gdb: New API for tracking innermost block
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
231 static int ada_resolve_function (struct block_symbol *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static int ada_is_direct_array_type (struct type *);
236
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *,
245 int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271
272 static struct type *ada_find_any_type (const char *name);
273
274 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
277 \f
278
279 /* The result of a symbol lookup to be stored in our symbol cache. */
280
281 struct cache_entry
282 {
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
286 domain_enum domain;
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295 };
296
297 /* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306 #define HASH_SIZE 1009
307
308 struct ada_symbol_cache
309 {
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315 };
316
317 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
318
319 /* Maximum-sized dynamic type. */
320 static unsigned int varsize_limit;
321
322 static const char ada_completer_word_break_characters[] =
323 #ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325 #else
326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
327 #endif
328
329 /* The name of the symbol to use to get the name of the main subprogram. */
330 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
331 = "__gnat_ada_main_program_name";
332
333 /* Limit on the number of warnings to raise per expression evaluation. */
334 static int warning_limit = 2;
335
336 /* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338 static int warnings_issued = 0;
339
340 static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342 };
343
344 static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346 };
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (const char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (const char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static const char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
984
985 static char *
986 ada_encode_1 (const char *decoded, bool throw_errors)
987 {
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
990 const char *p;
991 int k;
992
993 if (decoded == NULL)
994 return NULL;
995
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
998
999 k = 0;
1000 for (p = decoded; *p != '\0'; p += 1)
1001 {
1002 if (*p == '.')
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
1007 else if (*p == '"')
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1012 mapping->encoded != NULL
1013 && !startswith (p, mapping->decoded); mapping += 1)
1014 ;
1015 if (mapping->encoded == NULL)
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
1026 else
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
1031 }
1032
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
1035 }
1036
1037 /* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040 char *
1041 ada_encode (const char *decoded)
1042 {
1043 return ada_encode_1 (decoded, true);
1044 }
1045
1046 /* Return NAME folded to lower case, or, if surrounded by single
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
1050 char *
1051 ada_fold_name (const char *name)
1052 {
1053 static char *fold_buffer = NULL;
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1058
1059 if (name[0] == '\'')
1060 {
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
1063 }
1064 else
1065 {
1066 int i;
1067
1068 for (i = 0; i <= len; i += 1)
1069 fold_buffer[i] = tolower (name[i]);
1070 }
1071
1072 return fold_buffer;
1073 }
1074
1075 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077 static int
1078 is_lower_alphanum (const char c)
1079 {
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081 }
1082
1083 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
1090
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095 static void
1096 ada_remove_trailing_digits (const char *encoded, int *len)
1097 {
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
1101
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1109 *len = i - 2;
1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1111 *len = i - 1;
1112 }
1113 }
1114
1115 /* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118 static void
1119 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120 {
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
1126 the 'P' suffix. The second calls the first one after handling
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135 }
1136
1137 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139 static void
1140 ada_remove_Xbn_suffix (const char *encoded, int *len)
1141 {
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155 }
1156
1157 /* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
1160
1161 The resulting string is valid until the next call of ada_decode.
1162 If the string is unchanged by decoding, the original string pointer
1163 is returned. */
1164
1165 const char *
1166 ada_decode (const char *encoded)
1167 {
1168 int i, j;
1169 int len0;
1170 const char *p;
1171 char *decoded;
1172 int at_start_name;
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
1175
1176 /* The name of the Ada main procedure starts with "_ada_".
1177 This prefix is not part of the decoded name, so skip this part
1178 if we see this prefix. */
1179 if (startswith (encoded, "_ada_"))
1180 encoded += 5;
1181
1182 /* If the name starts with '_', then it is not a properly encoded
1183 name, so do not attempt to decode it. Similarly, if the name
1184 starts with '<', the name should not be decoded. */
1185 if (encoded[0] == '_' || encoded[0] == '<')
1186 goto Suppress;
1187
1188 len0 = strlen (encoded);
1189
1190 ada_remove_trailing_digits (encoded, &len0);
1191 ada_remove_po_subprogram_suffix (encoded, &len0);
1192
1193 /* Remove the ___X.* suffix if present. Do not forget to verify that
1194 the suffix is located before the current "end" of ENCODED. We want
1195 to avoid re-matching parts of ENCODED that have previously been
1196 marked as discarded (by decrementing LEN0). */
1197 p = strstr (encoded, "___");
1198 if (p != NULL && p - encoded < len0 - 3)
1199 {
1200 if (p[3] == 'X')
1201 len0 = p - encoded;
1202 else
1203 goto Suppress;
1204 }
1205
1206 /* Remove any trailing TKB suffix. It tells us that this symbol
1207 is for the body of a task, but that information does not actually
1208 appear in the decoded name. */
1209
1210 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1211 len0 -= 3;
1212
1213 /* Remove any trailing TB suffix. The TB suffix is slightly different
1214 from the TKB suffix because it is used for non-anonymous task
1215 bodies. */
1216
1217 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1218 len0 -= 2;
1219
1220 /* Remove trailing "B" suffixes. */
1221 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1222
1223 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1224 len0 -= 1;
1225
1226 /* Make decoded big enough for possible expansion by operator name. */
1227
1228 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1229 decoded = decoding_buffer;
1230
1231 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1232
1233 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1234 {
1235 i = len0 - 2;
1236 while ((i >= 0 && isdigit (encoded[i]))
1237 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1238 i -= 1;
1239 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1240 len0 = i - 1;
1241 else if (encoded[i] == '$')
1242 len0 = i;
1243 }
1244
1245 /* The first few characters that are not alphabetic are not part
1246 of any encoding we use, so we can copy them over verbatim. */
1247
1248 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1249 decoded[j] = encoded[i];
1250
1251 at_start_name = 1;
1252 while (i < len0)
1253 {
1254 /* Is this a symbol function? */
1255 if (at_start_name && encoded[i] == 'O')
1256 {
1257 int k;
1258
1259 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1260 {
1261 int op_len = strlen (ada_opname_table[k].encoded);
1262 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1263 op_len - 1) == 0)
1264 && !isalnum (encoded[i + op_len]))
1265 {
1266 strcpy (decoded + j, ada_opname_table[k].decoded);
1267 at_start_name = 0;
1268 i += op_len;
1269 j += strlen (ada_opname_table[k].decoded);
1270 break;
1271 }
1272 }
1273 if (ada_opname_table[k].encoded != NULL)
1274 continue;
1275 }
1276 at_start_name = 0;
1277
1278 /* Replace "TK__" with "__", which will eventually be translated
1279 into "." (just below). */
1280
1281 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1282 i += 2;
1283
1284 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1285 be translated into "." (just below). These are internal names
1286 generated for anonymous blocks inside which our symbol is nested. */
1287
1288 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1289 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1290 && isdigit (encoded [i+4]))
1291 {
1292 int k = i + 5;
1293
1294 while (k < len0 && isdigit (encoded[k]))
1295 k++; /* Skip any extra digit. */
1296
1297 /* Double-check that the "__B_{DIGITS}+" sequence we found
1298 is indeed followed by "__". */
1299 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1300 i = k;
1301 }
1302
1303 /* Remove _E{DIGITS}+[sb] */
1304
1305 /* Just as for protected object subprograms, there are 2 categories
1306 of subprograms created by the compiler for each entry. The first
1307 one implements the actual entry code, and has a suffix following
1308 the convention above; the second one implements the barrier and
1309 uses the same convention as above, except that the 'E' is replaced
1310 by a 'B'.
1311
1312 Just as above, we do not decode the name of barrier functions
1313 to give the user a clue that the code he is debugging has been
1314 internally generated. */
1315
1316 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1317 && isdigit (encoded[i+2]))
1318 {
1319 int k = i + 3;
1320
1321 while (k < len0 && isdigit (encoded[k]))
1322 k++;
1323
1324 if (k < len0
1325 && (encoded[k] == 'b' || encoded[k] == 's'))
1326 {
1327 k++;
1328 /* Just as an extra precaution, make sure that if this
1329 suffix is followed by anything else, it is a '_'.
1330 Otherwise, we matched this sequence by accident. */
1331 if (k == len0
1332 || (k < len0 && encoded[k] == '_'))
1333 i = k;
1334 }
1335 }
1336
1337 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1338 the GNAT front-end in protected object subprograms. */
1339
1340 if (i < len0 + 3
1341 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1342 {
1343 /* Backtrack a bit up until we reach either the begining of
1344 the encoded name, or "__". Make sure that we only find
1345 digits or lowercase characters. */
1346 const char *ptr = encoded + i - 1;
1347
1348 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1349 ptr--;
1350 if (ptr < encoded
1351 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1352 i++;
1353 }
1354
1355 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1356 {
1357 /* This is a X[bn]* sequence not separated from the previous
1358 part of the name with a non-alpha-numeric character (in other
1359 words, immediately following an alpha-numeric character), then
1360 verify that it is placed at the end of the encoded name. If
1361 not, then the encoding is not valid and we should abort the
1362 decoding. Otherwise, just skip it, it is used in body-nested
1363 package names. */
1364 do
1365 i += 1;
1366 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1367 if (i < len0)
1368 goto Suppress;
1369 }
1370 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1371 {
1372 /* Replace '__' by '.'. */
1373 decoded[j] = '.';
1374 at_start_name = 1;
1375 i += 2;
1376 j += 1;
1377 }
1378 else
1379 {
1380 /* It's a character part of the decoded name, so just copy it
1381 over. */
1382 decoded[j] = encoded[i];
1383 i += 1;
1384 j += 1;
1385 }
1386 }
1387 decoded[j] = '\000';
1388
1389 /* Decoded names should never contain any uppercase character.
1390 Double-check this, and abort the decoding if we find one. */
1391
1392 for (i = 0; decoded[i] != '\0'; i += 1)
1393 if (isupper (decoded[i]) || decoded[i] == ' ')
1394 goto Suppress;
1395
1396 if (strcmp (decoded, encoded) == 0)
1397 return encoded;
1398 else
1399 return decoded;
1400
1401 Suppress:
1402 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1403 decoded = decoding_buffer;
1404 if (encoded[0] == '<')
1405 strcpy (decoded, encoded);
1406 else
1407 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1408 return decoded;
1409
1410 }
1411
1412 /* Table for keeping permanent unique copies of decoded names. Once
1413 allocated, names in this table are never released. While this is a
1414 storage leak, it should not be significant unless there are massive
1415 changes in the set of decoded names in successive versions of a
1416 symbol table loaded during a single session. */
1417 static struct htab *decoded_names_store;
1418
1419 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1420 in the language-specific part of GSYMBOL, if it has not been
1421 previously computed. Tries to save the decoded name in the same
1422 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1423 in any case, the decoded symbol has a lifetime at least that of
1424 GSYMBOL).
1425 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1426 const, but nevertheless modified to a semantically equivalent form
1427 when a decoded name is cached in it. */
1428
1429 const char *
1430 ada_decode_symbol (const struct general_symbol_info *arg)
1431 {
1432 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1433 const char **resultp =
1434 &gsymbol->language_specific.demangled_name;
1435
1436 if (!gsymbol->ada_mangled)
1437 {
1438 const char *decoded = ada_decode (gsymbol->name);
1439 struct obstack *obstack = gsymbol->language_specific.obstack;
1440
1441 gsymbol->ada_mangled = 1;
1442
1443 if (obstack != NULL)
1444 *resultp
1445 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1446 else
1447 {
1448 /* Sometimes, we can't find a corresponding objfile, in
1449 which case, we put the result on the heap. Since we only
1450 decode when needed, we hope this usually does not cause a
1451 significant memory leak (FIXME). */
1452
1453 char **slot = (char **) htab_find_slot (decoded_names_store,
1454 decoded, INSERT);
1455
1456 if (*slot == NULL)
1457 *slot = xstrdup (decoded);
1458 *resultp = *slot;
1459 }
1460 }
1461
1462 return *resultp;
1463 }
1464
1465 static char *
1466 ada_la_decode (const char *encoded, int options)
1467 {
1468 return xstrdup (ada_decode (encoded));
1469 }
1470
1471 /* Implement la_sniff_from_mangled_name for Ada. */
1472
1473 static int
1474 ada_sniff_from_mangled_name (const char *mangled, char **out)
1475 {
1476 const char *demangled = ada_decode (mangled);
1477
1478 *out = NULL;
1479
1480 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1481 {
1482 /* Set the gsymbol language to Ada, but still return 0.
1483 Two reasons for that:
1484
1485 1. For Ada, we prefer computing the symbol's decoded name
1486 on the fly rather than pre-compute it, in order to save
1487 memory (Ada projects are typically very large).
1488
1489 2. There are some areas in the definition of the GNAT
1490 encoding where, with a bit of bad luck, we might be able
1491 to decode a non-Ada symbol, generating an incorrect
1492 demangled name (Eg: names ending with "TB" for instance
1493 are identified as task bodies and so stripped from
1494 the decoded name returned).
1495
1496 Returning 1, here, but not setting *DEMANGLED, helps us get a
1497 little bit of the best of both worlds. Because we're last,
1498 we should not affect any of the other languages that were
1499 able to demangle the symbol before us; we get to correctly
1500 tag Ada symbols as such; and even if we incorrectly tagged a
1501 non-Ada symbol, which should be rare, any routing through the
1502 Ada language should be transparent (Ada tries to behave much
1503 like C/C++ with non-Ada symbols). */
1504 return 1;
1505 }
1506
1507 return 0;
1508 }
1509
1510 \f
1511
1512 /* Arrays */
1513
1514 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1515 generated by the GNAT compiler to describe the index type used
1516 for each dimension of an array, check whether it follows the latest
1517 known encoding. If not, fix it up to conform to the latest encoding.
1518 Otherwise, do nothing. This function also does nothing if
1519 INDEX_DESC_TYPE is NULL.
1520
1521 The GNAT encoding used to describle the array index type evolved a bit.
1522 Initially, the information would be provided through the name of each
1523 field of the structure type only, while the type of these fields was
1524 described as unspecified and irrelevant. The debugger was then expected
1525 to perform a global type lookup using the name of that field in order
1526 to get access to the full index type description. Because these global
1527 lookups can be very expensive, the encoding was later enhanced to make
1528 the global lookup unnecessary by defining the field type as being
1529 the full index type description.
1530
1531 The purpose of this routine is to allow us to support older versions
1532 of the compiler by detecting the use of the older encoding, and by
1533 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1534 we essentially replace each field's meaningless type by the associated
1535 index subtype). */
1536
1537 void
1538 ada_fixup_array_indexes_type (struct type *index_desc_type)
1539 {
1540 int i;
1541
1542 if (index_desc_type == NULL)
1543 return;
1544 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1545
1546 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1547 to check one field only, no need to check them all). If not, return
1548 now.
1549
1550 If our INDEX_DESC_TYPE was generated using the older encoding,
1551 the field type should be a meaningless integer type whose name
1552 is not equal to the field name. */
1553 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1554 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1555 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1556 return;
1557
1558 /* Fixup each field of INDEX_DESC_TYPE. */
1559 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1560 {
1561 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1562 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1563
1564 if (raw_type)
1565 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1566 }
1567 }
1568
1569 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1570
1571 static const char *bound_name[] = {
1572 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1573 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1574 };
1575
1576 /* Maximum number of array dimensions we are prepared to handle. */
1577
1578 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1579
1580
1581 /* The desc_* routines return primitive portions of array descriptors
1582 (fat pointers). */
1583
1584 /* The descriptor or array type, if any, indicated by TYPE; removes
1585 level of indirection, if needed. */
1586
1587 static struct type *
1588 desc_base_type (struct type *type)
1589 {
1590 if (type == NULL)
1591 return NULL;
1592 type = ada_check_typedef (type);
1593 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1594 type = ada_typedef_target_type (type);
1595
1596 if (type != NULL
1597 && (TYPE_CODE (type) == TYPE_CODE_PTR
1598 || TYPE_CODE (type) == TYPE_CODE_REF))
1599 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1600 else
1601 return type;
1602 }
1603
1604 /* True iff TYPE indicates a "thin" array pointer type. */
1605
1606 static int
1607 is_thin_pntr (struct type *type)
1608 {
1609 return
1610 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1611 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1612 }
1613
1614 /* The descriptor type for thin pointer type TYPE. */
1615
1616 static struct type *
1617 thin_descriptor_type (struct type *type)
1618 {
1619 struct type *base_type = desc_base_type (type);
1620
1621 if (base_type == NULL)
1622 return NULL;
1623 if (is_suffix (ada_type_name (base_type), "___XVE"))
1624 return base_type;
1625 else
1626 {
1627 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1628
1629 if (alt_type == NULL)
1630 return base_type;
1631 else
1632 return alt_type;
1633 }
1634 }
1635
1636 /* A pointer to the array data for thin-pointer value VAL. */
1637
1638 static struct value *
1639 thin_data_pntr (struct value *val)
1640 {
1641 struct type *type = ada_check_typedef (value_type (val));
1642 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1643
1644 data_type = lookup_pointer_type (data_type);
1645
1646 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1647 return value_cast (data_type, value_copy (val));
1648 else
1649 return value_from_longest (data_type, value_address (val));
1650 }
1651
1652 /* True iff TYPE indicates a "thick" array pointer type. */
1653
1654 static int
1655 is_thick_pntr (struct type *type)
1656 {
1657 type = desc_base_type (type);
1658 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1659 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1660 }
1661
1662 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1663 pointer to one, the type of its bounds data; otherwise, NULL. */
1664
1665 static struct type *
1666 desc_bounds_type (struct type *type)
1667 {
1668 struct type *r;
1669
1670 type = desc_base_type (type);
1671
1672 if (type == NULL)
1673 return NULL;
1674 else if (is_thin_pntr (type))
1675 {
1676 type = thin_descriptor_type (type);
1677 if (type == NULL)
1678 return NULL;
1679 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1680 if (r != NULL)
1681 return ada_check_typedef (r);
1682 }
1683 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1684 {
1685 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1686 if (r != NULL)
1687 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1688 }
1689 return NULL;
1690 }
1691
1692 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1693 one, a pointer to its bounds data. Otherwise NULL. */
1694
1695 static struct value *
1696 desc_bounds (struct value *arr)
1697 {
1698 struct type *type = ada_check_typedef (value_type (arr));
1699
1700 if (is_thin_pntr (type))
1701 {
1702 struct type *bounds_type =
1703 desc_bounds_type (thin_descriptor_type (type));
1704 LONGEST addr;
1705
1706 if (bounds_type == NULL)
1707 error (_("Bad GNAT array descriptor"));
1708
1709 /* NOTE: The following calculation is not really kosher, but
1710 since desc_type is an XVE-encoded type (and shouldn't be),
1711 the correct calculation is a real pain. FIXME (and fix GCC). */
1712 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1713 addr = value_as_long (arr);
1714 else
1715 addr = value_address (arr);
1716
1717 return
1718 value_from_longest (lookup_pointer_type (bounds_type),
1719 addr - TYPE_LENGTH (bounds_type));
1720 }
1721
1722 else if (is_thick_pntr (type))
1723 {
1724 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1725 _("Bad GNAT array descriptor"));
1726 struct type *p_bounds_type = value_type (p_bounds);
1727
1728 if (p_bounds_type
1729 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1730 {
1731 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1732
1733 if (TYPE_STUB (target_type))
1734 p_bounds = value_cast (lookup_pointer_type
1735 (ada_check_typedef (target_type)),
1736 p_bounds);
1737 }
1738 else
1739 error (_("Bad GNAT array descriptor"));
1740
1741 return p_bounds;
1742 }
1743 else
1744 return NULL;
1745 }
1746
1747 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1748 position of the field containing the address of the bounds data. */
1749
1750 static int
1751 fat_pntr_bounds_bitpos (struct type *type)
1752 {
1753 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1754 }
1755
1756 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 size of the field containing the address of the bounds data. */
1758
1759 static int
1760 fat_pntr_bounds_bitsize (struct type *type)
1761 {
1762 type = desc_base_type (type);
1763
1764 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1765 return TYPE_FIELD_BITSIZE (type, 1);
1766 else
1767 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1768 }
1769
1770 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1771 pointer to one, the type of its array data (a array-with-no-bounds type);
1772 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1773 data. */
1774
1775 static struct type *
1776 desc_data_target_type (struct type *type)
1777 {
1778 type = desc_base_type (type);
1779
1780 /* NOTE: The following is bogus; see comment in desc_bounds. */
1781 if (is_thin_pntr (type))
1782 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1783 else if (is_thick_pntr (type))
1784 {
1785 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1786
1787 if (data_type
1788 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1789 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1790 }
1791
1792 return NULL;
1793 }
1794
1795 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1796 its array data. */
1797
1798 static struct value *
1799 desc_data (struct value *arr)
1800 {
1801 struct type *type = value_type (arr);
1802
1803 if (is_thin_pntr (type))
1804 return thin_data_pntr (arr);
1805 else if (is_thick_pntr (type))
1806 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1807 _("Bad GNAT array descriptor"));
1808 else
1809 return NULL;
1810 }
1811
1812
1813 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1814 position of the field containing the address of the data. */
1815
1816 static int
1817 fat_pntr_data_bitpos (struct type *type)
1818 {
1819 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1820 }
1821
1822 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1823 size of the field containing the address of the data. */
1824
1825 static int
1826 fat_pntr_data_bitsize (struct type *type)
1827 {
1828 type = desc_base_type (type);
1829
1830 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1831 return TYPE_FIELD_BITSIZE (type, 0);
1832 else
1833 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1834 }
1835
1836 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1837 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1838 bound, if WHICH is 1. The first bound is I=1. */
1839
1840 static struct value *
1841 desc_one_bound (struct value *bounds, int i, int which)
1842 {
1843 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1844 _("Bad GNAT array descriptor bounds"));
1845 }
1846
1847 /* If BOUNDS is an array-bounds structure type, return the bit position
1848 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1849 bound, if WHICH is 1. The first bound is I=1. */
1850
1851 static int
1852 desc_bound_bitpos (struct type *type, int i, int which)
1853 {
1854 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1855 }
1856
1857 /* If BOUNDS is an array-bounds structure type, return the bit field size
1858 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1859 bound, if WHICH is 1. The first bound is I=1. */
1860
1861 static int
1862 desc_bound_bitsize (struct type *type, int i, int which)
1863 {
1864 type = desc_base_type (type);
1865
1866 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1867 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1868 else
1869 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1870 }
1871
1872 /* If TYPE is the type of an array-bounds structure, the type of its
1873 Ith bound (numbering from 1). Otherwise, NULL. */
1874
1875 static struct type *
1876 desc_index_type (struct type *type, int i)
1877 {
1878 type = desc_base_type (type);
1879
1880 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1881 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1882 else
1883 return NULL;
1884 }
1885
1886 /* The number of index positions in the array-bounds type TYPE.
1887 Return 0 if TYPE is NULL. */
1888
1889 static int
1890 desc_arity (struct type *type)
1891 {
1892 type = desc_base_type (type);
1893
1894 if (type != NULL)
1895 return TYPE_NFIELDS (type) / 2;
1896 return 0;
1897 }
1898
1899 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1900 an array descriptor type (representing an unconstrained array
1901 type). */
1902
1903 static int
1904 ada_is_direct_array_type (struct type *type)
1905 {
1906 if (type == NULL)
1907 return 0;
1908 type = ada_check_typedef (type);
1909 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1910 || ada_is_array_descriptor_type (type));
1911 }
1912
1913 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1914 * to one. */
1915
1916 static int
1917 ada_is_array_type (struct type *type)
1918 {
1919 while (type != NULL
1920 && (TYPE_CODE (type) == TYPE_CODE_PTR
1921 || TYPE_CODE (type) == TYPE_CODE_REF))
1922 type = TYPE_TARGET_TYPE (type);
1923 return ada_is_direct_array_type (type);
1924 }
1925
1926 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1927
1928 int
1929 ada_is_simple_array_type (struct type *type)
1930 {
1931 if (type == NULL)
1932 return 0;
1933 type = ada_check_typedef (type);
1934 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1935 || (TYPE_CODE (type) == TYPE_CODE_PTR
1936 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1937 == TYPE_CODE_ARRAY));
1938 }
1939
1940 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1941
1942 int
1943 ada_is_array_descriptor_type (struct type *type)
1944 {
1945 struct type *data_type = desc_data_target_type (type);
1946
1947 if (type == NULL)
1948 return 0;
1949 type = ada_check_typedef (type);
1950 return (data_type != NULL
1951 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1952 && desc_arity (desc_bounds_type (type)) > 0);
1953 }
1954
1955 /* Non-zero iff type is a partially mal-formed GNAT array
1956 descriptor. FIXME: This is to compensate for some problems with
1957 debugging output from GNAT. Re-examine periodically to see if it
1958 is still needed. */
1959
1960 int
1961 ada_is_bogus_array_descriptor (struct type *type)
1962 {
1963 return
1964 type != NULL
1965 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1966 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1967 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1968 && !ada_is_array_descriptor_type (type);
1969 }
1970
1971
1972 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1973 (fat pointer) returns the type of the array data described---specifically,
1974 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1975 in from the descriptor; otherwise, they are left unspecified. If
1976 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1977 returns NULL. The result is simply the type of ARR if ARR is not
1978 a descriptor. */
1979 struct type *
1980 ada_type_of_array (struct value *arr, int bounds)
1981 {
1982 if (ada_is_constrained_packed_array_type (value_type (arr)))
1983 return decode_constrained_packed_array_type (value_type (arr));
1984
1985 if (!ada_is_array_descriptor_type (value_type (arr)))
1986 return value_type (arr);
1987
1988 if (!bounds)
1989 {
1990 struct type *array_type =
1991 ada_check_typedef (desc_data_target_type (value_type (arr)));
1992
1993 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1994 TYPE_FIELD_BITSIZE (array_type, 0) =
1995 decode_packed_array_bitsize (value_type (arr));
1996
1997 return array_type;
1998 }
1999 else
2000 {
2001 struct type *elt_type;
2002 int arity;
2003 struct value *descriptor;
2004
2005 elt_type = ada_array_element_type (value_type (arr), -1);
2006 arity = ada_array_arity (value_type (arr));
2007
2008 if (elt_type == NULL || arity == 0)
2009 return ada_check_typedef (value_type (arr));
2010
2011 descriptor = desc_bounds (arr);
2012 if (value_as_long (descriptor) == 0)
2013 return NULL;
2014 while (arity > 0)
2015 {
2016 struct type *range_type = alloc_type_copy (value_type (arr));
2017 struct type *array_type = alloc_type_copy (value_type (arr));
2018 struct value *low = desc_one_bound (descriptor, arity, 0);
2019 struct value *high = desc_one_bound (descriptor, arity, 1);
2020
2021 arity -= 1;
2022 create_static_range_type (range_type, value_type (low),
2023 longest_to_int (value_as_long (low)),
2024 longest_to_int (value_as_long (high)));
2025 elt_type = create_array_type (array_type, elt_type, range_type);
2026
2027 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2028 {
2029 /* We need to store the element packed bitsize, as well as
2030 recompute the array size, because it was previously
2031 computed based on the unpacked element size. */
2032 LONGEST lo = value_as_long (low);
2033 LONGEST hi = value_as_long (high);
2034
2035 TYPE_FIELD_BITSIZE (elt_type, 0) =
2036 decode_packed_array_bitsize (value_type (arr));
2037 /* If the array has no element, then the size is already
2038 zero, and does not need to be recomputed. */
2039 if (lo < hi)
2040 {
2041 int array_bitsize =
2042 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2043
2044 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2045 }
2046 }
2047 }
2048
2049 return lookup_pointer_type (elt_type);
2050 }
2051 }
2052
2053 /* If ARR does not represent an array, returns ARR unchanged.
2054 Otherwise, returns either a standard GDB array with bounds set
2055 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2056 GDB array. Returns NULL if ARR is a null fat pointer. */
2057
2058 struct value *
2059 ada_coerce_to_simple_array_ptr (struct value *arr)
2060 {
2061 if (ada_is_array_descriptor_type (value_type (arr)))
2062 {
2063 struct type *arrType = ada_type_of_array (arr, 1);
2064
2065 if (arrType == NULL)
2066 return NULL;
2067 return value_cast (arrType, value_copy (desc_data (arr)));
2068 }
2069 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2070 return decode_constrained_packed_array (arr);
2071 else
2072 return arr;
2073 }
2074
2075 /* If ARR does not represent an array, returns ARR unchanged.
2076 Otherwise, returns a standard GDB array describing ARR (which may
2077 be ARR itself if it already is in the proper form). */
2078
2079 struct value *
2080 ada_coerce_to_simple_array (struct value *arr)
2081 {
2082 if (ada_is_array_descriptor_type (value_type (arr)))
2083 {
2084 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2085
2086 if (arrVal == NULL)
2087 error (_("Bounds unavailable for null array pointer."));
2088 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2089 return value_ind (arrVal);
2090 }
2091 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2092 return decode_constrained_packed_array (arr);
2093 else
2094 return arr;
2095 }
2096
2097 /* If TYPE represents a GNAT array type, return it translated to an
2098 ordinary GDB array type (possibly with BITSIZE fields indicating
2099 packing). For other types, is the identity. */
2100
2101 struct type *
2102 ada_coerce_to_simple_array_type (struct type *type)
2103 {
2104 if (ada_is_constrained_packed_array_type (type))
2105 return decode_constrained_packed_array_type (type);
2106
2107 if (ada_is_array_descriptor_type (type))
2108 return ada_check_typedef (desc_data_target_type (type));
2109
2110 return type;
2111 }
2112
2113 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2114
2115 static int
2116 ada_is_packed_array_type (struct type *type)
2117 {
2118 if (type == NULL)
2119 return 0;
2120 type = desc_base_type (type);
2121 type = ada_check_typedef (type);
2122 return
2123 ada_type_name (type) != NULL
2124 && strstr (ada_type_name (type), "___XP") != NULL;
2125 }
2126
2127 /* Non-zero iff TYPE represents a standard GNAT constrained
2128 packed-array type. */
2129
2130 int
2131 ada_is_constrained_packed_array_type (struct type *type)
2132 {
2133 return ada_is_packed_array_type (type)
2134 && !ada_is_array_descriptor_type (type);
2135 }
2136
2137 /* Non-zero iff TYPE represents an array descriptor for a
2138 unconstrained packed-array type. */
2139
2140 static int
2141 ada_is_unconstrained_packed_array_type (struct type *type)
2142 {
2143 return ada_is_packed_array_type (type)
2144 && ada_is_array_descriptor_type (type);
2145 }
2146
2147 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2148 return the size of its elements in bits. */
2149
2150 static long
2151 decode_packed_array_bitsize (struct type *type)
2152 {
2153 const char *raw_name;
2154 const char *tail;
2155 long bits;
2156
2157 /* Access to arrays implemented as fat pointers are encoded as a typedef
2158 of the fat pointer type. We need the name of the fat pointer type
2159 to do the decoding, so strip the typedef layer. */
2160 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2161 type = ada_typedef_target_type (type);
2162
2163 raw_name = ada_type_name (ada_check_typedef (type));
2164 if (!raw_name)
2165 raw_name = ada_type_name (desc_base_type (type));
2166
2167 if (!raw_name)
2168 return 0;
2169
2170 tail = strstr (raw_name, "___XP");
2171 gdb_assert (tail != NULL);
2172
2173 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2174 {
2175 lim_warning
2176 (_("could not understand bit size information on packed array"));
2177 return 0;
2178 }
2179
2180 return bits;
2181 }
2182
2183 /* Given that TYPE is a standard GDB array type with all bounds filled
2184 in, and that the element size of its ultimate scalar constituents
2185 (that is, either its elements, or, if it is an array of arrays, its
2186 elements' elements, etc.) is *ELT_BITS, return an identical type,
2187 but with the bit sizes of its elements (and those of any
2188 constituent arrays) recorded in the BITSIZE components of its
2189 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2190 in bits.
2191
2192 Note that, for arrays whose index type has an XA encoding where
2193 a bound references a record discriminant, getting that discriminant,
2194 and therefore the actual value of that bound, is not possible
2195 because none of the given parameters gives us access to the record.
2196 This function assumes that it is OK in the context where it is being
2197 used to return an array whose bounds are still dynamic and where
2198 the length is arbitrary. */
2199
2200 static struct type *
2201 constrained_packed_array_type (struct type *type, long *elt_bits)
2202 {
2203 struct type *new_elt_type;
2204 struct type *new_type;
2205 struct type *index_type_desc;
2206 struct type *index_type;
2207 LONGEST low_bound, high_bound;
2208
2209 type = ada_check_typedef (type);
2210 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2211 return type;
2212
2213 index_type_desc = ada_find_parallel_type (type, "___XA");
2214 if (index_type_desc)
2215 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2216 NULL);
2217 else
2218 index_type = TYPE_INDEX_TYPE (type);
2219
2220 new_type = alloc_type_copy (type);
2221 new_elt_type =
2222 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2223 elt_bits);
2224 create_array_type (new_type, new_elt_type, index_type);
2225 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2226 TYPE_NAME (new_type) = ada_type_name (type);
2227
2228 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2229 && is_dynamic_type (check_typedef (index_type)))
2230 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2231 low_bound = high_bound = 0;
2232 if (high_bound < low_bound)
2233 *elt_bits = TYPE_LENGTH (new_type) = 0;
2234 else
2235 {
2236 *elt_bits *= (high_bound - low_bound + 1);
2237 TYPE_LENGTH (new_type) =
2238 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2239 }
2240
2241 TYPE_FIXED_INSTANCE (new_type) = 1;
2242 return new_type;
2243 }
2244
2245 /* The array type encoded by TYPE, where
2246 ada_is_constrained_packed_array_type (TYPE). */
2247
2248 static struct type *
2249 decode_constrained_packed_array_type (struct type *type)
2250 {
2251 const char *raw_name = ada_type_name (ada_check_typedef (type));
2252 char *name;
2253 const char *tail;
2254 struct type *shadow_type;
2255 long bits;
2256
2257 if (!raw_name)
2258 raw_name = ada_type_name (desc_base_type (type));
2259
2260 if (!raw_name)
2261 return NULL;
2262
2263 name = (char *) alloca (strlen (raw_name) + 1);
2264 tail = strstr (raw_name, "___XP");
2265 type = desc_base_type (type);
2266
2267 memcpy (name, raw_name, tail - raw_name);
2268 name[tail - raw_name] = '\000';
2269
2270 shadow_type = ada_find_parallel_type_with_name (type, name);
2271
2272 if (shadow_type == NULL)
2273 {
2274 lim_warning (_("could not find bounds information on packed array"));
2275 return NULL;
2276 }
2277 shadow_type = check_typedef (shadow_type);
2278
2279 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2280 {
2281 lim_warning (_("could not understand bounds "
2282 "information on packed array"));
2283 return NULL;
2284 }
2285
2286 bits = decode_packed_array_bitsize (type);
2287 return constrained_packed_array_type (shadow_type, &bits);
2288 }
2289
2290 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2291 array, returns a simple array that denotes that array. Its type is a
2292 standard GDB array type except that the BITSIZEs of the array
2293 target types are set to the number of bits in each element, and the
2294 type length is set appropriately. */
2295
2296 static struct value *
2297 decode_constrained_packed_array (struct value *arr)
2298 {
2299 struct type *type;
2300
2301 /* If our value is a pointer, then dereference it. Likewise if
2302 the value is a reference. Make sure that this operation does not
2303 cause the target type to be fixed, as this would indirectly cause
2304 this array to be decoded. The rest of the routine assumes that
2305 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2306 and "value_ind" routines to perform the dereferencing, as opposed
2307 to using "ada_coerce_ref" or "ada_value_ind". */
2308 arr = coerce_ref (arr);
2309 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2310 arr = value_ind (arr);
2311
2312 type = decode_constrained_packed_array_type (value_type (arr));
2313 if (type == NULL)
2314 {
2315 error (_("can't unpack array"));
2316 return NULL;
2317 }
2318
2319 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2320 && ada_is_modular_type (value_type (arr)))
2321 {
2322 /* This is a (right-justified) modular type representing a packed
2323 array with no wrapper. In order to interpret the value through
2324 the (left-justified) packed array type we just built, we must
2325 first left-justify it. */
2326 int bit_size, bit_pos;
2327 ULONGEST mod;
2328
2329 mod = ada_modulus (value_type (arr)) - 1;
2330 bit_size = 0;
2331 while (mod > 0)
2332 {
2333 bit_size += 1;
2334 mod >>= 1;
2335 }
2336 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2337 arr = ada_value_primitive_packed_val (arr, NULL,
2338 bit_pos / HOST_CHAR_BIT,
2339 bit_pos % HOST_CHAR_BIT,
2340 bit_size,
2341 type);
2342 }
2343
2344 return coerce_unspec_val_to_type (arr, type);
2345 }
2346
2347
2348 /* The value of the element of packed array ARR at the ARITY indices
2349 given in IND. ARR must be a simple array. */
2350
2351 static struct value *
2352 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2353 {
2354 int i;
2355 int bits, elt_off, bit_off;
2356 long elt_total_bit_offset;
2357 struct type *elt_type;
2358 struct value *v;
2359
2360 bits = 0;
2361 elt_total_bit_offset = 0;
2362 elt_type = ada_check_typedef (value_type (arr));
2363 for (i = 0; i < arity; i += 1)
2364 {
2365 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2366 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2367 error
2368 (_("attempt to do packed indexing of "
2369 "something other than a packed array"));
2370 else
2371 {
2372 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2373 LONGEST lowerbound, upperbound;
2374 LONGEST idx;
2375
2376 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2377 {
2378 lim_warning (_("don't know bounds of array"));
2379 lowerbound = upperbound = 0;
2380 }
2381
2382 idx = pos_atr (ind[i]);
2383 if (idx < lowerbound || idx > upperbound)
2384 lim_warning (_("packed array index %ld out of bounds"),
2385 (long) idx);
2386 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2387 elt_total_bit_offset += (idx - lowerbound) * bits;
2388 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2389 }
2390 }
2391 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2392 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2393
2394 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2395 bits, elt_type);
2396 return v;
2397 }
2398
2399 /* Non-zero iff TYPE includes negative integer values. */
2400
2401 static int
2402 has_negatives (struct type *type)
2403 {
2404 switch (TYPE_CODE (type))
2405 {
2406 default:
2407 return 0;
2408 case TYPE_CODE_INT:
2409 return !TYPE_UNSIGNED (type);
2410 case TYPE_CODE_RANGE:
2411 return TYPE_LOW_BOUND (type) < 0;
2412 }
2413 }
2414
2415 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2416 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2417 the unpacked buffer.
2418
2419 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2420 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2421
2422 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2423 zero otherwise.
2424
2425 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2426
2427 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2428
2429 static void
2430 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2431 gdb_byte *unpacked, int unpacked_len,
2432 int is_big_endian, int is_signed_type,
2433 int is_scalar)
2434 {
2435 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2436 int src_idx; /* Index into the source area */
2437 int src_bytes_left; /* Number of source bytes left to process. */
2438 int srcBitsLeft; /* Number of source bits left to move */
2439 int unusedLS; /* Number of bits in next significant
2440 byte of source that are unused */
2441
2442 int unpacked_idx; /* Index into the unpacked buffer */
2443 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2444
2445 unsigned long accum; /* Staging area for bits being transferred */
2446 int accumSize; /* Number of meaningful bits in accum */
2447 unsigned char sign;
2448
2449 /* Transmit bytes from least to most significant; delta is the direction
2450 the indices move. */
2451 int delta = is_big_endian ? -1 : 1;
2452
2453 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2454 bits from SRC. .*/
2455 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2456 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2457 bit_size, unpacked_len);
2458
2459 srcBitsLeft = bit_size;
2460 src_bytes_left = src_len;
2461 unpacked_bytes_left = unpacked_len;
2462 sign = 0;
2463
2464 if (is_big_endian)
2465 {
2466 src_idx = src_len - 1;
2467 if (is_signed_type
2468 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2469 sign = ~0;
2470
2471 unusedLS =
2472 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2473 % HOST_CHAR_BIT;
2474
2475 if (is_scalar)
2476 {
2477 accumSize = 0;
2478 unpacked_idx = unpacked_len - 1;
2479 }
2480 else
2481 {
2482 /* Non-scalar values must be aligned at a byte boundary... */
2483 accumSize =
2484 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2485 /* ... And are placed at the beginning (most-significant) bytes
2486 of the target. */
2487 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2488 unpacked_bytes_left = unpacked_idx + 1;
2489 }
2490 }
2491 else
2492 {
2493 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2494
2495 src_idx = unpacked_idx = 0;
2496 unusedLS = bit_offset;
2497 accumSize = 0;
2498
2499 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2500 sign = ~0;
2501 }
2502
2503 accum = 0;
2504 while (src_bytes_left > 0)
2505 {
2506 /* Mask for removing bits of the next source byte that are not
2507 part of the value. */
2508 unsigned int unusedMSMask =
2509 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2510 1;
2511 /* Sign-extend bits for this byte. */
2512 unsigned int signMask = sign & ~unusedMSMask;
2513
2514 accum |=
2515 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2516 accumSize += HOST_CHAR_BIT - unusedLS;
2517 if (accumSize >= HOST_CHAR_BIT)
2518 {
2519 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2520 accumSize -= HOST_CHAR_BIT;
2521 accum >>= HOST_CHAR_BIT;
2522 unpacked_bytes_left -= 1;
2523 unpacked_idx += delta;
2524 }
2525 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2526 unusedLS = 0;
2527 src_bytes_left -= 1;
2528 src_idx += delta;
2529 }
2530 while (unpacked_bytes_left > 0)
2531 {
2532 accum |= sign << accumSize;
2533 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2534 accumSize -= HOST_CHAR_BIT;
2535 if (accumSize < 0)
2536 accumSize = 0;
2537 accum >>= HOST_CHAR_BIT;
2538 unpacked_bytes_left -= 1;
2539 unpacked_idx += delta;
2540 }
2541 }
2542
2543 /* Create a new value of type TYPE from the contents of OBJ starting
2544 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2545 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2546 assigning through the result will set the field fetched from.
2547 VALADDR is ignored unless OBJ is NULL, in which case,
2548 VALADDR+OFFSET must address the start of storage containing the
2549 packed value. The value returned in this case is never an lval.
2550 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2551
2552 struct value *
2553 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2554 long offset, int bit_offset, int bit_size,
2555 struct type *type)
2556 {
2557 struct value *v;
2558 const gdb_byte *src; /* First byte containing data to unpack */
2559 gdb_byte *unpacked;
2560 const int is_scalar = is_scalar_type (type);
2561 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2562 gdb::byte_vector staging;
2563
2564 type = ada_check_typedef (type);
2565
2566 if (obj == NULL)
2567 src = valaddr + offset;
2568 else
2569 src = value_contents (obj) + offset;
2570
2571 if (is_dynamic_type (type))
2572 {
2573 /* The length of TYPE might by dynamic, so we need to resolve
2574 TYPE in order to know its actual size, which we then use
2575 to create the contents buffer of the value we return.
2576 The difficulty is that the data containing our object is
2577 packed, and therefore maybe not at a byte boundary. So, what
2578 we do, is unpack the data into a byte-aligned buffer, and then
2579 use that buffer as our object's value for resolving the type. */
2580 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2581 staging.resize (staging_len);
2582
2583 ada_unpack_from_contents (src, bit_offset, bit_size,
2584 staging.data (), staging.size (),
2585 is_big_endian, has_negatives (type),
2586 is_scalar);
2587 type = resolve_dynamic_type (type, staging.data (), 0);
2588 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2589 {
2590 /* This happens when the length of the object is dynamic,
2591 and is actually smaller than the space reserved for it.
2592 For instance, in an array of variant records, the bit_size
2593 we're given is the array stride, which is constant and
2594 normally equal to the maximum size of its element.
2595 But, in reality, each element only actually spans a portion
2596 of that stride. */
2597 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2598 }
2599 }
2600
2601 if (obj == NULL)
2602 {
2603 v = allocate_value (type);
2604 src = valaddr + offset;
2605 }
2606 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2607 {
2608 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2609 gdb_byte *buf;
2610
2611 v = value_at (type, value_address (obj) + offset);
2612 buf = (gdb_byte *) alloca (src_len);
2613 read_memory (value_address (v), buf, src_len);
2614 src = buf;
2615 }
2616 else
2617 {
2618 v = allocate_value (type);
2619 src = value_contents (obj) + offset;
2620 }
2621
2622 if (obj != NULL)
2623 {
2624 long new_offset = offset;
2625
2626 set_value_component_location (v, obj);
2627 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2628 set_value_bitsize (v, bit_size);
2629 if (value_bitpos (v) >= HOST_CHAR_BIT)
2630 {
2631 ++new_offset;
2632 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2633 }
2634 set_value_offset (v, new_offset);
2635
2636 /* Also set the parent value. This is needed when trying to
2637 assign a new value (in inferior memory). */
2638 set_value_parent (v, obj);
2639 }
2640 else
2641 set_value_bitsize (v, bit_size);
2642 unpacked = value_contents_writeable (v);
2643
2644 if (bit_size == 0)
2645 {
2646 memset (unpacked, 0, TYPE_LENGTH (type));
2647 return v;
2648 }
2649
2650 if (staging.size () == TYPE_LENGTH (type))
2651 {
2652 /* Small short-cut: If we've unpacked the data into a buffer
2653 of the same size as TYPE's length, then we can reuse that,
2654 instead of doing the unpacking again. */
2655 memcpy (unpacked, staging.data (), staging.size ());
2656 }
2657 else
2658 ada_unpack_from_contents (src, bit_offset, bit_size,
2659 unpacked, TYPE_LENGTH (type),
2660 is_big_endian, has_negatives (type), is_scalar);
2661
2662 return v;
2663 }
2664
2665 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2666 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2667 not overlap. */
2668 static void
2669 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2670 int src_offset, int n, int bits_big_endian_p)
2671 {
2672 unsigned int accum, mask;
2673 int accum_bits, chunk_size;
2674
2675 target += targ_offset / HOST_CHAR_BIT;
2676 targ_offset %= HOST_CHAR_BIT;
2677 source += src_offset / HOST_CHAR_BIT;
2678 src_offset %= HOST_CHAR_BIT;
2679 if (bits_big_endian_p)
2680 {
2681 accum = (unsigned char) *source;
2682 source += 1;
2683 accum_bits = HOST_CHAR_BIT - src_offset;
2684
2685 while (n > 0)
2686 {
2687 int unused_right;
2688
2689 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2696 mask = ((1 << chunk_size) - 1) << unused_right;
2697 *target =
2698 (*target & ~mask)
2699 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2700 n -= chunk_size;
2701 accum_bits -= chunk_size;
2702 target += 1;
2703 targ_offset = 0;
2704 }
2705 }
2706 else
2707 {
2708 accum = (unsigned char) *source >> src_offset;
2709 source += 1;
2710 accum_bits = HOST_CHAR_BIT - src_offset;
2711
2712 while (n > 0)
2713 {
2714 accum = accum + ((unsigned char) *source << accum_bits);
2715 accum_bits += HOST_CHAR_BIT;
2716 source += 1;
2717 chunk_size = HOST_CHAR_BIT - targ_offset;
2718 if (chunk_size > n)
2719 chunk_size = n;
2720 mask = ((1 << chunk_size) - 1) << targ_offset;
2721 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2722 n -= chunk_size;
2723 accum_bits -= chunk_size;
2724 accum >>= chunk_size;
2725 target += 1;
2726 targ_offset = 0;
2727 }
2728 }
2729 }
2730
2731 /* Store the contents of FROMVAL into the location of TOVAL.
2732 Return a new value with the location of TOVAL and contents of
2733 FROMVAL. Handles assignment into packed fields that have
2734 floating-point or non-scalar types. */
2735
2736 static struct value *
2737 ada_value_assign (struct value *toval, struct value *fromval)
2738 {
2739 struct type *type = value_type (toval);
2740 int bits = value_bitsize (toval);
2741
2742 toval = ada_coerce_ref (toval);
2743 fromval = ada_coerce_ref (fromval);
2744
2745 if (ada_is_direct_array_type (value_type (toval)))
2746 toval = ada_coerce_to_simple_array (toval);
2747 if (ada_is_direct_array_type (value_type (fromval)))
2748 fromval = ada_coerce_to_simple_array (fromval);
2749
2750 if (!deprecated_value_modifiable (toval))
2751 error (_("Left operand of assignment is not a modifiable lvalue."));
2752
2753 if (VALUE_LVAL (toval) == lval_memory
2754 && bits > 0
2755 && (TYPE_CODE (type) == TYPE_CODE_FLT
2756 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2757 {
2758 int len = (value_bitpos (toval)
2759 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2760 int from_size;
2761 gdb_byte *buffer = (gdb_byte *) alloca (len);
2762 struct value *val;
2763 CORE_ADDR to_addr = value_address (toval);
2764
2765 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2766 fromval = value_cast (type, fromval);
2767
2768 read_memory (to_addr, buffer, len);
2769 from_size = value_bitsize (fromval);
2770 if (from_size == 0)
2771 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2772 if (gdbarch_bits_big_endian (get_type_arch (type)))
2773 move_bits (buffer, value_bitpos (toval),
2774 value_contents (fromval), from_size - bits, bits, 1);
2775 else
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), 0, bits, 0);
2778 write_memory_with_notification (to_addr, buffer, len);
2779
2780 val = value_copy (toval);
2781 memcpy (value_contents_raw (val), value_contents (fromval),
2782 TYPE_LENGTH (type));
2783 deprecated_set_value_type (val, type);
2784
2785 return val;
2786 }
2787
2788 return value_assign (toval, fromval);
2789 }
2790
2791
2792 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2793 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2794 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2795 COMPONENT, and not the inferior's memory. The current contents
2796 of COMPONENT are ignored.
