gdb: Convert language la_watch_location_expression field to a method
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, int);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *val_atr (struct type *, LONGEST);
200
201 static struct value *value_val_atr (struct type *, struct value *);
202
203 static struct symbol *standard_lookup (const char *, const struct block *,
204 domain_enum);
205
206 static struct value *ada_search_struct_field (const char *, struct value *, int,
207 struct type *);
208
209 static int find_struct_field (const char *, struct type *, int,
210 struct type **, int *, int *, int *, int *);
211
212 static int ada_resolve_function (struct block_symbol *, int,
213 struct value **, int, const char *,
214 struct type *, int);
215
216 static int ada_is_direct_array_type (struct type *);
217
218 static struct value *ada_index_struct_field (int, struct value *, int,
219 struct type *);
220
221 static struct value *assign_aggregate (struct value *, struct value *,
222 struct expression *,
223 int *, enum noside);
224
225 static void aggregate_assign_from_choices (struct value *, struct value *,
226 struct expression *,
227 int *, LONGEST *, int *,
228 int, LONGEST, LONGEST);
229
230 static void aggregate_assign_positional (struct value *, struct value *,
231 struct expression *,
232 int *, LONGEST *, int *, int,
233 LONGEST, LONGEST);
234
235
236 static void aggregate_assign_others (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int, LONGEST, LONGEST);
239
240
241 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
242
243
244 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
245 int *, enum noside);
246
247 static void ada_forward_operator_length (struct expression *, int, int *,
248 int *);
249
250 static struct type *ada_find_any_type (const char *name);
251
252 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
253 (const lookup_name_info &lookup_name);
254
255 \f
256
257 /* The result of a symbol lookup to be stored in our symbol cache. */
258
259 struct cache_entry
260 {
261 /* The name used to perform the lookup. */
262 const char *name;
263 /* The namespace used during the lookup. */
264 domain_enum domain;
265 /* The symbol returned by the lookup, or NULL if no matching symbol
266 was found. */
267 struct symbol *sym;
268 /* The block where the symbol was found, or NULL if no matching
269 symbol was found. */
270 const struct block *block;
271 /* A pointer to the next entry with the same hash. */
272 struct cache_entry *next;
273 };
274
275 /* The Ada symbol cache, used to store the result of Ada-mode symbol
276 lookups in the course of executing the user's commands.
277
278 The cache is implemented using a simple, fixed-sized hash.
279 The size is fixed on the grounds that there are not likely to be
280 all that many symbols looked up during any given session, regardless
281 of the size of the symbol table. If we decide to go to a resizable
282 table, let's just use the stuff from libiberty instead. */
283
284 #define HASH_SIZE 1009
285
286 struct ada_symbol_cache
287 {
288 /* An obstack used to store the entries in our cache. */
289 struct obstack cache_space;
290
291 /* The root of the hash table used to implement our symbol cache. */
292 struct cache_entry *root[HASH_SIZE];
293 };
294
295 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
296
297 /* Maximum-sized dynamic type. */
298 static unsigned int varsize_limit;
299
300 static const char ada_completer_word_break_characters[] =
301 #ifdef VMS
302 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
303 #else
304 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
305 #endif
306
307 /* The name of the symbol to use to get the name of the main subprogram. */
308 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
309 = "__gnat_ada_main_program_name";
310
311 /* Limit on the number of warnings to raise per expression evaluation. */
312 static int warning_limit = 2;
313
314 /* Number of warning messages issued; reset to 0 by cleanups after
315 expression evaluation. */
316 static int warnings_issued = 0;
317
318 static const char *known_runtime_file_name_patterns[] = {
319 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
320 };
321
322 static const char *known_auxiliary_function_name_patterns[] = {
323 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
324 };
325
326 /* Maintenance-related settings for this module. */
327
328 static struct cmd_list_element *maint_set_ada_cmdlist;
329 static struct cmd_list_element *maint_show_ada_cmdlist;
330
331 /* The "maintenance ada set/show ignore-descriptive-type" value. */
332
333 static bool ada_ignore_descriptive_types_p = false;
334
335 /* Inferior-specific data. */
336
337 /* Per-inferior data for this module. */
338
339 struct ada_inferior_data
340 {
341 /* The ada__tags__type_specific_data type, which is used when decoding
342 tagged types. With older versions of GNAT, this type was directly
343 accessible through a component ("tsd") in the object tag. But this
344 is no longer the case, so we cache it for each inferior. */
345 struct type *tsd_type = nullptr;
346
347 /* The exception_support_info data. This data is used to determine
348 how to implement support for Ada exception catchpoints in a given
349 inferior. */
350 const struct exception_support_info *exception_info = nullptr;
351 };
352
353 /* Our key to this module's inferior data. */
354 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
355
356 /* Return our inferior data for the given inferior (INF).
357
358 This function always returns a valid pointer to an allocated
359 ada_inferior_data structure. If INF's inferior data has not
360 been previously set, this functions creates a new one with all
361 fields set to zero, sets INF's inferior to it, and then returns
362 a pointer to that newly allocated ada_inferior_data. */
363
364 static struct ada_inferior_data *
365 get_ada_inferior_data (struct inferior *inf)
366 {
367 struct ada_inferior_data *data;
368
369 data = ada_inferior_data.get (inf);
370 if (data == NULL)
371 data = ada_inferior_data.emplace (inf);
372
373 return data;
374 }
375
376 /* Perform all necessary cleanups regarding our module's inferior data
377 that is required after the inferior INF just exited. */
378
379 static void
380 ada_inferior_exit (struct inferior *inf)
381 {
382 ada_inferior_data.clear (inf);
383 }
384
385
386 /* program-space-specific data. */
387
388 /* This module's per-program-space data. */
389 struct ada_pspace_data
390 {
391 ~ada_pspace_data ()
392 {
393 if (sym_cache != NULL)
394 ada_free_symbol_cache (sym_cache);
395 }
396
397 /* The Ada symbol cache. */
398 struct ada_symbol_cache *sym_cache = nullptr;
399 };
400
401 /* Key to our per-program-space data. */
402 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
403
404 /* Return this module's data for the given program space (PSPACE).
405 If not is found, add a zero'ed one now.
406
407 This function always returns a valid object. */
408
409 static struct ada_pspace_data *
410 get_ada_pspace_data (struct program_space *pspace)
411 {
412 struct ada_pspace_data *data;
413
414 data = ada_pspace_data_handle.get (pspace);
415 if (data == NULL)
416 data = ada_pspace_data_handle.emplace (pspace);
417
418 return data;
419 }
420
421 /* Utilities */
422
423 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
424 all typedef layers have been peeled. Otherwise, return TYPE.
425
426 Normally, we really expect a typedef type to only have 1 typedef layer.
427 In other words, we really expect the target type of a typedef type to be
428 a non-typedef type. This is particularly true for Ada units, because
429 the language does not have a typedef vs not-typedef distinction.
430 In that respect, the Ada compiler has been trying to eliminate as many
431 typedef definitions in the debugging information, since they generally
432 do not bring any extra information (we still use typedef under certain
433 circumstances related mostly to the GNAT encoding).
434
435 Unfortunately, we have seen situations where the debugging information
436 generated by the compiler leads to such multiple typedef layers. For
437 instance, consider the following example with stabs:
438
439 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
440 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
441
442 This is an error in the debugging information which causes type
443 pck__float_array___XUP to be defined twice, and the second time,
444 it is defined as a typedef of a typedef.
445
446 This is on the fringe of legality as far as debugging information is
447 concerned, and certainly unexpected. But it is easy to handle these
448 situations correctly, so we can afford to be lenient in this case. */
449
450 static struct type *
451 ada_typedef_target_type (struct type *type)
452 {
453 while (type->code () == TYPE_CODE_TYPEDEF)
454 type = TYPE_TARGET_TYPE (type);
455 return type;
456 }
457
458 /* Given DECODED_NAME a string holding a symbol name in its
459 decoded form (ie using the Ada dotted notation), returns
460 its unqualified name. */
461
462 static const char *
463 ada_unqualified_name (const char *decoded_name)
464 {
465 const char *result;
466
467 /* If the decoded name starts with '<', it means that the encoded
468 name does not follow standard naming conventions, and thus that
469 it is not your typical Ada symbol name. Trying to unqualify it
470 is therefore pointless and possibly erroneous. */
471 if (decoded_name[0] == '<')
472 return decoded_name;
473
474 result = strrchr (decoded_name, '.');
475 if (result != NULL)
476 result++; /* Skip the dot... */
477 else
478 result = decoded_name;
479
480 return result;
481 }
482
483 /* Return a string starting with '<', followed by STR, and '>'. */
484
485 static std::string
486 add_angle_brackets (const char *str)
487 {
488 return string_printf ("<%s>", str);
489 }
490
491 /* Assuming V points to an array of S objects, make sure that it contains at
492 least M objects, updating V and S as necessary. */
493
494 #define GROW_VECT(v, s, m) \
495 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
496
497 /* Assuming VECT points to an array of *SIZE objects of size
498 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
499 updating *SIZE as necessary and returning the (new) array. */
500
501 static void *
502 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
503 {
504 if (*size < min_size)
505 {
506 *size *= 2;
507 if (*size < min_size)
508 *size = min_size;
509 vect = xrealloc (vect, *size * element_size);
510 }
511 return vect;
512 }
513
514 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
515 suffix of FIELD_NAME beginning "___". */
516
517 static int
518 field_name_match (const char *field_name, const char *target)
519 {
520 int len = strlen (target);
521
522 return
523 (strncmp (field_name, target, len) == 0
524 && (field_name[len] == '\0'
525 || (startswith (field_name + len, "___")
526 && strcmp (field_name + strlen (field_name) - 6,
527 "___XVN") != 0)));
528 }
529
530
531 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
532 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
533 and return its index. This function also handles fields whose name
534 have ___ suffixes because the compiler sometimes alters their name
535 by adding such a suffix to represent fields with certain constraints.
536 If the field could not be found, return a negative number if
537 MAYBE_MISSING is set. Otherwise raise an error. */
538
539 int
540 ada_get_field_index (const struct type *type, const char *field_name,
541 int maybe_missing)
542 {
543 int fieldno;
544 struct type *struct_type = check_typedef ((struct type *) type);
545
546 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
547 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
548 return fieldno;
549
550 if (!maybe_missing)
551 error (_("Unable to find field %s in struct %s. Aborting"),
552 field_name, struct_type->name ());
553
554 return -1;
555 }
556
557 /* The length of the prefix of NAME prior to any "___" suffix. */
558
559 int
560 ada_name_prefix_len (const char *name)
561 {
562 if (name == NULL)
563 return 0;
564 else
565 {
566 const char *p = strstr (name, "___");
567
568 if (p == NULL)
569 return strlen (name);
570 else
571 return p - name;
572 }
573 }
574
575 /* Return non-zero if SUFFIX is a suffix of STR.
576 Return zero if STR is null. */
577
578 static int
579 is_suffix (const char *str, const char *suffix)
580 {
581 int len1, len2;
582
583 if (str == NULL)
584 return 0;
585 len1 = strlen (str);
586 len2 = strlen (suffix);
587 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
588 }
589
590 /* The contents of value VAL, treated as a value of type TYPE. The
591 result is an lval in memory if VAL is. */
592
593 static struct value *
594 coerce_unspec_val_to_type (struct value *val, struct type *type)
595 {
596 type = ada_check_typedef (type);
597 if (value_type (val) == type)
598 return val;
599 else
600 {
601 struct value *result;
602
603 /* Make sure that the object size is not unreasonable before
604 trying to allocate some memory for it. */
605 ada_ensure_varsize_limit (type);
606
607 if (value_lazy (val)
608 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
609 result = allocate_value_lazy (type);
610 else
611 {
612 result = allocate_value (type);
613 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
614 }
615 set_value_component_location (result, val);
616 set_value_bitsize (result, value_bitsize (val));
617 set_value_bitpos (result, value_bitpos (val));
618 if (VALUE_LVAL (result) == lval_memory)
619 set_value_address (result, value_address (val));
620 return result;
621 }
622 }
623
624 static const gdb_byte *
625 cond_offset_host (const gdb_byte *valaddr, long offset)
626 {
627 if (valaddr == NULL)
628 return NULL;
629 else
630 return valaddr + offset;
631 }
632
633 static CORE_ADDR
634 cond_offset_target (CORE_ADDR address, long offset)
635 {
636 if (address == 0)
637 return 0;
638 else
639 return address + offset;
640 }
641
642 /* Issue a warning (as for the definition of warning in utils.c, but
643 with exactly one argument rather than ...), unless the limit on the
644 number of warnings has passed during the evaluation of the current
645 expression. */
646
647 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
648 provided by "complaint". */
649 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
650
651 static void
652 lim_warning (const char *format, ...)
653 {
654 va_list args;
655
656 va_start (args, format);
657 warnings_issued += 1;
658 if (warnings_issued <= warning_limit)
659 vwarning (format, args);
660
661 va_end (args);
662 }
663
664 /* Issue an error if the size of an object of type T is unreasonable,
665 i.e. if it would be a bad idea to allocate a value of this type in
666 GDB. */
667
668 void
669 ada_ensure_varsize_limit (const struct type *type)
670 {
671 if (TYPE_LENGTH (type) > varsize_limit)
672 error (_("object size is larger than varsize-limit"));
673 }
674
675 /* Maximum value of a SIZE-byte signed integer type. */
676 static LONGEST
677 max_of_size (int size)
678 {
679 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
680
681 return top_bit | (top_bit - 1);
682 }
683
684 /* Minimum value of a SIZE-byte signed integer type. */
685 static LONGEST
686 min_of_size (int size)
687 {
688 return -max_of_size (size) - 1;
689 }
690
691 /* Maximum value of a SIZE-byte unsigned integer type. */
692 static ULONGEST
693 umax_of_size (int size)
694 {
695 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
696
697 return top_bit | (top_bit - 1);
698 }
699
700 /* Maximum value of integral type T, as a signed quantity. */
701 static LONGEST
702 max_of_type (struct type *t)
703 {
704 if (TYPE_UNSIGNED (t))
705 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
706 else
707 return max_of_size (TYPE_LENGTH (t));
708 }
709
710 /* Minimum value of integral type T, as a signed quantity. */
711 static LONGEST
712 min_of_type (struct type *t)
713 {
714 if (TYPE_UNSIGNED (t))
715 return 0;
716 else
717 return min_of_size (TYPE_LENGTH (t));
718 }
719
720 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
721 LONGEST
722 ada_discrete_type_high_bound (struct type *type)
723 {
724 type = resolve_dynamic_type (type, {}, 0);
725 switch (type->code ())
726 {
727 case TYPE_CODE_RANGE:
728 return TYPE_HIGH_BOUND (type);
729 case TYPE_CODE_ENUM:
730 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
731 case TYPE_CODE_BOOL:
732 return 1;
733 case TYPE_CODE_CHAR:
734 case TYPE_CODE_INT:
735 return max_of_type (type);
736 default:
737 error (_("Unexpected type in ada_discrete_type_high_bound."));
738 }
739 }
740
741 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
742 LONGEST
743 ada_discrete_type_low_bound (struct type *type)
744 {
745 type = resolve_dynamic_type (type, {}, 0);
746 switch (type->code ())
747 {
748 case TYPE_CODE_RANGE:
749 return TYPE_LOW_BOUND (type);
750 case TYPE_CODE_ENUM:
751 return TYPE_FIELD_ENUMVAL (type, 0);
752 case TYPE_CODE_BOOL:
753 return 0;
754 case TYPE_CODE_CHAR:
755 case TYPE_CODE_INT:
756 return min_of_type (type);
757 default:
758 error (_("Unexpected type in ada_discrete_type_low_bound."));
759 }
760 }
761
762 /* The identity on non-range types. For range types, the underlying
763 non-range scalar type. */
764
765 static struct type *
766 get_base_type (struct type *type)
767 {
768 while (type != NULL && type->code () == TYPE_CODE_RANGE)
769 {
770 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
771 return type;
772 type = TYPE_TARGET_TYPE (type);
773 }
774 return type;
775 }
776
777 /* Return a decoded version of the given VALUE. This means returning
778 a value whose type is obtained by applying all the GNAT-specific
779 encodings, making the resulting type a static but standard description
780 of the initial type. */
781
782 struct value *
783 ada_get_decoded_value (struct value *value)
784 {
785 struct type *type = ada_check_typedef (value_type (value));
786
787 if (ada_is_array_descriptor_type (type)
788 || (ada_is_constrained_packed_array_type (type)
789 && type->code () != TYPE_CODE_PTR))
790 {
791 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
792 value = ada_coerce_to_simple_array_ptr (value);
793 else
794 value = ada_coerce_to_simple_array (value);
795 }
796 else
797 value = ada_to_fixed_value (value);
798
799 return value;
800 }
801
802 /* Same as ada_get_decoded_value, but with the given TYPE.
803 Because there is no associated actual value for this type,
804 the resulting type might be a best-effort approximation in
805 the case of dynamic types. */
806
807 struct type *
808 ada_get_decoded_type (struct type *type)
809 {
810 type = to_static_fixed_type (type);
811 if (ada_is_constrained_packed_array_type (type))
812 type = ada_coerce_to_simple_array_type (type);
813 return type;
814 }
815
816 \f
817
818 /* Language Selection */
819
820 /* If the main program is in Ada, return language_ada, otherwise return LANG
821 (the main program is in Ada iif the adainit symbol is found). */
822
823 static enum language
824 ada_update_initial_language (enum language lang)
825 {
826 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
827 return language_ada;
828
829 return lang;
830 }
831
832 /* If the main procedure is written in Ada, then return its name.
833 The result is good until the next call. Return NULL if the main
834 procedure doesn't appear to be in Ada. */
835
836 char *
837 ada_main_name (void)
838 {
839 struct bound_minimal_symbol msym;
840 static gdb::unique_xmalloc_ptr<char> main_program_name;
841
842 /* For Ada, the name of the main procedure is stored in a specific
843 string constant, generated by the binder. Look for that symbol,
844 extract its address, and then read that string. If we didn't find
845 that string, then most probably the main procedure is not written
846 in Ada. */
847 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
848
849 if (msym.minsym != NULL)
850 {
851 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
852 if (main_program_name_addr == 0)
853 error (_("Invalid address for Ada main program name."));
854
855 main_program_name = target_read_string (main_program_name_addr, 1024);
856 return main_program_name.get ();
857 }
858
859 /* The main procedure doesn't seem to be in Ada. */
860 return NULL;
861 }
862 \f
863 /* Symbols */
864
865 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
866 of NULLs. */
867
868 const struct ada_opname_map ada_opname_table[] = {
869 {"Oadd", "\"+\"", BINOP_ADD},
870 {"Osubtract", "\"-\"", BINOP_SUB},
871 {"Omultiply", "\"*\"", BINOP_MUL},
872 {"Odivide", "\"/\"", BINOP_DIV},
873 {"Omod", "\"mod\"", BINOP_MOD},
874 {"Orem", "\"rem\"", BINOP_REM},
875 {"Oexpon", "\"**\"", BINOP_EXP},
876 {"Olt", "\"<\"", BINOP_LESS},
877 {"Ole", "\"<=\"", BINOP_LEQ},
878 {"Ogt", "\">\"", BINOP_GTR},
879 {"Oge", "\">=\"", BINOP_GEQ},
880 {"Oeq", "\"=\"", BINOP_EQUAL},
881 {"One", "\"/=\"", BINOP_NOTEQUAL},
882 {"Oand", "\"and\"", BINOP_BITWISE_AND},
883 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
884 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
885 {"Oconcat", "\"&\"", BINOP_CONCAT},
886 {"Oabs", "\"abs\"", UNOP_ABS},
887 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
888 {"Oadd", "\"+\"", UNOP_PLUS},
889 {"Osubtract", "\"-\"", UNOP_NEG},
890 {NULL, NULL}
891 };
892
893 /* The "encoded" form of DECODED, according to GNAT conventions. The
894 result is valid until the next call to ada_encode. If
895 THROW_ERRORS, throw an error if invalid operator name is found.
896 Otherwise, return NULL in that case. */
897
898 static char *
899 ada_encode_1 (const char *decoded, bool throw_errors)
900 {
901 static char *encoding_buffer = NULL;
902 static size_t encoding_buffer_size = 0;
903 const char *p;
904 int k;
905
906 if (decoded == NULL)
907 return NULL;
908
909 GROW_VECT (encoding_buffer, encoding_buffer_size,
910 2 * strlen (decoded) + 10);
911
912 k = 0;
913 for (p = decoded; *p != '\0'; p += 1)
914 {
915 if (*p == '.')
916 {
917 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
918 k += 2;
919 }
920 else if (*p == '"')
921 {
922 const struct ada_opname_map *mapping;
923
924 for (mapping = ada_opname_table;
925 mapping->encoded != NULL
926 && !startswith (p, mapping->decoded); mapping += 1)
927 ;
928 if (mapping->encoded == NULL)
929 {
930 if (throw_errors)
931 error (_("invalid Ada operator name: %s"), p);
932 else
933 return NULL;
934 }
935 strcpy (encoding_buffer + k, mapping->encoded);
936 k += strlen (mapping->encoded);
937 break;
938 }
939 else
940 {
941 encoding_buffer[k] = *p;
942 k += 1;
943 }
944 }
945
946 encoding_buffer[k] = '\0';
947 return encoding_buffer;
948 }
949
950 /* The "encoded" form of DECODED, according to GNAT conventions.
951 The result is valid until the next call to ada_encode. */
952
953 char *
954 ada_encode (const char *decoded)
955 {
956 return ada_encode_1 (decoded, true);
957 }
958
959 /* Return NAME folded to lower case, or, if surrounded by single
960 quotes, unfolded, but with the quotes stripped away. Result good
961 to next call. */
962
963 static char *
964 ada_fold_name (gdb::string_view name)
965 {
966 static char *fold_buffer = NULL;
967 static size_t fold_buffer_size = 0;
968
969 int len = name.size ();
970 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
971
972 if (name[0] == '\'')
973 {
974 strncpy (fold_buffer, name.data () + 1, len - 2);
975 fold_buffer[len - 2] = '\000';
976 }
977 else
978 {
979 int i;
980
981 for (i = 0; i <= len; i += 1)
982 fold_buffer[i] = tolower (name[i]);
983 }
984
985 return fold_buffer;
986 }
987
988 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
989
990 static int
991 is_lower_alphanum (const char c)
992 {
993 return (isdigit (c) || (isalpha (c) && islower (c)));
994 }
995
996 /* ENCODED is the linkage name of a symbol and LEN contains its length.
997 This function saves in LEN the length of that same symbol name but
998 without either of these suffixes:
999 . .{DIGIT}+
1000 . ${DIGIT}+
1001 . ___{DIGIT}+
1002 . __{DIGIT}+.
1003
1004 These are suffixes introduced by the compiler for entities such as
1005 nested subprogram for instance, in order to avoid name clashes.
1006 They do not serve any purpose for the debugger. */
1007
1008 static void
1009 ada_remove_trailing_digits (const char *encoded, int *len)
1010 {
1011 if (*len > 1 && isdigit (encoded[*len - 1]))
1012 {
1013 int i = *len - 2;
1014
1015 while (i > 0 && isdigit (encoded[i]))
1016 i--;
1017 if (i >= 0 && encoded[i] == '.')
1018 *len = i;
1019 else if (i >= 0 && encoded[i] == '$')
1020 *len = i;
1021 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1022 *len = i - 2;
1023 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1024 *len = i - 1;
1025 }
1026 }
1027
1028 /* Remove the suffix introduced by the compiler for protected object
1029 subprograms. */
1030
1031 static void
1032 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1033 {
1034 /* Remove trailing N. */
1035
1036 /* Protected entry subprograms are broken into two
1037 separate subprograms: The first one is unprotected, and has
1038 a 'N' suffix; the second is the protected version, and has
1039 the 'P' suffix. The second calls the first one after handling
1040 the protection. Since the P subprograms are internally generated,
1041 we leave these names undecoded, giving the user a clue that this
1042 entity is internal. */
1043
1044 if (*len > 1
1045 && encoded[*len - 1] == 'N'
1046 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1047 *len = *len - 1;
1048 }
1049
1050 /* If ENCODED follows the GNAT entity encoding conventions, then return
1051 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1052 replaced by ENCODED. */
1053
1054 std::string
1055 ada_decode (const char *encoded)
1056 {
1057 int i, j;
1058 int len0;
1059 const char *p;
1060 int at_start_name;
1061 std::string decoded;
1062
1063 /* With function descriptors on PPC64, the value of a symbol named
1064 ".FN", if it exists, is the entry point of the function "FN". */
1065 if (encoded[0] == '.')
1066 encoded += 1;
1067
1068 /* The name of the Ada main procedure starts with "_ada_".
1069 This prefix is not part of the decoded name, so skip this part
1070 if we see this prefix. */
1071 if (startswith (encoded, "_ada_"))
1072 encoded += 5;
1073
1074 /* If the name starts with '_', then it is not a properly encoded
1075 name, so do not attempt to decode it. Similarly, if the name
1076 starts with '<', the name should not be decoded. */
1077 if (encoded[0] == '_' || encoded[0] == '<')
1078 goto Suppress;
1079
1080 len0 = strlen (encoded);
1081
1082 ada_remove_trailing_digits (encoded, &len0);
1083 ada_remove_po_subprogram_suffix (encoded, &len0);
1084
1085 /* Remove the ___X.* suffix if present. Do not forget to verify that
1086 the suffix is located before the current "end" of ENCODED. We want
1087 to avoid re-matching parts of ENCODED that have previously been
1088 marked as discarded (by decrementing LEN0). */
1089 p = strstr (encoded, "___");
1090 if (p != NULL && p - encoded < len0 - 3)
1091 {
1092 if (p[3] == 'X')
1093 len0 = p - encoded;
1094 else
1095 goto Suppress;
1096 }
1097
1098 /* Remove any trailing TKB suffix. It tells us that this symbol
1099 is for the body of a task, but that information does not actually
1100 appear in the decoded name. */
1101
1102 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1103 len0 -= 3;
1104
1105 /* Remove any trailing TB suffix. The TB suffix is slightly different
1106 from the TKB suffix because it is used for non-anonymous task
1107 bodies. */
1108
1109 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1110 len0 -= 2;
1111
1112 /* Remove trailing "B" suffixes. */
1113 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1114
1115 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1116 len0 -= 1;
1117
1118 /* Make decoded big enough for possible expansion by operator name. */
1119
1120 decoded.resize (2 * len0 + 1, 'X');
1121
1122 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1123
1124 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1125 {
1126 i = len0 - 2;
1127 while ((i >= 0 && isdigit (encoded[i]))
1128 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1129 i -= 1;
1130 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1131 len0 = i - 1;
1132 else if (encoded[i] == '$')
1133 len0 = i;
1134 }
1135
1136 /* The first few characters that are not alphabetic are not part
1137 of any encoding we use, so we can copy them over verbatim. */
1138
1139 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1140 decoded[j] = encoded[i];
1141
1142 at_start_name = 1;
1143 while (i < len0)
1144 {
1145 /* Is this a symbol function? */
1146 if (at_start_name && encoded[i] == 'O')
1147 {
1148 int k;
1149
1150 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1151 {
1152 int op_len = strlen (ada_opname_table[k].encoded);
1153 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1154 op_len - 1) == 0)
1155 && !isalnum (encoded[i + op_len]))
1156 {
1157 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1158 at_start_name = 0;
1159 i += op_len;
1160 j += strlen (ada_opname_table[k].decoded);
1161 break;
1162 }
1163 }
1164 if (ada_opname_table[k].encoded != NULL)
1165 continue;
1166 }
1167 at_start_name = 0;
1168
1169 /* Replace "TK__" with "__", which will eventually be translated
1170 into "." (just below). */
1171
1172 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1173 i += 2;
1174
1175 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1176 be translated into "." (just below). These are internal names
1177 generated for anonymous blocks inside which our symbol is nested. */
1178
1179 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1180 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1181 && isdigit (encoded [i+4]))
1182 {
1183 int k = i + 5;
1184
1185 while (k < len0 && isdigit (encoded[k]))
1186 k++; /* Skip any extra digit. */
1187
1188 /* Double-check that the "__B_{DIGITS}+" sequence we found
1189 is indeed followed by "__". */
1190 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1191 i = k;
1192 }
1193
1194 /* Remove _E{DIGITS}+[sb] */
1195
1196 /* Just as for protected object subprograms, there are 2 categories
1197 of subprograms created by the compiler for each entry. The first
1198 one implements the actual entry code, and has a suffix following
1199 the convention above; the second one implements the barrier and
1200 uses the same convention as above, except that the 'E' is replaced
1201 by a 'B'.
1202
1203 Just as above, we do not decode the name of barrier functions
1204 to give the user a clue that the code he is debugging has been
1205 internally generated. */
1206
1207 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1208 && isdigit (encoded[i+2]))
1209 {
1210 int k = i + 3;
1211
1212 while (k < len0 && isdigit (encoded[k]))
1213 k++;
1214
1215 if (k < len0
1216 && (encoded[k] == 'b' || encoded[k] == 's'))
1217 {
1218 k++;
1219 /* Just as an extra precaution, make sure that if this
1220 suffix is followed by anything else, it is a '_'.
