Minor reformatting of ada_lookup_symbol_list's documentation.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 return result;
585 }
586 }
587
588 static const gdb_byte *
589 cond_offset_host (const gdb_byte *valaddr, long offset)
590 {
591 if (valaddr == NULL)
592 return NULL;
593 else
594 return valaddr + offset;
595 }
596
597 static CORE_ADDR
598 cond_offset_target (CORE_ADDR address, long offset)
599 {
600 if (address == 0)
601 return 0;
602 else
603 return address + offset;
604 }
605
606 /* Issue a warning (as for the definition of warning in utils.c, but
607 with exactly one argument rather than ...), unless the limit on the
608 number of warnings has passed during the evaluation of the current
609 expression. */
610
611 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
612 provided by "complaint". */
613 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
614
615 static void
616 lim_warning (const char *format, ...)
617 {
618 va_list args;
619
620 va_start (args, format);
621 warnings_issued += 1;
622 if (warnings_issued <= warning_limit)
623 vwarning (format, args);
624
625 va_end (args);
626 }
627
628 /* Issue an error if the size of an object of type T is unreasonable,
629 i.e. if it would be a bad idea to allocate a value of this type in
630 GDB. */
631
632 static void
633 check_size (const struct type *type)
634 {
635 if (TYPE_LENGTH (type) > varsize_limit)
636 error (_("object size is larger than varsize-limit"));
637 }
638
639 /* Maximum value of a SIZE-byte signed integer type. */
640 static LONGEST
641 max_of_size (int size)
642 {
643 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
644
645 return top_bit | (top_bit - 1);
646 }
647
648 /* Minimum value of a SIZE-byte signed integer type. */
649 static LONGEST
650 min_of_size (int size)
651 {
652 return -max_of_size (size) - 1;
653 }
654
655 /* Maximum value of a SIZE-byte unsigned integer type. */
656 static ULONGEST
657 umax_of_size (int size)
658 {
659 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
660
661 return top_bit | (top_bit - 1);
662 }
663
664 /* Maximum value of integral type T, as a signed quantity. */
665 static LONGEST
666 max_of_type (struct type *t)
667 {
668 if (TYPE_UNSIGNED (t))
669 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
670 else
671 return max_of_size (TYPE_LENGTH (t));
672 }
673
674 /* Minimum value of integral type T, as a signed quantity. */
675 static LONGEST
676 min_of_type (struct type *t)
677 {
678 if (TYPE_UNSIGNED (t))
679 return 0;
680 else
681 return min_of_size (TYPE_LENGTH (t));
682 }
683
684 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
685 LONGEST
686 ada_discrete_type_high_bound (struct type *type)
687 {
688 switch (TYPE_CODE (type))
689 {
690 case TYPE_CODE_RANGE:
691 return TYPE_HIGH_BOUND (type);
692 case TYPE_CODE_ENUM:
693 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
694 case TYPE_CODE_BOOL:
695 return 1;
696 case TYPE_CODE_CHAR:
697 case TYPE_CODE_INT:
698 return max_of_type (type);
699 default:
700 error (_("Unexpected type in ada_discrete_type_high_bound."));
701 }
702 }
703
704 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
705 LONGEST
706 ada_discrete_type_low_bound (struct type *type)
707 {
708 switch (TYPE_CODE (type))
709 {
710 case TYPE_CODE_RANGE:
711 return TYPE_LOW_BOUND (type);
712 case TYPE_CODE_ENUM:
713 return TYPE_FIELD_BITPOS (type, 0);
714 case TYPE_CODE_BOOL:
715 return 0;
716 case TYPE_CODE_CHAR:
717 case TYPE_CODE_INT:
718 return min_of_type (type);
719 default:
720 error (_("Unexpected type in ada_discrete_type_low_bound."));
721 }
722 }
723
724 /* The identity on non-range types. For range types, the underlying
725 non-range scalar type. */
726
727 static struct type *
728 get_base_type (struct type *type)
729 {
730 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
731 {
732 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
733 return type;
734 type = TYPE_TARGET_TYPE (type);
735 }
736 return type;
737 }
738
739 /* Return a decoded version of the given VALUE. This means returning
740 a value whose type is obtained by applying all the GNAT-specific
741 encondings, making the resulting type a static but standard description
742 of the initial type. */
743
744 struct value *
745 ada_get_decoded_value (struct value *value)
746 {
747 struct type *type = ada_check_typedef (value_type (value));
748
749 if (ada_is_array_descriptor_type (type)
750 || (ada_is_constrained_packed_array_type (type)
751 && TYPE_CODE (type) != TYPE_CODE_PTR))
752 {
753 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
754 value = ada_coerce_to_simple_array_ptr (value);
755 else
756 value = ada_coerce_to_simple_array (value);
757 }
758 else
759 value = ada_to_fixed_value (value);
760
761 return value;
762 }
763
764 /* Same as ada_get_decoded_value, but with the given TYPE.
765 Because there is no associated actual value for this type,
766 the resulting type might be a best-effort approximation in
767 the case of dynamic types. */
768
769 struct type *
770 ada_get_decoded_type (struct type *type)
771 {
772 type = to_static_fixed_type (type);
773 if (ada_is_constrained_packed_array_type (type))
774 type = ada_coerce_to_simple_array_type (type);
775 return type;
776 }
777
778 \f
779
780 /* Language Selection */
781
782 /* If the main program is in Ada, return language_ada, otherwise return LANG
783 (the main program is in Ada iif the adainit symbol is found). */
784
785 enum language
786 ada_update_initial_language (enum language lang)
787 {
788 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
789 (struct objfile *) NULL) != NULL)
790 return language_ada;
791
792 return lang;
793 }
794
795 /* If the main procedure is written in Ada, then return its name.
796 The result is good until the next call. Return NULL if the main
797 procedure doesn't appear to be in Ada. */
798
799 char *
800 ada_main_name (void)
801 {
802 struct minimal_symbol *msym;
803 static char *main_program_name = NULL;
804
805 /* For Ada, the name of the main procedure is stored in a specific
806 string constant, generated by the binder. Look for that symbol,
807 extract its address, and then read that string. If we didn't find
808 that string, then most probably the main procedure is not written
809 in Ada. */
810 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
811
812 if (msym != NULL)
813 {
814 CORE_ADDR main_program_name_addr;
815 int err_code;
816
817 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
818 if (main_program_name_addr == 0)
819 error (_("Invalid address for Ada main program name."));
820
821 xfree (main_program_name);
822 target_read_string (main_program_name_addr, &main_program_name,
823 1024, &err_code);
824
825 if (err_code != 0)
826 return NULL;
827 return main_program_name;
828 }
829
830 /* The main procedure doesn't seem to be in Ada. */
831 return NULL;
832 }
833 \f
834 /* Symbols */
835
836 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
837 of NULLs. */
838
839 const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
861 {NULL, NULL}
862 };
863
864 /* The "encoded" form of DECODED, according to GNAT conventions.
865 The result is valid until the next call to ada_encode. */
866
867 char *
868 ada_encode (const char *decoded)
869 {
870 static char *encoding_buffer = NULL;
871 static size_t encoding_buffer_size = 0;
872 const char *p;
873 int k;
874
875 if (decoded == NULL)
876 return NULL;
877
878 GROW_VECT (encoding_buffer, encoding_buffer_size,
879 2 * strlen (decoded) + 10);
880
881 k = 0;
882 for (p = decoded; *p != '\0'; p += 1)
883 {
884 if (*p == '.')
885 {
886 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
887 k += 2;
888 }
889 else if (*p == '"')
890 {
891 const struct ada_opname_map *mapping;
892
893 for (mapping = ada_opname_table;
894 mapping->encoded != NULL
895 && strncmp (mapping->decoded, p,
896 strlen (mapping->decoded)) != 0; mapping += 1)
897 ;
898 if (mapping->encoded == NULL)
899 error (_("invalid Ada operator name: %s"), p);
900 strcpy (encoding_buffer + k, mapping->encoded);
901 k += strlen (mapping->encoded);
902 break;
903 }
904 else
905 {
906 encoding_buffer[k] = *p;
907 k += 1;
908 }
909 }
910
911 encoding_buffer[k] = '\0';
912 return encoding_buffer;
913 }
914
915 /* Return NAME folded to lower case, or, if surrounded by single
916 quotes, unfolded, but with the quotes stripped away. Result good
917 to next call. */
918
919 char *
920 ada_fold_name (const char *name)
921 {
922 static char *fold_buffer = NULL;
923 static size_t fold_buffer_size = 0;
924
925 int len = strlen (name);
926 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
927
928 if (name[0] == '\'')
929 {
930 strncpy (fold_buffer, name + 1, len - 2);
931 fold_buffer[len - 2] = '\000';
932 }
933 else
934 {
935 int i;
936
937 for (i = 0; i <= len; i += 1)
938 fold_buffer[i] = tolower (name[i]);
939 }
940
941 return fold_buffer;
942 }
943
944 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
945
946 static int
947 is_lower_alphanum (const char c)
948 {
949 return (isdigit (c) || (isalpha (c) && islower (c)));
950 }
951
952 /* ENCODED is the linkage name of a symbol and LEN contains its length.
953 This function saves in LEN the length of that same symbol name but
954 without either of these suffixes:
955 . .{DIGIT}+
956 . ${DIGIT}+
957 . ___{DIGIT}+
958 . __{DIGIT}+.
959
960 These are suffixes introduced by the compiler for entities such as
961 nested subprogram for instance, in order to avoid name clashes.
962 They do not serve any purpose for the debugger. */
963
964 static void
965 ada_remove_trailing_digits (const char *encoded, int *len)
966 {
967 if (*len > 1 && isdigit (encoded[*len - 1]))
968 {
969 int i = *len - 2;
970
971 while (i > 0 && isdigit (encoded[i]))
972 i--;
973 if (i >= 0 && encoded[i] == '.')
974 *len = i;
975 else if (i >= 0 && encoded[i] == '$')
976 *len = i;
977 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
978 *len = i - 2;
979 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
980 *len = i - 1;
981 }
982 }
983
984 /* Remove the suffix introduced by the compiler for protected object
985 subprograms. */
986
987 static void
988 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
989 {
990 /* Remove trailing N. */
991
992 /* Protected entry subprograms are broken into two
993 separate subprograms: The first one is unprotected, and has
994 a 'N' suffix; the second is the protected version, and has
995 the 'P' suffix. The second calls the first one after handling
996 the protection. Since the P subprograms are internally generated,
997 we leave these names undecoded, giving the user a clue that this
998 entity is internal. */
999
1000 if (*len > 1
1001 && encoded[*len - 1] == 'N'
1002 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1003 *len = *len - 1;
1004 }
1005
1006 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1007
1008 static void
1009 ada_remove_Xbn_suffix (const char *encoded, int *len)
1010 {
1011 int i = *len - 1;
1012
1013 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1014 i--;
1015
1016 if (encoded[i] != 'X')
1017 return;
1018
1019 if (i == 0)
1020 return;
1021
1022 if (isalnum (encoded[i-1]))
1023 *len = i;
1024 }
1025
1026 /* If ENCODED follows the GNAT entity encoding conventions, then return
1027 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1028 replaced by ENCODED.
1029
1030 The resulting string is valid until the next call of ada_decode.
1031 If the string is unchanged by decoding, the original string pointer
1032 is returned. */
1033
1034 const char *
1035 ada_decode (const char *encoded)
1036 {
1037 int i, j;
1038 int len0;
1039 const char *p;
1040 char *decoded;
1041 int at_start_name;
1042 static char *decoding_buffer = NULL;
1043 static size_t decoding_buffer_size = 0;
1044
1045 /* The name of the Ada main procedure starts with "_ada_".
1046 This prefix is not part of the decoded name, so skip this part
1047 if we see this prefix. */
1048 if (strncmp (encoded, "_ada_", 5) == 0)
1049 encoded += 5;
1050
1051 /* If the name starts with '_', then it is not a properly encoded
1052 name, so do not attempt to decode it. Similarly, if the name
1053 starts with '<', the name should not be decoded. */
1054 if (encoded[0] == '_' || encoded[0] == '<')
1055 goto Suppress;
1056
1057 len0 = strlen (encoded);
1058
1059 ada_remove_trailing_digits (encoded, &len0);
1060 ada_remove_po_subprogram_suffix (encoded, &len0);
1061
1062 /* Remove the ___X.* suffix if present. Do not forget to verify that
1063 the suffix is located before the current "end" of ENCODED. We want
1064 to avoid re-matching parts of ENCODED that have previously been
1065 marked as discarded (by decrementing LEN0). */
1066 p = strstr (encoded, "___");
1067 if (p != NULL && p - encoded < len0 - 3)
1068 {
1069 if (p[3] == 'X')
1070 len0 = p - encoded;
1071 else
1072 goto Suppress;
1073 }
1074
1075 /* Remove any trailing TKB suffix. It tells us that this symbol
1076 is for the body of a task, but that information does not actually
1077 appear in the decoded name. */
1078
1079 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1080 len0 -= 3;
1081
1082 /* Remove any trailing TB suffix. The TB suffix is slightly different
1083 from the TKB suffix because it is used for non-anonymous task
1084 bodies. */
1085
1086 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1087 len0 -= 2;
1088
1089 /* Remove trailing "B" suffixes. */
1090 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1091
1092 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1093 len0 -= 1;
1094
1095 /* Make decoded big enough for possible expansion by operator name. */
1096
1097 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1098 decoded = decoding_buffer;
1099
1100 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1101
1102 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1103 {
1104 i = len0 - 2;
1105 while ((i >= 0 && isdigit (encoded[i]))
1106 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1107 i -= 1;
1108 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1109 len0 = i - 1;
1110 else if (encoded[i] == '$')
1111 len0 = i;
1112 }
1113
1114 /* The first few characters that are not alphabetic are not part
1115 of any encoding we use, so we can copy them over verbatim. */
1116
1117 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1118 decoded[j] = encoded[i];
1119
1120 at_start_name = 1;
1121 while (i < len0)
1122 {
1123 /* Is this a symbol function? */
1124 if (at_start_name && encoded[i] == 'O')
1125 {
1126 int k;
1127
1128 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1129 {
1130 int op_len = strlen (ada_opname_table[k].encoded);
1131 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1132 op_len - 1) == 0)
1133 && !isalnum (encoded[i + op_len]))
1134 {
1135 strcpy (decoded + j, ada_opname_table[k].decoded);
1136 at_start_name = 0;
1137 i += op_len;
1138 j += strlen (ada_opname_table[k].decoded);
1139 break;
1140 }
1141 }
1142 if (ada_opname_table[k].encoded != NULL)
1143 continue;
1144 }
1145 at_start_name = 0;
1146
1147 /* Replace "TK__" with "__", which will eventually be translated
1148 into "." (just below). */
1149
1150 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1151 i += 2;
1152
1153 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1154 be translated into "." (just below). These are internal names
1155 generated for anonymous blocks inside which our symbol is nested. */
1156
1157 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1158 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1159 && isdigit (encoded [i+4]))
1160 {
1161 int k = i + 5;
1162
1163 while (k < len0 && isdigit (encoded[k]))
1164 k++; /* Skip any extra digit. */
1165
1166 /* Double-check that the "__B_{DIGITS}+" sequence we found
1167 is indeed followed by "__". */
1168 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1169 i = k;
1170 }
1171
1172 /* Remove _E{DIGITS}+[sb] */
1173
1174 /* Just as for protected object subprograms, there are 2 categories
1175 of subprograms created by the compiler for each entry. The first
1176 one implements the actual entry code, and has a suffix following
1177 the convention above; the second one implements the barrier and
1178 uses the same convention as above, except that the 'E' is replaced
1179 by a 'B'.
1180
1181 Just as above, we do not decode the name of barrier functions
1182 to give the user a clue that the code he is debugging has been
1183 internally generated. */
1184
1185 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1186 && isdigit (encoded[i+2]))
1187 {
1188 int k = i + 3;
1189
1190 while (k < len0 && isdigit (encoded[k]))
1191 k++;
1192
1193 if (k < len0
1194 && (encoded[k] == 'b' || encoded[k] == 's'))
1195 {
1196 k++;
1197 /* Just as an extra precaution, make sure that if this
1198 suffix is followed by anything else, it is a '_'.
1199 Otherwise, we matched this sequence by accident. */
1200 if (k == len0
1201 || (k < len0 && encoded[k] == '_'))
1202 i = k;
1203 }
1204 }
1205
1206 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1207 the GNAT front-end in protected object subprograms. */
1208
1209 if (i < len0 + 3
1210 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1211 {
1212 /* Backtrack a bit up until we reach either the begining of
1213 the encoded name, or "__". Make sure that we only find
1214 digits or lowercase characters. */
1215 const char *ptr = encoded + i - 1;
1216
1217 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1218 ptr--;
1219 if (ptr < encoded
1220 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1221 i++;
1222 }
1223
1224 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1225 {
1226 /* This is a X[bn]* sequence not separated from the previous
1227 part of the name with a non-alpha-numeric character (in other
1228 words, immediately following an alpha-numeric character), then
1229 verify that it is placed at the end of the encoded name. If
1230 not, then the encoding is not valid and we should abort the
1231 decoding. Otherwise, just skip it, it is used in body-nested
1232 package names. */
1233 do
1234 i += 1;
1235 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1236 if (i < len0)
1237 goto Suppress;
1238 }
1239 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1240 {
1241 /* Replace '__' by '.'. */
1242 decoded[j] = '.';
1243 at_start_name = 1;
1244 i += 2;
1245 j += 1;
1246 }
1247 else
1248 {
1249 /* It's a character part of the decoded name, so just copy it
1250 over. */
1251 decoded[j] = encoded[i];
1252 i += 1;
1253 j += 1;
1254 }
1255 }
1256 decoded[j] = '\000';
1257
1258 /* Decoded names should never contain any uppercase character.
1259 Double-check this, and abort the decoding if we find one. */
1260
1261 for (i = 0; decoded[i] != '\0'; i += 1)
1262 if (isupper (decoded[i]) || decoded[i] == ' ')
1263 goto Suppress;
1264
1265 if (strcmp (decoded, encoded) == 0)
1266 return encoded;
1267 else
1268 return decoded;
1269
1270 Suppress:
1271 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1272 decoded = decoding_buffer;
1273 if (encoded[0] == '<')
1274 strcpy (decoded, encoded);
1275 else
1276 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1277 return decoded;
1278
1279 }
1280
1281 /* Table for keeping permanent unique copies of decoded names. Once
1282 allocated, names in this table are never released. While this is a
1283 storage leak, it should not be significant unless there are massive
1284 changes in the set of decoded names in successive versions of a
1285 symbol table loaded during a single session. */
1286 static struct htab *decoded_names_store;
1287
1288 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1289 in the language-specific part of GSYMBOL, if it has not been
1290 previously computed. Tries to save the decoded name in the same
1291 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1292 in any case, the decoded symbol has a lifetime at least that of
1293 GSYMBOL).
1294 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1295 const, but nevertheless modified to a semantically equivalent form
1296 when a decoded name is cached in it. */
1297
1298 char *
1299 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1300 {
1301 char **resultp =
1302 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1303
1304 if (*resultp == NULL)
1305 {
1306 const char *decoded = ada_decode (gsymbol->name);
1307
1308 if (gsymbol->obj_section != NULL)
1309 {
1310 struct objfile *objf = gsymbol->obj_section->objfile;
1311
1312 *resultp = obsavestring (decoded, strlen (decoded),
1313 &objf->objfile_obstack);
1314 }
1315 /* Sometimes, we can't find a corresponding objfile, in which
1316 case, we put the result on the heap. Since we only decode
1317 when needed, we hope this usually does not cause a
1318 significant memory leak (FIXME). */
1319 if (*resultp == NULL)
1320 {
1321 char **slot = (char **) htab_find_slot (decoded_names_store,
1322 decoded, INSERT);
1323
1324 if (*slot == NULL)
1325 *slot = xstrdup (decoded);
1326 *resultp = *slot;
1327 }
1328 }
1329
1330 return *resultp;
1331 }
1332
1333 static char *
1334 ada_la_decode (const char *encoded, int options)
1335 {
1336 return xstrdup (ada_decode (encoded));
1337 }
1338
1339 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1340 suffixes that encode debugging information or leading _ada_ on
1341 SYM_NAME (see is_name_suffix commentary for the debugging
1342 information that is ignored). If WILD, then NAME need only match a
1343 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1344 either argument is NULL. */
1345
1346 static int
1347 match_name (const char *sym_name, const char *name, int wild)
1348 {
1349 if (sym_name == NULL || name == NULL)
1350 return 0;
1351 else if (wild)
1352 return wild_match (sym_name, name) == 0;
1353 else
1354 {
1355 int len_name = strlen (name);
1356
1357 return (strncmp (sym_name, name, len_name) == 0
1358 && is_name_suffix (sym_name + len_name))
1359 || (strncmp (sym_name, "_ada_", 5) == 0
1360 && strncmp (sym_name + 5, name, len_name) == 0
1361 && is_name_suffix (sym_name + len_name + 5));
1362 }
1363 }
1364 \f
1365
1366 /* Arrays */
1367
1368 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describle the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391 void
1392 ada_fixup_array_indexes_type (struct type *index_desc_type)
1393 {
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1408 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1414 {
1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1420 }
1421 }
1422
1423 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1424
1425 static char *bound_name[] = {
1426 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1427 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1428 };
1429
1430 /* Maximum number of array dimensions we are prepared to handle. */
1431
1432 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1433
1434
1435 /* The desc_* routines return primitive portions of array descriptors
1436 (fat pointers). */
1437
1438 /* The descriptor or array type, if any, indicated by TYPE; removes
1439 level of indirection, if needed. */
1440
1441 static struct type *
1442 desc_base_type (struct type *type)
1443 {
1444 if (type == NULL)
1445 return NULL;
1446 type = ada_check_typedef (type);
1447 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1448 type = ada_typedef_target_type (type);
1449
1450 if (type != NULL
1451 && (TYPE_CODE (type) == TYPE_CODE_PTR
1452 || TYPE_CODE (type) == TYPE_CODE_REF))
1453 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1454 else
1455 return type;
1456 }
1457
1458 /* True iff TYPE indicates a "thin" array pointer type. */
1459
1460 static int
1461 is_thin_pntr (struct type *type)
1462 {
1463 return
1464 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1465 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1466 }
1467
1468 /* The descriptor type for thin pointer type TYPE. */
1469
1470 static struct type *
1471 thin_descriptor_type (struct type *type)
1472 {
1473 struct type *base_type = desc_base_type (type);
1474
1475 if (base_type == NULL)
1476 return NULL;
1477 if (is_suffix (ada_type_name (base_type), "___XVE"))
1478 return base_type;
1479 else
1480 {
1481 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1482
1483 if (alt_type == NULL)
1484 return base_type;
1485 else
1486 return alt_type;
1487 }
1488 }
1489
1490 /* A pointer to the array data for thin-pointer value VAL. */
1491
1492 static struct value *
1493 thin_data_pntr (struct value *val)
1494 {
1495 struct type *type = ada_check_typedef (value_type (val));
1496 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1497
1498 data_type = lookup_pointer_type (data_type);
1499
1500 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1501 return value_cast (data_type, value_copy (val));
1502 else
1503 return value_from_longest (data_type, value_address (val));
1504 }
1505
1506 /* True iff TYPE indicates a "thick" array pointer type. */
1507
1508 static int
1509 is_thick_pntr (struct type *type)
1510 {
1511 type = desc_base_type (type);
1512 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1513 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1514 }
1515
1516 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1517 pointer to one, the type of its bounds data; otherwise, NULL. */
1518
1519 static struct type *
1520 desc_bounds_type (struct type *type)
1521 {
1522 struct type *r;
1523
1524 type = desc_base_type (type);
1525
1526 if (type == NULL)
1527 return NULL;
1528 else if (is_thin_pntr (type))
1529 {
1530 type = thin_descriptor_type (type);
1531 if (type == NULL)
1532 return NULL;
1533 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1534 if (r != NULL)
1535 return ada_check_typedef (r);
1536 }
1537 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1538 {
1539 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1540 if (r != NULL)
1541 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1542 }
1543 return NULL;
1544 }
1545
1546 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1547 one, a pointer to its bounds data. Otherwise NULL. */
1548
1549 static struct value *
1550 desc_bounds (struct value *arr)
1551 {
1552 struct type *type = ada_check_typedef (value_type (arr));
1553
1554 if (is_thin_pntr (type))
1555 {
1556 struct type *bounds_type =
1557 desc_bounds_type (thin_descriptor_type (type));
1558 LONGEST addr;
1559
1560 if (bounds_type == NULL)
1561 error (_("Bad GNAT array descriptor"));
1562
1563 /* NOTE: The following calculation is not really kosher, but
1564 since desc_type is an XVE-encoded type (and shouldn't be),
1565 the correct calculation is a real pain. FIXME (and fix GCC). */
1566 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1567 addr = value_as_long (arr);
1568 else
1569 addr = value_address (arr);
1570
1571 return
1572 value_from_longest (lookup_pointer_type (bounds_type),
1573 addr - TYPE_LENGTH (bounds_type));
1574 }
1575
1576 else if (is_thick_pntr (type))
1577 {
1578 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1579 _("Bad GNAT array descriptor"));
1580 struct type *p_bounds_type = value_type (p_bounds);
1581
1582 if (p_bounds_type
1583 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1584 {
1585 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1586
1587 if (TYPE_STUB (target_type))
1588 p_bounds = value_cast (lookup_pointer_type
1589 (ada_check_typedef (target_type)),
1590 p_bounds);
1591 }
1592 else
1593 error (_("Bad GNAT array descriptor"));
1594
1595 return p_bounds;
1596 }
1597 else
1598 return NULL;
1599 }
1600
1601 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 position of the field containing the address of the bounds data. */
1603
1604 static int
1605 fat_pntr_bounds_bitpos (struct type *type)
1606 {
1607 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1608 }
1609
1610 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1611 size of the field containing the address of the bounds data. */
1612
1613 static int
1614 fat_pntr_bounds_bitsize (struct type *type)
1615 {
1616 type = desc_base_type (type);
1617
1618 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1619 return TYPE_FIELD_BITSIZE (type, 1);
1620 else
1621 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1622 }
1623
1624 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1625 pointer to one, the type of its array data (a array-with-no-bounds type);
1626 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1627 data. */
1628
1629 static struct type *
1630 desc_data_target_type (struct type *type)
1631 {
1632 type = desc_base_type (type);
1633
1634 /* NOTE: The following is bogus; see comment in desc_bounds. */
1635 if (is_thin_pntr (type))
1636 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1637 else if (is_thick_pntr (type))
1638 {
1639 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1640
1641 if (data_type
1642 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1643 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1644 }
1645
1646 return NULL;
1647 }
1648
1649 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1650 its array data. */
1651
1652 static struct value *
1653 desc_data (struct value *arr)
1654 {
1655 struct type *type = value_type (arr);
1656
1657 if (is_thin_pntr (type))
1658 return thin_data_pntr (arr);
1659 else if (is_thick_pntr (type))
1660 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1661 _("Bad GNAT array descriptor"));
1662 else
1663 return NULL;
1664 }
1665
1666
1667 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1668 position of the field containing the address of the data. */
1669
1670 static int
1671 fat_pntr_data_bitpos (struct type *type)
1672 {
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1674 }
1675
1676 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1677 size of the field containing the address of the data. */
1678
1679 static int
1680 fat_pntr_data_bitsize (struct type *type)
1681 {
1682 type = desc_base_type (type);
1683
1684 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1685 return TYPE_FIELD_BITSIZE (type, 0);
1686 else
1687 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1688 }
1689
1690 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1691 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1692 bound, if WHICH is 1. The first bound is I=1. */
1693
1694 static struct value *
1695 desc_one_bound (struct value *bounds, int i, int which)
1696 {
1697 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1698 _("Bad GNAT array descriptor bounds"));
1699 }
1700
1701 /* If BOUNDS is an array-bounds structure type, return the bit position
1702 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1703 bound, if WHICH is 1. The first bound is I=1. */
1704
1705 static int
1706 desc_bound_bitpos (struct type *type, int i, int which)
1707 {
1708 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1709 }
1710
1711 /* If BOUNDS is an array-bounds structure type, return the bit field size
1712 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1713 bound, if WHICH is 1. The first bound is I=1. */
1714
1715 static int
1716 desc_bound_bitsize (struct type *type, int i, int which)
1717 {
1718 type = desc_base_type (type);
1719
1720 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1721 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1722 else
1723 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1724 }
1725
1726 /* If TYPE is the type of an array-bounds structure, the type of its
1727 Ith bound (numbering from 1). Otherwise, NULL. */
1728
1729 static struct type *
1730 desc_index_type (struct type *type, int i)
1731 {
1732 type = desc_base_type (type);
1733
1734 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1735 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1736 else
1737 return NULL;
1738 }
1739
1740 /* The number of index positions in the array-bounds type TYPE.
1741 Return 0 if TYPE is NULL. */
1742
1743 static int
1744 desc_arity (struct type *type)
1745 {
1746 type = desc_base_type (type);
1747
1748 if (type != NULL)
1749 return TYPE_NFIELDS (type) / 2;
1750 return 0;
1751 }
1752
1753 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1754 an array descriptor type (representing an unconstrained array
1755 type). */
1756
1757 static int
1758 ada_is_direct_array_type (struct type *type)
1759 {
1760 if (type == NULL)
1761 return 0;
1762 type = ada_check_typedef (type);
1763 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1764 || ada_is_array_descriptor_type (type));
1765 }
1766
1767 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1768 * to one. */
1769
1770 static int
1771 ada_is_array_type (struct type *type)
1772 {
1773 while (type != NULL
1774 && (TYPE_CODE (type) == TYPE_CODE_PTR
1775 || TYPE_CODE (type) == TYPE_CODE_REF))
1776 type = TYPE_TARGET_TYPE (type);
1777 return ada_is_direct_array_type (type);
1778 }
1779
1780 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1781
1782 int
1783 ada_is_simple_array_type (struct type *type)
1784 {
1785 if (type == NULL)
1786 return 0;
1787 type = ada_check_typedef (type);
1788 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1789 || (TYPE_CODE (type) == TYPE_CODE_PTR
1790 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1791 == TYPE_CODE_ARRAY));
1792 }
1793
1794 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1795
1796 int
1797 ada_is_array_descriptor_type (struct type *type)
1798 {
1799 struct type *data_type = desc_data_target_type (type);
1800
1801 if (type == NULL)
1802 return 0;
1803 type = ada_check_typedef (type);
1804 return (data_type != NULL
1805 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1806 && desc_arity (desc_bounds_type (type)) > 0);
1807 }
1808
1809 /* Non-zero iff type is a partially mal-formed GNAT array
1810 descriptor. FIXME: This is to compensate for some problems with
1811 debugging output from GNAT. Re-examine periodically to see if it
1812 is still needed. */
1813
1814 int
1815 ada_is_bogus_array_descriptor (struct type *type)
1816 {
1817 return
1818 type != NULL
1819 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1820 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1821 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1822 && !ada_is_array_descriptor_type (type);
1823 }
1824
1825
1826 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1827 (fat pointer) returns the type of the array data described---specifically,
1828 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1829 in from the descriptor; otherwise, they are left unspecified. If
1830 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1831 returns NULL. The result is simply the type of ARR if ARR is not
1832 a descriptor. */
1833 struct type *
1834 ada_type_of_array (struct value *arr, int bounds)
1835 {
1836 if (ada_is_constrained_packed_array_type (value_type (arr)))
1837 return decode_constrained_packed_array_type (value_type (arr));
1838
1839 if (!ada_is_array_descriptor_type (value_type (arr)))
1840 return value_type (arr);
1841
1842 if (!bounds)
1843 {
1844 struct type *array_type =
1845 ada_check_typedef (desc_data_target_type (value_type (arr)));
1846
1847 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1848 TYPE_FIELD_BITSIZE (array_type, 0) =
1849 decode_packed_array_bitsize (value_type (arr));
1850
1851 return array_type;
1852 }
1853 else
1854 {
1855 struct type *elt_type;
1856 int arity;
1857 struct value *descriptor;
1858
1859 elt_type = ada_array_element_type (value_type (arr), -1);
1860 arity = ada_array_arity (value_type (arr));
1861
1862 if (elt_type == NULL || arity == 0)
1863 return ada_check_typedef (value_type (arr));
1864
1865 descriptor = desc_bounds (arr);
1866 if (value_as_long (descriptor) == 0)
1867 return NULL;
1868 while (arity > 0)
1869 {
1870 struct type *range_type = alloc_type_copy (value_type (arr));
1871 struct type *array_type = alloc_type_copy (value_type (arr));
1872 struct value *low = desc_one_bound (descriptor, arity, 0);
1873 struct value *high = desc_one_bound (descriptor, arity, 1);
1874
1875 arity -= 1;
1876 create_range_type (range_type, value_type (low),
1877 longest_to_int (value_as_long (low)),
1878 longest_to_int (value_as_long (high)));
1879 elt_type = create_array_type (array_type, elt_type, range_type);
1880
1881 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1882 {
1883 /* We need to store the element packed bitsize, as well as
1884 recompute the array size, because it was previously
1885 computed based on the unpacked element size. */
1886 LONGEST lo = value_as_long (low);
1887 LONGEST hi = value_as_long (high);
1888
1889 TYPE_FIELD_BITSIZE (elt_type, 0) =
1890 decode_packed_array_bitsize (value_type (arr));
1891 /* If the array has no element, then the size is already
1892 zero, and does not need to be recomputed. */
1893 if (lo < hi)
1894 {
1895 int array_bitsize =
1896 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1897
1898 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1899 }
1900 }
1901 }
1902
1903 return lookup_pointer_type (elt_type);
1904 }
1905 }
1906
1907 /* If ARR does not represent an array, returns ARR unchanged.
1908 Otherwise, returns either a standard GDB array with bounds set
1909 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1910 GDB array. Returns NULL if ARR is a null fat pointer. */
1911
1912 struct value *
1913 ada_coerce_to_simple_array_ptr (struct value *arr)
1914 {
1915 if (ada_is_array_descriptor_type (value_type (arr)))
1916 {
1917 struct type *arrType = ada_type_of_array (arr, 1);
1918
1919 if (arrType == NULL)
1920 return NULL;
1921 return value_cast (arrType, value_copy (desc_data (arr)));
1922 }
1923 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array (arr);
1925 else
1926 return arr;
1927 }
1928
1929 /* If ARR does not represent an array, returns ARR unchanged.
1930 Otherwise, returns a standard GDB array describing ARR (which may
1931 be ARR itself if it already is in the proper form). */
1932
1933 struct value *
1934 ada_coerce_to_simple_array (struct value *arr)
1935 {
1936 if (ada_is_array_descriptor_type (value_type (arr)))
1937 {
1938 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1939
1940 if (arrVal == NULL)
1941 error (_("Bounds unavailable for null array pointer."));
1942 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1943 return value_ind (arrVal);
1944 }
1945 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1946 return decode_constrained_packed_array (arr);
1947 else
1948 return arr;
1949 }
1950
1951 /* If TYPE represents a GNAT array type, return it translated to an
1952 ordinary GDB array type (possibly with BITSIZE fields indicating
1953 packing). For other types, is the identity. */
1954
1955 struct type *
1956 ada_coerce_to_simple_array_type (struct type *type)
1957 {
1958 if (ada_is_constrained_packed_array_type (type))
1959 return decode_constrained_packed_array_type (type);
1960
1961 if (ada_is_array_descriptor_type (type))
1962 return ada_check_typedef (desc_data_target_type (type));
1963
1964 return type;
1965 }
1966
1967 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1968
1969 static int
1970 ada_is_packed_array_type (struct type *type)
1971 {
1972 if (type == NULL)
1973 return 0;
1974 type = desc_base_type (type);
1975 type = ada_check_typedef (type);
1976 return
1977 ada_type_name (type) != NULL
1978 && strstr (ada_type_name (type), "___XP") != NULL;
1979 }
1980
1981 /* Non-zero iff TYPE represents a standard GNAT constrained
1982 packed-array type. */
1983
1984 int
1985 ada_is_constrained_packed_array_type (struct type *type)
1986 {
1987 return ada_is_packed_array_type (type)
1988 && !ada_is_array_descriptor_type (type);
1989 }
1990
1991 /* Non-zero iff TYPE represents an array descriptor for a
1992 unconstrained packed-array type. */
1993
1994 static int
1995 ada_is_unconstrained_packed_array_type (struct type *type)
1996 {
1997 return ada_is_packed_array_type (type)
1998 && ada_is_array_descriptor_type (type);
1999 }
2000
2001 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2002 return the size of its elements in bits. */
2003
2004 static long
2005 decode_packed_array_bitsize (struct type *type)
2006 {
2007 const char *raw_name;
2008 const char *tail;
2009 long bits;
2010
2011 /* Access to arrays implemented as fat pointers are encoded as a typedef
2012 of the fat pointer type. We need the name of the fat pointer type
2013 to do the decoding, so strip the typedef layer. */
2014 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2015 type = ada_typedef_target_type (type);
2016
2017 raw_name = ada_type_name (ada_check_typedef (type));
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return 0;
2023
2024 tail = strstr (raw_name, "___XP");
2025 gdb_assert (tail != NULL);
2026
2027 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2028 {
2029 lim_warning
2030 (_("could not understand bit size information on packed array"));
2031 return 0;
2032 }
2033
2034 return bits;
2035 }
2036
2037 /* Given that TYPE is a standard GDB array type with all bounds filled
2038 in, and that the element size of its ultimate scalar constituents
2039 (that is, either its elements, or, if it is an array of arrays, its
2040 elements' elements, etc.) is *ELT_BITS, return an identical type,
2041 but with the bit sizes of its elements (and those of any
2042 constituent arrays) recorded in the BITSIZE components of its
2043 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2044 in bits. */
2045
2046 static struct type *
2047 constrained_packed_array_type (struct type *type, long *elt_bits)
2048 {
2049 struct type *new_elt_type;
2050 struct type *new_type;
2051 struct type *index_type_desc;
2052 struct type *index_type;
2053 LONGEST low_bound, high_bound;
2054
2055 type = ada_check_typedef (type);
2056 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2057 return type;
2058
2059 index_type_desc = ada_find_parallel_type (type, "___XA");
2060 if (index_type_desc)
2061 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2062 NULL);
2063 else
2064 index_type = TYPE_INDEX_TYPE (type);
2065
2066 new_type = alloc_type_copy (type);
2067 new_elt_type =
2068 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2069 elt_bits);
2070 create_array_type (new_type, new_elt_type, index_type);
2071 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2072 TYPE_NAME (new_type) = ada_type_name (type);
2073
2074 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2075 low_bound = high_bound = 0;
2076 if (high_bound < low_bound)
2077 *elt_bits = TYPE_LENGTH (new_type) = 0;
2078 else
2079 {
2080 *elt_bits *= (high_bound - low_bound + 1);
2081 TYPE_LENGTH (new_type) =
2082 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2083 }
2084
2085 TYPE_FIXED_INSTANCE (new_type) = 1;
2086 return new_type;
2087 }
2088
2089 /* The array type encoded by TYPE, where
2090 ada_is_constrained_packed_array_type (TYPE). */
2091
2092 static struct type *
2093 decode_constrained_packed_array_type (struct type *type)
2094 {
2095 const char *raw_name = ada_type_name (ada_check_typedef (type));
2096 char *name;
2097 const char *tail;
2098 struct type *shadow_type;
2099 long bits;
2100
2101 if (!raw_name)
2102 raw_name = ada_type_name (desc_base_type (type));
2103
2104 if (!raw_name)
2105 return NULL;
2106
2107 name = (char *) alloca (strlen (raw_name) + 1);
2108 tail = strstr (raw_name, "___XP");
2109 type = desc_base_type (type);
2110
2111 memcpy (name, raw_name, tail - raw_name);
2112 name[tail - raw_name] = '\000';
2113
2114 shadow_type = ada_find_parallel_type_with_name (type, name);
2115
2116 if (shadow_type == NULL)
2117 {
2118 lim_warning (_("could not find bounds information on packed array"));
2119 return NULL;
2120 }
2121 CHECK_TYPEDEF (shadow_type);
2122
2123 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2124 {
2125 lim_warning (_("could not understand bounds "
2126 "information on packed array"));
2127 return NULL;
2128 }
2129
2130 bits = decode_packed_array_bitsize (type);
2131 return constrained_packed_array_type (shadow_type, &bits);
2132 }
2133
2134 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2135 array, returns a simple array that denotes that array. Its type is a
2136 standard GDB array type except that the BITSIZEs of the array
2137 target types are set to the number of bits in each element, and the
2138 type length is set appropriately. */
2139
2140 static struct value *
2141 decode_constrained_packed_array (struct value *arr)
2142 {
2143 struct type *type;
2144
2145 arr = ada_coerce_ref (arr);
2146
2147 /* If our value is a pointer, then dererence it. Make sure that
2148 this operation does not cause the target type to be fixed, as
2149 this would indirectly cause this array to be decoded. The rest
2150 of the routine assumes that the array hasn't been decoded yet,
2151 so we use the basic "value_ind" routine to perform the dereferencing,
2152 as opposed to using "ada_value_ind". */
2153 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2154 arr = value_ind (arr);
2155
2156 type = decode_constrained_packed_array_type (value_type (arr));
2157 if (type == NULL)
2158 {
2159 error (_("can't unpack array"));
2160 return NULL;
2161 }
2162
2163 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2164 && ada_is_modular_type (value_type (arr)))
2165 {
2166 /* This is a (right-justified) modular type representing a packed
2167 array with no wrapper. In order to interpret the value through
2168 the (left-justified) packed array type we just built, we must
2169 first left-justify it. */
2170 int bit_size, bit_pos;
2171 ULONGEST mod;
2172
2173 mod = ada_modulus (value_type (arr)) - 1;
2174 bit_size = 0;
2175 while (mod > 0)
2176 {
2177 bit_size += 1;
2178 mod >>= 1;
2179 }
2180 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2181 arr = ada_value_primitive_packed_val (arr, NULL,
2182 bit_pos / HOST_CHAR_BIT,
2183 bit_pos % HOST_CHAR_BIT,
2184 bit_size,
2185 type);
2186 }
2187
2188 return coerce_unspec_val_to_type (arr, type);
2189 }
2190
2191
2192 /* The value of the element of packed array ARR at the ARITY indices
2193 given in IND. ARR must be a simple array. */
2194
2195 static struct value *
2196 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2197 {
2198 int i;
2199 int bits, elt_off, bit_off;
2200 long elt_total_bit_offset;
2201 struct type *elt_type;
2202 struct value *v;
2203
2204 bits = 0;
2205 elt_total_bit_offset = 0;
2206 elt_type = ada_check_typedef (value_type (arr));
2207 for (i = 0; i < arity; i += 1)
2208 {
2209 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2210 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2211 error
2212 (_("attempt to do packed indexing of "
2213 "something other than a packed array"));
2214 else
2215 {
2216 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2217 LONGEST lowerbound, upperbound;
2218 LONGEST idx;
2219
2220 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2221 {
2222 lim_warning (_("don't know bounds of array"));
2223 lowerbound = upperbound = 0;
2224 }
2225
2226 idx = pos_atr (ind[i]);
2227 if (idx < lowerbound || idx > upperbound)
2228 lim_warning (_("packed array index %ld out of bounds"),
2229 (long) idx);
2230 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2231 elt_total_bit_offset += (idx - lowerbound) * bits;
2232 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2233 }
2234 }
2235 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2236 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2237
2238 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2239 bits, elt_type);
2240 return v;
2241 }
2242
2243 /* Non-zero iff TYPE includes negative integer values. */
2244
2245 static int
2246 has_negatives (struct type *type)
2247 {
2248 switch (TYPE_CODE (type))
2249 {
2250 default:
2251 return 0;
2252 case TYPE_CODE_INT:
2253 return !TYPE_UNSIGNED (type);
2254 case TYPE_CODE_RANGE:
2255 return TYPE_LOW_BOUND (type) < 0;
2256 }
2257 }
2258
2259
2260 /* Create a new value of type TYPE from the contents of OBJ starting
2261 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2262 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2263 assigning through the result will set the field fetched from.
