vla: update type from newly created value
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <stdio.h>
23 #include <string.h>
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "varobj.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include <sys/stat.h>
47 #include "ui-out.h"
48 #include "block.h"
49 #include "infcall.h"
50 #include "dictionary.h"
51 #include "exceptions.h"
52 #include "annotate.h"
53 #include "valprint.h"
54 #include "source.h"
55 #include "observer.h"
56 #include "vec.h"
57 #include "stack.h"
58 #include "gdb_vecs.h"
59 #include "typeprint.h"
60
61 #include "psymtab.h"
62 #include "value.h"
63 #include "mi/mi-common.h"
64 #include "arch-utils.h"
65 #include "cli/cli-utils.h"
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static int full_match (const char *, const char *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 const struct block *, const char *,
113 domain_enum, struct objfile *, int);
114
115 static int is_nonfunction (struct ada_symbol_info *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct ada_symbol_info *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct ada_symbol_info *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static void check_size (const struct type *);
240
241 static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244 static struct value *assign_aggregate (struct value *, struct value *,
245 struct expression *,
246 int *, enum noside);
247
248 static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253 static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259 static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270 static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
272
273 static struct type *ada_find_any_type (const char *name);
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum namespace;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 /* FIXME: brobecker/2003-09-17: No longer a const because it is
320 returned by a function that does not return a const char *. */
321 static char *ada_completer_word_break_characters =
322 #ifdef VMS
323 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
324 #else
325 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
326 #endif
327
328 /* The name of the symbol to use to get the name of the main subprogram. */
329 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
330 = "__gnat_ada_main_program_name";
331
332 /* Limit on the number of warnings to raise per expression evaluation. */
333 static int warning_limit = 2;
334
335 /* Number of warning messages issued; reset to 0 by cleanups after
336 expression evaluation. */
337 static int warnings_issued = 0;
338
339 static const char *known_runtime_file_name_patterns[] = {
340 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
341 };
342
343 static const char *known_auxiliary_function_name_patterns[] = {
344 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
345 };
346
347 /* Space for allocating results of ada_lookup_symbol_list. */
348 static struct obstack symbol_list_obstack;
349
350 /* Maintenance-related settings for this module. */
351
352 static struct cmd_list_element *maint_set_ada_cmdlist;
353 static struct cmd_list_element *maint_show_ada_cmdlist;
354
355 /* Implement the "maintenance set ada" (prefix) command. */
356
357 static void
358 maint_set_ada_cmd (char *args, int from_tty)
359 {
360 help_list (maint_set_ada_cmdlist, "maintenance set ada ", -1, gdb_stdout);
361 }
362
363 /* Implement the "maintenance show ada" (prefix) command. */
364
365 static void
366 maint_show_ada_cmd (char *args, int from_tty)
367 {
368 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
369 }
370
371 /* The "maintenance ada set/show ignore-descriptive-type" value. */
372
373 static int ada_ignore_descriptive_types_p = 0;
374
375 /* Inferior-specific data. */
376
377 /* Per-inferior data for this module. */
378
379 struct ada_inferior_data
380 {
381 /* The ada__tags__type_specific_data type, which is used when decoding
382 tagged types. With older versions of GNAT, this type was directly
383 accessible through a component ("tsd") in the object tag. But this
384 is no longer the case, so we cache it for each inferior. */
385 struct type *tsd_type;
386
387 /* The exception_support_info data. This data is used to determine
388 how to implement support for Ada exception catchpoints in a given
389 inferior. */
390 const struct exception_support_info *exception_info;
391 };
392
393 /* Our key to this module's inferior data. */
394 static const struct inferior_data *ada_inferior_data;
395
396 /* A cleanup routine for our inferior data. */
397 static void
398 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
399 {
400 struct ada_inferior_data *data;
401
402 data = inferior_data (inf, ada_inferior_data);
403 if (data != NULL)
404 xfree (data);
405 }
406
407 /* Return our inferior data for the given inferior (INF).
408
409 This function always returns a valid pointer to an allocated
410 ada_inferior_data structure. If INF's inferior data has not
411 been previously set, this functions creates a new one with all
412 fields set to zero, sets INF's inferior to it, and then returns
413 a pointer to that newly allocated ada_inferior_data. */
414
415 static struct ada_inferior_data *
416 get_ada_inferior_data (struct inferior *inf)
417 {
418 struct ada_inferior_data *data;
419
420 data = inferior_data (inf, ada_inferior_data);
421 if (data == NULL)
422 {
423 data = XCNEW (struct ada_inferior_data);
424 set_inferior_data (inf, ada_inferior_data, data);
425 }
426
427 return data;
428 }
429
430 /* Perform all necessary cleanups regarding our module's inferior data
431 that is required after the inferior INF just exited. */
432
433 static void
434 ada_inferior_exit (struct inferior *inf)
435 {
436 ada_inferior_data_cleanup (inf, NULL);
437 set_inferior_data (inf, ada_inferior_data, NULL);
438 }
439
440
441 /* program-space-specific data. */
442
443 /* This module's per-program-space data. */
444 struct ada_pspace_data
445 {
446 /* The Ada symbol cache. */
447 struct ada_symbol_cache *sym_cache;
448 };
449
450 /* Key to our per-program-space data. */
451 static const struct program_space_data *ada_pspace_data_handle;
452
453 /* Return this module's data for the given program space (PSPACE).
454 If not is found, add a zero'ed one now.
455
456 This function always returns a valid object. */
457
458 static struct ada_pspace_data *
459 get_ada_pspace_data (struct program_space *pspace)
460 {
461 struct ada_pspace_data *data;
462
463 data = program_space_data (pspace, ada_pspace_data_handle);
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result = strrchr (decoded_name, '.');
530
531 if (result != NULL)
532 result++; /* Skip the dot... */
533 else
534 result = decoded_name;
535
536 return result;
537 }
538
539 /* Return a string starting with '<', followed by STR, and '>'.
540 The result is good until the next call. */
541
542 static char *
543 add_angle_brackets (const char *str)
544 {
545 static char *result = NULL;
546
547 xfree (result);
548 result = xstrprintf ("<%s>", str);
549 return result;
550 }
551
552 static char *
553 ada_get_gdb_completer_word_break_characters (void)
554 {
555 return ada_completer_word_break_characters;
556 }
557
558 /* Print an array element index using the Ada syntax. */
559
560 static void
561 ada_print_array_index (struct value *index_value, struct ui_file *stream,
562 const struct value_print_options *options)
563 {
564 LA_VALUE_PRINT (index_value, stream, options);
565 fprintf_filtered (stream, " => ");
566 }
567
568 /* Assuming VECT points to an array of *SIZE objects of size
569 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
570 updating *SIZE as necessary and returning the (new) array. */
571
572 void *
573 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
574 {
575 if (*size < min_size)
576 {
577 *size *= 2;
578 if (*size < min_size)
579 *size = min_size;
580 vect = xrealloc (vect, *size * element_size);
581 }
582 return vect;
583 }
584
585 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
586 suffix of FIELD_NAME beginning "___". */
587
588 static int
589 field_name_match (const char *field_name, const char *target)
590 {
591 int len = strlen (target);
592
593 return
594 (strncmp (field_name, target, len) == 0
595 && (field_name[len] == '\0'
596 || (strncmp (field_name + len, "___", 3) == 0
597 && strcmp (field_name + strlen (field_name) - 6,
598 "___XVN") != 0)));
599 }
600
601
602 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
603 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
604 and return its index. This function also handles fields whose name
605 have ___ suffixes because the compiler sometimes alters their name
606 by adding such a suffix to represent fields with certain constraints.
607 If the field could not be found, return a negative number if
608 MAYBE_MISSING is set. Otherwise raise an error. */
609
610 int
611 ada_get_field_index (const struct type *type, const char *field_name,
612 int maybe_missing)
613 {
614 int fieldno;
615 struct type *struct_type = check_typedef ((struct type *) type);
616
617 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
618 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
619 return fieldno;
620
621 if (!maybe_missing)
622 error (_("Unable to find field %s in struct %s. Aborting"),
623 field_name, TYPE_NAME (struct_type));
624
625 return -1;
626 }
627
628 /* The length of the prefix of NAME prior to any "___" suffix. */
629
630 int
631 ada_name_prefix_len (const char *name)
632 {
633 if (name == NULL)
634 return 0;
635 else
636 {
637 const char *p = strstr (name, "___");
638
639 if (p == NULL)
640 return strlen (name);
641 else
642 return p - name;
643 }
644 }
645
646 /* Return non-zero if SUFFIX is a suffix of STR.
647 Return zero if STR is null. */
648
649 static int
650 is_suffix (const char *str, const char *suffix)
651 {
652 int len1, len2;
653
654 if (str == NULL)
655 return 0;
656 len1 = strlen (str);
657 len2 = strlen (suffix);
658 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
659 }
660
661 /* The contents of value VAL, treated as a value of type TYPE. The
662 result is an lval in memory if VAL is. */
663
664 static struct value *
665 coerce_unspec_val_to_type (struct value *val, struct type *type)
666 {
667 type = ada_check_typedef (type);
668 if (value_type (val) == type)
669 return val;
670 else
671 {
672 struct value *result;
673
674 /* Make sure that the object size is not unreasonable before
675 trying to allocate some memory for it. */
676 check_size (type);
677
678 if (value_lazy (val)
679 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
680 result = allocate_value_lazy (type);
681 else
682 {
683 result = allocate_value (type);
684 memcpy (value_contents_raw (result), value_contents (val),
685 TYPE_LENGTH (type));
686 }
687 set_value_component_location (result, val);
688 set_value_bitsize (result, value_bitsize (val));
689 set_value_bitpos (result, value_bitpos (val));
690 set_value_address (result, value_address (val));
691 set_value_optimized_out (result, value_optimized_out_const (val));
692 return result;
693 }
694 }
695
696 static const gdb_byte *
697 cond_offset_host (const gdb_byte *valaddr, long offset)
698 {
699 if (valaddr == NULL)
700 return NULL;
701 else
702 return valaddr + offset;
703 }
704
705 static CORE_ADDR
706 cond_offset_target (CORE_ADDR address, long offset)
707 {
708 if (address == 0)
709 return 0;
710 else
711 return address + offset;
712 }
713
714 /* Issue a warning (as for the definition of warning in utils.c, but
715 with exactly one argument rather than ...), unless the limit on the
716 number of warnings has passed during the evaluation of the current
717 expression. */
718
719 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
720 provided by "complaint". */
721 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
722
723 static void
724 lim_warning (const char *format, ...)
725 {
726 va_list args;
727
728 va_start (args, format);
729 warnings_issued += 1;
730 if (warnings_issued <= warning_limit)
731 vwarning (format, args);
732
733 va_end (args);
734 }
735
736 /* Issue an error if the size of an object of type T is unreasonable,
737 i.e. if it would be a bad idea to allocate a value of this type in
738 GDB. */
739
740 static void
741 check_size (const struct type *type)
742 {
743 if (TYPE_LENGTH (type) > varsize_limit)
744 error (_("object size is larger than varsize-limit"));
745 }
746
747 /* Maximum value of a SIZE-byte signed integer type. */
748 static LONGEST
749 max_of_size (int size)
750 {
751 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
752
753 return top_bit | (top_bit - 1);
754 }
755
756 /* Minimum value of a SIZE-byte signed integer type. */
757 static LONGEST
758 min_of_size (int size)
759 {
760 return -max_of_size (size) - 1;
761 }
762
763 /* Maximum value of a SIZE-byte unsigned integer type. */
764 static ULONGEST
765 umax_of_size (int size)
766 {
767 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
768
769 return top_bit | (top_bit - 1);
770 }
771
772 /* Maximum value of integral type T, as a signed quantity. */
773 static LONGEST
774 max_of_type (struct type *t)
775 {
776 if (TYPE_UNSIGNED (t))
777 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
778 else
779 return max_of_size (TYPE_LENGTH (t));
780 }
781
782 /* Minimum value of integral type T, as a signed quantity. */
783 static LONGEST
784 min_of_type (struct type *t)
785 {
786 if (TYPE_UNSIGNED (t))
787 return 0;
788 else
789 return min_of_size (TYPE_LENGTH (t));
790 }
791
792 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
793 LONGEST
794 ada_discrete_type_high_bound (struct type *type)
795 {
796 switch (TYPE_CODE (type))
797 {
798 case TYPE_CODE_RANGE:
799 return TYPE_HIGH_BOUND (type);
800 case TYPE_CODE_ENUM:
801 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
802 case TYPE_CODE_BOOL:
803 return 1;
804 case TYPE_CODE_CHAR:
805 case TYPE_CODE_INT:
806 return max_of_type (type);
807 default:
808 error (_("Unexpected type in ada_discrete_type_high_bound."));
809 }
810 }
811
812 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
813 LONGEST
814 ada_discrete_type_low_bound (struct type *type)
815 {
816 switch (TYPE_CODE (type))
817 {
818 case TYPE_CODE_RANGE:
819 return TYPE_LOW_BOUND (type);
820 case TYPE_CODE_ENUM:
821 return TYPE_FIELD_ENUMVAL (type, 0);
822 case TYPE_CODE_BOOL:
823 return 0;
824 case TYPE_CODE_CHAR:
825 case TYPE_CODE_INT:
826 return min_of_type (type);
827 default:
828 error (_("Unexpected type in ada_discrete_type_low_bound."));
829 }
830 }
831
832 /* The identity on non-range types. For range types, the underlying
833 non-range scalar type. */
834
835 static struct type *
836 get_base_type (struct type *type)
837 {
838 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
839 {
840 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
841 return type;
842 type = TYPE_TARGET_TYPE (type);
843 }
844 return type;
845 }
846
847 /* Return a decoded version of the given VALUE. This means returning
848 a value whose type is obtained by applying all the GNAT-specific
849 encondings, making the resulting type a static but standard description
850 of the initial type. */
851
852 struct value *
853 ada_get_decoded_value (struct value *value)
854 {
855 struct type *type = ada_check_typedef (value_type (value));
856
857 if (ada_is_array_descriptor_type (type)
858 || (ada_is_constrained_packed_array_type (type)
859 && TYPE_CODE (type) != TYPE_CODE_PTR))
860 {
861 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
862 value = ada_coerce_to_simple_array_ptr (value);
863 else
864 value = ada_coerce_to_simple_array (value);
865 }
866 else
867 value = ada_to_fixed_value (value);
868
869 return value;
870 }
871
872 /* Same as ada_get_decoded_value, but with the given TYPE.
873 Because there is no associated actual value for this type,
874 the resulting type might be a best-effort approximation in
875 the case of dynamic types. */
876
877 struct type *
878 ada_get_decoded_type (struct type *type)
879 {
880 type = to_static_fixed_type (type);
881 if (ada_is_constrained_packed_array_type (type))
882 type = ada_coerce_to_simple_array_type (type);
883 return type;
884 }
885
886 \f
887
888 /* Language Selection */
889
890 /* If the main program is in Ada, return language_ada, otherwise return LANG
891 (the main program is in Ada iif the adainit symbol is found). */
892
893 enum language
894 ada_update_initial_language (enum language lang)
895 {
896 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
897 (struct objfile *) NULL).minsym != NULL)
898 return language_ada;
899
900 return lang;
901 }
902
903 /* If the main procedure is written in Ada, then return its name.
904 The result is good until the next call. Return NULL if the main
905 procedure doesn't appear to be in Ada. */
906
907 char *
908 ada_main_name (void)
909 {
910 struct bound_minimal_symbol msym;
911 static char *main_program_name = NULL;
912
913 /* For Ada, the name of the main procedure is stored in a specific
914 string constant, generated by the binder. Look for that symbol,
915 extract its address, and then read that string. If we didn't find
916 that string, then most probably the main procedure is not written
917 in Ada. */
918 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
919
920 if (msym.minsym != NULL)
921 {
922 CORE_ADDR main_program_name_addr;
923 int err_code;
924
925 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
926 if (main_program_name_addr == 0)
927 error (_("Invalid address for Ada main program name."));
928
929 xfree (main_program_name);
930 target_read_string (main_program_name_addr, &main_program_name,
931 1024, &err_code);
932
933 if (err_code != 0)
934 return NULL;
935 return main_program_name;
936 }
937
938 /* The main procedure doesn't seem to be in Ada. */
939 return NULL;
940 }
941 \f
942 /* Symbols */
943
944 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
945 of NULLs. */
946
947 const struct ada_opname_map ada_opname_table[] = {
948 {"Oadd", "\"+\"", BINOP_ADD},
949 {"Osubtract", "\"-\"", BINOP_SUB},
950 {"Omultiply", "\"*\"", BINOP_MUL},
951 {"Odivide", "\"/\"", BINOP_DIV},
952 {"Omod", "\"mod\"", BINOP_MOD},
953 {"Orem", "\"rem\"", BINOP_REM},
954 {"Oexpon", "\"**\"", BINOP_EXP},
955 {"Olt", "\"<\"", BINOP_LESS},
956 {"Ole", "\"<=\"", BINOP_LEQ},
957 {"Ogt", "\">\"", BINOP_GTR},
958 {"Oge", "\">=\"", BINOP_GEQ},
959 {"Oeq", "\"=\"", BINOP_EQUAL},
960 {"One", "\"/=\"", BINOP_NOTEQUAL},
961 {"Oand", "\"and\"", BINOP_BITWISE_AND},
962 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
963 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
964 {"Oconcat", "\"&\"", BINOP_CONCAT},
965 {"Oabs", "\"abs\"", UNOP_ABS},
966 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
967 {"Oadd", "\"+\"", UNOP_PLUS},
968 {"Osubtract", "\"-\"", UNOP_NEG},
969 {NULL, NULL}
970 };
971
972 /* The "encoded" form of DECODED, according to GNAT conventions.
973 The result is valid until the next call to ada_encode. */
974
975 char *
976 ada_encode (const char *decoded)
977 {
978 static char *encoding_buffer = NULL;
979 static size_t encoding_buffer_size = 0;
980 const char *p;
981 int k;
982
983 if (decoded == NULL)
984 return NULL;
985
986 GROW_VECT (encoding_buffer, encoding_buffer_size,
987 2 * strlen (decoded) + 10);
988
989 k = 0;
990 for (p = decoded; *p != '\0'; p += 1)
991 {
992 if (*p == '.')
993 {
994 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
995 k += 2;
996 }
997 else if (*p == '"')
998 {
999 const struct ada_opname_map *mapping;
1000
1001 for (mapping = ada_opname_table;
1002 mapping->encoded != NULL
1003 && strncmp (mapping->decoded, p,
1004 strlen (mapping->decoded)) != 0; mapping += 1)
1005 ;
1006 if (mapping->encoded == NULL)
1007 error (_("invalid Ada operator name: %s"), p);
1008 strcpy (encoding_buffer + k, mapping->encoded);
1009 k += strlen (mapping->encoded);
1010 break;
1011 }
1012 else
1013 {
1014 encoding_buffer[k] = *p;
1015 k += 1;
1016 }
1017 }
1018
1019 encoding_buffer[k] = '\0';
1020 return encoding_buffer;
1021 }
1022
1023 /* Return NAME folded to lower case, or, if surrounded by single
1024 quotes, unfolded, but with the quotes stripped away. Result good
1025 to next call. */
1026
1027 char *
1028 ada_fold_name (const char *name)
1029 {
1030 static char *fold_buffer = NULL;
1031 static size_t fold_buffer_size = 0;
1032
1033 int len = strlen (name);
1034 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1035
1036 if (name[0] == '\'')
1037 {
1038 strncpy (fold_buffer, name + 1, len - 2);
1039 fold_buffer[len - 2] = '\000';
1040 }
1041 else
1042 {
1043 int i;
1044
1045 for (i = 0; i <= len; i += 1)
1046 fold_buffer[i] = tolower (name[i]);
1047 }
1048
1049 return fold_buffer;
1050 }
1051
1052 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1053
1054 static int
1055 is_lower_alphanum (const char c)
1056 {
1057 return (isdigit (c) || (isalpha (c) && islower (c)));
1058 }
1059
1060 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1061 This function saves in LEN the length of that same symbol name but
1062 without either of these suffixes:
1063 . .{DIGIT}+
1064 . ${DIGIT}+
1065 . ___{DIGIT}+
1066 . __{DIGIT}+.
1067
1068 These are suffixes introduced by the compiler for entities such as
1069 nested subprogram for instance, in order to avoid name clashes.
1070 They do not serve any purpose for the debugger. */
1071
1072 static void
1073 ada_remove_trailing_digits (const char *encoded, int *len)
1074 {
1075 if (*len > 1 && isdigit (encoded[*len - 1]))
1076 {
1077 int i = *len - 2;
1078
1079 while (i > 0 && isdigit (encoded[i]))
1080 i--;
1081 if (i >= 0 && encoded[i] == '.')
1082 *len = i;
1083 else if (i >= 0 && encoded[i] == '$')
1084 *len = i;
1085 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1086 *len = i - 2;
1087 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1088 *len = i - 1;
1089 }
1090 }
1091
1092 /* Remove the suffix introduced by the compiler for protected object
1093 subprograms. */
1094
1095 static void
1096 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1097 {
1098 /* Remove trailing N. */
1099
1100 /* Protected entry subprograms are broken into two
1101 separate subprograms: The first one is unprotected, and has
1102 a 'N' suffix; the second is the protected version, and has
1103 the 'P' suffix. The second calls the first one after handling
1104 the protection. Since the P subprograms are internally generated,
1105 we leave these names undecoded, giving the user a clue that this
1106 entity is internal. */
1107
1108 if (*len > 1
1109 && encoded[*len - 1] == 'N'
1110 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1111 *len = *len - 1;
1112 }
1113
1114 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1115
1116 static void
1117 ada_remove_Xbn_suffix (const char *encoded, int *len)
1118 {
1119 int i = *len - 1;
1120
1121 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1122 i--;
1123
1124 if (encoded[i] != 'X')
1125 return;
1126
1127 if (i == 0)
1128 return;
1129
1130 if (isalnum (encoded[i-1]))
1131 *len = i;
1132 }
1133
1134 /* If ENCODED follows the GNAT entity encoding conventions, then return
1135 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1136 replaced by ENCODED.
1137
1138 The resulting string is valid until the next call of ada_decode.
1139 If the string is unchanged by decoding, the original string pointer
1140 is returned. */
1141
1142 const char *
1143 ada_decode (const char *encoded)
1144 {
1145 int i, j;
1146 int len0;
1147 const char *p;
1148 char *decoded;
1149 int at_start_name;
1150 static char *decoding_buffer = NULL;
1151 static size_t decoding_buffer_size = 0;
1152
1153 /* The name of the Ada main procedure starts with "_ada_".
1154 This prefix is not part of the decoded name, so skip this part
1155 if we see this prefix. */
1156 if (strncmp (encoded, "_ada_", 5) == 0)
1157 encoded += 5;
1158
1159 /* If the name starts with '_', then it is not a properly encoded
1160 name, so do not attempt to decode it. Similarly, if the name
1161 starts with '<', the name should not be decoded. */
1162 if (encoded[0] == '_' || encoded[0] == '<')
1163 goto Suppress;
1164
1165 len0 = strlen (encoded);
1166
1167 ada_remove_trailing_digits (encoded, &len0);
1168 ada_remove_po_subprogram_suffix (encoded, &len0);
1169
1170 /* Remove the ___X.* suffix if present. Do not forget to verify that
1171 the suffix is located before the current "end" of ENCODED. We want
1172 to avoid re-matching parts of ENCODED that have previously been
1173 marked as discarded (by decrementing LEN0). */
1174 p = strstr (encoded, "___");
1175 if (p != NULL && p - encoded < len0 - 3)
1176 {
1177 if (p[3] == 'X')
1178 len0 = p - encoded;
1179 else
1180 goto Suppress;
1181 }
1182
1183 /* Remove any trailing TKB suffix. It tells us that this symbol
1184 is for the body of a task, but that information does not actually
1185 appear in the decoded name. */
1186
1187 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1188 len0 -= 3;
1189
1190 /* Remove any trailing TB suffix. The TB suffix is slightly different
1191 from the TKB suffix because it is used for non-anonymous task
1192 bodies. */
1193
1194 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1195 len0 -= 2;
1196
1197 /* Remove trailing "B" suffixes. */
1198 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1199
1200 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1201 len0 -= 1;
1202
1203 /* Make decoded big enough for possible expansion by operator name. */
1204
1205 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1206 decoded = decoding_buffer;
1207
1208 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1209
1210 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1211 {
1212 i = len0 - 2;
1213 while ((i >= 0 && isdigit (encoded[i]))
1214 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1215 i -= 1;
1216 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1217 len0 = i - 1;
1218 else if (encoded[i] == '$')
1219 len0 = i;
1220 }
1221
1222 /* The first few characters that are not alphabetic are not part
1223 of any encoding we use, so we can copy them over verbatim. */
1224
1225 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1226 decoded[j] = encoded[i];
1227
1228 at_start_name = 1;
1229 while (i < len0)
1230 {
1231 /* Is this a symbol function? */
1232 if (at_start_name && encoded[i] == 'O')
1233 {
1234 int k;
1235
1236 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1237 {
1238 int op_len = strlen (ada_opname_table[k].encoded);
1239 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1240 op_len - 1) == 0)
1241 && !isalnum (encoded[i + op_len]))
1242 {
1243 strcpy (decoded + j, ada_opname_table[k].decoded);
1244 at_start_name = 0;
1245 i += op_len;
1246 j += strlen (ada_opname_table[k].decoded);
1247 break;
1248 }
1249 }
1250 if (ada_opname_table[k].encoded != NULL)
1251 continue;
1252 }
1253 at_start_name = 0;
1254
1255 /* Replace "TK__" with "__", which will eventually be translated
1256 into "." (just below). */
1257
1258 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1259 i += 2;
1260
1261 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1262 be translated into "." (just below). These are internal names
1263 generated for anonymous blocks inside which our symbol is nested. */
1264
1265 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1266 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1267 && isdigit (encoded [i+4]))
1268 {
1269 int k = i + 5;
1270
1271 while (k < len0 && isdigit (encoded[k]))
1272 k++; /* Skip any extra digit. */
1273
1274 /* Double-check that the "__B_{DIGITS}+" sequence we found
1275 is indeed followed by "__". */
1276 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1277 i = k;
1278 }
1279
1280 /* Remove _E{DIGITS}+[sb] */
1281
1282 /* Just as for protected object subprograms, there are 2 categories
1283 of subprograms created by the compiler for each entry. The first
1284 one implements the actual entry code, and has a suffix following
1285 the convention above; the second one implements the barrier and
1286 uses the same convention as above, except that the 'E' is replaced
1287 by a 'B'.
1288
1289 Just as above, we do not decode the name of barrier functions
1290 to give the user a clue that the code he is debugging has been
1291 internally generated. */
1292
1293 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1294 && isdigit (encoded[i+2]))
1295 {
1296 int k = i + 3;
1297
1298 while (k < len0 && isdigit (encoded[k]))
1299 k++;
1300
1301 if (k < len0
1302 && (encoded[k] == 'b' || encoded[k] == 's'))
1303 {
1304 k++;
1305 /* Just as an extra precaution, make sure that if this
1306 suffix is followed by anything else, it is a '_'.
1307 Otherwise, we matched this sequence by accident. */
1308 if (k == len0
1309 || (k < len0 && encoded[k] == '_'))
1310 i = k;
1311 }
1312 }
1313
1314 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1315 the GNAT front-end in protected object subprograms. */
1316
1317 if (i < len0 + 3
1318 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1319 {
1320 /* Backtrack a bit up until we reach either the begining of
1321 the encoded name, or "__". Make sure that we only find
1322 digits or lowercase characters. */
1323 const char *ptr = encoded + i - 1;
1324
1325 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1326 ptr--;
1327 if (ptr < encoded
1328 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1329 i++;
1330 }
1331
1332 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1333 {
1334 /* This is a X[bn]* sequence not separated from the previous
1335 part of the name with a non-alpha-numeric character (in other
1336 words, immediately following an alpha-numeric character), then
1337 verify that it is placed at the end of the encoded name. If
1338 not, then the encoding is not valid and we should abort the
1339 decoding. Otherwise, just skip it, it is used in body-nested
1340 package names. */
1341 do
1342 i += 1;
1343 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1344 if (i < len0)
1345 goto Suppress;
1346 }
1347 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1348 {
1349 /* Replace '__' by '.'. */
1350 decoded[j] = '.';
1351 at_start_name = 1;
1352 i += 2;
1353 j += 1;
1354 }
1355 else
1356 {
1357 /* It's a character part of the decoded name, so just copy it
1358 over. */
1359 decoded[j] = encoded[i];
1360 i += 1;
1361 j += 1;
1362 }
1363 }
1364 decoded[j] = '\000';
1365
1366 /* Decoded names should never contain any uppercase character.
1367 Double-check this, and abort the decoding if we find one. */
1368
1369 for (i = 0; decoded[i] != '\0'; i += 1)
1370 if (isupper (decoded[i]) || decoded[i] == ' ')
1371 goto Suppress;
1372
1373 if (strcmp (decoded, encoded) == 0)
1374 return encoded;
1375 else
1376 return decoded;
1377
1378 Suppress:
1379 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1380 decoded = decoding_buffer;
1381 if (encoded[0] == '<')
1382 strcpy (decoded, encoded);
1383 else
1384 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1385 return decoded;
1386
1387 }
1388
1389 /* Table for keeping permanent unique copies of decoded names. Once
1390 allocated, names in this table are never released. While this is a
1391 storage leak, it should not be significant unless there are massive
1392 changes in the set of decoded names in successive versions of a
1393 symbol table loaded during a single session. */
1394 static struct htab *decoded_names_store;
1395
1396 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1397 in the language-specific part of GSYMBOL, if it has not been
1398 previously computed. Tries to save the decoded name in the same
1399 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1400 in any case, the decoded symbol has a lifetime at least that of
1401 GSYMBOL).
1402 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1403 const, but nevertheless modified to a semantically equivalent form
1404 when a decoded name is cached in it. */
1405
1406 const char *
1407 ada_decode_symbol (const struct general_symbol_info *arg)
1408 {
1409 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1410 const char **resultp =
1411 &gsymbol->language_specific.mangled_lang.demangled_name;
1412
1413 if (!gsymbol->ada_mangled)
1414 {
1415 const char *decoded = ada_decode (gsymbol->name);
1416 struct obstack *obstack = gsymbol->language_specific.obstack;
1417
1418 gsymbol->ada_mangled = 1;
1419
1420 if (obstack != NULL)
1421 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1422 else
1423 {
1424 /* Sometimes, we can't find a corresponding objfile, in
1425 which case, we put the result on the heap. Since we only
1426 decode when needed, we hope this usually does not cause a
1427 significant memory leak (FIXME). */
1428
1429 char **slot = (char **) htab_find_slot (decoded_names_store,
1430 decoded, INSERT);
1431
1432 if (*slot == NULL)
1433 *slot = xstrdup (decoded);
1434 *resultp = *slot;
1435 }
1436 }
1437
1438 return *resultp;
1439 }
1440
1441 static char *
1442 ada_la_decode (const char *encoded, int options)
1443 {
1444 return xstrdup (ada_decode (encoded));
1445 }
1446
1447 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1448 suffixes that encode debugging information or leading _ada_ on
1449 SYM_NAME (see is_name_suffix commentary for the debugging
1450 information that is ignored). If WILD, then NAME need only match a
1451 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1452 either argument is NULL. */
1453
1454 static int
1455 match_name (const char *sym_name, const char *name, int wild)
1456 {
1457 if (sym_name == NULL || name == NULL)
1458 return 0;
1459 else if (wild)
1460 return wild_match (sym_name, name) == 0;
1461 else
1462 {
1463 int len_name = strlen (name);
1464
1465 return (strncmp (sym_name, name, len_name) == 0
1466 && is_name_suffix (sym_name + len_name))
1467 || (strncmp (sym_name, "_ada_", 5) == 0
1468 && strncmp (sym_name + 5, name, len_name) == 0
1469 && is_name_suffix (sym_name + len_name + 5));
1470 }
1471 }
1472 \f
1473
1474 /* Arrays */
1475
1476 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1477 generated by the GNAT compiler to describe the index type used
1478 for each dimension of an array, check whether it follows the latest
1479 known encoding. If not, fix it up to conform to the latest encoding.
1480 Otherwise, do nothing. This function also does nothing if
1481 INDEX_DESC_TYPE is NULL.
1482
1483 The GNAT encoding used to describle the array index type evolved a bit.
1484 Initially, the information would be provided through the name of each
1485 field of the structure type only, while the type of these fields was
1486 described as unspecified and irrelevant. The debugger was then expected
1487 to perform a global type lookup using the name of that field in order
1488 to get access to the full index type description. Because these global
1489 lookups can be very expensive, the encoding was later enhanced to make
1490 the global lookup unnecessary by defining the field type as being
1491 the full index type description.
1492
1493 The purpose of this routine is to allow us to support older versions
1494 of the compiler by detecting the use of the older encoding, and by
1495 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1496 we essentially replace each field's meaningless type by the associated
1497 index subtype). */
1498
1499 void
1500 ada_fixup_array_indexes_type (struct type *index_desc_type)
1501 {
1502 int i;
1503
1504 if (index_desc_type == NULL)
1505 return;
1506 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1507
1508 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1509 to check one field only, no need to check them all). If not, return
1510 now.
1511
1512 If our INDEX_DESC_TYPE was generated using the older encoding,
1513 the field type should be a meaningless integer type whose name
1514 is not equal to the field name. */
1515 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1516 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1517 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1518 return;
1519
1520 /* Fixup each field of INDEX_DESC_TYPE. */
1521 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1522 {
1523 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1524 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1525
1526 if (raw_type)
1527 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1528 }
1529 }
1530
1531 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1532
1533 static char *bound_name[] = {
1534 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1535 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1536 };
1537
1538 /* Maximum number of array dimensions we are prepared to handle. */
1539
1540 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1541
1542
1543 /* The desc_* routines return primitive portions of array descriptors
1544 (fat pointers). */
1545
1546 /* The descriptor or array type, if any, indicated by TYPE; removes
1547 level of indirection, if needed. */
1548
1549 static struct type *
1550 desc_base_type (struct type *type)
1551 {
1552 if (type == NULL)
1553 return NULL;
1554 type = ada_check_typedef (type);
1555 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1556 type = ada_typedef_target_type (type);
1557
1558 if (type != NULL
1559 && (TYPE_CODE (type) == TYPE_CODE_PTR
1560 || TYPE_CODE (type) == TYPE_CODE_REF))
1561 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1562 else
1563 return type;
1564 }
1565
1566 /* True iff TYPE indicates a "thin" array pointer type. */
1567
1568 static int
1569 is_thin_pntr (struct type *type)
1570 {
1571 return
1572 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1573 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1574 }
1575
1576 /* The descriptor type for thin pointer type TYPE. */
1577
1578 static struct type *
1579 thin_descriptor_type (struct type *type)
1580 {
1581 struct type *base_type = desc_base_type (type);
1582
1583 if (base_type == NULL)
1584 return NULL;
1585 if (is_suffix (ada_type_name (base_type), "___XVE"))
1586 return base_type;
1587 else
1588 {
1589 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1590
1591 if (alt_type == NULL)
1592 return base_type;
1593 else
1594 return alt_type;
1595 }
1596 }
1597
1598 /* A pointer to the array data for thin-pointer value VAL. */
1599
1600 static struct value *
1601 thin_data_pntr (struct value *val)
1602 {
1603 struct type *type = ada_check_typedef (value_type (val));
1604 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1605
1606 data_type = lookup_pointer_type (data_type);
1607
1608 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1609 return value_cast (data_type, value_copy (val));
1610 else
1611 return value_from_longest (data_type, value_address (val));
1612 }
1613
1614 /* True iff TYPE indicates a "thick" array pointer type. */
1615
1616 static int
1617 is_thick_pntr (struct type *type)
1618 {
1619 type = desc_base_type (type);
1620 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1621 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1622 }
1623
1624 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1625 pointer to one, the type of its bounds data; otherwise, NULL. */
1626
1627 static struct type *
1628 desc_bounds_type (struct type *type)
1629 {
1630 struct type *r;
1631
1632 type = desc_base_type (type);
1633
1634 if (type == NULL)
1635 return NULL;
1636 else if (is_thin_pntr (type))
1637 {
1638 type = thin_descriptor_type (type);
1639 if (type == NULL)
1640 return NULL;
1641 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1642 if (r != NULL)
1643 return ada_check_typedef (r);
1644 }
1645 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1646 {
1647 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1648 if (r != NULL)
1649 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1650 }
1651 return NULL;
1652 }
1653
1654 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1655 one, a pointer to its bounds data. Otherwise NULL. */
1656
1657 static struct value *
1658 desc_bounds (struct value *arr)
1659 {
1660 struct type *type = ada_check_typedef (value_type (arr));
1661
1662 if (is_thin_pntr (type))
1663 {
1664 struct type *bounds_type =
1665 desc_bounds_type (thin_descriptor_type (type));
1666 LONGEST addr;
1667
1668 if (bounds_type == NULL)
1669 error (_("Bad GNAT array descriptor"));
1670
1671 /* NOTE: The following calculation is not really kosher, but
1672 since desc_type is an XVE-encoded type (and shouldn't be),
1673 the correct calculation is a real pain. FIXME (and fix GCC). */
1674 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1675 addr = value_as_long (arr);
1676 else
1677 addr = value_address (arr);
1678
1679 return
1680 value_from_longest (lookup_pointer_type (bounds_type),
1681 addr - TYPE_LENGTH (bounds_type));
1682 }
1683
1684 else if (is_thick_pntr (type))
1685 {
1686 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1687 _("Bad GNAT array descriptor"));
1688 struct type *p_bounds_type = value_type (p_bounds);
1689
1690 if (p_bounds_type
1691 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1692 {
1693 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1694
1695 if (TYPE_STUB (target_type))
1696 p_bounds = value_cast (lookup_pointer_type
1697 (ada_check_typedef (target_type)),
1698 p_bounds);
1699 }
1700 else
1701 error (_("Bad GNAT array descriptor"));
1702
1703 return p_bounds;
1704 }
1705 else
1706 return NULL;
1707 }
1708
1709 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1710 position of the field containing the address of the bounds data. */
1711
1712 static int
1713 fat_pntr_bounds_bitpos (struct type *type)
1714 {
1715 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1716 }
1717
1718 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1719 size of the field containing the address of the bounds data. */
1720
1721 static int
1722 fat_pntr_bounds_bitsize (struct type *type)
1723 {
1724 type = desc_base_type (type);
1725
1726 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1727 return TYPE_FIELD_BITSIZE (type, 1);
1728 else
1729 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1730 }
1731
1732 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1733 pointer to one, the type of its array data (a array-with-no-bounds type);
1734 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1735 data. */
1736
1737 static struct type *
1738 desc_data_target_type (struct type *type)
1739 {
1740 type = desc_base_type (type);
1741
1742 /* NOTE: The following is bogus; see comment in desc_bounds. */
1743 if (is_thin_pntr (type))
1744 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1745 else if (is_thick_pntr (type))
1746 {
1747 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1748
1749 if (data_type
1750 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1751 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1752 }
1753
1754 return NULL;
1755 }
1756
1757 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1758 its array data. */
1759
1760 static struct value *
1761 desc_data (struct value *arr)
1762 {
1763 struct type *type = value_type (arr);
1764
1765 if (is_thin_pntr (type))
1766 return thin_data_pntr (arr);
1767 else if (is_thick_pntr (type))
1768 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1769 _("Bad GNAT array descriptor"));
1770 else
1771 return NULL;
1772 }
1773
1774
1775 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1776 position of the field containing the address of the data. */
1777
1778 static int
1779 fat_pntr_data_bitpos (struct type *type)
1780 {
1781 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1782 }
1783
1784 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1785 size of the field containing the address of the data. */
1786
1787 static int
1788 fat_pntr_data_bitsize (struct type *type)
1789 {
1790 type = desc_base_type (type);
1791
1792 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1793 return TYPE_FIELD_BITSIZE (type, 0);
1794 else
1795 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1796 }
1797
1798 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1799 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1800 bound, if WHICH is 1. The first bound is I=1. */
1801
1802 static struct value *
1803 desc_one_bound (struct value *bounds, int i, int which)
1804 {
1805 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1806 _("Bad GNAT array descriptor bounds"));
1807 }
1808
1809 /* If BOUNDS is an array-bounds structure type, return the bit position
1810 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1811 bound, if WHICH is 1. The first bound is I=1. */
1812
1813 static int
1814 desc_bound_bitpos (struct type *type, int i, int which)
1815 {
1816 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1817 }
1818
1819 /* If BOUNDS is an array-bounds structure type, return the bit field size
1820 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1821 bound, if WHICH is 1. The first bound is I=1. */
1822
1823 static int
1824 desc_bound_bitsize (struct type *type, int i, int which)
1825 {
1826 type = desc_base_type (type);
1827
1828 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1829 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1830 else
1831 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1832 }
1833
1834 /* If TYPE is the type of an array-bounds structure, the type of its
1835 Ith bound (numbering from 1). Otherwise, NULL. */
1836
1837 static struct type *
1838 desc_index_type (struct type *type, int i)
1839 {
1840 type = desc_base_type (type);
1841
1842 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1843 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1844 else
1845 return NULL;
1846 }
1847
1848 /* The number of index positions in the array-bounds type TYPE.
1849 Return 0 if TYPE is NULL. */
1850
1851 static int
1852 desc_arity (struct type *type)
1853 {
1854 type = desc_base_type (type);
1855
1856 if (type != NULL)
1857 return TYPE_NFIELDS (type) / 2;
1858 return 0;
1859 }
1860
1861 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1862 an array descriptor type (representing an unconstrained array
1863 type). */
1864
1865 static int
1866 ada_is_direct_array_type (struct type *type)
1867 {
1868 if (type == NULL)
1869 return 0;
1870 type = ada_check_typedef (type);
1871 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1872 || ada_is_array_descriptor_type (type));
1873 }
1874
1875 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1876 * to one. */
1877
1878 static int
1879 ada_is_array_type (struct type *type)
1880 {
1881 while (type != NULL
1882 && (TYPE_CODE (type) == TYPE_CODE_PTR
1883 || TYPE_CODE (type) == TYPE_CODE_REF))
1884 type = TYPE_TARGET_TYPE (type);
1885 return ada_is_direct_array_type (type);
1886 }
1887
1888 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1889
1890 int
1891 ada_is_simple_array_type (struct type *type)
1892 {
1893 if (type == NULL)
1894 return 0;
1895 type = ada_check_typedef (type);
1896 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1897 || (TYPE_CODE (type) == TYPE_CODE_PTR
1898 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1899 == TYPE_CODE_ARRAY));
1900 }
1901
1902 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1903
1904 int
1905 ada_is_array_descriptor_type (struct type *type)
1906 {
1907 struct type *data_type = desc_data_target_type (type);
1908
1909 if (type == NULL)
1910 return 0;
1911 type = ada_check_typedef (type);
1912 return (data_type != NULL
1913 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1914 && desc_arity (desc_bounds_type (type)) > 0);
1915 }
1916
1917 /* Non-zero iff type is a partially mal-formed GNAT array
1918 descriptor. FIXME: This is to compensate for some problems with
1919 debugging output from GNAT. Re-examine periodically to see if it
1920 is still needed. */
1921
1922 int
1923 ada_is_bogus_array_descriptor (struct type *type)
1924 {
1925 return
1926 type != NULL
1927 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1928 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1929 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1930 && !ada_is_array_descriptor_type (type);
1931 }
1932
1933
1934 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1935 (fat pointer) returns the type of the array data described---specifically,
1936 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1937 in from the descriptor; otherwise, they are left unspecified. If
1938 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1939 returns NULL. The result is simply the type of ARR if ARR is not
1940 a descriptor. */
1941 struct type *
1942 ada_type_of_array (struct value *arr, int bounds)
1943 {
1944 if (ada_is_constrained_packed_array_type (value_type (arr)))
1945 return decode_constrained_packed_array_type (value_type (arr));
1946
1947 if (!ada_is_array_descriptor_type (value_type (arr)))
1948 return value_type (arr);
1949
1950 if (!bounds)
1951 {
1952 struct type *array_type =
1953 ada_check_typedef (desc_data_target_type (value_type (arr)));
1954
1955 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1956 TYPE_FIELD_BITSIZE (array_type, 0) =
1957 decode_packed_array_bitsize (value_type (arr));
1958
1959 return array_type;
1960 }
1961 else
1962 {
1963 struct type *elt_type;
1964 int arity;
1965 struct value *descriptor;
1966
1967 elt_type = ada_array_element_type (value_type (arr), -1);
1968 arity = ada_array_arity (value_type (arr));
1969
1970 if (elt_type == NULL || arity == 0)
1971 return ada_check_typedef (value_type (arr));
1972
1973 descriptor = desc_bounds (arr);
1974 if (value_as_long (descriptor) == 0)
1975 return NULL;
1976 while (arity > 0)
1977 {
1978 struct type *range_type = alloc_type_copy (value_type (arr));
1979 struct type *array_type = alloc_type_copy (value_type (arr));
1980 struct value *low = desc_one_bound (descriptor, arity, 0);
1981 struct value *high = desc_one_bound (descriptor, arity, 1);
1982
1983 arity -= 1;
1984 create_static_range_type (range_type, value_type (low),
1985 longest_to_int (value_as_long (low)),
1986 longest_to_int (value_as_long (high)));
1987 elt_type = create_array_type (array_type, elt_type, range_type);
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 {
1991 /* We need to store the element packed bitsize, as well as
1992 recompute the array size, because it was previously
1993 computed based on the unpacked element size. */
1994 LONGEST lo = value_as_long (low);
1995 LONGEST hi = value_as_long (high);
1996
1997 TYPE_FIELD_BITSIZE (elt_type, 0) =
1998 decode_packed_array_bitsize (value_type (arr));
1999 /* If the array has no element, then the size is already
2000 zero, and does not need to be recomputed. */
2001 if (lo < hi)
2002 {
2003 int array_bitsize =
2004 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2005
2006 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2007 }
2008 }
2009 }
2010
2011 return lookup_pointer_type (elt_type);
2012 }
2013 }
2014
2015 /* If ARR does not represent an array, returns ARR unchanged.
2016 Otherwise, returns either a standard GDB array with bounds set
2017 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2018 GDB array. Returns NULL if ARR is a null fat pointer. */
2019
2020 struct value *
2021 ada_coerce_to_simple_array_ptr (struct value *arr)
2022 {
2023 if (ada_is_array_descriptor_type (value_type (arr)))
2024 {
2025 struct type *arrType = ada_type_of_array (arr, 1);
2026
2027 if (arrType == NULL)
2028 return NULL;
2029 return value_cast (arrType, value_copy (desc_data (arr)));
2030 }
2031 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2032 return decode_constrained_packed_array (arr);
2033 else
2034 return arr;
2035 }
2036
2037 /* If ARR does not represent an array, returns ARR unchanged.