1221 Otherwise, we matched this sequence by accident. */
1222 if (k == len0
1223 || (k < len0 && encoded[k] == '_'))
1224 i = k;
1225 }
1226 }
1227
1228 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1229 the GNAT front-end in protected object subprograms. */
1230
1231 if (i < len0 + 3
1232 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1233 {
1234 /* Backtrack a bit up until we reach either the begining of
1235 the encoded name, or "__". Make sure that we only find
1236 digits or lowercase characters. */
1237 const char *ptr = encoded + i - 1;
1238
1239 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1240 ptr--;
1241 if (ptr < encoded
1242 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1243 i++;
1244 }
1245
1246 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1247 {
1248 /* This is a X[bn]* sequence not separated from the previous
1249 part of the name with a non-alpha-numeric character (in other
1250 words, immediately following an alpha-numeric character), then
1251 verify that it is placed at the end of the encoded name. If
1252 not, then the encoding is not valid and we should abort the
1253 decoding. Otherwise, just skip it, it is used in body-nested
1254 package names. */
1255 do
1256 i += 1;
1257 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1258 if (i < len0)
1259 goto Suppress;
1260 }
1261 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1262 {
1263 /* Replace '__' by '.'. */
1264 decoded[j] = '.';
1265 at_start_name = 1;
1266 i += 2;
1267 j += 1;
1268 }
1269 else
1270 {
1271 /* It's a character part of the decoded name, so just copy it
1272 over. */
1273 decoded[j] = encoded[i];
1274 i += 1;
1275 j += 1;
1276 }
1277 }
1278 decoded.resize (j);
1279
1280 /* Decoded names should never contain any uppercase character.
1281 Double-check this, and abort the decoding if we find one. */
1282
1283 for (i = 0; i < decoded.length(); ++i)
1284 if (isupper (decoded[i]) || decoded[i] == ' ')
1285 goto Suppress;
1286
1287 return decoded;
1288
1289 Suppress:
1290 if (encoded[0] == '<')
1291 decoded = encoded;
1292 else
1293 decoded = '<' + std::string(encoded) + '>';
1294 return decoded;
1295
1296 }
1297
1298 /* Table for keeping permanent unique copies of decoded names. Once
1299 allocated, names in this table are never released. While this is a
1300 storage leak, it should not be significant unless there are massive
1301 changes in the set of decoded names in successive versions of a
1302 symbol table loaded during a single session. */
1303 static struct htab *decoded_names_store;
1304
1305 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1306 in the language-specific part of GSYMBOL, if it has not been
1307 previously computed. Tries to save the decoded name in the same
1308 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1309 in any case, the decoded symbol has a lifetime at least that of
1310 GSYMBOL).
1311 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1312 const, but nevertheless modified to a semantically equivalent form
1313 when a decoded name is cached in it. */
1314
1315 const char *
1316 ada_decode_symbol (const struct general_symbol_info *arg)
1317 {
1318 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1319 const char **resultp =
1320 &gsymbol->language_specific.demangled_name;
1321
1322 if (!gsymbol->ada_mangled)
1323 {
1324 std::string decoded = ada_decode (gsymbol->linkage_name ());
1325 struct obstack *obstack = gsymbol->language_specific.obstack;
1326
1327 gsymbol->ada_mangled = 1;
1328
1329 if (obstack != NULL)
1330 *resultp = obstack_strdup (obstack, decoded.c_str ());
1331 else
1332 {
1333 /* Sometimes, we can't find a corresponding objfile, in
1334 which case, we put the result on the heap. Since we only
1335 decode when needed, we hope this usually does not cause a
1336 significant memory leak (FIXME). */
1337
1338 char **slot = (char **) htab_find_slot (decoded_names_store,
1339 decoded.c_str (), INSERT);
1340
1341 if (*slot == NULL)
1342 *slot = xstrdup (decoded.c_str ());
1343 *resultp = *slot;
1344 }
1345 }
1346
1347 return *resultp;
1348 }
1349
1350 static char *
1351 ada_la_decode (const char *encoded, int options)
1352 {
1353 return xstrdup (ada_decode (encoded).c_str ());
1354 }
1355
1356 \f
1357
1358 /* Arrays */
1359
1360 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1361 generated by the GNAT compiler to describe the index type used
1362 for each dimension of an array, check whether it follows the latest
1363 known encoding. If not, fix it up to conform to the latest encoding.
1364 Otherwise, do nothing. This function also does nothing if
1365 INDEX_DESC_TYPE is NULL.
1366
1367 The GNAT encoding used to describe the array index type evolved a bit.
1368 Initially, the information would be provided through the name of each
1369 field of the structure type only, while the type of these fields was
1370 described as unspecified and irrelevant. The debugger was then expected
1371 to perform a global type lookup using the name of that field in order
1372 to get access to the full index type description. Because these global
1373 lookups can be very expensive, the encoding was later enhanced to make
1374 the global lookup unnecessary by defining the field type as being
1375 the full index type description.
1376
1377 The purpose of this routine is to allow us to support older versions
1378 of the compiler by detecting the use of the older encoding, and by
1379 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1380 we essentially replace each field's meaningless type by the associated
1381 index subtype). */
1382
1383 void
1384 ada_fixup_array_indexes_type (struct type *index_desc_type)
1385 {
1386 int i;
1387
1388 if (index_desc_type == NULL)
1389 return;
1390 gdb_assert (index_desc_type->num_fields () > 0);
1391
1392 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1393 to check one field only, no need to check them all). If not, return
1394 now.
1395
1396 If our INDEX_DESC_TYPE was generated using the older encoding,
1397 the field type should be a meaningless integer type whose name
1398 is not equal to the field name. */
1399 if (index_desc_type->field (0).type ()->name () != NULL
1400 && strcmp (index_desc_type->field (0).type ()->name (),
1401 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1402 return;
1403
1404 /* Fixup each field of INDEX_DESC_TYPE. */
1405 for (i = 0; i < index_desc_type->num_fields (); i++)
1406 {
1407 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1408 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1409
1410 if (raw_type)
1411 index_desc_type->field (i).set_type (raw_type);
1412 }
1413 }
1414
1415 /* The desc_* routines return primitive portions of array descriptors
1416 (fat pointers). */
1417
1418 /* The descriptor or array type, if any, indicated by TYPE; removes
1419 level of indirection, if needed. */
1420
1421 static struct type *
1422 desc_base_type (struct type *type)
1423 {
1424 if (type == NULL)
1425 return NULL;
1426 type = ada_check_typedef (type);
1427 if (type->code () == TYPE_CODE_TYPEDEF)
1428 type = ada_typedef_target_type (type);
1429
1430 if (type != NULL
1431 && (type->code () == TYPE_CODE_PTR
1432 || type->code () == TYPE_CODE_REF))
1433 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1434 else
1435 return type;
1436 }
1437
1438 /* True iff TYPE indicates a "thin" array pointer type. */
1439
1440 static int
1441 is_thin_pntr (struct type *type)
1442 {
1443 return
1444 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1445 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1446 }
1447
1448 /* The descriptor type for thin pointer type TYPE. */
1449
1450 static struct type *
1451 thin_descriptor_type (struct type *type)
1452 {
1453 struct type *base_type = desc_base_type (type);
1454
1455 if (base_type == NULL)
1456 return NULL;
1457 if (is_suffix (ada_type_name (base_type), "___XVE"))
1458 return base_type;
1459 else
1460 {
1461 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1462
1463 if (alt_type == NULL)
1464 return base_type;
1465 else
1466 return alt_type;
1467 }
1468 }
1469
1470 /* A pointer to the array data for thin-pointer value VAL. */
1471
1472 static struct value *
1473 thin_data_pntr (struct value *val)
1474 {
1475 struct type *type = ada_check_typedef (value_type (val));
1476 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1477
1478 data_type = lookup_pointer_type (data_type);
1479
1480 if (type->code () == TYPE_CODE_PTR)
1481 return value_cast (data_type, value_copy (val));
1482 else
1483 return value_from_longest (data_type, value_address (val));
1484 }
1485
1486 /* True iff TYPE indicates a "thick" array pointer type. */
1487
1488 static int
1489 is_thick_pntr (struct type *type)
1490 {
1491 type = desc_base_type (type);
1492 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1493 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1494 }
1495
1496 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1497 pointer to one, the type of its bounds data; otherwise, NULL. */
1498
1499 static struct type *
1500 desc_bounds_type (struct type *type)
1501 {
1502 struct type *r;
1503
1504 type = desc_base_type (type);
1505
1506 if (type == NULL)
1507 return NULL;
1508 else if (is_thin_pntr (type))
1509 {
1510 type = thin_descriptor_type (type);
1511 if (type == NULL)
1512 return NULL;
1513 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1514 if (r != NULL)
1515 return ada_check_typedef (r);
1516 }
1517 else if (type->code () == TYPE_CODE_STRUCT)
1518 {
1519 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1520 if (r != NULL)
1521 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1522 }
1523 return NULL;
1524 }
1525
1526 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1527 one, a pointer to its bounds data. Otherwise NULL. */
1528
1529 static struct value *
1530 desc_bounds (struct value *arr)
1531 {
1532 struct type *type = ada_check_typedef (value_type (arr));
1533
1534 if (is_thin_pntr (type))
1535 {
1536 struct type *bounds_type =
1537 desc_bounds_type (thin_descriptor_type (type));
1538 LONGEST addr;
1539
1540 if (bounds_type == NULL)
1541 error (_("Bad GNAT array descriptor"));
1542
1543 /* NOTE: The following calculation is not really kosher, but
1544 since desc_type is an XVE-encoded type (and shouldn't be),
1545 the correct calculation is a real pain. FIXME (and fix GCC). */
1546 if (type->code () == TYPE_CODE_PTR)
1547 addr = value_as_long (arr);
1548 else
1549 addr = value_address (arr);
1550
1551 return
1552 value_from_longest (lookup_pointer_type (bounds_type),
1553 addr - TYPE_LENGTH (bounds_type));
1554 }
1555
1556 else if (is_thick_pntr (type))
1557 {
1558 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1559 _("Bad GNAT array descriptor"));
1560 struct type *p_bounds_type = value_type (p_bounds);
1561
1562 if (p_bounds_type
1563 && p_bounds_type->code () == TYPE_CODE_PTR)
1564 {
1565 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1566
1567 if (TYPE_STUB (target_type))
1568 p_bounds = value_cast (lookup_pointer_type
1569 (ada_check_typedef (target_type)),
1570 p_bounds);
1571 }
1572 else
1573 error (_("Bad GNAT array descriptor"));
1574
1575 return p_bounds;
1576 }
1577 else
1578 return NULL;
1579 }
1580
1581 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1582 position of the field containing the address of the bounds data. */
1583
1584 static int
1585 fat_pntr_bounds_bitpos (struct type *type)
1586 {
1587 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1588 }
1589
1590 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1591 size of the field containing the address of the bounds data. */
1592
1593 static int
1594 fat_pntr_bounds_bitsize (struct type *type)
1595 {
1596 type = desc_base_type (type);
1597
1598 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1599 return TYPE_FIELD_BITSIZE (type, 1);
1600 else
1601 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1602 }
1603
1604 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1605 pointer to one, the type of its array data (a array-with-no-bounds type);
1606 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1607 data. */
1608
1609 static struct type *
1610 desc_data_target_type (struct type *type)
1611 {
1612 type = desc_base_type (type);
1613
1614 /* NOTE: The following is bogus; see comment in desc_bounds. */
1615 if (is_thin_pntr (type))
1616 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1617 else if (is_thick_pntr (type))
1618 {
1619 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1620
1621 if (data_type
1622 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1623 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1624 }
1625
1626 return NULL;
1627 }
1628
1629 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1630 its array data. */
1631
1632 static struct value *
1633 desc_data (struct value *arr)
1634 {
1635 struct type *type = value_type (arr);
1636
1637 if (is_thin_pntr (type))
1638 return thin_data_pntr (arr);
1639 else if (is_thick_pntr (type))
1640 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1641 _("Bad GNAT array descriptor"));
1642 else
1643 return NULL;
1644 }
1645
1646
1647 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1648 position of the field containing the address of the data. */
1649
1650 static int
1651 fat_pntr_data_bitpos (struct type *type)
1652 {
1653 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1654 }
1655
1656 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1657 size of the field containing the address of the data. */
1658
1659 static int
1660 fat_pntr_data_bitsize (struct type *type)
1661 {
1662 type = desc_base_type (type);
1663
1664 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1665 return TYPE_FIELD_BITSIZE (type, 0);
1666 else
1667 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1668 }
1669
1670 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1671 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1672 bound, if WHICH is 1. The first bound is I=1. */
1673
1674 static struct value *
1675 desc_one_bound (struct value *bounds, int i, int which)
1676 {
1677 char bound_name[20];
1678 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1679 which ? 'U' : 'L', i - 1);
1680 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1681 _("Bad GNAT array descriptor bounds"));
1682 }
1683
1684 /* If BOUNDS is an array-bounds structure type, return the bit position
1685 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1686 bound, if WHICH is 1. The first bound is I=1. */
1687
1688 static int
1689 desc_bound_bitpos (struct type *type, int i, int which)
1690 {
1691 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1692 }
1693
1694 /* If BOUNDS is an array-bounds structure type, return the bit field size
1695 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1696 bound, if WHICH is 1. The first bound is I=1. */
1697
1698 static int
1699 desc_bound_bitsize (struct type *type, int i, int which)
1700 {
1701 type = desc_base_type (type);
1702
1703 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1704 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1705 else
1706 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1707 }
1708
1709 /* If TYPE is the type of an array-bounds structure, the type of its
1710 Ith bound (numbering from 1). Otherwise, NULL. */
1711
1712 static struct type *
1713 desc_index_type (struct type *type, int i)
1714 {
1715 type = desc_base_type (type);
1716
1717 if (type->code () == TYPE_CODE_STRUCT)
1718 {
1719 char bound_name[20];
1720 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1721 return lookup_struct_elt_type (type, bound_name, 1);
1722 }
1723 else
1724 return NULL;
1725 }
1726
1727 /* The number of index positions in the array-bounds type TYPE.
1728 Return 0 if TYPE is NULL. */
1729
1730 static int
1731 desc_arity (struct type *type)
1732 {
1733 type = desc_base_type (type);
1734
1735 if (type != NULL)
1736 return type->num_fields () / 2;
1737 return 0;
1738 }
1739
1740 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1741 an array descriptor type (representing an unconstrained array
1742 type). */
1743
1744 static int
1745 ada_is_direct_array_type (struct type *type)
1746 {
1747 if (type == NULL)
1748 return 0;
1749 type = ada_check_typedef (type);
1750 return (type->code () == TYPE_CODE_ARRAY
1751 || ada_is_array_descriptor_type (type));
1752 }
1753
1754 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1755 * to one. */
1756
1757 static int
1758 ada_is_array_type (struct type *type)
1759 {
1760 while (type != NULL
1761 && (type->code () == TYPE_CODE_PTR
1762 || type->code () == TYPE_CODE_REF))
1763 type = TYPE_TARGET_TYPE (type);
1764 return ada_is_direct_array_type (type);
1765 }
1766
1767 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1768
1769 int
1770 ada_is_simple_array_type (struct type *type)
1771 {
1772 if (type == NULL)
1773 return 0;
1774 type = ada_check_typedef (type);
1775 return (type->code () == TYPE_CODE_ARRAY
1776 || (type->code () == TYPE_CODE_PTR
1777 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1778 == TYPE_CODE_ARRAY)));
1779 }
1780
1781 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1782
1783 int
1784 ada_is_array_descriptor_type (struct type *type)
1785 {
1786 struct type *data_type = desc_data_target_type (type);
1787
1788 if (type == NULL)
1789 return 0;
1790 type = ada_check_typedef (type);
1791 return (data_type != NULL
1792 && data_type->code () == TYPE_CODE_ARRAY
1793 && desc_arity (desc_bounds_type (type)) > 0);
1794 }
1795
1796 /* Non-zero iff type is a partially mal-formed GNAT array
1797 descriptor. FIXME: This is to compensate for some problems with
1798 debugging output from GNAT. Re-examine periodically to see if it
1799 is still needed. */
1800
1801 int
1802 ada_is_bogus_array_descriptor (struct type *type)
1803 {
1804 return
1805 type != NULL
1806 && type->code () == TYPE_CODE_STRUCT
1807 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1808 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1809 && !ada_is_array_descriptor_type (type);
1810 }
1811
1812
1813 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1814 (fat pointer) returns the type of the array data described---specifically,
1815 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1816 in from the descriptor; otherwise, they are left unspecified. If
1817 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1818 returns NULL. The result is simply the type of ARR if ARR is not
1819 a descriptor. */
1820
1821 static struct type *
1822 ada_type_of_array (struct value *arr, int bounds)
1823 {
1824 if (ada_is_constrained_packed_array_type (value_type (arr)))
1825 return decode_constrained_packed_array_type (value_type (arr));
1826
1827 if (!ada_is_array_descriptor_type (value_type (arr)))
1828 return value_type (arr);
1829
1830 if (!bounds)
1831 {
1832 struct type *array_type =
1833 ada_check_typedef (desc_data_target_type (value_type (arr)));
1834
1835 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1836 TYPE_FIELD_BITSIZE (array_type, 0) =
1837 decode_packed_array_bitsize (value_type (arr));
1838
1839 return array_type;
1840 }
1841 else
1842 {
1843 struct type *elt_type;
1844 int arity;
1845 struct value *descriptor;
1846
1847 elt_type = ada_array_element_type (value_type (arr), -1);
1848 arity = ada_array_arity (value_type (arr));
1849
1850 if (elt_type == NULL || arity == 0)
1851 return ada_check_typedef (value_type (arr));
1852
1853 descriptor = desc_bounds (arr);
1854 if (value_as_long (descriptor) == 0)
1855 return NULL;
1856 while (arity > 0)
1857 {
1858 struct type *range_type = alloc_type_copy (value_type (arr));
1859 struct type *array_type = alloc_type_copy (value_type (arr));
1860 struct value *low = desc_one_bound (descriptor, arity, 0);
1861 struct value *high = desc_one_bound (descriptor, arity, 1);
1862
1863 arity -= 1;
1864 create_static_range_type (range_type, value_type (low),
1865 longest_to_int (value_as_long (low)),
1866 longest_to_int (value_as_long (high)));
1867 elt_type = create_array_type (array_type, elt_type, range_type);
1868
1869 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1870 {
1871 /* We need to store the element packed bitsize, as well as
1872 recompute the array size, because it was previously
1873 computed based on the unpacked element size. */
1874 LONGEST lo = value_as_long (low);
1875 LONGEST hi = value_as_long (high);
1876
1877 TYPE_FIELD_BITSIZE (elt_type, 0) =
1878 decode_packed_array_bitsize (value_type (arr));
1879 /* If the array has no element, then the size is already
1880 zero, and does not need to be recomputed. */
1881 if (lo < hi)
1882 {
1883 int array_bitsize =
1884 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1885
1886 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1887 }
1888 }
1889 }
1890
1891 return lookup_pointer_type (elt_type);
1892 }
1893 }
1894
1895 /* If ARR does not represent an array, returns ARR unchanged.
1896 Otherwise, returns either a standard GDB array with bounds set
1897 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1898 GDB array. Returns NULL if ARR is a null fat pointer. */
1899
1900 struct value *
1901 ada_coerce_to_simple_array_ptr (struct value *arr)
1902 {
1903 if (ada_is_array_descriptor_type (value_type (arr)))
1904 {
1905 struct type *arrType = ada_type_of_array (arr, 1);
1906
1907 if (arrType == NULL)
1908 return NULL;
1909 return value_cast (arrType, value_copy (desc_data (arr)));
1910 }
1911 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1912 return decode_constrained_packed_array (arr);
1913 else
1914 return arr;
1915 }
1916
1917 /* If ARR does not represent an array, returns ARR unchanged.
1918 Otherwise, returns a standard GDB array describing ARR (which may
1919 be ARR itself if it already is in the proper form). */
1920
1921 struct value *
1922 ada_coerce_to_simple_array (struct value *arr)
1923 {
1924 if (ada_is_array_descriptor_type (value_type (arr)))
1925 {
1926 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1927
1928 if (arrVal == NULL)
1929 error (_("Bounds unavailable for null array pointer."));
1930 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1931 return value_ind (arrVal);
1932 }
1933 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1934 return decode_constrained_packed_array (arr);
1935 else
1936 return arr;
1937 }
1938
1939 /* If TYPE represents a GNAT array type, return it translated to an
1940 ordinary GDB array type (possibly with BITSIZE fields indicating
1941 packing). For other types, is the identity. */
1942
1943 struct type *
1944 ada_coerce_to_simple_array_type (struct type *type)
1945 {
1946 if (ada_is_constrained_packed_array_type (type))
1947 return decode_constrained_packed_array_type (type);
1948
1949 if (ada_is_array_descriptor_type (type))
1950 return ada_check_typedef (desc_data_target_type (type));
1951
1952 return type;
1953 }
1954
1955 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1956
1957 static int
1958 ada_is_packed_array_type (struct type *type)
1959 {
1960 if (type == NULL)
1961 return 0;
1962 type = desc_base_type (type);
1963 type = ada_check_typedef (type);
1964 return
1965 ada_type_name (type) != NULL
1966 && strstr (ada_type_name (type), "___XP") != NULL;
1967 }
1968
1969 /* Non-zero iff TYPE represents a standard GNAT constrained
1970 packed-array type. */
1971
1972 int
1973 ada_is_constrained_packed_array_type (struct type *type)
1974 {
1975 return ada_is_packed_array_type (type)
1976 && !ada_is_array_descriptor_type (type);
1977 }
1978
1979 /* Non-zero iff TYPE represents an array descriptor for a
1980 unconstrained packed-array type. */
1981
1982 static int
1983 ada_is_unconstrained_packed_array_type (struct type *type)
1984 {
1985 return ada_is_packed_array_type (type)
1986 && ada_is_array_descriptor_type (type);
1987 }
1988
1989 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1990 return the size of its elements in bits. */
1991
1992 static long
1993 decode_packed_array_bitsize (struct type *type)
1994 {
1995 const char *raw_name;
1996 const char *tail;
1997 long bits;
1998
1999 /* Access to arrays implemented as fat pointers are encoded as a typedef
2000 of the fat pointer type. We need the name of the fat pointer type
2001 to do the decoding, so strip the typedef layer. */
2002 if (type->code () == TYPE_CODE_TYPEDEF)
2003 type = ada_typedef_target_type (type);
2004
2005 raw_name = ada_type_name (ada_check_typedef (type));
2006 if (!raw_name)
2007 raw_name = ada_type_name (desc_base_type (type));
2008
2009 if (!raw_name)
2010 return 0;
2011
2012 tail = strstr (raw_name, "___XP");
2013 gdb_assert (tail != NULL);
2014
2015 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2016 {
2017 lim_warning
2018 (_("could not understand bit size information on packed array"));
2019 return 0;
2020 }
2021
2022 return bits;
2023 }
2024
2025 /* Given that TYPE is a standard GDB array type with all bounds filled
2026 in, and that the element size of its ultimate scalar constituents
2027 (that is, either its elements, or, if it is an array of arrays, its
2028 elements' elements, etc.) is *ELT_BITS, return an identical type,
2029 but with the bit sizes of its elements (and those of any
2030 constituent arrays) recorded in the BITSIZE components of its
2031 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2032 in bits.
2033
2034 Note that, for arrays whose index type has an XA encoding where
2035 a bound references a record discriminant, getting that discriminant,
2036 and therefore the actual value of that bound, is not possible
2037 because none of the given parameters gives us access to the record.
2038 This function assumes that it is OK in the context where it is being
2039 used to return an array whose bounds are still dynamic and where
2040 the length is arbitrary. */
2041
2042 static struct type *
2043 constrained_packed_array_type (struct type *type, long *elt_bits)
2044 {
2045 struct type *new_elt_type;
2046 struct type *new_type;
2047 struct type *index_type_desc;
2048 struct type *index_type;
2049 LONGEST low_bound, high_bound;
2050
2051 type = ada_check_typedef (type);
2052 if (type->code () != TYPE_CODE_ARRAY)
2053 return type;
2054
2055 index_type_desc = ada_find_parallel_type (type, "___XA");
2056 if (index_type_desc)
2057 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2058 NULL);
2059 else
2060 index_type = type->index_type ();
2061
2062 new_type = alloc_type_copy (type);
2063 new_elt_type =
2064 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2065 elt_bits);
2066 create_array_type (new_type, new_elt_type, index_type);
2067 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2068 new_type->set_name (ada_type_name (type));
2069
2070 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2071 && is_dynamic_type (check_typedef (index_type)))
2072 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2073 low_bound = high_bound = 0;
2074 if (high_bound < low_bound)
2075 *elt_bits = TYPE_LENGTH (new_type) = 0;
2076 else
2077 {
2078 *elt_bits *= (high_bound - low_bound + 1);
2079 TYPE_LENGTH (new_type) =
2080 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2081 }
2082
2083 TYPE_FIXED_INSTANCE (new_type) = 1;
2084 return new_type;
2085 }
2086
2087 /* The array type encoded by TYPE, where
2088 ada_is_constrained_packed_array_type (TYPE). */
2089
2090 static struct type *
2091 decode_constrained_packed_array_type (struct type *type)
2092 {
2093 const char *raw_name = ada_type_name (ada_check_typedef (type));
2094 char *name;
2095 const char *tail;
2096 struct type *shadow_type;
2097 long bits;
2098
2099 if (!raw_name)
2100 raw_name = ada_type_name (desc_base_type (type));
2101
2102 if (!raw_name)
2103 return NULL;
2104
2105 name = (char *) alloca (strlen (raw_name) + 1);
2106 tail = strstr (raw_name, "___XP");
2107 type = desc_base_type (type);
2108
2109 memcpy (name, raw_name, tail - raw_name);
2110 name[tail - raw_name] = '\000';
2111
2112 shadow_type = ada_find_parallel_type_with_name (type, name);
2113
2114 if (shadow_type == NULL)
2115 {
2116 lim_warning (_("could not find bounds information on packed array"));
2117 return NULL;
2118 }
2119 shadow_type = check_typedef (shadow_type);
2120
2121 if (shadow_type->code () != TYPE_CODE_ARRAY)
2122 {
2123 lim_warning (_("could not understand bounds "
2124 "information on packed array"));
2125 return NULL;
2126 }
2127
2128 bits = decode_packed_array_bitsize (type);
2129 return constrained_packed_array_type (shadow_type, &bits);
2130 }
2131
2132 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2133 array, returns a simple array that denotes that array. Its type is a
2134 standard GDB array type except that the BITSIZEs of the array
2135 target types are set to the number of bits in each element, and the
2136 type length is set appropriately. */
2137
2138 static struct value *
2139 decode_constrained_packed_array (struct value *arr)
2140 {
2141 struct type *type;
2142
2143 /* If our value is a pointer, then dereference it. Likewise if
2144 the value is a reference. Make sure that this operation does not
2145 cause the target type to be fixed, as this would indirectly cause
2146 this array to be decoded. The rest of the routine assumes that
2147 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2148 and "value_ind" routines to perform the dereferencing, as opposed
2149 to using "ada_coerce_ref" or "ada_value_ind". */
2150 arr = coerce_ref (arr);
2151 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2152 arr = value_ind (arr);
2153
2154 type = decode_constrained_packed_array_type (value_type (arr));
2155 if (type == NULL)
2156 {
2157 error (_("can't unpack array"));
2158 return NULL;
2159 }
2160
2161 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2162 && ada_is_modular_type (value_type (arr)))
2163 {
2164 /* This is a (right-justified) modular type representing a packed
2165 array with no wrapper. In order to interpret the value through
2166 the (left-justified) packed array type we just built, we must
2167 first left-justify it. */
2168 int bit_size, bit_pos;
2169 ULONGEST mod;
2170
2171 mod = ada_modulus (value_type (arr)) - 1;
2172 bit_size = 0;
2173 while (mod > 0)
2174 {
2175 bit_size += 1;
2176 mod >>= 1;
2177 }
2178 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2179 arr = ada_value_primitive_packed_val (arr, NULL,
2180 bit_pos / HOST_CHAR_BIT,
2181 bit_pos % HOST_CHAR_BIT,
2182 bit_size,
2183 type);
2184 }
2185
2186 return coerce_unspec_val_to_type (arr, type);
2187 }
2188
2189
2190 /* The value of the element of packed array ARR at the ARITY indices
2191 given in IND. ARR must be a simple array. */
2192
2193 static struct value *
2194 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2195 {
2196 int i;
2197 int bits, elt_off, bit_off;
2198 long elt_total_bit_offset;
2199 struct type *elt_type;
2200 struct value *v;
2201
2202 bits = 0;
2203 elt_total_bit_offset = 0;
2204 elt_type = ada_check_typedef (value_type (arr));
2205 for (i = 0; i < arity; i += 1)
2206 {
2207 if (elt_type->code () != TYPE_CODE_ARRAY
2208 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2209 error
2210 (_("attempt to do packed indexing of "
2211 "something other than a packed array"));
2212 else
2213 {
2214 struct type *range_type = elt_type->index_type ();
2215 LONGEST lowerbound, upperbound;
2216 LONGEST idx;
2217
2218 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2219 {
2220 lim_warning (_("don't know bounds of array"));
2221 lowerbound = upperbound = 0;
2222 }
2223
2224 idx = pos_atr (ind[i]);
2225 if (idx < lowerbound || idx > upperbound)
2226 lim_warning (_("packed array index %ld out of bounds"),
2227 (long) idx);
2228 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2229 elt_total_bit_offset += (idx - lowerbound) * bits;
2230 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2231 }
2232 }
2233 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2234 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2235
2236 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2237 bits, elt_type);
2238 return v;
2239 }
2240
2241 /* Non-zero iff TYPE includes negative integer values. */
2242
2243 static int
2244 has_negatives (struct type *type)
2245 {
2246 switch (type->code ())
2247 {
2248 default:
2249 return 0;
2250 case TYPE_CODE_INT:
2251 return !TYPE_UNSIGNED (type);
2252 case TYPE_CODE_RANGE:
2253 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2254 }
2255 }
2256
2257 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2258 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2259 the unpacked buffer.