2797
2798 Although not part of the initial design, this function also works
2799 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2800 had a null address, and COMPONENT had an address which is equal to
2801 its offset inside CONTAINER. */
2802
2803 static void
2804 value_assign_to_component (struct value *container, struct value *component,
2805 struct value *val)
2806 {
2807 LONGEST offset_in_container =
2808 (LONGEST) (value_address (component) - value_address (container));
2809 int bit_offset_in_container =
2810 value_bitpos (component) - value_bitpos (container);
2811 int bits;
2812
2813 val = value_cast (value_type (component), val);
2814
2815 if (value_bitsize (component) == 0)
2816 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2817 else
2818 bits = value_bitsize (component);
2819
2820 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2821 move_bits (value_contents_writeable (container) + offset_in_container,
2822 value_bitpos (container) + bit_offset_in_container,
2823 value_contents (val),
2824 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2825 bits, 1);
2826 else
2827 move_bits (value_contents_writeable (container) + offset_in_container,
2828 value_bitpos (container) + bit_offset_in_container,
2829 value_contents (val), 0, bits, 0);
2830 }
2831
2832 /* The value of the element of array ARR at the ARITY indices given in IND.
2833 ARR may be either a simple array, GNAT array descriptor, or pointer
2834 thereto. */
2835
2836 struct value *
2837 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2838 {
2839 int k;
2840 struct value *elt;
2841 struct type *elt_type;
2842
2843 elt = ada_coerce_to_simple_array (arr);
2844
2845 elt_type = ada_check_typedef (value_type (elt));
2846 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2847 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2848 return value_subscript_packed (elt, arity, ind);
2849
2850 for (k = 0; k < arity; k += 1)
2851 {
2852 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2853 error (_("too many subscripts (%d expected)"), k);
2854 elt = value_subscript (elt, pos_atr (ind[k]));
2855 }
2856 return elt;
2857 }
2858
2859 /* Assuming ARR is a pointer to a GDB array, the value of the element
2860 of *ARR at the ARITY indices given in IND.
2861 Does not read the entire array into memory.
2862
2863 Note: Unlike what one would expect, this function is used instead of
2864 ada_value_subscript for basically all non-packed array types. The reason
2865 for this is that a side effect of doing our own pointer arithmetics instead
2866 of relying on value_subscript is that there is no implicit typedef peeling.
2867 This is important for arrays of array accesses, where it allows us to
2868 preserve the fact that the array's element is an array access, where the
2869 access part os encoded in a typedef layer. */
2870
2871 static struct value *
2872 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2873 {
2874 int k;
2875 struct value *array_ind = ada_value_ind (arr);
2876 struct type *type
2877 = check_typedef (value_enclosing_type (array_ind));
2878
2879 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2880 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2881 return value_subscript_packed (array_ind, arity, ind);
2882
2883 for (k = 0; k < arity; k += 1)
2884 {
2885 LONGEST lwb, upb;
2886 struct value *lwb_value;
2887
2888 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2889 error (_("too many subscripts (%d expected)"), k);
2890 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2891 value_copy (arr));
2892 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2893 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2894 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2895 type = TYPE_TARGET_TYPE (type);
2896 }
2897
2898 return value_ind (arr);
2899 }
2900
2901 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2902 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2903 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2904 this array is LOW, as per Ada rules. */
2905 static struct value *
2906 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2907 int low, int high)
2908 {
2909 struct type *type0 = ada_check_typedef (type);
2910 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2911 struct type *index_type
2912 = create_static_range_type (NULL, base_index_type, low, high);
2913 struct type *slice_type = create_array_type_with_stride
2914 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2915 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2916 TYPE_FIELD_BITSIZE (type0, 0));
2917 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2918 LONGEST base_low_pos, low_pos;
2919 CORE_ADDR base;
2920
2921 if (!discrete_position (base_index_type, low, &low_pos)
2922 || !discrete_position (base_index_type, base_low, &base_low_pos))
2923 {
2924 warning (_("unable to get positions in slice, use bounds instead"));
2925 low_pos = low;
2926 base_low_pos = base_low;
2927 }
2928
2929 base = value_as_address (array_ptr)
2930 + ((low_pos - base_low_pos)
2931 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2932 return value_at_lazy (slice_type, base);
2933 }
2934
2935
2936 static struct value *
2937 ada_value_slice (struct value *array, int low, int high)
2938 {
2939 struct type *type = ada_check_typedef (value_type (array));
2940 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2941 struct type *index_type
2942 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2943 struct type *slice_type = create_array_type_with_stride
2944 (NULL, TYPE_TARGET_TYPE (type), index_type,
2945 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2946 TYPE_FIELD_BITSIZE (type, 0));
2947 LONGEST low_pos, high_pos;
2948
2949 if (!discrete_position (base_index_type, low, &low_pos)
2950 || !discrete_position (base_index_type, high, &high_pos))
2951 {
2952 warning (_("unable to get positions in slice, use bounds instead"));
2953 low_pos = low;
2954 high_pos = high;
2955 }
2956
2957 return value_cast (slice_type,
2958 value_slice (array, low, high_pos - low_pos + 1));
2959 }
2960
2961 /* If type is a record type in the form of a standard GNAT array
2962 descriptor, returns the number of dimensions for type. If arr is a
2963 simple array, returns the number of "array of"s that prefix its
2964 type designation. Otherwise, returns 0. */
2965
2966 int
2967 ada_array_arity (struct type *type)
2968 {
2969 int arity;
2970
2971 if (type == NULL)
2972 return 0;
2973
2974 type = desc_base_type (type);
2975
2976 arity = 0;
2977 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2978 return desc_arity (desc_bounds_type (type));
2979 else
2980 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2981 {
2982 arity += 1;
2983 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2984 }
2985
2986 return arity;
2987 }
2988
2989 /* If TYPE is a record type in the form of a standard GNAT array
2990 descriptor or a simple array type, returns the element type for
2991 TYPE after indexing by NINDICES indices, or by all indices if
2992 NINDICES is -1. Otherwise, returns NULL. */
2993
2994 struct type *
2995 ada_array_element_type (struct type *type, int nindices)
2996 {
2997 type = desc_base_type (type);
2998
2999 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3000 {
3001 int k;
3002 struct type *p_array_type;
3003
3004 p_array_type = desc_data_target_type (type);
3005
3006 k = ada_array_arity (type);
3007 if (k == 0)
3008 return NULL;
3009
3010 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3011 if (nindices >= 0 && k > nindices)
3012 k = nindices;
3013 while (k > 0 && p_array_type != NULL)
3014 {
3015 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3016 k -= 1;
3017 }
3018 return p_array_type;
3019 }
3020 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3021 {
3022 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3023 {
3024 type = TYPE_TARGET_TYPE (type);
3025 nindices -= 1;
3026 }
3027 return type;
3028 }
3029
3030 return NULL;
3031 }
3032
3033 /* The type of nth index in arrays of given type (n numbering from 1).
3034 Does not examine memory. Throws an error if N is invalid or TYPE
3035 is not an array type. NAME is the name of the Ada attribute being
3036 evaluated ('range, 'first, 'last, or 'length); it is used in building
3037 the error message. */
3038
3039 static struct type *
3040 ada_index_type (struct type *type, int n, const char *name)
3041 {
3042 struct type *result_type;
3043
3044 type = desc_base_type (type);
3045
3046 if (n < 0 || n > ada_array_arity (type))
3047 error (_("invalid dimension number to '%s"), name);
3048
3049 if (ada_is_simple_array_type (type))
3050 {
3051 int i;
3052
3053 for (i = 1; i < n; i += 1)
3054 type = TYPE_TARGET_TYPE (type);
3055 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3056 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3057 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3058 perhaps stabsread.c would make more sense. */
3059 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3060 result_type = NULL;
3061 }
3062 else
3063 {
3064 result_type = desc_index_type (desc_bounds_type (type), n);
3065 if (result_type == NULL)
3066 error (_("attempt to take bound of something that is not an array"));
3067 }
3068
3069 return result_type;
3070 }
3071
3072 /* Given that arr is an array type, returns the lower bound of the
3073 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3074 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3075 array-descriptor type. It works for other arrays with bounds supplied
3076 by run-time quantities other than discriminants. */
3077
3078 static LONGEST
3079 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3080 {
3081 struct type *type, *index_type_desc, *index_type;
3082 int i;
3083
3084 gdb_assert (which == 0 || which == 1);
3085
3086 if (ada_is_constrained_packed_array_type (arr_type))
3087 arr_type = decode_constrained_packed_array_type (arr_type);
3088
3089 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3090 return (LONGEST) - which;
3091
3092 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3093 type = TYPE_TARGET_TYPE (arr_type);
3094 else
3095 type = arr_type;
3096
3097 if (TYPE_FIXED_INSTANCE (type))
3098 {
3099 /* The array has already been fixed, so we do not need to
3100 check the parallel ___XA type again. That encoding has
3101 already been applied, so ignore it now. */
3102 index_type_desc = NULL;
3103 }
3104 else
3105 {
3106 index_type_desc = ada_find_parallel_type (type, "___XA");
3107 ada_fixup_array_indexes_type (index_type_desc);
3108 }
3109
3110 if (index_type_desc != NULL)
3111 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3112 NULL);
3113 else
3114 {
3115 struct type *elt_type = check_typedef (type);
3116
3117 for (i = 1; i < n; i++)
3118 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3119
3120 index_type = TYPE_INDEX_TYPE (elt_type);
3121 }
3122
3123 return
3124 (LONGEST) (which == 0
3125 ? ada_discrete_type_low_bound (index_type)
3126 : ada_discrete_type_high_bound (index_type));
3127 }
3128
3129 /* Given that arr is an array value, returns the lower bound of the
3130 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3131 WHICH is 1. This routine will also work for arrays with bounds
3132 supplied by run-time quantities other than discriminants. */
3133
3134 static LONGEST
3135 ada_array_bound (struct value *arr, int n, int which)
3136 {
3137 struct type *arr_type;
3138
3139 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3140 arr = value_ind (arr);
3141 arr_type = value_enclosing_type (arr);
3142
3143 if (ada_is_constrained_packed_array_type (arr_type))
3144 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3145 else if (ada_is_simple_array_type (arr_type))
3146 return ada_array_bound_from_type (arr_type, n, which);
3147 else
3148 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3149 }
3150
3151 /* Given that arr is an array value, returns the length of the
3152 nth index. This routine will also work for arrays with bounds
3153 supplied by run-time quantities other than discriminants.
3154 Does not work for arrays indexed by enumeration types with representation
3155 clauses at the moment. */
3156
3157 static LONGEST
3158 ada_array_length (struct value *arr, int n)
3159 {
3160 struct type *arr_type, *index_type;
3161 int low, high;
3162
3163 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3164 arr = value_ind (arr);
3165 arr_type = value_enclosing_type (arr);
3166
3167 if (ada_is_constrained_packed_array_type (arr_type))
3168 return ada_array_length (decode_constrained_packed_array (arr), n);
3169
3170 if (ada_is_simple_array_type (arr_type))
3171 {
3172 low = ada_array_bound_from_type (arr_type, n, 0);
3173 high = ada_array_bound_from_type (arr_type, n, 1);
3174 }
3175 else
3176 {
3177 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3178 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3179 }
3180
3181 arr_type = check_typedef (arr_type);
3182 index_type = ada_index_type (arr_type, n, "length");
3183 if (index_type != NULL)
3184 {
3185 struct type *base_type;
3186 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3187 base_type = TYPE_TARGET_TYPE (index_type);
3188 else
3189 base_type = index_type;
3190
3191 low = pos_atr (value_from_longest (base_type, low));
3192 high = pos_atr (value_from_longest (base_type, high));
3193 }
3194 return high - low + 1;
3195 }
3196
3197 /* An empty array whose type is that of ARR_TYPE (an array type),
3198 with bounds LOW to LOW-1. */
3199
3200 static struct value *
3201 empty_array (struct type *arr_type, int low)
3202 {
3203 struct type *arr_type0 = ada_check_typedef (arr_type);
3204 struct type *index_type
3205 = create_static_range_type
3206 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3207 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3208
3209 return allocate_value (create_array_type (NULL, elt_type, index_type));
3210 }
3211 \f
3212
3213 /* Name resolution */
3214
3215 /* The "decoded" name for the user-definable Ada operator corresponding
3216 to OP. */
3217
3218 static const char *
3219 ada_decoded_op_name (enum exp_opcode op)
3220 {
3221 int i;
3222
3223 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3224 {
3225 if (ada_opname_table[i].op == op)
3226 return ada_opname_table[i].decoded;
3227 }
3228 error (_("Could not find operator name for opcode"));
3229 }
3230
3231
3232 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3233 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3234 undefined namespace) and converts operators that are
3235 user-defined into appropriate function calls. If CONTEXT_TYPE is
3236 non-null, it provides a preferred result type [at the moment, only
3237 type void has any effect---causing procedures to be preferred over
3238 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3239 return type is preferred. May change (expand) *EXP. */
3240
3241 static void
3242 resolve (expression_up *expp, int void_context_p)
3243 {
3244 struct type *context_type = NULL;
3245 int pc = 0;
3246
3247 if (void_context_p)
3248 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3249
3250 resolve_subexp (expp, &pc, 1, context_type);
3251 }
3252
3253 /* Resolve the operator of the subexpression beginning at
3254 position *POS of *EXPP. "Resolving" consists of replacing
3255 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3256 with their resolutions, replacing built-in operators with
3257 function calls to user-defined operators, where appropriate, and,
3258 when DEPROCEDURE_P is non-zero, converting function-valued variables
3259 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3260 are as in ada_resolve, above. */
3261
3262 static struct value *
3263 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3264 struct type *context_type)
3265 {
3266 int pc = *pos;
3267 int i;
3268 struct expression *exp; /* Convenience: == *expp. */
3269 enum exp_opcode op = (*expp)->elts[pc].opcode;
3270 struct value **argvec; /* Vector of operand types (alloca'ed). */
3271 int nargs; /* Number of operands. */
3272 int oplen;
3273 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3274
3275 argvec = NULL;
3276 nargs = 0;
3277 exp = expp->get ();
3278
3279 /* Pass one: resolve operands, saving their types and updating *pos,
3280 if needed. */
3281 switch (op)
3282 {
3283 case OP_FUNCALL:
3284 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3285 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3286 *pos += 7;
3287 else
3288 {
3289 *pos += 3;
3290 resolve_subexp (expp, pos, 0, NULL);
3291 }
3292 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3293 break;
3294
3295 case UNOP_ADDR:
3296 *pos += 1;
3297 resolve_subexp (expp, pos, 0, NULL);
3298 break;
3299
3300 case UNOP_QUAL:
3301 *pos += 3;
3302 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3303 break;
3304
3305 case OP_ATR_MODULUS:
3306 case OP_ATR_SIZE:
3307 case OP_ATR_TAG:
3308 case OP_ATR_FIRST:
3309 case OP_ATR_LAST:
3310 case OP_ATR_LENGTH:
3311 case OP_ATR_POS:
3312 case OP_ATR_VAL:
3313 case OP_ATR_MIN:
3314 case OP_ATR_MAX:
3315 case TERNOP_IN_RANGE:
3316 case BINOP_IN_BOUNDS:
3317 case UNOP_IN_RANGE:
3318 case OP_AGGREGATE:
3319 case OP_OTHERS:
3320 case OP_CHOICES:
3321 case OP_POSITIONAL:
3322 case OP_DISCRETE_RANGE:
3323 case OP_NAME:
3324 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3325 *pos += oplen;
3326 break;
3327
3328 case BINOP_ASSIGN:
3329 {
3330 struct value *arg1;
3331
3332 *pos += 1;
3333 arg1 = resolve_subexp (expp, pos, 0, NULL);
3334 if (arg1 == NULL)
3335 resolve_subexp (expp, pos, 1, NULL);
3336 else
3337 resolve_subexp (expp, pos, 1, value_type (arg1));
3338 break;
3339 }
3340
3341 case UNOP_CAST:
3342 *pos += 3;
3343 nargs = 1;
3344 break;
3345
3346 case BINOP_ADD:
3347 case BINOP_SUB:
3348 case BINOP_MUL:
3349 case BINOP_DIV:
3350 case BINOP_REM:
3351 case BINOP_MOD:
3352 case BINOP_EXP:
3353 case BINOP_CONCAT:
3354 case BINOP_LOGICAL_AND:
3355 case BINOP_LOGICAL_OR:
3356 case BINOP_BITWISE_AND:
3357 case BINOP_BITWISE_IOR:
3358 case BINOP_BITWISE_XOR:
3359
3360 case BINOP_EQUAL:
3361 case BINOP_NOTEQUAL:
3362 case BINOP_LESS:
3363 case BINOP_GTR:
3364 case BINOP_LEQ:
3365 case BINOP_GEQ:
3366
3367 case BINOP_REPEAT:
3368 case BINOP_SUBSCRIPT:
3369 case BINOP_COMMA:
3370 *pos += 1;
3371 nargs = 2;
3372 break;
3373
3374 case UNOP_NEG:
3375 case UNOP_PLUS:
3376 case UNOP_LOGICAL_NOT:
3377 case UNOP_ABS:
3378 case UNOP_IND:
3379 *pos += 1;
3380 nargs = 1;
3381 break;
3382
3383 case OP_LONG:
3384 case OP_FLOAT:
3385 case OP_VAR_VALUE:
3386 case OP_VAR_MSYM_VALUE:
3387 *pos += 4;
3388 break;
3389
3390 case OP_TYPE:
3391 case OP_BOOL:
3392 case OP_LAST:
3393 case OP_INTERNALVAR:
3394 *pos += 3;
3395 break;
3396
3397 case UNOP_MEMVAL:
3398 *pos += 3;
3399 nargs = 1;
3400 break;
3401
3402 case OP_REGISTER:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 break;
3405
3406 case STRUCTOP_STRUCT:
3407 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3408 nargs = 1;
3409 break;
3410
3411 case TERNOP_SLICE:
3412 *pos += 1;
3413 nargs = 3;
3414 break;
3415
3416 case OP_STRING:
3417 break;
3418
3419 default:
3420 error (_("Unexpected operator during name resolution"));
3421 }
3422
3423 argvec = XALLOCAVEC (struct value *, nargs + 1);
3424 for (i = 0; i < nargs; i += 1)
3425 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3426 argvec[i] = NULL;
3427 exp = expp->get ();
3428
3429 /* Pass two: perform any resolution on principal operator. */
3430 switch (op)
3431 {
3432 default:
3433 break;
3434
3435 case OP_VAR_VALUE:
3436 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3437 {
3438 struct block_symbol *candidates;
3439 int n_candidates;
3440
3441 n_candidates =
3442 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3443 (exp->elts[pc + 2].symbol),
3444 exp->elts[pc + 1].block, VAR_DOMAIN,
3445 &candidates);
3446 make_cleanup (xfree, candidates);
3447
3448 if (n_candidates > 1)
3449 {
3450 /* Types tend to get re-introduced locally, so if there
3451 are any local symbols that are not types, first filter
3452 out all types. */
3453 int j;
3454 for (j = 0; j < n_candidates; j += 1)
3455 switch (SYMBOL_CLASS (candidates[j].symbol))
3456 {
3457 case LOC_REGISTER:
3458 case LOC_ARG:
3459 case LOC_REF_ARG:
3460 case LOC_REGPARM_ADDR:
3461 case LOC_LOCAL:
3462 case LOC_COMPUTED:
3463 goto FoundNonType;
3464 default:
3465 break;
3466 }
3467 FoundNonType:
3468 if (j < n_candidates)
3469 {
3470 j = 0;
3471 while (j < n_candidates)
3472 {
3473 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3474 {
3475 candidates[j] = candidates[n_candidates - 1];
3476 n_candidates -= 1;
3477 }
3478 else
3479 j += 1;
3480 }
3481 }
3482 }
3483
3484 if (n_candidates == 0)
3485 error (_("No definition found for %s"),
3486 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3487 else if (n_candidates == 1)
3488 i = 0;
3489 else if (deprocedure_p
3490 && !is_nonfunction (candidates, n_candidates))
3491 {
3492 i = ada_resolve_function
3493 (candidates, n_candidates, NULL, 0,
3494 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3495 context_type);
3496 if (i < 0)
3497 error (_("Could not find a match for %s"),
3498 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3499 }
3500 else
3501 {
3502 printf_filtered (_("Multiple matches for %s\n"),
3503 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3504 user_select_syms (candidates, n_candidates, 1);
3505 i = 0;
3506 }
3507
3508 exp->elts[pc + 1].block = candidates[i].block;
3509 exp->elts[pc + 2].symbol = candidates[i].symbol;
3510 innermost_block.update (candidates[i]);
3511 }
3512
3513 if (deprocedure_p
3514 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3515 == TYPE_CODE_FUNC))
3516 {
3517 replace_operator_with_call (expp, pc, 0, 0,
3518 exp->elts[pc + 2].symbol,
3519 exp->elts[pc + 1].block);
3520 exp = expp->get ();
3521 }
3522 break;
3523
3524 case OP_FUNCALL:
3525 {
3526 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3527 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3528 {
3529 struct block_symbol *candidates;
3530 int n_candidates;
3531
3532 n_candidates =
3533 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3534 (exp->elts[pc + 5].symbol),
3535 exp->elts[pc + 4].block, VAR_DOMAIN,
3536 &candidates);
3537 make_cleanup (xfree, candidates);
3538
3539 if (n_candidates == 1)
3540 i = 0;
3541 else
3542 {
3543 i = ada_resolve_function
3544 (candidates, n_candidates,
3545 argvec, nargs,
3546 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3547 context_type);
3548 if (i < 0)
3549 error (_("Could not find a match for %s"),
3550 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3551 }
3552
3553 exp->elts[pc + 4].block = candidates[i].block;
3554 exp->elts[pc + 5].symbol = candidates[i].symbol;
3555 innermost_block.update (candidates[i]);
3556 }
3557 }
3558 break;
3559 case BINOP_ADD:
3560 case BINOP_SUB:
3561 case BINOP_MUL:
3562 case BINOP_DIV:
3563 case BINOP_REM:
3564 case BINOP_MOD:
3565 case BINOP_CONCAT:
3566 case BINOP_BITWISE_AND:
3567 case BINOP_BITWISE_IOR:
3568 case BINOP_BITWISE_XOR:
3569 case BINOP_EQUAL:
3570 case BINOP_NOTEQUAL:
3571 case BINOP_LESS:
3572 case BINOP_GTR:
3573 case BINOP_LEQ:
3574 case BINOP_GEQ:
3575 case BINOP_EXP:
3576 case UNOP_NEG:
3577 case UNOP_PLUS:
3578 case UNOP_LOGICAL_NOT:
3579 case UNOP_ABS:
3580 if (possible_user_operator_p (op, argvec))
3581 {
3582 struct block_symbol *candidates;
3583 int n_candidates;
3584
3585 n_candidates =
3586 ada_lookup_symbol_list (ada_decoded_op_name (op),
3587 (struct block *) NULL, VAR_DOMAIN,
3588 &candidates);
3589 make_cleanup (xfree, candidates);
3590
3591 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3592 ada_decoded_op_name (op), NULL);
3593 if (i < 0)
3594 break;
3595
3596 replace_operator_with_call (expp, pc, nargs, 1,
3597 candidates[i].symbol,
3598 candidates[i].block);
3599 exp = expp->get ();
3600 }
3601 break;
3602
3603 case OP_TYPE:
3604 case OP_REGISTER:
3605 do_cleanups (old_chain);
3606 return NULL;
3607 }
3608
3609 *pos = pc;
3610 do_cleanups (old_chain);
3611 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3612 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3613 exp->elts[pc + 1].objfile,
3614 exp->elts[pc + 2].msymbol);
3615 else
3616 return evaluate_subexp_type (exp, pos);
3617 }
3618
3619 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3621 a non-pointer. */
3622 /* The term "match" here is rather loose. The match is heuristic and
3623 liberal. */
3624
3625 static int
3626 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3627 {
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
3630
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3635
3636 switch (TYPE_CODE (ftype))
3637 {
3638 default:
3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3640 case TYPE_CODE_PTR:
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
3644 else
3645 return (may_deref
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
3651 {
3652 case TYPE_CODE_INT:
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3655 return 1;
3656 default:
3657 return 0;
3658 }
3659
3660 case TYPE_CODE_ARRAY:
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3663
3664 case TYPE_CODE_STRUCT:
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
3668 else
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
3671
3672 case TYPE_CODE_UNION:
3673 case TYPE_CODE_FLT:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3675 }
3676 }
3677
3678 /* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
3681 argument function. */
3682
3683 static int
3684 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3685 {
3686 int i;
3687 struct type *func_type = SYMBOL_TYPE (func);
3688
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3693 return 0;
3694
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3696 return 0;
3697
3698 for (i = 0; i < n_actuals; i += 1)
3699 {
3700 if (actuals[i] == NULL)
3701 return 0;
3702 else
3703 {
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3705 i));
3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3707
3708 if (!ada_type_match (ftype, atype, 1))
3709 return 0;
3710 }
3711 }
3712 return 1;
3713 }
3714
3715 /* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3719
3720 static int
3721 return_match (struct type *func_type, struct type *context_type)
3722 {
3723 struct type *return_type;
3724
3725 if (func_type == NULL)
3726 return 1;
3727
3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3730 else
3731 return_type = get_base_type (func_type);
3732 if (return_type == NULL)
3733 return 1;
3734
3735 context_type = get_base_type (context_type);
3736
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3741 else
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3743 }
3744
3745
3746 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3747 function (if any) that matches the types of the NARGS arguments in
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3752
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
3757
3758 static int
3759 ada_resolve_function (struct block_symbol syms[],
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
3762 {
3763 int fallback;
3764 int k;
3765 int m; /* Number of hits */
3766
3767 m = 0;
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3772 {
3773 for (k = 0; k < nsyms; k += 1)
3774 {
3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3776
3777 if (ada_args_match (syms[k].symbol, args, nargs)
3778 && (fallback || return_match (type, context_type)))
3779 {
3780 syms[m] = syms[k];
3781 m += 1;
3782 }
3783 }
3784 }
3785
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
3790 if (m == 0)
3791 return -1;
3792 else if (m > 1 && !parse_completion)
3793 {
3794 printf_filtered (_("Multiple matches for %s\n"), name);
3795 user_select_syms (syms, m, 1);
3796 return 0;
3797 }
3798 return 0;
3799 }
3800
3801 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3806
3807 static int
3808 encoded_ordered_before (const char *N0, const char *N1)
3809 {
3810 if (N1 == NULL)
3811 return 0;
3812 else if (N0 == NULL)
3813 return 1;
3814 else
3815 {
3816 int k0, k1;
3817
3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3819 ;
3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3821 ;
3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824 {
3825 int n0, n1;
3826
3827 n0 = k0;
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3829 n0 -= 1;
3830 n1 = k1;
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3832 n1 -= 1;
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3835 }
3836 return (strcmp (N0, N1) < 0);
3837 }
3838 }
3839
3840 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3841 encoded names. */
3842
3843 static void
3844 sort_choices (struct block_symbol syms[], int nsyms)
3845 {
3846 int i;
3847
3848 for (i = 1; i < nsyms; i += 1)
3849 {
3850 struct block_symbol sym = syms[i];
3851 int j;
3852
3853 for (j = i - 1; j >= 0; j -= 1)
3854 {
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
3857 break;
3858 syms[j + 1] = syms[j];
3859 }
3860 syms[j + 1] = sym;
3861 }
3862 }
3863
3864 /* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866 static int print_signatures = 1;
3867
3868 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3872
3873 static void
3874 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3876 {
3877 struct type *type = SYMBOL_TYPE (sym);
3878
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3881 || type == NULL
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3883 return;
3884
3885 if (TYPE_NFIELDS (type) > 0)
3886 {
3887 int i;
3888
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3891 {
3892 if (i > 0)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3895 flags);
3896 }
3897 fprintf_filtered (stream, ")");
3898 }
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3901 {
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3904 }
3905 }
3906
3907 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3910 selected. */
3911
3912 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3913 to be re-integrated one of these days. */
3914
3915 int
3916 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3917 {
3918 int i;
3919 int *chosen = XALLOCAVEC (int , nsyms);
3920 int n_chosen;
3921 int first_choice = (max_results == 1) ? 1 : 2;
3922 const char *select_mode = multiple_symbols_select_mode ();
3923
3924 if (max_results < 1)
3925 error (_("Request to select 0 symbols!"));
3926 if (nsyms <= 1)
3927 return nsyms;
3928
3929 if (select_mode == multiple_symbols_cancel)
3930 error (_("\
3931 canceled because the command is ambiguous\n\
3932 See set/show multiple-symbol."));
3933
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3938 return nsyms;
3939
3940 printf_unfiltered (_("[0] cancel\n"));
3941 if (max_results > 1)
3942 printf_unfiltered (_("[1] all\n"));
3943
3944 sort_choices (syms, nsyms);
3945
3946 for (i = 0; i < nsyms; i += 1)
3947 {
3948 if (syms[i].symbol == NULL)
3949 continue;
3950
3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3952 {
3953 struct symtab_and_line sal =
3954 find_function_start_sal (syms[i].symbol, 1);
3955
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
3959 if (sal.symtab == NULL)
3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
3961 sal.line);
3962 else
3963 printf_unfiltered (_(" at %s:%d\n"),
3964 symtab_to_filename_for_display (sal.symtab),
3965 sal.line);
3966 continue;
3967 }
3968 else
3969 {
3970 int is_enumeral =
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3974 struct symtab *symtab = NULL;
3975
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
3978
3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3980 {
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3987 }
3988 else if (is_enumeral
3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3990 {
3991 printf_unfiltered (("[%d] "), i + first_choice);
3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3993 gdb_stdout, -1, 0, &type_print_raw_options);
3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
3995 SYMBOL_PRINT_NAME (syms[i].symbol));
3996 }
3997 else
3998 {
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4002
4003 if (symtab != NULL)
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4006 : _(" at %s:?\n"),
4007 symtab_to_filename_for_display (symtab));
4008 else
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4011 : _(" at ?\n"));
4012 }
4013 }
4014 }
4015
4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4017 "overload-choice");
4018
4019 for (i = 0; i < n_chosen; i += 1)
4020 syms[i] = syms[chosen[i]];
4021
4022 return n_chosen;
4023 }
4024
4025 /* Read and validate a set of numeric choices from the user in the
4026 range 0 .. N_CHOICES-1. Place the results in increasing
4027 order in CHOICES[0 .. N-1], and return N.
4028
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4031
4032 + A choice of 0 means to cancel the selection, throwing an error.
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4035
4036 The user is not allowed to choose more than MAX_RESULTS values.
4037
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4039 prompts (for use with the -f switch). */
4040
4041 int
4042 get_selections (int *choices, int n_choices, int max_results,
4043 int is_all_choice, const char *annotation_suffix)
4044 {
4045 char *args;
4046 const char *prompt;
4047 int n_chosen;
4048 int first_choice = is_all_choice ? 2 : 1;
4049
4050 prompt = getenv ("PS2");
4051 if (prompt == NULL)
4052 prompt = "> ";
4053
4054 args = command_line_input (prompt, 0, annotation_suffix);
4055
4056 if (args == NULL)
4057 error_no_arg (_("one or more choice numbers"));
4058
4059 n_chosen = 0;
4060
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
4063 while (1)
4064 {
4065 char *args2;
4066 int choice, j;
4067
4068 args = skip_spaces (args);
4069 if (*args == '\0' && n_chosen == 0)
4070 error_no_arg (_("one or more choice numbers"));
4071 else if (*args == '\0')
4072 break;
4073
4074 choice = strtol (args, &args2, 10);
4075 if (args == args2 || choice < 0
4076 || choice > n_choices + first_choice - 1)
4077 error (_("Argument must be choice number"));
4078 args = args2;
4079
4080 if (choice == 0)
4081 error (_("cancelled"));
4082
4083 if (choice < first_choice)
4084 {
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4087 choices[j] = j;
4088 break;
4089 }
4090 choice -= first_choice;
4091
4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4093 {
4094 }
4095
4096 if (j < 0 || choice != choices[j])
4097 {
4098 int k;
4099
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4103 n_chosen += 1;
4104 }
4105 }
4106
4107 if (n_chosen > max_results)
4108 error (_("Select no more than %d of the above"), max_results);
4109
4110 return n_chosen;
4111 }
4112
4113 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
4116
4117 static void
4118 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4119 int oplen, struct symbol *sym,
4120 const struct block *block)
4121 {
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4123 symbol, -oplen for operator being replaced). */
4124 struct expression *newexp = (struct expression *)
4125 xzalloc (sizeof (struct expression)
4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4127 struct expression *exp = expp->get ();
4128
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
4131 newexp->gdbarch = exp->gdbarch;
4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4135
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4138
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4142
4143 expp->reset (newexp);
4144 }
4145
4146 /* Type-class predicates */
4147
4148 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4149 or FLOAT). */
4150
4151 static int
4152 numeric_type_p (struct type *type)
4153 {
4154 if (type == NULL)
4155 return 0;
4156 else
4157 {
4158 switch (TYPE_CODE (type))
4159 {
4160 case TYPE_CODE_INT:
4161 case TYPE_CODE_FLT:
4162 return 1;
4163 case TYPE_CODE_RANGE:
4164 return (type == TYPE_TARGET_TYPE (type)
4165 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4166 default:
4167 return 0;
4168 }
4169 }
4170 }
4171
4172 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4173
4174 static int
4175 integer_type_p (struct type *type)
4176 {
4177 if (type == NULL)
4178 return 0;
4179 else
4180 {
4181 switch (TYPE_CODE (type))
4182 {
4183 case TYPE_CODE_INT:
4184 return 1;
4185 case TYPE_CODE_RANGE:
4186 return (type == TYPE_TARGET_TYPE (type)
4187 || integer_type_p (TYPE_TARGET_TYPE (type)));
4188 default:
4189 return 0;
4190 }
4191 }
4192 }
4193
4194 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4195
4196 static int
4197 scalar_type_p (struct type *type)
4198 {
4199 if (type == NULL)
4200 return 0;
4201 else
4202 {
4203 switch (TYPE_CODE (type))
4204 {
4205 case TYPE_CODE_INT:
4206 case TYPE_CODE_RANGE:
4207 case TYPE_CODE_ENUM:
4208 case TYPE_CODE_FLT:
4209 return 1;
4210 default:
4211 return 0;
4212 }
4213 }
4214 }
4215
4216 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4217
4218 static int
4219 discrete_type_p (struct type *type)
4220 {
4221 if (type == NULL)
4222 return 0;
4223 else
4224 {
4225 switch (TYPE_CODE (type))
4226 {
4227 case TYPE_CODE_INT:
4228 case TYPE_CODE_RANGE:
4229 case TYPE_CODE_ENUM:
4230 case TYPE_CODE_BOOL:
4231 return 1;
4232 default:
4233 return 0;
4234 }
4235 }
4236 }
4237
4238 /* Returns non-zero if OP with operands in the vector ARGS could be
4239 a user-defined function. Errs on the side of pre-defined operators
4240 (i.e., result 0). */
4241
4242 static int
4243 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4244 {
4245 struct type *type0 =
4246 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4247 struct type *type1 =
4248 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4249
4250 if (type0 == NULL)
4251 return 0;
4252
4253 switch (op)
4254 {
4255 default:
4256 return 0;
4257
4258 case BINOP_ADD:
4259 case BINOP_SUB:
4260 case BINOP_MUL:
4261 case BINOP_DIV:
4262 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4263
4264 case BINOP_REM:
4265 case BINOP_MOD:
4266 case BINOP_BITWISE_AND:
4267 case BINOP_BITWISE_IOR:
4268 case BINOP_BITWISE_XOR:
4269 return (!(integer_type_p (type0) && integer_type_p (type1)));
4270
4271 case BINOP_EQUAL:
4272 case BINOP_NOTEQUAL:
4273 case BINOP_LESS:
4274 case BINOP_GTR:
4275 case BINOP_LEQ:
4276 case BINOP_GEQ:
4277 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4278
4279 case BINOP_CONCAT:
4280 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4281
4282 case BINOP_EXP:
4283 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4284
4285 case UNOP_NEG:
4286 case UNOP_PLUS:
4287 case UNOP_LOGICAL_NOT:
4288 case UNOP_ABS:
4289 return (!numeric_type_p (type0));
4290
4291 }
4292 }
4293 \f
4294 /* Renaming */
4295
4296 /* NOTES:
4297
4298 1. In the following, we assume that a renaming type's name may
4299 have an ___XD suffix. It would be nice if this went away at some
4300 point.
4301 2. We handle both the (old) purely type-based representation of
4302 renamings and the (new) variable-based encoding. At some point,
4303 it is devoutly to be hoped that the former goes away
4304 (FIXME: hilfinger-2007-07-09).
4305 3. Subprogram renamings are not implemented, although the XRS
4306 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4307
4308 /* If SYM encodes a renaming,
4309
4310 <renaming> renames <renamed entity>,
4311
4312 sets *LEN to the length of the renamed entity's name,
4313 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4314 the string describing the subcomponent selected from the renamed
4315 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4316 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4317 are undefined). Otherwise, returns a value indicating the category
4318 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4319 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4320 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4321 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4322 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4323 may be NULL, in which case they are not assigned.
4324
4325 [Currently, however, GCC does not generate subprogram renamings.] */
4326
4327 enum ada_renaming_category
4328 ada_parse_renaming (struct symbol *sym,
4329 const char **renamed_entity, int *len,
4330 const char **renaming_expr)
4331 {
4332 enum ada_renaming_category kind;
4333 const char *info;
4334 const char *suffix;
4335
4336 if (sym == NULL)
4337 return ADA_NOT_RENAMING;
4338 switch (SYMBOL_CLASS (sym))
4339 {
4340 default:
4341 return ADA_NOT_RENAMING;
4342 case LOC_TYPEDEF:
4343 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4344 renamed_entity, len, renaming_expr);
4345 case LOC_LOCAL:
4346 case LOC_STATIC:
4347 case LOC_COMPUTED:
4348 case LOC_OPTIMIZED_OUT:
4349 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4350 if (info == NULL)
4351 return ADA_NOT_RENAMING;
4352 switch (info[5])
4353 {
4354 case '_':
4355 kind = ADA_OBJECT_RENAMING;
4356 info += 6;
4357 break;
4358 case 'E':
4359 kind = ADA_EXCEPTION_RENAMING;
4360 info += 7;
4361 break;
4362 case 'P':
4363 kind = ADA_PACKAGE_RENAMING;
4364 info += 7;
4365 break;
4366 case 'S':
4367 kind = ADA_SUBPROGRAM_RENAMING;
4368 info += 7;
4369 break;
4370 default:
4371 return ADA_NOT_RENAMING;
4372 }
4373 }
4374
4375 if (renamed_entity != NULL)
4376 *renamed_entity = info;
4377 suffix = strstr (info, "___XE");
4378 if (suffix == NULL || suffix == info)
4379 return ADA_NOT_RENAMING;
4380 if (len != NULL)
4381 *len = strlen (info) - strlen (suffix);
4382 suffix += 5;
4383 if (renaming_expr != NULL)
4384 *renaming_expr = suffix;
4385 return kind;
4386 }
4387
4388 /* Assuming TYPE encodes a renaming according to the old encoding in
4389 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4390 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4391 ADA_NOT_RENAMING otherwise. */
4392 static enum ada_renaming_category
4393 parse_old_style_renaming (struct type *type,
4394 const char **renamed_entity, int *len,
4395 const char **renaming_expr)
4396 {
4397 enum ada_renaming_category kind;
4398 const char *name;
4399 const char *info;
4400 const char *suffix;
4401
4402 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4403 || TYPE_NFIELDS (type) != 1)
4404 return ADA_NOT_RENAMING;
4405
4406 name = type_name_no_tag (type);
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409
4410 name = strstr (name, "___XR");
4411 if (name == NULL)
4412 return ADA_NOT_RENAMING;
4413 switch (name[5])
4414 {
4415 case '\0':
4416 case '_':
4417 kind = ADA_OBJECT_RENAMING;
4418 break;
4419 case 'E':
4420 kind = ADA_EXCEPTION_RENAMING;
4421 break;
4422 case 'P':
4423 kind = ADA_PACKAGE_RENAMING;
4424 break;
4425 case 'S':
4426 kind = ADA_SUBPROGRAM_RENAMING;
4427 break;
4428 default:
4429 return ADA_NOT_RENAMING;
4430 }
4431
4432 info = TYPE_FIELD_NAME (type, 0);
4433 if (info == NULL)
4434 return ADA_NOT_RENAMING;
4435 if (renamed_entity != NULL)
4436 *renamed_entity = info;
4437 suffix = strstr (info, "___XE");
4438 if (renaming_expr != NULL)
4439 *renaming_expr = suffix + 5;
4440 if (suffix == NULL || suffix == info)
4441 return ADA_NOT_RENAMING;
4442 if (len != NULL)
4443 *len = suffix - info;
4444 return kind;
4445 }
4446
4447 /* Compute the value of the given RENAMING_SYM, which is expected to
4448 be a symbol encoding a renaming expression. BLOCK is the block
4449 used to evaluate the renaming. */
4450
4451 static struct value *
4452 ada_read_renaming_var_value (struct symbol *renaming_sym,
4453 const struct block *block)
4454 {
4455 const char *sym_name;
4456
4457 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4458 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4459 return evaluate_expression (expr.get ());
4460 }
4461 \f
4462
4463 /* Evaluation: Function Calls */
4464
4465 /* Return an lvalue containing the value VAL. This is the identity on
4466 lvalues, and otherwise has the side-effect of allocating memory
4467 in the inferior where a copy of the value contents is copied. */
4468
4469 static struct value *
4470 ensure_lval (struct value *val)
4471 {
4472 if (VALUE_LVAL (val) == not_lval
4473 || VALUE_LVAL (val) == lval_internalvar)
4474 {
4475 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4476 const CORE_ADDR addr =
4477 value_as_long (value_allocate_space_in_inferior (len));
4478
4479 VALUE_LVAL (val) = lval_memory;
4480 set_value_address (val, addr);
4481 write_memory (addr, value_contents (val), len);
4482 }
4483
4484 return val;
4485 }
4486
4487 /* Return the value ACTUAL, converted to be an appropriate value for a
4488 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4489 allocating any necessary descriptors (fat pointers), or copies of
4490 values not residing in memory, updating it as needed. */
4491
4492 struct value *
4493 ada_convert_actual (struct value *actual, struct type *formal_type0)
4494 {
4495 struct type *actual_type = ada_check_typedef (value_type (actual));
4496 struct type *formal_type = ada_check_typedef (formal_type0);
4497 struct type *formal_target =
4498 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4499 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4500 struct type *actual_target =
4501 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4502 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4503
4504 if (ada_is_array_descriptor_type (formal_target)
4505 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4506 return make_array_descriptor (formal_type, actual);
4507 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4508 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4509 {
4510 struct value *result;
4511
4512 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4513 && ada_is_array_descriptor_type (actual_target))
4514 result = desc_data (actual);
4515 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4516 {
4517 if (VALUE_LVAL (actual) != lval_memory)
4518 {
4519 struct value *val;
4520
4521 actual_type = ada_check_typedef (value_type (actual));
4522 val = allocate_value (actual_type);
4523 memcpy ((char *) value_contents_raw (val),
4524 (char *) value_contents (actual),
4525 TYPE_LENGTH (actual_type));
4526 actual = ensure_lval (val);
4527 }
4528 result = value_addr (actual);
4529 }
4530 else
4531 return actual;
4532 return value_cast_pointers (formal_type, result, 0);
4533 }
4534 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4535 return ada_value_ind (actual);
4536 else if (ada_is_aligner_type (formal_type))
4537 {
4538 /* We need to turn this parameter into an aligner type
4539 as well. */
4540 struct value *aligner = allocate_value (formal_type);
4541 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4542
4543 value_assign_to_component (aligner, component, actual);
4544 return aligner;
4545 }
4546
4547 return actual;
4548 }
4549
4550 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4551 type TYPE. This is usually an inefficient no-op except on some targets
4552 (such as AVR) where the representation of a pointer and an address
4553 differs. */
4554
4555 static CORE_ADDR
4556 value_pointer (struct value *value, struct type *type)
4557 {
4558 struct gdbarch *gdbarch = get_type_arch (type);
4559 unsigned len = TYPE_LENGTH (type);
4560 gdb_byte *buf = (gdb_byte *) alloca (len);
4561 CORE_ADDR addr;
4562
4563 addr = value_address (value);
4564 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4565 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4566 return addr;
4567 }
4568
4569
4570 /* Push a descriptor of type TYPE for array value ARR on the stack at
4571 *SP, updating *SP to reflect the new descriptor. Return either
4572 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4573 to-descriptor type rather than a descriptor type), a struct value *
4574 representing a pointer to this descriptor. */
4575
4576 static struct value *
4577 make_array_descriptor (struct type *type, struct value *arr)
4578 {
4579 struct type *bounds_type = desc_bounds_type (type);
4580 struct type *desc_type = desc_base_type (type);
4581 struct value *descriptor = allocate_value (desc_type);
4582 struct value *bounds = allocate_value (bounds_type);
4583 int i;
4584
4585 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4586 i > 0; i -= 1)
4587 {
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 0),
4590 desc_bound_bitpos (bounds_type, i, 0),
4591 desc_bound_bitsize (bounds_type, i, 0));
4592 modify_field (value_type (bounds), value_contents_writeable (bounds),
4593 ada_array_bound (arr, i, 1),
4594 desc_bound_bitpos (bounds_type, i, 1),
4595 desc_bound_bitsize (bounds_type, i, 1));
4596 }
4597
4598 bounds = ensure_lval (bounds);
4599
4600 modify_field (value_type (descriptor),
4601 value_contents_writeable (descriptor),
4602 value_pointer (ensure_lval (arr),
4603 TYPE_FIELD_TYPE (desc_type, 0)),
4604 fat_pntr_data_bitpos (desc_type),
4605 fat_pntr_data_bitsize (desc_type));
4606
4607 modify_field (value_type (descriptor),
4608 value_contents_writeable (descriptor),
4609 value_pointer (bounds,
4610 TYPE_FIELD_TYPE (desc_type, 1)),
4611 fat_pntr_bounds_bitpos (desc_type),
4612 fat_pntr_bounds_bitsize (desc_type));
4613
4614 descriptor = ensure_lval (descriptor);
4615
4616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4617 return value_addr (descriptor);
4618 else
4619 return descriptor;
4620 }
4621 \f
4622 /* Symbol Cache Module */
4623
4624 /* Performance measurements made as of 2010-01-15 indicate that
4625 this cache does bring some noticeable improvements. Depending
4626 on the type of entity being printed, the cache can make it as much
4627 as an order of magnitude faster than without it.
4628
4629 The descriptive type DWARF extension has significantly reduced
4630 the need for this cache, at least when DWARF is being used. However,
4631 even in this case, some expensive name-based symbol searches are still
4632 sometimes necessary - to find an XVZ variable, mostly. */
4633
4634 /* Initialize the contents of SYM_CACHE. */
4635
4636 static void
4637 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4638 {
4639 obstack_init (&sym_cache->cache_space);
4640 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4641 }
4642
4643 /* Free the memory used by SYM_CACHE. */
4644
4645 static void
4646 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4647 {
4648 obstack_free (&sym_cache->cache_space, NULL);
4649 xfree (sym_cache);
4650 }
4651
4652 /* Return the symbol cache associated to the given program space PSPACE.
4653 If not allocated for this PSPACE yet, allocate and initialize one. */
4654
4655 static struct ada_symbol_cache *
4656 ada_get_symbol_cache (struct program_space *pspace)
4657 {
4658 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4659
4660 if (pspace_data->sym_cache == NULL)
4661 {
4662 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4663 ada_init_symbol_cache (pspace_data->sym_cache);
4664 }
4665
4666 return pspace_data->sym_cache;
4667 }
4668
4669 /* Clear all entries from the symbol cache. */
4670
4671 static void
4672 ada_clear_symbol_cache (void)
4673 {
4674 struct ada_symbol_cache *sym_cache
4675 = ada_get_symbol_cache (current_program_space);
4676
4677 obstack_free (&sym_cache->cache_space, NULL);
4678 ada_init_symbol_cache (sym_cache);
4679 }
4680
4681 /* Search our cache for an entry matching NAME and DOMAIN.
4682 Return it if found, or NULL otherwise. */
4683
4684 static struct cache_entry **
4685 find_entry (const char *name, domain_enum domain)
4686 {
4687 struct ada_symbol_cache *sym_cache
4688 = ada_get_symbol_cache (current_program_space);
4689 int h = msymbol_hash (name) % HASH_SIZE;
4690 struct cache_entry **e;
4691
4692 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4693 {
4694 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4695 return e;
4696 }
4697 return NULL;
4698 }
4699
4700 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4701 Return 1 if found, 0 otherwise.
4702
4703 If an entry was found and SYM is not NULL, set *SYM to the entry's
4704 SYM. Same principle for BLOCK if not NULL. */
4705
4706 static int
4707 lookup_cached_symbol (const char *name, domain_enum domain,
4708 struct symbol **sym, const struct block **block)
4709 {
4710 struct cache_entry **e = find_entry (name, domain);
4711
4712 if (e == NULL)
4713 return 0;
4714 if (sym != NULL)
4715 *sym = (*e)->sym;
4716 if (block != NULL)
4717 *block = (*e)->block;
4718 return 1;
4719 }
4720
4721 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4722 in domain DOMAIN, save this result in our symbol cache. */
4723
4724 static void
4725 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4726 const struct block *block)
4727 {
4728 struct ada_symbol_cache *sym_cache
4729 = ada_get_symbol_cache (current_program_space);
4730 int h;
4731 char *copy;
4732 struct cache_entry *e;
4733
4734 /* Symbols for builtin types don't have a block.