2038 Otherwise, returns a standard GDB array describing ARR (which may
2039 be ARR itself if it already is in the proper form). */
2040
2041 struct value *
2042 ada_coerce_to_simple_array (struct value *arr)
2043 {
2044 if (ada_is_array_descriptor_type (value_type (arr)))
2045 {
2046 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2047
2048 if (arrVal == NULL)
2049 error (_("Bounds unavailable for null array pointer."));
2050 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
2051 return value_ind (arrVal);
2052 }
2053 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2054 return decode_constrained_packed_array (arr);
2055 else
2056 return arr;
2057 }
2058
2059 /* If TYPE represents a GNAT array type, return it translated to an
2060 ordinary GDB array type (possibly with BITSIZE fields indicating
2061 packing). For other types, is the identity. */
2062
2063 struct type *
2064 ada_coerce_to_simple_array_type (struct type *type)
2065 {
2066 if (ada_is_constrained_packed_array_type (type))
2067 return decode_constrained_packed_array_type (type);
2068
2069 if (ada_is_array_descriptor_type (type))
2070 return ada_check_typedef (desc_data_target_type (type));
2071
2072 return type;
2073 }
2074
2075 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2076
2077 static int
2078 ada_is_packed_array_type (struct type *type)
2079 {
2080 if (type == NULL)
2081 return 0;
2082 type = desc_base_type (type);
2083 type = ada_check_typedef (type);
2084 return
2085 ada_type_name (type) != NULL
2086 && strstr (ada_type_name (type), "___XP") != NULL;
2087 }
2088
2089 /* Non-zero iff TYPE represents a standard GNAT constrained
2090 packed-array type. */
2091
2092 int
2093 ada_is_constrained_packed_array_type (struct type *type)
2094 {
2095 return ada_is_packed_array_type (type)
2096 && !ada_is_array_descriptor_type (type);
2097 }
2098
2099 /* Non-zero iff TYPE represents an array descriptor for a
2100 unconstrained packed-array type. */
2101
2102 static int
2103 ada_is_unconstrained_packed_array_type (struct type *type)
2104 {
2105 return ada_is_packed_array_type (type)
2106 && ada_is_array_descriptor_type (type);
2107 }
2108
2109 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2110 return the size of its elements in bits. */
2111
2112 static long
2113 decode_packed_array_bitsize (struct type *type)
2114 {
2115 const char *raw_name;
2116 const char *tail;
2117 long bits;
2118
2119 /* Access to arrays implemented as fat pointers are encoded as a typedef
2120 of the fat pointer type. We need the name of the fat pointer type
2121 to do the decoding, so strip the typedef layer. */
2122 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2123 type = ada_typedef_target_type (type);
2124
2125 raw_name = ada_type_name (ada_check_typedef (type));
2126 if (!raw_name)
2127 raw_name = ada_type_name (desc_base_type (type));
2128
2129 if (!raw_name)
2130 return 0;
2131
2132 tail = strstr (raw_name, "___XP");
2133 gdb_assert (tail != NULL);
2134
2135 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2136 {
2137 lim_warning
2138 (_("could not understand bit size information on packed array"));
2139 return 0;
2140 }
2141
2142 return bits;
2143 }
2144
2145 /* Given that TYPE is a standard GDB array type with all bounds filled
2146 in, and that the element size of its ultimate scalar constituents
2147 (that is, either its elements, or, if it is an array of arrays, its
2148 elements' elements, etc.) is *ELT_BITS, return an identical type,
2149 but with the bit sizes of its elements (and those of any
2150 constituent arrays) recorded in the BITSIZE components of its
2151 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2152 in bits. */
2153
2154 static struct type *
2155 constrained_packed_array_type (struct type *type, long *elt_bits)
2156 {
2157 struct type *new_elt_type;
2158 struct type *new_type;
2159 struct type *index_type_desc;
2160 struct type *index_type;
2161 LONGEST low_bound, high_bound;
2162
2163 type = ada_check_typedef (type);
2164 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2165 return type;
2166
2167 index_type_desc = ada_find_parallel_type (type, "___XA");
2168 if (index_type_desc)
2169 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2170 NULL);
2171 else
2172 index_type = TYPE_INDEX_TYPE (type);
2173
2174 new_type = alloc_type_copy (type);
2175 new_elt_type =
2176 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2177 elt_bits);
2178 create_array_type (new_type, new_elt_type, index_type);
2179 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2180 TYPE_NAME (new_type) = ada_type_name (type);
2181
2182 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2183 low_bound = high_bound = 0;
2184 if (high_bound < low_bound)
2185 *elt_bits = TYPE_LENGTH (new_type) = 0;
2186 else
2187 {
2188 *elt_bits *= (high_bound - low_bound + 1);
2189 TYPE_LENGTH (new_type) =
2190 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2191 }
2192
2193 TYPE_FIXED_INSTANCE (new_type) = 1;
2194 return new_type;
2195 }
2196
2197 /* The array type encoded by TYPE, where
2198 ada_is_constrained_packed_array_type (TYPE). */
2199
2200 static struct type *
2201 decode_constrained_packed_array_type (struct type *type)
2202 {
2203 const char *raw_name = ada_type_name (ada_check_typedef (type));
2204 char *name;
2205 const char *tail;
2206 struct type *shadow_type;
2207 long bits;
2208
2209 if (!raw_name)
2210 raw_name = ada_type_name (desc_base_type (type));
2211
2212 if (!raw_name)
2213 return NULL;
2214
2215 name = (char *) alloca (strlen (raw_name) + 1);
2216 tail = strstr (raw_name, "___XP");
2217 type = desc_base_type (type);
2218
2219 memcpy (name, raw_name, tail - raw_name);
2220 name[tail - raw_name] = '\000';
2221
2222 shadow_type = ada_find_parallel_type_with_name (type, name);
2223
2224 if (shadow_type == NULL)
2225 {
2226 lim_warning (_("could not find bounds information on packed array"));
2227 return NULL;
2228 }
2229 CHECK_TYPEDEF (shadow_type);
2230
2231 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2232 {
2233 lim_warning (_("could not understand bounds "
2234 "information on packed array"));
2235 return NULL;
2236 }
2237
2238 bits = decode_packed_array_bitsize (type);
2239 return constrained_packed_array_type (shadow_type, &bits);
2240 }
2241
2242 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2243 array, returns a simple array that denotes that array. Its type is a
2244 standard GDB array type except that the BITSIZEs of the array
2245 target types are set to the number of bits in each element, and the
2246 type length is set appropriately. */
2247
2248 static struct value *
2249 decode_constrained_packed_array (struct value *arr)
2250 {
2251 struct type *type;
2252
2253 /* If our value is a pointer, then dereference it. Likewise if
2254 the value is a reference. Make sure that this operation does not
2255 cause the target type to be fixed, as this would indirectly cause
2256 this array to be decoded. The rest of the routine assumes that
2257 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2258 and "value_ind" routines to perform the dereferencing, as opposed
2259 to using "ada_coerce_ref" or "ada_value_ind". */
2260 arr = coerce_ref (arr);
2261 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2262 arr = value_ind (arr);
2263
2264 type = decode_constrained_packed_array_type (value_type (arr));
2265 if (type == NULL)
2266 {
2267 error (_("can't unpack array"));
2268 return NULL;
2269 }
2270
2271 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2272 && ada_is_modular_type (value_type (arr)))
2273 {
2274 /* This is a (right-justified) modular type representing a packed
2275 array with no wrapper. In order to interpret the value through
2276 the (left-justified) packed array type we just built, we must
2277 first left-justify it. */
2278 int bit_size, bit_pos;
2279 ULONGEST mod;
2280
2281 mod = ada_modulus (value_type (arr)) - 1;
2282 bit_size = 0;
2283 while (mod > 0)
2284 {
2285 bit_size += 1;
2286 mod >>= 1;
2287 }
2288 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2289 arr = ada_value_primitive_packed_val (arr, NULL,
2290 bit_pos / HOST_CHAR_BIT,
2291 bit_pos % HOST_CHAR_BIT,
2292 bit_size,
2293 type);
2294 }
2295
2296 return coerce_unspec_val_to_type (arr, type);
2297 }
2298
2299
2300 /* The value of the element of packed array ARR at the ARITY indices
2301 given in IND. ARR must be a simple array. */
2302
2303 static struct value *
2304 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2305 {
2306 int i;
2307 int bits, elt_off, bit_off;
2308 long elt_total_bit_offset;
2309 struct type *elt_type;
2310 struct value *v;
2311
2312 bits = 0;
2313 elt_total_bit_offset = 0;
2314 elt_type = ada_check_typedef (value_type (arr));
2315 for (i = 0; i < arity; i += 1)
2316 {
2317 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2318 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2319 error
2320 (_("attempt to do packed indexing of "
2321 "something other than a packed array"));
2322 else
2323 {
2324 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2325 LONGEST lowerbound, upperbound;
2326 LONGEST idx;
2327
2328 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2329 {
2330 lim_warning (_("don't know bounds of array"));
2331 lowerbound = upperbound = 0;
2332 }
2333
2334 idx = pos_atr (ind[i]);
2335 if (idx < lowerbound || idx > upperbound)
2336 lim_warning (_("packed array index %ld out of bounds"),
2337 (long) idx);
2338 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2339 elt_total_bit_offset += (idx - lowerbound) * bits;
2340 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2341 }
2342 }
2343 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2344 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2345
2346 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2347 bits, elt_type);
2348 return v;
2349 }
2350
2351 /* Non-zero iff TYPE includes negative integer values. */
2352
2353 static int
2354 has_negatives (struct type *type)
2355 {
2356 switch (TYPE_CODE (type))
2357 {
2358 default:
2359 return 0;
2360 case TYPE_CODE_INT:
2361 return !TYPE_UNSIGNED (type);
2362 case TYPE_CODE_RANGE:
2363 return TYPE_LOW_BOUND (type) < 0;
2364 }
2365 }
2366
2367
2368 /* Create a new value of type TYPE from the contents of OBJ starting
2369 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2370 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2371 assigning through the result will set the field fetched from.
2372 VALADDR is ignored unless OBJ is NULL, in which case,
2373 VALADDR+OFFSET must address the start of storage containing the
2374 packed value. The value returned in this case is never an lval.
2375 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2376
2377 struct value *
2378 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2379 long offset, int bit_offset, int bit_size,
2380 struct type *type)
2381 {
2382 struct value *v;
2383 int src, /* Index into the source area */
2384 targ, /* Index into the target area */
2385 srcBitsLeft, /* Number of source bits left to move */
2386 nsrc, ntarg, /* Number of source and target bytes */
2387 unusedLS, /* Number of bits in next significant
2388 byte of source that are unused */
2389 accumSize; /* Number of meaningful bits in accum */
2390 unsigned char *bytes; /* First byte containing data to unpack */
2391 unsigned char *unpacked;
2392 unsigned long accum; /* Staging area for bits being transferred */
2393 unsigned char sign;
2394 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2395 /* Transmit bytes from least to most significant; delta is the direction
2396 the indices move. */
2397 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2398
2399 type = ada_check_typedef (type);
2400
2401 if (obj == NULL)
2402 {
2403 v = allocate_value (type);
2404 bytes = (unsigned char *) (valaddr + offset);
2405 }
2406 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2407 {
2408 v = value_at (type, value_address (obj));
2409 type = value_type (v);
2410 bytes = (unsigned char *) alloca (len);
2411 read_memory (value_address (v) + offset, bytes, len);
2412 }
2413 else
2414 {
2415 v = allocate_value (type);
2416 bytes = (unsigned char *) value_contents (obj) + offset;
2417 }
2418
2419 if (obj != NULL)
2420 {
2421 long new_offset = offset;
2422
2423 set_value_component_location (v, obj);
2424 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2425 set_value_bitsize (v, bit_size);
2426 if (value_bitpos (v) >= HOST_CHAR_BIT)
2427 {
2428 ++new_offset;
2429 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2430 }
2431 set_value_offset (v, new_offset);
2432
2433 /* Also set the parent value. This is needed when trying to
2434 assign a new value (in inferior memory). */
2435 set_value_parent (v, obj);
2436 }
2437 else
2438 set_value_bitsize (v, bit_size);
2439 unpacked = (unsigned char *) value_contents (v);
2440
2441 srcBitsLeft = bit_size;
2442 nsrc = len;
2443 ntarg = TYPE_LENGTH (type);
2444 sign = 0;
2445 if (bit_size == 0)
2446 {
2447 memset (unpacked, 0, TYPE_LENGTH (type));
2448 return v;
2449 }
2450 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2451 {
2452 src = len - 1;
2453 if (has_negatives (type)
2454 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2455 sign = ~0;
2456
2457 unusedLS =
2458 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2459 % HOST_CHAR_BIT;
2460
2461 switch (TYPE_CODE (type))
2462 {
2463 case TYPE_CODE_ARRAY:
2464 case TYPE_CODE_UNION:
2465 case TYPE_CODE_STRUCT:
2466 /* Non-scalar values must be aligned at a byte boundary... */
2467 accumSize =
2468 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2469 /* ... And are placed at the beginning (most-significant) bytes
2470 of the target. */
2471 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2472 ntarg = targ + 1;
2473 break;
2474 default:
2475 accumSize = 0;
2476 targ = TYPE_LENGTH (type) - 1;
2477 break;
2478 }
2479 }
2480 else
2481 {
2482 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2483
2484 src = targ = 0;
2485 unusedLS = bit_offset;
2486 accumSize = 0;
2487
2488 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2489 sign = ~0;
2490 }
2491
2492 accum = 0;
2493 while (nsrc > 0)
2494 {
2495 /* Mask for removing bits of the next source byte that are not
2496 part of the value. */
2497 unsigned int unusedMSMask =
2498 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2499 1;
2500 /* Sign-extend bits for this byte. */
2501 unsigned int signMask = sign & ~unusedMSMask;
2502
2503 accum |=
2504 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2505 accumSize += HOST_CHAR_BIT - unusedLS;
2506 if (accumSize >= HOST_CHAR_BIT)
2507 {
2508 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2509 accumSize -= HOST_CHAR_BIT;
2510 accum >>= HOST_CHAR_BIT;
2511 ntarg -= 1;
2512 targ += delta;
2513 }
2514 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2515 unusedLS = 0;
2516 nsrc -= 1;
2517 src += delta;
2518 }
2519 while (ntarg > 0)
2520 {
2521 accum |= sign << accumSize;
2522 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2523 accumSize -= HOST_CHAR_BIT;
2524 accum >>= HOST_CHAR_BIT;
2525 ntarg -= 1;
2526 targ += delta;
2527 }
2528
2529 return v;
2530 }
2531
2532 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2533 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2534 not overlap. */
2535 static void
2536 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2537 int src_offset, int n, int bits_big_endian_p)
2538 {
2539 unsigned int accum, mask;
2540 int accum_bits, chunk_size;
2541
2542 target += targ_offset / HOST_CHAR_BIT;
2543 targ_offset %= HOST_CHAR_BIT;
2544 source += src_offset / HOST_CHAR_BIT;
2545 src_offset %= HOST_CHAR_BIT;
2546 if (bits_big_endian_p)
2547 {
2548 accum = (unsigned char) *source;
2549 source += 1;
2550 accum_bits = HOST_CHAR_BIT - src_offset;
2551
2552 while (n > 0)
2553 {
2554 int unused_right;
2555
2556 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2557 accum_bits += HOST_CHAR_BIT;
2558 source += 1;
2559 chunk_size = HOST_CHAR_BIT - targ_offset;
2560 if (chunk_size > n)
2561 chunk_size = n;
2562 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2563 mask = ((1 << chunk_size) - 1) << unused_right;
2564 *target =
2565 (*target & ~mask)
2566 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2567 n -= chunk_size;
2568 accum_bits -= chunk_size;
2569 target += 1;
2570 targ_offset = 0;
2571 }
2572 }
2573 else
2574 {
2575 accum = (unsigned char) *source >> src_offset;
2576 source += 1;
2577 accum_bits = HOST_CHAR_BIT - src_offset;
2578
2579 while (n > 0)
2580 {
2581 accum = accum + ((unsigned char) *source << accum_bits);
2582 accum_bits += HOST_CHAR_BIT;
2583 source += 1;
2584 chunk_size = HOST_CHAR_BIT - targ_offset;
2585 if (chunk_size > n)
2586 chunk_size = n;
2587 mask = ((1 << chunk_size) - 1) << targ_offset;
2588 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2589 n -= chunk_size;
2590 accum_bits -= chunk_size;
2591 accum >>= chunk_size;
2592 target += 1;
2593 targ_offset = 0;
2594 }
2595 }
2596 }
2597
2598 /* Store the contents of FROMVAL into the location of TOVAL.
2599 Return a new value with the location of TOVAL and contents of
2600 FROMVAL. Handles assignment into packed fields that have
2601 floating-point or non-scalar types. */
2602
2603 static struct value *
2604 ada_value_assign (struct value *toval, struct value *fromval)
2605 {
2606 struct type *type = value_type (toval);
2607 int bits = value_bitsize (toval);
2608
2609 toval = ada_coerce_ref (toval);
2610 fromval = ada_coerce_ref (fromval);
2611
2612 if (ada_is_direct_array_type (value_type (toval)))
2613 toval = ada_coerce_to_simple_array (toval);
2614 if (ada_is_direct_array_type (value_type (fromval)))
2615 fromval = ada_coerce_to_simple_array (fromval);
2616
2617 if (!deprecated_value_modifiable (toval))
2618 error (_("Left operand of assignment is not a modifiable lvalue."));
2619
2620 if (VALUE_LVAL (toval) == lval_memory
2621 && bits > 0
2622 && (TYPE_CODE (type) == TYPE_CODE_FLT
2623 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2624 {
2625 int len = (value_bitpos (toval)
2626 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2627 int from_size;
2628 gdb_byte *buffer = alloca (len);
2629 struct value *val;
2630 CORE_ADDR to_addr = value_address (toval);
2631
2632 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2633 fromval = value_cast (type, fromval);
2634
2635 read_memory (to_addr, buffer, len);
2636 from_size = value_bitsize (fromval);
2637 if (from_size == 0)
2638 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2639 if (gdbarch_bits_big_endian (get_type_arch (type)))
2640 move_bits (buffer, value_bitpos (toval),
2641 value_contents (fromval), from_size - bits, bits, 1);
2642 else
2643 move_bits (buffer, value_bitpos (toval),
2644 value_contents (fromval), 0, bits, 0);
2645 write_memory_with_notification (to_addr, buffer, len);
2646
2647 val = value_copy (toval);
2648 memcpy (value_contents_raw (val), value_contents (fromval),
2649 TYPE_LENGTH (type));
2650 deprecated_set_value_type (val, type);
2651
2652 return val;
2653 }
2654
2655 return value_assign (toval, fromval);
2656 }
2657
2658
2659 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2660 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2661 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2662 * COMPONENT, and not the inferior's memory. The current contents
2663 * of COMPONENT are ignored. */
2664 static void
2665 value_assign_to_component (struct value *container, struct value *component,
2666 struct value *val)
2667 {
2668 LONGEST offset_in_container =
2669 (LONGEST) (value_address (component) - value_address (container));
2670 int bit_offset_in_container =
2671 value_bitpos (component) - value_bitpos (container);
2672 int bits;
2673
2674 val = value_cast (value_type (component), val);
2675
2676 if (value_bitsize (component) == 0)
2677 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2678 else
2679 bits = value_bitsize (component);
2680
2681 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2682 move_bits (value_contents_writeable (container) + offset_in_container,
2683 value_bitpos (container) + bit_offset_in_container,
2684 value_contents (val),
2685 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2686 bits, 1);
2687 else
2688 move_bits (value_contents_writeable (container) + offset_in_container,
2689 value_bitpos (container) + bit_offset_in_container,
2690 value_contents (val), 0, bits, 0);
2691 }
2692
2693 /* The value of the element of array ARR at the ARITY indices given in IND.
2694 ARR may be either a simple array, GNAT array descriptor, or pointer
2695 thereto. */
2696
2697 struct value *
2698 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2699 {
2700 int k;
2701 struct value *elt;
2702 struct type *elt_type;
2703
2704 elt = ada_coerce_to_simple_array (arr);
2705
2706 elt_type = ada_check_typedef (value_type (elt));
2707 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2708 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2709 return value_subscript_packed (elt, arity, ind);
2710
2711 for (k = 0; k < arity; k += 1)
2712 {
2713 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2714 error (_("too many subscripts (%d expected)"), k);
2715 elt = value_subscript (elt, pos_atr (ind[k]));
2716 }
2717 return elt;
2718 }
2719
2720 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2721 value of the element of *ARR at the ARITY indices given in
2722 IND. Does not read the entire array into memory. */
2723
2724 static struct value *
2725 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2726 struct value **ind)
2727 {
2728 int k;
2729
2730 for (k = 0; k < arity; k += 1)
2731 {
2732 LONGEST lwb, upb;
2733
2734 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2735 error (_("too many subscripts (%d expected)"), k);
2736 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2737 value_copy (arr));
2738 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2739 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2740 type = TYPE_TARGET_TYPE (type);
2741 }
2742
2743 return value_ind (arr);
2744 }
2745
2746 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2747 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2748 elements starting at index LOW. The lower bound of this array is LOW, as
2749 per Ada rules. */
2750 static struct value *
2751 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2752 int low, int high)
2753 {
2754 struct type *type0 = ada_check_typedef (type);
2755 CORE_ADDR base = value_as_address (array_ptr)
2756 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2757 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2758 struct type *index_type
2759 = create_static_range_type (NULL,
2760 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2761 low, high);
2762 struct type *slice_type =
2763 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2764
2765 return value_at_lazy (slice_type, base);
2766 }
2767
2768
2769 static struct value *
2770 ada_value_slice (struct value *array, int low, int high)
2771 {
2772 struct type *type = ada_check_typedef (value_type (array));
2773 struct type *index_type
2774 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2775 struct type *slice_type =
2776 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2777
2778 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2779 }
2780
2781 /* If type is a record type in the form of a standard GNAT array
2782 descriptor, returns the number of dimensions for type. If arr is a
2783 simple array, returns the number of "array of"s that prefix its
2784 type designation. Otherwise, returns 0. */
2785
2786 int
2787 ada_array_arity (struct type *type)
2788 {
2789 int arity;
2790
2791 if (type == NULL)
2792 return 0;
2793
2794 type = desc_base_type (type);
2795
2796 arity = 0;
2797 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2798 return desc_arity (desc_bounds_type (type));
2799 else
2800 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2801 {
2802 arity += 1;
2803 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2804 }
2805
2806 return arity;
2807 }
2808
2809 /* If TYPE is a record type in the form of a standard GNAT array
2810 descriptor or a simple array type, returns the element type for
2811 TYPE after indexing by NINDICES indices, or by all indices if
2812 NINDICES is -1. Otherwise, returns NULL. */
2813
2814 struct type *
2815 ada_array_element_type (struct type *type, int nindices)
2816 {
2817 type = desc_base_type (type);
2818
2819 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2820 {
2821 int k;
2822 struct type *p_array_type;
2823
2824 p_array_type = desc_data_target_type (type);
2825
2826 k = ada_array_arity (type);
2827 if (k == 0)
2828 return NULL;
2829
2830 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2831 if (nindices >= 0 && k > nindices)
2832 k = nindices;
2833 while (k > 0 && p_array_type != NULL)
2834 {
2835 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2836 k -= 1;
2837 }
2838 return p_array_type;
2839 }
2840 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2841 {
2842 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2843 {
2844 type = TYPE_TARGET_TYPE (type);
2845 nindices -= 1;
2846 }
2847 return type;
2848 }
2849
2850 return NULL;
2851 }
2852
2853 /* The type of nth index in arrays of given type (n numbering from 1).
2854 Does not examine memory. Throws an error if N is invalid or TYPE
2855 is not an array type. NAME is the name of the Ada attribute being
2856 evaluated ('range, 'first, 'last, or 'length); it is used in building
2857 the error message. */
2858
2859 static struct type *
2860 ada_index_type (struct type *type, int n, const char *name)
2861 {
2862 struct type *result_type;
2863
2864 type = desc_base_type (type);
2865
2866 if (n < 0 || n > ada_array_arity (type))
2867 error (_("invalid dimension number to '%s"), name);
2868
2869 if (ada_is_simple_array_type (type))
2870 {
2871 int i;
2872
2873 for (i = 1; i < n; i += 1)
2874 type = TYPE_TARGET_TYPE (type);
2875 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2876 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2877 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2878 perhaps stabsread.c would make more sense. */
2879 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2880 result_type = NULL;
2881 }
2882 else
2883 {
2884 result_type = desc_index_type (desc_bounds_type (type), n);
2885 if (result_type == NULL)
2886 error (_("attempt to take bound of something that is not an array"));
2887 }
2888
2889 return result_type;
2890 }
2891
2892 /* Given that arr is an array type, returns the lower bound of the
2893 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2894 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2895 array-descriptor type. It works for other arrays with bounds supplied
2896 by run-time quantities other than discriminants. */
2897
2898 static LONGEST
2899 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2900 {
2901 struct type *type, *index_type_desc, *index_type;
2902 int i;
2903
2904 gdb_assert (which == 0 || which == 1);
2905
2906 if (ada_is_constrained_packed_array_type (arr_type))
2907 arr_type = decode_constrained_packed_array_type (arr_type);
2908
2909 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2910 return (LONGEST) - which;
2911
2912 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2913 type = TYPE_TARGET_TYPE (arr_type);
2914 else
2915 type = arr_type;
2916
2917 index_type_desc = ada_find_parallel_type (type, "___XA");
2918 ada_fixup_array_indexes_type (index_type_desc);
2919 if (index_type_desc != NULL)
2920 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2921 NULL);
2922 else
2923 {
2924 struct type *elt_type = check_typedef (type);
2925
2926 for (i = 1; i < n; i++)
2927 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2928
2929 index_type = TYPE_INDEX_TYPE (elt_type);
2930 }
2931
2932 return
2933 (LONGEST) (which == 0
2934 ? ada_discrete_type_low_bound (index_type)
2935 : ada_discrete_type_high_bound (index_type));
2936 }
2937
2938 /* Given that arr is an array value, returns the lower bound of the
2939 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2940 WHICH is 1. This routine will also work for arrays with bounds
2941 supplied by run-time quantities other than discriminants. */
2942
2943 static LONGEST
2944 ada_array_bound (struct value *arr, int n, int which)
2945 {
2946 struct type *arr_type = value_type (arr);
2947
2948 if (ada_is_constrained_packed_array_type (arr_type))
2949 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2950 else if (ada_is_simple_array_type (arr_type))
2951 return ada_array_bound_from_type (arr_type, n, which);
2952 else
2953 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2954 }
2955
2956 /* Given that arr is an array value, returns the length of the
2957 nth index. This routine will also work for arrays with bounds
2958 supplied by run-time quantities other than discriminants.
2959 Does not work for arrays indexed by enumeration types with representation
2960 clauses at the moment. */
2961
2962 static LONGEST
2963 ada_array_length (struct value *arr, int n)
2964 {
2965 struct type *arr_type = ada_check_typedef (value_type (arr));
2966
2967 if (ada_is_constrained_packed_array_type (arr_type))
2968 return ada_array_length (decode_constrained_packed_array (arr), n);
2969
2970 if (ada_is_simple_array_type (arr_type))
2971 return (ada_array_bound_from_type (arr_type, n, 1)
2972 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2973 else
2974 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2975 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2976 }
2977
2978 /* An empty array whose type is that of ARR_TYPE (an array type),
2979 with bounds LOW to LOW-1. */
2980
2981 static struct value *
2982 empty_array (struct type *arr_type, int low)
2983 {
2984 struct type *arr_type0 = ada_check_typedef (arr_type);
2985 struct type *index_type
2986 = create_static_range_type
2987 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
2988 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2989
2990 return allocate_value (create_array_type (NULL, elt_type, index_type));
2991 }
2992 \f
2993
2994 /* Name resolution */
2995
2996 /* The "decoded" name for the user-definable Ada operator corresponding
2997 to OP. */
2998
2999 static const char *
3000 ada_decoded_op_name (enum exp_opcode op)
3001 {
3002 int i;
3003
3004 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3005 {
3006 if (ada_opname_table[i].op == op)
3007 return ada_opname_table[i].decoded;
3008 }
3009 error (_("Could not find operator name for opcode"));
3010 }
3011
3012
3013 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3014 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3015 undefined namespace) and converts operators that are
3016 user-defined into appropriate function calls. If CONTEXT_TYPE is
3017 non-null, it provides a preferred result type [at the moment, only
3018 type void has any effect---causing procedures to be preferred over
3019 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3020 return type is preferred. May change (expand) *EXP. */
3021
3022 static void
3023 resolve (struct expression **expp, int void_context_p)
3024 {
3025 struct type *context_type = NULL;
3026 int pc = 0;
3027
3028 if (void_context_p)
3029 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3030
3031 resolve_subexp (expp, &pc, 1, context_type);
3032 }
3033
3034 /* Resolve the operator of the subexpression beginning at
3035 position *POS of *EXPP. "Resolving" consists of replacing
3036 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3037 with their resolutions, replacing built-in operators with
3038 function calls to user-defined operators, where appropriate, and,
3039 when DEPROCEDURE_P is non-zero, converting function-valued variables
3040 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3041 are as in ada_resolve, above. */
3042
3043 static struct value *
3044 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3045 struct type *context_type)
3046 {
3047 int pc = *pos;
3048 int i;
3049 struct expression *exp; /* Convenience: == *expp. */
3050 enum exp_opcode op = (*expp)->elts[pc].opcode;
3051 struct value **argvec; /* Vector of operand types (alloca'ed). */
3052 int nargs; /* Number of operands. */
3053 int oplen;
3054
3055 argvec = NULL;
3056 nargs = 0;
3057 exp = *expp;
3058
3059 /* Pass one: resolve operands, saving their types and updating *pos,
3060 if needed. */
3061 switch (op)
3062 {
3063 case OP_FUNCALL:
3064 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3065 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3066 *pos += 7;
3067 else
3068 {
3069 *pos += 3;
3070 resolve_subexp (expp, pos, 0, NULL);
3071 }
3072 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3073 break;
3074
3075 case UNOP_ADDR:
3076 *pos += 1;
3077 resolve_subexp (expp, pos, 0, NULL);
3078 break;
3079
3080 case UNOP_QUAL:
3081 *pos += 3;
3082 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3083 break;
3084
3085 case OP_ATR_MODULUS:
3086 case OP_ATR_SIZE:
3087 case OP_ATR_TAG:
3088 case OP_ATR_FIRST:
3089 case OP_ATR_LAST:
3090 case OP_ATR_LENGTH:
3091 case OP_ATR_POS:
3092 case OP_ATR_VAL:
3093 case OP_ATR_MIN:
3094 case OP_ATR_MAX:
3095 case TERNOP_IN_RANGE:
3096 case BINOP_IN_BOUNDS:
3097 case UNOP_IN_RANGE:
3098 case OP_AGGREGATE:
3099 case OP_OTHERS:
3100 case OP_CHOICES:
3101 case OP_POSITIONAL:
3102 case OP_DISCRETE_RANGE:
3103 case OP_NAME:
3104 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3105 *pos += oplen;
3106 break;
3107
3108 case BINOP_ASSIGN:
3109 {
3110 struct value *arg1;
3111
3112 *pos += 1;
3113 arg1 = resolve_subexp (expp, pos, 0, NULL);
3114 if (arg1 == NULL)
3115 resolve_subexp (expp, pos, 1, NULL);
3116 else
3117 resolve_subexp (expp, pos, 1, value_type (arg1));
3118 break;
3119 }
3120
3121 case UNOP_CAST:
3122 *pos += 3;
3123 nargs = 1;
3124 break;
3125
3126 case BINOP_ADD:
3127 case BINOP_SUB:
3128 case BINOP_MUL:
3129 case BINOP_DIV:
3130 case BINOP_REM:
3131 case BINOP_MOD:
3132 case BINOP_EXP:
3133 case BINOP_CONCAT:
3134 case BINOP_LOGICAL_AND:
3135 case BINOP_LOGICAL_OR:
3136 case BINOP_BITWISE_AND:
3137 case BINOP_BITWISE_IOR:
3138 case BINOP_BITWISE_XOR:
3139
3140 case BINOP_EQUAL:
3141 case BINOP_NOTEQUAL:
3142 case BINOP_LESS:
3143 case BINOP_GTR:
3144 case BINOP_LEQ:
3145 case BINOP_GEQ:
3146
3147 case BINOP_REPEAT:
3148 case BINOP_SUBSCRIPT:
3149 case BINOP_COMMA:
3150 *pos += 1;
3151 nargs = 2;
3152 break;
3153
3154 case UNOP_NEG:
3155 case UNOP_PLUS:
3156 case UNOP_LOGICAL_NOT:
3157 case UNOP_ABS:
3158 case UNOP_IND:
3159 *pos += 1;
3160 nargs = 1;
3161 break;
3162
3163 case OP_LONG:
3164 case OP_DOUBLE:
3165 case OP_VAR_VALUE:
3166 *pos += 4;
3167 break;
3168
3169 case OP_TYPE:
3170 case OP_BOOL:
3171 case OP_LAST:
3172 case OP_INTERNALVAR:
3173 *pos += 3;
3174 break;
3175
3176 case UNOP_MEMVAL:
3177 *pos += 3;
3178 nargs = 1;
3179 break;
3180
3181 case OP_REGISTER:
3182 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3183 break;
3184
3185 case STRUCTOP_STRUCT:
3186 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3187 nargs = 1;
3188 break;
3189
3190 case TERNOP_SLICE:
3191 *pos += 1;
3192 nargs = 3;
3193 break;
3194
3195 case OP_STRING:
3196 break;
3197
3198 default:
3199 error (_("Unexpected operator during name resolution"));
3200 }
3201
3202 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3203 for (i = 0; i < nargs; i += 1)
3204 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3205 argvec[i] = NULL;
3206 exp = *expp;
3207
3208 /* Pass two: perform any resolution on principal operator. */
3209 switch (op)
3210 {
3211 default:
3212 break;
3213
3214 case OP_VAR_VALUE:
3215 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3216 {
3217 struct ada_symbol_info *candidates;
3218 int n_candidates;
3219
3220 n_candidates =
3221 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3222 (exp->elts[pc + 2].symbol),
3223 exp->elts[pc + 1].block, VAR_DOMAIN,
3224 &candidates);
3225
3226 if (n_candidates > 1)
3227 {
3228 /* Types tend to get re-introduced locally, so if there
3229 are any local symbols that are not types, first filter
3230 out all types. */
3231 int j;
3232 for (j = 0; j < n_candidates; j += 1)
3233 switch (SYMBOL_CLASS (candidates[j].sym))
3234 {
3235 case LOC_REGISTER:
3236 case LOC_ARG:
3237 case LOC_REF_ARG:
3238 case LOC_REGPARM_ADDR:
3239 case LOC_LOCAL:
3240 case LOC_COMPUTED:
3241 goto FoundNonType;
3242 default:
3243 break;
3244 }
3245 FoundNonType:
3246 if (j < n_candidates)
3247 {
3248 j = 0;
3249 while (j < n_candidates)
3250 {
3251 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3252 {
3253 candidates[j] = candidates[n_candidates - 1];
3254 n_candidates -= 1;
3255 }
3256 else
3257 j += 1;
3258 }
3259 }
3260 }
3261
3262 if (n_candidates == 0)
3263 error (_("No definition found for %s"),
3264 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3265 else if (n_candidates == 1)
3266 i = 0;
3267 else if (deprocedure_p
3268 && !is_nonfunction (candidates, n_candidates))
3269 {
3270 i = ada_resolve_function
3271 (candidates, n_candidates, NULL, 0,
3272 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3273 context_type);
3274 if (i < 0)
3275 error (_("Could not find a match for %s"),
3276 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3277 }
3278 else
3279 {
3280 printf_filtered (_("Multiple matches for %s\n"),
3281 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3282 user_select_syms (candidates, n_candidates, 1);
3283 i = 0;
3284 }
3285
3286 exp->elts[pc + 1].block = candidates[i].block;
3287 exp->elts[pc + 2].symbol = candidates[i].sym;
3288 if (innermost_block == NULL
3289 || contained_in (candidates[i].block, innermost_block))
3290 innermost_block = candidates[i].block;
3291 }
3292
3293 if (deprocedure_p
3294 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3295 == TYPE_CODE_FUNC))
3296 {
3297 replace_operator_with_call (expp, pc, 0, 0,
3298 exp->elts[pc + 2].symbol,
3299 exp->elts[pc + 1].block);
3300 exp = *expp;
3301 }
3302 break;
3303
3304 case OP_FUNCALL:
3305 {
3306 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3307 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3308 {
3309 struct ada_symbol_info *candidates;
3310 int n_candidates;
3311
3312 n_candidates =
3313 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3314 (exp->elts[pc + 5].symbol),
3315 exp->elts[pc + 4].block, VAR_DOMAIN,
3316 &candidates);
3317 if (n_candidates == 1)
3318 i = 0;
3319 else
3320 {
3321 i = ada_resolve_function
3322 (candidates, n_candidates,
3323 argvec, nargs,
3324 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3325 context_type);
3326 if (i < 0)
3327 error (_("Could not find a match for %s"),
3328 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3329 }
3330
3331 exp->elts[pc + 4].block = candidates[i].block;
3332 exp->elts[pc + 5].symbol = candidates[i].sym;
3333 if (innermost_block == NULL
3334 || contained_in (candidates[i].block, innermost_block))
3335 innermost_block = candidates[i].block;
3336 }
3337 }
3338 break;
3339 case BINOP_ADD:
3340 case BINOP_SUB:
3341 case BINOP_MUL:
3342 case BINOP_DIV:
3343 case BINOP_REM:
3344 case BINOP_MOD:
3345 case BINOP_CONCAT:
3346 case BINOP_BITWISE_AND:
3347 case BINOP_BITWISE_IOR:
3348 case BINOP_BITWISE_XOR:
3349 case BINOP_EQUAL:
3350 case BINOP_NOTEQUAL:
3351 case BINOP_LESS:
3352 case BINOP_GTR:
3353 case BINOP_LEQ:
3354 case BINOP_GEQ:
3355 case BINOP_EXP:
3356 case UNOP_NEG:
3357 case UNOP_PLUS:
3358 case UNOP_LOGICAL_NOT:
3359 case UNOP_ABS:
3360 if (possible_user_operator_p (op, argvec))
3361 {
3362 struct ada_symbol_info *candidates;
3363 int n_candidates;
3364
3365 n_candidates =
3366 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3367 (struct block *) NULL, VAR_DOMAIN,
3368 &candidates);
3369 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3370 ada_decoded_op_name (op), NULL);
3371 if (i < 0)
3372 break;
3373
3374 replace_operator_with_call (expp, pc, nargs, 1,
3375 candidates[i].sym, candidates[i].block);
3376 exp = *expp;
3377 }
3378 break;
3379
3380 case OP_TYPE:
3381 case OP_REGISTER:
3382 return NULL;
3383 }
3384
3385 *pos = pc;
3386 return evaluate_subexp_type (exp, pos);
3387 }
3388
3389 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3390 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3391 a non-pointer. */
3392 /* The term "match" here is rather loose. The match is heuristic and
3393 liberal. */
3394
3395 static int
3396 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3397 {
3398 ftype = ada_check_typedef (ftype);
3399 atype = ada_check_typedef (atype);
3400
3401 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3402 ftype = TYPE_TARGET_TYPE (ftype);
3403 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3404 atype = TYPE_TARGET_TYPE (atype);
3405
3406 switch (TYPE_CODE (ftype))
3407 {
3408 default:
3409 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3410 case TYPE_CODE_PTR:
3411 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3412 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3413 TYPE_TARGET_TYPE (atype), 0);
3414 else
3415 return (may_deref
3416 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3417 case TYPE_CODE_INT:
3418 case TYPE_CODE_ENUM:
3419 case TYPE_CODE_RANGE:
3420 switch (TYPE_CODE (atype))
3421 {
3422 case TYPE_CODE_INT:
3423 case TYPE_CODE_ENUM:
3424 case TYPE_CODE_RANGE:
3425 return 1;
3426 default:
3427 return 0;
3428 }
3429
3430 case TYPE_CODE_ARRAY:
3431 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3432 || ada_is_array_descriptor_type (atype));
3433
3434 case TYPE_CODE_STRUCT:
3435 if (ada_is_array_descriptor_type (ftype))
3436 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3437 || ada_is_array_descriptor_type (atype));
3438 else
3439 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3440 && !ada_is_array_descriptor_type (atype));
3441
3442 case TYPE_CODE_UNION:
3443 case TYPE_CODE_FLT:
3444 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3445 }
3446 }
3447
3448 /* Return non-zero if the formals of FUNC "sufficiently match" the
3449 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3450 may also be an enumeral, in which case it is treated as a 0-
3451 argument function. */
3452
3453 static int
3454 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3455 {
3456 int i;
3457 struct type *func_type = SYMBOL_TYPE (func);
3458
3459 if (SYMBOL_CLASS (func) == LOC_CONST
3460 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3461 return (n_actuals == 0);
3462 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3463 return 0;
3464
3465 if (TYPE_NFIELDS (func_type) != n_actuals)
3466 return 0;
3467
3468 for (i = 0; i < n_actuals; i += 1)
3469 {
3470 if (actuals[i] == NULL)
3471 return 0;
3472 else
3473 {
3474 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3475 i));
3476 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3477
3478 if (!ada_type_match (ftype, atype, 1))
3479 return 0;
3480 }
3481 }
3482 return 1;
3483 }
3484
3485 /* False iff function type FUNC_TYPE definitely does not produce a value
3486 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3487 FUNC_TYPE is not a valid function type with a non-null return type
3488 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3489
3490 static int
3491 return_match (struct type *func_type, struct type *context_type)
3492 {
3493 struct type *return_type;
3494
3495 if (func_type == NULL)
3496 return 1;
3497
3498 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3499 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3500 else
3501 return_type = get_base_type (func_type);
3502 if (return_type == NULL)
3503 return 1;
3504
3505 context_type = get_base_type (context_type);
3506
3507 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3508 return context_type == NULL || return_type == context_type;
3509 else if (context_type == NULL)
3510 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3511 else
3512 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3513 }
3514
3515
3516 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3517 function (if any) that matches the types of the NARGS arguments in
3518 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3519 that returns that type, then eliminate matches that don't. If
3520 CONTEXT_TYPE is void and there is at least one match that does not
3521 return void, eliminate all matches that do.
3522
3523 Asks the user if there is more than one match remaining. Returns -1
3524 if there is no such symbol or none is selected. NAME is used
3525 solely for messages. May re-arrange and modify SYMS in
3526 the process; the index returned is for the modified vector. */
3527
3528 static int
3529 ada_resolve_function (struct ada_symbol_info syms[],
3530 int nsyms, struct value **args, int nargs,
3531 const char *name, struct type *context_type)
3532 {
3533 int fallback;
3534 int k;
3535 int m; /* Number of hits */
3536
3537 m = 0;
3538 /* In the first pass of the loop, we only accept functions matching
3539 context_type. If none are found, we add a second pass of the loop
3540 where every function is accepted. */
3541 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3542 {
3543 for (k = 0; k < nsyms; k += 1)
3544 {
3545 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3546
3547 if (ada_args_match (syms[k].sym, args, nargs)
3548 && (fallback || return_match (type, context_type)))
3549 {
3550 syms[m] = syms[k];
3551 m += 1;
3552 }
3553 }
3554 }
3555
3556 if (m == 0)
3557 return -1;
3558 else if (m > 1)
3559 {
3560 printf_filtered (_("Multiple matches for %s\n"), name);
3561 user_select_syms (syms, m, 1);
3562 return 0;
3563 }
3564 return 0;
3565 }
3566
3567 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3568 in a listing of choices during disambiguation (see sort_choices, below).
3569 The idea is that overloadings of a subprogram name from the
3570 same package should sort in their source order. We settle for ordering
3571 such symbols by their trailing number (__N or $N). */
3572
3573 static int
3574 encoded_ordered_before (const char *N0, const char *N1)
3575 {
3576 if (N1 == NULL)
3577 return 0;
3578 else if (N0 == NULL)
3579 return 1;
3580 else
3581 {
3582 int k0, k1;
3583
3584 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3585 ;
3586 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3587 ;
3588 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3589 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3590 {
3591 int n0, n1;
3592
3593 n0 = k0;
3594 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3595 n0 -= 1;
3596 n1 = k1;
3597 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3598 n1 -= 1;
3599 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3600 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3601 }
3602 return (strcmp (N0, N1) < 0);
3603 }
3604 }
3605
3606 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3607 encoded names. */
3608
3609 static void
3610 sort_choices (struct ada_symbol_info syms[], int nsyms)
3611 {
3612 int i;
3613
3614 for (i = 1; i < nsyms; i += 1)
3615 {
3616 struct ada_symbol_info sym = syms[i];
3617 int j;
3618
3619 for (j = i - 1; j >= 0; j -= 1)
3620 {
3621 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3622 SYMBOL_LINKAGE_NAME (sym.sym)))
3623 break;
3624 syms[j + 1] = syms[j];
3625 }
3626 syms[j + 1] = sym;
3627 }
3628 }
3629
3630 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3631 by asking the user (if necessary), returning the number selected,
3632 and setting the first elements of SYMS items. Error if no symbols
3633 selected. */
3634
3635 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3636 to be re-integrated one of these days. */
3637
3638 int
3639 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3640 {
3641 int i;
3642 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3643 int n_chosen;
3644 int first_choice = (max_results == 1) ? 1 : 2;
3645 const char *select_mode = multiple_symbols_select_mode ();
3646
3647 if (max_results < 1)
3648 error (_("Request to select 0 symbols!"));
3649 if (nsyms <= 1)
3650 return nsyms;
3651
3652 if (select_mode == multiple_symbols_cancel)
3653 error (_("\
3654 canceled because the command is ambiguous\n\
3655 See set/show multiple-symbol."));
3656
3657 /* If select_mode is "all", then return all possible symbols.
3658 Only do that if more than one symbol can be selected, of course.
3659 Otherwise, display the menu as usual. */
3660 if (select_mode == multiple_symbols_all && max_results > 1)
3661 return nsyms;
3662
3663 printf_unfiltered (_("[0] cancel\n"));
3664 if (max_results > 1)
3665 printf_unfiltered (_("[1] all\n"));
3666
3667 sort_choices (syms, nsyms);
3668
3669 for (i = 0; i < nsyms; i += 1)
3670 {
3671 if (syms[i].sym == NULL)
3672 continue;
3673
3674 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3675 {
3676 struct symtab_and_line sal =
3677 find_function_start_sal (syms[i].sym, 1);
3678
3679 if (sal.symtab == NULL)
3680 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3681 i + first_choice,
3682 SYMBOL_PRINT_NAME (syms[i].sym),
3683 sal.line);
3684 else
3685 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3686 SYMBOL_PRINT_NAME (syms[i].sym),
3687 symtab_to_filename_for_display (sal.symtab),
3688 sal.line);
3689 continue;
3690 }
3691 else
3692 {
3693 int is_enumeral =
3694 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3695 && SYMBOL_TYPE (syms[i].sym) != NULL
3696 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3697 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3698
3699 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3700 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3701 i + first_choice,
3702 SYMBOL_PRINT_NAME (syms[i].sym),
3703 symtab_to_filename_for_display (symtab),
3704 SYMBOL_LINE (syms[i].sym));
3705 else if (is_enumeral
3706 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3707 {
3708 printf_unfiltered (("[%d] "), i + first_choice);
3709 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3710 gdb_stdout, -1, 0, &type_print_raw_options);
3711 printf_unfiltered (_("'(%s) (enumeral)\n"),
3712 SYMBOL_PRINT_NAME (syms[i].sym));
3713 }
3714 else if (symtab != NULL)
3715 printf_unfiltered (is_enumeral
3716 ? _("[%d] %s in %s (enumeral)\n")
3717 : _("[%d] %s at %s:?\n"),
3718 i + first_choice,
3719 SYMBOL_PRINT_NAME (syms[i].sym),
3720 symtab_to_filename_for_display (symtab));
3721 else
3722 printf_unfiltered (is_enumeral
3723 ? _("[%d] %s (enumeral)\n")
3724 : _("[%d] %s at ?\n"),
3725 i + first_choice,
3726 SYMBOL_PRINT_NAME (syms[i].sym));
3727 }
3728 }
3729
3730 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3731 "overload-choice");
3732
3733 for (i = 0; i < n_chosen; i += 1)
3734 syms[i] = syms[chosen[i]];
3735
3736 return n_chosen;
3737 }
3738
3739 /* Read and validate a set of numeric choices from the user in the
3740 range 0 .. N_CHOICES-1. Place the results in increasing
3741 order in CHOICES[0 .. N-1], and return N.
3742
3743 The user types choices as a sequence of numbers on one line
3744 separated by blanks, encoding them as follows:
3745
3746 + A choice of 0 means to cancel the selection, throwing an error.