2260
2261 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2262 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2263
2264 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2265 zero otherwise.
2266
2267 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2268
2269 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2270
2271 static void
2272 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2273 gdb_byte *unpacked, int unpacked_len,
2274 int is_big_endian, int is_signed_type,
2275 int is_scalar)
2276 {
2277 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2278 int src_idx; /* Index into the source area */
2279 int src_bytes_left; /* Number of source bytes left to process. */
2280 int srcBitsLeft; /* Number of source bits left to move */
2281 int unusedLS; /* Number of bits in next significant
2282 byte of source that are unused */
2283
2284 int unpacked_idx; /* Index into the unpacked buffer */
2285 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2286
2287 unsigned long accum; /* Staging area for bits being transferred */
2288 int accumSize; /* Number of meaningful bits in accum */
2289 unsigned char sign;
2290
2291 /* Transmit bytes from least to most significant; delta is the direction
2292 the indices move. */
2293 int delta = is_big_endian ? -1 : 1;
2294
2295 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2296 bits from SRC. .*/
2297 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2298 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2299 bit_size, unpacked_len);
2300
2301 srcBitsLeft = bit_size;
2302 src_bytes_left = src_len;
2303 unpacked_bytes_left = unpacked_len;
2304 sign = 0;
2305
2306 if (is_big_endian)
2307 {
2308 src_idx = src_len - 1;
2309 if (is_signed_type
2310 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2311 sign = ~0;
2312
2313 unusedLS =
2314 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2315 % HOST_CHAR_BIT;
2316
2317 if (is_scalar)
2318 {
2319 accumSize = 0;
2320 unpacked_idx = unpacked_len - 1;
2321 }
2322 else
2323 {
2324 /* Non-scalar values must be aligned at a byte boundary... */
2325 accumSize =
2326 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2327 /* ... And are placed at the beginning (most-significant) bytes
2328 of the target. */
2329 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2330 unpacked_bytes_left = unpacked_idx + 1;
2331 }
2332 }
2333 else
2334 {
2335 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2336
2337 src_idx = unpacked_idx = 0;
2338 unusedLS = bit_offset;
2339 accumSize = 0;
2340
2341 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2342 sign = ~0;
2343 }
2344
2345 accum = 0;
2346 while (src_bytes_left > 0)
2347 {
2348 /* Mask for removing bits of the next source byte that are not
2349 part of the value. */
2350 unsigned int unusedMSMask =
2351 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2352 1;
2353 /* Sign-extend bits for this byte. */
2354 unsigned int signMask = sign & ~unusedMSMask;
2355
2356 accum |=
2357 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2358 accumSize += HOST_CHAR_BIT - unusedLS;
2359 if (accumSize >= HOST_CHAR_BIT)
2360 {
2361 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2362 accumSize -= HOST_CHAR_BIT;
2363 accum >>= HOST_CHAR_BIT;
2364 unpacked_bytes_left -= 1;
2365 unpacked_idx += delta;
2366 }
2367 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2368 unusedLS = 0;
2369 src_bytes_left -= 1;
2370 src_idx += delta;
2371 }
2372 while (unpacked_bytes_left > 0)
2373 {
2374 accum |= sign << accumSize;
2375 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2376 accumSize -= HOST_CHAR_BIT;
2377 if (accumSize < 0)
2378 accumSize = 0;
2379 accum >>= HOST_CHAR_BIT;
2380 unpacked_bytes_left -= 1;
2381 unpacked_idx += delta;
2382 }
2383 }
2384
2385 /* Create a new value of type TYPE from the contents of OBJ starting
2386 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2387 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2388 assigning through the result will set the field fetched from.
2389 VALADDR is ignored unless OBJ is NULL, in which case,
2390 VALADDR+OFFSET must address the start of storage containing the
2391 packed value. The value returned in this case is never an lval.
2392 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2393
2394 struct value *
2395 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2396 long offset, int bit_offset, int bit_size,
2397 struct type *type)
2398 {
2399 struct value *v;
2400 const gdb_byte *src; /* First byte containing data to unpack */
2401 gdb_byte *unpacked;
2402 const int is_scalar = is_scalar_type (type);
2403 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2404 gdb::byte_vector staging;
2405
2406 type = ada_check_typedef (type);
2407
2408 if (obj == NULL)
2409 src = valaddr + offset;
2410 else
2411 src = value_contents (obj) + offset;
2412
2413 if (is_dynamic_type (type))
2414 {
2415 /* The length of TYPE might by dynamic, so we need to resolve
2416 TYPE in order to know its actual size, which we then use
2417 to create the contents buffer of the value we return.
2418 The difficulty is that the data containing our object is
2419 packed, and therefore maybe not at a byte boundary. So, what
2420 we do, is unpack the data into a byte-aligned buffer, and then
2421 use that buffer as our object's value for resolving the type. */
2422 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2423 staging.resize (staging_len);
2424
2425 ada_unpack_from_contents (src, bit_offset, bit_size,
2426 staging.data (), staging.size (),
2427 is_big_endian, has_negatives (type),
2428 is_scalar);
2429 type = resolve_dynamic_type (type, staging, 0);
2430 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2431 {
2432 /* This happens when the length of the object is dynamic,
2433 and is actually smaller than the space reserved for it.
2434 For instance, in an array of variant records, the bit_size
2435 we're given is the array stride, which is constant and
2436 normally equal to the maximum size of its element.
2437 But, in reality, each element only actually spans a portion
2438 of that stride. */
2439 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2440 }
2441 }
2442
2443 if (obj == NULL)
2444 {
2445 v = allocate_value (type);
2446 src = valaddr + offset;
2447 }
2448 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2449 {
2450 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2451 gdb_byte *buf;
2452
2453 v = value_at (type, value_address (obj) + offset);
2454 buf = (gdb_byte *) alloca (src_len);
2455 read_memory (value_address (v), buf, src_len);
2456 src = buf;
2457 }
2458 else
2459 {
2460 v = allocate_value (type);
2461 src = value_contents (obj) + offset;
2462 }
2463
2464 if (obj != NULL)
2465 {
2466 long new_offset = offset;
2467
2468 set_value_component_location (v, obj);
2469 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2470 set_value_bitsize (v, bit_size);
2471 if (value_bitpos (v) >= HOST_CHAR_BIT)
2472 {
2473 ++new_offset;
2474 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2475 }
2476 set_value_offset (v, new_offset);
2477
2478 /* Also set the parent value. This is needed when trying to
2479 assign a new value (in inferior memory). */
2480 set_value_parent (v, obj);
2481 }
2482 else
2483 set_value_bitsize (v, bit_size);
2484 unpacked = value_contents_writeable (v);
2485
2486 if (bit_size == 0)
2487 {
2488 memset (unpacked, 0, TYPE_LENGTH (type));
2489 return v;
2490 }
2491
2492 if (staging.size () == TYPE_LENGTH (type))
2493 {
2494 /* Small short-cut: If we've unpacked the data into a buffer
2495 of the same size as TYPE's length, then we can reuse that,
2496 instead of doing the unpacking again. */
2497 memcpy (unpacked, staging.data (), staging.size ());
2498 }
2499 else
2500 ada_unpack_from_contents (src, bit_offset, bit_size,
2501 unpacked, TYPE_LENGTH (type),
2502 is_big_endian, has_negatives (type), is_scalar);
2503
2504 return v;
2505 }
2506
2507 /* Store the contents of FROMVAL into the location of TOVAL.
2508 Return a new value with the location of TOVAL and contents of
2509 FROMVAL. Handles assignment into packed fields that have
2510 floating-point or non-scalar types. */
2511
2512 static struct value *
2513 ada_value_assign (struct value *toval, struct value *fromval)
2514 {
2515 struct type *type = value_type (toval);
2516 int bits = value_bitsize (toval);
2517
2518 toval = ada_coerce_ref (toval);
2519 fromval = ada_coerce_ref (fromval);
2520
2521 if (ada_is_direct_array_type (value_type (toval)))
2522 toval = ada_coerce_to_simple_array (toval);
2523 if (ada_is_direct_array_type (value_type (fromval)))
2524 fromval = ada_coerce_to_simple_array (fromval);
2525
2526 if (!deprecated_value_modifiable (toval))
2527 error (_("Left operand of assignment is not a modifiable lvalue."));
2528
2529 if (VALUE_LVAL (toval) == lval_memory
2530 && bits > 0
2531 && (type->code () == TYPE_CODE_FLT
2532 || type->code () == TYPE_CODE_STRUCT))
2533 {
2534 int len = (value_bitpos (toval)
2535 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2536 int from_size;
2537 gdb_byte *buffer = (gdb_byte *) alloca (len);
2538 struct value *val;
2539 CORE_ADDR to_addr = value_address (toval);
2540
2541 if (type->code () == TYPE_CODE_FLT)
2542 fromval = value_cast (type, fromval);
2543
2544 read_memory (to_addr, buffer, len);
2545 from_size = value_bitsize (fromval);
2546 if (from_size == 0)
2547 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2548
2549 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2550 ULONGEST from_offset = 0;
2551 if (is_big_endian && is_scalar_type (value_type (fromval)))
2552 from_offset = from_size - bits;
2553 copy_bitwise (buffer, value_bitpos (toval),
2554 value_contents (fromval), from_offset,
2555 bits, is_big_endian);
2556 write_memory_with_notification (to_addr, buffer, len);
2557
2558 val = value_copy (toval);
2559 memcpy (value_contents_raw (val), value_contents (fromval),
2560 TYPE_LENGTH (type));
2561 deprecated_set_value_type (val, type);
2562
2563 return val;
2564 }
2565
2566 return value_assign (toval, fromval);
2567 }
2568
2569
2570 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2571 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2572 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2573 COMPONENT, and not the inferior's memory. The current contents
2574 of COMPONENT are ignored.
2575
2576 Although not part of the initial design, this function also works
2577 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2578 had a null address, and COMPONENT had an address which is equal to
2579 its offset inside CONTAINER. */
2580
2581 static void
2582 value_assign_to_component (struct value *container, struct value *component,
2583 struct value *val)
2584 {
2585 LONGEST offset_in_container =
2586 (LONGEST) (value_address (component) - value_address (container));
2587 int bit_offset_in_container =
2588 value_bitpos (component) - value_bitpos (container);
2589 int bits;
2590
2591 val = value_cast (value_type (component), val);
2592
2593 if (value_bitsize (component) == 0)
2594 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2595 else
2596 bits = value_bitsize (component);
2597
2598 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2599 {
2600 int src_offset;
2601
2602 if (is_scalar_type (check_typedef (value_type (component))))
2603 src_offset
2604 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2605 else
2606 src_offset = 0;
2607 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2608 value_bitpos (container) + bit_offset_in_container,
2609 value_contents (val), src_offset, bits, 1);
2610 }
2611 else
2612 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2613 value_bitpos (container) + bit_offset_in_container,
2614 value_contents (val), 0, bits, 0);
2615 }
2616
2617 /* Determine if TYPE is an access to an unconstrained array. */
2618
2619 bool
2620 ada_is_access_to_unconstrained_array (struct type *type)
2621 {
2622 return (type->code () == TYPE_CODE_TYPEDEF
2623 && is_thick_pntr (ada_typedef_target_type (type)));
2624 }
2625
2626 /* The value of the element of array ARR at the ARITY indices given in IND.
2627 ARR may be either a simple array, GNAT array descriptor, or pointer
2628 thereto. */
2629
2630 struct value *
2631 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2632 {
2633 int k;
2634 struct value *elt;
2635 struct type *elt_type;
2636
2637 elt = ada_coerce_to_simple_array (arr);
2638
2639 elt_type = ada_check_typedef (value_type (elt));
2640 if (elt_type->code () == TYPE_CODE_ARRAY
2641 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2642 return value_subscript_packed (elt, arity, ind);
2643
2644 for (k = 0; k < arity; k += 1)
2645 {
2646 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2647
2648 if (elt_type->code () != TYPE_CODE_ARRAY)
2649 error (_("too many subscripts (%d expected)"), k);
2650
2651 elt = value_subscript (elt, pos_atr (ind[k]));
2652
2653 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2654 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2655 {
2656 /* The element is a typedef to an unconstrained array,
2657 except that the value_subscript call stripped the
2658 typedef layer. The typedef layer is GNAT's way to
2659 specify that the element is, at the source level, an
2660 access to the unconstrained array, rather than the
2661 unconstrained array. So, we need to restore that
2662 typedef layer, which we can do by forcing the element's
2663 type back to its original type. Otherwise, the returned
2664 value is going to be printed as the array, rather
2665 than as an access. Another symptom of the same issue
2666 would be that an expression trying to dereference the
2667 element would also be improperly rejected. */
2668 deprecated_set_value_type (elt, saved_elt_type);
2669 }
2670
2671 elt_type = ada_check_typedef (value_type (elt));
2672 }
2673
2674 return elt;
2675 }
2676
2677 /* Assuming ARR is a pointer to a GDB array, the value of the element
2678 of *ARR at the ARITY indices given in IND.
2679 Does not read the entire array into memory.
2680
2681 Note: Unlike what one would expect, this function is used instead of
2682 ada_value_subscript for basically all non-packed array types. The reason
2683 for this is that a side effect of doing our own pointer arithmetics instead
2684 of relying on value_subscript is that there is no implicit typedef peeling.
2685 This is important for arrays of array accesses, where it allows us to
2686 preserve the fact that the array's element is an array access, where the
2687 access part os encoded in a typedef layer. */
2688
2689 static struct value *
2690 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2691 {
2692 int k;
2693 struct value *array_ind = ada_value_ind (arr);
2694 struct type *type
2695 = check_typedef (value_enclosing_type (array_ind));
2696
2697 if (type->code () == TYPE_CODE_ARRAY
2698 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2699 return value_subscript_packed (array_ind, arity, ind);
2700
2701 for (k = 0; k < arity; k += 1)
2702 {
2703 LONGEST lwb, upb;
2704
2705 if (type->code () != TYPE_CODE_ARRAY)
2706 error (_("too many subscripts (%d expected)"), k);
2707 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2708 value_copy (arr));
2709 get_discrete_bounds (type->index_type (), &lwb, &upb);
2710 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2711 type = TYPE_TARGET_TYPE (type);
2712 }
2713
2714 return value_ind (arr);
2715 }
2716
2717 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2718 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2719 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2720 this array is LOW, as per Ada rules. */
2721 static struct value *
2722 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2723 int low, int high)
2724 {
2725 struct type *type0 = ada_check_typedef (type);
2726 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2727 struct type *index_type
2728 = create_static_range_type (NULL, base_index_type, low, high);
2729 struct type *slice_type = create_array_type_with_stride
2730 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2731 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2732 TYPE_FIELD_BITSIZE (type0, 0));
2733 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2734 LONGEST base_low_pos, low_pos;
2735 CORE_ADDR base;
2736
2737 if (!discrete_position (base_index_type, low, &low_pos)
2738 || !discrete_position (base_index_type, base_low, &base_low_pos))
2739 {
2740 warning (_("unable to get positions in slice, use bounds instead"));
2741 low_pos = low;
2742 base_low_pos = base_low;
2743 }
2744
2745 base = value_as_address (array_ptr)
2746 + ((low_pos - base_low_pos)
2747 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2748 return value_at_lazy (slice_type, base);
2749 }
2750
2751
2752 static struct value *
2753 ada_value_slice (struct value *array, int low, int high)
2754 {
2755 struct type *type = ada_check_typedef (value_type (array));
2756 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2757 struct type *index_type
2758 = create_static_range_type (NULL, type->index_type (), low, high);
2759 struct type *slice_type = create_array_type_with_stride
2760 (NULL, TYPE_TARGET_TYPE (type), index_type,
2761 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2762 TYPE_FIELD_BITSIZE (type, 0));
2763 LONGEST low_pos, high_pos;
2764
2765 if (!discrete_position (base_index_type, low, &low_pos)
2766 || !discrete_position (base_index_type, high, &high_pos))
2767 {
2768 warning (_("unable to get positions in slice, use bounds instead"));
2769 low_pos = low;
2770 high_pos = high;
2771 }
2772
2773 return value_cast (slice_type,
2774 value_slice (array, low, high_pos - low_pos + 1));
2775 }
2776
2777 /* If type is a record type in the form of a standard GNAT array
2778 descriptor, returns the number of dimensions for type. If arr is a
2779 simple array, returns the number of "array of"s that prefix its
2780 type designation. Otherwise, returns 0. */
2781
2782 int
2783 ada_array_arity (struct type *type)
2784 {
2785 int arity;
2786
2787 if (type == NULL)
2788 return 0;
2789
2790 type = desc_base_type (type);
2791
2792 arity = 0;
2793 if (type->code () == TYPE_CODE_STRUCT)
2794 return desc_arity (desc_bounds_type (type));
2795 else
2796 while (type->code () == TYPE_CODE_ARRAY)
2797 {
2798 arity += 1;
2799 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2800 }
2801
2802 return arity;
2803 }
2804
2805 /* If TYPE is a record type in the form of a standard GNAT array
2806 descriptor or a simple array type, returns the element type for
2807 TYPE after indexing by NINDICES indices, or by all indices if
2808 NINDICES is -1. Otherwise, returns NULL. */
2809
2810 struct type *
2811 ada_array_element_type (struct type *type, int nindices)
2812 {
2813 type = desc_base_type (type);
2814
2815 if (type->code () == TYPE_CODE_STRUCT)
2816 {
2817 int k;
2818 struct type *p_array_type;
2819
2820 p_array_type = desc_data_target_type (type);
2821
2822 k = ada_array_arity (type);
2823 if (k == 0)
2824 return NULL;
2825
2826 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2827 if (nindices >= 0 && k > nindices)
2828 k = nindices;
2829 while (k > 0 && p_array_type != NULL)
2830 {
2831 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2832 k -= 1;
2833 }
2834 return p_array_type;
2835 }
2836 else if (type->code () == TYPE_CODE_ARRAY)
2837 {
2838 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2839 {
2840 type = TYPE_TARGET_TYPE (type);
2841 nindices -= 1;
2842 }
2843 return type;
2844 }
2845
2846 return NULL;
2847 }
2848
2849 /* The type of nth index in arrays of given type (n numbering from 1).
2850 Does not examine memory. Throws an error if N is invalid or TYPE
2851 is not an array type. NAME is the name of the Ada attribute being
2852 evaluated ('range, 'first, 'last, or 'length); it is used in building
2853 the error message. */
2854
2855 static struct type *
2856 ada_index_type (struct type *type, int n, const char *name)
2857 {
2858 struct type *result_type;
2859
2860 type = desc_base_type (type);
2861
2862 if (n < 0 || n > ada_array_arity (type))
2863 error (_("invalid dimension number to '%s"), name);
2864
2865 if (ada_is_simple_array_type (type))
2866 {
2867 int i;
2868
2869 for (i = 1; i < n; i += 1)
2870 type = TYPE_TARGET_TYPE (type);
2871 result_type = TYPE_TARGET_TYPE (type->index_type ());
2872 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2873 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2874 perhaps stabsread.c would make more sense. */
2875 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2876 result_type = NULL;
2877 }
2878 else
2879 {
2880 result_type = desc_index_type (desc_bounds_type (type), n);
2881 if (result_type == NULL)
2882 error (_("attempt to take bound of something that is not an array"));
2883 }
2884
2885 return result_type;
2886 }
2887
2888 /* Given that arr is an array type, returns the lower bound of the
2889 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2890 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2891 array-descriptor type. It works for other arrays with bounds supplied
2892 by run-time quantities other than discriminants. */
2893
2894 static LONGEST
2895 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2896 {
2897 struct type *type, *index_type_desc, *index_type;
2898 int i;
2899
2900 gdb_assert (which == 0 || which == 1);
2901
2902 if (ada_is_constrained_packed_array_type (arr_type))
2903 arr_type = decode_constrained_packed_array_type (arr_type);
2904
2905 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2906 return (LONGEST) - which;
2907
2908 if (arr_type->code () == TYPE_CODE_PTR)
2909 type = TYPE_TARGET_TYPE (arr_type);
2910 else
2911 type = arr_type;
2912
2913 if (TYPE_FIXED_INSTANCE (type))
2914 {
2915 /* The array has already been fixed, so we do not need to
2916 check the parallel ___XA type again. That encoding has
2917 already been applied, so ignore it now. */
2918 index_type_desc = NULL;
2919 }
2920 else
2921 {
2922 index_type_desc = ada_find_parallel_type (type, "___XA");
2923 ada_fixup_array_indexes_type (index_type_desc);
2924 }
2925
2926 if (index_type_desc != NULL)
2927 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2928 NULL);
2929 else
2930 {
2931 struct type *elt_type = check_typedef (type);
2932
2933 for (i = 1; i < n; i++)
2934 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2935
2936 index_type = elt_type->index_type ();
2937 }
2938
2939 return
2940 (LONGEST) (which == 0
2941 ? ada_discrete_type_low_bound (index_type)
2942 : ada_discrete_type_high_bound (index_type));
2943 }
2944
2945 /* Given that arr is an array value, returns the lower bound of the
2946 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2947 WHICH is 1. This routine will also work for arrays with bounds
2948 supplied by run-time quantities other than discriminants. */
2949
2950 static LONGEST
2951 ada_array_bound (struct value *arr, int n, int which)
2952 {
2953 struct type *arr_type;
2954
2955 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2956 arr = value_ind (arr);
2957 arr_type = value_enclosing_type (arr);
2958
2959 if (ada_is_constrained_packed_array_type (arr_type))
2960 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2961 else if (ada_is_simple_array_type (arr_type))
2962 return ada_array_bound_from_type (arr_type, n, which);
2963 else
2964 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2965 }
2966
2967 /* Given that arr is an array value, returns the length of the
2968 nth index. This routine will also work for arrays with bounds
2969 supplied by run-time quantities other than discriminants.
2970 Does not work for arrays indexed by enumeration types with representation
2971 clauses at the moment. */
2972
2973 static LONGEST
2974 ada_array_length (struct value *arr, int n)
2975 {
2976 struct type *arr_type, *index_type;
2977 int low, high;
2978
2979 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2980 arr = value_ind (arr);
2981 arr_type = value_enclosing_type (arr);
2982
2983 if (ada_is_constrained_packed_array_type (arr_type))
2984 return ada_array_length (decode_constrained_packed_array (arr), n);
2985
2986 if (ada_is_simple_array_type (arr_type))
2987 {
2988 low = ada_array_bound_from_type (arr_type, n, 0);
2989 high = ada_array_bound_from_type (arr_type, n, 1);
2990 }
2991 else
2992 {
2993 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
2994 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
2995 }
2996
2997 arr_type = check_typedef (arr_type);
2998 index_type = ada_index_type (arr_type, n, "length");
2999 if (index_type != NULL)
3000 {
3001 struct type *base_type;
3002 if (index_type->code () == TYPE_CODE_RANGE)
3003 base_type = TYPE_TARGET_TYPE (index_type);
3004 else
3005 base_type = index_type;
3006
3007 low = pos_atr (value_from_longest (base_type, low));
3008 high = pos_atr (value_from_longest (base_type, high));
3009 }
3010 return high - low + 1;
3011 }
3012
3013 /* An array whose type is that of ARR_TYPE (an array type), with
3014 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3015 less than LOW, then LOW-1 is used. */
3016
3017 static struct value *
3018 empty_array (struct type *arr_type, int low, int high)
3019 {
3020 struct type *arr_type0 = ada_check_typedef (arr_type);
3021 struct type *index_type
3022 = create_static_range_type
3023 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3024 high < low ? low - 1 : high);
3025 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3026
3027 return allocate_value (create_array_type (NULL, elt_type, index_type));
3028 }
3029 \f
3030
3031 /* Name resolution */
3032
3033 /* The "decoded" name for the user-definable Ada operator corresponding
3034 to OP. */
3035
3036 static const char *
3037 ada_decoded_op_name (enum exp_opcode op)
3038 {
3039 int i;
3040
3041 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3042 {
3043 if (ada_opname_table[i].op == op)
3044 return ada_opname_table[i].decoded;
3045 }
3046 error (_("Could not find operator name for opcode"));
3047 }
3048
3049 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3050 in a listing of choices during disambiguation (see sort_choices, below).
3051 The idea is that overloadings of a subprogram name from the
3052 same package should sort in their source order. We settle for ordering
3053 such symbols by their trailing number (__N or $N). */
3054
3055 static int
3056 encoded_ordered_before (const char *N0, const char *N1)
3057 {
3058 if (N1 == NULL)
3059 return 0;
3060 else if (N0 == NULL)
3061 return 1;
3062 else
3063 {
3064 int k0, k1;
3065
3066 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3067 ;
3068 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3069 ;
3070 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3071 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3072 {
3073 int n0, n1;
3074
3075 n0 = k0;
3076 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3077 n0 -= 1;
3078 n1 = k1;
3079 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3080 n1 -= 1;
3081 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3082 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3083 }
3084 return (strcmp (N0, N1) < 0);
3085 }
3086 }
3087
3088 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3089 encoded names. */
3090
3091 static void
3092 sort_choices (struct block_symbol syms[], int nsyms)
3093 {
3094 int i;
3095
3096 for (i = 1; i < nsyms; i += 1)
3097 {
3098 struct block_symbol sym = syms[i];
3099 int j;
3100
3101 for (j = i - 1; j >= 0; j -= 1)
3102 {
3103 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3104 sym.symbol->linkage_name ()))
3105 break;
3106 syms[j + 1] = syms[j];
3107 }
3108 syms[j + 1] = sym;
3109 }
3110 }
3111
3112 /* Whether GDB should display formals and return types for functions in the
3113 overloads selection menu. */
3114 static bool print_signatures = true;
3115
3116 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3117 all but functions, the signature is just the name of the symbol. For
3118 functions, this is the name of the function, the list of types for formals
3119 and the return type (if any). */
3120
3121 static void
3122 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3123 const struct type_print_options *flags)
3124 {
3125 struct type *type = SYMBOL_TYPE (sym);
3126
3127 fprintf_filtered (stream, "%s", sym->print_name ());
3128 if (!print_signatures
3129 || type == NULL
3130 || type->code () != TYPE_CODE_FUNC)
3131 return;
3132
3133 if (type->num_fields () > 0)
3134 {
3135 int i;
3136
3137 fprintf_filtered (stream, " (");
3138 for (i = 0; i < type->num_fields (); ++i)
3139 {
3140 if (i > 0)
3141 fprintf_filtered (stream, "; ");
3142 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3143 flags);
3144 }
3145 fprintf_filtered (stream, ")");
3146 }
3147 if (TYPE_TARGET_TYPE (type) != NULL
3148 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3149 {
3150 fprintf_filtered (stream, " return ");
3151 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3152 }
3153 }
3154
3155 /* Read and validate a set of numeric choices from the user in the
3156 range 0 .. N_CHOICES-1. Place the results in increasing
3157 order in CHOICES[0 .. N-1], and return N.
3158
3159 The user types choices as a sequence of numbers on one line
3160 separated by blanks, encoding them as follows:
3161
3162 + A choice of 0 means to cancel the selection, throwing an error.
3163 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3164 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3165
3166 The user is not allowed to choose more than MAX_RESULTS values.
3167
3168 ANNOTATION_SUFFIX, if present, is used to annotate the input
3169 prompts (for use with the -f switch). */
3170
3171 static int
3172 get_selections (int *choices, int n_choices, int max_results,
3173 int is_all_choice, const char *annotation_suffix)
3174 {
3175 const char *args;
3176 const char *prompt;
3177 int n_chosen;
3178 int first_choice = is_all_choice ? 2 : 1;
3179
3180 prompt = getenv ("PS2");
3181 if (prompt == NULL)
3182 prompt = "> ";
3183
3184 args = command_line_input (prompt, annotation_suffix);
3185
3186 if (args == NULL)
3187 error_no_arg (_("one or more choice numbers"));
3188
3189 n_chosen = 0;
3190
3191 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3192 order, as given in args. Choices are validated. */
3193 while (1)
3194 {
3195 char *args2;
3196 int choice, j;
3197
3198 args = skip_spaces (args);
3199 if (*args == '\0' && n_chosen == 0)
3200 error_no_arg (_("one or more choice numbers"));
3201 else if (*args == '\0')
3202 break;
3203
3204 choice = strtol (args, &args2, 10);
3205 if (args == args2 || choice < 0
3206 || choice > n_choices + first_choice - 1)
3207 error (_("Argument must be choice number"));
3208 args = args2;
3209
3210 if (choice == 0)
3211 error (_("cancelled"));
3212
3213 if (choice < first_choice)
3214 {
3215 n_chosen = n_choices;
3216 for (j = 0; j < n_choices; j += 1)
3217 choices[j] = j;
3218 break;
3219 }
3220 choice -= first_choice;
3221
3222 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3223 {
3224 }
3225
3226 if (j < 0 || choice != choices[j])
3227 {
3228 int k;
3229
3230 for (k = n_chosen - 1; k > j; k -= 1)
3231 choices[k + 1] = choices[k];
3232 choices[j + 1] = choice;
3233 n_chosen += 1;
3234 }
3235 }
3236
3237 if (n_chosen > max_results)
3238 error (_("Select no more than %d of the above"), max_results);
3239
3240 return n_chosen;
3241 }
3242
3243 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3244 by asking the user (if necessary), returning the number selected,
3245 and setting the first elements of SYMS items. Error if no symbols
3246 selected. */
3247
3248 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3249 to be re-integrated one of these days. */
3250
3251 static int
3252 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3253 {
3254 int i;
3255 int *chosen = XALLOCAVEC (int , nsyms);
3256 int n_chosen;
3257 int first_choice = (max_results == 1) ? 1 : 2;
3258 const char *select_mode = multiple_symbols_select_mode ();
3259
3260 if (max_results < 1)
3261 error (_("Request to select 0 symbols!"));
3262 if (nsyms <= 1)
3263 return nsyms;
3264
3265 if (select_mode == multiple_symbols_cancel)
3266 error (_("\
3267 canceled because the command is ambiguous\n\
3268 See set/show multiple-symbol."));
3269
3270 /* If select_mode is "all", then return all possible symbols.