4735 For now don't cache such symbols. */
4736 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4737 return;
4738
4739 /* If the symbol is a local symbol, then do not cache it, as a search
4740 for that symbol depends on the context. To determine whether
4741 the symbol is local or not, we check the block where we found it
4742 against the global and static blocks of its associated symtab. */
4743 if (sym
4744 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4745 GLOBAL_BLOCK) != block
4746 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4747 STATIC_BLOCK) != block)
4748 return;
4749
4750 h = msymbol_hash (name) % HASH_SIZE;
4751 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4752 sizeof (*e));
4753 e->next = sym_cache->root[h];
4754 sym_cache->root[h] = e;
4755 e->name = copy
4756 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4757 strcpy (copy, name);
4758 e->sym = sym;
4759 e->domain = domain;
4760 e->block = block;
4761 }
4762 \f
4763 /* Symbol Lookup */
4764
4765 /* Return the symbol name match type that should be used used when
4766 searching for all symbols matching LOOKUP_NAME.
4767
4768 LOOKUP_NAME is expected to be a symbol name after transformation
4769 for Ada lookups (see ada_name_for_lookup). */
4770
4771 static symbol_name_match_type
4772 name_match_type_from_name (const char *lookup_name)
4773 {
4774 return (strstr (lookup_name, "__") == NULL
4775 ? symbol_name_match_type::WILD
4776 : symbol_name_match_type::FULL);
4777 }
4778
4779 /* Return the result of a standard (literal, C-like) lookup of NAME in
4780 given DOMAIN, visible from lexical block BLOCK. */
4781
4782 static struct symbol *
4783 standard_lookup (const char *name, const struct block *block,
4784 domain_enum domain)
4785 {
4786 /* Initialize it just to avoid a GCC false warning. */
4787 struct block_symbol sym = {NULL, NULL};
4788
4789 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4790 return sym.symbol;
4791 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4792 cache_symbol (name, domain, sym.symbol, sym.block);
4793 return sym.symbol;
4794 }
4795
4796
4797 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4798 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4799 since they contend in overloading in the same way. */
4800 static int
4801 is_nonfunction (struct block_symbol syms[], int n)
4802 {
4803 int i;
4804
4805 for (i = 0; i < n; i += 1)
4806 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4807 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4808 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4809 return 1;
4810
4811 return 0;
4812 }
4813
4814 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4815 struct types. Otherwise, they may not. */
4816
4817 static int
4818 equiv_types (struct type *type0, struct type *type1)
4819 {
4820 if (type0 == type1)
4821 return 1;
4822 if (type0 == NULL || type1 == NULL
4823 || TYPE_CODE (type0) != TYPE_CODE (type1))
4824 return 0;
4825 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4826 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4827 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4828 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4829 return 1;
4830
4831 return 0;
4832 }
4833
4834 /* True iff SYM0 represents the same entity as SYM1, or one that is
4835 no more defined than that of SYM1. */
4836
4837 static int
4838 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4839 {
4840 if (sym0 == sym1)
4841 return 1;
4842 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4843 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4844 return 0;
4845
4846 switch (SYMBOL_CLASS (sym0))
4847 {
4848 case LOC_UNDEF:
4849 return 1;
4850 case LOC_TYPEDEF:
4851 {
4852 struct type *type0 = SYMBOL_TYPE (sym0);
4853 struct type *type1 = SYMBOL_TYPE (sym1);
4854 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4855 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4856 int len0 = strlen (name0);
4857
4858 return
4859 TYPE_CODE (type0) == TYPE_CODE (type1)
4860 && (equiv_types (type0, type1)
4861 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4862 && startswith (name1 + len0, "___XV")));
4863 }
4864 case LOC_CONST:
4865 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4866 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4867 default:
4868 return 0;
4869 }
4870 }
4871
4872 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4873 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4874
4875 static void
4876 add_defn_to_vec (struct obstack *obstackp,
4877 struct symbol *sym,
4878 const struct block *block)
4879 {
4880 int i;
4881 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4882
4883 /* Do not try to complete stub types, as the debugger is probably
4884 already scanning all symbols matching a certain name at the
4885 time when this function is called. Trying to replace the stub
4886 type by its associated full type will cause us to restart a scan
4887 which may lead to an infinite recursion. Instead, the client
4888 collecting the matching symbols will end up collecting several
4889 matches, with at least one of them complete. It can then filter
4890 out the stub ones if needed. */
4891
4892 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4893 {
4894 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4895 return;
4896 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4897 {
4898 prevDefns[i].symbol = sym;
4899 prevDefns[i].block = block;
4900 return;
4901 }
4902 }
4903
4904 {
4905 struct block_symbol info;
4906
4907 info.symbol = sym;
4908 info.block = block;
4909 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4910 }
4911 }
4912
4913 /* Number of block_symbol structures currently collected in current vector in
4914 OBSTACKP. */
4915
4916 static int
4917 num_defns_collected (struct obstack *obstackp)
4918 {
4919 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4920 }
4921
4922 /* Vector of block_symbol structures currently collected in current vector in
4923 OBSTACKP. If FINISH, close off the vector and return its final address. */
4924
4925 static struct block_symbol *
4926 defns_collected (struct obstack *obstackp, int finish)
4927 {
4928 if (finish)
4929 return (struct block_symbol *) obstack_finish (obstackp);
4930 else
4931 return (struct block_symbol *) obstack_base (obstackp);
4932 }
4933
4934 /* Return a bound minimal symbol matching NAME according to Ada
4935 decoding rules. Returns an invalid symbol if there is no such
4936 minimal symbol. Names prefixed with "standard__" are handled
4937 specially: "standard__" is first stripped off, and only static and
4938 global symbols are searched. */
4939
4940 struct bound_minimal_symbol
4941 ada_lookup_simple_minsym (const char *name)
4942 {
4943 struct bound_minimal_symbol result;
4944 struct objfile *objfile;
4945 struct minimal_symbol *msymbol;
4946
4947 memset (&result, 0, sizeof (result));
4948
4949 symbol_name_match_type match_type = name_match_type_from_name (name);
4950 lookup_name_info lookup_name (name, match_type);
4951
4952 symbol_name_matcher_ftype *match_name
4953 = ada_get_symbol_name_matcher (lookup_name);
4954
4955 ALL_MSYMBOLS (objfile, msymbol)
4956 {
4957 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4958 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4959 {
4960 result.minsym = msymbol;
4961 result.objfile = objfile;
4962 break;
4963 }
4964 }
4965
4966 return result;
4967 }
4968
4969 /* For all subprograms that statically enclose the subprogram of the
4970 selected frame, add symbols matching identifier NAME in DOMAIN
4971 and their blocks to the list of data in OBSTACKP, as for
4972 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4973 with a wildcard prefix. */
4974
4975 static void
4976 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4977 const lookup_name_info &lookup_name,
4978 domain_enum domain)
4979 {
4980 }
4981
4982 /* True if TYPE is definitely an artificial type supplied to a symbol
4983 for which no debugging information was given in the symbol file. */
4984
4985 static int
4986 is_nondebugging_type (struct type *type)
4987 {
4988 const char *name = ada_type_name (type);
4989
4990 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4991 }
4992
4993 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4994 that are deemed "identical" for practical purposes.
4995
4996 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4997 types and that their number of enumerals is identical (in other
4998 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4999
5000 static int
5001 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5002 {
5003 int i;
5004
5005 /* The heuristic we use here is fairly conservative. We consider
5006 that 2 enumerate types are identical if they have the same
5007 number of enumerals and that all enumerals have the same
5008 underlying value and name. */
5009
5010 /* All enums in the type should have an identical underlying value. */
5011 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5012 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5013 return 0;
5014
5015 /* All enumerals should also have the same name (modulo any numerical
5016 suffix). */
5017 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5018 {
5019 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5020 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5021 int len_1 = strlen (name_1);
5022 int len_2 = strlen (name_2);
5023
5024 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5026 if (len_1 != len_2
5027 || strncmp (TYPE_FIELD_NAME (type1, i),
5028 TYPE_FIELD_NAME (type2, i),
5029 len_1) != 0)
5030 return 0;
5031 }
5032
5033 return 1;
5034 }
5035
5036 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5037 that are deemed "identical" for practical purposes. Sometimes,
5038 enumerals are not strictly identical, but their types are so similar
5039 that they can be considered identical.
5040
5041 For instance, consider the following code:
5042
5043 type Color is (Black, Red, Green, Blue, White);
5044 type RGB_Color is new Color range Red .. Blue;
5045
5046 Type RGB_Color is a subrange of an implicit type which is a copy
5047 of type Color. If we call that implicit type RGB_ColorB ("B" is
5048 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5049 As a result, when an expression references any of the enumeral
5050 by name (Eg. "print green"), the expression is technically
5051 ambiguous and the user should be asked to disambiguate. But
5052 doing so would only hinder the user, since it wouldn't matter
5053 what choice he makes, the outcome would always be the same.
5054 So, for practical purposes, we consider them as the same. */
5055
5056 static int
5057 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5058 {
5059 int i;
5060
5061 /* Before performing a thorough comparison check of each type,
5062 we perform a series of inexpensive checks. We expect that these
5063 checks will quickly fail in the vast majority of cases, and thus
5064 help prevent the unnecessary use of a more expensive comparison.
5065 Said comparison also expects us to make some of these checks
5066 (see ada_identical_enum_types_p). */
5067
5068 /* Quick check: All symbols should have an enum type. */
5069 for (i = 0; i < nsyms; i++)
5070 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5071 return 0;
5072
5073 /* Quick check: They should all have the same value. */
5074 for (i = 1; i < nsyms; i++)
5075 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5076 return 0;
5077
5078 /* Quick check: They should all have the same number of enumerals. */
5079 for (i = 1; i < nsyms; i++)
5080 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5081 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5082 return 0;
5083
5084 /* All the sanity checks passed, so we might have a set of
5085 identical enumeration types. Perform a more complete
5086 comparison of the type of each symbol. */
5087 for (i = 1; i < nsyms; i++)
5088 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5089 SYMBOL_TYPE (syms[0].symbol)))
5090 return 0;
5091
5092 return 1;
5093 }
5094
5095 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5096 duplicate other symbols in the list (The only case I know of where
5097 this happens is when object files containing stabs-in-ecoff are
5098 linked with files containing ordinary ecoff debugging symbols (or no
5099 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5100 Returns the number of items in the modified list. */
5101
5102 static int
5103 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5104 {
5105 int i, j;
5106
5107 /* We should never be called with less than 2 symbols, as there
5108 cannot be any extra symbol in that case. But it's easy to
5109 handle, since we have nothing to do in that case. */
5110 if (nsyms < 2)
5111 return nsyms;
5112
5113 i = 0;
5114 while (i < nsyms)
5115 {
5116 int remove_p = 0;
5117
5118 /* If two symbols have the same name and one of them is a stub type,
5119 the get rid of the stub. */
5120
5121 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5122 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5123 {
5124 for (j = 0; j < nsyms; j++)
5125 {
5126 if (j != i
5127 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5128 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5129 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5130 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5131 remove_p = 1;
5132 }
5133 }
5134
5135 /* Two symbols with the same name, same class and same address
5136 should be identical. */
5137
5138 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5139 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5140 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5141 {
5142 for (j = 0; j < nsyms; j += 1)
5143 {
5144 if (i != j
5145 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5146 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5147 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5148 && SYMBOL_CLASS (syms[i].symbol)
5149 == SYMBOL_CLASS (syms[j].symbol)
5150 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5151 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5152 remove_p = 1;
5153 }
5154 }
5155
5156 if (remove_p)
5157 {
5158 for (j = i + 1; j < nsyms; j += 1)
5159 syms[j - 1] = syms[j];
5160 nsyms -= 1;
5161 }
5162
5163 i += 1;
5164 }
5165
5166 /* If all the remaining symbols are identical enumerals, then
5167 just keep the first one and discard the rest.
5168
5169 Unlike what we did previously, we do not discard any entry
5170 unless they are ALL identical. This is because the symbol
5171 comparison is not a strict comparison, but rather a practical
5172 comparison. If all symbols are considered identical, then
5173 we can just go ahead and use the first one and discard the rest.
5174 But if we cannot reduce the list to a single element, we have
5175 to ask the user to disambiguate anyways. And if we have to
5176 present a multiple-choice menu, it's less confusing if the list
5177 isn't missing some choices that were identical and yet distinct. */
5178 if (symbols_are_identical_enums (syms, nsyms))
5179 nsyms = 1;
5180
5181 return nsyms;
5182 }
5183
5184 /* Given a type that corresponds to a renaming entity, use the type name
5185 to extract the scope (package name or function name, fully qualified,
5186 and following the GNAT encoding convention) where this renaming has been
5187 defined. The string returned needs to be deallocated after use. */
5188
5189 static char *
5190 xget_renaming_scope (struct type *renaming_type)
5191 {
5192 /* The renaming types adhere to the following convention:
5193 <scope>__<rename>___<XR extension>.
5194 So, to extract the scope, we search for the "___XR" extension,
5195 and then backtrack until we find the first "__". */
5196
5197 const char *name = type_name_no_tag (renaming_type);
5198 const char *suffix = strstr (name, "___XR");
5199 const char *last;
5200 int scope_len;
5201 char *scope;
5202
5203 /* Now, backtrack a bit until we find the first "__". Start looking
5204 at suffix - 3, as the <rename> part is at least one character long. */
5205
5206 for (last = suffix - 3; last > name; last--)
5207 if (last[0] == '_' && last[1] == '_')
5208 break;
5209
5210 /* Make a copy of scope and return it. */
5211
5212 scope_len = last - name;
5213 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5214
5215 strncpy (scope, name, scope_len);
5216 scope[scope_len] = '\0';
5217
5218 return scope;
5219 }
5220
5221 /* Return nonzero if NAME corresponds to a package name. */
5222
5223 static int
5224 is_package_name (const char *name)
5225 {
5226 /* Here, We take advantage of the fact that no symbols are generated
5227 for packages, while symbols are generated for each function.
5228 So the condition for NAME represent a package becomes equivalent
5229 to NAME not existing in our list of symbols. There is only one
5230 small complication with library-level functions (see below). */
5231
5232 char *fun_name;
5233
5234 /* If it is a function that has not been defined at library level,
5235 then we should be able to look it up in the symbols. */
5236 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5237 return 0;
5238
5239 /* Library-level function names start with "_ada_". See if function
5240 "_ada_" followed by NAME can be found. */
5241
5242 /* Do a quick check that NAME does not contain "__", since library-level
5243 functions names cannot contain "__" in them. */
5244 if (strstr (name, "__") != NULL)
5245 return 0;
5246
5247 fun_name = xstrprintf ("_ada_%s", name);
5248
5249 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5250 }
5251
5252 /* Return nonzero if SYM corresponds to a renaming entity that is
5253 not visible from FUNCTION_NAME. */
5254
5255 static int
5256 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5257 {
5258 char *scope;
5259 struct cleanup *old_chain;
5260
5261 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5262 return 0;
5263
5264 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5265 old_chain = make_cleanup (xfree, scope);
5266
5267 /* If the rename has been defined in a package, then it is visible. */
5268 if (is_package_name (scope))
5269 {
5270 do_cleanups (old_chain);
5271 return 0;
5272 }
5273
5274 /* Check that the rename is in the current function scope by checking
5275 that its name starts with SCOPE. */
5276
5277 /* If the function name starts with "_ada_", it means that it is
5278 a library-level function. Strip this prefix before doing the
5279 comparison, as the encoding for the renaming does not contain
5280 this prefix. */
5281 if (startswith (function_name, "_ada_"))
5282 function_name += 5;
5283
5284 {
5285 int is_invisible = !startswith (function_name, scope);
5286
5287 do_cleanups (old_chain);
5288 return is_invisible;
5289 }
5290 }
5291
5292 /* Remove entries from SYMS that corresponds to a renaming entity that
5293 is not visible from the function associated with CURRENT_BLOCK or
5294 that is superfluous due to the presence of more specific renaming
5295 information. Places surviving symbols in the initial entries of
5296 SYMS and returns the number of surviving symbols.
5297
5298 Rationale:
5299 First, in cases where an object renaming is implemented as a
5300 reference variable, GNAT may produce both the actual reference
5301 variable and the renaming encoding. In this case, we discard the
5302 latter.
5303
5304 Second, GNAT emits a type following a specified encoding for each renaming
5305 entity. Unfortunately, STABS currently does not support the definition
5306 of types that are local to a given lexical block, so all renamings types
5307 are emitted at library level. As a consequence, if an application
5308 contains two renaming entities using the same name, and a user tries to
5309 print the value of one of these entities, the result of the ada symbol
5310 lookup will also contain the wrong renaming type.
5311
5312 This function partially covers for this limitation by attempting to
5313 remove from the SYMS list renaming symbols that should be visible
5314 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5315 method with the current information available. The implementation
5316 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5317
5318 - When the user tries to print a rename in a function while there
5319 is another rename entity defined in a package: Normally, the
5320 rename in the function has precedence over the rename in the
5321 package, so the latter should be removed from the list. This is
5322 currently not the case.
5323
5324 - This function will incorrectly remove valid renames if
5325 the CURRENT_BLOCK corresponds to a function which symbol name
5326 has been changed by an "Export" pragma. As a consequence,
5327 the user will be unable to print such rename entities. */
5328
5329 static int
5330 remove_irrelevant_renamings (struct block_symbol *syms,
5331 int nsyms, const struct block *current_block)
5332 {
5333 struct symbol *current_function;
5334 const char *current_function_name;
5335 int i;
5336 int is_new_style_renaming;
5337
5338 /* If there is both a renaming foo___XR... encoded as a variable and
5339 a simple variable foo in the same block, discard the latter.
5340 First, zero out such symbols, then compress. */
5341 is_new_style_renaming = 0;
5342 for (i = 0; i < nsyms; i += 1)
5343 {
5344 struct symbol *sym = syms[i].symbol;
5345 const struct block *block = syms[i].block;
5346 const char *name;
5347 const char *suffix;
5348
5349 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5350 continue;
5351 name = SYMBOL_LINKAGE_NAME (sym);
5352 suffix = strstr (name, "___XR");
5353
5354 if (suffix != NULL)
5355 {
5356 int name_len = suffix - name;
5357 int j;
5358
5359 is_new_style_renaming = 1;
5360 for (j = 0; j < nsyms; j += 1)
5361 if (i != j && syms[j].symbol != NULL
5362 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5363 name_len) == 0
5364 && block == syms[j].block)
5365 syms[j].symbol = NULL;
5366 }
5367 }
5368 if (is_new_style_renaming)
5369 {
5370 int j, k;
5371
5372 for (j = k = 0; j < nsyms; j += 1)
5373 if (syms[j].symbol != NULL)
5374 {
5375 syms[k] = syms[j];
5376 k += 1;
5377 }
5378 return k;
5379 }
5380
5381 /* Extract the function name associated to CURRENT_BLOCK.
5382 Abort if unable to do so. */
5383
5384 if (current_block == NULL)
5385 return nsyms;
5386
5387 current_function = block_linkage_function (current_block);
5388 if (current_function == NULL)
5389 return nsyms;
5390
5391 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5392 if (current_function_name == NULL)
5393 return nsyms;
5394
5395 /* Check each of the symbols, and remove it from the list if it is
5396 a type corresponding to a renaming that is out of the scope of
5397 the current block. */
5398
5399 i = 0;
5400 while (i < nsyms)
5401 {
5402 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5403 == ADA_OBJECT_RENAMING
5404 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5405 {
5406 int j;
5407
5408 for (j = i + 1; j < nsyms; j += 1)
5409 syms[j - 1] = syms[j];
5410 nsyms -= 1;
5411 }
5412 else
5413 i += 1;
5414 }
5415
5416 return nsyms;
5417 }
5418
5419 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5420 whose name and domain match NAME and DOMAIN respectively.
5421 If no match was found, then extend the search to "enclosing"
5422 routines (in other words, if we're inside a nested function,
5423 search the symbols defined inside the enclosing functions).
5424 If WILD_MATCH_P is nonzero, perform the naming matching in
5425 "wild" mode (see function "wild_match" for more info).
5426
5427 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5428
5429 static void
5430 ada_add_local_symbols (struct obstack *obstackp,
5431 const lookup_name_info &lookup_name,
5432 const struct block *block, domain_enum domain)
5433 {
5434 int block_depth = 0;
5435
5436 while (block != NULL)
5437 {
5438 block_depth += 1;
5439 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5440
5441 /* If we found a non-function match, assume that's the one. */
5442 if (is_nonfunction (defns_collected (obstackp, 0),
5443 num_defns_collected (obstackp)))
5444 return;
5445
5446 block = BLOCK_SUPERBLOCK (block);
5447 }
5448
5449 /* If no luck so far, try to find NAME as a local symbol in some lexically
5450 enclosing subprogram. */
5451 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5452 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5453 }
5454
5455 /* An object of this type is used as the user_data argument when
5456 calling the map_matching_symbols method. */
5457
5458 struct match_data
5459 {
5460 struct objfile *objfile;
5461 struct obstack *obstackp;
5462 struct symbol *arg_sym;
5463 int found_sym;
5464 };
5465
5466 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5467 to a list of symbols. DATA0 is a pointer to a struct match_data *
5468 containing the obstack that collects the symbol list, the file that SYM
5469 must come from, a flag indicating whether a non-argument symbol has
5470 been found in the current block, and the last argument symbol
5471 passed in SYM within the current block (if any). When SYM is null,
5472 marking the end of a block, the argument symbol is added if no
5473 other has been found. */
5474
5475 static int
5476 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5477 {
5478 struct match_data *data = (struct match_data *) data0;
5479
5480 if (sym == NULL)
5481 {
5482 if (!data->found_sym && data->arg_sym != NULL)
5483 add_defn_to_vec (data->obstackp,
5484 fixup_symbol_section (data->arg_sym, data->objfile),
5485 block);
5486 data->found_sym = 0;
5487 data->arg_sym = NULL;
5488 }
5489 else
5490 {
5491 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5492 return 0;
5493 else if (SYMBOL_IS_ARGUMENT (sym))
5494 data->arg_sym = sym;
5495 else
5496 {
5497 data->found_sym = 1;
5498 add_defn_to_vec (data->obstackp,
5499 fixup_symbol_section (sym, data->objfile),
5500 block);
5501 }
5502 }
5503 return 0;
5504 }
5505
5506 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5507 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5508 symbols to OBSTACKP. Return whether we found such symbols. */
5509
5510 static int
5511 ada_add_block_renamings (struct obstack *obstackp,
5512 const struct block *block,
5513 const lookup_name_info &lookup_name,
5514 domain_enum domain)
5515 {
5516 struct using_direct *renaming;
5517 int defns_mark = num_defns_collected (obstackp);
5518
5519 symbol_name_matcher_ftype *name_match
5520 = ada_get_symbol_name_matcher (lookup_name);
5521
5522 for (renaming = block_using (block);
5523 renaming != NULL;
5524 renaming = renaming->next)
5525 {
5526 const char *r_name;
5527
5528 /* Avoid infinite recursions: skip this renaming if we are actually
5529 already traversing it.
5530
5531 Currently, symbol lookup in Ada don't use the namespace machinery from
5532 C++/Fortran support: skip namespace imports that use them. */
5533 if (renaming->searched
5534 || (renaming->import_src != NULL
5535 && renaming->import_src[0] != '\0')
5536 || (renaming->import_dest != NULL
5537 && renaming->import_dest[0] != '\0'))
5538 continue;
5539 renaming->searched = 1;
5540
5541 /* TODO: here, we perform another name-based symbol lookup, which can
5542 pull its own multiple overloads. In theory, we should be able to do
5543 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5544 not a simple name. But in order to do this, we would need to enhance
5545 the DWARF reader to associate a symbol to this renaming, instead of a
5546 name. So, for now, we do something simpler: re-use the C++/Fortran
5547 namespace machinery. */
5548 r_name = (renaming->alias != NULL
5549 ? renaming->alias
5550 : renaming->declaration);
5551 if (name_match (r_name, lookup_name, NULL))
5552 {
5553 lookup_name_info decl_lookup_name (renaming->declaration,
5554 lookup_name.match_type ());
5555 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5556 1, NULL);
5557 }
5558 renaming->searched = 0;
5559 }
5560 return num_defns_collected (obstackp) != defns_mark;
5561 }
5562
5563 /* Implements compare_names, but only applying the comparision using
5564 the given CASING. */
5565
5566 static int
5567 compare_names_with_case (const char *string1, const char *string2,
5568 enum case_sensitivity casing)
5569 {
5570 while (*string1 != '\0' && *string2 != '\0')
5571 {
5572 char c1, c2;
5573
5574 if (isspace (*string1) || isspace (*string2))
5575 return strcmp_iw_ordered (string1, string2);
5576
5577 if (casing == case_sensitive_off)
5578 {
5579 c1 = tolower (*string1);
5580 c2 = tolower (*string2);
5581 }
5582 else
5583 {
5584 c1 = *string1;
5585 c2 = *string2;
5586 }
5587 if (c1 != c2)
5588 break;
5589
5590 string1 += 1;
5591 string2 += 1;
5592 }
5593
5594 switch (*string1)
5595 {
5596 case '(':
5597 return strcmp_iw_ordered (string1, string2);
5598 case '_':
5599 if (*string2 == '\0')
5600 {
5601 if (is_name_suffix (string1))
5602 return 0;
5603 else
5604 return 1;
5605 }
5606 /* FALLTHROUGH */
5607 default:
5608 if (*string2 == '(')
5609 return strcmp_iw_ordered (string1, string2);
5610 else
5611 {
5612 if (casing == case_sensitive_off)
5613 return tolower (*string1) - tolower (*string2);
5614 else
5615 return *string1 - *string2;
5616 }
5617 }
5618 }
5619
5620 /* Compare STRING1 to STRING2, with results as for strcmp.
5621 Compatible with strcmp_iw_ordered in that...
5622
5623 strcmp_iw_ordered (STRING1, STRING2) <= 0
5624
5625 ... implies...
5626
5627 compare_names (STRING1, STRING2) <= 0
5628
5629 (they may differ as to what symbols compare equal). */
5630
5631 static int
5632 compare_names (const char *string1, const char *string2)
5633 {
5634 int result;
5635
5636 /* Similar to what strcmp_iw_ordered does, we need to perform
5637 a case-insensitive comparison first, and only resort to
5638 a second, case-sensitive, comparison if the first one was
5639 not sufficient to differentiate the two strings. */
5640
5641 result = compare_names_with_case (string1, string2, case_sensitive_off);
5642 if (result == 0)
5643 result = compare_names_with_case (string1, string2, case_sensitive_on);
5644
5645 return result;
5646 }
5647
5648 /* Convenience function to get at the Ada encoded lookup name for
5649 LOOKUP_NAME, as a C string. */
5650
5651 static const char *
5652 ada_lookup_name (const lookup_name_info &lookup_name)
5653 {
5654 return lookup_name.ada ().lookup_name ().c_str ();
5655 }
5656
5657 /* Add to OBSTACKP all non-local symbols whose name and domain match
5658 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5659 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5660 symbols otherwise. */
5661
5662 static void
5663 add_nonlocal_symbols (struct obstack *obstackp,
5664 const lookup_name_info &lookup_name,
5665 domain_enum domain, int global)
5666 {
5667 struct objfile *objfile;
5668 struct compunit_symtab *cu;
5669 struct match_data data;
5670
5671 memset (&data, 0, sizeof data);
5672 data.obstackp = obstackp;
5673
5674 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5675
5676 ALL_OBJFILES (objfile)
5677 {
5678 data.objfile = objfile;
5679
5680 if (is_wild_match)
5681 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5682 domain, global,
5683 aux_add_nonlocal_symbols, &data,
5684 symbol_name_match_type::WILD,
5685 NULL);
5686 else
5687 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5688 domain, global,
5689 aux_add_nonlocal_symbols, &data,
5690 symbol_name_match_type::FULL,
5691 compare_names);
5692
5693 ALL_OBJFILE_COMPUNITS (objfile, cu)
5694 {
5695 const struct block *global_block
5696 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5697
5698 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5699 domain))
5700 data.found_sym = 1;
5701 }
5702 }
5703
5704 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5705 {
5706 const char *name = ada_lookup_name (lookup_name);
5707 std::string name1 = std::string ("<_ada_") + name + '>';
5708
5709 ALL_OBJFILES (objfile)
5710 {
5711 data.objfile = objfile;
5712 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5713 domain, global,
5714 aux_add_nonlocal_symbols,
5715 &data,
5716 symbol_name_match_type::FULL,
5717 compare_names);
5718 }
5719 }
5720 }
5721
5722 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5723 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5724 returning the number of matches. Add these to OBSTACKP.
5725
5726 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5727 symbol match within the nest of blocks whose innermost member is BLOCK,
5728 is the one match returned (no other matches in that or
5729 enclosing blocks is returned). If there are any matches in or
5730 surrounding BLOCK, then these alone are returned.
5731
5732 Names prefixed with "standard__" are handled specially:
5733 "standard__" is first stripped off (by the lookup_name
5734 constructor), and only static and global symbols are searched.
5735
5736 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5737 to lookup global symbols. */
5738
5739 static void
5740 ada_add_all_symbols (struct obstack *obstackp,
5741 const struct block *block,
5742 const lookup_name_info &lookup_name,
5743 domain_enum domain,
5744 int full_search,
5745 int *made_global_lookup_p)
5746 {
5747 struct symbol *sym;
5748
5749 if (made_global_lookup_p)
5750 *made_global_lookup_p = 0;
5751
5752 /* Special case: If the user specifies a symbol name inside package
5753 Standard, do a non-wild matching of the symbol name without
5754 the "standard__" prefix. This was primarily introduced in order
5755 to allow the user to specifically access the standard exceptions
5756 using, for instance, Standard.Constraint_Error when Constraint_Error
5757 is ambiguous (due to the user defining its own Constraint_Error
5758 entity inside its program). */
5759 if (lookup_name.ada ().standard_p ())
5760 block = NULL;
5761
5762 /* Check the non-global symbols. If we have ANY match, then we're done. */
5763
5764 if (block != NULL)
5765 {
5766 if (full_search)
5767 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5768 else
5769 {
5770 /* In the !full_search case we're are being called by
5771 ada_iterate_over_symbols, and we don't want to search
5772 superblocks. */
5773 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5774 }
5775 if (num_defns_collected (obstackp) > 0 || !full_search)
5776 return;
5777 }
5778
5779 /* No non-global symbols found. Check our cache to see if we have
5780 already performed this search before. If we have, then return
5781 the same result. */
5782
5783 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5784 domain, &sym, &block))
5785 {
5786 if (sym != NULL)
5787 add_defn_to_vec (obstackp, sym, block);
5788 return;
5789 }
5790
5791 if (made_global_lookup_p)
5792 *made_global_lookup_p = 1;
5793
5794 /* Search symbols from all global blocks. */
5795
5796 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5797
5798 /* Now add symbols from all per-file blocks if we've gotten no hits
5799 (not strictly correct, but perhaps better than an error). */
5800
5801 if (num_defns_collected (obstackp) == 0)
5802 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5803 }
5804
5805 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5806 is non-zero, enclosing scope and in global scopes, returning the number of
5807 matches.
5808 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
5809 indicating the symbols found and the blocks and symbol tables (if
5810 any) in which they were found. This vector should be freed when
5811 no longer useful.
5812
5813 When full_search is non-zero, any non-function/non-enumeral
5814 symbol match within the nest of blocks whose innermost member is BLOCK,
5815 is the one match returned (no other matches in that or
5816 enclosing blocks is returned). If there are any matches in or
5817 surrounding BLOCK, then these alone are returned.
5818
5819 Names prefixed with "standard__" are handled specially: "standard__"
5820 is first stripped off, and only static and global symbols are searched. */
5821
5822 static int
5823 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5824 const struct block *block,
5825 domain_enum domain,
5826 struct block_symbol **results,
5827 int full_search)
5828 {
5829 int syms_from_global_search;
5830 int ndefns;
5831 int results_size;
5832 auto_obstack obstack;
5833
5834 ada_add_all_symbols (&obstack, block, lookup_name,
5835 domain, full_search, &syms_from_global_search);
5836
5837 ndefns = num_defns_collected (&obstack);
5838
5839 results_size = obstack_object_size (&obstack);
5840 *results = (struct block_symbol *) malloc (results_size);
5841 memcpy (*results, defns_collected (&obstack, 1), results_size);
5842
5843 ndefns = remove_extra_symbols (*results, ndefns);
5844
5845 if (ndefns == 0 && full_search && syms_from_global_search)
5846 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5847
5848 if (ndefns == 1 && full_search && syms_from_global_search)
5849 cache_symbol (ada_lookup_name (lookup_name), domain,
5850 (*results)[0].symbol, (*results)[0].block);
5851
5852 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5853
5854 return ndefns;
5855 }
5856
5857 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5858 in global scopes, returning the number of matches, and setting *RESULTS
5859 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5860 vector should be freed when no longer useful.
5861
5862 See ada_lookup_symbol_list_worker for further details. */
5863
5864 int
5865 ada_lookup_symbol_list (const char *name, const struct block *block,
5866 domain_enum domain, struct block_symbol **results)
5867 {
5868 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5869 lookup_name_info lookup_name (name, name_match_type);
5870
5871 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5872 }
5873
5874 /* Implementation of the la_iterate_over_symbols method. */
5875
5876 static void
5877 ada_iterate_over_symbols
5878 (const struct block *block, const lookup_name_info &name,
5879 domain_enum domain,
5880 gdb::function_view<symbol_found_callback_ftype> callback)
5881 {
5882 int ndefs, i;
5883 struct block_symbol *results;
5884 struct cleanup *old_chain;
5885
5886 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5887 old_chain = make_cleanup (xfree, results);
5888
5889 for (i = 0; i < ndefs; ++i)
5890 {
5891 if (!callback (results[i].symbol))
5892 break;
5893 }
5894
5895 do_cleanups (old_chain);
5896 }
5897
5898 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5899 to 1, but choosing the first symbol found if there are multiple
5900 choices.
5901
5902 The result is stored in *INFO, which must be non-NULL.
5903 If no match is found, INFO->SYM is set to NULL. */
5904
5905 void
5906 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5907 domain_enum domain,
5908 struct block_symbol *info)
5909 {
5910 /* Since we already have an encoded name, wrap it in '<>' to force a
5911 verbatim match. Otherwise, if the name happens to not look like
5912 an encoded name (because it doesn't include a "__"),
5913 ada_lookup_name_info would re-encode/fold it again, and that
5914 would e.g., incorrectly lowercase object renaming names like
5915 "R28b" -> "r28b". */
5916 std::string verbatim = std::string ("<") + name + '>';
5917
5918 gdb_assert (info != NULL);
5919 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5920 }
5921
5922 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5923 scope and in global scopes, or NULL if none. NAME is folded and
5924 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5925 choosing the first symbol if there are multiple choices.
5926 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5927
5928 struct block_symbol
5929 ada_lookup_symbol (const char *name, const struct block *block0,
5930 domain_enum domain, int *is_a_field_of_this)
5931 {
5932 if (is_a_field_of_this != NULL)
5933 *is_a_field_of_this = 0;
5934
5935 struct block_symbol *candidates;
5936 int n_candidates;
5937 struct cleanup *old_chain;
5938
5939 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5940 old_chain = make_cleanup (xfree, candidates);
5941
5942 if (n_candidates == 0)
5943 {
5944 do_cleanups (old_chain);
5945 return {};
5946 }
5947
5948 block_symbol info = candidates[0];
5949 info.symbol = fixup_symbol_section (info.symbol, NULL);
5950
5951 do_cleanups (old_chain);
5952
5953 return info;
5954 }
5955
5956 static struct block_symbol
5957 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5958 const char *name,
5959 const struct block *block,
5960 const domain_enum domain)
5961 {
5962 struct block_symbol sym;
5963
5964 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5965 if (sym.symbol != NULL)
5966 return sym;
5967
5968 /* If we haven't found a match at this point, try the primitive
5969 types. In other languages, this search is performed before
5970 searching for global symbols in order to short-circuit that
5971 global-symbol search if it happens that the name corresponds
5972 to a primitive type. But we cannot do the same in Ada, because
5973 it is perfectly legitimate for a program to declare a type which
5974 has the same name as a standard type. If looking up a type in
5975 that situation, we have traditionally ignored the primitive type
5976 in favor of user-defined types. This is why, unlike most other
5977 languages, we search the primitive types this late and only after
5978 having searched the global symbols without success. */
5979
5980 if (domain == VAR_DOMAIN)
5981 {
5982 struct gdbarch *gdbarch;
5983
5984 if (block == NULL)
5985 gdbarch = target_gdbarch ();
5986 else
5987 gdbarch = block_gdbarch (block);
5988 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5989 if (sym.symbol != NULL)
5990 return sym;
5991 }
5992
5993 return (struct block_symbol) {NULL, NULL};
5994 }
5995
5996
5997 /* True iff STR is a possible encoded suffix of a normal Ada name
5998 that is to be ignored for matching purposes. Suffixes of parallel
5999 names (e.g., XVE) are not included here. Currently, the possible suffixes
6000 are given by any of the regular expressions:
6001
6002 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
6003 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
6004 TKB [subprogram suffix for task bodies]
6005 _E[0-9]+[bs]$ [protected object entry suffixes]
6006 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
6007
6008 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6009 match is performed. This sequence is used to differentiate homonyms,
6010 is an optional part of a valid name suffix. */
6011
6012 static int
6013 is_name_suffix (const char *str)
6014 {
6015 int k;
6016 const char *matching;
6017 const int len = strlen (str);
6018
6019 /* Skip optional leading __[0-9]+. */
6020
6021 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6022 {
6023 str += 3;
6024 while (isdigit (str[0]))
6025 str += 1;
6026 }
6027
6028 /* [.$][0-9]+ */
6029
6030 if (str[0] == '.' || str[0] == '$')
6031 {
6032 matching = str + 1;
6033 while (isdigit (matching[0]))
6034 matching += 1;
6035 if (matching[0] == '\0')
6036 return 1;
6037 }
6038
6039 /* ___[0-9]+ */
6040
6041 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6042 {
6043 matching = str + 3;
6044 while (isdigit (matching[0]))
6045 matching += 1;
6046 if (matching[0] == '\0')
6047 return 1;
6048 }
6049
6050 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6051
6052 if (strcmp (str, "TKB") == 0)
6053 return 1;
6054
6055 #if 0
6056 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6057 with a N at the end. Unfortunately, the compiler uses the same
6058 convention for other internal types it creates. So treating
6059 all entity names that end with an "N" as a name suffix causes
6060 some regressions. For instance, consider the case of an enumerated
6061 type. To support the 'Image attribute, it creates an array whose
6062 name ends with N.
6063 Having a single character like this as a suffix carrying some
6064 information is a bit risky. Perhaps we should change the encoding
6065 to be something like "_N" instead. In the meantime, do not do
6066 the following check. */
6067 /* Protected Object Subprograms */
6068 if (len == 1 && str [0] == 'N')
6069 return 1;
6070 #endif
6071
6072 /* _E[0-9]+[bs]$ */
6073 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6074 {
6075 matching = str + 3;
6076 while (isdigit (matching[0]))
6077 matching += 1;
6078 if ((matching[0] == 'b' || matching[0] == 's')
6079 && matching [1] == '\0')
6080 return 1;
6081 }
6082
6083 /* ??? We should not modify STR directly, as we are doing below. This
6084 is fine in this case, but may become problematic later if we find
6085 that this alternative did not work, and want to try matching
6086 another one from the begining of STR. Since we modified it, we
6087 won't be able to find the begining of the string anymore! */
6088 if (str[0] == 'X')
6089 {
6090 str += 1;
6091 while (str[0] != '_' && str[0] != '\0')
6092 {
6093 if (str[0] != 'n' && str[0] != 'b')
6094 return 0;
6095 str += 1;
6096 }
6097 }
6098
6099 if (str[0] == '\000')
6100 return 1;
6101
6102 if (str[0] == '_')
6103 {
6104 if (str[1] != '_' || str[2] == '\000')
6105 return 0;
6106 if (str[2] == '_')
6107 {
6108 if (strcmp (str + 3, "JM") == 0)
6109 return 1;
6110 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6111 the LJM suffix in favor of the JM one. But we will
6112 still accept LJM as a valid suffix for a reasonable
6113 amount of time, just to allow ourselves to debug programs
6114 compiled using an older version of GNAT. */
6115 if (strcmp (str + 3, "LJM") == 0)
6116 return 1;
6117 if (str[3] != 'X')
6118 return 0;
6119 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6120 || str[4] == 'U' || str[4] == 'P')
6121 return 1;
6122 if (str[4] == 'R' && str[5] != 'T')
6123 return 1;
6124 return 0;
6125 }
6126 if (!isdigit (str[2]))
6127 return 0;
6128 for (k = 3; str[k] != '\0'; k += 1)
6129 if (!isdigit (str[k]) && str[k] != '_')
6130 return 0;
6131 return 1;
6132 }
6133 if (str[0] == '$' && isdigit (str[1]))
6134 {
6135 for (k = 2; str[k] != '\0'; k += 1)
6136 if (!isdigit (str[k]) && str[k] != '_')
6137 return 0;
6138 return 1;
6139 }
6140 return 0;
6141 }
6142
6143 /* Return non-zero if the string starting at NAME and ending before
6144 NAME_END contains no capital letters. */
6145
6146 static int
6147 is_valid_name_for_wild_match (const char *name0)
6148 {
6149 const char *decoded_name = ada_decode (name0);
6150 int i;
6151
6152 /* If the decoded name starts with an angle bracket, it means that
6153 NAME0 does not follow the GNAT encoding format. It should then
6154 not be allowed as a possible wild match. */
6155 if (decoded_name[0] == '<')
6156 return 0;
6157
6158 for (i=0; decoded_name[i] != '\0'; i++)
6159 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6160 return 0;
6161
6162 return 1;
6163 }
6164
6165 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6166 that could start a simple name. Assumes that *NAMEP points into
6167 the string beginning at NAME0. */
6168
6169 static int
6170 advance_wild_match (const char **namep, const char *name0, int target0)
6171 {
6172 const char *name = *namep;
6173
6174 while (1)
6175 {
6176 int t0, t1;
6177
6178 t0 = *name;
6179 if (t0 == '_')
6180 {
6181 t1 = name[1];
6182 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6183 {
6184 name += 1;
6185 if (name == name0 + 5 && startswith (name0, "_ada"))
6186 break;
6187 else
6188 name += 1;
6189 }
6190 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6191 || name[2] == target0))
6192 {
6193 name += 2;
6194 break;
6195 }
6196 else
6197 return 0;
6198 }
6199 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6200 name += 1;
6201 else
6202 return 0;
6203 }
6204
6205 *namep = name;
6206 return 1;
6207 }
6208
6209 /* Return true iff NAME encodes a name of the form prefix.PATN.
6210 Ignores any informational suffixes of NAME (i.e., for which
6211 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6212 simple name. */
6213
6214 static bool
6215 wild_match (const char *name, const char *patn)
6216 {
6217 const char *p;
6218 const char *name0 = name;
6219
6220 while (1)
6221 {
6222 const char *match = name;
6223
6224 if (*name == *patn)
6225 {
6226 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6227 if (*p != *name)
6228 break;
6229 if (*p == '\0' && is_name_suffix (name))
6230 return match == name0 || is_valid_name_for_wild_match (name0);
6231
6232 if (name[-1] == '_')
6233 name -= 1;
6234 }
6235 if (!advance_wild_match (&name, name0, *patn))
6236 return false;
6237 }
6238 }
6239
6240 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6241 any trailing suffixes that encode debugging information or leading
6242 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6243 information that is ignored). */
6244
6245 static bool
6246 full_match (const char *sym_name, const char *search_name)
6247 {
6248 size_t search_name_len = strlen (search_name);
6249
6250 if (strncmp (sym_name, search_name, search_name_len) == 0
6251 && is_name_suffix (sym_name + search_name_len))
6252 return true;
6253
6254 if (startswith (sym_name, "_ada_")
6255 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6256 && is_name_suffix (sym_name + search_name_len + 5))
6257 return true;
6258
6259 return false;
6260 }
6261
6262 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6263 *defn_symbols, updating the list of symbols in OBSTACKP (if
6264 necessary). OBJFILE is the section containing BLOCK. */
6265
6266 static void
6267 ada_add_block_symbols (struct obstack *obstackp,
6268 const struct block *block,
6269 const lookup_name_info &lookup_name,
6270 domain_enum domain, struct objfile *objfile)
6271 {
6272 struct block_iterator iter;
6273 /* A matching argument symbol, if any. */
6274 struct symbol *arg_sym;
6275 /* Set true when we find a matching non-argument symbol. */
6276 int found_sym;
6277 struct symbol *sym;
6278
6279 arg_sym = NULL;
6280 found_sym = 0;
6281 for (sym = block_iter_match_first (block, lookup_name, &iter);
6282 sym != NULL;
6283 sym = block_iter_match_next (lookup_name, &iter))
6284 {
6285 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6286 SYMBOL_DOMAIN (sym), domain))
6287 {
6288 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6289 {
6290 if (SYMBOL_IS_ARGUMENT (sym))
6291 arg_sym = sym;
6292 else
6293 {
6294 found_sym = 1;
6295 add_defn_to_vec (obstackp,
6296 fixup_symbol_section (sym, objfile),
6297 block);
6298 }
6299 }
6300 }
6301 }
6302
6303 /* Handle renamings. */
6304
6305 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6306 found_sym = 1;
6307
6308 if (!found_sym && arg_sym != NULL)
6309 {
6310 add_defn_to_vec (obstackp,
6311 fixup_symbol_section (arg_sym, objfile),
6312 block);
6313 }
6314
6315 if (!lookup_name.ada ().wild_match_p ())
6316 {
6317 arg_sym = NULL;
6318 found_sym = 0;
6319 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6320 const char *name = ada_lookup_name.c_str ();
6321 size_t name_len = ada_lookup_name.size ();
6322
6323 ALL_BLOCK_SYMBOLS (block, iter, sym)
6324 {
6325 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6326 SYMBOL_DOMAIN (sym), domain))
6327 {
6328 int cmp;
6329
6330 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6331 if (cmp == 0)
6332 {
6333 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6334 if (cmp == 0)
6335 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6336 name_len);
6337 }
6338
6339 if (cmp == 0
6340 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6341 {
6342 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6343 {
6344 if (SYMBOL_IS_ARGUMENT (sym))
6345 arg_sym = sym;
6346 else
6347 {
6348 found_sym = 1;
6349 add_defn_to_vec (obstackp,
6350 fixup_symbol_section (sym, objfile),
6351 block);
6352 }
6353 }
6354 }
6355 }
6356 }
6357
6358 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6359 They aren't parameters, right? */
6360 if (!found_sym && arg_sym != NULL)
6361 {
6362 add_defn_to_vec (obstackp,
6363 fixup_symbol_section (arg_sym, objfile),
6364 block);
6365 }
6366 }
6367 }
6368 \f
6369
6370 /* Symbol Completion */
6371
6372 /* See symtab.h. */
6373
6374 bool
6375 ada_lookup_name_info::matches
6376 (const char *sym_name,
6377 symbol_name_match_type match_type,
6378 completion_match_result *comp_match_res) const
6379 {
6380 bool match = false;
6381 const char *text = m_encoded_name.c_str ();
6382 size_t text_len = m_encoded_name.size ();
6383
6384 /* First, test against the fully qualified name of the symbol. */
6385
6386 if (strncmp (sym_name, text, text_len) == 0)
6387 match = true;
6388
6389 if (match && !m_encoded_p)
6390 {
6391 /* One needed check before declaring a positive match is to verify
6392 that iff we are doing a verbatim match, the decoded version
6393 of the symbol name starts with '<'. Otherwise, this symbol name
6394 is not a suitable completion. */
6395 const char *sym_name_copy = sym_name;
6396 bool has_angle_bracket;
6397
6398 sym_name = ada_decode (sym_name);
6399 has_angle_bracket = (sym_name[0] == '<');
6400 match = (has_angle_bracket == m_verbatim_p);
6401 sym_name = sym_name_copy;
6402 }
6403
6404 if (match && !m_verbatim_p)
6405 {
6406 /* When doing non-verbatim match, another check that needs to
6407 be done is to verify that the potentially matching symbol name
6408 does not include capital letters, because the ada-mode would
6409 not be able to understand these symbol names without the
6410 angle bracket notation. */
6411 const char *tmp;
6412
6413 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6414 if (*tmp != '\0')
6415 match = false;
6416 }
6417
6418 /* Second: Try wild matching... */
6419
6420 if (!match && m_wild_match_p)
6421 {
6422 /* Since we are doing wild matching, this means that TEXT
6423 may represent an unqualified symbol name. We therefore must
6424 also compare TEXT against the unqualified name of the symbol. */
6425 sym_name = ada_unqualified_name (ada_decode (sym_name));
6426
6427 if (strncmp (sym_name, text, text_len) == 0)
6428 match = true;
6429 }
6430
6431 /* Finally: If we found a match, prepare the result to return. */
6432
6433 if (!match)
6434 return false;
6435
6436 if (comp_match_res != NULL)
6437 {
6438 std::string &match_str = comp_match_res->match.storage ();
6439
6440 if (!m_encoded_p)
6441 match_str = ada_decode (sym_name);
6442 else
6443 {
6444 if (m_verbatim_p)
6445 match_str = add_angle_brackets (sym_name);
6446 else
6447 match_str = sym_name;
6448
6449 }
6450
6451 comp_match_res->set_match (match_str.c_str ());
6452 }
6453
6454 return true;
6455 }
6456
6457 /* Add the list of possible symbol names completing TEXT to TRACKER.
