allocated ones.
10361 These parameters are left untouched otherwise. */
10362
10363 static struct symtab_and_line
10364 ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10365 char **addr_string, char **cond_string,
10366 struct expression **cond, struct breakpoint_ops **ops)
10367 {
10368 const char *sym_name;
10369 struct symbol *sym;
10370 struct symtab_and_line sal;
10371
10372 /* First, find out which exception support info to use. */
10373 ada_exception_support_info_sniffer ();
10374
10375 /* Then lookup the function on which we will break in order to catch
10376 the Ada exceptions requested by the user. */
10377
10378 sym_name = ada_exception_sym_name (ex);
10379 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10380
10381 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10382 that should be compiled with debugging information. As a result, we
10383 expect to find that symbol in the symtabs. If we don't find it, then
10384 the target most likely does not support Ada exceptions, or we cannot
10385 insert exception breakpoints yet, because the GNAT runtime hasn't been
10386 loaded yet. */
10387
10388 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10389 in such a way that no debugging information is produced for the symbol
10390 we are looking for. In this case, we could search the minimal symbols
10391 as a fall-back mechanism. This would still be operating in degraded
10392 mode, however, as we would still be missing the debugging information
10393 that is needed in order to extract the name of the exception being
10394 raised (this name is printed in the catchpoint message, and is also
10395 used when trying to catch a specific exception). We do not handle
10396 this case for now. */
10397
10398 if (sym == NULL)
10399 error (_("Unable to break on '%s' in this configuration."), sym_name);
10400
10401 /* Make sure that the symbol we found corresponds to a function. */
10402 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10403 error (_("Symbol \"%s\" is not a function (class = %d)"),
10404 sym_name, SYMBOL_CLASS (sym));
10405
10406 sal = find_function_start_sal (sym, 1);
10407
10408 /* Set ADDR_STRING. */
10409
10410 *addr_string = xstrdup (sym_name);
10411
10412 /* Set the COND and COND_STRING (if not NULL). */
10413
10414 if (cond_string != NULL && cond != NULL)
10415 {
10416 if (*cond_string != NULL)
10417 {
10418 xfree (*cond_string);
10419 *cond_string = NULL;
10420 }
10421 if (*cond != NULL)
10422 {
10423 xfree (*cond);
10424 *cond = NULL;
10425 }
10426 if (exp_string != NULL)
10427 {
10428 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10429 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10430 }
10431 }
10432
10433 /* Set OPS. */
10434 *ops = ada_exception_breakpoint_ops (ex);
10435
10436 return sal;
10437 }
10438
10439 /* Parse the arguments (ARGS) of the "catch exception" command.
10440
10441 Set TYPE to the appropriate exception catchpoint type.
10442 If the user asked the catchpoint to catch only a specific
10443 exception, then save the exception name in ADDR_STRING.
10444
10445 See ada_exception_sal for a description of all the remaining
10446 function arguments of this function. */
10447
10448 struct symtab_and_line
10449 ada_decode_exception_location (char *args, char **addr_string,
10450 char **exp_string, char **cond_string,
10451 struct expression **cond,
10452 struct breakpoint_ops **ops)
10453 {
10454 enum exception_catchpoint_kind ex;
10455
10456 catch_ada_exception_command_split (args, &ex, exp_string);
10457 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10458 cond, ops);
10459 }
10460
10461 struct symtab_and_line
10462 ada_decode_assert_location (char *args, char **addr_string,
10463 struct breakpoint_ops **ops)
10464 {
10465 /* Check that no argument where provided at the end of the command. */
10466
10467 if (args != NULL)
10468 {
10469 while (isspace (*args))
10470 args++;
10471 if (*args != '\0')
10472 error (_("Junk at end of arguments."));
10473 }
10474
10475 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10476 ops);
10477 }
10478