2264 VALADDR is ignored unless OBJ is NULL, in which case,
2265 VALADDR+OFFSET must address the start of storage containing the
2266 packed value. The value returned in this case is never an lval.
2267 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2268
2269 struct value *
2270 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2271 long offset, int bit_offset, int bit_size,
2272 struct type *type)
2273 {
2274 struct value *v;
2275 int src, /* Index into the source area */
2276 targ, /* Index into the target area */
2277 srcBitsLeft, /* Number of source bits left to move */
2278 nsrc, ntarg, /* Number of source and target bytes */
2279 unusedLS, /* Number of bits in next significant
2280 byte of source that are unused */
2281 accumSize; /* Number of meaningful bits in accum */
2282 unsigned char *bytes; /* First byte containing data to unpack */
2283 unsigned char *unpacked;
2284 unsigned long accum; /* Staging area for bits being transferred */
2285 unsigned char sign;
2286 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2287 /* Transmit bytes from least to most significant; delta is the direction
2288 the indices move. */
2289 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2290
2291 type = ada_check_typedef (type);
2292
2293 if (obj == NULL)
2294 {
2295 v = allocate_value (type);
2296 bytes = (unsigned char *) (valaddr + offset);
2297 }
2298 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2299 {
2300 v = value_at (type, value_address (obj));
2301 bytes = (unsigned char *) alloca (len);
2302 read_memory (value_address (v) + offset, bytes, len);
2303 }
2304 else
2305 {
2306 v = allocate_value (type);
2307 bytes = (unsigned char *) value_contents (obj) + offset;
2308 }
2309
2310 if (obj != NULL)
2311 {
2312 long new_offset = offset;
2313
2314 set_value_component_location (v, obj);
2315 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2316 set_value_bitsize (v, bit_size);
2317 if (value_bitpos (v) >= HOST_CHAR_BIT)
2318 {
2319 ++new_offset;
2320 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2321 }
2322 set_value_offset (v, new_offset);
2323
2324 /* Also set the parent value. This is needed when trying to
2325 assign a new value (in inferior memory). */
2326 set_value_parent (v, obj);
2327 value_incref (obj);
2328 }
2329 else
2330 set_value_bitsize (v, bit_size);
2331 unpacked = (unsigned char *) value_contents (v);
2332
2333 srcBitsLeft = bit_size;
2334 nsrc = len;
2335 ntarg = TYPE_LENGTH (type);
2336 sign = 0;
2337 if (bit_size == 0)
2338 {
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2340 return v;
2341 }
2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2343 {
2344 src = len - 1;
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2347 sign = ~0;
2348
2349 unusedLS =
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351 % HOST_CHAR_BIT;
2352
2353 switch (TYPE_CODE (type))
2354 {
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2359 accumSize =
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2362 of the target. */
2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2364 ntarg = targ + 1;
2365 break;
2366 default:
2367 accumSize = 0;
2368 targ = TYPE_LENGTH (type) - 1;
2369 break;
2370 }
2371 }
2372 else
2373 {
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375
2376 src = targ = 0;
2377 unusedLS = bit_offset;
2378 accumSize = 0;
2379
2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2381 sign = ~0;
2382 }
2383
2384 accum = 0;
2385 while (nsrc > 0)
2386 {
2387 /* Mask for removing bits of the next source byte that are not
2388 part of the value. */
2389 unsigned int unusedMSMask =
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391 1;
2392 /* Sign-extend bits for this byte. */
2393 unsigned int signMask = sign & ~unusedMSMask;
2394
2395 accum |=
2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2397 accumSize += HOST_CHAR_BIT - unusedLS;
2398 if (accumSize >= HOST_CHAR_BIT)
2399 {
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2403 ntarg -= 1;
2404 targ += delta;
2405 }
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407 unusedLS = 0;
2408 nsrc -= 1;
2409 src += delta;
2410 }
2411 while (ntarg > 0)
2412 {
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2417 ntarg -= 1;
2418 targ += delta;
2419 }
2420
2421 return v;
2422 }
2423
2424 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2426 not overlap. */
2427 static void
2428 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2429 int src_offset, int n, int bits_big_endian_p)
2430 {
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2433
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
2438 if (bits_big_endian_p)
2439 {
2440 accum = (unsigned char) *source;
2441 source += 1;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2443
2444 while (n > 0)
2445 {
2446 int unused_right;
2447
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2450 source += 1;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2452 if (chunk_size > n)
2453 chunk_size = n;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2456 *target =
2457 (*target & ~mask)
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459 n -= chunk_size;
2460 accum_bits -= chunk_size;
2461 target += 1;
2462 targ_offset = 0;
2463 }
2464 }
2465 else
2466 {
2467 accum = (unsigned char) *source >> src_offset;
2468 source += 1;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2470
2471 while (n > 0)
2472 {
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2475 source += 1;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2477 if (chunk_size > n)
2478 chunk_size = n;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481 n -= chunk_size;
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
2487 }
2488 }
2489
2490 /* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
2493 floating-point or non-scalar types. */
2494
2495 static struct value *
2496 ada_value_assign (struct value *toval, struct value *fromval)
2497 {
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
2500
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2503
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2508
2509 if (!deprecated_value_modifiable (toval))
2510 error (_("Left operand of assignment is not a modifiable lvalue."));
2511
2512 if (VALUE_LVAL (toval) == lval_memory
2513 && bits > 0
2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2516 {
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2519 int from_size;
2520 char *buffer = (char *) alloca (len);
2521 struct value *val;
2522 CORE_ADDR to_addr = value_address (toval);
2523
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2525 fromval = value_cast (type, fromval);
2526
2527 read_memory (to_addr, buffer, len);
2528 from_size = value_bitsize (fromval);
2529 if (from_size == 0)
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), from_size - bits, bits, 1);
2534 else
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
2537 write_memory (to_addr, buffer, len);
2538 observer_notify_memory_changed (to_addr, len, buffer);
2539
2540 val = value_copy (toval);
2541 memcpy (value_contents_raw (val), value_contents (fromval),
2542 TYPE_LENGTH (type));
2543 deprecated_set_value_type (val, type);
2544
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549 }
2550
2551
2552 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557 static void
2558 value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560 {
2561 LONGEST offset_in_container =
2562 (LONGEST) (value_address (component) - value_address (container));
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2579 bits, 1);
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
2583 value_contents (val), 0, bits, 0);
2584 }
2585
2586 /* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
2588 thereto. */
2589
2590 struct value *
2591 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2592 {
2593 int k;
2594 struct value *elt;
2595 struct type *elt_type;
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
2599 elt_type = ada_check_typedef (value_type (elt));
2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2607 error (_("too many subscripts (%d expected)"), k);
2608 elt = value_subscript (elt, pos_atr (ind[k]));
2609 }
2610 return elt;
2611 }
2612
2613 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
2615 IND. Does not read the entire array into memory. */
2616
2617 static struct value *
2618 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2619 struct value **ind)
2620 {
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2628 error (_("too many subscripts (%d expected)"), k);
2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2630 value_copy (arr));
2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637 }
2638
2639 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
2642 per Ada rules. */
2643 static struct value *
2644 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
2646 {
2647 struct type *type0 = ada_check_typedef (type);
2648 CORE_ADDR base = value_as_address (array_ptr)
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2651 struct type *index_type =
2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2653 low, high);
2654 struct type *slice_type =
2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2656
2657 return value_at_lazy (slice_type, base);
2658 }
2659
2660
2661 static struct value *
2662 ada_value_slice (struct value *array, int low, int high)
2663 {
2664 struct type *type = ada_check_typedef (value_type (array));
2665 struct type *index_type =
2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2667 struct type *slice_type =
2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2669
2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2671 }
2672
2673 /* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
2676 type designation. Otherwise, returns 0. */
2677
2678 int
2679 ada_array_arity (struct type *type)
2680 {
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2690 return desc_arity (desc_bounds_type (type));
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2693 {
2694 arity += 1;
2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2696 }
2697
2698 return arity;
2699 }
2700
2701 /* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
2704 NINDICES is -1. Otherwise, returns NULL. */
2705
2706 struct type *
2707 ada_array_element_type (struct type *type, int nindices)
2708 {
2709 type = desc_base_type (type);
2710
2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2712 {
2713 int k;
2714 struct type *p_array_type;
2715
2716 p_array_type = desc_data_target_type (type);
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
2720 return NULL;
2721
2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2723 if (nindices >= 0 && k > nindices)
2724 k = nindices;
2725 while (k > 0 && p_array_type != NULL)
2726 {
2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2728 k -= 1;
2729 }
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
2739 return type;
2740 }
2741
2742 return NULL;
2743 }
2744
2745 /* The type of nth index in arrays of given type (n numbering from 1).
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
2750
2751 static struct type *
2752 ada_index_type (struct type *type, int n, const char *name)
2753 {
2754 struct type *result_type;
2755
2756 type = desc_base_type (type);
2757
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
2760
2761 if (ada_is_simple_array_type (type))
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
2766 type = TYPE_TARGET_TYPE (type);
2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2770 perhaps stabsread.c would make more sense. */
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
2773 }
2774 else
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
2782 }
2783
2784 /* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
2789
2790 static LONGEST
2791 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2792 {
2793 struct type *type, *elt_type, *index_type_desc, *index_type;
2794 int i;
2795
2796 gdb_assert (which == 0 || which == 1);
2797
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
2800
2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2802 return (LONGEST) - which;
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
2809 elt_type = type;
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2812
2813 index_type_desc = ada_find_parallel_type (type, "___XA");
2814 ada_fixup_array_indexes_type (index_type_desc);
2815 if (index_type_desc != NULL)
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2817 NULL);
2818 else
2819 index_type = TYPE_INDEX_TYPE (elt_type);
2820
2821 return
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
2825 }
2826
2827 /* Given that arr is an array value, returns the lower bound of the
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
2830 supplied by run-time quantities other than discriminants. */
2831
2832 static LONGEST
2833 ada_array_bound (struct value *arr, int n, int which)
2834 {
2835 struct type *arr_type = value_type (arr);
2836
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2839 else if (ada_is_simple_array_type (arr_type))
2840 return ada_array_bound_from_type (arr_type, n, which);
2841 else
2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2843 }
2844
2845 /* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
2850
2851 static LONGEST
2852 ada_array_length (struct value *arr, int n)
2853 {
2854 struct type *arr_type = ada_check_typedef (value_type (arr));
2855
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
2858
2859 if (ada_is_simple_array_type (arr_type))
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2862 else
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2865 }
2866
2867 /* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2869
2870 static struct value *
2871 empty_array (struct type *arr_type, int low)
2872 {
2873 struct type *arr_type0 = ada_check_typedef (arr_type);
2874 struct type *index_type =
2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2876 low, low - 1);
2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2878
2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
2880 }
2881 \f
2882
2883 /* Name resolution */
2884
2885 /* The "decoded" name for the user-definable Ada operator corresponding
2886 to OP. */
2887
2888 static const char *
2889 ada_decoded_op_name (enum exp_opcode op)
2890 {
2891 int i;
2892
2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2894 {
2895 if (ada_opname_table[i].op == op)
2896 return ada_opname_table[i].decoded;
2897 }
2898 error (_("Could not find operator name for opcode"));
2899 }
2900
2901
2902 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2909 return type is preferred. May change (expand) *EXP. */
2910
2911 static void
2912 resolve (struct expression **expp, int void_context_p)
2913 {
2914 struct type *context_type = NULL;
2915 int pc = 0;
2916
2917 if (void_context_p)
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919
2920 resolve_subexp (expp, &pc, 1, context_type);
2921 }
2922
2923 /* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
2931
2932 static struct value *
2933 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2934 struct type *context_type)
2935 {
2936 int pc = *pos;
2937 int i;
2938 struct expression *exp; /* Convenience: == *expp. */
2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
2942 int oplen;
2943
2944 argvec = NULL;
2945 nargs = 0;
2946 exp = *expp;
2947
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2949 if needed. */
2950 switch (op)
2951 {
2952 case OP_FUNCALL:
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 *pos += 7;
2956 else
2957 {
2958 *pos += 3;
2959 resolve_subexp (expp, pos, 0, NULL);
2960 }
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2962 break;
2963
2964 case UNOP_ADDR:
2965 *pos += 1;
2966 resolve_subexp (expp, pos, 0, NULL);
2967 break;
2968
2969 case UNOP_QUAL:
2970 *pos += 3;
2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2972 break;
2973
2974 case OP_ATR_MODULUS:
2975 case OP_ATR_SIZE:
2976 case OP_ATR_TAG:
2977 case OP_ATR_FIRST:
2978 case OP_ATR_LAST:
2979 case OP_ATR_LENGTH:
2980 case OP_ATR_POS:
2981 case OP_ATR_VAL:
2982 case OP_ATR_MIN:
2983 case OP_ATR_MAX:
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2986 case UNOP_IN_RANGE:
2987 case OP_AGGREGATE:
2988 case OP_OTHERS:
2989 case OP_CHOICES:
2990 case OP_POSITIONAL:
2991 case OP_DISCRETE_RANGE:
2992 case OP_NAME:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2994 *pos += oplen;
2995 break;
2996
2997 case BINOP_ASSIGN:
2998 {
2999 struct value *arg1;
3000
3001 *pos += 1;
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 if (arg1 == NULL)
3004 resolve_subexp (expp, pos, 1, NULL);
3005 else
3006 resolve_subexp (expp, pos, 1, value_type (arg1));
3007 break;
3008 }
3009
3010 case UNOP_CAST:
3011 *pos += 3;
3012 nargs = 1;
3013 break;
3014
3015 case BINOP_ADD:
3016 case BINOP_SUB:
3017 case BINOP_MUL:
3018 case BINOP_DIV:
3019 case BINOP_REM:
3020 case BINOP_MOD:
3021 case BINOP_EXP:
3022 case BINOP_CONCAT:
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
3028
3029 case BINOP_EQUAL:
3030 case BINOP_NOTEQUAL:
3031 case BINOP_LESS:
3032 case BINOP_GTR:
3033 case BINOP_LEQ:
3034 case BINOP_GEQ:
3035
3036 case BINOP_REPEAT:
3037 case BINOP_SUBSCRIPT:
3038 case BINOP_COMMA:
3039 *pos += 1;
3040 nargs = 2;
3041 break;
3042
3043 case UNOP_NEG:
3044 case UNOP_PLUS:
3045 case UNOP_LOGICAL_NOT:
3046 case UNOP_ABS:
3047 case UNOP_IND:
3048 *pos += 1;
3049 nargs = 1;
3050 break;
3051
3052 case OP_LONG:
3053 case OP_DOUBLE:
3054 case OP_VAR_VALUE:
3055 *pos += 4;
3056 break;
3057
3058 case OP_TYPE:
3059 case OP_BOOL:
3060 case OP_LAST:
3061 case OP_INTERNALVAR:
3062 *pos += 3;
3063 break;
3064
3065 case UNOP_MEMVAL:
3066 *pos += 3;
3067 nargs = 1;
3068 break;
3069
3070 case OP_REGISTER:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3072 break;
3073
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 nargs = 1;
3077 break;
3078
3079 case TERNOP_SLICE:
3080 *pos += 1;
3081 nargs = 3;
3082 break;
3083
3084 case OP_STRING:
3085 break;
3086
3087 default:
3088 error (_("Unexpected operator during name resolution"));
3089 }
3090
3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3094 argvec[i] = NULL;
3095 exp = *expp;
3096
3097 /* Pass two: perform any resolution on principal operator. */
3098 switch (op)
3099 {
3100 default:
3101 break;
3102
3103 case OP_VAR_VALUE:
3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3105 {
3106 struct ada_symbol_info *candidates;
3107 int n_candidates;
3108
3109 n_candidates =
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
3113 &candidates, 1);
3114
3115 if (n_candidates > 1)
3116 {
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3119 out all types. */
3120 int j;
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3123 {
3124 case LOC_REGISTER:
3125 case LOC_ARG:
3126 case LOC_REF_ARG:
3127 case LOC_REGPARM_ADDR:
3128 case LOC_LOCAL:
3129 case LOC_COMPUTED:
3130 goto FoundNonType;
3131 default:
3132 break;
3133 }
3134 FoundNonType:
3135 if (j < n_candidates)
3136 {
3137 j = 0;
3138 while (j < n_candidates)
3139 {
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 {
3142 candidates[j] = candidates[n_candidates - 1];
3143 n_candidates -= 1;
3144 }
3145 else
3146 j += 1;
3147 }
3148 }
3149 }
3150
3151 if (n_candidates == 0)
3152 error (_("No definition found for %s"),
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3155 i = 0;
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3158 {
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3162 context_type);
3163 if (i < 0)
3164 error (_("Could not find a match for %s"),
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 }
3167 else
3168 {
3169 printf_filtered (_("Multiple matches for %s\n"),
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3172 i = 0;
3173 }
3174
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
3179 innermost_block = candidates[i].block;
3180 }
3181
3182 if (deprocedure_p
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3184 == TYPE_CODE_FUNC))
3185 {
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3189 exp = *expp;
3190 }
3191 break;
3192
3193 case OP_FUNCALL:
3194 {
3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
3205 &candidates, 1);
3206 if (n_candidates == 1)
3207 i = 0;
3208 else
3209 {
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3212 argvec, nargs,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3214 context_type);
3215 if (i < 0)
3216 error (_("Could not find a match for %s"),
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3218 }
3219
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
3224 innermost_block = candidates[i].block;
3225 }
3226 }
3227 break;
3228 case BINOP_ADD:
3229 case BINOP_SUB:
3230 case BINOP_MUL:
3231 case BINOP_DIV:
3232 case BINOP_REM:
3233 case BINOP_MOD:
3234 case BINOP_CONCAT:
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3238 case BINOP_EQUAL:
3239 case BINOP_NOTEQUAL:
3240 case BINOP_LESS:
3241 case BINOP_GTR:
3242 case BINOP_LEQ:
3243 case BINOP_GEQ:
3244 case BINOP_EXP:
3245 case UNOP_NEG:
3246 case UNOP_PLUS:
3247 case UNOP_LOGICAL_NOT:
3248 case UNOP_ABS:
3249 if (possible_user_operator_p (op, argvec))
3250 {
3251 struct ada_symbol_info *candidates;
3252 int n_candidates;
3253
3254 n_candidates =
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
3257 &candidates, 1);
3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3259 ada_decoded_op_name (op), NULL);
3260 if (i < 0)
3261 break;
3262
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
3265 exp = *expp;
3266 }
3267 break;
3268
3269 case OP_TYPE:
3270 case OP_REGISTER:
3271 return NULL;
3272 }
3273
3274 *pos = pc;
3275 return evaluate_subexp_type (exp, pos);
3276 }
3277
3278 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3280 a non-pointer. */
3281 /* The term "match" here is rather loose. The match is heuristic and
3282 liberal. */
3283
3284 static int
3285 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3286 {
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
3289
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3294
3295 switch (TYPE_CODE (ftype))
3296 {
3297 default:
3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3299 case TYPE_CODE_PTR:
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
3303 else
3304 return (may_deref
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
3310 {
3311 case TYPE_CODE_INT:
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3314 return 1;
3315 default:
3316 return 0;
3317 }
3318
3319 case TYPE_CODE_ARRAY:
3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3321 || ada_is_array_descriptor_type (atype));
3322
3323 case TYPE_CODE_STRUCT:
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
3327 else
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
3330
3331 case TYPE_CODE_UNION:
3332 case TYPE_CODE_FLT:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3334 }
3335 }
3336
3337 /* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
3340 argument function. */
3341
3342 static int
3343 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3344 {
3345 int i;
3346 struct type *func_type = SYMBOL_TYPE (func);
3347
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3352 return 0;
3353
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3355 return 0;
3356
3357 for (i = 0; i < n_actuals; i += 1)
3358 {
3359 if (actuals[i] == NULL)
3360 return 0;
3361 else
3362 {
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 i));
3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3366
3367 if (!ada_type_match (ftype, atype, 1))
3368 return 0;
3369 }
3370 }
3371 return 1;
3372 }
3373
3374 /* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3378
3379 static int
3380 return_match (struct type *func_type, struct type *context_type)
3381 {
3382 struct type *return_type;
3383
3384 if (func_type == NULL)
3385 return 1;
3386
3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3389 else
3390 return_type = get_base_type (func_type);
3391 if (return_type == NULL)
3392 return 1;
3393
3394 context_type = get_base_type (context_type);
3395
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 else
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3402 }
3403
3404
3405 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3406 function (if any) that matches the types of the NARGS arguments in
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3411
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
3416
3417 static int
3418 ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
3421 {
3422 int fallback;
3423 int k;
3424 int m; /* Number of hits */
3425
3426 m = 0;
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3431 {
3432 for (k = 0; k < nsyms; k += 1)
3433 {
3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3435
3436 if (ada_args_match (syms[k].sym, args, nargs)
3437 && (fallback || return_match (type, context_type)))
3438 {
3439 syms[m] = syms[k];
3440 m += 1;
3441 }
3442 }
3443 }
3444
3445 if (m == 0)
3446 return -1;
3447 else if (m > 1)
3448 {
3449 printf_filtered (_("Multiple matches for %s\n"), name);
3450 user_select_syms (syms, m, 1);
3451 return 0;
3452 }
3453 return 0;
3454 }
3455
3456 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3461
3462 static int
3463 encoded_ordered_before (const char *N0, const char *N1)
3464 {
3465 if (N1 == NULL)
3466 return 0;
3467 else if (N0 == NULL)
3468 return 1;
3469 else
3470 {
3471 int k0, k1;
3472
3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3474 ;
3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3476 ;
3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3479 {
3480 int n0, n1;
3481
3482 n0 = k0;
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3484 n0 -= 1;
3485 n1 = k1;
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 n1 -= 1;
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 }
3491 return (strcmp (N0, N1) < 0);
3492 }
3493 }
3494
3495 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3496 encoded names. */
3497
3498 static void
3499 sort_choices (struct ada_symbol_info syms[], int nsyms)
3500 {
3501 int i;
3502
3503 for (i = 1; i < nsyms; i += 1)
3504 {
3505 struct ada_symbol_info sym = syms[i];
3506 int j;
3507
3508 for (j = i - 1; j >= 0; j -= 1)
3509 {
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 break;
3513 syms[j + 1] = syms[j];
3514 }
3515 syms[j + 1] = sym;
3516 }
3517 }
3518
3519 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3522 selected. */
3523
3524 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3525 to be re-integrated one of these days. */
3526
3527 int
3528 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3529 {
3530 int i;
3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3532 int n_chosen;
3533 int first_choice = (max_results == 1) ? 1 : 2;
3534 const char *select_mode = multiple_symbols_select_mode ();
3535
3536 if (max_results < 1)
3537 error (_("Request to select 0 symbols!"));
3538 if (nsyms <= 1)
3539 return nsyms;
3540
3541 if (select_mode == multiple_symbols_cancel)
3542 error (_("\
3543 canceled because the command is ambiguous\n\
3544 See set/show multiple-symbol."));
3545
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3550 return nsyms;
3551
3552 printf_unfiltered (_("[0] cancel\n"));
3553 if (max_results > 1)
3554 printf_unfiltered (_("[1] all\n"));
3555
3556 sort_choices (syms, nsyms);
3557
3558 for (i = 0; i < nsyms; i += 1)
3559 {
3560 if (syms[i].sym == NULL)
3561 continue;
3562
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 {
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
3567
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 i + first_choice,
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3572 sal.line);
3573 else
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
3576 sal.symtab->filename, sal.line);
3577 continue;
3578 }
3579 else
3580 {
3581 int is_enumeral =
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3585 struct symtab *symtab = syms[i].sym->symtab;
3586
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3589 i + first_choice,
3590 SYMBOL_PRINT_NAME (syms[i].sym),
3591 symtab->filename, SYMBOL_LINE (syms[i].sym));
3592 else if (is_enumeral
3593 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3594 {
3595 printf_unfiltered (("[%d] "), i + first_choice);
3596 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3597 gdb_stdout, -1, 0);
3598 printf_unfiltered (_("'(%s) (enumeral)\n"),
3599 SYMBOL_PRINT_NAME (syms[i].sym));
3600 }
3601 else if (symtab != NULL)
3602 printf_unfiltered (is_enumeral
3603 ? _("[%d] %s in %s (enumeral)\n")
3604 : _("[%d] %s at %s:?\n"),
3605 i + first_choice,
3606 SYMBOL_PRINT_NAME (syms[i].sym),
3607 symtab->filename);
3608 else
3609 printf_unfiltered (is_enumeral
3610 ? _("[%d] %s (enumeral)\n")
3611 : _("[%d] %s at ?\n"),
3612 i + first_choice,
3613 SYMBOL_PRINT_NAME (syms[i].sym));
3614 }
3615 }
3616
3617 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3618 "overload-choice");
3619
3620 for (i = 0; i < n_chosen; i += 1)
3621 syms[i] = syms[chosen[i]];
3622
3623 return n_chosen;
3624 }
3625
3626 /* Read and validate a set of numeric choices from the user in the
3627 range 0 .. N_CHOICES-1. Place the results in increasing
3628 order in CHOICES[0 .. N-1], and return N.
3629
3630 The user types choices as a sequence of numbers on one line
3631 separated by blanks, encoding them as follows:
3632
3633 + A choice of 0 means to cancel the selection, throwing an error.
3634 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3635 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3636
3637 The user is not allowed to choose more than MAX_RESULTS values.
3638
3639 ANNOTATION_SUFFIX, if present, is used to annotate the input
3640 prompts (for use with the -f switch). */
3641
3642 int
3643 get_selections (int *choices, int n_choices, int max_results,
3644 int is_all_choice, char *annotation_suffix)
3645 {
3646 char *args;
3647 char *prompt;
3648 int n_chosen;
3649 int first_choice = is_all_choice ? 2 : 1;
3650
3651 prompt = getenv ("PS2");
3652 if (prompt == NULL)
3653 prompt = "> ";
3654
3655 args = command_line_input (prompt, 0, annotation_suffix);
3656
3657 if (args == NULL)
3658 error_no_arg (_("one or more choice numbers"));
3659
3660 n_chosen = 0;
3661
3662 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3663 order, as given in args. Choices are validated. */
3664 while (1)
3665 {
3666 char *args2;
3667 int choice, j;
3668
3669 args = skip_spaces (args);
3670 if (*args == '\0' && n_chosen == 0)
3671 error_no_arg (_("one or more choice numbers"));
3672 else if (*args == '\0')
3673 break;
3674
3675 choice = strtol (args, &args2, 10);
3676 if (args == args2 || choice < 0
3677 || choice > n_choices + first_choice - 1)
3678 error (_("Argument must be choice number"));
3679 args = args2;
3680
3681 if (choice == 0)
3682 error (_("cancelled"));
3683
3684 if (choice < first_choice)
3685 {
3686 n_chosen = n_choices;
3687 for (j = 0; j < n_choices; j += 1)
3688 choices[j] = j;
3689 break;
3690 }
3691 choice -= first_choice;
3692
3693 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3694 {
3695 }
3696
3697 if (j < 0 || choice != choices[j])
3698 {
3699 int k;
3700
3701 for (k = n_chosen - 1; k > j; k -= 1)
3702 choices[k + 1] = choices[k];
3703 choices[j + 1] = choice;
3704 n_chosen += 1;
3705 }
3706 }
3707
3708 if (n_chosen > max_results)
3709 error (_("Select no more than %d of the above"), max_results);
3710
3711 return n_chosen;
3712 }
3713
3714 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3715 on the function identified by SYM and BLOCK, and taking NARGS
3716 arguments. Update *EXPP as needed to hold more space. */
3717
3718 static void
3719 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3720 int oplen, struct symbol *sym,
3721 struct block *block)
3722 {
3723 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3724 symbol, -oplen for operator being replaced). */
3725 struct expression *newexp = (struct expression *)
3726 xzalloc (sizeof (struct expression)
3727 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3728 struct expression *exp = *expp;
3729
3730 newexp->nelts = exp->nelts + 7 - oplen;
3731 newexp->language_defn = exp->language_defn;
3732 newexp->gdbarch = exp->gdbarch;
3733 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3734 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3735 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3736
3737 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3738 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3739
3740 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3741 newexp->elts[pc + 4].block = block;
3742 newexp->elts[pc + 5].symbol = sym;
3743
3744 *expp = newexp;
3745 xfree (exp);
3746 }
3747
3748 /* Type-class predicates */
3749
3750 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3751 or FLOAT). */
3752
3753 static int
3754 numeric_type_p (struct type *type)
3755 {
3756 if (type == NULL)
3757 return 0;
3758 else
3759 {
3760 switch (TYPE_CODE (type))
3761 {
3762 case TYPE_CODE_INT:
3763 case TYPE_CODE_FLT:
3764 return 1;
3765 case TYPE_CODE_RANGE:
3766 return (type == TYPE_TARGET_TYPE (type)
3767 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3768 default:
3769 return 0;
3770 }
3771 }
3772 }
3773
3774 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3775
3776 static int
3777 integer_type_p (struct type *type)
3778 {
3779 if (type == NULL)
3780 return 0;
3781 else
3782 {
3783 switch (TYPE_CODE (type))
3784 {
3785 case TYPE_CODE_INT:
3786 return 1;
3787 case TYPE_CODE_RANGE:
3788 return (type == TYPE_TARGET_TYPE (type)
3789 || integer_type_p (TYPE_TARGET_TYPE (type)));
3790 default:
3791 return 0;
3792 }
3793 }
3794 }
3795
3796 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3797
3798 static int
3799 scalar_type_p (struct type *type)
3800 {
3801 if (type == NULL)
3802 return 0;
3803 else
3804 {
3805 switch (TYPE_CODE (type))
3806 {
3807 case TYPE_CODE_INT:
3808 case TYPE_CODE_RANGE:
3809 case TYPE_CODE_ENUM:
3810 case TYPE_CODE_FLT:
3811 return 1;
3812 default:
3813 return 0;
3814 }
3815 }
3816 }
3817
3818 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3819
3820 static int
3821 discrete_type_p (struct type *type)
3822 {
3823 if (type == NULL)
3824 return 0;
3825 else
3826 {
3827 switch (TYPE_CODE (type))
3828 {
3829 case TYPE_CODE_INT:
3830 case TYPE_CODE_RANGE:
3831 case TYPE_CODE_ENUM:
3832 case TYPE_CODE_BOOL:
3833 return 1;
3834 default:
3835 return 0;
3836 }
3837 }
3838 }
3839
3840 /* Returns non-zero if OP with operands in the vector ARGS could be
3841 a user-defined function. Errs on the side of pre-defined operators
3842 (i.e., result 0). */
3843
3844 static int
3845 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3846 {
3847 struct type *type0 =
3848 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3849 struct type *type1 =
3850 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3851
3852 if (type0 == NULL)
3853 return 0;
3854
3855 switch (op)
3856 {
3857 default:
3858 return 0;
3859
3860 case BINOP_ADD:
3861 case BINOP_SUB:
3862 case BINOP_MUL:
3863 case BINOP_DIV:
3864 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3865
3866 case BINOP_REM:
3867 case BINOP_MOD:
3868 case BINOP_BITWISE_AND:
3869 case BINOP_BITWISE_IOR:
3870 case BINOP_BITWISE_XOR:
3871 return (!(integer_type_p (type0) && integer_type_p (type1)));
3872
3873 case BINOP_EQUAL:
3874 case BINOP_NOTEQUAL:
3875 case BINOP_LESS:
3876 case BINOP_GTR:
3877 case BINOP_LEQ:
3878 case BINOP_GEQ:
3879 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3880
3881 case BINOP_CONCAT:
3882 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3883
3884 case BINOP_EXP:
3885 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3886
3887 case UNOP_NEG:
3888 case UNOP_PLUS:
3889 case UNOP_LOGICAL_NOT:
3890 case UNOP_ABS:
3891 return (!numeric_type_p (type0));
3892
3893 }
3894 }
3895 \f
3896 /* Renaming */
3897
3898 /* NOTES:
3899
3900 1. In the following, we assume that a renaming type's name may
3901 have an ___XD suffix. It would be nice if this went away at some
3902 point.
3903 2. We handle both the (old) purely type-based representation of
3904 renamings and the (new) variable-based encoding. At some point,
3905 it is devoutly to be hoped that the former goes away
3906 (FIXME: hilfinger-2007-07-09).
3907 3. Subprogram renamings are not implemented, although the XRS
3908 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3909
3910 /* If SYM encodes a renaming,
3911
3912 <renaming> renames <renamed entity>,
3913
3914 sets *LEN to the length of the renamed entity's name,
3915 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3916 the string describing the subcomponent selected from the renamed
3917 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3918 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3919 are undefined). Otherwise, returns a value indicating the category
3920 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3921 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3922 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3923 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3924 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3925 may be NULL, in which case they are not assigned.
3926
3927 [Currently, however, GCC does not generate subprogram renamings.] */
3928
3929 enum ada_renaming_category
3930 ada_parse_renaming (struct symbol *sym,
3931 const char **renamed_entity, int *len,
3932 const char **renaming_expr)
3933 {
3934 enum ada_renaming_category kind;
3935 const char *info;
3936 const char *suffix;
3937
3938 if (sym == NULL)
3939 return ADA_NOT_RENAMING;
3940 switch (SYMBOL_CLASS (sym))
3941 {
3942 default:
3943 return ADA_NOT_RENAMING;
3944 case LOC_TYPEDEF:
3945 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3946 renamed_entity, len, renaming_expr);
3947 case LOC_LOCAL:
3948 case LOC_STATIC:
3949 case LOC_COMPUTED:
3950 case LOC_OPTIMIZED_OUT:
3951 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3952 if (info == NULL)
3953 return ADA_NOT_RENAMING;
3954 switch (info[5])
3955 {
3956 case '_':
3957 kind = ADA_OBJECT_RENAMING;
3958 info += 6;
3959 break;
3960 case 'E':
3961 kind = ADA_EXCEPTION_RENAMING;
3962 info += 7;
3963 break;
3964 case 'P':
3965 kind = ADA_PACKAGE_RENAMING;
3966 info += 7;
3967 break;
3968 case 'S':
3969 kind = ADA_SUBPROGRAM_RENAMING;
3970 info += 7;
3971 break;
3972 default:
3973 return ADA_NOT_RENAMING;
3974 }
3975 }
3976
3977 if (renamed_entity != NULL)
3978 *renamed_entity = info;
3979 suffix = strstr (info, "___XE");
3980 if (suffix == NULL || suffix == info)
3981 return ADA_NOT_RENAMING;
3982 if (len != NULL)
3983 *len = strlen (info) - strlen (suffix);
3984 suffix += 5;
3985 if (renaming_expr != NULL)
3986 *renaming_expr = suffix;
3987 return kind;
3988 }
3989
3990 /* Assuming TYPE encodes a renaming according to the old encoding in
3991 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3992 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3993 ADA_NOT_RENAMING otherwise. */
3994 static enum ada_renaming_category
3995 parse_old_style_renaming (struct type *type,
3996 const char **renamed_entity, int *len,
3997 const char **renaming_expr)
3998 {
3999 enum ada_renaming_category kind;
4000 const char *name;
4001 const char *info;
4002 const char *suffix;
4003
4004 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4005 || TYPE_NFIELDS (type) != 1)
4006 return ADA_NOT_RENAMING;
4007
4008 name = type_name_no_tag (type);
4009 if (name == NULL)
4010 return ADA_NOT_RENAMING;
4011
4012 name = strstr (name, "___XR");
4013 if (name == NULL)
4014 return ADA_NOT_RENAMING;
4015 switch (name[5])
4016 {
4017 case '\0':
4018 case '_':
4019 kind = ADA_OBJECT_RENAMING;
4020 break;
4021 case 'E':
4022 kind = ADA_EXCEPTION_RENAMING;
4023 break;
4024 case 'P':
4025 kind = ADA_PACKAGE_RENAMING;
4026 break;
4027 case 'S':
4028 kind = ADA_SUBPROGRAM_RENAMING;
4029 break;
4030 default:
4031 return ADA_NOT_RENAMING;
4032 }
4033
4034 info = TYPE_FIELD_NAME (type, 0);
4035 if (info == NULL)
4036 return ADA_NOT_RENAMING;
4037 if (renamed_entity != NULL)
4038 *renamed_entity = info;
4039 suffix = strstr (info, "___XE");
4040 if (renaming_expr != NULL)
4041 *renaming_expr = suffix + 5;
4042 if (suffix == NULL || suffix == info)
4043 return ADA_NOT_RENAMING;
4044 if (len != NULL)
4045 *len = suffix - info;
4046 return kind;
4047 }
4048
4049 /* Compute the value of the given RENAMING_SYM, which is expected to
4050 be a symbol encoding a renaming expression. BLOCK is the block
4051 used to evaluate the renaming. */
4052
4053 static struct value *
4054 ada_read_renaming_var_value (struct symbol *renaming_sym,
4055 struct block *block)
4056 {
4057 char *sym_name;
4058 struct expression *expr;
4059 struct value *value;
4060 struct cleanup *old_chain = NULL;
4061
4062 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4063 old_chain = make_cleanup (xfree, sym_name);
4064 expr = parse_exp_1 (&sym_name, block, 0);
4065 make_cleanup (free_current_contents, &expr);
4066 value = evaluate_expression (expr);
4067
4068 do_cleanups (old_chain);
4069 return value;
4070 }
4071 \f
4072
4073 /* Evaluation: Function Calls */
4074
4075 /* Return an lvalue containing the value VAL. This is the identity on
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
4078
4079 static struct value *
4080 ensure_lval (struct value *val)
4081 {
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
4084 {
4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
4088
4089 set_value_address (val, addr);
4090 VALUE_LVAL (val) = lval_memory;
4091 write_memory (addr, value_contents (val), len);
4092 }
4093
4094 return val;
4095 }
4096
4097 /* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4100 values not residing in memory, updating it as needed. */
4101
4102 struct value *
4103 ada_convert_actual (struct value *actual, struct type *formal_type0)
4104 {
4105 struct type *actual_type = ada_check_typedef (value_type (actual));
4106 struct type *formal_type = ada_check_typedef (formal_type0);
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4113
4114 if (ada_is_array_descriptor_type (formal_target)
4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4116 return make_array_descriptor (formal_type, actual);
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4119 {
4120 struct value *result;
4121
4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4123 && ada_is_array_descriptor_type (actual_target))
4124 result = desc_data (actual);
4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4126 {
4127 if (VALUE_LVAL (actual) != lval_memory)
4128 {
4129 struct value *val;
4130
4131 actual_type = ada_check_typedef (value_type (actual));
4132 val = allocate_value (actual_type);
4133 memcpy ((char *) value_contents_raw (val),
4134 (char *) value_contents (actual),
4135 TYPE_LENGTH (actual_type));
4136 actual = ensure_lval (val);
4137 }
4138 result = value_addr (actual);
4139 }
4140 else
4141 return actual;
4142 return value_cast_pointers (formal_type, result);
4143 }
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4146
4147 return actual;
4148 }
4149
4150 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155 static CORE_ADDR
4156 value_pointer (struct value *value, struct type *type)
4157 {
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4166 return addr;
4167 }
4168
4169
4170 /* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
4175
4176 static struct value *
4177 make_array_descriptor (struct type *type, struct value *arr)
4178 {
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
4183 int i;
4184
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
4187 {
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
4196 }
4197
4198 bounds = ensure_lval (bounds);
4199
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
4213
4214 descriptor = ensure_lval (descriptor);
4215
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220 }
4221 \f
4222 /* Dummy definitions for an experimental caching module that is not
4223 * used in the public sources. */
4224
4225 static int
4226 lookup_cached_symbol (const char *name, domain_enum namespace,
4227 struct symbol **sym, struct block **block)
4228 {
4229 return 0;
4230 }
4231
4232 static void
4233 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4234 struct block *block)
4235 {
4236 }
4237 \f
4238 /* Symbol Lookup */
4239
4240 /* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4242
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4245
4246 static int
4247 should_use_wild_match (const char *lookup_name)
4248 {
4249 return (strstr (lookup_name, "__") == NULL);
4250 }
4251
4252 /* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4254
4255 static struct symbol *
4256 standard_lookup (const char *name, const struct block *block,
4257 domain_enum domain)
4258 {
4259 struct symbol *sym;
4260
4261 if (lookup_cached_symbol (name, domain, &sym, NULL))
4262 return sym;
4263 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4264 cache_symbol (name, domain, sym, block_found);
4265 return sym;
4266 }
4267
4268
4269 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4270 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4271 since they contend in overloading in the same way. */
4272 static int
4273 is_nonfunction (struct ada_symbol_info syms[], int n)
4274 {
4275 int i;
4276
4277 for (i = 0; i < n; i += 1)
4278 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4279 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4280 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4281 return 1;
4282
4283 return 0;
4284 }
4285
4286 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4287 struct types. Otherwise, they may not. */
4288
4289 static int
4290 equiv_types (struct type *type0, struct type *type1)
4291 {
4292 if (type0 == type1)
4293 return 1;
4294 if (type0 == NULL || type1 == NULL
4295 || TYPE_CODE (type0) != TYPE_CODE (type1))
4296 return 0;
4297 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4298 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4299 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4300 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4301 return 1;
4302
4303 return 0;
4304 }
4305
4306 /* True iff SYM0 represents the same entity as SYM1, or one that is
4307 no more defined than that of SYM1. */
4308
4309 static int
4310 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4311 {
4312 if (sym0 == sym1)
4313 return 1;
4314 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4315 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4316 return 0;
4317
4318 switch (SYMBOL_CLASS (sym0))
4319 {
4320 case LOC_UNDEF:
4321 return 1;
4322 case LOC_TYPEDEF:
4323 {
4324 struct type *type0 = SYMBOL_TYPE (sym0);
4325 struct type *type1 = SYMBOL_TYPE (sym1);
4326 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4327 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4328 int len0 = strlen (name0);
4329
4330 return
4331 TYPE_CODE (type0) == TYPE_CODE (type1)
4332 && (equiv_types (type0, type1)
4333 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4334 && strncmp (name1 + len0, "___XV", 5) == 0));
4335 }
4336 case LOC_CONST:
4337 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4338 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4339 default:
4340 return 0;
4341 }
4342 }
4343
4344 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4345 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4346
4347 static void
4348 add_defn_to_vec (struct obstack *obstackp,
4349 struct symbol *sym,
4350 struct block *block)
4351 {
4352 int i;
4353 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4354
4355 /* Do not try to complete stub types, as the debugger is probably
4356 already scanning all symbols matching a certain name at the
4357 time when this function is called. Trying to replace the stub
4358 type by its associated full type will cause us to restart a scan
4359 which may lead to an infinite recursion. Instead, the client
4360 collecting the matching symbols will end up collecting several
4361 matches, with at least one of them complete. It can then filter
4362 out the stub ones if needed. */
4363
4364 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4365 {
4366 if (lesseq_defined_than (sym, prevDefns[i].sym))
4367 return;
4368 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4369 {
4370 prevDefns[i].sym = sym;
4371 prevDefns[i].block = block;
4372 return;
4373 }
4374 }
4375
4376 {
4377 struct ada_symbol_info info;
4378
4379 info.sym = sym;
4380 info.block = block;
4381 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4382 }
4383 }
4384
4385 /* Number of ada_symbol_info structures currently collected in
4386 current vector in *OBSTACKP. */
4387
4388 static int
4389 num_defns_collected (struct obstack *obstackp)
4390 {
4391 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4392 }
4393
4394 /* Vector of ada_symbol_info structures currently collected in current
4395 vector in *OBSTACKP. If FINISH, close off the vector and return
4396 its final address. */
4397
4398 static struct ada_symbol_info *
4399 defns_collected (struct obstack *obstackp, int finish)
4400 {
4401 if (finish)
4402 return obstack_finish (obstackp);
4403 else
4404 return (struct ada_symbol_info *) obstack_base (obstackp);
4405 }
4406
4407 /* Return a minimal symbol matching NAME according to Ada decoding
4408 rules. Returns NULL if there is no such minimal symbol. Names
4409 prefixed with "standard__" are handled specially: "standard__" is
4410 first stripped off, and only static and global symbols are searched. */
4411
4412 struct minimal_symbol *
4413 ada_lookup_simple_minsym (const char *name)
4414 {
4415 struct objfile *objfile;
4416 struct minimal_symbol *msymbol;
4417 const int wild_match_p = should_use_wild_match (name);
4418
4419 /* Special case: If the user specifies a symbol name inside package
4420 Standard, do a non-wild matching of the symbol name without
4421 the "standard__" prefix. This was primarily introduced in order
4422 to allow the user to specifically access the standard exceptions
4423 using, for instance, Standard.Constraint_Error when Constraint_Error
4424 is ambiguous (due to the user defining its own Constraint_Error
4425 entity inside its program). */
4426 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4427 name += sizeof ("standard__") - 1;
4428
4429 ALL_MSYMBOLS (objfile, msymbol)
4430 {
4431 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4432 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4433 return msymbol;
4434 }
4435
4436 return NULL;
4437 }
4438
4439 /* For all subprograms that statically enclose the subprogram of the
4440 selected frame, add symbols matching identifier NAME in DOMAIN
4441 and their blocks to the list of data in OBSTACKP, as for
4442 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4443 with a wildcard prefix. */
4444
4445 static void
4446 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4447 const char *name, domain_enum namespace,
4448 int wild_match_p)
4449 {
4450 }
4451
4452 /* True if TYPE is definitely an artificial type supplied to a symbol
4453 for which no debugging information was given in the symbol file. */
4454
4455 static int
4456 is_nondebugging_type (struct type *type)
4457 {
4458 const char *name = ada_type_name (type);
4459
4460 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4461 }
4462
4463 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4464 that are deemed "identical" for practical purposes.