3271 Only do that if more than one symbol can be selected, of course.
3272 Otherwise, display the menu as usual. */
3273 if (select_mode == multiple_symbols_all && max_results > 1)
3274 return nsyms;
3275
3276 printf_filtered (_("[0] cancel\n"));
3277 if (max_results > 1)
3278 printf_filtered (_("[1] all\n"));
3279
3280 sort_choices (syms, nsyms);
3281
3282 for (i = 0; i < nsyms; i += 1)
3283 {
3284 if (syms[i].symbol == NULL)
3285 continue;
3286
3287 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3288 {
3289 struct symtab_and_line sal =
3290 find_function_start_sal (syms[i].symbol, 1);
3291
3292 printf_filtered ("[%d] ", i + first_choice);
3293 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3294 &type_print_raw_options);
3295 if (sal.symtab == NULL)
3296 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3297 metadata_style.style ().ptr (), nullptr, sal.line);
3298 else
3299 printf_filtered
3300 (_(" at %ps:%d\n"),
3301 styled_string (file_name_style.style (),
3302 symtab_to_filename_for_display (sal.symtab)),
3303 sal.line);
3304 continue;
3305 }
3306 else
3307 {
3308 int is_enumeral =
3309 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3310 && SYMBOL_TYPE (syms[i].symbol) != NULL
3311 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3312 struct symtab *symtab = NULL;
3313
3314 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3315 symtab = symbol_symtab (syms[i].symbol);
3316
3317 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3318 {
3319 printf_filtered ("[%d] ", i + first_choice);
3320 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3321 &type_print_raw_options);
3322 printf_filtered (_(" at %s:%d\n"),
3323 symtab_to_filename_for_display (symtab),
3324 SYMBOL_LINE (syms[i].symbol));
3325 }
3326 else if (is_enumeral
3327 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3328 {
3329 printf_filtered (("[%d] "), i + first_choice);
3330 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3331 gdb_stdout, -1, 0, &type_print_raw_options);
3332 printf_filtered (_("'(%s) (enumeral)\n"),
3333 syms[i].symbol->print_name ());
3334 }
3335 else
3336 {
3337 printf_filtered ("[%d] ", i + first_choice);
3338 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3339 &type_print_raw_options);
3340
3341 if (symtab != NULL)
3342 printf_filtered (is_enumeral
3343 ? _(" in %s (enumeral)\n")
3344 : _(" at %s:?\n"),
3345 symtab_to_filename_for_display (symtab));
3346 else
3347 printf_filtered (is_enumeral
3348 ? _(" (enumeral)\n")
3349 : _(" at ?\n"));
3350 }
3351 }
3352 }
3353
3354 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3355 "overload-choice");
3356
3357 for (i = 0; i < n_chosen; i += 1)
3358 syms[i] = syms[chosen[i]];
3359
3360 return n_chosen;
3361 }
3362
3363 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3364 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3365 undefined namespace) and converts operators that are
3366 user-defined into appropriate function calls. If CONTEXT_TYPE is
3367 non-null, it provides a preferred result type [at the moment, only
3368 type void has any effect---causing procedures to be preferred over
3369 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3370 return type is preferred. May change (expand) *EXP. */
3371
3372 static void
3373 resolve (expression_up *expp, int void_context_p, int parse_completion,
3374 innermost_block_tracker *tracker)
3375 {
3376 struct type *context_type = NULL;
3377 int pc = 0;
3378
3379 if (void_context_p)
3380 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3381
3382 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3383 }
3384
3385 /* Resolve the operator of the subexpression beginning at
3386 position *POS of *EXPP. "Resolving" consists of replacing
3387 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3388 with their resolutions, replacing built-in operators with
3389 function calls to user-defined operators, where appropriate, and,
3390 when DEPROCEDURE_P is non-zero, converting function-valued variables
3391 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3392 are as in ada_resolve, above. */
3393
3394 static struct value *
3395 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3396 struct type *context_type, int parse_completion,
3397 innermost_block_tracker *tracker)
3398 {
3399 int pc = *pos;
3400 int i;
3401 struct expression *exp; /* Convenience: == *expp. */
3402 enum exp_opcode op = (*expp)->elts[pc].opcode;
3403 struct value **argvec; /* Vector of operand types (alloca'ed). */
3404 int nargs; /* Number of operands. */
3405 int oplen;
3406
3407 argvec = NULL;
3408 nargs = 0;
3409 exp = expp->get ();
3410
3411 /* Pass one: resolve operands, saving their types and updating *pos,
3412 if needed. */
3413 switch (op)
3414 {
3415 case OP_FUNCALL:
3416 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3417 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3418 *pos += 7;
3419 else
3420 {
3421 *pos += 3;
3422 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3423 }
3424 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3425 break;
3426
3427 case UNOP_ADDR:
3428 *pos += 1;
3429 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3430 break;
3431
3432 case UNOP_QUAL:
3433 *pos += 3;
3434 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3435 parse_completion, tracker);
3436 break;
3437
3438 case OP_ATR_MODULUS:
3439 case OP_ATR_SIZE:
3440 case OP_ATR_TAG:
3441 case OP_ATR_FIRST:
3442 case OP_ATR_LAST:
3443 case OP_ATR_LENGTH:
3444 case OP_ATR_POS:
3445 case OP_ATR_VAL:
3446 case OP_ATR_MIN:
3447 case OP_ATR_MAX:
3448 case TERNOP_IN_RANGE:
3449 case BINOP_IN_BOUNDS:
3450 case UNOP_IN_RANGE:
3451 case OP_AGGREGATE:
3452 case OP_OTHERS:
3453 case OP_CHOICES:
3454 case OP_POSITIONAL:
3455 case OP_DISCRETE_RANGE:
3456 case OP_NAME:
3457 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3458 *pos += oplen;
3459 break;
3460
3461 case BINOP_ASSIGN:
3462 {
3463 struct value *arg1;
3464
3465 *pos += 1;
3466 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3467 if (arg1 == NULL)
3468 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3469 else
3470 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3471 tracker);
3472 break;
3473 }
3474
3475 case UNOP_CAST:
3476 *pos += 3;
3477 nargs = 1;
3478 break;
3479
3480 case BINOP_ADD:
3481 case BINOP_SUB:
3482 case BINOP_MUL:
3483 case BINOP_DIV:
3484 case BINOP_REM:
3485 case BINOP_MOD:
3486 case BINOP_EXP:
3487 case BINOP_CONCAT:
3488 case BINOP_LOGICAL_AND:
3489 case BINOP_LOGICAL_OR:
3490 case BINOP_BITWISE_AND:
3491 case BINOP_BITWISE_IOR:
3492 case BINOP_BITWISE_XOR:
3493
3494 case BINOP_EQUAL:
3495 case BINOP_NOTEQUAL:
3496 case BINOP_LESS:
3497 case BINOP_GTR:
3498 case BINOP_LEQ:
3499 case BINOP_GEQ:
3500
3501 case BINOP_REPEAT:
3502 case BINOP_SUBSCRIPT:
3503 case BINOP_COMMA:
3504 *pos += 1;
3505 nargs = 2;
3506 break;
3507
3508 case UNOP_NEG:
3509 case UNOP_PLUS:
3510 case UNOP_LOGICAL_NOT:
3511 case UNOP_ABS:
3512 case UNOP_IND:
3513 *pos += 1;
3514 nargs = 1;
3515 break;
3516
3517 case OP_LONG:
3518 case OP_FLOAT:
3519 case OP_VAR_VALUE:
3520 case OP_VAR_MSYM_VALUE:
3521 *pos += 4;
3522 break;
3523
3524 case OP_TYPE:
3525 case OP_BOOL:
3526 case OP_LAST:
3527 case OP_INTERNALVAR:
3528 *pos += 3;
3529 break;
3530
3531 case UNOP_MEMVAL:
3532 *pos += 3;
3533 nargs = 1;
3534 break;
3535
3536 case OP_REGISTER:
3537 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3538 break;
3539
3540 case STRUCTOP_STRUCT:
3541 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3542 nargs = 1;
3543 break;
3544
3545 case TERNOP_SLICE:
3546 *pos += 1;
3547 nargs = 3;
3548 break;
3549
3550 case OP_STRING:
3551 break;
3552
3553 default:
3554 error (_("Unexpected operator during name resolution"));
3555 }
3556
3557 argvec = XALLOCAVEC (struct value *, nargs + 1);
3558 for (i = 0; i < nargs; i += 1)
3559 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3560 tracker);
3561 argvec[i] = NULL;
3562 exp = expp->get ();
3563
3564 /* Pass two: perform any resolution on principal operator. */
3565 switch (op)
3566 {
3567 default:
3568 break;
3569
3570 case OP_VAR_VALUE:
3571 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3572 {
3573 std::vector<struct block_symbol> candidates;
3574 int n_candidates;
3575
3576 n_candidates =
3577 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3578 exp->elts[pc + 1].block, VAR_DOMAIN,
3579 &candidates);
3580
3581 if (n_candidates > 1)
3582 {
3583 /* Types tend to get re-introduced locally, so if there
3584 are any local symbols that are not types, first filter
3585 out all types. */
3586 int j;
3587 for (j = 0; j < n_candidates; j += 1)
3588 switch (SYMBOL_CLASS (candidates[j].symbol))
3589 {
3590 case LOC_REGISTER:
3591 case LOC_ARG:
3592 case LOC_REF_ARG:
3593 case LOC_REGPARM_ADDR:
3594 case LOC_LOCAL:
3595 case LOC_COMPUTED:
3596 goto FoundNonType;
3597 default:
3598 break;
3599 }
3600 FoundNonType:
3601 if (j < n_candidates)
3602 {
3603 j = 0;
3604 while (j < n_candidates)
3605 {
3606 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3607 {
3608 candidates[j] = candidates[n_candidates - 1];
3609 n_candidates -= 1;
3610 }
3611 else
3612 j += 1;
3613 }
3614 }
3615 }
3616
3617 if (n_candidates == 0)
3618 error (_("No definition found for %s"),
3619 exp->elts[pc + 2].symbol->print_name ());
3620 else if (n_candidates == 1)
3621 i = 0;
3622 else if (deprocedure_p
3623 && !is_nonfunction (candidates.data (), n_candidates))
3624 {
3625 i = ada_resolve_function
3626 (candidates.data (), n_candidates, NULL, 0,
3627 exp->elts[pc + 2].symbol->linkage_name (),
3628 context_type, parse_completion);
3629 if (i < 0)
3630 error (_("Could not find a match for %s"),
3631 exp->elts[pc + 2].symbol->print_name ());
3632 }
3633 else
3634 {
3635 printf_filtered (_("Multiple matches for %s\n"),
3636 exp->elts[pc + 2].symbol->print_name ());
3637 user_select_syms (candidates.data (), n_candidates, 1);
3638 i = 0;
3639 }
3640
3641 exp->elts[pc + 1].block = candidates[i].block;
3642 exp->elts[pc + 2].symbol = candidates[i].symbol;
3643 tracker->update (candidates[i]);
3644 }
3645
3646 if (deprocedure_p
3647 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3648 == TYPE_CODE_FUNC))
3649 {
3650 replace_operator_with_call (expp, pc, 0, 4,
3651 exp->elts[pc + 2].symbol,
3652 exp->elts[pc + 1].block);
3653 exp = expp->get ();
3654 }
3655 break;
3656
3657 case OP_FUNCALL:
3658 {
3659 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3660 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3661 {
3662 std::vector<struct block_symbol> candidates;
3663 int n_candidates;
3664
3665 n_candidates =
3666 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3667 exp->elts[pc + 4].block, VAR_DOMAIN,
3668 &candidates);
3669
3670 if (n_candidates == 1)
3671 i = 0;
3672 else
3673 {
3674 i = ada_resolve_function
3675 (candidates.data (), n_candidates,
3676 argvec, nargs,
3677 exp->elts[pc + 5].symbol->linkage_name (),
3678 context_type, parse_completion);
3679 if (i < 0)
3680 error (_("Could not find a match for %s"),
3681 exp->elts[pc + 5].symbol->print_name ());
3682 }
3683
3684 exp->elts[pc + 4].block = candidates[i].block;
3685 exp->elts[pc + 5].symbol = candidates[i].symbol;
3686 tracker->update (candidates[i]);
3687 }
3688 }
3689 break;
3690 case BINOP_ADD:
3691 case BINOP_SUB:
3692 case BINOP_MUL:
3693 case BINOP_DIV:
3694 case BINOP_REM:
3695 case BINOP_MOD:
3696 case BINOP_CONCAT:
3697 case BINOP_BITWISE_AND:
3698 case BINOP_BITWISE_IOR:
3699 case BINOP_BITWISE_XOR:
3700 case BINOP_EQUAL:
3701 case BINOP_NOTEQUAL:
3702 case BINOP_LESS:
3703 case BINOP_GTR:
3704 case BINOP_LEQ:
3705 case BINOP_GEQ:
3706 case BINOP_EXP:
3707 case UNOP_NEG:
3708 case UNOP_PLUS:
3709 case UNOP_LOGICAL_NOT:
3710 case UNOP_ABS:
3711 if (possible_user_operator_p (op, argvec))
3712 {
3713 std::vector<struct block_symbol> candidates;
3714 int n_candidates;
3715
3716 n_candidates =
3717 ada_lookup_symbol_list (ada_decoded_op_name (op),
3718 NULL, VAR_DOMAIN,
3719 &candidates);
3720
3721 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3722 nargs, ada_decoded_op_name (op), NULL,
3723 parse_completion);
3724 if (i < 0)
3725 break;
3726
3727 replace_operator_with_call (expp, pc, nargs, 1,
3728 candidates[i].symbol,
3729 candidates[i].block);
3730 exp = expp->get ();
3731 }
3732 break;
3733
3734 case OP_TYPE:
3735 case OP_REGISTER:
3736 return NULL;
3737 }
3738
3739 *pos = pc;
3740 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3741 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3742 exp->elts[pc + 1].objfile,
3743 exp->elts[pc + 2].msymbol);
3744 else
3745 return evaluate_subexp_type (exp, pos);
3746 }
3747
3748 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3749 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3750 a non-pointer. */
3751 /* The term "match" here is rather loose. The match is heuristic and
3752 liberal. */
3753
3754 static int
3755 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3756 {
3757 ftype = ada_check_typedef (ftype);
3758 atype = ada_check_typedef (atype);
3759
3760 if (ftype->code () == TYPE_CODE_REF)
3761 ftype = TYPE_TARGET_TYPE (ftype);
3762 if (atype->code () == TYPE_CODE_REF)
3763 atype = TYPE_TARGET_TYPE (atype);
3764
3765 switch (ftype->code ())
3766 {
3767 default:
3768 return ftype->code () == atype->code ();
3769 case TYPE_CODE_PTR:
3770 if (atype->code () == TYPE_CODE_PTR)
3771 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3772 TYPE_TARGET_TYPE (atype), 0);
3773 else
3774 return (may_deref
3775 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3776 case TYPE_CODE_INT:
3777 case TYPE_CODE_ENUM:
3778 case TYPE_CODE_RANGE:
3779 switch (atype->code ())
3780 {
3781 case TYPE_CODE_INT:
3782 case TYPE_CODE_ENUM:
3783 case TYPE_CODE_RANGE:
3784 return 1;
3785 default:
3786 return 0;
3787 }
3788
3789 case TYPE_CODE_ARRAY:
3790 return (atype->code () == TYPE_CODE_ARRAY
3791 || ada_is_array_descriptor_type (atype));
3792
3793 case TYPE_CODE_STRUCT:
3794 if (ada_is_array_descriptor_type (ftype))
3795 return (atype->code () == TYPE_CODE_ARRAY
3796 || ada_is_array_descriptor_type (atype));
3797 else
3798 return (atype->code () == TYPE_CODE_STRUCT
3799 && !ada_is_array_descriptor_type (atype));
3800
3801 case TYPE_CODE_UNION:
3802 case TYPE_CODE_FLT:
3803 return (atype->code () == ftype->code ());
3804 }
3805 }
3806
3807 /* Return non-zero if the formals of FUNC "sufficiently match" the
3808 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3809 may also be an enumeral, in which case it is treated as a 0-
3810 argument function. */
3811
3812 static int
3813 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3814 {
3815 int i;
3816 struct type *func_type = SYMBOL_TYPE (func);
3817
3818 if (SYMBOL_CLASS (func) == LOC_CONST
3819 && func_type->code () == TYPE_CODE_ENUM)
3820 return (n_actuals == 0);
3821 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3822 return 0;
3823
3824 if (func_type->num_fields () != n_actuals)
3825 return 0;
3826
3827 for (i = 0; i < n_actuals; i += 1)
3828 {
3829 if (actuals[i] == NULL)
3830 return 0;
3831 else
3832 {
3833 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3834 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3835
3836 if (!ada_type_match (ftype, atype, 1))
3837 return 0;
3838 }
3839 }
3840 return 1;
3841 }
3842
3843 /* False iff function type FUNC_TYPE definitely does not produce a value
3844 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3845 FUNC_TYPE is not a valid function type with a non-null return type
3846 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3847
3848 static int
3849 return_match (struct type *func_type, struct type *context_type)
3850 {
3851 struct type *return_type;
3852
3853 if (func_type == NULL)
3854 return 1;
3855
3856 if (func_type->code () == TYPE_CODE_FUNC)
3857 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3858 else
3859 return_type = get_base_type (func_type);
3860 if (return_type == NULL)
3861 return 1;
3862
3863 context_type = get_base_type (context_type);
3864
3865 if (return_type->code () == TYPE_CODE_ENUM)
3866 return context_type == NULL || return_type == context_type;
3867 else if (context_type == NULL)
3868 return return_type->code () != TYPE_CODE_VOID;
3869 else
3870 return return_type->code () == context_type->code ();
3871 }
3872
3873
3874 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3875 function (if any) that matches the types of the NARGS arguments in
3876 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3877 that returns that type, then eliminate matches that don't. If
3878 CONTEXT_TYPE is void and there is at least one match that does not
3879 return void, eliminate all matches that do.
3880
3881 Asks the user if there is more than one match remaining. Returns -1
3882 if there is no such symbol or none is selected. NAME is used
3883 solely for messages. May re-arrange and modify SYMS in
3884 the process; the index returned is for the modified vector. */
3885
3886 static int
3887 ada_resolve_function (struct block_symbol syms[],
3888 int nsyms, struct value **args, int nargs,
3889 const char *name, struct type *context_type,
3890 int parse_completion)
3891 {
3892 int fallback;
3893 int k;
3894 int m; /* Number of hits */
3895
3896 m = 0;
3897 /* In the first pass of the loop, we only accept functions matching
3898 context_type. If none are found, we add a second pass of the loop
3899 where every function is accepted. */
3900 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3901 {
3902 for (k = 0; k < nsyms; k += 1)
3903 {
3904 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3905
3906 if (ada_args_match (syms[k].symbol, args, nargs)
3907 && (fallback || return_match (type, context_type)))
3908 {
3909 syms[m] = syms[k];
3910 m += 1;
3911 }
3912 }
3913 }
3914
3915 /* If we got multiple matches, ask the user which one to use. Don't do this
3916 interactive thing during completion, though, as the purpose of the
3917 completion is providing a list of all possible matches. Prompting the
3918 user to filter it down would be completely unexpected in this case. */
3919 if (m == 0)
3920 return -1;
3921 else if (m > 1 && !parse_completion)
3922 {
3923 printf_filtered (_("Multiple matches for %s\n"), name);
3924 user_select_syms (syms, m, 1);
3925 return 0;
3926 }
3927 return 0;
3928 }
3929
3930 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3931 on the function identified by SYM and BLOCK, and taking NARGS
3932 arguments. Update *EXPP as needed to hold more space. */
3933
3934 static void
3935 replace_operator_with_call (expression_up *expp, int pc, int nargs,
3936 int oplen, struct symbol *sym,
3937 const struct block *block)
3938 {
3939 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3940 symbol, -oplen for operator being replaced). */
3941 struct expression *newexp = (struct expression *)
3942 xzalloc (sizeof (struct expression)
3943 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3944 struct expression *exp = expp->get ();
3945
3946 newexp->nelts = exp->nelts + 7 - oplen;
3947 newexp->language_defn = exp->language_defn;
3948 newexp->gdbarch = exp->gdbarch;
3949 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3950 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3951 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3952
3953 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3954 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3955
3956 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3957 newexp->elts[pc + 4].block = block;
3958 newexp->elts[pc + 5].symbol = sym;
3959
3960 expp->reset (newexp);
3961 }
3962
3963 /* Type-class predicates */
3964
3965 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3966 or FLOAT). */
3967
3968 static int
3969 numeric_type_p (struct type *type)
3970 {
3971 if (type == NULL)
3972 return 0;
3973 else
3974 {
3975 switch (type->code ())
3976 {
3977 case TYPE_CODE_INT:
3978 case TYPE_CODE_FLT:
3979 return 1;
3980 case TYPE_CODE_RANGE:
3981 return (type == TYPE_TARGET_TYPE (type)
3982 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3983 default:
3984 return 0;
3985 }
3986 }
3987 }
3988
3989 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3990
3991 static int
3992 integer_type_p (struct type *type)
3993 {
3994 if (type == NULL)
3995 return 0;
3996 else
3997 {
3998 switch (type->code ())
3999 {
4000 case TYPE_CODE_INT:
4001 return 1;
4002 case TYPE_CODE_RANGE:
4003 return (type == TYPE_TARGET_TYPE (type)
4004 || integer_type_p (TYPE_TARGET_TYPE (type)));
4005 default:
4006 return 0;
4007 }
4008 }
4009 }
4010
4011 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4012
4013 static int
4014 scalar_type_p (struct type *type)
4015 {
4016 if (type == NULL)
4017 return 0;
4018 else
4019 {
4020 switch (type->code ())
4021 {
4022 case TYPE_CODE_INT:
4023 case TYPE_CODE_RANGE:
4024 case TYPE_CODE_ENUM:
4025 case TYPE_CODE_FLT:
4026 return 1;
4027 default:
4028 return 0;
4029 }
4030 }
4031 }
4032
4033 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4034
4035 static int
4036 discrete_type_p (struct type *type)
4037 {
4038 if (type == NULL)
4039 return 0;
4040 else
4041 {
4042 switch (type->code ())
4043 {
4044 case TYPE_CODE_INT:
4045 case TYPE_CODE_RANGE:
4046 case TYPE_CODE_ENUM:
4047 case TYPE_CODE_BOOL:
4048 return 1;
4049 default:
4050 return 0;
4051 }
4052 }
4053 }
4054
4055 /* Returns non-zero if OP with operands in the vector ARGS could be
4056 a user-defined function. Errs on the side of pre-defined operators
4057 (i.e., result 0). */
4058
4059 static int
4060 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4061 {
4062 struct type *type0 =
4063 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4064 struct type *type1 =
4065 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4066
4067 if (type0 == NULL)
4068 return 0;
4069
4070 switch (op)
4071 {
4072 default:
4073 return 0;
4074
4075 case BINOP_ADD:
4076 case BINOP_SUB:
4077 case BINOP_MUL:
4078 case BINOP_DIV:
4079 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4080
4081 case BINOP_REM:
4082 case BINOP_MOD:
4083 case BINOP_BITWISE_AND:
4084 case BINOP_BITWISE_IOR:
4085 case BINOP_BITWISE_XOR:
4086 return (!(integer_type_p (type0) && integer_type_p (type1)));
4087
4088 case BINOP_EQUAL:
4089 case BINOP_NOTEQUAL:
4090 case BINOP_LESS:
4091 case BINOP_GTR:
4092 case BINOP_LEQ:
4093 case BINOP_GEQ:
4094 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4095
4096 case BINOP_CONCAT:
4097 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4098
4099 case BINOP_EXP:
4100 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4101
4102 case UNOP_NEG:
4103 case UNOP_PLUS:
4104 case UNOP_LOGICAL_NOT:
4105 case UNOP_ABS:
4106 return (!numeric_type_p (type0));
4107
4108 }
4109 }
4110 \f
4111 /* Renaming */
4112
4113 /* NOTES:
4114
4115 1. In the following, we assume that a renaming type's name may
4116 have an ___XD suffix. It would be nice if this went away at some
4117 point.
4118 2. We handle both the (old) purely type-based representation of
4119 renamings and the (new) variable-based encoding. At some point,
4120 it is devoutly to be hoped that the former goes away
4121 (FIXME: hilfinger-2007-07-09).
4122 3. Subprogram renamings are not implemented, although the XRS
4123 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4124
4125 /* If SYM encodes a renaming,
4126
4127 <renaming> renames <renamed entity>,
4128
4129 sets *LEN to the length of the renamed entity's name,
4130 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4131 the string describing the subcomponent selected from the renamed
4132 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4133 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4134 are undefined). Otherwise, returns a value indicating the category
4135 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4136 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4137 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4138 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4139 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4140 may be NULL, in which case they are not assigned.
4141
4142 [Currently, however, GCC does not generate subprogram renamings.] */
4143
4144 enum ada_renaming_category
4145 ada_parse_renaming (struct symbol *sym,
4146 const char **renamed_entity, int *len,
4147 const char **renaming_expr)
4148 {
4149 enum ada_renaming_category kind;
4150 const char *info;
4151 const char *suffix;
4152
4153 if (sym == NULL)
4154 return ADA_NOT_RENAMING;
4155 switch (SYMBOL_CLASS (sym))
4156 {
4157 default:
4158 return ADA_NOT_RENAMING;
4159 case LOC_LOCAL:
4160 case LOC_STATIC:
4161 case LOC_COMPUTED:
4162 case LOC_OPTIMIZED_OUT:
4163 info = strstr (sym->linkage_name (), "___XR");
4164 if (info == NULL)
4165 return ADA_NOT_RENAMING;
4166 switch (info[5])
4167 {
4168 case '_':
4169 kind = ADA_OBJECT_RENAMING;
4170 info += 6;
4171 break;
4172 case 'E':
4173 kind = ADA_EXCEPTION_RENAMING;
4174 info += 7;
4175 break;
4176 case 'P':
4177 kind = ADA_PACKAGE_RENAMING;
4178 info += 7;
4179 break;
4180 case 'S':
4181 kind = ADA_SUBPROGRAM_RENAMING;
4182 info += 7;
4183 break;
4184 default:
4185 return ADA_NOT_RENAMING;
4186 }
4187 }
4188
4189 if (renamed_entity != NULL)
4190 *renamed_entity = info;
4191 suffix = strstr (info, "___XE");
4192 if (suffix == NULL || suffix == info)
4193 return ADA_NOT_RENAMING;
4194 if (len != NULL)
4195 *len = strlen (info) - strlen (suffix);
4196 suffix += 5;
4197 if (renaming_expr != NULL)
4198 *renaming_expr = suffix;
4199 return kind;
4200 }
4201
4202 /* Compute the value of the given RENAMING_SYM, which is expected to
4203 be a symbol encoding a renaming expression. BLOCK is the block
4204 used to evaluate the renaming. */
4205
4206 static struct value *
4207 ada_read_renaming_var_value (struct symbol *renaming_sym,
4208 const struct block *block)
4209 {
4210 const char *sym_name;
4211
4212 sym_name = renaming_sym->linkage_name ();
4213 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4214 return evaluate_expression (expr.get ());
4215 }
4216 \f
4217
4218 /* Evaluation: Function Calls */
4219
4220 /* Return an lvalue containing the value VAL. This is the identity on
4221 lvalues, and otherwise has the side-effect of allocating memory
4222 in the inferior where a copy of the value contents is copied. */
4223
4224 static struct value *
4225 ensure_lval (struct value *val)
4226 {
4227 if (VALUE_LVAL (val) == not_lval
4228 || VALUE_LVAL (val) == lval_internalvar)
4229 {
4230 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4231 const CORE_ADDR addr =
4232 value_as_long (value_allocate_space_in_inferior (len));
4233
4234 VALUE_LVAL (val) = lval_memory;
4235 set_value_address (val, addr);
4236 write_memory (addr, value_contents (val), len);
4237 }
4238
4239 return val;
4240 }
4241
4242 /* Given ARG, a value of type (pointer or reference to a)*
4243 structure/union, extract the component named NAME from the ultimate
4244 target structure/union and return it as a value with its
4245 appropriate type.
4246
4247 The routine searches for NAME among all members of the structure itself
4248 and (recursively) among all members of any wrapper members
4249 (e.g., '_parent').
4250
4251 If NO_ERR, then simply return NULL in case of error, rather than
4252 calling error. */
4253
4254 static struct value *
4255 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4256 {
4257 struct type *t, *t1;
4258 struct value *v;
4259 int check_tag;
4260
4261 v = NULL;
4262 t1 = t = ada_check_typedef (value_type (arg));
4263 if (t->code () == TYPE_CODE_REF)
4264 {
4265 t1 = TYPE_TARGET_TYPE (t);
4266 if (t1 == NULL)
4267 goto BadValue;
4268 t1 = ada_check_typedef (t1);
4269 if (t1->code () == TYPE_CODE_PTR)
4270 {
4271 arg = coerce_ref (arg);
4272 t = t1;
4273 }
4274 }
4275
4276 while (t->code () == TYPE_CODE_PTR)
4277 {
4278 t1 = TYPE_TARGET_TYPE (t);
4279 if (t1 == NULL)
4280 goto BadValue;
4281 t1 = ada_check_typedef (t1);
4282 if (t1->code () == TYPE_CODE_PTR)
4283 {
4284 arg = value_ind (arg);
4285 t = t1;
4286 }
4287 else
4288 break;
4289 }
4290
4291 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4292 goto BadValue;
4293
4294 if (t1 == t)
4295 v = ada_search_struct_field (name, arg, 0, t);
4296 else
4297 {
4298 int bit_offset, bit_size, byte_offset;
4299 struct type *field_type;
4300 CORE_ADDR address;
4301
4302 if (t->code () == TYPE_CODE_PTR)
4303 address = value_address (ada_value_ind (arg));
4304 else
4305 address = value_address (ada_coerce_ref (arg));
4306
4307 /* Check to see if this is a tagged type. We also need to handle
4308 the case where the type is a reference to a tagged type, but
4309 we have to be careful to exclude pointers to tagged types.