3747 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3748 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3749
3750 The user is not allowed to choose more than MAX_RESULTS values.
3751
3752 ANNOTATION_SUFFIX, if present, is used to annotate the input
3753 prompts (for use with the -f switch). */
3754
3755 int
3756 get_selections (int *choices, int n_choices, int max_results,
3757 int is_all_choice, char *annotation_suffix)
3758 {
3759 char *args;
3760 char *prompt;
3761 int n_chosen;
3762 int first_choice = is_all_choice ? 2 : 1;
3763
3764 prompt = getenv ("PS2");
3765 if (prompt == NULL)
3766 prompt = "> ";
3767
3768 args = command_line_input (prompt, 0, annotation_suffix);
3769
3770 if (args == NULL)
3771 error_no_arg (_("one or more choice numbers"));
3772
3773 n_chosen = 0;
3774
3775 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3776 order, as given in args. Choices are validated. */
3777 while (1)
3778 {
3779 char *args2;
3780 int choice, j;
3781
3782 args = skip_spaces (args);
3783 if (*args == '\0' && n_chosen == 0)
3784 error_no_arg (_("one or more choice numbers"));
3785 else if (*args == '\0')
3786 break;
3787
3788 choice = strtol (args, &args2, 10);
3789 if (args == args2 || choice < 0
3790 || choice > n_choices + first_choice - 1)
3791 error (_("Argument must be choice number"));
3792 args = args2;
3793
3794 if (choice == 0)
3795 error (_("cancelled"));
3796
3797 if (choice < first_choice)
3798 {
3799 n_chosen = n_choices;
3800 for (j = 0; j < n_choices; j += 1)
3801 choices[j] = j;
3802 break;
3803 }
3804 choice -= first_choice;
3805
3806 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3807 {
3808 }
3809
3810 if (j < 0 || choice != choices[j])
3811 {
3812 int k;
3813
3814 for (k = n_chosen - 1; k > j; k -= 1)
3815 choices[k + 1] = choices[k];
3816 choices[j + 1] = choice;
3817 n_chosen += 1;
3818 }
3819 }
3820
3821 if (n_chosen > max_results)
3822 error (_("Select no more than %d of the above"), max_results);
3823
3824 return n_chosen;
3825 }
3826
3827 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3828 on the function identified by SYM and BLOCK, and taking NARGS
3829 arguments. Update *EXPP as needed to hold more space. */
3830
3831 static void
3832 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3833 int oplen, struct symbol *sym,
3834 const struct block *block)
3835 {
3836 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3837 symbol, -oplen for operator being replaced). */
3838 struct expression *newexp = (struct expression *)
3839 xzalloc (sizeof (struct expression)
3840 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3841 struct expression *exp = *expp;
3842
3843 newexp->nelts = exp->nelts + 7 - oplen;
3844 newexp->language_defn = exp->language_defn;
3845 newexp->gdbarch = exp->gdbarch;
3846 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3847 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3848 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3849
3850 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3851 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3852
3853 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3854 newexp->elts[pc + 4].block = block;
3855 newexp->elts[pc + 5].symbol = sym;
3856
3857 *expp = newexp;
3858 xfree (exp);
3859 }
3860
3861 /* Type-class predicates */
3862
3863 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3864 or FLOAT). */
3865
3866 static int
3867 numeric_type_p (struct type *type)
3868 {
3869 if (type == NULL)
3870 return 0;
3871 else
3872 {
3873 switch (TYPE_CODE (type))
3874 {
3875 case TYPE_CODE_INT:
3876 case TYPE_CODE_FLT:
3877 return 1;
3878 case TYPE_CODE_RANGE:
3879 return (type == TYPE_TARGET_TYPE (type)
3880 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3881 default:
3882 return 0;
3883 }
3884 }
3885 }
3886
3887 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3888
3889 static int
3890 integer_type_p (struct type *type)
3891 {
3892 if (type == NULL)
3893 return 0;
3894 else
3895 {
3896 switch (TYPE_CODE (type))
3897 {
3898 case TYPE_CODE_INT:
3899 return 1;
3900 case TYPE_CODE_RANGE:
3901 return (type == TYPE_TARGET_TYPE (type)
3902 || integer_type_p (TYPE_TARGET_TYPE (type)));
3903 default:
3904 return 0;
3905 }
3906 }
3907 }
3908
3909 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3910
3911 static int
3912 scalar_type_p (struct type *type)
3913 {
3914 if (type == NULL)
3915 return 0;
3916 else
3917 {
3918 switch (TYPE_CODE (type))
3919 {
3920 case TYPE_CODE_INT:
3921 case TYPE_CODE_RANGE:
3922 case TYPE_CODE_ENUM:
3923 case TYPE_CODE_FLT:
3924 return 1;
3925 default:
3926 return 0;
3927 }
3928 }
3929 }
3930
3931 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3932
3933 static int
3934 discrete_type_p (struct type *type)
3935 {
3936 if (type == NULL)
3937 return 0;
3938 else
3939 {
3940 switch (TYPE_CODE (type))
3941 {
3942 case TYPE_CODE_INT:
3943 case TYPE_CODE_RANGE:
3944 case TYPE_CODE_ENUM:
3945 case TYPE_CODE_BOOL:
3946 return 1;
3947 default:
3948 return 0;
3949 }
3950 }
3951 }
3952
3953 /* Returns non-zero if OP with operands in the vector ARGS could be
3954 a user-defined function. Errs on the side of pre-defined operators
3955 (i.e., result 0). */
3956
3957 static int
3958 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3959 {
3960 struct type *type0 =
3961 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3962 struct type *type1 =
3963 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3964
3965 if (type0 == NULL)
3966 return 0;
3967
3968 switch (op)
3969 {
3970 default:
3971 return 0;
3972
3973 case BINOP_ADD:
3974 case BINOP_SUB:
3975 case BINOP_MUL:
3976 case BINOP_DIV:
3977 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3978
3979 case BINOP_REM:
3980 case BINOP_MOD:
3981 case BINOP_BITWISE_AND:
3982 case BINOP_BITWISE_IOR:
3983 case BINOP_BITWISE_XOR:
3984 return (!(integer_type_p (type0) && integer_type_p (type1)));
3985
3986 case BINOP_EQUAL:
3987 case BINOP_NOTEQUAL:
3988 case BINOP_LESS:
3989 case BINOP_GTR:
3990 case BINOP_LEQ:
3991 case BINOP_GEQ:
3992 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3993
3994 case BINOP_CONCAT:
3995 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3996
3997 case BINOP_EXP:
3998 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3999
4000 case UNOP_NEG:
4001 case UNOP_PLUS:
4002 case UNOP_LOGICAL_NOT:
4003 case UNOP_ABS:
4004 return (!numeric_type_p (type0));
4005
4006 }
4007 }
4008 \f
4009 /* Renaming */
4010
4011 /* NOTES:
4012
4013 1. In the following, we assume that a renaming type's name may
4014 have an ___XD suffix. It would be nice if this went away at some
4015 point.
4016 2. We handle both the (old) purely type-based representation of
4017 renamings and the (new) variable-based encoding. At some point,
4018 it is devoutly to be hoped that the former goes away
4019 (FIXME: hilfinger-2007-07-09).
4020 3. Subprogram renamings are not implemented, although the XRS
4021 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4022
4023 /* If SYM encodes a renaming,
4024
4025 <renaming> renames <renamed entity>,
4026
4027 sets *LEN to the length of the renamed entity's name,
4028 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4029 the string describing the subcomponent selected from the renamed
4030 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4031 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4032 are undefined). Otherwise, returns a value indicating the category
4033 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4034 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4035 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4036 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4037 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4038 may be NULL, in which case they are not assigned.
4039
4040 [Currently, however, GCC does not generate subprogram renamings.] */
4041
4042 enum ada_renaming_category
4043 ada_parse_renaming (struct symbol *sym,
4044 const char **renamed_entity, int *len,
4045 const char **renaming_expr)
4046 {
4047 enum ada_renaming_category kind;
4048 const char *info;
4049 const char *suffix;
4050
4051 if (sym == NULL)
4052 return ADA_NOT_RENAMING;
4053 switch (SYMBOL_CLASS (sym))
4054 {
4055 default:
4056 return ADA_NOT_RENAMING;
4057 case LOC_TYPEDEF:
4058 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4059 renamed_entity, len, renaming_expr);
4060 case LOC_LOCAL:
4061 case LOC_STATIC:
4062 case LOC_COMPUTED:
4063 case LOC_OPTIMIZED_OUT:
4064 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4065 if (info == NULL)
4066 return ADA_NOT_RENAMING;
4067 switch (info[5])
4068 {
4069 case '_':
4070 kind = ADA_OBJECT_RENAMING;
4071 info += 6;
4072 break;
4073 case 'E':
4074 kind = ADA_EXCEPTION_RENAMING;
4075 info += 7;
4076 break;
4077 case 'P':
4078 kind = ADA_PACKAGE_RENAMING;
4079 info += 7;
4080 break;
4081 case 'S':
4082 kind = ADA_SUBPROGRAM_RENAMING;
4083 info += 7;
4084 break;
4085 default:
4086 return ADA_NOT_RENAMING;
4087 }
4088 }
4089
4090 if (renamed_entity != NULL)
4091 *renamed_entity = info;
4092 suffix = strstr (info, "___XE");
4093 if (suffix == NULL || suffix == info)
4094 return ADA_NOT_RENAMING;
4095 if (len != NULL)
4096 *len = strlen (info) - strlen (suffix);
4097 suffix += 5;
4098 if (renaming_expr != NULL)
4099 *renaming_expr = suffix;
4100 return kind;
4101 }
4102
4103 /* Assuming TYPE encodes a renaming according to the old encoding in
4104 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4105 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4106 ADA_NOT_RENAMING otherwise. */
4107 static enum ada_renaming_category
4108 parse_old_style_renaming (struct type *type,
4109 const char **renamed_entity, int *len,
4110 const char **renaming_expr)
4111 {
4112 enum ada_renaming_category kind;
4113 const char *name;
4114 const char *info;
4115 const char *suffix;
4116
4117 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4118 || TYPE_NFIELDS (type) != 1)
4119 return ADA_NOT_RENAMING;
4120
4121 name = type_name_no_tag (type);
4122 if (name == NULL)
4123 return ADA_NOT_RENAMING;
4124
4125 name = strstr (name, "___XR");
4126 if (name == NULL)
4127 return ADA_NOT_RENAMING;
4128 switch (name[5])
4129 {
4130 case '\0':
4131 case '_':
4132 kind = ADA_OBJECT_RENAMING;
4133 break;
4134 case 'E':
4135 kind = ADA_EXCEPTION_RENAMING;
4136 break;
4137 case 'P':
4138 kind = ADA_PACKAGE_RENAMING;
4139 break;
4140 case 'S':
4141 kind = ADA_SUBPROGRAM_RENAMING;
4142 break;
4143 default:
4144 return ADA_NOT_RENAMING;
4145 }
4146
4147 info = TYPE_FIELD_NAME (type, 0);
4148 if (info == NULL)
4149 return ADA_NOT_RENAMING;
4150 if (renamed_entity != NULL)
4151 *renamed_entity = info;
4152 suffix = strstr (info, "___XE");
4153 if (renaming_expr != NULL)
4154 *renaming_expr = suffix + 5;
4155 if (suffix == NULL || suffix == info)
4156 return ADA_NOT_RENAMING;
4157 if (len != NULL)
4158 *len = suffix - info;
4159 return kind;
4160 }
4161
4162 /* Compute the value of the given RENAMING_SYM, which is expected to
4163 be a symbol encoding a renaming expression. BLOCK is the block
4164 used to evaluate the renaming. */
4165
4166 static struct value *
4167 ada_read_renaming_var_value (struct symbol *renaming_sym,
4168 struct block *block)
4169 {
4170 const char *sym_name;
4171 struct expression *expr;
4172 struct value *value;
4173 struct cleanup *old_chain = NULL;
4174
4175 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4176 expr = parse_exp_1 (&sym_name, 0, block, 0);
4177 old_chain = make_cleanup (free_current_contents, &expr);
4178 value = evaluate_expression (expr);
4179
4180 do_cleanups (old_chain);
4181 return value;
4182 }
4183 \f
4184
4185 /* Evaluation: Function Calls */
4186
4187 /* Return an lvalue containing the value VAL. This is the identity on
4188 lvalues, and otherwise has the side-effect of allocating memory
4189 in the inferior where a copy of the value contents is copied. */
4190
4191 static struct value *
4192 ensure_lval (struct value *val)
4193 {
4194 if (VALUE_LVAL (val) == not_lval
4195 || VALUE_LVAL (val) == lval_internalvar)
4196 {
4197 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4198 const CORE_ADDR addr =
4199 value_as_long (value_allocate_space_in_inferior (len));
4200
4201 set_value_address (val, addr);
4202 VALUE_LVAL (val) = lval_memory;
4203 write_memory (addr, value_contents (val), len);
4204 }
4205
4206 return val;
4207 }
4208
4209 /* Return the value ACTUAL, converted to be an appropriate value for a
4210 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4211 allocating any necessary descriptors (fat pointers), or copies of
4212 values not residing in memory, updating it as needed. */
4213
4214 struct value *
4215 ada_convert_actual (struct value *actual, struct type *formal_type0)
4216 {
4217 struct type *actual_type = ada_check_typedef (value_type (actual));
4218 struct type *formal_type = ada_check_typedef (formal_type0);
4219 struct type *formal_target =
4220 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4221 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4222 struct type *actual_target =
4223 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4224 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4225
4226 if (ada_is_array_descriptor_type (formal_target)
4227 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4228 return make_array_descriptor (formal_type, actual);
4229 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4230 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4231 {
4232 struct value *result;
4233
4234 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4235 && ada_is_array_descriptor_type (actual_target))
4236 result = desc_data (actual);
4237 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4238 {
4239 if (VALUE_LVAL (actual) != lval_memory)
4240 {
4241 struct value *val;
4242
4243 actual_type = ada_check_typedef (value_type (actual));
4244 val = allocate_value (actual_type);
4245 memcpy ((char *) value_contents_raw (val),
4246 (char *) value_contents (actual),
4247 TYPE_LENGTH (actual_type));
4248 actual = ensure_lval (val);
4249 }
4250 result = value_addr (actual);
4251 }
4252 else
4253 return actual;
4254 return value_cast_pointers (formal_type, result, 0);
4255 }
4256 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4257 return ada_value_ind (actual);
4258
4259 return actual;
4260 }
4261
4262 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4263 type TYPE. This is usually an inefficient no-op except on some targets
4264 (such as AVR) where the representation of a pointer and an address
4265 differs. */
4266
4267 static CORE_ADDR
4268 value_pointer (struct value *value, struct type *type)
4269 {
4270 struct gdbarch *gdbarch = get_type_arch (type);
4271 unsigned len = TYPE_LENGTH (type);
4272 gdb_byte *buf = alloca (len);
4273 CORE_ADDR addr;
4274
4275 addr = value_address (value);
4276 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4277 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4278 return addr;
4279 }
4280
4281
4282 /* Push a descriptor of type TYPE for array value ARR on the stack at
4283 *SP, updating *SP to reflect the new descriptor. Return either
4284 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4285 to-descriptor type rather than a descriptor type), a struct value *
4286 representing a pointer to this descriptor. */
4287
4288 static struct value *
4289 make_array_descriptor (struct type *type, struct value *arr)
4290 {
4291 struct type *bounds_type = desc_bounds_type (type);
4292 struct type *desc_type = desc_base_type (type);
4293 struct value *descriptor = allocate_value (desc_type);
4294 struct value *bounds = allocate_value (bounds_type);
4295 int i;
4296
4297 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4298 i > 0; i -= 1)
4299 {
4300 modify_field (value_type (bounds), value_contents_writeable (bounds),
4301 ada_array_bound (arr, i, 0),
4302 desc_bound_bitpos (bounds_type, i, 0),
4303 desc_bound_bitsize (bounds_type, i, 0));
4304 modify_field (value_type (bounds), value_contents_writeable (bounds),
4305 ada_array_bound (arr, i, 1),
4306 desc_bound_bitpos (bounds_type, i, 1),
4307 desc_bound_bitsize (bounds_type, i, 1));
4308 }
4309
4310 bounds = ensure_lval (bounds);
4311
4312 modify_field (value_type (descriptor),
4313 value_contents_writeable (descriptor),
4314 value_pointer (ensure_lval (arr),
4315 TYPE_FIELD_TYPE (desc_type, 0)),
4316 fat_pntr_data_bitpos (desc_type),
4317 fat_pntr_data_bitsize (desc_type));
4318
4319 modify_field (value_type (descriptor),
4320 value_contents_writeable (descriptor),
4321 value_pointer (bounds,
4322 TYPE_FIELD_TYPE (desc_type, 1)),
4323 fat_pntr_bounds_bitpos (desc_type),
4324 fat_pntr_bounds_bitsize (desc_type));
4325
4326 descriptor = ensure_lval (descriptor);
4327
4328 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4329 return value_addr (descriptor);
4330 else
4331 return descriptor;
4332 }
4333 \f
4334 /* Symbol Cache Module */
4335
4336 /* Performance measurements made as of 2010-01-15 indicate that
4337 this cache does bring some noticeable improvements. Depending
4338 on the type of entity being printed, the cache can make it as much
4339 as an order of magnitude faster than without it.
4340
4341 The descriptive type DWARF extension has significantly reduced
4342 the need for this cache, at least when DWARF is being used. However,
4343 even in this case, some expensive name-based symbol searches are still
4344 sometimes necessary - to find an XVZ variable, mostly. */
4345
4346 /* Initialize the contents of SYM_CACHE. */
4347
4348 static void
4349 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4350 {
4351 obstack_init (&sym_cache->cache_space);
4352 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4353 }
4354
4355 /* Free the memory used by SYM_CACHE. */
4356
4357 static void
4358 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4359 {
4360 obstack_free (&sym_cache->cache_space, NULL);
4361 xfree (sym_cache);
4362 }
4363
4364 /* Return the symbol cache associated to the given program space PSPACE.
4365 If not allocated for this PSPACE yet, allocate and initialize one. */
4366
4367 static struct ada_symbol_cache *
4368 ada_get_symbol_cache (struct program_space *pspace)
4369 {
4370 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4371 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4372
4373 if (sym_cache == NULL)
4374 {
4375 sym_cache = XCNEW (struct ada_symbol_cache);
4376 ada_init_symbol_cache (sym_cache);
4377 }
4378
4379 return sym_cache;
4380 }
4381
4382 /* Clear all entries from the symbol cache. */
4383
4384 static void
4385 ada_clear_symbol_cache (void)
4386 {
4387 struct ada_symbol_cache *sym_cache
4388 = ada_get_symbol_cache (current_program_space);
4389
4390 obstack_free (&sym_cache->cache_space, NULL);
4391 ada_init_symbol_cache (sym_cache);
4392 }
4393
4394 /* Search our cache for an entry matching NAME and NAMESPACE.
4395 Return it if found, or NULL otherwise. */
4396
4397 static struct cache_entry **
4398 find_entry (const char *name, domain_enum namespace)
4399 {
4400 struct ada_symbol_cache *sym_cache
4401 = ada_get_symbol_cache (current_program_space);
4402 int h = msymbol_hash (name) % HASH_SIZE;
4403 struct cache_entry **e;
4404
4405 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4406 {
4407 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4408 return e;
4409 }
4410 return NULL;
4411 }
4412
4413 /* Search the symbol cache for an entry matching NAME and NAMESPACE.
4414 Return 1 if found, 0 otherwise.
4415
4416 If an entry was found and SYM is not NULL, set *SYM to the entry's
4417 SYM. Same principle for BLOCK if not NULL. */
4418
4419 static int
4420 lookup_cached_symbol (const char *name, domain_enum namespace,
4421 struct symbol **sym, const struct block **block)
4422 {
4423 struct cache_entry **e = find_entry (name, namespace);
4424
4425 if (e == NULL)
4426 return 0;
4427 if (sym != NULL)
4428 *sym = (*e)->sym;
4429 if (block != NULL)
4430 *block = (*e)->block;
4431 return 1;
4432 }
4433
4434 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4435 in domain NAMESPACE, save this result in our symbol cache. */
4436
4437 static void
4438 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4439 const struct block *block)
4440 {
4441 struct ada_symbol_cache *sym_cache
4442 = ada_get_symbol_cache (current_program_space);
4443 int h;
4444 char *copy;
4445 struct cache_entry *e;
4446
4447 /* If the symbol is a local symbol, then do not cache it, as a search
4448 for that symbol depends on the context. To determine whether
4449 the symbol is local or not, we check the block where we found it
4450 against the global and static blocks of its associated symtab. */
4451 if (sym
4452 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4453 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4454 return;
4455
4456 h = msymbol_hash (name) % HASH_SIZE;
4457 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4458 sizeof (*e));
4459 e->next = sym_cache->root[h];
4460 sym_cache->root[h] = e;
4461 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4462 strcpy (copy, name);
4463 e->sym = sym;
4464 e->namespace = namespace;
4465 e->block = block;
4466 }
4467 \f
4468 /* Symbol Lookup */
4469
4470 /* Return nonzero if wild matching should be used when searching for
4471 all symbols matching LOOKUP_NAME.
4472
4473 LOOKUP_NAME is expected to be a symbol name after transformation
4474 for Ada lookups (see ada_name_for_lookup). */
4475
4476 static int
4477 should_use_wild_match (const char *lookup_name)
4478 {
4479 return (strstr (lookup_name, "__") == NULL);
4480 }
4481
4482 /* Return the result of a standard (literal, C-like) lookup of NAME in
4483 given DOMAIN, visible from lexical block BLOCK. */
4484
4485 static struct symbol *
4486 standard_lookup (const char *name, const struct block *block,
4487 domain_enum domain)
4488 {
4489 /* Initialize it just to avoid a GCC false warning. */
4490 struct symbol *sym = NULL;
4491
4492 if (lookup_cached_symbol (name, domain, &sym, NULL))
4493 return sym;
4494 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4495 cache_symbol (name, domain, sym, block_found);
4496 return sym;
4497 }
4498
4499
4500 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4501 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4502 since they contend in overloading in the same way. */
4503 static int
4504 is_nonfunction (struct ada_symbol_info syms[], int n)
4505 {
4506 int i;
4507
4508 for (i = 0; i < n; i += 1)
4509 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4510 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4511 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4512 return 1;
4513
4514 return 0;
4515 }
4516
4517 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4518 struct types. Otherwise, they may not. */
4519
4520 static int
4521 equiv_types (struct type *type0, struct type *type1)
4522 {
4523 if (type0 == type1)
4524 return 1;
4525 if (type0 == NULL || type1 == NULL
4526 || TYPE_CODE (type0) != TYPE_CODE (type1))
4527 return 0;
4528 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4529 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4530 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4531 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4532 return 1;
4533
4534 return 0;
4535 }
4536
4537 /* True iff SYM0 represents the same entity as SYM1, or one that is
4538 no more defined than that of SYM1. */
4539
4540 static int
4541 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4542 {
4543 if (sym0 == sym1)
4544 return 1;
4545 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4546 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4547 return 0;
4548
4549 switch (SYMBOL_CLASS (sym0))
4550 {
4551 case LOC_UNDEF:
4552 return 1;
4553 case LOC_TYPEDEF:
4554 {
4555 struct type *type0 = SYMBOL_TYPE (sym0);
4556 struct type *type1 = SYMBOL_TYPE (sym1);
4557 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4558 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4559 int len0 = strlen (name0);
4560
4561 return
4562 TYPE_CODE (type0) == TYPE_CODE (type1)
4563 && (equiv_types (type0, type1)
4564 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4565 && strncmp (name1 + len0, "___XV", 5) == 0));
4566 }
4567 case LOC_CONST:
4568 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4569 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4570 default:
4571 return 0;
4572 }
4573 }
4574
4575 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4576 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4577
4578 static void
4579 add_defn_to_vec (struct obstack *obstackp,
4580 struct symbol *sym,
4581 const struct block *block)
4582 {
4583 int i;
4584 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4585
4586 /* Do not try to complete stub types, as the debugger is probably
4587 already scanning all symbols matching a certain name at the
4588 time when this function is called. Trying to replace the stub
4589 type by its associated full type will cause us to restart a scan
4590 which may lead to an infinite recursion. Instead, the client
4591 collecting the matching symbols will end up collecting several
4592 matches, with at least one of them complete. It can then filter
4593 out the stub ones if needed. */
4594
4595 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4596 {
4597 if (lesseq_defined_than (sym, prevDefns[i].sym))
4598 return;
4599 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4600 {
4601 prevDefns[i].sym = sym;
4602 prevDefns[i].block = block;
4603 return;
4604 }
4605 }
4606
4607 {
4608 struct ada_symbol_info info;
4609
4610 info.sym = sym;
4611 info.block = block;
4612 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4613 }
4614 }
4615
4616 /* Number of ada_symbol_info structures currently collected in
4617 current vector in *OBSTACKP. */
4618
4619 static int
4620 num_defns_collected (struct obstack *obstackp)
4621 {
4622 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4623 }
4624
4625 /* Vector of ada_symbol_info structures currently collected in current
4626 vector in *OBSTACKP. If FINISH, close off the vector and return
4627 its final address. */
4628
4629 static struct ada_symbol_info *
4630 defns_collected (struct obstack *obstackp, int finish)
4631 {
4632 if (finish)
4633 return obstack_finish (obstackp);
4634 else
4635 return (struct ada_symbol_info *) obstack_base (obstackp);
4636 }
4637
4638 /* Return a bound minimal symbol matching NAME according to Ada
4639 decoding rules. Returns an invalid symbol if there is no such
4640 minimal symbol. Names prefixed with "standard__" are handled
4641 specially: "standard__" is first stripped off, and only static and
4642 global symbols are searched. */
4643
4644 struct bound_minimal_symbol
4645 ada_lookup_simple_minsym (const char *name)
4646 {
4647 struct bound_minimal_symbol result;
4648 struct objfile *objfile;
4649 struct minimal_symbol *msymbol;
4650 const int wild_match_p = should_use_wild_match (name);
4651
4652 memset (&result, 0, sizeof (result));
4653
4654 /* Special case: If the user specifies a symbol name inside package
4655 Standard, do a non-wild matching of the symbol name without
4656 the "standard__" prefix. This was primarily introduced in order
4657 to allow the user to specifically access the standard exceptions
4658 using, for instance, Standard.Constraint_Error when Constraint_Error
4659 is ambiguous (due to the user defining its own Constraint_Error
4660 entity inside its program). */
4661 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4662 name += sizeof ("standard__") - 1;
4663
4664 ALL_MSYMBOLS (objfile, msymbol)
4665 {
4666 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4667 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4668 {
4669 result.minsym = msymbol;
4670 result.objfile = objfile;
4671 break;
4672 }
4673 }
4674
4675 return result;
4676 }
4677
4678 /* For all subprograms that statically enclose the subprogram of the
4679 selected frame, add symbols matching identifier NAME in DOMAIN
4680 and their blocks to the list of data in OBSTACKP, as for
4681 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4682 with a wildcard prefix. */
4683
4684 static void
4685 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4686 const char *name, domain_enum namespace,
4687 int wild_match_p)
4688 {
4689 }
4690
4691 /* True if TYPE is definitely an artificial type supplied to a symbol
4692 for which no debugging information was given in the symbol file. */
4693
4694 static int
4695 is_nondebugging_type (struct type *type)
4696 {
4697 const char *name = ada_type_name (type);
4698
4699 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4700 }
4701
4702 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4703 that are deemed "identical" for practical purposes.
4704
4705 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4706 types and that their number of enumerals is identical (in other
4707 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4708
4709 static int
4710 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4711 {
4712 int i;
4713
4714 /* The heuristic we use here is fairly conservative. We consider
4715 that 2 enumerate types are identical if they have the same
4716 number of enumerals and that all enumerals have the same
4717 underlying value and name. */
4718
4719 /* All enums in the type should have an identical underlying value. */
4720 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4721 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4722 return 0;
4723
4724 /* All enumerals should also have the same name (modulo any numerical
4725 suffix). */
4726 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4727 {
4728 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4729 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4730 int len_1 = strlen (name_1);
4731 int len_2 = strlen (name_2);
4732
4733 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4734 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4735 if (len_1 != len_2
4736 || strncmp (TYPE_FIELD_NAME (type1, i),
4737 TYPE_FIELD_NAME (type2, i),
4738 len_1) != 0)
4739 return 0;
4740 }
4741
4742 return 1;
4743 }
4744
4745 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4746 that are deemed "identical" for practical purposes. Sometimes,
4747 enumerals are not strictly identical, but their types are so similar
4748 that they can be considered identical.
4749
4750 For instance, consider the following code:
4751
4752 type Color is (Black, Red, Green, Blue, White);
4753 type RGB_Color is new Color range Red .. Blue;
4754
4755 Type RGB_Color is a subrange of an implicit type which is a copy
4756 of type Color. If we call that implicit type RGB_ColorB ("B" is
4757 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4758 As a result, when an expression references any of the enumeral
4759 by name (Eg. "print green"), the expression is technically
4760 ambiguous and the user should be asked to disambiguate. But
4761 doing so would only hinder the user, since it wouldn't matter
4762 what choice he makes, the outcome would always be the same.
4763 So, for practical purposes, we consider them as the same. */
4764
4765 static int
4766 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4767 {
4768 int i;
4769
4770 /* Before performing a thorough comparison check of each type,
4771 we perform a series of inexpensive checks. We expect that these
4772 checks will quickly fail in the vast majority of cases, and thus
4773 help prevent the unnecessary use of a more expensive comparison.
4774 Said comparison also expects us to make some of these checks
4775 (see ada_identical_enum_types_p). */
4776
4777 /* Quick check: All symbols should have an enum type. */
4778 for (i = 0; i < nsyms; i++)
4779 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4780 return 0;
4781
4782 /* Quick check: They should all have the same value. */
4783 for (i = 1; i < nsyms; i++)
4784 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4785 return 0;
4786
4787 /* Quick check: They should all have the same number of enumerals. */
4788 for (i = 1; i < nsyms; i++)
4789 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4790 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4791 return 0;
4792
4793 /* All the sanity checks passed, so we might have a set of
4794 identical enumeration types. Perform a more complete
4795 comparison of the type of each symbol. */
4796 for (i = 1; i < nsyms; i++)
4797 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4798 SYMBOL_TYPE (syms[0].sym)))
4799 return 0;
4800
4801 return 1;
4802 }
4803
4804 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4805 duplicate other symbols in the list (The only case I know of where
4806 this happens is when object files containing stabs-in-ecoff are
4807 linked with files containing ordinary ecoff debugging symbols (or no
4808 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4809 Returns the number of items in the modified list. */
4810
4811 static int
4812 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4813 {
4814 int i, j;
4815
4816 /* We should never be called with less than 2 symbols, as there
4817 cannot be any extra symbol in that case. But it's easy to
4818 handle, since we have nothing to do in that case. */
4819 if (nsyms < 2)
4820 return nsyms;
4821
4822 i = 0;
4823 while (i < nsyms)
4824 {
4825 int remove_p = 0;
4826
4827 /* If two symbols have the same name and one of them is a stub type,
4828 the get rid of the stub. */
4829
4830 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4831 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4832 {
4833 for (j = 0; j < nsyms; j++)
4834 {
4835 if (j != i
4836 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4837 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4838 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4839 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4840 remove_p = 1;
4841 }
4842 }
4843
4844 /* Two symbols with the same name, same class and same address
4845 should be identical. */
4846
4847 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4848 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4849 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4850 {
4851 for (j = 0; j < nsyms; j += 1)
4852 {
4853 if (i != j
4854 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4855 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4856 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4857 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4858 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4859 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4860 remove_p = 1;
4861 }
4862 }
4863
4864 if (remove_p)
4865 {
4866 for (j = i + 1; j < nsyms; j += 1)
4867 syms[j - 1] = syms[j];
4868 nsyms -= 1;
4869 }
4870
4871 i += 1;
4872 }
4873
4874 /* If all the remaining symbols are identical enumerals, then
4875 just keep the first one and discard the rest.
4876
4877 Unlike what we did previously, we do not discard any entry
4878 unless they are ALL identical. This is because the symbol
4879 comparison is not a strict comparison, but rather a practical
4880 comparison. If all symbols are considered identical, then
4881 we can just go ahead and use the first one and discard the rest.
4882 But if we cannot reduce the list to a single element, we have
4883 to ask the user to disambiguate anyways. And if we have to
4884 present a multiple-choice menu, it's less confusing if the list
4885 isn't missing some choices that were identical and yet distinct. */
4886 if (symbols_are_identical_enums (syms, nsyms))
4887 nsyms = 1;
4888
4889 return nsyms;
4890 }
4891
4892 /* Given a type that corresponds to a renaming entity, use the type name
4893 to extract the scope (package name or function name, fully qualified,
4894 and following the GNAT encoding convention) where this renaming has been
4895 defined. The string returned needs to be deallocated after use. */
4896
4897 static char *
4898 xget_renaming_scope (struct type *renaming_type)
4899 {
4900 /* The renaming types adhere to the following convention:
4901 <scope>__<rename>___<XR extension>.
4902 So, to extract the scope, we search for the "___XR" extension,
4903 and then backtrack until we find the first "__". */
4904
4905 const char *name = type_name_no_tag (renaming_type);
4906 char *suffix = strstr (name, "___XR");
4907 char *last;
4908 int scope_len;
4909 char *scope;
4910
4911 /* Now, backtrack a bit until we find the first "__". Start looking
4912 at suffix - 3, as the <rename> part is at least one character long. */
4913
4914 for (last = suffix - 3; last > name; last--)
4915 if (last[0] == '_' && last[1] == '_')
4916 break;
4917
4918 /* Make a copy of scope and return it. */
4919
4920 scope_len = last - name;
4921 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4922
4923 strncpy (scope, name, scope_len);
4924 scope[scope_len] = '\0';
4925
4926 return scope;
4927 }
4928
4929 /* Return nonzero if NAME corresponds to a package name. */
4930
4931 static int
4932 is_package_name (const char *name)
4933 {
4934 /* Here, We take advantage of the fact that no symbols are generated
4935 for packages, while symbols are generated for each function.
4936 So the condition for NAME represent a package becomes equivalent
4937 to NAME not existing in our list of symbols. There is only one
4938 small complication with library-level functions (see below). */
4939
4940 char *fun_name;
4941
4942 /* If it is a function that has not been defined at library level,
4943 then we should be able to look it up in the symbols. */
4944 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4945 return 0;
4946
4947 /* Library-level function names start with "_ada_". See if function
4948 "_ada_" followed by NAME can be found. */
4949
4950 /* Do a quick check that NAME does not contain "__", since library-level
4951 functions names cannot contain "__" in them. */
4952 if (strstr (name, "__") != NULL)
4953 return 0;
4954
4955 fun_name = xstrprintf ("_ada_%s", name);
4956
4957 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4958 }
4959
4960 /* Return nonzero if SYM corresponds to a renaming entity that is
4961 not visible from FUNCTION_NAME. */
4962
4963 static int
4964 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4965 {
4966 char *scope;
4967 struct cleanup *old_chain;
4968
4969 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4970 return 0;
4971
4972 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4973 old_chain = make_cleanup (xfree, scope);
4974
4975 /* If the rename has been defined in a package, then it is visible. */
4976 if (is_package_name (scope))
4977 {
4978 do_cleanups (old_chain);
4979 return 0;
4980 }
4981
4982 /* Check that the rename is in the current function scope by checking
4983 that its name starts with SCOPE. */
4984
4985 /* If the function name starts with "_ada_", it means that it is
4986 a library-level function. Strip this prefix before doing the
4987 comparison, as the encoding for the renaming does not contain
4988 this prefix. */
4989 if (strncmp (function_name, "_ada_", 5) == 0)
4990 function_name += 5;
4991
4992 {
4993 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4994
4995 do_cleanups (old_chain);
4996 return is_invisible;
4997 }
4998 }
4999
5000 /* Remove entries from SYMS that corresponds to a renaming entity that
5001 is not visible from the function associated with CURRENT_BLOCK or
5002 that is superfluous due to the presence of more specific renaming
5003 information. Places surviving symbols in the initial entries of
5004 SYMS and returns the number of surviving symbols.
5005
5006 Rationale:
5007 First, in cases where an object renaming is implemented as a
5008 reference variable, GNAT may produce both the actual reference
5009 variable and the renaming encoding. In this case, we discard the
5010 latter.
5011
5012 Second, GNAT emits a type following a specified encoding for each renaming
5013 entity. Unfortunately, STABS currently does not support the definition
5014 of types that are local to a given lexical block, so all renamings types
5015 are emitted at library level. As a consequence, if an application
5016 contains two renaming entities using the same name, and a user tries to
5017 print the value of one of these entities, the result of the ada symbol
5018 lookup will also contain the wrong renaming type.
5019
5020 This function partially covers for this limitation by attempting to
5021 remove from the SYMS list renaming symbols that should be visible
5022 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5023 method with the current information available. The implementation
5024 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5025
5026 - When the user tries to print a rename in a function while there
5027 is another rename entity defined in a package: Normally, the
5028 rename in the function has precedence over the rename in the
5029 package, so the latter should be removed from the list. This is
5030 currently not the case.
5031
5032 - This function will incorrectly remove valid renames if
5033 the CURRENT_BLOCK corresponds to a function which symbol name
5034 has been changed by an "Export" pragma. As a consequence,
5035 the user will be unable to print such rename entities. */
5036
5037 static int
5038 remove_irrelevant_renamings (struct ada_symbol_info *syms,
5039 int nsyms, const struct block *current_block)
5040 {
5041 struct symbol *current_function;
5042 const char *current_function_name;
5043 int i;
5044 int is_new_style_renaming;
5045
5046 /* If there is both a renaming foo___XR... encoded as a variable and
5047 a simple variable foo in the same block, discard the latter.
5048 First, zero out such symbols, then compress. */
5049 is_new_style_renaming = 0;
5050 for (i = 0; i < nsyms; i += 1)
5051 {
5052 struct symbol *sym = syms[i].sym;
5053 const struct block *block = syms[i].block;
5054 const char *name;
5055 const char *suffix;
5056
5057 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5058 continue;
5059 name = SYMBOL_LINKAGE_NAME (sym);
5060 suffix = strstr (name, "___XR");
5061
5062 if (suffix != NULL)
5063 {
5064 int name_len = suffix - name;
5065 int j;
5066
5067 is_new_style_renaming = 1;
5068 for (j = 0; j < nsyms; j += 1)
5069 if (i != j && syms[j].sym != NULL
5070 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5071 name_len) == 0
5072 && block == syms[j].block)
5073 syms[j].sym = NULL;
5074 }
5075 }
5076 if (is_new_style_renaming)
5077 {
5078 int j, k;
5079
5080 for (j = k = 0; j < nsyms; j += 1)
5081 if (syms[j].sym != NULL)
5082 {
5083 syms[k] = syms[j];
5084 k += 1;
5085 }
5086 return k;
5087 }
5088
5089 /* Extract the function name associated to CURRENT_BLOCK.
5090 Abort if unable to do so. */
5091
5092 if (current_block == NULL)
5093 return nsyms;
5094
5095 current_function = block_linkage_function (current_block);
5096 if (current_function == NULL)
5097 return nsyms;
5098
5099 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5100 if (current_function_name == NULL)
5101 return nsyms;
5102
5103 /* Check each of the symbols, and remove it from the list if it is
5104 a type corresponding to a renaming that is out of the scope of
5105 the current block. */
5106
5107 i = 0;
5108 while (i < nsyms)
5109 {
5110 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5111 == ADA_OBJECT_RENAMING
5112 && old_renaming_is_invisible (syms[i].sym, current_function_name))
5113 {
5114 int j;
5115
5116 for (j = i + 1; j < nsyms; j += 1)
5117 syms[j - 1] = syms[j];
5118 nsyms -= 1;
5119 }
5120 else
5121 i += 1;
5122 }
5123
5124 return nsyms;
5125 }
5126
5127 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5128 whose name and domain match NAME and DOMAIN respectively.
5129 If no match was found, then extend the search to "enclosing"
5130 routines (in other words, if we're inside a nested function,
5131 search the symbols defined inside the enclosing functions).
5132 If WILD_MATCH_P is nonzero, perform the naming matching in
5133 "wild" mode (see function "wild_match" for more info).
5134
5135 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5136
5137 static void
5138 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5139 const struct block *block, domain_enum domain,
5140 int wild_match_p)
5141 {
5142 int block_depth = 0;
5143
5144 while (block != NULL)
5145 {
5146 block_depth += 1;
5147 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5148 wild_match_p);
5149
5150 /* If we found a non-function match, assume that's the one. */
5151 if (is_nonfunction (defns_collected (obstackp, 0),
5152 num_defns_collected (obstackp)))
5153 return;
5154
5155 block = BLOCK_SUPERBLOCK (block);
5156 }
5157
5158 /* If no luck so far, try to find NAME as a local symbol in some lexically
5159 enclosing subprogram. */
5160 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5161 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5162 }
5163
5164 /* An object of this type is used as the user_data argument when
5165 calling the map_matching_symbols method. */
5166
5167 struct match_data
5168 {
5169 struct objfile *objfile;
5170 struct obstack *obstackp;
5171 struct symbol *arg_sym;
5172 int found_sym;
5173 };
5174
5175 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5176 to a list of symbols. DATA0 is a pointer to a struct match_data *
5177 containing the obstack that collects the symbol list, the file that SYM
5178 must come from, a flag indicating whether a non-argument symbol has
5179 been found in the current block, and the last argument symbol
5180 passed in SYM within the current block (if any). When SYM is null,
5181 marking the end of a block, the argument symbol is added if no
5182 other has been found. */
5183
5184 static int
5185 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5186 {
5187 struct match_data *data = (struct match_data *) data0;
5188
5189 if (sym == NULL)
5190 {
5191 if (!data->found_sym && data->arg_sym != NULL)
5192 add_defn_to_vec (data->obstackp,
5193 fixup_symbol_section (data->arg_sym, data->objfile),
5194 block);
5195 data->found_sym = 0;
5196 data->arg_sym = NULL;
5197 }
5198 else
5199 {
5200 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5201 return 0;
5202 else if (SYMBOL_IS_ARGUMENT (sym))
5203 data->arg_sym = sym;
5204 else
5205 {
5206 data->found_sym = 1;
5207 add_defn_to_vec (data->obstackp,
5208 fixup_symbol_section (sym, data->objfile),
5209 block);
5210 }
5211 }
5212 return 0;
5213 }
5214
5215 /* Implements compare_names, but only applying the comparision using
5216 the given CASING. */
5217
5218 static int
5219 compare_names_with_case (const char *string1, const char *string2,
5220 enum case_sensitivity casing)
5221 {
5222 while (*string1 != '\0' && *string2 != '\0')
5223 {
5224 char c1, c2;
5225
5226 if (isspace (*string1) || isspace (*string2))
5227 return strcmp_iw_ordered (string1, string2);
5228
5229 if (casing == case_sensitive_off)
5230 {
5231 c1 = tolower (*string1);
5232 c2 = tolower (*string2);
5233 }
5234 else
5235 {
5236 c1 = *string1;
5237 c2 = *string2;
5238 }
5239 if (c1 != c2)
5240 break;
5241
5242 string1 += 1;
5243 string2 += 1;
5244 }
5245
5246 switch (*string1)
5247 {
5248 case '(':
5249 return strcmp_iw_ordered (string1, string2);
5250 case '_':
5251 if (*string2 == '\0')
5252 {
5253 if (is_name_suffix (string1))
5254 return 0;
5255 else
5256 return 1;
5257 }
5258 /* FALLTHROUGH */
5259 default:
5260 if (*string2 == '(')
5261 return strcmp_iw_ordered (string1, string2);
5262 else
5263 {
5264 if (casing == case_sensitive_off)
5265 return tolower (*string1) - tolower (*string2);
5266 else
5267 return *string1 - *string2;
5268 }
5269 }
5270 }
5271
5272 /* Compare STRING1 to STRING2, with results as for strcmp.
5273 Compatible with strcmp_iw_ordered in that...
5274
5275 strcmp_iw_ordered (STRING1, STRING2) <= 0
5276
5277 ... implies...
5278
5279 compare_names (STRING1, STRING2) <= 0
5280
5281 (they may differ as to what symbols compare equal). */
5282
5283 static int
5284 compare_names (const char *string1, const char *string2)
5285 {
5286 int result;
5287
5288 /* Similar to what strcmp_iw_ordered does, we need to perform
5289 a case-insensitive comparison first, and only resort to
5290 a second, case-sensitive, comparison if the first one was
5291 not sufficient to differentiate the two strings. */
5292
5293 result = compare_names_with_case (string1, string2, case_sensitive_off);
5294 if (result == 0)
5295 result = compare_names_with_case (string1, string2, case_sensitive_on);
5296
5297 return result;
5298 }
5299
5300 /* Add to OBSTACKP all non-local symbols whose name and domain match
5301 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5302 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5303
5304 static void
5305 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5306 domain_enum domain, int global,
5307 int is_wild_match)
5308 {
5309 struct objfile *objfile;
5310 struct match_data data;
5311
5312 memset (&data, 0, sizeof data);
5313 data.obstackp = obstackp;
5314
5315 ALL_OBJFILES (objfile)
5316 {
5317 data.objfile = objfile;
5318
5319 if (is_wild_match)
5320 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5321 aux_add_nonlocal_symbols, &data,
5322 wild_match, NULL);
5323 else
5324 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5325 aux_add_nonlocal_symbols, &data,
5326 full_match, compare_names);
5327 }
5328
5329 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5330 {
5331 ALL_OBJFILES (objfile)
5332 {
5333 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5334 strcpy (name1, "_ada_");
5335 strcpy (name1 + sizeof ("_ada_") - 1, name);
5336 data.objfile = objfile;
5337 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5338 global,
5339 aux_add_nonlocal_symbols,
5340 &data,
5341 full_match, compare_names);
5342 }
5343 }
5344 }
5345
5346 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5347 non-zero, enclosing scope and in global scopes, returning the number of
5348 matches.
5349 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5350 indicating the symbols found and the blocks and symbol tables (if
5351 any) in which they were found. This vector is transient---good only to
5352 the next call of ada_lookup_symbol_list.
5353
5354 When full_search is non-zero, any non-function/non-enumeral
5355 symbol match within the nest of blocks whose innermost member is BLOCK0,
5356 is the one match returned (no other matches in that or
5357 enclosing blocks is returned). If there are any matches in or
5358 surrounding BLOCK0, then these alone are returned.
5359
5360 Names prefixed with "standard__" are handled specially: "standard__"
5361 is first stripped off, and only static and global symbols are searched. */
5362
5363 static int
5364 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5365 domain_enum namespace,
5366 struct ada_symbol_info **results,
5367 int full_search)
5368 {
5369 struct symbol *sym;
5370 const struct block *block;
5371 const char *name;
5372 const int wild_match_p = should_use_wild_match (name0);
5373 int cacheIfUnique;
5374 int ndefns;
5375
5376 obstack_free (&symbol_list_obstack, NULL);
5377 obstack_init (&symbol_list_obstack);
5378
5379 cacheIfUnique = 0;
5380
5381 /* Search specified block and its superiors. */
5382
5383 name = name0;
5384 block = block0;
5385
5386 /* Special case: If the user specifies a symbol name inside package
5387 Standard, do a non-wild matching of the symbol name without
5388 the "standard__" prefix. This was primarily introduced in order
5389 to allow the user to specifically access the standard exceptions
5390 using, for instance, Standard.Constraint_Error when Constraint_Error
5391 is ambiguous (due to the user defining its own Constraint_Error
5392 entity inside its program). */
5393 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5394 {
5395 block = NULL;
5396 name = name0 + sizeof ("standard__") - 1;
5397 }
5398
5399 /* Check the non-global symbols. If we have ANY match, then we're done. */
5400
5401 if (block != NULL)
5402 {
5403 if (full_search)
5404 {
5405 ada_add_local_symbols (&symbol_list_obstack, name, block,
5406 namespace, wild_match_p);
5407 }
5408 else
5409 {
5410 /* In the !full_search case we're are being called by
5411 ada_iterate_over_symbols, and we don't want to search
5412 superblocks. */
5413 ada_add_block_symbols (&symbol_list_obstack, block, name,
5414 namespace, NULL, wild_match_p);
5415 }
5416 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5417 goto done;
5418 }
5419
5420 /* No non-global symbols found. Check our cache to see if we have
5421 already performed this search before. If we have, then return
5422 the same result. */
5423
5424 cacheIfUnique = 1;
5425 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5426 {
5427 if (sym != NULL)
5428 add_defn_to_vec (&symbol_list_obstack, sym, block);
5429 goto done;
5430 }
5431
5432 /* Search symbols from all global blocks. */
5433
5434 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5435 wild_match_p);
5436
5437 /* Now add symbols from all per-file blocks if we've gotten no hits
5438 (not strictly correct, but perhaps better than an error). */
5439
5440 if (num_defns_collected (&symbol_list_obstack) == 0)
5441 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5442 wild_match_p);
5443
5444 done:
5445 ndefns = num_defns_collected (&symbol_list_obstack);
5446 *results = defns_collected (&symbol_list_obstack, 1);
5447
5448 ndefns = remove_extra_symbols (*results, ndefns);
5449
5450 if (ndefns == 0 && full_search)
5451 cache_symbol (name0, namespace, NULL, NULL);
5452
5453 if (ndefns == 1 && full_search && cacheIfUnique)
5454 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5455
5456 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5457
5458 return ndefns;
5459 }
5460
5461 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5462 in global scopes, returning the number of matches, and setting *RESULTS
5463 to a vector of (SYM,BLOCK) tuples.
