Avoid crash in ada-lang.c:to_fixed_array_type
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, char);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *val_atr (struct type *, LONGEST);
200
201 static struct value *value_val_atr (struct type *, struct value *);
202
203 static struct symbol *standard_lookup (const char *, const struct block *,
204 domain_enum);
205
206 static struct value *ada_search_struct_field (const char *, struct value *, int,
207 struct type *);
208
209 static int find_struct_field (const char *, struct type *, int,
210 struct type **, int *, int *, int *, int *);
211
212 static int ada_resolve_function (struct block_symbol *, int,
213 struct value **, int, const char *,
214 struct type *, int);
215
216 static int ada_is_direct_array_type (struct type *);
217
218 static struct value *ada_index_struct_field (int, struct value *, int,
219 struct type *);
220
221 static struct value *assign_aggregate (struct value *, struct value *,
222 struct expression *,
223 int *, enum noside);
224
225 static void aggregate_assign_from_choices (struct value *, struct value *,
226 struct expression *,
227 int *, LONGEST *, int *,
228 int, LONGEST, LONGEST);
229
230 static void aggregate_assign_positional (struct value *, struct value *,
231 struct expression *,
232 int *, LONGEST *, int *, int,
233 LONGEST, LONGEST);
234
235
236 static void aggregate_assign_others (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int, LONGEST, LONGEST);
239
240
241 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
242
243
244 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
245 int *, enum noside);
246
247 static void ada_forward_operator_length (struct expression *, int, int *,
248 int *);
249
250 static struct type *ada_find_any_type (const char *name);
251
252 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
253 (const lookup_name_info &lookup_name);
254
255 \f
256
257 /* The result of a symbol lookup to be stored in our symbol cache. */
258
259 struct cache_entry
260 {
261 /* The name used to perform the lookup. */
262 const char *name;
263 /* The namespace used during the lookup. */
264 domain_enum domain;
265 /* The symbol returned by the lookup, or NULL if no matching symbol
266 was found. */
267 struct symbol *sym;
268 /* The block where the symbol was found, or NULL if no matching
269 symbol was found. */
270 const struct block *block;
271 /* A pointer to the next entry with the same hash. */
272 struct cache_entry *next;
273 };
274
275 /* The Ada symbol cache, used to store the result of Ada-mode symbol
276 lookups in the course of executing the user's commands.
277
278 The cache is implemented using a simple, fixed-sized hash.
279 The size is fixed on the grounds that there are not likely to be
280 all that many symbols looked up during any given session, regardless
281 of the size of the symbol table. If we decide to go to a resizable
282 table, let's just use the stuff from libiberty instead. */
283
284 #define HASH_SIZE 1009
285
286 struct ada_symbol_cache
287 {
288 /* An obstack used to store the entries in our cache. */
289 struct obstack cache_space;
290
291 /* The root of the hash table used to implement our symbol cache. */
292 struct cache_entry *root[HASH_SIZE];
293 };
294
295 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
296
297 /* Maximum-sized dynamic type. */
298 static unsigned int varsize_limit;
299
300 static const char ada_completer_word_break_characters[] =
301 #ifdef VMS
302 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
303 #else
304 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
305 #endif
306
307 /* The name of the symbol to use to get the name of the main subprogram. */
308 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
309 = "__gnat_ada_main_program_name";
310
311 /* Limit on the number of warnings to raise per expression evaluation. */
312 static int warning_limit = 2;
313
314 /* Number of warning messages issued; reset to 0 by cleanups after
315 expression evaluation. */
316 static int warnings_issued = 0;
317
318 static const char * const known_runtime_file_name_patterns[] = {
319 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
320 };
321
322 static const char * const known_auxiliary_function_name_patterns[] = {
323 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
324 };
325
326 /* Maintenance-related settings for this module. */
327
328 static struct cmd_list_element *maint_set_ada_cmdlist;
329 static struct cmd_list_element *maint_show_ada_cmdlist;
330
331 /* The "maintenance ada set/show ignore-descriptive-type" value. */
332
333 static bool ada_ignore_descriptive_types_p = false;
334
335 /* Inferior-specific data. */
336
337 /* Per-inferior data for this module. */
338
339 struct ada_inferior_data
340 {
341 /* The ada__tags__type_specific_data type, which is used when decoding
342 tagged types. With older versions of GNAT, this type was directly
343 accessible through a component ("tsd") in the object tag. But this
344 is no longer the case, so we cache it for each inferior. */
345 struct type *tsd_type = nullptr;
346
347 /* The exception_support_info data. This data is used to determine
348 how to implement support for Ada exception catchpoints in a given
349 inferior. */
350 const struct exception_support_info *exception_info = nullptr;
351 };
352
353 /* Our key to this module's inferior data. */
354 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
355
356 /* Return our inferior data for the given inferior (INF).
357
358 This function always returns a valid pointer to an allocated
359 ada_inferior_data structure. If INF's inferior data has not
360 been previously set, this functions creates a new one with all
361 fields set to zero, sets INF's inferior to it, and then returns
362 a pointer to that newly allocated ada_inferior_data. */
363
364 static struct ada_inferior_data *
365 get_ada_inferior_data (struct inferior *inf)
366 {
367 struct ada_inferior_data *data;
368
369 data = ada_inferior_data.get (inf);
370 if (data == NULL)
371 data = ada_inferior_data.emplace (inf);
372
373 return data;
374 }
375
376 /* Perform all necessary cleanups regarding our module's inferior data
377 that is required after the inferior INF just exited. */
378
379 static void
380 ada_inferior_exit (struct inferior *inf)
381 {
382 ada_inferior_data.clear (inf);
383 }
384
385
386 /* program-space-specific data. */
387
388 /* This module's per-program-space data. */
389 struct ada_pspace_data
390 {
391 ~ada_pspace_data ()
392 {
393 if (sym_cache != NULL)
394 ada_free_symbol_cache (sym_cache);
395 }
396
397 /* The Ada symbol cache. */
398 struct ada_symbol_cache *sym_cache = nullptr;
399 };
400
401 /* Key to our per-program-space data. */
402 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
403
404 /* Return this module's data for the given program space (PSPACE).
405 If not is found, add a zero'ed one now.
406
407 This function always returns a valid object. */
408
409 static struct ada_pspace_data *
410 get_ada_pspace_data (struct program_space *pspace)
411 {
412 struct ada_pspace_data *data;
413
414 data = ada_pspace_data_handle.get (pspace);
415 if (data == NULL)
416 data = ada_pspace_data_handle.emplace (pspace);
417
418 return data;
419 }
420
421 /* Utilities */
422
423 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
424 all typedef layers have been peeled. Otherwise, return TYPE.
425
426 Normally, we really expect a typedef type to only have 1 typedef layer.
427 In other words, we really expect the target type of a typedef type to be
428 a non-typedef type. This is particularly true for Ada units, because
429 the language does not have a typedef vs not-typedef distinction.
430 In that respect, the Ada compiler has been trying to eliminate as many
431 typedef definitions in the debugging information, since they generally
432 do not bring any extra information (we still use typedef under certain
433 circumstances related mostly to the GNAT encoding).
434
435 Unfortunately, we have seen situations where the debugging information
436 generated by the compiler leads to such multiple typedef layers. For
437 instance, consider the following example with stabs:
438
439 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
440 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
441
442 This is an error in the debugging information which causes type
443 pck__float_array___XUP to be defined twice, and the second time,
444 it is defined as a typedef of a typedef.
445
446 This is on the fringe of legality as far as debugging information is
447 concerned, and certainly unexpected. But it is easy to handle these
448 situations correctly, so we can afford to be lenient in this case. */
449
450 static struct type *
451 ada_typedef_target_type (struct type *type)
452 {
453 while (type->code () == TYPE_CODE_TYPEDEF)
454 type = TYPE_TARGET_TYPE (type);
455 return type;
456 }
457
458 /* Given DECODED_NAME a string holding a symbol name in its
459 decoded form (ie using the Ada dotted notation), returns
460 its unqualified name. */
461
462 static const char *
463 ada_unqualified_name (const char *decoded_name)
464 {
465 const char *result;
466
467 /* If the decoded name starts with '<', it means that the encoded
468 name does not follow standard naming conventions, and thus that
469 it is not your typical Ada symbol name. Trying to unqualify it
470 is therefore pointless and possibly erroneous. */
471 if (decoded_name[0] == '<')
472 return decoded_name;
473
474 result = strrchr (decoded_name, '.');
475 if (result != NULL)
476 result++; /* Skip the dot... */
477 else
478 result = decoded_name;
479
480 return result;
481 }
482
483 /* Return a string starting with '<', followed by STR, and '>'. */
484
485 static std::string
486 add_angle_brackets (const char *str)
487 {
488 return string_printf ("<%s>", str);
489 }
490
491 /* Assuming V points to an array of S objects, make sure that it contains at
492 least M objects, updating V and S as necessary. */
493
494 #define GROW_VECT(v, s, m) \
495 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
496
497 /* Assuming VECT points to an array of *SIZE objects of size
498 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
499 updating *SIZE as necessary and returning the (new) array. */
500
501 static void *
502 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
503 {
504 if (*size < min_size)
505 {
506 *size *= 2;
507 if (*size < min_size)
508 *size = min_size;
509 vect = xrealloc (vect, *size * element_size);
510 }
511 return vect;
512 }
513
514 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
515 suffix of FIELD_NAME beginning "___". */
516
517 static int
518 field_name_match (const char *field_name, const char *target)
519 {
520 int len = strlen (target);
521
522 return
523 (strncmp (field_name, target, len) == 0
524 && (field_name[len] == '\0'
525 || (startswith (field_name + len, "___")
526 && strcmp (field_name + strlen (field_name) - 6,
527 "___XVN") != 0)));
528 }
529
530
531 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
532 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
533 and return its index. This function also handles fields whose name
534 have ___ suffixes because the compiler sometimes alters their name
535 by adding such a suffix to represent fields with certain constraints.
536 If the field could not be found, return a negative number if
537 MAYBE_MISSING is set. Otherwise raise an error. */
538
539 int
540 ada_get_field_index (const struct type *type, const char *field_name,
541 int maybe_missing)
542 {
543 int fieldno;
544 struct type *struct_type = check_typedef ((struct type *) type);
545
546 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
547 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
548 return fieldno;
549
550 if (!maybe_missing)
551 error (_("Unable to find field %s in struct %s. Aborting"),
552 field_name, struct_type->name ());
553
554 return -1;
555 }
556
557 /* The length of the prefix of NAME prior to any "___" suffix. */
558
559 int
560 ada_name_prefix_len (const char *name)
561 {
562 if (name == NULL)
563 return 0;
564 else
565 {
566 const char *p = strstr (name, "___");
567
568 if (p == NULL)
569 return strlen (name);
570 else
571 return p - name;
572 }
573 }
574
575 /* Return non-zero if SUFFIX is a suffix of STR.
576 Return zero if STR is null. */
577
578 static int
579 is_suffix (const char *str, const char *suffix)
580 {
581 int len1, len2;
582
583 if (str == NULL)
584 return 0;
585 len1 = strlen (str);
586 len2 = strlen (suffix);
587 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
588 }
589
590 /* The contents of value VAL, treated as a value of type TYPE. The
591 result is an lval in memory if VAL is. */
592
593 static struct value *
594 coerce_unspec_val_to_type (struct value *val, struct type *type)
595 {
596 type = ada_check_typedef (type);
597 if (value_type (val) == type)
598 return val;
599 else
600 {
601 struct value *result;
602
603 /* Make sure that the object size is not unreasonable before
604 trying to allocate some memory for it. */
605 ada_ensure_varsize_limit (type);
606
607 if (value_lazy (val)
608 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
609 result = allocate_value_lazy (type);
610 else
611 {
612 result = allocate_value (type);
613 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
614 }
615 set_value_component_location (result, val);
616 set_value_bitsize (result, value_bitsize (val));
617 set_value_bitpos (result, value_bitpos (val));
618 if (VALUE_LVAL (result) == lval_memory)
619 set_value_address (result, value_address (val));
620 return result;
621 }
622 }
623
624 static const gdb_byte *
625 cond_offset_host (const gdb_byte *valaddr, long offset)
626 {
627 if (valaddr == NULL)
628 return NULL;
629 else
630 return valaddr + offset;
631 }
632
633 static CORE_ADDR
634 cond_offset_target (CORE_ADDR address, long offset)
635 {
636 if (address == 0)
637 return 0;
638 else
639 return address + offset;
640 }
641
642 /* Issue a warning (as for the definition of warning in utils.c, but
643 with exactly one argument rather than ...), unless the limit on the
644 number of warnings has passed during the evaluation of the current
645 expression. */
646
647 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
648 provided by "complaint". */
649 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
650
651 static void
652 lim_warning (const char *format, ...)
653 {
654 va_list args;
655
656 va_start (args, format);
657 warnings_issued += 1;
658 if (warnings_issued <= warning_limit)
659 vwarning (format, args);
660
661 va_end (args);
662 }
663
664 /* Issue an error if the size of an object of type T is unreasonable,
665 i.e. if it would be a bad idea to allocate a value of this type in
666 GDB. */
667
668 void
669 ada_ensure_varsize_limit (const struct type *type)
670 {
671 if (TYPE_LENGTH (type) > varsize_limit)
672 error (_("object size is larger than varsize-limit"));
673 }
674
675 /* Maximum value of a SIZE-byte signed integer type. */
676 static LONGEST
677 max_of_size (int size)
678 {
679 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
680
681 return top_bit | (top_bit - 1);
682 }
683
684 /* Minimum value of a SIZE-byte signed integer type. */
685 static LONGEST
686 min_of_size (int size)
687 {
688 return -max_of_size (size) - 1;
689 }
690
691 /* Maximum value of a SIZE-byte unsigned integer type. */
692 static ULONGEST
693 umax_of_size (int size)
694 {
695 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
696
697 return top_bit | (top_bit - 1);
698 }
699
700 /* Maximum value of integral type T, as a signed quantity. */
701 static LONGEST
702 max_of_type (struct type *t)
703 {
704 if (t->is_unsigned ())
705 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
706 else
707 return max_of_size (TYPE_LENGTH (t));
708 }
709
710 /* Minimum value of integral type T, as a signed quantity. */
711 static LONGEST
712 min_of_type (struct type *t)
713 {
714 if (t->is_unsigned ())
715 return 0;
716 else
717 return min_of_size (TYPE_LENGTH (t));
718 }
719
720 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
721 LONGEST
722 ada_discrete_type_high_bound (struct type *type)
723 {
724 type = resolve_dynamic_type (type, {}, 0);
725 switch (type->code ())
726 {
727 case TYPE_CODE_RANGE:
728 {
729 const dynamic_prop &high = type->bounds ()->high;
730
731 if (high.kind () == PROP_CONST)
732 return high.const_val ();
733 else
734 {
735 gdb_assert (high.kind () == PROP_UNDEFINED);
736
737 /* This happens when trying to evaluate a type's dynamic bound
738 without a live target. There is nothing relevant for us to
739 return here, so return 0. */
740 return 0;
741 }
742 }
743 case TYPE_CODE_ENUM:
744 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
745 case TYPE_CODE_BOOL:
746 return 1;
747 case TYPE_CODE_CHAR:
748 case TYPE_CODE_INT:
749 return max_of_type (type);
750 default:
751 error (_("Unexpected type in ada_discrete_type_high_bound."));
752 }
753 }
754
755 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
756 LONGEST
757 ada_discrete_type_low_bound (struct type *type)
758 {
759 type = resolve_dynamic_type (type, {}, 0);
760 switch (type->code ())
761 {
762 case TYPE_CODE_RANGE:
763 {
764 const dynamic_prop &low = type->bounds ()->low;
765
766 if (low.kind () == PROP_CONST)
767 return low.const_val ();
768 else
769 {
770 gdb_assert (low.kind () == PROP_UNDEFINED);
771
772 /* This happens when trying to evaluate a type's dynamic bound
773 without a live target. There is nothing relevant for us to
774 return here, so return 0. */
775 return 0;
776 }
777 }
778 case TYPE_CODE_ENUM:
779 return TYPE_FIELD_ENUMVAL (type, 0);
780 case TYPE_CODE_BOOL:
781 return 0;
782 case TYPE_CODE_CHAR:
783 case TYPE_CODE_INT:
784 return min_of_type (type);
785 default:
786 error (_("Unexpected type in ada_discrete_type_low_bound."));
787 }
788 }
789
790 /* The identity on non-range types. For range types, the underlying
791 non-range scalar type. */
792
793 static struct type *
794 get_base_type (struct type *type)
795 {
796 while (type != NULL && type->code () == TYPE_CODE_RANGE)
797 {
798 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
799 return type;
800 type = TYPE_TARGET_TYPE (type);
801 }
802 return type;
803 }
804
805 /* Return a decoded version of the given VALUE. This means returning
806 a value whose type is obtained by applying all the GNAT-specific
807 encodings, making the resulting type a static but standard description
808 of the initial type. */
809
810 struct value *
811 ada_get_decoded_value (struct value *value)
812 {
813 struct type *type = ada_check_typedef (value_type (value));
814
815 if (ada_is_array_descriptor_type (type)
816 || (ada_is_constrained_packed_array_type (type)
817 && type->code () != TYPE_CODE_PTR))
818 {
819 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
820 value = ada_coerce_to_simple_array_ptr (value);
821 else
822 value = ada_coerce_to_simple_array (value);
823 }
824 else
825 value = ada_to_fixed_value (value);
826
827 return value;
828 }
829
830 /* Same as ada_get_decoded_value, but with the given TYPE.
831 Because there is no associated actual value for this type,
832 the resulting type might be a best-effort approximation in
833 the case of dynamic types. */
834
835 struct type *
836 ada_get_decoded_type (struct type *type)
837 {
838 type = to_static_fixed_type (type);
839 if (ada_is_constrained_packed_array_type (type))
840 type = ada_coerce_to_simple_array_type (type);
841 return type;
842 }
843
844 \f
845
846 /* Language Selection */
847
848 /* If the main program is in Ada, return language_ada, otherwise return LANG
849 (the main program is in Ada iif the adainit symbol is found). */
850
851 static enum language
852 ada_update_initial_language (enum language lang)
853 {
854 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
855 return language_ada;
856
857 return lang;
858 }
859
860 /* If the main procedure is written in Ada, then return its name.
861 The result is good until the next call. Return NULL if the main
862 procedure doesn't appear to be in Ada. */
863
864 char *
865 ada_main_name (void)
866 {
867 struct bound_minimal_symbol msym;
868 static gdb::unique_xmalloc_ptr<char> main_program_name;
869
870 /* For Ada, the name of the main procedure is stored in a specific
871 string constant, generated by the binder. Look for that symbol,
872 extract its address, and then read that string. If we didn't find
873 that string, then most probably the main procedure is not written
874 in Ada. */
875 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
876
877 if (msym.minsym != NULL)
878 {
879 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
880 if (main_program_name_addr == 0)
881 error (_("Invalid address for Ada main program name."));
882
883 main_program_name = target_read_string (main_program_name_addr, 1024);
884 return main_program_name.get ();
885 }
886
887 /* The main procedure doesn't seem to be in Ada. */
888 return NULL;
889 }
890 \f
891 /* Symbols */
892
893 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
894 of NULLs. */
895
896 const struct ada_opname_map ada_opname_table[] = {
897 {"Oadd", "\"+\"", BINOP_ADD},
898 {"Osubtract", "\"-\"", BINOP_SUB},
899 {"Omultiply", "\"*\"", BINOP_MUL},
900 {"Odivide", "\"/\"", BINOP_DIV},
901 {"Omod", "\"mod\"", BINOP_MOD},
902 {"Orem", "\"rem\"", BINOP_REM},
903 {"Oexpon", "\"**\"", BINOP_EXP},
904 {"Olt", "\"<\"", BINOP_LESS},
905 {"Ole", "\"<=\"", BINOP_LEQ},
906 {"Ogt", "\">\"", BINOP_GTR},
907 {"Oge", "\">=\"", BINOP_GEQ},
908 {"Oeq", "\"=\"", BINOP_EQUAL},
909 {"One", "\"/=\"", BINOP_NOTEQUAL},
910 {"Oand", "\"and\"", BINOP_BITWISE_AND},
911 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
912 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
913 {"Oconcat", "\"&\"", BINOP_CONCAT},
914 {"Oabs", "\"abs\"", UNOP_ABS},
915 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
916 {"Oadd", "\"+\"", UNOP_PLUS},
917 {"Osubtract", "\"-\"", UNOP_NEG},
918 {NULL, NULL}
919 };
920
921 /* The "encoded" form of DECODED, according to GNAT conventions. If
922 THROW_ERRORS, throw an error if invalid operator name is found.
923 Otherwise, return the empty string in that case. */
924
925 static std::string
926 ada_encode_1 (const char *decoded, bool throw_errors)
927 {
928 if (decoded == NULL)
929 return {};
930
931 std::string encoding_buffer;
932 for (const char *p = decoded; *p != '\0'; p += 1)
933 {
934 if (*p == '.')
935 encoding_buffer.append ("__");
936 else if (*p == '"')
937 {
938 const struct ada_opname_map *mapping;
939
940 for (mapping = ada_opname_table;
941 mapping->encoded != NULL
942 && !startswith (p, mapping->decoded); mapping += 1)
943 ;
944 if (mapping->encoded == NULL)
945 {
946 if (throw_errors)
947 error (_("invalid Ada operator name: %s"), p);
948 else
949 return {};
950 }
951 encoding_buffer.append (mapping->encoded);
952 break;
953 }
954 else
955 encoding_buffer.push_back (*p);
956 }
957
958 return encoding_buffer;
959 }
960
961 /* The "encoded" form of DECODED, according to GNAT conventions. */
962
963 std::string
964 ada_encode (const char *decoded)
965 {
966 return ada_encode_1 (decoded, true);
967 }
968
969 /* Return NAME folded to lower case, or, if surrounded by single
970 quotes, unfolded, but with the quotes stripped away. Result good
971 to next call. */
972
973 static char *
974 ada_fold_name (gdb::string_view name)
975 {
976 static char *fold_buffer = NULL;
977 static size_t fold_buffer_size = 0;
978
979 int len = name.size ();
980 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
981
982 if (name[0] == '\'')
983 {
984 strncpy (fold_buffer, name.data () + 1, len - 2);
985 fold_buffer[len - 2] = '\000';
986 }
987 else
988 {
989 int i;
990
991 for (i = 0; i <= len; i += 1)
992 fold_buffer[i] = tolower (name[i]);
993 }
994
995 return fold_buffer;
996 }
997
998 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
999
1000 static int
1001 is_lower_alphanum (const char c)
1002 {
1003 return (isdigit (c) || (isalpha (c) && islower (c)));
1004 }
1005
1006 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1007 This function saves in LEN the length of that same symbol name but
1008 without either of these suffixes:
1009 . .{DIGIT}+
1010 . ${DIGIT}+
1011 . ___{DIGIT}+
1012 . __{DIGIT}+.
1013
1014 These are suffixes introduced by the compiler for entities such as
1015 nested subprogram for instance, in order to avoid name clashes.
1016 They do not serve any purpose for the debugger. */
1017
1018 static void
1019 ada_remove_trailing_digits (const char *encoded, int *len)
1020 {
1021 if (*len > 1 && isdigit (encoded[*len - 1]))
1022 {
1023 int i = *len - 2;
1024
1025 while (i > 0 && isdigit (encoded[i]))
1026 i--;
1027 if (i >= 0 && encoded[i] == '.')
1028 *len = i;
1029 else if (i >= 0 && encoded[i] == '$')
1030 *len = i;
1031 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1032 *len = i - 2;
1033 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1034 *len = i - 1;
1035 }
1036 }
1037
1038 /* Remove the suffix introduced by the compiler for protected object
1039 subprograms. */
1040
1041 static void
1042 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1043 {
1044 /* Remove trailing N. */
1045
1046 /* Protected entry subprograms are broken into two
1047 separate subprograms: The first one is unprotected, and has
1048 a 'N' suffix; the second is the protected version, and has
1049 the 'P' suffix. The second calls the first one after handling
1050 the protection. Since the P subprograms are internally generated,
1051 we leave these names undecoded, giving the user a clue that this
1052 entity is internal. */
1053
1054 if (*len > 1
1055 && encoded[*len - 1] == 'N'
1056 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1057 *len = *len - 1;
1058 }
1059
1060 /* If ENCODED follows the GNAT entity encoding conventions, then return
1061 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1062 replaced by ENCODED. */
1063
1064 std::string
1065 ada_decode (const char *encoded)
1066 {
1067 int i, j;
1068 int len0;
1069 const char *p;
1070 int at_start_name;
1071 std::string decoded;
1072
1073 /* With function descriptors on PPC64, the value of a symbol named
1074 ".FN", if it exists, is the entry point of the function "FN". */
1075 if (encoded[0] == '.')
1076 encoded += 1;
1077
1078 /* The name of the Ada main procedure starts with "_ada_".
1079 This prefix is not part of the decoded name, so skip this part
1080 if we see this prefix. */
1081 if (startswith (encoded, "_ada_"))
1082 encoded += 5;
1083
1084 /* If the name starts with '_', then it is not a properly encoded
1085 name, so do not attempt to decode it. Similarly, if the name
1086 starts with '<', the name should not be decoded. */
1087 if (encoded[0] == '_' || encoded[0] == '<')
1088 goto Suppress;
1089
1090 len0 = strlen (encoded);
1091
1092 ada_remove_trailing_digits (encoded, &len0);
1093 ada_remove_po_subprogram_suffix (encoded, &len0);
1094
1095 /* Remove the ___X.* suffix if present. Do not forget to verify that
1096 the suffix is located before the current "end" of ENCODED. We want
1097 to avoid re-matching parts of ENCODED that have previously been
1098 marked as discarded (by decrementing LEN0). */
1099 p = strstr (encoded, "___");
1100 if (p != NULL && p - encoded < len0 - 3)
1101 {
1102 if (p[3] == 'X')
1103 len0 = p - encoded;
1104 else
1105 goto Suppress;
1106 }
1107
1108 /* Remove any trailing TKB suffix. It tells us that this symbol
1109 is for the body of a task, but that information does not actually
1110 appear in the decoded name. */
1111
1112 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1113 len0 -= 3;
1114
1115 /* Remove any trailing TB suffix. The TB suffix is slightly different
1116 from the TKB suffix because it is used for non-anonymous task
1117 bodies. */
1118
1119 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1120 len0 -= 2;
1121
1122 /* Remove trailing "B" suffixes. */
1123 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1124
1125 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1126 len0 -= 1;
1127
1128 /* Make decoded big enough for possible expansion by operator name. */
1129
1130 decoded.resize (2 * len0 + 1, 'X');
1131
1132 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1133
1134 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1135 {
1136 i = len0 - 2;
1137 while ((i >= 0 && isdigit (encoded[i]))
1138 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1139 i -= 1;
1140 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1141 len0 = i - 1;
1142 else if (encoded[i] == '$')
1143 len0 = i;
1144 }
1145
1146 /* The first few characters that are not alphabetic are not part
1147 of any encoding we use, so we can copy them over verbatim. */
1148
1149 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1150 decoded[j] = encoded[i];
1151
1152 at_start_name = 1;
1153 while (i < len0)
1154 {
1155 /* Is this a symbol function? */
1156 if (at_start_name && encoded[i] == 'O')
1157 {
1158 int k;
1159
1160 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1161 {
1162 int op_len = strlen (ada_opname_table[k].encoded);
1163 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1164 op_len - 1) == 0)
1165 && !isalnum (encoded[i + op_len]))
1166 {
1167 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1168 at_start_name = 0;
1169 i += op_len;
1170 j += strlen (ada_opname_table[k].decoded);
1171 break;
1172 }
1173 }
1174 if (ada_opname_table[k].encoded != NULL)
1175 continue;
1176 }
1177 at_start_name = 0;
1178
1179 /* Replace "TK__" with "__", which will eventually be translated
1180 into "." (just below). */
1181
1182 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1183 i += 2;
1184
1185 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1186 be translated into "." (just below). These are internal names
1187 generated for anonymous blocks inside which our symbol is nested. */
1188
1189 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1190 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1191 && isdigit (encoded [i+4]))
1192 {
1193 int k = i + 5;
1194
1195 while (k < len0 && isdigit (encoded[k]))
1196 k++; /* Skip any extra digit. */
1197
1198 /* Double-check that the "__B_{DIGITS}+" sequence we found
1199 is indeed followed by "__". */
1200 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1201 i = k;
1202 }
1203
1204 /* Remove _E{DIGITS}+[sb] */
1205
1206 /* Just as for protected object subprograms, there are 2 categories
1207 of subprograms created by the compiler for each entry. The first
1208 one implements the actual entry code, and has a suffix following
1209 the convention above; the second one implements the barrier and
1210 uses the same convention as above, except that the 'E' is replaced
1211 by a 'B'.
1212
1213 Just as above, we do not decode the name of barrier functions
1214 to give the user a clue that the code he is debugging has been
1215 internally generated. */
1216
1217 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1218 && isdigit (encoded[i+2]))
1219 {
1220 int k = i + 3;
1221
1222 while (k < len0 && isdigit (encoded[k]))
1223 k++;
1224
1225 if (k < len0
1226 && (encoded[k] == 'b' || encoded[k] == 's'))
1227 {
1228 k++;
1229 /* Just as an extra precaution, make sure that if this
1230 suffix is followed by anything else, it is a '_'.
1231 Otherwise, we matched this sequence by accident. */
1232 if (k == len0
1233 || (k < len0 && encoded[k] == '_'))
1234 i = k;
1235 }
1236 }
1237
1238 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1239 the GNAT front-end in protected object subprograms. */
1240
1241 if (i < len0 + 3
1242 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1243 {
1244 /* Backtrack a bit up until we reach either the begining of
1245 the encoded name, or "__". Make sure that we only find
1246 digits or lowercase characters. */
1247 const char *ptr = encoded + i - 1;
1248
1249 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1250 ptr--;
1251 if (ptr < encoded
1252 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1253 i++;
1254 }
1255
1256 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1257 {
1258 /* This is a X[bn]* sequence not separated from the previous
1259 part of the name with a non-alpha-numeric character (in other
1260 words, immediately following an alpha-numeric character), then
1261 verify that it is placed at the end of the encoded name. If
1262 not, then the encoding is not valid and we should abort the
1263 decoding. Otherwise, just skip it, it is used in body-nested
1264 package names. */
1265 do
1266 i += 1;
1267 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1268 if (i < len0)
1269 goto Suppress;
1270 }
1271 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1272 {
1273 /* Replace '__' by '.'. */
1274 decoded[j] = '.';
1275 at_start_name = 1;
1276 i += 2;
1277 j += 1;
1278 }
1279 else
1280 {
1281 /* It's a character part of the decoded name, so just copy it
1282 over. */
1283 decoded[j] = encoded[i];
1284 i += 1;
1285 j += 1;
1286 }
1287 }
1288 decoded.resize (j);
1289
1290 /* Decoded names should never contain any uppercase character.
1291 Double-check this, and abort the decoding if we find one. */
1292
1293 for (i = 0; i < decoded.length(); ++i)
1294 if (isupper (decoded[i]) || decoded[i] == ' ')
1295 goto Suppress;
1296
1297 return decoded;
1298
1299 Suppress:
1300 if (encoded[0] == '<')
1301 decoded = encoded;
1302 else
1303 decoded = '<' + std::string(encoded) + '>';
1304 return decoded;
1305
1306 }
1307
1308 /* Table for keeping permanent unique copies of decoded names. Once
1309 allocated, names in this table are never released. While this is a
1310 storage leak, it should not be significant unless there are massive
1311 changes in the set of decoded names in successive versions of a
1312 symbol table loaded during a single session. */
1313 static struct htab *decoded_names_store;
1314
1315 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1316 in the language-specific part of GSYMBOL, if it has not been
1317 previously computed. Tries to save the decoded name in the same
1318 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1319 in any case, the decoded symbol has a lifetime at least that of
1320 GSYMBOL).
1321 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1322 const, but nevertheless modified to a semantically equivalent form
1323 when a decoded name is cached in it. */
1324
1325 const char *
1326 ada_decode_symbol (const struct general_symbol_info *arg)
1327 {
1328 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1329 const char **resultp =
1330 &gsymbol->language_specific.demangled_name;
1331
1332 if (!gsymbol->ada_mangled)
1333 {
1334 std::string decoded = ada_decode (gsymbol->linkage_name ());
1335 struct obstack *obstack = gsymbol->language_specific.obstack;
1336
1337 gsymbol->ada_mangled = 1;
1338
1339 if (obstack != NULL)
1340 *resultp = obstack_strdup (obstack, decoded.c_str ());
1341 else
1342 {
1343 /* Sometimes, we can't find a corresponding objfile, in
1344 which case, we put the result on the heap. Since we only
1345 decode when needed, we hope this usually does not cause a
1346 significant memory leak (FIXME). */
1347
1348 char **slot = (char **) htab_find_slot (decoded_names_store,
1349 decoded.c_str (), INSERT);
1350
1351 if (*slot == NULL)
1352 *slot = xstrdup (decoded.c_str ());
1353 *resultp = *slot;
1354 }
1355 }
1356
1357 return *resultp;
1358 }
1359
1360 static char *
1361 ada_la_decode (const char *encoded, int options)
1362 {
1363 return xstrdup (ada_decode (encoded).c_str ());
1364 }
1365
1366 \f
1367
1368 /* Arrays */
1369
1370 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1371 generated by the GNAT compiler to describe the index type used
1372 for each dimension of an array, check whether it follows the latest
1373 known encoding. If not, fix it up to conform to the latest encoding.
1374 Otherwise, do nothing. This function also does nothing if
1375 INDEX_DESC_TYPE is NULL.
1376
1377 The GNAT encoding used to describe the array index type evolved a bit.
1378 Initially, the information would be provided through the name of each
1379 field of the structure type only, while the type of these fields was
1380 described as unspecified and irrelevant. The debugger was then expected
1381 to perform a global type lookup using the name of that field in order
1382 to get access to the full index type description. Because these global
1383 lookups can be very expensive, the encoding was later enhanced to make
1384 the global lookup unnecessary by defining the field type as being
1385 the full index type description.
1386
1387 The purpose of this routine is to allow us to support older versions
1388 of the compiler by detecting the use of the older encoding, and by
1389 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1390 we essentially replace each field's meaningless type by the associated
1391 index subtype). */
1392
1393 void
1394 ada_fixup_array_indexes_type (struct type *index_desc_type)
1395 {
1396 int i;
1397
1398 if (index_desc_type == NULL)
1399 return;
1400 gdb_assert (index_desc_type->num_fields () > 0);
1401
1402 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1403 to check one field only, no need to check them all). If not, return
1404 now.
1405
1406 If our INDEX_DESC_TYPE was generated using the older encoding,
1407 the field type should be a meaningless integer type whose name
1408 is not equal to the field name. */
1409 if (index_desc_type->field (0).type ()->name () != NULL
1410 && strcmp (index_desc_type->field (0).type ()->name (),
1411 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1412 return;
1413
1414 /* Fixup each field of INDEX_DESC_TYPE. */
1415 for (i = 0; i < index_desc_type->num_fields (); i++)
1416 {
1417 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1418 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1419
1420 if (raw_type)
1421 index_desc_type->field (i).set_type (raw_type);
1422 }
1423 }
1424
1425 /* The desc_* routines return primitive portions of array descriptors
1426 (fat pointers). */
1427
1428 /* The descriptor or array type, if any, indicated by TYPE; removes
1429 level of indirection, if needed. */
1430
1431 static struct type *
1432 desc_base_type (struct type *type)
1433 {
1434 if (type == NULL)
1435 return NULL;
1436 type = ada_check_typedef (type);
1437 if (type->code () == TYPE_CODE_TYPEDEF)
1438 type = ada_typedef_target_type (type);
1439
1440 if (type != NULL
1441 && (type->code () == TYPE_CODE_PTR
1442 || type->code () == TYPE_CODE_REF))
1443 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1444 else
1445 return type;
1446 }
1447
1448 /* True iff TYPE indicates a "thin" array pointer type. */
1449
1450 static int
1451 is_thin_pntr (struct type *type)
1452 {
1453 return
1454 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1455 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1456 }
1457
1458 /* The descriptor type for thin pointer type TYPE. */
1459
1460 static struct type *
1461 thin_descriptor_type (struct type *type)
1462 {
1463 struct type *base_type = desc_base_type (type);
1464
1465 if (base_type == NULL)
1466 return NULL;
1467 if (is_suffix (ada_type_name (base_type), "___XVE"))
1468 return base_type;
1469 else
1470 {
1471 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1472
1473 if (alt_type == NULL)
1474 return base_type;
1475 else
1476 return alt_type;
1477 }
1478 }
1479
1480 /* A pointer to the array data for thin-pointer value VAL. */
1481
1482 static struct value *
1483 thin_data_pntr (struct value *val)
1484 {
1485 struct type *type = ada_check_typedef (value_type (val));
1486 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1487
1488 data_type = lookup_pointer_type (data_type);
1489
1490 if (type->code () == TYPE_CODE_PTR)
1491 return value_cast (data_type, value_copy (val));
1492 else
1493 return value_from_longest (data_type, value_address (val));
1494 }
1495
1496 /* True iff TYPE indicates a "thick" array pointer type. */
1497
1498 static int
1499 is_thick_pntr (struct type *type)
1500 {
1501 type = desc_base_type (type);
1502 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1503 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1504 }
1505
1506 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1507 pointer to one, the type of its bounds data; otherwise, NULL. */
1508
1509 static struct type *
1510 desc_bounds_type (struct type *type)
1511 {
1512 struct type *r;
1513
1514 type = desc_base_type (type);
1515
1516 if (type == NULL)
1517 return NULL;
1518 else if (is_thin_pntr (type))
1519 {
1520 type = thin_descriptor_type (type);
1521 if (type == NULL)
1522 return NULL;
1523 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1524 if (r != NULL)
1525 return ada_check_typedef (r);
1526 }
1527 else if (type->code () == TYPE_CODE_STRUCT)
1528 {
1529 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1530 if (r != NULL)
1531 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1532 }
1533 return NULL;
1534 }
1535
1536 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1537 one, a pointer to its bounds data. Otherwise NULL. */
1538
1539 static struct value *
1540 desc_bounds (struct value *arr)
1541 {
1542 struct type *type = ada_check_typedef (value_type (arr));
1543
1544 if (is_thin_pntr (type))
1545 {
1546 struct type *bounds_type =
1547 desc_bounds_type (thin_descriptor_type (type));
1548 LONGEST addr;
1549
1550 if (bounds_type == NULL)
1551 error (_("Bad GNAT array descriptor"));
1552
1553 /* NOTE: The following calculation is not really kosher, but
1554 since desc_type is an XVE-encoded type (and shouldn't be),
1555 the correct calculation is a real pain. FIXME (and fix GCC). */
1556 if (type->code () == TYPE_CODE_PTR)
1557 addr = value_as_long (arr);
1558 else
1559 addr = value_address (arr);
1560
1561 return
1562 value_from_longest (lookup_pointer_type (bounds_type),
1563 addr - TYPE_LENGTH (bounds_type));
1564 }
1565
1566 else if (is_thick_pntr (type))
1567 {
1568 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1569 _("Bad GNAT array descriptor"));
1570 struct type *p_bounds_type = value_type (p_bounds);
1571
1572 if (p_bounds_type
1573 && p_bounds_type->code () == TYPE_CODE_PTR)
1574 {
1575 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1576
1577 if (target_type->is_stub ())
1578 p_bounds = value_cast (lookup_pointer_type
1579 (ada_check_typedef (target_type)),
1580 p_bounds);
1581 }
1582 else
1583 error (_("Bad GNAT array descriptor"));
1584
1585 return p_bounds;
1586 }
1587 else
1588 return NULL;
1589 }
1590
1591 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1592 position of the field containing the address of the bounds data. */
1593
1594 static int
1595 fat_pntr_bounds_bitpos (struct type *type)
1596 {
1597 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1598 }
1599
1600 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1601 size of the field containing the address of the bounds data. */
1602
1603 static int
1604 fat_pntr_bounds_bitsize (struct type *type)
1605 {
1606 type = desc_base_type (type);
1607
1608 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1609 return TYPE_FIELD_BITSIZE (type, 1);
1610 else
1611 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1612 }
1613
1614 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1615 pointer to one, the type of its array data (a array-with-no-bounds type);
1616 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1617 data. */
1618
1619 static struct type *
1620 desc_data_target_type (struct type *type)
1621 {
1622 type = desc_base_type (type);
1623
1624 /* NOTE: The following is bogus; see comment in desc_bounds. */
1625 if (is_thin_pntr (type))
1626 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1627 else if (is_thick_pntr (type))
1628 {
1629 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1630
1631 if (data_type
1632 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1633 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1634 }
1635
1636 return NULL;
1637 }
1638
1639 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1640 its array data. */
1641
1642 static struct value *
1643 desc_data (struct value *arr)
1644 {
1645 struct type *type = value_type (arr);
1646
1647 if (is_thin_pntr (type))
1648 return thin_data_pntr (arr);
1649 else if (is_thick_pntr (type))
1650 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1651 _("Bad GNAT array descriptor"));
1652 else
1653 return NULL;
1654 }
1655
1656
1657 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1658 position of the field containing the address of the data. */
1659
1660 static int
1661 fat_pntr_data_bitpos (struct type *type)
1662 {
1663 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1664 }
1665
1666 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1667 size of the field containing the address of the data. */
1668
1669 static int
1670 fat_pntr_data_bitsize (struct type *type)
1671 {
1672 type = desc_base_type (type);
1673
1674 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1675 return TYPE_FIELD_BITSIZE (type, 0);
1676 else
1677 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1678 }
1679
1680 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1681 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1682 bound, if WHICH is 1. The first bound is I=1. */
1683
1684 static struct value *
1685 desc_one_bound (struct value *bounds, int i, int which)
1686 {
1687 char bound_name[20];
1688 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1689 which ? 'U' : 'L', i - 1);
1690 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1691 _("Bad GNAT array descriptor bounds"));
1692 }
1693
1694 /* If BOUNDS is an array-bounds structure type, return the bit position
1695 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1696 bound, if WHICH is 1. The first bound is I=1. */
1697
1698 static int
1699 desc_bound_bitpos (struct type *type, int i, int which)
1700 {
1701 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1702 }
1703
1704 /* If BOUNDS is an array-bounds structure type, return the bit field size
1705 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1706 bound, if WHICH is 1. The first bound is I=1. */
1707
1708 static int
1709 desc_bound_bitsize (struct type *type, int i, int which)
1710 {
1711 type = desc_base_type (type);
1712
1713 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1714 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1715 else
1716 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1717 }
1718
1719 /* If TYPE is the type of an array-bounds structure, the type of its
1720 Ith bound (numbering from 1). Otherwise, NULL. */
1721
1722 static struct type *
1723 desc_index_type (struct type *type, int i)
1724 {
1725 type = desc_base_type (type);
1726
1727 if (type->code () == TYPE_CODE_STRUCT)
1728 {
1729 char bound_name[20];
1730 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1731 return lookup_struct_elt_type (type, bound_name, 1);
1732 }
1733 else
1734 return NULL;
1735 }
1736
1737 /* The number of index positions in the array-bounds type TYPE.
1738 Return 0 if TYPE is NULL. */
1739
1740 static int
1741 desc_arity (struct type *type)
1742 {
1743 type = desc_base_type (type);
1744
1745 if (type != NULL)
1746 return type->num_fields () / 2;
1747 return 0;
1748 }
1749
1750 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1751 an array descriptor type (representing an unconstrained array
1752 type). */
1753
1754 static int
1755 ada_is_direct_array_type (struct type *type)
1756 {
1757 if (type == NULL)
1758 return 0;
1759 type = ada_check_typedef (type);
1760 return (type->code () == TYPE_CODE_ARRAY
1761 || ada_is_array_descriptor_type (type));
1762 }
1763
1764 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1765 * to one. */
1766
1767 static int
1768 ada_is_array_type (struct type *type)
1769 {
1770 while (type != NULL
1771 && (type->code () == TYPE_CODE_PTR
1772 || type->code () == TYPE_CODE_REF))
1773 type = TYPE_TARGET_TYPE (type);
1774 return ada_is_direct_array_type (type);
1775 }
1776
1777 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1778
1779 int
1780 ada_is_simple_array_type (struct type *type)
1781 {
1782 if (type == NULL)
1783 return 0;
1784 type = ada_check_typedef (type);
1785 return (type->code () == TYPE_CODE_ARRAY
1786 || (type->code () == TYPE_CODE_PTR
1787 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1788 == TYPE_CODE_ARRAY)));
1789 }
1790
1791 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1792
1793 int
1794 ada_is_array_descriptor_type (struct type *type)
1795 {
1796 struct type *data_type = desc_data_target_type (type);
1797
1798 if (type == NULL)
1799 return 0;
1800 type = ada_check_typedef (type);
1801 return (data_type != NULL
1802 && data_type->code () == TYPE_CODE_ARRAY
1803 && desc_arity (desc_bounds_type (type)) > 0);
1804 }
1805
1806 /* Non-zero iff type is a partially mal-formed GNAT array
1807 descriptor. FIXME: This is to compensate for some problems with
1808 debugging output from GNAT. Re-examine periodically to see if it
1809 is still needed. */
1810
1811 int
1812 ada_is_bogus_array_descriptor (struct type *type)
1813 {
1814 return
1815 type != NULL
1816 && type->code () == TYPE_CODE_STRUCT
1817 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1818 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1819 && !ada_is_array_descriptor_type (type);
1820 }
1821
1822
1823 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1824 (fat pointer) returns the type of the array data described---specifically,
1825 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1826 in from the descriptor; otherwise, they are left unspecified. If
1827 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1828 returns NULL. The result is simply the type of ARR if ARR is not
1829 a descriptor. */
1830
1831 static struct type *
1832 ada_type_of_array (struct value *arr, int bounds)
1833 {
1834 if (ada_is_constrained_packed_array_type (value_type (arr)))
1835 return decode_constrained_packed_array_type (value_type (arr));
1836
1837 if (!ada_is_array_descriptor_type (value_type (arr)))
1838 return value_type (arr);
1839
1840 if (!bounds)
1841 {
1842 struct type *array_type =
1843 ada_check_typedef (desc_data_target_type (value_type (arr)));
1844
1845 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1846 TYPE_FIELD_BITSIZE (array_type, 0) =
1847 decode_packed_array_bitsize (value_type (arr));
1848
1849 return array_type;
1850 }
1851 else
1852 {
1853 struct type *elt_type;
1854 int arity;
1855 struct value *descriptor;
1856
1857 elt_type = ada_array_element_type (value_type (arr), -1);
1858 arity = ada_array_arity (value_type (arr));
1859
1860 if (elt_type == NULL || arity == 0)
1861 return ada_check_typedef (value_type (arr));
1862
1863 descriptor = desc_bounds (arr);
1864 if (value_as_long (descriptor) == 0)
1865 return NULL;
1866 while (arity > 0)
1867 {
1868 struct type *range_type = alloc_type_copy (value_type (arr));
1869 struct type *array_type = alloc_type_copy (value_type (arr));
1870 struct value *low = desc_one_bound (descriptor, arity, 0);
1871 struct value *high = desc_one_bound (descriptor, arity, 1);
1872
1873 arity -= 1;
1874 create_static_range_type (range_type, value_type (low),
1875 longest_to_int (value_as_long (low)),
1876 longest_to_int (value_as_long (high)));
1877 elt_type = create_array_type (array_type, elt_type, range_type);
1878
1879 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1880 {
1881 /* We need to store the element packed bitsize, as well as
1882 recompute the array size, because it was previously
1883 computed based on the unpacked element size. */
1884 LONGEST lo = value_as_long (low);
1885 LONGEST hi = value_as_long (high);
1886
1887 TYPE_FIELD_BITSIZE (elt_type, 0) =
1888 decode_packed_array_bitsize (value_type (arr));
1889 /* If the array has no element, then the size is already
1890 zero, and does not need to be recomputed. */
1891 if (lo < hi)
1892 {
1893 int array_bitsize =
1894 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1895
1896 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1897 }
1898 }
1899 }
1900
1901 return lookup_pointer_type (elt_type);
1902 }
1903 }
1904
1905 /* If ARR does not represent an array, returns ARR unchanged.
1906 Otherwise, returns either a standard GDB array with bounds set
1907 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1908 GDB array. Returns NULL if ARR is a null fat pointer. */
1909
1910 struct value *
1911 ada_coerce_to_simple_array_ptr (struct value *arr)
1912 {
1913 if (ada_is_array_descriptor_type (value_type (arr)))
1914 {
1915 struct type *arrType = ada_type_of_array (arr, 1);
1916
1917 if (arrType == NULL)
1918 return NULL;
1919 return value_cast (arrType, value_copy (desc_data (arr)));
1920 }
1921 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1922 return decode_constrained_packed_array (arr);
1923 else
1924 return arr;
1925 }
1926
1927 /* If ARR does not represent an array, returns ARR unchanged.
1928 Otherwise, returns a standard GDB array describing ARR (which may
1929 be ARR itself if it already is in the proper form). */
1930
1931 struct value *
1932 ada_coerce_to_simple_array (struct value *arr)
1933 {
1934 if (ada_is_array_descriptor_type (value_type (arr)))
1935 {
1936 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1937
1938 if (arrVal == NULL)
1939 error (_("Bounds unavailable for null array pointer."));
1940 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1941 return value_ind (arrVal);
1942 }
1943 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1944 return decode_constrained_packed_array (arr);
1945 else
1946 return arr;
1947 }
1948
1949 /* If TYPE represents a GNAT array type, return it translated to an
1950 ordinary GDB array type (possibly with BITSIZE fields indicating
1951 packing). For other types, is the identity. */
1952
1953 struct type *
1954 ada_coerce_to_simple_array_type (struct type *type)
1955 {
1956 if (ada_is_constrained_packed_array_type (type))
1957 return decode_constrained_packed_array_type (type);
1958
1959 if (ada_is_array_descriptor_type (type))
1960 return ada_check_typedef (desc_data_target_type (type));
1961
1962 return type;
1963 }
1964
1965 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1966
1967 static int
1968 ada_is_packed_array_type (struct type *type)
1969 {
1970 if (type == NULL)
1971 return 0;
1972 type = desc_base_type (type);
1973 type = ada_check_typedef (type);
1974 return
1975 ada_type_name (type) != NULL
1976 && strstr (ada_type_name (type), "___XP") != NULL;
1977 }
1978
1979 /* Non-zero iff TYPE represents a standard GNAT constrained
1980 packed-array type. */
1981
1982 int
1983 ada_is_constrained_packed_array_type (struct type *type)
1984 {
1985 return ada_is_packed_array_type (type)
1986 && !ada_is_array_descriptor_type (type);
1987 }
1988
1989 /* Non-zero iff TYPE represents an array descriptor for a
1990 unconstrained packed-array type. */
1991
1992 static int
1993 ada_is_unconstrained_packed_array_type (struct type *type)
1994 {
1995 return ada_is_packed_array_type (type)
1996 && ada_is_array_descriptor_type (type);
1997 }
1998
1999 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2000 return the size of its elements in bits. */
2001
2002 static long
2003 decode_packed_array_bitsize (struct type *type)
2004 {
2005 const char *raw_name;
2006 const char *tail;
2007 long bits;
2008
2009 /* Access to arrays implemented as fat pointers are encoded as a typedef
2010 of the fat pointer type. We need the name of the fat pointer type
2011 to do the decoding, so strip the typedef layer. */
2012 if (type->code () == TYPE_CODE_TYPEDEF)
2013 type = ada_typedef_target_type (type);
2014
2015 raw_name = ada_type_name (ada_check_typedef (type));
2016 if (!raw_name)
2017 raw_name = ada_type_name (desc_base_type (type));
2018
2019 if (!raw_name)
2020 return 0;
2021
2022 tail = strstr (raw_name, "___XP");
2023 gdb_assert (tail != NULL);
2024
2025 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2026 {
2027 lim_warning
2028 (_("could not understand bit size information on packed array"));
2029 return 0;
2030 }
2031
2032 return bits;
2033 }
2034
2035 /* Given that TYPE is a standard GDB array type with all bounds filled
2036 in, and that the element size of its ultimate scalar constituents
2037 (that is, either its elements, or, if it is an array of arrays, its
2038 elements' elements, etc.) is *ELT_BITS, return an identical type,
2039 but with the bit sizes of its elements (and those of any
2040 constituent arrays) recorded in the BITSIZE components of its
2041 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2042 in bits.
2043
2044 Note that, for arrays whose index type has an XA encoding where
2045 a bound references a record discriminant, getting that discriminant,
2046 and therefore the actual value of that bound, is not possible
2047 because none of the given parameters gives us access to the record.