6458 WORD is the entire command on which completion is made. */
6459
6460 static void
6461 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6462 complete_symbol_mode mode,
6463 symbol_name_match_type name_match_type,
6464 const char *text, const char *word,
6465 enum type_code code)
6466 {
6467 struct symbol *sym;
6468 struct compunit_symtab *s;
6469 struct minimal_symbol *msymbol;
6470 struct objfile *objfile;
6471 const struct block *b, *surrounding_static_block = 0;
6472 struct block_iterator iter;
6473 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6474
6475 gdb_assert (code == TYPE_CODE_UNDEF);
6476
6477 lookup_name_info lookup_name (text, name_match_type, true);
6478
6479 /* First, look at the partial symtab symbols. */
6480 expand_symtabs_matching (NULL,
6481 lookup_name,
6482 NULL,
6483 NULL,
6484 ALL_DOMAIN);
6485
6486 /* At this point scan through the misc symbol vectors and add each
6487 symbol you find to the list. Eventually we want to ignore
6488 anything that isn't a text symbol (everything else will be
6489 handled by the psymtab code above). */
6490
6491 ALL_MSYMBOLS (objfile, msymbol)
6492 {
6493 QUIT;
6494
6495 if (completion_skip_symbol (mode, msymbol))
6496 continue;
6497
6498 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6499
6500 /* Ada minimal symbols won't have their language set to Ada. If
6501 we let completion_list_add_name compare using the
6502 default/C-like matcher, then when completing e.g., symbols in a
6503 package named "pck", we'd match internal Ada symbols like
6504 "pckS", which are invalid in an Ada expression, unless you wrap
6505 them in '<' '>' to request a verbatim match.
6506
6507 Unfortunately, some Ada encoded names successfully demangle as
6508 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6509 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6510 with the wrong language set. Paper over that issue here. */
6511 if (symbol_language == language_auto
6512 || symbol_language == language_cplus)
6513 symbol_language = language_ada;
6514
6515 completion_list_add_name (tracker,
6516 symbol_language,
6517 MSYMBOL_LINKAGE_NAME (msymbol),
6518 lookup_name, text, word);
6519 }
6520
6521 /* Search upwards from currently selected frame (so that we can
6522 complete on local vars. */
6523
6524 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6525 {
6526 if (!BLOCK_SUPERBLOCK (b))
6527 surrounding_static_block = b; /* For elmin of dups */
6528
6529 ALL_BLOCK_SYMBOLS (b, iter, sym)
6530 {
6531 if (completion_skip_symbol (mode, sym))
6532 continue;
6533
6534 completion_list_add_name (tracker,
6535 SYMBOL_LANGUAGE (sym),
6536 SYMBOL_LINKAGE_NAME (sym),
6537 lookup_name, text, word);
6538 }
6539 }
6540
6541 /* Go through the symtabs and check the externs and statics for
6542 symbols which match. */
6543
6544 ALL_COMPUNITS (objfile, s)
6545 {
6546 QUIT;
6547 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6548 ALL_BLOCK_SYMBOLS (b, iter, sym)
6549 {
6550 if (completion_skip_symbol (mode, sym))
6551 continue;
6552
6553 completion_list_add_name (tracker,
6554 SYMBOL_LANGUAGE (sym),
6555 SYMBOL_LINKAGE_NAME (sym),
6556 lookup_name, text, word);
6557 }
6558 }
6559
6560 ALL_COMPUNITS (objfile, s)
6561 {
6562 QUIT;
6563 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6564 /* Don't do this block twice. */
6565 if (b == surrounding_static_block)
6566 continue;
6567 ALL_BLOCK_SYMBOLS (b, iter, sym)
6568 {
6569 if (completion_skip_symbol (mode, sym))
6570 continue;
6571
6572 completion_list_add_name (tracker,
6573 SYMBOL_LANGUAGE (sym),
6574 SYMBOL_LINKAGE_NAME (sym),
6575 lookup_name, text, word);
6576 }
6577 }
6578
6579 do_cleanups (old_chain);
6580 }
6581
6582 /* Field Access */
6583
6584 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6585 for tagged types. */
6586
6587 static int
6588 ada_is_dispatch_table_ptr_type (struct type *type)
6589 {
6590 const char *name;
6591
6592 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6593 return 0;
6594
6595 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6596 if (name == NULL)
6597 return 0;
6598
6599 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6600 }
6601
6602 /* Return non-zero if TYPE is an interface tag. */
6603
6604 static int
6605 ada_is_interface_tag (struct type *type)
6606 {
6607 const char *name = TYPE_NAME (type);
6608
6609 if (name == NULL)
6610 return 0;
6611
6612 return (strcmp (name, "ada__tags__interface_tag") == 0);
6613 }
6614
6615 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6616 to be invisible to users. */
6617
6618 int
6619 ada_is_ignored_field (struct type *type, int field_num)
6620 {
6621 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6622 return 1;
6623
6624 /* Check the name of that field. */
6625 {
6626 const char *name = TYPE_FIELD_NAME (type, field_num);
6627
6628 /* Anonymous field names should not be printed.
6629 brobecker/2007-02-20: I don't think this can actually happen
6630 but we don't want to print the value of annonymous fields anyway. */
6631 if (name == NULL)
6632 return 1;
6633
6634 /* Normally, fields whose name start with an underscore ("_")
6635 are fields that have been internally generated by the compiler,
6636 and thus should not be printed. The "_parent" field is special,
6637 however: This is a field internally generated by the compiler
6638 for tagged types, and it contains the components inherited from
6639 the parent type. This field should not be printed as is, but
6640 should not be ignored either. */
6641 if (name[0] == '_' && !startswith (name, "_parent"))
6642 return 1;
6643 }
6644
6645 /* If this is the dispatch table of a tagged type or an interface tag,
6646 then ignore. */
6647 if (ada_is_tagged_type (type, 1)
6648 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6649 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6650 return 1;
6651
6652 /* Not a special field, so it should not be ignored. */
6653 return 0;
6654 }
6655
6656 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6657 pointer or reference type whose ultimate target has a tag field. */
6658
6659 int
6660 ada_is_tagged_type (struct type *type, int refok)
6661 {
6662 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6663 }
6664
6665 /* True iff TYPE represents the type of X'Tag */
6666
6667 int
6668 ada_is_tag_type (struct type *type)
6669 {
6670 type = ada_check_typedef (type);
6671
6672 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6673 return 0;
6674 else
6675 {
6676 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6677
6678 return (name != NULL
6679 && strcmp (name, "ada__tags__dispatch_table") == 0);
6680 }
6681 }
6682
6683 /* The type of the tag on VAL. */
6684
6685 struct type *
6686 ada_tag_type (struct value *val)
6687 {
6688 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6689 }
6690
6691 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6692 retired at Ada 05). */
6693
6694 static int
6695 is_ada95_tag (struct value *tag)
6696 {
6697 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6698 }
6699
6700 /* The value of the tag on VAL. */
6701
6702 struct value *
6703 ada_value_tag (struct value *val)
6704 {
6705 return ada_value_struct_elt (val, "_tag", 0);
6706 }
6707
6708 /* The value of the tag on the object of type TYPE whose contents are
6709 saved at VALADDR, if it is non-null, or is at memory address
6710 ADDRESS. */
6711
6712 static struct value *
6713 value_tag_from_contents_and_address (struct type *type,
6714 const gdb_byte *valaddr,
6715 CORE_ADDR address)
6716 {
6717 int tag_byte_offset;
6718 struct type *tag_type;
6719
6720 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6721 NULL, NULL, NULL))
6722 {
6723 const gdb_byte *valaddr1 = ((valaddr == NULL)
6724 ? NULL
6725 : valaddr + tag_byte_offset);
6726 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6727
6728 return value_from_contents_and_address (tag_type, valaddr1, address1);
6729 }
6730 return NULL;
6731 }
6732
6733 static struct type *
6734 type_from_tag (struct value *tag)
6735 {
6736 const char *type_name = ada_tag_name (tag);
6737
6738 if (type_name != NULL)
6739 return ada_find_any_type (ada_encode (type_name));
6740 return NULL;
6741 }
6742
6743 /* Given a value OBJ of a tagged type, return a value of this
6744 type at the base address of the object. The base address, as
6745 defined in Ada.Tags, it is the address of the primary tag of
6746 the object, and therefore where the field values of its full
6747 view can be fetched. */
6748
6749 struct value *
6750 ada_tag_value_at_base_address (struct value *obj)
6751 {
6752 struct value *val;
6753 LONGEST offset_to_top = 0;
6754 struct type *ptr_type, *obj_type;
6755 struct value *tag;
6756 CORE_ADDR base_address;
6757
6758 obj_type = value_type (obj);
6759
6760 /* It is the responsability of the caller to deref pointers. */
6761
6762 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6763 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6764 return obj;
6765
6766 tag = ada_value_tag (obj);
6767 if (!tag)
6768 return obj;
6769
6770 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6771
6772 if (is_ada95_tag (tag))
6773 return obj;
6774
6775 ptr_type = language_lookup_primitive_type
6776 (language_def (language_ada), target_gdbarch(), "storage_offset");
6777 ptr_type = lookup_pointer_type (ptr_type);
6778 val = value_cast (ptr_type, tag);
6779 if (!val)
6780 return obj;
6781
6782 /* It is perfectly possible that an exception be raised while
6783 trying to determine the base address, just like for the tag;
6784 see ada_tag_name for more details. We do not print the error
6785 message for the same reason. */
6786
6787 TRY
6788 {
6789 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6790 }
6791
6792 CATCH (e, RETURN_MASK_ERROR)
6793 {
6794 return obj;
6795 }
6796 END_CATCH
6797
6798 /* If offset is null, nothing to do. */
6799
6800 if (offset_to_top == 0)
6801 return obj;
6802
6803 /* -1 is a special case in Ada.Tags; however, what should be done
6804 is not quite clear from the documentation. So do nothing for
6805 now. */
6806
6807 if (offset_to_top == -1)
6808 return obj;
6809
6810 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6811 from the base address. This was however incompatible with
6812 C++ dispatch table: C++ uses a *negative* value to *add*
6813 to the base address. Ada's convention has therefore been
6814 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6815 use the same convention. Here, we support both cases by
6816 checking the sign of OFFSET_TO_TOP. */
6817
6818 if (offset_to_top > 0)
6819 offset_to_top = -offset_to_top;
6820
6821 base_address = value_address (obj) + offset_to_top;
6822 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6823
6824 /* Make sure that we have a proper tag at the new address.
6825 Otherwise, offset_to_top is bogus (which can happen when
6826 the object is not initialized yet). */
6827
6828 if (!tag)
6829 return obj;
6830
6831 obj_type = type_from_tag (tag);
6832
6833 if (!obj_type)
6834 return obj;
6835
6836 return value_from_contents_and_address (obj_type, NULL, base_address);
6837 }
6838
6839 /* Return the "ada__tags__type_specific_data" type. */
6840
6841 static struct type *
6842 ada_get_tsd_type (struct inferior *inf)
6843 {
6844 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6845
6846 if (data->tsd_type == 0)
6847 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6848 return data->tsd_type;
6849 }
6850
6851 /* Return the TSD (type-specific data) associated to the given TAG.
6852 TAG is assumed to be the tag of a tagged-type entity.
6853
6854 May return NULL if we are unable to get the TSD. */
6855
6856 static struct value *
6857 ada_get_tsd_from_tag (struct value *tag)
6858 {
6859 struct value *val;
6860 struct type *type;
6861
6862 /* First option: The TSD is simply stored as a field of our TAG.
6863 Only older versions of GNAT would use this format, but we have
6864 to test it first, because there are no visible markers for
6865 the current approach except the absence of that field. */
6866
6867 val = ada_value_struct_elt (tag, "tsd", 1);
6868 if (val)
6869 return val;
6870
6871 /* Try the second representation for the dispatch table (in which
6872 there is no explicit 'tsd' field in the referent of the tag pointer,
6873 and instead the tsd pointer is stored just before the dispatch
6874 table. */
6875
6876 type = ada_get_tsd_type (current_inferior());
6877 if (type == NULL)
6878 return NULL;
6879 type = lookup_pointer_type (lookup_pointer_type (type));
6880 val = value_cast (type, tag);
6881 if (val == NULL)
6882 return NULL;
6883 return value_ind (value_ptradd (val, -1));
6884 }
6885
6886 /* Given the TSD of a tag (type-specific data), return a string
6887 containing the name of the associated type.
6888
6889 The returned value is good until the next call. May return NULL
6890 if we are unable to determine the tag name. */
6891
6892 static char *
6893 ada_tag_name_from_tsd (struct value *tsd)
6894 {
6895 static char name[1024];
6896 char *p;
6897 struct value *val;
6898
6899 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6900 if (val == NULL)
6901 return NULL;
6902 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6903 for (p = name; *p != '\0'; p += 1)
6904 if (isalpha (*p))
6905 *p = tolower (*p);
6906 return name;
6907 }
6908
6909 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6910 a C string.
6911
6912 Return NULL if the TAG is not an Ada tag, or if we were unable to
6913 determine the name of that tag. The result is good until the next
6914 call. */
6915
6916 const char *
6917 ada_tag_name (struct value *tag)
6918 {
6919 char *name = NULL;
6920
6921 if (!ada_is_tag_type (value_type (tag)))
6922 return NULL;
6923
6924 /* It is perfectly possible that an exception be raised while trying
6925 to determine the TAG's name, even under normal circumstances:
6926 The associated variable may be uninitialized or corrupted, for
6927 instance. We do not let any exception propagate past this point.
6928 instead we return NULL.
6929
6930 We also do not print the error message either (which often is very
6931 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6932 the caller print a more meaningful message if necessary. */
6933 TRY
6934 {
6935 struct value *tsd = ada_get_tsd_from_tag (tag);
6936
6937 if (tsd != NULL)
6938 name = ada_tag_name_from_tsd (tsd);
6939 }
6940 CATCH (e, RETURN_MASK_ERROR)
6941 {
6942 }
6943 END_CATCH
6944
6945 return name;
6946 }
6947
6948 /* The parent type of TYPE, or NULL if none. */
6949
6950 struct type *
6951 ada_parent_type (struct type *type)
6952 {
6953 int i;
6954
6955 type = ada_check_typedef (type);
6956
6957 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6958 return NULL;
6959
6960 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6961 if (ada_is_parent_field (type, i))
6962 {
6963 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6964
6965 /* If the _parent field is a pointer, then dereference it. */
6966 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6967 parent_type = TYPE_TARGET_TYPE (parent_type);
6968 /* If there is a parallel XVS type, get the actual base type. */
6969 parent_type = ada_get_base_type (parent_type);
6970
6971 return ada_check_typedef (parent_type);
6972 }
6973
6974 return NULL;
6975 }
6976
6977 /* True iff field number FIELD_NUM of structure type TYPE contains the
6978 parent-type (inherited) fields of a derived type. Assumes TYPE is
6979 a structure type with at least FIELD_NUM+1 fields. */
6980
6981 int
6982 ada_is_parent_field (struct type *type, int field_num)
6983 {
6984 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6985
6986 return (name != NULL
6987 && (startswith (name, "PARENT")
6988 || startswith (name, "_parent")));
6989 }
6990
6991 /* True iff field number FIELD_NUM of structure type TYPE is a
6992 transparent wrapper field (which should be silently traversed when doing
6993 field selection and flattened when printing). Assumes TYPE is a
6994 structure type with at least FIELD_NUM+1 fields. Such fields are always
6995 structures. */
6996
6997 int
6998 ada_is_wrapper_field (struct type *type, int field_num)
6999 {
7000 const char *name = TYPE_FIELD_NAME (type, field_num);
7001
7002 if (name != NULL && strcmp (name, "RETVAL") == 0)
7003 {
7004 /* This happens in functions with "out" or "in out" parameters
7005 which are passed by copy. For such functions, GNAT describes
7006 the function's return type as being a struct where the return
7007 value is in a field called RETVAL, and where the other "out"
7008 or "in out" parameters are fields of that struct. This is not
7009 a wrapper. */
7010 return 0;
7011 }
7012
7013 return (name != NULL
7014 && (startswith (name, "PARENT")
7015 || strcmp (name, "REP") == 0
7016 || startswith (name, "_parent")
7017 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7018 }
7019
7020 /* True iff field number FIELD_NUM of structure or union type TYPE
7021 is a variant wrapper. Assumes TYPE is a structure type with at least
7022 FIELD_NUM+1 fields. */
7023
7024 int
7025 ada_is_variant_part (struct type *type, int field_num)
7026 {
7027 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7028
7029 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7030 || (is_dynamic_field (type, field_num)
7031 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7032 == TYPE_CODE_UNION)));
7033 }
7034
7035 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7036 whose discriminants are contained in the record type OUTER_TYPE,
7037 returns the type of the controlling discriminant for the variant.
7038 May return NULL if the type could not be found. */
7039
7040 struct type *
7041 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7042 {
7043 const char *name = ada_variant_discrim_name (var_type);
7044
7045 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7046 }
7047
7048 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7049 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7050 represents a 'when others' clause; otherwise 0. */
7051
7052 int
7053 ada_is_others_clause (struct type *type, int field_num)
7054 {
7055 const char *name = TYPE_FIELD_NAME (type, field_num);
7056
7057 return (name != NULL && name[0] == 'O');
7058 }
7059
7060 /* Assuming that TYPE0 is the type of the variant part of a record,
7061 returns the name of the discriminant controlling the variant.
7062 The value is valid until the next call to ada_variant_discrim_name. */
7063
7064 const char *
7065 ada_variant_discrim_name (struct type *type0)
7066 {
7067 static char *result = NULL;
7068 static size_t result_len = 0;
7069 struct type *type;
7070 const char *name;
7071 const char *discrim_end;
7072 const char *discrim_start;
7073
7074 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7075 type = TYPE_TARGET_TYPE (type0);
7076 else
7077 type = type0;
7078
7079 name = ada_type_name (type);
7080
7081 if (name == NULL || name[0] == '\000')
7082 return "";
7083
7084 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7085 discrim_end -= 1)
7086 {
7087 if (startswith (discrim_end, "___XVN"))
7088 break;
7089 }
7090 if (discrim_end == name)
7091 return "";
7092
7093 for (discrim_start = discrim_end; discrim_start != name + 3;
7094 discrim_start -= 1)
7095 {
7096 if (discrim_start == name + 1)
7097 return "";
7098 if ((discrim_start > name + 3
7099 && startswith (discrim_start - 3, "___"))
7100 || discrim_start[-1] == '.')
7101 break;
7102 }
7103
7104 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7105 strncpy (result, discrim_start, discrim_end - discrim_start);
7106 result[discrim_end - discrim_start] = '\0';
7107 return result;
7108 }
7109
7110 /* Scan STR for a subtype-encoded number, beginning at position K.
7111 Put the position of the character just past the number scanned in
7112 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7113 Return 1 if there was a valid number at the given position, and 0
7114 otherwise. A "subtype-encoded" number consists of the absolute value
7115 in decimal, followed by the letter 'm' to indicate a negative number.
7116 Assumes 0m does not occur. */
7117
7118 int
7119 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7120 {
7121 ULONGEST RU;
7122
7123 if (!isdigit (str[k]))
7124 return 0;
7125
7126 /* Do it the hard way so as not to make any assumption about
7127 the relationship of unsigned long (%lu scan format code) and
7128 LONGEST. */
7129 RU = 0;
7130 while (isdigit (str[k]))
7131 {
7132 RU = RU * 10 + (str[k] - '0');
7133 k += 1;
7134 }
7135
7136 if (str[k] == 'm')
7137 {
7138 if (R != NULL)
7139 *R = (-(LONGEST) (RU - 1)) - 1;
7140 k += 1;
7141 }
7142 else if (R != NULL)
7143 *R = (LONGEST) RU;
7144
7145 /* NOTE on the above: Technically, C does not say what the results of
7146 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7147 number representable as a LONGEST (although either would probably work
7148 in most implementations). When RU>0, the locution in the then branch
7149 above is always equivalent to the negative of RU. */
7150
7151 if (new_k != NULL)
7152 *new_k = k;
7153 return 1;
7154 }
7155
7156 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7157 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7158 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7159
7160 int
7161 ada_in_variant (LONGEST val, struct type *type, int field_num)
7162 {
7163 const char *name = TYPE_FIELD_NAME (type, field_num);
7164 int p;
7165
7166 p = 0;
7167 while (1)
7168 {
7169 switch (name[p])
7170 {
7171 case '\0':
7172 return 0;
7173 case 'S':
7174 {
7175 LONGEST W;
7176
7177 if (!ada_scan_number (name, p + 1, &W, &p))
7178 return 0;
7179 if (val == W)
7180 return 1;
7181 break;
7182 }
7183 case 'R':
7184 {
7185 LONGEST L, U;
7186
7187 if (!ada_scan_number (name, p + 1, &L, &p)
7188 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7189 return 0;
7190 if (val >= L && val <= U)
7191 return 1;
7192 break;
7193 }
7194 case 'O':
7195 return 1;
7196 default:
7197 return 0;
7198 }
7199 }
7200 }
7201
7202 /* FIXME: Lots of redundancy below. Try to consolidate. */
7203
7204 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7205 ARG_TYPE, extract and return the value of one of its (non-static)
7206 fields. FIELDNO says which field. Differs from value_primitive_field
7207 only in that it can handle packed values of arbitrary type. */
7208
7209 static struct value *
7210 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7211 struct type *arg_type)
7212 {
7213 struct type *type;
7214
7215 arg_type = ada_check_typedef (arg_type);
7216 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7217
7218 /* Handle packed fields. */
7219
7220 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7221 {
7222 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7223 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7224
7225 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7226 offset + bit_pos / 8,
7227 bit_pos % 8, bit_size, type);
7228 }
7229 else
7230 return value_primitive_field (arg1, offset, fieldno, arg_type);
7231 }
7232
7233 /* Find field with name NAME in object of type TYPE. If found,
7234 set the following for each argument that is non-null:
7235 - *FIELD_TYPE_P to the field's type;
7236 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7237 an object of that type;
7238 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7239 - *BIT_SIZE_P to its size in bits if the field is packed, and
7240 0 otherwise;
7241 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7242 fields up to but not including the desired field, or by the total
7243 number of fields if not found. A NULL value of NAME never
7244 matches; the function just counts visible fields in this case.
7245
7246 Notice that we need to handle when a tagged record hierarchy
7247 has some components with the same name, like in this scenario:
7248
7249 type Top_T is tagged record
7250 N : Integer := 1;
7251 U : Integer := 974;
7252 A : Integer := 48;
7253 end record;
7254
7255 type Middle_T is new Top.Top_T with record
7256 N : Character := 'a';
7257 C : Integer := 3;
7258 end record;
7259
7260 type Bottom_T is new Middle.Middle_T with record
7261 N : Float := 4.0;
7262 C : Character := '5';
7263 X : Integer := 6;
7264 A : Character := 'J';
7265 end record;
7266
7267 Let's say we now have a variable declared and initialized as follow:
7268
7269 TC : Top_A := new Bottom_T;
7270
7271 And then we use this variable to call this function
7272
7273 procedure Assign (Obj: in out Top_T; TV : Integer);
7274
7275 as follow:
7276
7277 Assign (Top_T (B), 12);
7278
7279 Now, we're in the debugger, and we're inside that procedure
7280 then and we want to print the value of obj.c:
7281
7282 Usually, the tagged record or one of the parent type owns the
7283 component to print and there's no issue but in this particular
7284 case, what does it mean to ask for Obj.C? Since the actual
7285 type for object is type Bottom_T, it could mean two things: type
7286 component C from the Middle_T view, but also component C from
7287 Bottom_T. So in that "undefined" case, when the component is
7288 not found in the non-resolved type (which includes all the
7289 components of the parent type), then resolve it and see if we
7290 get better luck once expanded.
7291
7292 In the case of homonyms in the derived tagged type, we don't
7293 guaranty anything, and pick the one that's easiest for us
7294 to program.
7295
7296 Returns 1 if found, 0 otherwise. */
7297
7298 static int
7299 find_struct_field (const char *name, struct type *type, int offset,
7300 struct type **field_type_p,
7301 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7302 int *index_p)
7303 {
7304 int i;
7305 int parent_offset = -1;
7306
7307 type = ada_check_typedef (type);
7308
7309 if (field_type_p != NULL)
7310 *field_type_p = NULL;
7311 if (byte_offset_p != NULL)
7312 *byte_offset_p = 0;
7313 if (bit_offset_p != NULL)
7314 *bit_offset_p = 0;
7315 if (bit_size_p != NULL)
7316 *bit_size_p = 0;
7317
7318 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7319 {
7320 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7321 int fld_offset = offset + bit_pos / 8;
7322 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7323
7324 if (t_field_name == NULL)
7325 continue;
7326
7327 else if (ada_is_parent_field (type, i))
7328 {
7329 /* This is a field pointing us to the parent type of a tagged
7330 type. As hinted in this function's documentation, we give
7331 preference to fields in the current record first, so what
7332 we do here is just record the index of this field before
7333 we skip it. If it turns out we couldn't find our field
7334 in the current record, then we'll get back to it and search
7335 inside it whether the field might exist in the parent. */
7336
7337 parent_offset = i;
7338 continue;
7339 }
7340
7341 else if (name != NULL && field_name_match (t_field_name, name))
7342 {
7343 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7344
7345 if (field_type_p != NULL)
7346 *field_type_p = TYPE_FIELD_TYPE (type, i);
7347 if (byte_offset_p != NULL)
7348 *byte_offset_p = fld_offset;
7349 if (bit_offset_p != NULL)
7350 *bit_offset_p = bit_pos % 8;
7351 if (bit_size_p != NULL)
7352 *bit_size_p = bit_size;
7353 return 1;
7354 }
7355 else if (ada_is_wrapper_field (type, i))
7356 {
7357 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7358 field_type_p, byte_offset_p, bit_offset_p,
7359 bit_size_p, index_p))
7360 return 1;
7361 }
7362 else if (ada_is_variant_part (type, i))
7363 {
7364 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7365 fixed type?? */
7366 int j;
7367 struct type *field_type
7368 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7369
7370 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7371 {
7372 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7373 fld_offset
7374 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7375 field_type_p, byte_offset_p,
7376 bit_offset_p, bit_size_p, index_p))
7377 return 1;
7378 }
7379 }
7380 else if (index_p != NULL)
7381 *index_p += 1;
7382 }
7383
7384 /* Field not found so far. If this is a tagged type which
7385 has a parent, try finding that field in the parent now. */
7386
7387 if (parent_offset != -1)
7388 {
7389 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7390 int fld_offset = offset + bit_pos / 8;
7391
7392 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7393 fld_offset, field_type_p, byte_offset_p,
7394 bit_offset_p, bit_size_p, index_p))
7395 return 1;
7396 }
7397
7398 return 0;
7399 }
7400
7401 /* Number of user-visible fields in record type TYPE. */
7402
7403 static int
7404 num_visible_fields (struct type *type)
7405 {
7406 int n;
7407
7408 n = 0;
7409 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7410 return n;
7411 }
7412
7413 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7414 and search in it assuming it has (class) type TYPE.
7415 If found, return value, else return NULL.
7416
7417 Searches recursively through wrapper fields (e.g., '_parent').
7418
7419 In the case of homonyms in the tagged types, please refer to the
7420 long explanation in find_struct_field's function documentation. */
7421
7422 static struct value *
7423 ada_search_struct_field (const char *name, struct value *arg, int offset,
7424 struct type *type)
7425 {
7426 int i;
7427 int parent_offset = -1;
7428
7429 type = ada_check_typedef (type);
7430 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7431 {
7432 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7433
7434 if (t_field_name == NULL)
7435 continue;
7436
7437 else if (ada_is_parent_field (type, i))
7438 {
7439 /* This is a field pointing us to the parent type of a tagged
7440 type. As hinted in this function's documentation, we give
7441 preference to fields in the current record first, so what
7442 we do here is just record the index of this field before
7443 we skip it. If it turns out we couldn't find our field
7444 in the current record, then we'll get back to it and search
7445 inside it whether the field might exist in the parent. */
7446
7447 parent_offset = i;
7448 continue;
7449 }
7450
7451 else if (field_name_match (t_field_name, name))
7452 return ada_value_primitive_field (arg, offset, i, type);
7453
7454 else if (ada_is_wrapper_field (type, i))
7455 {
7456 struct value *v = /* Do not let indent join lines here. */
7457 ada_search_struct_field (name, arg,
7458 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7459 TYPE_FIELD_TYPE (type, i));
7460
7461 if (v != NULL)
7462 return v;
7463 }
7464
7465 else if (ada_is_variant_part (type, i))
7466 {
7467 /* PNH: Do we ever get here? See find_struct_field. */
7468 int j;
7469 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7470 i));
7471 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7472
7473 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7474 {
7475 struct value *v = ada_search_struct_field /* Force line
7476 break. */
7477 (name, arg,
7478 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7479 TYPE_FIELD_TYPE (field_type, j));
7480
7481 if (v != NULL)
7482 return v;
7483 }
7484 }
7485 }
7486
7487 /* Field not found so far. If this is a tagged type which
7488 has a parent, try finding that field in the parent now. */
7489
7490 if (parent_offset != -1)
7491 {
7492 struct value *v = ada_search_struct_field (
7493 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7494 TYPE_FIELD_TYPE (type, parent_offset));
7495
7496 if (v != NULL)
7497 return v;
7498 }
7499
7500 return NULL;
7501 }
7502
7503 static struct value *ada_index_struct_field_1 (int *, struct value *,
7504 int, struct type *);
7505
7506
7507 /* Return field #INDEX in ARG, where the index is that returned by
7508 * find_struct_field through its INDEX_P argument. Adjust the address
7509 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7510 * If found, return value, else return NULL. */
7511
7512 static struct value *
7513 ada_index_struct_field (int index, struct value *arg, int offset,
7514 struct type *type)
7515 {
7516 return ada_index_struct_field_1 (&index, arg, offset, type);
7517 }
7518
7519
7520 /* Auxiliary function for ada_index_struct_field. Like
7521 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7522 * *INDEX_P. */
7523
7524 static struct value *
7525 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7526 struct type *type)
7527 {
7528 int i;
7529 type = ada_check_typedef (type);
7530
7531 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7532 {
7533 if (TYPE_FIELD_NAME (type, i) == NULL)
7534 continue;
7535 else if (ada_is_wrapper_field (type, i))
7536 {
7537 struct value *v = /* Do not let indent join lines here. */
7538 ada_index_struct_field_1 (index_p, arg,
7539 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7540 TYPE_FIELD_TYPE (type, i));
7541
7542 if (v != NULL)
7543 return v;
7544 }
7545
7546 else if (ada_is_variant_part (type, i))
7547 {
7548 /* PNH: Do we ever get here? See ada_search_struct_field,
7549 find_struct_field. */
7550 error (_("Cannot assign this kind of variant record"));
7551 }
7552 else if (*index_p == 0)
7553 return ada_value_primitive_field (arg, offset, i, type);
7554 else
7555 *index_p -= 1;
7556 }
7557 return NULL;
7558 }
7559
7560 /* Given ARG, a value of type (pointer or reference to a)*
7561 structure/union, extract the component named NAME from the ultimate
7562 target structure/union and return it as a value with its
7563 appropriate type.
7564
7565 The routine searches for NAME among all members of the structure itself
7566 and (recursively) among all members of any wrapper members
7567 (e.g., '_parent').
7568
7569 If NO_ERR, then simply return NULL in case of error, rather than
7570 calling error. */
7571
7572 struct value *
7573 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7574 {
7575 struct type *t, *t1;
7576 struct value *v;
7577
7578 v = NULL;
7579 t1 = t = ada_check_typedef (value_type (arg));
7580 if (TYPE_CODE (t) == TYPE_CODE_REF)
7581 {
7582 t1 = TYPE_TARGET_TYPE (t);
7583 if (t1 == NULL)
7584 goto BadValue;
7585 t1 = ada_check_typedef (t1);
7586 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7587 {
7588 arg = coerce_ref (arg);
7589 t = t1;
7590 }
7591 }
7592
7593 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7594 {
7595 t1 = TYPE_TARGET_TYPE (t);
7596 if (t1 == NULL)
7597 goto BadValue;
7598 t1 = ada_check_typedef (t1);
7599 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7600 {
7601 arg = value_ind (arg);
7602 t = t1;
7603 }
7604 else
7605 break;
7606 }
7607
7608 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7609 goto BadValue;
7610
7611 if (t1 == t)
7612 v = ada_search_struct_field (name, arg, 0, t);
7613 else
7614 {
7615 int bit_offset, bit_size, byte_offset;
7616 struct type *field_type;
7617 CORE_ADDR address;
7618
7619 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7620 address = value_address (ada_value_ind (arg));
7621 else
7622 address = value_address (ada_coerce_ref (arg));
7623
7624 /* Check to see if this is a tagged type. We also need to handle
7625 the case where the type is a reference to a tagged type, but
7626 we have to be careful to exclude pointers to tagged types.
7627 The latter should be shown as usual (as a pointer), whereas
7628 a reference should mostly be transparent to the user. */
7629
7630 if (ada_is_tagged_type (t1, 0)
7631 || (TYPE_CODE (t1) == TYPE_CODE_REF
7632 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7633 {
7634 /* We first try to find the searched field in the current type.
7635 If not found then let's look in the fixed type. */
7636
7637 if (!find_struct_field (name, t1, 0,
7638 &field_type, &byte_offset, &bit_offset,
7639 &bit_size, NULL))
7640 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7641 address, NULL, 1);
7642 }
7643 else
7644 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7645 address, NULL, 1);
7646
7647 if (find_struct_field (name, t1, 0,
7648 &field_type, &byte_offset, &bit_offset,
7649 &bit_size, NULL))
7650 {
7651 if (bit_size != 0)
7652 {
7653 if (TYPE_CODE (t) == TYPE_CODE_REF)
7654 arg = ada_coerce_ref (arg);
7655 else
7656 arg = ada_value_ind (arg);
7657 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7658 bit_offset, bit_size,
7659 field_type);
7660 }
7661 else
7662 v = value_at_lazy (field_type, address + byte_offset);
7663 }
7664 }
7665
7666 if (v != NULL || no_err)
7667 return v;
7668 else
7669 error (_("There is no member named %s."), name);
7670
7671 BadValue:
7672 if (no_err)
7673 return NULL;
7674 else
7675 error (_("Attempt to extract a component of "
7676 "a value that is not a record."));
7677 }
7678
7679 /* Return a string representation of type TYPE. */
7680
7681 static std::string
7682 type_as_string (struct type *type)
7683 {
7684 string_file tmp_stream;
7685
7686 type_print (type, "", &tmp_stream, -1);
7687
7688 return std::move (tmp_stream.string ());
7689 }
7690
7691 /* Given a type TYPE, look up the type of the component of type named NAME.
7692 If DISPP is non-null, add its byte displacement from the beginning of a
7693 structure (pointed to by a value) of type TYPE to *DISPP (does not
7694 work for packed fields).
7695
7696 Matches any field whose name has NAME as a prefix, possibly
7697 followed by "___".
7698
7699 TYPE can be either a struct or union. If REFOK, TYPE may also
7700 be a (pointer or reference)+ to a struct or union, and the
7701 ultimate target type will be searched.
7702
7703 Looks recursively into variant clauses and parent types.
7704
7705 In the case of homonyms in the tagged types, please refer to the
7706 long explanation in find_struct_field's function documentation.
7707
7708 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7709 TYPE is not a type of the right kind. */
7710
7711 static struct type *
7712 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7713 int noerr)
7714 {
7715 int i;
7716 int parent_offset = -1;
7717
7718 if (name == NULL)
7719 goto BadName;
7720
7721 if (refok && type != NULL)
7722 while (1)
7723 {
7724 type = ada_check_typedef (type);
7725 if (TYPE_CODE (type) != TYPE_CODE_PTR
7726 && TYPE_CODE (type) != TYPE_CODE_REF)
7727 break;
7728 type = TYPE_TARGET_TYPE (type);
7729 }
7730
7731 if (type == NULL
7732 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7733 && TYPE_CODE (type) != TYPE_CODE_UNION))
7734 {
7735 if (noerr)
7736 return NULL;
7737
7738 error (_("Type %s is not a structure or union type"),
7739 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7740 }
7741
7742 type = to_static_fixed_type (type);
7743
7744 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7745 {
7746 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7747 struct type *t;
7748
7749 if (t_field_name == NULL)
7750 continue;
7751
7752 else if (ada_is_parent_field (type, i))
7753 {
7754 /* This is a field pointing us to the parent type of a tagged
7755 type. As hinted in this function's documentation, we give
7756 preference to fields in the current record first, so what
7757 we do here is just record the index of this field before
7758 we skip it. If it turns out we couldn't find our field
7759 in the current record, then we'll get back to it and search
7760 inside it whether the field might exist in the parent. */
7761
7762 parent_offset = i;
7763 continue;
7764 }
7765
7766 else if (field_name_match (t_field_name, name))
7767 return TYPE_FIELD_TYPE (type, i);
7768
7769 else if (ada_is_wrapper_field (type, i))
7770 {
7771 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7772 0, 1);
7773 if (t != NULL)
7774 return t;
7775 }
7776
7777 else if (ada_is_variant_part (type, i))
7778 {
7779 int j;
7780 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7781 i));
7782
7783 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7784 {
7785 /* FIXME pnh 2008/01/26: We check for a field that is
7786 NOT wrapped in a struct, since the compiler sometimes
7787 generates these for unchecked variant types. Revisit
7788 if the compiler changes this practice. */
7789 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7790
7791 if (v_field_name != NULL
7792 && field_name_match (v_field_name, name))
7793 t = TYPE_FIELD_TYPE (field_type, j);
7794 else
7795 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7796 j),
7797 name, 0, 1);
7798
7799 if (t != NULL)
7800 return t;
7801 }
7802 }
7803
7804 }
7805
7806 /* Field not found so far. If this is a tagged type which
7807 has a parent, try finding that field in the parent now. */
7808
7809 if (parent_offset != -1)
7810 {
7811 struct type *t;
7812
7813 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7814 name, 0, 1);
7815 if (t != NULL)
7816 return t;
7817 }
7818
7819 BadName:
7820 if (!noerr)
7821 {
7822 const char *name_str = name != NULL ? name : _("<null>");
7823
7824 error (_("Type %s has no component named %s"),
7825 type_as_string (type).c_str (), name_str);
7826 }
7827
7828 return NULL;
7829 }
7830
7831 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7832 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7833 represents an unchecked union (that is, the variant part of a
7834 record that is named in an Unchecked_Union pragma). */
7835
7836 static int
7837 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7838 {
7839 const char *discrim_name = ada_variant_discrim_name (var_type);
7840
7841 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7842 }
7843
7844
7845 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7846 within a value of type OUTER_TYPE that is stored in GDB at
7847 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7848 numbering from 0) is applicable. Returns -1 if none are. */
7849
7850 int
7851 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7852 const gdb_byte *outer_valaddr)
7853 {
7854 int others_clause;
7855 int i;
7856 const char *discrim_name = ada_variant_discrim_name (var_type);
7857 struct value *outer;
7858 struct value *discrim;
7859 LONGEST discrim_val;
7860
7861 /* Using plain value_from_contents_and_address here causes problems
7862 because we will end up trying to resolve a type that is currently
7863 being constructed. */
7864 outer = value_from_contents_and_address_unresolved (outer_type,
7865 outer_valaddr, 0);
7866 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7867 if (discrim == NULL)
7868 return -1;
7869 discrim_val = value_as_long (discrim);
7870
7871 others_clause = -1;
7872 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7873 {
7874 if (ada_is_others_clause (var_type, i))
7875 others_clause = i;
7876 else if (ada_in_variant (discrim_val, var_type, i))
7877 return i;
7878 }
7879
7880 return others_clause;
7881 }
7882 \f
7883
7884
7885 /* Dynamic-Sized Records */
7886
7887 /* Strategy: The type ostensibly attached to a value with dynamic size
7888 (i.e., a size that is not statically recorded in the debugging
7889 data) does not accurately reflect the size or layout of the value.
7890 Our strategy is to convert these values to values with accurate,
7891 conventional types that are constructed on the fly. */
7892
7893 /* There is a subtle and tricky problem here. In general, we cannot
7894 determine the size of dynamic records without its data. However,
7895 the 'struct value' data structure, which GDB uses to represent
7896 quantities in the inferior process (the target), requires the size
7897 of the type at the time of its allocation in order to reserve space
7898 for GDB's internal copy of the data. That's why the
7899 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7900 rather than struct value*s.
7901
7902 However, GDB's internal history variables ($1, $2, etc.) are
7903 struct value*s containing internal copies of the data that are not, in
7904 general, the same as the data at their corresponding addresses in
7905 the target. Fortunately, the types we give to these values are all
7906 conventional, fixed-size types (as per the strategy described
7907 above), so that we don't usually have to perform the
7908 'to_fixed_xxx_type' conversions to look at their values.
7909 Unfortunately, there is one exception: if one of the internal
7910 history variables is an array whose elements are unconstrained
7911 records, then we will need to create distinct fixed types for each
7912 element selected. */
7913
7914 /* The upshot of all of this is that many routines take a (type, host
7915 address, target address) triple as arguments to represent a value.
7916 The host address, if non-null, is supposed to contain an internal
7917 copy of the relevant data; otherwise, the program is to consult the
7918 target at the target address. */
7919
7920 /* Assuming that VAL0 represents a pointer value, the result of
7921 dereferencing it. Differs from value_ind in its treatment of
7922 dynamic-sized types. */
7923
7924 struct value *
7925 ada_value_ind (struct value *val0)
7926 {
7927 struct value *val = value_ind (val0);
7928
7929 if (ada_is_tagged_type (value_type (val), 0))
7930 val = ada_tag_value_at_base_address (val);
7931
7932 return ada_to_fixed_value (val);
7933 }
7934
7935 /* The value resulting from dereferencing any "reference to"
7936 qualifiers on VAL0. */
7937
7938 static struct value *
7939 ada_coerce_ref (struct value *val0)
7940 {
7941 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7942 {
7943 struct value *val = val0;
7944
7945 val = coerce_ref (val);
7946
7947 if (ada_is_tagged_type (value_type (val), 0))
7948 val = ada_tag_value_at_base_address (val);
7949
7950 return ada_to_fixed_value (val);
7951 }
7952 else
7953 return val0;
7954 }
7955
7956 /* Return OFF rounded upward if necessary to a multiple of
7957 ALIGNMENT (a power of 2). */
7958
7959 static unsigned int
7960 align_value (unsigned int off, unsigned int alignment)
7961 {
7962 return (off + alignment - 1) & ~(alignment - 1);
7963 }
7964
7965 /* Return the bit alignment required for field #F of template type TYPE. */
7966
7967 static unsigned int
7968 field_alignment (struct type *type, int f)
7969 {
7970 const char *name = TYPE_FIELD_NAME (type, f);
7971 int len;
7972 int align_offset;
7973
7974 /* The field name should never be null, unless the debugging information
7975 is somehow malformed. In this case, we assume the field does not
7976 require any alignment. */
7977 if (name == NULL)
7978 return 1;
7979
7980 len = strlen (name);
7981
7982 if (!isdigit (name[len - 1]))
7983 return 1;
7984
7985 if (isdigit (name[len - 2]))
7986 align_offset = len - 2;
7987 else
7988 align_offset = len - 1;
7989
7990 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7991 return TARGET_CHAR_BIT;
7992
7993 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7994 }
7995
7996 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7997
7998 static struct symbol *
7999 ada_find_any_type_symbol (const char *name)
8000 {
8001 struct symbol *sym;
8002
8003 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
8004 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
8005 return sym;
8006
8007 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
8008 return sym;
8009 }
8010
8011 /* Find a type named NAME. Ignores ambiguity. This routine will look
8012 solely for types defined by debug info, it will not search the GDB
8013 primitive types. */
8014
8015 static struct type *
8016 ada_find_any_type (const char *name)
8017 {
8018 struct symbol *sym = ada_find_any_type_symbol (name);
8019
8020 if (sym != NULL)
8021 return SYMBOL_TYPE (sym);
8022
8023 return NULL;
8024 }
8025
8026 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8027 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8028 symbol, in which case it is returned. Otherwise, this looks for
8029 symbols whose name is that of NAME_SYM suffixed with "___XR".
8030 Return symbol if found, and NULL otherwise. */
8031
8032 struct symbol *
8033 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
8034 {
8035 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
8036 struct symbol *sym;
8037
8038 if (strstr (name, "___XR") != NULL)
8039 return name_sym;
8040
8041 sym = find_old_style_renaming_symbol (name, block);
8042
8043 if (sym != NULL)
8044 return sym;
8045
8046 /* Not right yet. FIXME pnh 7/20/2007. */
8047 sym = ada_find_any_type_symbol (name);
8048 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8049 return sym;
8050 else
8051 return NULL;
8052 }
8053
8054 static struct symbol *
8055 find_old_style_renaming_symbol (const char *name, const struct block *block)
8056 {
8057 const struct symbol *function_sym = block_linkage_function (block);
8058 char *rename;
8059
8060 if (function_sym != NULL)
8061 {
8062 /* If the symbol is defined inside a function, NAME is not fully
8063 qualified. This means we need to prepend the function name
8064 as well as adding the ``___XR'' suffix to build the name of
8065 the associated renaming symbol. */
8066 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8067 /* Function names sometimes contain suffixes used
8068 for instance to qualify nested subprograms. When building
8069 the XR type name, we need to make sure that this suffix is
8070 not included. So do not include any suffix in the function
8071 name length below. */
8072 int function_name_len = ada_name_prefix_len (function_name);
8073 const int rename_len = function_name_len + 2 /* "__" */
8074 + strlen (name) + 6 /* "___XR\0" */ ;
8075
8076 /* Strip the suffix if necessary. */
8077 ada_remove_trailing_digits (function_name, &function_name_len);
8078 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8079 ada_remove_Xbn_suffix (function_name, &function_name_len);
8080
8081 /* Library-level functions are a special case, as GNAT adds
8082 a ``_ada_'' prefix to the function name to avoid namespace
8083 pollution. However, the renaming symbols themselves do not
8084 have this prefix, so we need to skip this prefix if present. */
8085 if (function_name_len > 5 /* "_ada_" */
8086 && strstr (function_name, "_ada_") == function_name)
8087 {
8088 function_name += 5;
8089 function_name_len -= 5;
8090 }
8091
8092 rename = (char *) alloca (rename_len * sizeof (char));
8093 strncpy (rename, function_name, function_name_len);
8094 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8095 "__%s___XR", name);
8096 }
8097 else
8098 {
8099 const int rename_len = strlen (name) + 6;
8100
8101 rename = (char *) alloca (rename_len * sizeof (char));
8102 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8103 }
8104
8105 return ada_find_any_type_symbol (rename);
8106 }
8107
8108 /* Because of GNAT encoding conventions, several GDB symbols may match a
8109 given type name. If the type denoted by TYPE0 is to be preferred to
8110 that of TYPE1 for purposes of type printing, return non-zero;
8111 otherwise return 0. */
8112
8113 int
8114 ada_prefer_type (struct type *type0, struct type *type1)
8115 {
8116 if (type1 == NULL)
8117 return 1;
8118 else if (type0 == NULL)
8119 return 0;
8120 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8121 return 1;
8122 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8123 return 0;
8124 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8125 return 1;
8126 else if (ada_is_constrained_packed_array_type (type0))
8127 return 1;
8128 else if (ada_is_array_descriptor_type (type0)
8129 && !ada_is_array_descriptor_type (type1))
8130 return 1;
8131 else
8132 {
8133 const char *type0_name = type_name_no_tag (type0);
8134 const char *type1_name = type_name_no_tag (type1);
8135
8136 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8137 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8138 return 1;
8139 }
8140 return 0;
8141 }
8142
8143 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8144 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8145
8146 const char *
8147 ada_type_name (struct type *type)
8148 {
8149 if (type == NULL)
8150 return NULL;
8151 else if (TYPE_NAME (type) != NULL)
8152 return TYPE_NAME (type);
8153 else
8154 return TYPE_TAG_NAME (type);
8155 }
8156
8157 /* Search the list of "descriptive" types associated to TYPE for a type
8158 whose name is NAME. */
8159
8160 static struct type *
8161 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8162 {
8163 struct type *result, *tmp;
8164
8165 if (ada_ignore_descriptive_types_p)
8166 return NULL;
8167
8168 /* If there no descriptive-type info, then there is no parallel type
8169 to be found. */
8170 if (!HAVE_GNAT_AUX_INFO (type))
8171 return NULL;
8172
8173 result = TYPE_DESCRIPTIVE_TYPE (type);
8174 while (result != NULL)
8175 {
8176 const char *result_name = ada_type_name (result);
8177
8178 if (result_name == NULL)
8179 {
8180 warning (_("unexpected null name on descriptive type"));
8181 return NULL;
8182 }
8183
8184 /* If the names match, stop. */
8185 if (strcmp (result_name, name) == 0)
8186 break;
8187
8188 /* Otherwise, look at the next item on the list, if any. */
8189 if (HAVE_GNAT_AUX_INFO (result))
8190 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8191 else
8192 tmp = NULL;
8193
8194 /* If not found either, try after having resolved the typedef. */
8195 if (tmp != NULL)
8196 result = tmp;
8197 else
8198 {
8199 result = check_typedef (result);
8200 if (HAVE_GNAT_AUX_INFO (result))
8201 result = TYPE_DESCRIPTIVE_TYPE (result);
8202 else
8203 result = NULL;
8204 }
8205 }
8206
8207 /* If we didn't find a match, see whether this is a packed array. With
8208 older compilers, the descriptive type information is either absent or
8209 irrelevant when it comes to packed arrays so the above lookup fails.