5464 See ada_lookup_symbol_list_worker for further details. */
5465
5466 int
5467 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5468 domain_enum domain, struct ada_symbol_info **results)
5469 {
5470 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5471 }
5472
5473 /* Implementation of the la_iterate_over_symbols method. */
5474
5475 static void
5476 ada_iterate_over_symbols (const struct block *block,
5477 const char *name, domain_enum domain,
5478 symbol_found_callback_ftype *callback,
5479 void *data)
5480 {
5481 int ndefs, i;
5482 struct ada_symbol_info *results;
5483
5484 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5485 for (i = 0; i < ndefs; ++i)
5486 {
5487 if (! (*callback) (results[i].sym, data))
5488 break;
5489 }
5490 }
5491
5492 /* If NAME is the name of an entity, return a string that should
5493 be used to look that entity up in Ada units. This string should
5494 be deallocated after use using xfree.
5495
5496 NAME can have any form that the "break" or "print" commands might
5497 recognize. In other words, it does not have to be the "natural"
5498 name, or the "encoded" name. */
5499
5500 char *
5501 ada_name_for_lookup (const char *name)
5502 {
5503 char *canon;
5504 int nlen = strlen (name);
5505
5506 if (name[0] == '<' && name[nlen - 1] == '>')
5507 {
5508 canon = xmalloc (nlen - 1);
5509 memcpy (canon, name + 1, nlen - 2);
5510 canon[nlen - 2] = '\0';
5511 }
5512 else
5513 canon = xstrdup (ada_encode (ada_fold_name (name)));
5514 return canon;
5515 }
5516
5517 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5518 to 1, but choosing the first symbol found if there are multiple
5519 choices.
5520
5521 The result is stored in *INFO, which must be non-NULL.
5522 If no match is found, INFO->SYM is set to NULL. */
5523
5524 void
5525 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5526 domain_enum namespace,
5527 struct ada_symbol_info *info)
5528 {
5529 struct ada_symbol_info *candidates;
5530 int n_candidates;
5531
5532 gdb_assert (info != NULL);
5533 memset (info, 0, sizeof (struct ada_symbol_info));
5534
5535 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5536 if (n_candidates == 0)
5537 return;
5538
5539 *info = candidates[0];
5540 info->sym = fixup_symbol_section (info->sym, NULL);
5541 }
5542
5543 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5544 scope and in global scopes, or NULL if none. NAME is folded and
5545 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5546 choosing the first symbol if there are multiple choices.
5547 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5548
5549 struct symbol *
5550 ada_lookup_symbol (const char *name, const struct block *block0,
5551 domain_enum namespace, int *is_a_field_of_this)
5552 {
5553 struct ada_symbol_info info;
5554
5555 if (is_a_field_of_this != NULL)
5556 *is_a_field_of_this = 0;
5557
5558 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5559 block0, namespace, &info);
5560 return info.sym;
5561 }
5562
5563 static struct symbol *
5564 ada_lookup_symbol_nonlocal (const char *name,
5565 const struct block *block,
5566 const domain_enum domain)
5567 {
5568 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5569 }
5570
5571
5572 /* True iff STR is a possible encoded suffix of a normal Ada name
5573 that is to be ignored for matching purposes. Suffixes of parallel
5574 names (e.g., XVE) are not included here. Currently, the possible suffixes
5575 are given by any of the regular expressions:
5576
5577 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5578 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5579 TKB [subprogram suffix for task bodies]
5580 _E[0-9]+[bs]$ [protected object entry suffixes]
5581 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5582
5583 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5584 match is performed. This sequence is used to differentiate homonyms,
5585 is an optional part of a valid name suffix. */
5586
5587 static int
5588 is_name_suffix (const char *str)
5589 {
5590 int k;
5591 const char *matching;
5592 const int len = strlen (str);
5593
5594 /* Skip optional leading __[0-9]+. */
5595
5596 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5597 {
5598 str += 3;
5599 while (isdigit (str[0]))
5600 str += 1;
5601 }
5602
5603 /* [.$][0-9]+ */
5604
5605 if (str[0] == '.' || str[0] == '$')
5606 {
5607 matching = str + 1;
5608 while (isdigit (matching[0]))
5609 matching += 1;
5610 if (matching[0] == '\0')
5611 return 1;
5612 }
5613
5614 /* ___[0-9]+ */
5615
5616 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5617 {
5618 matching = str + 3;
5619 while (isdigit (matching[0]))
5620 matching += 1;
5621 if (matching[0] == '\0')
5622 return 1;
5623 }
5624
5625 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5626
5627 if (strcmp (str, "TKB") == 0)
5628 return 1;
5629
5630 #if 0
5631 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5632 with a N at the end. Unfortunately, the compiler uses the same
5633 convention for other internal types it creates. So treating
5634 all entity names that end with an "N" as a name suffix causes
5635 some regressions. For instance, consider the case of an enumerated
5636 type. To support the 'Image attribute, it creates an array whose
5637 name ends with N.
5638 Having a single character like this as a suffix carrying some
5639 information is a bit risky. Perhaps we should change the encoding
5640 to be something like "_N" instead. In the meantime, do not do
5641 the following check. */
5642 /* Protected Object Subprograms */
5643 if (len == 1 && str [0] == 'N')
5644 return 1;
5645 #endif
5646
5647 /* _E[0-9]+[bs]$ */
5648 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5649 {
5650 matching = str + 3;
5651 while (isdigit (matching[0]))
5652 matching += 1;
5653 if ((matching[0] == 'b' || matching[0] == 's')
5654 && matching [1] == '\0')
5655 return 1;
5656 }
5657
5658 /* ??? We should not modify STR directly, as we are doing below. This
5659 is fine in this case, but may become problematic later if we find
5660 that this alternative did not work, and want to try matching
5661 another one from the begining of STR. Since we modified it, we
5662 won't be able to find the begining of the string anymore! */
5663 if (str[0] == 'X')
5664 {
5665 str += 1;
5666 while (str[0] != '_' && str[0] != '\0')
5667 {
5668 if (str[0] != 'n' && str[0] != 'b')
5669 return 0;
5670 str += 1;
5671 }
5672 }
5673
5674 if (str[0] == '\000')
5675 return 1;
5676
5677 if (str[0] == '_')
5678 {
5679 if (str[1] != '_' || str[2] == '\000')
5680 return 0;
5681 if (str[2] == '_')
5682 {
5683 if (strcmp (str + 3, "JM") == 0)
5684 return 1;
5685 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5686 the LJM suffix in favor of the JM one. But we will
5687 still accept LJM as a valid suffix for a reasonable
5688 amount of time, just to allow ourselves to debug programs
5689 compiled using an older version of GNAT. */
5690 if (strcmp (str + 3, "LJM") == 0)
5691 return 1;
5692 if (str[3] != 'X')
5693 return 0;
5694 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5695 || str[4] == 'U' || str[4] == 'P')
5696 return 1;
5697 if (str[4] == 'R' && str[5] != 'T')
5698 return 1;
5699 return 0;
5700 }
5701 if (!isdigit (str[2]))
5702 return 0;
5703 for (k = 3; str[k] != '\0'; k += 1)
5704 if (!isdigit (str[k]) && str[k] != '_')
5705 return 0;
5706 return 1;
5707 }
5708 if (str[0] == '$' && isdigit (str[1]))
5709 {
5710 for (k = 2; str[k] != '\0'; k += 1)
5711 if (!isdigit (str[k]) && str[k] != '_')
5712 return 0;
5713 return 1;
5714 }
5715 return 0;
5716 }
5717
5718 /* Return non-zero if the string starting at NAME and ending before
5719 NAME_END contains no capital letters. */
5720
5721 static int
5722 is_valid_name_for_wild_match (const char *name0)
5723 {
5724 const char *decoded_name = ada_decode (name0);
5725 int i;
5726
5727 /* If the decoded name starts with an angle bracket, it means that
5728 NAME0 does not follow the GNAT encoding format. It should then
5729 not be allowed as a possible wild match. */
5730 if (decoded_name[0] == '<')
5731 return 0;
5732
5733 for (i=0; decoded_name[i] != '\0'; i++)
5734 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5735 return 0;
5736
5737 return 1;
5738 }
5739
5740 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5741 that could start a simple name. Assumes that *NAMEP points into
5742 the string beginning at NAME0. */
5743
5744 static int
5745 advance_wild_match (const char **namep, const char *name0, int target0)
5746 {
5747 const char *name = *namep;
5748
5749 while (1)
5750 {
5751 int t0, t1;
5752
5753 t0 = *name;
5754 if (t0 == '_')
5755 {
5756 t1 = name[1];
5757 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5758 {
5759 name += 1;
5760 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5761 break;
5762 else
5763 name += 1;
5764 }
5765 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5766 || name[2] == target0))
5767 {
5768 name += 2;
5769 break;
5770 }
5771 else
5772 return 0;
5773 }
5774 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5775 name += 1;
5776 else
5777 return 0;
5778 }
5779
5780 *namep = name;
5781 return 1;
5782 }
5783
5784 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5785 informational suffixes of NAME (i.e., for which is_name_suffix is
5786 true). Assumes that PATN is a lower-cased Ada simple name. */
5787
5788 static int
5789 wild_match (const char *name, const char *patn)
5790 {
5791 const char *p;
5792 const char *name0 = name;
5793
5794 while (1)
5795 {
5796 const char *match = name;
5797
5798 if (*name == *patn)
5799 {
5800 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5801 if (*p != *name)
5802 break;
5803 if (*p == '\0' && is_name_suffix (name))
5804 return match != name0 && !is_valid_name_for_wild_match (name0);
5805
5806 if (name[-1] == '_')
5807 name -= 1;
5808 }
5809 if (!advance_wild_match (&name, name0, *patn))
5810 return 1;
5811 }
5812 }
5813
5814 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5815 informational suffix. */
5816
5817 static int
5818 full_match (const char *sym_name, const char *search_name)
5819 {
5820 return !match_name (sym_name, search_name, 0);
5821 }
5822
5823
5824 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5825 vector *defn_symbols, updating the list of symbols in OBSTACKP
5826 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5827 OBJFILE is the section containing BLOCK. */
5828
5829 static void
5830 ada_add_block_symbols (struct obstack *obstackp,
5831 const struct block *block, const char *name,
5832 domain_enum domain, struct objfile *objfile,
5833 int wild)
5834 {
5835 struct block_iterator iter;
5836 int name_len = strlen (name);
5837 /* A matching argument symbol, if any. */
5838 struct symbol *arg_sym;
5839 /* Set true when we find a matching non-argument symbol. */
5840 int found_sym;
5841 struct symbol *sym;
5842
5843 arg_sym = NULL;
5844 found_sym = 0;
5845 if (wild)
5846 {
5847 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5848 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5849 {
5850 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5851 SYMBOL_DOMAIN (sym), domain)
5852 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5853 {
5854 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5855 continue;
5856 else if (SYMBOL_IS_ARGUMENT (sym))
5857 arg_sym = sym;
5858 else
5859 {
5860 found_sym = 1;
5861 add_defn_to_vec (obstackp,
5862 fixup_symbol_section (sym, objfile),
5863 block);
5864 }
5865 }
5866 }
5867 }
5868 else
5869 {
5870 for (sym = block_iter_match_first (block, name, full_match, &iter);
5871 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5872 {
5873 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5874 SYMBOL_DOMAIN (sym), domain))
5875 {
5876 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5877 {
5878 if (SYMBOL_IS_ARGUMENT (sym))
5879 arg_sym = sym;
5880 else
5881 {
5882 found_sym = 1;
5883 add_defn_to_vec (obstackp,
5884 fixup_symbol_section (sym, objfile),
5885 block);
5886 }
5887 }
5888 }
5889 }
5890 }
5891
5892 if (!found_sym && arg_sym != NULL)
5893 {
5894 add_defn_to_vec (obstackp,
5895 fixup_symbol_section (arg_sym, objfile),
5896 block);
5897 }
5898
5899 if (!wild)
5900 {
5901 arg_sym = NULL;
5902 found_sym = 0;
5903
5904 ALL_BLOCK_SYMBOLS (block, iter, sym)
5905 {
5906 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5907 SYMBOL_DOMAIN (sym), domain))
5908 {
5909 int cmp;
5910
5911 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5912 if (cmp == 0)
5913 {
5914 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5915 if (cmp == 0)
5916 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5917 name_len);
5918 }
5919
5920 if (cmp == 0
5921 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5922 {
5923 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5924 {
5925 if (SYMBOL_IS_ARGUMENT (sym))
5926 arg_sym = sym;
5927 else
5928 {
5929 found_sym = 1;
5930 add_defn_to_vec (obstackp,
5931 fixup_symbol_section (sym, objfile),
5932 block);
5933 }
5934 }
5935 }
5936 }
5937 }
5938
5939 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5940 They aren't parameters, right? */
5941 if (!found_sym && arg_sym != NULL)
5942 {
5943 add_defn_to_vec (obstackp,
5944 fixup_symbol_section (arg_sym, objfile),
5945 block);
5946 }
5947 }
5948 }
5949 \f
5950
5951 /* Symbol Completion */
5952
5953 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5954 name in a form that's appropriate for the completion. The result
5955 does not need to be deallocated, but is only good until the next call.
5956
5957 TEXT_LEN is equal to the length of TEXT.
5958 Perform a wild match if WILD_MATCH_P is set.
5959 ENCODED_P should be set if TEXT represents the start of a symbol name
5960 in its encoded form. */
5961
5962 static const char *
5963 symbol_completion_match (const char *sym_name,
5964 const char *text, int text_len,
5965 int wild_match_p, int encoded_p)
5966 {
5967 const int verbatim_match = (text[0] == '<');
5968 int match = 0;
5969
5970 if (verbatim_match)
5971 {
5972 /* Strip the leading angle bracket. */
5973 text = text + 1;
5974 text_len--;
5975 }
5976
5977 /* First, test against the fully qualified name of the symbol. */
5978
5979 if (strncmp (sym_name, text, text_len) == 0)
5980 match = 1;
5981
5982 if (match && !encoded_p)
5983 {
5984 /* One needed check before declaring a positive match is to verify
5985 that iff we are doing a verbatim match, the decoded version
5986 of the symbol name starts with '<'. Otherwise, this symbol name
5987 is not a suitable completion. */
5988 const char *sym_name_copy = sym_name;
5989 int has_angle_bracket;
5990
5991 sym_name = ada_decode (sym_name);
5992 has_angle_bracket = (sym_name[0] == '<');
5993 match = (has_angle_bracket == verbatim_match);
5994 sym_name = sym_name_copy;
5995 }
5996
5997 if (match && !verbatim_match)
5998 {
5999 /* When doing non-verbatim match, another check that needs to
6000 be done is to verify that the potentially matching symbol name
6001 does not include capital letters, because the ada-mode would
6002 not be able to understand these symbol names without the
6003 angle bracket notation. */
6004 const char *tmp;
6005
6006 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6007 if (*tmp != '\0')
6008 match = 0;
6009 }
6010
6011 /* Second: Try wild matching... */
6012
6013 if (!match && wild_match_p)
6014 {
6015 /* Since we are doing wild matching, this means that TEXT
6016 may represent an unqualified symbol name. We therefore must
6017 also compare TEXT against the unqualified name of the symbol. */
6018 sym_name = ada_unqualified_name (ada_decode (sym_name));
6019
6020 if (strncmp (sym_name, text, text_len) == 0)
6021 match = 1;
6022 }
6023
6024 /* Finally: If we found a mach, prepare the result to return. */
6025
6026 if (!match)
6027 return NULL;
6028
6029 if (verbatim_match)
6030 sym_name = add_angle_brackets (sym_name);
6031
6032 if (!encoded_p)
6033 sym_name = ada_decode (sym_name);
6034
6035 return sym_name;
6036 }
6037
6038 /* A companion function to ada_make_symbol_completion_list().
6039 Check if SYM_NAME represents a symbol which name would be suitable
6040 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6041 it is appended at the end of the given string vector SV.
6042
6043 ORIG_TEXT is the string original string from the user command
6044 that needs to be completed. WORD is the entire command on which
6045 completion should be performed. These two parameters are used to
6046 determine which part of the symbol name should be added to the
6047 completion vector.
6048 if WILD_MATCH_P is set, then wild matching is performed.
6049 ENCODED_P should be set if TEXT represents a symbol name in its
6050 encoded formed (in which case the completion should also be
6051 encoded). */
6052
6053 static void
6054 symbol_completion_add (VEC(char_ptr) **sv,
6055 const char *sym_name,
6056 const char *text, int text_len,
6057 const char *orig_text, const char *word,
6058 int wild_match_p, int encoded_p)
6059 {
6060 const char *match = symbol_completion_match (sym_name, text, text_len,
6061 wild_match_p, encoded_p);
6062 char *completion;
6063
6064 if (match == NULL)
6065 return;
6066
6067 /* We found a match, so add the appropriate completion to the given
6068 string vector. */
6069
6070 if (word == orig_text)
6071 {
6072 completion = xmalloc (strlen (match) + 5);
6073 strcpy (completion, match);
6074 }
6075 else if (word > orig_text)
6076 {
6077 /* Return some portion of sym_name. */
6078 completion = xmalloc (strlen (match) + 5);
6079 strcpy (completion, match + (word - orig_text));
6080 }
6081 else
6082 {
6083 /* Return some of ORIG_TEXT plus sym_name. */
6084 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6085 strncpy (completion, word, orig_text - word);
6086 completion[orig_text - word] = '\0';
6087 strcat (completion, match);
6088 }
6089
6090 VEC_safe_push (char_ptr, *sv, completion);
6091 }
6092
6093 /* An object of this type is passed as the user_data argument to the
6094 expand_symtabs_matching method. */
6095 struct add_partial_datum
6096 {
6097 VEC(char_ptr) **completions;
6098 const char *text;
6099 int text_len;
6100 const char *text0;
6101 const char *word;
6102 int wild_match;
6103 int encoded;
6104 };
6105
6106 /* A callback for expand_symtabs_matching. */
6107
6108 static int
6109 ada_complete_symbol_matcher (const char *name, void *user_data)
6110 {
6111 struct add_partial_datum *data = user_data;
6112
6113 return symbol_completion_match (name, data->text, data->text_len,
6114 data->wild_match, data->encoded) != NULL;
6115 }
6116
6117 /* Return a list of possible symbol names completing TEXT0. WORD is
6118 the entire command on which completion is made. */
6119
6120 static VEC (char_ptr) *
6121 ada_make_symbol_completion_list (const char *text0, const char *word,
6122 enum type_code code)
6123 {
6124 char *text;
6125 int text_len;
6126 int wild_match_p;
6127 int encoded_p;
6128 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6129 struct symbol *sym;
6130 struct symtab *s;
6131 struct minimal_symbol *msymbol;
6132 struct objfile *objfile;
6133 struct block *b, *surrounding_static_block = 0;
6134 int i;
6135 struct block_iterator iter;
6136 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6137
6138 gdb_assert (code == TYPE_CODE_UNDEF);
6139
6140 if (text0[0] == '<')
6141 {
6142 text = xstrdup (text0);
6143 make_cleanup (xfree, text);
6144 text_len = strlen (text);
6145 wild_match_p = 0;
6146 encoded_p = 1;
6147 }
6148 else
6149 {
6150 text = xstrdup (ada_encode (text0));
6151 make_cleanup (xfree, text);
6152 text_len = strlen (text);
6153 for (i = 0; i < text_len; i++)
6154 text[i] = tolower (text[i]);
6155
6156 encoded_p = (strstr (text0, "__") != NULL);
6157 /* If the name contains a ".", then the user is entering a fully
6158 qualified entity name, and the match must not be done in wild
6159 mode. Similarly, if the user wants to complete what looks like
6160 an encoded name, the match must not be done in wild mode. */
6161 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6162 }
6163
6164 /* First, look at the partial symtab symbols. */
6165 {
6166 struct add_partial_datum data;
6167
6168 data.completions = &completions;
6169 data.text = text;
6170 data.text_len = text_len;
6171 data.text0 = text0;
6172 data.word = word;
6173 data.wild_match = wild_match_p;
6174 data.encoded = encoded_p;
6175 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6176 &data);
6177 }
6178
6179 /* At this point scan through the misc symbol vectors and add each
6180 symbol you find to the list. Eventually we want to ignore
6181 anything that isn't a text symbol (everything else will be
6182 handled by the psymtab code above). */
6183
6184 ALL_MSYMBOLS (objfile, msymbol)
6185 {
6186 QUIT;
6187 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6188 text, text_len, text0, word, wild_match_p,
6189 encoded_p);
6190 }
6191
6192 /* Search upwards from currently selected frame (so that we can
6193 complete on local vars. */
6194
6195 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6196 {
6197 if (!BLOCK_SUPERBLOCK (b))
6198 surrounding_static_block = b; /* For elmin of dups */
6199
6200 ALL_BLOCK_SYMBOLS (b, iter, sym)
6201 {
6202 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6203 text, text_len, text0, word,
6204 wild_match_p, encoded_p);
6205 }
6206 }
6207
6208 /* Go through the symtabs and check the externs and statics for
6209 symbols which match. */
6210
6211 ALL_SYMTABS (objfile, s)
6212 {
6213 QUIT;
6214 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6215 ALL_BLOCK_SYMBOLS (b, iter, sym)
6216 {
6217 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6218 text, text_len, text0, word,
6219 wild_match_p, encoded_p);
6220 }
6221 }
6222
6223 ALL_SYMTABS (objfile, s)
6224 {
6225 QUIT;
6226 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6227 /* Don't do this block twice. */
6228 if (b == surrounding_static_block)
6229 continue;
6230 ALL_BLOCK_SYMBOLS (b, iter, sym)
6231 {
6232 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6233 text, text_len, text0, word,
6234 wild_match_p, encoded_p);
6235 }
6236 }
6237
6238 do_cleanups (old_chain);
6239 return completions;
6240 }
6241
6242 /* Field Access */
6243
6244 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6245 for tagged types. */
6246
6247 static int
6248 ada_is_dispatch_table_ptr_type (struct type *type)
6249 {
6250 const char *name;
6251
6252 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6253 return 0;
6254
6255 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6256 if (name == NULL)
6257 return 0;
6258
6259 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6260 }
6261
6262 /* Return non-zero if TYPE is an interface tag. */
6263
6264 static int
6265 ada_is_interface_tag (struct type *type)
6266 {
6267 const char *name = TYPE_NAME (type);
6268
6269 if (name == NULL)
6270 return 0;
6271
6272 return (strcmp (name, "ada__tags__interface_tag") == 0);
6273 }
6274
6275 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6276 to be invisible to users. */
6277
6278 int
6279 ada_is_ignored_field (struct type *type, int field_num)
6280 {
6281 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6282 return 1;
6283
6284 /* Check the name of that field. */
6285 {
6286 const char *name = TYPE_FIELD_NAME (type, field_num);
6287
6288 /* Anonymous field names should not be printed.
6289 brobecker/2007-02-20: I don't think this can actually happen
6290 but we don't want to print the value of annonymous fields anyway. */
6291 if (name == NULL)
6292 return 1;
6293
6294 /* Normally, fields whose name start with an underscore ("_")
6295 are fields that have been internally generated by the compiler,
6296 and thus should not be printed. The "_parent" field is special,
6297 however: This is a field internally generated by the compiler
6298 for tagged types, and it contains the components inherited from
6299 the parent type. This field should not be printed as is, but
6300 should not be ignored either. */
6301 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6302 return 1;
6303 }
6304
6305 /* If this is the dispatch table of a tagged type or an interface tag,
6306 then ignore. */
6307 if (ada_is_tagged_type (type, 1)
6308 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6309 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6310 return 1;
6311
6312 /* Not a special field, so it should not be ignored. */
6313 return 0;
6314 }
6315
6316 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6317 pointer or reference type whose ultimate target has a tag field. */
6318
6319 int
6320 ada_is_tagged_type (struct type *type, int refok)
6321 {
6322 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6323 }
6324
6325 /* True iff TYPE represents the type of X'Tag */
6326
6327 int
6328 ada_is_tag_type (struct type *type)
6329 {
6330 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6331 return 0;
6332 else
6333 {
6334 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6335
6336 return (name != NULL
6337 && strcmp (name, "ada__tags__dispatch_table") == 0);
6338 }
6339 }
6340
6341 /* The type of the tag on VAL. */
6342
6343 struct type *
6344 ada_tag_type (struct value *val)
6345 {
6346 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6347 }
6348
6349 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6350 retired at Ada 05). */
6351
6352 static int
6353 is_ada95_tag (struct value *tag)
6354 {
6355 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6356 }
6357
6358 /* The value of the tag on VAL. */
6359
6360 struct value *
6361 ada_value_tag (struct value *val)
6362 {
6363 return ada_value_struct_elt (val, "_tag", 0);
6364 }
6365
6366 /* The value of the tag on the object of type TYPE whose contents are
6367 saved at VALADDR, if it is non-null, or is at memory address
6368 ADDRESS. */
6369
6370 static struct value *
6371 value_tag_from_contents_and_address (struct type *type,
6372 const gdb_byte *valaddr,
6373 CORE_ADDR address)
6374 {
6375 int tag_byte_offset;
6376 struct type *tag_type;
6377
6378 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6379 NULL, NULL, NULL))
6380 {
6381 const gdb_byte *valaddr1 = ((valaddr == NULL)
6382 ? NULL
6383 : valaddr + tag_byte_offset);
6384 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6385
6386 return value_from_contents_and_address (tag_type, valaddr1, address1);
6387 }
6388 return NULL;
6389 }
6390
6391 static struct type *
6392 type_from_tag (struct value *tag)
6393 {
6394 const char *type_name = ada_tag_name (tag);
6395
6396 if (type_name != NULL)
6397 return ada_find_any_type (ada_encode (type_name));
6398 return NULL;
6399 }
6400
6401 /* Given a value OBJ of a tagged type, return a value of this
6402 type at the base address of the object. The base address, as
6403 defined in Ada.Tags, it is the address of the primary tag of
6404 the object, and therefore where the field values of its full
6405 view can be fetched. */
6406
6407 struct value *
6408 ada_tag_value_at_base_address (struct value *obj)
6409 {
6410 volatile struct gdb_exception e;
6411 struct value *val;
6412 LONGEST offset_to_top = 0;
6413 struct type *ptr_type, *obj_type;
6414 struct value *tag;
6415 CORE_ADDR base_address;
6416
6417 obj_type = value_type (obj);
6418
6419 /* It is the responsability of the caller to deref pointers. */
6420
6421 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6422 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6423 return obj;
6424
6425 tag = ada_value_tag (obj);
6426 if (!tag)
6427 return obj;
6428
6429 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6430
6431 if (is_ada95_tag (tag))
6432 return obj;
6433
6434 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6435 ptr_type = lookup_pointer_type (ptr_type);
6436 val = value_cast (ptr_type, tag);
6437 if (!val)
6438 return obj;
6439
6440 /* It is perfectly possible that an exception be raised while
6441 trying to determine the base address, just like for the tag;
6442 see ada_tag_name for more details. We do not print the error
6443 message for the same reason. */
6444
6445 TRY_CATCH (e, RETURN_MASK_ERROR)
6446 {
6447 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6448 }
6449
6450 if (e.reason < 0)
6451 return obj;
6452
6453 /* If offset is null, nothing to do. */
6454
6455 if (offset_to_top == 0)
6456 return obj;
6457
6458 /* -1 is a special case in Ada.Tags; however, what should be done
6459 is not quite clear from the documentation. So do nothing for
6460 now. */
6461
6462 if (offset_to_top == -1)
6463 return obj;
6464
6465 base_address = value_address (obj) - offset_to_top;
6466 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6467
6468 /* Make sure that we have a proper tag at the new address.
6469 Otherwise, offset_to_top is bogus (which can happen when
6470 the object is not initialized yet). */
6471
6472 if (!tag)
6473 return obj;
6474
6475 obj_type = type_from_tag (tag);
6476
6477 if (!obj_type)
6478 return obj;
6479
6480 return value_from_contents_and_address (obj_type, NULL, base_address);
6481 }
6482
6483 /* Return the "ada__tags__type_specific_data" type. */
6484
6485 static struct type *
6486 ada_get_tsd_type (struct inferior *inf)
6487 {
6488 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6489
6490 if (data->tsd_type == 0)
6491 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6492 return data->tsd_type;
6493 }
6494
6495 /* Return the TSD (type-specific data) associated to the given TAG.
6496 TAG is assumed to be the tag of a tagged-type entity.
6497
6498 May return NULL if we are unable to get the TSD. */
6499
6500 static struct value *
6501 ada_get_tsd_from_tag (struct value *tag)
6502 {
6503 struct value *val;
6504 struct type *type;
6505
6506 /* First option: The TSD is simply stored as a field of our TAG.
6507 Only older versions of GNAT would use this format, but we have
6508 to test it first, because there are no visible markers for
6509 the current approach except the absence of that field. */
6510
6511 val = ada_value_struct_elt (tag, "tsd", 1);
6512 if (val)
6513 return val;
6514
6515 /* Try the second representation for the dispatch table (in which
6516 there is no explicit 'tsd' field in the referent of the tag pointer,
6517 and instead the tsd pointer is stored just before the dispatch
6518 table. */
6519
6520 type = ada_get_tsd_type (current_inferior());
6521 if (type == NULL)
6522 return NULL;
6523 type = lookup_pointer_type (lookup_pointer_type (type));
6524 val = value_cast (type, tag);
6525 if (val == NULL)
6526 return NULL;
6527 return value_ind (value_ptradd (val, -1));
6528 }
6529
6530 /* Given the TSD of a tag (type-specific data), return a string
6531 containing the name of the associated type.
6532
6533 The returned value is good until the next call. May return NULL
6534 if we are unable to determine the tag name. */
6535
6536 static char *
6537 ada_tag_name_from_tsd (struct value *tsd)
6538 {
6539 static char name[1024];
6540 char *p;
6541 struct value *val;
6542
6543 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6544 if (val == NULL)
6545 return NULL;
6546 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6547 for (p = name; *p != '\0'; p += 1)
6548 if (isalpha (*p))
6549 *p = tolower (*p);
6550 return name;
6551 }
6552
6553 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6554 a C string.
6555
6556 Return NULL if the TAG is not an Ada tag, or if we were unable to
6557 determine the name of that tag. The result is good until the next
6558 call. */
6559
6560 const char *
6561 ada_tag_name (struct value *tag)
6562 {
6563 volatile struct gdb_exception e;
6564 char *name = NULL;
6565
6566 if (!ada_is_tag_type (value_type (tag)))
6567 return NULL;
6568
6569 /* It is perfectly possible that an exception be raised while trying
6570 to determine the TAG's name, even under normal circumstances:
6571 The associated variable may be uninitialized or corrupted, for
6572 instance. We do not let any exception propagate past this point.
6573 instead we return NULL.
6574
6575 We also do not print the error message either (which often is very
6576 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6577 the caller print a more meaningful message if necessary. */
6578 TRY_CATCH (e, RETURN_MASK_ERROR)
6579 {
6580 struct value *tsd = ada_get_tsd_from_tag (tag);
6581
6582 if (tsd != NULL)
6583 name = ada_tag_name_from_tsd (tsd);
6584 }
6585
6586 return name;
6587 }
6588
6589 /* The parent type of TYPE, or NULL if none. */
6590
6591 struct type *
6592 ada_parent_type (struct type *type)
6593 {
6594 int i;
6595
6596 type = ada_check_typedef (type);
6597
6598 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6599 return NULL;
6600
6601 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6602 if (ada_is_parent_field (type, i))
6603 {
6604 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6605
6606 /* If the _parent field is a pointer, then dereference it. */
6607 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6608 parent_type = TYPE_TARGET_TYPE (parent_type);
6609 /* If there is a parallel XVS type, get the actual base type. */
6610 parent_type = ada_get_base_type (parent_type);
6611
6612 return ada_check_typedef (parent_type);
6613 }
6614
6615 return NULL;
6616 }
6617
6618 /* True iff field number FIELD_NUM of structure type TYPE contains the
6619 parent-type (inherited) fields of a derived type. Assumes TYPE is
6620 a structure type with at least FIELD_NUM+1 fields. */
6621
6622 int
6623 ada_is_parent_field (struct type *type, int field_num)
6624 {
6625 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6626
6627 return (name != NULL
6628 && (strncmp (name, "PARENT", 6) == 0
6629 || strncmp (name, "_parent", 7) == 0));
6630 }
6631
6632 /* True iff field number FIELD_NUM of structure type TYPE is a
6633 transparent wrapper field (which should be silently traversed when doing
6634 field selection and flattened when printing). Assumes TYPE is a
6635 structure type with at least FIELD_NUM+1 fields. Such fields are always
6636 structures. */
6637
6638 int
6639 ada_is_wrapper_field (struct type *type, int field_num)
6640 {
6641 const char *name = TYPE_FIELD_NAME (type, field_num);
6642
6643 return (name != NULL
6644 && (strncmp (name, "PARENT", 6) == 0
6645 || strcmp (name, "REP") == 0
6646 || strncmp (name, "_parent", 7) == 0
6647 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6648 }
6649
6650 /* True iff field number FIELD_NUM of structure or union type TYPE
6651 is a variant wrapper. Assumes TYPE is a structure type with at least
6652 FIELD_NUM+1 fields. */
6653
6654 int
6655 ada_is_variant_part (struct type *type, int field_num)
6656 {
6657 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6658
6659 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6660 || (is_dynamic_field (type, field_num)
6661 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6662 == TYPE_CODE_UNION)));
6663 }
6664
6665 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6666 whose discriminants are contained in the record type OUTER_TYPE,
6667 returns the type of the controlling discriminant for the variant.
6668 May return NULL if the type could not be found. */
6669
6670 struct type *
6671 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6672 {
6673 char *name = ada_variant_discrim_name (var_type);
6674
6675 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6676 }
6677
6678 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6679 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6680 represents a 'when others' clause; otherwise 0. */
6681
6682 int
6683 ada_is_others_clause (struct type *type, int field_num)
6684 {
6685 const char *name = TYPE_FIELD_NAME (type, field_num);
6686
6687 return (name != NULL && name[0] == 'O');
6688 }
6689
6690 /* Assuming that TYPE0 is the type of the variant part of a record,
6691 returns the name of the discriminant controlling the variant.
6692 The value is valid until the next call to ada_variant_discrim_name. */
6693
6694 char *
6695 ada_variant_discrim_name (struct type *type0)
6696 {
6697 static char *result = NULL;
6698 static size_t result_len = 0;
6699 struct type *type;
6700 const char *name;
6701 const char *discrim_end;
6702 const char *discrim_start;
6703
6704 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6705 type = TYPE_TARGET_TYPE (type0);
6706 else
6707 type = type0;
6708
6709 name = ada_type_name (type);
6710
6711 if (name == NULL || name[0] == '\000')
6712 return "";
6713
6714 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6715 discrim_end -= 1)
6716 {
6717 if (strncmp (discrim_end, "___XVN", 6) == 0)
6718 break;
6719 }
6720 if (discrim_end == name)
6721 return "";
6722
6723 for (discrim_start = discrim_end; discrim_start != name + 3;
6724 discrim_start -= 1)
6725 {
6726 if (discrim_start == name + 1)
6727 return "";
6728 if ((discrim_start > name + 3
6729 && strncmp (discrim_start - 3, "___", 3) == 0)
6730 || discrim_start[-1] == '.')
6731 break;
6732 }
6733
6734 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6735 strncpy (result, discrim_start, discrim_end - discrim_start);
6736 result[discrim_end - discrim_start] = '\0';
6737 return result;
6738 }
6739
6740 /* Scan STR for a subtype-encoded number, beginning at position K.
6741 Put the position of the character just past the number scanned in
6742 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6743 Return 1 if there was a valid number at the given position, and 0
6744 otherwise. A "subtype-encoded" number consists of the absolute value
6745 in decimal, followed by the letter 'm' to indicate a negative number.
6746 Assumes 0m does not occur. */
6747
6748 int
6749 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6750 {
6751 ULONGEST RU;
6752
6753 if (!isdigit (str[k]))
6754 return 0;
6755
6756 /* Do it the hard way so as not to make any assumption about
6757 the relationship of unsigned long (%lu scan format code) and
6758 LONGEST. */
6759 RU = 0;
6760 while (isdigit (str[k]))
6761 {
6762 RU = RU * 10 + (str[k] - '0');
6763 k += 1;
6764 }
6765
6766 if (str[k] == 'm')
6767 {
6768 if (R != NULL)
6769 *R = (-(LONGEST) (RU - 1)) - 1;
6770 k += 1;
6771 }
6772 else if (R != NULL)
6773 *R = (LONGEST) RU;
6774
6775 /* NOTE on the above: Technically, C does not say what the results of
6776 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6777 number representable as a LONGEST (although either would probably work
6778 in most implementations). When RU>0, the locution in the then branch
6779 above is always equivalent to the negative of RU. */
6780
6781 if (new_k != NULL)
6782 *new_k = k;
6783 return 1;
6784 }
6785
6786 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6787 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6788 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6789
6790 int
6791 ada_in_variant (LONGEST val, struct type *type, int field_num)
6792 {
6793 const char *name = TYPE_FIELD_NAME (type, field_num);
6794 int p;
6795
6796 p = 0;
6797 while (1)
6798 {
6799 switch (name[p])
6800 {
6801 case '\0':
6802 return 0;
6803 case 'S':
6804 {
6805 LONGEST W;
6806
6807 if (!ada_scan_number (name, p + 1, &W, &p))
6808 return 0;
6809 if (val == W)
6810 return 1;
6811 break;
6812 }
6813 case 'R':
6814 {
6815 LONGEST L, U;
6816
6817 if (!ada_scan_number (name, p + 1, &L, &p)
6818 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6819 return 0;
6820 if (val >= L && val <= U)
6821 return 1;
6822 break;
6823 }
6824 case 'O':
6825 return 1;
6826 default:
6827 return 0;
6828 }
6829 }
6830 }
6831
6832 /* FIXME: Lots of redundancy below. Try to consolidate. */
6833
6834 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6835 ARG_TYPE, extract and return the value of one of its (non-static)
6836 fields. FIELDNO says which field. Differs from value_primitive_field
6837 only in that it can handle packed values of arbitrary type. */
6838
6839 static struct value *
6840 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6841 struct type *arg_type)
6842 {
6843 struct type *type;
6844
6845 arg_type = ada_check_typedef (arg_type);
6846 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6847
6848 /* Handle packed fields. */
6849
6850 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6851 {
6852 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6853 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6854
6855 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6856 offset + bit_pos / 8,
6857 bit_pos % 8, bit_size, type);
6858 }
6859 else
6860 return value_primitive_field (arg1, offset, fieldno, arg_type);
6861 }
6862
6863 /* Find field with name NAME in object of type TYPE. If found,
6864 set the following for each argument that is non-null:
6865 - *FIELD_TYPE_P to the field's type;
6866 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6867 an object of that type;
6868 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6869 - *BIT_SIZE_P to its size in bits if the field is packed, and
6870 0 otherwise;
6871 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6872 fields up to but not including the desired field, or by the total
6873 number of fields if not found. A NULL value of NAME never
6874 matches; the function just counts visible fields in this case.
6875
6876 Returns 1 if found, 0 otherwise. */
6877
6878 static int
6879 find_struct_field (const char *name, struct type *type, int offset,
6880 struct type **field_type_p,
6881 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6882 int *index_p)
6883 {
6884 int i;
6885
6886 type = ada_check_typedef (type);
6887
6888 if (field_type_p != NULL)
6889 *field_type_p = NULL;
6890 if (byte_offset_p != NULL)
6891 *byte_offset_p = 0;
6892 if (bit_offset_p != NULL)
6893 *bit_offset_p = 0;
6894 if (bit_size_p != NULL)
6895 *bit_size_p = 0;
6896
6897 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6898 {
6899 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6900 int fld_offset = offset + bit_pos / 8;
6901 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6902
6903 if (t_field_name == NULL)
6904 continue;
6905
6906 else if (name != NULL && field_name_match (t_field_name, name))
6907 {
6908 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6909
6910 if (field_type_p != NULL)
6911 *field_type_p = TYPE_FIELD_TYPE (type, i);
6912 if (byte_offset_p != NULL)
6913 *byte_offset_p = fld_offset;
6914 if (bit_offset_p != NULL)
6915 *bit_offset_p = bit_pos % 8;
6916 if (bit_size_p != NULL)
6917 *bit_size_p = bit_size;
6918 return 1;
6919 }
6920 else if (ada_is_wrapper_field (type, i))
6921 {
6922 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6923 field_type_p, byte_offset_p, bit_offset_p,
6924 bit_size_p, index_p))
6925 return 1;
6926 }
6927 else if (ada_is_variant_part (type, i))
6928 {
6929 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6930 fixed type?? */
6931 int j;
6932 struct type *field_type
6933 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6934
6935 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6936 {
6937 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6938 fld_offset
6939 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6940 field_type_p, byte_offset_p,
6941 bit_offset_p, bit_size_p, index_p))
6942 return 1;
6943 }
6944 }
6945 else if (index_p != NULL)
6946 *index_p += 1;
6947 }
6948 return 0;
6949 }
6950
6951 /* Number of user-visible fields in record type TYPE. */
6952
6953 static int
6954 num_visible_fields (struct type *type)
6955 {
6956 int n;
6957
6958 n = 0;
6959 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6960 return n;
6961 }
6962
6963 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6964 and search in it assuming it has (class) type TYPE.
6965 If found, return value, else return NULL.
6966
6967 Searches recursively through wrapper fields (e.g., '_parent'). */
6968
6969 static struct value *
6970 ada_search_struct_field (char *name, struct value *arg, int offset,
6971 struct type *type)
6972 {
6973 int i;
6974
6975 type = ada_check_typedef (type);
6976 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6977 {
6978 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6979
6980 if (t_field_name == NULL)
6981 continue;
6982
6983 else if (field_name_match (t_field_name, name))
6984 return ada_value_primitive_field (arg, offset, i, type);
6985
6986 else if (ada_is_wrapper_field (type, i))
6987 {
6988 struct value *v = /* Do not let indent join lines here. */
6989 ada_search_struct_field (name, arg,
6990 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6991 TYPE_FIELD_TYPE (type, i));
6992
6993 if (v != NULL)
6994 return v;
6995 }
6996
6997 else if (ada_is_variant_part (type, i))
6998 {
6999 /* PNH: Do we ever get here? See find_struct_field. */
7000 int j;
7001 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7002 i));
7003 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7004
7005 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7006 {
7007 struct value *v = ada_search_struct_field /* Force line
7008 break. */
7009 (name, arg,
7010 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7011 TYPE_FIELD_TYPE (field_type, j));
7012
7013 if (v != NULL)
7014 return v;
7015 }
7016 }
7017 }
7018 return NULL;
7019 }
7020
7021 static struct value *ada_index_struct_field_1 (int *, struct value *,
7022 int, struct type *);
7023
7024
7025 /* Return field #INDEX in ARG, where the index is that returned by
7026 * find_struct_field through its INDEX_P argument. Adjust the address
7027 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7028 * If found, return value, else return NULL. */
7029
7030 static struct value *
7031 ada_index_struct_field (int index, struct value *arg, int offset,
7032 struct type *type)
7033 {
7034 return ada_index_struct_field_1 (&index, arg, offset, type);
7035 }
7036
7037
7038 /* Auxiliary function for ada_index_struct_field. Like
7039 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7040 * *INDEX_P. */
7041
7042 static struct value *
7043 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7044 struct type *type)
7045 {
7046 int i;
7047 type = ada_check_typedef (type);
7048
7049 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7050 {
7051 if (TYPE_FIELD_NAME (type, i) == NULL)
7052 continue;
7053 else if (ada_is_wrapper_field (type, i))
7054 {
7055 struct value *v = /* Do not let indent join lines here. */
7056 ada_index_struct_field_1 (index_p, arg,
7057 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7058 TYPE_FIELD_TYPE (type, i));
7059
7060 if (v != NULL)
7061 return v;
7062 }
7063
7064 else if (ada_is_variant_part (type, i))
7065 {
7066 /* PNH: Do we ever get here? See ada_search_struct_field,
7067 find_struct_field. */
7068 error (_("Cannot assign this kind of variant record"));
7069 }
7070 else if (*index_p == 0)
7071 return ada_value_primitive_field (arg, offset, i, type);
7072 else
7073 *index_p -= 1;
7074 }
7075 return NULL;
7076 }
7077
7078 /* Given ARG, a value of type (pointer or reference to a)*
7079 structure/union, extract the component named NAME from the ultimate
7080 target structure/union and return it as a value with its
7081 appropriate type.
7082
7083 The routine searches for NAME among all members of the structure itself
7084 and (recursively) among all members of any wrapper members
7085 (e.g., '_parent').
7086
7087 If NO_ERR, then simply return NULL in case of error, rather than
7088 calling error. */
7089
7090 struct value *
7091 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7092 {
7093 struct type *t, *t1;
7094 struct value *v;
7095
7096 v = NULL;
7097 t1 = t = ada_check_typedef (value_type (arg));
7098 if (TYPE_CODE (t) == TYPE_CODE_REF)
7099 {
7100 t1 = TYPE_TARGET_TYPE (t);
7101 if (t1 == NULL)
7102 goto BadValue;
7103 t1 = ada_check_typedef (t1);
7104 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7105 {
7106 arg = coerce_ref (arg);
7107 t = t1;
7108 }
7109 }
7110
7111 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7112 {
7113 t1 = TYPE_TARGET_TYPE (t);
7114 if (t1 == NULL)
7115 goto BadValue;
7116 t1 = ada_check_typedef (t1);
7117 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7118 {
7119 arg = value_ind (arg);
7120 t = t1;
7121 }
7122 else
7123 break;
7124 }
7125
7126 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7127 goto BadValue;
7128
7129 if (t1 == t)
7130 v = ada_search_struct_field (name, arg, 0, t);
7131 else
7132 {
7133 int bit_offset, bit_size, byte_offset;
7134 struct type *field_type;
7135 CORE_ADDR address;
7136
7137 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7138 address = value_address (ada_value_ind (arg));
7139 else
7140 address = value_address (ada_coerce_ref (arg));
7141
7142 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7143 if (find_struct_field (name, t1, 0,
7144 &field_type, &byte_offset, &bit_offset,
7145 &bit_size, NULL))
7146 {
7147 if (bit_size != 0)
7148 {
7149 if (TYPE_CODE (t) == TYPE_CODE_REF)
7150 arg = ada_coerce_ref (arg);
7151 else
7152 arg = ada_value_ind (arg);
7153 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7154 bit_offset, bit_size,
7155 field_type);
7156 }
7157 else
7158 v = value_at_lazy (field_type, address + byte_offset);
7159 }
7160 }
7161
7162 if (v != NULL || no_err)
7163 return v;
7164 else
7165 error (_("There is no member named %s."), name);
7166
7167 BadValue:
7168 if (no_err)
7169 return NULL;
7170 else
7171 error (_("Attempt to extract a component of "
7172 "a value that is not a record."));
7173 }
7174
7175 /* Given a type TYPE, look up the type of the component of type named NAME.
7176 If DISPP is non-null, add its byte displacement from the beginning of a
7177 structure (pointed to by a value) of type TYPE to *DISPP (does not
7178 work for packed fields).
7179
7180 Matches any field whose name has NAME as a prefix, possibly
7181 followed by "___".
7182
7183 TYPE can be either a struct or union. If REFOK, TYPE may also
7184 be a (pointer or reference)+ to a struct or union, and the
7185 ultimate target type will be searched.