10479 /* Operators */
10480 /* Information about operators given special treatment in functions
10481 below. */
10482 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10483
10484 #define ADA_OPERATORS \
10485 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10486 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10487 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10488 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10489 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10490 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10491 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10492 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10493 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10494 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10495 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10496 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10497 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10498 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10499 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
10500 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10501 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10502 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10503 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
10504
10505 static void
10506 ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10507 {
10508 switch (exp->elts[pc - 1].opcode)
10509 {
10510 default:
10511 operator_length_standard (exp, pc, oplenp, argsp);
10512 break;
10513
10514 #define OP_DEFN(op, len, args, binop) \
10515 case op: *oplenp = len; *argsp = args; break;
10516 ADA_OPERATORS;
10517 #undef OP_DEFN
10518
10519 case OP_AGGREGATE:
10520 *oplenp = 3;
10521 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10522 break;
10523
10524 case OP_CHOICES:
10525 *oplenp = 3;
10526 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10527 break;
10528 }
10529 }
10530
10531 static char *
10532 ada_op_name (enum exp_opcode opcode)
10533 {
10534 switch (opcode)
10535 {
10536 default:
10537 return op_name_standard (opcode);
10538
10539 #define OP_DEFN(op, len, args, binop) case op: return #op;
10540 ADA_OPERATORS;
10541 #undef OP_DEFN
10542
10543 case OP_AGGREGATE:
10544 return "OP_AGGREGATE";
10545 case OP_CHOICES:
10546 return "OP_CHOICES";
10547 case OP_NAME:
10548 return "OP_NAME";
10549 }
10550 }
10551
10552 /* As for operator_length, but assumes PC is pointing at the first
10553 element of the operator, and gives meaningful results only for the
10554 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
10555
10556 static void
10557 ada_forward_operator_length (struct expression *exp, int pc,
10558 int *oplenp, int *argsp)
10559 {
10560 switch (exp->elts[pc].opcode)
10561 {
10562 default:
10563 *oplenp = *argsp = 0;
10564 break;
10565
10566 #define OP_DEFN(op, len, args, binop) \
10567 case op: *oplenp = len; *argsp = args; break;
10568 ADA_OPERATORS;
10569 #undef OP_DEFN
10570
10571 case OP_AGGREGATE:
10572 *oplenp = 3;
10573 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10574 break;
10575
10576 case OP_CHOICES:
10577 *oplenp = 3;
10578 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10579 break;
10580
10581 case OP_STRING:
10582 case OP_NAME:
10583 {
10584 int len = longest_to_int (exp->elts[pc + 1].longconst);
10585 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10586 *argsp = 0;
10587 break;
10588 }
10589 }
10590 }
10591
10592 static int
10593 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10594 {
10595 enum exp_opcode op = exp->elts[elt].opcode;
10596 int oplen, nargs;
10597 int pc = elt;
10598 int i;
10599
10600 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10601
10602 switch (op)
10603 {
10604 /* Ada attributes ('Foo). */
10605 case OP_ATR_FIRST:
10606 case OP_ATR_LAST:
10607 case OP_ATR_LENGTH:
10608 case OP_ATR_IMAGE:
10609 case OP_ATR_MAX:
10610 case OP_ATR_MIN:
10611 case OP_ATR_MODULUS:
10612 case OP_ATR_POS:
10613 case OP_ATR_SIZE:
10614 case OP_ATR_TAG:
10615 case OP_ATR_VAL:
10616 break;
10617