4465
4466 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4467 types and that their number of enumerals is identical (in other
4468 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4469
4470 static int
4471 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4472 {
4473 int i;
4474
4475 /* The heuristic we use here is fairly conservative. We consider
4476 that 2 enumerate types are identical if they have the same
4477 number of enumerals and that all enumerals have the same
4478 underlying value and name. */
4479
4480 /* All enums in the type should have an identical underlying value. */
4481 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4482 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4483 return 0;
4484
4485 /* All enumerals should also have the same name (modulo any numerical
4486 suffix). */
4487 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4488 {
4489 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4490 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4491 int len_1 = strlen (name_1);
4492 int len_2 = strlen (name_2);
4493
4494 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4495 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4496 if (len_1 != len_2
4497 || strncmp (TYPE_FIELD_NAME (type1, i),
4498 TYPE_FIELD_NAME (type2, i),
4499 len_1) != 0)
4500 return 0;
4501 }
4502
4503 return 1;
4504 }
4505
4506 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4507 that are deemed "identical" for practical purposes. Sometimes,
4508 enumerals are not strictly identical, but their types are so similar
4509 that they can be considered identical.
4510
4511 For instance, consider the following code:
4512
4513 type Color is (Black, Red, Green, Blue, White);
4514 type RGB_Color is new Color range Red .. Blue;
4515
4516 Type RGB_Color is a subrange of an implicit type which is a copy
4517 of type Color. If we call that implicit type RGB_ColorB ("B" is
4518 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4519 As a result, when an expression references any of the enumeral
4520 by name (Eg. "print green"), the expression is technically
4521 ambiguous and the user should be asked to disambiguate. But
4522 doing so would only hinder the user, since it wouldn't matter
4523 what choice he makes, the outcome would always be the same.
4524 So, for practical purposes, we consider them as the same. */
4525
4526 static int
4527 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4528 {
4529 int i;
4530
4531 /* Before performing a thorough comparison check of each type,
4532 we perform a series of inexpensive checks. We expect that these
4533 checks will quickly fail in the vast majority of cases, and thus
4534 help prevent the unnecessary use of a more expensive comparison.
4535 Said comparison also expects us to make some of these checks
4536 (see ada_identical_enum_types_p). */
4537
4538 /* Quick check: All symbols should have an enum type. */
4539 for (i = 0; i < nsyms; i++)
4540 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4541 return 0;
4542
4543 /* Quick check: They should all have the same value. */
4544 for (i = 1; i < nsyms; i++)
4545 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4546 return 0;
4547
4548 /* Quick check: They should all have the same number of enumerals. */
4549 for (i = 1; i < nsyms; i++)
4550 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4551 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4552 return 0;
4553
4554 /* All the sanity checks passed, so we might have a set of
4555 identical enumeration types. Perform a more complete
4556 comparison of the type of each symbol. */
4557 for (i = 1; i < nsyms; i++)
4558 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4559 SYMBOL_TYPE (syms[0].sym)))
4560 return 0;
4561
4562 return 1;
4563 }
4564
4565 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4566 duplicate other symbols in the list (The only case I know of where
4567 this happens is when object files containing stabs-in-ecoff are
4568 linked with files containing ordinary ecoff debugging symbols (or no
4569 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4570 Returns the number of items in the modified list. */
4571
4572 static int
4573 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4574 {
4575 int i, j;
4576
4577 /* We should never be called with less than 2 symbols, as there
4578 cannot be any extra symbol in that case. But it's easy to
4579 handle, since we have nothing to do in that case. */
4580 if (nsyms < 2)
4581 return nsyms;
4582
4583 i = 0;
4584 while (i < nsyms)
4585 {
4586 int remove_p = 0;
4587
4588 /* If two symbols have the same name and one of them is a stub type,
4589 the get rid of the stub. */
4590
4591 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4592 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4593 {
4594 for (j = 0; j < nsyms; j++)
4595 {
4596 if (j != i
4597 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4598 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4599 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4600 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4601 remove_p = 1;
4602 }
4603 }
4604
4605 /* Two symbols with the same name, same class and same address
4606 should be identical. */
4607
4608 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4609 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4610 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4611 {
4612 for (j = 0; j < nsyms; j += 1)
4613 {
4614 if (i != j
4615 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4616 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4617 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4618 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4619 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4620 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4621 remove_p = 1;
4622 }
4623 }
4624
4625 if (remove_p)
4626 {
4627 for (j = i + 1; j < nsyms; j += 1)
4628 syms[j - 1] = syms[j];
4629 nsyms -= 1;
4630 }
4631
4632 i += 1;
4633 }
4634
4635 /* If all the remaining symbols are identical enumerals, then
4636 just keep the first one and discard the rest.
4637
4638 Unlike what we did previously, we do not discard any entry
4639 unless they are ALL identical. This is because the symbol
4640 comparison is not a strict comparison, but rather a practical
4641 comparison. If all symbols are considered identical, then
4642 we can just go ahead and use the first one and discard the rest.
4643 But if we cannot reduce the list to a single element, we have
4644 to ask the user to disambiguate anyways. And if we have to
4645 present a multiple-choice menu, it's less confusing if the list
4646 isn't missing some choices that were identical and yet distinct. */
4647 if (symbols_are_identical_enums (syms, nsyms))
4648 nsyms = 1;
4649
4650 return nsyms;
4651 }
4652
4653 /* Given a type that corresponds to a renaming entity, use the type name
4654 to extract the scope (package name or function name, fully qualified,
4655 and following the GNAT encoding convention) where this renaming has been
4656 defined. The string returned needs to be deallocated after use. */
4657
4658 static char *
4659 xget_renaming_scope (struct type *renaming_type)
4660 {
4661 /* The renaming types adhere to the following convention:
4662 <scope>__<rename>___<XR extension>.
4663 So, to extract the scope, we search for the "___XR" extension,
4664 and then backtrack until we find the first "__". */
4665
4666 const char *name = type_name_no_tag (renaming_type);
4667 char *suffix = strstr (name, "___XR");
4668 char *last;
4669 int scope_len;
4670 char *scope;
4671
4672 /* Now, backtrack a bit until we find the first "__". Start looking
4673 at suffix - 3, as the <rename> part is at least one character long. */
4674
4675 for (last = suffix - 3; last > name; last--)
4676 if (last[0] == '_' && last[1] == '_')
4677 break;
4678
4679 /* Make a copy of scope and return it. */
4680
4681 scope_len = last - name;
4682 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4683
4684 strncpy (scope, name, scope_len);
4685 scope[scope_len] = '\0';
4686
4687 return scope;
4688 }
4689
4690 /* Return nonzero if NAME corresponds to a package name. */
4691
4692 static int
4693 is_package_name (const char *name)
4694 {
4695 /* Here, We take advantage of the fact that no symbols are generated
4696 for packages, while symbols are generated for each function.
4697 So the condition for NAME represent a package becomes equivalent
4698 to NAME not existing in our list of symbols. There is only one
4699 small complication with library-level functions (see below). */
4700
4701 char *fun_name;
4702
4703 /* If it is a function that has not been defined at library level,
4704 then we should be able to look it up in the symbols. */
4705 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4706 return 0;
4707
4708 /* Library-level function names start with "_ada_". See if function
4709 "_ada_" followed by NAME can be found. */
4710
4711 /* Do a quick check that NAME does not contain "__", since library-level
4712 functions names cannot contain "__" in them. */
4713 if (strstr (name, "__") != NULL)
4714 return 0;
4715
4716 fun_name = xstrprintf ("_ada_%s", name);
4717
4718 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4719 }
4720
4721 /* Return nonzero if SYM corresponds to a renaming entity that is
4722 not visible from FUNCTION_NAME. */
4723
4724 static int
4725 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4726 {
4727 char *scope;
4728
4729 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4730 return 0;
4731
4732 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4733
4734 make_cleanup (xfree, scope);
4735
4736 /* If the rename has been defined in a package, then it is visible. */
4737 if (is_package_name (scope))
4738 return 0;
4739
4740 /* Check that the rename is in the current function scope by checking
4741 that its name starts with SCOPE. */
4742
4743 /* If the function name starts with "_ada_", it means that it is
4744 a library-level function. Strip this prefix before doing the
4745 comparison, as the encoding for the renaming does not contain
4746 this prefix. */
4747 if (strncmp (function_name, "_ada_", 5) == 0)
4748 function_name += 5;
4749
4750 return (strncmp (function_name, scope, strlen (scope)) != 0);
4751 }
4752
4753 /* Remove entries from SYMS that corresponds to a renaming entity that
4754 is not visible from the function associated with CURRENT_BLOCK or
4755 that is superfluous due to the presence of more specific renaming
4756 information. Places surviving symbols in the initial entries of
4757 SYMS and returns the number of surviving symbols.
4758
4759 Rationale:
4760 First, in cases where an object renaming is implemented as a
4761 reference variable, GNAT may produce both the actual reference
4762 variable and the renaming encoding. In this case, we discard the
4763 latter.
4764
4765 Second, GNAT emits a type following a specified encoding for each renaming
4766 entity. Unfortunately, STABS currently does not support the definition
4767 of types that are local to a given lexical block, so all renamings types
4768 are emitted at library level. As a consequence, if an application
4769 contains two renaming entities using the same name, and a user tries to
4770 print the value of one of these entities, the result of the ada symbol
4771 lookup will also contain the wrong renaming type.
4772
4773 This function partially covers for this limitation by attempting to
4774 remove from the SYMS list renaming symbols that should be visible
4775 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4776 method with the current information available. The implementation
4777 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4778
4779 - When the user tries to print a rename in a function while there
4780 is another rename entity defined in a package: Normally, the
4781 rename in the function has precedence over the rename in the
4782 package, so the latter should be removed from the list. This is
4783 currently not the case.
4784
4785 - This function will incorrectly remove valid renames if
4786 the CURRENT_BLOCK corresponds to a function which symbol name
4787 has been changed by an "Export" pragma. As a consequence,
4788 the user will be unable to print such rename entities. */
4789
4790 static int
4791 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4792 int nsyms, const struct block *current_block)
4793 {
4794 struct symbol *current_function;
4795 const char *current_function_name;
4796 int i;
4797 int is_new_style_renaming;
4798
4799 /* If there is both a renaming foo___XR... encoded as a variable and
4800 a simple variable foo in the same block, discard the latter.
4801 First, zero out such symbols, then compress. */
4802 is_new_style_renaming = 0;
4803 for (i = 0; i < nsyms; i += 1)
4804 {
4805 struct symbol *sym = syms[i].sym;
4806 struct block *block = syms[i].block;
4807 const char *name;
4808 const char *suffix;
4809
4810 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4811 continue;
4812 name = SYMBOL_LINKAGE_NAME (sym);
4813 suffix = strstr (name, "___XR");
4814
4815 if (suffix != NULL)
4816 {
4817 int name_len = suffix - name;
4818 int j;
4819
4820 is_new_style_renaming = 1;
4821 for (j = 0; j < nsyms; j += 1)
4822 if (i != j && syms[j].sym != NULL
4823 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4824 name_len) == 0
4825 && block == syms[j].block)
4826 syms[j].sym = NULL;
4827 }
4828 }
4829 if (is_new_style_renaming)
4830 {
4831 int j, k;
4832
4833 for (j = k = 0; j < nsyms; j += 1)
4834 if (syms[j].sym != NULL)
4835 {
4836 syms[k] = syms[j];
4837 k += 1;
4838 }
4839 return k;
4840 }
4841
4842 /* Extract the function name associated to CURRENT_BLOCK.
4843 Abort if unable to do so. */
4844
4845 if (current_block == NULL)
4846 return nsyms;
4847
4848 current_function = block_linkage_function (current_block);
4849 if (current_function == NULL)
4850 return nsyms;
4851
4852 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4853 if (current_function_name == NULL)
4854 return nsyms;
4855
4856 /* Check each of the symbols, and remove it from the list if it is
4857 a type corresponding to a renaming that is out of the scope of
4858 the current block. */
4859
4860 i = 0;
4861 while (i < nsyms)
4862 {
4863 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4864 == ADA_OBJECT_RENAMING
4865 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4866 {
4867 int j;
4868
4869 for (j = i + 1; j < nsyms; j += 1)
4870 syms[j - 1] = syms[j];
4871 nsyms -= 1;
4872 }
4873 else
4874 i += 1;
4875 }
4876
4877 return nsyms;
4878 }
4879
4880 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4881 whose name and domain match NAME and DOMAIN respectively.
4882 If no match was found, then extend the search to "enclosing"
4883 routines (in other words, if we're inside a nested function,
4884 search the symbols defined inside the enclosing functions).
4885 If WILD_MATCH_P is nonzero, perform the naming matching in
4886 "wild" mode (see function "wild_match" for more info).
4887
4888 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4889
4890 static void
4891 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4892 struct block *block, domain_enum domain,
4893 int wild_match_p)
4894 {
4895 int block_depth = 0;
4896
4897 while (block != NULL)
4898 {
4899 block_depth += 1;
4900 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4901 wild_match_p);
4902
4903 /* If we found a non-function match, assume that's the one. */
4904 if (is_nonfunction (defns_collected (obstackp, 0),
4905 num_defns_collected (obstackp)))
4906 return;
4907
4908 block = BLOCK_SUPERBLOCK (block);
4909 }
4910
4911 /* If no luck so far, try to find NAME as a local symbol in some lexically
4912 enclosing subprogram. */
4913 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4914 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4915 }
4916
4917 /* An object of this type is used as the user_data argument when
4918 calling the map_matching_symbols method. */
4919
4920 struct match_data
4921 {
4922 struct objfile *objfile;
4923 struct obstack *obstackp;
4924 struct symbol *arg_sym;
4925 int found_sym;
4926 };
4927
4928 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4929 to a list of symbols. DATA0 is a pointer to a struct match_data *
4930 containing the obstack that collects the symbol list, the file that SYM
4931 must come from, a flag indicating whether a non-argument symbol has
4932 been found in the current block, and the last argument symbol
4933 passed in SYM within the current block (if any). When SYM is null,
4934 marking the end of a block, the argument symbol is added if no
4935 other has been found. */
4936
4937 static int
4938 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4939 {
4940 struct match_data *data = (struct match_data *) data0;
4941
4942 if (sym == NULL)
4943 {
4944 if (!data->found_sym && data->arg_sym != NULL)
4945 add_defn_to_vec (data->obstackp,
4946 fixup_symbol_section (data->arg_sym, data->objfile),
4947 block);
4948 data->found_sym = 0;
4949 data->arg_sym = NULL;
4950 }
4951 else
4952 {
4953 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4954 return 0;
4955 else if (SYMBOL_IS_ARGUMENT (sym))
4956 data->arg_sym = sym;
4957 else
4958 {
4959 data->found_sym = 1;
4960 add_defn_to_vec (data->obstackp,
4961 fixup_symbol_section (sym, data->objfile),
4962 block);
4963 }
4964 }
4965 return 0;
4966 }
4967
4968 /* Compare STRING1 to STRING2, with results as for strcmp.
4969 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4970 implies compare_names (STRING1, STRING2) (they may differ as to
4971 what symbols compare equal). */
4972
4973 static int
4974 compare_names (const char *string1, const char *string2)
4975 {
4976 while (*string1 != '\0' && *string2 != '\0')
4977 {
4978 if (isspace (*string1) || isspace (*string2))
4979 return strcmp_iw_ordered (string1, string2);
4980 if (*string1 != *string2)
4981 break;
4982 string1 += 1;
4983 string2 += 1;
4984 }
4985 switch (*string1)
4986 {
4987 case '(':
4988 return strcmp_iw_ordered (string1, string2);
4989 case '_':
4990 if (*string2 == '\0')
4991 {
4992 if (is_name_suffix (string1))
4993 return 0;
4994 else
4995 return 1;
4996 }
4997 /* FALLTHROUGH */
4998 default:
4999 if (*string2 == '(')
5000 return strcmp_iw_ordered (string1, string2);
5001 else
5002 return *string1 - *string2;
5003 }
5004 }
5005
5006 /* Add to OBSTACKP all non-local symbols whose name and domain match
5007 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5008 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5009
5010 static void
5011 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5012 domain_enum domain, int global,
5013 int is_wild_match)
5014 {
5015 struct objfile *objfile;
5016 struct match_data data;
5017
5018 memset (&data, 0, sizeof data);
5019 data.obstackp = obstackp;
5020
5021 ALL_OBJFILES (objfile)
5022 {
5023 data.objfile = objfile;
5024
5025 if (is_wild_match)
5026 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5027 aux_add_nonlocal_symbols, &data,
5028 wild_match, NULL);
5029 else
5030 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5031 aux_add_nonlocal_symbols, &data,
5032 full_match, compare_names);
5033 }
5034
5035 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5036 {
5037 ALL_OBJFILES (objfile)
5038 {
5039 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5040 strcpy (name1, "_ada_");
5041 strcpy (name1 + sizeof ("_ada_") - 1, name);
5042 data.objfile = objfile;
5043 objfile->sf->qf->map_matching_symbols (name1, domain,
5044 objfile, global,
5045 aux_add_nonlocal_symbols,
5046 &data,
5047 full_match, compare_names);
5048 }
5049 }
5050 }
5051
5052 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5053 scope and in global scopes, returning the number of matches.
5054 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5055 indicating the symbols found and the blocks and symbol tables (if
5056 any) in which they were found. This vector are transient---good only to
5057 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5058 symbol match within the nest of blocks whose innermost member is BLOCK0,
5059 is the one match returned (no other matches in that or
5060 enclosing blocks is returned). If there are any matches in or
5061 surrounding BLOCK0, then these alone are returned. Otherwise, if
5062 FULL_SEARCH is non-zero, then the search extends to global and
5063 file-scope (static) symbol tables.
5064 Names prefixed with "standard__" are handled specially: "standard__"
5065 is first stripped off, and only static and global symbols are searched. */
5066
5067 int
5068 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5069 domain_enum namespace,
5070 struct ada_symbol_info **results,
5071 int full_search)
5072 {
5073 struct symbol *sym;
5074 struct block *block;
5075 const char *name;
5076 const int wild_match_p = should_use_wild_match (name0);
5077 int cacheIfUnique;
5078 int ndefns;
5079
5080 obstack_free (&symbol_list_obstack, NULL);
5081 obstack_init (&symbol_list_obstack);
5082
5083 cacheIfUnique = 0;
5084
5085 /* Search specified block and its superiors. */
5086
5087 name = name0;
5088 block = (struct block *) block0; /* FIXME: No cast ought to be
5089 needed, but adding const will
5090 have a cascade effect. */
5091
5092 /* Special case: If the user specifies a symbol name inside package
5093 Standard, do a non-wild matching of the symbol name without
5094 the "standard__" prefix. This was primarily introduced in order
5095 to allow the user to specifically access the standard exceptions
5096 using, for instance, Standard.Constraint_Error when Constraint_Error
5097 is ambiguous (due to the user defining its own Constraint_Error
5098 entity inside its program). */
5099 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5100 {
5101 block = NULL;
5102 name = name0 + sizeof ("standard__") - 1;
5103 }
5104
5105 /* Check the non-global symbols. If we have ANY match, then we're done. */
5106
5107 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5108 wild_match_p);
5109 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5110 goto done;
5111
5112 /* No non-global symbols found. Check our cache to see if we have
5113 already performed this search before. If we have, then return
5114 the same result. */
5115
5116 cacheIfUnique = 1;
5117 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5118 {
5119 if (sym != NULL)
5120 add_defn_to_vec (&symbol_list_obstack, sym, block);
5121 goto done;
5122 }
5123
5124 /* Search symbols from all global blocks. */
5125
5126 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5127 wild_match_p);
5128
5129 /* Now add symbols from all per-file blocks if we've gotten no hits
5130 (not strictly correct, but perhaps better than an error). */
5131
5132 if (num_defns_collected (&symbol_list_obstack) == 0)
5133 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5134 wild_match_p);
5135
5136 done:
5137 ndefns = num_defns_collected (&symbol_list_obstack);
5138 *results = defns_collected (&symbol_list_obstack, 1);
5139
5140 ndefns = remove_extra_symbols (*results, ndefns);
5141
5142 if (ndefns == 0 && full_search)
5143 cache_symbol (name0, namespace, NULL, NULL);
5144
5145 if (ndefns == 1 && full_search && cacheIfUnique)
5146 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5147
5148 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5149
5150 return ndefns;
5151 }
5152
5153 /* If NAME is the name of an entity, return a string that should
5154 be used to look that entity up in Ada units. This string should
5155 be deallocated after use using xfree.
5156
5157 NAME can have any form that the "break" or "print" commands might
5158 recognize. In other words, it does not have to be the "natural"
5159 name, or the "encoded" name. */
5160
5161 char *
5162 ada_name_for_lookup (const char *name)
5163 {
5164 char *canon;
5165 int nlen = strlen (name);
5166
5167 if (name[0] == '<' && name[nlen - 1] == '>')
5168 {
5169 canon = xmalloc (nlen - 1);
5170 memcpy (canon, name + 1, nlen - 2);
5171 canon[nlen - 2] = '\0';
5172 }
5173 else
5174 canon = xstrdup (ada_encode (ada_fold_name (name)));
5175 return canon;
5176 }
5177
5178 /* Implementation of the la_iterate_over_symbols method. */
5179
5180 static void
5181 ada_iterate_over_symbols (const struct block *block,
5182 const char *name, domain_enum domain,
5183 symbol_found_callback_ftype *callback,
5184 void *data)
5185 {
5186 int ndefs, i;
5187 struct ada_symbol_info *results;
5188
5189 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5190 for (i = 0; i < ndefs; ++i)
5191 {
5192 if (! (*callback) (results[i].sym, data))
5193 break;
5194 }
5195 }
5196
5197 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5198 to 1, but choosing the first symbol found if there are multiple
5199 choices.
5200
5201 The result is stored in *SYMBOL_INFO, which must be non-NULL.
5202 If no match is found, SYMBOL_INFO->SYM is set to NULL. */
5203
5204 void
5205 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5206 domain_enum namespace,
5207 struct ada_symbol_info *symbol_info)
5208 {
5209 struct ada_symbol_info *candidates;
5210 int n_candidates;
5211
5212 gdb_assert (symbol_info != NULL);
5213 memset (symbol_info, 0, sizeof (struct ada_symbol_info));
5214
5215 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
5216 1);
5217
5218 if (n_candidates == 0)
5219 return;
5220
5221 *symbol_info = candidates[0];
5222 symbol_info->sym = fixup_symbol_section (symbol_info->sym, NULL);
5223 }
5224
5225 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5226 scope and in global scopes, or NULL if none. NAME is folded and
5227 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5228 choosing the first symbol if there are multiple choices.
5229 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5230
5231 struct symbol *
5232 ada_lookup_symbol (const char *name, const struct block *block0,
5233 domain_enum namespace, int *is_a_field_of_this)
5234 {
5235 struct ada_symbol_info symbol_info;
5236
5237 if (is_a_field_of_this != NULL)
5238 *is_a_field_of_this = 0;
5239
5240 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5241 block0, namespace, &symbol_info);
5242 return symbol_info.sym;
5243 }
5244
5245 static struct symbol *
5246 ada_lookup_symbol_nonlocal (const char *name,
5247 const struct block *block,
5248 const domain_enum domain)
5249 {
5250 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5251 }
5252
5253
5254 /* True iff STR is a possible encoded suffix of a normal Ada name
5255 that is to be ignored for matching purposes. Suffixes of parallel
5256 names (e.g., XVE) are not included here. Currently, the possible suffixes
5257 are given by any of the regular expressions:
5258
5259 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5260 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5261 TKB [subprogram suffix for task bodies]
5262 _E[0-9]+[bs]$ [protected object entry suffixes]
5263 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5264
5265 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5266 match is performed. This sequence is used to differentiate homonyms,
5267 is an optional part of a valid name suffix. */
5268
5269 static int
5270 is_name_suffix (const char *str)
5271 {
5272 int k;
5273 const char *matching;
5274 const int len = strlen (str);
5275
5276 /* Skip optional leading __[0-9]+. */
5277
5278 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5279 {
5280 str += 3;
5281 while (isdigit (str[0]))
5282 str += 1;
5283 }
5284
5285 /* [.$][0-9]+ */
5286
5287 if (str[0] == '.' || str[0] == '$')
5288 {
5289 matching = str + 1;
5290 while (isdigit (matching[0]))
5291 matching += 1;
5292 if (matching[0] == '\0')
5293 return 1;
5294 }
5295
5296 /* ___[0-9]+ */
5297
5298 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5299 {
5300 matching = str + 3;
5301 while (isdigit (matching[0]))
5302 matching += 1;
5303 if (matching[0] == '\0')
5304 return 1;
5305 }
5306
5307 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5308
5309 if (strcmp (str, "TKB") == 0)
5310 return 1;
5311
5312 #if 0
5313 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5314 with a N at the end. Unfortunately, the compiler uses the same
5315 convention for other internal types it creates. So treating
5316 all entity names that end with an "N" as a name suffix causes
5317 some regressions. For instance, consider the case of an enumerated
5318 type. To support the 'Image attribute, it creates an array whose
5319 name ends with N.
5320 Having a single character like this as a suffix carrying some
5321 information is a bit risky. Perhaps we should change the encoding
5322 to be something like "_N" instead. In the meantime, do not do
5323 the following check. */
5324 /* Protected Object Subprograms */
5325 if (len == 1 && str [0] == 'N')
5326 return 1;
5327 #endif
5328
5329 /* _E[0-9]+[bs]$ */
5330 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5331 {
5332 matching = str + 3;
5333 while (isdigit (matching[0]))
5334 matching += 1;
5335 if ((matching[0] == 'b' || matching[0] == 's')
5336 && matching [1] == '\0')
5337 return 1;
5338 }
5339
5340 /* ??? We should not modify STR directly, as we are doing below. This
5341 is fine in this case, but may become problematic later if we find
5342 that this alternative did not work, and want to try matching
5343 another one from the begining of STR. Since we modified it, we
5344 won't be able to find the begining of the string anymore! */
5345 if (str[0] == 'X')
5346 {
5347 str += 1;
5348 while (str[0] != '_' && str[0] != '\0')
5349 {
5350 if (str[0] != 'n' && str[0] != 'b')
5351 return 0;
5352 str += 1;
5353 }
5354 }
5355
5356 if (str[0] == '\000')
5357 return 1;
5358
5359 if (str[0] == '_')
5360 {
5361 if (str[1] != '_' || str[2] == '\000')
5362 return 0;
5363 if (str[2] == '_')
5364 {
5365 if (strcmp (str + 3, "JM") == 0)
5366 return 1;
5367 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5368 the LJM suffix in favor of the JM one. But we will
5369 still accept LJM as a valid suffix for a reasonable
5370 amount of time, just to allow ourselves to debug programs
5371 compiled using an older version of GNAT. */
5372 if (strcmp (str + 3, "LJM") == 0)
5373 return 1;
5374 if (str[3] != 'X')
5375 return 0;
5376 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5377 || str[4] == 'U' || str[4] == 'P')
5378 return 1;
5379 if (str[4] == 'R' && str[5] != 'T')
5380 return 1;
5381 return 0;
5382 }
5383 if (!isdigit (str[2]))
5384 return 0;
5385 for (k = 3; str[k] != '\0'; k += 1)
5386 if (!isdigit (str[k]) && str[k] != '_')
5387 return 0;
5388 return 1;
5389 }
5390 if (str[0] == '$' && isdigit (str[1]))
5391 {
5392 for (k = 2; str[k] != '\0'; k += 1)
5393 if (!isdigit (str[k]) && str[k] != '_')
5394 return 0;
5395 return 1;
5396 }
5397 return 0;
5398 }
5399
5400 /* Return non-zero if the string starting at NAME and ending before
5401 NAME_END contains no capital letters. */
5402
5403 static int
5404 is_valid_name_for_wild_match (const char *name0)
5405 {
5406 const char *decoded_name = ada_decode (name0);
5407 int i;
5408
5409 /* If the decoded name starts with an angle bracket, it means that
5410 NAME0 does not follow the GNAT encoding format. It should then
5411 not be allowed as a possible wild match. */
5412 if (decoded_name[0] == '<')
5413 return 0;
5414
5415 for (i=0; decoded_name[i] != '\0'; i++)
5416 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5417 return 0;
5418
5419 return 1;
5420 }
5421
5422 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5423 that could start a simple name. Assumes that *NAMEP points into
5424 the string beginning at NAME0. */
5425
5426 static int
5427 advance_wild_match (const char **namep, const char *name0, int target0)
5428 {
5429 const char *name = *namep;
5430
5431 while (1)
5432 {
5433 int t0, t1;
5434
5435 t0 = *name;
5436 if (t0 == '_')
5437 {
5438 t1 = name[1];
5439 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5440 {
5441 name += 1;
5442 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5443 break;
5444 else
5445 name += 1;
5446 }
5447 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5448 || name[2] == target0))
5449 {
5450 name += 2;
5451 break;
5452 }
5453 else
5454 return 0;
5455 }
5456 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5457 name += 1;
5458 else
5459 return 0;
5460 }
5461
5462 *namep = name;
5463 return 1;
5464 }
5465
5466 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5467 informational suffixes of NAME (i.e., for which is_name_suffix is
5468 true). Assumes that PATN is a lower-cased Ada simple name. */
5469
5470 static int
5471 wild_match (const char *name, const char *patn)
5472 {
5473 const char *p, *n;
5474 const char *name0 = name;
5475
5476 while (1)
5477 {
5478 const char *match = name;
5479
5480 if (*name == *patn)
5481 {
5482 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5483 if (*p != *name)
5484 break;
5485 if (*p == '\0' && is_name_suffix (name))
5486 return match != name0 && !is_valid_name_for_wild_match (name0);
5487
5488 if (name[-1] == '_')
5489 name -= 1;
5490 }
5491 if (!advance_wild_match (&name, name0, *patn))
5492 return 1;
5493 }
5494 }
5495
5496 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5497 informational suffix. */
5498
5499 static int
5500 full_match (const char *sym_name, const char *search_name)
5501 {
5502 return !match_name (sym_name, search_name, 0);
5503 }
5504
5505
5506 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5507 vector *defn_symbols, updating the list of symbols in OBSTACKP
5508 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5509 OBJFILE is the section containing BLOCK.
5510 SYMTAB is recorded with each symbol added. */
5511
5512 static void
5513 ada_add_block_symbols (struct obstack *obstackp,
5514 struct block *block, const char *name,
5515 domain_enum domain, struct objfile *objfile,
5516 int wild)
5517 {
5518 struct dict_iterator iter;
5519 int name_len = strlen (name);
5520 /* A matching argument symbol, if any. */
5521 struct symbol *arg_sym;
5522 /* Set true when we find a matching non-argument symbol. */
5523 int found_sym;
5524 struct symbol *sym;
5525
5526 arg_sym = NULL;
5527 found_sym = 0;
5528 if (wild)
5529 {
5530 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5531 wild_match, &iter);
5532 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5533 {
5534 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5535 SYMBOL_DOMAIN (sym), domain)
5536 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5537 {
5538 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5539 continue;
5540 else if (SYMBOL_IS_ARGUMENT (sym))
5541 arg_sym = sym;
5542 else
5543 {
5544 found_sym = 1;
5545 add_defn_to_vec (obstackp,
5546 fixup_symbol_section (sym, objfile),
5547 block);
5548 }
5549 }
5550 }
5551 }
5552 else
5553 {
5554 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5555 full_match, &iter);
5556 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5557 {
5558 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5559 SYMBOL_DOMAIN (sym), domain))
5560 {
5561 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5562 {
5563 if (SYMBOL_IS_ARGUMENT (sym))
5564 arg_sym = sym;
5565 else
5566 {
5567 found_sym = 1;
5568 add_defn_to_vec (obstackp,
5569 fixup_symbol_section (sym, objfile),
5570 block);
5571 }
5572 }
5573 }
5574 }
5575 }
5576
5577 if (!found_sym && arg_sym != NULL)
5578 {
5579 add_defn_to_vec (obstackp,
5580 fixup_symbol_section (arg_sym, objfile),
5581 block);
5582 }
5583
5584 if (!wild)
5585 {
5586 arg_sym = NULL;
5587 found_sym = 0;
5588
5589 ALL_BLOCK_SYMBOLS (block, iter, sym)
5590 {
5591 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5592 SYMBOL_DOMAIN (sym), domain))
5593 {
5594 int cmp;
5595
5596 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5597 if (cmp == 0)
5598 {
5599 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5600 if (cmp == 0)
5601 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5602 name_len);
5603 }
5604
5605 if (cmp == 0
5606 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5607 {
5608 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5609 {
5610 if (SYMBOL_IS_ARGUMENT (sym))
5611 arg_sym = sym;
5612 else
5613 {
5614 found_sym = 1;
5615 add_defn_to_vec (obstackp,
5616 fixup_symbol_section (sym, objfile),
5617 block);
5618 }
5619 }
5620 }
5621 }
5622 }
5623
5624 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5625 They aren't parameters, right? */
5626 if (!found_sym && arg_sym != NULL)
5627 {
5628 add_defn_to_vec (obstackp,
5629 fixup_symbol_section (arg_sym, objfile),
5630 block);
5631 }
5632 }
5633 }
5634 \f
5635
5636 /* Symbol Completion */
5637
5638 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5639 name in a form that's appropriate for the completion. The result
5640 does not need to be deallocated, but is only good until the next call.
5641
5642 TEXT_LEN is equal to the length of TEXT.
5643 Perform a wild match if WILD_MATCH is set.
5644 ENCODED should be set if TEXT represents the start of a symbol name
5645 in its encoded form. */
5646
5647 static const char *
5648 symbol_completion_match (const char *sym_name,
5649 const char *text, int text_len,
5650 int wild_match, int encoded)
5651 {
5652 const int verbatim_match = (text[0] == '<');
5653 int match = 0;
5654
5655 if (verbatim_match)
5656 {
5657 /* Strip the leading angle bracket. */
5658 text = text + 1;
5659 text_len--;
5660 }
5661
5662 /* First, test against the fully qualified name of the symbol. */
5663
5664 if (strncmp (sym_name, text, text_len) == 0)
5665 match = 1;
5666
5667 if (match && !encoded)
5668 {
5669 /* One needed check before declaring a positive match is to verify
5670 that iff we are doing a verbatim match, the decoded version
5671 of the symbol name starts with '<'. Otherwise, this symbol name
5672 is not a suitable completion. */
5673 const char *sym_name_copy = sym_name;
5674 int has_angle_bracket;
5675
5676 sym_name = ada_decode (sym_name);
5677 has_angle_bracket = (sym_name[0] == '<');
5678 match = (has_angle_bracket == verbatim_match);
5679 sym_name = sym_name_copy;
5680 }
5681
5682 if (match && !verbatim_match)
5683 {
5684 /* When doing non-verbatim match, another check that needs to
5685 be done is to verify that the potentially matching symbol name
5686 does not include capital letters, because the ada-mode would
5687 not be able to understand these symbol names without the
5688 angle bracket notation. */
5689 const char *tmp;
5690
5691 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5692 if (*tmp != '\0')
5693 match = 0;
5694 }
5695
5696 /* Second: Try wild matching... */
5697
5698 if (!match && wild_match)
5699 {
5700 /* Since we are doing wild matching, this means that TEXT
5701 may represent an unqualified symbol name. We therefore must
5702 also compare TEXT against the unqualified name of the symbol. */
5703 sym_name = ada_unqualified_name (ada_decode (sym_name));
5704
5705 if (strncmp (sym_name, text, text_len) == 0)
5706 match = 1;
5707 }
5708
5709 /* Finally: If we found a mach, prepare the result to return. */
5710
5711 if (!match)
5712 return NULL;
5713
5714 if (verbatim_match)
5715 sym_name = add_angle_brackets (sym_name);
5716
5717 if (!encoded)
5718 sym_name = ada_decode (sym_name);
5719
5720 return sym_name;
5721 }
5722
5723 /* A companion function to ada_make_symbol_completion_list().