7186
7187 Looks recursively into variant clauses and parent types.
7188
7189 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7190 TYPE is not a type of the right kind. */
7191
7192 static struct type *
7193 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7194 int noerr, int *dispp)
7195 {
7196 int i;
7197
7198 if (name == NULL)
7199 goto BadName;
7200
7201 if (refok && type != NULL)
7202 while (1)
7203 {
7204 type = ada_check_typedef (type);
7205 if (TYPE_CODE (type) != TYPE_CODE_PTR
7206 && TYPE_CODE (type) != TYPE_CODE_REF)
7207 break;
7208 type = TYPE_TARGET_TYPE (type);
7209 }
7210
7211 if (type == NULL
7212 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7213 && TYPE_CODE (type) != TYPE_CODE_UNION))
7214 {
7215 if (noerr)
7216 return NULL;
7217 else
7218 {
7219 target_terminal_ours ();
7220 gdb_flush (gdb_stdout);
7221 if (type == NULL)
7222 error (_("Type (null) is not a structure or union type"));
7223 else
7224 {
7225 /* XXX: type_sprint */
7226 fprintf_unfiltered (gdb_stderr, _("Type "));
7227 type_print (type, "", gdb_stderr, -1);
7228 error (_(" is not a structure or union type"));
7229 }
7230 }
7231 }
7232
7233 type = to_static_fixed_type (type);
7234
7235 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7236 {
7237 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7238 struct type *t;
7239 int disp;
7240
7241 if (t_field_name == NULL)
7242 continue;
7243
7244 else if (field_name_match (t_field_name, name))
7245 {
7246 if (dispp != NULL)
7247 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7248 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7249 }
7250
7251 else if (ada_is_wrapper_field (type, i))
7252 {
7253 disp = 0;
7254 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7255 0, 1, &disp);
7256 if (t != NULL)
7257 {
7258 if (dispp != NULL)
7259 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7260 return t;
7261 }
7262 }
7263
7264 else if (ada_is_variant_part (type, i))
7265 {
7266 int j;
7267 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7268 i));
7269
7270 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7271 {
7272 /* FIXME pnh 2008/01/26: We check for a field that is
7273 NOT wrapped in a struct, since the compiler sometimes
7274 generates these for unchecked variant types. Revisit
7275 if the compiler changes this practice. */
7276 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7277 disp = 0;
7278 if (v_field_name != NULL
7279 && field_name_match (v_field_name, name))
7280 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7281 else
7282 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7283 j),
7284 name, 0, 1, &disp);
7285
7286 if (t != NULL)
7287 {
7288 if (dispp != NULL)
7289 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7290 return t;
7291 }
7292 }
7293 }
7294
7295 }
7296
7297 BadName:
7298 if (!noerr)
7299 {
7300 target_terminal_ours ();
7301 gdb_flush (gdb_stdout);
7302 if (name == NULL)
7303 {
7304 /* XXX: type_sprint */
7305 fprintf_unfiltered (gdb_stderr, _("Type "));
7306 type_print (type, "", gdb_stderr, -1);
7307 error (_(" has no component named <null>"));
7308 }
7309 else
7310 {
7311 /* XXX: type_sprint */
7312 fprintf_unfiltered (gdb_stderr, _("Type "));
7313 type_print (type, "", gdb_stderr, -1);
7314 error (_(" has no component named %s"), name);
7315 }
7316 }
7317
7318 return NULL;
7319 }
7320
7321 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7322 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7323 represents an unchecked union (that is, the variant part of a
7324 record that is named in an Unchecked_Union pragma). */
7325
7326 static int
7327 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7328 {
7329 char *discrim_name = ada_variant_discrim_name (var_type);
7330
7331 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7332 == NULL);
7333 }
7334
7335
7336 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7337 within a value of type OUTER_TYPE that is stored in GDB at
7338 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7339 numbering from 0) is applicable. Returns -1 if none are. */
7340
7341 int
7342 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7343 const gdb_byte *outer_valaddr)
7344 {
7345 int others_clause;
7346 int i;
7347 char *discrim_name = ada_variant_discrim_name (var_type);
7348 struct value *outer;
7349 struct value *discrim;
7350 LONGEST discrim_val;
7351
7352 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7353 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7354 if (discrim == NULL)
7355 return -1;
7356 discrim_val = value_as_long (discrim);
7357
7358 others_clause = -1;
7359 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7360 {
7361 if (ada_is_others_clause (var_type, i))
7362 others_clause = i;
7363 else if (ada_in_variant (discrim_val, var_type, i))
7364 return i;
7365 }
7366
7367 return others_clause;
7368 }
7369 \f
7370
7371
7372 /* Dynamic-Sized Records */
7373
7374 /* Strategy: The type ostensibly attached to a value with dynamic size
7375 (i.e., a size that is not statically recorded in the debugging
7376 data) does not accurately reflect the size or layout of the value.
7377 Our strategy is to convert these values to values with accurate,
7378 conventional types that are constructed on the fly. */
7379
7380 /* There is a subtle and tricky problem here. In general, we cannot
7381 determine the size of dynamic records without its data. However,
7382 the 'struct value' data structure, which GDB uses to represent
7383 quantities in the inferior process (the target), requires the size
7384 of the type at the time of its allocation in order to reserve space
7385 for GDB's internal copy of the data. That's why the
7386 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7387 rather than struct value*s.
7388
7389 However, GDB's internal history variables ($1, $2, etc.) are
7390 struct value*s containing internal copies of the data that are not, in
7391 general, the same as the data at their corresponding addresses in
7392 the target. Fortunately, the types we give to these values are all
7393 conventional, fixed-size types (as per the strategy described
7394 above), so that we don't usually have to perform the
7395 'to_fixed_xxx_type' conversions to look at their values.
7396 Unfortunately, there is one exception: if one of the internal
7397 history variables is an array whose elements are unconstrained
7398 records, then we will need to create distinct fixed types for each
7399 element selected. */
7400
7401 /* The upshot of all of this is that many routines take a (type, host
7402 address, target address) triple as arguments to represent a value.
7403 The host address, if non-null, is supposed to contain an internal
7404 copy of the relevant data; otherwise, the program is to consult the
7405 target at the target address. */
7406
7407 /* Assuming that VAL0 represents a pointer value, the result of
7408 dereferencing it. Differs from value_ind in its treatment of
7409 dynamic-sized types. */
7410
7411 struct value *
7412 ada_value_ind (struct value *val0)
7413 {
7414 struct value *val = value_ind (val0);
7415
7416 if (ada_is_tagged_type (value_type (val), 0))
7417 val = ada_tag_value_at_base_address (val);
7418
7419 return ada_to_fixed_value (val);
7420 }
7421
7422 /* The value resulting from dereferencing any "reference to"
7423 qualifiers on VAL0. */
7424
7425 static struct value *
7426 ada_coerce_ref (struct value *val0)
7427 {
7428 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7429 {
7430 struct value *val = val0;
7431
7432 val = coerce_ref (val);
7433
7434 if (ada_is_tagged_type (value_type (val), 0))
7435 val = ada_tag_value_at_base_address (val);
7436
7437 return ada_to_fixed_value (val);
7438 }
7439 else
7440 return val0;
7441 }
7442
7443 /* Return OFF rounded upward if necessary to a multiple of
7444 ALIGNMENT (a power of 2). */
7445
7446 static unsigned int
7447 align_value (unsigned int off, unsigned int alignment)
7448 {
7449 return (off + alignment - 1) & ~(alignment - 1);
7450 }
7451
7452 /* Return the bit alignment required for field #F of template type TYPE. */
7453
7454 static unsigned int
7455 field_alignment (struct type *type, int f)
7456 {
7457 const char *name = TYPE_FIELD_NAME (type, f);
7458 int len;
7459 int align_offset;
7460
7461 /* The field name should never be null, unless the debugging information
7462 is somehow malformed. In this case, we assume the field does not
7463 require any alignment. */
7464 if (name == NULL)
7465 return 1;
7466
7467 len = strlen (name);
7468
7469 if (!isdigit (name[len - 1]))
7470 return 1;
7471
7472 if (isdigit (name[len - 2]))
7473 align_offset = len - 2;
7474 else
7475 align_offset = len - 1;
7476
7477 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7478 return TARGET_CHAR_BIT;
7479
7480 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7481 }
7482
7483 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7484
7485 static struct symbol *
7486 ada_find_any_type_symbol (const char *name)
7487 {
7488 struct symbol *sym;
7489
7490 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7491 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7492 return sym;
7493
7494 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7495 return sym;
7496 }
7497
7498 /* Find a type named NAME. Ignores ambiguity. This routine will look
7499 solely for types defined by debug info, it will not search the GDB
7500 primitive types. */
7501
7502 static struct type *
7503 ada_find_any_type (const char *name)
7504 {
7505 struct symbol *sym = ada_find_any_type_symbol (name);
7506
7507 if (sym != NULL)
7508 return SYMBOL_TYPE (sym);
7509
7510 return NULL;
7511 }
7512
7513 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7514 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7515 symbol, in which case it is returned. Otherwise, this looks for
7516 symbols whose name is that of NAME_SYM suffixed with "___XR".
7517 Return symbol if found, and NULL otherwise. */
7518
7519 struct symbol *
7520 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7521 {
7522 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7523 struct symbol *sym;
7524
7525 if (strstr (name, "___XR") != NULL)
7526 return name_sym;
7527
7528 sym = find_old_style_renaming_symbol (name, block);
7529
7530 if (sym != NULL)
7531 return sym;
7532
7533 /* Not right yet. FIXME pnh 7/20/2007. */
7534 sym = ada_find_any_type_symbol (name);
7535 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7536 return sym;
7537 else
7538 return NULL;
7539 }
7540
7541 static struct symbol *
7542 find_old_style_renaming_symbol (const char *name, const struct block *block)
7543 {
7544 const struct symbol *function_sym = block_linkage_function (block);
7545 char *rename;
7546
7547 if (function_sym != NULL)
7548 {
7549 /* If the symbol is defined inside a function, NAME is not fully
7550 qualified. This means we need to prepend the function name
7551 as well as adding the ``___XR'' suffix to build the name of
7552 the associated renaming symbol. */
7553 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7554 /* Function names sometimes contain suffixes used
7555 for instance to qualify nested subprograms. When building
7556 the XR type name, we need to make sure that this suffix is
7557 not included. So do not include any suffix in the function
7558 name length below. */
7559 int function_name_len = ada_name_prefix_len (function_name);
7560 const int rename_len = function_name_len + 2 /* "__" */
7561 + strlen (name) + 6 /* "___XR\0" */ ;
7562
7563 /* Strip the suffix if necessary. */
7564 ada_remove_trailing_digits (function_name, &function_name_len);
7565 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7566 ada_remove_Xbn_suffix (function_name, &function_name_len);
7567
7568 /* Library-level functions are a special case, as GNAT adds
7569 a ``_ada_'' prefix to the function name to avoid namespace
7570 pollution. However, the renaming symbols themselves do not
7571 have this prefix, so we need to skip this prefix if present. */
7572 if (function_name_len > 5 /* "_ada_" */
7573 && strstr (function_name, "_ada_") == function_name)
7574 {
7575 function_name += 5;
7576 function_name_len -= 5;
7577 }
7578
7579 rename = (char *) alloca (rename_len * sizeof (char));
7580 strncpy (rename, function_name, function_name_len);
7581 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7582 "__%s___XR", name);
7583 }
7584 else
7585 {
7586 const int rename_len = strlen (name) + 6;
7587
7588 rename = (char *) alloca (rename_len * sizeof (char));
7589 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7590 }
7591
7592 return ada_find_any_type_symbol (rename);
7593 }
7594
7595 /* Because of GNAT encoding conventions, several GDB symbols may match a
7596 given type name. If the type denoted by TYPE0 is to be preferred to
7597 that of TYPE1 for purposes of type printing, return non-zero;
7598 otherwise return 0. */
7599
7600 int
7601 ada_prefer_type (struct type *type0, struct type *type1)
7602 {
7603 if (type1 == NULL)
7604 return 1;
7605 else if (type0 == NULL)
7606 return 0;
7607 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7608 return 1;
7609 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7610 return 0;
7611 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7612 return 1;
7613 else if (ada_is_constrained_packed_array_type (type0))
7614 return 1;
7615 else if (ada_is_array_descriptor_type (type0)
7616 && !ada_is_array_descriptor_type (type1))
7617 return 1;
7618 else
7619 {
7620 const char *type0_name = type_name_no_tag (type0);
7621 const char *type1_name = type_name_no_tag (type1);
7622
7623 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7624 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7625 return 1;
7626 }
7627 return 0;
7628 }
7629
7630 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7631 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7632
7633 const char *
7634 ada_type_name (struct type *type)
7635 {
7636 if (type == NULL)
7637 return NULL;
7638 else if (TYPE_NAME (type) != NULL)
7639 return TYPE_NAME (type);
7640 else
7641 return TYPE_TAG_NAME (type);
7642 }
7643
7644 /* Search the list of "descriptive" types associated to TYPE for a type
7645 whose name is NAME. */
7646
7647 static struct type *
7648 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7649 {
7650 struct type *result;
7651
7652 if (ada_ignore_descriptive_types_p)
7653 return NULL;
7654
7655 /* If there no descriptive-type info, then there is no parallel type
7656 to be found. */
7657 if (!HAVE_GNAT_AUX_INFO (type))
7658 return NULL;
7659
7660 result = TYPE_DESCRIPTIVE_TYPE (type);
7661 while (result != NULL)
7662 {
7663 const char *result_name = ada_type_name (result);
7664
7665 if (result_name == NULL)
7666 {
7667 warning (_("unexpected null name on descriptive type"));
7668 return NULL;
7669 }
7670
7671 /* If the names match, stop. */
7672 if (strcmp (result_name, name) == 0)
7673 break;
7674
7675 /* Otherwise, look at the next item on the list, if any. */
7676 if (HAVE_GNAT_AUX_INFO (result))
7677 result = TYPE_DESCRIPTIVE_TYPE (result);
7678 else
7679 result = NULL;
7680 }
7681
7682 /* If we didn't find a match, see whether this is a packed array. With
7683 older compilers, the descriptive type information is either absent or
7684 irrelevant when it comes to packed arrays so the above lookup fails.
7685 Fall back to using a parallel lookup by name in this case. */
7686 if (result == NULL && ada_is_constrained_packed_array_type (type))
7687 return ada_find_any_type (name);
7688
7689 return result;
7690 }
7691
7692 /* Find a parallel type to TYPE with the specified NAME, using the
7693 descriptive type taken from the debugging information, if available,
7694 and otherwise using the (slower) name-based method. */
7695
7696 static struct type *
7697 ada_find_parallel_type_with_name (struct type *type, const char *name)
7698 {
7699 struct type *result = NULL;
7700
7701 if (HAVE_GNAT_AUX_INFO (type))
7702 result = find_parallel_type_by_descriptive_type (type, name);
7703 else
7704 result = ada_find_any_type (name);
7705
7706 return result;
7707 }
7708
7709 /* Same as above, but specify the name of the parallel type by appending
7710 SUFFIX to the name of TYPE. */
7711
7712 struct type *
7713 ada_find_parallel_type (struct type *type, const char *suffix)
7714 {
7715 char *name;
7716 const char *typename = ada_type_name (type);
7717 int len;
7718
7719 if (typename == NULL)
7720 return NULL;
7721
7722 len = strlen (typename);
7723
7724 name = (char *) alloca (len + strlen (suffix) + 1);
7725
7726 strcpy (name, typename);
7727 strcpy (name + len, suffix);
7728
7729 return ada_find_parallel_type_with_name (type, name);
7730 }
7731
7732 /* If TYPE is a variable-size record type, return the corresponding template
7733 type describing its fields. Otherwise, return NULL. */
7734
7735 static struct type *
7736 dynamic_template_type (struct type *type)
7737 {
7738 type = ada_check_typedef (type);
7739
7740 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7741 || ada_type_name (type) == NULL)
7742 return NULL;
7743 else
7744 {
7745 int len = strlen (ada_type_name (type));
7746
7747 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7748 return type;
7749 else
7750 return ada_find_parallel_type (type, "___XVE");
7751 }
7752 }
7753
7754 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7755 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7756
7757 static int
7758 is_dynamic_field (struct type *templ_type, int field_num)
7759 {
7760 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7761
7762 return name != NULL
7763 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7764 && strstr (name, "___XVL") != NULL;
7765 }
7766
7767 /* The index of the variant field of TYPE, or -1 if TYPE does not
7768 represent a variant record type. */
7769
7770 static int
7771 variant_field_index (struct type *type)
7772 {
7773 int f;
7774
7775 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7776 return -1;
7777
7778 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7779 {
7780 if (ada_is_variant_part (type, f))
7781 return f;
7782 }
7783 return -1;
7784 }
7785
7786 /* A record type with no fields. */
7787
7788 static struct type *
7789 empty_record (struct type *template)
7790 {
7791 struct type *type = alloc_type_copy (template);
7792
7793 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7794 TYPE_NFIELDS (type) = 0;
7795 TYPE_FIELDS (type) = NULL;
7796 INIT_CPLUS_SPECIFIC (type);
7797 TYPE_NAME (type) = "<empty>";
7798 TYPE_TAG_NAME (type) = NULL;
7799 TYPE_LENGTH (type) = 0;
7800 return type;
7801 }
7802
7803 /* An ordinary record type (with fixed-length fields) that describes
7804 the value of type TYPE at VALADDR or ADDRESS (see comments at
7805 the beginning of this section) VAL according to GNAT conventions.
7806 DVAL0 should describe the (portion of a) record that contains any
7807 necessary discriminants. It should be NULL if value_type (VAL) is
7808 an outer-level type (i.e., as opposed to a branch of a variant.) A
7809 variant field (unless unchecked) is replaced by a particular branch
7810 of the variant.
7811
7812 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7813 length are not statically known are discarded. As a consequence,
7814 VALADDR, ADDRESS and DVAL0 are ignored.
7815
7816 NOTE: Limitations: For now, we assume that dynamic fields and
7817 variants occupy whole numbers of bytes. However, they need not be
7818 byte-aligned. */
7819
7820 struct type *
7821 ada_template_to_fixed_record_type_1 (struct type *type,
7822 const gdb_byte *valaddr,
7823 CORE_ADDR address, struct value *dval0,
7824 int keep_dynamic_fields)
7825 {
7826 struct value *mark = value_mark ();
7827 struct value *dval;
7828 struct type *rtype;
7829 int nfields, bit_len;
7830 int variant_field;
7831 long off;
7832 int fld_bit_len;
7833 int f;
7834
7835 /* Compute the number of fields in this record type that are going
7836 to be processed: unless keep_dynamic_fields, this includes only
7837 fields whose position and length are static will be processed. */
7838 if (keep_dynamic_fields)
7839 nfields = TYPE_NFIELDS (type);
7840 else
7841 {
7842 nfields = 0;
7843 while (nfields < TYPE_NFIELDS (type)
7844 && !ada_is_variant_part (type, nfields)
7845 && !is_dynamic_field (type, nfields))
7846 nfields++;
7847 }
7848
7849 rtype = alloc_type_copy (type);
7850 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7851 INIT_CPLUS_SPECIFIC (rtype);
7852 TYPE_NFIELDS (rtype) = nfields;
7853 TYPE_FIELDS (rtype) = (struct field *)
7854 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7855 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7856 TYPE_NAME (rtype) = ada_type_name (type);
7857 TYPE_TAG_NAME (rtype) = NULL;
7858 TYPE_FIXED_INSTANCE (rtype) = 1;
7859
7860 off = 0;
7861 bit_len = 0;
7862 variant_field = -1;
7863
7864 for (f = 0; f < nfields; f += 1)
7865 {
7866 off = align_value (off, field_alignment (type, f))
7867 + TYPE_FIELD_BITPOS (type, f);
7868 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7869 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7870
7871 if (ada_is_variant_part (type, f))
7872 {
7873 variant_field = f;
7874 fld_bit_len = 0;
7875 }
7876 else if (is_dynamic_field (type, f))
7877 {
7878 const gdb_byte *field_valaddr = valaddr;
7879 CORE_ADDR field_address = address;
7880 struct type *field_type =
7881 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7882
7883 if (dval0 == NULL)
7884 {
7885 /* rtype's length is computed based on the run-time
7886 value of discriminants. If the discriminants are not
7887 initialized, the type size may be completely bogus and
7888 GDB may fail to allocate a value for it. So check the
7889 size first before creating the value. */
7890 check_size (rtype);
7891 dval = value_from_contents_and_address (rtype, valaddr, address);
7892 rtype = value_type (dval);
7893 }
7894 else
7895 dval = dval0;
7896
7897 /* If the type referenced by this field is an aligner type, we need
7898 to unwrap that aligner type, because its size might not be set.
7899 Keeping the aligner type would cause us to compute the wrong
7900 size for this field, impacting the offset of the all the fields
7901 that follow this one. */
7902 if (ada_is_aligner_type (field_type))
7903 {
7904 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7905
7906 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7907 field_address = cond_offset_target (field_address, field_offset);
7908 field_type = ada_aligned_type (field_type);
7909 }
7910
7911 field_valaddr = cond_offset_host (field_valaddr,
7912 off / TARGET_CHAR_BIT);
7913 field_address = cond_offset_target (field_address,
7914 off / TARGET_CHAR_BIT);
7915
7916 /* Get the fixed type of the field. Note that, in this case,
7917 we do not want to get the real type out of the tag: if
7918 the current field is the parent part of a tagged record,
7919 we will get the tag of the object. Clearly wrong: the real
7920 type of the parent is not the real type of the child. We
7921 would end up in an infinite loop. */
7922 field_type = ada_get_base_type (field_type);
7923 field_type = ada_to_fixed_type (field_type, field_valaddr,
7924 field_address, dval, 0);
7925 /* If the field size is already larger than the maximum
7926 object size, then the record itself will necessarily
7927 be larger than the maximum object size. We need to make
7928 this check now, because the size might be so ridiculously
7929 large (due to an uninitialized variable in the inferior)
7930 that it would cause an overflow when adding it to the
7931 record size. */
7932 check_size (field_type);
7933
7934 TYPE_FIELD_TYPE (rtype, f) = field_type;
7935 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7936 /* The multiplication can potentially overflow. But because
7937 the field length has been size-checked just above, and
7938 assuming that the maximum size is a reasonable value,
7939 an overflow should not happen in practice. So rather than
7940 adding overflow recovery code to this already complex code,
7941 we just assume that it's not going to happen. */
7942 fld_bit_len =
7943 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7944 }
7945 else
7946 {
7947 /* Note: If this field's type is a typedef, it is important
7948 to preserve the typedef layer.
7949
7950 Otherwise, we might be transforming a typedef to a fat
7951 pointer (encoding a pointer to an unconstrained array),
7952 into a basic fat pointer (encoding an unconstrained
7953 array). As both types are implemented using the same
7954 structure, the typedef is the only clue which allows us
7955 to distinguish between the two options. Stripping it
7956 would prevent us from printing this field appropriately. */
7957 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7958 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7959 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7960 fld_bit_len =
7961 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7962 else
7963 {
7964 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7965
7966 /* We need to be careful of typedefs when computing
7967 the length of our field. If this is a typedef,
7968 get the length of the target type, not the length
7969 of the typedef. */
7970 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7971 field_type = ada_typedef_target_type (field_type);
7972
7973 fld_bit_len =
7974 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7975 }
7976 }
7977 if (off + fld_bit_len > bit_len)
7978 bit_len = off + fld_bit_len;
7979 off += fld_bit_len;
7980 TYPE_LENGTH (rtype) =
7981 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7982 }
7983
7984 /* We handle the variant part, if any, at the end because of certain
7985 odd cases in which it is re-ordered so as NOT to be the last field of
7986 the record. This can happen in the presence of representation
7987 clauses. */
7988 if (variant_field >= 0)
7989 {
7990 struct type *branch_type;
7991
7992 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7993
7994 if (dval0 == NULL)
7995 {
7996 dval = value_from_contents_and_address (rtype, valaddr, address);
7997 rtype = value_type (dval);
7998 }
7999 else
8000 dval = dval0;
8001
8002 branch_type =
8003 to_fixed_variant_branch_type
8004 (TYPE_FIELD_TYPE (type, variant_field),
8005 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8006 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8007 if (branch_type == NULL)
8008 {
8009 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8010 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8011 TYPE_NFIELDS (rtype) -= 1;
8012 }
8013 else
8014 {
8015 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8016 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8017 fld_bit_len =
8018 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8019 TARGET_CHAR_BIT;
8020 if (off + fld_bit_len > bit_len)
8021 bit_len = off + fld_bit_len;
8022 TYPE_LENGTH (rtype) =
8023 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8024 }
8025 }
8026
8027 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8028 should contain the alignment of that record, which should be a strictly
8029 positive value. If null or negative, then something is wrong, most
8030 probably in the debug info. In that case, we don't round up the size
8031 of the resulting type. If this record is not part of another structure,
8032 the current RTYPE length might be good enough for our purposes. */
8033 if (TYPE_LENGTH (type) <= 0)
8034 {
8035 if (TYPE_NAME (rtype))
8036 warning (_("Invalid type size for `%s' detected: %d."),
8037 TYPE_NAME (rtype), TYPE_LENGTH (type));
8038 else
8039 warning (_("Invalid type size for <unnamed> detected: %d."),
8040 TYPE_LENGTH (type));
8041 }
8042 else
8043 {
8044 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8045 TYPE_LENGTH (type));
8046 }
8047
8048 value_free_to_mark (mark);
8049 if (TYPE_LENGTH (rtype) > varsize_limit)
8050 error (_("record type with dynamic size is larger than varsize-limit"));
8051 return rtype;
8052 }
8053
8054 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8055 of 1. */
8056
8057 static struct type *
8058 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8059 CORE_ADDR address, struct value *dval0)
8060 {
8061 return ada_template_to_fixed_record_type_1 (type, valaddr,
8062 address, dval0, 1);
8063 }
8064
8065 /* An ordinary record type in which ___XVL-convention fields and
8066 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8067 static approximations, containing all possible fields. Uses
8068 no runtime values. Useless for use in values, but that's OK,
8069 since the results are used only for type determinations. Works on both
8070 structs and unions. Representation note: to save space, we memorize
8071 the result of this function in the TYPE_TARGET_TYPE of the
8072 template type. */
8073
8074 static struct type *
8075 template_to_static_fixed_type (struct type *type0)
8076 {
8077 struct type *type;
8078 int nfields;
8079 int f;
8080
8081 if (TYPE_TARGET_TYPE (type0) != NULL)
8082 return TYPE_TARGET_TYPE (type0);
8083
8084 nfields = TYPE_NFIELDS (type0);
8085 type = type0;
8086
8087 for (f = 0; f < nfields; f += 1)
8088 {
8089 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
8090 struct type *new_type;
8091
8092 if (is_dynamic_field (type0, f))
8093 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8094 else
8095 new_type = static_unwrap_type (field_type);
8096 if (type == type0 && new_type != field_type)
8097 {
8098 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8099 TYPE_CODE (type) = TYPE_CODE (type0);
8100 INIT_CPLUS_SPECIFIC (type);
8101 TYPE_NFIELDS (type) = nfields;
8102 TYPE_FIELDS (type) = (struct field *)
8103 TYPE_ALLOC (type, nfields * sizeof (struct field));
8104 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8105 sizeof (struct field) * nfields);
8106 TYPE_NAME (type) = ada_type_name (type0);
8107 TYPE_TAG_NAME (type) = NULL;
8108 TYPE_FIXED_INSTANCE (type) = 1;
8109 TYPE_LENGTH (type) = 0;
8110 }
8111 TYPE_FIELD_TYPE (type, f) = new_type;
8112 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8113 }
8114 return type;
8115 }
8116
8117 /* Given an object of type TYPE whose contents are at VALADDR and
8118 whose address in memory is ADDRESS, returns a revision of TYPE,
8119 which should be a non-dynamic-sized record, in which the variant
8120 part, if any, is replaced with the appropriate branch. Looks
8121 for discriminant values in DVAL0, which can be NULL if the record
8122 contains the necessary discriminant values. */
8123
8124 static struct type *
8125 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8126 CORE_ADDR address, struct value *dval0)
8127 {
8128 struct value *mark = value_mark ();
8129 struct value *dval;
8130 struct type *rtype;
8131 struct type *branch_type;
8132 int nfields = TYPE_NFIELDS (type);
8133 int variant_field = variant_field_index (type);
8134
8135 if (variant_field == -1)
8136 return type;
8137
8138 if (dval0 == NULL)
8139 {
8140 dval = value_from_contents_and_address (type, valaddr, address);
8141 type = value_type (dval);
8142 }
8143 else
8144 dval = dval0;
8145
8146 rtype = alloc_type_copy (type);
8147 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8148 INIT_CPLUS_SPECIFIC (rtype);
8149 TYPE_NFIELDS (rtype) = nfields;
8150 TYPE_FIELDS (rtype) =
8151 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8152 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8153 sizeof (struct field) * nfields);
8154 TYPE_NAME (rtype) = ada_type_name (type);
8155 TYPE_TAG_NAME (rtype) = NULL;
8156 TYPE_FIXED_INSTANCE (rtype) = 1;
8157 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8158
8159 branch_type = to_fixed_variant_branch_type
8160 (TYPE_FIELD_TYPE (type, variant_field),
8161 cond_offset_host (valaddr,
8162 TYPE_FIELD_BITPOS (type, variant_field)
8163 / TARGET_CHAR_BIT),
8164 cond_offset_target (address,
8165 TYPE_FIELD_BITPOS (type, variant_field)
8166 / TARGET_CHAR_BIT), dval);
8167 if (branch_type == NULL)
8168 {
8169 int f;
8170
8171 for (f = variant_field + 1; f < nfields; f += 1)
8172 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8173 TYPE_NFIELDS (rtype) -= 1;
8174 }
8175 else
8176 {
8177 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8178 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8179 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8180 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8181 }
8182 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8183
8184 value_free_to_mark (mark);
8185 return rtype;
8186 }
8187
8188 /* An ordinary record type (with fixed-length fields) that describes
8189 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8190 beginning of this section]. Any necessary discriminants' values
8191 should be in DVAL, a record value; it may be NULL if the object
8192 at ADDR itself contains any necessary discriminant values.
8193 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8194 values from the record are needed. Except in the case that DVAL,
8195 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8196 unchecked) is replaced by a particular branch of the variant.
8197
8198 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8199 is questionable and may be removed. It can arise during the
8200 processing of an unconstrained-array-of-record type where all the
8201 variant branches have exactly the same size. This is because in
8202 such cases, the compiler does not bother to use the XVS convention
8203 when encoding the record. I am currently dubious of this
8204 shortcut and suspect the compiler should be altered. FIXME. */
8205
8206 static struct type *
8207 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8208 CORE_ADDR address, struct value *dval)
8209 {
8210 struct type *templ_type;
8211
8212 if (TYPE_FIXED_INSTANCE (type0))
8213 return type0;
8214
8215 templ_type = dynamic_template_type (type0);
8216
8217 if (templ_type != NULL)
8218 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8219 else if (variant_field_index (type0) >= 0)
8220 {
8221 if (dval == NULL && valaddr == NULL && address == 0)
8222 return type0;
8223 return to_record_with_fixed_variant_part (type0, valaddr, address,
8224 dval);
8225 }
8226 else
8227 {
8228 TYPE_FIXED_INSTANCE (type0) = 1;
8229 return type0;
8230 }
8231
8232 }
8233
8234 /* An ordinary record type (with fixed-length fields) that describes
8235 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8236 union type. Any necessary discriminants' values should be in DVAL,
8237 a record value. That is, this routine selects the appropriate
8238 branch of the union at ADDR according to the discriminant value
8239 indicated in the union's type name. Returns VAR_TYPE0 itself if
8240 it represents a variant subject to a pragma Unchecked_Union. */
8241
8242 static struct type *
8243 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8244 CORE_ADDR address, struct value *dval)
8245 {
8246 int which;
8247 struct type *templ_type;
8248 struct type *var_type;
8249
8250 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8251 var_type = TYPE_TARGET_TYPE (var_type0);
8252 else
8253 var_type = var_type0;
8254
8255 templ_type = ada_find_parallel_type (var_type, "___XVU");
8256
8257 if (templ_type != NULL)
8258 var_type = templ_type;
8259
8260 if (is_unchecked_variant (var_type, value_type (dval)))
8261 return var_type0;
8262 which =
8263 ada_which_variant_applies (var_type,
8264 value_type (dval), value_contents (dval));
8265
8266 if (which < 0)
8267 return empty_record (var_type);
8268 else if (is_dynamic_field (var_type, which))
8269 return to_fixed_record_type
8270 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8271 valaddr, address, dval);
8272 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8273 return
8274 to_fixed_record_type
8275 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8276 else
8277 return TYPE_FIELD_TYPE (var_type, which);
8278 }
8279
8280 /* Assuming that TYPE0 is an array type describing the type of a value
8281 at ADDR, and that DVAL describes a record containing any
8282 discriminants used in TYPE0, returns a type for the value that
8283 contains no dynamic components (that is, no components whose sizes
8284 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8285 true, gives an error message if the resulting type's size is over
8286 varsize_limit. */
8287
8288 static struct type *
8289 to_fixed_array_type (struct type *type0, struct value *dval,
8290 int ignore_too_big)
8291 {
8292 struct type *index_type_desc;
8293 struct type *result;
8294 int constrained_packed_array_p;
8295
8296 type0 = ada_check_typedef (type0);
8297 if (TYPE_FIXED_INSTANCE (type0))
8298 return type0;
8299
8300 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8301 if (constrained_packed_array_p)
8302 type0 = decode_constrained_packed_array_type (type0);
8303
8304 index_type_desc = ada_find_parallel_type (type0, "___XA");
8305 ada_fixup_array_indexes_type (index_type_desc);
8306 if (index_type_desc == NULL)
8307 {
8308 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8309
8310 /* NOTE: elt_type---the fixed version of elt_type0---should never
8311 depend on the contents of the array in properly constructed
8312 debugging data. */
8313 /* Create a fixed version of the array element type.
8314 We're not providing the address of an element here,
8315 and thus the actual object value cannot be inspected to do
8316 the conversion. This should not be a problem, since arrays of
8317 unconstrained objects are not allowed. In particular, all
8318 the elements of an array of a tagged type should all be of
8319 the same type specified in the debugging info. No need to
8320 consult the object tag. */
8321 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8322
8323 /* Make sure we always create a new array type when dealing with
8324 packed array types, since we're going to fix-up the array
8325 type length and element bitsize a little further down. */
8326 if (elt_type0 == elt_type && !constrained_packed_array_p)
8327 result = type0;
8328 else
8329 result = create_array_type (alloc_type_copy (type0),
8330 elt_type, TYPE_INDEX_TYPE (type0));
8331 }
8332 else
8333 {
8334 int i;
8335 struct type *elt_type0;
8336
8337 elt_type0 = type0;
8338 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8339 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8340
8341 /* NOTE: result---the fixed version of elt_type0---should never
8342 depend on the contents of the array in properly constructed
8343 debugging data. */
8344 /* Create a fixed version of the array element type.
8345 We're not providing the address of an element here,
8346 and thus the actual object value cannot be inspected to do
8347 the conversion. This should not be a problem, since arrays of
8348 unconstrained objects are not allowed. In particular, all
8349 the elements of an array of a tagged type should all be of
8350 the same type specified in the debugging info. No need to
8351 consult the object tag. */
8352 result =
8353 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8354
8355 elt_type0 = type0;
8356 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8357 {
8358 struct type *range_type =
8359 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8360
8361 result = create_array_type (alloc_type_copy (elt_type0),
8362 result, range_type);
8363 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8364 }
8365 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8366 error (_("array type with dynamic size is larger than varsize-limit"));
8367 }
8368
8369 /* We want to preserve the type name. This can be useful when
8370 trying to get the type name of a value that has already been
8371 printed (for instance, if the user did "print VAR; whatis $". */
8372 TYPE_NAME (result) = TYPE_NAME (type0);
8373
8374 if (constrained_packed_array_p)
8375 {
8376 /* So far, the resulting type has been created as if the original
8377 type was a regular (non-packed) array type. As a result, the
8378 bitsize of the array elements needs to be set again, and the array
8379 length needs to be recomputed based on that bitsize. */
8380 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8381 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8382
8383 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8384 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8385 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8386 TYPE_LENGTH (result)++;
8387 }
8388
8389 TYPE_FIXED_INSTANCE (result) = 1;
8390 return result;
8391 }
8392
8393
8394 /* A standard type (containing no dynamically sized components)
8395 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8396 DVAL describes a record containing any discriminants used in TYPE0,
8397 and may be NULL if there are none, or if the object of type TYPE at
8398 ADDRESS or in VALADDR contains these discriminants.
8399
8400 If CHECK_TAG is not null, in the case of tagged types, this function
8401 attempts to locate the object's tag and use it to compute the actual
8402 type. However, when ADDRESS is null, we cannot use it to determine the
8403 location of the tag, and therefore compute the tagged type's actual type.
8404 So we return the tagged type without consulting the tag. */
8405
8406 static struct type *
8407 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8408 CORE_ADDR address, struct value *dval, int check_tag)
8409 {
8410 type = ada_check_typedef (type);
8411 switch (TYPE_CODE (type))
8412 {
8413 default:
8414 return type;
8415 case TYPE_CODE_STRUCT:
8416 {
8417 struct type *static_type = to_static_fixed_type (type);
8418 struct type *fixed_record_type =
8419 to_fixed_record_type (type, valaddr, address, NULL);
8420
8421 /* If STATIC_TYPE is a tagged type and we know the object's address,
8422 then we can determine its tag, and compute the object's actual
8423 type from there. Note that we have to use the fixed record
8424 type (the parent part of the record may have dynamic fields
8425 and the way the location of _tag is expressed may depend on
8426 them). */
8427
8428 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8429 {
8430 struct value *tag =
8431 value_tag_from_contents_and_address
8432 (fixed_record_type,
8433 valaddr,
8434 address);
8435 struct type *real_type = type_from_tag (tag);
8436 struct value *obj =
8437 value_from_contents_and_address (fixed_record_type,
8438 valaddr,
8439 address);
8440 fixed_record_type = value_type (obj);
8441 if (real_type != NULL)
8442 return to_fixed_record_type
8443 (real_type, NULL,
8444 value_address (ada_tag_value_at_base_address (obj)), NULL);
8445 }
8446
8447 /* Check to see if there is a parallel ___XVZ variable.
8448 If there is, then it provides the actual size of our type. */
8449 else if (ada_type_name (fixed_record_type) != NULL)
8450 {
8451 const char *name = ada_type_name (fixed_record_type);
8452 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8453 int xvz_found = 0;
8454 LONGEST size;
8455
8456 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8457 size = get_int_var_value (xvz_name, &xvz_found);
8458 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8459 {
8460 fixed_record_type = copy_type (fixed_record_type);
8461 TYPE_LENGTH (fixed_record_type) = size;
8462
8463 /* The FIXED_RECORD_TYPE may have be a stub. We have
8464 observed this when the debugging info is STABS, and
8465 apparently it is something that is hard to fix.
8466
8467 In practice, we don't need the actual type definition
8468 at all, because the presence of the XVZ variable allows us
8469 to assume that there must be a XVS type as well, which we
8470 should be able to use later, when we need the actual type
8471 definition.
8472
8473 In the meantime, pretend that the "fixed" type we are
8474 returning is NOT a stub, because this can cause trouble
8475 when using this type to create new types targeting it.
8476 Indeed, the associated creation routines often check
8477 whether the target type is a stub and will try to replace
8478 it, thus using a type with the wrong size. This, in turn,
8479 might cause the new type to have the wrong size too.
8480 Consider the case of an array, for instance, where the size
8481 of the array is computed from the number of elements in
8482 our array multiplied by the size of its element. */
8483 TYPE_STUB (fixed_record_type) = 0;
8484 }
8485 }
8486 return fixed_record_type;
8487 }
8488 case TYPE_CODE_ARRAY:
8489 return to_fixed_array_type (type, dval, 1);
8490 case TYPE_CODE_UNION:
8491 if (dval == NULL)
8492 return type;
8493 else
8494 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8495 }
8496 }
8497
8498 /* The same as ada_to_fixed_type_1, except that it preserves the type
8499 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8500
8501 The typedef layer needs be preserved in order to differentiate between
8502 arrays and array pointers when both types are implemented using the same
8503 fat pointer. In the array pointer case, the pointer is encoded as
8504 a typedef of the pointer type. For instance, considering:
8505
8506 type String_Access is access String;
8507 S1 : String_Access := null;
8508
8509 To the debugger, S1 is defined as a typedef of type String. But
8510 to the user, it is a pointer. So if the user tries to print S1,
8511 we should not dereference the array, but print the array address
8512 instead.
8513
8514 If we didn't preserve the typedef layer, we would lose the fact that
8515 the type is to be presented as a pointer (needs de-reference before
8516 being printed). And we would also use the source-level type name. */
8517
8518 struct type *
8519 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8520 CORE_ADDR address, struct value *dval, int check_tag)
8521
8522 {
8523 struct type *fixed_type =
8524 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8525
8526 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8527 then preserve the typedef layer.
8528
8529 Implementation note: We can only check the main-type portion of
8530 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8531 from TYPE now returns a type that has the same instance flags
8532 as TYPE. For instance, if TYPE is a "typedef const", and its
8533 target type is a "struct", then the typedef elimination will return
8534 a "const" version of the target type. See check_typedef for more
8535 details about how the typedef layer elimination is done.
8536
8537 brobecker/2010-11-19: It seems to me that the only case where it is
8538 useful to preserve the typedef layer is when dealing with fat pointers.
8539 Perhaps, we could add a check for that and preserve the typedef layer
8540 only in that situation. But this seems unecessary so far, probably
8541 because we call check_typedef/ada_check_typedef pretty much everywhere.
8542 */
8543 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8544 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8545 == TYPE_MAIN_TYPE (fixed_type)))
8546 return type;
8547
8548 return fixed_type;
8549 }
8550
8551 /* A standard (static-sized) type corresponding as well as possible to
8552 TYPE0, but based on no runtime data. */
8553
8554 static struct type *
8555 to_static_fixed_type (struct type *type0)
8556 {
8557 struct type *type;
8558
8559 if (type0 == NULL)
8560 return NULL;
8561
8562 if (TYPE_FIXED_INSTANCE (type0))
8563 return type0;
8564
8565 type0 = ada_check_typedef (type0);
8566
8567 switch (TYPE_CODE (type0))
8568 {
8569 default:
8570 return type0;
8571 case TYPE_CODE_STRUCT:
8572 type = dynamic_template_type (type0);
8573 if (type != NULL)
8574 return template_to_static_fixed_type (type);
8575 else
8576 return template_to_static_fixed_type (type0);
8577 case TYPE_CODE_UNION:
8578 type = ada_find_parallel_type (type0, "___XVU");
8579 if (type != NULL)
8580 return template_to_static_fixed_type (type);
8581 else
8582 return template_to_static_fixed_type (type0);
8583 }
8584 }
8585
8586 /* A static approximation of TYPE with all type wrappers removed. */
8587
8588 static struct type *
8589 static_unwrap_type (struct type *type)
8590 {
8591 if (ada_is_aligner_type (type))
8592 {
8593 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8594 if (ada_type_name (type1) == NULL)
8595 TYPE_NAME (type1) = ada_type_name (type);
8596
8597 return static_unwrap_type (type1);
8598 }
8599 else
8600 {
8601 struct type *raw_real_type = ada_get_base_type (type);
8602
8603 if (raw_real_type == type)
8604 return type;
8605 else
8606 return to_static_fixed_type (raw_real_type);
8607 }
8608 }
8609
8610 /* In some cases, incomplete and private types require
8611 cross-references that are not resolved as records (for example,
8612 type Foo;
8613 type FooP is access Foo;
8614 V: FooP;
8615 type Foo is array ...;
8616 ). In these cases, since there is no mechanism for producing
8617 cross-references to such types, we instead substitute for FooP a
8618 stub enumeration type that is nowhere resolved, and whose tag is
8619 the name of the actual type. Call these types "non-record stubs". */
8620
8621 /* A type equivalent to TYPE that is not a non-record stub, if one
8622 exists, otherwise TYPE. */
8623
8624 struct type *
8625 ada_check_typedef (struct type *type)
8626 {
8627 if (type == NULL)
8628 return NULL;
8629
8630 /* If our type is a typedef type of a fat pointer, then we're done.
8631 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8632 what allows us to distinguish between fat pointers that represent
8633 array types, and fat pointers that represent array access types
8634 (in both cases, the compiler implements them as fat pointers). */
8635 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8636 && is_thick_pntr (ada_typedef_target_type (type)))
8637 return type;
8638
8639 CHECK_TYPEDEF (type);
8640 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8641 || !TYPE_STUB (type)
8642 || TYPE_TAG_NAME (type) == NULL)
8643 return type;
8644 else
8645 {
8646 const char *name = TYPE_TAG_NAME (type);
8647 struct type *type1 = ada_find_any_type (name);
8648
8649 if (type1 == NULL)
8650 return type;
8651
8652 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8653 stubs pointing to arrays, as we don't create symbols for array
8654 types, only for the typedef-to-array types). If that's the case,
8655 strip the typedef layer. */
8656 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8657 type1 = ada_check_typedef (type1);
8658
8659 return type1;
8660 }
8661 }
8662
8663 /* A value representing the data at VALADDR/ADDRESS as described by
8664 type TYPE0, but with a standard (static-sized) type that correctly
8665 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8666 type, then return VAL0 [this feature is simply to avoid redundant
8667 creation of struct values]. */
8668
8669 static struct value *
8670 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8671 struct value *val0)
8672 {
8673 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8674
8675 if (type == type0 && val0 != NULL)
8676 return val0;
8677 else
8678 return value_from_contents_and_address (type, 0, address);
8679 }
8680
8681 /* A value representing VAL, but with a standard (static-sized) type
8682 that correctly describes it. Does not necessarily create a new
8683 value. */
8684
8685 struct value *
8686 ada_to_fixed_value (struct value *val)
8687 {
8688 val = unwrap_value (val);
8689 val = ada_to_fixed_value_create (value_type (val),
8690 value_address (val),
8691 val);
8692 return val;
8693 }
8694 \f
8695
8696 /* Attributes */
8697
8698 /* Table mapping attribute numbers to names.
8699 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8700
8701 static const char *attribute_names[] = {
8702 "<?>",
8703
8704 "first",
8705 "last",
8706 "length",
8707 "image",
8708 "max",
8709 "min",
8710 "modulus",
8711 "pos",
8712 "size",
8713 "tag",
8714 "val",
8715 0
8716 };
8717
8718 const char *
8719 ada_attribute_name (enum exp_opcode n)
8720 {
8721 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8722 return attribute_names[n - OP_ATR_FIRST + 1];
8723 else
8724 return attribute_names[0];
8725 }
8726
8727 /* Evaluate the 'POS attribute applied to ARG. */
8728
8729 static LONGEST
8730 pos_atr (struct value *arg)
8731 {
8732 struct value *val = coerce_ref (arg);
8733 struct type *type = value_type (val);
8734
8735 if (!discrete_type_p (type))
8736 error (_("'POS only defined on discrete types"));
8737
8738 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8739 {
8740 int i;
8741 LONGEST v = value_as_long (val);
8742
8743 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8744 {
8745 if (v == TYPE_FIELD_ENUMVAL (type, i))
8746 return i;
8747 }
8748 error (_("enumeration value is invalid: can't find 'POS"));
8749 }
8750 else
8751 return value_as_long (val);
8752 }
8753
8754 static struct value *
8755 value_pos_atr (struct type *type, struct value *arg)
8756 {
8757 return value_from_longest (type, pos_atr (arg));
8758 }
8759
8760 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8761
8762 static struct value *
8763 value_val_atr (struct type *type, struct value *arg)
8764 {
8765 if (!discrete_type_p (type))
8766 error (_("'VAL only defined on discrete types"));
8767 if (!integer_type_p (value_type (arg)))
8768 error (_("'VAL requires integral argument"));
8769
8770 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8771 {
8772 long pos = value_as_long (arg);
8773
8774 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8775 error (_("argument to 'VAL out of range"));
8776 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8777 }
8778 else
8779 return value_from_longest (type, value_as_long (arg));
8780 }
8781 \f
8782
8783 /* Evaluation */
8784
8785 /* True if TYPE appears to be an Ada character type.
8786 [At the moment, this is true only for Character and Wide_Character;
8787 It is a heuristic test that could stand improvement]. */
8788
8789 int
8790 ada_is_character_type (struct type *type)
8791 {
8792 const char *name;
8793
8794 /* If the type code says it's a character, then assume it really is,
8795 and don't check any further. */
8796 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8797 return 1;
8798
8799 /* Otherwise, assume it's a character type iff it is a discrete type
8800 with a known character type name. */
8801 name = ada_type_name (type);
8802 return (name != NULL
8803 && (TYPE_CODE (type) == TYPE_CODE_INT
8804 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8805 && (strcmp (name, "character") == 0
8806 || strcmp (name, "wide_character") == 0
8807 || strcmp (name, "wide_wide_character") == 0
8808 || strcmp (name, "unsigned char") == 0));
8809 }
8810
8811 /* True if TYPE appears to be an Ada string type. */
8812
8813 int
8814 ada_is_string_type (struct type *type)
8815 {
8816 type = ada_check_typedef (type);
8817 if (type != NULL
8818 && TYPE_CODE (type) != TYPE_CODE_PTR
8819 && (ada_is_simple_array_type (type)
8820 || ada_is_array_descriptor_type (type))
8821 && ada_array_arity (type) == 1)
8822 {
8823 struct type *elttype = ada_array_element_type (type, 1);
8824
8825 return ada_is_character_type (elttype);
8826 }
8827 else
8828 return 0;
8829 }
8830
8831 /* The compiler sometimes provides a parallel XVS type for a given
8832 PAD type. Normally, it is safe to follow the PAD type directly,
8833 but older versions of the compiler have a bug that causes the offset
8834 of its "F" field to be wrong. Following that field in that case
8835 would lead to incorrect results, but this can be worked around
8836 by ignoring the PAD type and using the associated XVS type instead.