8210 Fall back to using a parallel lookup by name in this case. */
8211 if (result == NULL && ada_is_constrained_packed_array_type (type))
8212 return ada_find_any_type (name);
8213
8214 return result;
8215 }
8216
8217 /* Find a parallel type to TYPE with the specified NAME, using the
8218 descriptive type taken from the debugging information, if available,
8219 and otherwise using the (slower) name-based method. */
8220
8221 static struct type *
8222 ada_find_parallel_type_with_name (struct type *type, const char *name)
8223 {
8224 struct type *result = NULL;
8225
8226 if (HAVE_GNAT_AUX_INFO (type))
8227 result = find_parallel_type_by_descriptive_type (type, name);
8228 else
8229 result = ada_find_any_type (name);
8230
8231 return result;
8232 }
8233
8234 /* Same as above, but specify the name of the parallel type by appending
8235 SUFFIX to the name of TYPE. */
8236
8237 struct type *
8238 ada_find_parallel_type (struct type *type, const char *suffix)
8239 {
8240 char *name;
8241 const char *type_name = ada_type_name (type);
8242 int len;
8243
8244 if (type_name == NULL)
8245 return NULL;
8246
8247 len = strlen (type_name);
8248
8249 name = (char *) alloca (len + strlen (suffix) + 1);
8250
8251 strcpy (name, type_name);
8252 strcpy (name + len, suffix);
8253
8254 return ada_find_parallel_type_with_name (type, name);
8255 }
8256
8257 /* If TYPE is a variable-size record type, return the corresponding template
8258 type describing its fields. Otherwise, return NULL. */
8259
8260 static struct type *
8261 dynamic_template_type (struct type *type)
8262 {
8263 type = ada_check_typedef (type);
8264
8265 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8266 || ada_type_name (type) == NULL)
8267 return NULL;
8268 else
8269 {
8270 int len = strlen (ada_type_name (type));
8271
8272 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8273 return type;
8274 else
8275 return ada_find_parallel_type (type, "___XVE");
8276 }
8277 }
8278
8279 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8280 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8281
8282 static int
8283 is_dynamic_field (struct type *templ_type, int field_num)
8284 {
8285 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8286
8287 return name != NULL
8288 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8289 && strstr (name, "___XVL") != NULL;
8290 }
8291
8292 /* The index of the variant field of TYPE, or -1 if TYPE does not
8293 represent a variant record type. */
8294
8295 static int
8296 variant_field_index (struct type *type)
8297 {
8298 int f;
8299
8300 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8301 return -1;
8302
8303 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8304 {
8305 if (ada_is_variant_part (type, f))
8306 return f;
8307 }
8308 return -1;
8309 }
8310
8311 /* A record type with no fields. */
8312
8313 static struct type *
8314 empty_record (struct type *templ)
8315 {
8316 struct type *type = alloc_type_copy (templ);
8317
8318 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8319 TYPE_NFIELDS (type) = 0;
8320 TYPE_FIELDS (type) = NULL;
8321 INIT_CPLUS_SPECIFIC (type);
8322 TYPE_NAME (type) = "<empty>";
8323 TYPE_TAG_NAME (type) = NULL;
8324 TYPE_LENGTH (type) = 0;
8325 return type;
8326 }
8327
8328 /* An ordinary record type (with fixed-length fields) that describes
8329 the value of type TYPE at VALADDR or ADDRESS (see comments at
8330 the beginning of this section) VAL according to GNAT conventions.
8331 DVAL0 should describe the (portion of a) record that contains any
8332 necessary discriminants. It should be NULL if value_type (VAL) is
8333 an outer-level type (i.e., as opposed to a branch of a variant.) A
8334 variant field (unless unchecked) is replaced by a particular branch
8335 of the variant.
8336
8337 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8338 length are not statically known are discarded. As a consequence,
8339 VALADDR, ADDRESS and DVAL0 are ignored.
8340
8341 NOTE: Limitations: For now, we assume that dynamic fields and
8342 variants occupy whole numbers of bytes. However, they need not be
8343 byte-aligned. */
8344
8345 struct type *
8346 ada_template_to_fixed_record_type_1 (struct type *type,
8347 const gdb_byte *valaddr,
8348 CORE_ADDR address, struct value *dval0,
8349 int keep_dynamic_fields)
8350 {
8351 struct value *mark = value_mark ();
8352 struct value *dval;
8353 struct type *rtype;
8354 int nfields, bit_len;
8355 int variant_field;
8356 long off;
8357 int fld_bit_len;
8358 int f;
8359
8360 /* Compute the number of fields in this record type that are going
8361 to be processed: unless keep_dynamic_fields, this includes only
8362 fields whose position and length are static will be processed. */
8363 if (keep_dynamic_fields)
8364 nfields = TYPE_NFIELDS (type);
8365 else
8366 {
8367 nfields = 0;
8368 while (nfields < TYPE_NFIELDS (type)
8369 && !ada_is_variant_part (type, nfields)
8370 && !is_dynamic_field (type, nfields))
8371 nfields++;
8372 }
8373
8374 rtype = alloc_type_copy (type);
8375 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8376 INIT_CPLUS_SPECIFIC (rtype);
8377 TYPE_NFIELDS (rtype) = nfields;
8378 TYPE_FIELDS (rtype) = (struct field *)
8379 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8380 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8381 TYPE_NAME (rtype) = ada_type_name (type);
8382 TYPE_TAG_NAME (rtype) = NULL;
8383 TYPE_FIXED_INSTANCE (rtype) = 1;
8384
8385 off = 0;
8386 bit_len = 0;
8387 variant_field = -1;
8388
8389 for (f = 0; f < nfields; f += 1)
8390 {
8391 off = align_value (off, field_alignment (type, f))
8392 + TYPE_FIELD_BITPOS (type, f);
8393 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8394 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8395
8396 if (ada_is_variant_part (type, f))
8397 {
8398 variant_field = f;
8399 fld_bit_len = 0;
8400 }
8401 else if (is_dynamic_field (type, f))
8402 {
8403 const gdb_byte *field_valaddr = valaddr;
8404 CORE_ADDR field_address = address;
8405 struct type *field_type =
8406 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8407
8408 if (dval0 == NULL)
8409 {
8410 /* rtype's length is computed based on the run-time
8411 value of discriminants. If the discriminants are not
8412 initialized, the type size may be completely bogus and
8413 GDB may fail to allocate a value for it. So check the
8414 size first before creating the value. */
8415 ada_ensure_varsize_limit (rtype);
8416 /* Using plain value_from_contents_and_address here
8417 causes problems because we will end up trying to
8418 resolve a type that is currently being
8419 constructed. */
8420 dval = value_from_contents_and_address_unresolved (rtype,
8421 valaddr,
8422 address);
8423 rtype = value_type (dval);
8424 }
8425 else
8426 dval = dval0;
8427
8428 /* If the type referenced by this field is an aligner type, we need
8429 to unwrap that aligner type, because its size might not be set.
8430 Keeping the aligner type would cause us to compute the wrong
8431 size for this field, impacting the offset of the all the fields
8432 that follow this one. */
8433 if (ada_is_aligner_type (field_type))
8434 {
8435 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8436
8437 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8438 field_address = cond_offset_target (field_address, field_offset);
8439 field_type = ada_aligned_type (field_type);
8440 }
8441
8442 field_valaddr = cond_offset_host (field_valaddr,
8443 off / TARGET_CHAR_BIT);
8444 field_address = cond_offset_target (field_address,
8445 off / TARGET_CHAR_BIT);
8446
8447 /* Get the fixed type of the field. Note that, in this case,
8448 we do not want to get the real type out of the tag: if
8449 the current field is the parent part of a tagged record,
8450 we will get the tag of the object. Clearly wrong: the real
8451 type of the parent is not the real type of the child. We
8452 would end up in an infinite loop. */
8453 field_type = ada_get_base_type (field_type);
8454 field_type = ada_to_fixed_type (field_type, field_valaddr,
8455 field_address, dval, 0);
8456 /* If the field size is already larger than the maximum
8457 object size, then the record itself will necessarily
8458 be larger than the maximum object size. We need to make
8459 this check now, because the size might be so ridiculously
8460 large (due to an uninitialized variable in the inferior)
8461 that it would cause an overflow when adding it to the
8462 record size. */
8463 ada_ensure_varsize_limit (field_type);
8464
8465 TYPE_FIELD_TYPE (rtype, f) = field_type;
8466 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8467 /* The multiplication can potentially overflow. But because
8468 the field length has been size-checked just above, and
8469 assuming that the maximum size is a reasonable value,
8470 an overflow should not happen in practice. So rather than
8471 adding overflow recovery code to this already complex code,
8472 we just assume that it's not going to happen. */
8473 fld_bit_len =
8474 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8475 }
8476 else
8477 {
8478 /* Note: If this field's type is a typedef, it is important
8479 to preserve the typedef layer.
8480
8481 Otherwise, we might be transforming a typedef to a fat
8482 pointer (encoding a pointer to an unconstrained array),
8483 into a basic fat pointer (encoding an unconstrained
8484 array). As both types are implemented using the same
8485 structure, the typedef is the only clue which allows us
8486 to distinguish between the two options. Stripping it
8487 would prevent us from printing this field appropriately. */
8488 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8489 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8490 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8491 fld_bit_len =
8492 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8493 else
8494 {
8495 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8496
8497 /* We need to be careful of typedefs when computing
8498 the length of our field. If this is a typedef,
8499 get the length of the target type, not the length
8500 of the typedef. */
8501 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8502 field_type = ada_typedef_target_type (field_type);
8503
8504 fld_bit_len =
8505 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8506 }
8507 }
8508 if (off + fld_bit_len > bit_len)
8509 bit_len = off + fld_bit_len;
8510 off += fld_bit_len;
8511 TYPE_LENGTH (rtype) =
8512 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8513 }
8514
8515 /* We handle the variant part, if any, at the end because of certain
8516 odd cases in which it is re-ordered so as NOT to be the last field of
8517 the record. This can happen in the presence of representation
8518 clauses. */
8519 if (variant_field >= 0)
8520 {
8521 struct type *branch_type;
8522
8523 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8524
8525 if (dval0 == NULL)
8526 {
8527 /* Using plain value_from_contents_and_address here causes
8528 problems because we will end up trying to resolve a type
8529 that is currently being constructed. */
8530 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8531 address);
8532 rtype = value_type (dval);
8533 }
8534 else
8535 dval = dval0;
8536
8537 branch_type =
8538 to_fixed_variant_branch_type
8539 (TYPE_FIELD_TYPE (type, variant_field),
8540 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8541 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8542 if (branch_type == NULL)
8543 {
8544 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8545 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8546 TYPE_NFIELDS (rtype) -= 1;
8547 }
8548 else
8549 {
8550 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8551 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8552 fld_bit_len =
8553 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8554 TARGET_CHAR_BIT;
8555 if (off + fld_bit_len > bit_len)
8556 bit_len = off + fld_bit_len;
8557 TYPE_LENGTH (rtype) =
8558 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8559 }
8560 }
8561
8562 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8563 should contain the alignment of that record, which should be a strictly
8564 positive value. If null or negative, then something is wrong, most
8565 probably in the debug info. In that case, we don't round up the size
8566 of the resulting type. If this record is not part of another structure,
8567 the current RTYPE length might be good enough for our purposes. */
8568 if (TYPE_LENGTH (type) <= 0)
8569 {
8570 if (TYPE_NAME (rtype))
8571 warning (_("Invalid type size for `%s' detected: %d."),
8572 TYPE_NAME (rtype), TYPE_LENGTH (type));
8573 else
8574 warning (_("Invalid type size for <unnamed> detected: %d."),
8575 TYPE_LENGTH (type));
8576 }
8577 else
8578 {
8579 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8580 TYPE_LENGTH (type));
8581 }
8582
8583 value_free_to_mark (mark);
8584 if (TYPE_LENGTH (rtype) > varsize_limit)
8585 error (_("record type with dynamic size is larger than varsize-limit"));
8586 return rtype;
8587 }
8588
8589 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8590 of 1. */
8591
8592 static struct type *
8593 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8594 CORE_ADDR address, struct value *dval0)
8595 {
8596 return ada_template_to_fixed_record_type_1 (type, valaddr,
8597 address, dval0, 1);
8598 }
8599
8600 /* An ordinary record type in which ___XVL-convention fields and
8601 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8602 static approximations, containing all possible fields. Uses
8603 no runtime values. Useless for use in values, but that's OK,
8604 since the results are used only for type determinations. Works on both
8605 structs and unions. Representation note: to save space, we memorize
8606 the result of this function in the TYPE_TARGET_TYPE of the
8607 template type. */
8608
8609 static struct type *
8610 template_to_static_fixed_type (struct type *type0)
8611 {
8612 struct type *type;
8613 int nfields;
8614 int f;
8615
8616 /* No need no do anything if the input type is already fixed. */
8617 if (TYPE_FIXED_INSTANCE (type0))
8618 return type0;
8619
8620 /* Likewise if we already have computed the static approximation. */
8621 if (TYPE_TARGET_TYPE (type0) != NULL)
8622 return TYPE_TARGET_TYPE (type0);
8623
8624 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8625 type = type0;
8626 nfields = TYPE_NFIELDS (type0);
8627
8628 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8629 recompute all over next time. */
8630 TYPE_TARGET_TYPE (type0) = type;
8631
8632 for (f = 0; f < nfields; f += 1)
8633 {
8634 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8635 struct type *new_type;
8636
8637 if (is_dynamic_field (type0, f))
8638 {
8639 field_type = ada_check_typedef (field_type);
8640 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8641 }
8642 else
8643 new_type = static_unwrap_type (field_type);
8644
8645 if (new_type != field_type)
8646 {
8647 /* Clone TYPE0 only the first time we get a new field type. */
8648 if (type == type0)
8649 {
8650 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8651 TYPE_CODE (type) = TYPE_CODE (type0);
8652 INIT_CPLUS_SPECIFIC (type);
8653 TYPE_NFIELDS (type) = nfields;
8654 TYPE_FIELDS (type) = (struct field *)
8655 TYPE_ALLOC (type, nfields * sizeof (struct field));
8656 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8657 sizeof (struct field) * nfields);
8658 TYPE_NAME (type) = ada_type_name (type0);
8659 TYPE_TAG_NAME (type) = NULL;
8660 TYPE_FIXED_INSTANCE (type) = 1;
8661 TYPE_LENGTH (type) = 0;
8662 }
8663 TYPE_FIELD_TYPE (type, f) = new_type;
8664 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8665 }
8666 }
8667
8668 return type;
8669 }
8670
8671 /* Given an object of type TYPE whose contents are at VALADDR and
8672 whose address in memory is ADDRESS, returns a revision of TYPE,
8673 which should be a non-dynamic-sized record, in which the variant
8674 part, if any, is replaced with the appropriate branch. Looks
8675 for discriminant values in DVAL0, which can be NULL if the record
8676 contains the necessary discriminant values. */
8677
8678 static struct type *
8679 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8680 CORE_ADDR address, struct value *dval0)
8681 {
8682 struct value *mark = value_mark ();
8683 struct value *dval;
8684 struct type *rtype;
8685 struct type *branch_type;
8686 int nfields = TYPE_NFIELDS (type);
8687 int variant_field = variant_field_index (type);
8688
8689 if (variant_field == -1)
8690 return type;
8691
8692 if (dval0 == NULL)
8693 {
8694 dval = value_from_contents_and_address (type, valaddr, address);
8695 type = value_type (dval);
8696 }
8697 else
8698 dval = dval0;
8699
8700 rtype = alloc_type_copy (type);
8701 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8702 INIT_CPLUS_SPECIFIC (rtype);
8703 TYPE_NFIELDS (rtype) = nfields;
8704 TYPE_FIELDS (rtype) =
8705 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8706 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8707 sizeof (struct field) * nfields);
8708 TYPE_NAME (rtype) = ada_type_name (type);
8709 TYPE_TAG_NAME (rtype) = NULL;
8710 TYPE_FIXED_INSTANCE (rtype) = 1;
8711 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8712
8713 branch_type = to_fixed_variant_branch_type
8714 (TYPE_FIELD_TYPE (type, variant_field),
8715 cond_offset_host (valaddr,
8716 TYPE_FIELD_BITPOS (type, variant_field)
8717 / TARGET_CHAR_BIT),
8718 cond_offset_target (address,
8719 TYPE_FIELD_BITPOS (type, variant_field)
8720 / TARGET_CHAR_BIT), dval);
8721 if (branch_type == NULL)
8722 {
8723 int f;
8724
8725 for (f = variant_field + 1; f < nfields; f += 1)
8726 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8727 TYPE_NFIELDS (rtype) -= 1;
8728 }
8729 else
8730 {
8731 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8732 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8733 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8734 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8735 }
8736 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8737
8738 value_free_to_mark (mark);
8739 return rtype;
8740 }
8741
8742 /* An ordinary record type (with fixed-length fields) that describes
8743 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8744 beginning of this section]. Any necessary discriminants' values
8745 should be in DVAL, a record value; it may be NULL if the object
8746 at ADDR itself contains any necessary discriminant values.
8747 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8748 values from the record are needed. Except in the case that DVAL,
8749 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8750 unchecked) is replaced by a particular branch of the variant.
8751
8752 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8753 is questionable and may be removed. It can arise during the
8754 processing of an unconstrained-array-of-record type where all the
8755 variant branches have exactly the same size. This is because in
8756 such cases, the compiler does not bother to use the XVS convention
8757 when encoding the record. I am currently dubious of this
8758 shortcut and suspect the compiler should be altered. FIXME. */
8759
8760 static struct type *
8761 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8762 CORE_ADDR address, struct value *dval)
8763 {
8764 struct type *templ_type;
8765
8766 if (TYPE_FIXED_INSTANCE (type0))
8767 return type0;
8768
8769 templ_type = dynamic_template_type (type0);
8770
8771 if (templ_type != NULL)
8772 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8773 else if (variant_field_index (type0) >= 0)
8774 {
8775 if (dval == NULL && valaddr == NULL && address == 0)
8776 return type0;
8777 return to_record_with_fixed_variant_part (type0, valaddr, address,
8778 dval);
8779 }
8780 else
8781 {
8782 TYPE_FIXED_INSTANCE (type0) = 1;
8783 return type0;
8784 }
8785
8786 }
8787
8788 /* An ordinary record type (with fixed-length fields) that describes
8789 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8790 union type. Any necessary discriminants' values should be in DVAL,
8791 a record value. That is, this routine selects the appropriate
8792 branch of the union at ADDR according to the discriminant value
8793 indicated in the union's type name. Returns VAR_TYPE0 itself if
8794 it represents a variant subject to a pragma Unchecked_Union. */
8795
8796 static struct type *
8797 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8798 CORE_ADDR address, struct value *dval)
8799 {
8800 int which;
8801 struct type *templ_type;
8802 struct type *var_type;
8803
8804 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8805 var_type = TYPE_TARGET_TYPE (var_type0);
8806 else
8807 var_type = var_type0;
8808
8809 templ_type = ada_find_parallel_type (var_type, "___XVU");
8810
8811 if (templ_type != NULL)
8812 var_type = templ_type;
8813
8814 if (is_unchecked_variant (var_type, value_type (dval)))
8815 return var_type0;
8816 which =
8817 ada_which_variant_applies (var_type,
8818 value_type (dval), value_contents (dval));
8819
8820 if (which < 0)
8821 return empty_record (var_type);
8822 else if (is_dynamic_field (var_type, which))
8823 return to_fixed_record_type
8824 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8825 valaddr, address, dval);
8826 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8827 return
8828 to_fixed_record_type
8829 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8830 else
8831 return TYPE_FIELD_TYPE (var_type, which);
8832 }
8833
8834 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8835 ENCODING_TYPE, a type following the GNAT conventions for discrete
8836 type encodings, only carries redundant information. */
8837
8838 static int
8839 ada_is_redundant_range_encoding (struct type *range_type,
8840 struct type *encoding_type)
8841 {
8842 const char *bounds_str;
8843 int n;
8844 LONGEST lo, hi;
8845
8846 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8847
8848 if (TYPE_CODE (get_base_type (range_type))
8849 != TYPE_CODE (get_base_type (encoding_type)))
8850 {
8851 /* The compiler probably used a simple base type to describe
8852 the range type instead of the range's actual base type,
8853 expecting us to get the real base type from the encoding
8854 anyway. In this situation, the encoding cannot be ignored
8855 as redundant. */
8856 return 0;
8857 }
8858
8859 if (is_dynamic_type (range_type))
8860 return 0;
8861
8862 if (TYPE_NAME (encoding_type) == NULL)
8863 return 0;
8864
8865 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8866 if (bounds_str == NULL)
8867 return 0;
8868
8869 n = 8; /* Skip "___XDLU_". */
8870 if (!ada_scan_number (bounds_str, n, &lo, &n))
8871 return 0;
8872 if (TYPE_LOW_BOUND (range_type) != lo)
8873 return 0;
8874
8875 n += 2; /* Skip the "__" separator between the two bounds. */
8876 if (!ada_scan_number (bounds_str, n, &hi, &n))
8877 return 0;
8878 if (TYPE_HIGH_BOUND (range_type) != hi)
8879 return 0;
8880
8881 return 1;
8882 }
8883
8884 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8885 a type following the GNAT encoding for describing array type
8886 indices, only carries redundant information. */
8887
8888 static int
8889 ada_is_redundant_index_type_desc (struct type *array_type,
8890 struct type *desc_type)
8891 {
8892 struct type *this_layer = check_typedef (array_type);
8893 int i;
8894
8895 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8896 {
8897 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8898 TYPE_FIELD_TYPE (desc_type, i)))
8899 return 0;
8900 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8901 }
8902
8903 return 1;
8904 }
8905
8906 /* Assuming that TYPE0 is an array type describing the type of a value
8907 at ADDR, and that DVAL describes a record containing any
8908 discriminants used in TYPE0, returns a type for the value that
8909 contains no dynamic components (that is, no components whose sizes
8910 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8911 true, gives an error message if the resulting type's size is over
8912 varsize_limit. */
8913
8914 static struct type *
8915 to_fixed_array_type (struct type *type0, struct value *dval,
8916 int ignore_too_big)
8917 {
8918 struct type *index_type_desc;
8919 struct type *result;
8920 int constrained_packed_array_p;
8921 static const char *xa_suffix = "___XA";
8922
8923 type0 = ada_check_typedef (type0);
8924 if (TYPE_FIXED_INSTANCE (type0))
8925 return type0;
8926
8927 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8928 if (constrained_packed_array_p)
8929 type0 = decode_constrained_packed_array_type (type0);
8930
8931 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8932
8933 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8934 encoding suffixed with 'P' may still be generated. If so,
8935 it should be used to find the XA type. */
8936
8937 if (index_type_desc == NULL)
8938 {
8939 const char *type_name = ada_type_name (type0);
8940
8941 if (type_name != NULL)
8942 {
8943 const int len = strlen (type_name);
8944 char *name = (char *) alloca (len + strlen (xa_suffix));
8945
8946 if (type_name[len - 1] == 'P')
8947 {
8948 strcpy (name, type_name);
8949 strcpy (name + len - 1, xa_suffix);
8950 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8951 }
8952 }
8953 }
8954
8955 ada_fixup_array_indexes_type (index_type_desc);
8956 if (index_type_desc != NULL
8957 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8958 {
8959 /* Ignore this ___XA parallel type, as it does not bring any
8960 useful information. This allows us to avoid creating fixed
8961 versions of the array's index types, which would be identical
8962 to the original ones. This, in turn, can also help avoid
8963 the creation of fixed versions of the array itself. */
8964 index_type_desc = NULL;
8965 }
8966
8967 if (index_type_desc == NULL)
8968 {
8969 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8970
8971 /* NOTE: elt_type---the fixed version of elt_type0---should never
8972 depend on the contents of the array in properly constructed
8973 debugging data. */
8974 /* Create a fixed version of the array element type.
8975 We're not providing the address of an element here,
8976 and thus the actual object value cannot be inspected to do
8977 the conversion. This should not be a problem, since arrays of
8978 unconstrained objects are not allowed. In particular, all
8979 the elements of an array of a tagged type should all be of
8980 the same type specified in the debugging info. No need to
8981 consult the object tag. */
8982 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8983
8984 /* Make sure we always create a new array type when dealing with
8985 packed array types, since we're going to fix-up the array
8986 type length and element bitsize a little further down. */
8987 if (elt_type0 == elt_type && !constrained_packed_array_p)
8988 result = type0;
8989 else
8990 result = create_array_type (alloc_type_copy (type0),
8991 elt_type, TYPE_INDEX_TYPE (type0));
8992 }
8993 else
8994 {
8995 int i;
8996 struct type *elt_type0;
8997
8998 elt_type0 = type0;
8999 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
9000 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
9001
9002 /* NOTE: result---the fixed version of elt_type0---should never
9003 depend on the contents of the array in properly constructed
9004 debugging data. */
9005 /* Create a fixed version of the array element type.
9006 We're not providing the address of an element here,
9007 and thus the actual object value cannot be inspected to do
9008 the conversion. This should not be a problem, since arrays of
9009 unconstrained objects are not allowed. In particular, all
9010 the elements of an array of a tagged type should all be of
9011 the same type specified in the debugging info. No need to
9012 consult the object tag. */
9013 result =
9014 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
9015
9016 elt_type0 = type0;
9017 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
9018 {
9019 struct type *range_type =
9020 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
9021
9022 result = create_array_type (alloc_type_copy (elt_type0),
9023 result, range_type);
9024 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
9025 }
9026 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
9027 error (_("array type with dynamic size is larger than varsize-limit"));
9028 }
9029
9030 /* We want to preserve the type name. This can be useful when
9031 trying to get the type name of a value that has already been
9032 printed (for instance, if the user did "print VAR; whatis $". */
9033 TYPE_NAME (result) = TYPE_NAME (type0);
9034
9035 if (constrained_packed_array_p)
9036 {
9037 /* So far, the resulting type has been created as if the original
9038 type was a regular (non-packed) array type. As a result, the
9039 bitsize of the array elements needs to be set again, and the array
9040 length needs to be recomputed based on that bitsize. */
9041 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9042 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9043
9044 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9045 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9046 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9047 TYPE_LENGTH (result)++;
9048 }
9049
9050 TYPE_FIXED_INSTANCE (result) = 1;
9051 return result;
9052 }
9053
9054
9055 /* A standard type (containing no dynamically sized components)
9056 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9057 DVAL describes a record containing any discriminants used in TYPE0,
9058 and may be NULL if there are none, or if the object of type TYPE at
9059 ADDRESS or in VALADDR contains these discriminants.
9060
9061 If CHECK_TAG is not null, in the case of tagged types, this function
9062 attempts to locate the object's tag and use it to compute the actual
9063 type. However, when ADDRESS is null, we cannot use it to determine the
9064 location of the tag, and therefore compute the tagged type's actual type.
9065 So we return the tagged type without consulting the tag. */
9066
9067 static struct type *
9068 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9069 CORE_ADDR address, struct value *dval, int check_tag)
9070 {
9071 type = ada_check_typedef (type);
9072 switch (TYPE_CODE (type))
9073 {
9074 default:
9075 return type;
9076 case TYPE_CODE_STRUCT:
9077 {
9078 struct type *static_type = to_static_fixed_type (type);
9079 struct type *fixed_record_type =
9080 to_fixed_record_type (type, valaddr, address, NULL);
9081
9082 /* If STATIC_TYPE is a tagged type and we know the object's address,
9083 then we can determine its tag, and compute the object's actual
9084 type from there. Note that we have to use the fixed record
9085 type (the parent part of the record may have dynamic fields
9086 and the way the location of _tag is expressed may depend on
9087 them). */
9088
9089 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9090 {
9091 struct value *tag =
9092 value_tag_from_contents_and_address
9093 (fixed_record_type,
9094 valaddr,
9095 address);
9096 struct type *real_type = type_from_tag (tag);
9097 struct value *obj =
9098 value_from_contents_and_address (fixed_record_type,
9099 valaddr,
9100 address);
9101 fixed_record_type = value_type (obj);
9102 if (real_type != NULL)
9103 return to_fixed_record_type
9104 (real_type, NULL,
9105 value_address (ada_tag_value_at_base_address (obj)), NULL);
9106 }
9107
9108 /* Check to see if there is a parallel ___XVZ variable.
9109 If there is, then it provides the actual size of our type. */
9110 else if (ada_type_name (fixed_record_type) != NULL)
9111 {
9112 const char *name = ada_type_name (fixed_record_type);
9113 char *xvz_name
9114 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9115 bool xvz_found = false;
9116 LONGEST size;
9117
9118 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9119 TRY
9120 {
9121 xvz_found = get_int_var_value (xvz_name, size);
9122 }
9123 CATCH (except, RETURN_MASK_ERROR)
9124 {
9125 /* We found the variable, but somehow failed to read
9126 its value. Rethrow the same error, but with a little
9127 bit more information, to help the user understand
9128 what went wrong (Eg: the variable might have been
9129 optimized out). */
9130 throw_error (except.error,
9131 _("unable to read value of %s (%s)"),
9132 xvz_name, except.message);
9133 }
9134 END_CATCH
9135
9136 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9137 {
9138 fixed_record_type = copy_type (fixed_record_type);
9139 TYPE_LENGTH (fixed_record_type) = size;
9140
9141 /* The FIXED_RECORD_TYPE may have be a stub. We have
9142 observed this when the debugging info is STABS, and
9143 apparently it is something that is hard to fix.
9144
9145 In practice, we don't need the actual type definition
9146 at all, because the presence of the XVZ variable allows us
9147 to assume that there must be a XVS type as well, which we
9148 should be able to use later, when we need the actual type
9149 definition.
9150
9151 In the meantime, pretend that the "fixed" type we are
9152 returning is NOT a stub, because this can cause trouble
9153 when using this type to create new types targeting it.
9154 Indeed, the associated creation routines often check
9155 whether the target type is a stub and will try to replace
9156 it, thus using a type with the wrong size. This, in turn,
9157 might cause the new type to have the wrong size too.
9158 Consider the case of an array, for instance, where the size
9159 of the array is computed from the number of elements in
9160 our array multiplied by the size of its element. */
9161 TYPE_STUB (fixed_record_type) = 0;
9162 }
9163 }
9164 return fixed_record_type;
9165 }
9166 case TYPE_CODE_ARRAY:
9167 return to_fixed_array_type (type, dval, 1);
9168 case TYPE_CODE_UNION:
9169 if (dval == NULL)
9170 return type;
9171 else
9172 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9173 }
9174 }
9175
9176 /* The same as ada_to_fixed_type_1, except that it preserves the type
9177 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9178
9179 The typedef layer needs be preserved in order to differentiate between
9180 arrays and array pointers when both types are implemented using the same
9181 fat pointer. In the array pointer case, the pointer is encoded as
9182 a typedef of the pointer type. For instance, considering:
9183
9184 type String_Access is access String;
9185 S1 : String_Access := null;
9186
9187 To the debugger, S1 is defined as a typedef of type String. But
9188 to the user, it is a pointer. So if the user tries to print S1,
9189 we should not dereference the array, but print the array address
9190 instead.
9191
9192 If we didn't preserve the typedef layer, we would lose the fact that
9193 the type is to be presented as a pointer (needs de-reference before
9194 being printed). And we would also use the source-level type name. */
9195
9196 struct type *
9197 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9198 CORE_ADDR address, struct value *dval, int check_tag)
9199
9200 {
9201 struct type *fixed_type =
9202 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9203
9204 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9205 then preserve the typedef layer.
9206
9207 Implementation note: We can only check the main-type portion of
9208 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9209 from TYPE now returns a type that has the same instance flags
9210 as TYPE. For instance, if TYPE is a "typedef const", and its
9211 target type is a "struct", then the typedef elimination will return
9212 a "const" version of the target type. See check_typedef for more
9213 details about how the typedef layer elimination is done.
9214
9215 brobecker/2010-11-19: It seems to me that the only case where it is
9216 useful to preserve the typedef layer is when dealing with fat pointers.
9217 Perhaps, we could add a check for that and preserve the typedef layer
9218 only in that situation. But this seems unecessary so far, probably
9219 because we call check_typedef/ada_check_typedef pretty much everywhere.
9220 */
9221 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9222 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9223 == TYPE_MAIN_TYPE (fixed_type)))
9224 return type;
9225
9226 return fixed_type;
9227 }
9228
9229 /* A standard (static-sized) type corresponding as well as possible to
9230 TYPE0, but based on no runtime data. */
9231
9232 static struct type *
9233 to_static_fixed_type (struct type *type0)
9234 {
9235 struct type *type;
9236
9237 if (type0 == NULL)
9238 return NULL;
9239
9240 if (TYPE_FIXED_INSTANCE (type0))
9241 return type0;
9242
9243 type0 = ada_check_typedef (type0);
9244
9245 switch (TYPE_CODE (type0))
9246 {
9247 default:
9248 return type0;
9249 case TYPE_CODE_STRUCT:
9250 type = dynamic_template_type (type0);
9251 if (type != NULL)
9252 return template_to_static_fixed_type (type);
9253 else
9254 return template_to_static_fixed_type (type0);
9255 case TYPE_CODE_UNION:
9256 type = ada_find_parallel_type (type0, "___XVU");
9257 if (type != NULL)
9258 return template_to_static_fixed_type (type);
9259 else
9260 return template_to_static_fixed_type (type0);
9261 }
9262 }
9263
9264 /* A static approximation of TYPE with all type wrappers removed. */
9265
9266 static struct type *
9267 static_unwrap_type (struct type *type)
9268 {
9269 if (ada_is_aligner_type (type))
9270 {
9271 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9272 if (ada_type_name (type1) == NULL)
9273 TYPE_NAME (type1) = ada_type_name (type);
9274
9275 return static_unwrap_type (type1);
9276 }
9277 else
9278 {
9279 struct type *raw_real_type = ada_get_base_type (type);
9280
9281 if (raw_real_type == type)
9282 return type;
9283 else
9284 return to_static_fixed_type (raw_real_type);
9285 }
9286 }
9287
9288 /* In some cases, incomplete and private types require
9289 cross-references that are not resolved as records (for example,
9290 type Foo;
9291 type FooP is access Foo;
9292 V: FooP;
9293 type Foo is array ...;
9294 ). In these cases, since there is no mechanism for producing
9295 cross-references to such types, we instead substitute for FooP a
9296 stub enumeration type that is nowhere resolved, and whose tag is
9297 the name of the actual type. Call these types "non-record stubs". */
9298
9299 /* A type equivalent to TYPE that is not a non-record stub, if one
9300 exists, otherwise TYPE. */
9301
9302 struct type *
9303 ada_check_typedef (struct type *type)
9304 {
9305 if (type == NULL)
9306 return NULL;
9307
9308 /* If our type is a typedef type of a fat pointer, then we're done.
9309 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9310 what allows us to distinguish between fat pointers that represent
9311 array types, and fat pointers that represent array access types
9312 (in both cases, the compiler implements them as fat pointers). */
9313 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9314 && is_thick_pntr (ada_typedef_target_type (type)))
9315 return type;
9316
9317 type = check_typedef (type);
9318 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9319 || !TYPE_STUB (type)
9320 || TYPE_TAG_NAME (type) == NULL)
9321 return type;
9322 else
9323 {
9324 const char *name = TYPE_TAG_NAME (type);
9325 struct type *type1 = ada_find_any_type (name);
9326
9327 if (type1 == NULL)
9328 return type;
9329
9330 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9331 stubs pointing to arrays, as we don't create symbols for array
9332 types, only for the typedef-to-array types). If that's the case,
9333 strip the typedef layer. */
9334 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9335 type1 = ada_check_typedef (type1);
9336
9337 return type1;
9338 }
9339 }
9340
9341 /* A value representing the data at VALADDR/ADDRESS as described by
9342 type TYPE0, but with a standard (static-sized) type that correctly
9343 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9344 type, then return VAL0 [this feature is simply to avoid redundant
9345 creation of struct values]. */
9346
9347 static struct value *
9348 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9349 struct value *val0)
9350 {
9351 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9352
9353 if (type == type0 && val0 != NULL)
9354 return val0;
9355
9356 if (VALUE_LVAL (val0) != lval_memory)
9357 {
9358 /* Our value does not live in memory; it could be a convenience
9359 variable, for instance. Create a not_lval value using val0's
9360 contents. */
9361 return value_from_contents (type, value_contents (val0));
9362 }
9363
9364 return value_from_contents_and_address (type, 0, address);
9365 }
9366
9367 /* A value representing VAL, but with a standard (static-sized) type
9368 that correctly describes it. Does not necessarily create a new
9369 value. */
9370
9371 struct value *
9372 ada_to_fixed_value (struct value *val)
9373 {
9374 val = unwrap_value (val);
9375 val = ada_to_fixed_value_create (value_type (val),
9376 value_address (val),
9377 val);
9378 return val;
9379 }
9380 \f
9381
9382 /* Attributes */
9383
9384 /* Table mapping attribute numbers to names.
9385 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9386
9387 static const char *attribute_names[] = {
9388 "<?>",
9389
9390 "first",
9391 "last",
9392 "length",
9393 "image",
9394 "max",
9395 "min",
9396 "modulus",
9397 "pos",
9398 "size",
9399 "tag",
9400 "val",
9401 0
9402 };
9403
9404 const char *
9405 ada_attribute_name (enum exp_opcode n)
9406 {
9407 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9408 return attribute_names[n - OP_ATR_FIRST + 1];
9409 else
9410 return attribute_names[0];
9411 }
9412
9413 /* Evaluate the 'POS attribute applied to ARG. */
9414
9415 static LONGEST
9416 pos_atr (struct value *arg)
9417 {
9418 struct value *val = coerce_ref (arg);
9419 struct type *type = value_type (val);
9420 LONGEST result;
9421
9422 if (!discrete_type_p (type))
9423 error (_("'POS only defined on discrete types"));
9424
9425 if (!discrete_position (type, value_as_long (val), &result))
9426 error (_("enumeration value is invalid: can't find 'POS"));
9427
9428 return result;
9429 }
9430
9431 static struct value *
9432 value_pos_atr (struct type *type, struct value *arg)
9433 {
9434 return value_from_longest (type, pos_atr (arg));
9435 }
9436
9437 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9438
9439 static struct value *
9440 value_val_atr (struct type *type, struct value *arg)
9441 {
9442 if (!discrete_type_p (type))
9443 error (_("'VAL only defined on discrete types"));
9444 if (!integer_type_p (value_type (arg)))
9445 error (_("'VAL requires integral argument"));
9446
9447 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9448 {
9449 long pos = value_as_long (arg);
9450
9451 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9452 error (_("argument to 'VAL out of range"));
9453 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9454 }
9455 else
9456 return value_from_longest (type, value_as_long (arg));
9457 }
9458 \f
9459
9460 /* Evaluation */
9461
9462 /* True if TYPE appears to be an Ada character type.
9463 [At the moment, this is true only for Character and Wide_Character;
9464 It is a heuristic test that could stand improvement]. */
9465
9466 int
9467 ada_is_character_type (struct type *type)
9468 {
9469 const char *name;
9470
9471 /* If the type code says it's a character, then assume it really is,
9472 and don't check any further. */
9473 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9474 return 1;
9475
9476 /* Otherwise, assume it's a character type iff it is a discrete type
9477 with a known character type name. */
9478 name = ada_type_name (type);
9479 return (name != NULL
9480 && (TYPE_CODE (type) == TYPE_CODE_INT
9481 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9482 && (strcmp (name, "character") == 0
9483 || strcmp (name, "wide_character") == 0
9484 || strcmp (name, "wide_wide_character") == 0
9485 || strcmp (name, "unsigned char") == 0));
9486 }
9487
9488 /* True if TYPE appears to be an Ada string type. */
9489
9490 int
9491 ada_is_string_type (struct type *type)
9492 {
9493 type = ada_check_typedef (type);
9494 if (type != NULL
9495 && TYPE_CODE (type) != TYPE_CODE_PTR
9496 && (ada_is_simple_array_type (type)
9497 || ada_is_array_descriptor_type (type))
9498 && ada_array_arity (type) == 1)
9499 {
9500 struct type *elttype = ada_array_element_type (type, 1);
9501
9502 return ada_is_character_type (elttype);
9503 }
9504 else
9505 return 0;
9506 }
9507
9508 /* The compiler sometimes provides a parallel XVS type for a given
9509 PAD type. Normally, it is safe to follow the PAD type directly,
9510 but older versions of the compiler have a bug that causes the offset
9511 of its "F" field to be wrong. Following that field in that case
9512 would lead to incorrect results, but this can be worked around
9513 by ignoring the PAD type and using the associated XVS type instead.
9514
9515 Set to True if the debugger should trust the contents of PAD types.
9516 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9517 static int trust_pad_over_xvs = 1;
9518
9519 /* True if TYPE is a struct type introduced by the compiler to force the
9520 alignment of a value. Such types have a single field with a
9521 distinctive name. */
9522
9523 int
9524 ada_is_aligner_type (struct type *type)
9525 {
9526 type = ada_check_typedef (type);
9527
9528 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9529 return 0;
9530
9531 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9532 && TYPE_NFIELDS (type) == 1
9533 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9534 }
9535
9536 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9537 the parallel type. */
9538
9539 struct type *
9540 ada_get_base_type (struct type *raw_type)
9541 {
9542 struct type *real_type_namer;
9543 struct type *raw_real_type;
9544
9545 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9546 return raw_type;
9547
9548 if (ada_is_aligner_type (raw_type))
9549 /* The encoding specifies that we should always use the aligner type.
9550 So, even if this aligner type has an associated XVS type, we should
9551 simply ignore it.
9552
9553 According to the compiler gurus, an XVS type parallel to an aligner
9554 type may exist because of a stabs limitation. In stabs, aligner
9555 types are empty because the field has a variable-sized type, and
9556 thus cannot actually be used as an aligner type. As a result,
9557 we need the associated parallel XVS type to decode the type.
9558 Since the policy in the compiler is to not change the internal
9559 representation based on the debugging info format, we sometimes
9560 end up having a redundant XVS type parallel to the aligner type. */
9561 return raw_type;
9562
9563 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9564 if (real_type_namer == NULL
9565 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9566 || TYPE_NFIELDS (real_type_namer) != 1)
9567 return raw_type;
9568
9569 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9570 {
9571 /* This is an older encoding form where the base type needs to be
9572 looked up by name. We prefer the newer enconding because it is
9573 more efficient. */
9574 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9575 if (raw_real_type == NULL)
9576 return raw_type;
9577 else
9578 return raw_real_type;
9579 }
9580
9581 /* The field in our XVS type is a reference to the base type. */
9582 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9583 }
9584
9585 /* The type of value designated by TYPE, with all aligners removed. */
9586
9587 struct type *
9588 ada_aligned_type (struct type *type)
9589 {
9590 if (ada_is_aligner_type (type))
9591 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9592 else
9593 return ada_get_base_type (type);
9594 }
9595
9596
9597 /* The address of the aligned value in an object at address VALADDR
9598 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9599
9600 const gdb_byte *
9601 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9602 {
9603 if (ada_is_aligner_type (type))
9604 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9605 valaddr +
9606 TYPE_FIELD_BITPOS (type,
9607 0) / TARGET_CHAR_BIT);
9608 else
9609 return valaddr;
9610 }
9611
9612
9613
9614 /* The printed representation of an enumeration literal with encoded
9615 name NAME. The value is good to the next call of ada_enum_name. */
9616 const char *
9617 ada_enum_name (const char *name)
9618 {
9619 static char *result;
9620 static size_t result_len = 0;
9621 const char *tmp;
9622
9623 /* First, unqualify the enumeration name:
9624 1. Search for the last '.' character. If we find one, then skip
9625 all the preceding characters, the unqualified name starts
9626 right after that dot.