5724 Check if SYM_NAME represents a symbol which name would be suitable
5725 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5726 it is appended at the end of the given string vector SV.
5727
5728 ORIG_TEXT is the string original string from the user command
5729 that needs to be completed. WORD is the entire command on which
5730 completion should be performed. These two parameters are used to
5731 determine which part of the symbol name should be added to the
5732 completion vector.
5733 if WILD_MATCH is set, then wild matching is performed.
5734 ENCODED should be set if TEXT represents a symbol name in its
5735 encoded formed (in which case the completion should also be
5736 encoded). */
5737
5738 static void
5739 symbol_completion_add (VEC(char_ptr) **sv,
5740 const char *sym_name,
5741 const char *text, int text_len,
5742 const char *orig_text, const char *word,
5743 int wild_match, int encoded)
5744 {
5745 const char *match = symbol_completion_match (sym_name, text, text_len,
5746 wild_match, encoded);
5747 char *completion;
5748
5749 if (match == NULL)
5750 return;
5751
5752 /* We found a match, so add the appropriate completion to the given
5753 string vector. */
5754
5755 if (word == orig_text)
5756 {
5757 completion = xmalloc (strlen (match) + 5);
5758 strcpy (completion, match);
5759 }
5760 else if (word > orig_text)
5761 {
5762 /* Return some portion of sym_name. */
5763 completion = xmalloc (strlen (match) + 5);
5764 strcpy (completion, match + (word - orig_text));
5765 }
5766 else
5767 {
5768 /* Return some of ORIG_TEXT plus sym_name. */
5769 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5770 strncpy (completion, word, orig_text - word);
5771 completion[orig_text - word] = '\0';
5772 strcat (completion, match);
5773 }
5774
5775 VEC_safe_push (char_ptr, *sv, completion);
5776 }
5777
5778 /* An object of this type is passed as the user_data argument to the
5779 expand_partial_symbol_names method. */
5780 struct add_partial_datum
5781 {
5782 VEC(char_ptr) **completions;
5783 char *text;
5784 int text_len;
5785 char *text0;
5786 char *word;
5787 int wild_match;
5788 int encoded;
5789 };
5790
5791 /* A callback for expand_partial_symbol_names. */
5792 static int
5793 ada_expand_partial_symbol_name (const char *name, void *user_data)
5794 {
5795 struct add_partial_datum *data = user_data;
5796
5797 return symbol_completion_match (name, data->text, data->text_len,
5798 data->wild_match, data->encoded) != NULL;
5799 }
5800
5801 /* Return a list of possible symbol names completing TEXT0. The list
5802 is NULL terminated. WORD is the entire command on which completion
5803 is made. */
5804
5805 static char **
5806 ada_make_symbol_completion_list (char *text0, char *word)
5807 {
5808 char *text;
5809 int text_len;
5810 int wild_match;
5811 int encoded;
5812 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5813 struct symbol *sym;
5814 struct symtab *s;
5815 struct minimal_symbol *msymbol;
5816 struct objfile *objfile;
5817 struct block *b, *surrounding_static_block = 0;
5818 int i;
5819 struct dict_iterator iter;
5820
5821 if (text0[0] == '<')
5822 {
5823 text = xstrdup (text0);
5824 make_cleanup (xfree, text);
5825 text_len = strlen (text);
5826 wild_match = 0;
5827 encoded = 1;
5828 }
5829 else
5830 {
5831 text = xstrdup (ada_encode (text0));
5832 make_cleanup (xfree, text);
5833 text_len = strlen (text);
5834 for (i = 0; i < text_len; i++)
5835 text[i] = tolower (text[i]);
5836
5837 encoded = (strstr (text0, "__") != NULL);
5838 /* If the name contains a ".", then the user is entering a fully
5839 qualified entity name, and the match must not be done in wild
5840 mode. Similarly, if the user wants to complete what looks like
5841 an encoded name, the match must not be done in wild mode. */
5842 wild_match = (strchr (text0, '.') == NULL && !encoded);
5843 }
5844
5845 /* First, look at the partial symtab symbols. */
5846 {
5847 struct add_partial_datum data;
5848
5849 data.completions = &completions;
5850 data.text = text;
5851 data.text_len = text_len;
5852 data.text0 = text0;
5853 data.word = word;
5854 data.wild_match = wild_match;
5855 data.encoded = encoded;
5856 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5857 }
5858
5859 /* At this point scan through the misc symbol vectors and add each
5860 symbol you find to the list. Eventually we want to ignore
5861 anything that isn't a text symbol (everything else will be
5862 handled by the psymtab code above). */
5863
5864 ALL_MSYMBOLS (objfile, msymbol)
5865 {
5866 QUIT;
5867 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5868 text, text_len, text0, word, wild_match, encoded);
5869 }
5870
5871 /* Search upwards from currently selected frame (so that we can
5872 complete on local vars. */
5873
5874 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5875 {
5876 if (!BLOCK_SUPERBLOCK (b))
5877 surrounding_static_block = b; /* For elmin of dups */
5878
5879 ALL_BLOCK_SYMBOLS (b, iter, sym)
5880 {
5881 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5882 text, text_len, text0, word,
5883 wild_match, encoded);
5884 }
5885 }
5886
5887 /* Go through the symtabs and check the externs and statics for
5888 symbols which match. */
5889
5890 ALL_SYMTABS (objfile, s)
5891 {
5892 QUIT;
5893 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5894 ALL_BLOCK_SYMBOLS (b, iter, sym)
5895 {
5896 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5897 text, text_len, text0, word,
5898 wild_match, encoded);
5899 }
5900 }
5901
5902 ALL_SYMTABS (objfile, s)
5903 {
5904 QUIT;
5905 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5906 /* Don't do this block twice. */
5907 if (b == surrounding_static_block)
5908 continue;
5909 ALL_BLOCK_SYMBOLS (b, iter, sym)
5910 {
5911 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5912 text, text_len, text0, word,
5913 wild_match, encoded);
5914 }
5915 }
5916
5917 /* Append the closing NULL entry. */
5918 VEC_safe_push (char_ptr, completions, NULL);
5919
5920 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5921 return the copy. It's unfortunate that we have to make a copy
5922 of an array that we're about to destroy, but there is nothing much
5923 we can do about it. Fortunately, it's typically not a very large
5924 array. */
5925 {
5926 const size_t completions_size =
5927 VEC_length (char_ptr, completions) * sizeof (char *);
5928 char **result = xmalloc (completions_size);
5929
5930 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5931
5932 VEC_free (char_ptr, completions);
5933 return result;
5934 }
5935 }
5936
5937 /* Field Access */
5938
5939 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5940 for tagged types. */
5941
5942 static int
5943 ada_is_dispatch_table_ptr_type (struct type *type)
5944 {
5945 const char *name;
5946
5947 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5948 return 0;
5949
5950 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5951 if (name == NULL)
5952 return 0;
5953
5954 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5955 }
5956
5957 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5958 to be invisible to users. */
5959
5960 int
5961 ada_is_ignored_field (struct type *type, int field_num)
5962 {
5963 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5964 return 1;
5965
5966 /* Check the name of that field. */
5967 {
5968 const char *name = TYPE_FIELD_NAME (type, field_num);
5969
5970 /* Anonymous field names should not be printed.
5971 brobecker/2007-02-20: I don't think this can actually happen
5972 but we don't want to print the value of annonymous fields anyway. */
5973 if (name == NULL)
5974 return 1;
5975
5976 /* Normally, fields whose name start with an underscore ("_")
5977 are fields that have been internally generated by the compiler,
5978 and thus should not be printed. The "_parent" field is special,
5979 however: This is a field internally generated by the compiler
5980 for tagged types, and it contains the components inherited from
5981 the parent type. This field should not be printed as is, but
5982 should not be ignored either. */
5983 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5984 return 1;
5985 }
5986
5987 /* If this is the dispatch table of a tagged type, then ignore. */
5988 if (ada_is_tagged_type (type, 1)
5989 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5990 return 1;
5991
5992 /* Not a special field, so it should not be ignored. */
5993 return 0;
5994 }
5995
5996 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5997 pointer or reference type whose ultimate target has a tag field. */
5998
5999 int
6000 ada_is_tagged_type (struct type *type, int refok)
6001 {
6002 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6003 }
6004
6005 /* True iff TYPE represents the type of X'Tag */
6006
6007 int
6008 ada_is_tag_type (struct type *type)
6009 {
6010 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6011 return 0;
6012 else
6013 {
6014 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6015
6016 return (name != NULL
6017 && strcmp (name, "ada__tags__dispatch_table") == 0);
6018 }
6019 }
6020
6021 /* The type of the tag on VAL. */
6022
6023 struct type *
6024 ada_tag_type (struct value *val)
6025 {
6026 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6027 }
6028
6029 /* The value of the tag on VAL. */
6030
6031 struct value *
6032 ada_value_tag (struct value *val)
6033 {
6034 return ada_value_struct_elt (val, "_tag", 0);
6035 }
6036
6037 /* The value of the tag on the object of type TYPE whose contents are
6038 saved at VALADDR, if it is non-null, or is at memory address
6039 ADDRESS. */
6040
6041 static struct value *
6042 value_tag_from_contents_and_address (struct type *type,
6043 const gdb_byte *valaddr,
6044 CORE_ADDR address)
6045 {
6046 int tag_byte_offset;
6047 struct type *tag_type;
6048
6049 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6050 NULL, NULL, NULL))
6051 {
6052 const gdb_byte *valaddr1 = ((valaddr == NULL)
6053 ? NULL
6054 : valaddr + tag_byte_offset);
6055 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6056
6057 return value_from_contents_and_address (tag_type, valaddr1, address1);
6058 }
6059 return NULL;
6060 }
6061
6062 static struct type *
6063 type_from_tag (struct value *tag)
6064 {
6065 const char *type_name = ada_tag_name (tag);
6066
6067 if (type_name != NULL)
6068 return ada_find_any_type (ada_encode (type_name));
6069 return NULL;
6070 }
6071
6072 /* Return the "ada__tags__type_specific_data" type. */
6073
6074 static struct type *
6075 ada_get_tsd_type (struct inferior *inf)
6076 {
6077 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6078
6079 if (data->tsd_type == 0)
6080 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6081 return data->tsd_type;
6082 }
6083
6084 /* Return the TSD (type-specific data) associated to the given TAG.
6085 TAG is assumed to be the tag of a tagged-type entity.
6086
6087 May return NULL if we are unable to get the TSD. */
6088
6089 static struct value *
6090 ada_get_tsd_from_tag (struct value *tag)
6091 {
6092 struct value *val;
6093 struct type *type;
6094
6095 /* First option: The TSD is simply stored as a field of our TAG.
6096 Only older versions of GNAT would use this format, but we have
6097 to test it first, because there are no visible markers for
6098 the current approach except the absence of that field. */
6099
6100 val = ada_value_struct_elt (tag, "tsd", 1);
6101 if (val)
6102 return val;
6103
6104 /* Try the second representation for the dispatch table (in which
6105 there is no explicit 'tsd' field in the referent of the tag pointer,
6106 and instead the tsd pointer is stored just before the dispatch
6107 table. */
6108
6109 type = ada_get_tsd_type (current_inferior());
6110 if (type == NULL)
6111 return NULL;
6112 type = lookup_pointer_type (lookup_pointer_type (type));
6113 val = value_cast (type, tag);
6114 if (val == NULL)
6115 return NULL;
6116 return value_ind (value_ptradd (val, -1));
6117 }
6118
6119 /* Given the TSD of a tag (type-specific data), return a string
6120 containing the name of the associated type.
6121
6122 The returned value is good until the next call. May return NULL
6123 if we are unable to determine the tag name. */
6124
6125 static char *
6126 ada_tag_name_from_tsd (struct value *tsd)
6127 {
6128 static char name[1024];
6129 char *p;
6130 struct value *val;
6131
6132 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6133 if (val == NULL)
6134 return NULL;
6135 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6136 for (p = name; *p != '\0'; p += 1)
6137 if (isalpha (*p))
6138 *p = tolower (*p);
6139 return name;
6140 }
6141
6142 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6143 a C string.
6144
6145 Return NULL if the TAG is not an Ada tag, or if we were unable to
6146 determine the name of that tag. The result is good until the next
6147 call. */
6148
6149 const char *
6150 ada_tag_name (struct value *tag)
6151 {
6152 volatile struct gdb_exception e;
6153 char *name = NULL;
6154
6155 if (!ada_is_tag_type (value_type (tag)))
6156 return NULL;
6157
6158 /* It is perfectly possible that an exception be raised while trying
6159 to determine the TAG's name, even under normal circumstances:
6160 The associated variable may be uninitialized or corrupted, for
6161 instance. We do not let any exception propagate past this point.
6162 instead we return NULL.
6163
6164 We also do not print the error message either (which often is very
6165 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6166 the caller print a more meaningful message if necessary. */
6167 TRY_CATCH (e, RETURN_MASK_ERROR)
6168 {
6169 struct value *tsd = ada_get_tsd_from_tag (tag);
6170
6171 if (tsd != NULL)
6172 name = ada_tag_name_from_tsd (tsd);
6173 }
6174
6175 return name;
6176 }
6177
6178 /* The parent type of TYPE, or NULL if none. */
6179
6180 struct type *
6181 ada_parent_type (struct type *type)
6182 {
6183 int i;
6184
6185 type = ada_check_typedef (type);
6186
6187 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6188 return NULL;
6189
6190 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6191 if (ada_is_parent_field (type, i))
6192 {
6193 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6194
6195 /* If the _parent field is a pointer, then dereference it. */
6196 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6197 parent_type = TYPE_TARGET_TYPE (parent_type);
6198 /* If there is a parallel XVS type, get the actual base type. */
6199 parent_type = ada_get_base_type (parent_type);
6200
6201 return ada_check_typedef (parent_type);
6202 }
6203
6204 return NULL;
6205 }
6206
6207 /* True iff field number FIELD_NUM of structure type TYPE contains the
6208 parent-type (inherited) fields of a derived type. Assumes TYPE is
6209 a structure type with at least FIELD_NUM+1 fields. */
6210
6211 int
6212 ada_is_parent_field (struct type *type, int field_num)
6213 {
6214 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6215
6216 return (name != NULL
6217 && (strncmp (name, "PARENT", 6) == 0
6218 || strncmp (name, "_parent", 7) == 0));
6219 }
6220
6221 /* True iff field number FIELD_NUM of structure type TYPE is a
6222 transparent wrapper field (which should be silently traversed when doing
6223 field selection and flattened when printing). Assumes TYPE is a
6224 structure type with at least FIELD_NUM+1 fields. Such fields are always
6225 structures. */
6226
6227 int
6228 ada_is_wrapper_field (struct type *type, int field_num)
6229 {
6230 const char *name = TYPE_FIELD_NAME (type, field_num);
6231
6232 return (name != NULL
6233 && (strncmp (name, "PARENT", 6) == 0
6234 || strcmp (name, "REP") == 0
6235 || strncmp (name, "_parent", 7) == 0
6236 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6237 }
6238
6239 /* True iff field number FIELD_NUM of structure or union type TYPE
6240 is a variant wrapper. Assumes TYPE is a structure type with at least
6241 FIELD_NUM+1 fields. */
6242
6243 int
6244 ada_is_variant_part (struct type *type, int field_num)
6245 {
6246 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6247
6248 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6249 || (is_dynamic_field (type, field_num)
6250 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6251 == TYPE_CODE_UNION)));
6252 }
6253
6254 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6255 whose discriminants are contained in the record type OUTER_TYPE,
6256 returns the type of the controlling discriminant for the variant.
6257 May return NULL if the type could not be found. */
6258
6259 struct type *
6260 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6261 {
6262 char *name = ada_variant_discrim_name (var_type);
6263
6264 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6265 }
6266
6267 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6268 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6269 represents a 'when others' clause; otherwise 0. */
6270
6271 int
6272 ada_is_others_clause (struct type *type, int field_num)
6273 {
6274 const char *name = TYPE_FIELD_NAME (type, field_num);
6275
6276 return (name != NULL && name[0] == 'O');
6277 }
6278
6279 /* Assuming that TYPE0 is the type of the variant part of a record,
6280 returns the name of the discriminant controlling the variant.
6281 The value is valid until the next call to ada_variant_discrim_name. */
6282
6283 char *
6284 ada_variant_discrim_name (struct type *type0)
6285 {
6286 static char *result = NULL;
6287 static size_t result_len = 0;
6288 struct type *type;
6289 const char *name;
6290 const char *discrim_end;
6291 const char *discrim_start;
6292
6293 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6294 type = TYPE_TARGET_TYPE (type0);
6295 else
6296 type = type0;
6297
6298 name = ada_type_name (type);
6299
6300 if (name == NULL || name[0] == '\000')
6301 return "";
6302
6303 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6304 discrim_end -= 1)
6305 {
6306 if (strncmp (discrim_end, "___XVN", 6) == 0)
6307 break;
6308 }
6309 if (discrim_end == name)
6310 return "";
6311
6312 for (discrim_start = discrim_end; discrim_start != name + 3;
6313 discrim_start -= 1)
6314 {
6315 if (discrim_start == name + 1)
6316 return "";
6317 if ((discrim_start > name + 3
6318 && strncmp (discrim_start - 3, "___", 3) == 0)
6319 || discrim_start[-1] == '.')
6320 break;
6321 }
6322
6323 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6324 strncpy (result, discrim_start, discrim_end - discrim_start);
6325 result[discrim_end - discrim_start] = '\0';
6326 return result;
6327 }
6328
6329 /* Scan STR for a subtype-encoded number, beginning at position K.
6330 Put the position of the character just past the number scanned in
6331 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6332 Return 1 if there was a valid number at the given position, and 0
6333 otherwise. A "subtype-encoded" number consists of the absolute value
6334 in decimal, followed by the letter 'm' to indicate a negative number.
6335 Assumes 0m does not occur. */
6336
6337 int
6338 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6339 {
6340 ULONGEST RU;
6341
6342 if (!isdigit (str[k]))
6343 return 0;
6344
6345 /* Do it the hard way so as not to make any assumption about
6346 the relationship of unsigned long (%lu scan format code) and
6347 LONGEST. */
6348 RU = 0;
6349 while (isdigit (str[k]))
6350 {
6351 RU = RU * 10 + (str[k] - '0');
6352 k += 1;
6353 }
6354
6355 if (str[k] == 'm')
6356 {
6357 if (R != NULL)
6358 *R = (-(LONGEST) (RU - 1)) - 1;
6359 k += 1;
6360 }
6361 else if (R != NULL)
6362 *R = (LONGEST) RU;
6363
6364 /* NOTE on the above: Technically, C does not say what the results of
6365 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6366 number representable as a LONGEST (although either would probably work
6367 in most implementations). When RU>0, the locution in the then branch
6368 above is always equivalent to the negative of RU. */
6369
6370 if (new_k != NULL)
6371 *new_k = k;
6372 return 1;
6373 }
6374
6375 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6376 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6377 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6378
6379 int
6380 ada_in_variant (LONGEST val, struct type *type, int field_num)
6381 {
6382 const char *name = TYPE_FIELD_NAME (type, field_num);
6383 int p;
6384
6385 p = 0;
6386 while (1)
6387 {
6388 switch (name[p])
6389 {
6390 case '\0':
6391 return 0;
6392 case 'S':
6393 {
6394 LONGEST W;
6395
6396 if (!ada_scan_number (name, p + 1, &W, &p))
6397 return 0;
6398 if (val == W)
6399 return 1;
6400 break;
6401 }
6402 case 'R':
6403 {
6404 LONGEST L, U;
6405
6406 if (!ada_scan_number (name, p + 1, &L, &p)
6407 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6408 return 0;
6409 if (val >= L && val <= U)
6410 return 1;
6411 break;
6412 }
6413 case 'O':
6414 return 1;
6415 default:
6416 return 0;
6417 }
6418 }
6419 }
6420
6421 /* FIXME: Lots of redundancy below. Try to consolidate. */
6422
6423 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6424 ARG_TYPE, extract and return the value of one of its (non-static)
6425 fields. FIELDNO says which field. Differs from value_primitive_field
6426 only in that it can handle packed values of arbitrary type. */
6427
6428 static struct value *
6429 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6430 struct type *arg_type)
6431 {
6432 struct type *type;
6433
6434 arg_type = ada_check_typedef (arg_type);
6435 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6436
6437 /* Handle packed fields. */
6438
6439 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6440 {
6441 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6442 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6443
6444 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6445 offset + bit_pos / 8,
6446 bit_pos % 8, bit_size, type);
6447 }
6448 else
6449 return value_primitive_field (arg1, offset, fieldno, arg_type);
6450 }
6451
6452 /* Find field with name NAME in object of type TYPE. If found,
6453 set the following for each argument that is non-null:
6454 - *FIELD_TYPE_P to the field's type;
6455 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6456 an object of that type;
6457 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6458 - *BIT_SIZE_P to its size in bits if the field is packed, and
6459 0 otherwise;
6460 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6461 fields up to but not including the desired field, or by the total
6462 number of fields if not found. A NULL value of NAME never
6463 matches; the function just counts visible fields in this case.
6464
6465 Returns 1 if found, 0 otherwise. */
6466
6467 static int
6468 find_struct_field (const char *name, struct type *type, int offset,
6469 struct type **field_type_p,
6470 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6471 int *index_p)
6472 {
6473 int i;
6474
6475 type = ada_check_typedef (type);
6476
6477 if (field_type_p != NULL)
6478 *field_type_p = NULL;
6479 if (byte_offset_p != NULL)
6480 *byte_offset_p = 0;
6481 if (bit_offset_p != NULL)
6482 *bit_offset_p = 0;
6483 if (bit_size_p != NULL)
6484 *bit_size_p = 0;
6485
6486 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6487 {
6488 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6489 int fld_offset = offset + bit_pos / 8;
6490 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6491
6492 if (t_field_name == NULL)
6493 continue;
6494
6495 else if (name != NULL && field_name_match (t_field_name, name))
6496 {
6497 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6498
6499 if (field_type_p != NULL)
6500 *field_type_p = TYPE_FIELD_TYPE (type, i);
6501 if (byte_offset_p != NULL)
6502 *byte_offset_p = fld_offset;
6503 if (bit_offset_p != NULL)
6504 *bit_offset_p = bit_pos % 8;
6505 if (bit_size_p != NULL)
6506 *bit_size_p = bit_size;
6507 return 1;
6508 }
6509 else if (ada_is_wrapper_field (type, i))
6510 {
6511 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6512 field_type_p, byte_offset_p, bit_offset_p,
6513 bit_size_p, index_p))
6514 return 1;
6515 }
6516 else if (ada_is_variant_part (type, i))
6517 {
6518 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6519 fixed type?? */
6520 int j;
6521 struct type *field_type
6522 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6523
6524 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6525 {
6526 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6527 fld_offset
6528 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6529 field_type_p, byte_offset_p,
6530 bit_offset_p, bit_size_p, index_p))
6531 return 1;
6532 }
6533 }
6534 else if (index_p != NULL)
6535 *index_p += 1;
6536 }
6537 return 0;
6538 }
6539
6540 /* Number of user-visible fields in record type TYPE. */
6541
6542 static int
6543 num_visible_fields (struct type *type)
6544 {
6545 int n;
6546
6547 n = 0;
6548 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6549 return n;
6550 }
6551
6552 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6553 and search in it assuming it has (class) type TYPE.
6554 If found, return value, else return NULL.
6555
6556 Searches recursively through wrapper fields (e.g., '_parent'). */
6557
6558 static struct value *
6559 ada_search_struct_field (char *name, struct value *arg, int offset,
6560 struct type *type)
6561 {
6562 int i;
6563
6564 type = ada_check_typedef (type);
6565 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6566 {
6567 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6568
6569 if (t_field_name == NULL)
6570 continue;
6571
6572 else if (field_name_match (t_field_name, name))
6573 return ada_value_primitive_field (arg, offset, i, type);
6574
6575 else if (ada_is_wrapper_field (type, i))
6576 {
6577 struct value *v = /* Do not let indent join lines here. */
6578 ada_search_struct_field (name, arg,
6579 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6580 TYPE_FIELD_TYPE (type, i));
6581
6582 if (v != NULL)
6583 return v;
6584 }
6585
6586 else if (ada_is_variant_part (type, i))
6587 {
6588 /* PNH: Do we ever get here? See find_struct_field. */
6589 int j;
6590 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6591 i));
6592 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6593
6594 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6595 {
6596 struct value *v = ada_search_struct_field /* Force line
6597 break. */
6598 (name, arg,
6599 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6600 TYPE_FIELD_TYPE (field_type, j));
6601
6602 if (v != NULL)
6603 return v;
6604 }
6605 }
6606 }
6607 return NULL;
6608 }
6609
6610 static struct value *ada_index_struct_field_1 (int *, struct value *,
6611 int, struct type *);
6612
6613
6614 /* Return field #INDEX in ARG, where the index is that returned by
6615 * find_struct_field through its INDEX_P argument. Adjust the address
6616 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6617 * If found, return value, else return NULL. */
6618
6619 static struct value *
6620 ada_index_struct_field (int index, struct value *arg, int offset,
6621 struct type *type)
6622 {
6623 return ada_index_struct_field_1 (&index, arg, offset, type);
6624 }
6625
6626
6627 /* Auxiliary function for ada_index_struct_field. Like
6628 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6629 * *INDEX_P. */
6630
6631 static struct value *
6632 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6633 struct type *type)
6634 {
6635 int i;
6636 type = ada_check_typedef (type);
6637
6638 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6639 {
6640 if (TYPE_FIELD_NAME (type, i) == NULL)
6641 continue;
6642 else if (ada_is_wrapper_field (type, i))
6643 {
6644 struct value *v = /* Do not let indent join lines here. */
6645 ada_index_struct_field_1 (index_p, arg,
6646 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6647 TYPE_FIELD_TYPE (type, i));
6648
6649 if (v != NULL)
6650 return v;
6651 }
6652
6653 else if (ada_is_variant_part (type, i))
6654 {
6655 /* PNH: Do we ever get here? See ada_search_struct_field,
6656 find_struct_field. */
6657 error (_("Cannot assign this kind of variant record"));
6658 }
6659 else if (*index_p == 0)
6660 return ada_value_primitive_field (arg, offset, i, type);
6661 else
6662 *index_p -= 1;
6663 }
6664 return NULL;
6665 }
6666
6667 /* Given ARG, a value of type (pointer or reference to a)*
6668 structure/union, extract the component named NAME from the ultimate
6669 target structure/union and return it as a value with its
6670 appropriate type.
6671
6672 The routine searches for NAME among all members of the structure itself
6673 and (recursively) among all members of any wrapper members
6674 (e.g., '_parent').
6675
6676 If NO_ERR, then simply return NULL in case of error, rather than
6677 calling error. */
6678
6679 struct value *
6680 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6681 {
6682 struct type *t, *t1;
6683 struct value *v;
6684
6685 v = NULL;
6686 t1 = t = ada_check_typedef (value_type (arg));
6687 if (TYPE_CODE (t) == TYPE_CODE_REF)
6688 {
6689 t1 = TYPE_TARGET_TYPE (t);
6690 if (t1 == NULL)
6691 goto BadValue;
6692 t1 = ada_check_typedef (t1);
6693 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6694 {
6695 arg = coerce_ref (arg);
6696 t = t1;
6697 }
6698 }
6699
6700 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6701 {
6702 t1 = TYPE_TARGET_TYPE (t);
6703 if (t1 == NULL)
6704 goto BadValue;
6705 t1 = ada_check_typedef (t1);
6706 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6707 {
6708 arg = value_ind (arg);
6709 t = t1;
6710 }
6711 else
6712 break;
6713 }
6714
6715 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6716 goto BadValue;
6717
6718 if (t1 == t)
6719 v = ada_search_struct_field (name, arg, 0, t);
6720 else
6721 {
6722 int bit_offset, bit_size, byte_offset;
6723 struct type *field_type;
6724 CORE_ADDR address;
6725
6726 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6727 address = value_as_address (arg);
6728 else
6729 address = unpack_pointer (t, value_contents (arg));
6730
6731 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6732 if (find_struct_field (name, t1, 0,
6733 &field_type, &byte_offset, &bit_offset,
6734 &bit_size, NULL))
6735 {
6736 if (bit_size != 0)
6737 {
6738 if (TYPE_CODE (t) == TYPE_CODE_REF)
6739 arg = ada_coerce_ref (arg);
6740 else
6741 arg = ada_value_ind (arg);
6742 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6743 bit_offset, bit_size,
6744 field_type);
6745 }
6746 else
6747 v = value_at_lazy (field_type, address + byte_offset);
6748 }
6749 }
6750
6751 if (v != NULL || no_err)
6752 return v;
6753 else
6754 error (_("There is no member named %s."), name);
6755
6756 BadValue:
6757 if (no_err)
6758 return NULL;
6759 else
6760 error (_("Attempt to extract a component of "
6761 "a value that is not a record."));
6762 }
6763
6764 /* Given a type TYPE, look up the type of the component of type named NAME.
6765 If DISPP is non-null, add its byte displacement from the beginning of a
6766 structure (pointed to by a value) of type TYPE to *DISPP (does not
6767 work for packed fields).
6768
6769 Matches any field whose name has NAME as a prefix, possibly
6770 followed by "___".
6771
6772 TYPE can be either a struct or union. If REFOK, TYPE may also
6773 be a (pointer or reference)+ to a struct or union, and the
6774 ultimate target type will be searched.
6775
6776 Looks recursively into variant clauses and parent types.
6777
6778 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6779 TYPE is not a type of the right kind. */
6780
6781 static struct type *
6782 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6783 int noerr, int *dispp)
6784 {
6785 int i;
6786
6787 if (name == NULL)
6788 goto BadName;
6789
6790 if (refok && type != NULL)
6791 while (1)
6792 {
6793 type = ada_check_typedef (type);
6794 if (TYPE_CODE (type) != TYPE_CODE_PTR
6795 && TYPE_CODE (type) != TYPE_CODE_REF)
6796 break;
6797 type = TYPE_TARGET_TYPE (type);
6798 }
6799
6800 if (type == NULL
6801 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6802 && TYPE_CODE (type) != TYPE_CODE_UNION))
6803 {
6804 if (noerr)
6805 return NULL;
6806 else
6807 {
6808 target_terminal_ours ();
6809 gdb_flush (gdb_stdout);
6810 if (type == NULL)
6811 error (_("Type (null) is not a structure or union type"));
6812 else
6813 {
6814 /* XXX: type_sprint */
6815 fprintf_unfiltered (gdb_stderr, _("Type "));
6816 type_print (type, "", gdb_stderr, -1);
6817 error (_(" is not a structure or union type"));
6818 }
6819 }
6820 }
6821
6822 type = to_static_fixed_type (type);
6823
6824 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6825 {
6826 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6827 struct type *t;
6828 int disp;
6829
6830 if (t_field_name == NULL)
6831 continue;
6832
6833 else if (field_name_match (t_field_name, name))
6834 {
6835 if (dispp != NULL)
6836 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6837 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6838 }
6839
6840 else if (ada_is_wrapper_field (type, i))
6841 {
6842 disp = 0;
6843 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6844 0, 1, &disp);
6845 if (t != NULL)
6846 {
6847 if (dispp != NULL)
6848 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6849 return t;
6850 }
6851 }
6852
6853 else if (ada_is_variant_part (type, i))
6854 {
6855 int j;
6856 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6857 i));
6858
6859 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6860 {
6861 /* FIXME pnh 2008/01/26: We check for a field that is
6862 NOT wrapped in a struct, since the compiler sometimes
6863 generates these for unchecked variant types. Revisit
6864 if the compiler changes this practice. */
6865 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6866 disp = 0;
6867 if (v_field_name != NULL
6868 && field_name_match (v_field_name, name))
6869 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6870 else
6871 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6872 j),
6873 name, 0, 1, &disp);
6874
6875 if (t != NULL)
6876 {
6877 if (dispp != NULL)
6878 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6879 return t;
6880 }
6881 }
6882 }
6883
6884 }
6885
6886 BadName:
6887 if (!noerr)
6888 {
6889 target_terminal_ours ();
6890 gdb_flush (gdb_stdout);
6891 if (name == NULL)
6892 {
6893 /* XXX: type_sprint */
6894 fprintf_unfiltered (gdb_stderr, _("Type "));
6895 type_print (type, "", gdb_stderr, -1);
6896 error (_(" has no component named <null>"));
6897 }
6898 else
6899 {
6900 /* XXX: type_sprint */
6901 fprintf_unfiltered (gdb_stderr, _("Type "));
6902 type_print (type, "", gdb_stderr, -1);
6903 error (_(" has no component named %s"), name);
6904 }
6905 }
6906
6907 return NULL;
6908 }
6909
6910 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6911 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6912 represents an unchecked union (that is, the variant part of a
6913 record that is named in an Unchecked_Union pragma). */
6914
6915 static int
6916 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6917 {
6918 char *discrim_name = ada_variant_discrim_name (var_type);
6919
6920 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6921 == NULL);
6922 }
6923
6924
6925 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6926 within a value of type OUTER_TYPE that is stored in GDB at
6927 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6928 numbering from 0) is applicable. Returns -1 if none are. */
6929
6930 int
6931 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6932 const gdb_byte *outer_valaddr)
6933 {
6934 int others_clause;
6935 int i;
6936 char *discrim_name = ada_variant_discrim_name (var_type);
6937 struct value *outer;
6938 struct value *discrim;
6939 LONGEST discrim_val;
6940
6941 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6942 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6943 if (discrim == NULL)
6944 return -1;
6945 discrim_val = value_as_long (discrim);
6946
6947 others_clause = -1;
6948 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6949 {
6950 if (ada_is_others_clause (var_type, i))
6951 others_clause = i;
6952 else if (ada_in_variant (discrim_val, var_type, i))
6953 return i;
6954 }
6955
6956 return others_clause;
6957 }
6958 \f
6959
6960
6961 /* Dynamic-Sized Records */
6962
6963 /* Strategy: The type ostensibly attached to a value with dynamic size
6964 (i.e., a size that is not statically recorded in the debugging
6965 data) does not accurately reflect the size or layout of the value.
6966 Our strategy is to convert these values to values with accurate,
6967 conventional types that are constructed on the fly. */
6968
6969 /* There is a subtle and tricky problem here. In general, we cannot
6970 determine the size of dynamic records without its data. However,
6971 the 'struct value' data structure, which GDB uses to represent
6972 quantities in the inferior process (the target), requires the size
6973 of the type at the time of its allocation in order to reserve space
6974 for GDB's internal copy of the data. That's why the
6975 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6976 rather than struct value*s.
6977
6978 However, GDB's internal history variables ($1, $2, etc.) are
6979 struct value*s containing internal copies of the data that are not, in
6980 general, the same as the data at their corresponding addresses in
6981 the target. Fortunately, the types we give to these values are all
6982 conventional, fixed-size types (as per the strategy described
6983 above), so that we don't usually have to perform the
6984 'to_fixed_xxx_type' conversions to look at their values.
6985 Unfortunately, there is one exception: if one of the internal
6986 history variables is an array whose elements are unconstrained
6987 records, then we will need to create distinct fixed types for each
6988 element selected. */
6989
6990 /* The upshot of all of this is that many routines take a (type, host
6991 address, target address) triple as arguments to represent a value.
6992 The host address, if non-null, is supposed to contain an internal
6993 copy of the relevant data; otherwise, the program is to consult the
6994 target at the target address. */
6995
6996 /* Assuming that VAL0 represents a pointer value, the result of
6997 dereferencing it. Differs from value_ind in its treatment of
6998 dynamic-sized types. */
6999
7000 struct value *
7001 ada_value_ind (struct value *val0)
7002 {
7003 struct value *val = value_ind (val0);
7004
7005 return ada_to_fixed_value (val);
7006 }
7007
7008 /* The value resulting from dereferencing any "reference to"
7009 qualifiers on VAL0. */
7010
7011 static struct value *
7012 ada_coerce_ref (struct value *val0)
7013 {
7014 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7015 {
7016 struct value *val = val0;
7017
7018 val = coerce_ref (val);
7019 return ada_to_fixed_value (val);
7020 }
7021 else
7022 return val0;
7023 }
7024
7025 /* Return OFF rounded upward if necessary to a multiple of
7026 ALIGNMENT (a power of 2). */
7027
7028 static unsigned int
7029 align_value (unsigned int off, unsigned int alignment)
7030 {
7031 return (off + alignment - 1) & ~(alignment - 1);
7032 }
7033
7034 /* Return the bit alignment required for field #F of template type TYPE. */
7035
7036 static unsigned int
7037 field_alignment (struct type *type, int f)
7038 {
7039 const char *name = TYPE_FIELD_NAME (type, f);
7040 int len;
7041 int align_offset;
7042
7043 /* The field name should never be null, unless the debugging information
7044 is somehow malformed. In this case, we assume the field does not
7045 require any alignment. */
7046 if (name == NULL)
7047 return 1;
7048
7049 len = strlen (name);
7050
7051 if (!isdigit (name[len - 1]))
7052 return 1;
7053
7054 if (isdigit (name[len - 2]))
7055 align_offset = len - 2;
7056 else
7057 align_offset = len - 1;
7058
7059 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7060 return TARGET_CHAR_BIT;
7061
7062 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7063 }
7064
7065 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7066
7067 static struct symbol *
7068 ada_find_any_type_symbol (const char *name)
7069 {
7070 struct symbol *sym;
7071
7072 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7073 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7074 return sym;
7075
7076 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7077 return sym;
7078 }
7079
7080 /* Find a type named NAME. Ignores ambiguity. This routine will look
7081 solely for types defined by debug info, it will not search the GDB
7082 primitive types. */
7083
7084 static struct type *
7085 ada_find_any_type (const char *name)
7086 {
7087 struct symbol *sym = ada_find_any_type_symbol (name);
7088
7089 if (sym != NULL)
7090 return SYMBOL_TYPE (sym);
7091
7092 return NULL;
7093 }
7094
7095 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7096 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7097 symbol, in which case it is returned. Otherwise, this looks for
7098 symbols whose name is that of NAME_SYM suffixed with "___XR".
7099 Return symbol if found, and NULL otherwise. */
7100
7101 struct symbol *
7102 ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
7103 {
7104 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7105 struct symbol *sym;
7106
7107 if (strstr (name, "___XR") != NULL)
7108 return name_sym;
7109
7110 sym = find_old_style_renaming_symbol (name, block);
7111
7112 if (sym != NULL)
7113 return sym;
7114
7115 /* Not right yet. FIXME pnh 7/20/2007. */
7116 sym = ada_find_any_type_symbol (name);
7117 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7118 return sym;
7119 else
7120 return NULL;
7121 }
7122
7123 static struct symbol *
7124 find_old_style_renaming_symbol (const char *name, struct block *block)
7125 {
7126 const struct symbol *function_sym = block_linkage_function (block);
7127 char *rename;
7128
7129 if (function_sym != NULL)
7130 {
7131 /* If the symbol is defined inside a function, NAME is not fully
7132 qualified. This means we need to prepend the function name
7133 as well as adding the ``___XR'' suffix to build the name of
7134 the associated renaming symbol. */
7135 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7136 /* Function names sometimes contain suffixes used
7137 for instance to qualify nested subprograms. When building
7138 the XR type name, we need to make sure that this suffix is
7139 not included. So do not include any suffix in the function
7140 name length below. */
7141 int function_name_len = ada_name_prefix_len (function_name);
7142 const int rename_len = function_name_len + 2 /* "__" */
7143 + strlen (name) + 6 /* "___XR\0" */ ;
7144
7145 /* Strip the suffix if necessary. */
7146 ada_remove_trailing_digits (function_name, &function_name_len);
7147 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7148 ada_remove_Xbn_suffix (function_name, &function_name_len);
7149
7150 /* Library-level functions are a special case, as GNAT adds
7151 a ``_ada_'' prefix to the function name to avoid namespace
7152 pollution. However, the renaming symbols themselves do not
7153 have this prefix, so we need to skip this prefix if present. */
7154 if (function_name_len > 5 /* "_ada_" */
7155 && strstr (function_name, "_ada_") == function_name)
7156 {
7157 function_name += 5;
7158 function_name_len -= 5;
7159 }
7160
7161 rename = (char *) alloca (rename_len * sizeof (char));
7162 strncpy (rename, function_name, function_name_len);
7163 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7164 "__%s___XR", name);
7165 }
7166 else
7167 {
7168 const int rename_len = strlen (name) + 6;
7169
7170 rename = (char *) alloca (rename_len * sizeof (char));
7171 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7172 }
7173
7174 return ada_find_any_type_symbol (rename);
7175 }
7176
7177 /* Because of GNAT encoding conventions, several GDB symbols may match a
7178 given type name. If the type denoted by TYPE0 is to be preferred to
7179 that of TYPE1 for purposes of type printing, return non-zero;
7180 otherwise return 0. */
7181
7182 int
7183 ada_prefer_type (struct type *type0, struct type *type1)
7184 {
7185 if (type1 == NULL)
7186 return 1;
7187 else if (type0 == NULL)
7188 return 0;
7189 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7190 return 1;
7191 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7192 return 0;
7193 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7194 return 1;
7195 else if (ada_is_constrained_packed_array_type (type0))
7196 return 1;
7197 else if (ada_is_array_descriptor_type (type0)
7198 && !ada_is_array_descriptor_type (type1))
7199 return 1;
7200 else
7201 {
7202 const char *type0_name = type_name_no_tag (type0);
7203 const char *type1_name = type_name_no_tag (type1);
7204
7205 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7206 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7207 return 1;
7208 }
7209 return 0;
7210 }
7211
7212 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7213 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7214
7215 const char *
7216 ada_type_name (struct type *type)
7217 {
7218 if (type == NULL)
7219 return NULL;
7220 else if (TYPE_NAME (type) != NULL)
7221 return TYPE_NAME (type);
7222 else
7223 return TYPE_TAG_NAME (type);
7224 }
7225
7226 /* Search the list of "descriptive" types associated to TYPE for a type
7227 whose name is NAME. */
7228
7229 static struct type *
7230 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7231 {
7232 struct type *result;
7233
7234 /* If there no descriptive-type info, then there is no parallel type
7235 to be found. */
7236 if (!HAVE_GNAT_AUX_INFO (type))
7237 return NULL;
7238
7239 result = TYPE_DESCRIPTIVE_TYPE (type);
7240 while (result != NULL)
7241 {
7242 const char *result_name = ada_type_name (result);
7243
7244 if (result_name == NULL)
7245 {
7246 warning (_("unexpected null name on descriptive type"));
7247 return NULL;
7248 }
7249
7250 /* If the names match, stop. */
7251 if (strcmp (result_name, name) == 0)
7252 break;
7253
7254 /* Otherwise, look at the next item on the list, if any. */
7255 if (HAVE_GNAT_AUX_INFO (result))
7256 result = TYPE_DESCRIPTIVE_TYPE (result);
7257 else
7258 result = NULL;
7259 }
7260
7261 /* If we didn't find a match, see whether this is a packed array. With
7262 older compilers, the descriptive type information is either absent or
7263 irrelevant when it comes to packed arrays so the above lookup fails.