8837
8838 Set to True if the debugger should trust the contents of PAD types.
8839 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8840 static int trust_pad_over_xvs = 1;
8841
8842 /* True if TYPE is a struct type introduced by the compiler to force the
8843 alignment of a value. Such types have a single field with a
8844 distinctive name. */
8845
8846 int
8847 ada_is_aligner_type (struct type *type)
8848 {
8849 type = ada_check_typedef (type);
8850
8851 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8852 return 0;
8853
8854 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8855 && TYPE_NFIELDS (type) == 1
8856 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8857 }
8858
8859 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8860 the parallel type. */
8861
8862 struct type *
8863 ada_get_base_type (struct type *raw_type)
8864 {
8865 struct type *real_type_namer;
8866 struct type *raw_real_type;
8867
8868 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8869 return raw_type;
8870
8871 if (ada_is_aligner_type (raw_type))
8872 /* The encoding specifies that we should always use the aligner type.
8873 So, even if this aligner type has an associated XVS type, we should
8874 simply ignore it.
8875
8876 According to the compiler gurus, an XVS type parallel to an aligner
8877 type may exist because of a stabs limitation. In stabs, aligner
8878 types are empty because the field has a variable-sized type, and
8879 thus cannot actually be used as an aligner type. As a result,
8880 we need the associated parallel XVS type to decode the type.
8881 Since the policy in the compiler is to not change the internal
8882 representation based on the debugging info format, we sometimes
8883 end up having a redundant XVS type parallel to the aligner type. */
8884 return raw_type;
8885
8886 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8887 if (real_type_namer == NULL
8888 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8889 || TYPE_NFIELDS (real_type_namer) != 1)
8890 return raw_type;
8891
8892 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8893 {
8894 /* This is an older encoding form where the base type needs to be
8895 looked up by name. We prefer the newer enconding because it is
8896 more efficient. */
8897 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8898 if (raw_real_type == NULL)
8899 return raw_type;
8900 else
8901 return raw_real_type;
8902 }
8903
8904 /* The field in our XVS type is a reference to the base type. */
8905 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8906 }
8907
8908 /* The type of value designated by TYPE, with all aligners removed. */
8909
8910 struct type *
8911 ada_aligned_type (struct type *type)
8912 {
8913 if (ada_is_aligner_type (type))
8914 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8915 else
8916 return ada_get_base_type (type);
8917 }
8918
8919
8920 /* The address of the aligned value in an object at address VALADDR
8921 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8922
8923 const gdb_byte *
8924 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8925 {
8926 if (ada_is_aligner_type (type))
8927 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8928 valaddr +
8929 TYPE_FIELD_BITPOS (type,
8930 0) / TARGET_CHAR_BIT);
8931 else
8932 return valaddr;
8933 }
8934
8935
8936
8937 /* The printed representation of an enumeration literal with encoded
8938 name NAME. The value is good to the next call of ada_enum_name. */
8939 const char *
8940 ada_enum_name (const char *name)
8941 {
8942 static char *result;
8943 static size_t result_len = 0;
8944 char *tmp;
8945
8946 /* First, unqualify the enumeration name:
8947 1. Search for the last '.' character. If we find one, then skip
8948 all the preceding characters, the unqualified name starts
8949 right after that dot.
8950 2. Otherwise, we may be debugging on a target where the compiler
8951 translates dots into "__". Search forward for double underscores,
8952 but stop searching when we hit an overloading suffix, which is
8953 of the form "__" followed by digits. */
8954
8955 tmp = strrchr (name, '.');
8956 if (tmp != NULL)
8957 name = tmp + 1;
8958 else
8959 {
8960 while ((tmp = strstr (name, "__")) != NULL)
8961 {
8962 if (isdigit (tmp[2]))
8963 break;
8964 else
8965 name = tmp + 2;
8966 }
8967 }
8968
8969 if (name[0] == 'Q')
8970 {
8971 int v;
8972
8973 if (name[1] == 'U' || name[1] == 'W')
8974 {
8975 if (sscanf (name + 2, "%x", &v) != 1)
8976 return name;
8977 }
8978 else
8979 return name;
8980
8981 GROW_VECT (result, result_len, 16);
8982 if (isascii (v) && isprint (v))
8983 xsnprintf (result, result_len, "'%c'", v);
8984 else if (name[1] == 'U')
8985 xsnprintf (result, result_len, "[\"%02x\"]", v);
8986 else
8987 xsnprintf (result, result_len, "[\"%04x\"]", v);
8988
8989 return result;
8990 }
8991 else
8992 {
8993 tmp = strstr (name, "__");
8994 if (tmp == NULL)
8995 tmp = strstr (name, "$");
8996 if (tmp != NULL)
8997 {
8998 GROW_VECT (result, result_len, tmp - name + 1);
8999 strncpy (result, name, tmp - name);
9000 result[tmp - name] = '\0';
9001 return result;
9002 }
9003
9004 return name;
9005 }
9006 }
9007
9008 /* Evaluate the subexpression of EXP starting at *POS as for
9009 evaluate_type, updating *POS to point just past the evaluated
9010 expression. */
9011
9012 static struct value *
9013 evaluate_subexp_type (struct expression *exp, int *pos)
9014 {
9015 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9016 }
9017
9018 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9019 value it wraps. */
9020
9021 static struct value *
9022 unwrap_value (struct value *val)
9023 {
9024 struct type *type = ada_check_typedef (value_type (val));
9025
9026 if (ada_is_aligner_type (type))
9027 {
9028 struct value *v = ada_value_struct_elt (val, "F", 0);
9029 struct type *val_type = ada_check_typedef (value_type (v));
9030
9031 if (ada_type_name (val_type) == NULL)
9032 TYPE_NAME (val_type) = ada_type_name (type);
9033
9034 return unwrap_value (v);
9035 }
9036 else
9037 {
9038 struct type *raw_real_type =
9039 ada_check_typedef (ada_get_base_type (type));
9040
9041 /* If there is no parallel XVS or XVE type, then the value is
9042 already unwrapped. Return it without further modification. */
9043 if ((type == raw_real_type)
9044 && ada_find_parallel_type (type, "___XVE") == NULL)
9045 return val;
9046
9047 return
9048 coerce_unspec_val_to_type
9049 (val, ada_to_fixed_type (raw_real_type, 0,
9050 value_address (val),
9051 NULL, 1));
9052 }
9053 }
9054
9055 static struct value *
9056 cast_to_fixed (struct type *type, struct value *arg)
9057 {
9058 LONGEST val;
9059
9060 if (type == value_type (arg))
9061 return arg;
9062 else if (ada_is_fixed_point_type (value_type (arg)))
9063 val = ada_float_to_fixed (type,
9064 ada_fixed_to_float (value_type (arg),
9065 value_as_long (arg)));
9066 else
9067 {
9068 DOUBLEST argd = value_as_double (arg);
9069
9070 val = ada_float_to_fixed (type, argd);
9071 }
9072
9073 return value_from_longest (type, val);
9074 }
9075
9076 static struct value *
9077 cast_from_fixed (struct type *type, struct value *arg)
9078 {
9079 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9080 value_as_long (arg));
9081
9082 return value_from_double (type, val);
9083 }
9084
9085 /* Given two array types T1 and T2, return nonzero iff both arrays
9086 contain the same number of elements. */
9087
9088 static int
9089 ada_same_array_size_p (struct type *t1, struct type *t2)
9090 {
9091 LONGEST lo1, hi1, lo2, hi2;
9092
9093 /* Get the array bounds in order to verify that the size of
9094 the two arrays match. */
9095 if (!get_array_bounds (t1, &lo1, &hi1)
9096 || !get_array_bounds (t2, &lo2, &hi2))
9097 error (_("unable to determine array bounds"));
9098
9099 /* To make things easier for size comparison, normalize a bit
9100 the case of empty arrays by making sure that the difference
9101 between upper bound and lower bound is always -1. */
9102 if (lo1 > hi1)
9103 hi1 = lo1 - 1;
9104 if (lo2 > hi2)
9105 hi2 = lo2 - 1;
9106
9107 return (hi1 - lo1 == hi2 - lo2);
9108 }
9109
9110 /* Assuming that VAL is an array of integrals, and TYPE represents
9111 an array with the same number of elements, but with wider integral
9112 elements, return an array "casted" to TYPE. In practice, this
9113 means that the returned array is built by casting each element
9114 of the original array into TYPE's (wider) element type. */
9115
9116 static struct value *
9117 ada_promote_array_of_integrals (struct type *type, struct value *val)
9118 {
9119 struct type *elt_type = TYPE_TARGET_TYPE (type);
9120 LONGEST lo, hi;
9121 struct value *res;
9122 LONGEST i;
9123
9124 /* Verify that both val and type are arrays of scalars, and
9125 that the size of val's elements is smaller than the size
9126 of type's element. */
9127 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9128 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9129 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9130 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9131 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9132 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9133
9134 if (!get_array_bounds (type, &lo, &hi))
9135 error (_("unable to determine array bounds"));
9136
9137 res = allocate_value (type);
9138
9139 /* Promote each array element. */
9140 for (i = 0; i < hi - lo + 1; i++)
9141 {
9142 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9143
9144 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9145 value_contents_all (elt), TYPE_LENGTH (elt_type));
9146 }
9147
9148 return res;
9149 }
9150
9151 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9152 return the converted value. */
9153
9154 static struct value *
9155 coerce_for_assign (struct type *type, struct value *val)
9156 {
9157 struct type *type2 = value_type (val);
9158
9159 if (type == type2)
9160 return val;
9161
9162 type2 = ada_check_typedef (type2);
9163 type = ada_check_typedef (type);
9164
9165 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9166 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9167 {
9168 val = ada_value_ind (val);
9169 type2 = value_type (val);
9170 }
9171
9172 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9173 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9174 {
9175 if (!ada_same_array_size_p (type, type2))
9176 error (_("cannot assign arrays of different length"));
9177
9178 if (is_integral_type (TYPE_TARGET_TYPE (type))
9179 && is_integral_type (TYPE_TARGET_TYPE (type2))
9180 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9181 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9182 {
9183 /* Allow implicit promotion of the array elements to
9184 a wider type. */
9185 return ada_promote_array_of_integrals (type, val);
9186 }
9187
9188 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9189 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9190 error (_("Incompatible types in assignment"));
9191 deprecated_set_value_type (val, type);
9192 }
9193 return val;
9194 }
9195
9196 static struct value *
9197 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9198 {
9199 struct value *val;
9200 struct type *type1, *type2;
9201 LONGEST v, v1, v2;
9202
9203 arg1 = coerce_ref (arg1);
9204 arg2 = coerce_ref (arg2);
9205 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9206 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9207
9208 if (TYPE_CODE (type1) != TYPE_CODE_INT
9209 || TYPE_CODE (type2) != TYPE_CODE_INT)
9210 return value_binop (arg1, arg2, op);
9211
9212 switch (op)
9213 {
9214 case BINOP_MOD:
9215 case BINOP_DIV:
9216 case BINOP_REM:
9217 break;
9218 default:
9219 return value_binop (arg1, arg2, op);
9220 }
9221
9222 v2 = value_as_long (arg2);
9223 if (v2 == 0)
9224 error (_("second operand of %s must not be zero."), op_string (op));
9225
9226 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9227 return value_binop (arg1, arg2, op);
9228
9229 v1 = value_as_long (arg1);
9230 switch (op)
9231 {
9232 case BINOP_DIV:
9233 v = v1 / v2;
9234 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9235 v += v > 0 ? -1 : 1;
9236 break;
9237 case BINOP_REM:
9238 v = v1 % v2;
9239 if (v * v1 < 0)
9240 v -= v2;
9241 break;
9242 default:
9243 /* Should not reach this point. */
9244 v = 0;
9245 }
9246
9247 val = allocate_value (type1);
9248 store_unsigned_integer (value_contents_raw (val),
9249 TYPE_LENGTH (value_type (val)),
9250 gdbarch_byte_order (get_type_arch (type1)), v);
9251 return val;
9252 }
9253
9254 static int
9255 ada_value_equal (struct value *arg1, struct value *arg2)
9256 {
9257 if (ada_is_direct_array_type (value_type (arg1))
9258 || ada_is_direct_array_type (value_type (arg2)))
9259 {
9260 /* Automatically dereference any array reference before
9261 we attempt to perform the comparison. */
9262 arg1 = ada_coerce_ref (arg1);
9263 arg2 = ada_coerce_ref (arg2);
9264
9265 arg1 = ada_coerce_to_simple_array (arg1);
9266 arg2 = ada_coerce_to_simple_array (arg2);
9267 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9268 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9269 error (_("Attempt to compare array with non-array"));
9270 /* FIXME: The following works only for types whose
9271 representations use all bits (no padding or undefined bits)
9272 and do not have user-defined equality. */
9273 return
9274 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9275 && memcmp (value_contents (arg1), value_contents (arg2),
9276 TYPE_LENGTH (value_type (arg1))) == 0;
9277 }
9278 return value_equal (arg1, arg2);
9279 }
9280
9281 /* Total number of component associations in the aggregate starting at
9282 index PC in EXP. Assumes that index PC is the start of an
9283 OP_AGGREGATE. */
9284
9285 static int
9286 num_component_specs (struct expression *exp, int pc)
9287 {
9288 int n, m, i;
9289
9290 m = exp->elts[pc + 1].longconst;
9291 pc += 3;
9292 n = 0;
9293 for (i = 0; i < m; i += 1)
9294 {
9295 switch (exp->elts[pc].opcode)
9296 {
9297 default:
9298 n += 1;
9299 break;
9300 case OP_CHOICES:
9301 n += exp->elts[pc + 1].longconst;
9302 break;
9303 }
9304 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9305 }
9306 return n;
9307 }
9308
9309 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9310 component of LHS (a simple array or a record), updating *POS past
9311 the expression, assuming that LHS is contained in CONTAINER. Does
9312 not modify the inferior's memory, nor does it modify LHS (unless
9313 LHS == CONTAINER). */
9314
9315 static void
9316 assign_component (struct value *container, struct value *lhs, LONGEST index,
9317 struct expression *exp, int *pos)
9318 {
9319 struct value *mark = value_mark ();
9320 struct value *elt;
9321
9322 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9323 {
9324 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9325 struct value *index_val = value_from_longest (index_type, index);
9326
9327 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9328 }
9329 else
9330 {
9331 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9332 elt = ada_to_fixed_value (elt);
9333 }
9334
9335 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9336 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9337 else
9338 value_assign_to_component (container, elt,
9339 ada_evaluate_subexp (NULL, exp, pos,
9340 EVAL_NORMAL));
9341
9342 value_free_to_mark (mark);
9343 }
9344
9345 /* Assuming that LHS represents an lvalue having a record or array
9346 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9347 of that aggregate's value to LHS, advancing *POS past the
9348 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9349 lvalue containing LHS (possibly LHS itself). Does not modify
9350 the inferior's memory, nor does it modify the contents of
9351 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9352
9353 static struct value *
9354 assign_aggregate (struct value *container,
9355 struct value *lhs, struct expression *exp,
9356 int *pos, enum noside noside)
9357 {
9358 struct type *lhs_type;
9359 int n = exp->elts[*pos+1].longconst;
9360 LONGEST low_index, high_index;
9361 int num_specs;
9362 LONGEST *indices;
9363 int max_indices, num_indices;
9364 int i;
9365
9366 *pos += 3;
9367 if (noside != EVAL_NORMAL)
9368 {
9369 for (i = 0; i < n; i += 1)
9370 ada_evaluate_subexp (NULL, exp, pos, noside);
9371 return container;
9372 }
9373
9374 container = ada_coerce_ref (container);
9375 if (ada_is_direct_array_type (value_type (container)))
9376 container = ada_coerce_to_simple_array (container);
9377 lhs = ada_coerce_ref (lhs);
9378 if (!deprecated_value_modifiable (lhs))
9379 error (_("Left operand of assignment is not a modifiable lvalue."));
9380
9381 lhs_type = value_type (lhs);
9382 if (ada_is_direct_array_type (lhs_type))
9383 {
9384 lhs = ada_coerce_to_simple_array (lhs);
9385 lhs_type = value_type (lhs);
9386 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9387 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9388 }
9389 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9390 {
9391 low_index = 0;
9392 high_index = num_visible_fields (lhs_type) - 1;
9393 }
9394 else
9395 error (_("Left-hand side must be array or record."));
9396
9397 num_specs = num_component_specs (exp, *pos - 3);
9398 max_indices = 4 * num_specs + 4;
9399 indices = alloca (max_indices * sizeof (indices[0]));
9400 indices[0] = indices[1] = low_index - 1;
9401 indices[2] = indices[3] = high_index + 1;
9402 num_indices = 4;
9403
9404 for (i = 0; i < n; i += 1)
9405 {
9406 switch (exp->elts[*pos].opcode)
9407 {
9408 case OP_CHOICES:
9409 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9410 &num_indices, max_indices,
9411 low_index, high_index);
9412 break;
9413 case OP_POSITIONAL:
9414 aggregate_assign_positional (container, lhs, exp, pos, indices,
9415 &num_indices, max_indices,
9416 low_index, high_index);
9417 break;
9418 case OP_OTHERS:
9419 if (i != n-1)
9420 error (_("Misplaced 'others' clause"));
9421 aggregate_assign_others (container, lhs, exp, pos, indices,
9422 num_indices, low_index, high_index);
9423 break;
9424 default:
9425 error (_("Internal error: bad aggregate clause"));
9426 }
9427 }
9428
9429 return container;
9430 }
9431
9432 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9433 construct at *POS, updating *POS past the construct, given that
9434 the positions are relative to lower bound LOW, where HIGH is the
9435 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9436 updating *NUM_INDICES as needed. CONTAINER is as for
9437 assign_aggregate. */
9438 static void
9439 aggregate_assign_positional (struct value *container,
9440 struct value *lhs, struct expression *exp,
9441 int *pos, LONGEST *indices, int *num_indices,
9442 int max_indices, LONGEST low, LONGEST high)
9443 {
9444 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9445
9446 if (ind - 1 == high)
9447 warning (_("Extra components in aggregate ignored."));
9448 if (ind <= high)
9449 {
9450 add_component_interval (ind, ind, indices, num_indices, max_indices);
9451 *pos += 3;
9452 assign_component (container, lhs, ind, exp, pos);
9453 }
9454 else
9455 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9456 }
9457
9458 /* Assign into the components of LHS indexed by the OP_CHOICES
9459 construct at *POS, updating *POS past the construct, given that
9460 the allowable indices are LOW..HIGH. Record the indices assigned
9461 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9462 needed. CONTAINER is as for assign_aggregate. */
9463 static void
9464 aggregate_assign_from_choices (struct value *container,
9465 struct value *lhs, struct expression *exp,
9466 int *pos, LONGEST *indices, int *num_indices,
9467 int max_indices, LONGEST low, LONGEST high)
9468 {
9469 int j;
9470 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9471 int choice_pos, expr_pc;
9472 int is_array = ada_is_direct_array_type (value_type (lhs));
9473
9474 choice_pos = *pos += 3;
9475
9476 for (j = 0; j < n_choices; j += 1)
9477 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9478 expr_pc = *pos;
9479 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9480
9481 for (j = 0; j < n_choices; j += 1)
9482 {
9483 LONGEST lower, upper;
9484 enum exp_opcode op = exp->elts[choice_pos].opcode;
9485
9486 if (op == OP_DISCRETE_RANGE)
9487 {
9488 choice_pos += 1;
9489 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9490 EVAL_NORMAL));
9491 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9492 EVAL_NORMAL));
9493 }
9494 else if (is_array)
9495 {
9496 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9497 EVAL_NORMAL));
9498 upper = lower;
9499 }
9500 else
9501 {
9502 int ind;
9503 const char *name;
9504
9505 switch (op)
9506 {
9507 case OP_NAME:
9508 name = &exp->elts[choice_pos + 2].string;
9509 break;
9510 case OP_VAR_VALUE:
9511 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9512 break;
9513 default:
9514 error (_("Invalid record component association."));
9515 }
9516 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9517 ind = 0;
9518 if (! find_struct_field (name, value_type (lhs), 0,
9519 NULL, NULL, NULL, NULL, &ind))
9520 error (_("Unknown component name: %s."), name);
9521 lower = upper = ind;
9522 }
9523
9524 if (lower <= upper && (lower < low || upper > high))
9525 error (_("Index in component association out of bounds."));
9526
9527 add_component_interval (lower, upper, indices, num_indices,
9528 max_indices);
9529 while (lower <= upper)
9530 {
9531 int pos1;
9532
9533 pos1 = expr_pc;
9534 assign_component (container, lhs, lower, exp, &pos1);
9535 lower += 1;
9536 }
9537 }
9538 }
9539
9540 /* Assign the value of the expression in the OP_OTHERS construct in
9541 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9542 have not been previously assigned. The index intervals already assigned
9543 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9544 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9545 static void
9546 aggregate_assign_others (struct value *container,
9547 struct value *lhs, struct expression *exp,
9548 int *pos, LONGEST *indices, int num_indices,
9549 LONGEST low, LONGEST high)
9550 {
9551 int i;
9552 int expr_pc = *pos + 1;
9553
9554 for (i = 0; i < num_indices - 2; i += 2)
9555 {
9556 LONGEST ind;
9557
9558 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9559 {
9560 int localpos;
9561
9562 localpos = expr_pc;
9563 assign_component (container, lhs, ind, exp, &localpos);
9564 }
9565 }
9566 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9567 }
9568
9569 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9570 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9571 modifying *SIZE as needed. It is an error if *SIZE exceeds
9572 MAX_SIZE. The resulting intervals do not overlap. */
9573 static void
9574 add_component_interval (LONGEST low, LONGEST high,
9575 LONGEST* indices, int *size, int max_size)
9576 {
9577 int i, j;
9578
9579 for (i = 0; i < *size; i += 2) {
9580 if (high >= indices[i] && low <= indices[i + 1])
9581 {
9582 int kh;
9583
9584 for (kh = i + 2; kh < *size; kh += 2)
9585 if (high < indices[kh])
9586 break;
9587 if (low < indices[i])
9588 indices[i] = low;
9589 indices[i + 1] = indices[kh - 1];
9590 if (high > indices[i + 1])
9591 indices[i + 1] = high;
9592 memcpy (indices + i + 2, indices + kh, *size - kh);
9593 *size -= kh - i - 2;
9594 return;
9595 }
9596 else if (high < indices[i])
9597 break;
9598 }
9599
9600 if (*size == max_size)
9601 error (_("Internal error: miscounted aggregate components."));
9602 *size += 2;
9603 for (j = *size-1; j >= i+2; j -= 1)
9604 indices[j] = indices[j - 2];
9605 indices[i] = low;
9606 indices[i + 1] = high;
9607 }
9608
9609 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9610 is different. */
9611
9612 static struct value *
9613 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9614 {
9615 if (type == ada_check_typedef (value_type (arg2)))
9616 return arg2;
9617
9618 if (ada_is_fixed_point_type (type))
9619 return (cast_to_fixed (type, arg2));
9620
9621 if (ada_is_fixed_point_type (value_type (arg2)))
9622 return cast_from_fixed (type, arg2);
9623
9624 return value_cast (type, arg2);
9625 }
9626
9627 /* Evaluating Ada expressions, and printing their result.
9628 ------------------------------------------------------
9629
9630 1. Introduction:
9631 ----------------
9632
9633 We usually evaluate an Ada expression in order to print its value.
9634 We also evaluate an expression in order to print its type, which
9635 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9636 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9637 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9638 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9639 similar.
9640
9641 Evaluating expressions is a little more complicated for Ada entities
9642 than it is for entities in languages such as C. The main reason for
9643 this is that Ada provides types whose definition might be dynamic.
9644 One example of such types is variant records. Or another example
9645 would be an array whose bounds can only be known at run time.
9646
9647 The following description is a general guide as to what should be
9648 done (and what should NOT be done) in order to evaluate an expression
9649 involving such types, and when. This does not cover how the semantic
9650 information is encoded by GNAT as this is covered separatly. For the
9651 document used as the reference for the GNAT encoding, see exp_dbug.ads
9652 in the GNAT sources.
9653
9654 Ideally, we should embed each part of this description next to its
9655 associated code. Unfortunately, the amount of code is so vast right
9656 now that it's hard to see whether the code handling a particular
9657 situation might be duplicated or not. One day, when the code is
9658 cleaned up, this guide might become redundant with the comments
9659 inserted in the code, and we might want to remove it.
9660
9661 2. ``Fixing'' an Entity, the Simple Case:
9662 -----------------------------------------
9663
9664 When evaluating Ada expressions, the tricky issue is that they may
9665 reference entities whose type contents and size are not statically
9666 known. Consider for instance a variant record:
9667
9668 type Rec (Empty : Boolean := True) is record
9669 case Empty is
9670 when True => null;
9671 when False => Value : Integer;
9672 end case;
9673 end record;
9674 Yes : Rec := (Empty => False, Value => 1);
9675 No : Rec := (empty => True);
9676
9677 The size and contents of that record depends on the value of the
9678 descriminant (Rec.Empty). At this point, neither the debugging
9679 information nor the associated type structure in GDB are able to
9680 express such dynamic types. So what the debugger does is to create
9681 "fixed" versions of the type that applies to the specific object.
9682 We also informally refer to this opperation as "fixing" an object,
9683 which means creating its associated fixed type.
9684
9685 Example: when printing the value of variable "Yes" above, its fixed
9686 type would look like this:
9687
9688 type Rec is record
9689 Empty : Boolean;
9690 Value : Integer;
9691 end record;
9692
9693 On the other hand, if we printed the value of "No", its fixed type
9694 would become:
9695
9696 type Rec is record
9697 Empty : Boolean;
9698 end record;
9699
9700 Things become a little more complicated when trying to fix an entity
9701 with a dynamic type that directly contains another dynamic type,
9702 such as an array of variant records, for instance. There are
9703 two possible cases: Arrays, and records.
9704
9705 3. ``Fixing'' Arrays:
9706 ---------------------
9707
9708 The type structure in GDB describes an array in terms of its bounds,
9709 and the type of its elements. By design, all elements in the array
9710 have the same type and we cannot represent an array of variant elements
9711 using the current type structure in GDB. When fixing an array,
9712 we cannot fix the array element, as we would potentially need one
9713 fixed type per element of the array. As a result, the best we can do
9714 when fixing an array is to produce an array whose bounds and size
9715 are correct (allowing us to read it from memory), but without having
9716 touched its element type. Fixing each element will be done later,
9717 when (if) necessary.
9718
9719 Arrays are a little simpler to handle than records, because the same
9720 amount of memory is allocated for each element of the array, even if
9721 the amount of space actually used by each element differs from element
9722 to element. Consider for instance the following array of type Rec:
9723
9724 type Rec_Array is array (1 .. 2) of Rec;
9725
9726 The actual amount of memory occupied by each element might be different
9727 from element to element, depending on the value of their discriminant.
9728 But the amount of space reserved for each element in the array remains
9729 fixed regardless. So we simply need to compute that size using
9730 the debugging information available, from which we can then determine
9731 the array size (we multiply the number of elements of the array by
9732 the size of each element).
9733
9734 The simplest case is when we have an array of a constrained element
9735 type. For instance, consider the following type declarations:
9736
9737 type Bounded_String (Max_Size : Integer) is
9738 Length : Integer;
9739 Buffer : String (1 .. Max_Size);
9740 end record;
9741 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9742
9743 In this case, the compiler describes the array as an array of
9744 variable-size elements (identified by its XVS suffix) for which
9745 the size can be read in the parallel XVZ variable.
9746
9747 In the case of an array of an unconstrained element type, the compiler
9748 wraps the array element inside a private PAD type. This type should not
9749 be shown to the user, and must be "unwrap"'ed before printing. Note
9750 that we also use the adjective "aligner" in our code to designate
9751 these wrapper types.
9752
9753 In some cases, the size allocated for each element is statically
9754 known. In that case, the PAD type already has the correct size,
9755 and the array element should remain unfixed.
9756
9757 But there are cases when this size is not statically known.
9758 For instance, assuming that "Five" is an integer variable:
9759
9760 type Dynamic is array (1 .. Five) of Integer;
9761 type Wrapper (Has_Length : Boolean := False) is record
9762 Data : Dynamic;
9763 case Has_Length is
9764 when True => Length : Integer;
9765 when False => null;
9766 end case;
9767 end record;
9768 type Wrapper_Array is array (1 .. 2) of Wrapper;
9769
9770 Hello : Wrapper_Array := (others => (Has_Length => True,
9771 Data => (others => 17),
9772 Length => 1));
9773
9774
9775 The debugging info would describe variable Hello as being an
9776 array of a PAD type. The size of that PAD type is not statically
9777 known, but can be determined using a parallel XVZ variable.
9778 In that case, a copy of the PAD type with the correct size should
9779 be used for the fixed array.
9780
9781 3. ``Fixing'' record type objects:
9782 ----------------------------------
9783
9784 Things are slightly different from arrays in the case of dynamic
9785 record types. In this case, in order to compute the associated
9786 fixed type, we need to determine the size and offset of each of
9787 its components. This, in turn, requires us to compute the fixed
9788 type of each of these components.
9789
9790 Consider for instance the example:
9791
9792 type Bounded_String (Max_Size : Natural) is record
9793 Str : String (1 .. Max_Size);
9794 Length : Natural;
9795 end record;
9796 My_String : Bounded_String (Max_Size => 10);
9797
9798 In that case, the position of field "Length" depends on the size
9799 of field Str, which itself depends on the value of the Max_Size
9800 discriminant. In order to fix the type of variable My_String,
9801 we need to fix the type of field Str. Therefore, fixing a variant
9802 record requires us to fix each of its components.
9803
9804 However, if a component does not have a dynamic size, the component
9805 should not be fixed. In particular, fields that use a PAD type
9806 should not fixed. Here is an example where this might happen
9807 (assuming type Rec above):
9808
9809 type Container (Big : Boolean) is record
9810 First : Rec;
9811 After : Integer;
9812 case Big is
9813 when True => Another : Integer;
9814 when False => null;
9815 end case;
9816 end record;
9817 My_Container : Container := (Big => False,
9818 First => (Empty => True),
9819 After => 42);
9820
9821 In that example, the compiler creates a PAD type for component First,
9822 whose size is constant, and then positions the component After just
9823 right after it. The offset of component After is therefore constant
9824 in this case.
9825
9826 The debugger computes the position of each field based on an algorithm
9827 that uses, among other things, the actual position and size of the field
9828 preceding it. Let's now imagine that the user is trying to print
9829 the value of My_Container. If the type fixing was recursive, we would
9830 end up computing the offset of field After based on the size of the
9831 fixed version of field First. And since in our example First has
9832 only one actual field, the size of the fixed type is actually smaller
9833 than the amount of space allocated to that field, and thus we would
9834 compute the wrong offset of field After.
9835
9836 To make things more complicated, we need to watch out for dynamic
9837 components of variant records (identified by the ___XVL suffix in
9838 the component name). Even if the target type is a PAD type, the size
9839 of that type might not be statically known. So the PAD type needs
9840 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9841 we might end up with the wrong size for our component. This can be
9842 observed with the following type declarations:
9843
9844 type Octal is new Integer range 0 .. 7;
9845 type Octal_Array is array (Positive range <>) of Octal;
9846 pragma Pack (Octal_Array);
9847
9848 type Octal_Buffer (Size : Positive) is record
9849 Buffer : Octal_Array (1 .. Size);
9850 Length : Integer;
9851 end record;
9852
9853 In that case, Buffer is a PAD type whose size is unset and needs
9854 to be computed by fixing the unwrapped type.
9855
9856 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9857 ----------------------------------------------------------
9858
9859 Lastly, when should the sub-elements of an entity that remained unfixed
9860 thus far, be actually fixed?
9861
9862 The answer is: Only when referencing that element. For instance
9863 when selecting one component of a record, this specific component
9864 should be fixed at that point in time. Or when printing the value
9865 of a record, each component should be fixed before its value gets
9866 printed. Similarly for arrays, the element of the array should be
9867 fixed when printing each element of the array, or when extracting
9868 one element out of that array. On the other hand, fixing should
9869 not be performed on the elements when taking a slice of an array!
9870
9871 Note that one of the side-effects of miscomputing the offset and
9872 size of each field is that we end up also miscomputing the size
9873 of the containing type. This can have adverse results when computing
9874 the value of an entity. GDB fetches the value of an entity based
9875 on the size of its type, and thus a wrong size causes GDB to fetch
9876 the wrong amount of memory. In the case where the computed size is
9877 too small, GDB fetches too little data to print the value of our
9878 entiry. Results in this case as unpredicatble, as we usually read
9879 past the buffer containing the data =:-o. */
9880
9881 /* Implement the evaluate_exp routine in the exp_descriptor structure
9882 for the Ada language. */
9883
9884 static struct value *
9885 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9886 int *pos, enum noside noside)
9887 {
9888 enum exp_opcode op;
9889 int tem;
9890 int pc;
9891 int preeval_pos;
9892 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9893 struct type *type;
9894 int nargs, oplen;
9895 struct value **argvec;
9896
9897 pc = *pos;
9898 *pos += 1;
9899 op = exp->elts[pc].opcode;
9900
9901 switch (op)
9902 {
9903 default:
9904 *pos -= 1;
9905 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9906
9907 if (noside == EVAL_NORMAL)
9908 arg1 = unwrap_value (arg1);
9909
9910 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9911 then we need to perform the conversion manually, because
9912 evaluate_subexp_standard doesn't do it. This conversion is
9913 necessary in Ada because the different kinds of float/fixed
9914 types in Ada have different representations.
9915
9916 Similarly, we need to perform the conversion from OP_LONG
9917 ourselves. */
9918 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9919 arg1 = ada_value_cast (expect_type, arg1, noside);
9920
9921 return arg1;
9922
9923 case OP_STRING:
9924 {
9925 struct value *result;
9926
9927 *pos -= 1;
9928 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9929 /* The result type will have code OP_STRING, bashed there from
9930 OP_ARRAY. Bash it back. */
9931 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9932 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9933 return result;
9934 }
9935
9936 case UNOP_CAST:
9937 (*pos) += 2;
9938 type = exp->elts[pc + 1].type;
9939 arg1 = evaluate_subexp (type, exp, pos, noside);
9940 if (noside == EVAL_SKIP)
9941 goto nosideret;
9942 arg1 = ada_value_cast (type, arg1, noside);
9943 return arg1;
9944
9945 case UNOP_QUAL:
9946 (*pos) += 2;
9947 type = exp->elts[pc + 1].type;
9948 return ada_evaluate_subexp (type, exp, pos, noside);
9949
9950 case BINOP_ASSIGN:
9951 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9952 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9953 {
9954 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9955 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9956 return arg1;
9957 return ada_value_assign (arg1, arg1);
9958 }
9959 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9960 except if the lhs of our assignment is a convenience variable.
9961 In the case of assigning to a convenience variable, the lhs
9962 should be exactly the result of the evaluation of the rhs. */
9963 type = value_type (arg1);
9964 if (VALUE_LVAL (arg1) == lval_internalvar)
9965 type = NULL;
9966 arg2 = evaluate_subexp (type, exp, pos, noside);
9967 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9968 return arg1;
9969 if (ada_is_fixed_point_type (value_type (arg1)))
9970 arg2 = cast_to_fixed (value_type (arg1), arg2);
9971 else if (ada_is_fixed_point_type (value_type (arg2)))
9972 error
9973 (_("Fixed-point values must be assigned to fixed-point variables"));
9974 else
9975 arg2 = coerce_for_assign (value_type (arg1), arg2);
9976 return ada_value_assign (arg1, arg2);
9977
9978 case BINOP_ADD:
9979 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9980 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9981 if (noside == EVAL_SKIP)
9982 goto nosideret;
9983 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9984 return (value_from_longest
9985 (value_type (arg1),
9986 value_as_long (arg1) + value_as_long (arg2)));
9987 if ((ada_is_fixed_point_type (value_type (arg1))
9988 || ada_is_fixed_point_type (value_type (arg2)))
9989 && value_type (arg1) != value_type (arg2))
9990 error (_("Operands of fixed-point addition must have the same type"));
9991 /* Do the addition, and cast the result to the type of the first
9992 argument. We cannot cast the result to a reference type, so if
9993 ARG1 is a reference type, find its underlying type. */
9994 type = value_type (arg1);
9995 while (TYPE_CODE (type) == TYPE_CODE_REF)
9996 type = TYPE_TARGET_TYPE (type);
9997 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9998 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9999
10000 case BINOP_SUB:
10001 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10002 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10003 if (noside == EVAL_SKIP)
10004 goto nosideret;
10005 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10006 return (value_from_longest
10007 (value_type (arg1),
10008 value_as_long (arg1) - value_as_long (arg2)));
10009 if ((ada_is_fixed_point_type (value_type (arg1))
10010 || ada_is_fixed_point_type (value_type (arg2)))
10011 && value_type (arg1) != value_type (arg2))
10012 error (_("Operands of fixed-point subtraction "
10013 "must have the same type"));
10014 /* Do the substraction, and cast the result to the type of the first
10015 argument. We cannot cast the result to a reference type, so if
10016 ARG1 is a reference type, find its underlying type. */
10017 type = value_type (arg1);
10018 while (TYPE_CODE (type) == TYPE_CODE_REF)
10019 type = TYPE_TARGET_TYPE (type);
10020 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10021 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10022
10023 case BINOP_MUL:
10024 case BINOP_DIV:
10025 case BINOP_REM:
10026 case BINOP_MOD:
10027 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10028 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10029 if (noside == EVAL_SKIP)
10030 goto nosideret;
10031 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10032 {
10033 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10034 return value_zero (value_type (arg1), not_lval);
10035 }
10036 else
10037 {
10038 type = builtin_type (exp->gdbarch)->builtin_double;
10039 if (ada_is_fixed_point_type (value_type (arg1)))
10040 arg1 = cast_from_fixed (type, arg1);
10041 if (ada_is_fixed_point_type (value_type (arg2)))
10042 arg2 = cast_from_fixed (type, arg2);
10043 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10044 return ada_value_binop (arg1, arg2, op);
10045 }
10046
10047 case BINOP_EQUAL:
10048 case BINOP_NOTEQUAL:
10049 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10050 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10051 if (noside == EVAL_SKIP)
10052 goto nosideret;
10053 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10054 tem = 0;
10055 else
10056 {
10057 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10058 tem = ada_value_equal (arg1, arg2);
10059 }
10060 if (op == BINOP_NOTEQUAL)
10061 tem = !tem;
10062 type = language_bool_type (exp->language_defn, exp->gdbarch);
10063 return value_from_longest (type, (LONGEST) tem);
10064
10065 case UNOP_NEG:
10066 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10067 if (noside == EVAL_SKIP)
10068 goto nosideret;
10069 else if (ada_is_fixed_point_type (value_type (arg1)))
10070 return value_cast (value_type (arg1), value_neg (arg1));
10071 else
10072 {
10073 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10074 return value_neg (arg1);
10075 }
10076
10077 case BINOP_LOGICAL_AND:
10078 case BINOP_LOGICAL_OR:
10079 case UNOP_LOGICAL_NOT:
10080 {
10081 struct value *val;
10082
10083 *pos -= 1;
10084 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10085 type = language_bool_type (exp->language_defn, exp->gdbarch);
10086 return value_cast (type, val);
10087 }
10088
10089 case BINOP_BITWISE_AND:
10090 case BINOP_BITWISE_IOR:
10091 case BINOP_BITWISE_XOR:
10092 {
10093 struct value *val;
10094
10095 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10096 *pos = pc;
10097 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10098
10099 return value_cast (value_type (arg1), val);
10100 }
10101
10102 case OP_VAR_VALUE:
10103 *pos -= 1;
10104
10105 if (noside == EVAL_SKIP)
10106 {
10107 *pos += 4;
10108 goto nosideret;
10109 }
10110 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10111 /* Only encountered when an unresolved symbol occurs in a
10112 context other than a function call, in which case, it is
10113 invalid. */
10114 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10115 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10116 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10117 {
10118 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10119 /* Check to see if this is a tagged type. We also need to handle
10120 the case where the type is a reference to a tagged type, but
10121 we have to be careful to exclude pointers to tagged types.
10122 The latter should be shown as usual (as a pointer), whereas
10123 a reference should mostly be transparent to the user. */
10124 if (ada_is_tagged_type (type, 0)
10125 || (TYPE_CODE (type) == TYPE_CODE_REF
10126 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10127 {
10128 /* Tagged types are a little special in the fact that the real
10129 type is dynamic and can only be determined by inspecting the
10130 object's tag. This means that we need to get the object's
10131 value first (EVAL_NORMAL) and then extract the actual object
10132 type from its tag.
10133
10134 Note that we cannot skip the final step where we extract
10135 the object type from its tag, because the EVAL_NORMAL phase
10136 results in dynamic components being resolved into fixed ones.
10137 This can cause problems when trying to print the type
10138 description of tagged types whose parent has a dynamic size:
10139 We use the type name of the "_parent" component in order
10140 to print the name of the ancestor type in the type description.
10141 If that component had a dynamic size, the resolution into
10142 a fixed type would result in the loss of that type name,
10143 thus preventing us from printing the name of the ancestor
10144 type in the type description. */
10145 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10146
10147 if (TYPE_CODE (type) != TYPE_CODE_REF)
10148 {
10149 struct type *actual_type;
10150
10151 actual_type = type_from_tag (ada_value_tag (arg1));
10152 if (actual_type == NULL)
10153 /* If, for some reason, we were unable to determine
10154 the actual type from the tag, then use the static
10155 approximation that we just computed as a fallback.