4310 The latter should be shown as usual (as a pointer), whereas
4311 a reference should mostly be transparent to the user. */
4312
4313 if (ada_is_tagged_type (t1, 0)
4314 || (t1->code () == TYPE_CODE_REF
4315 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4316 {
4317 /* We first try to find the searched field in the current type.
4318 If not found then let's look in the fixed type. */
4319
4320 if (!find_struct_field (name, t1, 0,
4321 &field_type, &byte_offset, &bit_offset,
4322 &bit_size, NULL))
4323 check_tag = 1;
4324 else
4325 check_tag = 0;
4326 }
4327 else
4328 check_tag = 0;
4329
4330 /* Convert to fixed type in all cases, so that we have proper
4331 offsets to each field in unconstrained record types. */
4332 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4333 address, NULL, check_tag);
4334
4335 if (find_struct_field (name, t1, 0,
4336 &field_type, &byte_offset, &bit_offset,
4337 &bit_size, NULL))
4338 {
4339 if (bit_size != 0)
4340 {
4341 if (t->code () == TYPE_CODE_REF)
4342 arg = ada_coerce_ref (arg);
4343 else
4344 arg = ada_value_ind (arg);
4345 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4346 bit_offset, bit_size,
4347 field_type);
4348 }
4349 else
4350 v = value_at_lazy (field_type, address + byte_offset);
4351 }
4352 }
4353
4354 if (v != NULL || no_err)
4355 return v;
4356 else
4357 error (_("There is no member named %s."), name);
4358
4359 BadValue:
4360 if (no_err)
4361 return NULL;
4362 else
4363 error (_("Attempt to extract a component of "
4364 "a value that is not a record."));
4365 }
4366
4367 /* Return the value ACTUAL, converted to be an appropriate value for a
4368 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4369 allocating any necessary descriptors (fat pointers), or copies of
4370 values not residing in memory, updating it as needed. */
4371
4372 struct value *
4373 ada_convert_actual (struct value *actual, struct type *formal_type0)
4374 {
4375 struct type *actual_type = ada_check_typedef (value_type (actual));
4376 struct type *formal_type = ada_check_typedef (formal_type0);
4377 struct type *formal_target =
4378 formal_type->code () == TYPE_CODE_PTR
4379 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4380 struct type *actual_target =
4381 actual_type->code () == TYPE_CODE_PTR
4382 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4383
4384 if (ada_is_array_descriptor_type (formal_target)
4385 && actual_target->code () == TYPE_CODE_ARRAY)
4386 return make_array_descriptor (formal_type, actual);
4387 else if (formal_type->code () == TYPE_CODE_PTR
4388 || formal_type->code () == TYPE_CODE_REF)
4389 {
4390 struct value *result;
4391
4392 if (formal_target->code () == TYPE_CODE_ARRAY
4393 && ada_is_array_descriptor_type (actual_target))
4394 result = desc_data (actual);
4395 else if (formal_type->code () != TYPE_CODE_PTR)
4396 {
4397 if (VALUE_LVAL (actual) != lval_memory)
4398 {
4399 struct value *val;
4400
4401 actual_type = ada_check_typedef (value_type (actual));
4402 val = allocate_value (actual_type);
4403 memcpy ((char *) value_contents_raw (val),
4404 (char *) value_contents (actual),
4405 TYPE_LENGTH (actual_type));
4406 actual = ensure_lval (val);
4407 }
4408 result = value_addr (actual);
4409 }
4410 else
4411 return actual;
4412 return value_cast_pointers (formal_type, result, 0);
4413 }
4414 else if (actual_type->code () == TYPE_CODE_PTR)
4415 return ada_value_ind (actual);
4416 else if (ada_is_aligner_type (formal_type))
4417 {
4418 /* We need to turn this parameter into an aligner type
4419 as well. */
4420 struct value *aligner = allocate_value (formal_type);
4421 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4422
4423 value_assign_to_component (aligner, component, actual);
4424 return aligner;
4425 }
4426
4427 return actual;
4428 }
4429
4430 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4431 type TYPE. This is usually an inefficient no-op except on some targets
4432 (such as AVR) where the representation of a pointer and an address
4433 differs. */
4434
4435 static CORE_ADDR
4436 value_pointer (struct value *value, struct type *type)
4437 {
4438 struct gdbarch *gdbarch = get_type_arch (type);
4439 unsigned len = TYPE_LENGTH (type);
4440 gdb_byte *buf = (gdb_byte *) alloca (len);
4441 CORE_ADDR addr;
4442
4443 addr = value_address (value);
4444 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4445 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4446 return addr;
4447 }
4448
4449
4450 /* Push a descriptor of type TYPE for array value ARR on the stack at
4451 *SP, updating *SP to reflect the new descriptor. Return either
4452 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4453 to-descriptor type rather than a descriptor type), a struct value *
4454 representing a pointer to this descriptor. */
4455
4456 static struct value *
4457 make_array_descriptor (struct type *type, struct value *arr)
4458 {
4459 struct type *bounds_type = desc_bounds_type (type);
4460 struct type *desc_type = desc_base_type (type);
4461 struct value *descriptor = allocate_value (desc_type);
4462 struct value *bounds = allocate_value (bounds_type);
4463 int i;
4464
4465 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4466 i > 0; i -= 1)
4467 {
4468 modify_field (value_type (bounds), value_contents_writeable (bounds),
4469 ada_array_bound (arr, i, 0),
4470 desc_bound_bitpos (bounds_type, i, 0),
4471 desc_bound_bitsize (bounds_type, i, 0));
4472 modify_field (value_type (bounds), value_contents_writeable (bounds),
4473 ada_array_bound (arr, i, 1),
4474 desc_bound_bitpos (bounds_type, i, 1),
4475 desc_bound_bitsize (bounds_type, i, 1));
4476 }
4477
4478 bounds = ensure_lval (bounds);
4479
4480 modify_field (value_type (descriptor),
4481 value_contents_writeable (descriptor),
4482 value_pointer (ensure_lval (arr),
4483 desc_type->field (0).type ()),
4484 fat_pntr_data_bitpos (desc_type),
4485 fat_pntr_data_bitsize (desc_type));
4486
4487 modify_field (value_type (descriptor),
4488 value_contents_writeable (descriptor),
4489 value_pointer (bounds,
4490 desc_type->field (1).type ()),
4491 fat_pntr_bounds_bitpos (desc_type),
4492 fat_pntr_bounds_bitsize (desc_type));
4493
4494 descriptor = ensure_lval (descriptor);
4495
4496 if (type->code () == TYPE_CODE_PTR)
4497 return value_addr (descriptor);
4498 else
4499 return descriptor;
4500 }
4501 \f
4502 /* Symbol Cache Module */
4503
4504 /* Performance measurements made as of 2010-01-15 indicate that
4505 this cache does bring some noticeable improvements. Depending
4506 on the type of entity being printed, the cache can make it as much
4507 as an order of magnitude faster than without it.
4508
4509 The descriptive type DWARF extension has significantly reduced
4510 the need for this cache, at least when DWARF is being used. However,
4511 even in this case, some expensive name-based symbol searches are still
4512 sometimes necessary - to find an XVZ variable, mostly. */
4513
4514 /* Initialize the contents of SYM_CACHE. */
4515
4516 static void
4517 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4518 {
4519 obstack_init (&sym_cache->cache_space);
4520 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4521 }
4522
4523 /* Free the memory used by SYM_CACHE. */
4524
4525 static void
4526 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4527 {
4528 obstack_free (&sym_cache->cache_space, NULL);
4529 xfree (sym_cache);
4530 }
4531
4532 /* Return the symbol cache associated to the given program space PSPACE.
4533 If not allocated for this PSPACE yet, allocate and initialize one. */
4534
4535 static struct ada_symbol_cache *
4536 ada_get_symbol_cache (struct program_space *pspace)
4537 {
4538 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4539
4540 if (pspace_data->sym_cache == NULL)
4541 {
4542 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4543 ada_init_symbol_cache (pspace_data->sym_cache);
4544 }
4545
4546 return pspace_data->sym_cache;
4547 }
4548
4549 /* Clear all entries from the symbol cache. */
4550
4551 static void
4552 ada_clear_symbol_cache (void)
4553 {
4554 struct ada_symbol_cache *sym_cache
4555 = ada_get_symbol_cache (current_program_space);
4556
4557 obstack_free (&sym_cache->cache_space, NULL);
4558 ada_init_symbol_cache (sym_cache);
4559 }
4560
4561 /* Search our cache for an entry matching NAME and DOMAIN.
4562 Return it if found, or NULL otherwise. */
4563
4564 static struct cache_entry **
4565 find_entry (const char *name, domain_enum domain)
4566 {
4567 struct ada_symbol_cache *sym_cache
4568 = ada_get_symbol_cache (current_program_space);
4569 int h = msymbol_hash (name) % HASH_SIZE;
4570 struct cache_entry **e;
4571
4572 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4573 {
4574 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4575 return e;
4576 }
4577 return NULL;
4578 }
4579
4580 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4581 Return 1 if found, 0 otherwise.
4582
4583 If an entry was found and SYM is not NULL, set *SYM to the entry's
4584 SYM. Same principle for BLOCK if not NULL. */
4585
4586 static int
4587 lookup_cached_symbol (const char *name, domain_enum domain,
4588 struct symbol **sym, const struct block **block)
4589 {
4590 struct cache_entry **e = find_entry (name, domain);
4591
4592 if (e == NULL)
4593 return 0;
4594 if (sym != NULL)
4595 *sym = (*e)->sym;
4596 if (block != NULL)
4597 *block = (*e)->block;
4598 return 1;
4599 }
4600
4601 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4602 in domain DOMAIN, save this result in our symbol cache. */
4603
4604 static void
4605 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4606 const struct block *block)
4607 {
4608 struct ada_symbol_cache *sym_cache
4609 = ada_get_symbol_cache (current_program_space);
4610 int h;
4611 struct cache_entry *e;
4612
4613 /* Symbols for builtin types don't have a block.
4614 For now don't cache such symbols. */
4615 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4616 return;
4617
4618 /* If the symbol is a local symbol, then do not cache it, as a search
4619 for that symbol depends on the context. To determine whether
4620 the symbol is local or not, we check the block where we found it
4621 against the global and static blocks of its associated symtab. */
4622 if (sym
4623 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4624 GLOBAL_BLOCK) != block
4625 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4626 STATIC_BLOCK) != block)
4627 return;
4628
4629 h = msymbol_hash (name) % HASH_SIZE;
4630 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4631 e->next = sym_cache->root[h];
4632 sym_cache->root[h] = e;
4633 e->name = obstack_strdup (&sym_cache->cache_space, name);
4634 e->sym = sym;
4635 e->domain = domain;
4636 e->block = block;
4637 }
4638 \f
4639 /* Symbol Lookup */
4640
4641 /* Return the symbol name match type that should be used used when
4642 searching for all symbols matching LOOKUP_NAME.
4643
4644 LOOKUP_NAME is expected to be a symbol name after transformation
4645 for Ada lookups. */
4646
4647 static symbol_name_match_type
4648 name_match_type_from_name (const char *lookup_name)
4649 {
4650 return (strstr (lookup_name, "__") == NULL
4651 ? symbol_name_match_type::WILD
4652 : symbol_name_match_type::FULL);
4653 }
4654
4655 /* Return the result of a standard (literal, C-like) lookup of NAME in
4656 given DOMAIN, visible from lexical block BLOCK. */
4657
4658 static struct symbol *
4659 standard_lookup (const char *name, const struct block *block,
4660 domain_enum domain)
4661 {
4662 /* Initialize it just to avoid a GCC false warning. */
4663 struct block_symbol sym = {};
4664
4665 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4666 return sym.symbol;
4667 ada_lookup_encoded_symbol (name, block, domain, &sym);
4668 cache_symbol (name, domain, sym.symbol, sym.block);
4669 return sym.symbol;
4670 }
4671
4672
4673 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4674 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4675 since they contend in overloading in the same way. */
4676 static int
4677 is_nonfunction (struct block_symbol syms[], int n)
4678 {
4679 int i;
4680
4681 for (i = 0; i < n; i += 1)
4682 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4683 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4684 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4685 return 1;
4686
4687 return 0;
4688 }
4689
4690 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4691 struct types. Otherwise, they may not. */
4692
4693 static int
4694 equiv_types (struct type *type0, struct type *type1)
4695 {
4696 if (type0 == type1)
4697 return 1;
4698 if (type0 == NULL || type1 == NULL
4699 || type0->code () != type1->code ())
4700 return 0;
4701 if ((type0->code () == TYPE_CODE_STRUCT
4702 || type0->code () == TYPE_CODE_ENUM)
4703 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4704 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4705 return 1;
4706
4707 return 0;
4708 }
4709
4710 /* True iff SYM0 represents the same entity as SYM1, or one that is
4711 no more defined than that of SYM1. */
4712
4713 static int
4714 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4715 {
4716 if (sym0 == sym1)
4717 return 1;
4718 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4719 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4720 return 0;
4721
4722 switch (SYMBOL_CLASS (sym0))
4723 {
4724 case LOC_UNDEF:
4725 return 1;
4726 case LOC_TYPEDEF:
4727 {
4728 struct type *type0 = SYMBOL_TYPE (sym0);
4729 struct type *type1 = SYMBOL_TYPE (sym1);
4730 const char *name0 = sym0->linkage_name ();
4731 const char *name1 = sym1->linkage_name ();
4732 int len0 = strlen (name0);
4733
4734 return
4735 type0->code () == type1->code ()
4736 && (equiv_types (type0, type1)
4737 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4738 && startswith (name1 + len0, "___XV")));
4739 }
4740 case LOC_CONST:
4741 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4742 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4743
4744 case LOC_STATIC:
4745 {
4746 const char *name0 = sym0->linkage_name ();
4747 const char *name1 = sym1->linkage_name ();
4748 return (strcmp (name0, name1) == 0
4749 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4750 }
4751
4752 default:
4753 return 0;
4754 }
4755 }
4756
4757 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4758 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4759
4760 static void
4761 add_defn_to_vec (struct obstack *obstackp,
4762 struct symbol *sym,
4763 const struct block *block)
4764 {
4765 int i;
4766 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4767
4768 /* Do not try to complete stub types, as the debugger is probably
4769 already scanning all symbols matching a certain name at the
4770 time when this function is called. Trying to replace the stub
4771 type by its associated full type will cause us to restart a scan
4772 which may lead to an infinite recursion. Instead, the client
4773 collecting the matching symbols will end up collecting several
4774 matches, with at least one of them complete. It can then filter
4775 out the stub ones if needed. */
4776
4777 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4778 {
4779 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4780 return;
4781 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4782 {
4783 prevDefns[i].symbol = sym;
4784 prevDefns[i].block = block;
4785 return;
4786 }
4787 }
4788
4789 {
4790 struct block_symbol info;
4791
4792 info.symbol = sym;
4793 info.block = block;
4794 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4795 }
4796 }
4797
4798 /* Number of block_symbol structures currently collected in current vector in
4799 OBSTACKP. */
4800
4801 static int
4802 num_defns_collected (struct obstack *obstackp)
4803 {
4804 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4805 }
4806
4807 /* Vector of block_symbol structures currently collected in current vector in
4808 OBSTACKP. If FINISH, close off the vector and return its final address. */
4809
4810 static struct block_symbol *
4811 defns_collected (struct obstack *obstackp, int finish)
4812 {
4813 if (finish)
4814 return (struct block_symbol *) obstack_finish (obstackp);
4815 else
4816 return (struct block_symbol *) obstack_base (obstackp);
4817 }
4818
4819 /* Return a bound minimal symbol matching NAME according to Ada
4820 decoding rules. Returns an invalid symbol if there is no such
4821 minimal symbol. Names prefixed with "standard__" are handled
4822 specially: "standard__" is first stripped off, and only static and
4823 global symbols are searched. */
4824
4825 struct bound_minimal_symbol
4826 ada_lookup_simple_minsym (const char *name)
4827 {
4828 struct bound_minimal_symbol result;
4829
4830 memset (&result, 0, sizeof (result));
4831
4832 symbol_name_match_type match_type = name_match_type_from_name (name);
4833 lookup_name_info lookup_name (name, match_type);
4834
4835 symbol_name_matcher_ftype *match_name
4836 = ada_get_symbol_name_matcher (lookup_name);
4837
4838 for (objfile *objfile : current_program_space->objfiles ())
4839 {
4840 for (minimal_symbol *msymbol : objfile->msymbols ())
4841 {
4842 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4843 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4844 {
4845 result.minsym = msymbol;
4846 result.objfile = objfile;
4847 break;
4848 }
4849 }
4850 }
4851
4852 return result;
4853 }
4854
4855 /* For all subprograms that statically enclose the subprogram of the
4856 selected frame, add symbols matching identifier NAME in DOMAIN
4857 and their blocks to the list of data in OBSTACKP, as for
4858 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4859 with a wildcard prefix. */
4860
4861 static void
4862 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4863 const lookup_name_info &lookup_name,
4864 domain_enum domain)
4865 {
4866 }
4867
4868 /* True if TYPE is definitely an artificial type supplied to a symbol
4869 for which no debugging information was given in the symbol file. */
4870
4871 static int
4872 is_nondebugging_type (struct type *type)
4873 {
4874 const char *name = ada_type_name (type);
4875
4876 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4877 }
4878
4879 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4880 that are deemed "identical" for practical purposes.
4881
4882 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4883 types and that their number of enumerals is identical (in other
4884 words, type1->num_fields () == type2->num_fields ()). */
4885
4886 static int
4887 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4888 {
4889 int i;
4890
4891 /* The heuristic we use here is fairly conservative. We consider
4892 that 2 enumerate types are identical if they have the same
4893 number of enumerals and that all enumerals have the same
4894 underlying value and name. */
4895
4896 /* All enums in the type should have an identical underlying value. */
4897 for (i = 0; i < type1->num_fields (); i++)
4898 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4899 return 0;
4900
4901 /* All enumerals should also have the same name (modulo any numerical
4902 suffix). */
4903 for (i = 0; i < type1->num_fields (); i++)
4904 {
4905 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4906 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4907 int len_1 = strlen (name_1);
4908 int len_2 = strlen (name_2);
4909
4910 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4911 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4912 if (len_1 != len_2
4913 || strncmp (TYPE_FIELD_NAME (type1, i),
4914 TYPE_FIELD_NAME (type2, i),
4915 len_1) != 0)
4916 return 0;
4917 }
4918
4919 return 1;
4920 }
4921
4922 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4923 that are deemed "identical" for practical purposes. Sometimes,
4924 enumerals are not strictly identical, but their types are so similar
4925 that they can be considered identical.
4926
4927 For instance, consider the following code:
4928
4929 type Color is (Black, Red, Green, Blue, White);
4930 type RGB_Color is new Color range Red .. Blue;
4931
4932 Type RGB_Color is a subrange of an implicit type which is a copy
4933 of type Color. If we call that implicit type RGB_ColorB ("B" is
4934 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4935 As a result, when an expression references any of the enumeral
4936 by name (Eg. "print green"), the expression is technically
4937 ambiguous and the user should be asked to disambiguate. But
4938 doing so would only hinder the user, since it wouldn't matter
4939 what choice he makes, the outcome would always be the same.
4940 So, for practical purposes, we consider them as the same. */
4941
4942 static int
4943 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4944 {
4945 int i;
4946
4947 /* Before performing a thorough comparison check of each type,
4948 we perform a series of inexpensive checks. We expect that these
4949 checks will quickly fail in the vast majority of cases, and thus
4950 help prevent the unnecessary use of a more expensive comparison.
4951 Said comparison also expects us to make some of these checks
4952 (see ada_identical_enum_types_p). */
4953
4954 /* Quick check: All symbols should have an enum type. */
4955 for (i = 0; i < syms.size (); i++)
4956 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4957 return 0;
4958
4959 /* Quick check: They should all have the same value. */
4960 for (i = 1; i < syms.size (); i++)
4961 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4962 return 0;
4963
4964 /* Quick check: They should all have the same number of enumerals. */
4965 for (i = 1; i < syms.size (); i++)
4966 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4967 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4968 return 0;
4969
4970 /* All the sanity checks passed, so we might have a set of
4971 identical enumeration types. Perform a more complete
4972 comparison of the type of each symbol. */
4973 for (i = 1; i < syms.size (); i++)
4974 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4975 SYMBOL_TYPE (syms[0].symbol)))
4976 return 0;
4977
4978 return 1;
4979 }
4980
4981 /* Remove any non-debugging symbols in SYMS that definitely
4982 duplicate other symbols in the list (The only case I know of where
4983 this happens is when object files containing stabs-in-ecoff are
4984 linked with files containing ordinary ecoff debugging symbols (or no
4985 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4986 Returns the number of items in the modified list. */
4987
4988 static int
4989 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4990 {
4991 int i, j;
4992
4993 /* We should never be called with less than 2 symbols, as there
4994 cannot be any extra symbol in that case. But it's easy to
4995 handle, since we have nothing to do in that case. */
4996 if (syms->size () < 2)
4997 return syms->size ();
4998
4999 i = 0;
5000 while (i < syms->size ())
5001 {
5002 int remove_p = 0;
5003
5004 /* If two symbols have the same name and one of them is a stub type,
5005 the get rid of the stub. */
5006
5007 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5008 && (*syms)[i].symbol->linkage_name () != NULL)
5009 {
5010 for (j = 0; j < syms->size (); j++)
5011 {
5012 if (j != i
5013 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5014 && (*syms)[j].symbol->linkage_name () != NULL
5015 && strcmp ((*syms)[i].symbol->linkage_name (),
5016 (*syms)[j].symbol->linkage_name ()) == 0)
5017 remove_p = 1;
5018 }
5019 }
5020
5021 /* Two symbols with the same name, same class and same address
5022 should be identical. */
5023
5024 else if ((*syms)[i].symbol->linkage_name () != NULL
5025 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5026 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5027 {
5028 for (j = 0; j < syms->size (); j += 1)
5029 {
5030 if (i != j
5031 && (*syms)[j].symbol->linkage_name () != NULL
5032 && strcmp ((*syms)[i].symbol->linkage_name (),
5033 (*syms)[j].symbol->linkage_name ()) == 0
5034 && SYMBOL_CLASS ((*syms)[i].symbol)
5035 == SYMBOL_CLASS ((*syms)[j].symbol)
5036 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5037 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5038 remove_p = 1;
5039 }
5040 }
5041
5042 if (remove_p)
5043 syms->erase (syms->begin () + i);
5044
5045 i += 1;
5046 }
5047
5048 /* If all the remaining symbols are identical enumerals, then
5049 just keep the first one and discard the rest.
5050
5051 Unlike what we did previously, we do not discard any entry
5052 unless they are ALL identical. This is because the symbol
5053 comparison is not a strict comparison, but rather a practical
5054 comparison. If all symbols are considered identical, then
5055 we can just go ahead and use the first one and discard the rest.
5056 But if we cannot reduce the list to a single element, we have
5057 to ask the user to disambiguate anyways. And if we have to
5058 present a multiple-choice menu, it's less confusing if the list
5059 isn't missing some choices that were identical and yet distinct. */
5060 if (symbols_are_identical_enums (*syms))
5061 syms->resize (1);
5062
5063 return syms->size ();
5064 }
5065
5066 /* Given a type that corresponds to a renaming entity, use the type name
5067 to extract the scope (package name or function name, fully qualified,
5068 and following the GNAT encoding convention) where this renaming has been
5069 defined. */
5070
5071 static std::string
5072 xget_renaming_scope (struct type *renaming_type)
5073 {
5074 /* The renaming types adhere to the following convention:
5075 <scope>__<rename>___<XR extension>.
5076 So, to extract the scope, we search for the "___XR" extension,
5077 and then backtrack until we find the first "__". */
5078
5079 const char *name = renaming_type->name ();
5080 const char *suffix = strstr (name, "___XR");
5081 const char *last;
5082
5083 /* Now, backtrack a bit until we find the first "__". Start looking
5084 at suffix - 3, as the <rename> part is at least one character long. */
5085
5086 for (last = suffix - 3; last > name; last--)
5087 if (last[0] == '_' && last[1] == '_')
5088 break;
5089
5090 /* Make a copy of scope and return it. */
5091 return std::string (name, last);
5092 }
5093
5094 /* Return nonzero if NAME corresponds to a package name. */
5095
5096 static int
5097 is_package_name (const char *name)
5098 {
5099 /* Here, We take advantage of the fact that no symbols are generated
5100 for packages, while symbols are generated for each function.
5101 So the condition for NAME represent a package becomes equivalent
5102 to NAME not existing in our list of symbols. There is only one
5103 small complication with library-level functions (see below). */
5104
5105 /* If it is a function that has not been defined at library level,
5106 then we should be able to look it up in the symbols. */
5107 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5108 return 0;
5109
5110 /* Library-level function names start with "_ada_". See if function
5111 "_ada_" followed by NAME can be found. */
5112
5113 /* Do a quick check that NAME does not contain "__", since library-level
5114 functions names cannot contain "__" in them. */
5115 if (strstr (name, "__") != NULL)
5116 return 0;
5117
5118 std::string fun_name = string_printf ("_ada_%s", name);
5119
5120 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5121 }
5122
5123 /* Return nonzero if SYM corresponds to a renaming entity that is
5124 not visible from FUNCTION_NAME. */
5125
5126 static int
5127 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5128 {
5129 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5130 return 0;
5131
5132 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5133
5134 /* If the rename has been defined in a package, then it is visible. */
5135 if (is_package_name (scope.c_str ()))
5136 return 0;
5137
5138 /* Check that the rename is in the current function scope by checking
5139 that its name starts with SCOPE. */
5140
5141 /* If the function name starts with "_ada_", it means that it is
5142 a library-level function. Strip this prefix before doing the
5143 comparison, as the encoding for the renaming does not contain
5144 this prefix. */
5145 if (startswith (function_name, "_ada_"))
5146 function_name += 5;
5147
5148 return !startswith (function_name, scope.c_str ());
5149 }
5150
5151 /* Remove entries from SYMS that corresponds to a renaming entity that
5152 is not visible from the function associated with CURRENT_BLOCK or
5153 that is superfluous due to the presence of more specific renaming
5154 information. Places surviving symbols in the initial entries of
5155 SYMS and returns the number of surviving symbols.
5156
5157 Rationale:
5158 First, in cases where an object renaming is implemented as a
5159 reference variable, GNAT may produce both the actual reference
5160 variable and the renaming encoding. In this case, we discard the
5161 latter.
5162
5163 Second, GNAT emits a type following a specified encoding for each renaming
5164 entity. Unfortunately, STABS currently does not support the definition
5165 of types that are local to a given lexical block, so all renamings types
5166 are emitted at library level. As a consequence, if an application
5167 contains two renaming entities using the same name, and a user tries to
5168 print the value of one of these entities, the result of the ada symbol
5169 lookup will also contain the wrong renaming type.
5170
5171 This function partially covers for this limitation by attempting to
5172 remove from the SYMS list renaming symbols that should be visible
5173 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5174 method with the current information available. The implementation
5175 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5176
5177 - When the user tries to print a rename in a function while there
5178 is another rename entity defined in a package: Normally, the
5179 rename in the function has precedence over the rename in the
5180 package, so the latter should be removed from the list. This is
5181 currently not the case.
5182
5183 - This function will incorrectly remove valid renames if
5184 the CURRENT_BLOCK corresponds to a function which symbol name
5185 has been changed by an "Export" pragma. As a consequence,
5186 the user will be unable to print such rename entities. */
5187
5188 static int
5189 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5190 const struct block *current_block)
5191 {
5192 struct symbol *current_function;
5193 const char *current_function_name;
5194 int i;
5195 int is_new_style_renaming;
5196
5197 /* If there is both a renaming foo___XR... encoded as a variable and
5198 a simple variable foo in the same block, discard the latter.
5199 First, zero out such symbols, then compress. */
5200 is_new_style_renaming = 0;
5201 for (i = 0; i < syms->size (); i += 1)
5202 {
5203 struct symbol *sym = (*syms)[i].symbol;
5204 const struct block *block = (*syms)[i].block;
5205 const char *name;
5206 const char *suffix;
5207
5208 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5209 continue;
5210 name = sym->linkage_name ();
5211 suffix = strstr (name, "___XR");
5212
5213 if (suffix != NULL)
5214 {
5215 int name_len = suffix - name;
5216 int j;
5217
5218 is_new_style_renaming = 1;
5219 for (j = 0; j < syms->size (); j += 1)
5220 if (i != j && (*syms)[j].symbol != NULL
5221 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5222 name_len) == 0
5223 && block == (*syms)[j].block)
5224 (*syms)[j].symbol = NULL;
5225 }
5226 }
5227 if (is_new_style_renaming)
5228 {
5229 int j, k;
5230
5231 for (j = k = 0; j < syms->size (); j += 1)
5232 if ((*syms)[j].symbol != NULL)
5233 {
5234 (*syms)[k] = (*syms)[j];
5235 k += 1;
5236 }
5237 return k;
5238 }
5239
5240 /* Extract the function name associated to CURRENT_BLOCK.