7264 Fall back to using a parallel lookup by name in this case. */
7265 if (result == NULL && ada_is_constrained_packed_array_type (type))
7266 return ada_find_any_type (name);
7267
7268 return result;
7269 }
7270
7271 /* Find a parallel type to TYPE with the specified NAME, using the
7272 descriptive type taken from the debugging information, if available,
7273 and otherwise using the (slower) name-based method. */
7274
7275 static struct type *
7276 ada_find_parallel_type_with_name (struct type *type, const char *name)
7277 {
7278 struct type *result = NULL;
7279
7280 if (HAVE_GNAT_AUX_INFO (type))
7281 result = find_parallel_type_by_descriptive_type (type, name);
7282 else
7283 result = ada_find_any_type (name);
7284
7285 return result;
7286 }
7287
7288 /* Same as above, but specify the name of the parallel type by appending
7289 SUFFIX to the name of TYPE. */
7290
7291 struct type *
7292 ada_find_parallel_type (struct type *type, const char *suffix)
7293 {
7294 char *name;
7295 const char *typename = ada_type_name (type);
7296 int len;
7297
7298 if (typename == NULL)
7299 return NULL;
7300
7301 len = strlen (typename);
7302
7303 name = (char *) alloca (len + strlen (suffix) + 1);
7304
7305 strcpy (name, typename);
7306 strcpy (name + len, suffix);
7307
7308 return ada_find_parallel_type_with_name (type, name);
7309 }
7310
7311 /* If TYPE is a variable-size record type, return the corresponding template
7312 type describing its fields. Otherwise, return NULL. */
7313
7314 static struct type *
7315 dynamic_template_type (struct type *type)
7316 {
7317 type = ada_check_typedef (type);
7318
7319 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7320 || ada_type_name (type) == NULL)
7321 return NULL;
7322 else
7323 {
7324 int len = strlen (ada_type_name (type));
7325
7326 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7327 return type;
7328 else
7329 return ada_find_parallel_type (type, "___XVE");
7330 }
7331 }
7332
7333 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7334 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7335
7336 static int
7337 is_dynamic_field (struct type *templ_type, int field_num)
7338 {
7339 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7340
7341 return name != NULL
7342 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7343 && strstr (name, "___XVL") != NULL;
7344 }
7345
7346 /* The index of the variant field of TYPE, or -1 if TYPE does not
7347 represent a variant record type. */
7348
7349 static int
7350 variant_field_index (struct type *type)
7351 {
7352 int f;
7353
7354 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7355 return -1;
7356
7357 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7358 {
7359 if (ada_is_variant_part (type, f))
7360 return f;
7361 }
7362 return -1;
7363 }
7364
7365 /* A record type with no fields. */
7366
7367 static struct type *
7368 empty_record (struct type *template)
7369 {
7370 struct type *type = alloc_type_copy (template);
7371
7372 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7373 TYPE_NFIELDS (type) = 0;
7374 TYPE_FIELDS (type) = NULL;
7375 INIT_CPLUS_SPECIFIC (type);
7376 TYPE_NAME (type) = "<empty>";
7377 TYPE_TAG_NAME (type) = NULL;
7378 TYPE_LENGTH (type) = 0;
7379 return type;
7380 }
7381
7382 /* An ordinary record type (with fixed-length fields) that describes
7383 the value of type TYPE at VALADDR or ADDRESS (see comments at
7384 the beginning of this section) VAL according to GNAT conventions.
7385 DVAL0 should describe the (portion of a) record that contains any
7386 necessary discriminants. It should be NULL if value_type (VAL) is
7387 an outer-level type (i.e., as opposed to a branch of a variant.) A
7388 variant field (unless unchecked) is replaced by a particular branch
7389 of the variant.
7390
7391 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7392 length are not statically known are discarded. As a consequence,
7393 VALADDR, ADDRESS and DVAL0 are ignored.
7394
7395 NOTE: Limitations: For now, we assume that dynamic fields and
7396 variants occupy whole numbers of bytes. However, they need not be
7397 byte-aligned. */
7398
7399 struct type *
7400 ada_template_to_fixed_record_type_1 (struct type *type,
7401 const gdb_byte *valaddr,
7402 CORE_ADDR address, struct value *dval0,
7403 int keep_dynamic_fields)
7404 {
7405 struct value *mark = value_mark ();
7406 struct value *dval;
7407 struct type *rtype;
7408 int nfields, bit_len;
7409 int variant_field;
7410 long off;
7411 int fld_bit_len;
7412 int f;
7413
7414 /* Compute the number of fields in this record type that are going
7415 to be processed: unless keep_dynamic_fields, this includes only
7416 fields whose position and length are static will be processed. */
7417 if (keep_dynamic_fields)
7418 nfields = TYPE_NFIELDS (type);
7419 else
7420 {
7421 nfields = 0;
7422 while (nfields < TYPE_NFIELDS (type)
7423 && !ada_is_variant_part (type, nfields)
7424 && !is_dynamic_field (type, nfields))
7425 nfields++;
7426 }
7427
7428 rtype = alloc_type_copy (type);
7429 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7430 INIT_CPLUS_SPECIFIC (rtype);
7431 TYPE_NFIELDS (rtype) = nfields;
7432 TYPE_FIELDS (rtype) = (struct field *)
7433 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7434 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7435 TYPE_NAME (rtype) = ada_type_name (type);
7436 TYPE_TAG_NAME (rtype) = NULL;
7437 TYPE_FIXED_INSTANCE (rtype) = 1;
7438
7439 off = 0;
7440 bit_len = 0;
7441 variant_field = -1;
7442
7443 for (f = 0; f < nfields; f += 1)
7444 {
7445 off = align_value (off, field_alignment (type, f))
7446 + TYPE_FIELD_BITPOS (type, f);
7447 TYPE_FIELD_BITPOS (rtype, f) = off;
7448 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7449
7450 if (ada_is_variant_part (type, f))
7451 {
7452 variant_field = f;
7453 fld_bit_len = 0;
7454 }
7455 else if (is_dynamic_field (type, f))
7456 {
7457 const gdb_byte *field_valaddr = valaddr;
7458 CORE_ADDR field_address = address;
7459 struct type *field_type =
7460 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7461
7462 if (dval0 == NULL)
7463 {
7464 /* rtype's length is computed based on the run-time
7465 value of discriminants. If the discriminants are not
7466 initialized, the type size may be completely bogus and
7467 GDB may fail to allocate a value for it. So check the
7468 size first before creating the value. */
7469 check_size (rtype);
7470 dval = value_from_contents_and_address (rtype, valaddr, address);
7471 }
7472 else
7473 dval = dval0;
7474
7475 /* If the type referenced by this field is an aligner type, we need
7476 to unwrap that aligner type, because its size might not be set.
7477 Keeping the aligner type would cause us to compute the wrong
7478 size for this field, impacting the offset of the all the fields
7479 that follow this one. */
7480 if (ada_is_aligner_type (field_type))
7481 {
7482 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7483
7484 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7485 field_address = cond_offset_target (field_address, field_offset);
7486 field_type = ada_aligned_type (field_type);
7487 }
7488
7489 field_valaddr = cond_offset_host (field_valaddr,
7490 off / TARGET_CHAR_BIT);
7491 field_address = cond_offset_target (field_address,
7492 off / TARGET_CHAR_BIT);
7493
7494 /* Get the fixed type of the field. Note that, in this case,
7495 we do not want to get the real type out of the tag: if
7496 the current field is the parent part of a tagged record,
7497 we will get the tag of the object. Clearly wrong: the real
7498 type of the parent is not the real type of the child. We
7499 would end up in an infinite loop. */
7500 field_type = ada_get_base_type (field_type);
7501 field_type = ada_to_fixed_type (field_type, field_valaddr,
7502 field_address, dval, 0);
7503 /* If the field size is already larger than the maximum
7504 object size, then the record itself will necessarily
7505 be larger than the maximum object size. We need to make
7506 this check now, because the size might be so ridiculously
7507 large (due to an uninitialized variable in the inferior)
7508 that it would cause an overflow when adding it to the
7509 record size. */
7510 check_size (field_type);
7511
7512 TYPE_FIELD_TYPE (rtype, f) = field_type;
7513 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7514 /* The multiplication can potentially overflow. But because
7515 the field length has been size-checked just above, and
7516 assuming that the maximum size is a reasonable value,
7517 an overflow should not happen in practice. So rather than
7518 adding overflow recovery code to this already complex code,
7519 we just assume that it's not going to happen. */
7520 fld_bit_len =
7521 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7522 }
7523 else
7524 {
7525 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7526
7527 /* If our field is a typedef type (most likely a typedef of
7528 a fat pointer, encoding an array access), then we need to
7529 look at its target type to determine its characteristics.
7530 In particular, we would miscompute the field size if we took
7531 the size of the typedef (zero), instead of the size of
7532 the target type. */
7533 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7534 field_type = ada_typedef_target_type (field_type);
7535
7536 TYPE_FIELD_TYPE (rtype, f) = field_type;
7537 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7538 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7539 fld_bit_len =
7540 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7541 else
7542 fld_bit_len =
7543 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7544 }
7545 if (off + fld_bit_len > bit_len)
7546 bit_len = off + fld_bit_len;
7547 off += fld_bit_len;
7548 TYPE_LENGTH (rtype) =
7549 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7550 }
7551
7552 /* We handle the variant part, if any, at the end because of certain
7553 odd cases in which it is re-ordered so as NOT to be the last field of
7554 the record. This can happen in the presence of representation
7555 clauses. */
7556 if (variant_field >= 0)
7557 {
7558 struct type *branch_type;
7559
7560 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7561
7562 if (dval0 == NULL)
7563 dval = value_from_contents_and_address (rtype, valaddr, address);
7564 else
7565 dval = dval0;
7566
7567 branch_type =
7568 to_fixed_variant_branch_type
7569 (TYPE_FIELD_TYPE (type, variant_field),
7570 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7571 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7572 if (branch_type == NULL)
7573 {
7574 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7575 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7576 TYPE_NFIELDS (rtype) -= 1;
7577 }
7578 else
7579 {
7580 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7581 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7582 fld_bit_len =
7583 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7584 TARGET_CHAR_BIT;
7585 if (off + fld_bit_len > bit_len)
7586 bit_len = off + fld_bit_len;
7587 TYPE_LENGTH (rtype) =
7588 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7589 }
7590 }
7591
7592 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7593 should contain the alignment of that record, which should be a strictly
7594 positive value. If null or negative, then something is wrong, most
7595 probably in the debug info. In that case, we don't round up the size
7596 of the resulting type. If this record is not part of another structure,
7597 the current RTYPE length might be good enough for our purposes. */
7598 if (TYPE_LENGTH (type) <= 0)
7599 {
7600 if (TYPE_NAME (rtype))
7601 warning (_("Invalid type size for `%s' detected: %d."),
7602 TYPE_NAME (rtype), TYPE_LENGTH (type));
7603 else
7604 warning (_("Invalid type size for <unnamed> detected: %d."),
7605 TYPE_LENGTH (type));
7606 }
7607 else
7608 {
7609 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7610 TYPE_LENGTH (type));
7611 }
7612
7613 value_free_to_mark (mark);
7614 if (TYPE_LENGTH (rtype) > varsize_limit)
7615 error (_("record type with dynamic size is larger than varsize-limit"));
7616 return rtype;
7617 }
7618
7619 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7620 of 1. */
7621
7622 static struct type *
7623 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7624 CORE_ADDR address, struct value *dval0)
7625 {
7626 return ada_template_to_fixed_record_type_1 (type, valaddr,
7627 address, dval0, 1);
7628 }
7629
7630 /* An ordinary record type in which ___XVL-convention fields and
7631 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7632 static approximations, containing all possible fields. Uses
7633 no runtime values. Useless for use in values, but that's OK,
7634 since the results are used only for type determinations. Works on both
7635 structs and unions. Representation note: to save space, we memorize
7636 the result of this function in the TYPE_TARGET_TYPE of the
7637 template type. */
7638
7639 static struct type *
7640 template_to_static_fixed_type (struct type *type0)
7641 {
7642 struct type *type;
7643 int nfields;
7644 int f;
7645
7646 if (TYPE_TARGET_TYPE (type0) != NULL)
7647 return TYPE_TARGET_TYPE (type0);
7648
7649 nfields = TYPE_NFIELDS (type0);
7650 type = type0;
7651
7652 for (f = 0; f < nfields; f += 1)
7653 {
7654 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7655 struct type *new_type;
7656
7657 if (is_dynamic_field (type0, f))
7658 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7659 else
7660 new_type = static_unwrap_type (field_type);
7661 if (type == type0 && new_type != field_type)
7662 {
7663 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7664 TYPE_CODE (type) = TYPE_CODE (type0);
7665 INIT_CPLUS_SPECIFIC (type);
7666 TYPE_NFIELDS (type) = nfields;
7667 TYPE_FIELDS (type) = (struct field *)
7668 TYPE_ALLOC (type, nfields * sizeof (struct field));
7669 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7670 sizeof (struct field) * nfields);
7671 TYPE_NAME (type) = ada_type_name (type0);
7672 TYPE_TAG_NAME (type) = NULL;
7673 TYPE_FIXED_INSTANCE (type) = 1;
7674 TYPE_LENGTH (type) = 0;
7675 }
7676 TYPE_FIELD_TYPE (type, f) = new_type;
7677 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7678 }
7679 return type;
7680 }
7681
7682 /* Given an object of type TYPE whose contents are at VALADDR and
7683 whose address in memory is ADDRESS, returns a revision of TYPE,
7684 which should be a non-dynamic-sized record, in which the variant
7685 part, if any, is replaced with the appropriate branch. Looks
7686 for discriminant values in DVAL0, which can be NULL if the record
7687 contains the necessary discriminant values. */
7688
7689 static struct type *
7690 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7691 CORE_ADDR address, struct value *dval0)
7692 {
7693 struct value *mark = value_mark ();
7694 struct value *dval;
7695 struct type *rtype;
7696 struct type *branch_type;
7697 int nfields = TYPE_NFIELDS (type);
7698 int variant_field = variant_field_index (type);
7699
7700 if (variant_field == -1)
7701 return type;
7702
7703 if (dval0 == NULL)
7704 dval = value_from_contents_and_address (type, valaddr, address);
7705 else
7706 dval = dval0;
7707
7708 rtype = alloc_type_copy (type);
7709 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7710 INIT_CPLUS_SPECIFIC (rtype);
7711 TYPE_NFIELDS (rtype) = nfields;
7712 TYPE_FIELDS (rtype) =
7713 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7714 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7715 sizeof (struct field) * nfields);
7716 TYPE_NAME (rtype) = ada_type_name (type);
7717 TYPE_TAG_NAME (rtype) = NULL;
7718 TYPE_FIXED_INSTANCE (rtype) = 1;
7719 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7720
7721 branch_type = to_fixed_variant_branch_type
7722 (TYPE_FIELD_TYPE (type, variant_field),
7723 cond_offset_host (valaddr,
7724 TYPE_FIELD_BITPOS (type, variant_field)
7725 / TARGET_CHAR_BIT),
7726 cond_offset_target (address,
7727 TYPE_FIELD_BITPOS (type, variant_field)
7728 / TARGET_CHAR_BIT), dval);
7729 if (branch_type == NULL)
7730 {
7731 int f;
7732
7733 for (f = variant_field + 1; f < nfields; f += 1)
7734 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7735 TYPE_NFIELDS (rtype) -= 1;
7736 }
7737 else
7738 {
7739 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7740 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7741 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7742 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7743 }
7744 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7745
7746 value_free_to_mark (mark);
7747 return rtype;
7748 }
7749
7750 /* An ordinary record type (with fixed-length fields) that describes
7751 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7752 beginning of this section]. Any necessary discriminants' values
7753 should be in DVAL, a record value; it may be NULL if the object
7754 at ADDR itself contains any necessary discriminant values.
7755 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7756 values from the record are needed. Except in the case that DVAL,
7757 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7758 unchecked) is replaced by a particular branch of the variant.
7759
7760 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7761 is questionable and may be removed. It can arise during the
7762 processing of an unconstrained-array-of-record type where all the
7763 variant branches have exactly the same size. This is because in
7764 such cases, the compiler does not bother to use the XVS convention
7765 when encoding the record. I am currently dubious of this
7766 shortcut and suspect the compiler should be altered. FIXME. */
7767
7768 static struct type *
7769 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7770 CORE_ADDR address, struct value *dval)
7771 {
7772 struct type *templ_type;
7773
7774 if (TYPE_FIXED_INSTANCE (type0))
7775 return type0;
7776
7777 templ_type = dynamic_template_type (type0);
7778
7779 if (templ_type != NULL)
7780 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7781 else if (variant_field_index (type0) >= 0)
7782 {
7783 if (dval == NULL && valaddr == NULL && address == 0)
7784 return type0;
7785 return to_record_with_fixed_variant_part (type0, valaddr, address,
7786 dval);
7787 }
7788 else
7789 {
7790 TYPE_FIXED_INSTANCE (type0) = 1;
7791 return type0;
7792 }
7793
7794 }
7795
7796 /* An ordinary record type (with fixed-length fields) that describes
7797 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7798 union type. Any necessary discriminants' values should be in DVAL,
7799 a record value. That is, this routine selects the appropriate
7800 branch of the union at ADDR according to the discriminant value
7801 indicated in the union's type name. Returns VAR_TYPE0 itself if
7802 it represents a variant subject to a pragma Unchecked_Union. */
7803
7804 static struct type *
7805 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7806 CORE_ADDR address, struct value *dval)
7807 {
7808 int which;
7809 struct type *templ_type;
7810 struct type *var_type;
7811
7812 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7813 var_type = TYPE_TARGET_TYPE (var_type0);
7814 else
7815 var_type = var_type0;
7816
7817 templ_type = ada_find_parallel_type (var_type, "___XVU");
7818
7819 if (templ_type != NULL)
7820 var_type = templ_type;
7821
7822 if (is_unchecked_variant (var_type, value_type (dval)))
7823 return var_type0;
7824 which =
7825 ada_which_variant_applies (var_type,
7826 value_type (dval), value_contents (dval));
7827
7828 if (which < 0)
7829 return empty_record (var_type);
7830 else if (is_dynamic_field (var_type, which))
7831 return to_fixed_record_type
7832 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7833 valaddr, address, dval);
7834 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7835 return
7836 to_fixed_record_type
7837 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7838 else
7839 return TYPE_FIELD_TYPE (var_type, which);
7840 }
7841
7842 /* Assuming that TYPE0 is an array type describing the type of a value
7843 at ADDR, and that DVAL describes a record containing any
7844 discriminants used in TYPE0, returns a type for the value that
7845 contains no dynamic components (that is, no components whose sizes
7846 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7847 true, gives an error message if the resulting type's size is over
7848 varsize_limit. */
7849
7850 static struct type *
7851 to_fixed_array_type (struct type *type0, struct value *dval,
7852 int ignore_too_big)
7853 {
7854 struct type *index_type_desc;
7855 struct type *result;
7856 int constrained_packed_array_p;
7857
7858 type0 = ada_check_typedef (type0);
7859 if (TYPE_FIXED_INSTANCE (type0))
7860 return type0;
7861
7862 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7863 if (constrained_packed_array_p)
7864 type0 = decode_constrained_packed_array_type (type0);
7865
7866 index_type_desc = ada_find_parallel_type (type0, "___XA");
7867 ada_fixup_array_indexes_type (index_type_desc);
7868 if (index_type_desc == NULL)
7869 {
7870 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7871
7872 /* NOTE: elt_type---the fixed version of elt_type0---should never
7873 depend on the contents of the array in properly constructed
7874 debugging data. */
7875 /* Create a fixed version of the array element type.
7876 We're not providing the address of an element here,
7877 and thus the actual object value cannot be inspected to do
7878 the conversion. This should not be a problem, since arrays of
7879 unconstrained objects are not allowed. In particular, all
7880 the elements of an array of a tagged type should all be of
7881 the same type specified in the debugging info. No need to
7882 consult the object tag. */
7883 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7884
7885 /* Make sure we always create a new array type when dealing with
7886 packed array types, since we're going to fix-up the array
7887 type length and element bitsize a little further down. */
7888 if (elt_type0 == elt_type && !constrained_packed_array_p)
7889 result = type0;
7890 else
7891 result = create_array_type (alloc_type_copy (type0),
7892 elt_type, TYPE_INDEX_TYPE (type0));
7893 }
7894 else
7895 {
7896 int i;
7897 struct type *elt_type0;
7898
7899 elt_type0 = type0;
7900 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7901 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7902
7903 /* NOTE: result---the fixed version of elt_type0---should never
7904 depend on the contents of the array in properly constructed
7905 debugging data. */
7906 /* Create a fixed version of the array element type.
7907 We're not providing the address of an element here,
7908 and thus the actual object value cannot be inspected to do
7909 the conversion. This should not be a problem, since arrays of
7910 unconstrained objects are not allowed. In particular, all
7911 the elements of an array of a tagged type should all be of
7912 the same type specified in the debugging info. No need to
7913 consult the object tag. */
7914 result =
7915 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7916
7917 elt_type0 = type0;
7918 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7919 {
7920 struct type *range_type =
7921 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7922
7923 result = create_array_type (alloc_type_copy (elt_type0),
7924 result, range_type);
7925 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7926 }
7927 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7928 error (_("array type with dynamic size is larger than varsize-limit"));
7929 }
7930
7931 /* We want to preserve the type name. This can be useful when
7932 trying to get the type name of a value that has already been
7933 printed (for instance, if the user did "print VAR; whatis $". */
7934 TYPE_NAME (result) = TYPE_NAME (type0);
7935
7936 if (constrained_packed_array_p)
7937 {
7938 /* So far, the resulting type has been created as if the original
7939 type was a regular (non-packed) array type. As a result, the
7940 bitsize of the array elements needs to be set again, and the array
7941 length needs to be recomputed based on that bitsize. */
7942 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7943 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7944
7945 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7946 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7947 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7948 TYPE_LENGTH (result)++;
7949 }
7950
7951 TYPE_FIXED_INSTANCE (result) = 1;
7952 return result;
7953 }
7954
7955
7956 /* A standard type (containing no dynamically sized components)
7957 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7958 DVAL describes a record containing any discriminants used in TYPE0,
7959 and may be NULL if there are none, or if the object of type TYPE at
7960 ADDRESS or in VALADDR contains these discriminants.
7961
7962 If CHECK_TAG is not null, in the case of tagged types, this function
7963 attempts to locate the object's tag and use it to compute the actual
7964 type. However, when ADDRESS is null, we cannot use it to determine the
7965 location of the tag, and therefore compute the tagged type's actual type.
7966 So we return the tagged type without consulting the tag. */
7967
7968 static struct type *
7969 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7970 CORE_ADDR address, struct value *dval, int check_tag)
7971 {
7972 type = ada_check_typedef (type);
7973 switch (TYPE_CODE (type))
7974 {
7975 default:
7976 return type;
7977 case TYPE_CODE_STRUCT:
7978 {
7979 struct type *static_type = to_static_fixed_type (type);
7980 struct type *fixed_record_type =
7981 to_fixed_record_type (type, valaddr, address, NULL);
7982
7983 /* If STATIC_TYPE is a tagged type and we know the object's address,
7984 then we can determine its tag, and compute the object's actual
7985 type from there. Note that we have to use the fixed record
7986 type (the parent part of the record may have dynamic fields
7987 and the way the location of _tag is expressed may depend on
7988 them). */
7989
7990 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7991 {
7992 struct type *real_type =
7993 type_from_tag (value_tag_from_contents_and_address
7994 (fixed_record_type,
7995 valaddr,
7996 address));
7997
7998 if (real_type != NULL)
7999 return to_fixed_record_type (real_type, valaddr, address, NULL);
8000 }
8001
8002 /* Check to see if there is a parallel ___XVZ variable.
8003 If there is, then it provides the actual size of our type. */
8004 else if (ada_type_name (fixed_record_type) != NULL)
8005 {
8006 const char *name = ada_type_name (fixed_record_type);
8007 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8008 int xvz_found = 0;
8009 LONGEST size;
8010
8011 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8012 size = get_int_var_value (xvz_name, &xvz_found);
8013 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8014 {
8015 fixed_record_type = copy_type (fixed_record_type);
8016 TYPE_LENGTH (fixed_record_type) = size;
8017
8018 /* The FIXED_RECORD_TYPE may have be a stub. We have
8019 observed this when the debugging info is STABS, and
8020 apparently it is something that is hard to fix.
8021
8022 In practice, we don't need the actual type definition
8023 at all, because the presence of the XVZ variable allows us
8024 to assume that there must be a XVS type as well, which we
8025 should be able to use later, when we need the actual type
8026 definition.
8027
8028 In the meantime, pretend that the "fixed" type we are
8029 returning is NOT a stub, because this can cause trouble
8030 when using this type to create new types targeting it.
8031 Indeed, the associated creation routines often check
8032 whether the target type is a stub and will try to replace
8033 it, thus using a type with the wrong size. This, in turn,
8034 might cause the new type to have the wrong size too.
8035 Consider the case of an array, for instance, where the size
8036 of the array is computed from the number of elements in
8037 our array multiplied by the size of its element. */
8038 TYPE_STUB (fixed_record_type) = 0;
8039 }
8040 }
8041 return fixed_record_type;
8042 }
8043 case TYPE_CODE_ARRAY:
8044 return to_fixed_array_type (type, dval, 1);
8045 case TYPE_CODE_UNION:
8046 if (dval == NULL)
8047 return type;
8048 else
8049 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8050 }
8051 }
8052
8053 /* The same as ada_to_fixed_type_1, except that it preserves the type
8054 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8055
8056 The typedef layer needs be preserved in order to differentiate between
8057 arrays and array pointers when both types are implemented using the same
8058 fat pointer. In the array pointer case, the pointer is encoded as
8059 a typedef of the pointer type. For instance, considering:
8060
8061 type String_Access is access String;
8062 S1 : String_Access := null;
8063
8064 To the debugger, S1 is defined as a typedef of type String. But
8065 to the user, it is a pointer. So if the user tries to print S1,
8066 we should not dereference the array, but print the array address
8067 instead.
8068
8069 If we didn't preserve the typedef layer, we would lose the fact that
8070 the type is to be presented as a pointer (needs de-reference before
8071 being printed). And we would also use the source-level type name. */
8072
8073 struct type *
8074 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8075 CORE_ADDR address, struct value *dval, int check_tag)
8076
8077 {
8078 struct type *fixed_type =
8079 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8080
8081 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8082 then preserve the typedef layer.
8083
8084 Implementation note: We can only check the main-type portion of
8085 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8086 from TYPE now returns a type that has the same instance flags
8087 as TYPE. For instance, if TYPE is a "typedef const", and its
8088 target type is a "struct", then the typedef elimination will return
8089 a "const" version of the target type. See check_typedef for more
8090 details about how the typedef layer elimination is done.
8091
8092 brobecker/2010-11-19: It seems to me that the only case where it is
8093 useful to preserve the typedef layer is when dealing with fat pointers.
8094 Perhaps, we could add a check for that and preserve the typedef layer
8095 only in that situation. But this seems unecessary so far, probably
8096 because we call check_typedef/ada_check_typedef pretty much everywhere.
8097 */
8098 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8099 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8100 == TYPE_MAIN_TYPE (fixed_type)))
8101 return type;
8102
8103 return fixed_type;
8104 }
8105
8106 /* A standard (static-sized) type corresponding as well as possible to
8107 TYPE0, but based on no runtime data. */
8108
8109 static struct type *
8110 to_static_fixed_type (struct type *type0)
8111 {
8112 struct type *type;
8113
8114 if (type0 == NULL)
8115 return NULL;
8116
8117 if (TYPE_FIXED_INSTANCE (type0))
8118 return type0;
8119
8120 type0 = ada_check_typedef (type0);
8121
8122 switch (TYPE_CODE (type0))
8123 {
8124 default:
8125 return type0;
8126 case TYPE_CODE_STRUCT:
8127 type = dynamic_template_type (type0);
8128 if (type != NULL)
8129 return template_to_static_fixed_type (type);
8130 else
8131 return template_to_static_fixed_type (type0);
8132 case TYPE_CODE_UNION:
8133 type = ada_find_parallel_type (type0, "___XVU");
8134 if (type != NULL)
8135 return template_to_static_fixed_type (type);
8136 else
8137 return template_to_static_fixed_type (type0);
8138 }
8139 }
8140
8141 /* A static approximation of TYPE with all type wrappers removed. */
8142
8143 static struct type *
8144 static_unwrap_type (struct type *type)
8145 {
8146 if (ada_is_aligner_type (type))
8147 {
8148 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8149 if (ada_type_name (type1) == NULL)
8150 TYPE_NAME (type1) = ada_type_name (type);
8151
8152 return static_unwrap_type (type1);
8153 }
8154 else
8155 {
8156 struct type *raw_real_type = ada_get_base_type (type);
8157
8158 if (raw_real_type == type)
8159 return type;
8160 else
8161 return to_static_fixed_type (raw_real_type);
8162 }
8163 }
8164
8165 /* In some cases, incomplete and private types require
8166 cross-references that are not resolved as records (for example,
8167 type Foo;
8168 type FooP is access Foo;
8169 V: FooP;
8170 type Foo is array ...;
8171 ). In these cases, since there is no mechanism for producing
8172 cross-references to such types, we instead substitute for FooP a
8173 stub enumeration type that is nowhere resolved, and whose tag is
8174 the name of the actual type. Call these types "non-record stubs". */
8175
8176 /* A type equivalent to TYPE that is not a non-record stub, if one
8177 exists, otherwise TYPE. */
8178
8179 struct type *
8180 ada_check_typedef (struct type *type)
8181 {
8182 if (type == NULL)
8183 return NULL;
8184
8185 /* If our type is a typedef type of a fat pointer, then we're done.
8186 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8187 what allows us to distinguish between fat pointers that represent
8188 array types, and fat pointers that represent array access types
8189 (in both cases, the compiler implements them as fat pointers). */
8190 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8191 && is_thick_pntr (ada_typedef_target_type (type)))
8192 return type;
8193
8194 CHECK_TYPEDEF (type);
8195 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8196 || !TYPE_STUB (type)
8197 || TYPE_TAG_NAME (type) == NULL)
8198 return type;
8199 else
8200 {
8201 const char *name = TYPE_TAG_NAME (type);
8202 struct type *type1 = ada_find_any_type (name);
8203
8204 if (type1 == NULL)
8205 return type;
8206
8207 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8208 stubs pointing to arrays, as we don't create symbols for array
8209 types, only for the typedef-to-array types). If that's the case,
8210 strip the typedef layer. */
8211 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8212 type1 = ada_check_typedef (type1);
8213
8214 return type1;
8215 }
8216 }
8217
8218 /* A value representing the data at VALADDR/ADDRESS as described by
8219 type TYPE0, but with a standard (static-sized) type that correctly
8220 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8221 type, then return VAL0 [this feature is simply to avoid redundant
8222 creation of struct values]. */
8223
8224 static struct value *
8225 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8226 struct value *val0)
8227 {
8228 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8229
8230 if (type == type0 && val0 != NULL)
8231 return val0;
8232 else
8233 return value_from_contents_and_address (type, 0, address);
8234 }
8235
8236 /* A value representing VAL, but with a standard (static-sized) type
8237 that correctly describes it. Does not necessarily create a new
8238 value. */
8239
8240 struct value *
8241 ada_to_fixed_value (struct value *val)
8242 {
8243 val = unwrap_value (val);
8244 val = ada_to_fixed_value_create (value_type (val),
8245 value_address (val),
8246 val);
8247 return val;
8248 }
8249 \f
8250
8251 /* Attributes */
8252
8253 /* Table mapping attribute numbers to names.
8254 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8255
8256 static const char *attribute_names[] = {
8257 "<?>",
8258
8259 "first",
8260 "last",
8261 "length",
8262 "image",
8263 "max",
8264 "min",
8265 "modulus",
8266 "pos",
8267 "size",
8268 "tag",
8269 "val",
8270 0
8271 };
8272
8273 const char *
8274 ada_attribute_name (enum exp_opcode n)
8275 {
8276 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8277 return attribute_names[n - OP_ATR_FIRST + 1];
8278 else
8279 return attribute_names[0];
8280 }
8281
8282 /* Evaluate the 'POS attribute applied to ARG. */
8283
8284 static LONGEST
8285 pos_atr (struct value *arg)
8286 {
8287 struct value *val = coerce_ref (arg);
8288 struct type *type = value_type (val);
8289
8290 if (!discrete_type_p (type))
8291 error (_("'POS only defined on discrete types"));
8292
8293 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8294 {
8295 int i;
8296 LONGEST v = value_as_long (val);
8297
8298 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8299 {
8300 if (v == TYPE_FIELD_BITPOS (type, i))
8301 return i;
8302 }
8303 error (_("enumeration value is invalid: can't find 'POS"));
8304 }
8305 else
8306 return value_as_long (val);
8307 }
8308
8309 static struct value *
8310 value_pos_atr (struct type *type, struct value *arg)
8311 {
8312 return value_from_longest (type, pos_atr (arg));
8313 }
8314
8315 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8316
8317 static struct value *
8318 value_val_atr (struct type *type, struct value *arg)
8319 {
8320 if (!discrete_type_p (type))
8321 error (_("'VAL only defined on discrete types"));
8322 if (!integer_type_p (value_type (arg)))
8323 error (_("'VAL requires integral argument"));
8324
8325 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8326 {
8327 long pos = value_as_long (arg);
8328
8329 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8330 error (_("argument to 'VAL out of range"));
8331 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8332 }
8333 else
8334 return value_from_longest (type, value_as_long (arg));
8335 }
8336 \f
8337
8338 /* Evaluation */
8339
8340 /* True if TYPE appears to be an Ada character type.
8341 [At the moment, this is true only for Character and Wide_Character;
8342 It is a heuristic test that could stand improvement]. */
8343
8344 int
8345 ada_is_character_type (struct type *type)
8346 {
8347 const char *name;
8348
8349 /* If the type code says it's a character, then assume it really is,
8350 and don't check any further. */
8351 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8352 return 1;
8353
8354 /* Otherwise, assume it's a character type iff it is a discrete type
8355 with a known character type name. */
8356 name = ada_type_name (type);
8357 return (name != NULL
8358 && (TYPE_CODE (type) == TYPE_CODE_INT
8359 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8360 && (strcmp (name, "character") == 0
8361 || strcmp (name, "wide_character") == 0
8362 || strcmp (name, "wide_wide_character") == 0
8363 || strcmp (name, "unsigned char") == 0));
8364 }
8365
8366 /* True if TYPE appears to be an Ada string type. */
8367
8368 int
8369 ada_is_string_type (struct type *type)
8370 {
8371 type = ada_check_typedef (type);
8372 if (type != NULL
8373 && TYPE_CODE (type) != TYPE_CODE_PTR
8374 && (ada_is_simple_array_type (type)
8375 || ada_is_array_descriptor_type (type))
8376 && ada_array_arity (type) == 1)
8377 {
8378 struct type *elttype = ada_array_element_type (type, 1);
8379
8380 return ada_is_character_type (elttype);
8381 }
8382 else
8383 return 0;
8384 }
8385
8386 /* The compiler sometimes provides a parallel XVS type for a given
8387 PAD type. Normally, it is safe to follow the PAD type directly,
8388 but older versions of the compiler have a bug that causes the offset
8389 of its "F" field to be wrong. Following that field in that case
8390 would lead to incorrect results, but this can be worked around
8391 by ignoring the PAD type and using the associated XVS type instead.
8392
8393 Set to True if the debugger should trust the contents of PAD types.
8394 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8395 static int trust_pad_over_xvs = 1;
8396
8397 /* True if TYPE is a struct type introduced by the compiler to force the
8398 alignment of a value. Such types have a single field with a
8399 distinctive name. */
8400
8401 int
8402 ada_is_aligner_type (struct type *type)
8403 {
8404 type = ada_check_typedef (type);
8405
8406 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8407 return 0;
8408
8409 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8410 && TYPE_NFIELDS (type) == 1
8411 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8412 }
8413
8414 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8415 the parallel type. */
8416
8417 struct type *
8418 ada_get_base_type (struct type *raw_type)
8419 {
8420 struct type *real_type_namer;
8421 struct type *raw_real_type;
8422
8423 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8424 return raw_type;
8425
8426 if (ada_is_aligner_type (raw_type))
8427 /* The encoding specifies that we should always use the aligner type.
8428 So, even if this aligner type has an associated XVS type, we should
8429 simply ignore it.
8430
8431 According to the compiler gurus, an XVS type parallel to an aligner
8432 type may exist because of a stabs limitation. In stabs, aligner
8433 types are empty because the field has a variable-sized type, and
8434 thus cannot actually be used as an aligner type. As a result,
8435 we need the associated parallel XVS type to decode the type.
8436 Since the policy in the compiler is to not change the internal
8437 representation based on the debugging info format, we sometimes
8438 end up having a redundant XVS type parallel to the aligner type. */
8439 return raw_type;
8440
8441 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8442 if (real_type_namer == NULL
8443 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8444 || TYPE_NFIELDS (real_type_namer) != 1)
8445 return raw_type;
8446
8447 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8448 {
8449 /* This is an older encoding form where the base type needs to be
8450 looked up by name. We prefer the newer enconding because it is
8451 more efficient. */
8452 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8453 if (raw_real_type == NULL)
8454 return raw_type;
8455 else
8456 return raw_real_type;
8457 }
8458
8459 /* The field in our XVS type is a reference to the base type. */
8460 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8461 }
8462
8463 /* The type of value designated by TYPE, with all aligners removed. */
8464
8465 struct type *
8466 ada_aligned_type (struct type *type)
8467 {
8468 if (ada_is_aligner_type (type))
8469 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8470 else
8471 return ada_get_base_type (type);
8472 }
8473
8474
8475 /* The address of the aligned value in an object at address VALADDR
8476 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8477
8478 const gdb_byte *
8479 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8480 {
8481 if (ada_is_aligner_type (type))
8482 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8483 valaddr +
8484 TYPE_FIELD_BITPOS (type,
8485 0) / TARGET_CHAR_BIT);
8486 else
8487 return valaddr;
8488 }
8489
8490
8491
8492 /* The printed representation of an enumeration literal with encoded
8493 name NAME. The value is good to the next call of ada_enum_name. */
8494 const char *
8495 ada_enum_name (const char *name)
8496 {
8497 static char *result;
8498 static size_t result_len = 0;
8499 char *tmp;
8500
8501 /* First, unqualify the enumeration name:
8502 1. Search for the last '.' character. If we find one, then skip
8503 all the preceding characters, the unqualified name starts
8504 right after that dot.