10156 This can happen if the debugging information is
10157 incomplete, for instance. */
10158 actual_type = type;
10159 return value_zero (actual_type, not_lval);
10160 }
10161 else
10162 {
10163 /* In the case of a ref, ada_coerce_ref takes care
10164 of determining the actual type. But the evaluation
10165 should return a ref as it should be valid to ask
10166 for its address; so rebuild a ref after coerce. */
10167 arg1 = ada_coerce_ref (arg1);
10168 return value_ref (arg1);
10169 }
10170 }
10171
10172 *pos += 4;
10173 return value_zero
10174 (to_static_fixed_type
10175 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
10176 not_lval);
10177 }
10178 else
10179 {
10180 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10181 return ada_to_fixed_value (arg1);
10182 }
10183
10184 case OP_FUNCALL:
10185 (*pos) += 2;
10186
10187 /* Allocate arg vector, including space for the function to be
10188 called in argvec[0] and a terminating NULL. */
10189 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10190 argvec =
10191 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10192
10193 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10194 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10195 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10196 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10197 else
10198 {
10199 for (tem = 0; tem <= nargs; tem += 1)
10200 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10201 argvec[tem] = 0;
10202
10203 if (noside == EVAL_SKIP)
10204 goto nosideret;
10205 }
10206
10207 if (ada_is_constrained_packed_array_type
10208 (desc_base_type (value_type (argvec[0]))))
10209 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10210 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10211 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10212 /* This is a packed array that has already been fixed, and
10213 therefore already coerced to a simple array. Nothing further
10214 to do. */
10215 ;
10216 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10217 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10218 && VALUE_LVAL (argvec[0]) == lval_memory))
10219 argvec[0] = value_addr (argvec[0]);
10220
10221 type = ada_check_typedef (value_type (argvec[0]));
10222
10223 /* Ada allows us to implicitly dereference arrays when subscripting
10224 them. So, if this is an array typedef (encoding use for array
10225 access types encoded as fat pointers), strip it now. */
10226 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10227 type = ada_typedef_target_type (type);
10228
10229 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10230 {
10231 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10232 {
10233 case TYPE_CODE_FUNC:
10234 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10235 break;
10236 case TYPE_CODE_ARRAY:
10237 break;
10238 case TYPE_CODE_STRUCT:
10239 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10240 argvec[0] = ada_value_ind (argvec[0]);
10241 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10242 break;
10243 default:
10244 error (_("cannot subscript or call something of type `%s'"),
10245 ada_type_name (value_type (argvec[0])));
10246 break;
10247 }
10248 }
10249
10250 switch (TYPE_CODE (type))
10251 {
10252 case TYPE_CODE_FUNC:
10253 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10254 {
10255 struct type *rtype = TYPE_TARGET_TYPE (type);
10256
10257 if (TYPE_GNU_IFUNC (type))
10258 return allocate_value (TYPE_TARGET_TYPE (rtype));
10259 return allocate_value (rtype);
10260 }
10261 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10262 case TYPE_CODE_INTERNAL_FUNCTION:
10263 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10264 /* We don't know anything about what the internal
10265 function might return, but we have to return
10266 something. */
10267 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10268 not_lval);
10269 else
10270 return call_internal_function (exp->gdbarch, exp->language_defn,
10271 argvec[0], nargs, argvec + 1);
10272
10273 case TYPE_CODE_STRUCT:
10274 {
10275 int arity;
10276
10277 arity = ada_array_arity (type);
10278 type = ada_array_element_type (type, nargs);
10279 if (type == NULL)
10280 error (_("cannot subscript or call a record"));
10281 if (arity != nargs)
10282 error (_("wrong number of subscripts; expecting %d"), arity);
10283 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10284 return value_zero (ada_aligned_type (type), lval_memory);
10285 return
10286 unwrap_value (ada_value_subscript
10287 (argvec[0], nargs, argvec + 1));
10288 }
10289 case TYPE_CODE_ARRAY:
10290 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10291 {
10292 type = ada_array_element_type (type, nargs);
10293 if (type == NULL)
10294 error (_("element type of array unknown"));
10295 else
10296 return value_zero (ada_aligned_type (type), lval_memory);
10297 }
10298 return
10299 unwrap_value (ada_value_subscript
10300 (ada_coerce_to_simple_array (argvec[0]),
10301 nargs, argvec + 1));
10302 case TYPE_CODE_PTR: /* Pointer to array */
10303 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10304 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10305 {
10306 type = ada_array_element_type (type, nargs);
10307 if (type == NULL)
10308 error (_("element type of array unknown"));
10309 else
10310 return value_zero (ada_aligned_type (type), lval_memory);
10311 }
10312 return
10313 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10314 nargs, argvec + 1));
10315
10316 default:
10317 error (_("Attempt to index or call something other than an "
10318 "array or function"));
10319 }
10320
10321 case TERNOP_SLICE:
10322 {
10323 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10324 struct value *low_bound_val =
10325 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10326 struct value *high_bound_val =
10327 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10328 LONGEST low_bound;
10329 LONGEST high_bound;
10330
10331 low_bound_val = coerce_ref (low_bound_val);
10332 high_bound_val = coerce_ref (high_bound_val);
10333 low_bound = pos_atr (low_bound_val);
10334 high_bound = pos_atr (high_bound_val);
10335
10336 if (noside == EVAL_SKIP)
10337 goto nosideret;
10338
10339 /* If this is a reference to an aligner type, then remove all
10340 the aligners. */
10341 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10342 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10343 TYPE_TARGET_TYPE (value_type (array)) =
10344 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10345
10346 if (ada_is_constrained_packed_array_type (value_type (array)))
10347 error (_("cannot slice a packed array"));
10348
10349 /* If this is a reference to an array or an array lvalue,
10350 convert to a pointer. */
10351 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10352 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10353 && VALUE_LVAL (array) == lval_memory))
10354 array = value_addr (array);
10355
10356 if (noside == EVAL_AVOID_SIDE_EFFECTS
10357 && ada_is_array_descriptor_type (ada_check_typedef
10358 (value_type (array))))
10359 return empty_array (ada_type_of_array (array, 0), low_bound);
10360
10361 array = ada_coerce_to_simple_array_ptr (array);
10362
10363 /* If we have more than one level of pointer indirection,
10364 dereference the value until we get only one level. */
10365 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10366 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10367 == TYPE_CODE_PTR))
10368 array = value_ind (array);
10369
10370 /* Make sure we really do have an array type before going further,
10371 to avoid a SEGV when trying to get the index type or the target
10372 type later down the road if the debug info generated by
10373 the compiler is incorrect or incomplete. */
10374 if (!ada_is_simple_array_type (value_type (array)))
10375 error (_("cannot take slice of non-array"));
10376
10377 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10378 == TYPE_CODE_PTR)
10379 {
10380 struct type *type0 = ada_check_typedef (value_type (array));
10381
10382 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10383 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10384 else
10385 {
10386 struct type *arr_type0 =
10387 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10388
10389 return ada_value_slice_from_ptr (array, arr_type0,
10390 longest_to_int (low_bound),
10391 longest_to_int (high_bound));
10392 }
10393 }
10394 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10395 return array;
10396 else if (high_bound < low_bound)
10397 return empty_array (value_type (array), low_bound);
10398 else
10399 return ada_value_slice (array, longest_to_int (low_bound),
10400 longest_to_int (high_bound));
10401 }
10402
10403 case UNOP_IN_RANGE:
10404 (*pos) += 2;
10405 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10406 type = check_typedef (exp->elts[pc + 1].type);
10407
10408 if (noside == EVAL_SKIP)
10409 goto nosideret;
10410
10411 switch (TYPE_CODE (type))
10412 {
10413 default:
10414 lim_warning (_("Membership test incompletely implemented; "
10415 "always returns true"));
10416 type = language_bool_type (exp->language_defn, exp->gdbarch);
10417 return value_from_longest (type, (LONGEST) 1);
10418
10419 case TYPE_CODE_RANGE:
10420 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10421 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10422 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10423 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10424 type = language_bool_type (exp->language_defn, exp->gdbarch);
10425 return
10426 value_from_longest (type,
10427 (value_less (arg1, arg3)
10428 || value_equal (arg1, arg3))
10429 && (value_less (arg2, arg1)
10430 || value_equal (arg2, arg1)));
10431 }
10432
10433 case BINOP_IN_BOUNDS:
10434 (*pos) += 2;
10435 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10436 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10437
10438 if (noside == EVAL_SKIP)
10439 goto nosideret;
10440
10441 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10442 {
10443 type = language_bool_type (exp->language_defn, exp->gdbarch);
10444 return value_zero (type, not_lval);
10445 }
10446
10447 tem = longest_to_int (exp->elts[pc + 1].longconst);
10448
10449 type = ada_index_type (value_type (arg2), tem, "range");
10450 if (!type)
10451 type = value_type (arg1);
10452
10453 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10454 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10455
10456 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10457 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10458 type = language_bool_type (exp->language_defn, exp->gdbarch);
10459 return
10460 value_from_longest (type,
10461 (value_less (arg1, arg3)
10462 || value_equal (arg1, arg3))
10463 && (value_less (arg2, arg1)
10464 || value_equal (arg2, arg1)));
10465
10466 case TERNOP_IN_RANGE:
10467 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10468 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10469 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10470
10471 if (noside == EVAL_SKIP)
10472 goto nosideret;
10473
10474 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10475 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10476 type = language_bool_type (exp->language_defn, exp->gdbarch);
10477 return
10478 value_from_longest (type,
10479 (value_less (arg1, arg3)
10480 || value_equal (arg1, arg3))
10481 && (value_less (arg2, arg1)
10482 || value_equal (arg2, arg1)));
10483
10484 case OP_ATR_FIRST:
10485 case OP_ATR_LAST:
10486 case OP_ATR_LENGTH:
10487 {
10488 struct type *type_arg;
10489
10490 if (exp->elts[*pos].opcode == OP_TYPE)
10491 {
10492 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10493 arg1 = NULL;
10494 type_arg = check_typedef (exp->elts[pc + 2].type);
10495 }
10496 else
10497 {
10498 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10499 type_arg = NULL;
10500 }
10501
10502 if (exp->elts[*pos].opcode != OP_LONG)
10503 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10504 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10505 *pos += 4;
10506
10507 if (noside == EVAL_SKIP)
10508 goto nosideret;
10509
10510 if (type_arg == NULL)
10511 {
10512 arg1 = ada_coerce_ref (arg1);
10513
10514 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10515 arg1 = ada_coerce_to_simple_array (arg1);
10516
10517 if (op == OP_ATR_LENGTH)
10518 type = builtin_type (exp->gdbarch)->builtin_int;
10519 else
10520 {
10521 type = ada_index_type (value_type (arg1), tem,
10522 ada_attribute_name (op));
10523 if (type == NULL)
10524 type = builtin_type (exp->gdbarch)->builtin_int;
10525 }
10526
10527 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10528 return allocate_value (type);
10529
10530 switch (op)
10531 {
10532 default: /* Should never happen. */
10533 error (_("unexpected attribute encountered"));
10534 case OP_ATR_FIRST:
10535 return value_from_longest
10536 (type, ada_array_bound (arg1, tem, 0));
10537 case OP_ATR_LAST:
10538 return value_from_longest
10539 (type, ada_array_bound (arg1, tem, 1));
10540 case OP_ATR_LENGTH:
10541 return value_from_longest
10542 (type, ada_array_length (arg1, tem));
10543 }
10544 }
10545 else if (discrete_type_p (type_arg))
10546 {
10547 struct type *range_type;
10548 const char *name = ada_type_name (type_arg);
10549
10550 range_type = NULL;
10551 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10552 range_type = to_fixed_range_type (type_arg, NULL);
10553 if (range_type == NULL)
10554 range_type = type_arg;
10555 switch (op)
10556 {
10557 default:
10558 error (_("unexpected attribute encountered"));
10559 case OP_ATR_FIRST:
10560 return value_from_longest
10561 (range_type, ada_discrete_type_low_bound (range_type));
10562 case OP_ATR_LAST:
10563 return value_from_longest
10564 (range_type, ada_discrete_type_high_bound (range_type));
10565 case OP_ATR_LENGTH:
10566 error (_("the 'length attribute applies only to array types"));
10567 }
10568 }
10569 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10570 error (_("unimplemented type attribute"));
10571 else
10572 {
10573 LONGEST low, high;
10574
10575 if (ada_is_constrained_packed_array_type (type_arg))
10576 type_arg = decode_constrained_packed_array_type (type_arg);
10577
10578 if (op == OP_ATR_LENGTH)
10579 type = builtin_type (exp->gdbarch)->builtin_int;
10580 else
10581 {
10582 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10583 if (type == NULL)
10584 type = builtin_type (exp->gdbarch)->builtin_int;
10585 }
10586
10587 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10588 return allocate_value (type);
10589
10590 switch (op)
10591 {
10592 default:
10593 error (_("unexpected attribute encountered"));
10594 case OP_ATR_FIRST:
10595 low = ada_array_bound_from_type (type_arg, tem, 0);
10596 return value_from_longest (type, low);
10597 case OP_ATR_LAST:
10598 high = ada_array_bound_from_type (type_arg, tem, 1);
10599 return value_from_longest (type, high);
10600 case OP_ATR_LENGTH:
10601 low = ada_array_bound_from_type (type_arg, tem, 0);
10602 high = ada_array_bound_from_type (type_arg, tem, 1);
10603 return value_from_longest (type, high - low + 1);
10604 }
10605 }
10606 }
10607
10608 case OP_ATR_TAG:
10609 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10610 if (noside == EVAL_SKIP)
10611 goto nosideret;
10612
10613 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10614 return value_zero (ada_tag_type (arg1), not_lval);
10615
10616 return ada_value_tag (arg1);
10617
10618 case OP_ATR_MIN:
10619 case OP_ATR_MAX:
10620 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10621 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10622 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10623 if (noside == EVAL_SKIP)
10624 goto nosideret;
10625 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10626 return value_zero (value_type (arg1), not_lval);
10627 else
10628 {
10629 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10630 return value_binop (arg1, arg2,
10631 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10632 }
10633
10634 case OP_ATR_MODULUS:
10635 {
10636 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10637
10638 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10639 if (noside == EVAL_SKIP)
10640 goto nosideret;
10641
10642 if (!ada_is_modular_type (type_arg))
10643 error (_("'modulus must be applied to modular type"));
10644
10645 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10646 ada_modulus (type_arg));
10647 }
10648
10649
10650 case OP_ATR_POS:
10651 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10652 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10653 if (noside == EVAL_SKIP)
10654 goto nosideret;
10655 type = builtin_type (exp->gdbarch)->builtin_int;
10656 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10657 return value_zero (type, not_lval);
10658 else
10659 return value_pos_atr (type, arg1);
10660
10661 case OP_ATR_SIZE:
10662 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10663 type = value_type (arg1);
10664
10665 /* If the argument is a reference, then dereference its type, since
10666 the user is really asking for the size of the actual object,
10667 not the size of the pointer. */
10668 if (TYPE_CODE (type) == TYPE_CODE_REF)
10669 type = TYPE_TARGET_TYPE (type);
10670
10671 if (noside == EVAL_SKIP)
10672 goto nosideret;
10673 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10674 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10675 else
10676 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10677 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10678
10679 case OP_ATR_VAL:
10680 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10681 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10682 type = exp->elts[pc + 2].type;
10683 if (noside == EVAL_SKIP)
10684 goto nosideret;
10685 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10686 return value_zero (type, not_lval);
10687 else
10688 return value_val_atr (type, arg1);
10689
10690 case BINOP_EXP:
10691 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10692 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10693 if (noside == EVAL_SKIP)
10694 goto nosideret;
10695 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10696 return value_zero (value_type (arg1), not_lval);
10697 else
10698 {
10699 /* For integer exponentiation operations,
10700 only promote the first argument. */
10701 if (is_integral_type (value_type (arg2)))
10702 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10703 else
10704 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10705
10706 return value_binop (arg1, arg2, op);
10707 }
10708
10709 case UNOP_PLUS:
10710 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10711 if (noside == EVAL_SKIP)
10712 goto nosideret;
10713 else
10714 return arg1;
10715
10716 case UNOP_ABS:
10717 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10718 if (noside == EVAL_SKIP)
10719 goto nosideret;
10720 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10721 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10722 return value_neg (arg1);
10723 else
10724 return arg1;
10725
10726 case UNOP_IND:
10727 preeval_pos = *pos;
10728 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10729 if (noside == EVAL_SKIP)
10730 goto nosideret;
10731 type = ada_check_typedef (value_type (arg1));
10732 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10733 {
10734 if (ada_is_array_descriptor_type (type))
10735 /* GDB allows dereferencing GNAT array descriptors. */
10736 {
10737 struct type *arrType = ada_type_of_array (arg1, 0);
10738
10739 if (arrType == NULL)
10740 error (_("Attempt to dereference null array pointer."));
10741 return value_at_lazy (arrType, 0);
10742 }
10743 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10744 || TYPE_CODE (type) == TYPE_CODE_REF
10745 /* In C you can dereference an array to get the 1st elt. */
10746 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10747 {
10748 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10749 only be determined by inspecting the object's tag.
10750 This means that we need to evaluate completely the
10751 expression in order to get its type. */
10752
10753 if ((TYPE_CODE (type) == TYPE_CODE_REF
10754 || TYPE_CODE (type) == TYPE_CODE_PTR)
10755 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10756 {
10757 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10758 EVAL_NORMAL);
10759 type = value_type (ada_value_ind (arg1));
10760 }
10761 else
10762 {
10763 type = to_static_fixed_type
10764 (ada_aligned_type
10765 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10766 }
10767 check_size (type);
10768 return value_zero (type, lval_memory);
10769 }
10770 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10771 {
10772 /* GDB allows dereferencing an int. */
10773 if (expect_type == NULL)
10774 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10775 lval_memory);
10776 else
10777 {
10778 expect_type =
10779 to_static_fixed_type (ada_aligned_type (expect_type));
10780 return value_zero (expect_type, lval_memory);
10781 }
10782 }
10783 else
10784 error (_("Attempt to take contents of a non-pointer value."));
10785 }
10786 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10787 type = ada_check_typedef (value_type (arg1));
10788
10789 if (TYPE_CODE (type) == TYPE_CODE_INT)
10790 /* GDB allows dereferencing an int. If we were given
10791 the expect_type, then use that as the target type.
10792 Otherwise, assume that the target type is an int. */
10793 {
10794 if (expect_type != NULL)
10795 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10796 arg1));
10797 else
10798 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10799 (CORE_ADDR) value_as_address (arg1));
10800 }
10801
10802 if (ada_is_array_descriptor_type (type))
10803 /* GDB allows dereferencing GNAT array descriptors. */
10804 return ada_coerce_to_simple_array (arg1);
10805 else
10806 return ada_value_ind (arg1);
10807
10808 case STRUCTOP_STRUCT:
10809 tem = longest_to_int (exp->elts[pc + 1].longconst);
10810 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10811 preeval_pos = *pos;
10812 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10813 if (noside == EVAL_SKIP)
10814 goto nosideret;
10815 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10816 {
10817 struct type *type1 = value_type (arg1);
10818
10819 if (ada_is_tagged_type (type1, 1))
10820 {
10821 type = ada_lookup_struct_elt_type (type1,
10822 &exp->elts[pc + 2].string,
10823 1, 1, NULL);
10824
10825 /* If the field is not found, check if it exists in the
10826 extension of this object's type. This means that we
10827 need to evaluate completely the expression. */
10828
10829 if (type == NULL)
10830 {
10831 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10832 EVAL_NORMAL);
10833 arg1 = ada_value_struct_elt (arg1,
10834 &exp->elts[pc + 2].string,
10835 0);
10836 arg1 = unwrap_value (arg1);
10837 type = value_type (ada_to_fixed_value (arg1));
10838 }
10839 }
10840 else
10841 type =
10842 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10843 0, NULL);
10844
10845 return value_zero (ada_aligned_type (type), lval_memory);
10846 }
10847 else
10848 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10849 arg1 = unwrap_value (arg1);
10850 return ada_to_fixed_value (arg1);
10851
10852 case OP_TYPE:
10853 /* The value is not supposed to be used. This is here to make it
10854 easier to accommodate expressions that contain types. */
10855 (*pos) += 2;
10856 if (noside == EVAL_SKIP)
10857 goto nosideret;
10858 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10859 return allocate_value (exp->elts[pc + 1].type);
10860 else
10861 error (_("Attempt to use a type name as an expression"));
10862
10863 case OP_AGGREGATE:
10864 case OP_CHOICES:
10865 case OP_OTHERS:
10866 case OP_DISCRETE_RANGE:
10867 case OP_POSITIONAL:
10868 case OP_NAME:
10869 if (noside == EVAL_NORMAL)
10870 switch (op)
10871 {
10872 case OP_NAME:
10873 error (_("Undefined name, ambiguous name, or renaming used in "
10874 "component association: %s."), &exp->elts[pc+2].string);
10875 case OP_AGGREGATE:
10876 error (_("Aggregates only allowed on the right of an assignment"));
10877 default:
10878 internal_error (__FILE__, __LINE__,
10879 _("aggregate apparently mangled"));
10880 }
10881
10882 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10883 *pos += oplen - 1;
10884 for (tem = 0; tem < nargs; tem += 1)
10885 ada_evaluate_subexp (NULL, exp, pos, noside);
10886 goto nosideret;
10887 }
10888
10889 nosideret:
10890 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10891 }
10892 \f
10893
10894 /* Fixed point */
10895
10896 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10897 type name that encodes the 'small and 'delta information.
10898 Otherwise, return NULL. */
10899
10900 static const char *
10901 fixed_type_info (struct type *type)
10902 {
10903 const char *name = ada_type_name (type);
10904 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10905
10906 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10907 {
10908 const char *tail = strstr (name, "___XF_");
10909
10910 if (tail == NULL)
10911 return NULL;
10912 else
10913 return tail + 5;
10914 }
10915 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10916 return fixed_type_info (TYPE_TARGET_TYPE (type));
10917 else
10918 return NULL;
10919 }
10920
10921 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10922
10923 int
10924 ada_is_fixed_point_type (struct type *type)
10925 {
10926 return fixed_type_info (type) != NULL;
10927 }
10928
10929 /* Return non-zero iff TYPE represents a System.Address type. */
10930
10931 int
10932 ada_is_system_address_type (struct type *type)
10933 {
10934 return (TYPE_NAME (type)
10935 && strcmp (TYPE_NAME (type), "system__address") == 0);
10936 }
10937
10938 /* Assuming that TYPE is the representation of an Ada fixed-point
10939 type, return its delta, or -1 if the type is malformed and the
10940 delta cannot be determined. */
10941
10942 DOUBLEST
10943 ada_delta (struct type *type)
10944 {
10945 const char *encoding = fixed_type_info (type);
10946 DOUBLEST num, den;
10947
10948 /* Strictly speaking, num and den are encoded as integer. However,
10949 they may not fit into a long, and they will have to be converted
10950 to DOUBLEST anyway. So scan them as DOUBLEST. */
10951 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10952 &num, &den) < 2)
10953 return -1.0;
10954 else
10955 return num / den;
10956 }
10957
10958 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10959 factor ('SMALL value) associated with the type. */
10960
10961 static DOUBLEST
10962 scaling_factor (struct type *type)
10963 {
10964 const char *encoding = fixed_type_info (type);
10965 DOUBLEST num0, den0, num1, den1;
10966 int n;
10967
10968 /* Strictly speaking, num's and den's are encoded as integer. However,
10969 they may not fit into a long, and they will have to be converted
10970 to DOUBLEST anyway. So scan them as DOUBLEST. */
10971 n = sscanf (encoding,
10972 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10973 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10974 &num0, &den0, &num1, &den1);
10975
10976 if (n < 2)
10977 return 1.0;
10978 else if (n == 4)
10979 return num1 / den1;
10980 else
10981 return num0 / den0;
10982 }
10983
10984
10985 /* Assuming that X is the representation of a value of fixed-point
10986 type TYPE, return its floating-point equivalent. */
10987
10988 DOUBLEST
10989 ada_fixed_to_float (struct type *type, LONGEST x)
10990 {
10991 return (DOUBLEST) x *scaling_factor (type);
10992 }
10993
10994 /* The representation of a fixed-point value of type TYPE
10995 corresponding to the value X. */
10996
10997 LONGEST
10998 ada_float_to_fixed (struct type *type, DOUBLEST x)
10999 {
11000 return (LONGEST) (x / scaling_factor (type) + 0.5);
11001 }
11002
11003 \f
11004
11005 /* Range types */
11006
11007 /* Scan STR beginning at position K for a discriminant name, and
11008 return the value of that discriminant field of DVAL in *PX. If
11009 PNEW_K is not null, put the position of the character beyond the
11010 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11011 not alter *PX and *PNEW_K if unsuccessful. */
11012
11013 static int
11014 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
11015 int *pnew_k)
11016 {
11017 static char *bound_buffer = NULL;
11018 static size_t bound_buffer_len = 0;
11019 char *bound;
11020 char *pend;
11021 struct value *bound_val;
11022
11023 if (dval == NULL || str == NULL || str[k] == '\0')
11024 return 0;
11025
11026 pend = strstr (str + k, "__");
11027 if (pend == NULL)
11028 {
11029 bound = str + k;
11030 k += strlen (bound);
11031 }
11032 else
11033 {
11034 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
11035 bound = bound_buffer;
11036 strncpy (bound_buffer, str + k, pend - (str + k));
11037 bound[pend - (str + k)] = '\0';
11038 k = pend - str;
11039 }
11040
11041 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11042 if (bound_val == NULL)
11043 return 0;
11044
11045 *px = value_as_long (bound_val);
11046 if (pnew_k != NULL)
11047 *pnew_k = k;
11048 return 1;
11049 }
11050
11051 /* Value of variable named NAME in the current environment. If
11052 no such variable found, then if ERR_MSG is null, returns 0, and
11053 otherwise causes an error with message ERR_MSG. */
11054
11055 static struct value *
11056 get_var_value (char *name, char *err_msg)
11057 {
11058 struct ada_symbol_info *syms;
11059 int nsyms;
11060
11061 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11062 &syms);
11063
11064 if (nsyms != 1)
11065 {
11066 if (err_msg == NULL)
11067 return 0;
11068 else
11069 error (("%s"), err_msg);
11070 }
11071
11072 return value_of_variable (syms[0].sym, syms[0].block);
11073 }
11074
11075 /* Value of integer variable named NAME in the current environment. If
11076 no such variable found, returns 0, and sets *FLAG to 0. If
11077 successful, sets *FLAG to 1. */
11078
11079 LONGEST
11080 get_int_var_value (char *name, int *flag)
11081 {
11082 struct value *var_val = get_var_value (name, 0);
11083
11084 if (var_val == 0)
11085 {
11086 if (flag != NULL)
11087 *flag = 0;
11088 return 0;
11089 }
11090 else
11091 {
11092 if (flag != NULL)
11093 *flag = 1;
11094 return value_as_long (var_val);
11095 }
11096 }
11097
11098
11099 /* Return a range type whose base type is that of the range type named
11100 NAME in the current environment, and whose bounds are calculated
11101 from NAME according to the GNAT range encoding conventions.
11102 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11103 corresponding range type from debug information; fall back to using it
11104 if symbol lookup fails. If a new type must be created, allocate it
11105 like ORIG_TYPE was. The bounds information, in general, is encoded
11106 in NAME, the base type given in the named range type. */
11107
11108 static struct type *
11109 to_fixed_range_type (struct type *raw_type, struct value *dval)
11110 {
11111 const char *name;
11112 struct type *base_type;
11113 char *subtype_info;
11114
11115 gdb_assert (raw_type != NULL);
11116 gdb_assert (TYPE_NAME (raw_type) != NULL);
11117
11118 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11119 base_type = TYPE_TARGET_TYPE (raw_type);
11120 else
11121 base_type = raw_type;
11122
11123 name = TYPE_NAME (raw_type);
11124 subtype_info = strstr (name, "___XD");
11125 if (subtype_info == NULL)
11126 {
11127 LONGEST L = ada_discrete_type_low_bound (raw_type);
11128 LONGEST U = ada_discrete_type_high_bound (raw_type);
11129
11130 if (L < INT_MIN || U > INT_MAX)
11131 return raw_type;
11132 else
11133 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11134 L, U);
11135 }
11136 else
11137 {
11138 static char *name_buf = NULL;
11139 static size_t name_len = 0;
11140 int prefix_len = subtype_info - name;
11141 LONGEST L, U;
11142 struct type *type;
11143 char *bounds_str;
11144 int n;
11145
11146 GROW_VECT (name_buf, name_len, prefix_len + 5);
11147 strncpy (name_buf, name, prefix_len);
11148 name_buf[prefix_len] = '\0';
11149
11150 subtype_info += 5;
11151 bounds_str = strchr (subtype_info, '_');
11152 n = 1;
11153
11154 if (*subtype_info == 'L')
11155 {
11156 if (!ada_scan_number (bounds_str, n, &L, &n)
11157 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11158 return raw_type;
11159 if (bounds_str[n] == '_')
11160 n += 2;
11161 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11162 n += 1;
11163 subtype_info += 1;
11164 }
11165 else
11166 {
11167 int ok;
11168
11169 strcpy (name_buf + prefix_len, "___L");
11170 L = get_int_var_value (name_buf, &ok);
11171 if (!ok)
11172 {
11173 lim_warning (_("Unknown lower bound, using 1."));
11174 L = 1;
11175 }
11176 }
11177
11178 if (*subtype_info == 'U')
11179 {
11180 if (!ada_scan_number (bounds_str, n, &U, &n)
11181 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11182 return raw_type;
11183 }
11184 else
11185 {
11186 int ok;
11187
11188 strcpy (name_buf + prefix_len, "___U");
11189 U = get_int_var_value (name_buf, &ok);
11190 if (!ok)
11191 {
11192 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11193 U = L;
11194 }
11195 }
11196
11197 type = create_static_range_type (alloc_type_copy (raw_type),
11198 base_type, L, U);
11199 TYPE_NAME (type) = name;
11200 return type;
11201 }
11202 }
11203
11204 /* True iff NAME is the name of a range type. */
11205
11206 int
11207 ada_is_range_type_name (const char *name)
11208 {
11209 return (name != NULL && strstr (name, "___XD"));
11210 }
11211 \f
11212
11213 /* Modular types */
11214
11215 /* True iff TYPE is an Ada modular type. */
11216
11217 int
11218 ada_is_modular_type (struct type *type)
11219 {
11220 struct type *subranged_type = get_base_type (type);
11221
11222 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11223 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11224 && TYPE_UNSIGNED (subranged_type));
11225 }
11226
11227 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11228
11229 ULONGEST
11230 ada_modulus (struct type *type)
11231 {
11232 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11233 }
11234 \f
11235
11236 /* Ada exception catchpoint support:
11237 ---------------------------------
11238
11239 We support 3 kinds of exception catchpoints:
11240 . catchpoints on Ada exceptions
11241 . catchpoints on unhandled Ada exceptions
11242 . catchpoints on failed assertions
11243
11244 Exceptions raised during failed assertions, or unhandled exceptions
11245 could perfectly be caught with the general catchpoint on Ada exceptions.
11246 However, we can easily differentiate these two special cases, and having
11247 the option to distinguish these two cases from the rest can be useful
11248 to zero-in on certain situations.
11249
11250 Exception catchpoints are a specialized form of breakpoint,
11251 since they rely on inserting breakpoints inside known routines
11252 of the GNAT runtime. The implementation therefore uses a standard
11253 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11254 of breakpoint_ops.
11255
11256 Support in the runtime for exception catchpoints have been changed
11257 a few times already, and these changes affect the implementation
11258 of these catchpoints. In order to be able to support several
11259 variants of the runtime, we use a sniffer that will determine
11260 the runtime variant used by the program being debugged. */
11261
11262 /* Ada's standard exceptions. */
11263
11264 static char *standard_exc[] = {
11265 "constraint_error",
11266 "program_error",
11267 "storage_error",
11268 "tasking_error"
11269 };
11270
11271 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11272
11273 /* A structure that describes how to support exception catchpoints
11274 for a given executable. */
11275
11276 struct exception_support_info
11277 {
11278 /* The name of the symbol to break on in order to insert
11279 a catchpoint on exceptions. */
11280 const char *catch_exception_sym;
11281
11282 /* The name of the symbol to break on in order to insert
11283 a catchpoint on unhandled exceptions. */
11284 const char *catch_exception_unhandled_sym;
11285
11286 /* The name of the symbol to break on in order to insert
11287 a catchpoint on failed assertions. */
11288 const char *catch_assert_sym;
11289
11290 /* Assuming that the inferior just triggered an unhandled exception
11291 catchpoint, this function is responsible for returning the address
11292 in inferior memory where the name of that exception is stored.
11293 Return zero if the address could not be computed. */
11294 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11295 };
11296
11297 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11298 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11299
11300 /* The following exception support info structure describes how to
11301 implement exception catchpoints with the latest version of the
11302 Ada runtime (as of 2007-03-06). */
11303
11304 static const struct exception_support_info default_exception_support_info =
11305 {
11306 "__gnat_debug_raise_exception", /* catch_exception_sym */
11307 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11308 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11309 ada_unhandled_exception_name_addr
11310 };
11311
11312 /* The following exception support info structure describes how to
11313 implement exception catchpoints with a slightly older version
11314 of the Ada runtime. */
11315
11316 static const struct exception_support_info exception_support_info_fallback =
11317 {
11318 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11319 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11320 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11321 ada_unhandled_exception_name_addr_from_raise
11322 };
11323
11324 /* Return nonzero if we can detect the exception support routines
11325 described in EINFO.
11326
11327 This function errors out if an abnormal situation is detected
11328 (for instance, if we find the exception support routines, but
11329 that support is found to be incomplete). */
11330
11331 static int
11332 ada_has_this_exception_support (const struct exception_support_info *einfo)
11333 {
11334 struct symbol *sym;
11335
11336 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11337 that should be compiled with debugging information. As a result, we
11338 expect to find that symbol in the symtabs. */
11339
11340 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11341 if (sym == NULL)
11342 {
11343 /* Perhaps we did not find our symbol because the Ada runtime was
11344 compiled without debugging info, or simply stripped of it.
11345 It happens on some GNU/Linux distributions for instance, where
11346 users have to install a separate debug package in order to get
11347 the runtime's debugging info. In that situation, let the user
11348 know why we cannot insert an Ada exception catchpoint.
11349
11350 Note: Just for the purpose of inserting our Ada exception
11351 catchpoint, we could rely purely on the associated minimal symbol.
11352 But we would be operating in degraded mode anyway, since we are
11353 still lacking the debugging info needed later on to extract
11354 the name of the exception being raised (this name is printed in
11355 the catchpoint message, and is also used when trying to catch
11356 a specific exception). We do not handle this case for now. */
11357 struct bound_minimal_symbol msym
11358 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11359
11360 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11361 error (_("Your Ada runtime appears to be missing some debugging "
11362 "information.\nCannot insert Ada exception catchpoint "
11363 "in this configuration."));
11364
11365 return 0;
11366 }
11367
11368 /* Make sure that the symbol we found corresponds to a function. */
11369
11370 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11371 error (_("Symbol \"%s\" is not a function (class = %d)"),
11372 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11373
11374 return 1;
11375 }
11376
11377 /* Inspect the Ada runtime and determine which exception info structure
11378 should be used to provide support for exception catchpoints.
11379
11380 This function will always set the per-inferior exception_info,
11381 or raise an error. */
11382
11383 static void
11384 ada_exception_support_info_sniffer (void)
11385 {
11386 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11387
11388 /* If the exception info is already known, then no need to recompute it. */
11389 if (data->exception_info != NULL)
11390 return;
11391
11392 /* Check the latest (default) exception support info. */
11393 if (ada_has_this_exception_support (&default_exception_support_info))
11394 {
11395 data->exception_info = &default_exception_support_info;
11396 return;
11397 }
11398
11399 /* Try our fallback exception suport info. */
11400 if (ada_has_this_exception_support (&exception_support_info_fallback))
11401 {
11402 data->exception_info = &exception_support_info_fallback;
11403 return;
11404 }
11405
11406 /* Sometimes, it is normal for us to not be able to find the routine
11407 we are looking for. This happens when the program is linked with
11408 the shared version of the GNAT runtime, and the program has not been
11409 started yet. Inform the user of these two possible causes if
11410 applicable. */
11411
11412 if (ada_update_initial_language (language_unknown) != language_ada)
11413 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11414
11415 /* If the symbol does not exist, then check that the program is
11416 already started, to make sure that shared libraries have been
11417 loaded. If it is not started, this may mean that the symbol is
11418 in a shared library. */
11419
11420 if (ptid_get_pid (inferior_ptid) == 0)
11421 error (_("Unable to insert catchpoint. Try to start the program first."));
11422
11423 /* At this point, we know that we are debugging an Ada program and
11424 that the inferior has been started, but we still are not able to
11425 find the run-time symbols. That can mean that we are in
11426 configurable run time mode, or that a-except as been optimized
11427 out by the linker... In any case, at this point it is not worth
11428 supporting this feature. */
11429
11430 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11431 }
11432
11433 /* True iff FRAME is very likely to be that of a function that is
11434 part of the runtime system. This is all very heuristic, but is
11435 intended to be used as advice as to what frames are uninteresting
11436 to most users. */
11437
11438 static int
11439 is_known_support_routine (struct frame_info *frame)
11440 {
11441 struct symtab_and_line sal;
11442 char *func_name;
11443 enum language func_lang;
11444 int i;
11445 const char *fullname;
11446
11447 /* If this code does not have any debugging information (no symtab),
11448 This cannot be any user code. */
11449
11450 find_frame_sal (frame, &sal);
11451 if (sal.symtab == NULL)
11452 return 1;
11453
11454 /* If there is a symtab, but the associated source file cannot be
11455 located, then assume this is not user code: Selecting a frame
11456 for which we cannot display the code would not be very helpful
11457 for the user. This should also take care of case such as VxWorks
11458 where the kernel has some debugging info provided for a few units. */
11459
11460 fullname = symtab_to_fullname (sal.symtab);
11461 if (access (fullname, R_OK) != 0)
11462 return 1;
11463
11464 /* Check the unit filename againt the Ada runtime file naming.
11465 We also check the name of the objfile against the name of some
11466 known system libraries that sometimes come with debugging info
11467 too. */
11468
11469 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11470 {
11471 re_comp (known_runtime_file_name_patterns[i]);
11472 if (re_exec (lbasename (sal.symtab->filename)))
11473 return 1;
11474 if (sal.symtab->objfile != NULL
11475 && re_exec (objfile_name (sal.symtab->objfile)))
11476 return 1;
11477 }
11478
11479 /* Check whether the function is a GNAT-generated entity. */
11480
11481 find_frame_funname (frame, &func_name, &func_lang, NULL);
11482 if (func_name == NULL)
11483 return 1;
11484
11485 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11486 {
11487 re_comp (known_auxiliary_function_name_patterns[i]);
11488 if (re_exec (func_name))
11489 {
11490 xfree (func_name);
11491 return 1;
11492 }
11493 }
11494
11495 xfree (func_name);
11496 return 0;
11497 }
11498
11499 /* Find the first frame that contains debugging information and that is not
11500 part of the Ada run-time, starting from FI and moving upward. */
11501
11502 void
11503 ada_find_printable_frame (struct frame_info *fi)
11504 {
11505 for (; fi != NULL; fi = get_prev_frame (fi))
11506 {
11507 if (!is_known_support_routine (fi))
11508 {
11509 select_frame (fi);
11510 break;
11511 }
11512 }
11513
11514 }
11515
11516 /* Assuming that the inferior just triggered an unhandled exception
11517 catchpoint, return the address in inferior memory where the name
11518 of the exception is stored.
11519
11520 Return zero if the address could not be computed. */
11521
11522 static CORE_ADDR
11523 ada_unhandled_exception_name_addr (void)
11524 {
11525 return parse_and_eval_address ("e.full_name");
11526 }
11527
11528 /* Same as ada_unhandled_exception_name_addr, except that this function
11529 should be used when the inferior uses an older version of the runtime,
11530 where the exception name needs to be extracted from a specific frame
11531 several frames up in the callstack. */
11532
11533 static CORE_ADDR
11534 ada_unhandled_exception_name_addr_from_raise (void)
11535 {
11536 int frame_level;
11537 struct frame_info *fi;
11538 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11539 struct cleanup *old_chain;
11540
11541 /* To determine the name of this exception, we need to select
11542 the frame corresponding to RAISE_SYM_NAME. This frame is
11543 at least 3 levels up, so we simply skip the first 3 frames
11544 without checking the name of their associated function. */
11545 fi = get_current_frame ();
11546 for (frame_level = 0; frame_level < 3; frame_level += 1)
11547 if (fi != NULL)
11548 fi = get_prev_frame (fi);
11549
11550 old_chain = make_cleanup (null_cleanup, NULL);
11551 while (fi != NULL)
11552 {
11553 char *func_name;
11554 enum language func_lang;
11555
11556 find_frame_funname (fi, &func_name, &func_lang, NULL);
11557 if (func_name != NULL)
11558 {
11559 make_cleanup (xfree, func_name);
11560
11561 if (strcmp (func_name,
11562 data->exception_info->catch_exception_sym) == 0)
11563 break; /* We found the frame we were looking for... */
11564 fi = get_prev_frame (fi);
11565 }
11566 }
11567 do_cleanups (old_chain);
11568
11569 if (fi == NULL)
11570 return 0;
11571
11572 select_frame (fi);
11573 return parse_and_eval_address ("id.full_name");
11574 }
11575
11576 /* Assuming the inferior just triggered an Ada exception catchpoint
11577 (of any type), return the address in inferior memory where the name
11578 of the exception is stored, if applicable.
11579
11580 Return zero if the address could not be computed, or if not relevant. */
11581
11582 static CORE_ADDR
11583 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11584 struct breakpoint *b)
11585 {
11586 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11587
11588 switch (ex)
11589 {
11590 case ada_catch_exception:
11591 return (parse_and_eval_address ("e.full_name"));
11592 break;
11593
11594 case ada_catch_exception_unhandled:
11595 return data->exception_info->unhandled_exception_name_addr ();
11596 break;
11597
11598 case ada_catch_assert:
11599 return 0; /* Exception name is not relevant in this case. */
11600 break;
11601
11602 default:
11603 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11604 break;
11605 }
11606
11607 return 0; /* Should never be reached. */
11608 }
11609
11610 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11611 any error that ada_exception_name_addr_1 might cause to be thrown.
11612 When an error is intercepted, a warning with the error message is printed,
11613 and zero is returned. */
11614
11615 static CORE_ADDR
11616 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11617 struct breakpoint *b)
11618 {
11619 volatile struct gdb_exception e;
11620 CORE_ADDR result = 0;
11621
11622 TRY_CATCH (e, RETURN_MASK_ERROR)
11623 {
11624 result = ada_exception_name_addr_1 (ex, b);
11625 }
11626
11627 if (e.reason < 0)
11628 {
11629 warning (_("failed to get exception name: %s"), e.message);
11630 return 0;
11631 }
11632
11633 return result;
11634 }
11635
11636 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11637
11638 /* Ada catchpoints.
11639
11640 In the case of catchpoints on Ada exceptions, the catchpoint will
11641 stop the target on every exception the program throws. When a user
11642 specifies the name of a specific exception, we translate this
11643 request into a condition expression (in text form), and then parse
11644 it into an expression stored in each of the catchpoint's locations.
11645 We then use this condition to check whether the exception that was
11646 raised is the one the user is interested in. If not, then the
11647 target is resumed again. We store the name of the requested
11648 exception, in order to be able to re-set the condition expression
11649 when symbols change. */
11650
11651 /* An instance of this type is used to represent an Ada catchpoint
11652 breakpoint location. It includes a "struct bp_location" as a kind
11653 of base class; users downcast to "struct bp_location *" when
11654 needed. */
11655
11656 struct ada_catchpoint_location
11657 {
11658 /* The base class. */
11659 struct bp_location base;
11660
11661 /* The condition that checks whether the exception that was raised
11662 is the specific exception the user specified on catchpoint
11663 creation. */
11664 struct expression *excep_cond_expr;
11665 };
11666
11667 /* Implement the DTOR method in the bp_location_ops structure for all
11668 Ada exception catchpoint kinds. */
11669
11670 static void
11671 ada_catchpoint_location_dtor (struct bp_location *bl)
11672 {
11673 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11674
11675 xfree (al->excep_cond_expr);
11676 }
11677
11678 /* The vtable to be used in Ada catchpoint locations. */
11679
11680 static const struct bp_location_ops ada_catchpoint_location_ops =
11681 {
11682 ada_catchpoint_location_dtor
11683 };
11684
11685 /* An instance of this type is used to represent an Ada catchpoint.
11686 It includes a "struct breakpoint" as a kind of base class; users
11687 downcast to "struct breakpoint *" when needed. */
11688
11689 struct ada_catchpoint
11690 {
11691 /* The base class. */
11692 struct breakpoint base;
11693
11694 /* The name of the specific exception the user specified. */
11695 char *excep_string;
11696 };
11697
11698 /* Parse the exception condition string in the context of each of the
11699 catchpoint's locations, and store them for later evaluation. */
11700
11701 static void
11702 create_excep_cond_exprs (struct ada_catchpoint *c)
11703 {
11704 struct cleanup *old_chain;
11705 struct bp_location *bl;
11706 char *cond_string;
11707
11708 /* Nothing to do if there's no specific exception to catch. */
11709 if (c->excep_string == NULL)
11710 return;
11711
11712 /* Same if there are no locations... */
11713 if (c->base.loc == NULL)
11714 return;
11715
11716 /* Compute the condition expression in text form, from the specific
11717 expection we want to catch. */
11718 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11719 old_chain = make_cleanup (xfree, cond_string);
11720
11721 /* Iterate over all the catchpoint's locations, and parse an
11722 expression for each. */
11723 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11724 {
11725 struct ada_catchpoint_location *ada_loc
11726 = (struct ada_catchpoint_location *) bl;
11727 struct expression *exp = NULL;
11728
11729 if (!bl->shlib_disabled)
11730 {
11731 volatile struct gdb_exception e;
11732 const char *s;
11733
11734 s = cond_string;
11735 TRY_CATCH (e, RETURN_MASK_ERROR)
11736 {
11737 exp = parse_exp_1 (&s, bl->address,
11738 block_for_pc (bl->address), 0);
11739 }
11740 if (e.reason < 0)
11741 {
11742 warning (_("failed to reevaluate internal exception condition "
11743 "for catchpoint %d: %s"),
11744 c->base.number, e.message);
11745 /* There is a bug in GCC on sparc-solaris when building with
11746 optimization which causes EXP to change unexpectedly
11747 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11748 The problem should be fixed starting with GCC 4.9.
11749 In the meantime, work around it by forcing EXP back
11750 to NULL. */
11751 exp = NULL;
11752 }
11753 }
11754
11755 ada_loc->excep_cond_expr = exp;
11756 }
11757
11758 do_cleanups (old_chain);
11759 }
11760
11761 /* Implement the DTOR method in the breakpoint_ops structure for all
11762 exception catchpoint kinds. */
11763
11764 static void
11765 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11766 {
11767 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11768
11769 xfree (c->excep_string);
11770
11771 bkpt_breakpoint_ops.dtor (b);
11772 }
11773
11774 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11775 structure for all exception catchpoint kinds. */
11776
11777 static struct bp_location *
11778 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11779 struct breakpoint *self)
11780 {
11781 struct ada_catchpoint_location *loc;
11782
11783 loc = XNEW (struct ada_catchpoint_location);
11784 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11785 loc->excep_cond_expr = NULL;
11786 return &loc->base;
11787 }
11788
11789 /* Implement the RE_SET method in the breakpoint_ops structure for all
11790 exception catchpoint kinds. */
11791
11792 static void
11793 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11794 {
11795 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11796
11797 /* Call the base class's method. This updates the catchpoint's
11798 locations. */
11799 bkpt_breakpoint_ops.re_set (b);
11800
11801 /* Reparse the exception conditional expressions. One for each
11802 location. */
11803 create_excep_cond_exprs (c);
11804 }
11805
11806 /* Returns true if we should stop for this breakpoint hit. If the
11807 user specified a specific exception, we only want to cause a stop
11808 if the program thrown that exception. */
11809
11810 static int
11811 should_stop_exception (const struct bp_location *bl)
11812 {
11813 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11814 const struct ada_catchpoint_location *ada_loc
11815 = (const struct ada_catchpoint_location *) bl;
11816 volatile struct gdb_exception ex;
11817 int stop;
11818
11819 /* With no specific exception, should always stop. */
11820 if (c->excep_string == NULL)
11821 return 1;
11822
11823 if (ada_loc->excep_cond_expr == NULL)
11824 {
11825 /* We will have a NULL expression if back when we were creating
11826 the expressions, this location's had failed to parse. */
11827 return 1;
11828 }
11829
11830 stop = 1;
11831 TRY_CATCH (ex, RETURN_MASK_ALL)
11832 {
11833 struct value *mark;
11834
11835 mark = value_mark ();
11836 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11837 value_free_to_mark (mark);
11838 }
11839 if (ex.reason < 0)
11840 exception_fprintf (gdb_stderr, ex,
11841 _("Error in testing exception condition:\n"));
11842 return stop;
11843 }
11844
11845 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11846 for all exception catchpoint kinds. */
11847
11848 static void
11849 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11850 {
11851 bs->stop = should_stop_exception (bs->bp_location_at);
11852 }
11853
11854 /* Implement the PRINT_IT method in the breakpoint_ops structure
11855 for all exception catchpoint kinds. */
11856
11857 static enum print_stop_action
11858 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11859 {
11860 struct ui_out *uiout = current_uiout;
11861 struct breakpoint *b = bs->breakpoint_at;
11862
11863 annotate_catchpoint (b->number);
11864
11865 if (ui_out_is_mi_like_p (uiout))
11866 {
11867 ui_out_field_string (uiout, "reason",
11868 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11869 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11870 }
11871
11872 ui_out_text (uiout,
11873 b->disposition == disp_del ? "\nTemporary catchpoint "
11874 : "\nCatchpoint ");
11875 ui_out_field_int (uiout, "bkptno", b->number);
11876 ui_out_text (uiout, ", ");
11877
11878 switch (ex)
11879 {
11880 case ada_catch_exception:
11881 case ada_catch_exception_unhandled:
11882 {
11883 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11884 char exception_name[256];
11885
11886 if (addr != 0)
11887 {
11888 read_memory (addr, (gdb_byte *) exception_name,
11889 sizeof (exception_name) - 1);
11890 exception_name [sizeof (exception_name) - 1] = '\0';
11891 }
11892 else
11893 {
11894 /* For some reason, we were unable to read the exception
11895 name. This could happen if the Runtime was compiled
11896 without debugging info, for instance. In that case,
11897 just replace the exception name by the generic string
11898 "exception" - it will read as "an exception" in the
11899 notification we are about to print. */
11900 memcpy (exception_name, "exception", sizeof ("exception"));
11901 }
11902 /* In the case of unhandled exception breakpoints, we print
11903 the exception name as "unhandled EXCEPTION_NAME", to make
11904 it clearer to the user which kind of catchpoint just got
11905 hit. We used ui_out_text to make sure that this extra
11906 info does not pollute the exception name in the MI case. */
11907 if (ex == ada_catch_exception_unhandled)
11908 ui_out_text (uiout, "unhandled ");
11909 ui_out_field_string (uiout, "exception-name", exception_name);
11910 }
11911 break;
11912 case ada_catch_assert:
11913 /* In this case, the name of the exception is not really
11914 important. Just print "failed assertion" to make it clearer
11915 that his program just hit an assertion-failure catchpoint.