9627 2. Otherwise, we may be debugging on a target where the compiler
9628 translates dots into "__". Search forward for double underscores,
9629 but stop searching when we hit an overloading suffix, which is
9630 of the form "__" followed by digits. */
9631
9632 tmp = strrchr (name, '.');
9633 if (tmp != NULL)
9634 name = tmp + 1;
9635 else
9636 {
9637 while ((tmp = strstr (name, "__")) != NULL)
9638 {
9639 if (isdigit (tmp[2]))
9640 break;
9641 else
9642 name = tmp + 2;
9643 }
9644 }
9645
9646 if (name[0] == 'Q')
9647 {
9648 int v;
9649
9650 if (name[1] == 'U' || name[1] == 'W')
9651 {
9652 if (sscanf (name + 2, "%x", &v) != 1)
9653 return name;
9654 }
9655 else
9656 return name;
9657
9658 GROW_VECT (result, result_len, 16);
9659 if (isascii (v) && isprint (v))
9660 xsnprintf (result, result_len, "'%c'", v);
9661 else if (name[1] == 'U')
9662 xsnprintf (result, result_len, "[\"%02x\"]", v);
9663 else
9664 xsnprintf (result, result_len, "[\"%04x\"]", v);
9665
9666 return result;
9667 }
9668 else
9669 {
9670 tmp = strstr (name, "__");
9671 if (tmp == NULL)
9672 tmp = strstr (name, "$");
9673 if (tmp != NULL)
9674 {
9675 GROW_VECT (result, result_len, tmp - name + 1);
9676 strncpy (result, name, tmp - name);
9677 result[tmp - name] = '\0';
9678 return result;
9679 }
9680
9681 return name;
9682 }
9683 }
9684
9685 /* Evaluate the subexpression of EXP starting at *POS as for
9686 evaluate_type, updating *POS to point just past the evaluated
9687 expression. */
9688
9689 static struct value *
9690 evaluate_subexp_type (struct expression *exp, int *pos)
9691 {
9692 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9693 }
9694
9695 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9696 value it wraps. */
9697
9698 static struct value *
9699 unwrap_value (struct value *val)
9700 {
9701 struct type *type = ada_check_typedef (value_type (val));
9702
9703 if (ada_is_aligner_type (type))
9704 {
9705 struct value *v = ada_value_struct_elt (val, "F", 0);
9706 struct type *val_type = ada_check_typedef (value_type (v));
9707
9708 if (ada_type_name (val_type) == NULL)
9709 TYPE_NAME (val_type) = ada_type_name (type);
9710
9711 return unwrap_value (v);
9712 }
9713 else
9714 {
9715 struct type *raw_real_type =
9716 ada_check_typedef (ada_get_base_type (type));
9717
9718 /* If there is no parallel XVS or XVE type, then the value is
9719 already unwrapped. Return it without further modification. */
9720 if ((type == raw_real_type)
9721 && ada_find_parallel_type (type, "___XVE") == NULL)
9722 return val;
9723
9724 return
9725 coerce_unspec_val_to_type
9726 (val, ada_to_fixed_type (raw_real_type, 0,
9727 value_address (val),
9728 NULL, 1));
9729 }
9730 }
9731
9732 static struct value *
9733 cast_from_fixed (struct type *type, struct value *arg)
9734 {
9735 struct value *scale = ada_scaling_factor (value_type (arg));
9736 arg = value_cast (value_type (scale), arg);
9737
9738 arg = value_binop (arg, scale, BINOP_MUL);
9739 return value_cast (type, arg);
9740 }
9741
9742 static struct value *
9743 cast_to_fixed (struct type *type, struct value *arg)
9744 {
9745 if (type == value_type (arg))
9746 return arg;
9747
9748 struct value *scale = ada_scaling_factor (type);
9749 if (ada_is_fixed_point_type (value_type (arg)))
9750 arg = cast_from_fixed (value_type (scale), arg);
9751 else
9752 arg = value_cast (value_type (scale), arg);
9753
9754 arg = value_binop (arg, scale, BINOP_DIV);
9755 return value_cast (type, arg);
9756 }
9757
9758 /* Given two array types T1 and T2, return nonzero iff both arrays
9759 contain the same number of elements. */
9760
9761 static int
9762 ada_same_array_size_p (struct type *t1, struct type *t2)
9763 {
9764 LONGEST lo1, hi1, lo2, hi2;
9765
9766 /* Get the array bounds in order to verify that the size of
9767 the two arrays match. */
9768 if (!get_array_bounds (t1, &lo1, &hi1)
9769 || !get_array_bounds (t2, &lo2, &hi2))
9770 error (_("unable to determine array bounds"));
9771
9772 /* To make things easier for size comparison, normalize a bit
9773 the case of empty arrays by making sure that the difference
9774 between upper bound and lower bound is always -1. */
9775 if (lo1 > hi1)
9776 hi1 = lo1 - 1;
9777 if (lo2 > hi2)
9778 hi2 = lo2 - 1;
9779
9780 return (hi1 - lo1 == hi2 - lo2);
9781 }
9782
9783 /* Assuming that VAL is an array of integrals, and TYPE represents
9784 an array with the same number of elements, but with wider integral
9785 elements, return an array "casted" to TYPE. In practice, this
9786 means that the returned array is built by casting each element
9787 of the original array into TYPE's (wider) element type. */
9788
9789 static struct value *
9790 ada_promote_array_of_integrals (struct type *type, struct value *val)
9791 {
9792 struct type *elt_type = TYPE_TARGET_TYPE (type);
9793 LONGEST lo, hi;
9794 struct value *res;
9795 LONGEST i;
9796
9797 /* Verify that both val and type are arrays of scalars, and
9798 that the size of val's elements is smaller than the size
9799 of type's element. */
9800 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9801 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9802 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9803 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9804 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9805 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9806
9807 if (!get_array_bounds (type, &lo, &hi))
9808 error (_("unable to determine array bounds"));
9809
9810 res = allocate_value (type);
9811
9812 /* Promote each array element. */
9813 for (i = 0; i < hi - lo + 1; i++)
9814 {
9815 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9816
9817 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9818 value_contents_all (elt), TYPE_LENGTH (elt_type));
9819 }
9820
9821 return res;
9822 }
9823
9824 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9825 return the converted value. */
9826
9827 static struct value *
9828 coerce_for_assign (struct type *type, struct value *val)
9829 {
9830 struct type *type2 = value_type (val);
9831
9832 if (type == type2)
9833 return val;
9834
9835 type2 = ada_check_typedef (type2);
9836 type = ada_check_typedef (type);
9837
9838 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9839 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9840 {
9841 val = ada_value_ind (val);
9842 type2 = value_type (val);
9843 }
9844
9845 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9846 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9847 {
9848 if (!ada_same_array_size_p (type, type2))
9849 error (_("cannot assign arrays of different length"));
9850
9851 if (is_integral_type (TYPE_TARGET_TYPE (type))
9852 && is_integral_type (TYPE_TARGET_TYPE (type2))
9853 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9854 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9855 {
9856 /* Allow implicit promotion of the array elements to
9857 a wider type. */
9858 return ada_promote_array_of_integrals (type, val);
9859 }
9860
9861 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9862 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9863 error (_("Incompatible types in assignment"));
9864 deprecated_set_value_type (val, type);
9865 }
9866 return val;
9867 }
9868
9869 static struct value *
9870 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9871 {
9872 struct value *val;
9873 struct type *type1, *type2;
9874 LONGEST v, v1, v2;
9875
9876 arg1 = coerce_ref (arg1);
9877 arg2 = coerce_ref (arg2);
9878 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9879 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9880
9881 if (TYPE_CODE (type1) != TYPE_CODE_INT
9882 || TYPE_CODE (type2) != TYPE_CODE_INT)
9883 return value_binop (arg1, arg2, op);
9884
9885 switch (op)
9886 {
9887 case BINOP_MOD:
9888 case BINOP_DIV:
9889 case BINOP_REM:
9890 break;
9891 default:
9892 return value_binop (arg1, arg2, op);
9893 }
9894
9895 v2 = value_as_long (arg2);
9896 if (v2 == 0)
9897 error (_("second operand of %s must not be zero."), op_string (op));
9898
9899 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9900 return value_binop (arg1, arg2, op);
9901
9902 v1 = value_as_long (arg1);
9903 switch (op)
9904 {
9905 case BINOP_DIV:
9906 v = v1 / v2;
9907 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9908 v += v > 0 ? -1 : 1;
9909 break;
9910 case BINOP_REM:
9911 v = v1 % v2;
9912 if (v * v1 < 0)
9913 v -= v2;
9914 break;
9915 default:
9916 /* Should not reach this point. */
9917 v = 0;
9918 }
9919
9920 val = allocate_value (type1);
9921 store_unsigned_integer (value_contents_raw (val),
9922 TYPE_LENGTH (value_type (val)),
9923 gdbarch_byte_order (get_type_arch (type1)), v);
9924 return val;
9925 }
9926
9927 static int
9928 ada_value_equal (struct value *arg1, struct value *arg2)
9929 {
9930 if (ada_is_direct_array_type (value_type (arg1))
9931 || ada_is_direct_array_type (value_type (arg2)))
9932 {
9933 struct type *arg1_type, *arg2_type;
9934
9935 /* Automatically dereference any array reference before
9936 we attempt to perform the comparison. */
9937 arg1 = ada_coerce_ref (arg1);
9938 arg2 = ada_coerce_ref (arg2);
9939
9940 arg1 = ada_coerce_to_simple_array (arg1);
9941 arg2 = ada_coerce_to_simple_array (arg2);
9942
9943 arg1_type = ada_check_typedef (value_type (arg1));
9944 arg2_type = ada_check_typedef (value_type (arg2));
9945
9946 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9947 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9948 error (_("Attempt to compare array with non-array"));
9949 /* FIXME: The following works only for types whose
9950 representations use all bits (no padding or undefined bits)
9951 and do not have user-defined equality. */
9952 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9953 && memcmp (value_contents (arg1), value_contents (arg2),
9954 TYPE_LENGTH (arg1_type)) == 0);
9955 }
9956 return value_equal (arg1, arg2);
9957 }
9958
9959 /* Total number of component associations in the aggregate starting at
9960 index PC in EXP. Assumes that index PC is the start of an
9961 OP_AGGREGATE. */
9962
9963 static int
9964 num_component_specs (struct expression *exp, int pc)
9965 {
9966 int n, m, i;
9967
9968 m = exp->elts[pc + 1].longconst;
9969 pc += 3;
9970 n = 0;
9971 for (i = 0; i < m; i += 1)
9972 {
9973 switch (exp->elts[pc].opcode)
9974 {
9975 default:
9976 n += 1;
9977 break;
9978 case OP_CHOICES:
9979 n += exp->elts[pc + 1].longconst;
9980 break;
9981 }
9982 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9983 }
9984 return n;
9985 }
9986
9987 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9988 component of LHS (a simple array or a record), updating *POS past
9989 the expression, assuming that LHS is contained in CONTAINER. Does
9990 not modify the inferior's memory, nor does it modify LHS (unless
9991 LHS == CONTAINER). */
9992
9993 static void
9994 assign_component (struct value *container, struct value *lhs, LONGEST index,
9995 struct expression *exp, int *pos)
9996 {
9997 struct value *mark = value_mark ();
9998 struct value *elt;
9999 struct type *lhs_type = check_typedef (value_type (lhs));
10000
10001 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
10002 {
10003 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
10004 struct value *index_val = value_from_longest (index_type, index);
10005
10006 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
10007 }
10008 else
10009 {
10010 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
10011 elt = ada_to_fixed_value (elt);
10012 }
10013
10014 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10015 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
10016 else
10017 value_assign_to_component (container, elt,
10018 ada_evaluate_subexp (NULL, exp, pos,
10019 EVAL_NORMAL));
10020
10021 value_free_to_mark (mark);
10022 }
10023
10024 /* Assuming that LHS represents an lvalue having a record or array
10025 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10026 of that aggregate's value to LHS, advancing *POS past the
10027 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10028 lvalue containing LHS (possibly LHS itself). Does not modify
10029 the inferior's memory, nor does it modify the contents of
10030 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
10031
10032 static struct value *
10033 assign_aggregate (struct value *container,
10034 struct value *lhs, struct expression *exp,
10035 int *pos, enum noside noside)
10036 {
10037 struct type *lhs_type;
10038 int n = exp->elts[*pos+1].longconst;
10039 LONGEST low_index, high_index;
10040 int num_specs;
10041 LONGEST *indices;
10042 int max_indices, num_indices;
10043 int i;
10044
10045 *pos += 3;
10046 if (noside != EVAL_NORMAL)
10047 {
10048 for (i = 0; i < n; i += 1)
10049 ada_evaluate_subexp (NULL, exp, pos, noside);
10050 return container;
10051 }
10052
10053 container = ada_coerce_ref (container);
10054 if (ada_is_direct_array_type (value_type (container)))
10055 container = ada_coerce_to_simple_array (container);
10056 lhs = ada_coerce_ref (lhs);
10057 if (!deprecated_value_modifiable (lhs))
10058 error (_("Left operand of assignment is not a modifiable lvalue."));
10059
10060 lhs_type = check_typedef (value_type (lhs));
10061 if (ada_is_direct_array_type (lhs_type))
10062 {
10063 lhs = ada_coerce_to_simple_array (lhs);
10064 lhs_type = check_typedef (value_type (lhs));
10065 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10066 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10067 }
10068 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10069 {
10070 low_index = 0;
10071 high_index = num_visible_fields (lhs_type) - 1;
10072 }
10073 else
10074 error (_("Left-hand side must be array or record."));
10075
10076 num_specs = num_component_specs (exp, *pos - 3);
10077 max_indices = 4 * num_specs + 4;
10078 indices = XALLOCAVEC (LONGEST, max_indices);
10079 indices[0] = indices[1] = low_index - 1;
10080 indices[2] = indices[3] = high_index + 1;
10081 num_indices = 4;
10082
10083 for (i = 0; i < n; i += 1)
10084 {
10085 switch (exp->elts[*pos].opcode)
10086 {
10087 case OP_CHOICES:
10088 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10089 &num_indices, max_indices,
10090 low_index, high_index);
10091 break;
10092 case OP_POSITIONAL:
10093 aggregate_assign_positional (container, lhs, exp, pos, indices,
10094 &num_indices, max_indices,
10095 low_index, high_index);
10096 break;
10097 case OP_OTHERS:
10098 if (i != n-1)
10099 error (_("Misplaced 'others' clause"));
10100 aggregate_assign_others (container, lhs, exp, pos, indices,
10101 num_indices, low_index, high_index);
10102 break;
10103 default:
10104 error (_("Internal error: bad aggregate clause"));
10105 }
10106 }
10107
10108 return container;
10109 }
10110
10111 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10112 construct at *POS, updating *POS past the construct, given that
10113 the positions are relative to lower bound LOW, where HIGH is the
10114 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10115 updating *NUM_INDICES as needed. CONTAINER is as for
10116 assign_aggregate. */
10117 static void
10118 aggregate_assign_positional (struct value *container,
10119 struct value *lhs, struct expression *exp,
10120 int *pos, LONGEST *indices, int *num_indices,
10121 int max_indices, LONGEST low, LONGEST high)
10122 {
10123 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10124
10125 if (ind - 1 == high)
10126 warning (_("Extra components in aggregate ignored."));
10127 if (ind <= high)
10128 {
10129 add_component_interval (ind, ind, indices, num_indices, max_indices);
10130 *pos += 3;
10131 assign_component (container, lhs, ind, exp, pos);
10132 }
10133 else
10134 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10135 }
10136
10137 /* Assign into the components of LHS indexed by the OP_CHOICES
10138 construct at *POS, updating *POS past the construct, given that
10139 the allowable indices are LOW..HIGH. Record the indices assigned
10140 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10141 needed. CONTAINER is as for assign_aggregate. */
10142 static void
10143 aggregate_assign_from_choices (struct value *container,
10144 struct value *lhs, struct expression *exp,
10145 int *pos, LONGEST *indices, int *num_indices,
10146 int max_indices, LONGEST low, LONGEST high)
10147 {
10148 int j;
10149 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10150 int choice_pos, expr_pc;
10151 int is_array = ada_is_direct_array_type (value_type (lhs));
10152
10153 choice_pos = *pos += 3;
10154
10155 for (j = 0; j < n_choices; j += 1)
10156 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10157 expr_pc = *pos;
10158 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10159
10160 for (j = 0; j < n_choices; j += 1)
10161 {
10162 LONGEST lower, upper;
10163 enum exp_opcode op = exp->elts[choice_pos].opcode;
10164
10165 if (op == OP_DISCRETE_RANGE)
10166 {
10167 choice_pos += 1;
10168 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10169 EVAL_NORMAL));
10170 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10171 EVAL_NORMAL));
10172 }
10173 else if (is_array)
10174 {
10175 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10176 EVAL_NORMAL));
10177 upper = lower;
10178 }
10179 else
10180 {
10181 int ind;
10182 const char *name;
10183
10184 switch (op)
10185 {
10186 case OP_NAME:
10187 name = &exp->elts[choice_pos + 2].string;
10188 break;
10189 case OP_VAR_VALUE:
10190 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10191 break;
10192 default:
10193 error (_("Invalid record component association."));
10194 }
10195 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10196 ind = 0;
10197 if (! find_struct_field (name, value_type (lhs), 0,
10198 NULL, NULL, NULL, NULL, &ind))
10199 error (_("Unknown component name: %s."), name);
10200 lower = upper = ind;
10201 }
10202
10203 if (lower <= upper && (lower < low || upper > high))
10204 error (_("Index in component association out of bounds."));
10205
10206 add_component_interval (lower, upper, indices, num_indices,
10207 max_indices);
10208 while (lower <= upper)
10209 {
10210 int pos1;
10211
10212 pos1 = expr_pc;
10213 assign_component (container, lhs, lower, exp, &pos1);
10214 lower += 1;
10215 }
10216 }
10217 }
10218
10219 /* Assign the value of the expression in the OP_OTHERS construct in
10220 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10221 have not been previously assigned. The index intervals already assigned
10222 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10223 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10224 static void
10225 aggregate_assign_others (struct value *container,
10226 struct value *lhs, struct expression *exp,
10227 int *pos, LONGEST *indices, int num_indices,
10228 LONGEST low, LONGEST high)
10229 {
10230 int i;
10231 int expr_pc = *pos + 1;
10232
10233 for (i = 0; i < num_indices - 2; i += 2)
10234 {
10235 LONGEST ind;
10236
10237 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10238 {
10239 int localpos;
10240
10241 localpos = expr_pc;
10242 assign_component (container, lhs, ind, exp, &localpos);
10243 }
10244 }
10245 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10246 }
10247
10248 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10249 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10250 modifying *SIZE as needed. It is an error if *SIZE exceeds
10251 MAX_SIZE. The resulting intervals do not overlap. */
10252 static void
10253 add_component_interval (LONGEST low, LONGEST high,
10254 LONGEST* indices, int *size, int max_size)
10255 {
10256 int i, j;
10257
10258 for (i = 0; i < *size; i += 2) {
10259 if (high >= indices[i] && low <= indices[i + 1])
10260 {
10261 int kh;
10262
10263 for (kh = i + 2; kh < *size; kh += 2)
10264 if (high < indices[kh])
10265 break;
10266 if (low < indices[i])
10267 indices[i] = low;
10268 indices[i + 1] = indices[kh - 1];
10269 if (high > indices[i + 1])
10270 indices[i + 1] = high;
10271 memcpy (indices + i + 2, indices + kh, *size - kh);
10272 *size -= kh - i - 2;
10273 return;
10274 }
10275 else if (high < indices[i])
10276 break;
10277 }
10278
10279 if (*size == max_size)
10280 error (_("Internal error: miscounted aggregate components."));
10281 *size += 2;
10282 for (j = *size-1; j >= i+2; j -= 1)
10283 indices[j] = indices[j - 2];
10284 indices[i] = low;
10285 indices[i + 1] = high;
10286 }
10287
10288 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10289 is different. */
10290
10291 static struct value *
10292 ada_value_cast (struct type *type, struct value *arg2)
10293 {
10294 if (type == ada_check_typedef (value_type (arg2)))
10295 return arg2;
10296
10297 if (ada_is_fixed_point_type (type))
10298 return (cast_to_fixed (type, arg2));
10299
10300 if (ada_is_fixed_point_type (value_type (arg2)))
10301 return cast_from_fixed (type, arg2);
10302
10303 return value_cast (type, arg2);
10304 }
10305
10306 /* Evaluating Ada expressions, and printing their result.
10307 ------------------------------------------------------
10308
10309 1. Introduction:
10310 ----------------
10311
10312 We usually evaluate an Ada expression in order to print its value.
10313 We also evaluate an expression in order to print its type, which
10314 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10315 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10316 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10317 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10318 similar.
10319
10320 Evaluating expressions is a little more complicated for Ada entities
10321 than it is for entities in languages such as C. The main reason for
10322 this is that Ada provides types whose definition might be dynamic.
10323 One example of such types is variant records. Or another example
10324 would be an array whose bounds can only be known at run time.
10325
10326 The following description is a general guide as to what should be
10327 done (and what should NOT be done) in order to evaluate an expression
10328 involving such types, and when. This does not cover how the semantic
10329 information is encoded by GNAT as this is covered separatly. For the
10330 document used as the reference for the GNAT encoding, see exp_dbug.ads
10331 in the GNAT sources.
10332
10333 Ideally, we should embed each part of this description next to its
10334 associated code. Unfortunately, the amount of code is so vast right
10335 now that it's hard to see whether the code handling a particular
10336 situation might be duplicated or not. One day, when the code is
10337 cleaned up, this guide might become redundant with the comments
10338 inserted in the code, and we might want to remove it.
10339
10340 2. ``Fixing'' an Entity, the Simple Case:
10341 -----------------------------------------
10342
10343 When evaluating Ada expressions, the tricky issue is that they may
10344 reference entities whose type contents and size are not statically
10345 known. Consider for instance a variant record:
10346
10347 type Rec (Empty : Boolean := True) is record
10348 case Empty is
10349 when True => null;
10350 when False => Value : Integer;
10351 end case;
10352 end record;
10353 Yes : Rec := (Empty => False, Value => 1);
10354 No : Rec := (empty => True);
10355
10356 The size and contents of that record depends on the value of the
10357 descriminant (Rec.Empty). At this point, neither the debugging
10358 information nor the associated type structure in GDB are able to
10359 express such dynamic types. So what the debugger does is to create
10360 "fixed" versions of the type that applies to the specific object.
10361 We also informally refer to this opperation as "fixing" an object,
10362 which means creating its associated fixed type.
10363
10364 Example: when printing the value of variable "Yes" above, its fixed
10365 type would look like this:
10366
10367 type Rec is record
10368 Empty : Boolean;
10369 Value : Integer;
10370 end record;
10371
10372 On the other hand, if we printed the value of "No", its fixed type
10373 would become:
10374
10375 type Rec is record
10376 Empty : Boolean;
10377 end record;
10378
10379 Things become a little more complicated when trying to fix an entity
10380 with a dynamic type that directly contains another dynamic type,
10381 such as an array of variant records, for instance. There are
10382 two possible cases: Arrays, and records.
10383
10384 3. ``Fixing'' Arrays:
10385 ---------------------
10386
10387 The type structure in GDB describes an array in terms of its bounds,
10388 and the type of its elements. By design, all elements in the array
10389 have the same type and we cannot represent an array of variant elements
10390 using the current type structure in GDB. When fixing an array,
10391 we cannot fix the array element, as we would potentially need one
10392 fixed type per element of the array. As a result, the best we can do
10393 when fixing an array is to produce an array whose bounds and size
10394 are correct (allowing us to read it from memory), but without having
10395 touched its element type. Fixing each element will be done later,
10396 when (if) necessary.
10397
10398 Arrays are a little simpler to handle than records, because the same
10399 amount of memory is allocated for each element of the array, even if
10400 the amount of space actually used by each element differs from element
10401 to element. Consider for instance the following array of type Rec:
10402
10403 type Rec_Array is array (1 .. 2) of Rec;
10404
10405 The actual amount of memory occupied by each element might be different
10406 from element to element, depending on the value of their discriminant.
10407 But the amount of space reserved for each element in the array remains
10408 fixed regardless. So we simply need to compute that size using
10409 the debugging information available, from which we can then determine
10410 the array size (we multiply the number of elements of the array by
10411 the size of each element).
10412
10413 The simplest case is when we have an array of a constrained element
10414 type. For instance, consider the following type declarations:
10415
10416 type Bounded_String (Max_Size : Integer) is
10417 Length : Integer;
10418 Buffer : String (1 .. Max_Size);
10419 end record;
10420 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10421
10422 In this case, the compiler describes the array as an array of
10423 variable-size elements (identified by its XVS suffix) for which
10424 the size can be read in the parallel XVZ variable.
10425
10426 In the case of an array of an unconstrained element type, the compiler
10427 wraps the array element inside a private PAD type. This type should not
10428 be shown to the user, and must be "unwrap"'ed before printing. Note
10429 that we also use the adjective "aligner" in our code to designate
10430 these wrapper types.
10431
10432 In some cases, the size allocated for each element is statically
10433 known. In that case, the PAD type already has the correct size,
10434 and the array element should remain unfixed.
10435
10436 But there are cases when this size is not statically known.
10437 For instance, assuming that "Five" is an integer variable:
10438
10439 type Dynamic is array (1 .. Five) of Integer;
10440 type Wrapper (Has_Length : Boolean := False) is record
10441 Data : Dynamic;
10442 case Has_Length is
10443 when True => Length : Integer;
10444 when False => null;
10445 end case;
10446 end record;
10447 type Wrapper_Array is array (1 .. 2) of Wrapper;
10448
10449 Hello : Wrapper_Array := (others => (Has_Length => True,
10450 Data => (others => 17),
10451 Length => 1));
10452
10453
10454 The debugging info would describe variable Hello as being an
10455 array of a PAD type. The size of that PAD type is not statically
10456 known, but can be determined using a parallel XVZ variable.
10457 In that case, a copy of the PAD type with the correct size should
10458 be used for the fixed array.
10459
10460 3. ``Fixing'' record type objects:
10461 ----------------------------------
10462
10463 Things are slightly different from arrays in the case of dynamic
10464 record types. In this case, in order to compute the associated
10465 fixed type, we need to determine the size and offset of each of
10466 its components. This, in turn, requires us to compute the fixed
10467 type of each of these components.
10468
10469 Consider for instance the example:
10470
10471 type Bounded_String (Max_Size : Natural) is record
10472 Str : String (1 .. Max_Size);
10473 Length : Natural;
10474 end record;
10475 My_String : Bounded_String (Max_Size => 10);
10476
10477 In that case, the position of field "Length" depends on the size
10478 of field Str, which itself depends on the value of the Max_Size
10479 discriminant. In order to fix the type of variable My_String,
10480 we need to fix the type of field Str. Therefore, fixing a variant
10481 record requires us to fix each of its components.
10482
10483 However, if a component does not have a dynamic size, the component
10484 should not be fixed. In particular, fields that use a PAD type
10485 should not fixed. Here is an example where this might happen
10486 (assuming type Rec above):
10487
10488 type Container (Big : Boolean) is record
10489 First : Rec;
10490 After : Integer;
10491 case Big is
10492 when True => Another : Integer;
10493 when False => null;
10494 end case;
10495 end record;
10496 My_Container : Container := (Big => False,
10497 First => (Empty => True),
10498 After => 42);
10499
10500 In that example, the compiler creates a PAD type for component First,
10501 whose size is constant, and then positions the component After just
10502 right after it. The offset of component After is therefore constant
10503 in this case.
10504
10505 The debugger computes the position of each field based on an algorithm
10506 that uses, among other things, the actual position and size of the field
10507 preceding it. Let's now imagine that the user is trying to print
10508 the value of My_Container. If the type fixing was recursive, we would
10509 end up computing the offset of field After based on the size of the
10510 fixed version of field First. And since in our example First has
10511 only one actual field, the size of the fixed type is actually smaller
10512 than the amount of space allocated to that field, and thus we would
10513 compute the wrong offset of field After.
10514
10515 To make things more complicated, we need to watch out for dynamic
10516 components of variant records (identified by the ___XVL suffix in
10517 the component name). Even if the target type is a PAD type, the size
10518 of that type might not be statically known. So the PAD type needs
10519 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10520 we might end up with the wrong size for our component. This can be
10521 observed with the following type declarations:
10522
10523 type Octal is new Integer range 0 .. 7;
10524 type Octal_Array is array (Positive range <>) of Octal;
10525 pragma Pack (Octal_Array);
10526
10527 type Octal_Buffer (Size : Positive) is record
10528 Buffer : Octal_Array (1 .. Size);
10529 Length : Integer;
10530 end record;
10531
10532 In that case, Buffer is a PAD type whose size is unset and needs
10533 to be computed by fixing the unwrapped type.
10534
10535 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10536 ----------------------------------------------------------
10537
10538 Lastly, when should the sub-elements of an entity that remained unfixed
10539 thus far, be actually fixed?
10540
10541 The answer is: Only when referencing that element. For instance
10542 when selecting one component of a record, this specific component
10543 should be fixed at that point in time. Or when printing the value
10544 of a record, each component should be fixed before its value gets
10545 printed. Similarly for arrays, the element of the array should be
10546 fixed when printing each element of the array, or when extracting
10547 one element out of that array. On the other hand, fixing should
10548 not be performed on the elements when taking a slice of an array!
10549
10550 Note that one of the side effects of miscomputing the offset and
10551 size of each field is that we end up also miscomputing the size
10552 of the containing type. This can have adverse results when computing
10553 the value of an entity. GDB fetches the value of an entity based
10554 on the size of its type, and thus a wrong size causes GDB to fetch
10555 the wrong amount of memory. In the case where the computed size is
10556 too small, GDB fetches too little data to print the value of our
10557 entity. Results in this case are unpredictable, as we usually read
10558 past the buffer containing the data =:-o. */
10559
10560 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10561 for that subexpression cast to TO_TYPE. Advance *POS over the
10562 subexpression. */
10563
10564 static value *
10565 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10566 enum noside noside, struct type *to_type)
10567 {
10568 int pc = *pos;
10569
10570 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10571 || exp->elts[pc].opcode == OP_VAR_VALUE)
10572 {
10573 (*pos) += 4;
10574
10575 value *val;
10576 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10577 {
10578 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10579 return value_zero (to_type, not_lval);
10580
10581 val = evaluate_var_msym_value (noside,
10582 exp->elts[pc + 1].objfile,
10583 exp->elts[pc + 2].msymbol);
10584 }
10585 else
10586 val = evaluate_var_value (noside,
10587 exp->elts[pc + 1].block,
10588 exp->elts[pc + 2].symbol);
10589
10590 if (noside == EVAL_SKIP)
10591 return eval_skip_value (exp);
10592
10593 val = ada_value_cast (to_type, val);
10594
10595 /* Follow the Ada language semantics that do not allow taking
10596 an address of the result of a cast (view conversion in Ada). */
10597 if (VALUE_LVAL (val) == lval_memory)
10598 {
10599 if (value_lazy (val))
10600 value_fetch_lazy (val);
10601 VALUE_LVAL (val) = not_lval;
10602 }
10603 return val;
10604 }
10605
10606 value *val = evaluate_subexp (to_type, exp, pos, noside);
10607 if (noside == EVAL_SKIP)
10608 return eval_skip_value (exp);
10609 return ada_value_cast (to_type, val);
10610 }
10611
10612 /* Implement the evaluate_exp routine in the exp_descriptor structure
10613 for the Ada language. */
10614
10615 static struct value *
10616 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10617 int *pos, enum noside noside)
10618 {
10619 enum exp_opcode op;
10620 int tem;
10621 int pc;
10622 int preeval_pos;
10623 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10624 struct type *type;
10625 int nargs, oplen;
10626 struct value **argvec;
10627
10628 pc = *pos;
10629 *pos += 1;
10630 op = exp->elts[pc].opcode;
10631
10632 switch (op)
10633 {
10634 default:
10635 *pos -= 1;
10636 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10637
10638 if (noside == EVAL_NORMAL)
10639 arg1 = unwrap_value (arg1);
10640
10641 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10642 then we need to perform the conversion manually, because
10643 evaluate_subexp_standard doesn't do it. This conversion is
10644 necessary in Ada because the different kinds of float/fixed
10645 types in Ada have different representations.
10646
10647 Similarly, we need to perform the conversion from OP_LONG
10648 ourselves. */
10649 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10650 arg1 = ada_value_cast (expect_type, arg1);
10651
10652 return arg1;
10653
10654 case OP_STRING:
10655 {
10656 struct value *result;
10657
10658 *pos -= 1;
10659 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10660 /* The result type will have code OP_STRING, bashed there from
10661 OP_ARRAY. Bash it back. */
10662 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10663 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10664 return result;
10665 }
10666
10667 case UNOP_CAST:
10668 (*pos) += 2;
10669 type = exp->elts[pc + 1].type;
10670 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10671
10672 case UNOP_QUAL:
10673 (*pos) += 2;
10674 type = exp->elts[pc + 1].type;
10675 return ada_evaluate_subexp (type, exp, pos, noside);
10676
10677 case BINOP_ASSIGN:
10678 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10679 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10680 {
10681 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10682 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10683 return arg1;
10684 return ada_value_assign (arg1, arg1);
10685 }
10686 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10687 except if the lhs of our assignment is a convenience variable.
10688 In the case of assigning to a convenience variable, the lhs
10689 should be exactly the result of the evaluation of the rhs. */
10690 type = value_type (arg1);
10691 if (VALUE_LVAL (arg1) == lval_internalvar)
10692 type = NULL;
10693 arg2 = evaluate_subexp (type, exp, pos, noside);
10694 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10695 return arg1;
10696 if (ada_is_fixed_point_type (value_type (arg1)))
10697 arg2 = cast_to_fixed (value_type (arg1), arg2);
10698 else if (ada_is_fixed_point_type (value_type (arg2)))
10699 error
10700 (_("Fixed-point values must be assigned to fixed-point variables"));
10701 else
10702 arg2 = coerce_for_assign (value_type (arg1), arg2);
10703 return ada_value_assign (arg1, arg2);
10704
10705 case BINOP_ADD:
10706 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10707 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10708 if (noside == EVAL_SKIP)
10709 goto nosideret;
10710 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10711 return (value_from_longest
10712 (value_type (arg1),
10713 value_as_long (arg1) + value_as_long (arg2)));
10714 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10715 return (value_from_longest
10716 (value_type (arg2),
10717 value_as_long (arg1) + value_as_long (arg2)));
10718 if ((ada_is_fixed_point_type (value_type (arg1))
10719 || ada_is_fixed_point_type (value_type (arg2)))
10720 && value_type (arg1) != value_type (arg2))
10721 error (_("Operands of fixed-point addition must have the same type"));
10722 /* Do the addition, and cast the result to the type of the first
10723 argument. We cannot cast the result to a reference type, so if
10724 ARG1 is a reference type, find its underlying type. */
10725 type = value_type (arg1);
10726 while (TYPE_CODE (type) == TYPE_CODE_REF)
10727 type = TYPE_TARGET_TYPE (type);
10728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10729 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10730
10731 case BINOP_SUB:
10732 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10733 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10734 if (noside == EVAL_SKIP)
10735 goto nosideret;
10736 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10737 return (value_from_longest
10738 (value_type (arg1),
10739 value_as_long (arg1) - value_as_long (arg2)));
10740 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10741 return (value_from_longest
10742 (value_type (arg2),
10743 value_as_long (arg1) - value_as_long (arg2)));
10744 if ((ada_is_fixed_point_type (value_type (arg1))
10745 || ada_is_fixed_point_type (value_type (arg2)))
10746 && value_type (arg1) != value_type (arg2))
10747 error (_("Operands of fixed-point subtraction "
10748 "must have the same type"));
10749 /* Do the substraction, and cast the result to the type of the first
10750 argument. We cannot cast the result to a reference type, so if
10751 ARG1 is a reference type, find its underlying type. */
10752 type = value_type (arg1);
10753 while (TYPE_CODE (type) == TYPE_CODE_REF)
10754 type = TYPE_TARGET_TYPE (type);
10755 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10756 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10757
10758 case BINOP_MUL:
10759 case BINOP_DIV:
10760 case BINOP_REM:
10761 case BINOP_MOD:
10762 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10763 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10764 if (noside == EVAL_SKIP)
10765 goto nosideret;
10766 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10767 {
10768 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10769 return value_zero (value_type (arg1), not_lval);
10770 }
10771 else
10772 {
10773 type = builtin_type (exp->gdbarch)->builtin_double;
10774 if (ada_is_fixed_point_type (value_type (arg1)))
10775 arg1 = cast_from_fixed (type, arg1);
10776 if (ada_is_fixed_point_type (value_type (arg2)))
10777 arg2 = cast_from_fixed (type, arg2);
10778 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10779 return ada_value_binop (arg1, arg2, op);
10780 }
10781
10782 case BINOP_EQUAL:
10783 case BINOP_NOTEQUAL:
10784 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10785 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10786 if (noside == EVAL_SKIP)
10787 goto nosideret;
10788 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10789 tem = 0;
10790 else
10791 {
10792 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10793 tem = ada_value_equal (arg1, arg2);
10794 }
10795 if (op == BINOP_NOTEQUAL)
10796 tem = !tem;
10797 type = language_bool_type (exp->language_defn, exp->gdbarch);
10798 return value_from_longest (type, (LONGEST) tem);
10799
10800 case UNOP_NEG:
10801 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10802 if (noside == EVAL_SKIP)
10803 goto nosideret;
10804 else if (ada_is_fixed_point_type (value_type (arg1)))
10805 return value_cast (value_type (arg1), value_neg (arg1));
10806 else
10807 {
10808 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10809 return value_neg (arg1);
10810 }
10811
10812 case BINOP_LOGICAL_AND:
10813 case BINOP_LOGICAL_OR:
10814 case UNOP_LOGICAL_NOT:
10815 {
10816 struct value *val;
10817
10818 *pos -= 1;
10819 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10820 type = language_bool_type (exp->language_defn, exp->gdbarch);
10821 return value_cast (type, val);
10822 }
10823
10824 case BINOP_BITWISE_AND:
10825 case BINOP_BITWISE_IOR:
10826 case BINOP_BITWISE_XOR:
10827 {
10828 struct value *val;
10829
10830 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10831 *pos = pc;
10832 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10833
10834 return value_cast (value_type (arg1), val);
10835 }
10836
10837 case OP_VAR_VALUE:
10838 *pos -= 1;
10839
10840 if (noside == EVAL_SKIP)
10841 {
10842 *pos += 4;
10843 goto nosideret;
10844 }
10845
10846 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10847 /* Only encountered when an unresolved symbol occurs in a
10848 context other than a function call, in which case, it is
10849 invalid. */
10850 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10851 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10852
10853 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10854 {
10855 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10856 /* Check to see if this is a tagged type. We also need to handle
10857 the case where the type is a reference to a tagged type, but
10858 we have to be careful to exclude pointers to tagged types.
10859 The latter should be shown as usual (as a pointer), whereas
10860 a reference should mostly be transparent to the user. */
10861 if (ada_is_tagged_type (type, 0)
10862 || (TYPE_CODE (type) == TYPE_CODE_REF
10863 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10864 {
10865 /* Tagged types are a little special in the fact that the real
10866 type is dynamic and can only be determined by inspecting the
10867 object's tag. This means that we need to get the object's
10868 value first (EVAL_NORMAL) and then extract the actual object
10869 type from its tag.
10870
10871 Note that we cannot skip the final step where we extract
10872 the object type from its tag, because the EVAL_NORMAL phase
10873 results in dynamic components being resolved into fixed ones.
10874 This can cause problems when trying to print the type
10875 description of tagged types whose parent has a dynamic size:
10876 We use the type name of the "_parent" component in order
10877 to print the name of the ancestor type in the type description.
10878 If that component had a dynamic size, the resolution into
10879 a fixed type would result in the loss of that type name,
10880 thus preventing us from printing the name of the ancestor
10881 type in the type description. */
10882 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10883
10884 if (TYPE_CODE (type) != TYPE_CODE_REF)
10885 {
10886 struct type *actual_type;
10887
10888 actual_type = type_from_tag (ada_value_tag (arg1));
10889 if (actual_type == NULL)
10890 /* If, for some reason, we were unable to determine
10891 the actual type from the tag, then use the static
10892 approximation that we just computed as a fallback.
10893 This can happen if the debugging information is
10894 incomplete, for instance. */
10895 actual_type = type;
10896 return value_zero (actual_type, not_lval);
10897 }
10898 else
10899 {
10900 /* In the case of a ref, ada_coerce_ref takes care
10901 of determining the actual type. But the evaluation
10902 should return a ref as it should be valid to ask
10903 for its address; so rebuild a ref after coerce. */
10904 arg1 = ada_coerce_ref (arg1);
10905 return value_ref (arg1, TYPE_CODE_REF);
10906 }
10907 }
10908
10909 /* Records and unions for which GNAT encodings have been
10910 generated need to be statically fixed as well.
10911 Otherwise, non-static fixing produces a type where
10912 all dynamic properties are removed, which prevents "ptype"
10913 from being able to completely describe the type.
10914 For instance, a case statement in a variant record would be
10915 replaced by the relevant components based on the actual
10916 value of the discriminants. */
10917 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10918 && dynamic_template_type (type) != NULL)
10919 || (TYPE_CODE (type) == TYPE_CODE_UNION
10920 && ada_find_parallel_type (type, "___XVU") != NULL))
10921 {
10922 *pos += 4;
10923 return value_zero (to_static_fixed_type (type), not_lval);
10924 }
10925 }
10926
10927 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10928 return ada_to_fixed_value (arg1);
10929
10930 case OP_FUNCALL:
10931 (*pos) += 2;
10932
10933 /* Allocate arg vector, including space for the function to be
10934 called in argvec[0] and a terminating NULL. */
10935 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10936 argvec = XALLOCAVEC (struct value *, nargs + 2);
10937
10938 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10939 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10940 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10941 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10942 else
10943 {
10944 for (tem = 0; tem <= nargs; tem += 1)
10945 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10946 argvec[tem] = 0;
10947
10948 if (noside == EVAL_SKIP)
10949 goto nosideret;
10950 }
10951
10952 if (ada_is_constrained_packed_array_type
10953 (desc_base_type (value_type (argvec[0]))))
10954 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10955 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10956 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10957 /* This is a packed array that has already been fixed, and
10958 therefore already coerced to a simple array. Nothing further
10959 to do. */
10960 ;
10961 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10962 {
10963 /* Make sure we dereference references so that all the code below
10964 feels like it's really handling the referenced value. Wrapping
10965 types (for alignment) may be there, so make sure we strip them as
10966 well. */
10967 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10968 }
10969 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10970 && VALUE_LVAL (argvec[0]) == lval_memory)
10971 argvec[0] = value_addr (argvec[0]);
10972
10973 type = ada_check_typedef (value_type (argvec[0]));
10974
10975 /* Ada allows us to implicitly dereference arrays when subscripting
10976 them. So, if this is an array typedef (encoding use for array
10977 access types encoded as fat pointers), strip it now. */
10978 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10979 type = ada_typedef_target_type (type);
10980
10981 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10982 {
10983 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10984 {
10985 case TYPE_CODE_FUNC:
10986 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10987 break;
10988 case TYPE_CODE_ARRAY:
10989 break;
10990 case TYPE_CODE_STRUCT:
10991 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10992 argvec[0] = ada_value_ind (argvec[0]);
10993 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10994 break;
10995 default:
10996 error (_("cannot subscript or call something of type `%s'"),
10997 ada_type_name (value_type (argvec[0])));
10998 break;
10999 }
11000 }
11001
11002 switch (TYPE_CODE (type))
11003 {
11004 case TYPE_CODE_FUNC:
11005 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11006 {
11007 if (TYPE_TARGET_TYPE (type) == NULL)
11008 error_call_unknown_return_type (NULL);
11009 return allocate_value (TYPE_TARGET_TYPE (type));
11010 }
11011 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
11012 case TYPE_CODE_INTERNAL_FUNCTION:
11013 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11014 /* We don't know anything about what the internal
11015 function might return, but we have to return
11016 something. */
11017 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11018 not_lval);
11019 else
11020 return call_internal_function (exp->gdbarch, exp->language_defn,
11021 argvec[0], nargs, argvec + 1);
11022
11023 case TYPE_CODE_STRUCT:
11024 {
11025 int arity;
11026
11027 arity = ada_array_arity (type);
11028 type = ada_array_element_type (type, nargs);
11029 if (type == NULL)
11030 error (_("cannot subscript or call a record"));
11031 if (arity != nargs)
11032 error (_("wrong number of subscripts; expecting %d"), arity);
11033 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11034 return value_zero (ada_aligned_type (type), lval_memory);
11035 return
11036 unwrap_value (ada_value_subscript
11037 (argvec[0], nargs, argvec + 1));
11038 }
11039 case TYPE_CODE_ARRAY:
11040 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11041 {
11042 type = ada_array_element_type (type, nargs);
11043 if (type == NULL)
11044 error (_("element type of array unknown"));
11045 else
11046 return value_zero (ada_aligned_type (type), lval_memory);
11047 }
11048 return
11049 unwrap_value (ada_value_subscript
11050 (ada_coerce_to_simple_array (argvec[0]),
11051 nargs, argvec + 1));
11052 case TYPE_CODE_PTR: /* Pointer to array */
11053 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11054 {
11055 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11056 type = ada_array_element_type (type, nargs);
11057 if (type == NULL)
11058 error (_("element type of array unknown"));
11059 else
11060 return value_zero (ada_aligned_type (type), lval_memory);
11061 }
11062 return
11063 unwrap_value (ada_value_ptr_subscript (argvec[0],
11064 nargs, argvec + 1));
11065
11066 default:
11067 error (_("Attempt to index or call something other than an "
11068 "array or function"));
11069 }
11070
11071 case TERNOP_SLICE:
11072 {
11073 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11074 struct value *low_bound_val =
11075 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11076 struct value *high_bound_val =
11077 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11078 LONGEST low_bound;
11079 LONGEST high_bound;
11080
11081 low_bound_val = coerce_ref (low_bound_val);
11082 high_bound_val = coerce_ref (high_bound_val);
11083 low_bound = value_as_long (low_bound_val);
11084 high_bound = value_as_long (high_bound_val);
11085
11086 if (noside == EVAL_SKIP)
11087 goto nosideret;
11088
11089 /* If this is a reference to an aligner type, then remove all
11090 the aligners. */
11091 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11092 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11093 TYPE_TARGET_TYPE (value_type (array)) =
11094 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11095
11096 if (ada_is_constrained_packed_array_type (value_type (array)))
11097 error (_("cannot slice a packed array"));
11098
11099 /* If this is a reference to an array or an array lvalue,
11100 convert to a pointer. */
11101 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11102 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11103 && VALUE_LVAL (array) == lval_memory))
11104 array = value_addr (array);
11105
11106 if (noside == EVAL_AVOID_SIDE_EFFECTS
11107 && ada_is_array_descriptor_type (ada_check_typedef
11108 (value_type (array))))
11109 return empty_array (ada_type_of_array (array, 0), low_bound);
11110
11111 array = ada_coerce_to_simple_array_ptr (array);
11112
11113 /* If we have more than one level of pointer indirection,
11114 dereference the value until we get only one level. */
11115 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11116 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11117 == TYPE_CODE_PTR))
11118 array = value_ind (array);
11119
11120 /* Make sure we really do have an array type before going further,
11121 to avoid a SEGV when trying to get the index type or the target
11122 type later down the road if the debug info generated by
11123 the compiler is incorrect or incomplete. */
11124 if (!ada_is_simple_array_type (value_type (array)))
11125 error (_("cannot take slice of non-array"));
11126
11127 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11128 == TYPE_CODE_PTR)
11129 {
11130 struct type *type0 = ada_check_typedef (value_type (array));
11131
11132 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11133 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11134 else
11135 {
11136 struct type *arr_type0 =
11137 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11138
11139 return ada_value_slice_from_ptr (array, arr_type0,
11140 longest_to_int (low_bound),
11141 longest_to_int (high_bound));
11142 }
11143 }
11144 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11145 return array;
11146 else if (high_bound < low_bound)
11147 return empty_array (value_type (array), low_bound);
11148 else
11149 return ada_value_slice (array, longest_to_int (low_bound),
11150 longest_to_int (high_bound));
11151 }
11152
11153 case UNOP_IN_RANGE:
11154 (*pos) += 2;
11155 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11156 type = check_typedef (exp->elts[pc + 1].type);
11157
11158 if (noside == EVAL_SKIP)
11159 goto nosideret;
11160
11161 switch (TYPE_CODE (type))
11162 {
11163 default:
11164 lim_warning (_("Membership test incompletely implemented; "
11165 "always returns true"));
11166 type = language_bool_type (exp->language_defn, exp->gdbarch);
11167 return value_from_longest (type, (LONGEST) 1);
11168
11169 case TYPE_CODE_RANGE:
11170 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11171 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11172 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11173 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11174 type = language_bool_type (exp->language_defn, exp->gdbarch);
11175 return
11176 value_from_longest (type,
11177 (value_less (arg1, arg3)
11178 || value_equal (arg1, arg3))
11179 && (value_less (arg2, arg1)
11180 || value_equal (arg2, arg1)));
11181 }
11182
11183 case BINOP_IN_BOUNDS:
11184 (*pos) += 2;
11185 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11186 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11187
11188 if (noside == EVAL_SKIP)
11189 goto nosideret;
11190
11191 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11192 {
11193 type = language_bool_type (exp->language_defn, exp->gdbarch);
11194 return value_zero (type, not_lval);
11195 }
11196
11197 tem = longest_to_int (exp->elts[pc + 1].longconst);
11198
11199 type = ada_index_type (value_type (arg2), tem, "range");
11200 if (!type)
11201 type = value_type (arg1);
11202
11203 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11204 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11205
11206 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11207 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11208 type = language_bool_type (exp->language_defn, exp->gdbarch);
11209 return
11210 value_from_longest (type,
11211 (value_less (arg1, arg3)
11212 || value_equal (arg1, arg3))
11213 && (value_less (arg2, arg1)
11214 || value_equal (arg2, arg1)));
11215
11216 case TERNOP_IN_RANGE:
11217 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11218 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11219 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11220
11221 if (noside == EVAL_SKIP)
11222 goto nosideret;
11223
11224 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11225 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11226 type = language_bool_type (exp->language_defn, exp->gdbarch);
11227 return
11228 value_from_longest (type,
11229 (value_less (arg1, arg3)
11230 || value_equal (arg1, arg3))
11231 && (value_less (arg2, arg1)
11232 || value_equal (arg2, arg1)));
11233
11234 case OP_ATR_FIRST:
11235 case OP_ATR_LAST:
11236 case OP_ATR_LENGTH:
11237 {
11238 struct type *type_arg;
11239
11240 if (exp->elts[*pos].opcode == OP_TYPE)
11241 {
11242 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11243 arg1 = NULL;
11244 type_arg = check_typedef (exp->elts[pc + 2].type);
11245 }
11246 else
11247 {
11248 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11249 type_arg = NULL;
11250 }
11251
11252 if (exp->elts[*pos].opcode != OP_LONG)
11253 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11254 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11255 *pos += 4;
11256
11257 if (noside == EVAL_SKIP)
11258 goto nosideret;
11259
11260 if (type_arg == NULL)
11261 {
11262 arg1 = ada_coerce_ref (arg1);
11263
11264 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11265 arg1 = ada_coerce_to_simple_array (arg1);
11266
11267 if (op == OP_ATR_LENGTH)
11268 type = builtin_type (exp->gdbarch)->builtin_int;
11269 else
11270 {
11271 type = ada_index_type (value_type (arg1), tem,
11272 ada_attribute_name (op));
11273 if (type == NULL)
11274 type = builtin_type (exp->gdbarch)->builtin_int;
11275 }
11276
11277 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11278 return allocate_value (type);
11279
11280 switch (op)
11281 {
11282 default: /* Should never happen. */
11283 error (_("unexpected attribute encountered"));
11284 case OP_ATR_FIRST:
11285 return value_from_longest
11286 (type, ada_array_bound (arg1, tem, 0));
11287 case OP_ATR_LAST:
11288 return value_from_longest
11289 (type, ada_array_bound (arg1, tem, 1));
11290 case OP_ATR_LENGTH:
11291 return value_from_longest
11292 (type, ada_array_length (arg1, tem));
11293 }
11294 }
11295 else if (discrete_type_p (type_arg))
11296 {
11297 struct type *range_type;
11298 const char *name = ada_type_name (type_arg);
11299
11300 range_type = NULL;
11301 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11302 range_type = to_fixed_range_type (type_arg, NULL);
11303 if (range_type == NULL)
11304 range_type = type_arg;
11305 switch (op)
11306 {
11307 default:
11308 error (_("unexpected attribute encountered"));
11309 case OP_ATR_FIRST:
11310 return value_from_longest
11311 (range_type, ada_discrete_type_low_bound (range_type));
11312 case OP_ATR_LAST:
11313 return value_from_longest
11314 (range_type, ada_discrete_type_high_bound (range_type));
11315 case OP_ATR_LENGTH:
11316 error (_("the 'length attribute applies only to array types"));
11317 }
11318 }
11319 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11320 error (_("unimplemented type attribute"));
11321 else
11322 {
11323 LONGEST low, high;
11324
11325 if (ada_is_constrained_packed_array_type (type_arg))
11326 type_arg = decode_constrained_packed_array_type (type_arg);
11327
11328 if (op == OP_ATR_LENGTH)
11329 type = builtin_type (exp->gdbarch)->builtin_int;
11330 else
11331 {
11332 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11333 if (type == NULL)
11334 type = builtin_type (exp->gdbarch)->builtin_int;
11335 }
11336
11337 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11338 return allocate_value (type);
11339
11340 switch (op)
11341 {
11342 default:
11343 error (_("unexpected attribute encountered"));
11344 case OP_ATR_FIRST:
11345 low = ada_array_bound_from_type (type_arg, tem, 0);
11346 return value_from_longest (type, low);
11347 case OP_ATR_LAST:
11348 high = ada_array_bound_from_type (type_arg, tem, 1);
11349 return value_from_longest (type, high);
11350 case OP_ATR_LENGTH:
11351 low = ada_array_bound_from_type (type_arg, tem, 0);
11352 high = ada_array_bound_from_type (type_arg, tem, 1);
11353 return value_from_longest (type, high - low + 1);
11354 }
11355 }
11356 }
11357
11358 case OP_ATR_TAG:
11359 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11360 if (noside == EVAL_SKIP)
11361 goto nosideret;
11362
11363 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11364 return value_zero (ada_tag_type (arg1), not_lval);
11365
11366 return ada_value_tag (arg1);
11367
11368 case OP_ATR_MIN:
11369 case OP_ATR_MAX:
11370 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11371 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11372 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11373 if (noside == EVAL_SKIP)
11374 goto nosideret;
11375 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11376 return value_zero (value_type (arg1), not_lval);
11377 else
11378 {
11379 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11380 return value_binop (arg1, arg2,
11381 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11382 }
11383
11384 case OP_ATR_MODULUS:
11385 {
11386 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11387
11388 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11389 if (noside == EVAL_SKIP)
11390 goto nosideret;
11391
11392 if (!ada_is_modular_type (type_arg))
11393 error (_("'modulus must be applied to modular type"));
11394
11395 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11396 ada_modulus (type_arg));
11397 }
11398
11399
11400 case OP_ATR_POS:
11401 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11402 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11403 if (noside == EVAL_SKIP)
11404 goto nosideret;
11405 type = builtin_type (exp->gdbarch)->builtin_int;
11406 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11407 return value_zero (type, not_lval);
11408 else
11409 return value_pos_atr (type, arg1);
11410
11411 case OP_ATR_SIZE:
11412 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11413 type = value_type (arg1);
11414
11415 /* If the argument is a reference, then dereference its type, since
11416 the user is really asking for the size of the actual object,
11417 not the size of the pointer. */
11418 if (TYPE_CODE (type) == TYPE_CODE_REF)
11419 type = TYPE_TARGET_TYPE (type);
11420
11421 if (noside == EVAL_SKIP)
11422 goto nosideret;
11423 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11424 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11425 else
11426 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11427 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11428
11429 case OP_ATR_VAL:
11430 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11431 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11432 type = exp->elts[pc + 2].type;
11433 if (noside == EVAL_SKIP)
11434 goto nosideret;
11435 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11436 return value_zero (type, not_lval);
11437 else
11438 return value_val_atr (type, arg1);
11439
11440 case BINOP_EXP:
11441 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11442 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11443 if (noside == EVAL_SKIP)
11444 goto nosideret;
11445 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11446 return value_zero (value_type (arg1), not_lval);
11447 else
11448 {
11449 /* For integer exponentiation operations,
11450 only promote the first argument. */
11451 if (is_integral_type (value_type (arg2)))
11452 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11453 else
11454 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11455
11456 return value_binop (arg1, arg2, op);
11457 }
11458
11459 case UNOP_PLUS:
11460 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11461 if (noside == EVAL_SKIP)
11462 goto nosideret;
11463 else
11464 return arg1;
11465
11466 case UNOP_ABS:
11467 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11468 if (noside == EVAL_SKIP)
11469 goto nosideret;
11470 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11471 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11472 return value_neg (arg1);
11473 else
11474 return arg1;
11475
11476 case UNOP_IND:
11477 preeval_pos = *pos;
11478 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11479 if (noside == EVAL_SKIP)
11480 goto nosideret;
11481 type = ada_check_typedef (value_type (arg1));
11482 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11483 {
11484 if (ada_is_array_descriptor_type (type))
11485 /* GDB allows dereferencing GNAT array descriptors. */
11486 {
11487 struct type *arrType = ada_type_of_array (arg1, 0);
11488
11489 if (arrType == NULL)
11490 error (_("Attempt to dereference null array pointer."));
11491 return value_at_lazy (arrType, 0);
11492 }
11493 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11494 || TYPE_CODE (type) == TYPE_CODE_REF
11495 /* In C you can dereference an array to get the 1st elt. */
11496 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11497 {
11498 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11499 only be determined by inspecting the object's tag.