10618 case UNOP_IN_RANGE:
10619 case UNOP_QUAL:
10620 /* XXX: gdb_sprint_host_address, type_sprint */
10621 fprintf_filtered (stream, _("Type @"));
10622 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10623 fprintf_filtered (stream, " (");
10624 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10625 fprintf_filtered (stream, ")");
10626 break;
10627 case BINOP_IN_BOUNDS:
10628 fprintf_filtered (stream, " (%d)",
10629 longest_to_int (exp->elts[pc + 2].longconst));
10630 break;
10631 case TERNOP_IN_RANGE:
10632 break;
10633
10634 case OP_AGGREGATE:
10635 case OP_OTHERS:
10636 case OP_DISCRETE_RANGE:
10637 case OP_POSITIONAL:
10638 case OP_CHOICES:
10639 break;
10640
10641 case OP_NAME:
10642 case OP_STRING:
10643 {
10644 char *name = &exp->elts[elt + 2].string;
10645 int len = longest_to_int (exp->elts[elt + 1].longconst);
10646 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10647 break;
10648 }
10649
10650 default:
10651 return dump_subexp_body_standard (exp, stream, elt);
10652 }
10653
10654 elt += oplen;
10655 for (i = 0; i < nargs; i += 1)
10656 elt = dump_subexp (exp, stream, elt);
10657
10658 return elt;
10659 }
10660
10661 /* The Ada extension of print_subexp (q.v.). */
10662
10663 static void
10664 ada_print_subexp (struct expression *exp, int *pos,
10665 struct ui_file *stream, enum precedence prec)
10666 {
10667 int oplen, nargs, i;
10668 int pc = *pos;
10669 enum exp_opcode op = exp->elts[pc].opcode;
10670
10671 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10672
10673 *pos += oplen;
10674 switch (op)
10675 {
10676 default:
10677 *pos -= oplen;
10678 print_subexp_standard (exp, pos, stream, prec);
10679 return;
10680
10681 case OP_VAR_VALUE:
10682 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
10683 return;
10684
10685 case BINOP_IN_BOUNDS:
10686 /* XXX: sprint_subexp */
10687 print_subexp (exp, pos, stream, PREC_SUFFIX);
10688 fputs_filtered (" in ", stream);
10689 print_subexp (exp, pos, stream, PREC_SUFFIX);
10690 fputs_filtered ("'range", stream);
10691 if (exp->elts[pc + 1].longconst > 1)
10692 fprintf_filtered (stream, "(%ld)",
10693 (long) exp->elts[pc + 1].longconst);
10694 return;
10695
10696 case TERNOP_IN_RANGE:
10697 if (prec >= PREC_EQUAL)
10698 fputs_filtered ("(", stream);
10699 /* XXX: sprint_subexp */
10700 print_subexp (exp, pos, stream, PREC_SUFFIX);
10701 fputs_filtered (" in ", stream);
10702 print_subexp (exp, pos, stream, PREC_EQUAL);
10703 fputs_filtered (" .. ", stream);
10704 print_subexp (exp, pos, stream, PREC_EQUAL);
10705 if (prec >= PREC_EQUAL)
10706 fputs_filtered (")", stream);
10707 return;
10708
10709 case OP_ATR_FIRST:
10710 case OP_ATR_LAST:
10711 case OP_ATR_LENGTH:
10712 case OP_ATR_IMAGE:
10713 case OP_ATR_MAX:
10714 case OP_ATR_MIN:
10715 case OP_ATR_MODULUS:
10716 case OP_ATR_POS:
10717 case OP_ATR_SIZE:
10718 case OP_ATR_TAG:
10719 case OP_ATR_VAL:
10720 if (exp->elts[*pos].opcode == OP_TYPE)
10721 {
10722 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
10723 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
10724 *pos += 3;
10725 }
10726 else
10727 print_subexp (exp, pos, stream, PREC_SUFFIX);
10728 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
10729 if (nargs > 1)
10730 {
10731 int tem;
10732 for (tem = 1; tem < nargs; tem += 1)
10733 {
10734 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
10735 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
10736 }
10737 fputs_filtered (")", stream);
10738 }
10739 return;
10740
10741 case UNOP_QUAL:
10742 type_print (exp->elts[pc + 1].type, "", stream, 0);
10743 fputs_filtered ("'(", stream);
10744 print_subexp (exp, pos, stream, PREC_PREFIX);
10745 fputs_filtered (")", stream);
10746 return;
10747
10748 case UNOP_IN_RANGE:
10749 /* XXX: sprint_subexp */
10750 print_subexp (exp, pos, stream, PREC_SUFFIX);
10751 fputs_filtered (" in ", stream);
10752 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
10753 return;
10754
10755 case OP_DISCRETE_RANGE:
10756 print_subexp (exp, pos, stream, PREC_SUFFIX);
10757 fputs_filtered ("..", stream);
10758 print_subexp (exp, pos, stream, PREC_SUFFIX);