11916 We used ui_out_text because this info does not belong in
11917 the MI output. */
11918 ui_out_text (uiout, "failed assertion");
11919 break;
11920 }
11921 ui_out_text (uiout, " at ");
11922 ada_find_printable_frame (get_current_frame ());
11923
11924 return PRINT_SRC_AND_LOC;
11925 }
11926
11927 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11928 for all exception catchpoint kinds. */
11929
11930 static void
11931 print_one_exception (enum ada_exception_catchpoint_kind ex,
11932 struct breakpoint *b, struct bp_location **last_loc)
11933 {
11934 struct ui_out *uiout = current_uiout;
11935 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11936 struct value_print_options opts;
11937
11938 get_user_print_options (&opts);
11939 if (opts.addressprint)
11940 {
11941 annotate_field (4);
11942 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11943 }
11944
11945 annotate_field (5);
11946 *last_loc = b->loc;
11947 switch (ex)
11948 {
11949 case ada_catch_exception:
11950 if (c->excep_string != NULL)
11951 {
11952 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11953
11954 ui_out_field_string (uiout, "what", msg);
11955 xfree (msg);
11956 }
11957 else
11958 ui_out_field_string (uiout, "what", "all Ada exceptions");
11959
11960 break;
11961
11962 case ada_catch_exception_unhandled:
11963 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11964 break;
11965
11966 case ada_catch_assert:
11967 ui_out_field_string (uiout, "what", "failed Ada assertions");
11968 break;
11969
11970 default:
11971 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11972 break;
11973 }
11974 }
11975
11976 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11977 for all exception catchpoint kinds. */
11978
11979 static void
11980 print_mention_exception (enum ada_exception_catchpoint_kind ex,
11981 struct breakpoint *b)
11982 {
11983 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11984 struct ui_out *uiout = current_uiout;
11985
11986 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11987 : _("Catchpoint "));
11988 ui_out_field_int (uiout, "bkptno", b->number);
11989 ui_out_text (uiout, ": ");
11990
11991 switch (ex)
11992 {
11993 case ada_catch_exception:
11994 if (c->excep_string != NULL)
11995 {
11996 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11997 struct cleanup *old_chain = make_cleanup (xfree, info);
11998
11999 ui_out_text (uiout, info);
12000 do_cleanups (old_chain);
12001 }
12002 else
12003 ui_out_text (uiout, _("all Ada exceptions"));
12004 break;
12005
12006 case ada_catch_exception_unhandled:
12007 ui_out_text (uiout, _("unhandled Ada exceptions"));
12008 break;
12009
12010 case ada_catch_assert:
12011 ui_out_text (uiout, _("failed Ada assertions"));
12012 break;
12013
12014 default:
12015 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12016 break;
12017 }
12018 }
12019
12020 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12021 for all exception catchpoint kinds. */
12022
12023 static void
12024 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12025 struct breakpoint *b, struct ui_file *fp)
12026 {
12027 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12028
12029 switch (ex)
12030 {
12031 case ada_catch_exception:
12032 fprintf_filtered (fp, "catch exception");
12033 if (c->excep_string != NULL)
12034 fprintf_filtered (fp, " %s", c->excep_string);
12035 break;
12036
12037 case ada_catch_exception_unhandled:
12038 fprintf_filtered (fp, "catch exception unhandled");
12039 break;
12040
12041 case ada_catch_assert:
12042 fprintf_filtered (fp, "catch assert");
12043 break;
12044
12045 default:
12046 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12047 }
12048 print_recreate_thread (b, fp);
12049 }
12050
12051 /* Virtual table for "catch exception" breakpoints. */
12052
12053 static void
12054 dtor_catch_exception (struct breakpoint *b)
12055 {
12056 dtor_exception (ada_catch_exception, b);
12057 }
12058
12059 static struct bp_location *
12060 allocate_location_catch_exception (struct breakpoint *self)
12061 {
12062 return allocate_location_exception (ada_catch_exception, self);
12063 }
12064
12065 static void
12066 re_set_catch_exception (struct breakpoint *b)
12067 {
12068 re_set_exception (ada_catch_exception, b);
12069 }
12070
12071 static void
12072 check_status_catch_exception (bpstat bs)
12073 {
12074 check_status_exception (ada_catch_exception, bs);
12075 }
12076
12077 static enum print_stop_action
12078 print_it_catch_exception (bpstat bs)
12079 {
12080 return print_it_exception (ada_catch_exception, bs);
12081 }
12082
12083 static void
12084 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12085 {
12086 print_one_exception (ada_catch_exception, b, last_loc);
12087 }
12088
12089 static void
12090 print_mention_catch_exception (struct breakpoint *b)
12091 {
12092 print_mention_exception (ada_catch_exception, b);
12093 }
12094
12095 static void
12096 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12097 {
12098 print_recreate_exception (ada_catch_exception, b, fp);
12099 }
12100
12101 static struct breakpoint_ops catch_exception_breakpoint_ops;
12102
12103 /* Virtual table for "catch exception unhandled" breakpoints. */
12104
12105 static void
12106 dtor_catch_exception_unhandled (struct breakpoint *b)
12107 {
12108 dtor_exception (ada_catch_exception_unhandled, b);
12109 }
12110
12111 static struct bp_location *
12112 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12113 {
12114 return allocate_location_exception (ada_catch_exception_unhandled, self);
12115 }
12116
12117 static void
12118 re_set_catch_exception_unhandled (struct breakpoint *b)
12119 {
12120 re_set_exception (ada_catch_exception_unhandled, b);
12121 }
12122
12123 static void
12124 check_status_catch_exception_unhandled (bpstat bs)
12125 {
12126 check_status_exception (ada_catch_exception_unhandled, bs);
12127 }
12128
12129 static enum print_stop_action
12130 print_it_catch_exception_unhandled (bpstat bs)
12131 {
12132 return print_it_exception (ada_catch_exception_unhandled, bs);
12133 }
12134
12135 static void
12136 print_one_catch_exception_unhandled (struct breakpoint *b,
12137 struct bp_location **last_loc)
12138 {
12139 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12140 }
12141
12142 static void
12143 print_mention_catch_exception_unhandled (struct breakpoint *b)
12144 {
12145 print_mention_exception (ada_catch_exception_unhandled, b);
12146 }
12147
12148 static void
12149 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12150 struct ui_file *fp)
12151 {
12152 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12153 }
12154
12155 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12156
12157 /* Virtual table for "catch assert" breakpoints. */
12158
12159 static void
12160 dtor_catch_assert (struct breakpoint *b)
12161 {
12162 dtor_exception (ada_catch_assert, b);
12163 }
12164
12165 static struct bp_location *
12166 allocate_location_catch_assert (struct breakpoint *self)
12167 {
12168 return allocate_location_exception (ada_catch_assert, self);
12169 }
12170
12171 static void
12172 re_set_catch_assert (struct breakpoint *b)
12173 {
12174 re_set_exception (ada_catch_assert, b);
12175 }
12176
12177 static void
12178 check_status_catch_assert (bpstat bs)
12179 {
12180 check_status_exception (ada_catch_assert, bs);
12181 }
12182
12183 static enum print_stop_action
12184 print_it_catch_assert (bpstat bs)
12185 {
12186 return print_it_exception (ada_catch_assert, bs);
12187 }
12188
12189 static void
12190 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12191 {
12192 print_one_exception (ada_catch_assert, b, last_loc);
12193 }
12194
12195 static void
12196 print_mention_catch_assert (struct breakpoint *b)
12197 {
12198 print_mention_exception (ada_catch_assert, b);
12199 }
12200
12201 static void
12202 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12203 {
12204 print_recreate_exception (ada_catch_assert, b, fp);
12205 }
12206
12207 static struct breakpoint_ops catch_assert_breakpoint_ops;
12208
12209 /* Return a newly allocated copy of the first space-separated token
12210 in ARGSP, and then adjust ARGSP to point immediately after that
12211 token.
12212
12213 Return NULL if ARGPS does not contain any more tokens. */
12214
12215 static char *
12216 ada_get_next_arg (char **argsp)
12217 {
12218 char *args = *argsp;
12219 char *end;
12220 char *result;
12221
12222 args = skip_spaces (args);
12223 if (args[0] == '\0')
12224 return NULL; /* No more arguments. */
12225
12226 /* Find the end of the current argument. */
12227
12228 end = skip_to_space (args);
12229
12230 /* Adjust ARGSP to point to the start of the next argument. */
12231
12232 *argsp = end;
12233
12234 /* Make a copy of the current argument and return it. */
12235
12236 result = xmalloc (end - args + 1);
12237 strncpy (result, args, end - args);
12238 result[end - args] = '\0';
12239
12240 return result;
12241 }
12242
12243 /* Split the arguments specified in a "catch exception" command.
12244 Set EX to the appropriate catchpoint type.
12245 Set EXCEP_STRING to the name of the specific exception if
12246 specified by the user.
12247 If a condition is found at the end of the arguments, the condition
12248 expression is stored in COND_STRING (memory must be deallocated
12249 after use). Otherwise COND_STRING is set to NULL. */
12250
12251 static void
12252 catch_ada_exception_command_split (char *args,
12253 enum ada_exception_catchpoint_kind *ex,
12254 char **excep_string,
12255 char **cond_string)
12256 {
12257 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12258 char *exception_name;
12259 char *cond = NULL;
12260
12261 exception_name = ada_get_next_arg (&args);
12262 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12263 {
12264 /* This is not an exception name; this is the start of a condition
12265 expression for a catchpoint on all exceptions. So, "un-get"
12266 this token, and set exception_name to NULL. */
12267 xfree (exception_name);
12268 exception_name = NULL;
12269 args -= 2;
12270 }
12271 make_cleanup (xfree, exception_name);
12272
12273 /* Check to see if we have a condition. */
12274
12275 args = skip_spaces (args);
12276 if (strncmp (args, "if", 2) == 0
12277 && (isspace (args[2]) || args[2] == '\0'))
12278 {
12279 args += 2;
12280 args = skip_spaces (args);
12281
12282 if (args[0] == '\0')
12283 error (_("Condition missing after `if' keyword"));
12284 cond = xstrdup (args);
12285 make_cleanup (xfree, cond);
12286
12287 args += strlen (args);
12288 }
12289
12290 /* Check that we do not have any more arguments. Anything else
12291 is unexpected. */
12292
12293 if (args[0] != '\0')
12294 error (_("Junk at end of expression"));
12295
12296 discard_cleanups (old_chain);
12297
12298 if (exception_name == NULL)
12299 {
12300 /* Catch all exceptions. */
12301 *ex = ada_catch_exception;
12302 *excep_string = NULL;
12303 }
12304 else if (strcmp (exception_name, "unhandled") == 0)
12305 {
12306 /* Catch unhandled exceptions. */
12307 *ex = ada_catch_exception_unhandled;
12308 *excep_string = NULL;
12309 }
12310 else
12311 {
12312 /* Catch a specific exception. */
12313 *ex = ada_catch_exception;
12314 *excep_string = exception_name;
12315 }
12316 *cond_string = cond;
12317 }
12318
12319 /* Return the name of the symbol on which we should break in order to
12320 implement a catchpoint of the EX kind. */
12321
12322 static const char *
12323 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12324 {
12325 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12326
12327 gdb_assert (data->exception_info != NULL);
12328
12329 switch (ex)
12330 {
12331 case ada_catch_exception:
12332 return (data->exception_info->catch_exception_sym);
12333 break;
12334 case ada_catch_exception_unhandled:
12335 return (data->exception_info->catch_exception_unhandled_sym);
12336 break;
12337 case ada_catch_assert:
12338 return (data->exception_info->catch_assert_sym);
12339 break;
12340 default:
12341 internal_error (__FILE__, __LINE__,
12342 _("unexpected catchpoint kind (%d)"), ex);
12343 }
12344 }
12345
12346 /* Return the breakpoint ops "virtual table" used for catchpoints
12347 of the EX kind. */
12348
12349 static const struct breakpoint_ops *
12350 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12351 {
12352 switch (ex)
12353 {
12354 case ada_catch_exception:
12355 return (&catch_exception_breakpoint_ops);
12356 break;
12357 case ada_catch_exception_unhandled:
12358 return (&catch_exception_unhandled_breakpoint_ops);
12359 break;
12360 case ada_catch_assert:
12361 return (&catch_assert_breakpoint_ops);
12362 break;
12363 default:
12364 internal_error (__FILE__, __LINE__,
12365 _("unexpected catchpoint kind (%d)"), ex);
12366 }
12367 }
12368
12369 /* Return the condition that will be used to match the current exception
12370 being raised with the exception that the user wants to catch. This
12371 assumes that this condition is used when the inferior just triggered
12372 an exception catchpoint.
12373
12374 The string returned is a newly allocated string that needs to be
12375 deallocated later. */
12376
12377 static char *
12378 ada_exception_catchpoint_cond_string (const char *excep_string)
12379 {
12380 int i;
12381
12382 /* The standard exceptions are a special case. They are defined in
12383 runtime units that have been compiled without debugging info; if
12384 EXCEP_STRING is the not-fully-qualified name of a standard
12385 exception (e.g. "constraint_error") then, during the evaluation
12386 of the condition expression, the symbol lookup on this name would
12387 *not* return this standard exception. The catchpoint condition
12388 may then be set only on user-defined exceptions which have the
12389 same not-fully-qualified name (e.g. my_package.constraint_error).
12390
12391 To avoid this unexcepted behavior, these standard exceptions are
12392 systematically prefixed by "standard". This means that "catch
12393 exception constraint_error" is rewritten into "catch exception
12394 standard.constraint_error".
12395
12396 If an exception named contraint_error is defined in another package of
12397 the inferior program, then the only way to specify this exception as a
12398 breakpoint condition is to use its fully-qualified named:
12399 e.g. my_package.constraint_error. */
12400
12401 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12402 {
12403 if (strcmp (standard_exc [i], excep_string) == 0)
12404 {
12405 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12406 excep_string);
12407 }
12408 }
12409 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12410 }
12411
12412 /* Return the symtab_and_line that should be used to insert an exception
12413 catchpoint of the TYPE kind.
12414
12415 EXCEP_STRING should contain the name of a specific exception that
12416 the catchpoint should catch, or NULL otherwise.
12417
12418 ADDR_STRING returns the name of the function where the real
12419 breakpoint that implements the catchpoints is set, depending on the
12420 type of catchpoint we need to create. */
12421
12422 static struct symtab_and_line
12423 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12424 char **addr_string, const struct breakpoint_ops **ops)
12425 {
12426 const char *sym_name;
12427 struct symbol *sym;
12428
12429 /* First, find out which exception support info to use. */
12430 ada_exception_support_info_sniffer ();
12431
12432 /* Then lookup the function on which we will break in order to catch
12433 the Ada exceptions requested by the user. */
12434 sym_name = ada_exception_sym_name (ex);
12435 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12436
12437 /* We can assume that SYM is not NULL at this stage. If the symbol
12438 did not exist, ada_exception_support_info_sniffer would have
12439 raised an exception.
12440
12441 Also, ada_exception_support_info_sniffer should have already
12442 verified that SYM is a function symbol. */
12443 gdb_assert (sym != NULL);
12444 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12445
12446 /* Set ADDR_STRING. */
12447 *addr_string = xstrdup (sym_name);
12448
12449 /* Set OPS. */
12450 *ops = ada_exception_breakpoint_ops (ex);
12451
12452 return find_function_start_sal (sym, 1);
12453 }
12454
12455 /* Create an Ada exception catchpoint.
12456
12457 EX_KIND is the kind of exception catchpoint to be created.
12458
12459 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12460 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12461 of the exception to which this catchpoint applies. When not NULL,
12462 the string must be allocated on the heap, and its deallocation
12463 is no longer the responsibility of the caller.
12464
12465 COND_STRING, if not NULL, is the catchpoint condition. This string
12466 must be allocated on the heap, and its deallocation is no longer
12467 the responsibility of the caller.
12468
12469 TEMPFLAG, if nonzero, means that the underlying breakpoint
12470 should be temporary.
12471
12472 FROM_TTY is the usual argument passed to all commands implementations. */
12473
12474 void
12475 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12476 enum ada_exception_catchpoint_kind ex_kind,
12477 char *excep_string,
12478 char *cond_string,
12479 int tempflag,
12480 int disabled,
12481 int from_tty)
12482 {
12483 struct ada_catchpoint *c;
12484 char *addr_string = NULL;
12485 const struct breakpoint_ops *ops = NULL;
12486 struct symtab_and_line sal
12487 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12488
12489 c = XNEW (struct ada_catchpoint);
12490 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12491 ops, tempflag, disabled, from_tty);
12492 c->excep_string = excep_string;
12493 create_excep_cond_exprs (c);
12494 if (cond_string != NULL)
12495 set_breakpoint_condition (&c->base, cond_string, from_tty);
12496 install_breakpoint (0, &c->base, 1);
12497 }
12498
12499 /* Implement the "catch exception" command. */
12500
12501 static void
12502 catch_ada_exception_command (char *arg, int from_tty,
12503 struct cmd_list_element *command)
12504 {
12505 struct gdbarch *gdbarch = get_current_arch ();
12506 int tempflag;
12507 enum ada_exception_catchpoint_kind ex_kind;
12508 char *excep_string = NULL;
12509 char *cond_string = NULL;
12510
12511 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12512
12513 if (!arg)
12514 arg = "";
12515 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12516 &cond_string);
12517 create_ada_exception_catchpoint (gdbarch, ex_kind,
12518 excep_string, cond_string,
12519 tempflag, 1 /* enabled */,
12520 from_tty);
12521 }
12522
12523 /* Split the arguments specified in a "catch assert" command.
12524
12525 ARGS contains the command's arguments (or the empty string if
12526 no arguments were passed).
12527
12528 If ARGS contains a condition, set COND_STRING to that condition
12529 (the memory needs to be deallocated after use). */
12530
12531 static void
12532 catch_ada_assert_command_split (char *args, char **cond_string)
12533 {
12534 args = skip_spaces (args);
12535
12536 /* Check whether a condition was provided. */
12537 if (strncmp (args, "if", 2) == 0
12538 && (isspace (args[2]) || args[2] == '\0'))
12539 {
12540 args += 2;
12541 args = skip_spaces (args);
12542 if (args[0] == '\0')
12543 error (_("condition missing after `if' keyword"));
12544 *cond_string = xstrdup (args);
12545 }
12546
12547 /* Otherwise, there should be no other argument at the end of
12548 the command. */
12549 else if (args[0] != '\0')
12550 error (_("Junk at end of arguments."));
12551 }
12552
12553 /* Implement the "catch assert" command. */
12554
12555 static void
12556 catch_assert_command (char *arg, int from_tty,
12557 struct cmd_list_element *command)
12558 {
12559 struct gdbarch *gdbarch = get_current_arch ();
12560 int tempflag;
12561 char *cond_string = NULL;
12562
12563 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12564
12565 if (!arg)
12566 arg = "";
12567 catch_ada_assert_command_split (arg, &cond_string);
12568 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12569 NULL, cond_string,
12570 tempflag, 1 /* enabled */,
12571 from_tty);
12572 }
12573
12574 /* Return non-zero if the symbol SYM is an Ada exception object. */
12575
12576 static int
12577 ada_is_exception_sym (struct symbol *sym)
12578 {
12579 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12580
12581 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12582 && SYMBOL_CLASS (sym) != LOC_BLOCK
12583 && SYMBOL_CLASS (sym) != LOC_CONST
12584 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12585 && type_name != NULL && strcmp (type_name, "exception") == 0);
12586 }
12587
12588 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12589 Ada exception object. This matches all exceptions except the ones
12590 defined by the Ada language. */
12591
12592 static int
12593 ada_is_non_standard_exception_sym (struct symbol *sym)
12594 {
12595 int i;
12596
12597 if (!ada_is_exception_sym (sym))
12598 return 0;
12599
12600 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12601 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12602 return 0; /* A standard exception. */
12603
12604 /* Numeric_Error is also a standard exception, so exclude it.
12605 See the STANDARD_EXC description for more details as to why
12606 this exception is not listed in that array. */
12607 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12608 return 0;
12609
12610 return 1;
12611 }
12612
12613 /* A helper function for qsort, comparing two struct ada_exc_info
12614 objects.
12615
12616 The comparison is determined first by exception name, and then
12617 by exception address. */
12618
12619 static int
12620 compare_ada_exception_info (const void *a, const void *b)
12621 {
12622 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12623 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12624 int result;
12625
12626 result = strcmp (exc_a->name, exc_b->name);
12627 if (result != 0)
12628 return result;
12629
12630 if (exc_a->addr < exc_b->addr)
12631 return -1;
12632 if (exc_a->addr > exc_b->addr)
12633 return 1;
12634
12635 return 0;
12636 }
12637
12638 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12639 routine, but keeping the first SKIP elements untouched.
12640
12641 All duplicates are also removed. */
12642
12643 static void
12644 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12645 int skip)
12646 {
12647 struct ada_exc_info *to_sort
12648 = VEC_address (ada_exc_info, *exceptions) + skip;
12649 int to_sort_len
12650 = VEC_length (ada_exc_info, *exceptions) - skip;
12651 int i, j;
12652
12653 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12654 compare_ada_exception_info);
12655
12656 for (i = 1, j = 1; i < to_sort_len; i++)
12657 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12658 to_sort[j++] = to_sort[i];
12659 to_sort_len = j;
12660 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12661 }
12662
12663 /* A function intended as the "name_matcher" callback in the struct
12664 quick_symbol_functions' expand_symtabs_matching method.
12665
12666 SEARCH_NAME is the symbol's search name.
12667
12668 If USER_DATA is not NULL, it is a pointer to a regext_t object
12669 used to match the symbol (by natural name). Otherwise, when USER_DATA
12670 is null, no filtering is performed, and all symbols are a positive
12671 match. */
12672
12673 static int
12674 ada_exc_search_name_matches (const char *search_name, void *user_data)
12675 {
12676 regex_t *preg = user_data;
12677
12678 if (preg == NULL)
12679 return 1;
12680
12681 /* In Ada, the symbol "search name" is a linkage name, whereas
12682 the regular expression used to do the matching refers to
12683 the natural name. So match against the decoded name. */
12684 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12685 }
12686
12687 /* Add all exceptions defined by the Ada standard whose name match
12688 a regular expression.
12689
12690 If PREG is not NULL, then this regexp_t object is used to
12691 perform the symbol name matching. Otherwise, no name-based
12692 filtering is performed.
12693
12694 EXCEPTIONS is a vector of exceptions to which matching exceptions
12695 gets pushed. */
12696
12697 static void
12698 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12699 {
12700 int i;
12701
12702 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12703 {
12704 if (preg == NULL
12705 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12706 {
12707 struct bound_minimal_symbol msymbol
12708 = ada_lookup_simple_minsym (standard_exc[i]);
12709
12710 if (msymbol.minsym != NULL)
12711 {
12712 struct ada_exc_info info
12713 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12714
12715 VEC_safe_push (ada_exc_info, *exceptions, &info);
12716 }
12717 }
12718 }
12719 }
12720
12721 /* Add all Ada exceptions defined locally and accessible from the given
12722 FRAME.
12723
12724 If PREG is not NULL, then this regexp_t object is used to
12725 perform the symbol name matching. Otherwise, no name-based
12726 filtering is performed.
12727
12728 EXCEPTIONS is a vector of exceptions to which matching exceptions
12729 gets pushed. */
12730
12731 static void
12732 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12733 VEC(ada_exc_info) **exceptions)
12734 {
12735 struct block *block = get_frame_block (frame, 0);
12736
12737 while (block != 0)
12738 {
12739 struct block_iterator iter;
12740 struct symbol *sym;
12741
12742 ALL_BLOCK_SYMBOLS (block, iter, sym)
12743 {
12744 switch (SYMBOL_CLASS (sym))
12745 {
12746 case LOC_TYPEDEF:
12747 case LOC_BLOCK:
12748 case LOC_CONST:
12749 break;
12750 default:
12751 if (ada_is_exception_sym (sym))
12752 {
12753 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12754 SYMBOL_VALUE_ADDRESS (sym)};
12755
12756 VEC_safe_push (ada_exc_info, *exceptions, &info);
12757 }
12758 }
12759 }
12760 if (BLOCK_FUNCTION (block) != NULL)
12761 break;
12762 block = BLOCK_SUPERBLOCK (block);
12763 }
12764 }
12765
12766 /* Add all exceptions defined globally whose name name match
12767 a regular expression, excluding standard exceptions.
12768
12769 The reason we exclude standard exceptions is that they need
12770 to be handled separately: Standard exceptions are defined inside
12771 a runtime unit which is normally not compiled with debugging info,
12772 and thus usually do not show up in our symbol search. However,
12773 if the unit was in fact built with debugging info, we need to
12774 exclude them because they would duplicate the entry we found
12775 during the special loop that specifically searches for those
12776 standard exceptions.
12777
12778 If PREG is not NULL, then this regexp_t object is used to
12779 perform the symbol name matching. Otherwise, no name-based
12780 filtering is performed.
12781
12782 EXCEPTIONS is a vector of exceptions to which matching exceptions
12783 gets pushed. */
12784
12785 static void
12786 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12787 {
12788 struct objfile *objfile;
12789 struct symtab *s;
12790
12791 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12792 VARIABLES_DOMAIN, preg);
12793
12794 ALL_PRIMARY_SYMTABS (objfile, s)
12795 {
12796 struct blockvector *bv = BLOCKVECTOR (s);
12797 int i;
12798
12799 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12800 {
12801 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12802 struct block_iterator iter;
12803 struct symbol *sym;
12804
12805 ALL_BLOCK_SYMBOLS (b, iter, sym)
12806 if (ada_is_non_standard_exception_sym (sym)
12807 && (preg == NULL
12808 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12809 0, NULL, 0) == 0))
12810 {
12811 struct ada_exc_info info
12812 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12813
12814 VEC_safe_push (ada_exc_info, *exceptions, &info);
12815 }
12816 }
12817 }
12818 }
12819
12820 /* Implements ada_exceptions_list with the regular expression passed
12821 as a regex_t, rather than a string.
12822
12823 If not NULL, PREG is used to filter out exceptions whose names
12824 do not match. Otherwise, all exceptions are listed. */
12825
12826 static VEC(ada_exc_info) *
12827 ada_exceptions_list_1 (regex_t *preg)
12828 {
12829 VEC(ada_exc_info) *result = NULL;
12830 struct cleanup *old_chain
12831 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12832 int prev_len;
12833
12834 /* First, list the known standard exceptions. These exceptions
12835 need to be handled separately, as they are usually defined in
12836 runtime units that have been compiled without debugging info. */
12837
12838 ada_add_standard_exceptions (preg, &result);
12839
12840 /* Next, find all exceptions whose scope is local and accessible
12841 from the currently selected frame. */
12842
12843 if (has_stack_frames ())
12844 {
12845 prev_len = VEC_length (ada_exc_info, result);
12846 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12847 &result);
12848 if (VEC_length (ada_exc_info, result) > prev_len)
12849 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12850 }
12851
12852 /* Add all exceptions whose scope is global. */
12853
12854 prev_len = VEC_length (ada_exc_info, result);
12855 ada_add_global_exceptions (preg, &result);
12856 if (VEC_length (ada_exc_info, result) > prev_len)
12857 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12858
12859 discard_cleanups (old_chain);
12860 return result;
12861 }
12862
12863 /* Return a vector of ada_exc_info.
12864
12865 If REGEXP is NULL, all exceptions are included in the result.
12866 Otherwise, it should contain a valid regular expression,
12867 and only the exceptions whose names match that regular expression
12868 are included in the result.
12869
12870 The exceptions are sorted in the following order:
12871 - Standard exceptions (defined by the Ada language), in
12872 alphabetical order;
12873 - Exceptions only visible from the current frame, in
12874 alphabetical order;
12875 - Exceptions whose scope is global, in alphabetical order. */
12876
12877 VEC(ada_exc_info) *
12878 ada_exceptions_list (const char *regexp)
12879 {
12880 VEC(ada_exc_info) *result = NULL;
12881 struct cleanup *old_chain = NULL;
12882 regex_t reg;
12883
12884 if (regexp != NULL)
12885 old_chain = compile_rx_or_error (&reg, regexp,
12886 _("invalid regular expression"));
12887
12888 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12889
12890 if (old_chain != NULL)
12891 do_cleanups (old_chain);
12892 return result;
12893 }
12894
12895 /* Implement the "info exceptions" command. */
12896
12897 static void
12898 info_exceptions_command (char *regexp, int from_tty)
12899 {
12900 VEC(ada_exc_info) *exceptions;
12901 struct cleanup *cleanup;
12902 struct gdbarch *gdbarch = get_current_arch ();
12903 int ix;
12904 struct ada_exc_info *info;
12905
12906 exceptions = ada_exceptions_list (regexp);
12907 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12908
12909 if (regexp != NULL)
12910 printf_filtered
12911 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12912 else
12913 printf_filtered (_("All defined Ada exceptions:\n"));
12914
12915 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12916 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12917
12918 do_cleanups (cleanup);
12919 }
12920
12921 /* Operators */
12922 /* Information about operators given special treatment in functions
12923 below. */
12924 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12925
12926 #define ADA_OPERATORS \
12927 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12928 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12929 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12930 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12931 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12932 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12933 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12934 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12935 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12936 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12937 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12938 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12939 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12940 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12941 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12942 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12943 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12944 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12945 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12946
12947 static void
12948 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12949 int *argsp)
12950 {
12951 switch (exp->elts[pc - 1].opcode)
12952 {
12953 default:
12954 operator_length_standard (exp, pc, oplenp, argsp);
12955 break;
12956
12957 #define OP_DEFN(op, len, args, binop) \
12958 case op: *oplenp = len; *argsp = args; break;
12959 ADA_OPERATORS;
12960 #undef OP_DEFN
12961
12962 case OP_AGGREGATE:
12963 *oplenp = 3;
12964 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12965 break;
12966
12967 case OP_CHOICES:
12968 *oplenp = 3;
12969 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12970 break;
12971 }
12972 }
12973
12974 /* Implementation of the exp_descriptor method operator_check. */
12975
12976 static int
12977 ada_operator_check (struct expression *exp, int pos,
12978 int (*objfile_func) (struct objfile *objfile, void *data),
12979 void *data)
12980 {
12981 const union exp_element *const elts = exp->elts;
12982 struct type *type = NULL;
12983
12984 switch (elts[pos].opcode)
12985 {
12986 case UNOP_IN_RANGE:
12987 case UNOP_QUAL:
12988 type = elts[pos + 1].type;
12989 break;
12990
12991 default:
12992 return operator_check_standard (exp, pos, objfile_func, data);
12993 }
12994
12995 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12996
12997 if (type && TYPE_OBJFILE (type)
12998 && (*objfile_func) (TYPE_OBJFILE (type), data))
12999 return 1;
13000
13001 return 0;
13002 }
13003
13004 static char *
13005 ada_op_name (enum exp_opcode opcode)
13006 {
13007 switch (opcode)
13008 {
13009 default:
13010 return op_name_standard (opcode);
13011
13012 #define OP_DEFN(op, len, args, binop) case op: return #op;
13013 ADA_OPERATORS;
13014 #undef OP_DEFN
13015
13016 case OP_AGGREGATE:
13017 return "OP_AGGREGATE";
13018 case OP_CHOICES:
13019 return "OP_CHOICES";
13020 case OP_NAME:
13021 return "OP_NAME";
13022 }
13023 }
13024
13025 /* As for operator_length, but assumes PC is pointing at the first
13026 element of the operator, and gives meaningful results only for the
13027 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13028
13029 static void
13030 ada_forward_operator_length (struct expression *exp, int pc,
13031 int *oplenp, int *argsp)
13032 {
13033 switch (exp->elts[pc].opcode)
13034 {
13035 default:
13036 *oplenp = *argsp = 0;
13037 break;
13038
13039 #define OP_DEFN(op, len, args, binop) \
13040 case op: *oplenp = len; *argsp = args; break;
13041 ADA_OPERATORS;
13042 #undef OP_DEFN
13043
13044 case OP_AGGREGATE:
13045 *oplenp = 3;
13046 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13047 break;
13048
13049 case OP_CHOICES:
13050 *oplenp = 3;
13051 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13052 break;
13053
13054 case OP_STRING:
13055 case OP_NAME:
13056 {
13057 int len = longest_to_int (exp->elts[pc + 1].longconst);
13058
13059 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13060 *argsp = 0;
13061 break;
13062 }
13063 }
13064 }
13065
13066 static int
13067 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13068 {
13069 enum exp_opcode op = exp->elts[elt].opcode;
13070 int oplen, nargs;
13071 int pc = elt;
13072 int i;
13073
13074 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13075
13076 switch (op)
13077 {
13078 /* Ada attributes ('Foo). */
13079 case OP_ATR_FIRST:
13080 case OP_ATR_LAST:
13081 case OP_ATR_LENGTH:
13082 case OP_ATR_IMAGE:
13083 case OP_ATR_MAX:
13084 case OP_ATR_MIN:
13085 case OP_ATR_MODULUS:
13086 case OP_ATR_POS:
13087 case OP_ATR_SIZE:
13088 case OP_ATR_TAG:
13089 case OP_ATR_VAL:
13090 break;
13091
13092 case UNOP_IN_RANGE:
13093 case UNOP_QUAL:
13094 /* XXX: gdb_sprint_host_address, type_sprint */
13095 fprintf_filtered (stream, _("Type @"));
13096 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13097 fprintf_filtered (stream, " (");
13098 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13099 fprintf_filtered (stream, ")");
13100 break;
13101 case BINOP_IN_BOUNDS:
13102 fprintf_filtered (stream, " (%d)",
13103 longest_to_int (exp->elts[pc + 2].longconst));
13104 break;
13105 case TERNOP_IN_RANGE:
13106 break;
13107
13108 case OP_AGGREGATE:
13109 case OP_OTHERS:
13110 case OP_DISCRETE_RANGE:
13111 case OP_POSITIONAL:
13112 case OP_CHOICES:
13113 break;
13114
13115 case OP_NAME:
13116 case OP_STRING:
13117 {
13118 char *name = &exp->elts[elt + 2].string;
13119 int len = longest_to_int (exp->elts[elt + 1].longconst);
13120
13121 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13122 break;
13123 }
13124
13125 default:
13126 return dump_subexp_body_standard (exp, stream, elt);
13127 }
13128
13129 elt += oplen;
13130 for (i = 0; i < nargs; i += 1)
13131 elt = dump_subexp (exp, stream, elt);
13132
13133 return elt;
13134 }
13135
13136 /* The Ada extension of print_subexp (q.v.). */
13137
13138 static void
13139 ada_print_subexp (struct expression *exp, int *pos,
13140 struct ui_file *stream, enum precedence prec)
13141 {
13142 int oplen, nargs, i;
13143 int pc = *pos;
13144 enum exp_opcode op = exp->elts[pc].opcode;
13145
13146 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13147
13148 *pos += oplen;
13149 switch (op)
13150 {
13151 default:
13152 *pos -= oplen;
13153 print_subexp_standard (exp, pos, stream, prec);
13154 return;
13155
13156 case OP_VAR_VALUE:
13157 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13158 return;
13159
13160 case BINOP_IN_BOUNDS:
13161 /* XXX: sprint_subexp */
13162 print_subexp (exp, pos, stream, PREC_SUFFIX);
13163 fputs_filtered (" in ", stream);
13164 print_subexp (exp, pos, stream, PREC_SUFFIX);
13165 fputs_filtered ("'range", stream);
13166 if (exp->elts[pc + 1].longconst > 1)
13167 fprintf_filtered (stream, "(%ld)",
13168 (long) exp->elts[pc + 1].longconst);
13169 return;
13170
13171 case TERNOP_IN_RANGE:
13172 if (prec >= PREC_EQUAL)
13173 fputs_filtered ("(", stream);
13174 /* XXX: sprint_subexp */
13175 print_subexp (exp, pos, stream, PREC_SUFFIX);
13176 fputs_filtered (" in ", stream);
13177 print_subexp (exp, pos, stream, PREC_EQUAL);
13178 fputs_filtered (" .. ", stream);
13179 print_subexp (exp, pos, stream, PREC_EQUAL);
13180 if (prec >= PREC_EQUAL)
13181 fputs_filtered (")", stream);
13182 return;
13183
13184 case OP_ATR_FIRST:
13185 case OP_ATR_LAST:
13186 case OP_ATR_LENGTH:
13187 case OP_ATR_IMAGE:
13188 case OP_ATR_MAX:
13189 case OP_ATR_MIN:
13190 case OP_ATR_MODULUS:
13191 case OP_ATR_POS:
13192 case OP_ATR_SIZE:
13193 case OP_ATR_TAG:
13194 case OP_ATR_VAL:
13195 if (exp->elts[*pos].opcode == OP_TYPE)
13196 {
13197 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13198 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13199 &type_print_raw_options);
13200 *pos += 3;
13201 }
13202 else
13203 print_subexp (exp, pos, stream, PREC_SUFFIX);
13204 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13205 if (nargs > 1)
13206 {
13207 int tem;
13208
13209 for (tem = 1; tem < nargs; tem += 1)
13210 {
13211 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13212 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13213 }
13214 fputs_filtered (")", stream);
13215 }
13216 return;
13217
13218 case UNOP_QUAL:
13219 type_print (exp->elts[pc + 1].type, "", stream, 0);
13220 fputs_filtered ("'(", stream);
13221 print_subexp (exp, pos, stream, PREC_PREFIX);
13222 fputs_filtered (")", stream);
13223 return;
13224
13225 case UNOP_IN_RANGE:
13226 /* XXX: sprint_subexp */
13227 print_subexp (exp, pos, stream, PREC_SUFFIX);
13228 fputs_filtered (" in ", stream);
13229 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13230 &type_print_raw_options);
13231 return;
13232
13233 case OP_DISCRETE_RANGE:
13234 print_subexp (exp, pos, stream, PREC_SUFFIX);
13235 fputs_filtered ("..", stream);
13236 print_subexp (exp, pos, stream, PREC_SUFFIX);
13237 return;
13238
13239 case OP_OTHERS:
13240 fputs_filtered ("others => ", stream);
13241 print_subexp (exp, pos, stream, PREC_SUFFIX);
13242 return;
13243
13244 case OP_CHOICES:
13245 for (i = 0; i < nargs-1; i += 1)
13246 {
13247 if (i > 0)
13248 fputs_filtered ("|", stream);
13249 print_subexp (exp, pos, stream, PREC_SUFFIX);
13250 }
13251 fputs_filtered (" => ", stream);
13252 print_subexp (exp, pos, stream, PREC_SUFFIX);
13253 return;
13254
13255 case OP_POSITIONAL:
13256 print_subexp (exp, pos, stream, PREC_SUFFIX);
13257 return;
13258
13259 case OP_AGGREGATE:
13260 fputs_filtered ("(", stream);
13261 for (i = 0; i < nargs; i += 1)
13262 {
13263 if (i > 0)
13264 fputs_filtered (", ", stream);
13265 print_subexp (exp, pos, stream, PREC_SUFFIX);
13266 }
13267 fputs_filtered (")", stream);
13268 return;
13269 }
13270 }
13271
13272 /* Table mapping opcodes into strings for printing operators
13273 and precedences of the operators. */
13274
13275 static const struct op_print ada_op_print_tab[] = {
13276 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13277 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13278 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13279 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13280 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13281 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13282 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13283 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13284 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13285 {">=", BINOP_GEQ, PREC_ORDER, 0},
13286 {">", BINOP_GTR, PREC_ORDER, 0},
13287 {"<", BINOP_LESS, PREC_ORDER, 0},
13288 {">>", BINOP_RSH, PREC_SHIFT, 0},
13289 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13290 {"+", BINOP_ADD, PREC_ADD, 0},
13291 {"-", BINOP_SUB, PREC_ADD, 0},
13292 {"&", BINOP_CONCAT, PREC_ADD, 0},
13293 {"*", BINOP_MUL, PREC_MUL, 0},
13294 {"/", BINOP_DIV, PREC_MUL, 0},
13295 {"rem", BINOP_REM, PREC_MUL, 0},
13296 {"mod", BINOP_MOD, PREC_MUL, 0},
13297 {"**", BINOP_EXP, PREC_REPEAT, 0},
13298 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13299 {"-", UNOP_NEG, PREC_PREFIX, 0},
13300 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13301 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13302 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13303 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13304 {".all", UNOP_IND, PREC_SUFFIX, 1},
13305 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13306 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13307 {NULL, 0, 0, 0}
13308 };
13309 \f
13310 enum ada_primitive_types {
13311 ada_primitive_type_int,
13312 ada_primitive_type_long,
13313 ada_primitive_type_short,
13314 ada_primitive_type_char,
13315 ada_primitive_type_float,
13316 ada_primitive_type_double,
13317 ada_primitive_type_void,
13318 ada_primitive_type_long_long,
13319 ada_primitive_type_long_double,
13320 ada_primitive_type_natural,
13321 ada_primitive_type_positive,
13322 ada_primitive_type_system_address,
13323 nr_ada_primitive_types
13324 };
13325
13326 static void
13327 ada_language_arch_info (struct gdbarch *gdbarch,
13328 struct language_arch_info *lai)
13329 {
13330 const struct builtin_type *builtin = builtin_type (gdbarch);
13331
13332 lai->primitive_type_vector
13333 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13334 struct type *);
13335
13336 lai->primitive_type_vector [ada_primitive_type_int]
13337 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13338 0, "integer");
13339 lai->primitive_type_vector [ada_primitive_type_long]
13340 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13341 0, "long_integer");
13342 lai->primitive_type_vector [ada_primitive_type_short]
13343 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13344 0, "short_integer");
13345 lai->string_char_type
13346 = lai->primitive_type_vector [ada_primitive_type_char]
13347 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13348 lai->primitive_type_vector [ada_primitive_type_float]
13349 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13350 "float", NULL);
13351 lai->primitive_type_vector [ada_primitive_type_double]
13352 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13353 "long_float", NULL);
13354 lai->primitive_type_vector [ada_primitive_type_long_long]
13355 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13356 0, "long_long_integer");
13357 lai->primitive_type_vector [ada_primitive_type_long_double]
13358 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13359 "long_long_float", NULL);
13360 lai->primitive_type_vector [ada_primitive_type_natural]
13361 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13362 0, "natural");
13363 lai->primitive_type_vector [ada_primitive_type_positive]
13364 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13365 0, "positive");
13366 lai->primitive_type_vector [ada_primitive_type_void]
13367 = builtin->builtin_void;
13368
13369 lai->primitive_type_vector [ada_primitive_type_system_address]
13370 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13371 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13372 = "system__address";
13373
13374 lai->bool_type_symbol = NULL;
13375 lai->bool_type_default = builtin->builtin_bool;
13376 }
13377 \f
13378 /* Language vector */
13379
13380 /* Not really used, but needed in the ada_language_defn. */
13381
13382 static void
13383 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13384 {
13385 ada_emit_char (c, type, stream, quoter, 1);
13386 }
13387
13388 static int
13389 parse (struct parser_state *ps)
13390 {
13391 warnings_issued = 0;
13392 return ada_parse (ps);
13393 }
13394
13395 static const struct exp_descriptor ada_exp_descriptor = {
13396 ada_print_subexp,
13397 ada_operator_length,
13398 ada_operator_check,
13399 ada_op_name,
13400 ada_dump_subexp_body,
13401 ada_evaluate_subexp
13402 };
13403
13404 /* Implement the "la_get_symbol_name_cmp" language_defn method
13405 for Ada. */
13406
13407 static symbol_name_cmp_ftype
13408 ada_get_symbol_name_cmp (const char *lookup_name)
13409 {
13410 if (should_use_wild_match (lookup_name))
13411 return wild_match;
13412 else
13413 return compare_names;
13414 }
13415
13416 /* Implement the "la_read_var_value" language_defn method for Ada. */
13417
13418 static struct value *
13419 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13420 {
13421 struct block *frame_block = NULL;
13422 struct symbol *renaming_sym = NULL;
13423
13424 /* The only case where default_read_var_value is not sufficient
13425 is when VAR is a renaming... */
13426 if (frame)
13427 frame_block = get_frame_block (frame, NULL);
13428 if (frame_block)
13429 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13430 if (renaming_sym != NULL)
13431 return ada_read_renaming_var_value (renaming_sym, frame_block);
13432
13433 /* This is a typical case where we expect the default_read_var_value
13434 function to work. */
13435 return default_read_var_value (var, frame);
13436 }
13437
13438 const struct language_defn ada_language_defn = {
13439 "ada", /* Language name */
13440 "Ada",
13441 language_ada,
13442 range_check_off,
13443 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13444 that's not quite what this means. */
13445 array_row_major,
13446 macro_expansion_no,
13447 &ada_exp_descriptor,
13448 parse,
13449 ada_error,
13450 resolve,
13451 ada_printchar, /* Print a character constant */
13452 ada_printstr, /* Function to print string constant */
13453 emit_char, /* Function to print single char (not used) */
13454 ada_print_type, /* Print a type using appropriate syntax */
13455 ada_print_typedef, /* Print a typedef using appropriate syntax */
13456 ada_val_print, /* Print a value using appropriate syntax */
13457 ada_value_print, /* Print a top-level value */
13458 ada_read_var_value, /* la_read_var_value */
13459 NULL, /* Language specific skip_trampoline */
13460 NULL, /* name_of_this */
13461 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13462 basic_lookup_transparent_type, /* lookup_transparent_type */
13463 ada_la_decode, /* Language specific symbol demangler */
13464 NULL, /* Language specific
13465 class_name_from_physname */
13466 ada_op_print_tab, /* expression operators for printing */
13467 0, /* c-style arrays */
13468 1, /* String lower bound */
13469 ada_get_gdb_completer_word_break_characters,
13470 ada_make_symbol_completion_list,
13471 ada_language_arch_info,
13472 ada_print_array_index,
13473 default_pass_by_reference,
13474 c_get_string,
13475 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13476 ada_iterate_over_symbols,
13477 &ada_varobj_ops,
13478 LANG_MAGIC
13479 };
13480
13481 /* Provide a prototype to silence -Wmissing-prototypes. */
13482 extern initialize_file_ftype _initialize_ada_language;
13483
13484 /* Command-list for the "set/show ada" prefix command. */
13485 static struct cmd_list_element *set_ada_list;
13486 static struct cmd_list_element *show_ada_list;
13487
13488 /* Implement the "set ada" prefix command. */
13489
13490 static void
13491 set_ada_command (char *arg, int from_tty)
13492 {
13493 printf_unfiltered (_(\
13494 "\"set ada\" must be followed by the name of a setting.\n"));
13495 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
13496 }
13497
13498 /* Implement the "show ada" prefix command. */
13499
13500 static void
13501 show_ada_command (char *args, int from_tty)
13502 {
13503 cmd_show_list (show_ada_list, from_tty, "");
13504 }
13505
13506 static void
13507 initialize_ada_catchpoint_ops (void)
13508 {
13509 struct breakpoint_ops *ops;
13510
13511 initialize_breakpoint_ops ();
13512
13513 ops = &catch_exception_breakpoint_ops;
13514 *ops = bkpt_breakpoint_ops;
13515 ops->dtor = dtor_catch_exception;
13516 ops->allocate_location = allocate_location_catch_exception;
13517 ops->re_set = re_set_catch_exception;
13518 ops->check_status = check_status_catch_exception;
13519 ops->print_it = print_it_catch_exception;
13520 ops->print_one = print_one_catch_exception;
13521 ops->print_mention = print_mention_catch_exception;
13522 ops->print_recreate = print_recreate_catch_exception;
13523
13524 ops = &catch_exception_unhandled_breakpoint_ops;
13525 *ops = bkpt_breakpoint_ops;
13526 ops->dtor = dtor_catch_exception_unhandled;
13527 ops->allocate_location = allocate_location_catch_exception_unhandled;
13528 ops->re_set = re_set_catch_exception_unhandled;
13529 ops->check_status = check_status_catch_exception_unhandled;
13530 ops->print_it = print_it_catch_exception_unhandled;
13531 ops->print_one = print_one_catch_exception_unhandled;
13532 ops->print_mention = print_mention_catch_exception_unhandled;
13533 ops->print_recreate = print_recreate_catch_exception_unhandled;
13534
13535 ops = &catch_assert_breakpoint_ops;
13536 *ops = bkpt_breakpoint_ops;
13537 ops->dtor = dtor_catch_assert;
13538 ops->allocate_location = allocate_location_catch_assert;
13539 ops->re_set = re_set_catch_assert;
13540 ops->check_status = check_status_catch_assert;
13541 ops->print_it = print_it_catch_assert;
13542 ops->print_one = print_one_catch_assert;
13543 ops->print_mention = print_mention_catch_assert;
13544 ops->print_recreate = print_recreate_catch_assert;
13545 }
13546
13547 /* This module's 'new_objfile' observer. */
13548
13549 static void
13550 ada_new_objfile_observer (struct objfile *objfile)
13551 {
13552 ada_clear_symbol_cache ();
13553 }
13554
13555 /* This module's 'free_objfile' observer. */
13556
13557 static void
13558 ada_free_objfile_observer (struct objfile *objfile)
13559 {
13560 ada_clear_symbol_cache ();
13561 }
13562
13563 void
13564 _initialize_ada_language (void)
13565 {
13566 add_language (&ada_language_defn);
13567
13568 initialize_ada_catchpoint_ops ();
13569
13570 add_prefix_cmd ("ada", no_class, set_ada_command,
13571 _("Prefix command for changing Ada-specfic settings"),
13572 &set_ada_list, "set ada ", 0, &setlist);
13573
13574 add_prefix_cmd ("ada", no_class, show_ada_command,
13575 _("Generic command for showing Ada-specific settings."),
13576 &show_ada_list, "show ada ", 0, &showlist);
13577
13578 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13579 &trust_pad_over_xvs, _("\
13580 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13581 Show whether an optimization trusting PAD types over XVS types is activated"),
13582 _("\
13583 This is related to the encoding used by the GNAT compiler. The debugger\n\
13584 should normally trust the contents of PAD types, but certain older versions\n\
13585 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13586 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13587 work around this bug. It is always safe to turn this option \"off\", but\n\
13588 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13589 this option to \"off\" unless necessary."),
13590 NULL, NULL, &set_ada_list, &show_ada_list);
13591
13592 add_catch_command ("exception", _("\
13593 Catch Ada exceptions, when raised.\n\
13594 With an argument, catch only exceptions with the given name."),
13595 catch_ada_exception_command,
13596 NULL,
13597 CATCH_PERMANENT,
13598 CATCH_TEMPORARY);
13599 add_catch_command ("assert", _("\
13600 Catch failed Ada assertions, when raised.\n\
13601 With an argument, catch only exceptions with the given name."),
13602 catch_assert_command,
13603 NULL,
13604 CATCH_PERMANENT,
13605 CATCH_TEMPORARY);
13606
13607 varsize_limit = 65536;
13608
13609 add_info ("exceptions", info_exceptions_command,
13610 _("\
13611 List all Ada exception names.\n\
13612 If a regular expression is passed as an argument, only those matching\n\
13613 the regular expression are listed."));
13614
13615 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13616 _("Set Ada maintenance-related variables."),
13617 &maint_set_ada_cmdlist, "maintenance set ada ",
13618 0/*allow-unknown*/, &maintenance_set_cmdlist);
13619
13620 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13621 _("Show Ada maintenance-related variables"),
13622 &maint_show_ada_cmdlist, "maintenance show ada ",
13623 0/*allow-unknown*/, &maintenance_show_cmdlist);
13624
13625 add_setshow_boolean_cmd
13626 ("ignore-descriptive-types", class_maintenance,
13627 &ada_ignore_descriptive_types_p,
13628 _("Set whether descriptive types generated by GNAT should be ignored."),
13629 _("Show whether descriptive types generated by GNAT should be ignored."),
13630 _("\
13631 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13632 DWARF attribute."),
13633 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13634
13635 obstack_init (&symbol_list_obstack);
13636
13637 decoded_names_store = htab_create_alloc
13638 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13639 NULL, xcalloc, xfree);
13640
13641 /* The ada-lang observers. */
13642 observer_attach_new_objfile (ada_new_objfile_observer);
13643 observer_attach_free_objfile (ada_free_objfile_observer);
13644 observer_attach_inferior_exit (ada_inferior_exit);
13645
13646 /* Setup various context-specific data. */
13647 ada_inferior_data
13648 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13649 ada_pspace_data_handle
13650 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
13651 }
This page took 0.319806 seconds and 5 git commands to generate.