2048 This function assumes that it is OK in the context where it is being
2049 used to return an array whose bounds are still dynamic and where
2050 the length is arbitrary. */
2051
2052 static struct type *
2053 constrained_packed_array_type (struct type *type, long *elt_bits)
2054 {
2055 struct type *new_elt_type;
2056 struct type *new_type;
2057 struct type *index_type_desc;
2058 struct type *index_type;
2059 LONGEST low_bound, high_bound;
2060
2061 type = ada_check_typedef (type);
2062 if (type->code () != TYPE_CODE_ARRAY)
2063 return type;
2064
2065 index_type_desc = ada_find_parallel_type (type, "___XA");
2066 if (index_type_desc)
2067 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2068 NULL);
2069 else
2070 index_type = type->index_type ();
2071
2072 new_type = alloc_type_copy (type);
2073 new_elt_type =
2074 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2075 elt_bits);
2076 create_array_type (new_type, new_elt_type, index_type);
2077 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2078 new_type->set_name (ada_type_name (type));
2079
2080 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2081 && is_dynamic_type (check_typedef (index_type)))
2082 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2083 low_bound = high_bound = 0;
2084 if (high_bound < low_bound)
2085 *elt_bits = TYPE_LENGTH (new_type) = 0;
2086 else
2087 {
2088 *elt_bits *= (high_bound - low_bound + 1);
2089 TYPE_LENGTH (new_type) =
2090 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2091 }
2092
2093 new_type->set_is_fixed_instance (true);
2094 return new_type;
2095 }
2096
2097 /* The array type encoded by TYPE, where
2098 ada_is_constrained_packed_array_type (TYPE). */
2099
2100 static struct type *
2101 decode_constrained_packed_array_type (struct type *type)
2102 {
2103 const char *raw_name = ada_type_name (ada_check_typedef (type));
2104 char *name;
2105 const char *tail;
2106 struct type *shadow_type;
2107 long bits;
2108
2109 if (!raw_name)
2110 raw_name = ada_type_name (desc_base_type (type));
2111
2112 if (!raw_name)
2113 return NULL;
2114
2115 name = (char *) alloca (strlen (raw_name) + 1);
2116 tail = strstr (raw_name, "___XP");
2117 type = desc_base_type (type);
2118
2119 memcpy (name, raw_name, tail - raw_name);
2120 name[tail - raw_name] = '\000';
2121
2122 shadow_type = ada_find_parallel_type_with_name (type, name);
2123
2124 if (shadow_type == NULL)
2125 {
2126 lim_warning (_("could not find bounds information on packed array"));
2127 return NULL;
2128 }
2129 shadow_type = check_typedef (shadow_type);
2130
2131 if (shadow_type->code () != TYPE_CODE_ARRAY)
2132 {
2133 lim_warning (_("could not understand bounds "
2134 "information on packed array"));
2135 return NULL;
2136 }
2137
2138 bits = decode_packed_array_bitsize (type);
2139 return constrained_packed_array_type (shadow_type, &bits);
2140 }
2141
2142 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2143 array, returns a simple array that denotes that array. Its type is a
2144 standard GDB array type except that the BITSIZEs of the array
2145 target types are set to the number of bits in each element, and the
2146 type length is set appropriately. */
2147
2148 static struct value *
2149 decode_constrained_packed_array (struct value *arr)
2150 {
2151 struct type *type;
2152
2153 /* If our value is a pointer, then dereference it. Likewise if
2154 the value is a reference. Make sure that this operation does not
2155 cause the target type to be fixed, as this would indirectly cause
2156 this array to be decoded. The rest of the routine assumes that
2157 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2158 and "value_ind" routines to perform the dereferencing, as opposed
2159 to using "ada_coerce_ref" or "ada_value_ind". */
2160 arr = coerce_ref (arr);
2161 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2162 arr = value_ind (arr);
2163
2164 type = decode_constrained_packed_array_type (value_type (arr));
2165 if (type == NULL)
2166 {
2167 error (_("can't unpack array"));
2168 return NULL;
2169 }
2170
2171 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2172 && ada_is_modular_type (value_type (arr)))
2173 {
2174 /* This is a (right-justified) modular type representing a packed
2175 array with no wrapper. In order to interpret the value through
2176 the (left-justified) packed array type we just built, we must
2177 first left-justify it. */
2178 int bit_size, bit_pos;
2179 ULONGEST mod;
2180
2181 mod = ada_modulus (value_type (arr)) - 1;
2182 bit_size = 0;
2183 while (mod > 0)
2184 {
2185 bit_size += 1;
2186 mod >>= 1;
2187 }
2188 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2189 arr = ada_value_primitive_packed_val (arr, NULL,
2190 bit_pos / HOST_CHAR_BIT,
2191 bit_pos % HOST_CHAR_BIT,
2192 bit_size,
2193 type);
2194 }
2195
2196 return coerce_unspec_val_to_type (arr, type);
2197 }
2198
2199
2200 /* The value of the element of packed array ARR at the ARITY indices
2201 given in IND. ARR must be a simple array. */
2202
2203 static struct value *
2204 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2205 {
2206 int i;
2207 int bits, elt_off, bit_off;
2208 long elt_total_bit_offset;
2209 struct type *elt_type;
2210 struct value *v;
2211
2212 bits = 0;
2213 elt_total_bit_offset = 0;
2214 elt_type = ada_check_typedef (value_type (arr));
2215 for (i = 0; i < arity; i += 1)
2216 {
2217 if (elt_type->code () != TYPE_CODE_ARRAY
2218 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2219 error
2220 (_("attempt to do packed indexing of "
2221 "something other than a packed array"));
2222 else
2223 {
2224 struct type *range_type = elt_type->index_type ();
2225 LONGEST lowerbound, upperbound;
2226 LONGEST idx;
2227
2228 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2229 {
2230 lim_warning (_("don't know bounds of array"));
2231 lowerbound = upperbound = 0;
2232 }
2233
2234 idx = pos_atr (ind[i]);
2235 if (idx < lowerbound || idx > upperbound)
2236 lim_warning (_("packed array index %ld out of bounds"),
2237 (long) idx);
2238 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2239 elt_total_bit_offset += (idx - lowerbound) * bits;
2240 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2241 }
2242 }
2243 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2244 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2245
2246 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2247 bits, elt_type);
2248 return v;
2249 }
2250
2251 /* Non-zero iff TYPE includes negative integer values. */
2252
2253 static int
2254 has_negatives (struct type *type)
2255 {
2256 switch (type->code ())
2257 {
2258 default:
2259 return 0;
2260 case TYPE_CODE_INT:
2261 return !type->is_unsigned ();
2262 case TYPE_CODE_RANGE:
2263 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2264 }
2265 }
2266
2267 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2268 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2269 the unpacked buffer.
2270
2271 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2272 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2273
2274 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2275 zero otherwise.
2276
2277 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2278
2279 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2280
2281 static void
2282 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2283 gdb_byte *unpacked, int unpacked_len,
2284 int is_big_endian, int is_signed_type,
2285 int is_scalar)
2286 {
2287 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2288 int src_idx; /* Index into the source area */
2289 int src_bytes_left; /* Number of source bytes left to process. */
2290 int srcBitsLeft; /* Number of source bits left to move */
2291 int unusedLS; /* Number of bits in next significant
2292 byte of source that are unused */
2293
2294 int unpacked_idx; /* Index into the unpacked buffer */
2295 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2296
2297 unsigned long accum; /* Staging area for bits being transferred */
2298 int accumSize; /* Number of meaningful bits in accum */
2299 unsigned char sign;
2300
2301 /* Transmit bytes from least to most significant; delta is the direction
2302 the indices move. */
2303 int delta = is_big_endian ? -1 : 1;
2304
2305 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2306 bits from SRC. .*/
2307 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2308 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2309 bit_size, unpacked_len);
2310
2311 srcBitsLeft = bit_size;
2312 src_bytes_left = src_len;
2313 unpacked_bytes_left = unpacked_len;
2314 sign = 0;
2315
2316 if (is_big_endian)
2317 {
2318 src_idx = src_len - 1;
2319 if (is_signed_type
2320 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2321 sign = ~0;
2322
2323 unusedLS =
2324 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2325 % HOST_CHAR_BIT;
2326
2327 if (is_scalar)
2328 {
2329 accumSize = 0;
2330 unpacked_idx = unpacked_len - 1;
2331 }
2332 else
2333 {
2334 /* Non-scalar values must be aligned at a byte boundary... */
2335 accumSize =
2336 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2337 /* ... And are placed at the beginning (most-significant) bytes
2338 of the target. */
2339 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2340 unpacked_bytes_left = unpacked_idx + 1;
2341 }
2342 }
2343 else
2344 {
2345 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2346
2347 src_idx = unpacked_idx = 0;
2348 unusedLS = bit_offset;
2349 accumSize = 0;
2350
2351 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2352 sign = ~0;
2353 }
2354
2355 accum = 0;
2356 while (src_bytes_left > 0)
2357 {
2358 /* Mask for removing bits of the next source byte that are not
2359 part of the value. */
2360 unsigned int unusedMSMask =
2361 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2362 1;
2363 /* Sign-extend bits for this byte. */
2364 unsigned int signMask = sign & ~unusedMSMask;
2365
2366 accum |=
2367 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2368 accumSize += HOST_CHAR_BIT - unusedLS;
2369 if (accumSize >= HOST_CHAR_BIT)
2370 {
2371 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2372 accumSize -= HOST_CHAR_BIT;
2373 accum >>= HOST_CHAR_BIT;
2374 unpacked_bytes_left -= 1;
2375 unpacked_idx += delta;
2376 }
2377 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2378 unusedLS = 0;
2379 src_bytes_left -= 1;
2380 src_idx += delta;
2381 }
2382 while (unpacked_bytes_left > 0)
2383 {
2384 accum |= sign << accumSize;
2385 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2386 accumSize -= HOST_CHAR_BIT;
2387 if (accumSize < 0)
2388 accumSize = 0;
2389 accum >>= HOST_CHAR_BIT;
2390 unpacked_bytes_left -= 1;
2391 unpacked_idx += delta;
2392 }
2393 }
2394
2395 /* Create a new value of type TYPE from the contents of OBJ starting
2396 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2397 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2398 assigning through the result will set the field fetched from.
2399 VALADDR is ignored unless OBJ is NULL, in which case,
2400 VALADDR+OFFSET must address the start of storage containing the
2401 packed value. The value returned in this case is never an lval.
2402 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2403
2404 struct value *
2405 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2406 long offset, int bit_offset, int bit_size,
2407 struct type *type)
2408 {
2409 struct value *v;
2410 const gdb_byte *src; /* First byte containing data to unpack */
2411 gdb_byte *unpacked;
2412 const int is_scalar = is_scalar_type (type);
2413 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2414 gdb::byte_vector staging;
2415
2416 type = ada_check_typedef (type);
2417
2418 if (obj == NULL)
2419 src = valaddr + offset;
2420 else
2421 src = value_contents (obj) + offset;
2422
2423 if (is_dynamic_type (type))
2424 {
2425 /* The length of TYPE might by dynamic, so we need to resolve
2426 TYPE in order to know its actual size, which we then use
2427 to create the contents buffer of the value we return.
2428 The difficulty is that the data containing our object is
2429 packed, and therefore maybe not at a byte boundary. So, what
2430 we do, is unpack the data into a byte-aligned buffer, and then
2431 use that buffer as our object's value for resolving the type. */
2432 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2433 staging.resize (staging_len);
2434
2435 ada_unpack_from_contents (src, bit_offset, bit_size,
2436 staging.data (), staging.size (),
2437 is_big_endian, has_negatives (type),
2438 is_scalar);
2439 type = resolve_dynamic_type (type, staging, 0);
2440 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2441 {
2442 /* This happens when the length of the object is dynamic,
2443 and is actually smaller than the space reserved for it.
2444 For instance, in an array of variant records, the bit_size
2445 we're given is the array stride, which is constant and
2446 normally equal to the maximum size of its element.
2447 But, in reality, each element only actually spans a portion
2448 of that stride. */
2449 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2450 }
2451 }
2452
2453 if (obj == NULL)
2454 {
2455 v = allocate_value (type);
2456 src = valaddr + offset;
2457 }
2458 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2459 {
2460 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2461 gdb_byte *buf;
2462
2463 v = value_at (type, value_address (obj) + offset);
2464 buf = (gdb_byte *) alloca (src_len);
2465 read_memory (value_address (v), buf, src_len);
2466 src = buf;
2467 }
2468 else
2469 {
2470 v = allocate_value (type);
2471 src = value_contents (obj) + offset;
2472 }
2473
2474 if (obj != NULL)
2475 {
2476 long new_offset = offset;
2477
2478 set_value_component_location (v, obj);
2479 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2480 set_value_bitsize (v, bit_size);
2481 if (value_bitpos (v) >= HOST_CHAR_BIT)
2482 {
2483 ++new_offset;
2484 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2485 }
2486 set_value_offset (v, new_offset);
2487
2488 /* Also set the parent value. This is needed when trying to
2489 assign a new value (in inferior memory). */
2490 set_value_parent (v, obj);
2491 }
2492 else
2493 set_value_bitsize (v, bit_size);
2494 unpacked = value_contents_writeable (v);
2495
2496 if (bit_size == 0)
2497 {
2498 memset (unpacked, 0, TYPE_LENGTH (type));
2499 return v;
2500 }
2501
2502 if (staging.size () == TYPE_LENGTH (type))
2503 {
2504 /* Small short-cut: If we've unpacked the data into a buffer
2505 of the same size as TYPE's length, then we can reuse that,
2506 instead of doing the unpacking again. */
2507 memcpy (unpacked, staging.data (), staging.size ());
2508 }
2509 else
2510 ada_unpack_from_contents (src, bit_offset, bit_size,
2511 unpacked, TYPE_LENGTH (type),
2512 is_big_endian, has_negatives (type), is_scalar);
2513
2514 return v;
2515 }
2516
2517 /* Store the contents of FROMVAL into the location of TOVAL.
2518 Return a new value with the location of TOVAL and contents of
2519 FROMVAL. Handles assignment into packed fields that have
2520 floating-point or non-scalar types. */
2521
2522 static struct value *
2523 ada_value_assign (struct value *toval, struct value *fromval)
2524 {
2525 struct type *type = value_type (toval);
2526 int bits = value_bitsize (toval);
2527
2528 toval = ada_coerce_ref (toval);
2529 fromval = ada_coerce_ref (fromval);
2530
2531 if (ada_is_direct_array_type (value_type (toval)))
2532 toval = ada_coerce_to_simple_array (toval);
2533 if (ada_is_direct_array_type (value_type (fromval)))
2534 fromval = ada_coerce_to_simple_array (fromval);
2535
2536 if (!deprecated_value_modifiable (toval))
2537 error (_("Left operand of assignment is not a modifiable lvalue."));
2538
2539 if (VALUE_LVAL (toval) == lval_memory
2540 && bits > 0
2541 && (type->code () == TYPE_CODE_FLT
2542 || type->code () == TYPE_CODE_STRUCT))
2543 {
2544 int len = (value_bitpos (toval)
2545 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2546 int from_size;
2547 gdb_byte *buffer = (gdb_byte *) alloca (len);
2548 struct value *val;
2549 CORE_ADDR to_addr = value_address (toval);
2550
2551 if (type->code () == TYPE_CODE_FLT)
2552 fromval = value_cast (type, fromval);
2553
2554 read_memory (to_addr, buffer, len);
2555 from_size = value_bitsize (fromval);
2556 if (from_size == 0)
2557 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2558
2559 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2560 ULONGEST from_offset = 0;
2561 if (is_big_endian && is_scalar_type (value_type (fromval)))
2562 from_offset = from_size - bits;
2563 copy_bitwise (buffer, value_bitpos (toval),
2564 value_contents (fromval), from_offset,
2565 bits, is_big_endian);
2566 write_memory_with_notification (to_addr, buffer, len);
2567
2568 val = value_copy (toval);
2569 memcpy (value_contents_raw (val), value_contents (fromval),
2570 TYPE_LENGTH (type));
2571 deprecated_set_value_type (val, type);
2572
2573 return val;
2574 }
2575
2576 return value_assign (toval, fromval);
2577 }
2578
2579
2580 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2581 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2582 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2583 COMPONENT, and not the inferior's memory. The current contents
2584 of COMPONENT are ignored.
2585
2586 Although not part of the initial design, this function also works
2587 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2588 had a null address, and COMPONENT had an address which is equal to
2589 its offset inside CONTAINER. */
2590
2591 static void
2592 value_assign_to_component (struct value *container, struct value *component,
2593 struct value *val)
2594 {
2595 LONGEST offset_in_container =
2596 (LONGEST) (value_address (component) - value_address (container));
2597 int bit_offset_in_container =
2598 value_bitpos (component) - value_bitpos (container);
2599 int bits;
2600
2601 val = value_cast (value_type (component), val);
2602
2603 if (value_bitsize (component) == 0)
2604 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2605 else
2606 bits = value_bitsize (component);
2607
2608 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2609 {
2610 int src_offset;
2611
2612 if (is_scalar_type (check_typedef (value_type (component))))
2613 src_offset
2614 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2615 else
2616 src_offset = 0;
2617 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2618 value_bitpos (container) + bit_offset_in_container,
2619 value_contents (val), src_offset, bits, 1);
2620 }
2621 else
2622 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2623 value_bitpos (container) + bit_offset_in_container,
2624 value_contents (val), 0, bits, 0);
2625 }
2626
2627 /* Determine if TYPE is an access to an unconstrained array. */
2628
2629 bool
2630 ada_is_access_to_unconstrained_array (struct type *type)
2631 {
2632 return (type->code () == TYPE_CODE_TYPEDEF
2633 && is_thick_pntr (ada_typedef_target_type (type)));
2634 }
2635
2636 /* The value of the element of array ARR at the ARITY indices given in IND.
2637 ARR may be either a simple array, GNAT array descriptor, or pointer
2638 thereto. */
2639
2640 struct value *
2641 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2642 {
2643 int k;
2644 struct value *elt;
2645 struct type *elt_type;
2646
2647 elt = ada_coerce_to_simple_array (arr);
2648
2649 elt_type = ada_check_typedef (value_type (elt));
2650 if (elt_type->code () == TYPE_CODE_ARRAY
2651 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2652 return value_subscript_packed (elt, arity, ind);
2653
2654 for (k = 0; k < arity; k += 1)
2655 {
2656 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2657
2658 if (elt_type->code () != TYPE_CODE_ARRAY)
2659 error (_("too many subscripts (%d expected)"), k);
2660
2661 elt = value_subscript (elt, pos_atr (ind[k]));
2662
2663 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2664 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2665 {
2666 /* The element is a typedef to an unconstrained array,
2667 except that the value_subscript call stripped the
2668 typedef layer. The typedef layer is GNAT's way to
2669 specify that the element is, at the source level, an
2670 access to the unconstrained array, rather than the
2671 unconstrained array. So, we need to restore that
2672 typedef layer, which we can do by forcing the element's
2673 type back to its original type. Otherwise, the returned
2674 value is going to be printed as the array, rather
2675 than as an access. Another symptom of the same issue
2676 would be that an expression trying to dereference the
2677 element would also be improperly rejected. */
2678 deprecated_set_value_type (elt, saved_elt_type);
2679 }
2680
2681 elt_type = ada_check_typedef (value_type (elt));
2682 }
2683
2684 return elt;
2685 }
2686
2687 /* Assuming ARR is a pointer to a GDB array, the value of the element
2688 of *ARR at the ARITY indices given in IND.
2689 Does not read the entire array into memory.
2690
2691 Note: Unlike what one would expect, this function is used instead of
2692 ada_value_subscript for basically all non-packed array types. The reason
2693 for this is that a side effect of doing our own pointer arithmetics instead
2694 of relying on value_subscript is that there is no implicit typedef peeling.
2695 This is important for arrays of array accesses, where it allows us to
2696 preserve the fact that the array's element is an array access, where the
2697 access part os encoded in a typedef layer. */
2698
2699 static struct value *
2700 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2701 {
2702 int k;
2703 struct value *array_ind = ada_value_ind (arr);
2704 struct type *type
2705 = check_typedef (value_enclosing_type (array_ind));
2706
2707 if (type->code () == TYPE_CODE_ARRAY
2708 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2709 return value_subscript_packed (array_ind, arity, ind);
2710
2711 for (k = 0; k < arity; k += 1)
2712 {
2713 LONGEST lwb, upb;
2714
2715 if (type->code () != TYPE_CODE_ARRAY)
2716 error (_("too many subscripts (%d expected)"), k);
2717 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2718 value_copy (arr));
2719 get_discrete_bounds (type->index_type (), &lwb, &upb);
2720 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2721 type = TYPE_TARGET_TYPE (type);
2722 }
2723
2724 return value_ind (arr);
2725 }
2726
2727 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2728 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2729 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2730 this array is LOW, as per Ada rules. */
2731 static struct value *
2732 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2733 int low, int high)
2734 {
2735 struct type *type0 = ada_check_typedef (type);
2736 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2737 struct type *index_type
2738 = create_static_range_type (NULL, base_index_type, low, high);
2739 struct type *slice_type = create_array_type_with_stride
2740 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2741 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2742 TYPE_FIELD_BITSIZE (type0, 0));
2743 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2744 LONGEST base_low_pos, low_pos;
2745 CORE_ADDR base;
2746
2747 if (!discrete_position (base_index_type, low, &low_pos)
2748 || !discrete_position (base_index_type, base_low, &base_low_pos))
2749 {
2750 warning (_("unable to get positions in slice, use bounds instead"));
2751 low_pos = low;
2752 base_low_pos = base_low;
2753 }
2754
2755 base = value_as_address (array_ptr)
2756 + ((low_pos - base_low_pos)
2757 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2758 return value_at_lazy (slice_type, base);
2759 }
2760
2761
2762 static struct value *
2763 ada_value_slice (struct value *array, int low, int high)
2764 {
2765 struct type *type = ada_check_typedef (value_type (array));
2766 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2767 struct type *index_type
2768 = create_static_range_type (NULL, type->index_type (), low, high);
2769 struct type *slice_type = create_array_type_with_stride
2770 (NULL, TYPE_TARGET_TYPE (type), index_type,
2771 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2772 TYPE_FIELD_BITSIZE (type, 0));
2773 LONGEST low_pos, high_pos;
2774
2775 if (!discrete_position (base_index_type, low, &low_pos)
2776 || !discrete_position (base_index_type, high, &high_pos))
2777 {
2778 warning (_("unable to get positions in slice, use bounds instead"));
2779 low_pos = low;
2780 high_pos = high;
2781 }
2782
2783 return value_cast (slice_type,
2784 value_slice (array, low, high_pos - low_pos + 1));
2785 }
2786
2787 /* If type is a record type in the form of a standard GNAT array
2788 descriptor, returns the number of dimensions for type. If arr is a
2789 simple array, returns the number of "array of"s that prefix its
2790 type designation. Otherwise, returns 0. */
2791
2792 int
2793 ada_array_arity (struct type *type)
2794 {
2795 int arity;
2796
2797 if (type == NULL)
2798 return 0;
2799
2800 type = desc_base_type (type);
2801
2802 arity = 0;
2803 if (type->code () == TYPE_CODE_STRUCT)
2804 return desc_arity (desc_bounds_type (type));
2805 else
2806 while (type->code () == TYPE_CODE_ARRAY)
2807 {
2808 arity += 1;
2809 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2810 }
2811
2812 return arity;
2813 }
2814
2815 /* If TYPE is a record type in the form of a standard GNAT array
2816 descriptor or a simple array type, returns the element type for
2817 TYPE after indexing by NINDICES indices, or by all indices if
2818 NINDICES is -1. Otherwise, returns NULL. */
2819
2820 struct type *
2821 ada_array_element_type (struct type *type, int nindices)
2822 {
2823 type = desc_base_type (type);
2824
2825 if (type->code () == TYPE_CODE_STRUCT)
2826 {
2827 int k;
2828 struct type *p_array_type;
2829
2830 p_array_type = desc_data_target_type (type);
2831
2832 k = ada_array_arity (type);
2833 if (k == 0)
2834 return NULL;
2835
2836 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2837 if (nindices >= 0 && k > nindices)
2838 k = nindices;
2839 while (k > 0 && p_array_type != NULL)
2840 {
2841 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2842 k -= 1;
2843 }
2844 return p_array_type;
2845 }
2846 else if (type->code () == TYPE_CODE_ARRAY)
2847 {
2848 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2849 {
2850 type = TYPE_TARGET_TYPE (type);
2851 nindices -= 1;
2852 }
2853 return type;
2854 }
2855
2856 return NULL;
2857 }
2858
2859 /* The type of nth index in arrays of given type (n numbering from 1).
2860 Does not examine memory. Throws an error if N is invalid or TYPE
2861 is not an array type. NAME is the name of the Ada attribute being
2862 evaluated ('range, 'first, 'last, or 'length); it is used in building
2863 the error message. */
2864
2865 static struct type *
2866 ada_index_type (struct type *type, int n, const char *name)
2867 {
2868 struct type *result_type;
2869
2870 type = desc_base_type (type);
2871
2872 if (n < 0 || n > ada_array_arity (type))
2873 error (_("invalid dimension number to '%s"), name);
2874
2875 if (ada_is_simple_array_type (type))
2876 {
2877 int i;
2878
2879 for (i = 1; i < n; i += 1)
2880 type = TYPE_TARGET_TYPE (type);
2881 result_type = TYPE_TARGET_TYPE (type->index_type ());
2882 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2883 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2884 perhaps stabsread.c would make more sense. */
2885 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2886 result_type = NULL;
2887 }
2888 else
2889 {
2890 result_type = desc_index_type (desc_bounds_type (type), n);
2891 if (result_type == NULL)
2892 error (_("attempt to take bound of something that is not an array"));
2893 }
2894
2895 return result_type;
2896 }
2897
2898 /* Given that arr is an array type, returns the lower bound of the
2899 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2900 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2901 array-descriptor type. It works for other arrays with bounds supplied
2902 by run-time quantities other than discriminants. */
2903
2904 static LONGEST
2905 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2906 {
2907 struct type *type, *index_type_desc, *index_type;
2908 int i;
2909
2910 gdb_assert (which == 0 || which == 1);
2911
2912 if (ada_is_constrained_packed_array_type (arr_type))
2913 arr_type = decode_constrained_packed_array_type (arr_type);
2914
2915 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2916 return (LONGEST) - which;
2917
2918 if (arr_type->code () == TYPE_CODE_PTR)
2919 type = TYPE_TARGET_TYPE (arr_type);
2920 else
2921 type = arr_type;
2922
2923 if (type->is_fixed_instance ())
2924 {
2925 /* The array has already been fixed, so we do not need to
2926 check the parallel ___XA type again. That encoding has
2927 already been applied, so ignore it now. */
2928 index_type_desc = NULL;
2929 }
2930 else
2931 {
2932 index_type_desc = ada_find_parallel_type (type, "___XA");
2933 ada_fixup_array_indexes_type (index_type_desc);
2934 }
2935
2936 if (index_type_desc != NULL)
2937 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2938 NULL);
2939 else
2940 {
2941 struct type *elt_type = check_typedef (type);
2942
2943 for (i = 1; i < n; i++)
2944 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2945
2946 index_type = elt_type->index_type ();
2947 }
2948
2949 return
2950 (LONGEST) (which == 0
2951 ? ada_discrete_type_low_bound (index_type)
2952 : ada_discrete_type_high_bound (index_type));
2953 }
2954
2955 /* Given that arr is an array value, returns the lower bound of the
2956 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2957 WHICH is 1. This routine will also work for arrays with bounds
2958 supplied by run-time quantities other than discriminants. */
2959
2960 static LONGEST
2961 ada_array_bound (struct value *arr, int n, int which)
2962 {
2963 struct type *arr_type;
2964
2965 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2966 arr = value_ind (arr);
2967 arr_type = value_enclosing_type (arr);
2968
2969 if (ada_is_constrained_packed_array_type (arr_type))
2970 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2971 else if (ada_is_simple_array_type (arr_type))
2972 return ada_array_bound_from_type (arr_type, n, which);
2973 else
2974 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2975 }
2976
2977 /* Given that arr is an array value, returns the length of the
2978 nth index. This routine will also work for arrays with bounds
2979 supplied by run-time quantities other than discriminants.
2980 Does not work for arrays indexed by enumeration types with representation
2981 clauses at the moment. */
2982
2983 static LONGEST
2984 ada_array_length (struct value *arr, int n)
2985 {
2986 struct type *arr_type, *index_type;
2987 int low, high;
2988
2989 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2990 arr = value_ind (arr);
2991 arr_type = value_enclosing_type (arr);
2992
2993 if (ada_is_constrained_packed_array_type (arr_type))
2994 return ada_array_length (decode_constrained_packed_array (arr), n);
2995
2996 if (ada_is_simple_array_type (arr_type))
2997 {
2998 low = ada_array_bound_from_type (arr_type, n, 0);
2999 high = ada_array_bound_from_type (arr_type, n, 1);
3000 }
3001 else
3002 {
3003 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3004 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3005 }
3006
3007 arr_type = check_typedef (arr_type);
3008 index_type = ada_index_type (arr_type, n, "length");
3009 if (index_type != NULL)
3010 {
3011 struct type *base_type;
3012 if (index_type->code () == TYPE_CODE_RANGE)
3013 base_type = TYPE_TARGET_TYPE (index_type);
3014 else
3015 base_type = index_type;
3016
3017 low = pos_atr (value_from_longest (base_type, low));
3018 high = pos_atr (value_from_longest (base_type, high));
3019 }
3020 return high - low + 1;
3021 }
3022
3023 /* An array whose type is that of ARR_TYPE (an array type), with
3024 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3025 less than LOW, then LOW-1 is used. */
3026
3027 static struct value *
3028 empty_array (struct type *arr_type, int low, int high)
3029 {
3030 struct type *arr_type0 = ada_check_typedef (arr_type);
3031 struct type *index_type
3032 = create_static_range_type
3033 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3034 high < low ? low - 1 : high);
3035 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3036
3037 return allocate_value (create_array_type (NULL, elt_type, index_type));
3038 }
3039 \f
3040
3041 /* Name resolution */
3042
3043 /* The "decoded" name for the user-definable Ada operator corresponding
3044 to OP. */
3045
3046 static const char *
3047 ada_decoded_op_name (enum exp_opcode op)
3048 {
3049 int i;
3050
3051 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3052 {
3053 if (ada_opname_table[i].op == op)
3054 return ada_opname_table[i].decoded;
3055 }
3056 error (_("Could not find operator name for opcode"));
3057 }
3058
3059 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3060 in a listing of choices during disambiguation (see sort_choices, below).
3061 The idea is that overloadings of a subprogram name from the
3062 same package should sort in their source order. We settle for ordering
3063 such symbols by their trailing number (__N or $N). */
3064
3065 static int
3066 encoded_ordered_before (const char *N0, const char *N1)
3067 {
3068 if (N1 == NULL)
3069 return 0;
3070 else if (N0 == NULL)
3071 return 1;
3072 else
3073 {
3074 int k0, k1;
3075
3076 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3077 ;
3078 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3079 ;
3080 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3081 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3082 {
3083 int n0, n1;
3084
3085 n0 = k0;
3086 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3087 n0 -= 1;
3088 n1 = k1;
3089 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3090 n1 -= 1;
3091 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3092 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3093 }
3094 return (strcmp (N0, N1) < 0);
3095 }
3096 }
3097
3098 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3099 encoded names. */
3100
3101 static void
3102 sort_choices (struct block_symbol syms[], int nsyms)
3103 {
3104 int i;
3105
3106 for (i = 1; i < nsyms; i += 1)
3107 {
3108 struct block_symbol sym = syms[i];
3109 int j;
3110
3111 for (j = i - 1; j >= 0; j -= 1)
3112 {
3113 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3114 sym.symbol->linkage_name ()))
3115 break;
3116 syms[j + 1] = syms[j];
3117 }
3118 syms[j + 1] = sym;
3119 }
3120 }
3121
3122 /* Whether GDB should display formals and return types for functions in the
3123 overloads selection menu. */
3124 static bool print_signatures = true;
3125
3126 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3127 all but functions, the signature is just the name of the symbol. For
3128 functions, this is the name of the function, the list of types for formals
3129 and the return type (if any). */
3130
3131 static void
3132 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3133 const struct type_print_options *flags)
3134 {
3135 struct type *type = SYMBOL_TYPE (sym);
3136
3137 fprintf_filtered (stream, "%s", sym->print_name ());
3138 if (!print_signatures
3139 || type == NULL
3140 || type->code () != TYPE_CODE_FUNC)
3141 return;
3142
3143 if (type->num_fields () > 0)
3144 {
3145 int i;
3146
3147 fprintf_filtered (stream, " (");
3148 for (i = 0; i < type->num_fields (); ++i)
3149 {
3150 if (i > 0)
3151 fprintf_filtered (stream, "; ");
3152 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3153 flags);
3154 }
3155 fprintf_filtered (stream, ")");
3156 }
3157 if (TYPE_TARGET_TYPE (type) != NULL
3158 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3159 {
3160 fprintf_filtered (stream, " return ");
3161 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3162 }
3163 }
3164
3165 /* Read and validate a set of numeric choices from the user in the
3166 range 0 .. N_CHOICES-1. Place the results in increasing
3167 order in CHOICES[0 .. N-1], and return N.
3168
3169 The user types choices as a sequence of numbers on one line
3170 separated by blanks, encoding them as follows:
3171
3172 + A choice of 0 means to cancel the selection, throwing an error.
3173 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3174 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3175
3176 The user is not allowed to choose more than MAX_RESULTS values.
3177
3178 ANNOTATION_SUFFIX, if present, is used to annotate the input
3179 prompts (for use with the -f switch). */
3180
3181 static int
3182 get_selections (int *choices, int n_choices, int max_results,
3183 int is_all_choice, const char *annotation_suffix)
3184 {
3185 const char *args;
3186 const char *prompt;
3187 int n_chosen;
3188 int first_choice = is_all_choice ? 2 : 1;
3189
3190 prompt = getenv ("PS2");
3191 if (prompt == NULL)
3192 prompt = "> ";
3193
3194 args = command_line_input (prompt, annotation_suffix);
3195
3196 if (args == NULL)
3197 error_no_arg (_("one or more choice numbers"));
3198
3199 n_chosen = 0;
3200
3201 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3202 order, as given in args. Choices are validated. */
3203 while (1)
3204 {
3205 char *args2;
3206 int choice, j;
3207
3208 args = skip_spaces (args);
3209 if (*args == '\0' && n_chosen == 0)
3210 error_no_arg (_("one or more choice numbers"));
3211 else if (*args == '\0')
3212 break;
3213
3214 choice = strtol (args, &args2, 10);
3215 if (args == args2 || choice < 0
3216 || choice > n_choices + first_choice - 1)
3217 error (_("Argument must be choice number"));
3218 args = args2;
3219
3220 if (choice == 0)
3221 error (_("cancelled"));
3222
3223 if (choice < first_choice)
3224 {
3225 n_chosen = n_choices;
3226 for (j = 0; j < n_choices; j += 1)
3227 choices[j] = j;
3228 break;
3229 }
3230 choice -= first_choice;
3231
3232 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3233 {
3234 }
3235
3236 if (j < 0 || choice != choices[j])
3237 {
3238 int k;
3239
3240 for (k = n_chosen - 1; k > j; k -= 1)
3241 choices[k + 1] = choices[k];
3242 choices[j + 1] = choice;
3243 n_chosen += 1;
3244 }
3245 }
3246
3247 if (n_chosen > max_results)
3248 error (_("Select no more than %d of the above"), max_results);
3249
3250 return n_chosen;
3251 }
3252
3253 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3254 by asking the user (if necessary), returning the number selected,
3255 and setting the first elements of SYMS items. Error if no symbols
3256 selected. */
3257
3258 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3259 to be re-integrated one of these days. */
3260
3261 static int
3262 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3263 {
3264 int i;
3265 int *chosen = XALLOCAVEC (int , nsyms);
3266 int n_chosen;
3267 int first_choice = (max_results == 1) ? 1 : 2;
3268 const char *select_mode = multiple_symbols_select_mode ();
3269
3270 if (max_results < 1)
3271 error (_("Request to select 0 symbols!"));
3272 if (nsyms <= 1)
3273 return nsyms;
3274
3275 if (select_mode == multiple_symbols_cancel)
3276 error (_("\
3277 canceled because the command is ambiguous\n\
3278 See set/show multiple-symbol."));
3279
3280 /* If select_mode is "all", then return all possible symbols.
3281 Only do that if more than one symbol can be selected, of course.
3282 Otherwise, display the menu as usual. */
3283 if (select_mode == multiple_symbols_all && max_results > 1)
3284 return nsyms;
3285
3286 printf_filtered (_("[0] cancel\n"));
3287 if (max_results > 1)
3288 printf_filtered (_("[1] all\n"));
3289
3290 sort_choices (syms, nsyms);
3291
3292 for (i = 0; i < nsyms; i += 1)
3293 {
3294 if (syms[i].symbol == NULL)
3295 continue;
3296
3297 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3298 {
3299 struct symtab_and_line sal =
3300 find_function_start_sal (syms[i].symbol, 1);
3301
3302 printf_filtered ("[%d] ", i + first_choice);
3303 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3304 &type_print_raw_options);
3305 if (sal.symtab == NULL)
3306 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3307 metadata_style.style ().ptr (), nullptr, sal.line);
3308 else
3309 printf_filtered
3310 (_(" at %ps:%d\n"),
3311 styled_string (file_name_style.style (),
3312 symtab_to_filename_for_display (sal.symtab)),
3313 sal.line);
3314 continue;
3315 }
3316 else
3317 {
3318 int is_enumeral =
3319 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3320 && SYMBOL_TYPE (syms[i].symbol) != NULL
3321 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3322 struct symtab *symtab = NULL;
3323
3324 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3325 symtab = symbol_symtab (syms[i].symbol);
3326
3327 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3328 {
3329 printf_filtered ("[%d] ", i + first_choice);
3330 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3331 &type_print_raw_options);
3332 printf_filtered (_(" at %s:%d\n"),
3333 symtab_to_filename_for_display (symtab),
3334 SYMBOL_LINE (syms[i].symbol));
3335 }
3336 else if (is_enumeral
3337 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3338 {
3339 printf_filtered (("[%d] "), i + first_choice);
3340 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3341 gdb_stdout, -1, 0, &type_print_raw_options);
3342 printf_filtered (_("'(%s) (enumeral)\n"),
3343 syms[i].symbol->print_name ());
3344 }
3345 else
3346 {
3347 printf_filtered ("[%d] ", i + first_choice);
3348 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3349 &type_print_raw_options);
3350
3351 if (symtab != NULL)
3352 printf_filtered (is_enumeral
3353 ? _(" in %s (enumeral)\n")
3354 : _(" at %s:?\n"),
3355 symtab_to_filename_for_display (symtab));
3356 else
3357 printf_filtered (is_enumeral
3358 ? _(" (enumeral)\n")
3359 : _(" at ?\n"));
3360 }
3361 }
3362 }
3363
3364 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3365 "overload-choice");
3366
3367 for (i = 0; i < n_chosen; i += 1)
3368 syms[i] = syms[chosen[i]];
3369
3370 return n_chosen;
3371 }
3372
3373 /* Resolve the operator of the subexpression beginning at
3374 position *POS of *EXPP. "Resolving" consists of replacing
3375 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3376 with their resolutions, replacing built-in operators with
3377 function calls to user-defined operators, where appropriate, and,
3378 when DEPROCEDURE_P is non-zero, converting function-valued variables
3379 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3380 are as in ada_resolve, above. */
3381
3382 static struct value *
3383 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3384 struct type *context_type, int parse_completion,
3385 innermost_block_tracker *tracker)
3386 {
3387 int pc = *pos;
3388 int i;
3389 struct expression *exp; /* Convenience: == *expp. */
3390 enum exp_opcode op = (*expp)->elts[pc].opcode;
3391 struct value **argvec; /* Vector of operand types (alloca'ed). */
3392 int nargs; /* Number of operands. */
3393 int oplen;
3394
3395 argvec = NULL;
3396 nargs = 0;
3397 exp = expp->get ();
3398
3399 /* Pass one: resolve operands, saving their types and updating *pos,
3400 if needed. */
3401 switch (op)
3402 {
3403 case OP_FUNCALL:
3404 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3405 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3406 *pos += 7;
3407 else
3408 {
3409 *pos += 3;
3410 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3411 }
3412 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3413 break;
3414
3415 case UNOP_ADDR:
3416 *pos += 1;
3417 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3418 break;
3419
3420 case UNOP_QUAL:
3421 *pos += 3;
3422 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3423 parse_completion, tracker);
3424 break;
3425
3426 case OP_ATR_MODULUS:
3427 case OP_ATR_SIZE:
3428 case OP_ATR_TAG:
3429 case OP_ATR_FIRST:
3430 case OP_ATR_LAST:
3431 case OP_ATR_LENGTH:
3432 case OP_ATR_POS:
3433 case OP_ATR_VAL:
3434 case OP_ATR_MIN:
3435 case OP_ATR_MAX:
3436 case TERNOP_IN_RANGE:
3437 case BINOP_IN_BOUNDS:
3438 case UNOP_IN_RANGE:
3439 case OP_AGGREGATE:
3440 case OP_OTHERS:
3441 case OP_CHOICES:
3442 case OP_POSITIONAL:
3443 case OP_DISCRETE_RANGE:
3444 case OP_NAME:
3445 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3446 *pos += oplen;
3447 break;
3448
3449 case BINOP_ASSIGN:
3450 {
3451 struct value *arg1;
3452
3453 *pos += 1;
3454 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3455 if (arg1 == NULL)
3456 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3457 else
3458 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3459 tracker);
3460 break;
3461 }
3462
3463 case UNOP_CAST:
3464 *pos += 3;
3465 nargs = 1;
3466 break;
3467
3468 case BINOP_ADD:
3469 case BINOP_SUB:
3470 case BINOP_MUL:
3471 case BINOP_DIV:
3472 case BINOP_REM:
3473 case BINOP_MOD:
3474 case BINOP_EXP:
3475 case BINOP_CONCAT:
3476 case BINOP_LOGICAL_AND:
3477 case BINOP_LOGICAL_OR:
3478 case BINOP_BITWISE_AND:
3479 case BINOP_BITWISE_IOR:
3480 case BINOP_BITWISE_XOR:
3481
3482 case BINOP_EQUAL:
3483 case BINOP_NOTEQUAL:
3484 case BINOP_LESS:
3485 case BINOP_GTR:
3486 case BINOP_LEQ:
3487 case BINOP_GEQ:
3488
3489 case BINOP_REPEAT:
3490 case BINOP_SUBSCRIPT:
3491 case BINOP_COMMA:
3492 *pos += 1;
3493 nargs = 2;
3494 break;
3495
3496 case UNOP_NEG:
3497 case UNOP_PLUS:
3498 case UNOP_LOGICAL_NOT:
3499 case UNOP_ABS:
3500 case UNOP_IND:
3501 *pos += 1;
3502 nargs = 1;
3503 break;
3504
3505 case OP_LONG:
3506 case OP_FLOAT:
3507 case OP_VAR_VALUE:
3508 case OP_VAR_MSYM_VALUE:
3509 *pos += 4;
3510 break;
3511
3512 case OP_TYPE:
3513 case OP_BOOL:
3514 case OP_LAST:
3515 case OP_INTERNALVAR:
3516 *pos += 3;
3517 break;
3518
3519 case UNOP_MEMVAL:
3520 *pos += 3;
3521 nargs = 1;
3522 break;
3523
3524 case OP_REGISTER:
3525 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3526 break;
3527
3528 case STRUCTOP_STRUCT:
3529 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3530 nargs = 1;
3531 break;
3532
3533 case TERNOP_SLICE:
3534 *pos += 1;
3535 nargs = 3;
3536 break;
3537
3538 case OP_STRING:
3539 break;
3540
3541 default:
3542 error (_("Unexpected operator during name resolution"));
3543 }
3544
3545 argvec = XALLOCAVEC (struct value *, nargs + 1);
3546 for (i = 0; i < nargs; i += 1)
3547 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3548 tracker);
3549 argvec[i] = NULL;
3550 exp = expp->get ();
3551
3552 /* Pass two: perform any resolution on principal operator. */
3553 switch (op)
3554 {
3555 default:
3556 break;
3557
3558 case OP_VAR_VALUE:
3559 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3560 {
3561 std::vector<struct block_symbol> candidates;
3562 int n_candidates;
3563
3564 n_candidates =
3565 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3566 exp->elts[pc + 1].block, VAR_DOMAIN,
3567 &candidates);
3568
3569 if (n_candidates > 1)
3570 {
3571 /* Types tend to get re-introduced locally, so if there
3572 are any local symbols that are not types, first filter
3573 out all types. */
3574 int j;
3575 for (j = 0; j < n_candidates; j += 1)
3576 switch (SYMBOL_CLASS (candidates[j].symbol))
3577 {
3578 case LOC_REGISTER:
3579 case LOC_ARG:
3580 case LOC_REF_ARG:
3581 case LOC_REGPARM_ADDR:
3582 case LOC_LOCAL:
3583 case LOC_COMPUTED:
3584 goto FoundNonType;
3585 default:
3586 break;
3587 }
3588 FoundNonType:
3589 if (j < n_candidates)
3590 {
3591 j = 0;
3592 while (j < n_candidates)
3593 {
3594 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3595 {
3596 candidates[j] = candidates[n_candidates - 1];
3597 n_candidates -= 1;
3598 }
3599 else
3600 j += 1;
3601 }
3602 }
3603 }
3604
3605 if (n_candidates == 0)
3606 error (_("No definition found for %s"),
3607 exp->elts[pc + 2].symbol->print_name ());
3608 else if (n_candidates == 1)
3609 i = 0;
3610 else if (deprocedure_p
3611 && !is_nonfunction (candidates.data (), n_candidates))
3612 {
3613 i = ada_resolve_function
3614 (candidates.data (), n_candidates, NULL, 0,
3615 exp->elts[pc + 2].symbol->linkage_name (),
3616 context_type, parse_completion);
3617 if (i < 0)
3618 error (_("Could not find a match for %s"),
3619 exp->elts[pc + 2].symbol->print_name ());
3620 }
3621 else
3622 {
3623 printf_filtered (_("Multiple matches for %s\n"),
3624 exp->elts[pc + 2].symbol->print_name ());
3625 user_select_syms (candidates.data (), n_candidates, 1);
3626 i = 0;
3627 }
3628
3629 exp->elts[pc + 1].block = candidates[i].block;
3630 exp->elts[pc + 2].symbol = candidates[i].symbol;
3631 tracker->update (candidates[i]);
3632 }
3633
3634 if (deprocedure_p
3635 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3636 == TYPE_CODE_FUNC))
3637 {
3638 replace_operator_with_call (expp, pc, 0, 4,
3639 exp->elts[pc + 2].symbol,
3640 exp->elts[pc + 1].block);
3641 exp = expp->get ();
3642 }
3643 break;
3644
3645 case OP_FUNCALL:
3646 {
3647 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3648 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3649 {
3650 std::vector<struct block_symbol> candidates;
3651 int n_candidates;
3652
3653 n_candidates =
3654 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3655 exp->elts[pc + 4].block, VAR_DOMAIN,
3656 &candidates);
3657
3658 if (n_candidates == 1)
3659 i = 0;
3660 else
3661 {
3662 i = ada_resolve_function
3663 (candidates.data (), n_candidates,
3664 argvec, nargs,
3665 exp->elts[pc + 5].symbol->linkage_name (),
3666 context_type, parse_completion);
3667 if (i < 0)
3668 error (_("Could not find a match for %s"),
3669 exp->elts[pc + 5].symbol->print_name ());
3670 }
3671
3672 exp->elts[pc + 4].block = candidates[i].block;
3673 exp->elts[pc + 5].symbol = candidates[i].symbol;
3674 tracker->update (candidates[i]);
3675 }
3676 }
3677 break;
3678 case BINOP_ADD:
3679 case BINOP_SUB:
3680 case BINOP_MUL:
3681 case BINOP_DIV:
3682 case BINOP_REM:
3683 case BINOP_MOD:
3684 case BINOP_CONCAT:
3685 case BINOP_BITWISE_AND:
3686 case BINOP_BITWISE_IOR:
3687 case BINOP_BITWISE_XOR:
3688 case BINOP_EQUAL:
3689 case BINOP_NOTEQUAL:
3690 case BINOP_LESS:
3691 case BINOP_GTR:
3692 case BINOP_LEQ:
3693 case BINOP_GEQ:
3694 case BINOP_EXP:
3695 case UNOP_NEG:
3696 case UNOP_PLUS:
3697 case UNOP_LOGICAL_NOT:
3698 case UNOP_ABS:
3699 if (possible_user_operator_p (op, argvec))
3700 {
3701 std::vector<struct block_symbol> candidates;
3702 int n_candidates;
3703
3704 n_candidates =
3705 ada_lookup_symbol_list (ada_decoded_op_name (op),
3706 NULL, VAR_DOMAIN,
3707 &candidates);
3708
3709 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3710 nargs, ada_decoded_op_name (op), NULL,
3711 parse_completion);
3712 if (i < 0)
3713 break;
3714
3715 replace_operator_with_call (expp, pc, nargs, 1,
3716 candidates[i].symbol,
3717 candidates[i].block);
3718 exp = expp->get ();
3719 }
3720 break;
3721
3722 case OP_TYPE:
3723 case OP_REGISTER:
3724 return NULL;
3725 }
3726
3727 *pos = pc;
3728 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3729 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3730 exp->elts[pc + 1].objfile,
3731 exp->elts[pc + 2].msymbol);
3732 else
3733 return evaluate_subexp_type (exp, pos);
3734 }
3735
3736 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3737 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3738 a non-pointer. */
3739 /* The term "match" here is rather loose. The match is heuristic and
3740 liberal. */
3741
3742 static int
3743 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3744 {
3745 ftype = ada_check_typedef (ftype);
3746 atype = ada_check_typedef (atype);
3747
3748 if (ftype->code () == TYPE_CODE_REF)
3749 ftype = TYPE_TARGET_TYPE (ftype);
3750 if (atype->code () == TYPE_CODE_REF)
3751 atype = TYPE_TARGET_TYPE (atype);
3752
3753 switch (ftype->code ())
3754 {
3755 default:
3756 return ftype->code () == atype->code ();
3757 case TYPE_CODE_PTR:
3758 if (atype->code () == TYPE_CODE_PTR)
3759 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3760 TYPE_TARGET_TYPE (atype), 0);
3761 else
3762 return (may_deref
3763 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3764 case TYPE_CODE_INT:
3765 case TYPE_CODE_ENUM:
3766 case TYPE_CODE_RANGE:
3767 switch (atype->code ())
3768 {
3769 case TYPE_CODE_INT:
3770 case TYPE_CODE_ENUM:
3771 case TYPE_CODE_RANGE:
3772 return 1;
3773 default:
3774 return 0;
3775 }
3776
3777 case TYPE_CODE_ARRAY:
3778 return (atype->code () == TYPE_CODE_ARRAY
3779 || ada_is_array_descriptor_type (atype));
3780
3781 case TYPE_CODE_STRUCT:
3782 if (ada_is_array_descriptor_type (ftype))
3783 return (atype->code () == TYPE_CODE_ARRAY
3784 || ada_is_array_descriptor_type (atype));
3785 else
3786 return (atype->code () == TYPE_CODE_STRUCT
3787 && !ada_is_array_descriptor_type (atype));
3788
3789 case TYPE_CODE_UNION:
3790 case TYPE_CODE_FLT:
3791 return (atype->code () == ftype->code ());
3792 }
3793 }
3794
3795 /* Return non-zero if the formals of FUNC "sufficiently match" the
3796 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3797 may also be an enumeral, in which case it is treated as a 0-
3798 argument function. */
3799
3800 static int
3801 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3802 {
3803 int i;
3804 struct type *func_type = SYMBOL_TYPE (func);
3805
3806 if (SYMBOL_CLASS (func) == LOC_CONST
3807 && func_type->code () == TYPE_CODE_ENUM)
3808 return (n_actuals == 0);
3809 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3810 return 0;
3811
3812 if (func_type->num_fields () != n_actuals)
3813 return 0;
3814
3815 for (i = 0; i < n_actuals; i += 1)
3816 {
3817 if (actuals[i] == NULL)
3818 return 0;
3819 else
3820 {
3821 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3822 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3823
3824 if (!ada_type_match (ftype, atype, 1))
3825 return 0;
3826 }
3827 }
3828 return 1;
3829 }
3830
3831 /* False iff function type FUNC_TYPE definitely does not produce a value
3832 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3833 FUNC_TYPE is not a valid function type with a non-null return type
3834 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3835
3836 static int
3837 return_match (struct type *func_type, struct type *context_type)
3838 {
3839 struct type *return_type;
3840
3841 if (func_type == NULL)
3842 return 1;
3843
3844 if (func_type->code () == TYPE_CODE_FUNC)
3845 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3846 else
3847 return_type = get_base_type (func_type);
3848 if (return_type == NULL)
3849 return 1;
3850
3851 context_type = get_base_type (context_type);
3852
3853 if (return_type->code () == TYPE_CODE_ENUM)
3854 return context_type == NULL || return_type == context_type;
3855 else if (context_type == NULL)
3856 return return_type->code () != TYPE_CODE_VOID;
3857 else
3858 return return_type->code () == context_type->code ();
3859 }
3860
3861
3862 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3863 function (if any) that matches the types of the NARGS arguments in
3864 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3865 that returns that type, then eliminate matches that don't. If
3866 CONTEXT_TYPE is void and there is at least one match that does not
3867 return void, eliminate all matches that do.