10759 return;
10760
10761 case OP_OTHERS:
10762 fputs_filtered ("others => ", stream);
10763 print_subexp (exp, pos, stream, PREC_SUFFIX);
10764 return;
10765
10766 case OP_CHOICES:
10767 for (i = 0; i < nargs-1; i += 1)
10768 {
10769 if (i > 0)
10770 fputs_filtered ("|", stream);
10771 print_subexp (exp, pos, stream, PREC_SUFFIX);
10772 }
10773 fputs_filtered (" => ", stream);
10774 print_subexp (exp, pos, stream, PREC_SUFFIX);
10775 return;
10776
10777 case OP_POSITIONAL:
10778 print_subexp (exp, pos, stream, PREC_SUFFIX);
10779 return;
10780
10781 case OP_AGGREGATE:
10782 fputs_filtered ("(", stream);
10783 for (i = 0; i < nargs; i += 1)
10784 {
10785 if (i > 0)
10786 fputs_filtered (", ", stream);
10787 print_subexp (exp, pos, stream, PREC_SUFFIX);
10788 }
10789 fputs_filtered (")", stream);
10790 return;
10791 }
10792 }
10793
10794 /* Table mapping opcodes into strings for printing operators
10795 and precedences of the operators. */
10796
10797 static const struct op_print ada_op_print_tab[] = {
10798 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
10799 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
10800 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
10801 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
10802 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
10803 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
10804 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
10805 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
10806 {"<=", BINOP_LEQ, PREC_ORDER, 0},
10807 {">=", BINOP_GEQ, PREC_ORDER, 0},
10808 {">", BINOP_GTR, PREC_ORDER, 0},
10809 {"<", BINOP_LESS, PREC_ORDER, 0},
10810 {">>", BINOP_RSH, PREC_SHIFT, 0},
10811 {"<<", BINOP_LSH, PREC_SHIFT, 0},
10812 {"+", BINOP_ADD, PREC_ADD, 0},
10813 {"-", BINOP_SUB, PREC_ADD, 0},
10814 {"&", BINOP_CONCAT, PREC_ADD, 0},
10815 {"*", BINOP_MUL, PREC_MUL, 0},
10816 {"/", BINOP_DIV, PREC_MUL, 0},
10817 {"rem", BINOP_REM, PREC_MUL, 0},
10818 {"mod", BINOP_MOD, PREC_MUL, 0},
10819 {"**", BINOP_EXP, PREC_REPEAT, 0},
10820 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
10821 {"-", UNOP_NEG, PREC_PREFIX, 0},
10822 {"+", UNOP_PLUS, PREC_PREFIX, 0},
10823 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
10824 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
10825 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
10826 {".all", UNOP_IND, PREC_SUFFIX, 1},
10827 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
10828 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
10829 {NULL, 0, 0, 0}
10830 };
10831 \f
10832 enum ada_primitive_types {
10833 ada_primitive_type_int,
10834 ada_primitive_type_long,
10835 ada_primitive_type_short,
10836 ada_primitive_type_char,
10837 ada_primitive_type_float,
10838 ada_primitive_type_double,
10839 ada_primitive_type_void,
10840 ada_primitive_type_long_long,
10841 ada_primitive_type_long_double,
10842 ada_primitive_type_natural,
10843 ada_primitive_type_positive,
10844 ada_primitive_type_system_address,
10845 nr_ada_primitive_types
10846 };
10847
10848 static void
10849 ada_language_arch_info (struct gdbarch *gdbarch,
10850 struct language_arch_info *lai)
10851 {
10852 const struct builtin_type *builtin = builtin_type (gdbarch);
10853 lai->primitive_type_vector
10854 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
10855 struct type *);
10856 lai->primitive_type_vector [ada_primitive_type_int] =
10857 init_type (TYPE_CODE_INT,
10858 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10859 0, "integer", (struct objfile *) NULL);
10860 lai->primitive_type_vector [ada_primitive_type_long] =
10861 init_type (TYPE_CODE_INT,
10862 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
10863 0, "long_integer", (struct objfile *) NULL);
10864 lai->primitive_type_vector [ada_primitive_type_short] =
10865 init_type (TYPE_CODE_INT,
10866 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
10867 0, "short_integer", (struct objfile *) NULL);
10868 lai->string_char_type =
10869 lai->primitive_type_vector [ada_primitive_type_char] =