5241 Abort if unable to do so. */
5242
5243 if (current_block == NULL)
5244 return syms->size ();
5245
5246 current_function = block_linkage_function (current_block);
5247 if (current_function == NULL)
5248 return syms->size ();
5249
5250 current_function_name = current_function->linkage_name ();
5251 if (current_function_name == NULL)
5252 return syms->size ();
5253
5254 /* Check each of the symbols, and remove it from the list if it is
5255 a type corresponding to a renaming that is out of the scope of
5256 the current block. */
5257
5258 i = 0;
5259 while (i < syms->size ())
5260 {
5261 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5262 == ADA_OBJECT_RENAMING
5263 && old_renaming_is_invisible ((*syms)[i].symbol,
5264 current_function_name))
5265 syms->erase (syms->begin () + i);
5266 else
5267 i += 1;
5268 }
5269
5270 return syms->size ();
5271 }
5272
5273 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5274 whose name and domain match NAME and DOMAIN respectively.
5275 If no match was found, then extend the search to "enclosing"
5276 routines (in other words, if we're inside a nested function,
5277 search the symbols defined inside the enclosing functions).
5278 If WILD_MATCH_P is nonzero, perform the naming matching in
5279 "wild" mode (see function "wild_match" for more info).
5280
5281 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5282
5283 static void
5284 ada_add_local_symbols (struct obstack *obstackp,
5285 const lookup_name_info &lookup_name,
5286 const struct block *block, domain_enum domain)
5287 {
5288 int block_depth = 0;
5289
5290 while (block != NULL)
5291 {
5292 block_depth += 1;
5293 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5294
5295 /* If we found a non-function match, assume that's the one. */
5296 if (is_nonfunction (defns_collected (obstackp, 0),
5297 num_defns_collected (obstackp)))
5298 return;
5299
5300 block = BLOCK_SUPERBLOCK (block);
5301 }
5302
5303 /* If no luck so far, try to find NAME as a local symbol in some lexically
5304 enclosing subprogram. */
5305 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5306 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5307 }
5308
5309 /* An object of this type is used as the user_data argument when
5310 calling the map_matching_symbols method. */
5311
5312 struct match_data
5313 {
5314 struct objfile *objfile;
5315 struct obstack *obstackp;
5316 struct symbol *arg_sym;
5317 int found_sym;
5318 };
5319
5320 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5321 to a list of symbols. DATA is a pointer to a struct match_data *
5322 containing the obstack that collects the symbol list, the file that SYM
5323 must come from, a flag indicating whether a non-argument symbol has
5324 been found in the current block, and the last argument symbol
5325 passed in SYM within the current block (if any). When SYM is null,
5326 marking the end of a block, the argument symbol is added if no
5327 other has been found. */
5328
5329 static bool
5330 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5331 struct match_data *data)
5332 {
5333 const struct block *block = bsym->block;
5334 struct symbol *sym = bsym->symbol;
5335
5336 if (sym == NULL)
5337 {
5338 if (!data->found_sym && data->arg_sym != NULL)
5339 add_defn_to_vec (data->obstackp,
5340 fixup_symbol_section (data->arg_sym, data->objfile),
5341 block);
5342 data->found_sym = 0;
5343 data->arg_sym = NULL;
5344 }
5345 else
5346 {
5347 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5348 return true;
5349 else if (SYMBOL_IS_ARGUMENT (sym))
5350 data->arg_sym = sym;
5351 else
5352 {
5353 data->found_sym = 1;
5354 add_defn_to_vec (data->obstackp,
5355 fixup_symbol_section (sym, data->objfile),
5356 block);
5357 }
5358 }
5359 return true;
5360 }
5361
5362 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5363 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5364 symbols to OBSTACKP. Return whether we found such symbols. */
5365
5366 static int
5367 ada_add_block_renamings (struct obstack *obstackp,
5368 const struct block *block,
5369 const lookup_name_info &lookup_name,
5370 domain_enum domain)
5371 {
5372 struct using_direct *renaming;
5373 int defns_mark = num_defns_collected (obstackp);
5374
5375 symbol_name_matcher_ftype *name_match
5376 = ada_get_symbol_name_matcher (lookup_name);
5377
5378 for (renaming = block_using (block);
5379 renaming != NULL;
5380 renaming = renaming->next)
5381 {
5382 const char *r_name;
5383
5384 /* Avoid infinite recursions: skip this renaming if we are actually
5385 already traversing it.
5386
5387 Currently, symbol lookup in Ada don't use the namespace machinery from
5388 C++/Fortran support: skip namespace imports that use them. */
5389 if (renaming->searched
5390 || (renaming->import_src != NULL
5391 && renaming->import_src[0] != '\0')
5392 || (renaming->import_dest != NULL
5393 && renaming->import_dest[0] != '\0'))
5394 continue;
5395 renaming->searched = 1;
5396
5397 /* TODO: here, we perform another name-based symbol lookup, which can
5398 pull its own multiple overloads. In theory, we should be able to do
5399 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5400 not a simple name. But in order to do this, we would need to enhance
5401 the DWARF reader to associate a symbol to this renaming, instead of a
5402 name. So, for now, we do something simpler: re-use the C++/Fortran
5403 namespace machinery. */
5404 r_name = (renaming->alias != NULL
5405 ? renaming->alias
5406 : renaming->declaration);
5407 if (name_match (r_name, lookup_name, NULL))
5408 {
5409 lookup_name_info decl_lookup_name (renaming->declaration,
5410 lookup_name.match_type ());
5411 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5412 1, NULL);
5413 }
5414 renaming->searched = 0;
5415 }
5416 return num_defns_collected (obstackp) != defns_mark;
5417 }
5418
5419 /* Implements compare_names, but only applying the comparision using
5420 the given CASING. */
5421
5422 static int
5423 compare_names_with_case (const char *string1, const char *string2,
5424 enum case_sensitivity casing)
5425 {
5426 while (*string1 != '\0' && *string2 != '\0')
5427 {
5428 char c1, c2;
5429
5430 if (isspace (*string1) || isspace (*string2))
5431 return strcmp_iw_ordered (string1, string2);
5432
5433 if (casing == case_sensitive_off)
5434 {
5435 c1 = tolower (*string1);
5436 c2 = tolower (*string2);
5437 }
5438 else
5439 {
5440 c1 = *string1;
5441 c2 = *string2;
5442 }
5443 if (c1 != c2)
5444 break;
5445
5446 string1 += 1;
5447 string2 += 1;
5448 }
5449
5450 switch (*string1)
5451 {
5452 case '(':
5453 return strcmp_iw_ordered (string1, string2);
5454 case '_':
5455 if (*string2 == '\0')
5456 {
5457 if (is_name_suffix (string1))
5458 return 0;
5459 else
5460 return 1;
5461 }
5462 /* FALLTHROUGH */
5463 default:
5464 if (*string2 == '(')
5465 return strcmp_iw_ordered (string1, string2);
5466 else
5467 {
5468 if (casing == case_sensitive_off)
5469 return tolower (*string1) - tolower (*string2);
5470 else
5471 return *string1 - *string2;
5472 }
5473 }
5474 }
5475
5476 /* Compare STRING1 to STRING2, with results as for strcmp.
5477 Compatible with strcmp_iw_ordered in that...
5478
5479 strcmp_iw_ordered (STRING1, STRING2) <= 0
5480
5481 ... implies...
5482
5483 compare_names (STRING1, STRING2) <= 0
5484
5485 (they may differ as to what symbols compare equal). */
5486
5487 static int
5488 compare_names (const char *string1, const char *string2)
5489 {
5490 int result;
5491
5492 /* Similar to what strcmp_iw_ordered does, we need to perform
5493 a case-insensitive comparison first, and only resort to
5494 a second, case-sensitive, comparison if the first one was
5495 not sufficient to differentiate the two strings. */
5496
5497 result = compare_names_with_case (string1, string2, case_sensitive_off);
5498 if (result == 0)
5499 result = compare_names_with_case (string1, string2, case_sensitive_on);
5500
5501 return result;
5502 }
5503
5504 /* Convenience function to get at the Ada encoded lookup name for
5505 LOOKUP_NAME, as a C string. */
5506
5507 static const char *
5508 ada_lookup_name (const lookup_name_info &lookup_name)
5509 {
5510 return lookup_name.ada ().lookup_name ().c_str ();
5511 }
5512
5513 /* Add to OBSTACKP all non-local symbols whose name and domain match
5514 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5515 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5516 symbols otherwise. */
5517
5518 static void
5519 add_nonlocal_symbols (struct obstack *obstackp,
5520 const lookup_name_info &lookup_name,
5521 domain_enum domain, int global)
5522 {
5523 struct match_data data;
5524
5525 memset (&data, 0, sizeof data);
5526 data.obstackp = obstackp;
5527
5528 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5529
5530 auto callback = [&] (struct block_symbol *bsym)
5531 {
5532 return aux_add_nonlocal_symbols (bsym, &data);
5533 };
5534
5535 for (objfile *objfile : current_program_space->objfiles ())
5536 {
5537 data.objfile = objfile;
5538
5539 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5540 domain, global, callback,
5541 (is_wild_match
5542 ? NULL : compare_names));
5543
5544 for (compunit_symtab *cu : objfile->compunits ())
5545 {
5546 const struct block *global_block
5547 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5548
5549 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5550 domain))
5551 data.found_sym = 1;
5552 }
5553 }
5554
5555 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5556 {
5557 const char *name = ada_lookup_name (lookup_name);
5558 std::string bracket_name = std::string ("<_ada_") + name + '>';
5559 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5560
5561 for (objfile *objfile : current_program_space->objfiles ())
5562 {
5563 data.objfile = objfile;
5564 objfile->sf->qf->map_matching_symbols (objfile, name1,
5565 domain, global, callback,
5566 compare_names);
5567 }
5568 }
5569 }
5570
5571 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5572 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5573 returning the number of matches. Add these to OBSTACKP.
5574
5575 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5576 symbol match within the nest of blocks whose innermost member is BLOCK,
5577 is the one match returned (no other matches in that or
5578 enclosing blocks is returned). If there are any matches in or
5579 surrounding BLOCK, then these alone are returned.
5580
5581 Names prefixed with "standard__" are handled specially:
5582 "standard__" is first stripped off (by the lookup_name
5583 constructor), and only static and global symbols are searched.
5584
5585 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5586 to lookup global symbols. */
5587
5588 static void
5589 ada_add_all_symbols (struct obstack *obstackp,
5590 const struct block *block,
5591 const lookup_name_info &lookup_name,
5592 domain_enum domain,
5593 int full_search,
5594 int *made_global_lookup_p)
5595 {
5596 struct symbol *sym;
5597
5598 if (made_global_lookup_p)
5599 *made_global_lookup_p = 0;
5600
5601 /* Special case: If the user specifies a symbol name inside package
5602 Standard, do a non-wild matching of the symbol name without
5603 the "standard__" prefix. This was primarily introduced in order
5604 to allow the user to specifically access the standard exceptions
5605 using, for instance, Standard.Constraint_Error when Constraint_Error
5606 is ambiguous (due to the user defining its own Constraint_Error
5607 entity inside its program). */
5608 if (lookup_name.ada ().standard_p ())
5609 block = NULL;
5610
5611 /* Check the non-global symbols. If we have ANY match, then we're done. */
5612
5613 if (block != NULL)
5614 {
5615 if (full_search)
5616 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5617 else
5618 {
5619 /* In the !full_search case we're are being called by
5620 iterate_over_symbols, and we don't want to search
5621 superblocks. */
5622 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5623 }
5624 if (num_defns_collected (obstackp) > 0 || !full_search)
5625 return;
5626 }
5627
5628 /* No non-global symbols found. Check our cache to see if we have
5629 already performed this search before. If we have, then return
5630 the same result. */
5631
5632 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5633 domain, &sym, &block))
5634 {
5635 if (sym != NULL)
5636 add_defn_to_vec (obstackp, sym, block);
5637 return;
5638 }
5639
5640 if (made_global_lookup_p)
5641 *made_global_lookup_p = 1;
5642
5643 /* Search symbols from all global blocks. */
5644
5645 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5646
5647 /* Now add symbols from all per-file blocks if we've gotten no hits
5648 (not strictly correct, but perhaps better than an error). */
5649
5650 if (num_defns_collected (obstackp) == 0)
5651 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5652 }
5653
5654 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5655 is non-zero, enclosing scope and in global scopes, returning the number of
5656 matches.
5657 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5658 found and the blocks and symbol tables (if any) in which they were
5659 found.
5660
5661 When full_search is non-zero, any non-function/non-enumeral
5662 symbol match within the nest of blocks whose innermost member is BLOCK,
5663 is the one match returned (no other matches in that or
5664 enclosing blocks is returned). If there are any matches in or
5665 surrounding BLOCK, then these alone are returned.
5666
5667 Names prefixed with "standard__" are handled specially: "standard__"
5668 is first stripped off, and only static and global symbols are searched. */
5669
5670 static int
5671 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5672 const struct block *block,
5673 domain_enum domain,
5674 std::vector<struct block_symbol> *results,
5675 int full_search)
5676 {
5677 int syms_from_global_search;
5678 int ndefns;
5679 auto_obstack obstack;
5680
5681 ada_add_all_symbols (&obstack, block, lookup_name,
5682 domain, full_search, &syms_from_global_search);
5683
5684 ndefns = num_defns_collected (&obstack);
5685
5686 struct block_symbol *base = defns_collected (&obstack, 1);
5687 for (int i = 0; i < ndefns; ++i)
5688 results->push_back (base[i]);
5689
5690 ndefns = remove_extra_symbols (results);
5691
5692 if (ndefns == 0 && full_search && syms_from_global_search)
5693 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5694
5695 if (ndefns == 1 && full_search && syms_from_global_search)
5696 cache_symbol (ada_lookup_name (lookup_name), domain,
5697 (*results)[0].symbol, (*results)[0].block);
5698
5699 ndefns = remove_irrelevant_renamings (results, block);
5700
5701 return ndefns;
5702 }
5703
5704 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5705 in global scopes, returning the number of matches, and filling *RESULTS
5706 with (SYM,BLOCK) tuples.
5707
5708 See ada_lookup_symbol_list_worker for further details. */
5709
5710 int
5711 ada_lookup_symbol_list (const char *name, const struct block *block,
5712 domain_enum domain,
5713 std::vector<struct block_symbol> *results)
5714 {
5715 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5716 lookup_name_info lookup_name (name, name_match_type);
5717
5718 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5719 }
5720
5721 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5722 to 1, but choosing the first symbol found if there are multiple
5723 choices.
5724
5725 The result is stored in *INFO, which must be non-NULL.
5726 If no match is found, INFO->SYM is set to NULL. */
5727
5728 void
5729 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5730 domain_enum domain,
5731 struct block_symbol *info)
5732 {
5733 /* Since we already have an encoded name, wrap it in '<>' to force a
5734 verbatim match. Otherwise, if the name happens to not look like
5735 an encoded name (because it doesn't include a "__"),
5736 ada_lookup_name_info would re-encode/fold it again, and that
5737 would e.g., incorrectly lowercase object renaming names like
5738 "R28b" -> "r28b". */
5739 std::string verbatim = std::string ("<") + name + '>';
5740
5741 gdb_assert (info != NULL);
5742 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5743 }
5744
5745 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5746 scope and in global scopes, or NULL if none. NAME is folded and
5747 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5748 choosing the first symbol if there are multiple choices. */
5749
5750 struct block_symbol
5751 ada_lookup_symbol (const char *name, const struct block *block0,
5752 domain_enum domain)
5753 {
5754 std::vector<struct block_symbol> candidates;
5755 int n_candidates;
5756
5757 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5758
5759 if (n_candidates == 0)
5760 return {};
5761
5762 block_symbol info = candidates[0];
5763 info.symbol = fixup_symbol_section (info.symbol, NULL);
5764 return info;
5765 }
5766
5767 static struct block_symbol
5768 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5769 const char *name,
5770 const struct block *block,
5771 const domain_enum domain)
5772 {
5773 struct block_symbol sym;
5774
5775 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5776 if (sym.symbol != NULL)
5777 return sym;
5778
5779 /* If we haven't found a match at this point, try the primitive
5780 types. In other languages, this search is performed before
5781 searching for global symbols in order to short-circuit that
5782 global-symbol search if it happens that the name corresponds
5783 to a primitive type. But we cannot do the same in Ada, because
5784 it is perfectly legitimate for a program to declare a type which
5785 has the same name as a standard type. If looking up a type in
5786 that situation, we have traditionally ignored the primitive type
5787 in favor of user-defined types. This is why, unlike most other
5788 languages, we search the primitive types this late and only after
5789 having searched the global symbols without success. */
5790
5791 if (domain == VAR_DOMAIN)
5792 {
5793 struct gdbarch *gdbarch;
5794
5795 if (block == NULL)
5796 gdbarch = target_gdbarch ();
5797 else
5798 gdbarch = block_gdbarch (block);
5799 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5800 if (sym.symbol != NULL)
5801 return sym;
5802 }
5803
5804 return {};
5805 }
5806
5807
5808 /* True iff STR is a possible encoded suffix of a normal Ada name
5809 that is to be ignored for matching purposes. Suffixes of parallel
5810 names (e.g., XVE) are not included here. Currently, the possible suffixes
5811 are given by any of the regular expressions:
5812
5813 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5814 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5815 TKB [subprogram suffix for task bodies]
5816 _E[0-9]+[bs]$ [protected object entry suffixes]
5817 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5818
5819 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5820 match is performed. This sequence is used to differentiate homonyms,
5821 is an optional part of a valid name suffix. */
5822
5823 static int
5824 is_name_suffix (const char *str)
5825 {
5826 int k;
5827 const char *matching;
5828 const int len = strlen (str);
5829
5830 /* Skip optional leading __[0-9]+. */
5831
5832 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5833 {
5834 str += 3;
5835 while (isdigit (str[0]))
5836 str += 1;
5837 }
5838
5839 /* [.$][0-9]+ */
5840
5841 if (str[0] == '.' || str[0] == '$')
5842 {
5843 matching = str + 1;
5844 while (isdigit (matching[0]))
5845 matching += 1;
5846 if (matching[0] == '\0')
5847 return 1;
5848 }
5849
5850 /* ___[0-9]+ */
5851
5852 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5853 {
5854 matching = str + 3;
5855 while (isdigit (matching[0]))
5856 matching += 1;
5857 if (matching[0] == '\0')
5858 return 1;
5859 }
5860
5861 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5862
5863 if (strcmp (str, "TKB") == 0)
5864 return 1;
5865
5866 #if 0
5867 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5868 with a N at the end. Unfortunately, the compiler uses the same
5869 convention for other internal types it creates. So treating
5870 all entity names that end with an "N" as a name suffix causes
5871 some regressions. For instance, consider the case of an enumerated
5872 type. To support the 'Image attribute, it creates an array whose
5873 name ends with N.
5874 Having a single character like this as a suffix carrying some
5875 information is a bit risky. Perhaps we should change the encoding
5876 to be something like "_N" instead. In the meantime, do not do
5877 the following check. */
5878 /* Protected Object Subprograms */
5879 if (len == 1 && str [0] == 'N')
5880 return 1;
5881 #endif
5882
5883 /* _E[0-9]+[bs]$ */
5884 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5885 {
5886 matching = str + 3;
5887 while (isdigit (matching[0]))
5888 matching += 1;
5889 if ((matching[0] == 'b' || matching[0] == 's')
5890 && matching [1] == '\0')
5891 return 1;
5892 }
5893
5894 /* ??? We should not modify STR directly, as we are doing below. This
5895 is fine in this case, but may become problematic later if we find
5896 that this alternative did not work, and want to try matching
5897 another one from the begining of STR. Since we modified it, we
5898 won't be able to find the begining of the string anymore! */
5899 if (str[0] == 'X')
5900 {
5901 str += 1;
5902 while (str[0] != '_' && str[0] != '\0')
5903 {
5904 if (str[0] != 'n' && str[0] != 'b')
5905 return 0;
5906 str += 1;
5907 }
5908 }
5909
5910 if (str[0] == '\000')
5911 return 1;
5912
5913 if (str[0] == '_')
5914 {
5915 if (str[1] != '_' || str[2] == '\000')
5916 return 0;
5917 if (str[2] == '_')
5918 {
5919 if (strcmp (str + 3, "JM") == 0)
5920 return 1;
5921 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5922 the LJM suffix in favor of the JM one. But we will
5923 still accept LJM as a valid suffix for a reasonable
5924 amount of time, just to allow ourselves to debug programs
5925 compiled using an older version of GNAT. */
5926 if (strcmp (str + 3, "LJM") == 0)
5927 return 1;
5928 if (str[3] != 'X')
5929 return 0;
5930 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5931 || str[4] == 'U' || str[4] == 'P')
5932 return 1;
5933 if (str[4] == 'R' && str[5] != 'T')
5934 return 1;
5935 return 0;
5936 }
5937 if (!isdigit (str[2]))
5938 return 0;
5939 for (k = 3; str[k] != '\0'; k += 1)
5940 if (!isdigit (str[k]) && str[k] != '_')
5941 return 0;
5942 return 1;
5943 }
5944 if (str[0] == '$' && isdigit (str[1]))
5945 {
5946 for (k = 2; str[k] != '\0'; k += 1)
5947 if (!isdigit (str[k]) && str[k] != '_')
5948 return 0;
5949 return 1;
5950 }
5951 return 0;
5952 }
5953
5954 /* Return non-zero if the string starting at NAME and ending before
5955 NAME_END contains no capital letters. */
5956
5957 static int
5958 is_valid_name_for_wild_match (const char *name0)
5959 {
5960 std::string decoded_name = ada_decode (name0);
5961 int i;
5962
5963 /* If the decoded name starts with an angle bracket, it means that
5964 NAME0 does not follow the GNAT encoding format. It should then
5965 not be allowed as a possible wild match. */
5966 if (decoded_name[0] == '<')
5967 return 0;
5968
5969 for (i=0; decoded_name[i] != '\0'; i++)
5970 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5971 return 0;
5972
5973 return 1;
5974 }
5975
5976 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5977 that could start a simple name. Assumes that *NAMEP points into
5978 the string beginning at NAME0. */
5979
5980 static int
5981 advance_wild_match (const char **namep, const char *name0, int target0)
5982 {
5983 const char *name = *namep;
5984
5985 while (1)
5986 {
5987 int t0, t1;
5988
5989 t0 = *name;
5990 if (t0 == '_')
5991 {
5992 t1 = name[1];
5993 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5994 {
5995 name += 1;
5996 if (name == name0 + 5 && startswith (name0, "_ada"))
5997 break;
5998 else
5999 name += 1;
6000 }
6001 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6002 || name[2] == target0))
6003 {
6004 name += 2;
6005 break;
6006 }
6007 else
6008 return 0;
6009 }
6010 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6011 name += 1;
6012 else
6013 return 0;
6014 }
6015
6016 *namep = name;
6017 return 1;
6018 }
6019
6020 /* Return true iff NAME encodes a name of the form prefix.PATN.
6021 Ignores any informational suffixes of NAME (i.e., for which
6022 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6023 simple name. */
6024
6025 static bool
6026 wild_match (const char *name, const char *patn)
6027 {
6028 const char *p;
6029 const char *name0 = name;
6030
6031 while (1)
6032 {
6033 const char *match = name;
6034
6035 if (*name == *patn)
6036 {
6037 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6038 if (*p != *name)
6039 break;
6040 if (*p == '\0' && is_name_suffix (name))
6041 return match == name0 || is_valid_name_for_wild_match (name0);
6042
6043 if (name[-1] == '_')
6044 name -= 1;
6045 }
6046 if (!advance_wild_match (&name, name0, *patn))
6047 return false;
6048 }
6049 }
6050
6051 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6052 any trailing suffixes that encode debugging information or leading
6053 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6054 information that is ignored). */
6055
6056 static bool
6057 full_match (const char *sym_name, const char *search_name)
6058 {
6059 size_t search_name_len = strlen (search_name);
6060
6061 if (strncmp (sym_name, search_name, search_name_len) == 0
6062 && is_name_suffix (sym_name + search_name_len))
6063 return true;
6064
6065 if (startswith (sym_name, "_ada_")
6066 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6067 && is_name_suffix (sym_name + search_name_len + 5))
6068 return true;
6069
6070 return false;
6071 }
6072
6073 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6074 *defn_symbols, updating the list of symbols in OBSTACKP (if
6075 necessary). OBJFILE is the section containing BLOCK. */
6076
6077 static void
6078 ada_add_block_symbols (struct obstack *obstackp,
6079 const struct block *block,
6080 const lookup_name_info &lookup_name,
6081 domain_enum domain, struct objfile *objfile)
6082 {
6083 struct block_iterator iter;
6084 /* A matching argument symbol, if any. */
6085 struct symbol *arg_sym;
6086 /* Set true when we find a matching non-argument symbol. */
6087 int found_sym;
6088 struct symbol *sym;
6089
6090 arg_sym = NULL;
6091 found_sym = 0;
6092 for (sym = block_iter_match_first (block, lookup_name, &iter);
6093 sym != NULL;
6094 sym = block_iter_match_next (lookup_name, &iter))
6095 {
6096 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6097 {
6098 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6099 {
6100 if (SYMBOL_IS_ARGUMENT (sym))
6101 arg_sym = sym;
6102 else
6103 {
6104 found_sym = 1;
6105 add_defn_to_vec (obstackp,
6106 fixup_symbol_section (sym, objfile),
6107 block);
6108 }
6109 }
6110 }
6111 }
6112
6113 /* Handle renamings. */
6114
6115 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6116 found_sym = 1;
6117
6118 if (!found_sym && arg_sym != NULL)
6119 {
6120 add_defn_to_vec (obstackp,
6121 fixup_symbol_section (arg_sym, objfile),
6122 block);
6123 }
6124
6125 if (!lookup_name.ada ().wild_match_p ())
6126 {
6127 arg_sym = NULL;
6128 found_sym = 0;
6129 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6130 const char *name = ada_lookup_name.c_str ();
6131 size_t name_len = ada_lookup_name.size ();
6132
6133 ALL_BLOCK_SYMBOLS (block, iter, sym)
6134 {
6135 if (symbol_matches_domain (sym->language (),
6136 SYMBOL_DOMAIN (sym), domain))
6137 {
6138 int cmp;
6139
6140 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6141 if (cmp == 0)
6142 {
6143 cmp = !startswith (sym->linkage_name (), "_ada_");
6144 if (cmp == 0)
6145 cmp = strncmp (name, sym->linkage_name () + 5,
6146 name_len);
6147 }
6148
6149 if (cmp == 0
6150 && is_name_suffix (sym->linkage_name () + name_len + 5))
6151 {
6152 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6153 {
6154 if (SYMBOL_IS_ARGUMENT (sym))
6155 arg_sym = sym;
6156 else
6157 {
6158 found_sym = 1;
6159 add_defn_to_vec (obstackp,
6160 fixup_symbol_section (sym, objfile),
6161 block);
6162 }
6163 }
6164 }
6165 }
6166 }
6167
6168 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6169 They aren't parameters, right? */
6170 if (!found_sym && arg_sym != NULL)
6171 {
6172 add_defn_to_vec (obstackp,
6173 fixup_symbol_section (arg_sym, objfile),
6174 block);
6175 }
6176 }
6177 }
6178 \f
6179
6180 /* Symbol Completion */
6181
6182 /* See symtab.h. */
6183
6184 bool
6185 ada_lookup_name_info::matches
6186 (const char *sym_name,
6187 symbol_name_match_type match_type,
6188 completion_match_result *comp_match_res) const
6189 {
6190 bool match = false;
6191 const char *text = m_encoded_name.c_str ();
6192 size_t text_len = m_encoded_name.size ();
6193
6194 /* First, test against the fully qualified name of the symbol. */
6195
6196 if (strncmp (sym_name, text, text_len) == 0)
6197 match = true;
6198
6199 std::string decoded_name = ada_decode (sym_name);
6200 if (match && !m_encoded_p)
6201 {
6202 /* One needed check before declaring a positive match is to verify
6203 that iff we are doing a verbatim match, the decoded version
6204 of the symbol name starts with '<'. Otherwise, this symbol name
6205 is not a suitable completion. */
6206
6207 bool has_angle_bracket = (decoded_name[0] == '<');
6208 match = (has_angle_bracket == m_verbatim_p);
6209 }
6210
6211 if (match && !m_verbatim_p)
6212 {
6213 /* When doing non-verbatim match, another check that needs to
6214 be done is to verify that the potentially matching symbol name
6215 does not include capital letters, because the ada-mode would
6216 not be able to understand these symbol names without the
6217 angle bracket notation. */
6218 const char *tmp;
6219
6220 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6221 if (*tmp != '\0')
6222 match = false;
6223 }
6224
6225 /* Second: Try wild matching... */
6226
6227 if (!match && m_wild_match_p)
6228 {
6229 /* Since we are doing wild matching, this means that TEXT
6230 may represent an unqualified symbol name. We therefore must
6231 also compare TEXT against the unqualified name of the symbol. */
6232 sym_name = ada_unqualified_name (decoded_name.c_str ());
6233
6234 if (strncmp (sym_name, text, text_len) == 0)
6235 match = true;
6236 }
6237
6238 /* Finally: If we found a match, prepare the result to return. */
6239
6240 if (!match)
6241 return false;
6242
6243 if (comp_match_res != NULL)
6244 {
6245 std::string &match_str = comp_match_res->match.storage ();
6246
6247 if (!m_encoded_p)
6248 match_str = ada_decode (sym_name);
6249 else
6250 {
6251 if (m_verbatim_p)
6252 match_str = add_angle_brackets (sym_name);
6253 else
6254 match_str = sym_name;
6255
6256 }
6257
6258 comp_match_res->set_match (match_str.c_str ());
6259 }
6260
6261 return true;
6262 }
6263
6264 /* Field Access */
6265
6266 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6267 for tagged types. */
6268
6269 static int
6270 ada_is_dispatch_table_ptr_type (struct type *type)
6271 {
6272 const char *name;
6273
6274 if (type->code () != TYPE_CODE_PTR)
6275 return 0;
6276
6277 name = TYPE_TARGET_TYPE (type)->name ();
6278 if (name == NULL)
6279 return 0;
6280
6281 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6282 }
6283
6284 /* Return non-zero if TYPE is an interface tag. */
6285
6286 static int
6287 ada_is_interface_tag (struct type *type)
6288 {
6289 const char *name = type->name ();
6290
6291 if (name == NULL)
6292 return 0;
6293
6294 return (strcmp (name, "ada__tags__interface_tag") == 0);
6295 }
6296
6297 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6298 to be invisible to users. */
6299
6300 int
6301 ada_is_ignored_field (struct type *type, int field_num)
6302 {
6303 if (field_num < 0 || field_num > type->num_fields ())
6304 return 1;
6305
6306 /* Check the name of that field. */
6307 {
6308 const char *name = TYPE_FIELD_NAME (type, field_num);
6309
6310 /* Anonymous field names should not be printed.