8505 2. Otherwise, we may be debugging on a target where the compiler
8506 translates dots into "__". Search forward for double underscores,
8507 but stop searching when we hit an overloading suffix, which is
8508 of the form "__" followed by digits. */
8509
8510 tmp = strrchr (name, '.');
8511 if (tmp != NULL)
8512 name = tmp + 1;
8513 else
8514 {
8515 while ((tmp = strstr (name, "__")) != NULL)
8516 {
8517 if (isdigit (tmp[2]))
8518 break;
8519 else
8520 name = tmp + 2;
8521 }
8522 }
8523
8524 if (name[0] == 'Q')
8525 {
8526 int v;
8527
8528 if (name[1] == 'U' || name[1] == 'W')
8529 {
8530 if (sscanf (name + 2, "%x", &v) != 1)
8531 return name;
8532 }
8533 else
8534 return name;
8535
8536 GROW_VECT (result, result_len, 16);
8537 if (isascii (v) && isprint (v))
8538 xsnprintf (result, result_len, "'%c'", v);
8539 else if (name[1] == 'U')
8540 xsnprintf (result, result_len, "[\"%02x\"]", v);
8541 else
8542 xsnprintf (result, result_len, "[\"%04x\"]", v);
8543
8544 return result;
8545 }
8546 else
8547 {
8548 tmp = strstr (name, "__");
8549 if (tmp == NULL)
8550 tmp = strstr (name, "$");
8551 if (tmp != NULL)
8552 {
8553 GROW_VECT (result, result_len, tmp - name + 1);
8554 strncpy (result, name, tmp - name);
8555 result[tmp - name] = '\0';
8556 return result;
8557 }
8558
8559 return name;
8560 }
8561 }
8562
8563 /* Evaluate the subexpression of EXP starting at *POS as for
8564 evaluate_type, updating *POS to point just past the evaluated
8565 expression. */
8566
8567 static struct value *
8568 evaluate_subexp_type (struct expression *exp, int *pos)
8569 {
8570 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8571 }
8572
8573 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8574 value it wraps. */
8575
8576 static struct value *
8577 unwrap_value (struct value *val)
8578 {
8579 struct type *type = ada_check_typedef (value_type (val));
8580
8581 if (ada_is_aligner_type (type))
8582 {
8583 struct value *v = ada_value_struct_elt (val, "F", 0);
8584 struct type *val_type = ada_check_typedef (value_type (v));
8585
8586 if (ada_type_name (val_type) == NULL)
8587 TYPE_NAME (val_type) = ada_type_name (type);
8588
8589 return unwrap_value (v);
8590 }
8591 else
8592 {
8593 struct type *raw_real_type =
8594 ada_check_typedef (ada_get_base_type (type));
8595
8596 /* If there is no parallel XVS or XVE type, then the value is
8597 already unwrapped. Return it without further modification. */
8598 if ((type == raw_real_type)
8599 && ada_find_parallel_type (type, "___XVE") == NULL)
8600 return val;
8601
8602 return
8603 coerce_unspec_val_to_type
8604 (val, ada_to_fixed_type (raw_real_type, 0,
8605 value_address (val),
8606 NULL, 1));
8607 }
8608 }
8609
8610 static struct value *
8611 cast_to_fixed (struct type *type, struct value *arg)
8612 {
8613 LONGEST val;
8614
8615 if (type == value_type (arg))
8616 return arg;
8617 else if (ada_is_fixed_point_type (value_type (arg)))
8618 val = ada_float_to_fixed (type,
8619 ada_fixed_to_float (value_type (arg),
8620 value_as_long (arg)));
8621 else
8622 {
8623 DOUBLEST argd = value_as_double (arg);
8624
8625 val = ada_float_to_fixed (type, argd);
8626 }
8627
8628 return value_from_longest (type, val);
8629 }
8630
8631 static struct value *
8632 cast_from_fixed (struct type *type, struct value *arg)
8633 {
8634 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8635 value_as_long (arg));
8636
8637 return value_from_double (type, val);
8638 }
8639
8640 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8641 return the converted value. */
8642
8643 static struct value *
8644 coerce_for_assign (struct type *type, struct value *val)
8645 {
8646 struct type *type2 = value_type (val);
8647
8648 if (type == type2)
8649 return val;
8650
8651 type2 = ada_check_typedef (type2);
8652 type = ada_check_typedef (type);
8653
8654 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8655 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8656 {
8657 val = ada_value_ind (val);
8658 type2 = value_type (val);
8659 }
8660
8661 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8662 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8663 {
8664 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8665 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8666 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8667 error (_("Incompatible types in assignment"));
8668 deprecated_set_value_type (val, type);
8669 }
8670 return val;
8671 }
8672
8673 static struct value *
8674 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8675 {
8676 struct value *val;
8677 struct type *type1, *type2;
8678 LONGEST v, v1, v2;
8679
8680 arg1 = coerce_ref (arg1);
8681 arg2 = coerce_ref (arg2);
8682 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8683 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8684
8685 if (TYPE_CODE (type1) != TYPE_CODE_INT
8686 || TYPE_CODE (type2) != TYPE_CODE_INT)
8687 return value_binop (arg1, arg2, op);
8688
8689 switch (op)
8690 {
8691 case BINOP_MOD:
8692 case BINOP_DIV:
8693 case BINOP_REM:
8694 break;
8695 default:
8696 return value_binop (arg1, arg2, op);
8697 }
8698
8699 v2 = value_as_long (arg2);
8700 if (v2 == 0)
8701 error (_("second operand of %s must not be zero."), op_string (op));
8702
8703 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8704 return value_binop (arg1, arg2, op);
8705
8706 v1 = value_as_long (arg1);
8707 switch (op)
8708 {
8709 case BINOP_DIV:
8710 v = v1 / v2;
8711 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8712 v += v > 0 ? -1 : 1;
8713 break;
8714 case BINOP_REM:
8715 v = v1 % v2;
8716 if (v * v1 < 0)
8717 v -= v2;
8718 break;
8719 default:
8720 /* Should not reach this point. */
8721 v = 0;
8722 }
8723
8724 val = allocate_value (type1);
8725 store_unsigned_integer (value_contents_raw (val),
8726 TYPE_LENGTH (value_type (val)),
8727 gdbarch_byte_order (get_type_arch (type1)), v);
8728 return val;
8729 }
8730
8731 static int
8732 ada_value_equal (struct value *arg1, struct value *arg2)
8733 {
8734 if (ada_is_direct_array_type (value_type (arg1))
8735 || ada_is_direct_array_type (value_type (arg2)))
8736 {
8737 /* Automatically dereference any array reference before
8738 we attempt to perform the comparison. */
8739 arg1 = ada_coerce_ref (arg1);
8740 arg2 = ada_coerce_ref (arg2);
8741
8742 arg1 = ada_coerce_to_simple_array (arg1);
8743 arg2 = ada_coerce_to_simple_array (arg2);
8744 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8745 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8746 error (_("Attempt to compare array with non-array"));
8747 /* FIXME: The following works only for types whose
8748 representations use all bits (no padding or undefined bits)
8749 and do not have user-defined equality. */
8750 return
8751 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8752 && memcmp (value_contents (arg1), value_contents (arg2),
8753 TYPE_LENGTH (value_type (arg1))) == 0;
8754 }
8755 return value_equal (arg1, arg2);
8756 }
8757
8758 /* Total number of component associations in the aggregate starting at
8759 index PC in EXP. Assumes that index PC is the start of an
8760 OP_AGGREGATE. */
8761
8762 static int
8763 num_component_specs (struct expression *exp, int pc)
8764 {
8765 int n, m, i;
8766
8767 m = exp->elts[pc + 1].longconst;
8768 pc += 3;
8769 n = 0;
8770 for (i = 0; i < m; i += 1)
8771 {
8772 switch (exp->elts[pc].opcode)
8773 {
8774 default:
8775 n += 1;
8776 break;
8777 case OP_CHOICES:
8778 n += exp->elts[pc + 1].longconst;
8779 break;
8780 }
8781 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8782 }
8783 return n;
8784 }
8785
8786 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8787 component of LHS (a simple array or a record), updating *POS past
8788 the expression, assuming that LHS is contained in CONTAINER. Does
8789 not modify the inferior's memory, nor does it modify LHS (unless
8790 LHS == CONTAINER). */
8791
8792 static void
8793 assign_component (struct value *container, struct value *lhs, LONGEST index,
8794 struct expression *exp, int *pos)
8795 {
8796 struct value *mark = value_mark ();
8797 struct value *elt;
8798
8799 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8800 {
8801 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8802 struct value *index_val = value_from_longest (index_type, index);
8803
8804 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8805 }
8806 else
8807 {
8808 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8809 elt = ada_to_fixed_value (elt);
8810 }
8811
8812 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8813 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8814 else
8815 value_assign_to_component (container, elt,
8816 ada_evaluate_subexp (NULL, exp, pos,
8817 EVAL_NORMAL));
8818
8819 value_free_to_mark (mark);
8820 }
8821
8822 /* Assuming that LHS represents an lvalue having a record or array
8823 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8824 of that aggregate's value to LHS, advancing *POS past the
8825 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8826 lvalue containing LHS (possibly LHS itself). Does not modify
8827 the inferior's memory, nor does it modify the contents of
8828 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8829
8830 static struct value *
8831 assign_aggregate (struct value *container,
8832 struct value *lhs, struct expression *exp,
8833 int *pos, enum noside noside)
8834 {
8835 struct type *lhs_type;
8836 int n = exp->elts[*pos+1].longconst;
8837 LONGEST low_index, high_index;
8838 int num_specs;
8839 LONGEST *indices;
8840 int max_indices, num_indices;
8841 int is_array_aggregate;
8842 int i;
8843
8844 *pos += 3;
8845 if (noside != EVAL_NORMAL)
8846 {
8847 for (i = 0; i < n; i += 1)
8848 ada_evaluate_subexp (NULL, exp, pos, noside);
8849 return container;
8850 }
8851
8852 container = ada_coerce_ref (container);
8853 if (ada_is_direct_array_type (value_type (container)))
8854 container = ada_coerce_to_simple_array (container);
8855 lhs = ada_coerce_ref (lhs);
8856 if (!deprecated_value_modifiable (lhs))
8857 error (_("Left operand of assignment is not a modifiable lvalue."));
8858
8859 lhs_type = value_type (lhs);
8860 if (ada_is_direct_array_type (lhs_type))
8861 {
8862 lhs = ada_coerce_to_simple_array (lhs);
8863 lhs_type = value_type (lhs);
8864 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8865 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8866 is_array_aggregate = 1;
8867 }
8868 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8869 {
8870 low_index = 0;
8871 high_index = num_visible_fields (lhs_type) - 1;
8872 is_array_aggregate = 0;
8873 }
8874 else
8875 error (_("Left-hand side must be array or record."));
8876
8877 num_specs = num_component_specs (exp, *pos - 3);
8878 max_indices = 4 * num_specs + 4;
8879 indices = alloca (max_indices * sizeof (indices[0]));
8880 indices[0] = indices[1] = low_index - 1;
8881 indices[2] = indices[3] = high_index + 1;
8882 num_indices = 4;
8883
8884 for (i = 0; i < n; i += 1)
8885 {
8886 switch (exp->elts[*pos].opcode)
8887 {
8888 case OP_CHOICES:
8889 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8890 &num_indices, max_indices,
8891 low_index, high_index);
8892 break;
8893 case OP_POSITIONAL:
8894 aggregate_assign_positional (container, lhs, exp, pos, indices,
8895 &num_indices, max_indices,
8896 low_index, high_index);
8897 break;
8898 case OP_OTHERS:
8899 if (i != n-1)
8900 error (_("Misplaced 'others' clause"));
8901 aggregate_assign_others (container, lhs, exp, pos, indices,
8902 num_indices, low_index, high_index);
8903 break;
8904 default:
8905 error (_("Internal error: bad aggregate clause"));
8906 }
8907 }
8908
8909 return container;
8910 }
8911
8912 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8913 construct at *POS, updating *POS past the construct, given that
8914 the positions are relative to lower bound LOW, where HIGH is the
8915 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8916 updating *NUM_INDICES as needed. CONTAINER is as for
8917 assign_aggregate. */
8918 static void
8919 aggregate_assign_positional (struct value *container,
8920 struct value *lhs, struct expression *exp,
8921 int *pos, LONGEST *indices, int *num_indices,
8922 int max_indices, LONGEST low, LONGEST high)
8923 {
8924 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8925
8926 if (ind - 1 == high)
8927 warning (_("Extra components in aggregate ignored."));
8928 if (ind <= high)
8929 {
8930 add_component_interval (ind, ind, indices, num_indices, max_indices);
8931 *pos += 3;
8932 assign_component (container, lhs, ind, exp, pos);
8933 }
8934 else
8935 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8936 }
8937
8938 /* Assign into the components of LHS indexed by the OP_CHOICES
8939 construct at *POS, updating *POS past the construct, given that
8940 the allowable indices are LOW..HIGH. Record the indices assigned
8941 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8942 needed. CONTAINER is as for assign_aggregate. */
8943 static void
8944 aggregate_assign_from_choices (struct value *container,
8945 struct value *lhs, struct expression *exp,
8946 int *pos, LONGEST *indices, int *num_indices,
8947 int max_indices, LONGEST low, LONGEST high)
8948 {
8949 int j;
8950 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8951 int choice_pos, expr_pc;
8952 int is_array = ada_is_direct_array_type (value_type (lhs));
8953
8954 choice_pos = *pos += 3;
8955
8956 for (j = 0; j < n_choices; j += 1)
8957 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8958 expr_pc = *pos;
8959 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8960
8961 for (j = 0; j < n_choices; j += 1)
8962 {
8963 LONGEST lower, upper;
8964 enum exp_opcode op = exp->elts[choice_pos].opcode;
8965
8966 if (op == OP_DISCRETE_RANGE)
8967 {
8968 choice_pos += 1;
8969 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8970 EVAL_NORMAL));
8971 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8972 EVAL_NORMAL));
8973 }
8974 else if (is_array)
8975 {
8976 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8977 EVAL_NORMAL));
8978 upper = lower;
8979 }
8980 else
8981 {
8982 int ind;
8983 const char *name;
8984
8985 switch (op)
8986 {
8987 case OP_NAME:
8988 name = &exp->elts[choice_pos + 2].string;
8989 break;
8990 case OP_VAR_VALUE:
8991 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8992 break;
8993 default:
8994 error (_("Invalid record component association."));
8995 }
8996 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8997 ind = 0;
8998 if (! find_struct_field (name, value_type (lhs), 0,
8999 NULL, NULL, NULL, NULL, &ind))
9000 error (_("Unknown component name: %s."), name);
9001 lower = upper = ind;
9002 }
9003
9004 if (lower <= upper && (lower < low || upper > high))
9005 error (_("Index in component association out of bounds."));
9006
9007 add_component_interval (lower, upper, indices, num_indices,
9008 max_indices);
9009 while (lower <= upper)
9010 {
9011 int pos1;
9012
9013 pos1 = expr_pc;
9014 assign_component (container, lhs, lower, exp, &pos1);
9015 lower += 1;
9016 }
9017 }
9018 }
9019
9020 /* Assign the value of the expression in the OP_OTHERS construct in
9021 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9022 have not been previously assigned. The index intervals already assigned
9023 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9024 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9025 static void
9026 aggregate_assign_others (struct value *container,
9027 struct value *lhs, struct expression *exp,
9028 int *pos, LONGEST *indices, int num_indices,
9029 LONGEST low, LONGEST high)
9030 {
9031 int i;
9032 int expr_pc = *pos + 1;
9033
9034 for (i = 0; i < num_indices - 2; i += 2)
9035 {
9036 LONGEST ind;
9037
9038 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9039 {
9040 int localpos;
9041
9042 localpos = expr_pc;
9043 assign_component (container, lhs, ind, exp, &localpos);
9044 }
9045 }
9046 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9047 }
9048
9049 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9050 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9051 modifying *SIZE as needed. It is an error if *SIZE exceeds
9052 MAX_SIZE. The resulting intervals do not overlap. */
9053 static void
9054 add_component_interval (LONGEST low, LONGEST high,
9055 LONGEST* indices, int *size, int max_size)
9056 {
9057 int i, j;
9058
9059 for (i = 0; i < *size; i += 2) {
9060 if (high >= indices[i] && low <= indices[i + 1])
9061 {
9062 int kh;
9063
9064 for (kh = i + 2; kh < *size; kh += 2)
9065 if (high < indices[kh])
9066 break;
9067 if (low < indices[i])
9068 indices[i] = low;
9069 indices[i + 1] = indices[kh - 1];
9070 if (high > indices[i + 1])
9071 indices[i + 1] = high;
9072 memcpy (indices + i + 2, indices + kh, *size - kh);
9073 *size -= kh - i - 2;
9074 return;
9075 }
9076 else if (high < indices[i])
9077 break;
9078 }
9079
9080 if (*size == max_size)
9081 error (_("Internal error: miscounted aggregate components."));
9082 *size += 2;
9083 for (j = *size-1; j >= i+2; j -= 1)
9084 indices[j] = indices[j - 2];
9085 indices[i] = low;
9086 indices[i + 1] = high;
9087 }
9088
9089 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9090 is different. */
9091
9092 static struct value *
9093 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9094 {
9095 if (type == ada_check_typedef (value_type (arg2)))
9096 return arg2;
9097
9098 if (ada_is_fixed_point_type (type))
9099 return (cast_to_fixed (type, arg2));
9100
9101 if (ada_is_fixed_point_type (value_type (arg2)))
9102 return cast_from_fixed (type, arg2);
9103
9104 return value_cast (type, arg2);
9105 }
9106
9107 /* Evaluating Ada expressions, and printing their result.
9108 ------------------------------------------------------
9109
9110 1. Introduction:
9111 ----------------
9112
9113 We usually evaluate an Ada expression in order to print its value.
9114 We also evaluate an expression in order to print its type, which
9115 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9116 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9117 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9118 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9119 similar.
9120
9121 Evaluating expressions is a little more complicated for Ada entities
9122 than it is for entities in languages such as C. The main reason for
9123 this is that Ada provides types whose definition might be dynamic.
9124 One example of such types is variant records. Or another example
9125 would be an array whose bounds can only be known at run time.
9126
9127 The following description is a general guide as to what should be
9128 done (and what should NOT be done) in order to evaluate an expression
9129 involving such types, and when. This does not cover how the semantic
9130 information is encoded by GNAT as this is covered separatly. For the
9131 document used as the reference for the GNAT encoding, see exp_dbug.ads
9132 in the GNAT sources.
9133
9134 Ideally, we should embed each part of this description next to its
9135 associated code. Unfortunately, the amount of code is so vast right
9136 now that it's hard to see whether the code handling a particular
9137 situation might be duplicated or not. One day, when the code is
9138 cleaned up, this guide might become redundant with the comments
9139 inserted in the code, and we might want to remove it.
9140
9141 2. ``Fixing'' an Entity, the Simple Case:
9142 -----------------------------------------
9143
9144 When evaluating Ada expressions, the tricky issue is that they may
9145 reference entities whose type contents and size are not statically
9146 known. Consider for instance a variant record:
9147
9148 type Rec (Empty : Boolean := True) is record
9149 case Empty is
9150 when True => null;
9151 when False => Value : Integer;
9152 end case;
9153 end record;
9154 Yes : Rec := (Empty => False, Value => 1);
9155 No : Rec := (empty => True);
9156
9157 The size and contents of that record depends on the value of the
9158 descriminant (Rec.Empty). At this point, neither the debugging
9159 information nor the associated type structure in GDB are able to
9160 express such dynamic types. So what the debugger does is to create
9161 "fixed" versions of the type that applies to the specific object.
9162 We also informally refer to this opperation as "fixing" an object,
9163 which means creating its associated fixed type.
9164
9165 Example: when printing the value of variable "Yes" above, its fixed
9166 type would look like this:
9167
9168 type Rec is record
9169 Empty : Boolean;
9170 Value : Integer;
9171 end record;
9172
9173 On the other hand, if we printed the value of "No", its fixed type
9174 would become:
9175
9176 type Rec is record
9177 Empty : Boolean;
9178 end record;
9179
9180 Things become a little more complicated when trying to fix an entity
9181 with a dynamic type that directly contains another dynamic type,
9182 such as an array of variant records, for instance. There are
9183 two possible cases: Arrays, and records.
9184
9185 3. ``Fixing'' Arrays:
9186 ---------------------
9187
9188 The type structure in GDB describes an array in terms of its bounds,
9189 and the type of its elements. By design, all elements in the array
9190 have the same type and we cannot represent an array of variant elements
9191 using the current type structure in GDB. When fixing an array,
9192 we cannot fix the array element, as we would potentially need one
9193 fixed type per element of the array. As a result, the best we can do
9194 when fixing an array is to produce an array whose bounds and size
9195 are correct (allowing us to read it from memory), but without having
9196 touched its element type. Fixing each element will be done later,
9197 when (if) necessary.
9198
9199 Arrays are a little simpler to handle than records, because the same
9200 amount of memory is allocated for each element of the array, even if
9201 the amount of space actually used by each element differs from element
9202 to element. Consider for instance the following array of type Rec:
9203
9204 type Rec_Array is array (1 .. 2) of Rec;
9205
9206 The actual amount of memory occupied by each element might be different
9207 from element to element, depending on the value of their discriminant.
9208 But the amount of space reserved for each element in the array remains
9209 fixed regardless. So we simply need to compute that size using
9210 the debugging information available, from which we can then determine
9211 the array size (we multiply the number of elements of the array by
9212 the size of each element).
9213
9214 The simplest case is when we have an array of a constrained element
9215 type. For instance, consider the following type declarations:
9216
9217 type Bounded_String (Max_Size : Integer) is
9218 Length : Integer;
9219 Buffer : String (1 .. Max_Size);
9220 end record;
9221 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9222
9223 In this case, the compiler describes the array as an array of
9224 variable-size elements (identified by its XVS suffix) for which
9225 the size can be read in the parallel XVZ variable.
9226
9227 In the case of an array of an unconstrained element type, the compiler
9228 wraps the array element inside a private PAD type. This type should not
9229 be shown to the user, and must be "unwrap"'ed before printing. Note
9230 that we also use the adjective "aligner" in our code to designate
9231 these wrapper types.
9232
9233 In some cases, the size allocated for each element is statically
9234 known. In that case, the PAD type already has the correct size,
9235 and the array element should remain unfixed.
9236
9237 But there are cases when this size is not statically known.
9238 For instance, assuming that "Five" is an integer variable:
9239
9240 type Dynamic is array (1 .. Five) of Integer;
9241 type Wrapper (Has_Length : Boolean := False) is record
9242 Data : Dynamic;
9243 case Has_Length is
9244 when True => Length : Integer;
9245 when False => null;
9246 end case;
9247 end record;
9248 type Wrapper_Array is array (1 .. 2) of Wrapper;
9249
9250 Hello : Wrapper_Array := (others => (Has_Length => True,
9251 Data => (others => 17),
9252 Length => 1));
9253
9254
9255 The debugging info would describe variable Hello as being an
9256 array of a PAD type. The size of that PAD type is not statically
9257 known, but can be determined using a parallel XVZ variable.
9258 In that case, a copy of the PAD type with the correct size should
9259 be used for the fixed array.
9260
9261 3. ``Fixing'' record type objects:
9262 ----------------------------------
9263
9264 Things are slightly different from arrays in the case of dynamic
9265 record types. In this case, in order to compute the associated
9266 fixed type, we need to determine the size and offset of each of
9267 its components. This, in turn, requires us to compute the fixed
9268 type of each of these components.
9269
9270 Consider for instance the example:
9271
9272 type Bounded_String (Max_Size : Natural) is record
9273 Str : String (1 .. Max_Size);
9274 Length : Natural;
9275 end record;
9276 My_String : Bounded_String (Max_Size => 10);
9277
9278 In that case, the position of field "Length" depends on the size
9279 of field Str, which itself depends on the value of the Max_Size
9280 discriminant. In order to fix the type of variable My_String,
9281 we need to fix the type of field Str. Therefore, fixing a variant
9282 record requires us to fix each of its components.
9283
9284 However, if a component does not have a dynamic size, the component
9285 should not be fixed. In particular, fields that use a PAD type
9286 should not fixed. Here is an example where this might happen
9287 (assuming type Rec above):
9288
9289 type Container (Big : Boolean) is record
9290 First : Rec;
9291 After : Integer;
9292 case Big is
9293 when True => Another : Integer;
9294 when False => null;
9295 end case;
9296 end record;
9297 My_Container : Container := (Big => False,
9298 First => (Empty => True),
9299 After => 42);
9300
9301 In that example, the compiler creates a PAD type for component First,
9302 whose size is constant, and then positions the component After just
9303 right after it. The offset of component After is therefore constant
9304 in this case.
9305
9306 The debugger computes the position of each field based on an algorithm
9307 that uses, among other things, the actual position and size of the field
9308 preceding it. Let's now imagine that the user is trying to print
9309 the value of My_Container. If the type fixing was recursive, we would
9310 end up computing the offset of field After based on the size of the
9311 fixed version of field First. And since in our example First has
9312 only one actual field, the size of the fixed type is actually smaller
9313 than the amount of space allocated to that field, and thus we would
9314 compute the wrong offset of field After.
9315
9316 To make things more complicated, we need to watch out for dynamic
9317 components of variant records (identified by the ___XVL suffix in
9318 the component name). Even if the target type is a PAD type, the size
9319 of that type might not be statically known. So the PAD type needs
9320 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9321 we might end up with the wrong size for our component. This can be
9322 observed with the following type declarations:
9323
9324 type Octal is new Integer range 0 .. 7;
9325 type Octal_Array is array (Positive range <>) of Octal;
9326 pragma Pack (Octal_Array);
9327
9328 type Octal_Buffer (Size : Positive) is record
9329 Buffer : Octal_Array (1 .. Size);
9330 Length : Integer;
9331 end record;
9332
9333 In that case, Buffer is a PAD type whose size is unset and needs
9334 to be computed by fixing the unwrapped type.
9335
9336 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9337 ----------------------------------------------------------
9338
9339 Lastly, when should the sub-elements of an entity that remained unfixed
9340 thus far, be actually fixed?
9341
9342 The answer is: Only when referencing that element. For instance
9343 when selecting one component of a record, this specific component
9344 should be fixed at that point in time. Or when printing the value
9345 of a record, each component should be fixed before its value gets
9346 printed. Similarly for arrays, the element of the array should be
9347 fixed when printing each element of the array, or when extracting
9348 one element out of that array. On the other hand, fixing should
9349 not be performed on the elements when taking a slice of an array!
9350
9351 Note that one of the side-effects of miscomputing the offset and
9352 size of each field is that we end up also miscomputing the size
9353 of the containing type. This can have adverse results when computing
9354 the value of an entity. GDB fetches the value of an entity based
9355 on the size of its type, and thus a wrong size causes GDB to fetch
9356 the wrong amount of memory. In the case where the computed size is
9357 too small, GDB fetches too little data to print the value of our
9358 entiry. Results in this case as unpredicatble, as we usually read
9359 past the buffer containing the data =:-o. */
9360
9361 /* Implement the evaluate_exp routine in the exp_descriptor structure
9362 for the Ada language. */
9363
9364 static struct value *
9365 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9366 int *pos, enum noside noside)
9367 {
9368 enum exp_opcode op;
9369 int tem;
9370 int pc;
9371 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9372 struct type *type;
9373 int nargs, oplen;
9374 struct value **argvec;
9375
9376 pc = *pos;
9377 *pos += 1;
9378 op = exp->elts[pc].opcode;
9379
9380 switch (op)
9381 {
9382 default:
9383 *pos -= 1;
9384 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9385 arg1 = unwrap_value (arg1);
9386
9387 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9388 then we need to perform the conversion manually, because
9389 evaluate_subexp_standard doesn't do it. This conversion is
9390 necessary in Ada because the different kinds of float/fixed
9391 types in Ada have different representations.
9392
9393 Similarly, we need to perform the conversion from OP_LONG
9394 ourselves. */
9395 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9396 arg1 = ada_value_cast (expect_type, arg1, noside);
9397
9398 return arg1;
9399
9400 case OP_STRING:
9401 {
9402 struct value *result;
9403
9404 *pos -= 1;
9405 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9406 /* The result type will have code OP_STRING, bashed there from
9407 OP_ARRAY. Bash it back. */
9408 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9409 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9410 return result;
9411 }
9412
9413 case UNOP_CAST:
9414 (*pos) += 2;
9415 type = exp->elts[pc + 1].type;
9416 arg1 = evaluate_subexp (type, exp, pos, noside);
9417 if (noside == EVAL_SKIP)
9418 goto nosideret;
9419 arg1 = ada_value_cast (type, arg1, noside);
9420 return arg1;
9421
9422 case UNOP_QUAL:
9423 (*pos) += 2;
9424 type = exp->elts[pc + 1].type;
9425 return ada_evaluate_subexp (type, exp, pos, noside);
9426
9427 case BINOP_ASSIGN:
9428 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9429 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9430 {
9431 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9432 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9433 return arg1;
9434 return ada_value_assign (arg1, arg1);
9435 }
9436 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9437 except if the lhs of our assignment is a convenience variable.
9438 In the case of assigning to a convenience variable, the lhs
9439 should be exactly the result of the evaluation of the rhs. */
9440 type = value_type (arg1);
9441 if (VALUE_LVAL (arg1) == lval_internalvar)
9442 type = NULL;
9443 arg2 = evaluate_subexp (type, exp, pos, noside);
9444 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9445 return arg1;
9446 if (ada_is_fixed_point_type (value_type (arg1)))
9447 arg2 = cast_to_fixed (value_type (arg1), arg2);
9448 else if (ada_is_fixed_point_type (value_type (arg2)))
9449 error
9450 (_("Fixed-point values must be assigned to fixed-point variables"));
9451 else
9452 arg2 = coerce_for_assign (value_type (arg1), arg2);
9453 return ada_value_assign (arg1, arg2);
9454
9455 case BINOP_ADD:
9456 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9457 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9458 if (noside == EVAL_SKIP)
9459 goto nosideret;
9460 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9461 return (value_from_longest
9462 (value_type (arg1),
9463 value_as_long (arg1) + value_as_long (arg2)));
9464 if ((ada_is_fixed_point_type (value_type (arg1))
9465 || ada_is_fixed_point_type (value_type (arg2)))
9466 && value_type (arg1) != value_type (arg2))
9467 error (_("Operands of fixed-point addition must have the same type"));
9468 /* Do the addition, and cast the result to the type of the first
9469 argument. We cannot cast the result to a reference type, so if
9470 ARG1 is a reference type, find its underlying type. */
9471 type = value_type (arg1);
9472 while (TYPE_CODE (type) == TYPE_CODE_REF)
9473 type = TYPE_TARGET_TYPE (type);
9474 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9475 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9476
9477 case BINOP_SUB:
9478 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9479 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9480 if (noside == EVAL_SKIP)
9481 goto nosideret;
9482 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9483 return (value_from_longest
9484 (value_type (arg1),
9485 value_as_long (arg1) - value_as_long (arg2)));
9486 if ((ada_is_fixed_point_type (value_type (arg1))
9487 || ada_is_fixed_point_type (value_type (arg2)))
9488 && value_type (arg1) != value_type (arg2))
9489 error (_("Operands of fixed-point subtraction "
9490 "must have the same type"));
9491 /* Do the substraction, and cast the result to the type of the first
9492 argument. We cannot cast the result to a reference type, so if
9493 ARG1 is a reference type, find its underlying type. */
9494 type = value_type (arg1);
9495 while (TYPE_CODE (type) == TYPE_CODE_REF)
9496 type = TYPE_TARGET_TYPE (type);
9497 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9498 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9499
9500 case BINOP_MUL:
9501 case BINOP_DIV:
9502 case BINOP_REM:
9503 case BINOP_MOD:
9504 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9505 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9506 if (noside == EVAL_SKIP)
9507 goto nosideret;
9508 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9509 {
9510 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9511 return value_zero (value_type (arg1), not_lval);
9512 }
9513 else
9514 {
9515 type = builtin_type (exp->gdbarch)->builtin_double;
9516 if (ada_is_fixed_point_type (value_type (arg1)))
9517 arg1 = cast_from_fixed (type, arg1);
9518 if (ada_is_fixed_point_type (value_type (arg2)))
9519 arg2 = cast_from_fixed (type, arg2);
9520 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9521 return ada_value_binop (arg1, arg2, op);
9522 }
9523
9524 case BINOP_EQUAL:
9525 case BINOP_NOTEQUAL:
9526 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9527 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9528 if (noside == EVAL_SKIP)
9529 goto nosideret;
9530 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9531 tem = 0;
9532 else
9533 {
9534 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9535 tem = ada_value_equal (arg1, arg2);
9536 }
9537 if (op == BINOP_NOTEQUAL)
9538 tem = !tem;
9539 type = language_bool_type (exp->language_defn, exp->gdbarch);
9540 return value_from_longest (type, (LONGEST) tem);
9541
9542 case UNOP_NEG:
9543 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9544 if (noside == EVAL_SKIP)
9545 goto nosideret;
9546 else if (ada_is_fixed_point_type (value_type (arg1)))
9547 return value_cast (value_type (arg1), value_neg (arg1));
9548 else
9549 {
9550 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9551 return value_neg (arg1);
9552 }
9553
9554 case BINOP_LOGICAL_AND:
9555 case BINOP_LOGICAL_OR:
9556 case UNOP_LOGICAL_NOT:
9557 {
9558 struct value *val;
9559
9560 *pos -= 1;
9561 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9562 type = language_bool_type (exp->language_defn, exp->gdbarch);
9563 return value_cast (type, val);
9564 }
9565
9566 case BINOP_BITWISE_AND:
9567 case BINOP_BITWISE_IOR:
9568 case BINOP_BITWISE_XOR:
9569 {
9570 struct value *val;
9571
9572 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9573 *pos = pc;
9574 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9575
9576 return value_cast (value_type (arg1), val);
9577 }
9578
9579 case OP_VAR_VALUE:
9580 *pos -= 1;
9581
9582 if (noside == EVAL_SKIP)
9583 {
9584 *pos += 4;
9585 goto nosideret;
9586 }
9587 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9588 /* Only encountered when an unresolved symbol occurs in a
9589 context other than a function call, in which case, it is
9590 invalid. */
9591 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9592 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9593 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9594 {
9595 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9596 /* Check to see if this is a tagged type. We also need to handle
9597 the case where the type is a reference to a tagged type, but
9598 we have to be careful to exclude pointers to tagged types.
9599 The latter should be shown as usual (as a pointer), whereas
9600 a reference should mostly be transparent to the user. */
9601 if (ada_is_tagged_type (type, 0)
9602 || (TYPE_CODE(type) == TYPE_CODE_REF
9603 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9604 {
9605 /* Tagged types are a little special in the fact that the real
9606 type is dynamic and can only be determined by inspecting the
9607 object's tag. This means that we need to get the object's
9608 value first (EVAL_NORMAL) and then extract the actual object
9609 type from its tag.
9610
9611 Note that we cannot skip the final step where we extract
9612 the object type from its tag, because the EVAL_NORMAL phase
9613 results in dynamic components being resolved into fixed ones.
9614 This can cause problems when trying to print the type
9615 description of tagged types whose parent has a dynamic size:
9616 We use the type name of the "_parent" component in order
9617 to print the name of the ancestor type in the type description.
9618 If that component had a dynamic size, the resolution into
9619 a fixed type would result in the loss of that type name,
9620 thus preventing us from printing the name of the ancestor
9621 type in the type description. */
9622 struct type *actual_type;
9623
9624 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9625 actual_type = type_from_tag (ada_value_tag (arg1));
9626 if (actual_type == NULL)
9627 /* If, for some reason, we were unable to determine
9628 the actual type from the tag, then use the static
9629 approximation that we just computed as a fallback.