3868
3869 Asks the user if there is more than one match remaining. Returns -1
3870 if there is no such symbol or none is selected. NAME is used
3871 solely for messages. May re-arrange and modify SYMS in
3872 the process; the index returned is for the modified vector. */
3873
3874 static int
3875 ada_resolve_function (struct block_symbol syms[],
3876 int nsyms, struct value **args, int nargs,
3877 const char *name, struct type *context_type,
3878 int parse_completion)
3879 {
3880 int fallback;
3881 int k;
3882 int m; /* Number of hits */
3883
3884 m = 0;
3885 /* In the first pass of the loop, we only accept functions matching
3886 context_type. If none are found, we add a second pass of the loop
3887 where every function is accepted. */
3888 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3889 {
3890 for (k = 0; k < nsyms; k += 1)
3891 {
3892 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3893
3894 if (ada_args_match (syms[k].symbol, args, nargs)
3895 && (fallback || return_match (type, context_type)))
3896 {
3897 syms[m] = syms[k];
3898 m += 1;
3899 }
3900 }
3901 }
3902
3903 /* If we got multiple matches, ask the user which one to use. Don't do this
3904 interactive thing during completion, though, as the purpose of the
3905 completion is providing a list of all possible matches. Prompting the
3906 user to filter it down would be completely unexpected in this case. */
3907 if (m == 0)
3908 return -1;
3909 else if (m > 1 && !parse_completion)
3910 {
3911 printf_filtered (_("Multiple matches for %s\n"), name);
3912 user_select_syms (syms, m, 1);
3913 return 0;
3914 }
3915 return 0;
3916 }
3917
3918 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3919 on the function identified by SYM and BLOCK, and taking NARGS
3920 arguments. Update *EXPP as needed to hold more space. */
3921
3922 static void
3923 replace_operator_with_call (expression_up *expp, int pc, int nargs,
3924 int oplen, struct symbol *sym,
3925 const struct block *block)
3926 {
3927 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3928 symbol, -oplen for operator being replaced). */
3929 struct expression *newexp = (struct expression *)
3930 xzalloc (sizeof (struct expression)
3931 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3932 struct expression *exp = expp->get ();
3933
3934 newexp->nelts = exp->nelts + 7 - oplen;
3935 newexp->language_defn = exp->language_defn;
3936 newexp->gdbarch = exp->gdbarch;
3937 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3938 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3939 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3940
3941 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3942 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3943
3944 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3945 newexp->elts[pc + 4].block = block;
3946 newexp->elts[pc + 5].symbol = sym;
3947
3948 expp->reset (newexp);
3949 }
3950
3951 /* Type-class predicates */
3952
3953 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3954 or FLOAT). */
3955
3956 static int
3957 numeric_type_p (struct type *type)
3958 {
3959 if (type == NULL)
3960 return 0;
3961 else
3962 {
3963 switch (type->code ())
3964 {
3965 case TYPE_CODE_INT:
3966 case TYPE_CODE_FLT:
3967 return 1;
3968 case TYPE_CODE_RANGE:
3969 return (type == TYPE_TARGET_TYPE (type)
3970 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3971 default:
3972 return 0;
3973 }
3974 }
3975 }
3976
3977 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3978
3979 static int
3980 integer_type_p (struct type *type)
3981 {
3982 if (type == NULL)
3983 return 0;
3984 else
3985 {
3986 switch (type->code ())
3987 {
3988 case TYPE_CODE_INT:
3989 return 1;
3990 case TYPE_CODE_RANGE:
3991 return (type == TYPE_TARGET_TYPE (type)
3992 || integer_type_p (TYPE_TARGET_TYPE (type)));
3993 default:
3994 return 0;
3995 }
3996 }
3997 }
3998
3999 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4000
4001 static int
4002 scalar_type_p (struct type *type)
4003 {
4004 if (type == NULL)
4005 return 0;
4006 else
4007 {
4008 switch (type->code ())
4009 {
4010 case TYPE_CODE_INT:
4011 case TYPE_CODE_RANGE:
4012 case TYPE_CODE_ENUM:
4013 case TYPE_CODE_FLT:
4014 return 1;
4015 default:
4016 return 0;
4017 }
4018 }
4019 }
4020
4021 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4022
4023 static int
4024 discrete_type_p (struct type *type)
4025 {
4026 if (type == NULL)
4027 return 0;
4028 else
4029 {
4030 switch (type->code ())
4031 {
4032 case TYPE_CODE_INT:
4033 case TYPE_CODE_RANGE:
4034 case TYPE_CODE_ENUM:
4035 case TYPE_CODE_BOOL:
4036 return 1;
4037 default:
4038 return 0;
4039 }
4040 }
4041 }
4042
4043 /* Returns non-zero if OP with operands in the vector ARGS could be
4044 a user-defined function. Errs on the side of pre-defined operators
4045 (i.e., result 0). */
4046
4047 static int
4048 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4049 {
4050 struct type *type0 =
4051 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4052 struct type *type1 =
4053 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4054
4055 if (type0 == NULL)
4056 return 0;
4057
4058 switch (op)
4059 {
4060 default:
4061 return 0;
4062
4063 case BINOP_ADD:
4064 case BINOP_SUB:
4065 case BINOP_MUL:
4066 case BINOP_DIV:
4067 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4068
4069 case BINOP_REM:
4070 case BINOP_MOD:
4071 case BINOP_BITWISE_AND:
4072 case BINOP_BITWISE_IOR:
4073 case BINOP_BITWISE_XOR:
4074 return (!(integer_type_p (type0) && integer_type_p (type1)));
4075
4076 case BINOP_EQUAL:
4077 case BINOP_NOTEQUAL:
4078 case BINOP_LESS:
4079 case BINOP_GTR:
4080 case BINOP_LEQ:
4081 case BINOP_GEQ:
4082 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4083
4084 case BINOP_CONCAT:
4085 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4086
4087 case BINOP_EXP:
4088 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4089
4090 case UNOP_NEG:
4091 case UNOP_PLUS:
4092 case UNOP_LOGICAL_NOT:
4093 case UNOP_ABS:
4094 return (!numeric_type_p (type0));
4095
4096 }
4097 }
4098 \f
4099 /* Renaming */
4100
4101 /* NOTES:
4102
4103 1. In the following, we assume that a renaming type's name may
4104 have an ___XD suffix. It would be nice if this went away at some
4105 point.
4106 2. We handle both the (old) purely type-based representation of
4107 renamings and the (new) variable-based encoding. At some point,
4108 it is devoutly to be hoped that the former goes away
4109 (FIXME: hilfinger-2007-07-09).
4110 3. Subprogram renamings are not implemented, although the XRS
4111 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4112
4113 /* If SYM encodes a renaming,
4114
4115 <renaming> renames <renamed entity>,
4116
4117 sets *LEN to the length of the renamed entity's name,
4118 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4119 the string describing the subcomponent selected from the renamed
4120 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4121 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4122 are undefined). Otherwise, returns a value indicating the category
4123 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4124 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4125 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4126 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4127 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4128 may be NULL, in which case they are not assigned.
4129
4130 [Currently, however, GCC does not generate subprogram renamings.] */
4131
4132 enum ada_renaming_category
4133 ada_parse_renaming (struct symbol *sym,
4134 const char **renamed_entity, int *len,
4135 const char **renaming_expr)
4136 {
4137 enum ada_renaming_category kind;
4138 const char *info;
4139 const char *suffix;
4140
4141 if (sym == NULL)
4142 return ADA_NOT_RENAMING;
4143 switch (SYMBOL_CLASS (sym))
4144 {
4145 default:
4146 return ADA_NOT_RENAMING;
4147 case LOC_LOCAL:
4148 case LOC_STATIC:
4149 case LOC_COMPUTED:
4150 case LOC_OPTIMIZED_OUT:
4151 info = strstr (sym->linkage_name (), "___XR");
4152 if (info == NULL)
4153 return ADA_NOT_RENAMING;
4154 switch (info[5])
4155 {
4156 case '_':
4157 kind = ADA_OBJECT_RENAMING;
4158 info += 6;
4159 break;
4160 case 'E':
4161 kind = ADA_EXCEPTION_RENAMING;
4162 info += 7;
4163 break;
4164 case 'P':
4165 kind = ADA_PACKAGE_RENAMING;
4166 info += 7;
4167 break;
4168 case 'S':
4169 kind = ADA_SUBPROGRAM_RENAMING;
4170 info += 7;
4171 break;
4172 default:
4173 return ADA_NOT_RENAMING;
4174 }
4175 }
4176
4177 if (renamed_entity != NULL)
4178 *renamed_entity = info;
4179 suffix = strstr (info, "___XE");
4180 if (suffix == NULL || suffix == info)
4181 return ADA_NOT_RENAMING;
4182 if (len != NULL)
4183 *len = strlen (info) - strlen (suffix);
4184 suffix += 5;
4185 if (renaming_expr != NULL)
4186 *renaming_expr = suffix;
4187 return kind;
4188 }
4189
4190 /* Compute the value of the given RENAMING_SYM, which is expected to
4191 be a symbol encoding a renaming expression. BLOCK is the block
4192 used to evaluate the renaming. */
4193
4194 static struct value *
4195 ada_read_renaming_var_value (struct symbol *renaming_sym,
4196 const struct block *block)
4197 {
4198 const char *sym_name;
4199
4200 sym_name = renaming_sym->linkage_name ();
4201 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4202 return evaluate_expression (expr.get ());
4203 }
4204 \f
4205
4206 /* Evaluation: Function Calls */
4207
4208 /* Return an lvalue containing the value VAL. This is the identity on
4209 lvalues, and otherwise has the side-effect of allocating memory
4210 in the inferior where a copy of the value contents is copied. */
4211
4212 static struct value *
4213 ensure_lval (struct value *val)
4214 {
4215 if (VALUE_LVAL (val) == not_lval
4216 || VALUE_LVAL (val) == lval_internalvar)
4217 {
4218 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4219 const CORE_ADDR addr =
4220 value_as_long (value_allocate_space_in_inferior (len));
4221
4222 VALUE_LVAL (val) = lval_memory;
4223 set_value_address (val, addr);
4224 write_memory (addr, value_contents (val), len);
4225 }
4226
4227 return val;
4228 }
4229
4230 /* Given ARG, a value of type (pointer or reference to a)*
4231 structure/union, extract the component named NAME from the ultimate
4232 target structure/union and return it as a value with its
4233 appropriate type.
4234
4235 The routine searches for NAME among all members of the structure itself
4236 and (recursively) among all members of any wrapper members
4237 (e.g., '_parent').
4238
4239 If NO_ERR, then simply return NULL in case of error, rather than
4240 calling error. */
4241
4242 static struct value *
4243 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4244 {
4245 struct type *t, *t1;
4246 struct value *v;
4247 int check_tag;
4248
4249 v = NULL;
4250 t1 = t = ada_check_typedef (value_type (arg));
4251 if (t->code () == TYPE_CODE_REF)
4252 {
4253 t1 = TYPE_TARGET_TYPE (t);
4254 if (t1 == NULL)
4255 goto BadValue;
4256 t1 = ada_check_typedef (t1);
4257 if (t1->code () == TYPE_CODE_PTR)
4258 {
4259 arg = coerce_ref (arg);
4260 t = t1;
4261 }
4262 }
4263
4264 while (t->code () == TYPE_CODE_PTR)
4265 {
4266 t1 = TYPE_TARGET_TYPE (t);
4267 if (t1 == NULL)
4268 goto BadValue;
4269 t1 = ada_check_typedef (t1);
4270 if (t1->code () == TYPE_CODE_PTR)
4271 {
4272 arg = value_ind (arg);
4273 t = t1;
4274 }
4275 else
4276 break;
4277 }
4278
4279 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4280 goto BadValue;
4281
4282 if (t1 == t)
4283 v = ada_search_struct_field (name, arg, 0, t);
4284 else
4285 {
4286 int bit_offset, bit_size, byte_offset;
4287 struct type *field_type;
4288 CORE_ADDR address;
4289
4290 if (t->code () == TYPE_CODE_PTR)
4291 address = value_address (ada_value_ind (arg));
4292 else
4293 address = value_address (ada_coerce_ref (arg));
4294
4295 /* Check to see if this is a tagged type. We also need to handle
4296 the case where the type is a reference to a tagged type, but
4297 we have to be careful to exclude pointers to tagged types.
4298 The latter should be shown as usual (as a pointer), whereas
4299 a reference should mostly be transparent to the user. */
4300
4301 if (ada_is_tagged_type (t1, 0)
4302 || (t1->code () == TYPE_CODE_REF
4303 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4304 {
4305 /* We first try to find the searched field in the current type.
4306 If not found then let's look in the fixed type. */
4307
4308 if (!find_struct_field (name, t1, 0,
4309 &field_type, &byte_offset, &bit_offset,
4310 &bit_size, NULL))
4311 check_tag = 1;
4312 else
4313 check_tag = 0;
4314 }
4315 else
4316 check_tag = 0;
4317
4318 /* Convert to fixed type in all cases, so that we have proper
4319 offsets to each field in unconstrained record types. */
4320 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4321 address, NULL, check_tag);
4322
4323 if (find_struct_field (name, t1, 0,
4324 &field_type, &byte_offset, &bit_offset,
4325 &bit_size, NULL))
4326 {
4327 if (bit_size != 0)
4328 {
4329 if (t->code () == TYPE_CODE_REF)
4330 arg = ada_coerce_ref (arg);
4331 else
4332 arg = ada_value_ind (arg);
4333 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4334 bit_offset, bit_size,
4335 field_type);
4336 }
4337 else
4338 v = value_at_lazy (field_type, address + byte_offset);
4339 }
4340 }
4341
4342 if (v != NULL || no_err)
4343 return v;
4344 else
4345 error (_("There is no member named %s."), name);
4346
4347 BadValue:
4348 if (no_err)
4349 return NULL;
4350 else
4351 error (_("Attempt to extract a component of "
4352 "a value that is not a record."));
4353 }
4354
4355 /* Return the value ACTUAL, converted to be an appropriate value for a
4356 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4357 allocating any necessary descriptors (fat pointers), or copies of
4358 values not residing in memory, updating it as needed. */
4359
4360 struct value *
4361 ada_convert_actual (struct value *actual, struct type *formal_type0)
4362 {
4363 struct type *actual_type = ada_check_typedef (value_type (actual));
4364 struct type *formal_type = ada_check_typedef (formal_type0);
4365 struct type *formal_target =
4366 formal_type->code () == TYPE_CODE_PTR
4367 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4368 struct type *actual_target =
4369 actual_type->code () == TYPE_CODE_PTR
4370 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4371
4372 if (ada_is_array_descriptor_type (formal_target)
4373 && actual_target->code () == TYPE_CODE_ARRAY)
4374 return make_array_descriptor (formal_type, actual);
4375 else if (formal_type->code () == TYPE_CODE_PTR
4376 || formal_type->code () == TYPE_CODE_REF)
4377 {
4378 struct value *result;
4379
4380 if (formal_target->code () == TYPE_CODE_ARRAY
4381 && ada_is_array_descriptor_type (actual_target))
4382 result = desc_data (actual);
4383 else if (formal_type->code () != TYPE_CODE_PTR)
4384 {
4385 if (VALUE_LVAL (actual) != lval_memory)
4386 {
4387 struct value *val;
4388
4389 actual_type = ada_check_typedef (value_type (actual));
4390 val = allocate_value (actual_type);
4391 memcpy ((char *) value_contents_raw (val),
4392 (char *) value_contents (actual),
4393 TYPE_LENGTH (actual_type));
4394 actual = ensure_lval (val);
4395 }
4396 result = value_addr (actual);
4397 }
4398 else
4399 return actual;
4400 return value_cast_pointers (formal_type, result, 0);
4401 }
4402 else if (actual_type->code () == TYPE_CODE_PTR)
4403 return ada_value_ind (actual);
4404 else if (ada_is_aligner_type (formal_type))
4405 {
4406 /* We need to turn this parameter into an aligner type
4407 as well. */
4408 struct value *aligner = allocate_value (formal_type);
4409 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4410
4411 value_assign_to_component (aligner, component, actual);
4412 return aligner;
4413 }
4414
4415 return actual;
4416 }
4417
4418 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4419 type TYPE. This is usually an inefficient no-op except on some targets
4420 (such as AVR) where the representation of a pointer and an address
4421 differs. */
4422
4423 static CORE_ADDR
4424 value_pointer (struct value *value, struct type *type)
4425 {
4426 struct gdbarch *gdbarch = get_type_arch (type);
4427 unsigned len = TYPE_LENGTH (type);
4428 gdb_byte *buf = (gdb_byte *) alloca (len);
4429 CORE_ADDR addr;
4430
4431 addr = value_address (value);
4432 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4433 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4434 return addr;
4435 }
4436
4437
4438 /* Push a descriptor of type TYPE for array value ARR on the stack at
4439 *SP, updating *SP to reflect the new descriptor. Return either
4440 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4441 to-descriptor type rather than a descriptor type), a struct value *
4442 representing a pointer to this descriptor. */
4443
4444 static struct value *
4445 make_array_descriptor (struct type *type, struct value *arr)
4446 {
4447 struct type *bounds_type = desc_bounds_type (type);
4448 struct type *desc_type = desc_base_type (type);
4449 struct value *descriptor = allocate_value (desc_type);
4450 struct value *bounds = allocate_value (bounds_type);
4451 int i;
4452
4453 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4454 i > 0; i -= 1)
4455 {
4456 modify_field (value_type (bounds), value_contents_writeable (bounds),
4457 ada_array_bound (arr, i, 0),
4458 desc_bound_bitpos (bounds_type, i, 0),
4459 desc_bound_bitsize (bounds_type, i, 0));
4460 modify_field (value_type (bounds), value_contents_writeable (bounds),
4461 ada_array_bound (arr, i, 1),
4462 desc_bound_bitpos (bounds_type, i, 1),
4463 desc_bound_bitsize (bounds_type, i, 1));
4464 }
4465
4466 bounds = ensure_lval (bounds);
4467
4468 modify_field (value_type (descriptor),
4469 value_contents_writeable (descriptor),
4470 value_pointer (ensure_lval (arr),
4471 desc_type->field (0).type ()),
4472 fat_pntr_data_bitpos (desc_type),
4473 fat_pntr_data_bitsize (desc_type));
4474
4475 modify_field (value_type (descriptor),
4476 value_contents_writeable (descriptor),
4477 value_pointer (bounds,
4478 desc_type->field (1).type ()),
4479 fat_pntr_bounds_bitpos (desc_type),
4480 fat_pntr_bounds_bitsize (desc_type));
4481
4482 descriptor = ensure_lval (descriptor);
4483
4484 if (type->code () == TYPE_CODE_PTR)
4485 return value_addr (descriptor);
4486 else
4487 return descriptor;
4488 }
4489 \f
4490 /* Symbol Cache Module */
4491
4492 /* Performance measurements made as of 2010-01-15 indicate that
4493 this cache does bring some noticeable improvements. Depending
4494 on the type of entity being printed, the cache can make it as much
4495 as an order of magnitude faster than without it.
4496
4497 The descriptive type DWARF extension has significantly reduced
4498 the need for this cache, at least when DWARF is being used. However,
4499 even in this case, some expensive name-based symbol searches are still
4500 sometimes necessary - to find an XVZ variable, mostly. */
4501
4502 /* Initialize the contents of SYM_CACHE. */
4503
4504 static void
4505 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4506 {
4507 obstack_init (&sym_cache->cache_space);
4508 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4509 }
4510
4511 /* Free the memory used by SYM_CACHE. */
4512
4513 static void
4514 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4515 {
4516 obstack_free (&sym_cache->cache_space, NULL);
4517 xfree (sym_cache);
4518 }
4519
4520 /* Return the symbol cache associated to the given program space PSPACE.
4521 If not allocated for this PSPACE yet, allocate and initialize one. */
4522
4523 static struct ada_symbol_cache *
4524 ada_get_symbol_cache (struct program_space *pspace)
4525 {
4526 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4527
4528 if (pspace_data->sym_cache == NULL)
4529 {
4530 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4531 ada_init_symbol_cache (pspace_data->sym_cache);
4532 }
4533
4534 return pspace_data->sym_cache;
4535 }
4536
4537 /* Clear all entries from the symbol cache. */
4538
4539 static void
4540 ada_clear_symbol_cache (void)
4541 {
4542 struct ada_symbol_cache *sym_cache
4543 = ada_get_symbol_cache (current_program_space);
4544
4545 obstack_free (&sym_cache->cache_space, NULL);
4546 ada_init_symbol_cache (sym_cache);
4547 }
4548
4549 /* Search our cache for an entry matching NAME and DOMAIN.
4550 Return it if found, or NULL otherwise. */
4551
4552 static struct cache_entry **
4553 find_entry (const char *name, domain_enum domain)
4554 {
4555 struct ada_symbol_cache *sym_cache
4556 = ada_get_symbol_cache (current_program_space);
4557 int h = msymbol_hash (name) % HASH_SIZE;
4558 struct cache_entry **e;
4559
4560 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4561 {
4562 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4563 return e;
4564 }
4565 return NULL;
4566 }
4567
4568 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4569 Return 1 if found, 0 otherwise.
4570
4571 If an entry was found and SYM is not NULL, set *SYM to the entry's
4572 SYM. Same principle for BLOCK if not NULL. */
4573
4574 static int
4575 lookup_cached_symbol (const char *name, domain_enum domain,
4576 struct symbol **sym, const struct block **block)
4577 {
4578 struct cache_entry **e = find_entry (name, domain);
4579
4580 if (e == NULL)
4581 return 0;
4582 if (sym != NULL)
4583 *sym = (*e)->sym;
4584 if (block != NULL)
4585 *block = (*e)->block;
4586 return 1;
4587 }
4588
4589 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4590 in domain DOMAIN, save this result in our symbol cache. */
4591
4592 static void
4593 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4594 const struct block *block)
4595 {
4596 struct ada_symbol_cache *sym_cache
4597 = ada_get_symbol_cache (current_program_space);
4598 int h;
4599 struct cache_entry *e;
4600
4601 /* Symbols for builtin types don't have a block.
4602 For now don't cache such symbols. */
4603 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4604 return;
4605
4606 /* If the symbol is a local symbol, then do not cache it, as a search
4607 for that symbol depends on the context. To determine whether
4608 the symbol is local or not, we check the block where we found it
4609 against the global and static blocks of its associated symtab. */
4610 if (sym
4611 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4612 GLOBAL_BLOCK) != block
4613 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4614 STATIC_BLOCK) != block)
4615 return;
4616
4617 h = msymbol_hash (name) % HASH_SIZE;
4618 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4619 e->next = sym_cache->root[h];
4620 sym_cache->root[h] = e;
4621 e->name = obstack_strdup (&sym_cache->cache_space, name);
4622 e->sym = sym;
4623 e->domain = domain;
4624 e->block = block;
4625 }
4626 \f
4627 /* Symbol Lookup */
4628
4629 /* Return the symbol name match type that should be used used when
4630 searching for all symbols matching LOOKUP_NAME.
4631
4632 LOOKUP_NAME is expected to be a symbol name after transformation
4633 for Ada lookups. */
4634
4635 static symbol_name_match_type
4636 name_match_type_from_name (const char *lookup_name)
4637 {
4638 return (strstr (lookup_name, "__") == NULL
4639 ? symbol_name_match_type::WILD
4640 : symbol_name_match_type::FULL);
4641 }
4642
4643 /* Return the result of a standard (literal, C-like) lookup of NAME in
4644 given DOMAIN, visible from lexical block BLOCK. */
4645
4646 static struct symbol *
4647 standard_lookup (const char *name, const struct block *block,
4648 domain_enum domain)
4649 {
4650 /* Initialize it just to avoid a GCC false warning. */
4651 struct block_symbol sym = {};
4652
4653 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4654 return sym.symbol;
4655 ada_lookup_encoded_symbol (name, block, domain, &sym);
4656 cache_symbol (name, domain, sym.symbol, sym.block);
4657 return sym.symbol;
4658 }
4659
4660
4661 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4662 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4663 since they contend in overloading in the same way. */
4664 static int
4665 is_nonfunction (struct block_symbol syms[], int n)
4666 {
4667 int i;
4668
4669 for (i = 0; i < n; i += 1)
4670 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4671 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4672 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4673 return 1;
4674
4675 return 0;
4676 }
4677
4678 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4679 struct types. Otherwise, they may not. */
4680
4681 static int
4682 equiv_types (struct type *type0, struct type *type1)
4683 {
4684 if (type0 == type1)
4685 return 1;
4686 if (type0 == NULL || type1 == NULL
4687 || type0->code () != type1->code ())
4688 return 0;
4689 if ((type0->code () == TYPE_CODE_STRUCT
4690 || type0->code () == TYPE_CODE_ENUM)
4691 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4692 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4693 return 1;
4694
4695 return 0;
4696 }
4697
4698 /* True iff SYM0 represents the same entity as SYM1, or one that is
4699 no more defined than that of SYM1. */
4700
4701 static int
4702 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4703 {
4704 if (sym0 == sym1)
4705 return 1;
4706 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4707 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4708 return 0;
4709
4710 switch (SYMBOL_CLASS (sym0))
4711 {
4712 case LOC_UNDEF:
4713 return 1;
4714 case LOC_TYPEDEF:
4715 {
4716 struct type *type0 = SYMBOL_TYPE (sym0);
4717 struct type *type1 = SYMBOL_TYPE (sym1);
4718 const char *name0 = sym0->linkage_name ();
4719 const char *name1 = sym1->linkage_name ();
4720 int len0 = strlen (name0);
4721
4722 return
4723 type0->code () == type1->code ()
4724 && (equiv_types (type0, type1)
4725 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4726 && startswith (name1 + len0, "___XV")));
4727 }
4728 case LOC_CONST:
4729 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4730 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4731
4732 case LOC_STATIC:
4733 {
4734 const char *name0 = sym0->linkage_name ();
4735 const char *name1 = sym1->linkage_name ();
4736 return (strcmp (name0, name1) == 0
4737 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4738 }
4739
4740 default:
4741 return 0;
4742 }
4743 }
4744
4745 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4746 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4747
4748 static void
4749 add_defn_to_vec (struct obstack *obstackp,
4750 struct symbol *sym,
4751 const struct block *block)
4752 {
4753 int i;
4754 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4755
4756 /* Do not try to complete stub types, as the debugger is probably
4757 already scanning all symbols matching a certain name at the
4758 time when this function is called. Trying to replace the stub
4759 type by its associated full type will cause us to restart a scan
4760 which may lead to an infinite recursion. Instead, the client
4761 collecting the matching symbols will end up collecting several
4762 matches, with at least one of them complete. It can then filter
4763 out the stub ones if needed. */
4764
4765 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4766 {
4767 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4768 return;
4769 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4770 {
4771 prevDefns[i].symbol = sym;
4772 prevDefns[i].block = block;
4773 return;
4774 }
4775 }
4776
4777 {
4778 struct block_symbol info;
4779
4780 info.symbol = sym;
4781 info.block = block;
4782 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4783 }
4784 }
4785
4786 /* Number of block_symbol structures currently collected in current vector in
4787 OBSTACKP. */
4788
4789 static int
4790 num_defns_collected (struct obstack *obstackp)
4791 {
4792 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4793 }
4794
4795 /* Vector of block_symbol structures currently collected in current vector in
4796 OBSTACKP. If FINISH, close off the vector and return its final address. */
4797
4798 static struct block_symbol *
4799 defns_collected (struct obstack *obstackp, int finish)
4800 {
4801 if (finish)
4802 return (struct block_symbol *) obstack_finish (obstackp);
4803 else
4804 return (struct block_symbol *) obstack_base (obstackp);
4805 }
4806
4807 /* Return a bound minimal symbol matching NAME according to Ada
4808 decoding rules. Returns an invalid symbol if there is no such
4809 minimal symbol. Names prefixed with "standard__" are handled
4810 specially: "standard__" is first stripped off, and only static and
4811 global symbols are searched. */
4812
4813 struct bound_minimal_symbol
4814 ada_lookup_simple_minsym (const char *name)
4815 {
4816 struct bound_minimal_symbol result;
4817
4818 memset (&result, 0, sizeof (result));
4819
4820 symbol_name_match_type match_type = name_match_type_from_name (name);
4821 lookup_name_info lookup_name (name, match_type);
4822
4823 symbol_name_matcher_ftype *match_name
4824 = ada_get_symbol_name_matcher (lookup_name);
4825
4826 for (objfile *objfile : current_program_space->objfiles ())
4827 {
4828 for (minimal_symbol *msymbol : objfile->msymbols ())
4829 {
4830 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4831 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4832 {
4833 result.minsym = msymbol;
4834 result.objfile = objfile;
4835 break;
4836 }
4837 }
4838 }
4839
4840 return result;
4841 }
4842
4843 /* For all subprograms that statically enclose the subprogram of the
4844 selected frame, add symbols matching identifier NAME in DOMAIN
4845 and their blocks to the list of data in OBSTACKP, as for
4846 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4847 with a wildcard prefix. */
4848
4849 static void
4850 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4851 const lookup_name_info &lookup_name,
4852 domain_enum domain)
4853 {
4854 }
4855
4856 /* True if TYPE is definitely an artificial type supplied to a symbol
4857 for which no debugging information was given in the symbol file. */
4858
4859 static int
4860 is_nondebugging_type (struct type *type)
4861 {
4862 const char *name = ada_type_name (type);
4863
4864 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4865 }
4866
4867 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4868 that are deemed "identical" for practical purposes.
4869
4870 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4871 types and that their number of enumerals is identical (in other
4872 words, type1->num_fields () == type2->num_fields ()). */
4873
4874 static int
4875 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4876 {
4877 int i;
4878
4879 /* The heuristic we use here is fairly conservative. We consider
4880 that 2 enumerate types are identical if they have the same
4881 number of enumerals and that all enumerals have the same
4882 underlying value and name. */
4883
4884 /* All enums in the type should have an identical underlying value. */
4885 for (i = 0; i < type1->num_fields (); i++)
4886 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4887 return 0;
4888
4889 /* All enumerals should also have the same name (modulo any numerical
4890 suffix). */
4891 for (i = 0; i < type1->num_fields (); i++)
4892 {
4893 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4894 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4895 int len_1 = strlen (name_1);
4896 int len_2 = strlen (name_2);
4897
4898 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4899 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4900 if (len_1 != len_2
4901 || strncmp (TYPE_FIELD_NAME (type1, i),
4902 TYPE_FIELD_NAME (type2, i),
4903 len_1) != 0)
4904 return 0;
4905 }
4906
4907 return 1;
4908 }
4909
4910 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4911 that are deemed "identical" for practical purposes. Sometimes,
4912 enumerals are not strictly identical, but their types are so similar
4913 that they can be considered identical.
4914
4915 For instance, consider the following code:
4916
4917 type Color is (Black, Red, Green, Blue, White);
4918 type RGB_Color is new Color range Red .. Blue;
4919
4920 Type RGB_Color is a subrange of an implicit type which is a copy
4921 of type Color. If we call that implicit type RGB_ColorB ("B" is
4922 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4923 As a result, when an expression references any of the enumeral
4924 by name (Eg. "print green"), the expression is technically
4925 ambiguous and the user should be asked to disambiguate. But
4926 doing so would only hinder the user, since it wouldn't matter
4927 what choice he makes, the outcome would always be the same.
4928 So, for practical purposes, we consider them as the same. */
4929
4930 static int
4931 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4932 {
4933 int i;
4934
4935 /* Before performing a thorough comparison check of each type,
4936 we perform a series of inexpensive checks. We expect that these
4937 checks will quickly fail in the vast majority of cases, and thus
4938 help prevent the unnecessary use of a more expensive comparison.
4939 Said comparison also expects us to make some of these checks
4940 (see ada_identical_enum_types_p). */
4941
4942 /* Quick check: All symbols should have an enum type. */
4943 for (i = 0; i < syms.size (); i++)
4944 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4945 return 0;
4946
4947 /* Quick check: They should all have the same value. */
4948 for (i = 1; i < syms.size (); i++)
4949 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4950 return 0;
4951
4952 /* Quick check: They should all have the same number of enumerals. */
4953 for (i = 1; i < syms.size (); i++)
4954 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4955 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4956 return 0;
4957
4958 /* All the sanity checks passed, so we might have a set of
4959 identical enumeration types. Perform a more complete
4960 comparison of the type of each symbol. */
4961 for (i = 1; i < syms.size (); i++)
4962 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4963 SYMBOL_TYPE (syms[0].symbol)))
4964 return 0;
4965
4966 return 1;
4967 }
4968
4969 /* Remove any non-debugging symbols in SYMS that definitely
4970 duplicate other symbols in the list (The only case I know of where
4971 this happens is when object files containing stabs-in-ecoff are
4972 linked with files containing ordinary ecoff debugging symbols (or no
4973 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4974 Returns the number of items in the modified list. */
4975
4976 static int
4977 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4978 {
4979 int i, j;
4980
4981 /* We should never be called with less than 2 symbols, as there
4982 cannot be any extra symbol in that case. But it's easy to
4983 handle, since we have nothing to do in that case. */
4984 if (syms->size () < 2)
4985 return syms->size ();
4986
4987 i = 0;
4988 while (i < syms->size ())
4989 {
4990 int remove_p = 0;
4991
4992 /* If two symbols have the same name and one of them is a stub type,
4993 the get rid of the stub. */
4994
4995 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
4996 && (*syms)[i].symbol->linkage_name () != NULL)
4997 {
4998 for (j = 0; j < syms->size (); j++)
4999 {
5000 if (j != i
5001 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
5002 && (*syms)[j].symbol->linkage_name () != NULL
5003 && strcmp ((*syms)[i].symbol->linkage_name (),
5004 (*syms)[j].symbol->linkage_name ()) == 0)
5005 remove_p = 1;
5006 }
5007 }
5008
5009 /* Two symbols with the same name, same class and same address
5010 should be identical. */
5011
5012 else if ((*syms)[i].symbol->linkage_name () != NULL
5013 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5014 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5015 {
5016 for (j = 0; j < syms->size (); j += 1)
5017 {
5018 if (i != j
5019 && (*syms)[j].symbol->linkage_name () != NULL
5020 && strcmp ((*syms)[i].symbol->linkage_name (),
5021 (*syms)[j].symbol->linkage_name ()) == 0
5022 && SYMBOL_CLASS ((*syms)[i].symbol)
5023 == SYMBOL_CLASS ((*syms)[j].symbol)
5024 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5025 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5026 remove_p = 1;
5027 }
5028 }
5029
5030 if (remove_p)
5031 syms->erase (syms->begin () + i);
5032 else
5033 i += 1;
5034 }
5035
5036 /* If all the remaining symbols are identical enumerals, then
5037 just keep the first one and discard the rest.
5038
5039 Unlike what we did previously, we do not discard any entry
5040 unless they are ALL identical. This is because the symbol
5041 comparison is not a strict comparison, but rather a practical
5042 comparison. If all symbols are considered identical, then
5043 we can just go ahead and use the first one and discard the rest.
5044 But if we cannot reduce the list to a single element, we have
5045 to ask the user to disambiguate anyways. And if we have to
5046 present a multiple-choice menu, it's less confusing if the list
5047 isn't missing some choices that were identical and yet distinct. */
5048 if (symbols_are_identical_enums (*syms))
5049 syms->resize (1);
5050
5051 return syms->size ();
5052 }
5053
5054 /* Given a type that corresponds to a renaming entity, use the type name
5055 to extract the scope (package name or function name, fully qualified,
5056 and following the GNAT encoding convention) where this renaming has been
5057 defined. */
5058
5059 static std::string
5060 xget_renaming_scope (struct type *renaming_type)
5061 {
5062 /* The renaming types adhere to the following convention:
5063 <scope>__<rename>___<XR extension>.
5064 So, to extract the scope, we search for the "___XR" extension,
5065 and then backtrack until we find the first "__". */
5066
5067 const char *name = renaming_type->name ();
5068 const char *suffix = strstr (name, "___XR");
5069 const char *last;
5070
5071 /* Now, backtrack a bit until we find the first "__". Start looking
5072 at suffix - 3, as the <rename> part is at least one character long. */
5073
5074 for (last = suffix - 3; last > name; last--)
5075 if (last[0] == '_' && last[1] == '_')
5076 break;
5077
5078 /* Make a copy of scope and return it. */
5079 return std::string (name, last);
5080 }
5081
5082 /* Return nonzero if NAME corresponds to a package name. */
5083
5084 static int
5085 is_package_name (const char *name)
5086 {
5087 /* Here, We take advantage of the fact that no symbols are generated
5088 for packages, while symbols are generated for each function.
5089 So the condition for NAME represent a package becomes equivalent
5090 to NAME not existing in our list of symbols. There is only one
5091 small complication with library-level functions (see below). */
5092
5093 /* If it is a function that has not been defined at library level,
5094 then we should be able to look it up in the symbols. */
5095 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5096 return 0;
5097
5098 /* Library-level function names start with "_ada_". See if function
5099 "_ada_" followed by NAME can be found. */
5100
5101 /* Do a quick check that NAME does not contain "__", since library-level
5102 functions names cannot contain "__" in them. */
5103 if (strstr (name, "__") != NULL)
5104 return 0;
5105
5106 std::string fun_name = string_printf ("_ada_%s", name);
5107
5108 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5109 }
5110
5111 /* Return nonzero if SYM corresponds to a renaming entity that is
5112 not visible from FUNCTION_NAME. */
5113
5114 static int
5115 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5116 {
5117 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5118 return 0;
5119
5120 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5121
5122 /* If the rename has been defined in a package, then it is visible. */
5123 if (is_package_name (scope.c_str ()))
5124 return 0;
5125
5126 /* Check that the rename is in the current function scope by checking
5127 that its name starts with SCOPE. */
5128
5129 /* If the function name starts with "_ada_", it means that it is
5130 a library-level function. Strip this prefix before doing the
5131 comparison, as the encoding for the renaming does not contain
5132 this prefix. */
5133 if (startswith (function_name, "_ada_"))
5134 function_name += 5;
5135
5136 return !startswith (function_name, scope.c_str ());
5137 }
5138
5139 /* Remove entries from SYMS that corresponds to a renaming entity that
5140 is not visible from the function associated with CURRENT_BLOCK or
5141 that is superfluous due to the presence of more specific renaming
5142 information. Places surviving symbols in the initial entries of
5143 SYMS and returns the number of surviving symbols.
5144
5145 Rationale:
5146 First, in cases where an object renaming is implemented as a
5147 reference variable, GNAT may produce both the actual reference
5148 variable and the renaming encoding. In this case, we discard the
5149 latter.
5150
5151 Second, GNAT emits a type following a specified encoding for each renaming
5152 entity. Unfortunately, STABS currently does not support the definition
5153 of types that are local to a given lexical block, so all renamings types
5154 are emitted at library level. As a consequence, if an application
5155 contains two renaming entities using the same name, and a user tries to
5156 print the value of one of these entities, the result of the ada symbol
5157 lookup will also contain the wrong renaming type.
5158
5159 This function partially covers for this limitation by attempting to
5160 remove from the SYMS list renaming symbols that should be visible
5161 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5162 method with the current information available. The implementation
5163 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5164
5165 - When the user tries to print a rename in a function while there
5166 is another rename entity defined in a package: Normally, the
5167 rename in the function has precedence over the rename in the
5168 package, so the latter should be removed from the list. This is
5169 currently not the case.
5170
5171 - This function will incorrectly remove valid renames if
5172 the CURRENT_BLOCK corresponds to a function which symbol name
5173 has been changed by an "Export" pragma. As a consequence,
5174 the user will be unable to print such rename entities. */
5175
5176 static int
5177 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5178 const struct block *current_block)
5179 {
5180 struct symbol *current_function;
5181 const char *current_function_name;
5182 int i;
5183 int is_new_style_renaming;
5184
5185 /* If there is both a renaming foo___XR... encoded as a variable and
5186 a simple variable foo in the same block, discard the latter.
5187 First, zero out such symbols, then compress. */
5188 is_new_style_renaming = 0;
5189 for (i = 0; i < syms->size (); i += 1)
5190 {
5191 struct symbol *sym = (*syms)[i].symbol;
5192 const struct block *block = (*syms)[i].block;
5193 const char *name;
5194 const char *suffix;
5195
5196 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5197 continue;
5198 name = sym->linkage_name ();
5199 suffix = strstr (name, "___XR");
5200
5201 if (suffix != NULL)
5202 {
5203 int name_len = suffix - name;
5204 int j;
5205
5206 is_new_style_renaming = 1;
5207 for (j = 0; j < syms->size (); j += 1)
5208 if (i != j && (*syms)[j].symbol != NULL
5209 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5210 name_len) == 0
5211 && block == (*syms)[j].block)
5212 (*syms)[j].symbol = NULL;
5213 }
5214 }
5215 if (is_new_style_renaming)
5216 {
5217 int j, k;
5218
5219 for (j = k = 0; j < syms->size (); j += 1)
5220 if ((*syms)[j].symbol != NULL)
5221 {
5222 (*syms)[k] = (*syms)[j];
5223 k += 1;
5224 }
5225 return k;
5226 }
5227
5228 /* Extract the function name associated to CURRENT_BLOCK.
5229 Abort if unable to do so. */
5230
5231 if (current_block == NULL)
5232 return syms->size ();
5233
5234 current_function = block_linkage_function (current_block);
5235 if (current_function == NULL)
5236 return syms->size ();
5237
5238 current_function_name = current_function->linkage_name ();
5239 if (current_function_name == NULL)
5240 return syms->size ();
5241
5242 /* Check each of the symbols, and remove it from the list if it is
5243 a type corresponding to a renaming that is out of the scope of
5244 the current block. */
5245
5246 i = 0;
5247 while (i < syms->size ())
5248 {
5249 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5250 == ADA_OBJECT_RENAMING
5251 && old_renaming_is_invisible ((*syms)[i].symbol,
5252 current_function_name))
5253 syms->erase (syms->begin () + i);
5254 else
5255 i += 1;
5256 }
5257
5258 return syms->size ();
5259 }
5260
5261 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5262 whose name and domain match NAME and DOMAIN respectively.
5263 If no match was found, then extend the search to "enclosing"
5264 routines (in other words, if we're inside a nested function,
5265 search the symbols defined inside the enclosing functions).
5266 If WILD_MATCH_P is nonzero, perform the naming matching in
5267 "wild" mode (see function "wild_match" for more info).
5268
5269 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5270
5271 static void
5272 ada_add_local_symbols (struct obstack *obstackp,
5273 const lookup_name_info &lookup_name,
5274 const struct block *block, domain_enum domain)
5275 {
5276 int block_depth = 0;
5277
5278 while (block != NULL)
5279 {
5280 block_depth += 1;
5281 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5282
5283 /* If we found a non-function match, assume that's the one. */
5284 if (is_nonfunction (defns_collected (obstackp, 0),
5285 num_defns_collected (obstackp)))
5286 return;
5287
5288 block = BLOCK_SUPERBLOCK (block);
5289 }
5290
5291 /* If no luck so far, try to find NAME as a local symbol in some lexically
5292 enclosing subprogram. */
5293 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5294 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5295 }
5296
5297 /* An object of this type is used as the user_data argument when
5298 calling the map_matching_symbols method. */
5299
5300 struct match_data
5301 {
5302 struct objfile *objfile;
5303 struct obstack *obstackp;
5304 struct symbol *arg_sym;
5305 int found_sym;
5306 };
5307
5308 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5309 to a list of symbols. DATA is a pointer to a struct match_data *
5310 containing the obstack that collects the symbol list, the file that SYM
5311 must come from, a flag indicating whether a non-argument symbol has
5312 been found in the current block, and the last argument symbol
5313 passed in SYM within the current block (if any). When SYM is null,
5314 marking the end of a block, the argument symbol is added if no
5315 other has been found. */
5316
5317 static bool
5318 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5319 struct match_data *data)
5320 {
5321 const struct block *block = bsym->block;
5322 struct symbol *sym = bsym->symbol;
5323
5324 if (sym == NULL)
5325 {
5326 if (!data->found_sym && data->arg_sym != NULL)
5327 add_defn_to_vec (data->obstackp,
5328 fixup_symbol_section (data->arg_sym, data->objfile),
5329 block);
5330 data->found_sym = 0;
5331 data->arg_sym = NULL;
5332 }
5333 else
5334 {
5335 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5336 return true;
5337 else if (SYMBOL_IS_ARGUMENT (sym))
5338 data->arg_sym = sym;
5339 else
5340 {
5341 data->found_sym = 1;
5342 add_defn_to_vec (data->obstackp,
5343 fixup_symbol_section (sym, data->objfile),
5344 block);
5345 }
5346 }
5347 return true;
5348 }
5349
5350 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5351 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5352 symbols to OBSTACKP. Return whether we found such symbols. */
5353
5354 static int
5355 ada_add_block_renamings (struct obstack *obstackp,
5356 const struct block *block,
5357 const lookup_name_info &lookup_name,
5358 domain_enum domain)
5359 {
5360 struct using_direct *renaming;
5361 int defns_mark = num_defns_collected (obstackp);
5362
5363 symbol_name_matcher_ftype *name_match
5364 = ada_get_symbol_name_matcher (lookup_name);
5365
5366 for (renaming = block_using (block);
5367 renaming != NULL;
5368 renaming = renaming->next)
5369 {
5370 const char *r_name;
5371
5372 /* Avoid infinite recursions: skip this renaming if we are actually
5373 already traversing it.
5374
5375 Currently, symbol lookup in Ada don't use the namespace machinery from
5376 C++/Fortran support: skip namespace imports that use them. */
5377 if (renaming->searched
5378 || (renaming->import_src != NULL
5379 && renaming->import_src[0] != '\0')
5380 || (renaming->import_dest != NULL
5381 && renaming->import_dest[0] != '\0'))
5382 continue;
5383 renaming->searched = 1;
5384
5385 /* TODO: here, we perform another name-based symbol lookup, which can
5386 pull its own multiple overloads. In theory, we should be able to do
5387 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5388 not a simple name. But in order to do this, we would need to enhance
5389 the DWARF reader to associate a symbol to this renaming, instead of a
5390 name. So, for now, we do something simpler: re-use the C++/Fortran
5391 namespace machinery. */
5392 r_name = (renaming->alias != NULL
5393 ? renaming->alias
5394 : renaming->declaration);
5395 if (name_match (r_name, lookup_name, NULL))
5396 {
5397 lookup_name_info decl_lookup_name (renaming->declaration,
5398 lookup_name.match_type ());
5399 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5400 1, NULL);
5401 }
5402 renaming->searched = 0;
5403 }
5404 return num_defns_collected (obstackp) != defns_mark;
5405 }
5406
5407 /* Implements compare_names, but only applying the comparision using
5408 the given CASING. */
5409
5410 static int
5411 compare_names_with_case (const char *string1, const char *string2,
5412 enum case_sensitivity casing)
5413 {
5414 while (*string1 != '\0' && *string2 != '\0')
5415 {
5416 char c1, c2;
5417
5418 if (isspace (*string1) || isspace (*string2))
5419 return strcmp_iw_ordered (string1, string2);
5420
5421 if (casing == case_sensitive_off)
5422 {
5423 c1 = tolower (*string1);
5424 c2 = tolower (*string2);
5425 }
5426 else
5427 {
5428 c1 = *string1;
5429 c2 = *string2;
5430 }
5431 if (c1 != c2)
5432 break;
5433
5434 string1 += 1;
5435 string2 += 1;
5436 }
5437
5438 switch (*string1)
5439 {
5440 case '(':
5441 return strcmp_iw_ordered (string1, string2);
5442 case '_':
5443 if (*string2 == '\0')
5444 {
5445 if (is_name_suffix (string1))
5446 return 0;
5447 else
5448 return 1;
5449 }
5450 /* FALLTHROUGH */
5451 default:
5452 if (*string2 == '(')
5453 return strcmp_iw_ordered (string1, string2);
5454 else
5455 {
5456 if (casing == case_sensitive_off)
5457 return tolower (*string1) - tolower (*string2);
5458 else
5459 return *string1 - *string2;
5460 }
5461 }
5462 }
5463
5464 /* Compare STRING1 to STRING2, with results as for strcmp.
5465 Compatible with strcmp_iw_ordered in that...
5466
5467 strcmp_iw_ordered (STRING1, STRING2) <= 0
5468
5469 ... implies...
5470
5471 compare_names (STRING1, STRING2) <= 0
5472
5473 (they may differ as to what symbols compare equal). */
5474
5475 static int
5476 compare_names (const char *string1, const char *string2)
5477 {
5478 int result;
5479
5480 /* Similar to what strcmp_iw_ordered does, we need to perform
5481 a case-insensitive comparison first, and only resort to
5482 a second, case-sensitive, comparison if the first one was
5483 not sufficient to differentiate the two strings. */
5484
5485 result = compare_names_with_case (string1, string2, case_sensitive_off);
5486 if (result == 0)
5487 result = compare_names_with_case (string1, string2, case_sensitive_on);
5488
5489 return result;
5490 }
5491
5492 /* Convenience function to get at the Ada encoded lookup name for
5493 LOOKUP_NAME, as a C string. */
5494
5495 static const char *
5496 ada_lookup_name (const lookup_name_info &lookup_name)
5497 {
5498 return lookup_name.ada ().lookup_name ().c_str ();
5499 }
5500
5501 /* Add to OBSTACKP all non-local symbols whose name and domain match
5502 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5503 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5504 symbols otherwise. */
5505
5506 static void
5507 add_nonlocal_symbols (struct obstack *obstackp,
5508 const lookup_name_info &lookup_name,
5509 domain_enum domain, int global)
5510 {
5511 struct match_data data;
5512
5513 memset (&data, 0, sizeof data);
5514 data.obstackp = obstackp;
5515
5516 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5517
5518 auto callback = [&] (struct block_symbol *bsym)
5519 {
5520 return aux_add_nonlocal_symbols (bsym, &data);
5521 };
5522
5523 for (objfile *objfile : current_program_space->objfiles ())
5524 {
5525 data.objfile = objfile;
5526
5527 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5528 domain, global, callback,
5529 (is_wild_match
5530 ? NULL : compare_names));
5531
5532 for (compunit_symtab *cu : objfile->compunits ())
5533 {
5534 const struct block *global_block
5535 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5536
5537 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5538 domain))
5539 data.found_sym = 1;
5540 }
5541 }
5542
5543 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5544 {
5545 const char *name = ada_lookup_name (lookup_name);
5546 std::string bracket_name = std::string ("<_ada_") + name + '>';
5547 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5548
5549 for (objfile *objfile : current_program_space->objfiles ())
5550 {
5551 data.objfile = objfile;
5552 objfile->sf->qf->map_matching_symbols (objfile, name1,
5553 domain, global, callback,
5554 compare_names);
5555 }
5556 }
5557 }
5558
5559 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5560 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5561 returning the number of matches. Add these to OBSTACKP.
5562
5563 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5564 symbol match within the nest of blocks whose innermost member is BLOCK,
5565 is the one match returned (no other matches in that or
5566 enclosing blocks is returned). If there are any matches in or
5567 surrounding BLOCK, then these alone are returned.
5568
5569 Names prefixed with "standard__" are handled specially:
5570 "standard__" is first stripped off (by the lookup_name
5571 constructor), and only static and global symbols are searched.
5572
5573 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5574 to lookup global symbols. */
5575
5576 static void
5577 ada_add_all_symbols (struct obstack *obstackp,
5578 const struct block *block,
5579 const lookup_name_info &lookup_name,
5580 domain_enum domain,
5581 int full_search,
5582 int *made_global_lookup_p)
5583 {
5584 struct symbol *sym;
5585
5586 if (made_global_lookup_p)
5587 *made_global_lookup_p = 0;
5588
5589 /* Special case: If the user specifies a symbol name inside package
5590 Standard, do a non-wild matching of the symbol name without
5591 the "standard__" prefix. This was primarily introduced in order
5592 to allow the user to specifically access the standard exceptions
5593 using, for instance, Standard.Constraint_Error when Constraint_Error
5594 is ambiguous (due to the user defining its own Constraint_Error
5595 entity inside its program). */
5596 if (lookup_name.ada ().standard_p ())
5597 block = NULL;
5598
5599 /* Check the non-global symbols. If we have ANY match, then we're done. */
5600
5601 if (block != NULL)
5602 {
5603 if (full_search)
5604 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5605 else
5606 {
5607 /* In the !full_search case we're are being called by
5608 iterate_over_symbols, and we don't want to search
5609 superblocks. */
5610 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5611 }
5612 if (num_defns_collected (obstackp) > 0 || !full_search)
5613 return;
5614 }
5615
5616 /* No non-global symbols found. Check our cache to see if we have
5617 already performed this search before. If we have, then return
5618 the same result. */
5619
5620 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5621 domain, &sym, &block))
5622 {
5623 if (sym != NULL)
5624 add_defn_to_vec (obstackp, sym, block);
5625 return;
5626 }
5627
5628 if (made_global_lookup_p)
5629 *made_global_lookup_p = 1;
5630
5631 /* Search symbols from all global blocks. */
5632
5633 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5634
5635 /* Now add symbols from all per-file blocks if we've gotten no hits
5636 (not strictly correct, but perhaps better than an error). */
5637
5638 if (num_defns_collected (obstackp) == 0)
5639 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5640 }
5641
5642 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5643 is non-zero, enclosing scope and in global scopes, returning the number of
5644 matches.