11500 This means that we need to evaluate completely the
11501 expression in order to get its type. */
11502
11503 if ((TYPE_CODE (type) == TYPE_CODE_REF
11504 || TYPE_CODE (type) == TYPE_CODE_PTR)
11505 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11506 {
11507 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11508 EVAL_NORMAL);
11509 type = value_type (ada_value_ind (arg1));
11510 }
11511 else
11512 {
11513 type = to_static_fixed_type
11514 (ada_aligned_type
11515 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11516 }
11517 ada_ensure_varsize_limit (type);
11518 return value_zero (type, lval_memory);
11519 }
11520 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11521 {
11522 /* GDB allows dereferencing an int. */
11523 if (expect_type == NULL)
11524 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11525 lval_memory);
11526 else
11527 {
11528 expect_type =
11529 to_static_fixed_type (ada_aligned_type (expect_type));
11530 return value_zero (expect_type, lval_memory);
11531 }
11532 }
11533 else
11534 error (_("Attempt to take contents of a non-pointer value."));
11535 }
11536 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11537 type = ada_check_typedef (value_type (arg1));
11538
11539 if (TYPE_CODE (type) == TYPE_CODE_INT)
11540 /* GDB allows dereferencing an int. If we were given
11541 the expect_type, then use that as the target type.
11542 Otherwise, assume that the target type is an int. */
11543 {
11544 if (expect_type != NULL)
11545 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11546 arg1));
11547 else
11548 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11549 (CORE_ADDR) value_as_address (arg1));
11550 }
11551
11552 if (ada_is_array_descriptor_type (type))
11553 /* GDB allows dereferencing GNAT array descriptors. */
11554 return ada_coerce_to_simple_array (arg1);
11555 else
11556 return ada_value_ind (arg1);
11557
11558 case STRUCTOP_STRUCT:
11559 tem = longest_to_int (exp->elts[pc + 1].longconst);
11560 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11561 preeval_pos = *pos;
11562 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11563 if (noside == EVAL_SKIP)
11564 goto nosideret;
11565 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11566 {
11567 struct type *type1 = value_type (arg1);
11568
11569 if (ada_is_tagged_type (type1, 1))
11570 {
11571 type = ada_lookup_struct_elt_type (type1,
11572 &exp->elts[pc + 2].string,
11573 1, 1);
11574
11575 /* If the field is not found, check if it exists in the
11576 extension of this object's type. This means that we
11577 need to evaluate completely the expression. */
11578
11579 if (type == NULL)
11580 {
11581 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11582 EVAL_NORMAL);
11583 arg1 = ada_value_struct_elt (arg1,
11584 &exp->elts[pc + 2].string,
11585 0);
11586 arg1 = unwrap_value (arg1);
11587 type = value_type (ada_to_fixed_value (arg1));
11588 }
11589 }
11590 else
11591 type =
11592 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11593 0);
11594
11595 return value_zero (ada_aligned_type (type), lval_memory);
11596 }
11597 else
11598 {
11599 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11600 arg1 = unwrap_value (arg1);
11601 return ada_to_fixed_value (arg1);
11602 }
11603
11604 case OP_TYPE:
11605 /* The value is not supposed to be used. This is here to make it
11606 easier to accommodate expressions that contain types. */
11607 (*pos) += 2;
11608 if (noside == EVAL_SKIP)
11609 goto nosideret;
11610 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11611 return allocate_value (exp->elts[pc + 1].type);
11612 else
11613 error (_("Attempt to use a type name as an expression"));
11614
11615 case OP_AGGREGATE:
11616 case OP_CHOICES:
11617 case OP_OTHERS:
11618 case OP_DISCRETE_RANGE:
11619 case OP_POSITIONAL:
11620 case OP_NAME:
11621 if (noside == EVAL_NORMAL)
11622 switch (op)
11623 {
11624 case OP_NAME:
11625 error (_("Undefined name, ambiguous name, or renaming used in "
11626 "component association: %s."), &exp->elts[pc+2].string);
11627 case OP_AGGREGATE:
11628 error (_("Aggregates only allowed on the right of an assignment"));
11629 default:
11630 internal_error (__FILE__, __LINE__,
11631 _("aggregate apparently mangled"));
11632 }
11633
11634 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11635 *pos += oplen - 1;
11636 for (tem = 0; tem < nargs; tem += 1)
11637 ada_evaluate_subexp (NULL, exp, pos, noside);
11638 goto nosideret;
11639 }
11640
11641 nosideret:
11642 return eval_skip_value (exp);
11643 }
11644 \f
11645
11646 /* Fixed point */
11647
11648 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11649 type name that encodes the 'small and 'delta information.
11650 Otherwise, return NULL. */
11651
11652 static const char *
11653 fixed_type_info (struct type *type)
11654 {
11655 const char *name = ada_type_name (type);
11656 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11657
11658 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11659 {
11660 const char *tail = strstr (name, "___XF_");
11661
11662 if (tail == NULL)
11663 return NULL;
11664 else
11665 return tail + 5;
11666 }
11667 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11668 return fixed_type_info (TYPE_TARGET_TYPE (type));
11669 else
11670 return NULL;
11671 }
11672
11673 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11674
11675 int
11676 ada_is_fixed_point_type (struct type *type)
11677 {
11678 return fixed_type_info (type) != NULL;
11679 }
11680
11681 /* Return non-zero iff TYPE represents a System.Address type. */
11682
11683 int
11684 ada_is_system_address_type (struct type *type)
11685 {
11686 return (TYPE_NAME (type)
11687 && strcmp (TYPE_NAME (type), "system__address") == 0);
11688 }
11689
11690 /* Assuming that TYPE is the representation of an Ada fixed-point
11691 type, return the target floating-point type to be used to represent
11692 of this type during internal computation. */
11693
11694 static struct type *
11695 ada_scaling_type (struct type *type)
11696 {
11697 return builtin_type (get_type_arch (type))->builtin_long_double;
11698 }
11699
11700 /* Assuming that TYPE is the representation of an Ada fixed-point
11701 type, return its delta, or NULL if the type is malformed and the
11702 delta cannot be determined. */
11703
11704 struct value *
11705 ada_delta (struct type *type)
11706 {
11707 const char *encoding = fixed_type_info (type);
11708 struct type *scale_type = ada_scaling_type (type);
11709
11710 long long num, den;
11711
11712 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11713 return nullptr;
11714 else
11715 return value_binop (value_from_longest (scale_type, num),
11716 value_from_longest (scale_type, den), BINOP_DIV);
11717 }
11718
11719 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11720 factor ('SMALL value) associated with the type. */
11721
11722 struct value *
11723 ada_scaling_factor (struct type *type)
11724 {
11725 const char *encoding = fixed_type_info (type);
11726 struct type *scale_type = ada_scaling_type (type);
11727
11728 long long num0, den0, num1, den1;
11729 int n;
11730
11731 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11732 &num0, &den0, &num1, &den1);
11733
11734 if (n < 2)
11735 return value_from_longest (scale_type, 1);
11736 else if (n == 4)
11737 return value_binop (value_from_longest (scale_type, num1),
11738 value_from_longest (scale_type, den1), BINOP_DIV);
11739 else
11740 return value_binop (value_from_longest (scale_type, num0),
11741 value_from_longest (scale_type, den0), BINOP_DIV);
11742 }
11743
11744 \f
11745
11746 /* Range types */
11747
11748 /* Scan STR beginning at position K for a discriminant name, and
11749 return the value of that discriminant field of DVAL in *PX. If
11750 PNEW_K is not null, put the position of the character beyond the
11751 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11752 not alter *PX and *PNEW_K if unsuccessful. */
11753
11754 static int
11755 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11756 int *pnew_k)
11757 {
11758 static char *bound_buffer = NULL;
11759 static size_t bound_buffer_len = 0;
11760 const char *pstart, *pend, *bound;
11761 struct value *bound_val;
11762
11763 if (dval == NULL || str == NULL || str[k] == '\0')
11764 return 0;
11765
11766 pstart = str + k;
11767 pend = strstr (pstart, "__");
11768 if (pend == NULL)
11769 {
11770 bound = pstart;
11771 k += strlen (bound);
11772 }
11773 else
11774 {
11775 int len = pend - pstart;
11776
11777 /* Strip __ and beyond. */
11778 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11779 strncpy (bound_buffer, pstart, len);
11780 bound_buffer[len] = '\0';
11781
11782 bound = bound_buffer;
11783 k = pend - str;
11784 }
11785
11786 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11787 if (bound_val == NULL)
11788 return 0;
11789
11790 *px = value_as_long (bound_val);
11791 if (pnew_k != NULL)
11792 *pnew_k = k;
11793 return 1;
11794 }
11795
11796 /* Value of variable named NAME in the current environment. If
11797 no such variable found, then if ERR_MSG is null, returns 0, and
11798 otherwise causes an error with message ERR_MSG. */
11799
11800 static struct value *
11801 get_var_value (const char *name, const char *err_msg)
11802 {
11803 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11804
11805 struct block_symbol *syms;
11806 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11807 get_selected_block (0),
11808 VAR_DOMAIN, &syms, 1);
11809 struct cleanup *old_chain = make_cleanup (xfree, syms);
11810
11811 if (nsyms != 1)
11812 {
11813 do_cleanups (old_chain);
11814 if (err_msg == NULL)
11815 return 0;
11816 else
11817 error (("%s"), err_msg);
11818 }
11819
11820 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11821 do_cleanups (old_chain);
11822 return result;
11823 }
11824
11825 /* Value of integer variable named NAME in the current environment.
11826 If no such variable is found, returns false. Otherwise, sets VALUE
11827 to the variable's value and returns true. */
11828
11829 bool
11830 get_int_var_value (const char *name, LONGEST &value)
11831 {
11832 struct value *var_val = get_var_value (name, 0);
11833
11834 if (var_val == 0)
11835 return false;
11836
11837 value = value_as_long (var_val);
11838 return true;
11839 }
11840
11841
11842 /* Return a range type whose base type is that of the range type named
11843 NAME in the current environment, and whose bounds are calculated
11844 from NAME according to the GNAT range encoding conventions.
11845 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11846 corresponding range type from debug information; fall back to using it
11847 if symbol lookup fails. If a new type must be created, allocate it
11848 like ORIG_TYPE was. The bounds information, in general, is encoded
11849 in NAME, the base type given in the named range type. */
11850
11851 static struct type *
11852 to_fixed_range_type (struct type *raw_type, struct value *dval)
11853 {
11854 const char *name;
11855 struct type *base_type;
11856 const char *subtype_info;
11857
11858 gdb_assert (raw_type != NULL);
11859 gdb_assert (TYPE_NAME (raw_type) != NULL);
11860
11861 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11862 base_type = TYPE_TARGET_TYPE (raw_type);
11863 else
11864 base_type = raw_type;
11865
11866 name = TYPE_NAME (raw_type);
11867 subtype_info = strstr (name, "___XD");
11868 if (subtype_info == NULL)
11869 {
11870 LONGEST L = ada_discrete_type_low_bound (raw_type);
11871 LONGEST U = ada_discrete_type_high_bound (raw_type);
11872
11873 if (L < INT_MIN || U > INT_MAX)
11874 return raw_type;
11875 else
11876 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11877 L, U);
11878 }
11879 else
11880 {
11881 static char *name_buf = NULL;
11882 static size_t name_len = 0;
11883 int prefix_len = subtype_info - name;
11884 LONGEST L, U;
11885 struct type *type;
11886 const char *bounds_str;
11887 int n;
11888
11889 GROW_VECT (name_buf, name_len, prefix_len + 5);
11890 strncpy (name_buf, name, prefix_len);
11891 name_buf[prefix_len] = '\0';
11892
11893 subtype_info += 5;
11894 bounds_str = strchr (subtype_info, '_');
11895 n = 1;
11896
11897 if (*subtype_info == 'L')
11898 {
11899 if (!ada_scan_number (bounds_str, n, &L, &n)
11900 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11901 return raw_type;
11902 if (bounds_str[n] == '_')
11903 n += 2;
11904 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11905 n += 1;
11906 subtype_info += 1;
11907 }
11908 else
11909 {
11910 strcpy (name_buf + prefix_len, "___L");
11911 if (!get_int_var_value (name_buf, L))
11912 {
11913 lim_warning (_("Unknown lower bound, using 1."));
11914 L = 1;
11915 }
11916 }
11917
11918 if (*subtype_info == 'U')
11919 {
11920 if (!ada_scan_number (bounds_str, n, &U, &n)
11921 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11922 return raw_type;
11923 }
11924 else
11925 {
11926 strcpy (name_buf + prefix_len, "___U");
11927 if (!get_int_var_value (name_buf, U))
11928 {
11929 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11930 U = L;
11931 }
11932 }
11933
11934 type = create_static_range_type (alloc_type_copy (raw_type),
11935 base_type, L, U);
11936 /* create_static_range_type alters the resulting type's length
11937 to match the size of the base_type, which is not what we want.
11938 Set it back to the original range type's length. */
11939 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11940 TYPE_NAME (type) = name;
11941 return type;
11942 }
11943 }
11944
11945 /* True iff NAME is the name of a range type. */
11946
11947 int
11948 ada_is_range_type_name (const char *name)
11949 {
11950 return (name != NULL && strstr (name, "___XD"));
11951 }
11952 \f
11953
11954 /* Modular types */
11955
11956 /* True iff TYPE is an Ada modular type. */
11957
11958 int
11959 ada_is_modular_type (struct type *type)
11960 {
11961 struct type *subranged_type = get_base_type (type);
11962
11963 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11964 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11965 && TYPE_UNSIGNED (subranged_type));
11966 }
11967
11968 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11969
11970 ULONGEST
11971 ada_modulus (struct type *type)
11972 {
11973 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11974 }
11975 \f
11976
11977 /* Ada exception catchpoint support:
11978 ---------------------------------
11979
11980 We support 3 kinds of exception catchpoints:
11981 . catchpoints on Ada exceptions
11982 . catchpoints on unhandled Ada exceptions
11983 . catchpoints on failed assertions
11984
11985 Exceptions raised during failed assertions, or unhandled exceptions
11986 could perfectly be caught with the general catchpoint on Ada exceptions.
11987 However, we can easily differentiate these two special cases, and having
11988 the option to distinguish these two cases from the rest can be useful
11989 to zero-in on certain situations.
11990
11991 Exception catchpoints are a specialized form of breakpoint,
11992 since they rely on inserting breakpoints inside known routines
11993 of the GNAT runtime. The implementation therefore uses a standard
11994 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11995 of breakpoint_ops.
11996
11997 Support in the runtime for exception catchpoints have been changed
11998 a few times already, and these changes affect the implementation
11999 of these catchpoints. In order to be able to support several
12000 variants of the runtime, we use a sniffer that will determine
12001 the runtime variant used by the program being debugged. */
12002
12003 /* Ada's standard exceptions.
12004
12005 The Ada 83 standard also defined Numeric_Error. But there so many
12006 situations where it was unclear from the Ada 83 Reference Manual
12007 (RM) whether Constraint_Error or Numeric_Error should be raised,
12008 that the ARG (Ada Rapporteur Group) eventually issued a Binding
12009 Interpretation saying that anytime the RM says that Numeric_Error
12010 should be raised, the implementation may raise Constraint_Error.
12011 Ada 95 went one step further and pretty much removed Numeric_Error
12012 from the list of standard exceptions (it made it a renaming of
12013 Constraint_Error, to help preserve compatibility when compiling
12014 an Ada83 compiler). As such, we do not include Numeric_Error from
12015 this list of standard exceptions. */
12016
12017 static const char *standard_exc[] = {
12018 "constraint_error",
12019 "program_error",
12020 "storage_error",
12021 "tasking_error"
12022 };
12023
12024 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
12025
12026 /* A structure that describes how to support exception catchpoints
12027 for a given executable. */
12028
12029 struct exception_support_info
12030 {
12031 /* The name of the symbol to break on in order to insert
12032 a catchpoint on exceptions. */
12033 const char *catch_exception_sym;
12034
12035 /* The name of the symbol to break on in order to insert
12036 a catchpoint on unhandled exceptions. */
12037 const char *catch_exception_unhandled_sym;
12038
12039 /* The name of the symbol to break on in order to insert
12040 a catchpoint on failed assertions. */
12041 const char *catch_assert_sym;
12042
12043 /* The name of the symbol to break on in order to insert
12044 a catchpoint on exception handling. */
12045 const char *catch_handlers_sym;
12046
12047 /* Assuming that the inferior just triggered an unhandled exception
12048 catchpoint, this function is responsible for returning the address
12049 in inferior memory where the name of that exception is stored.
12050 Return zero if the address could not be computed. */
12051 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12052 };
12053
12054 static CORE_ADDR ada_unhandled_exception_name_addr (void);
12055 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12056
12057 /* The following exception support info structure describes how to
12058 implement exception catchpoints with the latest version of the
12059 Ada runtime (as of 2007-03-06). */
12060
12061 static const struct exception_support_info default_exception_support_info =
12062 {
12063 "__gnat_debug_raise_exception", /* catch_exception_sym */
12064 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12065 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12066 "__gnat_begin_handler", /* catch_handlers_sym */
12067 ada_unhandled_exception_name_addr
12068 };
12069
12070 /* The following exception support info structure describes how to
12071 implement exception catchpoints with a slightly older version
12072 of the Ada runtime. */
12073
12074 static const struct exception_support_info exception_support_info_fallback =
12075 {
12076 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12077 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12078 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12079 "__gnat_begin_handler", /* catch_handlers_sym */
12080 ada_unhandled_exception_name_addr_from_raise
12081 };
12082
12083 /* Return nonzero if we can detect the exception support routines
12084 described in EINFO.
12085
12086 This function errors out if an abnormal situation is detected
12087 (for instance, if we find the exception support routines, but
12088 that support is found to be incomplete). */
12089
12090 static int
12091 ada_has_this_exception_support (const struct exception_support_info *einfo)
12092 {
12093 struct symbol *sym;
12094
12095 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12096 that should be compiled with debugging information. As a result, we
12097 expect to find that symbol in the symtabs. */
12098
12099 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12100 if (sym == NULL)
12101 {
12102 /* Perhaps we did not find our symbol because the Ada runtime was
12103 compiled without debugging info, or simply stripped of it.
12104 It happens on some GNU/Linux distributions for instance, where
12105 users have to install a separate debug package in order to get
12106 the runtime's debugging info. In that situation, let the user
12107 know why we cannot insert an Ada exception catchpoint.
12108
12109 Note: Just for the purpose of inserting our Ada exception
12110 catchpoint, we could rely purely on the associated minimal symbol.
12111 But we would be operating in degraded mode anyway, since we are
12112 still lacking the debugging info needed later on to extract
12113 the name of the exception being raised (this name is printed in
12114 the catchpoint message, and is also used when trying to catch
12115 a specific exception). We do not handle this case for now. */
12116 struct bound_minimal_symbol msym
12117 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12118
12119 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12120 error (_("Your Ada runtime appears to be missing some debugging "
12121 "information.\nCannot insert Ada exception catchpoint "
12122 "in this configuration."));
12123
12124 return 0;
12125 }
12126
12127 /* Make sure that the symbol we found corresponds to a function. */
12128
12129 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12130 error (_("Symbol \"%s\" is not a function (class = %d)"),
12131 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12132
12133 return 1;
12134 }
12135
12136 /* Inspect the Ada runtime and determine which exception info structure
12137 should be used to provide support for exception catchpoints.
12138
12139 This function will always set the per-inferior exception_info,
12140 or raise an error. */
12141
12142 static void
12143 ada_exception_support_info_sniffer (void)
12144 {
12145 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12146
12147 /* If the exception info is already known, then no need to recompute it. */
12148 if (data->exception_info != NULL)
12149 return;
12150
12151 /* Check the latest (default) exception support info. */
12152 if (ada_has_this_exception_support (&default_exception_support_info))
12153 {
12154 data->exception_info = &default_exception_support_info;
12155 return;
12156 }
12157
12158 /* Try our fallback exception suport info. */
12159 if (ada_has_this_exception_support (&exception_support_info_fallback))
12160 {
12161 data->exception_info = &exception_support_info_fallback;
12162 return;
12163 }
12164
12165 /* Sometimes, it is normal for us to not be able to find the routine
12166 we are looking for. This happens when the program is linked with
12167 the shared version of the GNAT runtime, and the program has not been
12168 started yet. Inform the user of these two possible causes if
12169 applicable. */
12170
12171 if (ada_update_initial_language (language_unknown) != language_ada)
12172 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12173
12174 /* If the symbol does not exist, then check that the program is
12175 already started, to make sure that shared libraries have been
12176 loaded. If it is not started, this may mean that the symbol is
12177 in a shared library. */
12178
12179 if (ptid_get_pid (inferior_ptid) == 0)
12180 error (_("Unable to insert catchpoint. Try to start the program first."));
12181
12182 /* At this point, we know that we are debugging an Ada program and
12183 that the inferior has been started, but we still are not able to
12184 find the run-time symbols. That can mean that we are in
12185 configurable run time mode, or that a-except as been optimized
12186 out by the linker... In any case, at this point it is not worth
12187 supporting this feature. */
12188
12189 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12190 }
12191
12192 /* True iff FRAME is very likely to be that of a function that is
12193 part of the runtime system. This is all very heuristic, but is
12194 intended to be used as advice as to what frames are uninteresting
12195 to most users. */
12196
12197 static int
12198 is_known_support_routine (struct frame_info *frame)
12199 {
12200 enum language func_lang;
12201 int i;
12202 const char *fullname;
12203
12204 /* If this code does not have any debugging information (no symtab),
12205 This cannot be any user code. */
12206
12207 symtab_and_line sal = find_frame_sal (frame);
12208 if (sal.symtab == NULL)
12209 return 1;
12210
12211 /* If there is a symtab, but the associated source file cannot be
12212 located, then assume this is not user code: Selecting a frame
12213 for which we cannot display the code would not be very helpful
12214 for the user. This should also take care of case such as VxWorks
12215 where the kernel has some debugging info provided for a few units. */
12216
12217 fullname = symtab_to_fullname (sal.symtab);
12218 if (access (fullname, R_OK) != 0)
12219 return 1;
12220
12221 /* Check the unit filename againt the Ada runtime file naming.
12222 We also check the name of the objfile against the name of some
12223 known system libraries that sometimes come with debugging info
12224 too. */
12225
12226 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12227 {
12228 re_comp (known_runtime_file_name_patterns[i]);
12229 if (re_exec (lbasename (sal.symtab->filename)))
12230 return 1;
12231 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12232 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12233 return 1;
12234 }
12235
12236 /* Check whether the function is a GNAT-generated entity. */
12237
12238 gdb::unique_xmalloc_ptr<char> func_name
12239 = find_frame_funname (frame, &func_lang, NULL);
12240 if (func_name == NULL)
12241 return 1;
12242
12243 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12244 {
12245 re_comp (known_auxiliary_function_name_patterns[i]);
12246 if (re_exec (func_name.get ()))
12247 return 1;
12248 }
12249
12250 return 0;
12251 }
12252
12253 /* Find the first frame that contains debugging information and that is not
12254 part of the Ada run-time, starting from FI and moving upward. */
12255
12256 void
12257 ada_find_printable_frame (struct frame_info *fi)
12258 {
12259 for (; fi != NULL; fi = get_prev_frame (fi))
12260 {
12261 if (!is_known_support_routine (fi))
12262 {
12263 select_frame (fi);
12264 break;
12265 }
12266 }
12267
12268 }
12269
12270 /* Assuming that the inferior just triggered an unhandled exception
12271 catchpoint, return the address in inferior memory where the name
12272 of the exception is stored.
12273
12274 Return zero if the address could not be computed. */
12275
12276 static CORE_ADDR
12277 ada_unhandled_exception_name_addr (void)
12278 {
12279 return parse_and_eval_address ("e.full_name");
12280 }
12281
12282 /* Same as ada_unhandled_exception_name_addr, except that this function
12283 should be used when the inferior uses an older version of the runtime,
12284 where the exception name needs to be extracted from a specific frame
12285 several frames up in the callstack. */
12286
12287 static CORE_ADDR
12288 ada_unhandled_exception_name_addr_from_raise (void)
12289 {
12290 int frame_level;
12291 struct frame_info *fi;
12292 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12293
12294 /* To determine the name of this exception, we need to select
12295 the frame corresponding to RAISE_SYM_NAME. This frame is
12296 at least 3 levels up, so we simply skip the first 3 frames
12297 without checking the name of their associated function. */
12298 fi = get_current_frame ();
12299 for (frame_level = 0; frame_level < 3; frame_level += 1)
12300 if (fi != NULL)
12301 fi = get_prev_frame (fi);
12302
12303 while (fi != NULL)
12304 {
12305 enum language func_lang;
12306
12307 gdb::unique_xmalloc_ptr<char> func_name
12308 = find_frame_funname (fi, &func_lang, NULL);
12309 if (func_name != NULL)
12310 {
12311 if (strcmp (func_name.get (),
12312 data->exception_info->catch_exception_sym) == 0)
12313 break; /* We found the frame we were looking for... */
12314 fi = get_prev_frame (fi);
12315 }
12316 }
12317
12318 if (fi == NULL)
12319 return 0;
12320
12321 select_frame (fi);
12322 return parse_and_eval_address ("id.full_name");
12323 }
12324
12325 /* Assuming the inferior just triggered an Ada exception catchpoint
12326 (of any type), return the address in inferior memory where the name
12327 of the exception is stored, if applicable.
12328
12329 Assumes the selected frame is the current frame.
12330
12331 Return zero if the address could not be computed, or if not relevant. */
12332
12333 static CORE_ADDR
12334 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12335 struct breakpoint *b)
12336 {
12337 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12338
12339 switch (ex)
12340 {
12341 case ada_catch_exception:
12342 return (parse_and_eval_address ("e.full_name"));
12343 break;
12344
12345 case ada_catch_exception_unhandled:
12346 return data->exception_info->unhandled_exception_name_addr ();
12347 break;
12348
12349 case ada_catch_handlers:
12350 return 0; /* The runtimes does not provide access to the exception
12351 name. */
12352 break;
12353
12354 case ada_catch_assert:
12355 return 0; /* Exception name is not relevant in this case. */
12356 break;
12357
12358 default:
12359 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12360 break;
12361 }
12362
12363 return 0; /* Should never be reached. */
12364 }
12365
12366 /* Assuming the inferior is stopped at an exception catchpoint,
12367 return the message which was associated to the exception, if
12368 available. Return NULL if the message could not be retrieved.
12369
12370 The caller must xfree the string after use.
12371
12372 Note: The exception message can be associated to an exception
12373 either through the use of the Raise_Exception function, or
12374 more simply (Ada 2005 and later), via:
12375
12376 raise Exception_Name with "exception message";
12377
12378 */
12379
12380 static char *
12381 ada_exception_message_1 (void)
12382 {
12383 struct value *e_msg_val;
12384 char *e_msg = NULL;
12385 int e_msg_len;
12386 struct cleanup *cleanups;
12387
12388 /* For runtimes that support this feature, the exception message
12389 is passed as an unbounded string argument called "message". */
12390 e_msg_val = parse_and_eval ("message");
12391 if (e_msg_val == NULL)
12392 return NULL; /* Exception message not supported. */
12393
12394 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12395 gdb_assert (e_msg_val != NULL);
12396 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12397
12398 /* If the message string is empty, then treat it as if there was
12399 no exception message. */
12400 if (e_msg_len <= 0)
12401 return NULL;
12402
12403 e_msg = (char *) xmalloc (e_msg_len + 1);
12404 cleanups = make_cleanup (xfree, e_msg);
12405 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12406 e_msg[e_msg_len] = '\0';
12407
12408 discard_cleanups (cleanups);
12409 return e_msg;
12410 }
12411
12412 /* Same as ada_exception_message_1, except that all exceptions are
12413 contained here (returning NULL instead). */
12414
12415 static char *
12416 ada_exception_message (void)
12417 {
12418 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12419
12420 TRY
12421 {
12422 e_msg = ada_exception_message_1 ();
12423 }
12424 CATCH (e, RETURN_MASK_ERROR)
12425 {
12426 e_msg = NULL;
12427 }
12428 END_CATCH
12429
12430 return e_msg;
12431 }
12432
12433 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12434 any error that ada_exception_name_addr_1 might cause to be thrown.
12435 When an error is intercepted, a warning with the error message is printed,
12436 and zero is returned. */
12437
12438 static CORE_ADDR
12439 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12440 struct breakpoint *b)
12441 {
12442 CORE_ADDR result = 0;
12443
12444 TRY
12445 {
12446 result = ada_exception_name_addr_1 (ex, b);
12447 }
12448
12449 CATCH (e, RETURN_MASK_ERROR)
12450 {
12451 warning (_("failed to get exception name: %s"), e.message);
12452 return 0;
12453 }
12454 END_CATCH
12455
12456 return result;
12457 }
12458
12459 static char *ada_exception_catchpoint_cond_string
12460 (const char *excep_string,
12461 enum ada_exception_catchpoint_kind ex);
12462
12463 /* Ada catchpoints.
12464
12465 In the case of catchpoints on Ada exceptions, the catchpoint will
12466 stop the target on every exception the program throws. When a user
12467 specifies the name of a specific exception, we translate this
12468 request into a condition expression (in text form), and then parse
12469 it into an expression stored in each of the catchpoint's locations.
12470 We then use this condition to check whether the exception that was
12471 raised is the one the user is interested in. If not, then the
12472 target is resumed again. We store the name of the requested
12473 exception, in order to be able to re-set the condition expression
12474 when symbols change. */
12475
12476 /* An instance of this type is used to represent an Ada catchpoint
12477 breakpoint location. */
12478
12479 class ada_catchpoint_location : public bp_location
12480 {
12481 public:
12482 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12483 : bp_location (ops, owner)
12484 {}
12485
12486 /* The condition that checks whether the exception that was raised
12487 is the specific exception the user specified on catchpoint
12488 creation. */
12489 expression_up excep_cond_expr;
12490 };
12491
12492 /* Implement the DTOR method in the bp_location_ops structure for all
12493 Ada exception catchpoint kinds. */
12494
12495 static void
12496 ada_catchpoint_location_dtor (struct bp_location *bl)
12497 {
12498 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12499
12500 al->excep_cond_expr.reset ();
12501 }
12502
12503 /* The vtable to be used in Ada catchpoint locations. */
12504
12505 static const struct bp_location_ops ada_catchpoint_location_ops =
12506 {
12507 ada_catchpoint_location_dtor
12508 };
12509
12510 /* An instance of this type is used to represent an Ada catchpoint. */
12511
12512 struct ada_catchpoint : public breakpoint
12513 {
12514 ~ada_catchpoint () override;
12515
12516 /* The name of the specific exception the user specified. */
12517 char *excep_string;
12518 };
12519
12520 /* Parse the exception condition string in the context of each of the
12521 catchpoint's locations, and store them for later evaluation. */
12522
12523 static void
12524 create_excep_cond_exprs (struct ada_catchpoint *c,
12525 enum ada_exception_catchpoint_kind ex)
12526 {
12527 struct cleanup *old_chain;
12528 struct bp_location *bl;
12529 char *cond_string;
12530
12531 /* Nothing to do if there's no specific exception to catch. */
12532 if (c->excep_string == NULL)
12533 return;
12534
12535 /* Same if there are no locations... */
12536 if (c->loc == NULL)
12537 return;
12538
12539 /* Compute the condition expression in text form, from the specific
12540 expection we want to catch. */
12541 cond_string = ada_exception_catchpoint_cond_string (c->excep_string, ex);
12542 old_chain = make_cleanup (xfree, cond_string);
12543
12544 /* Iterate over all the catchpoint's locations, and parse an
12545 expression for each. */
12546 for (bl = c->loc; bl != NULL; bl = bl->next)
12547 {
12548 struct ada_catchpoint_location *ada_loc
12549 = (struct ada_catchpoint_location *) bl;
12550 expression_up exp;
12551
12552 if (!bl->shlib_disabled)
12553 {
12554 const char *s;
12555
12556 s = cond_string;
12557 TRY
12558 {
12559 exp = parse_exp_1 (&s, bl->address,
12560 block_for_pc (bl->address),
12561 0);
12562 }
12563 CATCH (e, RETURN_MASK_ERROR)
12564 {
12565 warning (_("failed to reevaluate internal exception condition "
12566 "for catchpoint %d: %s"),
12567 c->number, e.message);
12568 }
12569 END_CATCH
12570 }
12571
12572 ada_loc->excep_cond_expr = std::move (exp);
12573 }
12574
12575 do_cleanups (old_chain);
12576 }
12577
12578 /* ada_catchpoint destructor. */
12579
12580 ada_catchpoint::~ada_catchpoint ()
12581 {
12582 xfree (this->excep_string);
12583 }
12584
12585 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12586 structure for all exception catchpoint kinds. */
12587
12588 static struct bp_location *
12589 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12590 struct breakpoint *self)
12591 {
12592 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12593 }
12594
12595 /* Implement the RE_SET method in the breakpoint_ops structure for all
12596 exception catchpoint kinds. */
12597
12598 static void
12599 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12600 {
12601 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12602
12603 /* Call the base class's method. This updates the catchpoint's
12604 locations. */
12605 bkpt_breakpoint_ops.re_set (b);
12606
12607 /* Reparse the exception conditional expressions. One for each
12608 location. */
12609 create_excep_cond_exprs (c, ex);
12610 }
12611
12612 /* Returns true if we should stop for this breakpoint hit. If the
12613 user specified a specific exception, we only want to cause a stop
12614 if the program thrown that exception. */
12615
12616 static int
12617 should_stop_exception (const struct bp_location *bl)
12618 {
12619 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12620 const struct ada_catchpoint_location *ada_loc
12621 = (const struct ada_catchpoint_location *) bl;
12622 int stop;
12623
12624 /* With no specific exception, should always stop. */
12625 if (c->excep_string == NULL)
12626 return 1;
12627
12628 if (ada_loc->excep_cond_expr == NULL)
12629 {
12630 /* We will have a NULL expression if back when we were creating
12631 the expressions, this location's had failed to parse. */
12632 return 1;
12633 }
12634
12635 stop = 1;
12636 TRY
12637 {
12638 struct value *mark;
12639
12640 mark = value_mark ();
12641 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12642 value_free_to_mark (mark);
12643 }
12644 CATCH (ex, RETURN_MASK_ALL)
12645 {
12646 exception_fprintf (gdb_stderr, ex,
12647 _("Error in testing exception condition:\n"));
12648 }
12649 END_CATCH
12650
12651 return stop;
12652 }
12653
12654 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12655 for all exception catchpoint kinds. */
12656
12657 static void
12658 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12659 {
12660 bs->stop = should_stop_exception (bs->bp_location_at);
12661 }
12662
12663 /* Implement the PRINT_IT method in the breakpoint_ops structure
12664 for all exception catchpoint kinds. */
12665
12666 static enum print_stop_action
12667 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12668 {
12669 struct ui_out *uiout = current_uiout;
12670 struct breakpoint *b = bs->breakpoint_at;
12671 char *exception_message;
12672
12673 annotate_catchpoint (b->number);
12674
12675 if (uiout->is_mi_like_p ())
12676 {
12677 uiout->field_string ("reason",
12678 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12679 uiout->field_string ("disp", bpdisp_text (b->disposition));
12680 }
12681
12682 uiout->text (b->disposition == disp_del
12683 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12684 uiout->field_int ("bkptno", b->number);
12685 uiout->text (", ");
12686
12687 /* ada_exception_name_addr relies on the selected frame being the
12688 current frame. Need to do this here because this function may be
12689 called more than once when printing a stop, and below, we'll
12690 select the first frame past the Ada run-time (see
12691 ada_find_printable_frame). */
12692 select_frame (get_current_frame ());
12693
12694 switch (ex)
12695 {
12696 case ada_catch_exception:
12697 case ada_catch_exception_unhandled:
12698 case ada_catch_handlers:
12699 {
12700 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12701 char exception_name[256];
12702
12703 if (addr != 0)
12704 {
12705 read_memory (addr, (gdb_byte *) exception_name,
12706 sizeof (exception_name) - 1);
12707 exception_name [sizeof (exception_name) - 1] = '\0';
12708 }
12709 else
12710 {
12711 /* For some reason, we were unable to read the exception
12712 name. This could happen if the Runtime was compiled
12713 without debugging info, for instance. In that case,
12714 just replace the exception name by the generic string
12715 "exception" - it will read as "an exception" in the
12716 notification we are about to print. */
12717 memcpy (exception_name, "exception", sizeof ("exception"));
12718 }
12719 /* In the case of unhandled exception breakpoints, we print
12720 the exception name as "unhandled EXCEPTION_NAME", to make
12721 it clearer to the user which kind of catchpoint just got
12722 hit. We used ui_out_text to make sure that this extra
12723 info does not pollute the exception name in the MI case. */
12724 if (ex == ada_catch_exception_unhandled)
12725 uiout->text ("unhandled ");
12726 uiout->field_string ("exception-name", exception_name);
12727 }
12728 break;
12729 case ada_catch_assert:
12730 /* In this case, the name of the exception is not really
12731 important. Just print "failed assertion" to make it clearer
12732 that his program just hit an assertion-failure catchpoint.
12733 We used ui_out_text because this info does not belong in
12734 the MI output. */
12735 uiout->text ("failed assertion");
12736 break;
12737 }
12738
12739 exception_message = ada_exception_message ();
12740 if (exception_message != NULL)
12741 {
12742 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12743
12744 uiout->text (" (");
12745 uiout->field_string ("exception-message", exception_message);
12746 uiout->text (")");
12747
12748 do_cleanups (cleanups);
12749 }
12750
12751 uiout->text (" at ");
12752 ada_find_printable_frame (get_current_frame ());
12753
12754 return PRINT_SRC_AND_LOC;
12755 }
12756
12757 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12758 for all exception catchpoint kinds. */
12759
12760 static void
12761 print_one_exception (enum ada_exception_catchpoint_kind ex,
12762 struct breakpoint *b, struct bp_location **last_loc)
12763 {
12764 struct ui_out *uiout = current_uiout;
12765 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12766 struct value_print_options opts;
12767
12768 get_user_print_options (&opts);
12769 if (opts.addressprint)
12770 {
12771 annotate_field (4);
12772 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12773 }
12774
12775 annotate_field (5);
12776 *last_loc = b->loc;
12777 switch (ex)
12778 {
12779 case ada_catch_exception:
12780 if (c->excep_string != NULL)
12781 {
12782 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12783
12784 uiout->field_string ("what", msg);
12785 xfree (msg);
12786 }
12787 else
12788 uiout->field_string ("what", "all Ada exceptions");
12789
12790 break;
12791
12792 case ada_catch_exception_unhandled:
12793 uiout->field_string ("what", "unhandled Ada exceptions");
12794 break;
12795
12796 case ada_catch_handlers:
12797 if (c->excep_string != NULL)
12798 {
12799 uiout->field_fmt ("what",
12800 _("`%s' Ada exception handlers"),
12801 c->excep_string);
12802 }
12803 else
12804 uiout->field_string ("what", "all Ada exceptions handlers");
12805 break;
12806
12807 case ada_catch_assert:
12808 uiout->field_string ("what", "failed Ada assertions");
12809 break;
12810
12811 default:
12812 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12813 break;
12814 }
12815 }
12816
12817 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12818 for all exception catchpoint kinds. */
12819
12820 static void
12821 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12822 struct breakpoint *b)
12823 {
12824 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12825 struct ui_out *uiout = current_uiout;
12826
12827 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12828 : _("Catchpoint "));
12829 uiout->field_int ("bkptno", b->number);
12830 uiout->text (": ");
12831
12832 switch (ex)
12833 {
12834 case ada_catch_exception:
12835 if (c->excep_string != NULL)
12836 {
12837 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12838 struct cleanup *old_chain = make_cleanup (xfree, info);
12839
12840 uiout->text (info);
12841 do_cleanups (old_chain);
12842 }
12843 else
12844 uiout->text (_("all Ada exceptions"));
12845 break;
12846
12847 case ada_catch_exception_unhandled:
12848 uiout->text (_("unhandled Ada exceptions"));
12849 break;
12850
12851 case ada_catch_handlers:
12852 if (c->excep_string != NULL)
12853 {
12854 std::string info
12855 = string_printf (_("`%s' Ada exception handlers"),
12856 c->excep_string);
12857 uiout->text (info.c_str ());
12858 }
12859 else
12860 uiout->text (_("all Ada exceptions handlers"));
12861 break;
12862
12863 case ada_catch_assert:
12864 uiout->text (_("failed Ada assertions"));
12865 break;
12866
12867 default:
12868 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12869 break;
12870 }
12871 }
12872
12873 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12874 for all exception catchpoint kinds. */
12875
12876 static void
12877 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12878 struct breakpoint *b, struct ui_file *fp)
12879 {
12880 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12881
12882 switch (ex)
12883 {
12884 case ada_catch_exception:
12885 fprintf_filtered (fp, "catch exception");
12886 if (c->excep_string != NULL)
12887 fprintf_filtered (fp, " %s", c->excep_string);
12888 break;
12889
12890 case ada_catch_exception_unhandled:
12891 fprintf_filtered (fp, "catch exception unhandled");
12892 break;
12893
12894 case ada_catch_handlers:
12895 fprintf_filtered (fp, "catch handlers");
12896 break;
12897
12898 case ada_catch_assert:
12899 fprintf_filtered (fp, "catch assert");
12900 break;
12901
12902 default:
12903 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12904 }
12905 print_recreate_thread (b, fp);
12906 }
12907
12908 /* Virtual table for "catch exception" breakpoints. */
12909
12910 static struct bp_location *
12911 allocate_location_catch_exception (struct breakpoint *self)
12912 {
12913 return allocate_location_exception (ada_catch_exception, self);
12914 }
12915
12916 static void
12917 re_set_catch_exception (struct breakpoint *b)
12918 {
12919 re_set_exception (ada_catch_exception, b);
12920 }
12921
12922 static void
12923 check_status_catch_exception (bpstat bs)
12924 {
12925 check_status_exception (ada_catch_exception, bs);
12926 }
12927
12928 static enum print_stop_action
12929 print_it_catch_exception (bpstat bs)
12930 {
12931 return print_it_exception (ada_catch_exception, bs);
12932 }
12933
12934 static void
12935 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12936 {
12937 print_one_exception (ada_catch_exception, b, last_loc);
12938 }
12939
12940 static void
12941 print_mention_catch_exception (struct breakpoint *b)
12942 {
12943 print_mention_exception (ada_catch_exception, b);
12944 }
12945
12946 static void
12947 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12948 {
12949 print_recreate_exception (ada_catch_exception, b, fp);
12950 }
12951
12952 static struct breakpoint_ops catch_exception_breakpoint_ops;
12953
12954 /* Virtual table for "catch exception unhandled" breakpoints. */
12955
12956 static struct bp_location *
12957 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12958 {
12959 return allocate_location_exception (ada_catch_exception_unhandled, self);
12960 }
12961
12962 static void
12963 re_set_catch_exception_unhandled (struct breakpoint *b)
12964 {
12965 re_set_exception (ada_catch_exception_unhandled, b);
12966 }
12967
12968 static void
12969 check_status_catch_exception_unhandled (bpstat bs)
12970 {
12971 check_status_exception (ada_catch_exception_unhandled, bs);
12972 }
12973
12974 static enum print_stop_action
12975 print_it_catch_exception_unhandled (bpstat bs)
12976 {
12977 return print_it_exception (ada_catch_exception_unhandled, bs);
12978 }
12979
12980 static void
12981 print_one_catch_exception_unhandled (struct breakpoint *b,
12982 struct bp_location **last_loc)
12983 {
12984 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12985 }
12986
12987 static void
12988 print_mention_catch_exception_unhandled (struct breakpoint *b)
12989 {
12990 print_mention_exception (ada_catch_exception_unhandled, b);
12991 }
12992
12993 static void
12994 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12995 struct ui_file *fp)
12996 {
12997 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12998 }
12999
13000 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
13001
13002 /* Virtual table for "catch assert" breakpoints. */
13003
13004 static struct bp_location *
13005 allocate_location_catch_assert (struct breakpoint *self)
13006 {
13007 return allocate_location_exception (ada_catch_assert, self);
13008 }
13009
13010 static void
13011 re_set_catch_assert (struct breakpoint *b)
13012 {
13013 re_set_exception (ada_catch_assert, b);
13014 }
13015
13016 static void
13017 check_status_catch_assert (bpstat bs)
13018 {
13019 check_status_exception (ada_catch_assert, bs);
13020 }
13021
13022 static enum print_stop_action
13023 print_it_catch_assert (bpstat bs)
13024 {
13025 return print_it_exception (ada_catch_assert, bs);
13026 }
13027
13028 static void
13029 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
13030 {
13031 print_one_exception (ada_catch_assert, b, last_loc);
13032 }
13033
13034 static void
13035 print_mention_catch_assert (struct breakpoint *b)
13036 {
13037 print_mention_exception (ada_catch_assert, b);
13038 }
13039
13040 static void
13041 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
13042 {
13043 print_recreate_exception (ada_catch_assert, b, fp);
13044 }
13045
13046 static struct breakpoint_ops catch_assert_breakpoint_ops;
13047
13048 /* Virtual table for "catch handlers" breakpoints. */
13049
13050 static struct bp_location *
13051 allocate_location_catch_handlers (struct breakpoint *self)
13052 {
13053 return allocate_location_exception (ada_catch_handlers, self);
13054 }
13055
13056 static void
13057 re_set_catch_handlers (struct breakpoint *b)
13058 {
13059 re_set_exception (ada_catch_handlers, b);
13060 }
13061
13062 static void
13063 check_status_catch_handlers (bpstat bs)
13064 {
13065 check_status_exception (ada_catch_handlers, bs);
13066 }
13067
13068 static enum print_stop_action
13069 print_it_catch_handlers (bpstat bs)
13070 {
13071 return print_it_exception (ada_catch_handlers, bs);
13072 }
13073
13074 static void
13075 print_one_catch_handlers (struct breakpoint *b,
13076 struct bp_location **last_loc)
13077 {
13078 print_one_exception (ada_catch_handlers, b, last_loc);
13079 }
13080
13081 static void
13082 print_mention_catch_handlers (struct breakpoint *b)
13083 {
13084 print_mention_exception (ada_catch_handlers, b);
13085 }
13086
13087 static void
13088 print_recreate_catch_handlers (struct breakpoint *b,
13089 struct ui_file *fp)
13090 {
13091 print_recreate_exception (ada_catch_handlers, b, fp);
13092 }
13093
13094 static struct breakpoint_ops catch_handlers_breakpoint_ops;
13095
13096 /* Return a newly allocated copy of the first space-separated token
13097 in ARGSP, and then adjust ARGSP to point immediately after that
13098 token.
13099
13100 Return NULL if ARGPS does not contain any more tokens. */
13101
13102 static char *
13103 ada_get_next_arg (const char **argsp)
13104 {
13105 const char *args = *argsp;
13106 const char *end;
13107 char *result;
13108
13109 args = skip_spaces (args);
13110 if (args[0] == '\0')
13111 return NULL; /* No more arguments. */
13112
13113 /* Find the end of the current argument. */
13114
13115 end = skip_to_space (args);
13116
13117 /* Adjust ARGSP to point to the start of the next argument. */
13118
13119 *argsp = end;
13120
13121 /* Make a copy of the current argument and return it. */
13122
13123 result = (char *) xmalloc (end - args + 1);
13124 strncpy (result, args, end - args);
13125 result[end - args] = '\0';
13126
13127 return result;
13128 }
13129
13130 /* Split the arguments specified in a "catch exception" command.
13131 Set EX to the appropriate catchpoint type.
13132 Set EXCEP_STRING to the name of the specific exception if
13133 specified by the user.
13134 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13135 "catch handlers" command. False otherwise.