9630 This can happen if the debugging information is
9631 incomplete, for instance. */
9632 actual_type = type;
9633
9634 return value_zero (actual_type, not_lval);
9635 }
9636
9637 *pos += 4;
9638 return value_zero
9639 (to_static_fixed_type
9640 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9641 not_lval);
9642 }
9643 else
9644 {
9645 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9646 return ada_to_fixed_value (arg1);
9647 }
9648
9649 case OP_FUNCALL:
9650 (*pos) += 2;
9651
9652 /* Allocate arg vector, including space for the function to be
9653 called in argvec[0] and a terminating NULL. */
9654 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9655 argvec =
9656 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9657
9658 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9659 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9660 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9661 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9662 else
9663 {
9664 for (tem = 0; tem <= nargs; tem += 1)
9665 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9666 argvec[tem] = 0;
9667
9668 if (noside == EVAL_SKIP)
9669 goto nosideret;
9670 }
9671
9672 if (ada_is_constrained_packed_array_type
9673 (desc_base_type (value_type (argvec[0]))))
9674 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9675 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9676 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9677 /* This is a packed array that has already been fixed, and
9678 therefore already coerced to a simple array. Nothing further
9679 to do. */
9680 ;
9681 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9682 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9683 && VALUE_LVAL (argvec[0]) == lval_memory))
9684 argvec[0] = value_addr (argvec[0]);
9685
9686 type = ada_check_typedef (value_type (argvec[0]));
9687
9688 /* Ada allows us to implicitly dereference arrays when subscripting
9689 them. So, if this is an array typedef (encoding use for array
9690 access types encoded as fat pointers), strip it now. */
9691 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9692 type = ada_typedef_target_type (type);
9693
9694 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9695 {
9696 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9697 {
9698 case TYPE_CODE_FUNC:
9699 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9700 break;
9701 case TYPE_CODE_ARRAY:
9702 break;
9703 case TYPE_CODE_STRUCT:
9704 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9705 argvec[0] = ada_value_ind (argvec[0]);
9706 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9707 break;
9708 default:
9709 error (_("cannot subscript or call something of type `%s'"),
9710 ada_type_name (value_type (argvec[0])));
9711 break;
9712 }
9713 }
9714
9715 switch (TYPE_CODE (type))
9716 {
9717 case TYPE_CODE_FUNC:
9718 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9719 return allocate_value (TYPE_TARGET_TYPE (type));
9720 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9721 case TYPE_CODE_STRUCT:
9722 {
9723 int arity;
9724
9725 arity = ada_array_arity (type);
9726 type = ada_array_element_type (type, nargs);
9727 if (type == NULL)
9728 error (_("cannot subscript or call a record"));
9729 if (arity != nargs)
9730 error (_("wrong number of subscripts; expecting %d"), arity);
9731 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9732 return value_zero (ada_aligned_type (type), lval_memory);
9733 return
9734 unwrap_value (ada_value_subscript
9735 (argvec[0], nargs, argvec + 1));
9736 }
9737 case TYPE_CODE_ARRAY:
9738 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9739 {
9740 type = ada_array_element_type (type, nargs);
9741 if (type == NULL)
9742 error (_("element type of array unknown"));
9743 else
9744 return value_zero (ada_aligned_type (type), lval_memory);
9745 }
9746 return
9747 unwrap_value (ada_value_subscript
9748 (ada_coerce_to_simple_array (argvec[0]),
9749 nargs, argvec + 1));
9750 case TYPE_CODE_PTR: /* Pointer to array */
9751 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9752 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9753 {
9754 type = ada_array_element_type (type, nargs);
9755 if (type == NULL)
9756 error (_("element type of array unknown"));
9757 else
9758 return value_zero (ada_aligned_type (type), lval_memory);
9759 }
9760 return
9761 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9762 nargs, argvec + 1));
9763
9764 default:
9765 error (_("Attempt to index or call something other than an "
9766 "array or function"));
9767 }
9768
9769 case TERNOP_SLICE:
9770 {
9771 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9772 struct value *low_bound_val =
9773 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9774 struct value *high_bound_val =
9775 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9776 LONGEST low_bound;
9777 LONGEST high_bound;
9778
9779 low_bound_val = coerce_ref (low_bound_val);
9780 high_bound_val = coerce_ref (high_bound_val);
9781 low_bound = pos_atr (low_bound_val);
9782 high_bound = pos_atr (high_bound_val);
9783
9784 if (noside == EVAL_SKIP)
9785 goto nosideret;
9786
9787 /* If this is a reference to an aligner type, then remove all
9788 the aligners. */
9789 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9790 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9791 TYPE_TARGET_TYPE (value_type (array)) =
9792 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9793
9794 if (ada_is_constrained_packed_array_type (value_type (array)))
9795 error (_("cannot slice a packed array"));
9796
9797 /* If this is a reference to an array or an array lvalue,
9798 convert to a pointer. */
9799 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9800 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9801 && VALUE_LVAL (array) == lval_memory))
9802 array = value_addr (array);
9803
9804 if (noside == EVAL_AVOID_SIDE_EFFECTS
9805 && ada_is_array_descriptor_type (ada_check_typedef
9806 (value_type (array))))
9807 return empty_array (ada_type_of_array (array, 0), low_bound);
9808
9809 array = ada_coerce_to_simple_array_ptr (array);
9810
9811 /* If we have more than one level of pointer indirection,
9812 dereference the value until we get only one level. */
9813 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9814 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9815 == TYPE_CODE_PTR))
9816 array = value_ind (array);
9817
9818 /* Make sure we really do have an array type before going further,
9819 to avoid a SEGV when trying to get the index type or the target
9820 type later down the road if the debug info generated by
9821 the compiler is incorrect or incomplete. */
9822 if (!ada_is_simple_array_type (value_type (array)))
9823 error (_("cannot take slice of non-array"));
9824
9825 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9826 == TYPE_CODE_PTR)
9827 {
9828 struct type *type0 = ada_check_typedef (value_type (array));
9829
9830 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9831 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9832 else
9833 {
9834 struct type *arr_type0 =
9835 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9836
9837 return ada_value_slice_from_ptr (array, arr_type0,
9838 longest_to_int (low_bound),
9839 longest_to_int (high_bound));
9840 }
9841 }
9842 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9843 return array;
9844 else if (high_bound < low_bound)
9845 return empty_array (value_type (array), low_bound);
9846 else
9847 return ada_value_slice (array, longest_to_int (low_bound),
9848 longest_to_int (high_bound));
9849 }
9850
9851 case UNOP_IN_RANGE:
9852 (*pos) += 2;
9853 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9854 type = check_typedef (exp->elts[pc + 1].type);
9855
9856 if (noside == EVAL_SKIP)
9857 goto nosideret;
9858
9859 switch (TYPE_CODE (type))
9860 {
9861 default:
9862 lim_warning (_("Membership test incompletely implemented; "
9863 "always returns true"));
9864 type = language_bool_type (exp->language_defn, exp->gdbarch);
9865 return value_from_longest (type, (LONGEST) 1);
9866
9867 case TYPE_CODE_RANGE:
9868 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9869 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9870 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9871 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9872 type = language_bool_type (exp->language_defn, exp->gdbarch);
9873 return
9874 value_from_longest (type,
9875 (value_less (arg1, arg3)
9876 || value_equal (arg1, arg3))
9877 && (value_less (arg2, arg1)
9878 || value_equal (arg2, arg1)));
9879 }
9880
9881 case BINOP_IN_BOUNDS:
9882 (*pos) += 2;
9883 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9884 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9885
9886 if (noside == EVAL_SKIP)
9887 goto nosideret;
9888
9889 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9890 {
9891 type = language_bool_type (exp->language_defn, exp->gdbarch);
9892 return value_zero (type, not_lval);
9893 }
9894
9895 tem = longest_to_int (exp->elts[pc + 1].longconst);
9896
9897 type = ada_index_type (value_type (arg2), tem, "range");
9898 if (!type)
9899 type = value_type (arg1);
9900
9901 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9902 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9903
9904 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9905 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9906 type = language_bool_type (exp->language_defn, exp->gdbarch);
9907 return
9908 value_from_longest (type,
9909 (value_less (arg1, arg3)
9910 || value_equal (arg1, arg3))
9911 && (value_less (arg2, arg1)
9912 || value_equal (arg2, arg1)));
9913
9914 case TERNOP_IN_RANGE:
9915 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9916 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9917 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9918
9919 if (noside == EVAL_SKIP)
9920 goto nosideret;
9921
9922 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9923 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9924 type = language_bool_type (exp->language_defn, exp->gdbarch);
9925 return
9926 value_from_longest (type,
9927 (value_less (arg1, arg3)
9928 || value_equal (arg1, arg3))
9929 && (value_less (arg2, arg1)
9930 || value_equal (arg2, arg1)));
9931
9932 case OP_ATR_FIRST:
9933 case OP_ATR_LAST:
9934 case OP_ATR_LENGTH:
9935 {
9936 struct type *type_arg;
9937
9938 if (exp->elts[*pos].opcode == OP_TYPE)
9939 {
9940 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9941 arg1 = NULL;
9942 type_arg = check_typedef (exp->elts[pc + 2].type);
9943 }
9944 else
9945 {
9946 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9947 type_arg = NULL;
9948 }
9949
9950 if (exp->elts[*pos].opcode != OP_LONG)
9951 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9952 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9953 *pos += 4;
9954
9955 if (noside == EVAL_SKIP)
9956 goto nosideret;
9957
9958 if (type_arg == NULL)
9959 {
9960 arg1 = ada_coerce_ref (arg1);
9961
9962 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9963 arg1 = ada_coerce_to_simple_array (arg1);
9964
9965 type = ada_index_type (value_type (arg1), tem,
9966 ada_attribute_name (op));
9967 if (type == NULL)
9968 type = builtin_type (exp->gdbarch)->builtin_int;
9969
9970 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9971 return allocate_value (type);
9972
9973 switch (op)
9974 {
9975 default: /* Should never happen. */
9976 error (_("unexpected attribute encountered"));
9977 case OP_ATR_FIRST:
9978 return value_from_longest
9979 (type, ada_array_bound (arg1, tem, 0));
9980 case OP_ATR_LAST:
9981 return value_from_longest
9982 (type, ada_array_bound (arg1, tem, 1));
9983 case OP_ATR_LENGTH:
9984 return value_from_longest
9985 (type, ada_array_length (arg1, tem));
9986 }
9987 }
9988 else if (discrete_type_p (type_arg))
9989 {
9990 struct type *range_type;
9991 const char *name = ada_type_name (type_arg);
9992
9993 range_type = NULL;
9994 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9995 range_type = to_fixed_range_type (type_arg, NULL);
9996 if (range_type == NULL)
9997 range_type = type_arg;
9998 switch (op)
9999 {
10000 default:
10001 error (_("unexpected attribute encountered"));
10002 case OP_ATR_FIRST:
10003 return value_from_longest
10004 (range_type, ada_discrete_type_low_bound (range_type));
10005 case OP_ATR_LAST:
10006 return value_from_longest
10007 (range_type, ada_discrete_type_high_bound (range_type));
10008 case OP_ATR_LENGTH:
10009 error (_("the 'length attribute applies only to array types"));
10010 }
10011 }
10012 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10013 error (_("unimplemented type attribute"));
10014 else
10015 {
10016 LONGEST low, high;
10017
10018 if (ada_is_constrained_packed_array_type (type_arg))
10019 type_arg = decode_constrained_packed_array_type (type_arg);
10020
10021 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10022 if (type == NULL)
10023 type = builtin_type (exp->gdbarch)->builtin_int;
10024
10025 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10026 return allocate_value (type);
10027
10028 switch (op)
10029 {
10030 default:
10031 error (_("unexpected attribute encountered"));
10032 case OP_ATR_FIRST:
10033 low = ada_array_bound_from_type (type_arg, tem, 0);
10034 return value_from_longest (type, low);
10035 case OP_ATR_LAST:
10036 high = ada_array_bound_from_type (type_arg, tem, 1);
10037 return value_from_longest (type, high);
10038 case OP_ATR_LENGTH:
10039 low = ada_array_bound_from_type (type_arg, tem, 0);
10040 high = ada_array_bound_from_type (type_arg, tem, 1);
10041 return value_from_longest (type, high - low + 1);
10042 }
10043 }
10044 }
10045
10046 case OP_ATR_TAG:
10047 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10048 if (noside == EVAL_SKIP)
10049 goto nosideret;
10050
10051 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10052 return value_zero (ada_tag_type (arg1), not_lval);
10053
10054 return ada_value_tag (arg1);
10055
10056 case OP_ATR_MIN:
10057 case OP_ATR_MAX:
10058 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10059 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10060 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10061 if (noside == EVAL_SKIP)
10062 goto nosideret;
10063 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10064 return value_zero (value_type (arg1), not_lval);
10065 else
10066 {
10067 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10068 return value_binop (arg1, arg2,
10069 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10070 }
10071
10072 case OP_ATR_MODULUS:
10073 {
10074 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10075
10076 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10077 if (noside == EVAL_SKIP)
10078 goto nosideret;
10079
10080 if (!ada_is_modular_type (type_arg))
10081 error (_("'modulus must be applied to modular type"));
10082
10083 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10084 ada_modulus (type_arg));
10085 }
10086
10087
10088 case OP_ATR_POS:
10089 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10090 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10091 if (noside == EVAL_SKIP)
10092 goto nosideret;
10093 type = builtin_type (exp->gdbarch)->builtin_int;
10094 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10095 return value_zero (type, not_lval);
10096 else
10097 return value_pos_atr (type, arg1);
10098
10099 case OP_ATR_SIZE:
10100 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10101 type = value_type (arg1);
10102
10103 /* If the argument is a reference, then dereference its type, since
10104 the user is really asking for the size of the actual object,
10105 not the size of the pointer. */
10106 if (TYPE_CODE (type) == TYPE_CODE_REF)
10107 type = TYPE_TARGET_TYPE (type);
10108
10109 if (noside == EVAL_SKIP)
10110 goto nosideret;
10111 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10112 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10113 else
10114 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10115 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10116
10117 case OP_ATR_VAL:
10118 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10119 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10120 type = exp->elts[pc + 2].type;
10121 if (noside == EVAL_SKIP)
10122 goto nosideret;
10123 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10124 return value_zero (type, not_lval);
10125 else
10126 return value_val_atr (type, arg1);
10127
10128 case BINOP_EXP:
10129 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10130 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10131 if (noside == EVAL_SKIP)
10132 goto nosideret;
10133 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10134 return value_zero (value_type (arg1), not_lval);
10135 else
10136 {
10137 /* For integer exponentiation operations,
10138 only promote the first argument. */
10139 if (is_integral_type (value_type (arg2)))
10140 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10141 else
10142 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10143
10144 return value_binop (arg1, arg2, op);
10145 }
10146
10147 case UNOP_PLUS:
10148 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10149 if (noside == EVAL_SKIP)
10150 goto nosideret;
10151 else
10152 return arg1;
10153
10154 case UNOP_ABS:
10155 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10156 if (noside == EVAL_SKIP)
10157 goto nosideret;
10158 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10159 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10160 return value_neg (arg1);
10161 else
10162 return arg1;
10163
10164 case UNOP_IND:
10165 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10166 if (noside == EVAL_SKIP)
10167 goto nosideret;
10168 type = ada_check_typedef (value_type (arg1));
10169 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10170 {
10171 if (ada_is_array_descriptor_type (type))
10172 /* GDB allows dereferencing GNAT array descriptors. */
10173 {
10174 struct type *arrType = ada_type_of_array (arg1, 0);
10175
10176 if (arrType == NULL)
10177 error (_("Attempt to dereference null array pointer."));
10178 return value_at_lazy (arrType, 0);
10179 }
10180 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10181 || TYPE_CODE (type) == TYPE_CODE_REF
10182 /* In C you can dereference an array to get the 1st elt. */
10183 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10184 {
10185 type = to_static_fixed_type
10186 (ada_aligned_type
10187 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10188 check_size (type);
10189 return value_zero (type, lval_memory);
10190 }
10191 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10192 {
10193 /* GDB allows dereferencing an int. */
10194 if (expect_type == NULL)
10195 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10196 lval_memory);
10197 else
10198 {
10199 expect_type =
10200 to_static_fixed_type (ada_aligned_type (expect_type));
10201 return value_zero (expect_type, lval_memory);
10202 }
10203 }
10204 else
10205 error (_("Attempt to take contents of a non-pointer value."));
10206 }
10207 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10208 type = ada_check_typedef (value_type (arg1));
10209
10210 if (TYPE_CODE (type) == TYPE_CODE_INT)
10211 /* GDB allows dereferencing an int. If we were given
10212 the expect_type, then use that as the target type.
10213 Otherwise, assume that the target type is an int. */
10214 {
10215 if (expect_type != NULL)
10216 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10217 arg1));
10218 else
10219 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10220 (CORE_ADDR) value_as_address (arg1));
10221 }
10222
10223 if (ada_is_array_descriptor_type (type))
10224 /* GDB allows dereferencing GNAT array descriptors. */
10225 return ada_coerce_to_simple_array (arg1);
10226 else
10227 return ada_value_ind (arg1);
10228
10229 case STRUCTOP_STRUCT:
10230 tem = longest_to_int (exp->elts[pc + 1].longconst);
10231 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10232 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10233 if (noside == EVAL_SKIP)
10234 goto nosideret;
10235 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10236 {
10237 struct type *type1 = value_type (arg1);
10238
10239 if (ada_is_tagged_type (type1, 1))
10240 {
10241 type = ada_lookup_struct_elt_type (type1,
10242 &exp->elts[pc + 2].string,
10243 1, 1, NULL);
10244 if (type == NULL)
10245 /* In this case, we assume that the field COULD exist
10246 in some extension of the type. Return an object of
10247 "type" void, which will match any formal
10248 (see ada_type_match). */
10249 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10250 lval_memory);
10251 }
10252 else
10253 type =
10254 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10255 0, NULL);
10256
10257 return value_zero (ada_aligned_type (type), lval_memory);
10258 }
10259 else
10260 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10261 arg1 = unwrap_value (arg1);
10262 return ada_to_fixed_value (arg1);
10263
10264 case OP_TYPE:
10265 /* The value is not supposed to be used. This is here to make it
10266 easier to accommodate expressions that contain types. */
10267 (*pos) += 2;
10268 if (noside == EVAL_SKIP)
10269 goto nosideret;
10270 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10271 return allocate_value (exp->elts[pc + 1].type);
10272 else
10273 error (_("Attempt to use a type name as an expression"));
10274
10275 case OP_AGGREGATE:
10276 case OP_CHOICES:
10277 case OP_OTHERS:
10278 case OP_DISCRETE_RANGE:
10279 case OP_POSITIONAL:
10280 case OP_NAME:
10281 if (noside == EVAL_NORMAL)
10282 switch (op)
10283 {
10284 case OP_NAME:
10285 error (_("Undefined name, ambiguous name, or renaming used in "
10286 "component association: %s."), &exp->elts[pc+2].string);
10287 case OP_AGGREGATE:
10288 error (_("Aggregates only allowed on the right of an assignment"));
10289 default:
10290 internal_error (__FILE__, __LINE__,
10291 _("aggregate apparently mangled"));
10292 }
10293
10294 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10295 *pos += oplen - 1;
10296 for (tem = 0; tem < nargs; tem += 1)
10297 ada_evaluate_subexp (NULL, exp, pos, noside);
10298 goto nosideret;
10299 }
10300
10301 nosideret:
10302 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10303 }
10304 \f
10305
10306 /* Fixed point */
10307
10308 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10309 type name that encodes the 'small and 'delta information.
10310 Otherwise, return NULL. */
10311
10312 static const char *
10313 fixed_type_info (struct type *type)
10314 {
10315 const char *name = ada_type_name (type);
10316 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10317
10318 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10319 {
10320 const char *tail = strstr (name, "___XF_");
10321
10322 if (tail == NULL)
10323 return NULL;
10324 else
10325 return tail + 5;
10326 }
10327 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10328 return fixed_type_info (TYPE_TARGET_TYPE (type));
10329 else
10330 return NULL;
10331 }
10332
10333 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10334
10335 int
10336 ada_is_fixed_point_type (struct type *type)
10337 {
10338 return fixed_type_info (type) != NULL;
10339 }
10340
10341 /* Return non-zero iff TYPE represents a System.Address type. */
10342
10343 int
10344 ada_is_system_address_type (struct type *type)
10345 {
10346 return (TYPE_NAME (type)
10347 && strcmp (TYPE_NAME (type), "system__address") == 0);
10348 }
10349
10350 /* Assuming that TYPE is the representation of an Ada fixed-point
10351 type, return its delta, or -1 if the type is malformed and the
10352 delta cannot be determined. */
10353
10354 DOUBLEST
10355 ada_delta (struct type *type)
10356 {
10357 const char *encoding = fixed_type_info (type);
10358 DOUBLEST num, den;
10359
10360 /* Strictly speaking, num and den are encoded as integer. However,
10361 they may not fit into a long, and they will have to be converted
10362 to DOUBLEST anyway. So scan them as DOUBLEST. */
10363 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10364 &num, &den) < 2)
10365 return -1.0;
10366 else
10367 return num / den;
10368 }
10369
10370 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10371 factor ('SMALL value) associated with the type. */
10372
10373 static DOUBLEST
10374 scaling_factor (struct type *type)
10375 {
10376 const char *encoding = fixed_type_info (type);
10377 DOUBLEST num0, den0, num1, den1;
10378 int n;
10379
10380 /* Strictly speaking, num's and den's are encoded as integer. However,
10381 they may not fit into a long, and they will have to be converted
10382 to DOUBLEST anyway. So scan them as DOUBLEST. */
10383 n = sscanf (encoding,
10384 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10385 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10386 &num0, &den0, &num1, &den1);
10387
10388 if (n < 2)
10389 return 1.0;
10390 else if (n == 4)
10391 return num1 / den1;
10392 else
10393 return num0 / den0;
10394 }
10395
10396
10397 /* Assuming that X is the representation of a value of fixed-point
10398 type TYPE, return its floating-point equivalent. */
10399
10400 DOUBLEST
10401 ada_fixed_to_float (struct type *type, LONGEST x)
10402 {
10403 return (DOUBLEST) x *scaling_factor (type);
10404 }
10405
10406 /* The representation of a fixed-point value of type TYPE
10407 corresponding to the value X. */
10408
10409 LONGEST
10410 ada_float_to_fixed (struct type *type, DOUBLEST x)
10411 {
10412 return (LONGEST) (x / scaling_factor (type) + 0.5);
10413 }
10414
10415 \f
10416
10417 /* Range types */
10418
10419 /* Scan STR beginning at position K for a discriminant name, and
10420 return the value of that discriminant field of DVAL in *PX. If
10421 PNEW_K is not null, put the position of the character beyond the
10422 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10423 not alter *PX and *PNEW_K if unsuccessful. */
10424
10425 static int
10426 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10427 int *pnew_k)
10428 {
10429 static char *bound_buffer = NULL;
10430 static size_t bound_buffer_len = 0;
10431 char *bound;
10432 char *pend;
10433 struct value *bound_val;
10434
10435 if (dval == NULL || str == NULL || str[k] == '\0')
10436 return 0;
10437
10438 pend = strstr (str + k, "__");
10439 if (pend == NULL)
10440 {
10441 bound = str + k;
10442 k += strlen (bound);
10443 }
10444 else
10445 {
10446 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10447 bound = bound_buffer;
10448 strncpy (bound_buffer, str + k, pend - (str + k));
10449 bound[pend - (str + k)] = '\0';
10450 k = pend - str;
10451 }
10452
10453 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10454 if (bound_val == NULL)
10455 return 0;
10456
10457 *px = value_as_long (bound_val);
10458 if (pnew_k != NULL)
10459 *pnew_k = k;
10460 return 1;
10461 }
10462
10463 /* Value of variable named NAME in the current environment. If
10464 no such variable found, then if ERR_MSG is null, returns 0, and
10465 otherwise causes an error with message ERR_MSG. */
10466
10467 static struct value *
10468 get_var_value (char *name, char *err_msg)
10469 {
10470 struct ada_symbol_info *syms;
10471 int nsyms;
10472
10473 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10474 &syms, 1);
10475
10476 if (nsyms != 1)
10477 {
10478 if (err_msg == NULL)
10479 return 0;
10480 else
10481 error (("%s"), err_msg);
10482 }
10483
10484 return value_of_variable (syms[0].sym, syms[0].block);
10485 }
10486
10487 /* Value of integer variable named NAME in the current environment. If
10488 no such variable found, returns 0, and sets *FLAG to 0. If
10489 successful, sets *FLAG to 1. */
10490
10491 LONGEST
10492 get_int_var_value (char *name, int *flag)
10493 {
10494 struct value *var_val = get_var_value (name, 0);
10495
10496 if (var_val == 0)
10497 {
10498 if (flag != NULL)
10499 *flag = 0;
10500 return 0;
10501 }
10502 else
10503 {
10504 if (flag != NULL)
10505 *flag = 1;
10506 return value_as_long (var_val);
10507 }
10508 }
10509
10510
10511 /* Return a range type whose base type is that of the range type named
10512 NAME in the current environment, and whose bounds are calculated
10513 from NAME according to the GNAT range encoding conventions.
10514 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10515 corresponding range type from debug information; fall back to using it
10516 if symbol lookup fails. If a new type must be created, allocate it
10517 like ORIG_TYPE was. The bounds information, in general, is encoded
10518 in NAME, the base type given in the named range type. */
10519
10520 static struct type *
10521 to_fixed_range_type (struct type *raw_type, struct value *dval)
10522 {
10523 const char *name;
10524 struct type *base_type;
10525 char *subtype_info;
10526
10527 gdb_assert (raw_type != NULL);
10528 gdb_assert (TYPE_NAME (raw_type) != NULL);
10529
10530 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10531 base_type = TYPE_TARGET_TYPE (raw_type);
10532 else
10533 base_type = raw_type;
10534
10535 name = TYPE_NAME (raw_type);
10536 subtype_info = strstr (name, "___XD");
10537 if (subtype_info == NULL)
10538 {
10539 LONGEST L = ada_discrete_type_low_bound (raw_type);
10540 LONGEST U = ada_discrete_type_high_bound (raw_type);
10541
10542 if (L < INT_MIN || U > INT_MAX)
10543 return raw_type;
10544 else
10545 return create_range_type (alloc_type_copy (raw_type), raw_type,
10546 ada_discrete_type_low_bound (raw_type),
10547 ada_discrete_type_high_bound (raw_type));
10548 }
10549 else
10550 {
10551 static char *name_buf = NULL;
10552 static size_t name_len = 0;
10553 int prefix_len = subtype_info - name;
10554 LONGEST L, U;
10555 struct type *type;
10556 char *bounds_str;
10557 int n;
10558
10559 GROW_VECT (name_buf, name_len, prefix_len + 5);
10560 strncpy (name_buf, name, prefix_len);
10561 name_buf[prefix_len] = '\0';
10562
10563 subtype_info += 5;
10564 bounds_str = strchr (subtype_info, '_');
10565 n = 1;
10566
10567 if (*subtype_info == 'L')
10568 {
10569 if (!ada_scan_number (bounds_str, n, &L, &n)
10570 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10571 return raw_type;
10572 if (bounds_str[n] == '_')
10573 n += 2;
10574 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10575 n += 1;
10576 subtype_info += 1;
10577 }
10578 else
10579 {
10580 int ok;
10581
10582 strcpy (name_buf + prefix_len, "___L");
10583 L = get_int_var_value (name_buf, &ok);
10584 if (!ok)
10585 {
10586 lim_warning (_("Unknown lower bound, using 1."));
10587 L = 1;
10588 }
10589 }
10590
10591 if (*subtype_info == 'U')
10592 {
10593 if (!ada_scan_number (bounds_str, n, &U, &n)
10594 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10595 return raw_type;
10596 }
10597 else
10598 {
10599 int ok;
10600
10601 strcpy (name_buf + prefix_len, "___U");
10602 U = get_int_var_value (name_buf, &ok);
10603 if (!ok)
10604 {
10605 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10606 U = L;
10607 }
10608 }
10609
10610 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10611 TYPE_NAME (type) = name;
10612 return type;
10613 }
10614 }
10615
10616 /* True iff NAME is the name of a range type. */
10617
10618 int
10619 ada_is_range_type_name (const char *name)
10620 {
10621 return (name != NULL && strstr (name, "___XD"));
10622 }
10623 \f
10624
10625 /* Modular types */
10626
10627 /* True iff TYPE is an Ada modular type. */
10628
10629 int
10630 ada_is_modular_type (struct type *type)
10631 {
10632 struct type *subranged_type = get_base_type (type);
10633
10634 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10635 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10636 && TYPE_UNSIGNED (subranged_type));
10637 }
10638
10639 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10640
10641 ULONGEST
10642 ada_modulus (struct type *type)
10643 {
10644 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10645 }
10646 \f
10647
10648 /* Ada exception catchpoint support:
10649 ---------------------------------
10650
10651 We support 3 kinds of exception catchpoints:
10652 . catchpoints on Ada exceptions
10653 . catchpoints on unhandled Ada exceptions
10654 . catchpoints on failed assertions
10655
10656 Exceptions raised during failed assertions, or unhandled exceptions
10657 could perfectly be caught with the general catchpoint on Ada exceptions.
10658 However, we can easily differentiate these two special cases, and having
10659 the option to distinguish these two cases from the rest can be useful
10660 to zero-in on certain situations.
10661
10662 Exception catchpoints are a specialized form of breakpoint,
10663 since they rely on inserting breakpoints inside known routines
10664 of the GNAT runtime. The implementation therefore uses a standard
10665 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10666 of breakpoint_ops.
10667
10668 Support in the runtime for exception catchpoints have been changed
10669 a few times already, and these changes affect the implementation
10670 of these catchpoints. In order to be able to support several
10671 variants of the runtime, we use a sniffer that will determine
10672 the runtime variant used by the program being debugged. */
10673
10674 /* The different types of catchpoints that we introduced for catching
10675 Ada exceptions. */
10676
10677 enum exception_catchpoint_kind
10678 {
10679 ex_catch_exception,
10680 ex_catch_exception_unhandled,
10681 ex_catch_assert
10682 };
10683
10684 /* Ada's standard exceptions. */
10685
10686 static char *standard_exc[] = {
10687 "constraint_error",
10688 "program_error",
10689 "storage_error",
10690 "tasking_error"
10691 };
10692
10693 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10694
10695 /* A structure that describes how to support exception catchpoints
10696 for a given executable. */
10697
10698 struct exception_support_info
10699 {
10700 /* The name of the symbol to break on in order to insert
10701 a catchpoint on exceptions. */
10702 const char *catch_exception_sym;
10703
10704 /* The name of the symbol to break on in order to insert
10705 a catchpoint on unhandled exceptions. */
10706 const char *catch_exception_unhandled_sym;
10707
10708 /* The name of the symbol to break on in order to insert
10709 a catchpoint on failed assertions. */
10710 const char *catch_assert_sym;
10711
10712 /* Assuming that the inferior just triggered an unhandled exception
10713 catchpoint, this function is responsible for returning the address
10714 in inferior memory where the name of that exception is stored.
10715 Return zero if the address could not be computed. */
10716 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10717 };
10718
10719 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10720 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10721
10722 /* The following exception support info structure describes how to
10723 implement exception catchpoints with the latest version of the
10724 Ada runtime (as of 2007-03-06). */
10725
10726 static const struct exception_support_info default_exception_support_info =
10727 {
10728 "__gnat_debug_raise_exception", /* catch_exception_sym */
10729 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10730 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10731 ada_unhandled_exception_name_addr
10732 };
10733
10734 /* The following exception support info structure describes how to
10735 implement exception catchpoints with a slightly older version
10736 of the Ada runtime. */
10737
10738 static const struct exception_support_info exception_support_info_fallback =
10739 {
10740 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10741 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10742 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10743 ada_unhandled_exception_name_addr_from_raise
10744 };
10745
10746 /* Return nonzero if we can detect the exception support routines
10747 described in EINFO.
10748
10749 This function errors out if an abnormal situation is detected
10750 (for instance, if we find the exception support routines, but
10751 that support is found to be incomplete). */
10752
10753 static int
10754 ada_has_this_exception_support (const struct exception_support_info *einfo)
10755 {
10756 struct symbol *sym;
10757
10758 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10759 that should be compiled with debugging information. As a result, we
10760 expect to find that symbol in the symtabs. */
10761
10762 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10763 if (sym == NULL)
10764 {
10765 /* Perhaps we did not find our symbol because the Ada runtime was
10766 compiled without debugging info, or simply stripped of it.
10767 It happens on some GNU/Linux distributions for instance, where
10768 users have to install a separate debug package in order to get
10769 the runtime's debugging info. In that situation, let the user
10770 know why we cannot insert an Ada exception catchpoint.
10771
10772 Note: Just for the purpose of inserting our Ada exception
10773 catchpoint, we could rely purely on the associated minimal symbol.
10774 But we would be operating in degraded mode anyway, since we are
10775 still lacking the debugging info needed later on to extract
10776 the name of the exception being raised (this name is printed in
10777 the catchpoint message, and is also used when trying to catch
10778 a specific exception). We do not handle this case for now. */
10779 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10780 error (_("Your Ada runtime appears to be missing some debugging "
10781 "information.\nCannot insert Ada exception catchpoint "
10782 "in this configuration."));
10783
10784 return 0;
10785 }
10786
10787 /* Make sure that the symbol we found corresponds to a function. */
10788
10789 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10790 error (_("Symbol \"%s\" is not a function (class = %d)"),
10791 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10792
10793 return 1;
10794 }
10795
10796 /* Inspect the Ada runtime and determine which exception info structure
10797 should be used to provide support for exception catchpoints.
10798
10799 This function will always set the per-inferior exception_info,
10800 or raise an error. */
10801
10802 static void
10803 ada_exception_support_info_sniffer (void)
10804 {
10805 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10806 struct symbol *sym;
10807
10808 /* If the exception info is already known, then no need to recompute it. */
10809 if (data->exception_info != NULL)
10810 return;
10811
10812 /* Check the latest (default) exception support info. */
10813 if (ada_has_this_exception_support (&default_exception_support_info))
10814 {
10815 data->exception_info = &default_exception_support_info;
10816 return;
10817 }
10818
10819 /* Try our fallback exception suport info. */
10820 if (ada_has_this_exception_support (&exception_support_info_fallback))
10821 {
10822 data->exception_info = &exception_support_info_fallback;
10823 return;
10824 }
10825
10826 /* Sometimes, it is normal for us to not be able to find the routine
10827 we are looking for. This happens when the program is linked with
10828 the shared version of the GNAT runtime, and the program has not been
10829 started yet. Inform the user of these two possible causes if
10830 applicable. */
10831
10832 if (ada_update_initial_language (language_unknown) != language_ada)
10833 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10834
10835 /* If the symbol does not exist, then check that the program is
10836 already started, to make sure that shared libraries have been
10837 loaded. If it is not started, this may mean that the symbol is
10838 in a shared library. */
10839
10840 if (ptid_get_pid (inferior_ptid) == 0)
10841 error (_("Unable to insert catchpoint. Try to start the program first."));
10842
10843 /* At this point, we know that we are debugging an Ada program and
10844 that the inferior has been started, but we still are not able to
10845 find the run-time symbols. That can mean that we are in
10846 configurable run time mode, or that a-except as been optimized
10847 out by the linker... In any case, at this point it is not worth
10848 supporting this feature. */
10849
10850 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10851 }
10852
10853 /* True iff FRAME is very likely to be that of a function that is
10854 part of the runtime system. This is all very heuristic, but is
10855 intended to be used as advice as to what frames are uninteresting
10856 to most users. */
10857
10858 static int
10859 is_known_support_routine (struct frame_info *frame)
10860 {
10861 struct symtab_and_line sal;
10862 const char *func_name;
10863 enum language func_lang;
10864 int i;
10865
10866 /* If this code does not have any debugging information (no symtab),
10867 This cannot be any user code. */
10868
10869 find_frame_sal (frame, &sal);
10870 if (sal.symtab == NULL)
10871 return 1;
10872
10873 /* If there is a symtab, but the associated source file cannot be
10874 located, then assume this is not user code: Selecting a frame
10875 for which we cannot display the code would not be very helpful
10876 for the user. This should also take care of case such as VxWorks
10877 where the kernel has some debugging info provided for a few units. */
10878
10879 if (symtab_to_fullname (sal.symtab) == NULL)
10880 return 1;
10881
10882 /* Check the unit filename againt the Ada runtime file naming.
10883 We also check the name of the objfile against the name of some
10884 known system libraries that sometimes come with debugging info
10885 too. */
10886
10887 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10888 {
10889 re_comp (known_runtime_file_name_patterns[i]);
10890 if (re_exec (sal.symtab->filename))
10891 return 1;
10892 if (sal.symtab->objfile != NULL
10893 && re_exec (sal.symtab->objfile->name))
10894 return 1;
10895 }
10896
10897 /* Check whether the function is a GNAT-generated entity. */
10898
10899 find_frame_funname (frame, &func_name, &func_lang, NULL);
10900 if (func_name == NULL)
10901 return 1;
10902
10903 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10904 {
10905 re_comp (known_auxiliary_function_name_patterns[i]);
10906 if (re_exec (func_name))
10907 return 1;
10908 }
10909
10910 return 0;
10911 }
10912
10913 /* Find the first frame that contains debugging information and that is not
10914 part of the Ada run-time, starting from FI and moving upward. */
10915
10916 void
10917 ada_find_printable_frame (struct frame_info *fi)
10918 {
10919 for (; fi != NULL; fi = get_prev_frame (fi))
10920 {
10921 if (!is_known_support_routine (fi))
10922 {
10923 select_frame (fi);
10924 break;
10925 }
10926 }
10927
10928 }
10929
10930 /* Assuming that the inferior just triggered an unhandled exception
10931 catchpoint, return the address in inferior memory where the name
10932 of the exception is stored.
10933
10934 Return zero if the address could not be computed. */
10935
10936 static CORE_ADDR
10937 ada_unhandled_exception_name_addr (void)
10938 {
10939 return parse_and_eval_address ("e.full_name");
10940 }
10941
10942 /* Same as ada_unhandled_exception_name_addr, except that this function
10943 should be used when the inferior uses an older version of the runtime,
10944 where the exception name needs to be extracted from a specific frame
10945 several frames up in the callstack. */
10946
10947 static CORE_ADDR
10948 ada_unhandled_exception_name_addr_from_raise (void)
10949 {
10950 int frame_level;
10951 struct frame_info *fi;
10952 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10953
10954 /* To determine the name of this exception, we need to select
10955 the frame corresponding to RAISE_SYM_NAME. This frame is
10956 at least 3 levels up, so we simply skip the first 3 frames
10957 without checking the name of their associated function. */
10958 fi = get_current_frame ();
10959 for (frame_level = 0; frame_level < 3; frame_level += 1)
10960 if (fi != NULL)
10961 fi = get_prev_frame (fi);
10962
10963 while (fi != NULL)
10964 {
10965 const char *func_name;
10966 enum language func_lang;
10967
10968 find_frame_funname (fi, &func_name, &func_lang, NULL);
10969 if (func_name != NULL
10970 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10971 break; /* We found the frame we were looking for... */
10972 fi = get_prev_frame (fi);
10973 }
10974
10975 if (fi == NULL)
10976 return 0;
10977
10978 select_frame (fi);
10979 return parse_and_eval_address ("id.full_name");
10980 }
10981
10982 /* Assuming the inferior just triggered an Ada exception catchpoint
10983 (of any type), return the address in inferior memory where the name
10984 of the exception is stored, if applicable.
10985
10986 Return zero if the address could not be computed, or if not relevant. */
10987
10988 static CORE_ADDR
10989 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10990 struct breakpoint *b)
10991 {
10992 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10993
10994 switch (ex)
10995 {
10996 case ex_catch_exception:
10997 return (parse_and_eval_address ("e.full_name"));
10998 break;
10999
11000 case ex_catch_exception_unhandled:
11001 return data->exception_info->unhandled_exception_name_addr ();
11002 break;
11003
11004 case ex_catch_assert:
11005 return 0; /* Exception name is not relevant in this case. */
11006 break;
11007
11008 default:
11009 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11010 break;
11011 }
11012
11013 return 0; /* Should never be reached. */
11014 }
11015
11016 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11017 any error that ada_exception_name_addr_1 might cause to be thrown.
11018 When an error is intercepted, a warning with the error message is printed,
11019 and zero is returned. */
11020
11021 static CORE_ADDR
11022 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11023 struct breakpoint *b)
11024 {
11025 volatile struct gdb_exception e;
11026 CORE_ADDR result = 0;
11027
11028 TRY_CATCH (e, RETURN_MASK_ERROR)
11029 {
11030 result = ada_exception_name_addr_1 (ex, b);
11031 }
11032
11033 if (e.reason < 0)
11034 {
11035 warning (_("failed to get exception name: %s"), e.message);
11036 return 0;
11037 }
11038
11039 return result;
11040 }
11041
11042 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11043 char *, char **,
11044 const struct breakpoint_ops **);
11045 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11046
11047 /* Ada catchpoints.
11048
11049 In the case of catchpoints on Ada exceptions, the catchpoint will
11050 stop the target on every exception the program throws. When a user
11051 specifies the name of a specific exception, we translate this
11052 request into a condition expression (in text form), and then parse
11053 it into an expression stored in each of the catchpoint's locations.
11054 We then use this condition to check whether the exception that was
11055 raised is the one the user is interested in. If not, then the
11056 target is resumed again. We store the name of the requested
11057 exception, in order to be able to re-set the condition expression
11058 when symbols change. */
11059
11060 /* An instance of this type is used to represent an Ada catchpoint
11061 breakpoint location. It includes a "struct bp_location" as a kind
11062 of base class; users downcast to "struct bp_location *" when
11063 needed. */
11064
11065 struct ada_catchpoint_location
11066 {
11067 /* The base class. */
11068 struct bp_location base;
11069
11070 /* The condition that checks whether the exception that was raised
11071 is the specific exception the user specified on catchpoint
11072 creation. */
11073 struct expression *excep_cond_expr;
11074 };
11075
11076 /* Implement the DTOR method in the bp_location_ops structure for all
11077 Ada exception catchpoint kinds. */
11078
11079 static void
11080 ada_catchpoint_location_dtor (struct bp_location *bl)
11081 {
11082 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11083
11084 xfree (al->excep_cond_expr);
11085 }
11086
11087 /* The vtable to be used in Ada catchpoint locations. */
11088
11089 static const struct bp_location_ops ada_catchpoint_location_ops =
11090 {
11091 ada_catchpoint_location_dtor
11092 };
11093
11094 /* An instance of this type is used to represent an Ada catchpoint.
11095 It includes a "struct breakpoint" as a kind of base class; users
11096 downcast to "struct breakpoint *" when needed. */
11097
11098 struct ada_catchpoint
11099 {
11100 /* The base class. */
11101 struct breakpoint base;
11102
11103 /* The name of the specific exception the user specified. */
11104 char *excep_string;
11105 };
11106
11107 /* Parse the exception condition string in the context of each of the
11108 catchpoint's locations, and store them for later evaluation. */
11109
11110 static void
11111 create_excep_cond_exprs (struct ada_catchpoint *c)
11112 {
11113 struct cleanup *old_chain;
11114 struct bp_location *bl;
11115 char *cond_string;
11116
11117 /* Nothing to do if there's no specific exception to catch. */
11118 if (c->excep_string == NULL)
11119 return;
11120
11121 /* Same if there are no locations... */
11122 if (c->base.loc == NULL)
11123 return;
11124
11125 /* Compute the condition expression in text form, from the specific
11126 expection we want to catch. */
11127 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11128 old_chain = make_cleanup (xfree, cond_string);
11129
11130 /* Iterate over all the catchpoint's locations, and parse an
11131 expression for each. */
11132 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11133 {
11134 struct ada_catchpoint_location *ada_loc
11135 = (struct ada_catchpoint_location *) bl;
11136 struct expression *exp = NULL;
11137
11138 if (!bl->shlib_disabled)
11139 {
11140 volatile struct gdb_exception e;
11141 char *s;
11142
11143 s = cond_string;
11144 TRY_CATCH (e, RETURN_MASK_ERROR)
11145 {
11146 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11147 }
11148 if (e.reason < 0)
11149 warning (_("failed to reevaluate internal exception condition "
11150 "for catchpoint %d: %s"),
11151 c->base.number, e.message);
11152 }
11153
11154 ada_loc->excep_cond_expr = exp;
11155 }
11156
11157 do_cleanups (old_chain);
11158 }
11159
11160 /* Implement the DTOR method in the breakpoint_ops structure for all
11161 exception catchpoint kinds. */
11162
11163 static void
11164 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11165 {
11166 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11167
11168 xfree (c->excep_string);
11169
11170 bkpt_breakpoint_ops.dtor (b);
11171 }
11172
11173 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11174 structure for all exception catchpoint kinds. */
11175
11176 static struct bp_location *
11177 allocate_location_exception (enum exception_catchpoint_kind ex,
11178 struct breakpoint *self)
11179 {
11180 struct ada_catchpoint_location *loc;
11181
11182 loc = XNEW (struct ada_catchpoint_location);
11183 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11184 loc->excep_cond_expr = NULL;
11185 return &loc->base;
11186 }
11187
11188 /* Implement the RE_SET method in the breakpoint_ops structure for all
11189 exception catchpoint kinds. */
11190
11191 static void
11192 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11193 {
11194 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11195
11196 /* Call the base class's method. This updates the catchpoint's
11197 locations. */
11198 bkpt_breakpoint_ops.re_set (b);
11199
11200 /* Reparse the exception conditional expressions. One for each
11201 location. */
11202 create_excep_cond_exprs (c);
11203 }
11204
11205 /* Returns true if we should stop for this breakpoint hit. If the
11206 user specified a specific exception, we only want to cause a stop
11207 if the program thrown that exception. */
11208
11209 static int
11210 should_stop_exception (const struct bp_location *bl)
11211 {
11212 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11213 const struct ada_catchpoint_location *ada_loc
11214 = (const struct ada_catchpoint_location *) bl;
11215 volatile struct gdb_exception ex;
11216 int stop;
11217
11218 /* With no specific exception, should always stop. */
11219 if (c->excep_string == NULL)
11220 return 1;
11221
11222 if (ada_loc->excep_cond_expr == NULL)
11223 {
11224 /* We will have a NULL expression if back when we were creating
11225 the expressions, this location's had failed to parse. */
11226 return 1;
11227 }
11228
11229 stop = 1;
11230 TRY_CATCH (ex, RETURN_MASK_ALL)
11231 {
11232 struct value *mark;
11233
11234 mark = value_mark ();
11235 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11236 value_free_to_mark (mark);
11237 }
11238 if (ex.reason < 0)
11239 exception_fprintf (gdb_stderr, ex,
11240 _("Error in testing exception condition:\n"));
11241 return stop;
11242 }
11243
11244 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11245 for all exception catchpoint kinds. */
11246
11247 static void
11248 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11249 {
11250 bs->stop = should_stop_exception (bs->bp_location_at);
11251 }
11252
11253 /* Implement the PRINT_IT method in the breakpoint_ops structure
11254 for all exception catchpoint kinds. */
11255
11256 static enum print_stop_action
11257 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11258 {
11259 struct ui_out *uiout = current_uiout;
11260 struct breakpoint *b = bs->breakpoint_at;
11261
11262 annotate_catchpoint (b->number);
11263
11264 if (ui_out_is_mi_like_p (uiout))
11265 {
11266 ui_out_field_string (uiout, "reason",
11267 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11268 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11269 }
11270
11271 ui_out_text (uiout,
11272 b->disposition == disp_del ? "\nTemporary catchpoint "
11273 : "\nCatchpoint ");
11274 ui_out_field_int (uiout, "bkptno", b->number);
11275 ui_out_text (uiout, ", ");
11276
11277 switch (ex)
11278 {
11279 case ex_catch_exception:
11280 case ex_catch_exception_unhandled:
11281 {
11282 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11283 char exception_name[256];
11284
11285 if (addr != 0)
11286 {
11287 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11288 exception_name [sizeof (exception_name) - 1] = '\0';
11289 }
11290 else
11291 {
11292 /* For some reason, we were unable to read the exception
11293 name. This could happen if the Runtime was compiled
11294 without debugging info, for instance. In that case,
11295 just replace the exception name by the generic string
11296 "exception" - it will read as "an exception" in the
11297 notification we are about to print. */
11298 memcpy (exception_name, "exception", sizeof ("exception"));
11299 }
11300 /* In the case of unhandled exception breakpoints, we print
11301 the exception name as "unhandled EXCEPTION_NAME", to make
11302 it clearer to the user which kind of catchpoint just got
11303 hit. We used ui_out_text to make sure that this extra
11304 info does not pollute the exception name in the MI case. */
11305 if (ex == ex_catch_exception_unhandled)
11306 ui_out_text (uiout, "unhandled ");
11307 ui_out_field_string (uiout, "exception-name", exception_name);
11308 }
11309 break;
11310 case ex_catch_assert:
11311 /* In this case, the name of the exception is not really
11312 important. Just print "failed assertion" to make it clearer
11313 that his program just hit an assertion-failure catchpoint.