5645 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5646 found and the blocks and symbol tables (if any) in which they were
5647 found.
5648
5649 When full_search is non-zero, any non-function/non-enumeral
5650 symbol match within the nest of blocks whose innermost member is BLOCK,
5651 is the one match returned (no other matches in that or
5652 enclosing blocks is returned). If there are any matches in or
5653 surrounding BLOCK, then these alone are returned.
5654
5655 Names prefixed with "standard__" are handled specially: "standard__"
5656 is first stripped off, and only static and global symbols are searched. */
5657
5658 static int
5659 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5660 const struct block *block,
5661 domain_enum domain,
5662 std::vector<struct block_symbol> *results,
5663 int full_search)
5664 {
5665 int syms_from_global_search;
5666 int ndefns;
5667 auto_obstack obstack;
5668
5669 ada_add_all_symbols (&obstack, block, lookup_name,
5670 domain, full_search, &syms_from_global_search);
5671
5672 ndefns = num_defns_collected (&obstack);
5673
5674 struct block_symbol *base = defns_collected (&obstack, 1);
5675 for (int i = 0; i < ndefns; ++i)
5676 results->push_back (base[i]);
5677
5678 ndefns = remove_extra_symbols (results);
5679
5680 if (ndefns == 0 && full_search && syms_from_global_search)
5681 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5682
5683 if (ndefns == 1 && full_search && syms_from_global_search)
5684 cache_symbol (ada_lookup_name (lookup_name), domain,
5685 (*results)[0].symbol, (*results)[0].block);
5686
5687 ndefns = remove_irrelevant_renamings (results, block);
5688
5689 return ndefns;
5690 }
5691
5692 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5693 in global scopes, returning the number of matches, and filling *RESULTS
5694 with (SYM,BLOCK) tuples.
5695
5696 See ada_lookup_symbol_list_worker for further details. */
5697
5698 int
5699 ada_lookup_symbol_list (const char *name, const struct block *block,
5700 domain_enum domain,
5701 std::vector<struct block_symbol> *results)
5702 {
5703 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5704 lookup_name_info lookup_name (name, name_match_type);
5705
5706 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5707 }
5708
5709 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5710 to 1, but choosing the first symbol found if there are multiple
5711 choices.
5712
5713 The result is stored in *INFO, which must be non-NULL.
5714 If no match is found, INFO->SYM is set to NULL. */
5715
5716 void
5717 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5718 domain_enum domain,
5719 struct block_symbol *info)
5720 {
5721 /* Since we already have an encoded name, wrap it in '<>' to force a
5722 verbatim match. Otherwise, if the name happens to not look like
5723 an encoded name (because it doesn't include a "__"),
5724 ada_lookup_name_info would re-encode/fold it again, and that
5725 would e.g., incorrectly lowercase object renaming names like
5726 "R28b" -> "r28b". */
5727 std::string verbatim = std::string ("<") + name + '>';
5728
5729 gdb_assert (info != NULL);
5730 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5731 }
5732
5733 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5734 scope and in global scopes, or NULL if none. NAME is folded and
5735 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5736 choosing the first symbol if there are multiple choices. */
5737
5738 struct block_symbol
5739 ada_lookup_symbol (const char *name, const struct block *block0,
5740 domain_enum domain)
5741 {
5742 std::vector<struct block_symbol> candidates;
5743 int n_candidates;
5744
5745 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5746
5747 if (n_candidates == 0)
5748 return {};
5749
5750 block_symbol info = candidates[0];
5751 info.symbol = fixup_symbol_section (info.symbol, NULL);
5752 return info;
5753 }
5754
5755
5756 /* True iff STR is a possible encoded suffix of a normal Ada name
5757 that is to be ignored for matching purposes. Suffixes of parallel
5758 names (e.g., XVE) are not included here. Currently, the possible suffixes
5759 are given by any of the regular expressions:
5760
5761 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5762 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5763 TKB [subprogram suffix for task bodies]
5764 _E[0-9]+[bs]$ [protected object entry suffixes]
5765 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5766
5767 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5768 match is performed. This sequence is used to differentiate homonyms,
5769 is an optional part of a valid name suffix. */
5770
5771 static int
5772 is_name_suffix (const char *str)
5773 {
5774 int k;
5775 const char *matching;
5776 const int len = strlen (str);
5777
5778 /* Skip optional leading __[0-9]+. */
5779
5780 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5781 {
5782 str += 3;
5783 while (isdigit (str[0]))
5784 str += 1;
5785 }
5786
5787 /* [.$][0-9]+ */
5788
5789 if (str[0] == '.' || str[0] == '$')
5790 {
5791 matching = str + 1;
5792 while (isdigit (matching[0]))
5793 matching += 1;
5794 if (matching[0] == '\0')
5795 return 1;
5796 }
5797
5798 /* ___[0-9]+ */
5799
5800 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5801 {
5802 matching = str + 3;
5803 while (isdigit (matching[0]))
5804 matching += 1;
5805 if (matching[0] == '\0')
5806 return 1;
5807 }
5808
5809 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5810
5811 if (strcmp (str, "TKB") == 0)
5812 return 1;
5813
5814 #if 0
5815 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5816 with a N at the end. Unfortunately, the compiler uses the same
5817 convention for other internal types it creates. So treating
5818 all entity names that end with an "N" as a name suffix causes
5819 some regressions. For instance, consider the case of an enumerated
5820 type. To support the 'Image attribute, it creates an array whose
5821 name ends with N.
5822 Having a single character like this as a suffix carrying some
5823 information is a bit risky. Perhaps we should change the encoding
5824 to be something like "_N" instead. In the meantime, do not do
5825 the following check. */
5826 /* Protected Object Subprograms */
5827 if (len == 1 && str [0] == 'N')
5828 return 1;
5829 #endif
5830
5831 /* _E[0-9]+[bs]$ */
5832 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5833 {
5834 matching = str + 3;
5835 while (isdigit (matching[0]))
5836 matching += 1;
5837 if ((matching[0] == 'b' || matching[0] == 's')
5838 && matching [1] == '\0')
5839 return 1;
5840 }
5841
5842 /* ??? We should not modify STR directly, as we are doing below. This
5843 is fine in this case, but may become problematic later if we find
5844 that this alternative did not work, and want to try matching
5845 another one from the begining of STR. Since we modified it, we
5846 won't be able to find the begining of the string anymore! */
5847 if (str[0] == 'X')
5848 {
5849 str += 1;
5850 while (str[0] != '_' && str[0] != '\0')
5851 {
5852 if (str[0] != 'n' && str[0] != 'b')
5853 return 0;
5854 str += 1;
5855 }
5856 }
5857
5858 if (str[0] == '\000')
5859 return 1;
5860
5861 if (str[0] == '_')
5862 {
5863 if (str[1] != '_' || str[2] == '\000')
5864 return 0;
5865 if (str[2] == '_')
5866 {
5867 if (strcmp (str + 3, "JM") == 0)
5868 return 1;
5869 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5870 the LJM suffix in favor of the JM one. But we will
5871 still accept LJM as a valid suffix for a reasonable
5872 amount of time, just to allow ourselves to debug programs
5873 compiled using an older version of GNAT. */
5874 if (strcmp (str + 3, "LJM") == 0)
5875 return 1;
5876 if (str[3] != 'X')
5877 return 0;
5878 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5879 || str[4] == 'U' || str[4] == 'P')
5880 return 1;
5881 if (str[4] == 'R' && str[5] != 'T')
5882 return 1;
5883 return 0;
5884 }
5885 if (!isdigit (str[2]))
5886 return 0;
5887 for (k = 3; str[k] != '\0'; k += 1)
5888 if (!isdigit (str[k]) && str[k] != '_')
5889 return 0;
5890 return 1;
5891 }
5892 if (str[0] == '$' && isdigit (str[1]))
5893 {
5894 for (k = 2; str[k] != '\0'; k += 1)
5895 if (!isdigit (str[k]) && str[k] != '_')
5896 return 0;
5897 return 1;
5898 }
5899 return 0;
5900 }
5901
5902 /* Return non-zero if the string starting at NAME and ending before
5903 NAME_END contains no capital letters. */
5904
5905 static int
5906 is_valid_name_for_wild_match (const char *name0)
5907 {
5908 std::string decoded_name = ada_decode (name0);
5909 int i;
5910
5911 /* If the decoded name starts with an angle bracket, it means that
5912 NAME0 does not follow the GNAT encoding format. It should then
5913 not be allowed as a possible wild match. */
5914 if (decoded_name[0] == '<')
5915 return 0;
5916
5917 for (i=0; decoded_name[i] != '\0'; i++)
5918 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5919 return 0;
5920
5921 return 1;
5922 }
5923
5924 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5925 character which could start a simple name. Assumes that *NAMEP points
5926 somewhere inside the string beginning at NAME0. */
5927
5928 static int
5929 advance_wild_match (const char **namep, const char *name0, char target0)
5930 {
5931 const char *name = *namep;
5932
5933 while (1)
5934 {
5935 char t0, t1;
5936
5937 t0 = *name;
5938 if (t0 == '_')
5939 {
5940 t1 = name[1];
5941 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5942 {
5943 name += 1;
5944 if (name == name0 + 5 && startswith (name0, "_ada"))
5945 break;
5946 else
5947 name += 1;
5948 }
5949 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5950 || name[2] == target0))
5951 {
5952 name += 2;
5953 break;
5954 }
5955 else
5956 return 0;
5957 }
5958 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5959 name += 1;
5960 else
5961 return 0;
5962 }
5963
5964 *namep = name;
5965 return 1;
5966 }
5967
5968 /* Return true iff NAME encodes a name of the form prefix.PATN.
5969 Ignores any informational suffixes of NAME (i.e., for which
5970 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5971 simple name. */
5972
5973 static bool
5974 wild_match (const char *name, const char *patn)
5975 {
5976 const char *p;
5977 const char *name0 = name;
5978
5979 while (1)
5980 {
5981 const char *match = name;
5982
5983 if (*name == *patn)
5984 {
5985 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5986 if (*p != *name)
5987 break;
5988 if (*p == '\0' && is_name_suffix (name))
5989 return match == name0 || is_valid_name_for_wild_match (name0);
5990
5991 if (name[-1] == '_')
5992 name -= 1;
5993 }
5994 if (!advance_wild_match (&name, name0, *patn))
5995 return false;
5996 }
5997 }
5998
5999 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6000 any trailing suffixes that encode debugging information or leading
6001 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6002 information that is ignored). */
6003
6004 static bool
6005 full_match (const char *sym_name, const char *search_name)
6006 {
6007 size_t search_name_len = strlen (search_name);
6008
6009 if (strncmp (sym_name, search_name, search_name_len) == 0
6010 && is_name_suffix (sym_name + search_name_len))
6011 return true;
6012
6013 if (startswith (sym_name, "_ada_")
6014 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6015 && is_name_suffix (sym_name + search_name_len + 5))
6016 return true;
6017
6018 return false;
6019 }
6020
6021 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6022 *defn_symbols, updating the list of symbols in OBSTACKP (if
6023 necessary). OBJFILE is the section containing BLOCK. */
6024
6025 static void
6026 ada_add_block_symbols (struct obstack *obstackp,
6027 const struct block *block,
6028 const lookup_name_info &lookup_name,
6029 domain_enum domain, struct objfile *objfile)
6030 {
6031 struct block_iterator iter;
6032 /* A matching argument symbol, if any. */
6033 struct symbol *arg_sym;
6034 /* Set true when we find a matching non-argument symbol. */
6035 int found_sym;
6036 struct symbol *sym;
6037
6038 arg_sym = NULL;
6039 found_sym = 0;
6040 for (sym = block_iter_match_first (block, lookup_name, &iter);
6041 sym != NULL;
6042 sym = block_iter_match_next (lookup_name, &iter))
6043 {
6044 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6045 {
6046 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6047 {
6048 if (SYMBOL_IS_ARGUMENT (sym))
6049 arg_sym = sym;
6050 else
6051 {
6052 found_sym = 1;
6053 add_defn_to_vec (obstackp,
6054 fixup_symbol_section (sym, objfile),
6055 block);
6056 }
6057 }
6058 }
6059 }
6060
6061 /* Handle renamings. */
6062
6063 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6064 found_sym = 1;
6065
6066 if (!found_sym && arg_sym != NULL)
6067 {
6068 add_defn_to_vec (obstackp,
6069 fixup_symbol_section (arg_sym, objfile),
6070 block);
6071 }
6072
6073 if (!lookup_name.ada ().wild_match_p ())
6074 {
6075 arg_sym = NULL;
6076 found_sym = 0;
6077 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6078 const char *name = ada_lookup_name.c_str ();
6079 size_t name_len = ada_lookup_name.size ();
6080
6081 ALL_BLOCK_SYMBOLS (block, iter, sym)
6082 {
6083 if (symbol_matches_domain (sym->language (),
6084 SYMBOL_DOMAIN (sym), domain))
6085 {
6086 int cmp;
6087
6088 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6089 if (cmp == 0)
6090 {
6091 cmp = !startswith (sym->linkage_name (), "_ada_");
6092 if (cmp == 0)
6093 cmp = strncmp (name, sym->linkage_name () + 5,
6094 name_len);
6095 }
6096
6097 if (cmp == 0
6098 && is_name_suffix (sym->linkage_name () + name_len + 5))
6099 {
6100 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6101 {
6102 if (SYMBOL_IS_ARGUMENT (sym))
6103 arg_sym = sym;
6104 else
6105 {
6106 found_sym = 1;
6107 add_defn_to_vec (obstackp,
6108 fixup_symbol_section (sym, objfile),
6109 block);
6110 }
6111 }
6112 }
6113 }
6114 }
6115
6116 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6117 They aren't parameters, right? */
6118 if (!found_sym && arg_sym != NULL)
6119 {
6120 add_defn_to_vec (obstackp,
6121 fixup_symbol_section (arg_sym, objfile),
6122 block);
6123 }
6124 }
6125 }
6126 \f
6127
6128 /* Symbol Completion */
6129
6130 /* See symtab.h. */
6131
6132 bool
6133 ada_lookup_name_info::matches
6134 (const char *sym_name,
6135 symbol_name_match_type match_type,
6136 completion_match_result *comp_match_res) const
6137 {
6138 bool match = false;
6139 const char *text = m_encoded_name.c_str ();
6140 size_t text_len = m_encoded_name.size ();
6141
6142 /* First, test against the fully qualified name of the symbol. */
6143
6144 if (strncmp (sym_name, text, text_len) == 0)
6145 match = true;
6146
6147 std::string decoded_name = ada_decode (sym_name);
6148 if (match && !m_encoded_p)
6149 {
6150 /* One needed check before declaring a positive match is to verify
6151 that iff we are doing a verbatim match, the decoded version
6152 of the symbol name starts with '<'. Otherwise, this symbol name
6153 is not a suitable completion. */
6154
6155 bool has_angle_bracket = (decoded_name[0] == '<');
6156 match = (has_angle_bracket == m_verbatim_p);
6157 }
6158
6159 if (match && !m_verbatim_p)
6160 {
6161 /* When doing non-verbatim match, another check that needs to
6162 be done is to verify that the potentially matching symbol name
6163 does not include capital letters, because the ada-mode would
6164 not be able to understand these symbol names without the
6165 angle bracket notation. */
6166 const char *tmp;
6167
6168 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6169 if (*tmp != '\0')
6170 match = false;
6171 }
6172
6173 /* Second: Try wild matching... */
6174
6175 if (!match && m_wild_match_p)
6176 {
6177 /* Since we are doing wild matching, this means that TEXT
6178 may represent an unqualified symbol name. We therefore must
6179 also compare TEXT against the unqualified name of the symbol. */
6180 sym_name = ada_unqualified_name (decoded_name.c_str ());
6181
6182 if (strncmp (sym_name, text, text_len) == 0)
6183 match = true;
6184 }
6185
6186 /* Finally: If we found a match, prepare the result to return. */
6187
6188 if (!match)
6189 return false;
6190
6191 if (comp_match_res != NULL)
6192 {
6193 std::string &match_str = comp_match_res->match.storage ();
6194
6195 if (!m_encoded_p)
6196 match_str = ada_decode (sym_name);
6197 else
6198 {
6199 if (m_verbatim_p)
6200 match_str = add_angle_brackets (sym_name);
6201 else
6202 match_str = sym_name;
6203
6204 }
6205
6206 comp_match_res->set_match (match_str.c_str ());
6207 }
6208
6209 return true;
6210 }
6211
6212 /* Field Access */
6213
6214 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6215 for tagged types. */
6216
6217 static int
6218 ada_is_dispatch_table_ptr_type (struct type *type)
6219 {
6220 const char *name;
6221
6222 if (type->code () != TYPE_CODE_PTR)
6223 return 0;
6224
6225 name = TYPE_TARGET_TYPE (type)->name ();
6226 if (name == NULL)
6227 return 0;
6228
6229 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6230 }
6231
6232 /* Return non-zero if TYPE is an interface tag. */
6233
6234 static int
6235 ada_is_interface_tag (struct type *type)
6236 {
6237 const char *name = type->name ();
6238
6239 if (name == NULL)
6240 return 0;
6241
6242 return (strcmp (name, "ada__tags__interface_tag") == 0);
6243 }
6244
6245 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6246 to be invisible to users. */
6247
6248 int
6249 ada_is_ignored_field (struct type *type, int field_num)
6250 {
6251 if (field_num < 0 || field_num > type->num_fields ())
6252 return 1;
6253
6254 /* Check the name of that field. */
6255 {
6256 const char *name = TYPE_FIELD_NAME (type, field_num);
6257
6258 /* Anonymous field names should not be printed.
6259 brobecker/2007-02-20: I don't think this can actually happen
6260 but we don't want to print the value of anonymous fields anyway. */
6261 if (name == NULL)
6262 return 1;
6263
6264 /* Normally, fields whose name start with an underscore ("_")
6265 are fields that have been internally generated by the compiler,
6266 and thus should not be printed. The "_parent" field is special,
6267 however: This is a field internally generated by the compiler
6268 for tagged types, and it contains the components inherited from
6269 the parent type. This field should not be printed as is, but
6270 should not be ignored either. */
6271 if (name[0] == '_' && !startswith (name, "_parent"))
6272 return 1;
6273 }
6274
6275 /* If this is the dispatch table of a tagged type or an interface tag,
6276 then ignore. */
6277 if (ada_is_tagged_type (type, 1)
6278 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6279 || ada_is_interface_tag (type->field (field_num).type ())))
6280 return 1;
6281
6282 /* Not a special field, so it should not be ignored. */
6283 return 0;
6284 }
6285
6286 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6287 pointer or reference type whose ultimate target has a tag field. */
6288
6289 int
6290 ada_is_tagged_type (struct type *type, int refok)
6291 {
6292 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6293 }
6294
6295 /* True iff TYPE represents the type of X'Tag */
6296
6297 int
6298 ada_is_tag_type (struct type *type)
6299 {
6300 type = ada_check_typedef (type);
6301
6302 if (type == NULL || type->code () != TYPE_CODE_PTR)
6303 return 0;
6304 else
6305 {
6306 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6307
6308 return (name != NULL
6309 && strcmp (name, "ada__tags__dispatch_table") == 0);
6310 }
6311 }
6312
6313 /* The type of the tag on VAL. */
6314
6315 static struct type *
6316 ada_tag_type (struct value *val)
6317 {
6318 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6319 }
6320
6321 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6322 retired at Ada 05). */
6323
6324 static int
6325 is_ada95_tag (struct value *tag)
6326 {
6327 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6328 }
6329
6330 /* The value of the tag on VAL. */
6331
6332 static struct value *
6333 ada_value_tag (struct value *val)
6334 {
6335 return ada_value_struct_elt (val, "_tag", 0);
6336 }
6337
6338 /* The value of the tag on the object of type TYPE whose contents are
6339 saved at VALADDR, if it is non-null, or is at memory address
6340 ADDRESS. */
6341
6342 static struct value *
6343 value_tag_from_contents_and_address (struct type *type,
6344 const gdb_byte *valaddr,
6345 CORE_ADDR address)
6346 {
6347 int tag_byte_offset;
6348 struct type *tag_type;
6349
6350 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6351 NULL, NULL, NULL))
6352 {
6353 const gdb_byte *valaddr1 = ((valaddr == NULL)
6354 ? NULL
6355 : valaddr + tag_byte_offset);
6356 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6357
6358 return value_from_contents_and_address (tag_type, valaddr1, address1);
6359 }
6360 return NULL;
6361 }
6362
6363 static struct type *
6364 type_from_tag (struct value *tag)
6365 {
6366 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6367
6368 if (type_name != NULL)
6369 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6370 return NULL;
6371 }
6372
6373 /* Given a value OBJ of a tagged type, return a value of this
6374 type at the base address of the object. The base address, as
6375 defined in Ada.Tags, it is the address of the primary tag of
6376 the object, and therefore where the field values of its full
6377 view can be fetched. */
6378
6379 struct value *
6380 ada_tag_value_at_base_address (struct value *obj)
6381 {
6382 struct value *val;
6383 LONGEST offset_to_top = 0;
6384 struct type *ptr_type, *obj_type;
6385 struct value *tag;
6386 CORE_ADDR base_address;
6387
6388 obj_type = value_type (obj);
6389
6390 /* It is the responsability of the caller to deref pointers. */
6391
6392 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6393 return obj;
6394
6395 tag = ada_value_tag (obj);
6396 if (!tag)
6397 return obj;
6398
6399 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6400
6401 if (is_ada95_tag (tag))
6402 return obj;
6403
6404 ptr_type = language_lookup_primitive_type
6405 (language_def (language_ada), target_gdbarch(), "storage_offset");
6406 ptr_type = lookup_pointer_type (ptr_type);
6407 val = value_cast (ptr_type, tag);
6408 if (!val)
6409 return obj;
6410
6411 /* It is perfectly possible that an exception be raised while
6412 trying to determine the base address, just like for the tag;
6413 see ada_tag_name for more details. We do not print the error
6414 message for the same reason. */
6415
6416 try
6417 {
6418 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6419 }
6420
6421 catch (const gdb_exception_error &e)
6422 {
6423 return obj;
6424 }
6425
6426 /* If offset is null, nothing to do. */
6427
6428 if (offset_to_top == 0)
6429 return obj;
6430
6431 /* -1 is a special case in Ada.Tags; however, what should be done
6432 is not quite clear from the documentation. So do nothing for
6433 now. */
6434
6435 if (offset_to_top == -1)
6436 return obj;
6437
6438 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6439 from the base address. This was however incompatible with
6440 C++ dispatch table: C++ uses a *negative* value to *add*
6441 to the base address. Ada's convention has therefore been
6442 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6443 use the same convention. Here, we support both cases by
6444 checking the sign of OFFSET_TO_TOP. */
6445
6446 if (offset_to_top > 0)
6447 offset_to_top = -offset_to_top;
6448
6449 base_address = value_address (obj) + offset_to_top;
6450 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6451
6452 /* Make sure that we have a proper tag at the new address.
6453 Otherwise, offset_to_top is bogus (which can happen when
6454 the object is not initialized yet). */
6455
6456 if (!tag)
6457 return obj;
6458
6459 obj_type = type_from_tag (tag);
6460
6461 if (!obj_type)
6462 return obj;
6463
6464 return value_from_contents_and_address (obj_type, NULL, base_address);
6465 }
6466
6467 /* Return the "ada__tags__type_specific_data" type. */
6468
6469 static struct type *
6470 ada_get_tsd_type (struct inferior *inf)
6471 {
6472 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6473
6474 if (data->tsd_type == 0)
6475 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6476 return data->tsd_type;
6477 }
6478
6479 /* Return the TSD (type-specific data) associated to the given TAG.
6480 TAG is assumed to be the tag of a tagged-type entity.
6481
6482 May return NULL if we are unable to get the TSD. */
6483
6484 static struct value *
6485 ada_get_tsd_from_tag (struct value *tag)
6486 {
6487 struct value *val;
6488 struct type *type;
6489
6490 /* First option: The TSD is simply stored as a field of our TAG.
6491 Only older versions of GNAT would use this format, but we have
6492 to test it first, because there are no visible markers for
6493 the current approach except the absence of that field. */
6494
6495 val = ada_value_struct_elt (tag, "tsd", 1);
6496 if (val)
6497 return val;
6498
6499 /* Try the second representation for the dispatch table (in which
6500 there is no explicit 'tsd' field in the referent of the tag pointer,
6501 and instead the tsd pointer is stored just before the dispatch
6502 table. */
6503
6504 type = ada_get_tsd_type (current_inferior());
6505 if (type == NULL)
6506 return NULL;
6507 type = lookup_pointer_type (lookup_pointer_type (type));
6508 val = value_cast (type, tag);
6509 if (val == NULL)
6510 return NULL;
6511 return value_ind (value_ptradd (val, -1));
6512 }
6513
6514 /* Given the TSD of a tag (type-specific data), return a string
6515 containing the name of the associated type.
6516
6517 May return NULL if we are unable to determine the tag name. */
6518
6519 static gdb::unique_xmalloc_ptr<char>
6520 ada_tag_name_from_tsd (struct value *tsd)
6521 {
6522 char *p;
6523 struct value *val;
6524
6525 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6526 if (val == NULL)
6527 return NULL;
6528 gdb::unique_xmalloc_ptr<char> buffer
6529 = target_read_string (value_as_address (val), INT_MAX);
6530 if (buffer == nullptr)
6531 return nullptr;
6532
6533 for (p = buffer.get (); *p != '\0'; ++p)
6534 {
6535 if (isalpha (*p))
6536 *p = tolower (*p);
6537 }
6538
6539 return buffer;
6540 }
6541
6542 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6543 a C string.
6544
6545 Return NULL if the TAG is not an Ada tag, or if we were unable to
6546 determine the name of that tag. */
6547
6548 gdb::unique_xmalloc_ptr<char>
6549 ada_tag_name (struct value *tag)
6550 {
6551 gdb::unique_xmalloc_ptr<char> name;
6552
6553 if (!ada_is_tag_type (value_type (tag)))
6554 return NULL;
6555
6556 /* It is perfectly possible that an exception be raised while trying
6557 to determine the TAG's name, even under normal circumstances:
6558 The associated variable may be uninitialized or corrupted, for
6559 instance. We do not let any exception propagate past this point.
6560 instead we return NULL.
6561
6562 We also do not print the error message either (which often is very
6563 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6564 the caller print a more meaningful message if necessary. */
6565 try
6566 {
6567 struct value *tsd = ada_get_tsd_from_tag (tag);
6568
6569 if (tsd != NULL)
6570 name = ada_tag_name_from_tsd (tsd);
6571 }
6572 catch (const gdb_exception_error &e)
6573 {
6574 }
6575
6576 return name;
6577 }
6578
6579 /* The parent type of TYPE, or NULL if none. */
6580
6581 struct type *
6582 ada_parent_type (struct type *type)
6583 {
6584 int i;
6585
6586 type = ada_check_typedef (type);
6587
6588 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6589 return NULL;
6590
6591 for (i = 0; i < type->num_fields (); i += 1)
6592 if (ada_is_parent_field (type, i))
6593 {
6594 struct type *parent_type = type->field (i).type ();
6595
6596 /* If the _parent field is a pointer, then dereference it. */
6597 if (parent_type->code () == TYPE_CODE_PTR)
6598 parent_type = TYPE_TARGET_TYPE (parent_type);
6599 /* If there is a parallel XVS type, get the actual base type. */
6600 parent_type = ada_get_base_type (parent_type);
6601
6602 return ada_check_typedef (parent_type);
6603 }
6604
6605 return NULL;
6606 }
6607
6608 /* True iff field number FIELD_NUM of structure type TYPE contains the
6609 parent-type (inherited) fields of a derived type. Assumes TYPE is
6610 a structure type with at least FIELD_NUM+1 fields. */
6611
6612 int
6613 ada_is_parent_field (struct type *type, int field_num)
6614 {
6615 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6616
6617 return (name != NULL
6618 && (startswith (name, "PARENT")
6619 || startswith (name, "_parent")));
6620 }
6621
6622 /* True iff field number FIELD_NUM of structure type TYPE is a
6623 transparent wrapper field (which should be silently traversed when doing
6624 field selection and flattened when printing). Assumes TYPE is a
6625 structure type with at least FIELD_NUM+1 fields. Such fields are always
6626 structures. */
6627
6628 int
6629 ada_is_wrapper_field (struct type *type, int field_num)
6630 {
6631 const char *name = TYPE_FIELD_NAME (type, field_num);
6632
6633 if (name != NULL && strcmp (name, "RETVAL") == 0)
6634 {
6635 /* This happens in functions with "out" or "in out" parameters
6636 which are passed by copy. For such functions, GNAT describes
6637 the function's return type as being a struct where the return
6638 value is in a field called RETVAL, and where the other "out"
6639 or "in out" parameters are fields of that struct. This is not
6640 a wrapper. */
6641 return 0;
6642 }
6643
6644 return (name != NULL
6645 && (startswith (name, "PARENT")
6646 || strcmp (name, "REP") == 0
6647 || startswith (name, "_parent")
6648 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6649 }
6650
6651 /* True iff field number FIELD_NUM of structure or union type TYPE
6652 is a variant wrapper. Assumes TYPE is a structure type with at least
6653 FIELD_NUM+1 fields. */
6654
6655 int
6656 ada_is_variant_part (struct type *type, int field_num)
6657 {
6658 /* Only Ada types are eligible. */
6659 if (!ADA_TYPE_P (type))
6660 return 0;
6661
6662 struct type *field_type = type->field (field_num).type ();
6663
6664 return (field_type->code () == TYPE_CODE_UNION
6665 || (is_dynamic_field (type, field_num)
6666 && (TYPE_TARGET_TYPE (field_type)->code ()
6667 == TYPE_CODE_UNION)));
6668 }
6669
6670 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6671 whose discriminants are contained in the record type OUTER_TYPE,
6672 returns the type of the controlling discriminant for the variant.
6673 May return NULL if the type could not be found. */
6674
6675 struct type *
6676 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6677 {
6678 const char *name = ada_variant_discrim_name (var_type);
6679
6680 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6681 }
6682
6683 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6684 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6685 represents a 'when others' clause; otherwise 0. */
6686
6687 static int
6688 ada_is_others_clause (struct type *type, int field_num)
6689 {
6690 const char *name = TYPE_FIELD_NAME (type, field_num);
6691
6692 return (name != NULL && name[0] == 'O');
6693 }
6694
6695 /* Assuming that TYPE0 is the type of the variant part of a record,
6696 returns the name of the discriminant controlling the variant.
6697 The value is valid until the next call to ada_variant_discrim_name. */
6698
6699 const char *
6700 ada_variant_discrim_name (struct type *type0)
6701 {
6702 static char *result = NULL;
6703 static size_t result_len = 0;
6704 struct type *type;
6705 const char *name;
6706 const char *discrim_end;
6707 const char *discrim_start;
6708
6709 if (type0->code () == TYPE_CODE_PTR)
6710 type = TYPE_TARGET_TYPE (type0);
6711 else
6712 type = type0;
6713
6714 name = ada_type_name (type);
6715
6716 if (name == NULL || name[0] == '\000')
6717 return "";
6718
6719 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6720 discrim_end -= 1)
6721 {
6722 if (startswith (discrim_end, "___XVN"))
6723 break;
6724 }
6725 if (discrim_end == name)
6726 return "";
6727
6728 for (discrim_start = discrim_end; discrim_start != name + 3;
6729 discrim_start -= 1)
6730 {
6731 if (discrim_start == name + 1)
6732 return "";
6733 if ((discrim_start > name + 3
6734 && startswith (discrim_start - 3, "___"))
6735 || discrim_start[-1] == '.')
6736 break;
6737 }
6738
6739 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6740 strncpy (result, discrim_start, discrim_end - discrim_start);
6741 result[discrim_end - discrim_start] = '\0';
6742 return result;
6743 }
6744
6745 /* Scan STR for a subtype-encoded number, beginning at position K.
6746 Put the position of the character just past the number scanned in
6747 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6748 Return 1 if there was a valid number at the given position, and 0
6749 otherwise. A "subtype-encoded" number consists of the absolute value
6750 in decimal, followed by the letter 'm' to indicate a negative number.
6751 Assumes 0m does not occur. */
6752
6753 int
6754 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6755 {
6756 ULONGEST RU;
6757
6758 if (!isdigit (str[k]))
6759 return 0;
6760
6761 /* Do it the hard way so as not to make any assumption about
6762 the relationship of unsigned long (%lu scan format code) and
6763 LONGEST. */
6764 RU = 0;
6765 while (isdigit (str[k]))
6766 {
6767 RU = RU * 10 + (str[k] - '0');
6768 k += 1;
6769 }
6770
6771 if (str[k] == 'm')
6772 {
6773 if (R != NULL)
6774 *R = (-(LONGEST) (RU - 1)) - 1;
6775 k += 1;
6776 }
6777 else if (R != NULL)
6778 *R = (LONGEST) RU;
6779
6780 /* NOTE on the above: Technically, C does not say what the results of
6781 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6782 number representable as a LONGEST (although either would probably work
6783 in most implementations). When RU>0, the locution in the then branch
6784 above is always equivalent to the negative of RU. */
6785
6786 if (new_k != NULL)
6787 *new_k = k;
6788 return 1;
6789 }
6790
6791 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6792 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6793 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6794
6795 static int
6796 ada_in_variant (LONGEST val, struct type *type, int field_num)
6797 {
6798 const char *name = TYPE_FIELD_NAME (type, field_num);
6799 int p;
6800
6801 p = 0;
6802 while (1)
6803 {
6804 switch (name[p])
6805 {
6806 case '\0':
6807 return 0;
6808 case 'S':
6809 {
6810 LONGEST W;
6811
6812 if (!ada_scan_number (name, p + 1, &W, &p))
6813 return 0;
6814 if (val == W)
6815 return 1;
6816 break;
6817 }
6818 case 'R':
6819 {
6820 LONGEST L, U;
6821
6822 if (!ada_scan_number (name, p + 1, &L, &p)
6823 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6824 return 0;
6825 if (val >= L && val <= U)
6826 return 1;
6827 break;
6828 }
6829 case 'O':
6830 return 1;
6831 default:
6832 return 0;
6833 }
6834 }
6835 }
6836
6837 /* FIXME: Lots of redundancy below. Try to consolidate. */
6838
6839 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6840 ARG_TYPE, extract and return the value of one of its (non-static)
6841 fields. FIELDNO says which field. Differs from value_primitive_field
6842 only in that it can handle packed values of arbitrary type. */
6843
6844 struct value *
6845 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6846 struct type *arg_type)
6847 {
6848 struct type *type;
6849
6850 arg_type = ada_check_typedef (arg_type);
6851 type = arg_type->field (fieldno).type ();
6852
6853 /* Handle packed fields. It might be that the field is not packed
6854 relative to its containing structure, but the structure itself is
6855 packed; in this case we must take the bit-field path. */
6856 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6857 {
6858 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6859 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6860
6861 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6862 offset + bit_pos / 8,
6863 bit_pos % 8, bit_size, type);
6864 }
6865 else
6866 return value_primitive_field (arg1, offset, fieldno, arg_type);
6867 }
6868
6869 /* Find field with name NAME in object of type TYPE. If found,
6870 set the following for each argument that is non-null:
6871 - *FIELD_TYPE_P to the field's type;
6872 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6873 an object of that type;
6874 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6875 - *BIT_SIZE_P to its size in bits if the field is packed, and
6876 0 otherwise;
6877 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6878 fields up to but not including the desired field, or by the total
6879 number of fields if not found. A NULL value of NAME never
6880 matches; the function just counts visible fields in this case.
6881
6882 Notice that we need to handle when a tagged record hierarchy
6883 has some components with the same name, like in this scenario:
6884
6885 type Top_T is tagged record
6886 N : Integer := 1;
6887 U : Integer := 974;
6888 A : Integer := 48;
6889 end record;
6890
6891 type Middle_T is new Top.Top_T with record
6892 N : Character := 'a';
6893 C : Integer := 3;
6894 end record;
6895
6896 type Bottom_T is new Middle.Middle_T with record
6897 N : Float := 4.0;
6898 C : Character := '5';
6899 X : Integer := 6;
6900 A : Character := 'J';
6901 end record;
6902
6903 Let's say we now have a variable declared and initialized as follow:
6904
6905 TC : Top_A := new Bottom_T;
6906
6907 And then we use this variable to call this function
6908
6909 procedure Assign (Obj: in out Top_T; TV : Integer);
6910
6911 as follow:
6912
6913 Assign (Top_T (B), 12);
6914
6915 Now, we're in the debugger, and we're inside that procedure
6916 then and we want to print the value of obj.c:
6917
6918 Usually, the tagged record or one of the parent type owns the
6919 component to print and there's no issue but in this particular
6920 case, what does it mean to ask for Obj.C? Since the actual
6921 type for object is type Bottom_T, it could mean two things: type
6922 component C from the Middle_T view, but also component C from
6923 Bottom_T. So in that "undefined" case, when the component is
6924 not found in the non-resolved type (which includes all the
6925 components of the parent type), then resolve it and see if we
6926 get better luck once expanded.
6927
6928 In the case of homonyms in the derived tagged type, we don't
6929 guaranty anything, and pick the one that's easiest for us
6930 to program.
6931
6932 Returns 1 if found, 0 otherwise. */
6933
6934 static int
6935 find_struct_field (const char *name, struct type *type, int offset,
6936 struct type **field_type_p,
6937 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6938 int *index_p)
6939 {
6940 int i;
6941 int parent_offset = -1;
6942
6943 type = ada_check_typedef (type);
6944
6945 if (field_type_p != NULL)
6946 *field_type_p = NULL;
6947 if (byte_offset_p != NULL)
6948 *byte_offset_p = 0;
6949 if (bit_offset_p != NULL)
6950 *bit_offset_p = 0;
6951 if (bit_size_p != NULL)
6952 *bit_size_p = 0;
6953
6954 for (i = 0; i < type->num_fields (); i += 1)
6955 {
6956 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6957 int fld_offset = offset + bit_pos / 8;
6958 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6959
6960 if (t_field_name == NULL)
6961 continue;
6962
6963 else if (ada_is_parent_field (type, i))
6964 {
6965 /* This is a field pointing us to the parent type of a tagged
6966 type. As hinted in this function's documentation, we give
6967 preference to fields in the current record first, so what
6968 we do here is just record the index of this field before
6969 we skip it. If it turns out we couldn't find our field
6970 in the current record, then we'll get back to it and search
6971 inside it whether the field might exist in the parent. */
6972
6973 parent_offset = i;
6974 continue;
6975 }
6976
6977 else if (name != NULL && field_name_match (t_field_name, name))
6978 {
6979 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6980
6981 if (field_type_p != NULL)
6982 *field_type_p = type->field (i).type ();
6983 if (byte_offset_p != NULL)
6984 *byte_offset_p = fld_offset;
6985 if (bit_offset_p != NULL)
6986 *bit_offset_p = bit_pos % 8;
6987 if (bit_size_p != NULL)
6988 *bit_size_p = bit_size;
6989 return 1;
6990 }
6991 else if (ada_is_wrapper_field (type, i))
6992 {
6993 if (find_struct_field (name, type->field (i).type (), fld_offset,
6994 field_type_p, byte_offset_p, bit_offset_p,
6995 bit_size_p, index_p))
6996 return 1;
6997 }
6998 else if (ada_is_variant_part (type, i))
6999 {
7000 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7001 fixed type?? */
7002 int j;
7003 struct type *field_type
7004 = ada_check_typedef (type->field (i).type ());
7005
7006 for (j = 0; j < field_type->num_fields (); j += 1)
7007 {
7008 if (find_struct_field (name, field_type->field (j).type (),
7009 fld_offset
7010 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7011 field_type_p, byte_offset_p,
7012 bit_offset_p, bit_size_p, index_p))
7013 return 1;
7014 }
7015 }
7016 else if (index_p != NULL)
7017 *index_p += 1;
7018 }
7019
7020 /* Field not found so far. If this is a tagged type which
7021 has a parent, try finding that field in the parent now. */
7022
7023 if (parent_offset != -1)
7024 {
7025 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7026 int fld_offset = offset + bit_pos / 8;
7027
7028 if (find_struct_field (name, type->field (parent_offset).type (),
7029 fld_offset, field_type_p, byte_offset_p,
7030 bit_offset_p, bit_size_p, index_p))
7031 return 1;
7032 }
7033
7034 return 0;
7035 }
7036
7037 /* Number of user-visible fields in record type TYPE. */
7038
7039 static int
7040 num_visible_fields (struct type *type)
7041 {
7042 int n;
7043
7044 n = 0;
7045 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7046 return n;
7047 }
7048
7049 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7050 and search in it assuming it has (class) type TYPE.
7051 If found, return value, else return NULL.
7052
7053 Searches recursively through wrapper fields (e.g., '_parent').
7054
7055 In the case of homonyms in the tagged types, please refer to the
7056 long explanation in find_struct_field's function documentation. */
7057
7058 static struct value *
7059 ada_search_struct_field (const char *name, struct value *arg, int offset,
7060 struct type *type)
7061 {
7062 int i;
7063 int parent_offset = -1;
7064
7065 type = ada_check_typedef (type);
7066 for (i = 0; i < type->num_fields (); i += 1)
7067 {
7068 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7069
7070 if (t_field_name == NULL)
7071 continue;
7072
7073 else if (ada_is_parent_field (type, i))
7074 {
7075 /* This is a field pointing us to the parent type of a tagged
7076 type. As hinted in this function's documentation, we give
7077 preference to fields in the current record first, so what
7078 we do here is just record the index of this field before
7079 we skip it. If it turns out we couldn't find our field
7080 in the current record, then we'll get back to it and search
7081 inside it whether the field might exist in the parent. */
7082
7083 parent_offset = i;
7084 continue;
7085 }
7086
7087 else if (field_name_match (t_field_name, name))
7088 return ada_value_primitive_field (arg, offset, i, type);
7089
7090 else if (ada_is_wrapper_field (type, i))
7091 {
7092 struct value *v = /* Do not let indent join lines here. */
7093 ada_search_struct_field (name, arg,
7094 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7095 type->field (i).type ());
7096
7097 if (v != NULL)
7098 return v;
7099 }
7100
7101 else if (ada_is_variant_part (type, i))
7102 {
7103 /* PNH: Do we ever get here? See find_struct_field. */
7104 int j;
7105 struct type *field_type = ada_check_typedef (type->field (i).type ());
7106 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7107
7108 for (j = 0; j < field_type->num_fields (); j += 1)
7109 {
7110 struct value *v = ada_search_struct_field /* Force line
7111 break. */
7112 (name, arg,
7113 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7114 field_type->field (j).type ());
7115
7116 if (v != NULL)
7117 return v;
7118 }
7119 }
7120 }
7121
7122 /* Field not found so far. If this is a tagged type which
7123 has a parent, try finding that field in the parent now. */
7124
7125 if (parent_offset != -1)
7126 {
7127 struct value *v = ada_search_struct_field (
7128 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7129 type->field (parent_offset).type ());
7130
7131 if (v != NULL)
7132 return v;
7133 }
7134
7135 return NULL;
7136 }
7137
7138 static struct value *ada_index_struct_field_1 (int *, struct value *,
7139 int, struct type *);
7140
7141
7142 /* Return field #INDEX in ARG, where the index is that returned by
7143 * find_struct_field through its INDEX_P argument. Adjust the address
7144 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7145 * If found, return value, else return NULL. */
7146
7147 static struct value *
7148 ada_index_struct_field (int index, struct value *arg, int offset,
7149 struct type *type)
7150 {
7151 return ada_index_struct_field_1 (&index, arg, offset, type);
7152 }
7153
7154
7155 /* Auxiliary function for ada_index_struct_field. Like
7156 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7157 * *INDEX_P. */
7158
7159 static struct value *
7160 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7161 struct type *type)
7162 {
7163 int i;
7164 type = ada_check_typedef (type);
7165
7166 for (i = 0; i < type->num_fields (); i += 1)
7167 {
7168 if (TYPE_FIELD_NAME (type, i) == NULL)
7169 continue;
7170 else if (ada_is_wrapper_field (type, i))
7171 {
7172 struct value *v = /* Do not let indent join lines here. */
7173 ada_index_struct_field_1 (index_p, arg,
7174 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7175 type->field (i).type ());
7176
7177 if (v != NULL)
7178 return v;
7179 }
7180
7181 else if (ada_is_variant_part (type, i))
7182 {
7183 /* PNH: Do we ever get here? See ada_search_struct_field,
7184 find_struct_field. */
7185 error (_("Cannot assign this kind of variant record"));
7186 }
7187 else if (*index_p == 0)
7188 return ada_value_primitive_field (arg, offset, i, type);
7189 else
7190 *index_p -= 1;
7191 }
7192 return NULL;
7193 }
7194
7195 /* Return a string representation of type TYPE. */
7196
7197 static std::string
7198 type_as_string (struct type *type)
7199 {
7200 string_file tmp_stream;
7201
7202 type_print (type, "", &tmp_stream, -1);
7203
7204 return std::move (tmp_stream.string ());
7205 }
7206
7207 /* Given a type TYPE, look up the type of the component of type named NAME.
7208 If DISPP is non-null, add its byte displacement from the beginning of a
7209 structure (pointed to by a value) of type TYPE to *DISPP (does not
7210 work for packed fields).
7211
7212 Matches any field whose name has NAME as a prefix, possibly
7213 followed by "___".
7214
7215 TYPE can be either a struct or union. If REFOK, TYPE may also
7216 be a (pointer or reference)+ to a struct or union, and the
7217 ultimate target type will be searched.
7218
7219 Looks recursively into variant clauses and parent types.
7220
7221 In the case of homonyms in the tagged types, please refer to the
7222 long explanation in find_struct_field's function documentation.
7223
7224 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7225 TYPE is not a type of the right kind. */
7226
7227 static struct type *
7228 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7229 int noerr)
7230 {
7231 int i;
7232 int parent_offset = -1;
7233
7234 if (name == NULL)
7235 goto BadName;
7236
7237 if (refok && type != NULL)
7238 while (1)
7239 {
7240 type = ada_check_typedef (type);
7241 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7242 break;
7243 type = TYPE_TARGET_TYPE (type);
7244 }
7245
7246 if (type == NULL
7247 || (type->code () != TYPE_CODE_STRUCT
7248 && type->code () != TYPE_CODE_UNION))
7249 {
7250 if (noerr)
7251 return NULL;
7252
7253 error (_("Type %s is not a structure or union type"),
7254 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7255 }
7256
7257 type = to_static_fixed_type (type);
7258
7259 for (i = 0; i < type->num_fields (); i += 1)
7260 {
7261 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7262 struct type *t;
7263
7264 if (t_field_name == NULL)
7265 continue;
7266
7267 else if (ada_is_parent_field (type, i))
7268 {
7269 /* This is a field pointing us to the parent type of a tagged
7270 type. As hinted in this function's documentation, we give
7271 preference to fields in the current record first, so what
7272 we do here is just record the index of this field before
7273 we skip it. If it turns out we couldn't find our field
7274 in the current record, then we'll get back to it and search
7275 inside it whether the field might exist in the parent. */
7276
7277 parent_offset = i;
7278 continue;
7279 }
7280
7281 else if (field_name_match (t_field_name, name))
7282 return type->field (i).type ();
7283
7284 else if (ada_is_wrapper_field (type, i))
7285 {
7286 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7287 0, 1);
7288 if (t != NULL)
7289 return t;
7290 }
7291
7292 else if (ada_is_variant_part (type, i))
7293 {
7294 int j;
7295 struct type *field_type = ada_check_typedef (type->field (i).type ());
7296
7297 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7298 {
7299 /* FIXME pnh 2008/01/26: We check for a field that is
7300 NOT wrapped in a struct, since the compiler sometimes
7301 generates these for unchecked variant types. Revisit
7302 if the compiler changes this practice. */
7303 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7304
7305 if (v_field_name != NULL
7306 && field_name_match (v_field_name, name))
7307 t = field_type->field (j).type ();
7308 else
7309 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7310 name, 0, 1);
7311
7312 if (t != NULL)
7313 return t;
7314 }
7315 }
7316
7317 }
7318
7319 /* Field not found so far. If this is a tagged type which
7320 has a parent, try finding that field in the parent now. */
7321
7322 if (parent_offset != -1)
7323 {
7324 struct type *t;
7325
7326 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7327 name, 0, 1);
7328 if (t != NULL)
7329 return t;
7330 }
7331
7332 BadName:
7333 if (!noerr)
7334 {
7335 const char *name_str = name != NULL ? name : _("<null>");
7336
7337 error (_("Type %s has no component named %s"),
7338 type_as_string (type).c_str (), name_str);
7339 }
7340
7341 return NULL;
7342 }
7343
7344 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7345 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7346 represents an unchecked union (that is, the variant part of a
7347 record that is named in an Unchecked_Union pragma). */
7348
7349 static int
7350 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7351 {
7352 const char *discrim_name = ada_variant_discrim_name (var_type);
7353
7354 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7355 }
7356
7357
7358 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7359 within OUTER, determine which variant clause (field number in VAR_TYPE,
7360 numbering from 0) is applicable. Returns -1 if none are. */
7361
7362 int
7363 ada_which_variant_applies (struct type *var_type, struct value *outer)
7364 {
7365 int others_clause;
7366 int i;
7367 const char *discrim_name = ada_variant_discrim_name (var_type);
7368 struct value *discrim;
7369 LONGEST discrim_val;
7370
7371 /* Using plain value_from_contents_and_address here causes problems
7372 because we will end up trying to resolve a type that is currently
7373 being constructed. */
7374 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7375 if (discrim == NULL)
7376 return -1;
7377 discrim_val = value_as_long (discrim);
7378
7379 others_clause = -1;
7380 for (i = 0; i < var_type->num_fields (); i += 1)
7381 {
7382 if (ada_is_others_clause (var_type, i))
7383 others_clause = i;
7384 else if (ada_in_variant (discrim_val, var_type, i))
7385 return i;
7386 }
7387
7388 return others_clause;
7389 }
7390 \f
7391
7392
7393 /* Dynamic-Sized Records */
7394
7395 /* Strategy: The type ostensibly attached to a value with dynamic size
7396 (i.e., a size that is not statically recorded in the debugging
7397 data) does not accurately reflect the size or layout of the value.
7398 Our strategy is to convert these values to values with accurate,
7399 conventional types that are constructed on the fly. */
7400
7401 /* There is a subtle and tricky problem here. In general, we cannot
7402 determine the size of dynamic records without its data. However,
7403 the 'struct value' data structure, which GDB uses to represent
7404 quantities in the inferior process (the target), requires the size
7405 of the type at the time of its allocation in order to reserve space
7406 for GDB's internal copy of the data. That's why the
7407 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7408 rather than struct value*s.
7409
7410 However, GDB's internal history variables ($1, $2, etc.) are
7411 struct value*s containing internal copies of the data that are not, in
7412 general, the same as the data at their corresponding addresses in
7413 the target. Fortunately, the types we give to these values are all
7414 conventional, fixed-size types (as per the strategy described
7415 above), so that we don't usually have to perform the
7416 'to_fixed_xxx_type' conversions to look at their values.
7417 Unfortunately, there is one exception: if one of the internal
7418 history variables is an array whose elements are unconstrained
7419 records, then we will need to create distinct fixed types for each
7420 element selected. */
7421
7422 /* The upshot of all of this is that many routines take a (type, host
7423 address, target address) triple as arguments to represent a value.
7424 The host address, if non-null, is supposed to contain an internal
7425 copy of the relevant data; otherwise, the program is to consult the
7426 target at the target address. */
7427
7428 /* Assuming that VAL0 represents a pointer value, the result of
7429 dereferencing it. Differs from value_ind in its treatment of
7430 dynamic-sized types. */
7431
7432 struct value *
7433 ada_value_ind (struct value *val0)
7434 {
7435 struct value *val = value_ind (val0);
7436
7437 if (ada_is_tagged_type (value_type (val), 0))
7438 val = ada_tag_value_at_base_address (val);
7439
7440 return ada_to_fixed_value (val);
7441 }
7442
7443 /* The value resulting from dereferencing any "reference to"
7444 qualifiers on VAL0. */
7445
7446 static struct value *
7447 ada_coerce_ref (struct value *val0)
7448 {
7449 if (value_type (val0)->code () == TYPE_CODE_REF)
7450 {
7451 struct value *val = val0;
7452
7453 val = coerce_ref (val);
7454
7455 if (ada_is_tagged_type (value_type (val), 0))
7456 val = ada_tag_value_at_base_address (val);
7457
7458 return ada_to_fixed_value (val);
7459 }
7460 else
7461 return val0;
7462 }
7463
7464 /* Return the bit alignment required for field #F of template type TYPE. */
7465
7466 static unsigned int
7467 field_alignment (struct type *type, int f)
7468 {
7469 const char *name = TYPE_FIELD_NAME (type, f);
7470 int len;
7471 int align_offset;
7472
7473 /* The field name should never be null, unless the debugging information
7474 is somehow malformed. In this case, we assume the field does not
7475 require any alignment. */
7476 if (name == NULL)
7477 return 1;
7478
7479 len = strlen (name);
7480
7481 if (!isdigit (name[len - 1]))
7482 return 1;
7483
7484 if (isdigit (name[len - 2]))
7485 align_offset = len - 2;
7486 else
7487 align_offset = len - 1;
7488
7489 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7490 return TARGET_CHAR_BIT;
7491
7492 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7493 }
7494
7495 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7496
7497 static struct symbol *
7498 ada_find_any_type_symbol (const char *name)
7499 {
7500 struct symbol *sym;
7501
7502 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7503 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7504 return sym;
7505
7506 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7507 return sym;
7508 }
7509
7510 /* Find a type named NAME. Ignores ambiguity. This routine will look
7511 solely for types defined by debug info, it will not search the GDB
7512 primitive types. */
7513
7514 static struct type *
7515 ada_find_any_type (const char *name)
7516 {
7517 struct symbol *sym = ada_find_any_type_symbol (name);
7518
7519 if (sym != NULL)
7520 return SYMBOL_TYPE (sym);
7521
7522 return NULL;
7523 }
7524
7525 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7526 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7527 symbol, in which case it is returned. Otherwise, this looks for
7528 symbols whose name is that of NAME_SYM suffixed with "___XR".