6311 brobecker/2007-02-20: I don't think this can actually happen
6312 but we don't want to print the value of anonymous fields anyway. */
6313 if (name == NULL)
6314 return 1;
6315
6316 /* Normally, fields whose name start with an underscore ("_")
6317 are fields that have been internally generated by the compiler,
6318 and thus should not be printed. The "_parent" field is special,
6319 however: This is a field internally generated by the compiler
6320 for tagged types, and it contains the components inherited from
6321 the parent type. This field should not be printed as is, but
6322 should not be ignored either. */
6323 if (name[0] == '_' && !startswith (name, "_parent"))
6324 return 1;
6325 }
6326
6327 /* If this is the dispatch table of a tagged type or an interface tag,
6328 then ignore. */
6329 if (ada_is_tagged_type (type, 1)
6330 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6331 || ada_is_interface_tag (type->field (field_num).type ())))
6332 return 1;
6333
6334 /* Not a special field, so it should not be ignored. */
6335 return 0;
6336 }
6337
6338 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6339 pointer or reference type whose ultimate target has a tag field. */
6340
6341 int
6342 ada_is_tagged_type (struct type *type, int refok)
6343 {
6344 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6345 }
6346
6347 /* True iff TYPE represents the type of X'Tag */
6348
6349 int
6350 ada_is_tag_type (struct type *type)
6351 {
6352 type = ada_check_typedef (type);
6353
6354 if (type == NULL || type->code () != TYPE_CODE_PTR)
6355 return 0;
6356 else
6357 {
6358 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6359
6360 return (name != NULL
6361 && strcmp (name, "ada__tags__dispatch_table") == 0);
6362 }
6363 }
6364
6365 /* The type of the tag on VAL. */
6366
6367 static struct type *
6368 ada_tag_type (struct value *val)
6369 {
6370 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6371 }
6372
6373 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6374 retired at Ada 05). */
6375
6376 static int
6377 is_ada95_tag (struct value *tag)
6378 {
6379 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6380 }
6381
6382 /* The value of the tag on VAL. */
6383
6384 static struct value *
6385 ada_value_tag (struct value *val)
6386 {
6387 return ada_value_struct_elt (val, "_tag", 0);
6388 }
6389
6390 /* The value of the tag on the object of type TYPE whose contents are
6391 saved at VALADDR, if it is non-null, or is at memory address
6392 ADDRESS. */
6393
6394 static struct value *
6395 value_tag_from_contents_and_address (struct type *type,
6396 const gdb_byte *valaddr,
6397 CORE_ADDR address)
6398 {
6399 int tag_byte_offset;
6400 struct type *tag_type;
6401
6402 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6403 NULL, NULL, NULL))
6404 {
6405 const gdb_byte *valaddr1 = ((valaddr == NULL)
6406 ? NULL
6407 : valaddr + tag_byte_offset);
6408 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6409
6410 return value_from_contents_and_address (tag_type, valaddr1, address1);
6411 }
6412 return NULL;
6413 }
6414
6415 static struct type *
6416 type_from_tag (struct value *tag)
6417 {
6418 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6419
6420 if (type_name != NULL)
6421 return ada_find_any_type (ada_encode (type_name.get ()));
6422 return NULL;
6423 }
6424
6425 /* Given a value OBJ of a tagged type, return a value of this
6426 type at the base address of the object. The base address, as
6427 defined in Ada.Tags, it is the address of the primary tag of
6428 the object, and therefore where the field values of its full
6429 view can be fetched. */
6430
6431 struct value *
6432 ada_tag_value_at_base_address (struct value *obj)
6433 {
6434 struct value *val;
6435 LONGEST offset_to_top = 0;
6436 struct type *ptr_type, *obj_type;
6437 struct value *tag;
6438 CORE_ADDR base_address;
6439
6440 obj_type = value_type (obj);
6441
6442 /* It is the responsability of the caller to deref pointers. */
6443
6444 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6445 return obj;
6446
6447 tag = ada_value_tag (obj);
6448 if (!tag)
6449 return obj;
6450
6451 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6452
6453 if (is_ada95_tag (tag))
6454 return obj;
6455
6456 ptr_type = language_lookup_primitive_type
6457 (language_def (language_ada), target_gdbarch(), "storage_offset");
6458 ptr_type = lookup_pointer_type (ptr_type);
6459 val = value_cast (ptr_type, tag);
6460 if (!val)
6461 return obj;
6462
6463 /* It is perfectly possible that an exception be raised while
6464 trying to determine the base address, just like for the tag;
6465 see ada_tag_name for more details. We do not print the error
6466 message for the same reason. */
6467
6468 try
6469 {
6470 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6471 }
6472
6473 catch (const gdb_exception_error &e)
6474 {
6475 return obj;
6476 }
6477
6478 /* If offset is null, nothing to do. */
6479
6480 if (offset_to_top == 0)
6481 return obj;
6482
6483 /* -1 is a special case in Ada.Tags; however, what should be done
6484 is not quite clear from the documentation. So do nothing for
6485 now. */
6486
6487 if (offset_to_top == -1)
6488 return obj;
6489
6490 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6491 from the base address. This was however incompatible with
6492 C++ dispatch table: C++ uses a *negative* value to *add*
6493 to the base address. Ada's convention has therefore been
6494 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6495 use the same convention. Here, we support both cases by
6496 checking the sign of OFFSET_TO_TOP. */
6497
6498 if (offset_to_top > 0)
6499 offset_to_top = -offset_to_top;
6500
6501 base_address = value_address (obj) + offset_to_top;
6502 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6503
6504 /* Make sure that we have a proper tag at the new address.
6505 Otherwise, offset_to_top is bogus (which can happen when
6506 the object is not initialized yet). */
6507
6508 if (!tag)
6509 return obj;
6510
6511 obj_type = type_from_tag (tag);
6512
6513 if (!obj_type)
6514 return obj;
6515
6516 return value_from_contents_and_address (obj_type, NULL, base_address);
6517 }
6518
6519 /* Return the "ada__tags__type_specific_data" type. */
6520
6521 static struct type *
6522 ada_get_tsd_type (struct inferior *inf)
6523 {
6524 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6525
6526 if (data->tsd_type == 0)
6527 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6528 return data->tsd_type;
6529 }
6530
6531 /* Return the TSD (type-specific data) associated to the given TAG.
6532 TAG is assumed to be the tag of a tagged-type entity.
6533
6534 May return NULL if we are unable to get the TSD. */
6535
6536 static struct value *
6537 ada_get_tsd_from_tag (struct value *tag)
6538 {
6539 struct value *val;
6540 struct type *type;
6541
6542 /* First option: The TSD is simply stored as a field of our TAG.
6543 Only older versions of GNAT would use this format, but we have
6544 to test it first, because there are no visible markers for
6545 the current approach except the absence of that field. */
6546
6547 val = ada_value_struct_elt (tag, "tsd", 1);
6548 if (val)
6549 return val;
6550
6551 /* Try the second representation for the dispatch table (in which
6552 there is no explicit 'tsd' field in the referent of the tag pointer,
6553 and instead the tsd pointer is stored just before the dispatch
6554 table. */
6555
6556 type = ada_get_tsd_type (current_inferior());
6557 if (type == NULL)
6558 return NULL;
6559 type = lookup_pointer_type (lookup_pointer_type (type));
6560 val = value_cast (type, tag);
6561 if (val == NULL)
6562 return NULL;
6563 return value_ind (value_ptradd (val, -1));
6564 }
6565
6566 /* Given the TSD of a tag (type-specific data), return a string
6567 containing the name of the associated type.
6568
6569 May return NULL if we are unable to determine the tag name. */
6570
6571 static gdb::unique_xmalloc_ptr<char>
6572 ada_tag_name_from_tsd (struct value *tsd)
6573 {
6574 char *p;
6575 struct value *val;
6576
6577 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6578 if (val == NULL)
6579 return NULL;
6580 gdb::unique_xmalloc_ptr<char> buffer
6581 = target_read_string (value_as_address (val), INT_MAX);
6582 if (buffer == nullptr)
6583 return nullptr;
6584
6585 for (p = buffer.get (); *p != '\0'; ++p)
6586 {
6587 if (isalpha (*p))
6588 *p = tolower (*p);
6589 }
6590
6591 return buffer;
6592 }
6593
6594 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6595 a C string.
6596
6597 Return NULL if the TAG is not an Ada tag, or if we were unable to
6598 determine the name of that tag. */
6599
6600 gdb::unique_xmalloc_ptr<char>
6601 ada_tag_name (struct value *tag)
6602 {
6603 gdb::unique_xmalloc_ptr<char> name;
6604
6605 if (!ada_is_tag_type (value_type (tag)))
6606 return NULL;
6607
6608 /* It is perfectly possible that an exception be raised while trying
6609 to determine the TAG's name, even under normal circumstances:
6610 The associated variable may be uninitialized or corrupted, for
6611 instance. We do not let any exception propagate past this point.
6612 instead we return NULL.
6613
6614 We also do not print the error message either (which often is very
6615 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6616 the caller print a more meaningful message if necessary. */
6617 try
6618 {
6619 struct value *tsd = ada_get_tsd_from_tag (tag);
6620
6621 if (tsd != NULL)
6622 name = ada_tag_name_from_tsd (tsd);
6623 }
6624 catch (const gdb_exception_error &e)
6625 {
6626 }
6627
6628 return name;
6629 }
6630
6631 /* The parent type of TYPE, or NULL if none. */
6632
6633 struct type *
6634 ada_parent_type (struct type *type)
6635 {
6636 int i;
6637
6638 type = ada_check_typedef (type);
6639
6640 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6641 return NULL;
6642
6643 for (i = 0; i < type->num_fields (); i += 1)
6644 if (ada_is_parent_field (type, i))
6645 {
6646 struct type *parent_type = type->field (i).type ();
6647
6648 /* If the _parent field is a pointer, then dereference it. */
6649 if (parent_type->code () == TYPE_CODE_PTR)
6650 parent_type = TYPE_TARGET_TYPE (parent_type);
6651 /* If there is a parallel XVS type, get the actual base type. */
6652 parent_type = ada_get_base_type (parent_type);
6653
6654 return ada_check_typedef (parent_type);
6655 }
6656
6657 return NULL;
6658 }
6659
6660 /* True iff field number FIELD_NUM of structure type TYPE contains the
6661 parent-type (inherited) fields of a derived type. Assumes TYPE is
6662 a structure type with at least FIELD_NUM+1 fields. */
6663
6664 int
6665 ada_is_parent_field (struct type *type, int field_num)
6666 {
6667 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6668
6669 return (name != NULL
6670 && (startswith (name, "PARENT")
6671 || startswith (name, "_parent")));
6672 }
6673
6674 /* True iff field number FIELD_NUM of structure type TYPE is a
6675 transparent wrapper field (which should be silently traversed when doing
6676 field selection and flattened when printing). Assumes TYPE is a
6677 structure type with at least FIELD_NUM+1 fields. Such fields are always
6678 structures. */
6679
6680 int
6681 ada_is_wrapper_field (struct type *type, int field_num)
6682 {
6683 const char *name = TYPE_FIELD_NAME (type, field_num);
6684
6685 if (name != NULL && strcmp (name, "RETVAL") == 0)
6686 {
6687 /* This happens in functions with "out" or "in out" parameters
6688 which are passed by copy. For such functions, GNAT describes
6689 the function's return type as being a struct where the return
6690 value is in a field called RETVAL, and where the other "out"
6691 or "in out" parameters are fields of that struct. This is not
6692 a wrapper. */
6693 return 0;
6694 }
6695
6696 return (name != NULL
6697 && (startswith (name, "PARENT")
6698 || strcmp (name, "REP") == 0
6699 || startswith (name, "_parent")
6700 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6701 }
6702
6703 /* True iff field number FIELD_NUM of structure or union type TYPE
6704 is a variant wrapper. Assumes TYPE is a structure type with at least
6705 FIELD_NUM+1 fields. */
6706
6707 int
6708 ada_is_variant_part (struct type *type, int field_num)
6709 {
6710 /* Only Ada types are eligible. */
6711 if (!ADA_TYPE_P (type))
6712 return 0;
6713
6714 struct type *field_type = type->field (field_num).type ();
6715
6716 return (field_type->code () == TYPE_CODE_UNION
6717 || (is_dynamic_field (type, field_num)
6718 && (TYPE_TARGET_TYPE (field_type)->code ()
6719 == TYPE_CODE_UNION)));
6720 }
6721
6722 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6723 whose discriminants are contained in the record type OUTER_TYPE,
6724 returns the type of the controlling discriminant for the variant.
6725 May return NULL if the type could not be found. */
6726
6727 struct type *
6728 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6729 {
6730 const char *name = ada_variant_discrim_name (var_type);
6731
6732 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6733 }
6734
6735 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6736 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6737 represents a 'when others' clause; otherwise 0. */
6738
6739 static int
6740 ada_is_others_clause (struct type *type, int field_num)
6741 {
6742 const char *name = TYPE_FIELD_NAME (type, field_num);
6743
6744 return (name != NULL && name[0] == 'O');
6745 }
6746
6747 /* Assuming that TYPE0 is the type of the variant part of a record,
6748 returns the name of the discriminant controlling the variant.
6749 The value is valid until the next call to ada_variant_discrim_name. */
6750
6751 const char *
6752 ada_variant_discrim_name (struct type *type0)
6753 {
6754 static char *result = NULL;
6755 static size_t result_len = 0;
6756 struct type *type;
6757 const char *name;
6758 const char *discrim_end;
6759 const char *discrim_start;
6760
6761 if (type0->code () == TYPE_CODE_PTR)
6762 type = TYPE_TARGET_TYPE (type0);
6763 else
6764 type = type0;
6765
6766 name = ada_type_name (type);
6767
6768 if (name == NULL || name[0] == '\000')
6769 return "";
6770
6771 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6772 discrim_end -= 1)
6773 {
6774 if (startswith (discrim_end, "___XVN"))
6775 break;
6776 }
6777 if (discrim_end == name)
6778 return "";
6779
6780 for (discrim_start = discrim_end; discrim_start != name + 3;
6781 discrim_start -= 1)
6782 {
6783 if (discrim_start == name + 1)
6784 return "";
6785 if ((discrim_start > name + 3
6786 && startswith (discrim_start - 3, "___"))
6787 || discrim_start[-1] == '.')
6788 break;
6789 }
6790
6791 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6792 strncpy (result, discrim_start, discrim_end - discrim_start);
6793 result[discrim_end - discrim_start] = '\0';
6794 return result;
6795 }
6796
6797 /* Scan STR for a subtype-encoded number, beginning at position K.
6798 Put the position of the character just past the number scanned in
6799 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6800 Return 1 if there was a valid number at the given position, and 0
6801 otherwise. A "subtype-encoded" number consists of the absolute value
6802 in decimal, followed by the letter 'm' to indicate a negative number.
6803 Assumes 0m does not occur. */
6804
6805 int
6806 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6807 {
6808 ULONGEST RU;
6809
6810 if (!isdigit (str[k]))
6811 return 0;
6812
6813 /* Do it the hard way so as not to make any assumption about
6814 the relationship of unsigned long (%lu scan format code) and
6815 LONGEST. */
6816 RU = 0;
6817 while (isdigit (str[k]))
6818 {
6819 RU = RU * 10 + (str[k] - '0');
6820 k += 1;
6821 }
6822
6823 if (str[k] == 'm')
6824 {
6825 if (R != NULL)
6826 *R = (-(LONGEST) (RU - 1)) - 1;
6827 k += 1;
6828 }
6829 else if (R != NULL)
6830 *R = (LONGEST) RU;
6831
6832 /* NOTE on the above: Technically, C does not say what the results of
6833 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6834 number representable as a LONGEST (although either would probably work
6835 in most implementations). When RU>0, the locution in the then branch
6836 above is always equivalent to the negative of RU. */
6837
6838 if (new_k != NULL)
6839 *new_k = k;
6840 return 1;
6841 }
6842
6843 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6844 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6845 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6846
6847 static int
6848 ada_in_variant (LONGEST val, struct type *type, int field_num)
6849 {
6850 const char *name = TYPE_FIELD_NAME (type, field_num);
6851 int p;
6852
6853 p = 0;
6854 while (1)
6855 {
6856 switch (name[p])
6857 {
6858 case '\0':
6859 return 0;
6860 case 'S':
6861 {
6862 LONGEST W;
6863
6864 if (!ada_scan_number (name, p + 1, &W, &p))
6865 return 0;
6866 if (val == W)
6867 return 1;
6868 break;
6869 }
6870 case 'R':
6871 {
6872 LONGEST L, U;
6873
6874 if (!ada_scan_number (name, p + 1, &L, &p)
6875 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6876 return 0;
6877 if (val >= L && val <= U)
6878 return 1;
6879 break;
6880 }
6881 case 'O':
6882 return 1;
6883 default:
6884 return 0;
6885 }
6886 }
6887 }
6888
6889 /* FIXME: Lots of redundancy below. Try to consolidate. */
6890
6891 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6892 ARG_TYPE, extract and return the value of one of its (non-static)
6893 fields. FIELDNO says which field. Differs from value_primitive_field
6894 only in that it can handle packed values of arbitrary type. */
6895
6896 struct value *
6897 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6898 struct type *arg_type)
6899 {
6900 struct type *type;
6901
6902 arg_type = ada_check_typedef (arg_type);
6903 type = arg_type->field (fieldno).type ();
6904
6905 /* Handle packed fields. It might be that the field is not packed
6906 relative to its containing structure, but the structure itself is
6907 packed; in this case we must take the bit-field path. */
6908 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6909 {
6910 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6911 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6912
6913 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6914 offset + bit_pos / 8,
6915 bit_pos % 8, bit_size, type);
6916 }
6917 else
6918 return value_primitive_field (arg1, offset, fieldno, arg_type);
6919 }
6920
6921 /* Find field with name NAME in object of type TYPE. If found,
6922 set the following for each argument that is non-null:
6923 - *FIELD_TYPE_P to the field's type;
6924 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6925 an object of that type;
6926 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6927 - *BIT_SIZE_P to its size in bits if the field is packed, and
6928 0 otherwise;
6929 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6930 fields up to but not including the desired field, or by the total
6931 number of fields if not found. A NULL value of NAME never
6932 matches; the function just counts visible fields in this case.
6933
6934 Notice that we need to handle when a tagged record hierarchy
6935 has some components with the same name, like in this scenario:
6936
6937 type Top_T is tagged record
6938 N : Integer := 1;
6939 U : Integer := 974;
6940 A : Integer := 48;
6941 end record;
6942
6943 type Middle_T is new Top.Top_T with record
6944 N : Character := 'a';
6945 C : Integer := 3;
6946 end record;
6947
6948 type Bottom_T is new Middle.Middle_T with record
6949 N : Float := 4.0;
6950 C : Character := '5';
6951 X : Integer := 6;
6952 A : Character := 'J';
6953 end record;
6954
6955 Let's say we now have a variable declared and initialized as follow:
6956
6957 TC : Top_A := new Bottom_T;
6958
6959 And then we use this variable to call this function
6960
6961 procedure Assign (Obj: in out Top_T; TV : Integer);
6962
6963 as follow:
6964
6965 Assign (Top_T (B), 12);
6966
6967 Now, we're in the debugger, and we're inside that procedure
6968 then and we want to print the value of obj.c:
6969
6970 Usually, the tagged record or one of the parent type owns the
6971 component to print and there's no issue but in this particular
6972 case, what does it mean to ask for Obj.C? Since the actual
6973 type for object is type Bottom_T, it could mean two things: type
6974 component C from the Middle_T view, but also component C from
6975 Bottom_T. So in that "undefined" case, when the component is
6976 not found in the non-resolved type (which includes all the
6977 components of the parent type), then resolve it and see if we
6978 get better luck once expanded.
6979
6980 In the case of homonyms in the derived tagged type, we don't
6981 guaranty anything, and pick the one that's easiest for us
6982 to program.
6983
6984 Returns 1 if found, 0 otherwise. */
6985
6986 static int
6987 find_struct_field (const char *name, struct type *type, int offset,
6988 struct type **field_type_p,
6989 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6990 int *index_p)
6991 {
6992 int i;
6993 int parent_offset = -1;
6994
6995 type = ada_check_typedef (type);
6996
6997 if (field_type_p != NULL)
6998 *field_type_p = NULL;
6999 if (byte_offset_p != NULL)
7000 *byte_offset_p = 0;
7001 if (bit_offset_p != NULL)
7002 *bit_offset_p = 0;
7003 if (bit_size_p != NULL)
7004 *bit_size_p = 0;
7005
7006 for (i = 0; i < type->num_fields (); i += 1)
7007 {
7008 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7009 int fld_offset = offset + bit_pos / 8;
7010 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7011
7012 if (t_field_name == NULL)
7013 continue;
7014
7015 else if (ada_is_parent_field (type, i))
7016 {
7017 /* This is a field pointing us to the parent type of a tagged
7018 type. As hinted in this function's documentation, we give
7019 preference to fields in the current record first, so what
7020 we do here is just record the index of this field before
7021 we skip it. If it turns out we couldn't find our field
7022 in the current record, then we'll get back to it and search
7023 inside it whether the field might exist in the parent. */
7024
7025 parent_offset = i;
7026 continue;
7027 }
7028
7029 else if (name != NULL && field_name_match (t_field_name, name))
7030 {
7031 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7032
7033 if (field_type_p != NULL)
7034 *field_type_p = type->field (i).type ();
7035 if (byte_offset_p != NULL)
7036 *byte_offset_p = fld_offset;
7037 if (bit_offset_p != NULL)
7038 *bit_offset_p = bit_pos % 8;
7039 if (bit_size_p != NULL)
7040 *bit_size_p = bit_size;
7041 return 1;
7042 }
7043 else if (ada_is_wrapper_field (type, i))
7044 {
7045 if (find_struct_field (name, type->field (i).type (), fld_offset,
7046 field_type_p, byte_offset_p, bit_offset_p,
7047 bit_size_p, index_p))
7048 return 1;
7049 }
7050 else if (ada_is_variant_part (type, i))
7051 {
7052 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7053 fixed type?? */
7054 int j;
7055 struct type *field_type
7056 = ada_check_typedef (type->field (i).type ());
7057
7058 for (j = 0; j < field_type->num_fields (); j += 1)
7059 {
7060 if (find_struct_field (name, field_type->field (j).type (),
7061 fld_offset
7062 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7063 field_type_p, byte_offset_p,
7064 bit_offset_p, bit_size_p, index_p))
7065 return 1;
7066 }
7067 }
7068 else if (index_p != NULL)
7069 *index_p += 1;
7070 }
7071
7072 /* Field not found so far. If this is a tagged type which
7073 has a parent, try finding that field in the parent now. */
7074
7075 if (parent_offset != -1)
7076 {
7077 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7078 int fld_offset = offset + bit_pos / 8;
7079
7080 if (find_struct_field (name, type->field (parent_offset).type (),
7081 fld_offset, field_type_p, byte_offset_p,
7082 bit_offset_p, bit_size_p, index_p))
7083 return 1;
7084 }
7085
7086 return 0;
7087 }
7088
7089 /* Number of user-visible fields in record type TYPE. */
7090
7091 static int
7092 num_visible_fields (struct type *type)
7093 {
7094 int n;
7095
7096 n = 0;
7097 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7098 return n;
7099 }
7100
7101 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7102 and search in it assuming it has (class) type TYPE.
7103 If found, return value, else return NULL.
7104
7105 Searches recursively through wrapper fields (e.g., '_parent').
7106
7107 In the case of homonyms in the tagged types, please refer to the
7108 long explanation in find_struct_field's function documentation. */
7109
7110 static struct value *
7111 ada_search_struct_field (const char *name, struct value *arg, int offset,
7112 struct type *type)
7113 {
7114 int i;
7115 int parent_offset = -1;
7116
7117 type = ada_check_typedef (type);
7118 for (i = 0; i < type->num_fields (); i += 1)
7119 {
7120 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7121
7122 if (t_field_name == NULL)
7123 continue;
7124
7125 else if (ada_is_parent_field (type, i))
7126 {
7127 /* This is a field pointing us to the parent type of a tagged
7128 type. As hinted in this function's documentation, we give
7129 preference to fields in the current record first, so what
7130 we do here is just record the index of this field before
7131 we skip it. If it turns out we couldn't find our field
7132 in the current record, then we'll get back to it and search
7133 inside it whether the field might exist in the parent. */
7134
7135 parent_offset = i;
7136 continue;
7137 }
7138
7139 else if (field_name_match (t_field_name, name))
7140 return ada_value_primitive_field (arg, offset, i, type);
7141
7142 else if (ada_is_wrapper_field (type, i))
7143 {
7144 struct value *v = /* Do not let indent join lines here. */
7145 ada_search_struct_field (name, arg,
7146 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7147 type->field (i).type ());
7148
7149 if (v != NULL)
7150 return v;
7151 }
7152
7153 else if (ada_is_variant_part (type, i))
7154 {
7155 /* PNH: Do we ever get here? See find_struct_field. */
7156 int j;
7157 struct type *field_type = ada_check_typedef (type->field (i).type ());
7158 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7159
7160 for (j = 0; j < field_type->num_fields (); j += 1)
7161 {
7162 struct value *v = ada_search_struct_field /* Force line
7163 break. */
7164 (name, arg,
7165 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7166 field_type->field (j).type ());
7167
7168 if (v != NULL)
7169 return v;
7170 }
7171 }
7172 }
7173
7174 /* Field not found so far. If this is a tagged type which
7175 has a parent, try finding that field in the parent now. */
7176
7177 if (parent_offset != -1)
7178 {
7179 struct value *v = ada_search_struct_field (
7180 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7181 type->field (parent_offset).type ());
7182
7183 if (v != NULL)
7184 return v;
7185 }
7186
7187 return NULL;
7188 }
7189
7190 static struct value *ada_index_struct_field_1 (int *, struct value *,
7191 int, struct type *);
7192
7193
7194 /* Return field #INDEX in ARG, where the index is that returned by
7195 * find_struct_field through its INDEX_P argument. Adjust the address
7196 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7197 * If found, return value, else return NULL. */
7198
7199 static struct value *
7200 ada_index_struct_field (int index, struct value *arg, int offset,
7201 struct type *type)
7202 {
7203 return ada_index_struct_field_1 (&index, arg, offset, type);
7204 }
7205
7206
7207 /* Auxiliary function for ada_index_struct_field. Like
7208 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7209 * *INDEX_P. */
7210
7211 static struct value *
7212 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7213 struct type *type)
7214 {
7215 int i;
7216 type = ada_check_typedef (type);
7217
7218 for (i = 0; i < type->num_fields (); i += 1)
7219 {
7220 if (TYPE_FIELD_NAME (type, i) == NULL)
7221 continue;
7222 else if (ada_is_wrapper_field (type, i))
7223 {
7224 struct value *v = /* Do not let indent join lines here. */
7225 ada_index_struct_field_1 (index_p, arg,
7226 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7227 type->field (i).type ());
7228
7229 if (v != NULL)
7230 return v;
7231 }
7232
7233 else if (ada_is_variant_part (type, i))
7234 {
7235 /* PNH: Do we ever get here? See ada_search_struct_field,
7236 find_struct_field. */
7237 error (_("Cannot assign this kind of variant record"));
7238 }
7239 else if (*index_p == 0)
7240 return ada_value_primitive_field (arg, offset, i, type);
7241 else
7242 *index_p -= 1;
7243 }
7244 return NULL;
7245 }
7246
7247 /* Return a string representation of type TYPE. */
7248
7249 static std::string
7250 type_as_string (struct type *type)
7251 {
7252 string_file tmp_stream;
7253
7254 type_print (type, "", &tmp_stream, -1);
7255
7256 return std::move (tmp_stream.string ());
7257 }
7258
7259 /* Given a type TYPE, look up the type of the component of type named NAME.
7260 If DISPP is non-null, add its byte displacement from the beginning of a
7261 structure (pointed to by a value) of type TYPE to *DISPP (does not
7262 work for packed fields).
7263
7264 Matches any field whose name has NAME as a prefix, possibly
7265 followed by "___".
7266
7267 TYPE can be either a struct or union. If REFOK, TYPE may also
7268 be a (pointer or reference)+ to a struct or union, and the
7269 ultimate target type will be searched.
7270
7271 Looks recursively into variant clauses and parent types.
7272
7273 In the case of homonyms in the tagged types, please refer to the
7274 long explanation in find_struct_field's function documentation.