11314 We used ui_out_text because this info does not belong in
11315 the MI output. */
11316 ui_out_text (uiout, "failed assertion");
11317 break;
11318 }
11319 ui_out_text (uiout, " at ");
11320 ada_find_printable_frame (get_current_frame ());
11321
11322 return PRINT_SRC_AND_LOC;
11323 }
11324
11325 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11326 for all exception catchpoint kinds. */
11327
11328 static void
11329 print_one_exception (enum exception_catchpoint_kind ex,
11330 struct breakpoint *b, struct bp_location **last_loc)
11331 {
11332 struct ui_out *uiout = current_uiout;
11333 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11334 struct value_print_options opts;
11335
11336 get_user_print_options (&opts);
11337 if (opts.addressprint)
11338 {
11339 annotate_field (4);
11340 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11341 }
11342
11343 annotate_field (5);
11344 *last_loc = b->loc;
11345 switch (ex)
11346 {
11347 case ex_catch_exception:
11348 if (c->excep_string != NULL)
11349 {
11350 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11351
11352 ui_out_field_string (uiout, "what", msg);
11353 xfree (msg);
11354 }
11355 else
11356 ui_out_field_string (uiout, "what", "all Ada exceptions");
11357
11358 break;
11359
11360 case ex_catch_exception_unhandled:
11361 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11362 break;
11363
11364 case ex_catch_assert:
11365 ui_out_field_string (uiout, "what", "failed Ada assertions");
11366 break;
11367
11368 default:
11369 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11370 break;
11371 }
11372 }
11373
11374 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11375 for all exception catchpoint kinds. */
11376
11377 static void
11378 print_mention_exception (enum exception_catchpoint_kind ex,
11379 struct breakpoint *b)
11380 {
11381 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11382 struct ui_out *uiout = current_uiout;
11383
11384 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11385 : _("Catchpoint "));
11386 ui_out_field_int (uiout, "bkptno", b->number);
11387 ui_out_text (uiout, ": ");
11388
11389 switch (ex)
11390 {
11391 case ex_catch_exception:
11392 if (c->excep_string != NULL)
11393 {
11394 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11395 struct cleanup *old_chain = make_cleanup (xfree, info);
11396
11397 ui_out_text (uiout, info);
11398 do_cleanups (old_chain);
11399 }
11400 else
11401 ui_out_text (uiout, _("all Ada exceptions"));
11402 break;
11403
11404 case ex_catch_exception_unhandled:
11405 ui_out_text (uiout, _("unhandled Ada exceptions"));
11406 break;
11407
11408 case ex_catch_assert:
11409 ui_out_text (uiout, _("failed Ada assertions"));
11410 break;
11411
11412 default:
11413 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11414 break;
11415 }
11416 }
11417
11418 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11419 for all exception catchpoint kinds. */
11420
11421 static void
11422 print_recreate_exception (enum exception_catchpoint_kind ex,
11423 struct breakpoint *b, struct ui_file *fp)
11424 {
11425 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11426
11427 switch (ex)
11428 {
11429 case ex_catch_exception:
11430 fprintf_filtered (fp, "catch exception");
11431 if (c->excep_string != NULL)
11432 fprintf_filtered (fp, " %s", c->excep_string);
11433 break;
11434
11435 case ex_catch_exception_unhandled:
11436 fprintf_filtered (fp, "catch exception unhandled");
11437 break;
11438
11439 case ex_catch_assert:
11440 fprintf_filtered (fp, "catch assert");
11441 break;
11442
11443 default:
11444 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11445 }
11446 print_recreate_thread (b, fp);
11447 }
11448
11449 /* Virtual table for "catch exception" breakpoints. */
11450
11451 static void
11452 dtor_catch_exception (struct breakpoint *b)
11453 {
11454 dtor_exception (ex_catch_exception, b);
11455 }
11456
11457 static struct bp_location *
11458 allocate_location_catch_exception (struct breakpoint *self)
11459 {
11460 return allocate_location_exception (ex_catch_exception, self);
11461 }
11462
11463 static void
11464 re_set_catch_exception (struct breakpoint *b)
11465 {
11466 re_set_exception (ex_catch_exception, b);
11467 }
11468
11469 static void
11470 check_status_catch_exception (bpstat bs)
11471 {
11472 check_status_exception (ex_catch_exception, bs);
11473 }
11474
11475 static enum print_stop_action
11476 print_it_catch_exception (bpstat bs)
11477 {
11478 return print_it_exception (ex_catch_exception, bs);
11479 }
11480
11481 static void
11482 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11483 {
11484 print_one_exception (ex_catch_exception, b, last_loc);
11485 }
11486
11487 static void
11488 print_mention_catch_exception (struct breakpoint *b)
11489 {
11490 print_mention_exception (ex_catch_exception, b);
11491 }
11492
11493 static void
11494 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11495 {
11496 print_recreate_exception (ex_catch_exception, b, fp);
11497 }
11498
11499 static struct breakpoint_ops catch_exception_breakpoint_ops;
11500
11501 /* Virtual table for "catch exception unhandled" breakpoints. */
11502
11503 static void
11504 dtor_catch_exception_unhandled (struct breakpoint *b)
11505 {
11506 dtor_exception (ex_catch_exception_unhandled, b);
11507 }
11508
11509 static struct bp_location *
11510 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11511 {
11512 return allocate_location_exception (ex_catch_exception_unhandled, self);
11513 }
11514
11515 static void
11516 re_set_catch_exception_unhandled (struct breakpoint *b)
11517 {
11518 re_set_exception (ex_catch_exception_unhandled, b);
11519 }
11520
11521 static void
11522 check_status_catch_exception_unhandled (bpstat bs)
11523 {
11524 check_status_exception (ex_catch_exception_unhandled, bs);
11525 }
11526
11527 static enum print_stop_action
11528 print_it_catch_exception_unhandled (bpstat bs)
11529 {
11530 return print_it_exception (ex_catch_exception_unhandled, bs);
11531 }
11532
11533 static void
11534 print_one_catch_exception_unhandled (struct breakpoint *b,
11535 struct bp_location **last_loc)
11536 {
11537 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11538 }
11539
11540 static void
11541 print_mention_catch_exception_unhandled (struct breakpoint *b)
11542 {
11543 print_mention_exception (ex_catch_exception_unhandled, b);
11544 }
11545
11546 static void
11547 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11548 struct ui_file *fp)
11549 {
11550 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11551 }
11552
11553 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11554
11555 /* Virtual table for "catch assert" breakpoints. */
11556
11557 static void
11558 dtor_catch_assert (struct breakpoint *b)
11559 {
11560 dtor_exception (ex_catch_assert, b);
11561 }
11562
11563 static struct bp_location *
11564 allocate_location_catch_assert (struct breakpoint *self)
11565 {
11566 return allocate_location_exception (ex_catch_assert, self);
11567 }
11568
11569 static void
11570 re_set_catch_assert (struct breakpoint *b)
11571 {
11572 return re_set_exception (ex_catch_assert, b);
11573 }
11574
11575 static void
11576 check_status_catch_assert (bpstat bs)
11577 {
11578 check_status_exception (ex_catch_assert, bs);
11579 }
11580
11581 static enum print_stop_action
11582 print_it_catch_assert (bpstat bs)
11583 {
11584 return print_it_exception (ex_catch_assert, bs);
11585 }
11586
11587 static void
11588 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11589 {
11590 print_one_exception (ex_catch_assert, b, last_loc);
11591 }
11592
11593 static void
11594 print_mention_catch_assert (struct breakpoint *b)
11595 {
11596 print_mention_exception (ex_catch_assert, b);
11597 }
11598
11599 static void
11600 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11601 {
11602 print_recreate_exception (ex_catch_assert, b, fp);
11603 }
11604
11605 static struct breakpoint_ops catch_assert_breakpoint_ops;
11606
11607 /* Return a newly allocated copy of the first space-separated token
11608 in ARGSP, and then adjust ARGSP to point immediately after that
11609 token.
11610
11611 Return NULL if ARGPS does not contain any more tokens. */
11612
11613 static char *
11614 ada_get_next_arg (char **argsp)
11615 {
11616 char *args = *argsp;
11617 char *end;
11618 char *result;
11619
11620 args = skip_spaces (args);
11621 if (args[0] == '\0')
11622 return NULL; /* No more arguments. */
11623
11624 /* Find the end of the current argument. */
11625
11626 end = skip_to_space (args);
11627
11628 /* Adjust ARGSP to point to the start of the next argument. */
11629
11630 *argsp = end;
11631
11632 /* Make a copy of the current argument and return it. */
11633
11634 result = xmalloc (end - args + 1);
11635 strncpy (result, args, end - args);
11636 result[end - args] = '\0';
11637
11638 return result;
11639 }
11640
11641 /* Split the arguments specified in a "catch exception" command.
11642 Set EX to the appropriate catchpoint type.
11643 Set EXCEP_STRING to the name of the specific exception if
11644 specified by the user.
11645 If a condition is found at the end of the arguments, the condition
11646 expression is stored in COND_STRING (memory must be deallocated
11647 after use). Otherwise COND_STRING is set to NULL. */
11648
11649 static void
11650 catch_ada_exception_command_split (char *args,
11651 enum exception_catchpoint_kind *ex,
11652 char **excep_string,
11653 char **cond_string)
11654 {
11655 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11656 char *exception_name;
11657 char *cond = NULL;
11658
11659 exception_name = ada_get_next_arg (&args);
11660 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11661 {
11662 /* This is not an exception name; this is the start of a condition
11663 expression for a catchpoint on all exceptions. So, "un-get"
11664 this token, and set exception_name to NULL. */
11665 xfree (exception_name);
11666 exception_name = NULL;
11667 args -= 2;
11668 }
11669 make_cleanup (xfree, exception_name);
11670
11671 /* Check to see if we have a condition. */
11672
11673 args = skip_spaces (args);
11674 if (strncmp (args, "if", 2) == 0
11675 && (isspace (args[2]) || args[2] == '\0'))
11676 {
11677 args += 2;
11678 args = skip_spaces (args);
11679
11680 if (args[0] == '\0')
11681 error (_("Condition missing after `if' keyword"));
11682 cond = xstrdup (args);
11683 make_cleanup (xfree, cond);
11684
11685 args += strlen (args);
11686 }
11687
11688 /* Check that we do not have any more arguments. Anything else
11689 is unexpected. */
11690
11691 if (args[0] != '\0')
11692 error (_("Junk at end of expression"));
11693
11694 discard_cleanups (old_chain);
11695
11696 if (exception_name == NULL)
11697 {
11698 /* Catch all exceptions. */
11699 *ex = ex_catch_exception;
11700 *excep_string = NULL;
11701 }
11702 else if (strcmp (exception_name, "unhandled") == 0)
11703 {
11704 /* Catch unhandled exceptions. */
11705 *ex = ex_catch_exception_unhandled;
11706 *excep_string = NULL;
11707 }
11708 else
11709 {
11710 /* Catch a specific exception. */
11711 *ex = ex_catch_exception;
11712 *excep_string = exception_name;
11713 }
11714 *cond_string = cond;
11715 }
11716
11717 /* Return the name of the symbol on which we should break in order to
11718 implement a catchpoint of the EX kind. */
11719
11720 static const char *
11721 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11722 {
11723 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11724
11725 gdb_assert (data->exception_info != NULL);
11726
11727 switch (ex)
11728 {
11729 case ex_catch_exception:
11730 return (data->exception_info->catch_exception_sym);
11731 break;
11732 case ex_catch_exception_unhandled:
11733 return (data->exception_info->catch_exception_unhandled_sym);
11734 break;
11735 case ex_catch_assert:
11736 return (data->exception_info->catch_assert_sym);
11737 break;
11738 default:
11739 internal_error (__FILE__, __LINE__,
11740 _("unexpected catchpoint kind (%d)"), ex);
11741 }
11742 }
11743
11744 /* Return the breakpoint ops "virtual table" used for catchpoints
11745 of the EX kind. */
11746
11747 static const struct breakpoint_ops *
11748 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11749 {
11750 switch (ex)
11751 {
11752 case ex_catch_exception:
11753 return (&catch_exception_breakpoint_ops);
11754 break;
11755 case ex_catch_exception_unhandled:
11756 return (&catch_exception_unhandled_breakpoint_ops);
11757 break;
11758 case ex_catch_assert:
11759 return (&catch_assert_breakpoint_ops);
11760 break;
11761 default:
11762 internal_error (__FILE__, __LINE__,
11763 _("unexpected catchpoint kind (%d)"), ex);
11764 }
11765 }
11766
11767 /* Return the condition that will be used to match the current exception
11768 being raised with the exception that the user wants to catch. This
11769 assumes that this condition is used when the inferior just triggered
11770 an exception catchpoint.
11771
11772 The string returned is a newly allocated string that needs to be
11773 deallocated later. */
11774
11775 static char *
11776 ada_exception_catchpoint_cond_string (const char *excep_string)
11777 {
11778 int i;
11779
11780 /* The standard exceptions are a special case. They are defined in
11781 runtime units that have been compiled without debugging info; if
11782 EXCEP_STRING is the not-fully-qualified name of a standard
11783 exception (e.g. "constraint_error") then, during the evaluation
11784 of the condition expression, the symbol lookup on this name would
11785 *not* return this standard exception. The catchpoint condition
11786 may then be set only on user-defined exceptions which have the
11787 same not-fully-qualified name (e.g. my_package.constraint_error).
11788
11789 To avoid this unexcepted behavior, these standard exceptions are
11790 systematically prefixed by "standard". This means that "catch
11791 exception constraint_error" is rewritten into "catch exception
11792 standard.constraint_error".
11793
11794 If an exception named contraint_error is defined in another package of
11795 the inferior program, then the only way to specify this exception as a
11796 breakpoint condition is to use its fully-qualified named:
11797 e.g. my_package.constraint_error. */
11798
11799 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11800 {
11801 if (strcmp (standard_exc [i], excep_string) == 0)
11802 {
11803 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11804 excep_string);
11805 }
11806 }
11807 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11808 }
11809
11810 /* Return the symtab_and_line that should be used to insert an exception
11811 catchpoint of the TYPE kind.
11812
11813 EXCEP_STRING should contain the name of a specific exception that
11814 the catchpoint should catch, or NULL otherwise.
11815
11816 ADDR_STRING returns the name of the function where the real
11817 breakpoint that implements the catchpoints is set, depending on the
11818 type of catchpoint we need to create. */
11819
11820 static struct symtab_and_line
11821 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11822 char **addr_string, const struct breakpoint_ops **ops)
11823 {
11824 const char *sym_name;
11825 struct symbol *sym;
11826
11827 /* First, find out which exception support info to use. */
11828 ada_exception_support_info_sniffer ();
11829
11830 /* Then lookup the function on which we will break in order to catch
11831 the Ada exceptions requested by the user. */
11832 sym_name = ada_exception_sym_name (ex);
11833 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11834
11835 /* We can assume that SYM is not NULL at this stage. If the symbol
11836 did not exist, ada_exception_support_info_sniffer would have
11837 raised an exception.
11838
11839 Also, ada_exception_support_info_sniffer should have already
11840 verified that SYM is a function symbol. */
11841 gdb_assert (sym != NULL);
11842 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11843
11844 /* Set ADDR_STRING. */
11845 *addr_string = xstrdup (sym_name);
11846
11847 /* Set OPS. */
11848 *ops = ada_exception_breakpoint_ops (ex);
11849
11850 return find_function_start_sal (sym, 1);
11851 }
11852
11853 /* Parse the arguments (ARGS) of the "catch exception" command.
11854
11855 If the user asked the catchpoint to catch only a specific
11856 exception, then save the exception name in ADDR_STRING.
11857
11858 If the user provided a condition, then set COND_STRING to
11859 that condition expression (the memory must be deallocated
11860 after use). Otherwise, set COND_STRING to NULL.
11861
11862 See ada_exception_sal for a description of all the remaining
11863 function arguments of this function. */
11864
11865 static struct symtab_and_line
11866 ada_decode_exception_location (char *args, char **addr_string,
11867 char **excep_string,
11868 char **cond_string,
11869 const struct breakpoint_ops **ops)
11870 {
11871 enum exception_catchpoint_kind ex;
11872
11873 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
11874 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11875 }
11876
11877 /* Create an Ada exception catchpoint. */
11878
11879 static void
11880 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11881 struct symtab_and_line sal,
11882 char *addr_string,
11883 char *excep_string,
11884 char *cond_string,
11885 const struct breakpoint_ops *ops,
11886 int tempflag,
11887 int from_tty)
11888 {
11889 struct ada_catchpoint *c;
11890
11891 c = XNEW (struct ada_catchpoint);
11892 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11893 ops, tempflag, from_tty);
11894 c->excep_string = excep_string;
11895 create_excep_cond_exprs (c);
11896 if (cond_string != NULL)
11897 set_breakpoint_condition (&c->base, cond_string, from_tty);
11898 install_breakpoint (0, &c->base, 1);
11899 }
11900
11901 /* Implement the "catch exception" command. */
11902
11903 static void
11904 catch_ada_exception_command (char *arg, int from_tty,
11905 struct cmd_list_element *command)
11906 {
11907 struct gdbarch *gdbarch = get_current_arch ();
11908 int tempflag;
11909 struct symtab_and_line sal;
11910 char *addr_string = NULL;
11911 char *excep_string = NULL;
11912 char *cond_string = NULL;
11913 const struct breakpoint_ops *ops = NULL;
11914
11915 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11916
11917 if (!arg)
11918 arg = "";
11919 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11920 &cond_string, &ops);
11921 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11922 excep_string, cond_string, ops,
11923 tempflag, from_tty);
11924 }
11925
11926 /* Assuming that ARGS contains the arguments of a "catch assert"
11927 command, parse those arguments and return a symtab_and_line object
11928 for a failed assertion catchpoint.
11929
11930 Set ADDR_STRING to the name of the function where the real
11931 breakpoint that implements the catchpoint is set.
11932
11933 If ARGS contains a condition, set COND_STRING to that condition
11934 (the memory needs to be deallocated after use). Otherwise, set
11935 COND_STRING to NULL. */
11936
11937 static struct symtab_and_line
11938 ada_decode_assert_location (char *args, char **addr_string,
11939 char **cond_string,
11940 const struct breakpoint_ops **ops)
11941 {
11942 args = skip_spaces (args);
11943
11944 /* Check whether a condition was provided. */
11945 if (strncmp (args, "if", 2) == 0
11946 && (isspace (args[2]) || args[2] == '\0'))
11947 {
11948 args += 2;
11949 args = skip_spaces (args);
11950 if (args[0] == '\0')
11951 error (_("condition missing after `if' keyword"));
11952 *cond_string = xstrdup (args);
11953 }
11954
11955 /* Otherwise, there should be no other argument at the end of
11956 the command. */
11957 else if (args[0] != '\0')
11958 error (_("Junk at end of arguments."));
11959
11960 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11961 }
11962
11963 /* Implement the "catch assert" command. */
11964
11965 static void
11966 catch_assert_command (char *arg, int from_tty,
11967 struct cmd_list_element *command)
11968 {
11969 struct gdbarch *gdbarch = get_current_arch ();
11970 int tempflag;
11971 struct symtab_and_line sal;
11972 char *addr_string = NULL;
11973 char *cond_string = NULL;
11974 const struct breakpoint_ops *ops = NULL;
11975
11976 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11977
11978 if (!arg)
11979 arg = "";
11980 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
11981 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11982 NULL, cond_string, ops, tempflag,
11983 from_tty);
11984 }
11985 /* Operators */
11986 /* Information about operators given special treatment in functions
11987 below. */
11988 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11989
11990 #define ADA_OPERATORS \
11991 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11992 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11993 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11994 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11995 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11996 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11997 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11998 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11999 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12000 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12001 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12002 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12003 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12004 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12005 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12006 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12007 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12008 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12009 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12010
12011 static void
12012 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12013 int *argsp)
12014 {
12015 switch (exp->elts[pc - 1].opcode)
12016 {
12017 default:
12018 operator_length_standard (exp, pc, oplenp, argsp);
12019 break;
12020
12021 #define OP_DEFN(op, len, args, binop) \
12022 case op: *oplenp = len; *argsp = args; break;
12023 ADA_OPERATORS;
12024 #undef OP_DEFN
12025
12026 case OP_AGGREGATE:
12027 *oplenp = 3;
12028 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12029 break;
12030
12031 case OP_CHOICES:
12032 *oplenp = 3;
12033 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12034 break;
12035 }
12036 }
12037
12038 /* Implementation of the exp_descriptor method operator_check. */
12039
12040 static int
12041 ada_operator_check (struct expression *exp, int pos,
12042 int (*objfile_func) (struct objfile *objfile, void *data),
12043 void *data)
12044 {
12045 const union exp_element *const elts = exp->elts;
12046 struct type *type = NULL;
12047
12048 switch (elts[pos].opcode)
12049 {
12050 case UNOP_IN_RANGE:
12051 case UNOP_QUAL:
12052 type = elts[pos + 1].type;
12053 break;
12054
12055 default:
12056 return operator_check_standard (exp, pos, objfile_func, data);
12057 }
12058
12059 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12060
12061 if (type && TYPE_OBJFILE (type)
12062 && (*objfile_func) (TYPE_OBJFILE (type), data))
12063 return 1;
12064
12065 return 0;
12066 }
12067
12068 static char *
12069 ada_op_name (enum exp_opcode opcode)
12070 {
12071 switch (opcode)
12072 {
12073 default:
12074 return op_name_standard (opcode);
12075
12076 #define OP_DEFN(op, len, args, binop) case op: return #op;
12077 ADA_OPERATORS;
12078 #undef OP_DEFN
12079
12080 case OP_AGGREGATE:
12081 return "OP_AGGREGATE";
12082 case OP_CHOICES:
12083 return "OP_CHOICES";
12084 case OP_NAME:
12085 return "OP_NAME";
12086 }
12087 }
12088
12089 /* As for operator_length, but assumes PC is pointing at the first
12090 element of the operator, and gives meaningful results only for the
12091 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12092
12093 static void
12094 ada_forward_operator_length (struct expression *exp, int pc,
12095 int *oplenp, int *argsp)
12096 {
12097 switch (exp->elts[pc].opcode)
12098 {
12099 default:
12100 *oplenp = *argsp = 0;
12101 break;
12102
12103 #define OP_DEFN(op, len, args, binop) \
12104 case op: *oplenp = len; *argsp = args; break;
12105 ADA_OPERATORS;
12106 #undef OP_DEFN
12107
12108 case OP_AGGREGATE:
12109 *oplenp = 3;
12110 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12111 break;
12112
12113 case OP_CHOICES:
12114 *oplenp = 3;
12115 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12116 break;
12117
12118 case OP_STRING:
12119 case OP_NAME:
12120 {
12121 int len = longest_to_int (exp->elts[pc + 1].longconst);
12122
12123 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12124 *argsp = 0;
12125 break;
12126 }
12127 }
12128 }
12129
12130 static int
12131 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12132 {
12133 enum exp_opcode op = exp->elts[elt].opcode;
12134 int oplen, nargs;
12135 int pc = elt;
12136 int i;
12137
12138 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12139
12140 switch (op)
12141 {
12142 /* Ada attributes ('Foo). */
12143 case OP_ATR_FIRST:
12144 case OP_ATR_LAST:
12145 case OP_ATR_LENGTH:
12146 case OP_ATR_IMAGE:
12147 case OP_ATR_MAX:
12148 case OP_ATR_MIN:
12149 case OP_ATR_MODULUS:
12150 case OP_ATR_POS:
12151 case OP_ATR_SIZE:
12152 case OP_ATR_TAG:
12153 case OP_ATR_VAL:
12154 break;
12155
12156 case UNOP_IN_RANGE:
12157 case UNOP_QUAL:
12158 /* XXX: gdb_sprint_host_address, type_sprint */
12159 fprintf_filtered (stream, _("Type @"));
12160 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12161 fprintf_filtered (stream, " (");
12162 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12163 fprintf_filtered (stream, ")");
12164 break;
12165 case BINOP_IN_BOUNDS:
12166 fprintf_filtered (stream, " (%d)",
12167 longest_to_int (exp->elts[pc + 2].longconst));
12168 break;
12169 case TERNOP_IN_RANGE:
12170 break;
12171
12172 case OP_AGGREGATE:
12173 case OP_OTHERS:
12174 case OP_DISCRETE_RANGE:
12175 case OP_POSITIONAL:
12176 case OP_CHOICES:
12177 break;
12178
12179 case OP_NAME:
12180 case OP_STRING:
12181 {
12182 char *name = &exp->elts[elt + 2].string;
12183 int len = longest_to_int (exp->elts[elt + 1].longconst);
12184
12185 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12186 break;
12187 }
12188
12189 default:
12190 return dump_subexp_body_standard (exp, stream, elt);
12191 }
12192
12193 elt += oplen;
12194 for (i = 0; i < nargs; i += 1)
12195 elt = dump_subexp (exp, stream, elt);
12196
12197 return elt;
12198 }
12199
12200 /* The Ada extension of print_subexp (q.v.). */
12201
12202 static void
12203 ada_print_subexp (struct expression *exp, int *pos,
12204 struct ui_file *stream, enum precedence prec)
12205 {
12206 int oplen, nargs, i;
12207 int pc = *pos;
12208 enum exp_opcode op = exp->elts[pc].opcode;
12209
12210 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12211
12212 *pos += oplen;
12213 switch (op)
12214 {
12215 default:
12216 *pos -= oplen;
12217 print_subexp_standard (exp, pos, stream, prec);
12218 return;
12219
12220 case OP_VAR_VALUE:
12221 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12222 return;
12223
12224 case BINOP_IN_BOUNDS:
12225 /* XXX: sprint_subexp */
12226 print_subexp (exp, pos, stream, PREC_SUFFIX);
12227 fputs_filtered (" in ", stream);
12228 print_subexp (exp, pos, stream, PREC_SUFFIX);
12229 fputs_filtered ("'range", stream);
12230 if (exp->elts[pc + 1].longconst > 1)
12231 fprintf_filtered (stream, "(%ld)",
12232 (long) exp->elts[pc + 1].longconst);
12233 return;
12234
12235 case TERNOP_IN_RANGE:
12236 if (prec >= PREC_EQUAL)
12237 fputs_filtered ("(", stream);
12238 /* XXX: sprint_subexp */
12239 print_subexp (exp, pos, stream, PREC_SUFFIX);
12240 fputs_filtered (" in ", stream);
12241 print_subexp (exp, pos, stream, PREC_EQUAL);
12242 fputs_filtered (" .. ", stream);
12243 print_subexp (exp, pos, stream, PREC_EQUAL);
12244 if (prec >= PREC_EQUAL)
12245 fputs_filtered (")", stream);
12246 return;
12247
12248 case OP_ATR_FIRST:
12249 case OP_ATR_LAST:
12250 case OP_ATR_LENGTH:
12251 case OP_ATR_IMAGE:
12252 case OP_ATR_MAX:
12253 case OP_ATR_MIN:
12254 case OP_ATR_MODULUS:
12255 case OP_ATR_POS:
12256 case OP_ATR_SIZE:
12257 case OP_ATR_TAG:
12258 case OP_ATR_VAL:
12259 if (exp->elts[*pos].opcode == OP_TYPE)
12260 {
12261 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12262 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12263 *pos += 3;
12264 }
12265 else
12266 print_subexp (exp, pos, stream, PREC_SUFFIX);
12267 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12268 if (nargs > 1)
12269 {
12270 int tem;
12271
12272 for (tem = 1; tem < nargs; tem += 1)
12273 {
12274 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12275 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12276 }
12277 fputs_filtered (")", stream);
12278 }
12279 return;
12280
12281 case UNOP_QUAL:
12282 type_print (exp->elts[pc + 1].type, "", stream, 0);
12283 fputs_filtered ("'(", stream);
12284 print_subexp (exp, pos, stream, PREC_PREFIX);
12285 fputs_filtered (")", stream);
12286 return;
12287
12288 case UNOP_IN_RANGE:
12289 /* XXX: sprint_subexp */
12290 print_subexp (exp, pos, stream, PREC_SUFFIX);
12291 fputs_filtered (" in ", stream);
12292 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12293 return;
12294
12295 case OP_DISCRETE_RANGE:
12296 print_subexp (exp, pos, stream, PREC_SUFFIX);
12297 fputs_filtered ("..", stream);
12298 print_subexp (exp, pos, stream, PREC_SUFFIX);
12299 return;
12300
12301 case OP_OTHERS:
12302 fputs_filtered ("others => ", stream);
12303 print_subexp (exp, pos, stream, PREC_SUFFIX);
12304 return;
12305
12306 case OP_CHOICES:
12307 for (i = 0; i < nargs-1; i += 1)
12308 {
12309 if (i > 0)
12310 fputs_filtered ("|", stream);
12311 print_subexp (exp, pos, stream, PREC_SUFFIX);
12312 }
12313 fputs_filtered (" => ", stream);
12314 print_subexp (exp, pos, stream, PREC_SUFFIX);
12315 return;
12316
12317 case OP_POSITIONAL:
12318 print_subexp (exp, pos, stream, PREC_SUFFIX);
12319 return;
12320
12321 case OP_AGGREGATE:
12322 fputs_filtered ("(", stream);
12323 for (i = 0; i < nargs; i += 1)
12324 {
12325 if (i > 0)
12326 fputs_filtered (", ", stream);
12327 print_subexp (exp, pos, stream, PREC_SUFFIX);
12328 }
12329 fputs_filtered (")", stream);
12330 return;
12331 }
12332 }
12333
12334 /* Table mapping opcodes into strings for printing operators
12335 and precedences of the operators. */
12336
12337 static const struct op_print ada_op_print_tab[] = {
12338 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12339 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12340 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12341 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12342 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12343 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12344 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12345 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12346 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12347 {">=", BINOP_GEQ, PREC_ORDER, 0},
12348 {">", BINOP_GTR, PREC_ORDER, 0},
12349 {"<", BINOP_LESS, PREC_ORDER, 0},
12350 {">>", BINOP_RSH, PREC_SHIFT, 0},
12351 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12352 {"+", BINOP_ADD, PREC_ADD, 0},
12353 {"-", BINOP_SUB, PREC_ADD, 0},
12354 {"&", BINOP_CONCAT, PREC_ADD, 0},
12355 {"*", BINOP_MUL, PREC_MUL, 0},
12356 {"/", BINOP_DIV, PREC_MUL, 0},
12357 {"rem", BINOP_REM, PREC_MUL, 0},
12358 {"mod", BINOP_MOD, PREC_MUL, 0},
12359 {"**", BINOP_EXP, PREC_REPEAT, 0},
12360 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12361 {"-", UNOP_NEG, PREC_PREFIX, 0},
12362 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12363 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12364 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12365 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12366 {".all", UNOP_IND, PREC_SUFFIX, 1},
12367 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12368 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12369 {NULL, 0, 0, 0}
12370 };
12371 \f
12372 enum ada_primitive_types {
12373 ada_primitive_type_int,
12374 ada_primitive_type_long,
12375 ada_primitive_type_short,
12376 ada_primitive_type_char,
12377 ada_primitive_type_float,
12378 ada_primitive_type_double,
12379 ada_primitive_type_void,
12380 ada_primitive_type_long_long,
12381 ada_primitive_type_long_double,
12382 ada_primitive_type_natural,
12383 ada_primitive_type_positive,
12384 ada_primitive_type_system_address,
12385 nr_ada_primitive_types
12386 };
12387
12388 static void
12389 ada_language_arch_info (struct gdbarch *gdbarch,
12390 struct language_arch_info *lai)
12391 {
12392 const struct builtin_type *builtin = builtin_type (gdbarch);
12393
12394 lai->primitive_type_vector
12395 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12396 struct type *);
12397
12398 lai->primitive_type_vector [ada_primitive_type_int]
12399 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12400 0, "integer");
12401 lai->primitive_type_vector [ada_primitive_type_long]
12402 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12403 0, "long_integer");
12404 lai->primitive_type_vector [ada_primitive_type_short]
12405 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12406 0, "short_integer");
12407 lai->string_char_type
12408 = lai->primitive_type_vector [ada_primitive_type_char]
12409 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12410 lai->primitive_type_vector [ada_primitive_type_float]
12411 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12412 "float", NULL);
12413 lai->primitive_type_vector [ada_primitive_type_double]
12414 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12415 "long_float", NULL);
12416 lai->primitive_type_vector [ada_primitive_type_long_long]
12417 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12418 0, "long_long_integer");
12419 lai->primitive_type_vector [ada_primitive_type_long_double]
12420 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12421 "long_long_float", NULL);
12422 lai->primitive_type_vector [ada_primitive_type_natural]
12423 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12424 0, "natural");
12425 lai->primitive_type_vector [ada_primitive_type_positive]
12426 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12427 0, "positive");
12428 lai->primitive_type_vector [ada_primitive_type_void]
12429 = builtin->builtin_void;
12430
12431 lai->primitive_type_vector [ada_primitive_type_system_address]
12432 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12433 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12434 = "system__address";
12435
12436 lai->bool_type_symbol = NULL;
12437 lai->bool_type_default = builtin->builtin_bool;
12438 }
12439 \f
12440 /* Language vector */
12441
12442 /* Not really used, but needed in the ada_language_defn. */
12443
12444 static void
12445 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12446 {
12447 ada_emit_char (c, type, stream, quoter, 1);
12448 }
12449
12450 static int
12451 parse (void)
12452 {
12453 warnings_issued = 0;
12454 return ada_parse ();
12455 }
12456
12457 static const struct exp_descriptor ada_exp_descriptor = {
12458 ada_print_subexp,
12459 ada_operator_length,
12460 ada_operator_check,
12461 ada_op_name,
12462 ada_dump_subexp_body,
12463 ada_evaluate_subexp
12464 };
12465
12466 /* Implement the "la_get_symbol_name_cmp" language_defn method
12467 for Ada. */
12468
12469 static symbol_name_cmp_ftype
12470 ada_get_symbol_name_cmp (const char *lookup_name)
12471 {
12472 if (should_use_wild_match (lookup_name))
12473 return wild_match;
12474 else
12475 return compare_names;
12476 }
12477
12478 /* Implement the "la_read_var_value" language_defn method for Ada. */
12479
12480 static struct value *
12481 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12482 {
12483 struct block *frame_block = NULL;
12484 struct symbol *renaming_sym = NULL;
12485
12486 /* The only case where default_read_var_value is not sufficient
12487 is when VAR is a renaming... */
12488 if (frame)
12489 frame_block = get_frame_block (frame, NULL);
12490 if (frame_block)
12491 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12492 if (renaming_sym != NULL)
12493 return ada_read_renaming_var_value (renaming_sym, frame_block);
12494
12495 /* This is a typical case where we expect the default_read_var_value
12496 function to work. */
12497 return default_read_var_value (var, frame);
12498 }
12499
12500 const struct language_defn ada_language_defn = {
12501 "ada", /* Language name */
12502 language_ada,
12503 range_check_off,
12504 type_check_off,
12505 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12506 that's not quite what this means. */
12507 array_row_major,
12508 macro_expansion_no,
12509 &ada_exp_descriptor,
12510 parse,
12511 ada_error,
12512 resolve,
12513 ada_printchar, /* Print a character constant */
12514 ada_printstr, /* Function to print string constant */
12515 emit_char, /* Function to print single char (not used) */
12516 ada_print_type, /* Print a type using appropriate syntax */
12517 ada_print_typedef, /* Print a typedef using appropriate syntax */
12518 ada_val_print, /* Print a value using appropriate syntax */
12519 ada_value_print, /* Print a top-level value */
12520 ada_read_var_value, /* la_read_var_value */
12521 NULL, /* Language specific skip_trampoline */
12522 NULL, /* name_of_this */
12523 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12524 basic_lookup_transparent_type, /* lookup_transparent_type */
12525 ada_la_decode, /* Language specific symbol demangler */
12526 NULL, /* Language specific
12527 class_name_from_physname */
12528 ada_op_print_tab, /* expression operators for printing */
12529 0, /* c-style arrays */
12530 1, /* String lower bound */
12531 ada_get_gdb_completer_word_break_characters,
12532 ada_make_symbol_completion_list,
12533 ada_language_arch_info,
12534 ada_print_array_index,
12535 default_pass_by_reference,
12536 c_get_string,
12537 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12538 ada_iterate_over_symbols,
12539 LANG_MAGIC
12540 };
12541
12542 /* Provide a prototype to silence -Wmissing-prototypes. */
12543 extern initialize_file_ftype _initialize_ada_language;
12544
12545 /* Command-list for the "set/show ada" prefix command. */
12546 static struct cmd_list_element *set_ada_list;
12547 static struct cmd_list_element *show_ada_list;
12548
12549 /* Implement the "set ada" prefix command. */
12550
12551 static void
12552 set_ada_command (char *arg, int from_tty)
12553 {
12554 printf_unfiltered (_(\
12555 "\"set ada\" must be followed by the name of a setting.\n"));
12556 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12557 }
12558
12559 /* Implement the "show ada" prefix command. */
12560
12561 static void
12562 show_ada_command (char *args, int from_tty)
12563 {
12564 cmd_show_list (show_ada_list, from_tty, "");
12565 }
12566
12567 static void
12568 initialize_ada_catchpoint_ops (void)
12569 {
12570 struct breakpoint_ops *ops;
12571
12572 initialize_breakpoint_ops ();
12573
12574 ops = &catch_exception_breakpoint_ops;
12575 *ops = bkpt_breakpoint_ops;
12576 ops->dtor = dtor_catch_exception;
12577 ops->allocate_location = allocate_location_catch_exception;
12578 ops->re_set = re_set_catch_exception;
12579 ops->check_status = check_status_catch_exception;
12580 ops->print_it = print_it_catch_exception;
12581 ops->print_one = print_one_catch_exception;
12582 ops->print_mention = print_mention_catch_exception;
12583 ops->print_recreate = print_recreate_catch_exception;
12584
12585 ops = &catch_exception_unhandled_breakpoint_ops;
12586 *ops = bkpt_breakpoint_ops;
12587 ops->dtor = dtor_catch_exception_unhandled;
12588 ops->allocate_location = allocate_location_catch_exception_unhandled;
12589 ops->re_set = re_set_catch_exception_unhandled;
12590 ops->check_status = check_status_catch_exception_unhandled;
12591 ops->print_it = print_it_catch_exception_unhandled;
12592 ops->print_one = print_one_catch_exception_unhandled;
12593 ops->print_mention = print_mention_catch_exception_unhandled;
12594 ops->print_recreate = print_recreate_catch_exception_unhandled;
12595
12596 ops = &catch_assert_breakpoint_ops;
12597 *ops = bkpt_breakpoint_ops;
12598 ops->dtor = dtor_catch_assert;
12599 ops->allocate_location = allocate_location_catch_assert;
12600 ops->re_set = re_set_catch_assert;
12601 ops->check_status = check_status_catch_assert;
12602 ops->print_it = print_it_catch_assert;
12603 ops->print_one = print_one_catch_assert;
12604 ops->print_mention = print_mention_catch_assert;
12605 ops->print_recreate = print_recreate_catch_assert;
12606 }
12607
12608 void
12609 _initialize_ada_language (void)
12610 {
12611 add_language (&ada_language_defn);
12612
12613 initialize_ada_catchpoint_ops ();
12614
12615 add_prefix_cmd ("ada", no_class, set_ada_command,
12616 _("Prefix command for changing Ada-specfic settings"),
12617 &set_ada_list, "set ada ", 0, &setlist);
12618
12619 add_prefix_cmd ("ada", no_class, show_ada_command,
12620 _("Generic command for showing Ada-specific settings."),
12621 &show_ada_list, "show ada ", 0, &showlist);
12622
12623 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12624 &trust_pad_over_xvs, _("\
12625 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12626 Show whether an optimization trusting PAD types over XVS types is activated"),
12627 _("\
12628 This is related to the encoding used by the GNAT compiler. The debugger\n\
12629 should normally trust the contents of PAD types, but certain older versions\n\
12630 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12631 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12632 work around this bug. It is always safe to turn this option \"off\", but\n\
12633 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12634 this option to \"off\" unless necessary."),
12635 NULL, NULL, &set_ada_list, &show_ada_list);
12636
12637 add_catch_command ("exception", _("\
12638 Catch Ada exceptions, when raised.\n\
12639 With an argument, catch only exceptions with the given name."),
12640 catch_ada_exception_command,
12641 NULL,
12642 CATCH_PERMANENT,
12643 CATCH_TEMPORARY);
12644 add_catch_command ("assert", _("\
12645 Catch failed Ada assertions, when raised.\n\
12646 With an argument, catch only exceptions with the given name."),
12647 catch_assert_command,
12648 NULL,
12649 CATCH_PERMANENT,
12650 CATCH_TEMPORARY);
12651
12652 varsize_limit = 65536;
12653
12654 obstack_init (&symbol_list_obstack);
12655
12656 decoded_names_store = htab_create_alloc
12657 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12658 NULL, xcalloc, xfree);
12659
12660 /* Setup per-inferior data. */
12661 observer_attach_inferior_exit (ada_inferior_exit);
12662 ada_inferior_data
12663 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12664 }
This page took 0.286781 seconds and 5 git commands to generate.