7529 Return symbol if found, and NULL otherwise. */
7530
7531 static bool
7532 ada_is_renaming_symbol (struct symbol *name_sym)
7533 {
7534 const char *name = name_sym->linkage_name ();
7535 return strstr (name, "___XR") != NULL;
7536 }
7537
7538 /* Because of GNAT encoding conventions, several GDB symbols may match a
7539 given type name. If the type denoted by TYPE0 is to be preferred to
7540 that of TYPE1 for purposes of type printing, return non-zero;
7541 otherwise return 0. */
7542
7543 int
7544 ada_prefer_type (struct type *type0, struct type *type1)
7545 {
7546 if (type1 == NULL)
7547 return 1;
7548 else if (type0 == NULL)
7549 return 0;
7550 else if (type1->code () == TYPE_CODE_VOID)
7551 return 1;
7552 else if (type0->code () == TYPE_CODE_VOID)
7553 return 0;
7554 else if (type1->name () == NULL && type0->name () != NULL)
7555 return 1;
7556 else if (ada_is_constrained_packed_array_type (type0))
7557 return 1;
7558 else if (ada_is_array_descriptor_type (type0)
7559 && !ada_is_array_descriptor_type (type1))
7560 return 1;
7561 else
7562 {
7563 const char *type0_name = type0->name ();
7564 const char *type1_name = type1->name ();
7565
7566 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7567 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7568 return 1;
7569 }
7570 return 0;
7571 }
7572
7573 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7574 null. */
7575
7576 const char *
7577 ada_type_name (struct type *type)
7578 {
7579 if (type == NULL)
7580 return NULL;
7581 return type->name ();
7582 }
7583
7584 /* Search the list of "descriptive" types associated to TYPE for a type
7585 whose name is NAME. */
7586
7587 static struct type *
7588 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7589 {
7590 struct type *result, *tmp;
7591
7592 if (ada_ignore_descriptive_types_p)
7593 return NULL;
7594
7595 /* If there no descriptive-type info, then there is no parallel type
7596 to be found. */
7597 if (!HAVE_GNAT_AUX_INFO (type))
7598 return NULL;
7599
7600 result = TYPE_DESCRIPTIVE_TYPE (type);
7601 while (result != NULL)
7602 {
7603 const char *result_name = ada_type_name (result);
7604
7605 if (result_name == NULL)
7606 {
7607 warning (_("unexpected null name on descriptive type"));
7608 return NULL;
7609 }
7610
7611 /* If the names match, stop. */
7612 if (strcmp (result_name, name) == 0)
7613 break;
7614
7615 /* Otherwise, look at the next item on the list, if any. */
7616 if (HAVE_GNAT_AUX_INFO (result))
7617 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7618 else
7619 tmp = NULL;
7620
7621 /* If not found either, try after having resolved the typedef. */
7622 if (tmp != NULL)
7623 result = tmp;
7624 else
7625 {
7626 result = check_typedef (result);
7627 if (HAVE_GNAT_AUX_INFO (result))
7628 result = TYPE_DESCRIPTIVE_TYPE (result);
7629 else
7630 result = NULL;
7631 }
7632 }
7633
7634 /* If we didn't find a match, see whether this is a packed array. With
7635 older compilers, the descriptive type information is either absent or
7636 irrelevant when it comes to packed arrays so the above lookup fails.
7637 Fall back to using a parallel lookup by name in this case. */
7638 if (result == NULL && ada_is_constrained_packed_array_type (type))
7639 return ada_find_any_type (name);
7640
7641 return result;
7642 }
7643
7644 /* Find a parallel type to TYPE with the specified NAME, using the
7645 descriptive type taken from the debugging information, if available,
7646 and otherwise using the (slower) name-based method. */
7647
7648 static struct type *
7649 ada_find_parallel_type_with_name (struct type *type, const char *name)
7650 {
7651 struct type *result = NULL;
7652
7653 if (HAVE_GNAT_AUX_INFO (type))
7654 result = find_parallel_type_by_descriptive_type (type, name);
7655 else
7656 result = ada_find_any_type (name);
7657
7658 return result;
7659 }
7660
7661 /* Same as above, but specify the name of the parallel type by appending
7662 SUFFIX to the name of TYPE. */
7663
7664 struct type *
7665 ada_find_parallel_type (struct type *type, const char *suffix)
7666 {
7667 char *name;
7668 const char *type_name = ada_type_name (type);
7669 int len;
7670
7671 if (type_name == NULL)
7672 return NULL;
7673
7674 len = strlen (type_name);
7675
7676 name = (char *) alloca (len + strlen (suffix) + 1);
7677
7678 strcpy (name, type_name);
7679 strcpy (name + len, suffix);
7680
7681 return ada_find_parallel_type_with_name (type, name);
7682 }
7683
7684 /* If TYPE is a variable-size record type, return the corresponding template
7685 type describing its fields. Otherwise, return NULL. */
7686
7687 static struct type *
7688 dynamic_template_type (struct type *type)
7689 {
7690 type = ada_check_typedef (type);
7691
7692 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7693 || ada_type_name (type) == NULL)
7694 return NULL;
7695 else
7696 {
7697 int len = strlen (ada_type_name (type));
7698
7699 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7700 return type;
7701 else
7702 return ada_find_parallel_type (type, "___XVE");
7703 }
7704 }
7705
7706 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7707 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7708
7709 static int
7710 is_dynamic_field (struct type *templ_type, int field_num)
7711 {
7712 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7713
7714 return name != NULL
7715 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7716 && strstr (name, "___XVL") != NULL;
7717 }
7718
7719 /* The index of the variant field of TYPE, or -1 if TYPE does not
7720 represent a variant record type. */
7721
7722 static int
7723 variant_field_index (struct type *type)
7724 {
7725 int f;
7726
7727 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7728 return -1;
7729
7730 for (f = 0; f < type->num_fields (); f += 1)
7731 {
7732 if (ada_is_variant_part (type, f))
7733 return f;
7734 }
7735 return -1;
7736 }
7737
7738 /* A record type with no fields. */
7739
7740 static struct type *
7741 empty_record (struct type *templ)
7742 {
7743 struct type *type = alloc_type_copy (templ);
7744
7745 type->set_code (TYPE_CODE_STRUCT);
7746 INIT_NONE_SPECIFIC (type);
7747 type->set_name ("<empty>");
7748 TYPE_LENGTH (type) = 0;
7749 return type;
7750 }
7751
7752 /* An ordinary record type (with fixed-length fields) that describes
7753 the value of type TYPE at VALADDR or ADDRESS (see comments at
7754 the beginning of this section) VAL according to GNAT conventions.
7755 DVAL0 should describe the (portion of a) record that contains any
7756 necessary discriminants. It should be NULL if value_type (VAL) is
7757 an outer-level type (i.e., as opposed to a branch of a variant.) A
7758 variant field (unless unchecked) is replaced by a particular branch
7759 of the variant.
7760
7761 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7762 length are not statically known are discarded. As a consequence,
7763 VALADDR, ADDRESS and DVAL0 are ignored.
7764
7765 NOTE: Limitations: For now, we assume that dynamic fields and
7766 variants occupy whole numbers of bytes. However, they need not be
7767 byte-aligned. */
7768
7769 struct type *
7770 ada_template_to_fixed_record_type_1 (struct type *type,
7771 const gdb_byte *valaddr,
7772 CORE_ADDR address, struct value *dval0,
7773 int keep_dynamic_fields)
7774 {
7775 struct value *mark = value_mark ();
7776 struct value *dval;
7777 struct type *rtype;
7778 int nfields, bit_len;
7779 int variant_field;
7780 long off;
7781 int fld_bit_len;
7782 int f;
7783
7784 /* Compute the number of fields in this record type that are going
7785 to be processed: unless keep_dynamic_fields, this includes only
7786 fields whose position and length are static will be processed. */
7787 if (keep_dynamic_fields)
7788 nfields = type->num_fields ();
7789 else
7790 {
7791 nfields = 0;
7792 while (nfields < type->num_fields ()
7793 && !ada_is_variant_part (type, nfields)
7794 && !is_dynamic_field (type, nfields))
7795 nfields++;
7796 }
7797
7798 rtype = alloc_type_copy (type);
7799 rtype->set_code (TYPE_CODE_STRUCT);
7800 INIT_NONE_SPECIFIC (rtype);
7801 rtype->set_num_fields (nfields);
7802 rtype->set_fields
7803 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7804 rtype->set_name (ada_type_name (type));
7805 rtype->set_is_fixed_instance (true);
7806
7807 off = 0;
7808 bit_len = 0;
7809 variant_field = -1;
7810
7811 for (f = 0; f < nfields; f += 1)
7812 {
7813 off = align_up (off, field_alignment (type, f))
7814 + TYPE_FIELD_BITPOS (type, f);
7815 SET_FIELD_BITPOS (rtype->field (f), off);
7816 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7817
7818 if (ada_is_variant_part (type, f))
7819 {
7820 variant_field = f;
7821 fld_bit_len = 0;
7822 }
7823 else if (is_dynamic_field (type, f))
7824 {
7825 const gdb_byte *field_valaddr = valaddr;
7826 CORE_ADDR field_address = address;
7827 struct type *field_type =
7828 TYPE_TARGET_TYPE (type->field (f).type ());
7829
7830 if (dval0 == NULL)
7831 {
7832 /* rtype's length is computed based on the run-time
7833 value of discriminants. If the discriminants are not
7834 initialized, the type size may be completely bogus and
7835 GDB may fail to allocate a value for it. So check the
7836 size first before creating the value. */
7837 ada_ensure_varsize_limit (rtype);
7838 /* Using plain value_from_contents_and_address here
7839 causes problems because we will end up trying to
7840 resolve a type that is currently being
7841 constructed. */
7842 dval = value_from_contents_and_address_unresolved (rtype,
7843 valaddr,
7844 address);
7845 rtype = value_type (dval);
7846 }
7847 else
7848 dval = dval0;
7849
7850 /* If the type referenced by this field is an aligner type, we need
7851 to unwrap that aligner type, because its size might not be set.
7852 Keeping the aligner type would cause us to compute the wrong
7853 size for this field, impacting the offset of the all the fields
7854 that follow this one. */
7855 if (ada_is_aligner_type (field_type))
7856 {
7857 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7858
7859 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7860 field_address = cond_offset_target (field_address, field_offset);
7861 field_type = ada_aligned_type (field_type);
7862 }
7863
7864 field_valaddr = cond_offset_host (field_valaddr,
7865 off / TARGET_CHAR_BIT);
7866 field_address = cond_offset_target (field_address,
7867 off / TARGET_CHAR_BIT);
7868
7869 /* Get the fixed type of the field. Note that, in this case,
7870 we do not want to get the real type out of the tag: if
7871 the current field is the parent part of a tagged record,
7872 we will get the tag of the object. Clearly wrong: the real
7873 type of the parent is not the real type of the child. We
7874 would end up in an infinite loop. */
7875 field_type = ada_get_base_type (field_type);
7876 field_type = ada_to_fixed_type (field_type, field_valaddr,
7877 field_address, dval, 0);
7878 /* If the field size is already larger than the maximum
7879 object size, then the record itself will necessarily
7880 be larger than the maximum object size. We need to make
7881 this check now, because the size might be so ridiculously
7882 large (due to an uninitialized variable in the inferior)
7883 that it would cause an overflow when adding it to the
7884 record size. */
7885 ada_ensure_varsize_limit (field_type);
7886
7887 rtype->field (f).set_type (field_type);
7888 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7889 /* The multiplication can potentially overflow. But because
7890 the field length has been size-checked just above, and
7891 assuming that the maximum size is a reasonable value,
7892 an overflow should not happen in practice. So rather than
7893 adding overflow recovery code to this already complex code,
7894 we just assume that it's not going to happen. */
7895 fld_bit_len =
7896 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7897 }
7898 else
7899 {
7900 /* Note: If this field's type is a typedef, it is important
7901 to preserve the typedef layer.
7902
7903 Otherwise, we might be transforming a typedef to a fat
7904 pointer (encoding a pointer to an unconstrained array),
7905 into a basic fat pointer (encoding an unconstrained
7906 array). As both types are implemented using the same
7907 structure, the typedef is the only clue which allows us
7908 to distinguish between the two options. Stripping it
7909 would prevent us from printing this field appropriately. */
7910 rtype->field (f).set_type (type->field (f).type ());
7911 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7912 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7913 fld_bit_len =
7914 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7915 else
7916 {
7917 struct type *field_type = type->field (f).type ();
7918
7919 /* We need to be careful of typedefs when computing
7920 the length of our field. If this is a typedef,
7921 get the length of the target type, not the length
7922 of the typedef. */
7923 if (field_type->code () == TYPE_CODE_TYPEDEF)
7924 field_type = ada_typedef_target_type (field_type);
7925
7926 fld_bit_len =
7927 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7928 }
7929 }
7930 if (off + fld_bit_len > bit_len)
7931 bit_len = off + fld_bit_len;
7932 off += fld_bit_len;
7933 TYPE_LENGTH (rtype) =
7934 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7935 }
7936
7937 /* We handle the variant part, if any, at the end because of certain
7938 odd cases in which it is re-ordered so as NOT to be the last field of
7939 the record. This can happen in the presence of representation
7940 clauses. */
7941 if (variant_field >= 0)
7942 {
7943 struct type *branch_type;
7944
7945 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7946
7947 if (dval0 == NULL)
7948 {
7949 /* Using plain value_from_contents_and_address here causes
7950 problems because we will end up trying to resolve a type
7951 that is currently being constructed. */
7952 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7953 address);
7954 rtype = value_type (dval);
7955 }
7956 else
7957 dval = dval0;
7958
7959 branch_type =
7960 to_fixed_variant_branch_type
7961 (type->field (variant_field).type (),
7962 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7963 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7964 if (branch_type == NULL)
7965 {
7966 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7967 rtype->field (f - 1) = rtype->field (f);
7968 rtype->set_num_fields (rtype->num_fields () - 1);
7969 }
7970 else
7971 {
7972 rtype->field (variant_field).set_type (branch_type);
7973 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7974 fld_bit_len =
7975 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7976 TARGET_CHAR_BIT;
7977 if (off + fld_bit_len > bit_len)
7978 bit_len = off + fld_bit_len;
7979 TYPE_LENGTH (rtype) =
7980 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7981 }
7982 }
7983
7984 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7985 should contain the alignment of that record, which should be a strictly
7986 positive value. If null or negative, then something is wrong, most
7987 probably in the debug info. In that case, we don't round up the size
7988 of the resulting type. If this record is not part of another structure,
7989 the current RTYPE length might be good enough for our purposes. */
7990 if (TYPE_LENGTH (type) <= 0)
7991 {
7992 if (rtype->name ())
7993 warning (_("Invalid type size for `%s' detected: %s."),
7994 rtype->name (), pulongest (TYPE_LENGTH (type)));
7995 else
7996 warning (_("Invalid type size for <unnamed> detected: %s."),
7997 pulongest (TYPE_LENGTH (type)));
7998 }
7999 else
8000 {
8001 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8002 TYPE_LENGTH (type));
8003 }
8004
8005 value_free_to_mark (mark);
8006 if (TYPE_LENGTH (rtype) > varsize_limit)
8007 error (_("record type with dynamic size is larger than varsize-limit"));
8008 return rtype;
8009 }
8010
8011 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8012 of 1. */
8013
8014 static struct type *
8015 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8016 CORE_ADDR address, struct value *dval0)
8017 {
8018 return ada_template_to_fixed_record_type_1 (type, valaddr,
8019 address, dval0, 1);
8020 }
8021
8022 /* An ordinary record type in which ___XVL-convention fields and
8023 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8024 static approximations, containing all possible fields. Uses
8025 no runtime values. Useless for use in values, but that's OK,
8026 since the results are used only for type determinations. Works on both
8027 structs and unions. Representation note: to save space, we memorize
8028 the result of this function in the TYPE_TARGET_TYPE of the
8029 template type. */
8030
8031 static struct type *
8032 template_to_static_fixed_type (struct type *type0)
8033 {
8034 struct type *type;
8035 int nfields;
8036 int f;
8037
8038 /* No need no do anything if the input type is already fixed. */
8039 if (type0->is_fixed_instance ())
8040 return type0;
8041
8042 /* Likewise if we already have computed the static approximation. */
8043 if (TYPE_TARGET_TYPE (type0) != NULL)
8044 return TYPE_TARGET_TYPE (type0);
8045
8046 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8047 type = type0;
8048 nfields = type0->num_fields ();
8049
8050 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8051 recompute all over next time. */
8052 TYPE_TARGET_TYPE (type0) = type;
8053
8054 for (f = 0; f < nfields; f += 1)
8055 {
8056 struct type *field_type = type0->field (f).type ();
8057 struct type *new_type;
8058
8059 if (is_dynamic_field (type0, f))
8060 {
8061 field_type = ada_check_typedef (field_type);
8062 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8063 }
8064 else
8065 new_type = static_unwrap_type (field_type);
8066
8067 if (new_type != field_type)
8068 {
8069 /* Clone TYPE0 only the first time we get a new field type. */
8070 if (type == type0)
8071 {
8072 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8073 type->set_code (type0->code ());
8074 INIT_NONE_SPECIFIC (type);
8075 type->set_num_fields (nfields);
8076
8077 field *fields =
8078 ((struct field *)
8079 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8080 memcpy (fields, type0->fields (),
8081 sizeof (struct field) * nfields);
8082 type->set_fields (fields);
8083
8084 type->set_name (ada_type_name (type0));
8085 type->set_is_fixed_instance (true);
8086 TYPE_LENGTH (type) = 0;
8087 }
8088 type->field (f).set_type (new_type);
8089 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8090 }
8091 }
8092
8093 return type;
8094 }
8095
8096 /* Given an object of type TYPE whose contents are at VALADDR and
8097 whose address in memory is ADDRESS, returns a revision of TYPE,
8098 which should be a non-dynamic-sized record, in which the variant
8099 part, if any, is replaced with the appropriate branch. Looks
8100 for discriminant values in DVAL0, which can be NULL if the record
8101 contains the necessary discriminant values. */
8102
8103 static struct type *
8104 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8105 CORE_ADDR address, struct value *dval0)
8106 {
8107 struct value *mark = value_mark ();
8108 struct value *dval;
8109 struct type *rtype;
8110 struct type *branch_type;
8111 int nfields = type->num_fields ();
8112 int variant_field = variant_field_index (type);
8113
8114 if (variant_field == -1)
8115 return type;
8116
8117 if (dval0 == NULL)
8118 {
8119 dval = value_from_contents_and_address (type, valaddr, address);
8120 type = value_type (dval);
8121 }
8122 else
8123 dval = dval0;
8124
8125 rtype = alloc_type_copy (type);
8126 rtype->set_code (TYPE_CODE_STRUCT);
8127 INIT_NONE_SPECIFIC (rtype);
8128 rtype->set_num_fields (nfields);
8129
8130 field *fields =
8131 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8132 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8133 rtype->set_fields (fields);
8134
8135 rtype->set_name (ada_type_name (type));
8136 rtype->set_is_fixed_instance (true);
8137 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8138
8139 branch_type = to_fixed_variant_branch_type
8140 (type->field (variant_field).type (),
8141 cond_offset_host (valaddr,
8142 TYPE_FIELD_BITPOS (type, variant_field)
8143 / TARGET_CHAR_BIT),
8144 cond_offset_target (address,
8145 TYPE_FIELD_BITPOS (type, variant_field)
8146 / TARGET_CHAR_BIT), dval);
8147 if (branch_type == NULL)
8148 {
8149 int f;
8150
8151 for (f = variant_field + 1; f < nfields; f += 1)
8152 rtype->field (f - 1) = rtype->field (f);
8153 rtype->set_num_fields (rtype->num_fields () - 1);
8154 }
8155 else
8156 {
8157 rtype->field (variant_field).set_type (branch_type);
8158 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8159 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8160 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8161 }
8162 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8163
8164 value_free_to_mark (mark);
8165 return rtype;
8166 }
8167
8168 /* An ordinary record type (with fixed-length fields) that describes
8169 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8170 beginning of this section]. Any necessary discriminants' values
8171 should be in DVAL, a record value; it may be NULL if the object
8172 at ADDR itself contains any necessary discriminant values.
8173 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8174 values from the record are needed. Except in the case that DVAL,
8175 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8176 unchecked) is replaced by a particular branch of the variant.
8177
8178 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8179 is questionable and may be removed. It can arise during the
8180 processing of an unconstrained-array-of-record type where all the
8181 variant branches have exactly the same size. This is because in
8182 such cases, the compiler does not bother to use the XVS convention
8183 when encoding the record. I am currently dubious of this
8184 shortcut and suspect the compiler should be altered. FIXME. */
8185
8186 static struct type *
8187 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8188 CORE_ADDR address, struct value *dval)
8189 {
8190 struct type *templ_type;
8191
8192 if (type0->is_fixed_instance ())
8193 return type0;
8194
8195 templ_type = dynamic_template_type (type0);
8196
8197 if (templ_type != NULL)
8198 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8199 else if (variant_field_index (type0) >= 0)
8200 {
8201 if (dval == NULL && valaddr == NULL && address == 0)
8202 return type0;
8203 return to_record_with_fixed_variant_part (type0, valaddr, address,
8204 dval);
8205 }
8206 else
8207 {
8208 type0->set_is_fixed_instance (true);
8209 return type0;
8210 }
8211
8212 }
8213
8214 /* An ordinary record type (with fixed-length fields) that describes
8215 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8216 union type. Any necessary discriminants' values should be in DVAL,
8217 a record value. That is, this routine selects the appropriate
8218 branch of the union at ADDR according to the discriminant value
8219 indicated in the union's type name. Returns VAR_TYPE0 itself if
8220 it represents a variant subject to a pragma Unchecked_Union. */
8221
8222 static struct type *
8223 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8224 CORE_ADDR address, struct value *dval)
8225 {
8226 int which;
8227 struct type *templ_type;
8228 struct type *var_type;
8229
8230 if (var_type0->code () == TYPE_CODE_PTR)
8231 var_type = TYPE_TARGET_TYPE (var_type0);
8232 else
8233 var_type = var_type0;
8234
8235 templ_type = ada_find_parallel_type (var_type, "___XVU");
8236
8237 if (templ_type != NULL)
8238 var_type = templ_type;
8239
8240 if (is_unchecked_variant (var_type, value_type (dval)))
8241 return var_type0;
8242 which = ada_which_variant_applies (var_type, dval);
8243
8244 if (which < 0)
8245 return empty_record (var_type);
8246 else if (is_dynamic_field (var_type, which))
8247 return to_fixed_record_type
8248 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8249 valaddr, address, dval);
8250 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8251 return
8252 to_fixed_record_type
8253 (var_type->field (which).type (), valaddr, address, dval);
8254 else
8255 return var_type->field (which).type ();
8256 }
8257
8258 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8259 ENCODING_TYPE, a type following the GNAT conventions for discrete
8260 type encodings, only carries redundant information. */
8261
8262 static int
8263 ada_is_redundant_range_encoding (struct type *range_type,
8264 struct type *encoding_type)
8265 {
8266 const char *bounds_str;
8267 int n;
8268 LONGEST lo, hi;
8269
8270 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8271
8272 if (get_base_type (range_type)->code ()
8273 != get_base_type (encoding_type)->code ())
8274 {
8275 /* The compiler probably used a simple base type to describe
8276 the range type instead of the range's actual base type,
8277 expecting us to get the real base type from the encoding
8278 anyway. In this situation, the encoding cannot be ignored
8279 as redundant. */
8280 return 0;
8281 }
8282
8283 if (is_dynamic_type (range_type))
8284 return 0;
8285
8286 if (encoding_type->name () == NULL)
8287 return 0;
8288
8289 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8290 if (bounds_str == NULL)
8291 return 0;
8292
8293 n = 8; /* Skip "___XDLU_". */
8294 if (!ada_scan_number (bounds_str, n, &lo, &n))
8295 return 0;
8296 if (range_type->bounds ()->low.const_val () != lo)
8297 return 0;
8298
8299 n += 2; /* Skip the "__" separator between the two bounds. */
8300 if (!ada_scan_number (bounds_str, n, &hi, &n))
8301 return 0;
8302 if (range_type->bounds ()->high.const_val () != hi)
8303 return 0;
8304
8305 return 1;
8306 }
8307
8308 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8309 a type following the GNAT encoding for describing array type
8310 indices, only carries redundant information. */
8311
8312 static int
8313 ada_is_redundant_index_type_desc (struct type *array_type,
8314 struct type *desc_type)
8315 {
8316 struct type *this_layer = check_typedef (array_type);
8317 int i;
8318
8319 for (i = 0; i < desc_type->num_fields (); i++)
8320 {
8321 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8322 desc_type->field (i).type ()))
8323 return 0;
8324 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8325 }
8326
8327 return 1;
8328 }
8329
8330 /* Assuming that TYPE0 is an array type describing the type of a value
8331 at ADDR, and that DVAL describes a record containing any
8332 discriminants used in TYPE0, returns a type for the value that
8333 contains no dynamic components (that is, no components whose sizes
8334 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8335 true, gives an error message if the resulting type's size is over
8336 varsize_limit. */
8337
8338 static struct type *
8339 to_fixed_array_type (struct type *type0, struct value *dval,
8340 int ignore_too_big)
8341 {
8342 struct type *index_type_desc;
8343 struct type *result;
8344 int constrained_packed_array_p;
8345 static const char *xa_suffix = "___XA";
8346
8347 type0 = ada_check_typedef (type0);
8348 if (type0->is_fixed_instance ())
8349 return type0;
8350
8351 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8352 if (constrained_packed_array_p)
8353 {
8354 type0 = decode_constrained_packed_array_type (type0);
8355 if (type0 == nullptr)
8356 error (_("could not decode constrained packed array type"));
8357 }
8358
8359 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8360
8361 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8362 encoding suffixed with 'P' may still be generated. If so,
8363 it should be used to find the XA type. */
8364
8365 if (index_type_desc == NULL)
8366 {
8367 const char *type_name = ada_type_name (type0);
8368
8369 if (type_name != NULL)
8370 {
8371 const int len = strlen (type_name);
8372 char *name = (char *) alloca (len + strlen (xa_suffix));
8373
8374 if (type_name[len - 1] == 'P')
8375 {
8376 strcpy (name, type_name);
8377 strcpy (name + len - 1, xa_suffix);
8378 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8379 }
8380 }
8381 }
8382
8383 ada_fixup_array_indexes_type (index_type_desc);
8384 if (index_type_desc != NULL
8385 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8386 {
8387 /* Ignore this ___XA parallel type, as it does not bring any
8388 useful information. This allows us to avoid creating fixed
8389 versions of the array's index types, which would be identical
8390 to the original ones. This, in turn, can also help avoid
8391 the creation of fixed versions of the array itself. */
8392 index_type_desc = NULL;
8393 }
8394
8395 if (index_type_desc == NULL)
8396 {
8397 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8398
8399 /* NOTE: elt_type---the fixed version of elt_type0---should never
8400 depend on the contents of the array in properly constructed
8401 debugging data. */
8402 /* Create a fixed version of the array element type.
8403 We're not providing the address of an element here,
8404 and thus the actual object value cannot be inspected to do
8405 the conversion. This should not be a problem, since arrays of
8406 unconstrained objects are not allowed. In particular, all
8407 the elements of an array of a tagged type should all be of
8408 the same type specified in the debugging info. No need to
8409 consult the object tag. */
8410 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8411
8412 /* Make sure we always create a new array type when dealing with
8413 packed array types, since we're going to fix-up the array
8414 type length and element bitsize a little further down. */
8415 if (elt_type0 == elt_type && !constrained_packed_array_p)
8416 result = type0;
8417 else
8418 result = create_array_type (alloc_type_copy (type0),
8419 elt_type, type0->index_type ());
8420 }
8421 else
8422 {
8423 int i;
8424 struct type *elt_type0;
8425
8426 elt_type0 = type0;
8427 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8428 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8429
8430 /* NOTE: result---the fixed version of elt_type0---should never
8431 depend on the contents of the array in properly constructed
8432 debugging data. */
8433 /* Create a fixed version of the array element type.
8434 We're not providing the address of an element here,
8435 and thus the actual object value cannot be inspected to do
8436 the conversion. This should not be a problem, since arrays of
8437 unconstrained objects are not allowed. In particular, all
8438 the elements of an array of a tagged type should all be of
8439 the same type specified in the debugging info. No need to
8440 consult the object tag. */
8441 result =
8442 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8443
8444 elt_type0 = type0;
8445 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8446 {
8447 struct type *range_type =
8448 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8449
8450 result = create_array_type (alloc_type_copy (elt_type0),
8451 result, range_type);
8452 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8453 }
8454 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8455 error (_("array type with dynamic size is larger than varsize-limit"));
8456 }
8457
8458 /* We want to preserve the type name. This can be useful when
8459 trying to get the type name of a value that has already been
8460 printed (for instance, if the user did "print VAR; whatis $". */
8461 result->set_name (type0->name ());
8462
8463 if (constrained_packed_array_p)
8464 {
8465 /* So far, the resulting type has been created as if the original
8466 type was a regular (non-packed) array type. As a result, the
8467 bitsize of the array elements needs to be set again, and the array
8468 length needs to be recomputed based on that bitsize. */
8469 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8470 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8471
8472 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8473 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8474 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8475 TYPE_LENGTH (result)++;
8476 }
8477
8478 result->set_is_fixed_instance (true);
8479 return result;
8480 }
8481
8482
8483 /* A standard type (containing no dynamically sized components)
8484 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8485 DVAL describes a record containing any discriminants used in TYPE0,
8486 and may be NULL if there are none, or if the object of type TYPE at
8487 ADDRESS or in VALADDR contains these discriminants.
8488
8489 If CHECK_TAG is not null, in the case of tagged types, this function
8490 attempts to locate the object's tag and use it to compute the actual
8491 type. However, when ADDRESS is null, we cannot use it to determine the
8492 location of the tag, and therefore compute the tagged type's actual type.
8493 So we return the tagged type without consulting the tag. */
8494
8495 static struct type *
8496 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8497 CORE_ADDR address, struct value *dval, int check_tag)
8498 {
8499 type = ada_check_typedef (type);
8500
8501 /* Only un-fixed types need to be handled here. */
8502 if (!HAVE_GNAT_AUX_INFO (type))
8503 return type;
8504
8505 switch (type->code ())
8506 {
8507 default:
8508 return type;
8509 case TYPE_CODE_STRUCT:
8510 {
8511 struct type *static_type = to_static_fixed_type (type);
8512 struct type *fixed_record_type =
8513 to_fixed_record_type (type, valaddr, address, NULL);
8514
8515 /* If STATIC_TYPE is a tagged type and we know the object's address,
8516 then we can determine its tag, and compute the object's actual
8517 type from there. Note that we have to use the fixed record
8518 type (the parent part of the record may have dynamic fields
8519 and the way the location of _tag is expressed may depend on
8520 them). */
8521
8522 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8523 {
8524 struct value *tag =
8525 value_tag_from_contents_and_address
8526 (fixed_record_type,
8527 valaddr,
8528 address);
8529 struct type *real_type = type_from_tag (tag);
8530 struct value *obj =
8531 value_from_contents_and_address (fixed_record_type,
8532 valaddr,
8533 address);
8534 fixed_record_type = value_type (obj);
8535 if (real_type != NULL)
8536 return to_fixed_record_type
8537 (real_type, NULL,
8538 value_address (ada_tag_value_at_base_address (obj)), NULL);
8539 }
8540
8541 /* Check to see if there is a parallel ___XVZ variable.
8542 If there is, then it provides the actual size of our type. */
8543 else if (ada_type_name (fixed_record_type) != NULL)
8544 {
8545 const char *name = ada_type_name (fixed_record_type);
8546 char *xvz_name
8547 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8548 bool xvz_found = false;
8549 LONGEST size;
8550
8551 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8552 try
8553 {
8554 xvz_found = get_int_var_value (xvz_name, size);
8555 }
8556 catch (const gdb_exception_error &except)
8557 {
8558 /* We found the variable, but somehow failed to read
8559 its value. Rethrow the same error, but with a little
8560 bit more information, to help the user understand
8561 what went wrong (Eg: the variable might have been
8562 optimized out). */
8563 throw_error (except.error,
8564 _("unable to read value of %s (%s)"),
8565 xvz_name, except.what ());
8566 }
8567
8568 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8569 {
8570 fixed_record_type = copy_type (fixed_record_type);
8571 TYPE_LENGTH (fixed_record_type) = size;
8572
8573 /* The FIXED_RECORD_TYPE may have be a stub. We have
8574 observed this when the debugging info is STABS, and
8575 apparently it is something that is hard to fix.
8576
8577 In practice, we don't need the actual type definition
8578 at all, because the presence of the XVZ variable allows us
8579 to assume that there must be a XVS type as well, which we
8580 should be able to use later, when we need the actual type
8581 definition.
8582
8583 In the meantime, pretend that the "fixed" type we are
8584 returning is NOT a stub, because this can cause trouble
8585 when using this type to create new types targeting it.
8586 Indeed, the associated creation routines often check
8587 whether the target type is a stub and will try to replace
8588 it, thus using a type with the wrong size. This, in turn,
8589 might cause the new type to have the wrong size too.
8590 Consider the case of an array, for instance, where the size
8591 of the array is computed from the number of elements in
8592 our array multiplied by the size of its element. */
8593 fixed_record_type->set_is_stub (false);
8594 }
8595 }
8596 return fixed_record_type;
8597 }
8598 case TYPE_CODE_ARRAY:
8599 return to_fixed_array_type (type, dval, 1);
8600 case TYPE_CODE_UNION:
8601 if (dval == NULL)
8602 return type;
8603 else
8604 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8605 }
8606 }
8607
8608 /* The same as ada_to_fixed_type_1, except that it preserves the type
8609 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8610
8611 The typedef layer needs be preserved in order to differentiate between
8612 arrays and array pointers when both types are implemented using the same
8613 fat pointer. In the array pointer case, the pointer is encoded as
8614 a typedef of the pointer type. For instance, considering:
8615
8616 type String_Access is access String;
8617 S1 : String_Access := null;
8618
8619 To the debugger, S1 is defined as a typedef of type String. But
8620 to the user, it is a pointer. So if the user tries to print S1,
8621 we should not dereference the array, but print the array address
8622 instead.
8623
8624 If we didn't preserve the typedef layer, we would lose the fact that
8625 the type is to be presented as a pointer (needs de-reference before
8626 being printed). And we would also use the source-level type name. */
8627
8628 struct type *
8629 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8630 CORE_ADDR address, struct value *dval, int check_tag)
8631
8632 {
8633 struct type *fixed_type =
8634 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8635
8636 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8637 then preserve the typedef layer.
8638
8639 Implementation note: We can only check the main-type portion of
8640 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8641 from TYPE now returns a type that has the same instance flags
8642 as TYPE. For instance, if TYPE is a "typedef const", and its
8643 target type is a "struct", then the typedef elimination will return
8644 a "const" version of the target type. See check_typedef for more
8645 details about how the typedef layer elimination is done.
8646
8647 brobecker/2010-11-19: It seems to me that the only case where it is
8648 useful to preserve the typedef layer is when dealing with fat pointers.
8649 Perhaps, we could add a check for that and preserve the typedef layer
8650 only in that situation. But this seems unnecessary so far, probably
8651 because we call check_typedef/ada_check_typedef pretty much everywhere.
8652 */
8653 if (type->code () == TYPE_CODE_TYPEDEF
8654 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8655 == TYPE_MAIN_TYPE (fixed_type)))
8656 return type;
8657
8658 return fixed_type;
8659 }
8660
8661 /* A standard (static-sized) type corresponding as well as possible to
8662 TYPE0, but based on no runtime data. */
8663
8664 static struct type *
8665 to_static_fixed_type (struct type *type0)
8666 {
8667 struct type *type;
8668
8669 if (type0 == NULL)
8670 return NULL;
8671
8672 if (type0->is_fixed_instance ())
8673 return type0;
8674
8675 type0 = ada_check_typedef (type0);
8676
8677 switch (type0->code ())
8678 {
8679 default:
8680 return type0;
8681 case TYPE_CODE_STRUCT:
8682 type = dynamic_template_type (type0);
8683 if (type != NULL)
8684 return template_to_static_fixed_type (type);
8685 else
8686 return template_to_static_fixed_type (type0);
8687 case TYPE_CODE_UNION:
8688 type = ada_find_parallel_type (type0, "___XVU");
8689 if (type != NULL)
8690 return template_to_static_fixed_type (type);
8691 else
8692 return template_to_static_fixed_type (type0);
8693 }
8694 }
8695
8696 /* A static approximation of TYPE with all type wrappers removed. */
8697
8698 static struct type *
8699 static_unwrap_type (struct type *type)
8700 {
8701 if (ada_is_aligner_type (type))
8702 {
8703 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8704 if (ada_type_name (type1) == NULL)
8705 type1->set_name (ada_type_name (type));
8706
8707 return static_unwrap_type (type1);
8708 }
8709 else
8710 {
8711 struct type *raw_real_type = ada_get_base_type (type);
8712
8713 if (raw_real_type == type)
8714 return type;
8715 else
8716 return to_static_fixed_type (raw_real_type);
8717 }
8718 }
8719
8720 /* In some cases, incomplete and private types require
8721 cross-references that are not resolved as records (for example,
8722 type Foo;
8723 type FooP is access Foo;
8724 V: FooP;
8725 type Foo is array ...;
8726 ). In these cases, since there is no mechanism for producing
8727 cross-references to such types, we instead substitute for FooP a
8728 stub enumeration type that is nowhere resolved, and whose tag is
8729 the name of the actual type. Call these types "non-record stubs". */
8730
8731 /* A type equivalent to TYPE that is not a non-record stub, if one
8732 exists, otherwise TYPE. */
8733
8734 struct type *
8735 ada_check_typedef (struct type *type)
8736 {
8737 if (type == NULL)
8738 return NULL;
8739
8740 /* If our type is an access to an unconstrained array, which is encoded
8741 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8742 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8743 what allows us to distinguish between fat pointers that represent
8744 array types, and fat pointers that represent array access types
8745 (in both cases, the compiler implements them as fat pointers). */
8746 if (ada_is_access_to_unconstrained_array (type))
8747 return type;
8748
8749 type = check_typedef (type);
8750 if (type == NULL || type->code () != TYPE_CODE_ENUM
8751 || !type->is_stub ()
8752 || type->name () == NULL)
8753 return type;
8754 else
8755 {
8756 const char *name = type->name ();
8757 struct type *type1 = ada_find_any_type (name);
8758
8759 if (type1 == NULL)
8760 return type;
8761
8762 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8763 stubs pointing to arrays, as we don't create symbols for array
8764 types, only for the typedef-to-array types). If that's the case,
8765 strip the typedef layer. */
8766 if (type1->code () == TYPE_CODE_TYPEDEF)
8767 type1 = ada_check_typedef (type1);
8768
8769 return type1;
8770 }
8771 }
8772
8773 /* A value representing the data at VALADDR/ADDRESS as described by
8774 type TYPE0, but with a standard (static-sized) type that correctly
8775 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8776 type, then return VAL0 [this feature is simply to avoid redundant
8777 creation of struct values]. */
8778
8779 static struct value *
8780 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8781 struct value *val0)
8782 {
8783 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8784
8785 if (type == type0 && val0 != NULL)
8786 return val0;
8787
8788 if (VALUE_LVAL (val0) != lval_memory)
8789 {
8790 /* Our value does not live in memory; it could be a convenience
8791 variable, for instance. Create a not_lval value using val0's
8792 contents. */
8793 return value_from_contents (type, value_contents (val0));
8794 }
8795
8796 return value_from_contents_and_address (type, 0, address);
8797 }
8798
8799 /* A value representing VAL, but with a standard (static-sized) type
8800 that correctly describes it. Does not necessarily create a new
8801 value. */
8802
8803 struct value *
8804 ada_to_fixed_value (struct value *val)
8805 {
8806 val = unwrap_value (val);
8807 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8808 return val;
8809 }
8810 \f
8811
8812 /* Attributes */
8813
8814 /* Table mapping attribute numbers to names.
8815 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8816
8817 static const char * const attribute_names[] = {
8818 "<?>",
8819
8820 "first",
8821 "last",
8822 "length",
8823 "image",
8824 "max",
8825 "min",
8826 "modulus",
8827 "pos",
8828 "size",
8829 "tag",
8830 "val",
8831 0
8832 };
8833
8834 static const char *
8835 ada_attribute_name (enum exp_opcode n)
8836 {
8837 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8838 return attribute_names[n - OP_ATR_FIRST + 1];
8839 else
8840 return attribute_names[0];
8841 }
8842
8843 /* Evaluate the 'POS attribute applied to ARG. */
8844
8845 static LONGEST
8846 pos_atr (struct value *arg)
8847 {
8848 struct value *val = coerce_ref (arg);
8849 struct type *type = value_type (val);
8850 LONGEST result;
8851
8852 if (!discrete_type_p (type))
8853 error (_("'POS only defined on discrete types"));
8854
8855 if (!discrete_position (type, value_as_long (val), &result))
8856 error (_("enumeration value is invalid: can't find 'POS"));
8857
8858 return result;
8859 }
8860
8861 static struct value *
8862 value_pos_atr (struct type *type, struct value *arg)
8863 {
8864 return value_from_longest (type, pos_atr (arg));
8865 }
8866
8867 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8868
8869 static struct value *
8870 val_atr (struct type *type, LONGEST val)
8871 {
8872 gdb_assert (discrete_type_p (type));
8873 if (type->code () == TYPE_CODE_RANGE)
8874 type = TYPE_TARGET_TYPE (type);
8875 if (type->code () == TYPE_CODE_ENUM)
8876 {
8877 if (val < 0 || val >= type->num_fields ())
8878 error (_("argument to 'VAL out of range"));
8879 val = TYPE_FIELD_ENUMVAL (type, val);
8880 }
8881 return value_from_longest (type, val);
8882 }
8883
8884 static struct value *
8885 value_val_atr (struct type *type, struct value *arg)
8886 {
8887 if (!discrete_type_p (type))
8888 error (_("'VAL only defined on discrete types"));
8889 if (!integer_type_p (value_type (arg)))
8890 error (_("'VAL requires integral argument"));
8891
8892 return val_atr (type, value_as_long (arg));
8893 }
8894 \f
8895
8896 /* Evaluation */
8897
8898 /* True if TYPE appears to be an Ada character type.
8899 [At the moment, this is true only for Character and Wide_Character;
8900 It is a heuristic test that could stand improvement]. */
8901
8902 bool
8903 ada_is_character_type (struct type *type)
8904 {
8905 const char *name;
8906
8907 /* If the type code says it's a character, then assume it really is,
8908 and don't check any further. */
8909 if (type->code () == TYPE_CODE_CHAR)
8910 return true;
8911
8912 /* Otherwise, assume it's a character type iff it is a discrete type
8913 with a known character type name. */
8914 name = ada_type_name (type);
8915 return (name != NULL
8916 && (type->code () == TYPE_CODE_INT
8917 || type->code () == TYPE_CODE_RANGE)
8918 && (strcmp (name, "character") == 0
8919 || strcmp (name, "wide_character") == 0
8920 || strcmp (name, "wide_wide_character") == 0
8921 || strcmp (name, "unsigned char") == 0));
8922 }
8923
8924 /* True if TYPE appears to be an Ada string type. */
8925
8926 bool
8927 ada_is_string_type (struct type *type)
8928 {
8929 type = ada_check_typedef (type);
8930 if (type != NULL
8931 && type->code () != TYPE_CODE_PTR
8932 && (ada_is_simple_array_type (type)
8933 || ada_is_array_descriptor_type (type))
8934 && ada_array_arity (type) == 1)
8935 {
8936 struct type *elttype = ada_array_element_type (type, 1);
8937
8938 return ada_is_character_type (elttype);
8939 }
8940 else
8941 return false;
8942 }
8943
8944 /* The compiler sometimes provides a parallel XVS type for a given
8945 PAD type. Normally, it is safe to follow the PAD type directly,
8946 but older versions of the compiler have a bug that causes the offset
8947 of its "F" field to be wrong. Following that field in that case
8948 would lead to incorrect results, but this can be worked around
8949 by ignoring the PAD type and using the associated XVS type instead.
8950
8951 Set to True if the debugger should trust the contents of PAD types.
8952 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8953 static bool trust_pad_over_xvs = true;
8954
8955 /* True if TYPE is a struct type introduced by the compiler to force the
8956 alignment of a value. Such types have a single field with a
8957 distinctive name. */
8958
8959 int
8960 ada_is_aligner_type (struct type *type)
8961 {
8962 type = ada_check_typedef (type);
8963
8964 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8965 return 0;
8966
8967 return (type->code () == TYPE_CODE_STRUCT
8968 && type->num_fields () == 1
8969 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8970 }
8971
8972 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8973 the parallel type. */
8974
8975 struct type *
8976 ada_get_base_type (struct type *raw_type)
8977 {
8978 struct type *real_type_namer;
8979 struct type *raw_real_type;
8980
8981 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8982 return raw_type;
8983
8984 if (ada_is_aligner_type (raw_type))
8985 /* The encoding specifies that we should always use the aligner type.
8986 So, even if this aligner type has an associated XVS type, we should
8987 simply ignore it.
8988
8989 According to the compiler gurus, an XVS type parallel to an aligner
8990 type may exist because of a stabs limitation. In stabs, aligner
8991 types are empty because the field has a variable-sized type, and
8992 thus cannot actually be used as an aligner type. As a result,
8993 we need the associated parallel XVS type to decode the type.
8994 Since the policy in the compiler is to not change the internal
8995 representation based on the debugging info format, we sometimes
8996 end up having a redundant XVS type parallel to the aligner type. */
8997 return raw_type;
8998
8999 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9000 if (real_type_namer == NULL
9001 || real_type_namer->code () != TYPE_CODE_STRUCT
9002 || real_type_namer->num_fields () != 1)
9003 return raw_type;
9004
9005 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9006 {
9007 /* This is an older encoding form where the base type needs to be
9008 looked up by name. We prefer the newer encoding because it is
9009 more efficient. */
9010 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9011 if (raw_real_type == NULL)
9012 return raw_type;
9013 else
9014 return raw_real_type;
9015 }
9016
9017 /* The field in our XVS type is a reference to the base type. */
9018 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9019 }
9020
9021 /* The type of value designated by TYPE, with all aligners removed. */
9022
9023 struct type *
9024 ada_aligned_type (struct type *type)
9025 {
9026 if (ada_is_aligner_type (type))
9027 return ada_aligned_type (type->field (0).type ());
9028 else
9029 return ada_get_base_type (type);
9030 }
9031
9032
9033 /* The address of the aligned value in an object at address VALADDR
9034 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9035
9036 const gdb_byte *
9037 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9038 {
9039 if (ada_is_aligner_type (type))
9040 return ada_aligned_value_addr (type->field (0).type (),
9041 valaddr +
9042 TYPE_FIELD_BITPOS (type,
9043 0) / TARGET_CHAR_BIT);
9044 else
9045 return valaddr;
9046 }
9047
9048
9049
9050 /* The printed representation of an enumeration literal with encoded
9051 name NAME. The value is good to the next call of ada_enum_name. */
9052 const char *
9053 ada_enum_name (const char *name)
9054 {
9055 static char *result;
9056 static size_t result_len = 0;
9057 const char *tmp;
9058
9059 /* First, unqualify the enumeration name:
9060 1. Search for the last '.' character. If we find one, then skip
9061 all the preceding characters, the unqualified name starts
9062 right after that dot.