13136 If a condition is found at the end of the arguments, the condition
13137 expression is stored in COND_STRING (memory must be deallocated
13138 after use). Otherwise COND_STRING is set to NULL. */
13139
13140 static void
13141 catch_ada_exception_command_split (const char *args,
13142 bool is_catch_handlers_cmd,
13143 enum ada_exception_catchpoint_kind *ex,
13144 char **excep_string,
13145 char **cond_string)
13146 {
13147 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
13148 char *exception_name;
13149 char *cond = NULL;
13150
13151 exception_name = ada_get_next_arg (&args);
13152 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
13153 {
13154 /* This is not an exception name; this is the start of a condition
13155 expression for a catchpoint on all exceptions. So, "un-get"
13156 this token, and set exception_name to NULL. */
13157 xfree (exception_name);
13158 exception_name = NULL;
13159 args -= 2;
13160 }
13161 make_cleanup (xfree, exception_name);
13162
13163 /* Check to see if we have a condition. */
13164
13165 args = skip_spaces (args);
13166 if (startswith (args, "if")
13167 && (isspace (args[2]) || args[2] == '\0'))
13168 {
13169 args += 2;
13170 args = skip_spaces (args);
13171
13172 if (args[0] == '\0')
13173 error (_("Condition missing after `if' keyword"));
13174 cond = xstrdup (args);
13175 make_cleanup (xfree, cond);
13176
13177 args += strlen (args);
13178 }
13179
13180 /* Check that we do not have any more arguments. Anything else
13181 is unexpected. */
13182
13183 if (args[0] != '\0')
13184 error (_("Junk at end of expression"));
13185
13186 discard_cleanups (old_chain);
13187
13188 if (is_catch_handlers_cmd)
13189 {
13190 /* Catch handling of exceptions. */
13191 *ex = ada_catch_handlers;
13192 *excep_string = exception_name;
13193 }
13194 else if (exception_name == NULL)
13195 {
13196 /* Catch all exceptions. */
13197 *ex = ada_catch_exception;
13198 *excep_string = NULL;
13199 }
13200 else if (strcmp (exception_name, "unhandled") == 0)
13201 {
13202 /* Catch unhandled exceptions. */
13203 *ex = ada_catch_exception_unhandled;
13204 *excep_string = NULL;
13205 }
13206 else
13207 {
13208 /* Catch a specific exception. */
13209 *ex = ada_catch_exception;
13210 *excep_string = exception_name;
13211 }
13212 *cond_string = cond;
13213 }
13214
13215 /* Return the name of the symbol on which we should break in order to
13216 implement a catchpoint of the EX kind. */
13217
13218 static const char *
13219 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13220 {
13221 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13222
13223 gdb_assert (data->exception_info != NULL);
13224
13225 switch (ex)
13226 {
13227 case ada_catch_exception:
13228 return (data->exception_info->catch_exception_sym);
13229 break;
13230 case ada_catch_exception_unhandled:
13231 return (data->exception_info->catch_exception_unhandled_sym);
13232 break;
13233 case ada_catch_assert:
13234 return (data->exception_info->catch_assert_sym);
13235 break;
13236 case ada_catch_handlers:
13237 return (data->exception_info->catch_handlers_sym);
13238 break;
13239 default:
13240 internal_error (__FILE__, __LINE__,
13241 _("unexpected catchpoint kind (%d)"), ex);
13242 }
13243 }
13244
13245 /* Return the breakpoint ops "virtual table" used for catchpoints
13246 of the EX kind. */
13247
13248 static const struct breakpoint_ops *
13249 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13250 {
13251 switch (ex)
13252 {
13253 case ada_catch_exception:
13254 return (&catch_exception_breakpoint_ops);
13255 break;
13256 case ada_catch_exception_unhandled:
13257 return (&catch_exception_unhandled_breakpoint_ops);
13258 break;
13259 case ada_catch_assert:
13260 return (&catch_assert_breakpoint_ops);
13261 break;
13262 case ada_catch_handlers:
13263 return (&catch_handlers_breakpoint_ops);
13264 break;
13265 default:
13266 internal_error (__FILE__, __LINE__,
13267 _("unexpected catchpoint kind (%d)"), ex);
13268 }
13269 }
13270
13271 /* Return the condition that will be used to match the current exception
13272 being raised with the exception that the user wants to catch. This
13273 assumes that this condition is used when the inferior just triggered
13274 an exception catchpoint.
13275 EX: the type of catchpoints used for catching Ada exceptions.
13276
13277 The string returned is a newly allocated string that needs to be
13278 deallocated later. */
13279
13280 static char *
13281 ada_exception_catchpoint_cond_string (const char *excep_string,
13282 enum ada_exception_catchpoint_kind ex)
13283 {
13284 int i;
13285 bool is_standard_exc = false;
13286 const char *actual_exc_expr;
13287 char *ref_exc_expr;
13288
13289 if (ex == ada_catch_handlers)
13290 {
13291 /* For exception handlers catchpoints, the condition string does
13292 not use the same parameter as for the other exceptions. */
13293 actual_exc_expr = ("long_integer (GNAT_GCC_exception_Access"
13294 "(gcc_exception).all.occurrence.id)");
13295 }
13296 else
13297 actual_exc_expr = "long_integer (e)";
13298
13299 /* The standard exceptions are a special case. They are defined in
13300 runtime units that have been compiled without debugging info; if
13301 EXCEP_STRING is the not-fully-qualified name of a standard
13302 exception (e.g. "constraint_error") then, during the evaluation
13303 of the condition expression, the symbol lookup on this name would
13304 *not* return this standard exception. The catchpoint condition
13305 may then be set only on user-defined exceptions which have the
13306 same not-fully-qualified name (e.g. my_package.constraint_error).
13307
13308 To avoid this unexcepted behavior, these standard exceptions are
13309 systematically prefixed by "standard". This means that "catch
13310 exception constraint_error" is rewritten into "catch exception
13311 standard.constraint_error".
13312
13313 If an exception named contraint_error is defined in another package of
13314 the inferior program, then the only way to specify this exception as a
13315 breakpoint condition is to use its fully-qualified named:
13316 e.g. my_package.constraint_error. */
13317
13318 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13319 {
13320 if (strcmp (standard_exc [i], excep_string) == 0)
13321 {
13322 is_standard_exc = true;
13323 break;
13324 }
13325 }
13326
13327 if (is_standard_exc)
13328 ref_exc_expr = xstrprintf ("long_integer (&standard.%s)", excep_string);
13329 else
13330 ref_exc_expr = xstrprintf ("long_integer (&%s)", excep_string);
13331
13332 char *result = xstrprintf ("%s = %s", actual_exc_expr, ref_exc_expr);
13333 xfree (ref_exc_expr);
13334 return result;
13335 }
13336
13337 /* Return the symtab_and_line that should be used to insert an exception
13338 catchpoint of the TYPE kind.
13339
13340 EXCEP_STRING should contain the name of a specific exception that
13341 the catchpoint should catch, or NULL otherwise.
13342
13343 ADDR_STRING returns the name of the function where the real
13344 breakpoint that implements the catchpoints is set, depending on the
13345 type of catchpoint we need to create. */
13346
13347 static struct symtab_and_line
13348 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13349 const char **addr_string, const struct breakpoint_ops **ops)
13350 {
13351 const char *sym_name;
13352 struct symbol *sym;
13353
13354 /* First, find out which exception support info to use. */
13355 ada_exception_support_info_sniffer ();
13356
13357 /* Then lookup the function on which we will break in order to catch
13358 the Ada exceptions requested by the user. */
13359 sym_name = ada_exception_sym_name (ex);
13360 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13361
13362 /* We can assume that SYM is not NULL at this stage. If the symbol
13363 did not exist, ada_exception_support_info_sniffer would have
13364 raised an exception.
13365
13366 Also, ada_exception_support_info_sniffer should have already
13367 verified that SYM is a function symbol. */
13368 gdb_assert (sym != NULL);
13369 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13370
13371 /* Set ADDR_STRING. */
13372 *addr_string = xstrdup (sym_name);
13373
13374 /* Set OPS. */
13375 *ops = ada_exception_breakpoint_ops (ex);
13376
13377 return find_function_start_sal (sym, 1);
13378 }
13379
13380 /* Create an Ada exception catchpoint.
13381
13382 EX_KIND is the kind of exception catchpoint to be created.
13383
13384 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13385 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13386 of the exception to which this catchpoint applies. When not NULL,
13387 the string must be allocated on the heap, and its deallocation
13388 is no longer the responsibility of the caller.
13389
13390 COND_STRING, if not NULL, is the catchpoint condition. This string
13391 must be allocated on the heap, and its deallocation is no longer
13392 the responsibility of the caller.
13393
13394 TEMPFLAG, if nonzero, means that the underlying breakpoint
13395 should be temporary.
13396
13397 FROM_TTY is the usual argument passed to all commands implementations. */
13398
13399 void
13400 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13401 enum ada_exception_catchpoint_kind ex_kind,
13402 char *excep_string,
13403 char *cond_string,
13404 int tempflag,
13405 int disabled,
13406 int from_tty)
13407 {
13408 const char *addr_string = NULL;
13409 const struct breakpoint_ops *ops = NULL;
13410 struct symtab_and_line sal
13411 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13412
13413 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13414 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13415 ops, tempflag, disabled, from_tty);
13416 c->excep_string = excep_string;
13417 create_excep_cond_exprs (c.get (), ex_kind);
13418 if (cond_string != NULL)
13419 set_breakpoint_condition (c.get (), cond_string, from_tty);
13420 install_breakpoint (0, std::move (c), 1);
13421 }
13422
13423 /* Implement the "catch exception" command. */
13424
13425 static void
13426 catch_ada_exception_command (const char *arg_entry, int from_tty,
13427 struct cmd_list_element *command)
13428 {
13429 const char *arg = arg_entry;
13430 struct gdbarch *gdbarch = get_current_arch ();
13431 int tempflag;
13432 enum ada_exception_catchpoint_kind ex_kind;
13433 char *excep_string = NULL;
13434 char *cond_string = NULL;
13435
13436 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13437
13438 if (!arg)
13439 arg = "";
13440 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13441 &cond_string);
13442 create_ada_exception_catchpoint (gdbarch, ex_kind,
13443 excep_string, cond_string,
13444 tempflag, 1 /* enabled */,
13445 from_tty);
13446 }
13447
13448 /* Implement the "catch handlers" command. */
13449
13450 static void
13451 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13452 struct cmd_list_element *command)
13453 {
13454 const char *arg = arg_entry;
13455 struct gdbarch *gdbarch = get_current_arch ();
13456 int tempflag;
13457 enum ada_exception_catchpoint_kind ex_kind;
13458 char *excep_string = NULL;
13459 char *cond_string = NULL;
13460
13461 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13462
13463 if (!arg)
13464 arg = "";
13465 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13466 &cond_string);
13467 create_ada_exception_catchpoint (gdbarch, ex_kind,
13468 excep_string, cond_string,
13469 tempflag, 1 /* enabled */,
13470 from_tty);
13471 }
13472
13473 /* Split the arguments specified in a "catch assert" command.
13474
13475 ARGS contains the command's arguments (or the empty string if
13476 no arguments were passed).
13477
13478 If ARGS contains a condition, set COND_STRING to that condition
13479 (the memory needs to be deallocated after use). */
13480
13481 static void
13482 catch_ada_assert_command_split (const char *args, char **cond_string)
13483 {
13484 args = skip_spaces (args);
13485
13486 /* Check whether a condition was provided. */
13487 if (startswith (args, "if")
13488 && (isspace (args[2]) || args[2] == '\0'))
13489 {
13490 args += 2;
13491 args = skip_spaces (args);
13492 if (args[0] == '\0')
13493 error (_("condition missing after `if' keyword"));
13494 *cond_string = xstrdup (args);
13495 }
13496
13497 /* Otherwise, there should be no other argument at the end of
13498 the command. */
13499 else if (args[0] != '\0')
13500 error (_("Junk at end of arguments."));
13501 }
13502
13503 /* Implement the "catch assert" command. */
13504
13505 static void
13506 catch_assert_command (const char *arg_entry, int from_tty,
13507 struct cmd_list_element *command)
13508 {
13509 const char *arg = arg_entry;
13510 struct gdbarch *gdbarch = get_current_arch ();
13511 int tempflag;
13512 char *cond_string = NULL;
13513
13514 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13515
13516 if (!arg)
13517 arg = "";
13518 catch_ada_assert_command_split (arg, &cond_string);
13519 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13520 NULL, cond_string,
13521 tempflag, 1 /* enabled */,
13522 from_tty);
13523 }
13524
13525 /* Return non-zero if the symbol SYM is an Ada exception object. */
13526
13527 static int
13528 ada_is_exception_sym (struct symbol *sym)
13529 {
13530 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13531
13532 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13533 && SYMBOL_CLASS (sym) != LOC_BLOCK
13534 && SYMBOL_CLASS (sym) != LOC_CONST
13535 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13536 && type_name != NULL && strcmp (type_name, "exception") == 0);
13537 }
13538
13539 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13540 Ada exception object. This matches all exceptions except the ones
13541 defined by the Ada language. */
13542
13543 static int
13544 ada_is_non_standard_exception_sym (struct symbol *sym)
13545 {
13546 int i;
13547
13548 if (!ada_is_exception_sym (sym))
13549 return 0;
13550
13551 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13552 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13553 return 0; /* A standard exception. */
13554
13555 /* Numeric_Error is also a standard exception, so exclude it.
13556 See the STANDARD_EXC description for more details as to why
13557 this exception is not listed in that array. */
13558 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13559 return 0;
13560
13561 return 1;
13562 }
13563
13564 /* A helper function for std::sort, comparing two struct ada_exc_info
13565 objects.
13566
13567 The comparison is determined first by exception name, and then
13568 by exception address. */
13569
13570 bool
13571 ada_exc_info::operator< (const ada_exc_info &other) const
13572 {
13573 int result;
13574
13575 result = strcmp (name, other.name);
13576 if (result < 0)
13577 return true;
13578 if (result == 0 && addr < other.addr)
13579 return true;
13580 return false;
13581 }
13582
13583 bool
13584 ada_exc_info::operator== (const ada_exc_info &other) const
13585 {
13586 return addr == other.addr && strcmp (name, other.name) == 0;
13587 }
13588
13589 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13590 routine, but keeping the first SKIP elements untouched.
13591
13592 All duplicates are also removed. */
13593
13594 static void
13595 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13596 int skip)
13597 {
13598 std::sort (exceptions->begin () + skip, exceptions->end ());
13599 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13600 exceptions->end ());
13601 }
13602
13603 /* Add all exceptions defined by the Ada standard whose name match
13604 a regular expression.
13605
13606 If PREG is not NULL, then this regexp_t object is used to
13607 perform the symbol name matching. Otherwise, no name-based
13608 filtering is performed.
13609
13610 EXCEPTIONS is a vector of exceptions to which matching exceptions
13611 gets pushed. */
13612
13613 static void
13614 ada_add_standard_exceptions (compiled_regex *preg,
13615 std::vector<ada_exc_info> *exceptions)
13616 {
13617 int i;
13618
13619 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13620 {
13621 if (preg == NULL
13622 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13623 {
13624 struct bound_minimal_symbol msymbol
13625 = ada_lookup_simple_minsym (standard_exc[i]);
13626
13627 if (msymbol.minsym != NULL)
13628 {
13629 struct ada_exc_info info
13630 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13631
13632 exceptions->push_back (info);
13633 }
13634 }
13635 }
13636 }
13637
13638 /* Add all Ada exceptions defined locally and accessible from the given
13639 FRAME.
13640
13641 If PREG is not NULL, then this regexp_t object is used to
13642 perform the symbol name matching. Otherwise, no name-based
13643 filtering is performed.
13644
13645 EXCEPTIONS is a vector of exceptions to which matching exceptions
13646 gets pushed. */
13647
13648 static void
13649 ada_add_exceptions_from_frame (compiled_regex *preg,
13650 struct frame_info *frame,
13651 std::vector<ada_exc_info> *exceptions)
13652 {
13653 const struct block *block = get_frame_block (frame, 0);
13654
13655 while (block != 0)
13656 {
13657 struct block_iterator iter;
13658 struct symbol *sym;
13659
13660 ALL_BLOCK_SYMBOLS (block, iter, sym)
13661 {
13662 switch (SYMBOL_CLASS (sym))
13663 {
13664 case LOC_TYPEDEF:
13665 case LOC_BLOCK:
13666 case LOC_CONST:
13667 break;
13668 default:
13669 if (ada_is_exception_sym (sym))
13670 {
13671 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13672 SYMBOL_VALUE_ADDRESS (sym)};
13673
13674 exceptions->push_back (info);
13675 }
13676 }
13677 }
13678 if (BLOCK_FUNCTION (block) != NULL)
13679 break;
13680 block = BLOCK_SUPERBLOCK (block);
13681 }
13682 }
13683
13684 /* Return true if NAME matches PREG or if PREG is NULL. */
13685
13686 static bool
13687 name_matches_regex (const char *name, compiled_regex *preg)
13688 {
13689 return (preg == NULL
13690 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13691 }
13692
13693 /* Add all exceptions defined globally whose name name match
13694 a regular expression, excluding standard exceptions.
13695
13696 The reason we exclude standard exceptions is that they need
13697 to be handled separately: Standard exceptions are defined inside
13698 a runtime unit which is normally not compiled with debugging info,
13699 and thus usually do not show up in our symbol search. However,
13700 if the unit was in fact built with debugging info, we need to
13701 exclude them because they would duplicate the entry we found
13702 during the special loop that specifically searches for those
13703 standard exceptions.
13704
13705 If PREG is not NULL, then this regexp_t object is used to
13706 perform the symbol name matching. Otherwise, no name-based
13707 filtering is performed.
13708
13709 EXCEPTIONS is a vector of exceptions to which matching exceptions
13710 gets pushed. */
13711
13712 static void
13713 ada_add_global_exceptions (compiled_regex *preg,
13714 std::vector<ada_exc_info> *exceptions)
13715 {
13716 struct objfile *objfile;
13717 struct compunit_symtab *s;
13718
13719 /* In Ada, the symbol "search name" is a linkage name, whereas the
13720 regular expression used to do the matching refers to the natural
13721 name. So match against the decoded name. */
13722 expand_symtabs_matching (NULL,
13723 lookup_name_info::match_any (),
13724 [&] (const char *search_name)
13725 {
13726 const char *decoded = ada_decode (search_name);
13727 return name_matches_regex (decoded, preg);
13728 },
13729 NULL,
13730 VARIABLES_DOMAIN);
13731
13732 ALL_COMPUNITS (objfile, s)
13733 {
13734 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13735 int i;
13736
13737 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13738 {
13739 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13740 struct block_iterator iter;
13741 struct symbol *sym;
13742
13743 ALL_BLOCK_SYMBOLS (b, iter, sym)
13744 if (ada_is_non_standard_exception_sym (sym)
13745 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13746 {
13747 struct ada_exc_info info
13748 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13749
13750 exceptions->push_back (info);
13751 }
13752 }
13753 }
13754 }
13755
13756 /* Implements ada_exceptions_list with the regular expression passed
13757 as a regex_t, rather than a string.
13758
13759 If not NULL, PREG is used to filter out exceptions whose names
13760 do not match. Otherwise, all exceptions are listed. */
13761
13762 static std::vector<ada_exc_info>
13763 ada_exceptions_list_1 (compiled_regex *preg)
13764 {
13765 std::vector<ada_exc_info> result;
13766 int prev_len;
13767
13768 /* First, list the known standard exceptions. These exceptions
13769 need to be handled separately, as they are usually defined in
13770 runtime units that have been compiled without debugging info. */
13771
13772 ada_add_standard_exceptions (preg, &result);
13773
13774 /* Next, find all exceptions whose scope is local and accessible
13775 from the currently selected frame. */
13776
13777 if (has_stack_frames ())
13778 {
13779 prev_len = result.size ();
13780 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13781 &result);
13782 if (result.size () > prev_len)
13783 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13784 }
13785
13786 /* Add all exceptions whose scope is global. */
13787
13788 prev_len = result.size ();
13789 ada_add_global_exceptions (preg, &result);
13790 if (result.size () > prev_len)
13791 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13792
13793 return result;
13794 }
13795
13796 /* Return a vector of ada_exc_info.
13797
13798 If REGEXP is NULL, all exceptions are included in the result.
13799 Otherwise, it should contain a valid regular expression,
13800 and only the exceptions whose names match that regular expression
13801 are included in the result.
13802
13803 The exceptions are sorted in the following order:
13804 - Standard exceptions (defined by the Ada language), in
13805 alphabetical order;
13806 - Exceptions only visible from the current frame, in
13807 alphabetical order;
13808 - Exceptions whose scope is global, in alphabetical order. */
13809
13810 std::vector<ada_exc_info>
13811 ada_exceptions_list (const char *regexp)
13812 {
13813 if (regexp == NULL)
13814 return ada_exceptions_list_1 (NULL);
13815
13816 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13817 return ada_exceptions_list_1 (&reg);
13818 }
13819
13820 /* Implement the "info exceptions" command. */
13821
13822 static void
13823 info_exceptions_command (const char *regexp, int from_tty)
13824 {
13825 struct gdbarch *gdbarch = get_current_arch ();
13826
13827 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13828
13829 if (regexp != NULL)
13830 printf_filtered
13831 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13832 else
13833 printf_filtered (_("All defined Ada exceptions:\n"));
13834
13835 for (const ada_exc_info &info : exceptions)
13836 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13837 }
13838
13839 /* Operators */
13840 /* Information about operators given special treatment in functions
13841 below. */
13842 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13843
13844 #define ADA_OPERATORS \
13845 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13846 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13847 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13848 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13849 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13850 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13851 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13852 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13853 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13854 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13855 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13856 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13857 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13858 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13859 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13860 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13861 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13862 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13863 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13864
13865 static void
13866 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13867 int *argsp)
13868 {
13869 switch (exp->elts[pc - 1].opcode)
13870 {
13871 default:
13872 operator_length_standard (exp, pc, oplenp, argsp);
13873 break;
13874
13875 #define OP_DEFN(op, len, args, binop) \
13876 case op: *oplenp = len; *argsp = args; break;
13877 ADA_OPERATORS;
13878 #undef OP_DEFN
13879
13880 case OP_AGGREGATE:
13881 *oplenp = 3;
13882 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13883 break;
13884
13885 case OP_CHOICES:
13886 *oplenp = 3;
13887 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13888 break;
13889 }
13890 }
13891
13892 /* Implementation of the exp_descriptor method operator_check. */
13893
13894 static int
13895 ada_operator_check (struct expression *exp, int pos,
13896 int (*objfile_func) (struct objfile *objfile, void *data),
13897 void *data)
13898 {
13899 const union exp_element *const elts = exp->elts;
13900 struct type *type = NULL;
13901
13902 switch (elts[pos].opcode)
13903 {
13904 case UNOP_IN_RANGE:
13905 case UNOP_QUAL:
13906 type = elts[pos + 1].type;
13907 break;
13908
13909 default:
13910 return operator_check_standard (exp, pos, objfile_func, data);
13911 }
13912
13913 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13914
13915 if (type && TYPE_OBJFILE (type)
13916 && (*objfile_func) (TYPE_OBJFILE (type), data))
13917 return 1;
13918
13919 return 0;
13920 }
13921
13922 static const char *
13923 ada_op_name (enum exp_opcode opcode)
13924 {
13925 switch (opcode)
13926 {
13927 default:
13928 return op_name_standard (opcode);
13929
13930 #define OP_DEFN(op, len, args, binop) case op: return #op;
13931 ADA_OPERATORS;
13932 #undef OP_DEFN
13933
13934 case OP_AGGREGATE:
13935 return "OP_AGGREGATE";
13936 case OP_CHOICES:
13937 return "OP_CHOICES";
13938 case OP_NAME:
13939 return "OP_NAME";
13940 }
13941 }
13942
13943 /* As for operator_length, but assumes PC is pointing at the first
13944 element of the operator, and gives meaningful results only for the
13945 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13946
13947 static void
13948 ada_forward_operator_length (struct expression *exp, int pc,
13949 int *oplenp, int *argsp)
13950 {
13951 switch (exp->elts[pc].opcode)
13952 {
13953 default:
13954 *oplenp = *argsp = 0;
13955 break;
13956
13957 #define OP_DEFN(op, len, args, binop) \
13958 case op: *oplenp = len; *argsp = args; break;
13959 ADA_OPERATORS;
13960 #undef OP_DEFN
13961
13962 case OP_AGGREGATE:
13963 *oplenp = 3;
13964 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13965 break;
13966
13967 case OP_CHOICES:
13968 *oplenp = 3;
13969 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13970 break;
13971
13972 case OP_STRING:
13973 case OP_NAME:
13974 {
13975 int len = longest_to_int (exp->elts[pc + 1].longconst);
13976
13977 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13978 *argsp = 0;
13979 break;
13980 }
13981 }
13982 }
13983
13984 static int
13985 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13986 {
13987 enum exp_opcode op = exp->elts[elt].opcode;
13988 int oplen, nargs;
13989 int pc = elt;
13990 int i;
13991
13992 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13993
13994 switch (op)
13995 {
13996 /* Ada attributes ('Foo). */
13997 case OP_ATR_FIRST:
13998 case OP_ATR_LAST:
13999 case OP_ATR_LENGTH:
14000 case OP_ATR_IMAGE:
14001 case OP_ATR_MAX:
14002 case OP_ATR_MIN:
14003 case OP_ATR_MODULUS:
14004 case OP_ATR_POS:
14005 case OP_ATR_SIZE:
14006 case OP_ATR_TAG:
14007 case OP_ATR_VAL:
14008 break;
14009
14010 case UNOP_IN_RANGE:
14011 case UNOP_QUAL:
14012 /* XXX: gdb_sprint_host_address, type_sprint */
14013 fprintf_filtered (stream, _("Type @"));
14014 gdb_print_host_address (exp->elts[pc + 1].type, stream);
14015 fprintf_filtered (stream, " (");
14016 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
14017 fprintf_filtered (stream, ")");
14018 break;
14019 case BINOP_IN_BOUNDS:
14020 fprintf_filtered (stream, " (%d)",
14021 longest_to_int (exp->elts[pc + 2].longconst));
14022 break;
14023 case TERNOP_IN_RANGE:
14024 break;
14025
14026 case OP_AGGREGATE:
14027 case OP_OTHERS:
14028 case OP_DISCRETE_RANGE:
14029 case OP_POSITIONAL:
14030 case OP_CHOICES:
14031 break;
14032
14033 case OP_NAME:
14034 case OP_STRING:
14035 {
14036 char *name = &exp->elts[elt + 2].string;
14037 int len = longest_to_int (exp->elts[elt + 1].longconst);
14038
14039 fprintf_filtered (stream, "Text: `%.*s'", len, name);
14040 break;
14041 }
14042
14043 default:
14044 return dump_subexp_body_standard (exp, stream, elt);
14045 }
14046
14047 elt += oplen;
14048 for (i = 0; i < nargs; i += 1)
14049 elt = dump_subexp (exp, stream, elt);
14050
14051 return elt;
14052 }
14053
14054 /* The Ada extension of print_subexp (q.v.). */
14055
14056 static void
14057 ada_print_subexp (struct expression *exp, int *pos,
14058 struct ui_file *stream, enum precedence prec)
14059 {
14060 int oplen, nargs, i;
14061 int pc = *pos;
14062 enum exp_opcode op = exp->elts[pc].opcode;
14063
14064 ada_forward_operator_length (exp, pc, &oplen, &nargs);
14065
14066 *pos += oplen;
14067 switch (op)
14068 {
14069 default:
14070 *pos -= oplen;
14071 print_subexp_standard (exp, pos, stream, prec);
14072 return;
14073
14074 case OP_VAR_VALUE:
14075 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
14076 return;
14077
14078 case BINOP_IN_BOUNDS:
14079 /* XXX: sprint_subexp */
14080 print_subexp (exp, pos, stream, PREC_SUFFIX);
14081 fputs_filtered (" in ", stream);
14082 print_subexp (exp, pos, stream, PREC_SUFFIX);
14083 fputs_filtered ("'range", stream);
14084 if (exp->elts[pc + 1].longconst > 1)
14085 fprintf_filtered (stream, "(%ld)",
14086 (long) exp->elts[pc + 1].longconst);
14087 return;
14088
14089 case TERNOP_IN_RANGE:
14090 if (prec >= PREC_EQUAL)
14091 fputs_filtered ("(", stream);
14092 /* XXX: sprint_subexp */
14093 print_subexp (exp, pos, stream, PREC_SUFFIX);
14094 fputs_filtered (" in ", stream);
14095 print_subexp (exp, pos, stream, PREC_EQUAL);
14096 fputs_filtered (" .. ", stream);
14097 print_subexp (exp, pos, stream, PREC_EQUAL);
14098 if (prec >= PREC_EQUAL)
14099 fputs_filtered (")", stream);
14100 return;
14101
14102 case OP_ATR_FIRST:
14103 case OP_ATR_LAST:
14104 case OP_ATR_LENGTH:
14105 case OP_ATR_IMAGE:
14106 case OP_ATR_MAX:
14107 case OP_ATR_MIN:
14108 case OP_ATR_MODULUS:
14109 case OP_ATR_POS:
14110 case OP_ATR_SIZE:
14111 case OP_ATR_TAG:
14112 case OP_ATR_VAL:
14113 if (exp->elts[*pos].opcode == OP_TYPE)
14114 {
14115 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
14116 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14117 &type_print_raw_options);
14118 *pos += 3;
14119 }
14120 else
14121 print_subexp (exp, pos, stream, PREC_SUFFIX);
14122 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14123 if (nargs > 1)
14124 {
14125 int tem;
14126
14127 for (tem = 1; tem < nargs; tem += 1)
14128 {
14129 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14130 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14131 }
14132 fputs_filtered (")", stream);
14133 }
14134 return;
14135
14136 case UNOP_QUAL:
14137 type_print (exp->elts[pc + 1].type, "", stream, 0);
14138 fputs_filtered ("'(", stream);
14139 print_subexp (exp, pos, stream, PREC_PREFIX);
14140 fputs_filtered (")", stream);
14141 return;
14142
14143 case UNOP_IN_RANGE:
14144 /* XXX: sprint_subexp */
14145 print_subexp (exp, pos, stream, PREC_SUFFIX);
14146 fputs_filtered (" in ", stream);
14147 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14148 &type_print_raw_options);
14149 return;
14150
14151 case OP_DISCRETE_RANGE:
14152 print_subexp (exp, pos, stream, PREC_SUFFIX);
14153 fputs_filtered ("..", stream);
14154 print_subexp (exp, pos, stream, PREC_SUFFIX);
14155 return;
14156
14157 case OP_OTHERS:
14158 fputs_filtered ("others => ", stream);
14159 print_subexp (exp, pos, stream, PREC_SUFFIX);
14160 return;
14161
14162 case OP_CHOICES:
14163 for (i = 0; i < nargs-1; i += 1)
14164 {
14165 if (i > 0)
14166 fputs_filtered ("|", stream);
14167 print_subexp (exp, pos, stream, PREC_SUFFIX);
14168 }
14169 fputs_filtered (" => ", stream);
14170 print_subexp (exp, pos, stream, PREC_SUFFIX);
14171 return;
14172
14173 case OP_POSITIONAL:
14174 print_subexp (exp, pos, stream, PREC_SUFFIX);
14175 return;
14176
14177 case OP_AGGREGATE:
14178 fputs_filtered ("(", stream);
14179 for (i = 0; i < nargs; i += 1)
14180 {
14181 if (i > 0)
14182 fputs_filtered (", ", stream);
14183 print_subexp (exp, pos, stream, PREC_SUFFIX);
14184 }
14185 fputs_filtered (")", stream);
14186 return;
14187 }
14188 }
14189
14190 /* Table mapping opcodes into strings for printing operators
14191 and precedences of the operators. */
14192
14193 static const struct op_print ada_op_print_tab[] = {
14194 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14195 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14196 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14197 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14198 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14199 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14200 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14201 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14202 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14203 {">=", BINOP_GEQ, PREC_ORDER, 0},
14204 {">", BINOP_GTR, PREC_ORDER, 0},
14205 {"<", BINOP_LESS, PREC_ORDER, 0},
14206 {">>", BINOP_RSH, PREC_SHIFT, 0},
14207 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14208 {"+", BINOP_ADD, PREC_ADD, 0},
14209 {"-", BINOP_SUB, PREC_ADD, 0},
14210 {"&", BINOP_CONCAT, PREC_ADD, 0},
14211 {"*", BINOP_MUL, PREC_MUL, 0},
14212 {"/", BINOP_DIV, PREC_MUL, 0},
14213 {"rem", BINOP_REM, PREC_MUL, 0},
14214 {"mod", BINOP_MOD, PREC_MUL, 0},
14215 {"**", BINOP_EXP, PREC_REPEAT, 0},
14216 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14217 {"-", UNOP_NEG, PREC_PREFIX, 0},
14218 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14219 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14220 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14221 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14222 {".all", UNOP_IND, PREC_SUFFIX, 1},
14223 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14224 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14225 {NULL, OP_NULL, PREC_SUFFIX, 0}
14226 };
14227 \f
14228 enum ada_primitive_types {
14229 ada_primitive_type_int,
14230 ada_primitive_type_long,
14231 ada_primitive_type_short,
14232 ada_primitive_type_char,
14233 ada_primitive_type_float,
14234 ada_primitive_type_double,
14235 ada_primitive_type_void,
14236 ada_primitive_type_long_long,
14237 ada_primitive_type_long_double,
14238 ada_primitive_type_natural,
14239 ada_primitive_type_positive,
14240 ada_primitive_type_system_address,
14241 ada_primitive_type_storage_offset,
14242 nr_ada_primitive_types
14243 };
14244
14245 static void
14246 ada_language_arch_info (struct gdbarch *gdbarch,
14247 struct language_arch_info *lai)
14248 {
14249 const struct builtin_type *builtin = builtin_type (gdbarch);
14250
14251 lai->primitive_type_vector
14252 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14253 struct type *);
14254
14255 lai->primitive_type_vector [ada_primitive_type_int]
14256 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14257 0, "integer");
14258 lai->primitive_type_vector [ada_primitive_type_long]
14259 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14260 0, "long_integer");
14261 lai->primitive_type_vector [ada_primitive_type_short]
14262 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14263 0, "short_integer");
14264 lai->string_char_type
14265 = lai->primitive_type_vector [ada_primitive_type_char]
14266 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14267 lai->primitive_type_vector [ada_primitive_type_float]
14268 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14269 "float", gdbarch_float_format (gdbarch));
14270 lai->primitive_type_vector [ada_primitive_type_double]
14271 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14272 "long_float", gdbarch_double_format (gdbarch));
14273 lai->primitive_type_vector [ada_primitive_type_long_long]
14274 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14275 0, "long_long_integer");
14276 lai->primitive_type_vector [ada_primitive_type_long_double]
14277 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14278 "long_long_float", gdbarch_long_double_format (gdbarch));
14279 lai->primitive_type_vector [ada_primitive_type_natural]
14280 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14281 0, "natural");
14282 lai->primitive_type_vector [ada_primitive_type_positive]
14283 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14284 0, "positive");
14285 lai->primitive_type_vector [ada_primitive_type_void]
14286 = builtin->builtin_void;
14287
14288 lai->primitive_type_vector [ada_primitive_type_system_address]
14289 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14290 "void"));
14291 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14292 = "system__address";
14293
14294 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14295 type. This is a signed integral type whose size is the same as
14296 the size of addresses. */
14297 {
14298 unsigned int addr_length = TYPE_LENGTH
14299 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14300
14301 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14302 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14303 "storage_offset");
14304 }
14305
14306 lai->bool_type_symbol = NULL;
14307 lai->bool_type_default = builtin->builtin_bool;
14308 }
14309 \f
14310 /* Language vector */
14311
14312 /* Not really used, but needed in the ada_language_defn. */
14313
14314 static void
14315 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14316 {
14317 ada_emit_char (c, type, stream, quoter, 1);
14318 }
14319
14320 static int
14321 parse (struct parser_state *ps)
14322 {
14323 warnings_issued = 0;
14324 return ada_parse (ps);
14325 }
14326
14327 static const struct exp_descriptor ada_exp_descriptor = {
14328 ada_print_subexp,
14329 ada_operator_length,
14330 ada_operator_check,
14331 ada_op_name,
14332 ada_dump_subexp_body,
14333 ada_evaluate_subexp
14334 };
14335
14336 /* symbol_name_matcher_ftype adapter for wild_match. */
14337
14338 static bool
14339 do_wild_match (const char *symbol_search_name,
14340 const lookup_name_info &lookup_name,
14341 completion_match_result *comp_match_res)
14342 {
14343 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14344 }
14345
14346 /* symbol_name_matcher_ftype adapter for full_match. */
14347
14348 static bool
14349 do_full_match (const char *symbol_search_name,
14350 const lookup_name_info &lookup_name,
14351 completion_match_result *comp_match_res)
14352 {
14353 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14354 }
14355
14356 /* Build the Ada lookup name for LOOKUP_NAME. */
14357
14358 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14359 {
14360 const std::string &user_name = lookup_name.name ();
14361
14362 if (user_name[0] == '<')
14363 {
14364 if (user_name.back () == '>')
14365 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14366 else
14367 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14368 m_encoded_p = true;
14369 m_verbatim_p = true;
14370 m_wild_match_p = false;
14371 m_standard_p = false;
14372 }
14373 else
14374 {
14375 m_verbatim_p = false;
14376
14377 m_encoded_p = user_name.find ("__") != std::string::npos;
14378
14379 if (!m_encoded_p)
14380 {
14381 const char *folded = ada_fold_name (user_name.c_str ());
14382 const char *encoded = ada_encode_1 (folded, false);
14383 if (encoded != NULL)
14384 m_encoded_name = encoded;
14385 else
14386 m_encoded_name = user_name;
14387 }
14388 else
14389 m_encoded_name = user_name;
14390
14391 /* Handle the 'package Standard' special case. See description
14392 of m_standard_p. */
14393 if (startswith (m_encoded_name.c_str (), "standard__"))
14394 {
14395 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14396 m_standard_p = true;
14397 }
14398 else
14399 m_standard_p = false;
14400
14401 /* If the name contains a ".", then the user is entering a fully
14402 qualified entity name, and the match must not be done in wild
14403 mode. Similarly, if the user wants to complete what looks
14404 like an encoded name, the match must not be done in wild
14405 mode. Also, in the standard__ special case always do
14406 non-wild matching. */
14407 m_wild_match_p
14408 = (lookup_name.match_type () != symbol_name_match_type::FULL
14409 && !m_encoded_p
14410 && !m_standard_p
14411 && user_name.find ('.') == std::string::npos);
14412 }
14413 }
14414
14415 /* symbol_name_matcher_ftype method for Ada. This only handles
14416 completion mode. */
14417
14418 static bool
14419 ada_symbol_name_matches (const char *symbol_search_name,
14420 const lookup_name_info &lookup_name,
14421 completion_match_result *comp_match_res)
14422 {
14423 return lookup_name.ada ().matches (symbol_search_name,
14424 lookup_name.match_type (),
14425 comp_match_res);
14426 }
14427
14428 /* A name matcher that matches the symbol name exactly, with
14429 strcmp. */
14430
14431 static bool
14432 literal_symbol_name_matcher (const char *symbol_search_name,
14433 const lookup_name_info &lookup_name,
14434 completion_match_result *comp_match_res)
14435 {
14436 const std::string &name = lookup_name.name ();
14437
14438 int cmp = (lookup_name.completion_mode ()
14439 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14440 : strcmp (symbol_search_name, name.c_str ()));
14441 if (cmp == 0)
14442 {
14443 if (comp_match_res != NULL)
14444 comp_match_res->set_match (symbol_search_name);
14445 return true;
14446 }
14447 else
14448 return false;
14449 }
14450
14451 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14452 Ada. */
14453
14454 static symbol_name_matcher_ftype *
14455 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14456 {
14457 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14458 return literal_symbol_name_matcher;
14459
14460 if (lookup_name.completion_mode ())
14461 return ada_symbol_name_matches;
14462 else
14463 {
14464 if (lookup_name.ada ().wild_match_p ())
14465 return do_wild_match;
14466 else
14467 return do_full_match;
14468 }
14469 }
14470
14471 /* Implement the "la_read_var_value" language_defn method for Ada. */
14472
14473 static struct value *
14474 ada_read_var_value (struct symbol *var, const struct block *var_block,
14475 struct frame_info *frame)
14476 {
14477 const struct block *frame_block = NULL;
14478 struct symbol *renaming_sym = NULL;
14479
14480 /* The only case where default_read_var_value is not sufficient
14481 is when VAR is a renaming... */
14482 if (frame)
14483 frame_block = get_frame_block (frame, NULL);
14484 if (frame_block)
14485 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14486 if (renaming_sym != NULL)
14487 return ada_read_renaming_var_value (renaming_sym, frame_block);
14488
14489 /* This is a typical case where we expect the default_read_var_value
14490 function to work. */
14491 return default_read_var_value (var, var_block, frame);
14492 }
14493
14494 static const char *ada_extensions[] =
14495 {
14496 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14497 };
14498
14499 extern const struct language_defn ada_language_defn = {
14500 "ada", /* Language name */
14501 "Ada",
14502 language_ada,
14503 range_check_off,
14504 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14505 that's not quite what this means. */
14506 array_row_major,
14507 macro_expansion_no,
14508 ada_extensions,
14509 &ada_exp_descriptor,
14510 parse,
14511 ada_yyerror,
14512 resolve,
14513 ada_printchar, /* Print a character constant */
14514 ada_printstr, /* Function to print string constant */
14515 emit_char, /* Function to print single char (not used) */
14516 ada_print_type, /* Print a type using appropriate syntax */
14517 ada_print_typedef, /* Print a typedef using appropriate syntax */
14518 ada_val_print, /* Print a value using appropriate syntax */
14519 ada_value_print, /* Print a top-level value */
14520 ada_read_var_value, /* la_read_var_value */
14521 NULL, /* Language specific skip_trampoline */
14522 NULL, /* name_of_this */
14523 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14524 basic_lookup_transparent_type, /* lookup_transparent_type */
14525 ada_la_decode, /* Language specific symbol demangler */
14526 ada_sniff_from_mangled_name,
14527 NULL, /* Language specific
14528 class_name_from_physname */
14529 ada_op_print_tab, /* expression operators for printing */
14530 0, /* c-style arrays */
14531 1, /* String lower bound */
14532 ada_get_gdb_completer_word_break_characters,
14533 ada_collect_symbol_completion_matches,
14534 ada_language_arch_info,
14535 ada_print_array_index,
14536 default_pass_by_reference,
14537 c_get_string,
14538 c_watch_location_expression,
14539 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14540 ada_iterate_over_symbols,
14541 default_search_name_hash,
14542 &ada_varobj_ops,
14543 NULL,
14544 NULL,
14545 LANG_MAGIC
14546 };
14547
14548 /* Command-list for the "set/show ada" prefix command. */
14549 static struct cmd_list_element *set_ada_list;
14550 static struct cmd_list_element *show_ada_list;
14551
14552 /* Implement the "set ada" prefix command. */
14553
14554 static void
14555 set_ada_command (const char *arg, int from_tty)
14556 {
14557 printf_unfiltered (_(\
14558 "\"set ada\" must be followed by the name of a setting.\n"));
14559 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14560 }
14561
14562 /* Implement the "show ada" prefix command. */
14563
14564 static void
14565 show_ada_command (const char *args, int from_tty)
14566 {
14567 cmd_show_list (show_ada_list, from_tty, "");
14568 }
14569
14570 static void
14571 initialize_ada_catchpoint_ops (void)
14572 {
14573 struct breakpoint_ops *ops;
14574
14575 initialize_breakpoint_ops ();
14576
14577 ops = &catch_exception_breakpoint_ops;
14578 *ops = bkpt_breakpoint_ops;
14579 ops->allocate_location = allocate_location_catch_exception;
14580 ops->re_set = re_set_catch_exception;
14581 ops->check_status = check_status_catch_exception;
14582 ops->print_it = print_it_catch_exception;
14583 ops->print_one = print_one_catch_exception;
14584 ops->print_mention = print_mention_catch_exception;
14585 ops->print_recreate = print_recreate_catch_exception;
14586
14587 ops = &catch_exception_unhandled_breakpoint_ops;
14588 *ops = bkpt_breakpoint_ops;
14589 ops->allocate_location = allocate_location_catch_exception_unhandled;
14590 ops->re_set = re_set_catch_exception_unhandled;
14591 ops->check_status = check_status_catch_exception_unhandled;
14592 ops->print_it = print_it_catch_exception_unhandled;
14593 ops->print_one = print_one_catch_exception_unhandled;
14594 ops->print_mention = print_mention_catch_exception_unhandled;
14595 ops->print_recreate = print_recreate_catch_exception_unhandled;
14596
14597 ops = &catch_assert_breakpoint_ops;
14598 *ops = bkpt_breakpoint_ops;
14599 ops->allocate_location = allocate_location_catch_assert;
14600 ops->re_set = re_set_catch_assert;
14601 ops->check_status = check_status_catch_assert;
14602 ops->print_it = print_it_catch_assert;
14603 ops->print_one = print_one_catch_assert;
14604 ops->print_mention = print_mention_catch_assert;
14605 ops->print_recreate = print_recreate_catch_assert;
14606
14607 ops = &catch_handlers_breakpoint_ops;
14608 *ops = bkpt_breakpoint_ops;
14609 ops->allocate_location = allocate_location_catch_handlers;
14610 ops->re_set = re_set_catch_handlers;
14611 ops->check_status = check_status_catch_handlers;
14612 ops->print_it = print_it_catch_handlers;
14613 ops->print_one = print_one_catch_handlers;
14614 ops->print_mention = print_mention_catch_handlers;
14615 ops->print_recreate = print_recreate_catch_handlers;
14616 }
14617
14618 /* This module's 'new_objfile' observer. */
14619
14620 static void
14621 ada_new_objfile_observer (struct objfile *objfile)
14622 {
14623 ada_clear_symbol_cache ();
14624 }
14625
14626 /* This module's 'free_objfile' observer. */
14627
14628 static void
14629 ada_free_objfile_observer (struct objfile *objfile)
14630 {
14631 ada_clear_symbol_cache ();
14632 }
14633
14634 void
14635 _initialize_ada_language (void)
14636 {
14637 initialize_ada_catchpoint_ops ();
14638
14639 add_prefix_cmd ("ada", no_class, set_ada_command,
14640 _("Prefix command for changing Ada-specfic settings"),
14641 &set_ada_list, "set ada ", 0, &setlist);
14642
14643 add_prefix_cmd ("ada", no_class, show_ada_command,
14644 _("Generic command for showing Ada-specific settings."),
14645 &show_ada_list, "show ada ", 0, &showlist);
14646
14647 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14648 &trust_pad_over_xvs, _("\
14649 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14650 Show whether an optimization trusting PAD types over XVS types is activated"),
14651 _("\
14652 This is related to the encoding used by the GNAT compiler. The debugger\n\
14653 should normally trust the contents of PAD types, but certain older versions\n\
14654 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14655 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14656 work around this bug. It is always safe to turn this option \"off\", but\n\
14657 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14658 this option to \"off\" unless necessary."),
14659 NULL, NULL, &set_ada_list, &show_ada_list);
14660
14661 add_setshow_boolean_cmd ("print-signatures", class_vars,
14662 &print_signatures, _("\
14663 Enable or disable the output of formal and return types for functions in the \
14664 overloads selection menu"), _("\
14665 Show whether the output of formal and return types for functions in the \
14666 overloads selection menu is activated"),
14667 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14668
14669 add_catch_command ("exception", _("\
14670 Catch Ada exceptions, when raised.\n\
14671 With an argument, catch only exceptions with the given name."),
14672 catch_ada_exception_command,
14673 NULL,
14674 CATCH_PERMANENT,
14675 CATCH_TEMPORARY);
14676
14677 add_catch_command ("handlers", _("\
14678 Catch Ada exceptions, when handled.\n\
14679 With an argument, catch only exceptions with the given name."),
14680 catch_ada_handlers_command,
14681 NULL,
14682 CATCH_PERMANENT,
14683 CATCH_TEMPORARY);
14684 add_catch_command ("assert", _("\
14685 Catch failed Ada assertions, when raised.\n\
14686 With an argument, catch only exceptions with the given name."),
14687 catch_assert_command,
14688 NULL,
14689 CATCH_PERMANENT,
14690 CATCH_TEMPORARY);
14691
14692 varsize_limit = 65536;
14693
14694 add_info ("exceptions", info_exceptions_command,
14695 _("\
14696 List all Ada exception names.\n\
14697 If a regular expression is passed as an argument, only those matching\n\
14698 the regular expression are listed."));
14699
14700 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14701 _("Set Ada maintenance-related variables."),
14702 &maint_set_ada_cmdlist, "maintenance set ada ",
14703 0/*allow-unknown*/, &maintenance_set_cmdlist);
14704
14705 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14706 _("Show Ada maintenance-related variables"),
14707 &maint_show_ada_cmdlist, "maintenance show ada ",
14708 0/*allow-unknown*/, &maintenance_show_cmdlist);
14709
14710 add_setshow_boolean_cmd
14711 ("ignore-descriptive-types", class_maintenance,
14712 &ada_ignore_descriptive_types_p,
14713 _("Set whether descriptive types generated by GNAT should be ignored."),
14714 _("Show whether descriptive types generated by GNAT should be ignored."),
14715 _("\
14716 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14717 DWARF attribute."),
14718 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14719
14720 decoded_names_store = htab_create_alloc
14721 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14722 NULL, xcalloc, xfree);
14723
14724 /* The ada-lang observers. */
14725 observer_attach_new_objfile (ada_new_objfile_observer);
14726 observer_attach_free_objfile (ada_free_objfile_observer);
14727 observer_attach_inferior_exit (ada_inferior_exit);
14728
14729 /* Setup various context-specific data. */
14730 ada_inferior_data
14731 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14732 ada_pspace_data_handle
14733 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14734 }
This page took 0.337912 seconds and 5 git commands to generate.