10870 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
10871 0, "character", (struct objfile *) NULL);
10872 lai->primitive_type_vector [ada_primitive_type_float] =
10873 init_type (TYPE_CODE_FLT,
10874 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
10875 0, "float", (struct objfile *) NULL);
10876 lai->primitive_type_vector [ada_primitive_type_double] =
10877 init_type (TYPE_CODE_FLT,
10878 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10879 0, "long_float", (struct objfile *) NULL);
10880 lai->primitive_type_vector [ada_primitive_type_long_long] =
10881 init_type (TYPE_CODE_INT,
10882 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
10883 0, "long_long_integer", (struct objfile *) NULL);
10884 lai->primitive_type_vector [ada_primitive_type_long_double] =
10885 init_type (TYPE_CODE_FLT,
10886 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
10887 0, "long_long_float", (struct objfile *) NULL);
10888 lai->primitive_type_vector [ada_primitive_type_natural] =
10889 init_type (TYPE_CODE_INT,
10890 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10891 0, "natural", (struct objfile *) NULL);
10892 lai->primitive_type_vector [ada_primitive_type_positive] =
10893 init_type (TYPE_CODE_INT,
10894 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
10895 0, "positive", (struct objfile *) NULL);
10896 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
10897
10898 lai->primitive_type_vector [ada_primitive_type_system_address] =
10899 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
10900 (struct objfile *) NULL));
10901 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
10902 = "system__address";
10903 }
10904 \f
10905 /* Language vector */
10906
10907 /* Not really used, but needed in the ada_language_defn. */
10908
10909 static void
10910 emit_char (int c, struct ui_file *stream, int quoter)
10911 {
10912 ada_emit_char (c, stream, quoter, 1);
10913 }
10914
10915 static int
10916 parse (void)
10917 {
10918 warnings_issued = 0;
10919 return ada_parse ();
10920 }
10921
10922 static const struct exp_descriptor ada_exp_descriptor = {
10923 ada_print_subexp,
10924 ada_operator_length,
10925 ada_op_name,
10926 ada_dump_subexp_body,
10927 ada_evaluate_subexp
10928 };
10929
10930 const struct language_defn ada_language_defn = {
10931 "ada", /* Language name */
10932 language_ada,
10933 range_check_off,
10934 type_check_off,
10935 case_sensitive_on, /* Yes, Ada is case-insensitive, but
10936 that's not quite what this means. */
10937 array_row_major,
10938 &ada_exp_descriptor,
10939 parse,
10940 ada_error,
10941 resolve,
10942 ada_printchar, /* Print a character constant */
10943 ada_printstr, /* Function to print string constant */
10944 emit_char, /* Function to print single char (not used) */
10945 ada_print_type, /* Print a type using appropriate syntax */
10946 ada_val_print, /* Print a value using appropriate syntax */
10947 ada_value_print, /* Print a top-level value */
10948 NULL, /* Language specific skip_trampoline */
10949 NULL, /* name_of_this */
10950 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
10951 basic_lookup_transparent_type, /* lookup_transparent_type */
10952 ada_la_decode, /* Language specific symbol demangler */
10953 NULL, /* Language specific class_name_from_physname */
10954 ada_op_print_tab, /* expression operators for printing */
10955 0, /* c-style arrays */
10956 1, /* String lower bound */
10957 ada_get_gdb_completer_word_break_characters,
10958 ada_make_symbol_completion_list,
10959 ada_language_arch_info,
10960 ada_print_array_index,
10961 default_pass_by_reference,
10962 LANG_MAGIC
10963 };
10964
10965 void
10966 _initialize_ada_language (void)
10967 {
10968 add_language (&ada_language_defn);
10969
10970 varsize_limit = 65536;
10971
10972 obstack_init (&symbol_list_obstack);
10973
10974 decoded_names_store = htab_create_alloc
10975 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
10976 NULL, xcalloc, xfree);
10977
10978 observer_attach_executable_changed (ada_executable_changed_observer);
10979 }
This page took 0.242388 seconds and 5 git commands to generate.