9063 2. Otherwise, we may be debugging on a target where the compiler
9064 translates dots into "__". Search forward for double underscores,
9065 but stop searching when we hit an overloading suffix, which is
9066 of the form "__" followed by digits. */
9067
9068 tmp = strrchr (name, '.');
9069 if (tmp != NULL)
9070 name = tmp + 1;
9071 else
9072 {
9073 while ((tmp = strstr (name, "__")) != NULL)
9074 {
9075 if (isdigit (tmp[2]))
9076 break;
9077 else
9078 name = tmp + 2;
9079 }
9080 }
9081
9082 if (name[0] == 'Q')
9083 {
9084 int v;
9085
9086 if (name[1] == 'U' || name[1] == 'W')
9087 {
9088 if (sscanf (name + 2, "%x", &v) != 1)
9089 return name;
9090 }
9091 else if (((name[1] >= '0' && name[1] <= '9')
9092 || (name[1] >= 'a' && name[1] <= 'z'))
9093 && name[2] == '\0')
9094 {
9095 GROW_VECT (result, result_len, 4);
9096 xsnprintf (result, result_len, "'%c'", name[1]);
9097 return result;
9098 }
9099 else
9100 return name;
9101
9102 GROW_VECT (result, result_len, 16);
9103 if (isascii (v) && isprint (v))
9104 xsnprintf (result, result_len, "'%c'", v);
9105 else if (name[1] == 'U')
9106 xsnprintf (result, result_len, "[\"%02x\"]", v);
9107 else
9108 xsnprintf (result, result_len, "[\"%04x\"]", v);
9109
9110 return result;
9111 }
9112 else
9113 {
9114 tmp = strstr (name, "__");
9115 if (tmp == NULL)
9116 tmp = strstr (name, "$");
9117 if (tmp != NULL)
9118 {
9119 GROW_VECT (result, result_len, tmp - name + 1);
9120 strncpy (result, name, tmp - name);
9121 result[tmp - name] = '\0';
9122 return result;
9123 }
9124
9125 return name;
9126 }
9127 }
9128
9129 /* Evaluate the subexpression of EXP starting at *POS as for
9130 evaluate_type, updating *POS to point just past the evaluated
9131 expression. */
9132
9133 static struct value *
9134 evaluate_subexp_type (struct expression *exp, int *pos)
9135 {
9136 return evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9137 }
9138
9139 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9140 value it wraps. */
9141
9142 static struct value *
9143 unwrap_value (struct value *val)
9144 {
9145 struct type *type = ada_check_typedef (value_type (val));
9146
9147 if (ada_is_aligner_type (type))
9148 {
9149 struct value *v = ada_value_struct_elt (val, "F", 0);
9150 struct type *val_type = ada_check_typedef (value_type (v));
9151
9152 if (ada_type_name (val_type) == NULL)
9153 val_type->set_name (ada_type_name (type));
9154
9155 return unwrap_value (v);
9156 }
9157 else
9158 {
9159 struct type *raw_real_type =
9160 ada_check_typedef (ada_get_base_type (type));
9161
9162 /* If there is no parallel XVS or XVE type, then the value is
9163 already unwrapped. Return it without further modification. */
9164 if ((type == raw_real_type)
9165 && ada_find_parallel_type (type, "___XVE") == NULL)
9166 return val;
9167
9168 return
9169 coerce_unspec_val_to_type
9170 (val, ada_to_fixed_type (raw_real_type, 0,
9171 value_address (val),
9172 NULL, 1));
9173 }
9174 }
9175
9176 static struct value *
9177 cast_from_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
9178 {
9179 struct value *scale
9180 = gnat_encoded_fixed_point_scaling_factor (value_type (arg));
9181 arg = value_cast (value_type (scale), arg);
9182
9183 arg = value_binop (arg, scale, BINOP_MUL);
9184 return value_cast (type, arg);
9185 }
9186
9187 static struct value *
9188 cast_to_gnat_encoded_fixed_point_type (struct type *type, struct value *arg)
9189 {
9190 if (type == value_type (arg))
9191 return arg;
9192
9193 struct value *scale = gnat_encoded_fixed_point_scaling_factor (type);
9194 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9195 arg = cast_from_gnat_encoded_fixed_point_type (value_type (scale), arg);
9196 else
9197 arg = value_cast (value_type (scale), arg);
9198
9199 arg = value_binop (arg, scale, BINOP_DIV);
9200 return value_cast (type, arg);
9201 }
9202
9203 /* Given two array types T1 and T2, return nonzero iff both arrays
9204 contain the same number of elements. */
9205
9206 static int
9207 ada_same_array_size_p (struct type *t1, struct type *t2)
9208 {
9209 LONGEST lo1, hi1, lo2, hi2;
9210
9211 /* Get the array bounds in order to verify that the size of
9212 the two arrays match. */
9213 if (!get_array_bounds (t1, &lo1, &hi1)
9214 || !get_array_bounds (t2, &lo2, &hi2))
9215 error (_("unable to determine array bounds"));
9216
9217 /* To make things easier for size comparison, normalize a bit
9218 the case of empty arrays by making sure that the difference
9219 between upper bound and lower bound is always -1. */
9220 if (lo1 > hi1)
9221 hi1 = lo1 - 1;
9222 if (lo2 > hi2)
9223 hi2 = lo2 - 1;
9224
9225 return (hi1 - lo1 == hi2 - lo2);
9226 }
9227
9228 /* Assuming that VAL is an array of integrals, and TYPE represents
9229 an array with the same number of elements, but with wider integral
9230 elements, return an array "casted" to TYPE. In practice, this
9231 means that the returned array is built by casting each element
9232 of the original array into TYPE's (wider) element type. */
9233
9234 static struct value *
9235 ada_promote_array_of_integrals (struct type *type, struct value *val)
9236 {
9237 struct type *elt_type = TYPE_TARGET_TYPE (type);
9238 LONGEST lo, hi;
9239 struct value *res;
9240 LONGEST i;
9241
9242 /* Verify that both val and type are arrays of scalars, and
9243 that the size of val's elements is smaller than the size
9244 of type's element. */
9245 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9246 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9247 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9248 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9249 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9250 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9251
9252 if (!get_array_bounds (type, &lo, &hi))
9253 error (_("unable to determine array bounds"));
9254
9255 res = allocate_value (type);
9256
9257 /* Promote each array element. */
9258 for (i = 0; i < hi - lo + 1; i++)
9259 {
9260 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9261
9262 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9263 value_contents_all (elt), TYPE_LENGTH (elt_type));
9264 }
9265
9266 return res;
9267 }
9268
9269 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9270 return the converted value. */
9271
9272 static struct value *
9273 coerce_for_assign (struct type *type, struct value *val)
9274 {
9275 struct type *type2 = value_type (val);
9276
9277 if (type == type2)
9278 return val;
9279
9280 type2 = ada_check_typedef (type2);
9281 type = ada_check_typedef (type);
9282
9283 if (type2->code () == TYPE_CODE_PTR
9284 && type->code () == TYPE_CODE_ARRAY)
9285 {
9286 val = ada_value_ind (val);
9287 type2 = value_type (val);
9288 }
9289
9290 if (type2->code () == TYPE_CODE_ARRAY
9291 && type->code () == TYPE_CODE_ARRAY)
9292 {
9293 if (!ada_same_array_size_p (type, type2))
9294 error (_("cannot assign arrays of different length"));
9295
9296 if (is_integral_type (TYPE_TARGET_TYPE (type))
9297 && is_integral_type (TYPE_TARGET_TYPE (type2))
9298 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9299 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9300 {
9301 /* Allow implicit promotion of the array elements to
9302 a wider type. */
9303 return ada_promote_array_of_integrals (type, val);
9304 }
9305
9306 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9307 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9308 error (_("Incompatible types in assignment"));
9309 deprecated_set_value_type (val, type);
9310 }
9311 return val;
9312 }
9313
9314 static struct value *
9315 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9316 {
9317 struct value *val;
9318 struct type *type1, *type2;
9319 LONGEST v, v1, v2;
9320
9321 arg1 = coerce_ref (arg1);
9322 arg2 = coerce_ref (arg2);
9323 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9324 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9325
9326 if (type1->code () != TYPE_CODE_INT
9327 || type2->code () != TYPE_CODE_INT)
9328 return value_binop (arg1, arg2, op);
9329
9330 switch (op)
9331 {
9332 case BINOP_MOD:
9333 case BINOP_DIV:
9334 case BINOP_REM:
9335 break;
9336 default:
9337 return value_binop (arg1, arg2, op);
9338 }
9339
9340 v2 = value_as_long (arg2);
9341 if (v2 == 0)
9342 error (_("second operand of %s must not be zero."), op_string (op));
9343
9344 if (type1->is_unsigned () || op == BINOP_MOD)
9345 return value_binop (arg1, arg2, op);
9346
9347 v1 = value_as_long (arg1);
9348 switch (op)
9349 {
9350 case BINOP_DIV:
9351 v = v1 / v2;
9352 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9353 v += v > 0 ? -1 : 1;
9354 break;
9355 case BINOP_REM:
9356 v = v1 % v2;
9357 if (v * v1 < 0)
9358 v -= v2;
9359 break;
9360 default:
9361 /* Should not reach this point. */
9362 v = 0;
9363 }
9364
9365 val = allocate_value (type1);
9366 store_unsigned_integer (value_contents_raw (val),
9367 TYPE_LENGTH (value_type (val)),
9368 type_byte_order (type1), v);
9369 return val;
9370 }
9371
9372 static int
9373 ada_value_equal (struct value *arg1, struct value *arg2)
9374 {
9375 if (ada_is_direct_array_type (value_type (arg1))
9376 || ada_is_direct_array_type (value_type (arg2)))
9377 {
9378 struct type *arg1_type, *arg2_type;
9379
9380 /* Automatically dereference any array reference before
9381 we attempt to perform the comparison. */
9382 arg1 = ada_coerce_ref (arg1);
9383 arg2 = ada_coerce_ref (arg2);
9384
9385 arg1 = ada_coerce_to_simple_array (arg1);
9386 arg2 = ada_coerce_to_simple_array (arg2);
9387
9388 arg1_type = ada_check_typedef (value_type (arg1));
9389 arg2_type = ada_check_typedef (value_type (arg2));
9390
9391 if (arg1_type->code () != TYPE_CODE_ARRAY
9392 || arg2_type->code () != TYPE_CODE_ARRAY)
9393 error (_("Attempt to compare array with non-array"));
9394 /* FIXME: The following works only for types whose
9395 representations use all bits (no padding or undefined bits)
9396 and do not have user-defined equality. */
9397 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9398 && memcmp (value_contents (arg1), value_contents (arg2),
9399 TYPE_LENGTH (arg1_type)) == 0);
9400 }
9401 return value_equal (arg1, arg2);
9402 }
9403
9404 /* Total number of component associations in the aggregate starting at
9405 index PC in EXP. Assumes that index PC is the start of an
9406 OP_AGGREGATE. */
9407
9408 static int
9409 num_component_specs (struct expression *exp, int pc)
9410 {
9411 int n, m, i;
9412
9413 m = exp->elts[pc + 1].longconst;
9414 pc += 3;
9415 n = 0;
9416 for (i = 0; i < m; i += 1)
9417 {
9418 switch (exp->elts[pc].opcode)
9419 {
9420 default:
9421 n += 1;
9422 break;
9423 case OP_CHOICES:
9424 n += exp->elts[pc + 1].longconst;
9425 break;
9426 }
9427 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9428 }
9429 return n;
9430 }
9431
9432 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9433 component of LHS (a simple array or a record), updating *POS past
9434 the expression, assuming that LHS is contained in CONTAINER. Does
9435 not modify the inferior's memory, nor does it modify LHS (unless
9436 LHS == CONTAINER). */
9437
9438 static void
9439 assign_component (struct value *container, struct value *lhs, LONGEST index,
9440 struct expression *exp, int *pos)
9441 {
9442 struct value *mark = value_mark ();
9443 struct value *elt;
9444 struct type *lhs_type = check_typedef (value_type (lhs));
9445
9446 if (lhs_type->code () == TYPE_CODE_ARRAY)
9447 {
9448 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9449 struct value *index_val = value_from_longest (index_type, index);
9450
9451 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9452 }
9453 else
9454 {
9455 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9456 elt = ada_to_fixed_value (elt);
9457 }
9458
9459 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9460 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9461 else
9462 value_assign_to_component (container, elt,
9463 ada_evaluate_subexp (NULL, exp, pos,
9464 EVAL_NORMAL));
9465
9466 value_free_to_mark (mark);
9467 }
9468
9469 /* Assuming that LHS represents an lvalue having a record or array
9470 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9471 of that aggregate's value to LHS, advancing *POS past the
9472 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9473 lvalue containing LHS (possibly LHS itself). Does not modify
9474 the inferior's memory, nor does it modify the contents of
9475 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9476
9477 static struct value *
9478 assign_aggregate (struct value *container,
9479 struct value *lhs, struct expression *exp,
9480 int *pos, enum noside noside)
9481 {
9482 struct type *lhs_type;
9483 int n = exp->elts[*pos+1].longconst;
9484 LONGEST low_index, high_index;
9485 int num_specs;
9486 LONGEST *indices;
9487 int max_indices, num_indices;
9488 int i;
9489
9490 *pos += 3;
9491 if (noside != EVAL_NORMAL)
9492 {
9493 for (i = 0; i < n; i += 1)
9494 ada_evaluate_subexp (NULL, exp, pos, noside);
9495 return container;
9496 }
9497
9498 container = ada_coerce_ref (container);
9499 if (ada_is_direct_array_type (value_type (container)))
9500 container = ada_coerce_to_simple_array (container);
9501 lhs = ada_coerce_ref (lhs);
9502 if (!deprecated_value_modifiable (lhs))
9503 error (_("Left operand of assignment is not a modifiable lvalue."));
9504
9505 lhs_type = check_typedef (value_type (lhs));
9506 if (ada_is_direct_array_type (lhs_type))
9507 {
9508 lhs = ada_coerce_to_simple_array (lhs);
9509 lhs_type = check_typedef (value_type (lhs));
9510 low_index = lhs_type->bounds ()->low.const_val ();
9511 high_index = lhs_type->bounds ()->high.const_val ();
9512 }
9513 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9514 {
9515 low_index = 0;
9516 high_index = num_visible_fields (lhs_type) - 1;
9517 }
9518 else
9519 error (_("Left-hand side must be array or record."));
9520
9521 num_specs = num_component_specs (exp, *pos - 3);
9522 max_indices = 4 * num_specs + 4;
9523 indices = XALLOCAVEC (LONGEST, max_indices);
9524 indices[0] = indices[1] = low_index - 1;
9525 indices[2] = indices[3] = high_index + 1;
9526 num_indices = 4;
9527
9528 for (i = 0; i < n; i += 1)
9529 {
9530 switch (exp->elts[*pos].opcode)
9531 {
9532 case OP_CHOICES:
9533 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9534 &num_indices, max_indices,
9535 low_index, high_index);
9536 break;
9537 case OP_POSITIONAL:
9538 aggregate_assign_positional (container, lhs, exp, pos, indices,
9539 &num_indices, max_indices,
9540 low_index, high_index);
9541 break;
9542 case OP_OTHERS:
9543 if (i != n-1)
9544 error (_("Misplaced 'others' clause"));
9545 aggregate_assign_others (container, lhs, exp, pos, indices,
9546 num_indices, low_index, high_index);
9547 break;
9548 default:
9549 error (_("Internal error: bad aggregate clause"));
9550 }
9551 }
9552
9553 return container;
9554 }
9555
9556 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9557 construct at *POS, updating *POS past the construct, given that
9558 the positions are relative to lower bound LOW, where HIGH is the
9559 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9560 updating *NUM_INDICES as needed. CONTAINER is as for
9561 assign_aggregate. */
9562 static void
9563 aggregate_assign_positional (struct value *container,
9564 struct value *lhs, struct expression *exp,
9565 int *pos, LONGEST *indices, int *num_indices,
9566 int max_indices, LONGEST low, LONGEST high)
9567 {
9568 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9569
9570 if (ind - 1 == high)
9571 warning (_("Extra components in aggregate ignored."));
9572 if (ind <= high)
9573 {
9574 add_component_interval (ind, ind, indices, num_indices, max_indices);
9575 *pos += 3;
9576 assign_component (container, lhs, ind, exp, pos);
9577 }
9578 else
9579 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9580 }
9581
9582 /* Assign into the components of LHS indexed by the OP_CHOICES
9583 construct at *POS, updating *POS past the construct, given that
9584 the allowable indices are LOW..HIGH. Record the indices assigned
9585 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9586 needed. CONTAINER is as for assign_aggregate. */
9587 static void
9588 aggregate_assign_from_choices (struct value *container,
9589 struct value *lhs, struct expression *exp,
9590 int *pos, LONGEST *indices, int *num_indices,
9591 int max_indices, LONGEST low, LONGEST high)
9592 {
9593 int j;
9594 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9595 int choice_pos, expr_pc;
9596 int is_array = ada_is_direct_array_type (value_type (lhs));
9597
9598 choice_pos = *pos += 3;
9599
9600 for (j = 0; j < n_choices; j += 1)
9601 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9602 expr_pc = *pos;
9603 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9604
9605 for (j = 0; j < n_choices; j += 1)
9606 {
9607 LONGEST lower, upper;
9608 enum exp_opcode op = exp->elts[choice_pos].opcode;
9609
9610 if (op == OP_DISCRETE_RANGE)
9611 {
9612 choice_pos += 1;
9613 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9614 EVAL_NORMAL));
9615 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9616 EVAL_NORMAL));
9617 }
9618 else if (is_array)
9619 {
9620 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9621 EVAL_NORMAL));
9622 upper = lower;
9623 }
9624 else
9625 {
9626 int ind;
9627 const char *name;
9628
9629 switch (op)
9630 {
9631 case OP_NAME:
9632 name = &exp->elts[choice_pos + 2].string;
9633 break;
9634 case OP_VAR_VALUE:
9635 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9636 break;
9637 default:
9638 error (_("Invalid record component association."));
9639 }
9640 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9641 ind = 0;
9642 if (! find_struct_field (name, value_type (lhs), 0,
9643 NULL, NULL, NULL, NULL, &ind))
9644 error (_("Unknown component name: %s."), name);
9645 lower = upper = ind;
9646 }
9647
9648 if (lower <= upper && (lower < low || upper > high))
9649 error (_("Index in component association out of bounds."));
9650
9651 add_component_interval (lower, upper, indices, num_indices,
9652 max_indices);
9653 while (lower <= upper)
9654 {
9655 int pos1;
9656
9657 pos1 = expr_pc;
9658 assign_component (container, lhs, lower, exp, &pos1);
9659 lower += 1;
9660 }
9661 }
9662 }
9663
9664 /* Assign the value of the expression in the OP_OTHERS construct in
9665 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9666 have not been previously assigned. The index intervals already assigned
9667 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9668 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9669 static void
9670 aggregate_assign_others (struct value *container,
9671 struct value *lhs, struct expression *exp,
9672 int *pos, LONGEST *indices, int num_indices,
9673 LONGEST low, LONGEST high)
9674 {
9675 int i;
9676 int expr_pc = *pos + 1;
9677
9678 for (i = 0; i < num_indices - 2; i += 2)
9679 {
9680 LONGEST ind;
9681
9682 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9683 {
9684 int localpos;
9685
9686 localpos = expr_pc;
9687 assign_component (container, lhs, ind, exp, &localpos);
9688 }
9689 }
9690 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9691 }
9692
9693 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9694 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9695 modifying *SIZE as needed. It is an error if *SIZE exceeds
9696 MAX_SIZE. The resulting intervals do not overlap. */
9697 static void
9698 add_component_interval (LONGEST low, LONGEST high,
9699 LONGEST* indices, int *size, int max_size)
9700 {
9701 int i, j;
9702
9703 for (i = 0; i < *size; i += 2) {
9704 if (high >= indices[i] && low <= indices[i + 1])
9705 {
9706 int kh;
9707
9708 for (kh = i + 2; kh < *size; kh += 2)
9709 if (high < indices[kh])
9710 break;
9711 if (low < indices[i])
9712 indices[i] = low;
9713 indices[i + 1] = indices[kh - 1];
9714 if (high > indices[i + 1])
9715 indices[i + 1] = high;
9716 memcpy (indices + i + 2, indices + kh, *size - kh);
9717 *size -= kh - i - 2;
9718 return;
9719 }
9720 else if (high < indices[i])
9721 break;
9722 }
9723
9724 if (*size == max_size)
9725 error (_("Internal error: miscounted aggregate components."));
9726 *size += 2;
9727 for (j = *size-1; j >= i+2; j -= 1)
9728 indices[j] = indices[j - 2];
9729 indices[i] = low;
9730 indices[i + 1] = high;
9731 }
9732
9733 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9734 is different. */
9735
9736 static struct value *
9737 ada_value_cast (struct type *type, struct value *arg2)
9738 {
9739 if (type == ada_check_typedef (value_type (arg2)))
9740 return arg2;
9741
9742 if (ada_is_gnat_encoded_fixed_point_type (type))
9743 return cast_to_gnat_encoded_fixed_point_type (type, arg2);
9744
9745 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
9746 return cast_from_gnat_encoded_fixed_point_type (type, arg2);
9747
9748 return value_cast (type, arg2);
9749 }
9750
9751 /* Evaluating Ada expressions, and printing their result.
9752 ------------------------------------------------------
9753
9754 1. Introduction:
9755 ----------------
9756
9757 We usually evaluate an Ada expression in order to print its value.
9758 We also evaluate an expression in order to print its type, which
9759 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9760 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9761 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9762 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9763 similar.
9764
9765 Evaluating expressions is a little more complicated for Ada entities
9766 than it is for entities in languages such as C. The main reason for
9767 this is that Ada provides types whose definition might be dynamic.
9768 One example of such types is variant records. Or another example
9769 would be an array whose bounds can only be known at run time.
9770
9771 The following description is a general guide as to what should be
9772 done (and what should NOT be done) in order to evaluate an expression
9773 involving such types, and when. This does not cover how the semantic
9774 information is encoded by GNAT as this is covered separatly. For the
9775 document used as the reference for the GNAT encoding, see exp_dbug.ads
9776 in the GNAT sources.
9777
9778 Ideally, we should embed each part of this description next to its
9779 associated code. Unfortunately, the amount of code is so vast right
9780 now that it's hard to see whether the code handling a particular
9781 situation might be duplicated or not. One day, when the code is
9782 cleaned up, this guide might become redundant with the comments
9783 inserted in the code, and we might want to remove it.
9784
9785 2. ``Fixing'' an Entity, the Simple Case:
9786 -----------------------------------------
9787
9788 When evaluating Ada expressions, the tricky issue is that they may
9789 reference entities whose type contents and size are not statically
9790 known. Consider for instance a variant record:
9791
9792 type Rec (Empty : Boolean := True) is record
9793 case Empty is
9794 when True => null;
9795 when False => Value : Integer;
9796 end case;
9797 end record;
9798 Yes : Rec := (Empty => False, Value => 1);
9799 No : Rec := (empty => True);
9800
9801 The size and contents of that record depends on the value of the
9802 descriminant (Rec.Empty). At this point, neither the debugging
9803 information nor the associated type structure in GDB are able to
9804 express such dynamic types. So what the debugger does is to create
9805 "fixed" versions of the type that applies to the specific object.
9806 We also informally refer to this operation as "fixing" an object,
9807 which means creating its associated fixed type.
9808
9809 Example: when printing the value of variable "Yes" above, its fixed
9810 type would look like this:
9811
9812 type Rec is record
9813 Empty : Boolean;
9814 Value : Integer;
9815 end record;
9816
9817 On the other hand, if we printed the value of "No", its fixed type
9818 would become:
9819
9820 type Rec is record
9821 Empty : Boolean;
9822 end record;
9823
9824 Things become a little more complicated when trying to fix an entity
9825 with a dynamic type that directly contains another dynamic type,
9826 such as an array of variant records, for instance. There are
9827 two possible cases: Arrays, and records.
9828
9829 3. ``Fixing'' Arrays:
9830 ---------------------
9831
9832 The type structure in GDB describes an array in terms of its bounds,
9833 and the type of its elements. By design, all elements in the array
9834 have the same type and we cannot represent an array of variant elements
9835 using the current type structure in GDB. When fixing an array,
9836 we cannot fix the array element, as we would potentially need one
9837 fixed type per element of the array. As a result, the best we can do
9838 when fixing an array is to produce an array whose bounds and size
9839 are correct (allowing us to read it from memory), but without having
9840 touched its element type. Fixing each element will be done later,
9841 when (if) necessary.
9842
9843 Arrays are a little simpler to handle than records, because the same
9844 amount of memory is allocated for each element of the array, even if
9845 the amount of space actually used by each element differs from element
9846 to element. Consider for instance the following array of type Rec:
9847
9848 type Rec_Array is array (1 .. 2) of Rec;
9849
9850 The actual amount of memory occupied by each element might be different
9851 from element to element, depending on the value of their discriminant.
9852 But the amount of space reserved for each element in the array remains
9853 fixed regardless. So we simply need to compute that size using
9854 the debugging information available, from which we can then determine
9855 the array size (we multiply the number of elements of the array by
9856 the size of each element).
9857
9858 The simplest case is when we have an array of a constrained element
9859 type. For instance, consider the following type declarations:
9860
9861 type Bounded_String (Max_Size : Integer) is
9862 Length : Integer;
9863 Buffer : String (1 .. Max_Size);
9864 end record;
9865 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9866
9867 In this case, the compiler describes the array as an array of
9868 variable-size elements (identified by its XVS suffix) for which
9869 the size can be read in the parallel XVZ variable.
9870
9871 In the case of an array of an unconstrained element type, the compiler
9872 wraps the array element inside a private PAD type. This type should not
9873 be shown to the user, and must be "unwrap"'ed before printing. Note
9874 that we also use the adjective "aligner" in our code to designate
9875 these wrapper types.
9876
9877 In some cases, the size allocated for each element is statically
9878 known. In that case, the PAD type already has the correct size,
9879 and the array element should remain unfixed.
9880
9881 But there are cases when this size is not statically known.
9882 For instance, assuming that "Five" is an integer variable:
9883
9884 type Dynamic is array (1 .. Five) of Integer;
9885 type Wrapper (Has_Length : Boolean := False) is record
9886 Data : Dynamic;
9887 case Has_Length is
9888 when True => Length : Integer;
9889 when False => null;
9890 end case;
9891 end record;
9892 type Wrapper_Array is array (1 .. 2) of Wrapper;
9893
9894 Hello : Wrapper_Array := (others => (Has_Length => True,
9895 Data => (others => 17),
9896 Length => 1));
9897
9898
9899 The debugging info would describe variable Hello as being an
9900 array of a PAD type. The size of that PAD type is not statically
9901 known, but can be determined using a parallel XVZ variable.
9902 In that case, a copy of the PAD type with the correct size should
9903 be used for the fixed array.
9904
9905 3. ``Fixing'' record type objects:
9906 ----------------------------------
9907
9908 Things are slightly different from arrays in the case of dynamic
9909 record types. In this case, in order to compute the associated
9910 fixed type, we need to determine the size and offset of each of
9911 its components. This, in turn, requires us to compute the fixed
9912 type of each of these components.
9913
9914 Consider for instance the example:
9915
9916 type Bounded_String (Max_Size : Natural) is record
9917 Str : String (1 .. Max_Size);
9918 Length : Natural;
9919 end record;
9920 My_String : Bounded_String (Max_Size => 10);
9921
9922 In that case, the position of field "Length" depends on the size
9923 of field Str, which itself depends on the value of the Max_Size
9924 discriminant. In order to fix the type of variable My_String,
9925 we need to fix the type of field Str. Therefore, fixing a variant
9926 record requires us to fix each of its components.
9927
9928 However, if a component does not have a dynamic size, the component
9929 should not be fixed. In particular, fields that use a PAD type
9930 should not fixed. Here is an example where this might happen
9931 (assuming type Rec above):
9932
9933 type Container (Big : Boolean) is record
9934 First : Rec;
9935 After : Integer;
9936 case Big is
9937 when True => Another : Integer;
9938 when False => null;
9939 end case;
9940 end record;
9941 My_Container : Container := (Big => False,
9942 First => (Empty => True),
9943 After => 42);
9944
9945 In that example, the compiler creates a PAD type for component First,
9946 whose size is constant, and then positions the component After just
9947 right after it. The offset of component After is therefore constant
9948 in this case.
9949
9950 The debugger computes the position of each field based on an algorithm
9951 that uses, among other things, the actual position and size of the field
9952 preceding it. Let's now imagine that the user is trying to print
9953 the value of My_Container. If the type fixing was recursive, we would
9954 end up computing the offset of field After based on the size of the
9955 fixed version of field First. And since in our example First has
9956 only one actual field, the size of the fixed type is actually smaller
9957 than the amount of space allocated to that field, and thus we would
9958 compute the wrong offset of field After.
9959
9960 To make things more complicated, we need to watch out for dynamic
9961 components of variant records (identified by the ___XVL suffix in
9962 the component name). Even if the target type is a PAD type, the size
9963 of that type might not be statically known. So the PAD type needs
9964 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9965 we might end up with the wrong size for our component. This can be
9966 observed with the following type declarations:
9967
9968 type Octal is new Integer range 0 .. 7;
9969 type Octal_Array is array (Positive range <>) of Octal;
9970 pragma Pack (Octal_Array);
9971
9972 type Octal_Buffer (Size : Positive) is record
9973 Buffer : Octal_Array (1 .. Size);
9974 Length : Integer;
9975 end record;
9976
9977 In that case, Buffer is a PAD type whose size is unset and needs
9978 to be computed by fixing the unwrapped type.
9979
9980 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9981 ----------------------------------------------------------
9982
9983 Lastly, when should the sub-elements of an entity that remained unfixed
9984 thus far, be actually fixed?
9985
9986 The answer is: Only when referencing that element. For instance
9987 when selecting one component of a record, this specific component
9988 should be fixed at that point in time. Or when printing the value
9989 of a record, each component should be fixed before its value gets
9990 printed. Similarly for arrays, the element of the array should be
9991 fixed when printing each element of the array, or when extracting
9992 one element out of that array. On the other hand, fixing should
9993 not be performed on the elements when taking a slice of an array!
9994
9995 Note that one of the side effects of miscomputing the offset and
9996 size of each field is that we end up also miscomputing the size
9997 of the containing type. This can have adverse results when computing
9998 the value of an entity. GDB fetches the value of an entity based
9999 on the size of its type, and thus a wrong size causes GDB to fetch
10000 the wrong amount of memory. In the case where the computed size is
10001 too small, GDB fetches too little data to print the value of our
10002 entity. Results in this case are unpredictable, as we usually read
10003 past the buffer containing the data =:-o. */
10004
10005 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10006 for that subexpression cast to TO_TYPE. Advance *POS over the
10007 subexpression. */
10008
10009 static value *
10010 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10011 enum noside noside, struct type *to_type)
10012 {
10013 int pc = *pos;
10014
10015 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10016 || exp->elts[pc].opcode == OP_VAR_VALUE)
10017 {
10018 (*pos) += 4;
10019
10020 value *val;
10021 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10022 {
10023 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10024 return value_zero (to_type, not_lval);
10025
10026 val = evaluate_var_msym_value (noside,
10027 exp->elts[pc + 1].objfile,
10028 exp->elts[pc + 2].msymbol);
10029 }
10030 else
10031 val = evaluate_var_value (noside,
10032 exp->elts[pc + 1].block,
10033 exp->elts[pc + 2].symbol);
10034
10035 if (noside == EVAL_SKIP)
10036 return eval_skip_value (exp);
10037
10038 val = ada_value_cast (to_type, val);
10039
10040 /* Follow the Ada language semantics that do not allow taking
10041 an address of the result of a cast (view conversion in Ada). */
10042 if (VALUE_LVAL (val) == lval_memory)
10043 {
10044 if (value_lazy (val))
10045 value_fetch_lazy (val);
10046 VALUE_LVAL (val) = not_lval;
10047 }
10048 return val;
10049 }
10050
10051 value *val = evaluate_subexp (to_type, exp, pos, noside);
10052 if (noside == EVAL_SKIP)
10053 return eval_skip_value (exp);
10054 return ada_value_cast (to_type, val);
10055 }
10056
10057 /* Implement the evaluate_exp routine in the exp_descriptor structure
10058 for the Ada language. */
10059
10060 static struct value *
10061 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10062 int *pos, enum noside noside)
10063 {
10064 enum exp_opcode op;
10065 int tem;
10066 int pc;
10067 int preeval_pos;
10068 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10069 struct type *type;
10070 int nargs, oplen;
10071 struct value **argvec;
10072
10073 pc = *pos;
10074 *pos += 1;
10075 op = exp->elts[pc].opcode;
10076
10077 switch (op)
10078 {
10079 default:
10080 *pos -= 1;
10081 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10082
10083 if (noside == EVAL_NORMAL)
10084 arg1 = unwrap_value (arg1);
10085
10086 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10087 then we need to perform the conversion manually, because
10088 evaluate_subexp_standard doesn't do it. This conversion is
10089 necessary in Ada because the different kinds of float/fixed
10090 types in Ada have different representations.
10091
10092 Similarly, we need to perform the conversion from OP_LONG
10093 ourselves. */
10094 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10095 arg1 = ada_value_cast (expect_type, arg1);
10096
10097 return arg1;
10098
10099 case OP_STRING:
10100 {
10101 struct value *result;
10102
10103 *pos -= 1;
10104 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10105 /* The result type will have code OP_STRING, bashed there from
10106 OP_ARRAY. Bash it back. */
10107 if (value_type (result)->code () == TYPE_CODE_STRING)
10108 value_type (result)->set_code (TYPE_CODE_ARRAY);
10109 return result;
10110 }
10111
10112 case UNOP_CAST:
10113 (*pos) += 2;
10114 type = exp->elts[pc + 1].type;
10115 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10116
10117 case UNOP_QUAL:
10118 (*pos) += 2;
10119 type = exp->elts[pc + 1].type;
10120 return ada_evaluate_subexp (type, exp, pos, noside);
10121
10122 case BINOP_ASSIGN:
10123 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10124 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10125 {
10126 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10127 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10128 return arg1;
10129 return ada_value_assign (arg1, arg1);
10130 }
10131 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10132 except if the lhs of our assignment is a convenience variable.
10133 In the case of assigning to a convenience variable, the lhs
10134 should be exactly the result of the evaluation of the rhs. */
10135 type = value_type (arg1);
10136 if (VALUE_LVAL (arg1) == lval_internalvar)
10137 type = NULL;
10138 arg2 = evaluate_subexp (type, exp, pos, noside);
10139 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10140 return arg1;
10141 if (VALUE_LVAL (arg1) == lval_internalvar)
10142 {
10143 /* Nothing. */
10144 }
10145 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10146 arg2 = cast_to_gnat_encoded_fixed_point_type (value_type (arg1), arg2);
10147 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10148 error
10149 (_("Fixed-point values must be assigned to fixed-point variables"));
10150 else
10151 arg2 = coerce_for_assign (value_type (arg1), arg2);
10152 return ada_value_assign (arg1, arg2);
10153
10154 case BINOP_ADD:
10155 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10156 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10157 if (noside == EVAL_SKIP)
10158 goto nosideret;
10159 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10160 return (value_from_longest
10161 (value_type (arg1),
10162 value_as_long (arg1) + value_as_long (arg2)));
10163 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10164 return (value_from_longest
10165 (value_type (arg2),
10166 value_as_long (arg1) + value_as_long (arg2)));
10167 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10168 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10169 && value_type (arg1) != value_type (arg2))
10170 error (_("Operands of fixed-point addition must have the same type"));
10171 /* Do the addition, and cast the result to the type of the first
10172 argument. We cannot cast the result to a reference type, so if
10173 ARG1 is a reference type, find its underlying type. */
10174 type = value_type (arg1);
10175 while (type->code () == TYPE_CODE_REF)
10176 type = TYPE_TARGET_TYPE (type);
10177 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10178 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10179
10180 case BINOP_SUB:
10181 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10182 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10183 if (noside == EVAL_SKIP)
10184 goto nosideret;
10185 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10186 return (value_from_longest
10187 (value_type (arg1),
10188 value_as_long (arg1) - value_as_long (arg2)));
10189 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10190 return (value_from_longest
10191 (value_type (arg2),
10192 value_as_long (arg1) - value_as_long (arg2)));
10193 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10194 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10195 && value_type (arg1) != value_type (arg2))
10196 error (_("Operands of fixed-point subtraction "
10197 "must have the same type"));
10198 /* Do the substraction, and cast the result to the type of the first
10199 argument. We cannot cast the result to a reference type, so if
10200 ARG1 is a reference type, find its underlying type. */
10201 type = value_type (arg1);
10202 while (type->code () == TYPE_CODE_REF)
10203 type = TYPE_TARGET_TYPE (type);
10204 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10205 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10206
10207 case BINOP_MUL:
10208 case BINOP_DIV:
10209 case BINOP_REM:
10210 case BINOP_MOD:
10211 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10212 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10213 if (noside == EVAL_SKIP)
10214 goto nosideret;
10215 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10216 {
10217 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10218 return value_zero (value_type (arg1), not_lval);
10219 }
10220 else
10221 {
10222 type = builtin_type (exp->gdbarch)->builtin_double;
10223 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10224 arg1 = cast_from_gnat_encoded_fixed_point_type (type, arg1);
10225 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10226 arg2 = cast_from_gnat_encoded_fixed_point_type (type, arg2);
10227 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10228 return ada_value_binop (arg1, arg2, op);
10229 }
10230
10231 case BINOP_EQUAL:
10232 case BINOP_NOTEQUAL:
10233 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10234 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10235 if (noside == EVAL_SKIP)
10236 goto nosideret;
10237 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10238 tem = 0;
10239 else
10240 {
10241 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10242 tem = ada_value_equal (arg1, arg2);
10243 }
10244 if (op == BINOP_NOTEQUAL)
10245 tem = !tem;
10246 type = language_bool_type (exp->language_defn, exp->gdbarch);
10247 return value_from_longest (type, (LONGEST) tem);
10248
10249 case UNOP_NEG:
10250 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10251 if (noside == EVAL_SKIP)
10252 goto nosideret;
10253 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10254 return value_cast (value_type (arg1), value_neg (arg1));
10255 else
10256 {
10257 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10258 return value_neg (arg1);
10259 }
10260
10261 case BINOP_LOGICAL_AND:
10262 case BINOP_LOGICAL_OR:
10263 case UNOP_LOGICAL_NOT:
10264 {
10265 struct value *val;
10266
10267 *pos -= 1;
10268 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10269 type = language_bool_type (exp->language_defn, exp->gdbarch);
10270 return value_cast (type, val);
10271 }
10272
10273 case BINOP_BITWISE_AND:
10274 case BINOP_BITWISE_IOR:
10275 case BINOP_BITWISE_XOR:
10276 {
10277 struct value *val;
10278
10279 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10280 *pos = pc;
10281 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10282
10283 return value_cast (value_type (arg1), val);
10284 }
10285
10286 case OP_VAR_VALUE:
10287 *pos -= 1;
10288
10289 if (noside == EVAL_SKIP)
10290 {
10291 *pos += 4;
10292 goto nosideret;
10293 }
10294
10295 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10296 /* Only encountered when an unresolved symbol occurs in a
10297 context other than a function call, in which case, it is
10298 invalid. */
10299 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10300 exp->elts[pc + 2].symbol->print_name ());
10301
10302 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10303 {
10304 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10305 /* Check to see if this is a tagged type. We also need to handle
10306 the case where the type is a reference to a tagged type, but
10307 we have to be careful to exclude pointers to tagged types.
10308 The latter should be shown as usual (as a pointer), whereas
10309 a reference should mostly be transparent to the user. */
10310 if (ada_is_tagged_type (type, 0)
10311 || (type->code () == TYPE_CODE_REF
10312 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10313 {
10314 /* Tagged types are a little special in the fact that the real
10315 type is dynamic and can only be determined by inspecting the
10316 object's tag. This means that we need to get the object's
10317 value first (EVAL_NORMAL) and then extract the actual object
10318 type from its tag.
10319
10320 Note that we cannot skip the final step where we extract
10321 the object type from its tag, because the EVAL_NORMAL phase
10322 results in dynamic components being resolved into fixed ones.
10323 This can cause problems when trying to print the type
10324 description of tagged types whose parent has a dynamic size:
10325 We use the type name of the "_parent" component in order
10326 to print the name of the ancestor type in the type description.
10327 If that component had a dynamic size, the resolution into
10328 a fixed type would result in the loss of that type name,
10329 thus preventing us from printing the name of the ancestor
10330 type in the type description. */
10331 arg1 = evaluate_subexp (nullptr, exp, pos, EVAL_NORMAL);
10332
10333 if (type->code () != TYPE_CODE_REF)
10334 {
10335 struct type *actual_type;
10336
10337 actual_type = type_from_tag (ada_value_tag (arg1));
10338 if (actual_type == NULL)
10339 /* If, for some reason, we were unable to determine
10340 the actual type from the tag, then use the static
10341 approximation that we just computed as a fallback.
10342 This can happen if the debugging information is
10343 incomplete, for instance. */
10344 actual_type = type;
10345 return value_zero (actual_type, not_lval);
10346 }
10347 else
10348 {
10349 /* In the case of a ref, ada_coerce_ref takes care
10350 of determining the actual type. But the evaluation
10351 should return a ref as it should be valid to ask
10352 for its address; so rebuild a ref after coerce. */
10353 arg1 = ada_coerce_ref (arg1);
10354 return value_ref (arg1, TYPE_CODE_REF);
10355 }
10356 }
10357
10358 /* Records and unions for which GNAT encodings have been
10359 generated need to be statically fixed as well.
10360 Otherwise, non-static fixing produces a type where
10361 all dynamic properties are removed, which prevents "ptype"
10362 from being able to completely describe the type.
10363 For instance, a case statement in a variant record would be
10364 replaced by the relevant components based on the actual
10365 value of the discriminants. */
10366 if ((type->code () == TYPE_CODE_STRUCT
10367 && dynamic_template_type (type) != NULL)
10368 || (type->code () == TYPE_CODE_UNION
10369 && ada_find_parallel_type (type, "___XVU") != NULL))
10370 {
10371 *pos += 4;
10372 return value_zero (to_static_fixed_type (type), not_lval);
10373 }
10374 }
10375
10376 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10377 return ada_to_fixed_value (arg1);
10378
10379 case OP_FUNCALL:
10380 (*pos) += 2;
10381
10382 /* Allocate arg vector, including space for the function to be
10383 called in argvec[0] and a terminating NULL. */
10384 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10385 argvec = XALLOCAVEC (struct value *, nargs + 2);
10386
10387 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10388 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10389 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10390 exp->elts[pc + 5].symbol->print_name ());
10391 else
10392 {
10393 for (tem = 0; tem <= nargs; tem += 1)
10394 argvec[tem] = evaluate_subexp (nullptr, exp, pos, noside);
10395 argvec[tem] = 0;
10396
10397 if (noside == EVAL_SKIP)
10398 goto nosideret;
10399 }
10400
10401 if (ada_is_constrained_packed_array_type
10402 (desc_base_type (value_type (argvec[0]))))
10403 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10404 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10405 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10406 /* This is a packed array that has already been fixed, and
10407 therefore already coerced to a simple array. Nothing further
10408 to do. */
10409 ;
10410 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10411 {
10412 /* Make sure we dereference references so that all the code below
10413 feels like it's really handling the referenced value. Wrapping
10414 types (for alignment) may be there, so make sure we strip them as
10415 well. */
10416 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10417 }
10418 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10419 && VALUE_LVAL (argvec[0]) == lval_memory)
10420 argvec[0] = value_addr (argvec[0]);
10421
10422 type = ada_check_typedef (value_type (argvec[0]));
10423
10424 /* Ada allows us to implicitly dereference arrays when subscripting
10425 them. So, if this is an array typedef (encoding use for array
10426 access types encoded as fat pointers), strip it now. */
10427 if (type->code () == TYPE_CODE_TYPEDEF)
10428 type = ada_typedef_target_type (type);
10429
10430 if (type->code () == TYPE_CODE_PTR)
10431 {
10432 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10433 {
10434 case TYPE_CODE_FUNC:
10435 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10436 break;
10437 case TYPE_CODE_ARRAY:
10438 break;
10439 case TYPE_CODE_STRUCT:
10440 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10441 argvec[0] = ada_value_ind (argvec[0]);
10442 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10443 break;
10444 default:
10445 error (_("cannot subscript or call something of type `%s'"),
10446 ada_type_name (value_type (argvec[0])));
10447 break;
10448 }
10449 }
10450
10451 switch (type->code ())
10452 {
10453 case TYPE_CODE_FUNC:
10454 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10455 {
10456 if (TYPE_TARGET_TYPE (type) == NULL)
10457 error_call_unknown_return_type (NULL);
10458 return allocate_value (TYPE_TARGET_TYPE (type));
10459 }
10460 return call_function_by_hand (argvec[0], NULL,
10461 gdb::make_array_view (argvec + 1,
10462 nargs));
10463 case TYPE_CODE_INTERNAL_FUNCTION:
10464 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10465 /* We don't know anything about what the internal
10466 function might return, but we have to return
10467 something. */
10468 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10469 not_lval);
10470 else
10471 return call_internal_function (exp->gdbarch, exp->language_defn,
10472 argvec[0], nargs, argvec + 1);
10473
10474 case TYPE_CODE_STRUCT:
10475 {
10476 int arity;
10477
10478 arity = ada_array_arity (type);
10479 type = ada_array_element_type (type, nargs);
10480 if (type == NULL)
10481 error (_("cannot subscript or call a record"));
10482 if (arity != nargs)
10483 error (_("wrong number of subscripts; expecting %d"), arity);
10484 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10485 return value_zero (ada_aligned_type (type), lval_memory);
10486 return
10487 unwrap_value (ada_value_subscript
10488 (argvec[0], nargs, argvec + 1));
10489 }
10490 case TYPE_CODE_ARRAY:
10491 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10492 {
10493 type = ada_array_element_type (type, nargs);
10494 if (type == NULL)
10495 error (_("element type of array unknown"));
10496 else
10497 return value_zero (ada_aligned_type (type), lval_memory);
10498 }
10499 return
10500 unwrap_value (ada_value_subscript
10501 (ada_coerce_to_simple_array (argvec[0]),
10502 nargs, argvec + 1));
10503 case TYPE_CODE_PTR: /* Pointer to array */
10504 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10505 {
10506 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10507 type = ada_array_element_type (type, nargs);
10508 if (type == NULL)
10509 error (_("element type of array unknown"));
10510 else
10511 return value_zero (ada_aligned_type (type), lval_memory);
10512 }
10513 return
10514 unwrap_value (ada_value_ptr_subscript (argvec[0],
10515 nargs, argvec + 1));
10516
10517 default:
10518 error (_("Attempt to index or call something other than an "
10519 "array or function"));
10520 }
10521
10522 case TERNOP_SLICE:
10523 {
10524 struct value *array = evaluate_subexp (nullptr, exp, pos, noside);
10525 struct value *low_bound_val
10526 = evaluate_subexp (nullptr, exp, pos, noside);
10527 struct value *high_bound_val
10528 = evaluate_subexp (nullptr, exp, pos, noside);
10529 LONGEST low_bound;
10530 LONGEST high_bound;
10531
10532 low_bound_val = coerce_ref (low_bound_val);
10533 high_bound_val = coerce_ref (high_bound_val);
10534 low_bound = value_as_long (low_bound_val);
10535 high_bound = value_as_long (high_bound_val);
10536
10537 if (noside == EVAL_SKIP)
10538 goto nosideret;
10539
10540 /* If this is a reference to an aligner type, then remove all
10541 the aligners. */
10542 if (value_type (array)->code () == TYPE_CODE_REF
10543 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10544 TYPE_TARGET_TYPE (value_type (array)) =
10545 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10546
10547 if (ada_is_constrained_packed_array_type (value_type (array)))
10548 error (_("cannot slice a packed array"));
10549
10550 /* If this is a reference to an array or an array lvalue,
10551 convert to a pointer. */
10552 if (value_type (array)->code () == TYPE_CODE_REF
10553 || (value_type (array)->code () == TYPE_CODE_ARRAY
10554 && VALUE_LVAL (array) == lval_memory))
10555 array = value_addr (array);
10556
10557 if (noside == EVAL_AVOID_SIDE_EFFECTS
10558 && ada_is_array_descriptor_type (ada_check_typedef
10559 (value_type (array))))
10560 return empty_array (ada_type_of_array (array, 0), low_bound,
10561 high_bound);
10562
10563 array = ada_coerce_to_simple_array_ptr (array);
10564
10565 /* If we have more than one level of pointer indirection,
10566 dereference the value until we get only one level. */
10567 while (value_type (array)->code () == TYPE_CODE_PTR
10568 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10569 == TYPE_CODE_PTR))
10570 array = value_ind (array);
10571
10572 /* Make sure we really do have an array type before going further,
10573 to avoid a SEGV when trying to get the index type or the target
10574 type later down the road if the debug info generated by
10575 the compiler is incorrect or incomplete. */
10576 if (!ada_is_simple_array_type (value_type (array)))
10577 error (_("cannot take slice of non-array"));
10578
10579 if (ada_check_typedef (value_type (array))->code ()
10580 == TYPE_CODE_PTR)
10581 {
10582 struct type *type0 = ada_check_typedef (value_type (array));
10583
10584 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10585 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10586 else
10587 {
10588 struct type *arr_type0 =
10589 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10590
10591 return ada_value_slice_from_ptr (array, arr_type0,
10592 longest_to_int (low_bound),
10593 longest_to_int (high_bound));
10594 }
10595 }
10596 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10597 return array;
10598 else if (high_bound < low_bound)
10599 return empty_array (value_type (array), low_bound, high_bound);
10600 else
10601 return ada_value_slice (array, longest_to_int (low_bound),
10602 longest_to_int (high_bound));
10603 }
10604
10605 case UNOP_IN_RANGE:
10606 (*pos) += 2;
10607 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10608 type = check_typedef (exp->elts[pc + 1].type);
10609
10610 if (noside == EVAL_SKIP)
10611 goto nosideret;
10612
10613 switch (type->code ())
10614 {
10615 default:
10616 lim_warning (_("Membership test incompletely implemented; "
10617 "always returns true"));
10618 type = language_bool_type (exp->language_defn, exp->gdbarch);
10619 return value_from_longest (type, (LONGEST) 1);
10620
10621 case TYPE_CODE_RANGE:
10622 arg2 = value_from_longest (type,
10623 type->bounds ()->low.const_val ());
10624 arg3 = value_from_longest (type,
10625 type->bounds ()->high.const_val ());
10626 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10627 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10628 type = language_bool_type (exp->language_defn, exp->gdbarch);
10629 return
10630 value_from_longest (type,
10631 (value_less (arg1, arg3)
10632 || value_equal (arg1, arg3))
10633 && (value_less (arg2, arg1)
10634 || value_equal (arg2, arg1)));
10635 }
10636
10637 case BINOP_IN_BOUNDS:
10638 (*pos) += 2;
10639 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10640 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10641
10642 if (noside == EVAL_SKIP)
10643 goto nosideret;
10644
10645 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10646 {
10647 type = language_bool_type (exp->language_defn, exp->gdbarch);
10648 return value_zero (type, not_lval);
10649 }
10650
10651 tem = longest_to_int (exp->elts[pc + 1].longconst);
10652
10653 type = ada_index_type (value_type (arg2), tem, "range");
10654 if (!type)
10655 type = value_type (arg1);
10656
10657 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10658 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10659
10660 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10661 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10662 type = language_bool_type (exp->language_defn, exp->gdbarch);
10663 return
10664 value_from_longest (type,
10665 (value_less (arg1, arg3)
10666 || value_equal (arg1, arg3))
10667 && (value_less (arg2, arg1)
10668 || value_equal (arg2, arg1)));
10669
10670 case TERNOP_IN_RANGE:
10671 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10672 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10673 arg3 = evaluate_subexp (nullptr, exp, pos, noside);
10674
10675 if (noside == EVAL_SKIP)
10676 goto nosideret;
10677
10678 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10679 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10680 type = language_bool_type (exp->language_defn, exp->gdbarch);
10681 return
10682 value_from_longest (type,
10683 (value_less (arg1, arg3)
10684 || value_equal (arg1, arg3))
10685 && (value_less (arg2, arg1)
10686 || value_equal (arg2, arg1)));
10687
10688 case OP_ATR_FIRST:
10689 case OP_ATR_LAST:
10690 case OP_ATR_LENGTH:
10691 {
10692 struct type *type_arg;
10693
10694 if (exp->elts[*pos].opcode == OP_TYPE)
10695 {
10696 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10697 arg1 = NULL;
10698 type_arg = check_typedef (exp->elts[pc + 2].type);
10699 }
10700 else
10701 {
10702 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10703 type_arg = NULL;
10704 }
10705
10706 if (exp->elts[*pos].opcode != OP_LONG)
10707 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10708 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10709 *pos += 4;
10710
10711 if (noside == EVAL_SKIP)
10712 goto nosideret;
10713 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10714 {
10715 if (type_arg == NULL)
10716 type_arg = value_type (arg1);
10717
10718 if (ada_is_constrained_packed_array_type (type_arg))
10719 type_arg = decode_constrained_packed_array_type (type_arg);
10720
10721 if (!discrete_type_p (type_arg))
10722 {
10723 switch (op)
10724 {
10725 default: /* Should never happen. */
10726 error (_("unexpected attribute encountered"));
10727 case OP_ATR_FIRST:
10728 case OP_ATR_LAST:
10729 type_arg = ada_index_type (type_arg, tem,
10730 ada_attribute_name (op));
10731 break;
10732 case OP_ATR_LENGTH:
10733 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10734 break;
10735 }
10736 }
10737
10738 return value_zero (type_arg, not_lval);
10739 }
10740 else if (type_arg == NULL)
10741 {
10742 arg1 = ada_coerce_ref (arg1);
10743
10744 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10745 arg1 = ada_coerce_to_simple_array (arg1);
10746
10747 if (op == OP_ATR_LENGTH)
10748 type = builtin_type (exp->gdbarch)->builtin_int;
10749 else
10750 {
10751 type = ada_index_type (value_type (arg1), tem,
10752 ada_attribute_name (op));
10753 if (type == NULL)
10754 type = builtin_type (exp->gdbarch)->builtin_int;
10755 }
10756
10757 switch (op)
10758 {
10759 default: /* Should never happen. */
10760 error (_("unexpected attribute encountered"));
10761 case OP_ATR_FIRST:
10762 return value_from_longest
10763 (type, ada_array_bound (arg1, tem, 0));
10764 case OP_ATR_LAST:
10765 return value_from_longest
10766 (type, ada_array_bound (arg1, tem, 1));
10767 case OP_ATR_LENGTH:
10768 return value_from_longest
10769 (type, ada_array_length (arg1, tem));
10770 }
10771 }
10772 else if (discrete_type_p (type_arg))
10773 {
10774 struct type *range_type;
10775 const char *name = ada_type_name (type_arg);
10776
10777 range_type = NULL;
10778 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10779 range_type = to_fixed_range_type (type_arg, NULL);
10780 if (range_type == NULL)
10781 range_type = type_arg;
10782 switch (op)
10783 {
10784 default:
10785 error (_("unexpected attribute encountered"));
10786 case OP_ATR_FIRST:
10787 return value_from_longest
10788 (range_type, ada_discrete_type_low_bound (range_type));
10789 case OP_ATR_LAST:
10790 return value_from_longest
10791 (range_type, ada_discrete_type_high_bound (range_type));
10792 case OP_ATR_LENGTH:
10793 error (_("the 'length attribute applies only to array types"));
10794 }
10795 }
10796 else if (type_arg->code () == TYPE_CODE_FLT)
10797 error (_("unimplemented type attribute"));
10798 else
10799 {
10800 LONGEST low, high;
10801
10802 if (ada_is_constrained_packed_array_type (type_arg))
10803 type_arg = decode_constrained_packed_array_type (type_arg);
10804
10805 if (op == OP_ATR_LENGTH)
10806 type = builtin_type (exp->gdbarch)->builtin_int;
10807 else
10808 {
10809 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10810 if (type == NULL)
10811 type = builtin_type (exp->gdbarch)->builtin_int;
10812 }
10813
10814 switch (op)
10815 {
10816 default:
10817 error (_("unexpected attribute encountered"));
10818 case OP_ATR_FIRST:
10819 low = ada_array_bound_from_type (type_arg, tem, 0);
10820 return value_from_longest (type, low);
10821 case OP_ATR_LAST:
10822 high = ada_array_bound_from_type (type_arg, tem, 1);
10823 return value_from_longest (type, high);
10824 case OP_ATR_LENGTH:
10825 low = ada_array_bound_from_type (type_arg, tem, 0);
10826 high = ada_array_bound_from_type (type_arg, tem, 1);
10827 return value_from_longest (type, high - low + 1);
10828 }
10829 }
10830 }
10831
10832 case OP_ATR_TAG:
10833 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10834 if (noside == EVAL_SKIP)
10835 goto nosideret;
10836
10837 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10838 return value_zero (ada_tag_type (arg1), not_lval);
10839
10840 return ada_value_tag (arg1);
10841
10842 case OP_ATR_MIN:
10843 case OP_ATR_MAX:
10844 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10845 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10846 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10847 if (noside == EVAL_SKIP)
10848 goto nosideret;
10849 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10850 return value_zero (value_type (arg1), not_lval);
10851 else
10852 {
10853 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10854 return value_binop (arg1, arg2,
10855 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10856 }
10857
10858 case OP_ATR_MODULUS:
10859 {
10860 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10861
10862 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10863 if (noside == EVAL_SKIP)
10864 goto nosideret;
10865
10866 if (!ada_is_modular_type (type_arg))
10867 error (_("'modulus must be applied to modular type"));
10868
10869 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10870 ada_modulus (type_arg));
10871 }
10872
10873
10874 case OP_ATR_POS:
10875 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10876 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10877 if (noside == EVAL_SKIP)
10878 goto nosideret;
10879 type = builtin_type (exp->gdbarch)->builtin_int;
10880 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10881 return value_zero (type, not_lval);
10882 else
10883 return value_pos_atr (type, arg1);
10884
10885 case OP_ATR_SIZE:
10886 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10887 type = value_type (arg1);
10888
10889 /* If the argument is a reference, then dereference its type, since
10890 the user is really asking for the size of the actual object,
10891 not the size of the pointer. */
10892 if (type->code () == TYPE_CODE_REF)
10893 type = TYPE_TARGET_TYPE (type);
10894
10895 if (noside == EVAL_SKIP)
10896 goto nosideret;
10897 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10898 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10899 else
10900 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10901 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10902
10903 case OP_ATR_VAL:
10904 evaluate_subexp (nullptr, exp, pos, EVAL_SKIP);
10905 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10906 type = exp->elts[pc + 2].type;
10907 if (noside == EVAL_SKIP)
10908 goto nosideret;
10909 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10910 return value_zero (type, not_lval);
10911 else
10912 return value_val_atr (type, arg1);
10913
10914 case BINOP_EXP:
10915 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10916 arg2 = evaluate_subexp (nullptr, exp, pos, noside);
10917 if (noside == EVAL_SKIP)
10918 goto nosideret;
10919 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10920 return value_zero (value_type (arg1), not_lval);
10921 else
10922 {
10923 /* For integer exponentiation operations,
10924 only promote the first argument. */
10925 if (is_integral_type (value_type (arg2)))
10926 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10927 else
10928 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10929
10930 return value_binop (arg1, arg2, op);
10931 }
10932
10933 case UNOP_PLUS:
10934 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10935 if (noside == EVAL_SKIP)
10936 goto nosideret;
10937 else
10938 return arg1;
10939
10940 case UNOP_ABS:
10941 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10942 if (noside == EVAL_SKIP)
10943 goto nosideret;
10944 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10945 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10946 return value_neg (arg1);
10947 else
10948 return arg1;
10949
10950 case UNOP_IND:
10951 preeval_pos = *pos;
10952 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
10953 if (noside == EVAL_SKIP)
10954 goto nosideret;
10955 type = ada_check_typedef (value_type (arg1));
10956 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10957 {
10958 if (ada_is_array_descriptor_type (type))
10959 /* GDB allows dereferencing GNAT array descriptors. */
10960 {
10961 struct type *arrType = ada_type_of_array (arg1, 0);
10962
10963 if (arrType == NULL)
10964 error (_("Attempt to dereference null array pointer."));
10965 return value_at_lazy (arrType, 0);
10966 }
10967 else if (type->code () == TYPE_CODE_PTR
10968 || type->code () == TYPE_CODE_REF
10969 /* In C you can dereference an array to get the 1st elt. */
10970 || type->code () == TYPE_CODE_ARRAY)
10971 {
10972 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10973 only be determined by inspecting the object's tag.
10974 This means that we need to evaluate completely the
10975 expression in order to get its type. */
10976
10977 if ((type->code () == TYPE_CODE_REF
10978 || type->code () == TYPE_CODE_PTR)
10979 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10980 {
10981 arg1
10982 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
10983 type = value_type (ada_value_ind (arg1));
10984 }
10985 else
10986 {
10987 type = to_static_fixed_type
10988 (ada_aligned_type
10989 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10990 }
10991 ada_ensure_varsize_limit (type);
10992 return value_zero (type, lval_memory);
10993 }
10994 else if (type->code () == TYPE_CODE_INT)
10995 {
10996 /* GDB allows dereferencing an int. */
10997 if (expect_type == NULL)
10998 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10999 lval_memory);
11000 else
11001 {
11002 expect_type =
11003 to_static_fixed_type (ada_aligned_type (expect_type));
11004 return value_zero (expect_type, lval_memory);
11005 }
11006 }
11007 else
11008 error (_("Attempt to take contents of a non-pointer value."));
11009 }
11010 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11011 type = ada_check_typedef (value_type (arg1));
11012
11013 if (type->code () == TYPE_CODE_INT)
11014 /* GDB allows dereferencing an int. If we were given
11015 the expect_type, then use that as the target type.
11016 Otherwise, assume that the target type is an int. */
11017 {
11018 if (expect_type != NULL)
11019 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11020 arg1));
11021 else
11022 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11023 (CORE_ADDR) value_as_address (arg1));
11024 }
11025
11026 if (ada_is_array_descriptor_type (type))
11027 /* GDB allows dereferencing GNAT array descriptors. */
11028 return ada_coerce_to_simple_array (arg1);
11029 else
11030 return ada_value_ind (arg1);
11031
11032 case STRUCTOP_STRUCT:
11033 tem = longest_to_int (exp->elts[pc + 1].longconst);
11034 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11035 preeval_pos = *pos;
11036 arg1 = evaluate_subexp (nullptr, exp, pos, noside);
11037 if (noside == EVAL_SKIP)
11038 goto nosideret;
11039 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11040 {
11041 struct type *type1 = value_type (arg1);
11042
11043 if (ada_is_tagged_type (type1, 1))
11044 {
11045 type = ada_lookup_struct_elt_type (type1,
11046 &exp->elts[pc + 2].string,
11047 1, 1);
11048
11049 /* If the field is not found, check if it exists in the
11050 extension of this object's type. This means that we
11051 need to evaluate completely the expression. */
11052
11053 if (type == NULL)
11054 {
11055 arg1
11056 = evaluate_subexp (nullptr, exp, &preeval_pos, EVAL_NORMAL);
11057 arg1 = ada_value_struct_elt (arg1,
11058 &exp->elts[pc + 2].string,
11059 0);
11060 arg1 = unwrap_value (arg1);
11061 type = value_type (ada_to_fixed_value (arg1));
11062 }
11063 }
11064 else
11065 type =
11066 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11067 0);
11068
11069 return value_zero (ada_aligned_type (type), lval_memory);
11070 }
11071 else
11072 {
11073 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11074 arg1 = unwrap_value (arg1);
11075 return ada_to_fixed_value (arg1);
11076 }
11077
11078 case OP_TYPE:
11079 /* The value is not supposed to be used. This is here to make it
11080 easier to accommodate expressions that contain types. */
11081 (*pos) += 2;
11082 if (noside == EVAL_SKIP)
11083 goto nosideret;
11084 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11085 return allocate_value (exp->elts[pc + 1].type);
11086 else
11087 error (_("Attempt to use a type name as an expression"));
11088
11089 case OP_AGGREGATE:
11090 case OP_CHOICES:
11091 case OP_OTHERS:
11092 case OP_DISCRETE_RANGE:
11093 case OP_POSITIONAL:
11094 case OP_NAME:
11095 if (noside == EVAL_NORMAL)
11096 switch (op)
11097 {
11098 case OP_NAME:
11099 error (_("Undefined name, ambiguous name, or renaming used in "
11100 "component association: %s."), &exp->elts[pc+2].string);
11101 case OP_AGGREGATE:
11102 error (_("Aggregates only allowed on the right of an assignment"));
11103 default:
11104 internal_error (__FILE__, __LINE__,
11105 _("aggregate apparently mangled"));
11106 }
11107
11108 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11109 *pos += oplen - 1;
11110 for (tem = 0; tem < nargs; tem += 1)
11111 ada_evaluate_subexp (NULL, exp, pos, noside);
11112 goto nosideret;
11113 }
11114
11115 nosideret:
11116 return eval_skip_value (exp);
11117 }
11118 \f
11119
11120 /* Fixed point */
11121
11122 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11123 type name that encodes the 'small and 'delta information.
11124 Otherwise, return NULL. */
11125
11126 static const char *
11127 gnat_encoded_fixed_point_type_info (struct type *type)
11128 {
11129 const char *name = ada_type_name (type);
11130 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11131
11132 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11133 {
11134 const char *tail = strstr (name, "___XF_");
11135
11136 if (tail == NULL)
11137 return NULL;
11138 else
11139 return tail + 5;
11140 }
11141 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11142 return gnat_encoded_fixed_point_type_info (TYPE_TARGET_TYPE (type));
11143 else
11144 return NULL;
11145 }
11146
11147 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11148
11149 int
11150 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11151 {
11152 return gnat_encoded_fixed_point_type_info (type) != NULL;
11153 }
11154
11155 /* Return non-zero iff TYPE represents a System.Address type. */
11156
11157 int
11158 ada_is_system_address_type (struct type *type)
11159 {
11160 return (type->name () && strcmp (type->name (), "system__address") == 0);
11161 }
11162
11163 /* Assuming that TYPE is the representation of an Ada fixed-point
11164 type, return the target floating-point type to be used to represent
11165 of this type during internal computation. */
11166
11167 static struct type *
11168 ada_scaling_type (struct type *type)
11169 {
11170 return builtin_type (get_type_arch (type))->builtin_long_double;
11171 }
11172
11173 /* Assuming that TYPE is the representation of an Ada fixed-point
11174 type, return its delta, or NULL if the type is malformed and the
11175 delta cannot be determined. */
11176
11177 struct value *
11178 gnat_encoded_fixed_point_delta (struct type *type)
11179 {
11180 const char *encoding = gnat_encoded_fixed_point_type_info (type);
11181 struct type *scale_type = ada_scaling_type (type);
11182
11183 long long num, den;
11184
11185 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11186 return nullptr;
11187 else
11188 return value_binop (value_from_longest (scale_type, num),
11189 value_from_longest (scale_type, den), BINOP_DIV);
11190 }
11191
11192 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11193 the scaling factor ('SMALL value) associated with the type. */
11194
11195 struct value *
11196 gnat_encoded_fixed_point_scaling_factor (struct type *type)
11197 {
11198 const char *encoding = gnat_encoded_fixed_point_type_info (type);
11199 struct type *scale_type = ada_scaling_type (type);
11200
11201 long long num0, den0, num1, den1;
11202 int n;
11203
11204 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11205 &num0, &den0, &num1, &den1);
11206
11207 if (n < 2)
11208 return value_from_longest (scale_type, 1);
11209 else if (n == 4)
11210 return value_binop (value_from_longest (scale_type, num1),
11211 value_from_longest (scale_type, den1), BINOP_DIV);
11212 else
11213 return value_binop (value_from_longest (scale_type, num0),
11214 value_from_longest (scale_type, den0), BINOP_DIV);
11215 }
11216
11217 \f
11218
11219 /* Range types */
11220
11221 /* Scan STR beginning at position K for a discriminant name, and
11222 return the value of that discriminant field of DVAL in *PX. If
11223 PNEW_K is not null, put the position of the character beyond the
11224 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11225 not alter *PX and *PNEW_K if unsuccessful. */
11226
11227 static int
11228 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11229 int *pnew_k)
11230 {
11231 static char *bound_buffer = NULL;
11232 static size_t bound_buffer_len = 0;
11233 const char *pstart, *pend, *bound;
11234 struct value *bound_val;
11235
11236 if (dval == NULL || str == NULL || str[k] == '\0')
11237 return 0;
11238
11239 pstart = str + k;
11240 pend = strstr (pstart, "__");
11241 if (pend == NULL)
11242 {
11243 bound = pstart;
11244 k += strlen (bound);
11245 }
11246 else
11247 {
11248 int len = pend - pstart;
11249
11250 /* Strip __ and beyond. */
11251 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11252 strncpy (bound_buffer, pstart, len);
11253 bound_buffer[len] = '\0';
11254
11255 bound = bound_buffer;
11256 k = pend - str;
11257 }
11258
11259 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11260 if (bound_val == NULL)
11261 return 0;
11262
11263 *px = value_as_long (bound_val);
11264 if (pnew_k != NULL)
11265 *pnew_k = k;
11266 return 1;
11267 }
11268
11269 /* Value of variable named NAME in the current environment. If
11270 no such variable found, then if ERR_MSG is null, returns 0, and
11271 otherwise causes an error with message ERR_MSG. */
11272
11273 static struct value *
11274 get_var_value (const char *name, const char *err_msg)
11275 {
11276 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11277
11278 std::vector<struct block_symbol> syms;
11279 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11280 get_selected_block (0),
11281 VAR_DOMAIN, &syms, 1);
11282
11283 if (nsyms != 1)
11284 {
11285 if (err_msg == NULL)
11286 return 0;
11287 else
11288 error (("%s"), err_msg);
11289 }
11290
11291 return value_of_variable (syms[0].symbol, syms[0].block);
11292 }
11293
11294 /* Value of integer variable named NAME in the current environment.
11295 If no such variable is found, returns false. Otherwise, sets VALUE
11296 to the variable's value and returns true. */
11297
11298 bool
11299 get_int_var_value (const char *name, LONGEST &value)
11300 {
11301 struct value *var_val = get_var_value (name, 0);
11302
11303 if (var_val == 0)
11304 return false;
11305
11306 value = value_as_long (var_val);
11307 return true;
11308 }
11309
11310
11311 /* Return a range type whose base type is that of the range type named
11312 NAME in the current environment, and whose bounds are calculated
11313 from NAME according to the GNAT range encoding conventions.
11314 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11315 corresponding range type from debug information; fall back to using it
11316 if symbol lookup fails. If a new type must be created, allocate it
11317 like ORIG_TYPE was. The bounds information, in general, is encoded
11318 in NAME, the base type given in the named range type. */
11319
11320 static struct type *
11321 to_fixed_range_type (struct type *raw_type, struct value *dval)
11322 {
11323 const char *name;
11324 struct type *base_type;
11325 const char *subtype_info;
11326
11327 gdb_assert (raw_type != NULL);
11328 gdb_assert (raw_type->name () != NULL);
11329
11330 if (raw_type->code () == TYPE_CODE_RANGE)
11331 base_type = TYPE_TARGET_TYPE (raw_type);
11332 else
11333 base_type = raw_type;
11334
11335 name = raw_type->name ();
11336 subtype_info = strstr (name, "___XD");
11337 if (subtype_info == NULL)
11338 {
11339 LONGEST L = ada_discrete_type_low_bound (raw_type);
11340 LONGEST U = ada_discrete_type_high_bound (raw_type);
11341
11342 if (L < INT_MIN || U > INT_MAX)
11343 return raw_type;
11344 else
11345 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11346 L, U);
11347 }
11348 else
11349 {
11350 static char *name_buf = NULL;
11351 static size_t name_len = 0;
11352 int prefix_len = subtype_info - name;
11353 LONGEST L, U;
11354 struct type *type;
11355 const char *bounds_str;
11356 int n;
11357
11358 GROW_VECT (name_buf, name_len, prefix_len + 5);
11359 strncpy (name_buf, name, prefix_len);
11360 name_buf[prefix_len] = '\0';
11361
11362 subtype_info += 5;
11363 bounds_str = strchr (subtype_info, '_');
11364 n = 1;
11365
11366 if (*subtype_info == 'L')
11367 {
11368 if (!ada_scan_number (bounds_str, n, &L, &n)
11369 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11370 return raw_type;
11371 if (bounds_str[n] == '_')
11372 n += 2;
11373 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11374 n += 1;
11375 subtype_info += 1;
11376 }
11377 else
11378 {
11379 strcpy (name_buf + prefix_len, "___L");
11380 if (!get_int_var_value (name_buf, L))
11381 {
11382 lim_warning (_("Unknown lower bound, using 1."));
11383 L = 1;
11384 }
11385 }
11386
11387 if (*subtype_info == 'U')
11388 {
11389 if (!ada_scan_number (bounds_str, n, &U, &n)
11390 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11391 return raw_type;
11392 }
11393 else
11394 {
11395 strcpy (name_buf + prefix_len, "___U");
11396 if (!get_int_var_value (name_buf, U))
11397 {
11398 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11399 U = L;
11400 }
11401 }
11402
11403 type = create_static_range_type (alloc_type_copy (raw_type),
11404 base_type, L, U);
11405 /* create_static_range_type alters the resulting type's length
11406 to match the size of the base_type, which is not what we want.
11407 Set it back to the original range type's length. */
11408 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11409 type->set_name (name);
11410 return type;
11411 }
11412 }
11413
11414 /* True iff NAME is the name of a range type. */
11415
11416 int
11417 ada_is_range_type_name (const char *name)
11418 {
11419 return (name != NULL && strstr (name, "___XD"));
11420 }
11421 \f
11422
11423 /* Modular types */
11424
11425 /* True iff TYPE is an Ada modular type. */
11426
11427 int
11428 ada_is_modular_type (struct type *type)
11429 {
11430 struct type *subranged_type = get_base_type (type);
11431
11432 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11433 && subranged_type->code () == TYPE_CODE_INT
11434 && subranged_type->is_unsigned ());
11435 }
11436
11437 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11438
11439 ULONGEST
11440 ada_modulus (struct type *type)
11441 {
11442 const dynamic_prop &high = type->bounds ()->high;
11443
11444 if (high.kind () == PROP_CONST)
11445 return (ULONGEST) high.const_val () + 1;
11446
11447 /* If TYPE is unresolved, the high bound might be a location list. Return
11448 0, for lack of a better value to return. */
11449 return 0;
11450 }
11451 \f
11452
11453 /* Ada exception catchpoint support:
11454 ---------------------------------
11455
11456 We support 3 kinds of exception catchpoints:
11457 . catchpoints on Ada exceptions
11458 . catchpoints on unhandled Ada exceptions
11459 . catchpoints on failed assertions
11460
11461 Exceptions raised during failed assertions, or unhandled exceptions
11462 could perfectly be caught with the general catchpoint on Ada exceptions.
11463 However, we can easily differentiate these two special cases, and having
11464 the option to distinguish these two cases from the rest can be useful
11465 to zero-in on certain situations.
11466
11467 Exception catchpoints are a specialized form of breakpoint,
11468 since they rely on inserting breakpoints inside known routines
11469 of the GNAT runtime. The implementation therefore uses a standard
11470 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11471 of breakpoint_ops.
11472
11473 Support in the runtime for exception catchpoints have been changed
11474 a few times already, and these changes affect the implementation
11475 of these catchpoints. In order to be able to support several
11476 variants of the runtime, we use a sniffer that will determine
11477 the runtime variant used by the program being debugged. */
11478
11479 /* Ada's standard exceptions.
11480
11481 The Ada 83 standard also defined Numeric_Error. But there so many
11482 situations where it was unclear from the Ada 83 Reference Manual
11483 (RM) whether Constraint_Error or Numeric_Error should be raised,
11484 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11485 Interpretation saying that anytime the RM says that Numeric_Error
11486 should be raised, the implementation may raise Constraint_Error.
11487 Ada 95 went one step further and pretty much removed Numeric_Error
11488 from the list of standard exceptions (it made it a renaming of
11489 Constraint_Error, to help preserve compatibility when compiling
11490 an Ada83 compiler). As such, we do not include Numeric_Error from
11491 this list of standard exceptions. */
11492
11493 static const char * const standard_exc[] = {
11494 "constraint_error",
11495 "program_error",
11496 "storage_error",
11497 "tasking_error"
11498 };
11499
11500 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11501
11502 /* A structure that describes how to support exception catchpoints
11503 for a given executable. */
11504
11505 struct exception_support_info
11506 {
11507 /* The name of the symbol to break on in order to insert
11508 a catchpoint on exceptions. */
11509 const char *catch_exception_sym;
11510
11511 /* The name of the symbol to break on in order to insert
11512 a catchpoint on unhandled exceptions. */
11513 const char *catch_exception_unhandled_sym;
11514
11515 /* The name of the symbol to break on in order to insert
11516 a catchpoint on failed assertions. */
11517 const char *catch_assert_sym;
11518
11519 /* The name of the symbol to break on in order to insert
11520 a catchpoint on exception handling. */
11521 const char *catch_handlers_sym;
11522
11523 /* Assuming that the inferior just triggered an unhandled exception
11524 catchpoint, this function is responsible for returning the address
11525 in inferior memory where the name of that exception is stored.
11526 Return zero if the address could not be computed. */
11527 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11528 };
11529
11530 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11531 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11532
11533 /* The following exception support info structure describes how to
11534 implement exception catchpoints with the latest version of the
11535 Ada runtime (as of 2019-08-??). */
11536
11537 static const struct exception_support_info default_exception_support_info =
11538 {
11539 "__gnat_debug_raise_exception", /* catch_exception_sym */
11540 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11541 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11542 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11543 ada_unhandled_exception_name_addr
11544 };
11545
11546 /* The following exception support info structure describes how to
11547 implement exception catchpoints with an earlier version of the
11548 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11549
11550 static const struct exception_support_info exception_support_info_v0 =
11551 {
11552 "__gnat_debug_raise_exception", /* catch_exception_sym */
11553 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11554 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11555 "__gnat_begin_handler", /* catch_handlers_sym */
11556 ada_unhandled_exception_name_addr
11557 };
11558
11559 /* The following exception support info structure describes how to
11560 implement exception catchpoints with a slightly older version
11561 of the Ada runtime. */
11562
11563 static const struct exception_support_info exception_support_info_fallback =
11564 {
11565 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11566 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11567 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11568 "__gnat_begin_handler", /* catch_handlers_sym */
11569 ada_unhandled_exception_name_addr_from_raise
11570 };
11571
11572 /* Return nonzero if we can detect the exception support routines
11573 described in EINFO.
11574
11575 This function errors out if an abnormal situation is detected
11576 (for instance, if we find the exception support routines, but
11577 that support is found to be incomplete). */
11578
11579 static int
11580 ada_has_this_exception_support (const struct exception_support_info *einfo)
11581 {
11582 struct symbol *sym;
11583
11584 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11585 that should be compiled with debugging information. As a result, we
11586 expect to find that symbol in the symtabs. */
11587
11588 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11589 if (sym == NULL)
11590 {
11591 /* Perhaps we did not find our symbol because the Ada runtime was
11592 compiled without debugging info, or simply stripped of it.
11593 It happens on some GNU/Linux distributions for instance, where
11594 users have to install a separate debug package in order to get
11595 the runtime's debugging info. In that situation, let the user
11596 know why we cannot insert an Ada exception catchpoint.
11597
11598 Note: Just for the purpose of inserting our Ada exception
11599 catchpoint, we could rely purely on the associated minimal symbol.
11600 But we would be operating in degraded mode anyway, since we are
11601 still lacking the debugging info needed later on to extract
11602 the name of the exception being raised (this name is printed in
11603 the catchpoint message, and is also used when trying to catch
11604 a specific exception). We do not handle this case for now. */
11605 struct bound_minimal_symbol msym
11606 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11607
11608 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11609 error (_("Your Ada runtime appears to be missing some debugging "
11610 "information.\nCannot insert Ada exception catchpoint "
11611 "in this configuration."));
11612
11613 return 0;
11614 }
11615
11616 /* Make sure that the symbol we found corresponds to a function. */
11617
11618 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11619 {
11620 error (_("Symbol \"%s\" is not a function (class = %d)"),
11621 sym->linkage_name (), SYMBOL_CLASS (sym));
11622 return 0;
11623 }
11624
11625 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11626 if (sym == NULL)
11627 {
11628 struct bound_minimal_symbol msym
11629 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11630
11631 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11632 error (_("Your Ada runtime appears to be missing some debugging "
11633 "information.\nCannot insert Ada exception catchpoint "
11634 "in this configuration."));
11635
11636 return 0;
11637 }
11638
11639 /* Make sure that the symbol we found corresponds to a function. */
11640
11641 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11642 {
11643 error (_("Symbol \"%s\" is not a function (class = %d)"),
11644 sym->linkage_name (), SYMBOL_CLASS (sym));
11645 return 0;
11646 }
11647
11648 return 1;
11649 }
11650
11651 /* Inspect the Ada runtime and determine which exception info structure
11652 should be used to provide support for exception catchpoints.
11653
11654 This function will always set the per-inferior exception_info,
11655 or raise an error. */
11656
11657 static void
11658 ada_exception_support_info_sniffer (void)
11659 {
11660 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11661
11662 /* If the exception info is already known, then no need to recompute it. */
11663 if (data->exception_info != NULL)
11664 return;
11665
11666 /* Check the latest (default) exception support info. */
11667 if (ada_has_this_exception_support (&default_exception_support_info))
11668 {
11669 data->exception_info = &default_exception_support_info;
11670 return;
11671 }
11672
11673 /* Try the v0 exception suport info. */
11674 if (ada_has_this_exception_support (&exception_support_info_v0))
11675 {
11676 data->exception_info = &exception_support_info_v0;
11677 return;
11678 }
11679
11680 /* Try our fallback exception suport info. */
11681 if (ada_has_this_exception_support (&exception_support_info_fallback))
11682 {
11683 data->exception_info = &exception_support_info_fallback;
11684 return;
11685 }
11686
11687 /* Sometimes, it is normal for us to not be able to find the routine
11688 we are looking for. This happens when the program is linked with
11689 the shared version of the GNAT runtime, and the program has not been
11690 started yet. Inform the user of these two possible causes if
11691 applicable. */
11692
11693 if (ada_update_initial_language (language_unknown) != language_ada)
11694 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11695
11696 /* If the symbol does not exist, then check that the program is
11697 already started, to make sure that shared libraries have been
11698 loaded. If it is not started, this may mean that the symbol is
11699 in a shared library. */
11700
11701 if (inferior_ptid.pid () == 0)
11702 error (_("Unable to insert catchpoint. Try to start the program first."));
11703
11704 /* At this point, we know that we are debugging an Ada program and
11705 that the inferior has been started, but we still are not able to
11706 find the run-time symbols. That can mean that we are in
11707 configurable run time mode, or that a-except as been optimized
11708 out by the linker... In any case, at this point it is not worth
11709 supporting this feature. */
11710
11711 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11712 }
11713
11714 /* True iff FRAME is very likely to be that of a function that is
11715 part of the runtime system. This is all very heuristic, but is
11716 intended to be used as advice as to what frames are uninteresting
11717 to most users. */
11718
11719 static int
11720 is_known_support_routine (struct frame_info *frame)
11721 {
11722 enum language func_lang;
11723 int i;
11724 const char *fullname;
11725
11726 /* If this code does not have any debugging information (no symtab),
11727 This cannot be any user code. */
11728
11729 symtab_and_line sal = find_frame_sal (frame);
11730 if (sal.symtab == NULL)
11731 return 1;
11732
11733 /* If there is a symtab, but the associated source file cannot be
11734 located, then assume this is not user code: Selecting a frame
11735 for which we cannot display the code would not be very helpful
11736 for the user. This should also take care of case such as VxWorks
11737 where the kernel has some debugging info provided for a few units. */
11738
11739 fullname = symtab_to_fullname (sal.symtab);
11740 if (access (fullname, R_OK) != 0)
11741 return 1;
11742
11743 /* Check the unit filename against the Ada runtime file naming.
11744 We also check the name of the objfile against the name of some
11745 known system libraries that sometimes come with debugging info
11746 too. */
11747
11748 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11749 {
11750 re_comp (known_runtime_file_name_patterns[i]);
11751 if (re_exec (lbasename (sal.symtab->filename)))
11752 return 1;
11753 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11754 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11755 return 1;
11756 }
11757
11758 /* Check whether the function is a GNAT-generated entity. */
11759
11760 gdb::unique_xmalloc_ptr<char> func_name
11761 = find_frame_funname (frame, &func_lang, NULL);
11762 if (func_name == NULL)
11763 return 1;
11764
11765 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11766 {
11767 re_comp (known_auxiliary_function_name_patterns[i]);
11768 if (re_exec (func_name.get ()))
11769 return 1;
11770 }
11771
11772 return 0;
11773 }
11774
11775 /* Find the first frame that contains debugging information and that is not
11776 part of the Ada run-time, starting from FI and moving upward. */
11777
11778 void
11779 ada_find_printable_frame (struct frame_info *fi)
11780 {
11781 for (; fi != NULL; fi = get_prev_frame (fi))
11782 {
11783 if (!is_known_support_routine (fi))
11784 {
11785 select_frame (fi);
11786 break;
11787 }
11788 }
11789
11790 }
11791
11792 /* Assuming that the inferior just triggered an unhandled exception
11793 catchpoint, return the address in inferior memory where the name
11794 of the exception is stored.
11795
11796 Return zero if the address could not be computed. */
11797
11798 static CORE_ADDR
11799 ada_unhandled_exception_name_addr (void)
11800 {
11801 return parse_and_eval_address ("e.full_name");
11802 }
11803
11804 /* Same as ada_unhandled_exception_name_addr, except that this function
11805 should be used when the inferior uses an older version of the runtime,
11806 where the exception name needs to be extracted from a specific frame
11807 several frames up in the callstack. */
11808
11809 static CORE_ADDR
11810 ada_unhandled_exception_name_addr_from_raise (void)
11811 {
11812 int frame_level;
11813 struct frame_info *fi;
11814 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11815
11816 /* To determine the name of this exception, we need to select
11817 the frame corresponding to RAISE_SYM_NAME. This frame is
11818 at least 3 levels up, so we simply skip the first 3 frames
11819 without checking the name of their associated function. */
11820 fi = get_current_frame ();
11821 for (frame_level = 0; frame_level < 3; frame_level += 1)
11822 if (fi != NULL)
11823 fi = get_prev_frame (fi);
11824
11825 while (fi != NULL)
11826 {
11827 enum language func_lang;
11828
11829 gdb::unique_xmalloc_ptr<char> func_name
11830 = find_frame_funname (fi, &func_lang, NULL);
11831 if (func_name != NULL)
11832 {
11833 if (strcmp (func_name.get (),
11834 data->exception_info->catch_exception_sym) == 0)
11835 break; /* We found the frame we were looking for... */
11836 }
11837 fi = get_prev_frame (fi);
11838 }
11839
11840 if (fi == NULL)
11841 return 0;
11842
11843 select_frame (fi);
11844 return parse_and_eval_address ("id.full_name");
11845 }
11846
11847 /* Assuming the inferior just triggered an Ada exception catchpoint
11848 (of any type), return the address in inferior memory where the name
11849 of the exception is stored, if applicable.
11850
11851 Assumes the selected frame is the current frame.
11852
11853 Return zero if the address could not be computed, or if not relevant. */
11854
11855 static CORE_ADDR
11856 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11857 struct breakpoint *b)
11858 {
11859 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11860
11861 switch (ex)
11862 {
11863 case ada_catch_exception:
11864 return (parse_and_eval_address ("e.full_name"));
11865 break;
11866
11867 case ada_catch_exception_unhandled:
11868 return data->exception_info->unhandled_exception_name_addr ();
11869 break;
11870
11871 case ada_catch_handlers:
11872 return 0; /* The runtimes does not provide access to the exception
11873 name. */
11874 break;
11875
11876 case ada_catch_assert:
11877 return 0; /* Exception name is not relevant in this case. */
11878 break;
11879
11880 default:
11881 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11882 break;
11883 }
11884
11885 return 0; /* Should never be reached. */
11886 }
11887
11888 /* Assuming the inferior is stopped at an exception catchpoint,
11889 return the message which was associated to the exception, if
11890 available. Return NULL if the message could not be retrieved.
11891
11892 Note: The exception message can be associated to an exception
11893 either through the use of the Raise_Exception function, or
11894 more simply (Ada 2005 and later), via:
11895
11896 raise Exception_Name with "exception message";
11897
11898 */
11899
11900 static gdb::unique_xmalloc_ptr<char>
11901 ada_exception_message_1 (void)
11902 {
11903 struct value *e_msg_val;
11904 int e_msg_len;
11905
11906 /* For runtimes that support this feature, the exception message
11907 is passed as an unbounded string argument called "message". */
11908 e_msg_val = parse_and_eval ("message");
11909 if (e_msg_val == NULL)
11910 return NULL; /* Exception message not supported. */
11911
11912 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11913 gdb_assert (e_msg_val != NULL);
11914 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11915
11916 /* If the message string is empty, then treat it as if there was
11917 no exception message. */
11918 if (e_msg_len <= 0)
11919 return NULL;
11920
11921 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11922 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11923 e_msg_len);
11924 e_msg.get ()[e_msg_len] = '\0';
11925
11926 return e_msg;
11927 }
11928
11929 /* Same as ada_exception_message_1, except that all exceptions are
11930 contained here (returning NULL instead). */
11931
11932 static gdb::unique_xmalloc_ptr<char>
11933 ada_exception_message (void)
11934 {
11935 gdb::unique_xmalloc_ptr<char> e_msg;
11936
11937 try
11938 {
11939 e_msg = ada_exception_message_1 ();
11940 }
11941 catch (const gdb_exception_error &e)
11942 {
11943 e_msg.reset (nullptr);
11944 }
11945
11946 return e_msg;
11947 }
11948
11949 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11950 any error that ada_exception_name_addr_1 might cause to be thrown.
11951 When an error is intercepted, a warning with the error message is printed,
11952 and zero is returned. */
11953
11954 static CORE_ADDR
11955 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11956 struct breakpoint *b)
11957 {
11958 CORE_ADDR result = 0;
11959
11960 try
11961 {
11962 result = ada_exception_name_addr_1 (ex, b);
11963 }
11964
11965 catch (const gdb_exception_error &e)
11966 {
11967 warning (_("failed to get exception name: %s"), e.what ());
11968 return 0;
11969 }
11970
11971 return result;
11972 }
11973
11974 static std::string ada_exception_catchpoint_cond_string
11975 (const char *excep_string,
11976 enum ada_exception_catchpoint_kind ex);
11977
11978 /* Ada catchpoints.
11979
11980 In the case of catchpoints on Ada exceptions, the catchpoint will
11981 stop the target on every exception the program throws. When a user
11982 specifies the name of a specific exception, we translate this
11983 request into a condition expression (in text form), and then parse
11984 it into an expression stored in each of the catchpoint's locations.
11985 We then use this condition to check whether the exception that was
11986 raised is the one the user is interested in. If not, then the
11987 target is resumed again. We store the name of the requested
11988 exception, in order to be able to re-set the condition expression
11989 when symbols change. */
11990
11991 /* An instance of this type is used to represent an Ada catchpoint
11992 breakpoint location. */
11993
11994 class ada_catchpoint_location : public bp_location
11995 {
11996 public:
11997 ada_catchpoint_location (breakpoint *owner)
11998 : bp_location (owner, bp_loc_software_breakpoint)
11999 {}
12000
12001 /* The condition that checks whether the exception that was raised
12002 is the specific exception the user specified on catchpoint
12003 creation. */
12004 expression_up excep_cond_expr;
12005 };
12006
12007 /* An instance of this type is used to represent an Ada catchpoint. */
12008
12009 struct ada_catchpoint : public breakpoint
12010 {
12011 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12012 : m_kind (kind)
12013 {
12014 }
12015
12016 /* The name of the specific exception the user specified. */
12017 std::string excep_string;
12018
12019 /* What kind of catchpoint this is. */
12020 enum ada_exception_catchpoint_kind m_kind;
12021 };
12022
12023 /* Parse the exception condition string in the context of each of the
12024 catchpoint's locations, and store them for later evaluation. */
12025
12026 static void
12027 create_excep_cond_exprs (struct ada_catchpoint *c,
12028 enum ada_exception_catchpoint_kind ex)
12029 {
12030 struct bp_location *bl;
12031
12032 /* Nothing to do if there's no specific exception to catch. */
12033 if (c->excep_string.empty ())
12034 return;
12035
12036 /* Same if there are no locations... */
12037 if (c->loc == NULL)
12038 return;
12039
12040 /* Compute the condition expression in text form, from the specific
12041 expection we want to catch. */
12042 std::string cond_string
12043 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12044
12045 /* Iterate over all the catchpoint's locations, and parse an
12046 expression for each. */
12047 for (bl = c->loc; bl != NULL; bl = bl->next)
12048 {
12049 struct ada_catchpoint_location *ada_loc
12050 = (struct ada_catchpoint_location *) bl;
12051 expression_up exp;
12052
12053 if (!bl->shlib_disabled)
12054 {
12055 const char *s;
12056
12057 s = cond_string.c_str ();
12058 try
12059 {
12060 exp = parse_exp_1 (&s, bl->address,
12061 block_for_pc (bl->address),
12062 0);
12063 }
12064 catch (const gdb_exception_error &e)
12065 {
12066 warning (_("failed to reevaluate internal exception condition "
12067 "for catchpoint %d: %s"),
12068 c->number, e.what ());
12069 }
12070 }
12071
12072 ada_loc->excep_cond_expr = std::move (exp);
12073 }
12074 }
12075
12076 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12077 structure for all exception catchpoint kinds. */
12078
12079 static struct bp_location *
12080 allocate_location_exception (struct breakpoint *self)
12081 {
12082 return new ada_catchpoint_location (self);
12083 }
12084
12085 /* Implement the RE_SET method in the breakpoint_ops structure for all
12086 exception catchpoint kinds. */
12087
12088 static void
12089 re_set_exception (struct breakpoint *b)
12090 {
12091 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12092
12093 /* Call the base class's method. This updates the catchpoint's
12094 locations. */
12095 bkpt_breakpoint_ops.re_set (b);
12096
12097 /* Reparse the exception conditional expressions. One for each
12098 location. */
12099 create_excep_cond_exprs (c, c->m_kind);
12100 }
12101
12102 /* Returns true if we should stop for this breakpoint hit. If the
12103 user specified a specific exception, we only want to cause a stop
12104 if the program thrown that exception. */
12105
12106 static int
12107 should_stop_exception (const struct bp_location *bl)
12108 {
12109 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12110 const struct ada_catchpoint_location *ada_loc
12111 = (const struct ada_catchpoint_location *) bl;
12112 int stop;
12113
12114 struct internalvar *var = lookup_internalvar ("_ada_exception");
12115 if (c->m_kind == ada_catch_assert)
12116 clear_internalvar (var);
12117 else
12118 {
12119 try
12120 {
12121 const char *expr;
12122
12123 if (c->m_kind == ada_catch_handlers)
12124 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12125 ".all.occurrence.id");
12126 else
12127 expr = "e";
12128
12129 struct value *exc = parse_and_eval (expr);
12130 set_internalvar (var, exc);
12131 }
12132 catch (const gdb_exception_error &ex)
12133 {
12134 clear_internalvar (var);
12135 }
12136 }
12137
12138 /* With no specific exception, should always stop. */
12139 if (c->excep_string.empty ())
12140 return 1;
12141
12142 if (ada_loc->excep_cond_expr == NULL)
12143 {
12144 /* We will have a NULL expression if back when we were creating
12145 the expressions, this location's had failed to parse. */
12146 return 1;
12147 }
12148
12149 stop = 1;
12150 try
12151 {
12152 struct value *mark;
12153
12154 mark = value_mark ();
12155 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12156 value_free_to_mark (mark);
12157 }
12158 catch (const gdb_exception &ex)
12159 {
12160 exception_fprintf (gdb_stderr, ex,
12161 _("Error in testing exception condition:\n"));
12162 }
12163
12164 return stop;
12165 }
12166
12167 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12168 for all exception catchpoint kinds. */
12169
12170 static void
12171 check_status_exception (bpstat bs)
12172 {
12173 bs->stop = should_stop_exception (bs->bp_location_at);
12174 }
12175
12176 /* Implement the PRINT_IT method in the breakpoint_ops structure
12177 for all exception catchpoint kinds. */
12178
12179 static enum print_stop_action
12180 print_it_exception (bpstat bs)
12181 {
12182 struct ui_out *uiout = current_uiout;
12183 struct breakpoint *b = bs->breakpoint_at;
12184
12185 annotate_catchpoint (b->number);
12186
12187 if (uiout->is_mi_like_p ())
12188 {
12189 uiout->field_string ("reason",
12190 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12191 uiout->field_string ("disp", bpdisp_text (b->disposition));
12192 }
12193
12194 uiout->text (b->disposition == disp_del
12195 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12196 uiout->field_signed ("bkptno", b->number);
12197 uiout->text (", ");
12198
12199 /* ada_exception_name_addr relies on the selected frame being the
12200 current frame. Need to do this here because this function may be
12201 called more than once when printing a stop, and below, we'll
12202 select the first frame past the Ada run-time (see
12203 ada_find_printable_frame). */
12204 select_frame (get_current_frame ());
12205
12206 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12207 switch (c->m_kind)
12208 {
12209 case ada_catch_exception:
12210 case ada_catch_exception_unhandled:
12211 case ada_catch_handlers:
12212 {
12213 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12214 char exception_name[256];
12215
12216 if (addr != 0)
12217 {
12218 read_memory (addr, (gdb_byte *) exception_name,
12219 sizeof (exception_name) - 1);
12220 exception_name [sizeof (exception_name) - 1] = '\0';
12221 }
12222 else
12223 {
12224 /* For some reason, we were unable to read the exception
12225 name. This could happen if the Runtime was compiled
12226 without debugging info, for instance. In that case,
12227 just replace the exception name by the generic string
12228 "exception" - it will read as "an exception" in the
12229 notification we are about to print. */
12230 memcpy (exception_name, "exception", sizeof ("exception"));
12231 }
12232 /* In the case of unhandled exception breakpoints, we print
12233 the exception name as "unhandled EXCEPTION_NAME", to make
12234 it clearer to the user which kind of catchpoint just got
12235 hit. We used ui_out_text to make sure that this extra
12236 info does not pollute the exception name in the MI case. */
12237 if (c->m_kind == ada_catch_exception_unhandled)
12238 uiout->text ("unhandled ");
12239 uiout->field_string ("exception-name", exception_name);
12240 }
12241 break;
12242 case ada_catch_assert:
12243 /* In this case, the name of the exception is not really
12244 important. Just print "failed assertion" to make it clearer
12245 that his program just hit an assertion-failure catchpoint.
12246 We used ui_out_text because this info does not belong in
12247 the MI output. */
12248 uiout->text ("failed assertion");
12249 break;
12250 }
12251
12252 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12253 if (exception_message != NULL)
12254 {
12255 uiout->text (" (");
12256 uiout->field_string ("exception-message", exception_message.get ());
12257 uiout->text (")");
12258 }
12259
12260 uiout->text (" at ");
12261 ada_find_printable_frame (get_current_frame ());
12262
12263 return PRINT_SRC_AND_LOC;
12264 }
12265
12266 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12267 for all exception catchpoint kinds. */
12268
12269 static void
12270 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12271 {
12272 struct ui_out *uiout = current_uiout;
12273 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12274 struct value_print_options opts;
12275
12276 get_user_print_options (&opts);
12277
12278 if (opts.addressprint)
12279 uiout->field_skip ("addr");
12280
12281 annotate_field (5);
12282 switch (c->m_kind)
12283 {
12284 case ada_catch_exception:
12285 if (!c->excep_string.empty ())
12286 {
12287 std::string msg = string_printf (_("`%s' Ada exception"),
12288 c->excep_string.c_str ());
12289
12290 uiout->field_string ("what", msg);
12291 }
12292 else
12293 uiout->field_string ("what", "all Ada exceptions");
12294
12295 break;
12296
12297 case ada_catch_exception_unhandled:
12298 uiout->field_string ("what", "unhandled Ada exceptions");
12299 break;
12300
12301 case ada_catch_handlers:
12302 if (!c->excep_string.empty ())
12303 {
12304 uiout->field_fmt ("what",
12305 _("`%s' Ada exception handlers"),
12306 c->excep_string.c_str ());
12307 }
12308 else
12309 uiout->field_string ("what", "all Ada exceptions handlers");
12310 break;
12311
12312 case ada_catch_assert:
12313 uiout->field_string ("what", "failed Ada assertions");
12314 break;
12315
12316 default:
12317 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12318 break;
12319 }
12320 }
12321
12322 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12323 for all exception catchpoint kinds. */
12324
12325 static void
12326 print_mention_exception (struct breakpoint *b)
12327 {
12328 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12329 struct ui_out *uiout = current_uiout;
12330
12331 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12332 : _("Catchpoint "));
12333 uiout->field_signed ("bkptno", b->number);
12334 uiout->text (": ");
12335
12336 switch (c->m_kind)
12337 {
12338 case ada_catch_exception:
12339 if (!c->excep_string.empty ())
12340 {
12341 std::string info = string_printf (_("`%s' Ada exception"),
12342 c->excep_string.c_str ());
12343 uiout->text (info.c_str ());
12344 }
12345 else
12346 uiout->text (_("all Ada exceptions"));
12347 break;
12348
12349 case ada_catch_exception_unhandled:
12350 uiout->text (_("unhandled Ada exceptions"));
12351 break;
12352
12353 case ada_catch_handlers:
12354 if (!c->excep_string.empty ())
12355 {
12356 std::string info
12357 = string_printf (_("`%s' Ada exception handlers"),
12358 c->excep_string.c_str ());
12359 uiout->text (info.c_str ());
12360 }
12361 else
12362 uiout->text (_("all Ada exceptions handlers"));
12363 break;
12364
12365 case ada_catch_assert:
12366 uiout->text (_("failed Ada assertions"));
12367 break;
12368
12369 default:
12370 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12371 break;
12372 }
12373 }
12374
12375 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12376 for all exception catchpoint kinds. */
12377
12378 static void
12379 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12380 {
12381 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12382
12383 switch (c->m_kind)
12384 {
12385 case ada_catch_exception:
12386 fprintf_filtered (fp, "catch exception");
12387 if (!c->excep_string.empty ())
12388 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12389 break;
12390
12391 case ada_catch_exception_unhandled:
12392 fprintf_filtered (fp, "catch exception unhandled");
12393 break;
12394
12395 case ada_catch_handlers:
12396 fprintf_filtered (fp, "catch handlers");
12397 break;
12398
12399 case ada_catch_assert:
12400 fprintf_filtered (fp, "catch assert");
12401 break;
12402
12403 default:
12404 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12405 }
12406 print_recreate_thread (b, fp);
12407 }
12408
12409 /* Virtual tables for various breakpoint types. */
12410 static struct breakpoint_ops catch_exception_breakpoint_ops;
12411 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12412 static struct breakpoint_ops catch_assert_breakpoint_ops;
12413 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12414
12415 /* See ada-lang.h. */
12416
12417 bool
12418 is_ada_exception_catchpoint (breakpoint *bp)
12419 {
12420 return (bp->ops == &catch_exception_breakpoint_ops
12421 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12422 || bp->ops == &catch_assert_breakpoint_ops
12423 || bp->ops == &catch_handlers_breakpoint_ops);
12424 }
12425
12426 /* Split the arguments specified in a "catch exception" command.
12427 Set EX to the appropriate catchpoint type.
12428 Set EXCEP_STRING to the name of the specific exception if
12429 specified by the user.
12430 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12431 "catch handlers" command. False otherwise.
12432 If a condition is found at the end of the arguments, the condition
12433 expression is stored in COND_STRING (memory must be deallocated
12434 after use). Otherwise COND_STRING is set to NULL. */
12435
12436 static void
12437 catch_ada_exception_command_split (const char *args,
12438 bool is_catch_handlers_cmd,
12439 enum ada_exception_catchpoint_kind *ex,
12440 std::string *excep_string,
12441 std::string *cond_string)
12442 {
12443 std::string exception_name;
12444
12445 exception_name = extract_arg (&args);
12446 if (exception_name == "if")
12447 {
12448 /* This is not an exception name; this is the start of a condition
12449 expression for a catchpoint on all exceptions. So, "un-get"
12450 this token, and set exception_name to NULL. */
12451 exception_name.clear ();
12452 args -= 2;
12453 }
12454
12455 /* Check to see if we have a condition. */
12456
12457 args = skip_spaces (args);
12458 if (startswith (args, "if")
12459 && (isspace (args[2]) || args[2] == '\0'))
12460 {
12461 args += 2;
12462 args = skip_spaces (args);
12463
12464 if (args[0] == '\0')
12465 error (_("Condition missing after `if' keyword"));
12466 *cond_string = args;
12467
12468 args += strlen (args);
12469 }
12470
12471 /* Check that we do not have any more arguments. Anything else
12472 is unexpected. */
12473
12474 if (args[0] != '\0')
12475 error (_("Junk at end of expression"));
12476
12477 if (is_catch_handlers_cmd)
12478 {
12479 /* Catch handling of exceptions. */
12480 *ex = ada_catch_handlers;
12481 *excep_string = exception_name;
12482 }
12483 else if (exception_name.empty ())
12484 {
12485 /* Catch all exceptions. */
12486 *ex = ada_catch_exception;
12487 excep_string->clear ();
12488 }
12489 else if (exception_name == "unhandled")
12490 {
12491 /* Catch unhandled exceptions. */
12492 *ex = ada_catch_exception_unhandled;
12493 excep_string->clear ();
12494 }
12495 else
12496 {
12497 /* Catch a specific exception. */
12498 *ex = ada_catch_exception;
12499 *excep_string = exception_name;
12500 }
12501 }
12502
12503 /* Return the name of the symbol on which we should break in order to
12504 implement a catchpoint of the EX kind. */
12505
12506 static const char *
12507 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12508 {
12509 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12510
12511 gdb_assert (data->exception_info != NULL);
12512
12513 switch (ex)
12514 {
12515 case ada_catch_exception:
12516 return (data->exception_info->catch_exception_sym);
12517 break;
12518 case ada_catch_exception_unhandled:
12519 return (data->exception_info->catch_exception_unhandled_sym);
12520 break;
12521 case ada_catch_assert:
12522 return (data->exception_info->catch_assert_sym);
12523 break;
12524 case ada_catch_handlers:
12525 return (data->exception_info->catch_handlers_sym);
12526 break;
12527 default:
12528 internal_error (__FILE__, __LINE__,
12529 _("unexpected catchpoint kind (%d)"), ex);
12530 }
12531 }
12532
12533 /* Return the breakpoint ops "virtual table" used for catchpoints
12534 of the EX kind. */
12535
12536 static const struct breakpoint_ops *
12537 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12538 {
12539 switch (ex)
12540 {
12541 case ada_catch_exception:
12542 return (&catch_exception_breakpoint_ops);
12543 break;
12544 case ada_catch_exception_unhandled:
12545 return (&catch_exception_unhandled_breakpoint_ops);
12546 break;
12547 case ada_catch_assert:
12548 return (&catch_assert_breakpoint_ops);
12549 break;
12550 case ada_catch_handlers:
12551 return (&catch_handlers_breakpoint_ops);
12552 break;
12553 default:
12554 internal_error (__FILE__, __LINE__,
12555 _("unexpected catchpoint kind (%d)"), ex);
12556 }
12557 }
12558
12559 /* Return the condition that will be used to match the current exception
12560 being raised with the exception that the user wants to catch. This
12561 assumes that this condition is used when the inferior just triggered
12562 an exception catchpoint.
12563 EX: the type of catchpoints used for catching Ada exceptions. */
12564
12565 static std::string
12566 ada_exception_catchpoint_cond_string (const char *excep_string,
12567 enum ada_exception_catchpoint_kind ex)
12568 {
12569 int i;
12570 bool is_standard_exc = false;
12571 std::string result;
12572
12573 if (ex == ada_catch_handlers)
12574 {
12575 /* For exception handlers catchpoints, the condition string does
12576 not use the same parameter as for the other exceptions. */
12577 result = ("long_integer (GNAT_GCC_exception_Access"
12578 "(gcc_exception).all.occurrence.id)");
12579 }
12580 else
12581 result = "long_integer (e)";
12582
12583 /* The standard exceptions are a special case. They are defined in
12584 runtime units that have been compiled without debugging info; if
12585 EXCEP_STRING is the not-fully-qualified name of a standard
12586 exception (e.g. "constraint_error") then, during the evaluation
12587 of the condition expression, the symbol lookup on this name would
12588 *not* return this standard exception. The catchpoint condition
12589 may then be set only on user-defined exceptions which have the
12590 same not-fully-qualified name (e.g. my_package.constraint_error).
12591
12592 To avoid this unexcepted behavior, these standard exceptions are
12593 systematically prefixed by "standard". This means that "catch
12594 exception constraint_error" is rewritten into "catch exception
12595 standard.constraint_error".
12596
12597 If an exception named constraint_error is defined in another package of
12598 the inferior program, then the only way to specify this exception as a
12599 breakpoint condition is to use its fully-qualified named:
12600 e.g. my_package.constraint_error. */
12601
12602 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12603 {
12604 if (strcmp (standard_exc [i], excep_string) == 0)
12605 {
12606 is_standard_exc = true;
12607 break;
12608 }
12609 }
12610
12611 result += " = ";
12612
12613 if (is_standard_exc)
12614 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12615 else
12616 string_appendf (result, "long_integer (&%s)", excep_string);
12617
12618 return result;
12619 }
12620
12621 /* Return the symtab_and_line that should be used to insert an exception
12622 catchpoint of the TYPE kind.
12623
12624 ADDR_STRING returns the name of the function where the real
12625 breakpoint that implements the catchpoints is set, depending on the
12626 type of catchpoint we need to create. */
12627
12628 static struct symtab_and_line
12629 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12630 std::string *addr_string, const struct breakpoint_ops **ops)
12631 {
12632 const char *sym_name;
12633 struct symbol *sym;
12634
12635 /* First, find out which exception support info to use. */
12636 ada_exception_support_info_sniffer ();
12637
12638 /* Then lookup the function on which we will break in order to catch
12639 the Ada exceptions requested by the user. */
12640 sym_name = ada_exception_sym_name (ex);
12641 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12642
12643 if (sym == NULL)
12644 error (_("Catchpoint symbol not found: %s"), sym_name);
12645
12646 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12647 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12648
12649 /* Set ADDR_STRING. */
12650 *addr_string = sym_name;
12651
12652 /* Set OPS. */
12653 *ops = ada_exception_breakpoint_ops (ex);
12654
12655 return find_function_start_sal (sym, 1);
12656 }
12657
12658 /* Create an Ada exception catchpoint.
12659
12660 EX_KIND is the kind of exception catchpoint to be created.
12661
12662 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12663 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12664 of the exception to which this catchpoint applies.
12665
12666 COND_STRING, if not empty, is the catchpoint condition.
12667
12668 TEMPFLAG, if nonzero, means that the underlying breakpoint
12669 should be temporary.
12670
12671 FROM_TTY is the usual argument passed to all commands implementations. */
12672
12673 void
12674 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12675 enum ada_exception_catchpoint_kind ex_kind,
12676 const std::string &excep_string,
12677 const std::string &cond_string,
12678 int tempflag,
12679 int disabled,
12680 int from_tty)
12681 {
12682 std::string addr_string;
12683 const struct breakpoint_ops *ops = NULL;
12684 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12685
12686 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12687 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12688 ops, tempflag, disabled, from_tty);
12689 c->excep_string = excep_string;
12690 create_excep_cond_exprs (c.get (), ex_kind);
12691 if (!cond_string.empty ())
12692 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12693 install_breakpoint (0, std::move (c), 1);
12694 }
12695
12696 /* Implement the "catch exception" command. */
12697
12698 static void
12699 catch_ada_exception_command (const char *arg_entry, int from_tty,
12700 struct cmd_list_element *command)
12701 {
12702 const char *arg = arg_entry;
12703 struct gdbarch *gdbarch = get_current_arch ();
12704 int tempflag;
12705 enum ada_exception_catchpoint_kind ex_kind;
12706 std::string excep_string;
12707 std::string cond_string;
12708
12709 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12710
12711 if (!arg)
12712 arg = "";
12713 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12714 &cond_string);
12715 create_ada_exception_catchpoint (gdbarch, ex_kind,
12716 excep_string, cond_string,
12717 tempflag, 1 /* enabled */,
12718 from_tty);
12719 }
12720
12721 /* Implement the "catch handlers" command. */
12722
12723 static void
12724 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12725 struct cmd_list_element *command)
12726 {
12727 const char *arg = arg_entry;
12728 struct gdbarch *gdbarch = get_current_arch ();
12729 int tempflag;
12730 enum ada_exception_catchpoint_kind ex_kind;
12731 std::string excep_string;
12732 std::string cond_string;
12733
12734 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12735
12736 if (!arg)
12737 arg = "";
12738 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12739 &cond_string);
12740 create_ada_exception_catchpoint (gdbarch, ex_kind,
12741 excep_string, cond_string,
12742 tempflag, 1 /* enabled */,
12743 from_tty);
12744 }
12745
12746 /* Completion function for the Ada "catch" commands. */
12747
12748 static void
12749 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12750 const char *text, const char *word)
12751 {
12752 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12753
12754 for (const ada_exc_info &info : exceptions)
12755 {
12756 if (startswith (info.name, word))
12757 tracker.add_completion (make_unique_xstrdup (info.name));
12758 }
12759 }
12760
12761 /* Split the arguments specified in a "catch assert" command.
12762
12763 ARGS contains the command's arguments (or the empty string if
12764 no arguments were passed).
12765
12766 If ARGS contains a condition, set COND_STRING to that condition
12767 (the memory needs to be deallocated after use). */
12768
12769 static void
12770 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12771 {
12772 args = skip_spaces (args);
12773
12774 /* Check whether a condition was provided. */
12775 if (startswith (args, "if")
12776 && (isspace (args[2]) || args[2] == '\0'))
12777 {
12778 args += 2;
12779 args = skip_spaces (args);
12780 if (args[0] == '\0')
12781 error (_("condition missing after `if' keyword"));
12782 cond_string.assign (args);
12783 }
12784
12785 /* Otherwise, there should be no other argument at the end of
12786 the command. */
12787 else if (args[0] != '\0')
12788 error (_("Junk at end of arguments."));
12789 }
12790
12791 /* Implement the "catch assert" command. */
12792
12793 static void
12794 catch_assert_command (const char *arg_entry, int from_tty,
12795 struct cmd_list_element *command)
12796 {
12797 const char *arg = arg_entry;
12798 struct gdbarch *gdbarch = get_current_arch ();
12799 int tempflag;
12800 std::string cond_string;
12801
12802 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12803
12804 if (!arg)
12805 arg = "";
12806 catch_ada_assert_command_split (arg, cond_string);
12807 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12808 "", cond_string,
12809 tempflag, 1 /* enabled */,
12810 from_tty);
12811 }
12812
12813 /* Return non-zero if the symbol SYM is an Ada exception object. */
12814
12815 static int
12816 ada_is_exception_sym (struct symbol *sym)
12817 {
12818 const char *type_name = SYMBOL_TYPE (sym)->name ();
12819
12820 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12821 && SYMBOL_CLASS (sym) != LOC_BLOCK
12822 && SYMBOL_CLASS (sym) != LOC_CONST
12823 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12824 && type_name != NULL && strcmp (type_name, "exception") == 0);
12825 }
12826
12827 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12828 Ada exception object. This matches all exceptions except the ones
12829 defined by the Ada language. */
12830
12831 static int
12832 ada_is_non_standard_exception_sym (struct symbol *sym)
12833 {
12834 int i;
12835
12836 if (!ada_is_exception_sym (sym))
12837 return 0;
12838
12839 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12840 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12841 return 0; /* A standard exception. */
12842
12843 /* Numeric_Error is also a standard exception, so exclude it.
12844 See the STANDARD_EXC description for more details as to why
12845 this exception is not listed in that array. */
12846 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12847 return 0;
12848
12849 return 1;
12850 }
12851
12852 /* A helper function for std::sort, comparing two struct ada_exc_info
12853 objects.
12854
12855 The comparison is determined first by exception name, and then
12856 by exception address. */
12857
12858 bool
12859 ada_exc_info::operator< (const ada_exc_info &other) const
12860 {
12861 int result;
12862
12863 result = strcmp (name, other.name);
12864 if (result < 0)
12865 return true;
12866 if (result == 0 && addr < other.addr)
12867 return true;
12868 return false;
12869 }
12870
12871 bool
12872 ada_exc_info::operator== (const ada_exc_info &other) const
12873 {
12874 return addr == other.addr && strcmp (name, other.name) == 0;
12875 }
12876
12877 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12878 routine, but keeping the first SKIP elements untouched.
12879
12880 All duplicates are also removed. */
12881
12882 static void
12883 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12884 int skip)
12885 {
12886 std::sort (exceptions->begin () + skip, exceptions->end ());
12887 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12888 exceptions->end ());
12889 }
12890
12891 /* Add all exceptions defined by the Ada standard whose name match
12892 a regular expression.
12893
12894 If PREG is not NULL, then this regexp_t object is used to
12895 perform the symbol name matching. Otherwise, no name-based
12896 filtering is performed.
12897
12898 EXCEPTIONS is a vector of exceptions to which matching exceptions
12899 gets pushed. */
12900
12901 static void
12902 ada_add_standard_exceptions (compiled_regex *preg,
12903 std::vector<ada_exc_info> *exceptions)
12904 {
12905 int i;
12906
12907 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12908 {
12909 if (preg == NULL
12910 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12911 {
12912 struct bound_minimal_symbol msymbol
12913 = ada_lookup_simple_minsym (standard_exc[i]);
12914
12915 if (msymbol.minsym != NULL)
12916 {
12917 struct ada_exc_info info
12918 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12919
12920 exceptions->push_back (info);
12921 }
12922 }
12923 }
12924 }
12925
12926 /* Add all Ada exceptions defined locally and accessible from the given
12927 FRAME.
12928
12929 If PREG is not NULL, then this regexp_t object is used to
12930 perform the symbol name matching. Otherwise, no name-based
12931 filtering is performed.
12932
12933 EXCEPTIONS is a vector of exceptions to which matching exceptions
12934 gets pushed. */
12935
12936 static void
12937 ada_add_exceptions_from_frame (compiled_regex *preg,
12938 struct frame_info *frame,
12939 std::vector<ada_exc_info> *exceptions)
12940 {
12941 const struct block *block = get_frame_block (frame, 0);
12942
12943 while (block != 0)
12944 {
12945 struct block_iterator iter;
12946 struct symbol *sym;
12947
12948 ALL_BLOCK_SYMBOLS (block, iter, sym)
12949 {
12950 switch (SYMBOL_CLASS (sym))
12951 {
12952 case LOC_TYPEDEF:
12953 case LOC_BLOCK:
12954 case LOC_CONST:
12955 break;
12956 default:
12957 if (ada_is_exception_sym (sym))
12958 {
12959 struct ada_exc_info info = {sym->print_name (),
12960 SYMBOL_VALUE_ADDRESS (sym)};
12961
12962 exceptions->push_back (info);
12963 }
12964 }
12965 }
12966 if (BLOCK_FUNCTION (block) != NULL)
12967 break;
12968 block = BLOCK_SUPERBLOCK (block);
12969 }
12970 }
12971
12972 /* Return true if NAME matches PREG or if PREG is NULL. */
12973
12974 static bool
12975 name_matches_regex (const char *name, compiled_regex *preg)
12976 {
12977 return (preg == NULL
12978 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12979 }
12980
12981 /* Add all exceptions defined globally whose name name match
12982 a regular expression, excluding standard exceptions.
12983
12984 The reason we exclude standard exceptions is that they need
12985 to be handled separately: Standard exceptions are defined inside
12986 a runtime unit which is normally not compiled with debugging info,
12987 and thus usually do not show up in our symbol search. However,
12988 if the unit was in fact built with debugging info, we need to
12989 exclude them because they would duplicate the entry we found
12990 during the special loop that specifically searches for those
12991 standard exceptions.
12992
12993 If PREG is not NULL, then this regexp_t object is used to
12994 perform the symbol name matching. Otherwise, no name-based
12995 filtering is performed.
12996
12997 EXCEPTIONS is a vector of exceptions to which matching exceptions
12998 gets pushed. */
12999
13000 static void
13001 ada_add_global_exceptions (compiled_regex *preg,
13002 std::vector<ada_exc_info> *exceptions)
13003 {
13004 /* In Ada, the symbol "search name" is a linkage name, whereas the
13005 regular expression used to do the matching refers to the natural
13006 name. So match against the decoded name. */
13007 expand_symtabs_matching (NULL,
13008 lookup_name_info::match_any (),
13009 [&] (const char *search_name)
13010 {
13011 std::string decoded = ada_decode (search_name);
13012 return name_matches_regex (decoded.c_str (), preg);
13013 },
13014 NULL,
13015 VARIABLES_DOMAIN);
13016
13017 for (objfile *objfile : current_program_space->objfiles ())
13018 {
13019 for (compunit_symtab *s : objfile->compunits ())
13020 {
13021 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13022 int i;
13023
13024 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13025 {
13026 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13027 struct block_iterator iter;
13028 struct symbol *sym;
13029
13030 ALL_BLOCK_SYMBOLS (b, iter, sym)
13031 if (ada_is_non_standard_exception_sym (sym)
13032 && name_matches_regex (sym->natural_name (), preg))
13033 {
13034 struct ada_exc_info info
13035 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13036
13037 exceptions->push_back (info);
13038 }
13039 }
13040 }
13041 }
13042 }
13043
13044 /* Implements ada_exceptions_list with the regular expression passed
13045 as a regex_t, rather than a string.
13046
13047 If not NULL, PREG is used to filter out exceptions whose names
13048 do not match. Otherwise, all exceptions are listed. */
13049
13050 static std::vector<ada_exc_info>
13051 ada_exceptions_list_1 (compiled_regex *preg)
13052 {
13053 std::vector<ada_exc_info> result;
13054 int prev_len;
13055
13056 /* First, list the known standard exceptions. These exceptions
13057 need to be handled separately, as they are usually defined in
13058 runtime units that have been compiled without debugging info. */
13059
13060 ada_add_standard_exceptions (preg, &result);
13061
13062 /* Next, find all exceptions whose scope is local and accessible
13063 from the currently selected frame. */
13064
13065 if (has_stack_frames ())
13066 {
13067 prev_len = result.size ();
13068 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13069 &result);
13070 if (result.size () > prev_len)
13071 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13072 }
13073
13074 /* Add all exceptions whose scope is global. */
13075
13076 prev_len = result.size ();
13077 ada_add_global_exceptions (preg, &result);
13078 if (result.size () > prev_len)
13079 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13080
13081 return result;
13082 }
13083
13084 /* Return a vector of ada_exc_info.
13085
13086 If REGEXP is NULL, all exceptions are included in the result.
13087 Otherwise, it should contain a valid regular expression,
13088 and only the exceptions whose names match that regular expression
13089 are included in the result.
13090
13091 The exceptions are sorted in the following order:
13092 - Standard exceptions (defined by the Ada language), in
13093 alphabetical order;
13094 - Exceptions only visible from the current frame, in
13095 alphabetical order;
13096 - Exceptions whose scope is global, in alphabetical order. */
13097
13098 std::vector<ada_exc_info>
13099 ada_exceptions_list (const char *regexp)
13100 {
13101 if (regexp == NULL)
13102 return ada_exceptions_list_1 (NULL);
13103
13104 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13105 return ada_exceptions_list_1 (&reg);
13106 }
13107
13108 /* Implement the "info exceptions" command. */
13109
13110 static void
13111 info_exceptions_command (const char *regexp, int from_tty)
13112 {
13113 struct gdbarch *gdbarch = get_current_arch ();
13114
13115 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13116
13117 if (regexp != NULL)
13118 printf_filtered
13119 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13120 else
13121 printf_filtered (_("All defined Ada exceptions:\n"));
13122
13123 for (const ada_exc_info &info : exceptions)
13124 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13125 }
13126
13127 /* Operators */
13128 /* Information about operators given special treatment in functions
13129 below. */
13130 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13131
13132 #define ADA_OPERATORS \
13133 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13134 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13135 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13136 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13137 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13138 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13139 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13140 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13141 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13142 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13143 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13144 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13145 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13146 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13147 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13148 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13149 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13150 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13151 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13152
13153 static void
13154 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13155 int *argsp)
13156 {
13157 switch (exp->elts[pc - 1].opcode)
13158 {
13159 default:
13160 operator_length_standard (exp, pc, oplenp, argsp);
13161 break;
13162
13163 #define OP_DEFN(op, len, args, binop) \
13164 case op: *oplenp = len; *argsp = args; break;
13165 ADA_OPERATORS;
13166 #undef OP_DEFN
13167
13168 case OP_AGGREGATE:
13169 *oplenp = 3;
13170 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13171 break;
13172
13173 case OP_CHOICES:
13174 *oplenp = 3;
13175 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13176 break;
13177 }
13178 }
13179
13180 /* Implementation of the exp_descriptor method operator_check. */
13181
13182 static int
13183 ada_operator_check (struct expression *exp, int pos,
13184 int (*objfile_func) (struct objfile *objfile, void *data),
13185 void *data)
13186 {
13187 const union exp_element *const elts = exp->elts;
13188 struct type *type = NULL;
13189
13190 switch (elts[pos].opcode)
13191 {
13192 case UNOP_IN_RANGE:
13193 case UNOP_QUAL:
13194 type = elts[pos + 1].type;
13195 break;
13196
13197 default:
13198 return operator_check_standard (exp, pos, objfile_func, data);
13199 }
13200
13201 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13202
13203 if (type && TYPE_OBJFILE (type)
13204 && (*objfile_func) (TYPE_OBJFILE (type), data))
13205 return 1;
13206
13207 return 0;
13208 }
13209
13210 static const char *
13211 ada_op_name (enum exp_opcode opcode)
13212 {
13213 switch (opcode)
13214 {
13215 default:
13216 return op_name_standard (opcode);
13217
13218 #define OP_DEFN(op, len, args, binop) case op: return #op;
13219 ADA_OPERATORS;
13220 #undef OP_DEFN
13221
13222 case OP_AGGREGATE:
13223 return "OP_AGGREGATE";
13224 case OP_CHOICES:
13225 return "OP_CHOICES";
13226 case OP_NAME:
13227 return "OP_NAME";
13228 }
13229 }
13230
13231 /* As for operator_length, but assumes PC is pointing at the first
13232 element of the operator, and gives meaningful results only for the
13233 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13234
13235 static void
13236 ada_forward_operator_length (struct expression *exp, int pc,
13237 int *oplenp, int *argsp)
13238 {
13239 switch (exp->elts[pc].opcode)
13240 {
13241 default:
13242 *oplenp = *argsp = 0;
13243 break;
13244
13245 #define OP_DEFN(op, len, args, binop) \
13246 case op: *oplenp = len; *argsp = args; break;
13247 ADA_OPERATORS;
13248 #undef OP_DEFN
13249
13250 case OP_AGGREGATE:
13251 *oplenp = 3;
13252 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13253 break;
13254
13255 case OP_CHOICES:
13256 *oplenp = 3;
13257 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13258 break;
13259
13260 case OP_STRING:
13261 case OP_NAME:
13262 {
13263 int len = longest_to_int (exp->elts[pc + 1].longconst);
13264
13265 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13266 *argsp = 0;
13267 break;
13268 }
13269 }
13270 }
13271
13272 static int
13273 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13274 {
13275 enum exp_opcode op = exp->elts[elt].opcode;
13276 int oplen, nargs;
13277 int pc = elt;
13278 int i;
13279
13280 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13281
13282 switch (op)
13283 {
13284 /* Ada attributes ('Foo). */
13285 case OP_ATR_FIRST:
13286 case OP_ATR_LAST:
13287 case OP_ATR_LENGTH:
13288 case OP_ATR_IMAGE:
13289 case OP_ATR_MAX:
13290 case OP_ATR_MIN:
13291 case OP_ATR_MODULUS:
13292 case OP_ATR_POS:
13293 case OP_ATR_SIZE:
13294 case OP_ATR_TAG:
13295 case OP_ATR_VAL:
13296 break;
13297
13298 case UNOP_IN_RANGE:
13299 case UNOP_QUAL:
13300 /* XXX: gdb_sprint_host_address, type_sprint */
13301 fprintf_filtered (stream, _("Type @"));
13302 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13303 fprintf_filtered (stream, " (");
13304 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13305 fprintf_filtered (stream, ")");
13306 break;
13307 case BINOP_IN_BOUNDS:
13308 fprintf_filtered (stream, " (%d)",
13309 longest_to_int (exp->elts[pc + 2].longconst));
13310 break;
13311 case TERNOP_IN_RANGE:
13312 break;
13313
13314 case OP_AGGREGATE:
13315 case OP_OTHERS:
13316 case OP_DISCRETE_RANGE:
13317 case OP_POSITIONAL:
13318 case OP_CHOICES:
13319 break;
13320
13321 case OP_NAME:
13322 case OP_STRING:
13323 {
13324 char *name = &exp->elts[elt + 2].string;
13325 int len = longest_to_int (exp->elts[elt + 1].longconst);
13326
13327 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13328 break;
13329 }
13330
13331 default:
13332 return dump_subexp_body_standard (exp, stream, elt);
13333 }
13334
13335 elt += oplen;
13336 for (i = 0; i < nargs; i += 1)
13337 elt = dump_subexp (exp, stream, elt);
13338
13339 return elt;
13340 }
13341
13342 /* The Ada extension of print_subexp (q.v.). */
13343
13344 static void
13345 ada_print_subexp (struct expression *exp, int *pos,
13346 struct ui_file *stream, enum precedence prec)
13347 {
13348 int oplen, nargs, i;
13349 int pc = *pos;
13350 enum exp_opcode op = exp->elts[pc].opcode;
13351
13352 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13353
13354 *pos += oplen;
13355 switch (op)
13356 {
13357 default:
13358 *pos -= oplen;
13359 print_subexp_standard (exp, pos, stream, prec);
13360 return;
13361
13362 case OP_VAR_VALUE:
13363 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13364 return;
13365
13366 case BINOP_IN_BOUNDS:
13367 /* XXX: sprint_subexp */
13368 print_subexp (exp, pos, stream, PREC_SUFFIX);
13369 fputs_filtered (" in ", stream);
13370 print_subexp (exp, pos, stream, PREC_SUFFIX);
13371 fputs_filtered ("'range", stream);
13372 if (exp->elts[pc + 1].longconst > 1)
13373 fprintf_filtered (stream, "(%ld)",
13374 (long) exp->elts[pc + 1].longconst);
13375 return;
13376
13377 case TERNOP_IN_RANGE:
13378 if (prec >= PREC_EQUAL)
13379 fputs_filtered ("(", stream);
13380 /* XXX: sprint_subexp */
13381 print_subexp (exp, pos, stream, PREC_SUFFIX);
13382 fputs_filtered (" in ", stream);
13383 print_subexp (exp, pos, stream, PREC_EQUAL);
13384 fputs_filtered (" .. ", stream);
13385 print_subexp (exp, pos, stream, PREC_EQUAL);
13386 if (prec >= PREC_EQUAL)
13387 fputs_filtered (")", stream);
13388 return;
13389
13390 case OP_ATR_FIRST:
13391 case OP_ATR_LAST:
13392 case OP_ATR_LENGTH:
13393 case OP_ATR_IMAGE:
13394 case OP_ATR_MAX:
13395 case OP_ATR_MIN:
13396 case OP_ATR_MODULUS:
13397 case OP_ATR_POS:
13398 case OP_ATR_SIZE:
13399 case OP_ATR_TAG:
13400 case OP_ATR_VAL:
13401 if (exp->elts[*pos].opcode == OP_TYPE)
13402 {
13403 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13404 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13405 &type_print_raw_options);
13406 *pos += 3;
13407 }
13408 else
13409 print_subexp (exp, pos, stream, PREC_SUFFIX);
13410 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13411 if (nargs > 1)
13412 {
13413 int tem;
13414
13415 for (tem = 1; tem < nargs; tem += 1)
13416 {
13417 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13418 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13419 }
13420 fputs_filtered (")", stream);
13421 }
13422 return;
13423
13424 case UNOP_QUAL:
13425 type_print (exp->elts[pc + 1].type, "", stream, 0);
13426 fputs_filtered ("'(", stream);
13427 print_subexp (exp, pos, stream, PREC_PREFIX);
13428 fputs_filtered (")", stream);
13429 return;
13430
13431 case UNOP_IN_RANGE:
13432 /* XXX: sprint_subexp */
13433 print_subexp (exp, pos, stream, PREC_SUFFIX);
13434 fputs_filtered (" in ", stream);
13435 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13436 &type_print_raw_options);
13437 return;
13438
13439 case OP_DISCRETE_RANGE:
13440 print_subexp (exp, pos, stream, PREC_SUFFIX);
13441 fputs_filtered ("..", stream);
13442 print_subexp (exp, pos, stream, PREC_SUFFIX);
13443 return;
13444
13445 case OP_OTHERS:
13446 fputs_filtered ("others => ", stream);
13447 print_subexp (exp, pos, stream, PREC_SUFFIX);
13448 return;
13449
13450 case OP_CHOICES:
13451 for (i = 0; i < nargs-1; i += 1)
13452 {
13453 if (i > 0)
13454 fputs_filtered ("|", stream);
13455 print_subexp (exp, pos, stream, PREC_SUFFIX);
13456 }
13457 fputs_filtered (" => ", stream);
13458 print_subexp (exp, pos, stream, PREC_SUFFIX);
13459 return;
13460
13461 case OP_POSITIONAL:
13462 print_subexp (exp, pos, stream, PREC_SUFFIX);
13463 return;
13464
13465 case OP_AGGREGATE:
13466 fputs_filtered ("(", stream);
13467 for (i = 0; i < nargs; i += 1)
13468 {
13469 if (i > 0)
13470 fputs_filtered (", ", stream);
13471 print_subexp (exp, pos, stream, PREC_SUFFIX);
13472 }
13473 fputs_filtered (")", stream);
13474 return;
13475 }
13476 }
13477
13478 /* Table mapping opcodes into strings for printing operators
13479 and precedences of the operators. */
13480
13481 static const struct op_print ada_op_print_tab[] = {
13482 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13483 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13484 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13485 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13486 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13487 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13488 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13489 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13490 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13491 {">=", BINOP_GEQ, PREC_ORDER, 0},
13492 {">", BINOP_GTR, PREC_ORDER, 0},
13493 {"<", BINOP_LESS, PREC_ORDER, 0},
13494 {">>", BINOP_RSH, PREC_SHIFT, 0},
13495 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13496 {"+", BINOP_ADD, PREC_ADD, 0},
13497 {"-", BINOP_SUB, PREC_ADD, 0},
13498 {"&", BINOP_CONCAT, PREC_ADD, 0},
13499 {"*", BINOP_MUL, PREC_MUL, 0},
13500 {"/", BINOP_DIV, PREC_MUL, 0},
13501 {"rem", BINOP_REM, PREC_MUL, 0},
13502 {"mod", BINOP_MOD, PREC_MUL, 0},
13503 {"**", BINOP_EXP, PREC_REPEAT, 0},
13504 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13505 {"-", UNOP_NEG, PREC_PREFIX, 0},
13506 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13507 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13508 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13509 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13510 {".all", UNOP_IND, PREC_SUFFIX, 1},
13511 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13512 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13513 {NULL, OP_NULL, PREC_SUFFIX, 0}
13514 };
13515 \f
13516 enum ada_primitive_types {
13517 ada_primitive_type_int,
13518 ada_primitive_type_long,
13519 ada_primitive_type_short,
13520 ada_primitive_type_char,
13521 ada_primitive_type_float,
13522 ada_primitive_type_double,
13523 ada_primitive_type_void,
13524 ada_primitive_type_long_long,
13525 ada_primitive_type_long_double,
13526 ada_primitive_type_natural,
13527 ada_primitive_type_positive,
13528 ada_primitive_type_system_address,
13529 ada_primitive_type_storage_offset,
13530 nr_ada_primitive_types
13531 };
13532
13533 \f
13534 /* Language vector */
13535
13536 static const struct exp_descriptor ada_exp_descriptor = {
13537 ada_print_subexp,
13538 ada_operator_length,
13539 ada_operator_check,
13540 ada_op_name,
13541 ada_dump_subexp_body,
13542 ada_evaluate_subexp
13543 };
13544
13545 /* symbol_name_matcher_ftype adapter for wild_match. */
13546
13547 static bool
13548 do_wild_match (const char *symbol_search_name,
13549 const lookup_name_info &lookup_name,
13550 completion_match_result *comp_match_res)
13551 {
13552 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13553 }
13554
13555 /* symbol_name_matcher_ftype adapter for full_match. */
13556
13557 static bool
13558 do_full_match (const char *symbol_search_name,
13559 const lookup_name_info &lookup_name,
13560 completion_match_result *comp_match_res)
13561 {
13562 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13563 }
13564
13565 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13566
13567 static bool
13568 do_exact_match (const char *symbol_search_name,
13569 const lookup_name_info &lookup_name,
13570 completion_match_result *comp_match_res)
13571 {
13572 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13573 }
13574
13575 /* Build the Ada lookup name for LOOKUP_NAME. */
13576
13577 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13578 {
13579 gdb::string_view user_name = lookup_name.name ();
13580
13581 if (user_name[0] == '<')
13582 {
13583 if (user_name.back () == '>')
13584 m_encoded_name
13585 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
13586 else
13587 m_encoded_name
13588 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
13589 m_encoded_p = true;
13590 m_verbatim_p = true;
13591 m_wild_match_p = false;
13592 m_standard_p = false;
13593 }
13594 else
13595 {
13596 m_verbatim_p = false;
13597
13598 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13599
13600 if (!m_encoded_p)
13601 {
13602 const char *folded = ada_fold_name (user_name);
13603 m_encoded_name = ada_encode_1 (folded, false);
13604 if (m_encoded_name.empty ())
13605 m_encoded_name = gdb::to_string (user_name);
13606 }
13607 else
13608 m_encoded_name = gdb::to_string (user_name);
13609
13610 /* Handle the 'package Standard' special case. See description
13611 of m_standard_p. */
13612 if (startswith (m_encoded_name.c_str (), "standard__"))
13613 {
13614 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13615 m_standard_p = true;
13616 }
13617 else
13618 m_standard_p = false;
13619
13620 /* If the name contains a ".", then the user is entering a fully
13621 qualified entity name, and the match must not be done in wild
13622 mode. Similarly, if the user wants to complete what looks
13623 like an encoded name, the match must not be done in wild
13624 mode. Also, in the standard__ special case always do
13625 non-wild matching. */
13626 m_wild_match_p
13627 = (lookup_name.match_type () != symbol_name_match_type::FULL
13628 && !m_encoded_p
13629 && !m_standard_p
13630 && user_name.find ('.') == std::string::npos);
13631 }
13632 }
13633
13634 /* symbol_name_matcher_ftype method for Ada. This only handles
13635 completion mode. */
13636
13637 static bool
13638 ada_symbol_name_matches (const char *symbol_search_name,
13639 const lookup_name_info &lookup_name,
13640 completion_match_result *comp_match_res)
13641 {
13642 return lookup_name.ada ().matches (symbol_search_name,
13643 lookup_name.match_type (),
13644 comp_match_res);
13645 }
13646
13647 /* A name matcher that matches the symbol name exactly, with
13648 strcmp. */
13649
13650 static bool
13651 literal_symbol_name_matcher (const char *symbol_search_name,
13652 const lookup_name_info &lookup_name,
13653 completion_match_result *comp_match_res)
13654 {
13655 gdb::string_view name_view = lookup_name.name ();
13656
13657 if (lookup_name.completion_mode ()
13658 ? (strncmp (symbol_search_name, name_view.data (),
13659 name_view.size ()) == 0)
13660 : symbol_search_name == name_view)
13661 {
13662 if (comp_match_res != NULL)
13663 comp_match_res->set_match (symbol_search_name);
13664 return true;
13665 }
13666 else
13667 return false;
13668 }
13669
13670 /* Implement the "get_symbol_name_matcher" language_defn method for
13671 Ada. */
13672
13673 static symbol_name_matcher_ftype *
13674 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13675 {
13676 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13677 return literal_symbol_name_matcher;
13678
13679 if (lookup_name.completion_mode ())
13680 return ada_symbol_name_matches;
13681 else
13682 {
13683 if (lookup_name.ada ().wild_match_p ())
13684 return do_wild_match;
13685 else if (lookup_name.ada ().verbatim_p ())
13686 return do_exact_match;
13687 else
13688 return do_full_match;
13689 }
13690 }
13691
13692 /* Class representing the Ada language. */
13693
13694 class ada_language : public language_defn
13695 {
13696 public:
13697 ada_language ()
13698 : language_defn (language_ada)
13699 { /* Nothing. */ }
13700
13701 /* See language.h. */
13702
13703 const char *name () const override
13704 { return "ada"; }
13705
13706 /* See language.h. */
13707
13708 const char *natural_name () const override
13709 { return "Ada"; }
13710
13711 /* See language.h. */
13712
13713 const std::vector<const char *> &filename_extensions () const override
13714 {
13715 static const std::vector<const char *> extensions
13716 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13717 return extensions;
13718 }
13719
13720 /* Print an array element index using the Ada syntax. */
13721
13722 void print_array_index (struct type *index_type,
13723 LONGEST index,
13724 struct ui_file *stream,
13725 const value_print_options *options) const override
13726 {
13727 struct value *index_value = val_atr (index_type, index);
13728
13729 value_print (index_value, stream, options);
13730 fprintf_filtered (stream, " => ");
13731 }
13732
13733 /* Implement the "read_var_value" language_defn method for Ada. */
13734
13735 struct value *read_var_value (struct symbol *var,
13736 const struct block *var_block,
13737 struct frame_info *frame) const override
13738 {
13739 /* The only case where default_read_var_value is not sufficient
13740 is when VAR is a renaming... */
13741 if (frame != nullptr)
13742 {
13743 const struct block *frame_block = get_frame_block (frame, NULL);
13744 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13745 return ada_read_renaming_var_value (var, frame_block);
13746 }
13747
13748 /* This is a typical case where we expect the default_read_var_value
13749 function to work. */
13750 return language_defn::read_var_value (var, var_block, frame);
13751 }
13752
13753 /* See language.h. */
13754 void language_arch_info (struct gdbarch *gdbarch,
13755 struct language_arch_info *lai) const override
13756 {
13757 const struct builtin_type *builtin = builtin_type (gdbarch);
13758
13759 lai->primitive_type_vector
13760 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13761 struct type *);
13762
13763 lai->primitive_type_vector [ada_primitive_type_int]
13764 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13765 0, "integer");
13766 lai->primitive_type_vector [ada_primitive_type_long]
13767 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13768 0, "long_integer");
13769 lai->primitive_type_vector [ada_primitive_type_short]
13770 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13771 0, "short_integer");
13772 lai->string_char_type
13773 = lai->primitive_type_vector [ada_primitive_type_char]
13774 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13775 lai->primitive_type_vector [ada_primitive_type_float]
13776 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13777 "float", gdbarch_float_format (gdbarch));
13778 lai->primitive_type_vector [ada_primitive_type_double]
13779 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13780 "long_float", gdbarch_double_format (gdbarch));
13781 lai->primitive_type_vector [ada_primitive_type_long_long]
13782 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13783 0, "long_long_integer");
13784 lai->primitive_type_vector [ada_primitive_type_long_double]
13785 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13786 "long_long_float", gdbarch_long_double_format (gdbarch));
13787 lai->primitive_type_vector [ada_primitive_type_natural]
13788 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13789 0, "natural");
13790 lai->primitive_type_vector [ada_primitive_type_positive]
13791 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13792 0, "positive");
13793 lai->primitive_type_vector [ada_primitive_type_void]
13794 = builtin->builtin_void;
13795
13796 lai->primitive_type_vector [ada_primitive_type_system_address]
13797 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13798 "void"));
13799 lai->primitive_type_vector [ada_primitive_type_system_address]
13800 ->set_name ("system__address");
13801
13802 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13803 type. This is a signed integral type whose size is the same as
13804 the size of addresses. */
13805 {
13806 unsigned int addr_length = TYPE_LENGTH
13807 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13808
13809 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13810 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13811 "storage_offset");
13812 }
13813
13814 lai->bool_type_symbol = NULL;
13815 lai->bool_type_default = builtin->builtin_bool;
13816 }
13817
13818 /* See language.h. */
13819
13820 bool iterate_over_symbols
13821 (const struct block *block, const lookup_name_info &name,
13822 domain_enum domain,
13823 gdb::function_view<symbol_found_callback_ftype> callback) const override
13824 {
13825 std::vector<struct block_symbol> results;
13826
13827 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13828 for (block_symbol &sym : results)
13829 {
13830 if (!callback (&sym))
13831 return false;
13832 }
13833
13834 return true;
13835 }
13836
13837 /* See language.h. */
13838 bool sniff_from_mangled_name (const char *mangled,
13839 char **out) const override
13840 {
13841 std::string demangled = ada_decode (mangled);
13842
13843 *out = NULL;
13844
13845 if (demangled != mangled && demangled[0] != '<')
13846 {
13847 /* Set the gsymbol language to Ada, but still return 0.
13848 Two reasons for that:
13849
13850 1. For Ada, we prefer computing the symbol's decoded name
13851 on the fly rather than pre-compute it, in order to save
13852 memory (Ada projects are typically very large).
13853
13854 2. There are some areas in the definition of the GNAT
13855 encoding where, with a bit of bad luck, we might be able
13856 to decode a non-Ada symbol, generating an incorrect
13857 demangled name (Eg: names ending with "TB" for instance
13858 are identified as task bodies and so stripped from
13859 the decoded name returned).
13860
13861 Returning true, here, but not setting *DEMANGLED, helps us get
13862 a little bit of the best of both worlds. Because we're last,
13863 we should not affect any of the other languages that were
13864 able to demangle the symbol before us; we get to correctly
13865 tag Ada symbols as such; and even if we incorrectly tagged a
13866 non-Ada symbol, which should be rare, any routing through the
13867 Ada language should be transparent (Ada tries to behave much
13868 like C/C++ with non-Ada symbols). */
13869 return true;
13870 }
13871
13872 return false;
13873 }
13874
13875 /* See language.h. */
13876
13877 char *demangle_symbol (const char *mangled, int options) const override
13878 {
13879 return ada_la_decode (mangled, options);
13880 }
13881
13882 /* See language.h. */
13883
13884 void print_type (struct type *type, const char *varstring,
13885 struct ui_file *stream, int show, int level,
13886 const struct type_print_options *flags) const override
13887 {
13888 ada_print_type (type, varstring, stream, show, level, flags);
13889 }
13890
13891 /* See language.h. */
13892
13893 const char *word_break_characters (void) const override
13894 {
13895 return ada_completer_word_break_characters;
13896 }
13897
13898 /* See language.h. */
13899
13900 void collect_symbol_completion_matches (completion_tracker &tracker,
13901 complete_symbol_mode mode,
13902 symbol_name_match_type name_match_type,
13903 const char *text, const char *word,
13904 enum type_code code) const override
13905 {
13906 struct symbol *sym;
13907 const struct block *b, *surrounding_static_block = 0;
13908 struct block_iterator iter;
13909
13910 gdb_assert (code == TYPE_CODE_UNDEF);
13911
13912 lookup_name_info lookup_name (text, name_match_type, true);
13913
13914 /* First, look at the partial symtab symbols. */
13915 expand_symtabs_matching (NULL,
13916 lookup_name,
13917 NULL,
13918 NULL,
13919 ALL_DOMAIN);
13920
13921 /* At this point scan through the misc symbol vectors and add each
13922 symbol you find to the list. Eventually we want to ignore
13923 anything that isn't a text symbol (everything else will be
13924 handled by the psymtab code above). */
13925
13926 for (objfile *objfile : current_program_space->objfiles ())
13927 {
13928 for (minimal_symbol *msymbol : objfile->msymbols ())
13929 {
13930 QUIT;
13931
13932 if (completion_skip_symbol (mode, msymbol))
13933 continue;
13934
13935 language symbol_language = msymbol->language ();
13936
13937 /* Ada minimal symbols won't have their language set to Ada. If
13938 we let completion_list_add_name compare using the
13939 default/C-like matcher, then when completing e.g., symbols in a
13940 package named "pck", we'd match internal Ada symbols like
13941 "pckS", which are invalid in an Ada expression, unless you wrap
13942 them in '<' '>' to request a verbatim match.
13943
13944 Unfortunately, some Ada encoded names successfully demangle as
13945 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13946 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13947 with the wrong language set. Paper over that issue here. */
13948 if (symbol_language == language_auto
13949 || symbol_language == language_cplus)
13950 symbol_language = language_ada;
13951
13952 completion_list_add_name (tracker,
13953 symbol_language,
13954 msymbol->linkage_name (),
13955 lookup_name, text, word);
13956 }
13957 }
13958
13959 /* Search upwards from currently selected frame (so that we can
13960 complete on local vars. */
13961
13962 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13963 {
13964 if (!BLOCK_SUPERBLOCK (b))
13965 surrounding_static_block = b; /* For elmin of dups */
13966
13967 ALL_BLOCK_SYMBOLS (b, iter, sym)
13968 {
13969 if (completion_skip_symbol (mode, sym))
13970 continue;
13971
13972 completion_list_add_name (tracker,
13973 sym->language (),
13974 sym->linkage_name (),
13975 lookup_name, text, word);
13976 }
13977 }
13978
13979 /* Go through the symtabs and check the externs and statics for
13980 symbols which match. */
13981
13982 for (objfile *objfile : current_program_space->objfiles ())
13983 {
13984 for (compunit_symtab *s : objfile->compunits ())
13985 {
13986 QUIT;
13987 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13988 ALL_BLOCK_SYMBOLS (b, iter, sym)
13989 {
13990 if (completion_skip_symbol (mode, sym))
13991 continue;
13992
13993 completion_list_add_name (tracker,
13994 sym->language (),
13995 sym->linkage_name (),
13996 lookup_name, text, word);
13997 }
13998 }
13999 }
14000
14001 for (objfile *objfile : current_program_space->objfiles ())
14002 {
14003 for (compunit_symtab *s : objfile->compunits ())
14004 {
14005 QUIT;
14006 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
14007 /* Don't do this block twice. */
14008 if (b == surrounding_static_block)
14009 continue;
14010 ALL_BLOCK_SYMBOLS (b, iter, sym)
14011 {
14012 if (completion_skip_symbol (mode, sym))
14013 continue;
14014
14015 completion_list_add_name (tracker,
14016 sym->language (),
14017 sym->linkage_name (),
14018 lookup_name, text, word);
14019 }
14020 }
14021 }
14022 }
14023
14024 /* See language.h. */
14025
14026 gdb::unique_xmalloc_ptr<char> watch_location_expression
14027 (struct type *type, CORE_ADDR addr) const override
14028 {
14029 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
14030 std::string name = type_to_string (type);
14031 return gdb::unique_xmalloc_ptr<char>
14032 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
14033 }
14034
14035 /* See language.h. */
14036
14037 void value_print (struct value *val, struct ui_file *stream,
14038 const struct value_print_options *options) const override
14039 {
14040 return ada_value_print (val, stream, options);
14041 }
14042
14043 /* See language.h. */
14044
14045 void value_print_inner
14046 (struct value *val, struct ui_file *stream, int recurse,
14047 const struct value_print_options *options) const override
14048 {
14049 return ada_value_print_inner (val, stream, recurse, options);
14050 }
14051
14052 /* See language.h. */
14053
14054 struct block_symbol lookup_symbol_nonlocal
14055 (const char *name, const struct block *block,
14056 const domain_enum domain) const override
14057 {
14058 struct block_symbol sym;
14059
14060 sym = ada_lookup_symbol (name, block_static_block (block), domain);
14061 if (sym.symbol != NULL)
14062 return sym;
14063
14064 /* If we haven't found a match at this point, try the primitive
14065 types. In other languages, this search is performed before
14066 searching for global symbols in order to short-circuit that
14067 global-symbol search if it happens that the name corresponds
14068 to a primitive type. But we cannot do the same in Ada, because
14069 it is perfectly legitimate for a program to declare a type which
14070 has the same name as a standard type. If looking up a type in
14071 that situation, we have traditionally ignored the primitive type
14072 in favor of user-defined types. This is why, unlike most other
14073 languages, we search the primitive types this late and only after
14074 having searched the global symbols without success. */
14075
14076 if (domain == VAR_DOMAIN)
14077 {
14078 struct gdbarch *gdbarch;
14079
14080 if (block == NULL)
14081 gdbarch = target_gdbarch ();
14082 else
14083 gdbarch = block_gdbarch (block);
14084 sym.symbol
14085 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
14086 if (sym.symbol != NULL)
14087 return sym;
14088 }
14089
14090 return {};
14091 }
14092
14093 /* See language.h. */
14094
14095 int parser (struct parser_state *ps) const override
14096 {
14097 warnings_issued = 0;
14098 return ada_parse (ps);
14099 }
14100
14101 /* See language.h.
14102
14103 Same as evaluate_type (*EXP), but resolves ambiguous symbol references
14104 (marked by OP_VAR_VALUE nodes in which the symbol has an undefined
14105 namespace) and converts operators that are user-defined into
14106 appropriate function calls. If CONTEXT_TYPE is non-null, it provides
14107 a preferred result type [at the moment, only type void has any
14108 effect---causing procedures to be preferred over functions in calls].
14109 A null CONTEXT_TYPE indicates that a non-void return type is
14110 preferred. May change (expand) *EXP. */
14111
14112 void post_parser (expression_up *expp, int void_context_p, int completing,
14113 innermost_block_tracker *tracker) const override
14114 {
14115 struct type *context_type = NULL;
14116 int pc = 0;
14117
14118 if (void_context_p)
14119 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14120
14121 resolve_subexp (expp, &pc, 1, context_type, completing, tracker);
14122 }
14123
14124 /* See language.h. */
14125
14126 void emitchar (int ch, struct type *chtype,
14127 struct ui_file *stream, int quoter) const override
14128 {
14129 ada_emit_char (ch, chtype, stream, quoter, 1);
14130 }
14131
14132 /* See language.h. */
14133
14134 void printchar (int ch, struct type *chtype,
14135 struct ui_file *stream) const override
14136 {
14137 ada_printchar (ch, chtype, stream);
14138 }
14139
14140 /* See language.h. */
14141
14142 void printstr (struct ui_file *stream, struct type *elttype,
14143 const gdb_byte *string, unsigned int length,
14144 const char *encoding, int force_ellipses,
14145 const struct value_print_options *options) const override
14146 {
14147 ada_printstr (stream, elttype, string, length, encoding,
14148 force_ellipses, options);
14149 }
14150
14151 /* See language.h. */
14152
14153 void print_typedef (struct type *type, struct symbol *new_symbol,
14154 struct ui_file *stream) const override
14155 {
14156 ada_print_typedef (type, new_symbol, stream);
14157 }
14158
14159 /* See language.h. */
14160
14161 bool is_string_type_p (struct type *type) const override
14162 {
14163 return ada_is_string_type (type);
14164 }
14165
14166 /* See language.h. */
14167
14168 const char *struct_too_deep_ellipsis () const override
14169 { return "(...)"; }
14170
14171 /* See language.h. */
14172
14173 bool c_style_arrays_p () const override
14174 { return false; }
14175
14176 /* See language.h. */
14177
14178 bool store_sym_names_in_linkage_form_p () const override
14179 { return true; }
14180
14181 /* See language.h. */
14182
14183 const struct lang_varobj_ops *varobj_ops () const override
14184 { return &ada_varobj_ops; }
14185
14186 /* See language.h. */
14187
14188 const struct exp_descriptor *expression_ops () const override
14189 { return &ada_exp_descriptor; }
14190
14191 /* See language.h. */
14192
14193 const struct op_print *opcode_print_table () const override
14194 { return ada_op_print_tab; }
14195
14196 protected:
14197 /* See language.h. */
14198
14199 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14200 (const lookup_name_info &lookup_name) const override
14201 {
14202 return ada_get_symbol_name_matcher (lookup_name);
14203 }
14204 };
14205
14206 /* Single instance of the Ada language class. */
14207
14208 static ada_language ada_language_defn;
14209
14210 /* Command-list for the "set/show ada" prefix command. */
14211 static struct cmd_list_element *set_ada_list;
14212 static struct cmd_list_element *show_ada_list;
14213
14214 static void
14215 initialize_ada_catchpoint_ops (void)
14216 {
14217 struct breakpoint_ops *ops;
14218
14219 initialize_breakpoint_ops ();
14220
14221 ops = &catch_exception_breakpoint_ops;
14222 *ops = bkpt_breakpoint_ops;
14223 ops->allocate_location = allocate_location_exception;
14224 ops->re_set = re_set_exception;
14225 ops->check_status = check_status_exception;
14226 ops->print_it = print_it_exception;
14227 ops->print_one = print_one_exception;
14228 ops->print_mention = print_mention_exception;
14229 ops->print_recreate = print_recreate_exception;
14230
14231 ops = &catch_exception_unhandled_breakpoint_ops;
14232 *ops = bkpt_breakpoint_ops;
14233 ops->allocate_location = allocate_location_exception;
14234 ops->re_set = re_set_exception;
14235 ops->check_status = check_status_exception;
14236 ops->print_it = print_it_exception;
14237 ops->print_one = print_one_exception;
14238 ops->print_mention = print_mention_exception;
14239 ops->print_recreate = print_recreate_exception;
14240
14241 ops = &catch_assert_breakpoint_ops;
14242 *ops = bkpt_breakpoint_ops;
14243 ops->allocate_location = allocate_location_exception;
14244 ops->re_set = re_set_exception;
14245 ops->check_status = check_status_exception;
14246 ops->print_it = print_it_exception;
14247 ops->print_one = print_one_exception;
14248 ops->print_mention = print_mention_exception;
14249 ops->print_recreate = print_recreate_exception;
14250
14251 ops = &catch_handlers_breakpoint_ops;
14252 *ops = bkpt_breakpoint_ops;
14253 ops->allocate_location = allocate_location_exception;
14254 ops->re_set = re_set_exception;
14255 ops->check_status = check_status_exception;
14256 ops->print_it = print_it_exception;
14257 ops->print_one = print_one_exception;
14258 ops->print_mention = print_mention_exception;
14259 ops->print_recreate = print_recreate_exception;
14260 }
14261
14262 /* This module's 'new_objfile' observer. */
14263
14264 static void
14265 ada_new_objfile_observer (struct objfile *objfile)
14266 {
14267 ada_clear_symbol_cache ();
14268 }
14269
14270 /* This module's 'free_objfile' observer. */
14271
14272 static void
14273 ada_free_objfile_observer (struct objfile *objfile)
14274 {
14275 ada_clear_symbol_cache ();
14276 }
14277
14278 void _initialize_ada_language ();
14279 void
14280 _initialize_ada_language ()
14281 {
14282 initialize_ada_catchpoint_ops ();
14283
14284 add_basic_prefix_cmd ("ada", no_class,
14285 _("Prefix command for changing Ada-specific settings."),
14286 &set_ada_list, "set ada ", 0, &setlist);
14287
14288 add_show_prefix_cmd ("ada", no_class,
14289 _("Generic command for showing Ada-specific settings."),
14290 &show_ada_list, "show ada ", 0, &showlist);
14291
14292 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14293 &trust_pad_over_xvs, _("\
14294 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14295 Show whether an optimization trusting PAD types over XVS types is activated."),
14296 _("\
14297 This is related to the encoding used by the GNAT compiler. The debugger\n\
14298 should normally trust the contents of PAD types, but certain older versions\n\
14299 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14300 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14301 work around this bug. It is always safe to turn this option \"off\", but\n\
14302 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14303 this option to \"off\" unless necessary."),
14304 NULL, NULL, &set_ada_list, &show_ada_list);
14305
14306 add_setshow_boolean_cmd ("print-signatures", class_vars,
14307 &print_signatures, _("\
14308 Enable or disable the output of formal and return types for functions in the \
14309 overloads selection menu."), _("\
14310 Show whether the output of formal and return types for functions in the \
14311 overloads selection menu is activated."),
14312 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14313
14314 add_catch_command ("exception", _("\
14315 Catch Ada exceptions, when raised.\n\
14316 Usage: catch exception [ARG] [if CONDITION]\n\
14317 Without any argument, stop when any Ada exception is raised.\n\
14318 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14319 being raised does not have a handler (and will therefore lead to the task's\n\
14320 termination).\n\
14321 Otherwise, the catchpoint only stops when the name of the exception being\n\
14322 raised is the same as ARG.\n\
14323 CONDITION is a boolean expression that is evaluated to see whether the\n\
14324 exception should cause a stop."),
14325 catch_ada_exception_command,
14326 catch_ada_completer,
14327 CATCH_PERMANENT,
14328 CATCH_TEMPORARY);
14329
14330 add_catch_command ("handlers", _("\
14331 Catch Ada exceptions, when handled.\n\
14332 Usage: catch handlers [ARG] [if CONDITION]\n\
14333 Without any argument, stop when any Ada exception is handled.\n\
14334 With an argument, catch only exceptions with the given name.\n\
14335 CONDITION is a boolean expression that is evaluated to see whether the\n\
14336 exception should cause a stop."),
14337 catch_ada_handlers_command,
14338 catch_ada_completer,
14339 CATCH_PERMANENT,
14340 CATCH_TEMPORARY);
14341 add_catch_command ("assert", _("\
14342 Catch failed Ada assertions, when raised.\n\
14343 Usage: catch assert [if CONDITION]\n\
14344 CONDITION is a boolean expression that is evaluated to see whether the\n\
14345 exception should cause a stop."),
14346 catch_assert_command,
14347 NULL,
14348 CATCH_PERMANENT,
14349 CATCH_TEMPORARY);
14350
14351 varsize_limit = 65536;
14352 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14353 &varsize_limit, _("\
14354 Set the maximum number of bytes allowed in a variable-size object."), _("\
14355 Show the maximum number of bytes allowed in a variable-size object."), _("\
14356 Attempts to access an object whose size is not a compile-time constant\n\
14357 and exceeds this limit will cause an error."),
14358 NULL, NULL, &setlist, &showlist);
14359
14360 add_info ("exceptions", info_exceptions_command,
14361 _("\
14362 List all Ada exception names.\n\
14363 Usage: info exceptions [REGEXP]\n\
14364 If a regular expression is passed as an argument, only those matching\n\
14365 the regular expression are listed."));
14366
14367 add_basic_prefix_cmd ("ada", class_maintenance,
14368 _("Set Ada maintenance-related variables."),
14369 &maint_set_ada_cmdlist, "maintenance set ada ",
14370 0/*allow-unknown*/, &maintenance_set_cmdlist);
14371
14372 add_show_prefix_cmd ("ada", class_maintenance,
14373 _("Show Ada maintenance-related variables."),
14374 &maint_show_ada_cmdlist, "maintenance show ada ",
14375 0/*allow-unknown*/, &maintenance_show_cmdlist);
14376
14377 add_setshow_boolean_cmd
14378 ("ignore-descriptive-types", class_maintenance,
14379 &ada_ignore_descriptive_types_p,
14380 _("Set whether descriptive types generated by GNAT should be ignored."),
14381 _("Show whether descriptive types generated by GNAT should be ignored."),
14382 _("\
14383 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14384 DWARF attribute."),
14385 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14386
14387 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14388 NULL, xcalloc, xfree);
14389
14390 /* The ada-lang observers. */
14391 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14392 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14393 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14394 }
This page took 0.593849 seconds and 5 git commands to generate.