7275
7276 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7277 TYPE is not a type of the right kind. */
7278
7279 static struct type *
7280 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7281 int noerr)
7282 {
7283 int i;
7284 int parent_offset = -1;
7285
7286 if (name == NULL)
7287 goto BadName;
7288
7289 if (refok && type != NULL)
7290 while (1)
7291 {
7292 type = ada_check_typedef (type);
7293 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7294 break;
7295 type = TYPE_TARGET_TYPE (type);
7296 }
7297
7298 if (type == NULL
7299 || (type->code () != TYPE_CODE_STRUCT
7300 && type->code () != TYPE_CODE_UNION))
7301 {
7302 if (noerr)
7303 return NULL;
7304
7305 error (_("Type %s is not a structure or union type"),
7306 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7307 }
7308
7309 type = to_static_fixed_type (type);
7310
7311 for (i = 0; i < type->num_fields (); i += 1)
7312 {
7313 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7314 struct type *t;
7315
7316 if (t_field_name == NULL)
7317 continue;
7318
7319 else if (ada_is_parent_field (type, i))
7320 {
7321 /* This is a field pointing us to the parent type of a tagged
7322 type. As hinted in this function's documentation, we give
7323 preference to fields in the current record first, so what
7324 we do here is just record the index of this field before
7325 we skip it. If it turns out we couldn't find our field
7326 in the current record, then we'll get back to it and search
7327 inside it whether the field might exist in the parent. */
7328
7329 parent_offset = i;
7330 continue;
7331 }
7332
7333 else if (field_name_match (t_field_name, name))
7334 return type->field (i).type ();
7335
7336 else if (ada_is_wrapper_field (type, i))
7337 {
7338 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7339 0, 1);
7340 if (t != NULL)
7341 return t;
7342 }
7343
7344 else if (ada_is_variant_part (type, i))
7345 {
7346 int j;
7347 struct type *field_type = ada_check_typedef (type->field (i).type ());
7348
7349 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7350 {
7351 /* FIXME pnh 2008/01/26: We check for a field that is
7352 NOT wrapped in a struct, since the compiler sometimes
7353 generates these for unchecked variant types. Revisit
7354 if the compiler changes this practice. */
7355 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7356
7357 if (v_field_name != NULL
7358 && field_name_match (v_field_name, name))
7359 t = field_type->field (j).type ();
7360 else
7361 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7362 name, 0, 1);
7363
7364 if (t != NULL)
7365 return t;
7366 }
7367 }
7368
7369 }
7370
7371 /* Field not found so far. If this is a tagged type which
7372 has a parent, try finding that field in the parent now. */
7373
7374 if (parent_offset != -1)
7375 {
7376 struct type *t;
7377
7378 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7379 name, 0, 1);
7380 if (t != NULL)
7381 return t;
7382 }
7383
7384 BadName:
7385 if (!noerr)
7386 {
7387 const char *name_str = name != NULL ? name : _("<null>");
7388
7389 error (_("Type %s has no component named %s"),
7390 type_as_string (type).c_str (), name_str);
7391 }
7392
7393 return NULL;
7394 }
7395
7396 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7397 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7398 represents an unchecked union (that is, the variant part of a
7399 record that is named in an Unchecked_Union pragma). */
7400
7401 static int
7402 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7403 {
7404 const char *discrim_name = ada_variant_discrim_name (var_type);
7405
7406 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7407 }
7408
7409
7410 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7411 within OUTER, determine which variant clause (field number in VAR_TYPE,
7412 numbering from 0) is applicable. Returns -1 if none are. */
7413
7414 int
7415 ada_which_variant_applies (struct type *var_type, struct value *outer)
7416 {
7417 int others_clause;
7418 int i;
7419 const char *discrim_name = ada_variant_discrim_name (var_type);
7420 struct value *discrim;
7421 LONGEST discrim_val;
7422
7423 /* Using plain value_from_contents_and_address here causes problems
7424 because we will end up trying to resolve a type that is currently
7425 being constructed. */
7426 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7427 if (discrim == NULL)
7428 return -1;
7429 discrim_val = value_as_long (discrim);
7430
7431 others_clause = -1;
7432 for (i = 0; i < var_type->num_fields (); i += 1)
7433 {
7434 if (ada_is_others_clause (var_type, i))
7435 others_clause = i;
7436 else if (ada_in_variant (discrim_val, var_type, i))
7437 return i;
7438 }
7439
7440 return others_clause;
7441 }
7442 \f
7443
7444
7445 /* Dynamic-Sized Records */
7446
7447 /* Strategy: The type ostensibly attached to a value with dynamic size
7448 (i.e., a size that is not statically recorded in the debugging
7449 data) does not accurately reflect the size or layout of the value.
7450 Our strategy is to convert these values to values with accurate,
7451 conventional types that are constructed on the fly. */
7452
7453 /* There is a subtle and tricky problem here. In general, we cannot
7454 determine the size of dynamic records without its data. However,
7455 the 'struct value' data structure, which GDB uses to represent
7456 quantities in the inferior process (the target), requires the size
7457 of the type at the time of its allocation in order to reserve space
7458 for GDB's internal copy of the data. That's why the
7459 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7460 rather than struct value*s.
7461
7462 However, GDB's internal history variables ($1, $2, etc.) are
7463 struct value*s containing internal copies of the data that are not, in
7464 general, the same as the data at their corresponding addresses in
7465 the target. Fortunately, the types we give to these values are all
7466 conventional, fixed-size types (as per the strategy described
7467 above), so that we don't usually have to perform the
7468 'to_fixed_xxx_type' conversions to look at their values.
7469 Unfortunately, there is one exception: if one of the internal
7470 history variables is an array whose elements are unconstrained
7471 records, then we will need to create distinct fixed types for each
7472 element selected. */
7473
7474 /* The upshot of all of this is that many routines take a (type, host
7475 address, target address) triple as arguments to represent a value.
7476 The host address, if non-null, is supposed to contain an internal
7477 copy of the relevant data; otherwise, the program is to consult the
7478 target at the target address. */
7479
7480 /* Assuming that VAL0 represents a pointer value, the result of
7481 dereferencing it. Differs from value_ind in its treatment of
7482 dynamic-sized types. */
7483
7484 struct value *
7485 ada_value_ind (struct value *val0)
7486 {
7487 struct value *val = value_ind (val0);
7488
7489 if (ada_is_tagged_type (value_type (val), 0))
7490 val = ada_tag_value_at_base_address (val);
7491
7492 return ada_to_fixed_value (val);
7493 }
7494
7495 /* The value resulting from dereferencing any "reference to"
7496 qualifiers on VAL0. */
7497
7498 static struct value *
7499 ada_coerce_ref (struct value *val0)
7500 {
7501 if (value_type (val0)->code () == TYPE_CODE_REF)
7502 {
7503 struct value *val = val0;
7504
7505 val = coerce_ref (val);
7506
7507 if (ada_is_tagged_type (value_type (val), 0))
7508 val = ada_tag_value_at_base_address (val);
7509
7510 return ada_to_fixed_value (val);
7511 }
7512 else
7513 return val0;
7514 }
7515
7516 /* Return the bit alignment required for field #F of template type TYPE. */
7517
7518 static unsigned int
7519 field_alignment (struct type *type, int f)
7520 {
7521 const char *name = TYPE_FIELD_NAME (type, f);
7522 int len;
7523 int align_offset;
7524
7525 /* The field name should never be null, unless the debugging information
7526 is somehow malformed. In this case, we assume the field does not
7527 require any alignment. */
7528 if (name == NULL)
7529 return 1;
7530
7531 len = strlen (name);
7532
7533 if (!isdigit (name[len - 1]))
7534 return 1;
7535
7536 if (isdigit (name[len - 2]))
7537 align_offset = len - 2;
7538 else
7539 align_offset = len - 1;
7540
7541 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7542 return TARGET_CHAR_BIT;
7543
7544 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7545 }
7546
7547 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7548
7549 static struct symbol *
7550 ada_find_any_type_symbol (const char *name)
7551 {
7552 struct symbol *sym;
7553
7554 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7555 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7556 return sym;
7557
7558 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7559 return sym;
7560 }
7561
7562 /* Find a type named NAME. Ignores ambiguity. This routine will look
7563 solely for types defined by debug info, it will not search the GDB
7564 primitive types. */
7565
7566 static struct type *
7567 ada_find_any_type (const char *name)
7568 {
7569 struct symbol *sym = ada_find_any_type_symbol (name);
7570
7571 if (sym != NULL)
7572 return SYMBOL_TYPE (sym);
7573
7574 return NULL;
7575 }
7576
7577 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7578 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7579 symbol, in which case it is returned. Otherwise, this looks for
7580 symbols whose name is that of NAME_SYM suffixed with "___XR".
7581 Return symbol if found, and NULL otherwise. */
7582
7583 static bool
7584 ada_is_renaming_symbol (struct symbol *name_sym)
7585 {
7586 const char *name = name_sym->linkage_name ();
7587 return strstr (name, "___XR") != NULL;
7588 }
7589
7590 /* Because of GNAT encoding conventions, several GDB symbols may match a
7591 given type name. If the type denoted by TYPE0 is to be preferred to
7592 that of TYPE1 for purposes of type printing, return non-zero;
7593 otherwise return 0. */
7594
7595 int
7596 ada_prefer_type (struct type *type0, struct type *type1)
7597 {
7598 if (type1 == NULL)
7599 return 1;
7600 else if (type0 == NULL)
7601 return 0;
7602 else if (type1->code () == TYPE_CODE_VOID)
7603 return 1;
7604 else if (type0->code () == TYPE_CODE_VOID)
7605 return 0;
7606 else if (type1->name () == NULL && type0->name () != NULL)
7607 return 1;
7608 else if (ada_is_constrained_packed_array_type (type0))
7609 return 1;
7610 else if (ada_is_array_descriptor_type (type0)
7611 && !ada_is_array_descriptor_type (type1))
7612 return 1;
7613 else
7614 {
7615 const char *type0_name = type0->name ();
7616 const char *type1_name = type1->name ();
7617
7618 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7619 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7620 return 1;
7621 }
7622 return 0;
7623 }
7624
7625 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7626 null. */
7627
7628 const char *
7629 ada_type_name (struct type *type)
7630 {
7631 if (type == NULL)
7632 return NULL;
7633 return type->name ();
7634 }
7635
7636 /* Search the list of "descriptive" types associated to TYPE for a type
7637 whose name is NAME. */
7638
7639 static struct type *
7640 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7641 {
7642 struct type *result, *tmp;
7643
7644 if (ada_ignore_descriptive_types_p)
7645 return NULL;
7646
7647 /* If there no descriptive-type info, then there is no parallel type
7648 to be found. */
7649 if (!HAVE_GNAT_AUX_INFO (type))
7650 return NULL;
7651
7652 result = TYPE_DESCRIPTIVE_TYPE (type);
7653 while (result != NULL)
7654 {
7655 const char *result_name = ada_type_name (result);
7656
7657 if (result_name == NULL)
7658 {
7659 warning (_("unexpected null name on descriptive type"));
7660 return NULL;
7661 }
7662
7663 /* If the names match, stop. */
7664 if (strcmp (result_name, name) == 0)
7665 break;
7666
7667 /* Otherwise, look at the next item on the list, if any. */
7668 if (HAVE_GNAT_AUX_INFO (result))
7669 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7670 else
7671 tmp = NULL;
7672
7673 /* If not found either, try after having resolved the typedef. */
7674 if (tmp != NULL)
7675 result = tmp;
7676 else
7677 {
7678 result = check_typedef (result);
7679 if (HAVE_GNAT_AUX_INFO (result))
7680 result = TYPE_DESCRIPTIVE_TYPE (result);
7681 else
7682 result = NULL;
7683 }
7684 }
7685
7686 /* If we didn't find a match, see whether this is a packed array. With
7687 older compilers, the descriptive type information is either absent or
7688 irrelevant when it comes to packed arrays so the above lookup fails.
7689 Fall back to using a parallel lookup by name in this case. */
7690 if (result == NULL && ada_is_constrained_packed_array_type (type))
7691 return ada_find_any_type (name);
7692
7693 return result;
7694 }
7695
7696 /* Find a parallel type to TYPE with the specified NAME, using the
7697 descriptive type taken from the debugging information, if available,
7698 and otherwise using the (slower) name-based method. */
7699
7700 static struct type *
7701 ada_find_parallel_type_with_name (struct type *type, const char *name)
7702 {
7703 struct type *result = NULL;
7704
7705 if (HAVE_GNAT_AUX_INFO (type))
7706 result = find_parallel_type_by_descriptive_type (type, name);
7707 else
7708 result = ada_find_any_type (name);
7709
7710 return result;
7711 }
7712
7713 /* Same as above, but specify the name of the parallel type by appending
7714 SUFFIX to the name of TYPE. */
7715
7716 struct type *
7717 ada_find_parallel_type (struct type *type, const char *suffix)
7718 {
7719 char *name;
7720 const char *type_name = ada_type_name (type);
7721 int len;
7722
7723 if (type_name == NULL)
7724 return NULL;
7725
7726 len = strlen (type_name);
7727
7728 name = (char *) alloca (len + strlen (suffix) + 1);
7729
7730 strcpy (name, type_name);
7731 strcpy (name + len, suffix);
7732
7733 return ada_find_parallel_type_with_name (type, name);
7734 }
7735
7736 /* If TYPE is a variable-size record type, return the corresponding template
7737 type describing its fields. Otherwise, return NULL. */
7738
7739 static struct type *
7740 dynamic_template_type (struct type *type)
7741 {
7742 type = ada_check_typedef (type);
7743
7744 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7745 || ada_type_name (type) == NULL)
7746 return NULL;
7747 else
7748 {
7749 int len = strlen (ada_type_name (type));
7750
7751 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7752 return type;
7753 else
7754 return ada_find_parallel_type (type, "___XVE");
7755 }
7756 }
7757
7758 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7759 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7760
7761 static int
7762 is_dynamic_field (struct type *templ_type, int field_num)
7763 {
7764 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7765
7766 return name != NULL
7767 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7768 && strstr (name, "___XVL") != NULL;
7769 }
7770
7771 /* The index of the variant field of TYPE, or -1 if TYPE does not
7772 represent a variant record type. */
7773
7774 static int
7775 variant_field_index (struct type *type)
7776 {
7777 int f;
7778
7779 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7780 return -1;
7781
7782 for (f = 0; f < type->num_fields (); f += 1)
7783 {
7784 if (ada_is_variant_part (type, f))
7785 return f;
7786 }
7787 return -1;
7788 }
7789
7790 /* A record type with no fields. */
7791
7792 static struct type *
7793 empty_record (struct type *templ)
7794 {
7795 struct type *type = alloc_type_copy (templ);
7796
7797 type->set_code (TYPE_CODE_STRUCT);
7798 INIT_NONE_SPECIFIC (type);
7799 type->set_name ("<empty>");
7800 TYPE_LENGTH (type) = 0;
7801 return type;
7802 }
7803
7804 /* An ordinary record type (with fixed-length fields) that describes
7805 the value of type TYPE at VALADDR or ADDRESS (see comments at
7806 the beginning of this section) VAL according to GNAT conventions.
7807 DVAL0 should describe the (portion of a) record that contains any
7808 necessary discriminants. It should be NULL if value_type (VAL) is
7809 an outer-level type (i.e., as opposed to a branch of a variant.) A
7810 variant field (unless unchecked) is replaced by a particular branch
7811 of the variant.
7812
7813 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7814 length are not statically known are discarded. As a consequence,
7815 VALADDR, ADDRESS and DVAL0 are ignored.
7816
7817 NOTE: Limitations: For now, we assume that dynamic fields and
7818 variants occupy whole numbers of bytes. However, they need not be
7819 byte-aligned. */
7820
7821 struct type *
7822 ada_template_to_fixed_record_type_1 (struct type *type,
7823 const gdb_byte *valaddr,
7824 CORE_ADDR address, struct value *dval0,
7825 int keep_dynamic_fields)
7826 {
7827 struct value *mark = value_mark ();
7828 struct value *dval;
7829 struct type *rtype;
7830 int nfields, bit_len;
7831 int variant_field;
7832 long off;
7833 int fld_bit_len;
7834 int f;
7835
7836 /* Compute the number of fields in this record type that are going
7837 to be processed: unless keep_dynamic_fields, this includes only
7838 fields whose position and length are static will be processed. */
7839 if (keep_dynamic_fields)
7840 nfields = type->num_fields ();
7841 else
7842 {
7843 nfields = 0;
7844 while (nfields < type->num_fields ()
7845 && !ada_is_variant_part (type, nfields)
7846 && !is_dynamic_field (type, nfields))
7847 nfields++;
7848 }
7849
7850 rtype = alloc_type_copy (type);
7851 rtype->set_code (TYPE_CODE_STRUCT);
7852 INIT_NONE_SPECIFIC (rtype);
7853 rtype->set_num_fields (nfields);
7854 rtype->set_fields
7855 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7856 rtype->set_name (ada_type_name (type));
7857 TYPE_FIXED_INSTANCE (rtype) = 1;
7858
7859 off = 0;
7860 bit_len = 0;
7861 variant_field = -1;
7862
7863 for (f = 0; f < nfields; f += 1)
7864 {
7865 off = align_up (off, field_alignment (type, f))
7866 + TYPE_FIELD_BITPOS (type, f);
7867 SET_FIELD_BITPOS (rtype->field (f), off);
7868 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7869
7870 if (ada_is_variant_part (type, f))
7871 {
7872 variant_field = f;
7873 fld_bit_len = 0;
7874 }
7875 else if (is_dynamic_field (type, f))
7876 {
7877 const gdb_byte *field_valaddr = valaddr;
7878 CORE_ADDR field_address = address;
7879 struct type *field_type =
7880 TYPE_TARGET_TYPE (type->field (f).type ());
7881
7882 if (dval0 == NULL)
7883 {
7884 /* rtype's length is computed based on the run-time
7885 value of discriminants. If the discriminants are not
7886 initialized, the type size may be completely bogus and
7887 GDB may fail to allocate a value for it. So check the
7888 size first before creating the value. */
7889 ada_ensure_varsize_limit (rtype);
7890 /* Using plain value_from_contents_and_address here
7891 causes problems because we will end up trying to
7892 resolve a type that is currently being
7893 constructed. */
7894 dval = value_from_contents_and_address_unresolved (rtype,
7895 valaddr,
7896 address);
7897 rtype = value_type (dval);
7898 }
7899 else
7900 dval = dval0;
7901
7902 /* If the type referenced by this field is an aligner type, we need
7903 to unwrap that aligner type, because its size might not be set.
7904 Keeping the aligner type would cause us to compute the wrong
7905 size for this field, impacting the offset of the all the fields
7906 that follow this one. */
7907 if (ada_is_aligner_type (field_type))
7908 {
7909 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7910
7911 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7912 field_address = cond_offset_target (field_address, field_offset);
7913 field_type = ada_aligned_type (field_type);
7914 }
7915
7916 field_valaddr = cond_offset_host (field_valaddr,
7917 off / TARGET_CHAR_BIT);
7918 field_address = cond_offset_target (field_address,
7919 off / TARGET_CHAR_BIT);
7920
7921 /* Get the fixed type of the field. Note that, in this case,
7922 we do not want to get the real type out of the tag: if
7923 the current field is the parent part of a tagged record,
7924 we will get the tag of the object. Clearly wrong: the real
7925 type of the parent is not the real type of the child. We
7926 would end up in an infinite loop. */
7927 field_type = ada_get_base_type (field_type);
7928 field_type = ada_to_fixed_type (field_type, field_valaddr,
7929 field_address, dval, 0);
7930 /* If the field size is already larger than the maximum
7931 object size, then the record itself will necessarily
7932 be larger than the maximum object size. We need to make
7933 this check now, because the size might be so ridiculously
7934 large (due to an uninitialized variable in the inferior)
7935 that it would cause an overflow when adding it to the
7936 record size. */
7937 ada_ensure_varsize_limit (field_type);
7938
7939 rtype->field (f).set_type (field_type);
7940 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7941 /* The multiplication can potentially overflow. But because
7942 the field length has been size-checked just above, and
7943 assuming that the maximum size is a reasonable value,
7944 an overflow should not happen in practice. So rather than
7945 adding overflow recovery code to this already complex code,
7946 we just assume that it's not going to happen. */
7947 fld_bit_len =
7948 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7949 }
7950 else
7951 {
7952 /* Note: If this field's type is a typedef, it is important
7953 to preserve the typedef layer.
7954
7955 Otherwise, we might be transforming a typedef to a fat
7956 pointer (encoding a pointer to an unconstrained array),
7957 into a basic fat pointer (encoding an unconstrained
7958 array). As both types are implemented using the same
7959 structure, the typedef is the only clue which allows us
7960 to distinguish between the two options. Stripping it
7961 would prevent us from printing this field appropriately. */
7962 rtype->field (f).set_type (type->field (f).type ());
7963 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7964 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7965 fld_bit_len =
7966 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7967 else
7968 {
7969 struct type *field_type = type->field (f).type ();
7970
7971 /* We need to be careful of typedefs when computing
7972 the length of our field. If this is a typedef,
7973 get the length of the target type, not the length
7974 of the typedef. */
7975 if (field_type->code () == TYPE_CODE_TYPEDEF)
7976 field_type = ada_typedef_target_type (field_type);
7977
7978 fld_bit_len =
7979 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7980 }
7981 }
7982 if (off + fld_bit_len > bit_len)
7983 bit_len = off + fld_bit_len;
7984 off += fld_bit_len;
7985 TYPE_LENGTH (rtype) =
7986 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7987 }
7988
7989 /* We handle the variant part, if any, at the end because of certain
7990 odd cases in which it is re-ordered so as NOT to be the last field of
7991 the record. This can happen in the presence of representation
7992 clauses. */
7993 if (variant_field >= 0)
7994 {
7995 struct type *branch_type;
7996
7997 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7998
7999 if (dval0 == NULL)
8000 {
8001 /* Using plain value_from_contents_and_address here causes
8002 problems because we will end up trying to resolve a type
8003 that is currently being constructed. */
8004 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8005 address);
8006 rtype = value_type (dval);
8007 }
8008 else
8009 dval = dval0;
8010
8011 branch_type =
8012 to_fixed_variant_branch_type
8013 (type->field (variant_field).type (),
8014 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8015 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8016 if (branch_type == NULL)
8017 {
8018 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8019 rtype->field (f - 1) = rtype->field (f);
8020 rtype->set_num_fields (rtype->num_fields () - 1);
8021 }
8022 else
8023 {
8024 rtype->field (variant_field).set_type (branch_type);
8025 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8026 fld_bit_len =
8027 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8028 TARGET_CHAR_BIT;
8029 if (off + fld_bit_len > bit_len)
8030 bit_len = off + fld_bit_len;
8031 TYPE_LENGTH (rtype) =
8032 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8033 }
8034 }
8035
8036 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8037 should contain the alignment of that record, which should be a strictly
8038 positive value. If null or negative, then something is wrong, most
8039 probably in the debug info. In that case, we don't round up the size
8040 of the resulting type. If this record is not part of another structure,
8041 the current RTYPE length might be good enough for our purposes. */
8042 if (TYPE_LENGTH (type) <= 0)
8043 {
8044 if (rtype->name ())
8045 warning (_("Invalid type size for `%s' detected: %s."),
8046 rtype->name (), pulongest (TYPE_LENGTH (type)));
8047 else
8048 warning (_("Invalid type size for <unnamed> detected: %s."),
8049 pulongest (TYPE_LENGTH (type)));
8050 }
8051 else
8052 {
8053 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8054 TYPE_LENGTH (type));
8055 }
8056
8057 value_free_to_mark (mark);
8058 if (TYPE_LENGTH (rtype) > varsize_limit)
8059 error (_("record type with dynamic size is larger than varsize-limit"));
8060 return rtype;
8061 }
8062
8063 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8064 of 1. */
8065
8066 static struct type *
8067 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8068 CORE_ADDR address, struct value *dval0)
8069 {
8070 return ada_template_to_fixed_record_type_1 (type, valaddr,
8071 address, dval0, 1);
8072 }
8073
8074 /* An ordinary record type in which ___XVL-convention fields and
8075 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8076 static approximations, containing all possible fields. Uses
8077 no runtime values. Useless for use in values, but that's OK,
8078 since the results are used only for type determinations. Works on both
8079 structs and unions. Representation note: to save space, we memorize
8080 the result of this function in the TYPE_TARGET_TYPE of the
8081 template type. */
8082
8083 static struct type *
8084 template_to_static_fixed_type (struct type *type0)
8085 {
8086 struct type *type;
8087 int nfields;
8088 int f;
8089
8090 /* No need no do anything if the input type is already fixed. */
8091 if (TYPE_FIXED_INSTANCE (type0))
8092 return type0;
8093
8094 /* Likewise if we already have computed the static approximation. */
8095 if (TYPE_TARGET_TYPE (type0) != NULL)
8096 return TYPE_TARGET_TYPE (type0);
8097
8098 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8099 type = type0;
8100 nfields = type0->num_fields ();
8101
8102 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8103 recompute all over next time. */
8104 TYPE_TARGET_TYPE (type0) = type;
8105
8106 for (f = 0; f < nfields; f += 1)
8107 {
8108 struct type *field_type = type0->field (f).type ();
8109 struct type *new_type;
8110
8111 if (is_dynamic_field (type0, f))
8112 {
8113 field_type = ada_check_typedef (field_type);
8114 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8115 }
8116 else
8117 new_type = static_unwrap_type (field_type);
8118
8119 if (new_type != field_type)
8120 {
8121 /* Clone TYPE0 only the first time we get a new field type. */
8122 if (type == type0)
8123 {
8124 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8125 type->set_code (type0->code ());
8126 INIT_NONE_SPECIFIC (type);
8127 type->set_num_fields (nfields);
8128
8129 field *fields =
8130 ((struct field *)
8131 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8132 memcpy (fields, type0->fields (),
8133 sizeof (struct field) * nfields);
8134 type->set_fields (fields);
8135
8136 type->set_name (ada_type_name (type0));
8137 TYPE_FIXED_INSTANCE (type) = 1;
8138 TYPE_LENGTH (type) = 0;
8139 }
8140 type->field (f).set_type (new_type);
8141 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8142 }
8143 }
8144
8145 return type;
8146 }
8147
8148 /* Given an object of type TYPE whose contents are at VALADDR and
8149 whose address in memory is ADDRESS, returns a revision of TYPE,
8150 which should be a non-dynamic-sized record, in which the variant
8151 part, if any, is replaced with the appropriate branch. Looks
8152 for discriminant values in DVAL0, which can be NULL if the record
8153 contains the necessary discriminant values. */
8154
8155 static struct type *
8156 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8157 CORE_ADDR address, struct value *dval0)
8158 {
8159 struct value *mark = value_mark ();
8160 struct value *dval;
8161 struct type *rtype;
8162 struct type *branch_type;
8163 int nfields = type->num_fields ();
8164 int variant_field = variant_field_index (type);
8165
8166 if (variant_field == -1)
8167 return type;
8168
8169 if (dval0 == NULL)
8170 {
8171 dval = value_from_contents_and_address (type, valaddr, address);
8172 type = value_type (dval);
8173 }
8174 else
8175 dval = dval0;
8176
8177 rtype = alloc_type_copy (type);
8178 rtype->set_code (TYPE_CODE_STRUCT);
8179 INIT_NONE_SPECIFIC (rtype);
8180 rtype->set_num_fields (nfields);
8181
8182 field *fields =
8183 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8184 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8185 rtype->set_fields (fields);
8186
8187 rtype->set_name (ada_type_name (type));
8188 TYPE_FIXED_INSTANCE (rtype) = 1;
8189 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8190
8191 branch_type = to_fixed_variant_branch_type
8192 (type->field (variant_field).type (),
8193 cond_offset_host (valaddr,
8194 TYPE_FIELD_BITPOS (type, variant_field)
8195 / TARGET_CHAR_BIT),
8196 cond_offset_target (address,
8197 TYPE_FIELD_BITPOS (type, variant_field)
8198 / TARGET_CHAR_BIT), dval);
8199 if (branch_type == NULL)
8200 {
8201 int f;
8202
8203 for (f = variant_field + 1; f < nfields; f += 1)
8204 rtype->field (f - 1) = rtype->field (f);
8205 rtype->set_num_fields (rtype->num_fields () - 1);
8206 }
8207 else
8208 {
8209 rtype->field (variant_field).set_type (branch_type);
8210 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8211 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8212 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8213 }
8214 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8215
8216 value_free_to_mark (mark);
8217 return rtype;
8218 }
8219
8220 /* An ordinary record type (with fixed-length fields) that describes
8221 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8222 beginning of this section]. Any necessary discriminants' values
8223 should be in DVAL, a record value; it may be NULL if the object
8224 at ADDR itself contains any necessary discriminant values.
8225 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8226 values from the record are needed. Except in the case that DVAL,
8227 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8228 unchecked) is replaced by a particular branch of the variant.
8229
8230 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8231 is questionable and may be removed. It can arise during the
8232 processing of an unconstrained-array-of-record type where all the
8233 variant branches have exactly the same size. This is because in
8234 such cases, the compiler does not bother to use the XVS convention
8235 when encoding the record. I am currently dubious of this
8236 shortcut and suspect the compiler should be altered. FIXME. */
8237
8238 static struct type *
8239 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8240 CORE_ADDR address, struct value *dval)
8241 {
8242 struct type *templ_type;
8243
8244 if (TYPE_FIXED_INSTANCE (type0))
8245 return type0;
8246
8247 templ_type = dynamic_template_type (type0);
8248
8249 if (templ_type != NULL)
8250 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8251 else if (variant_field_index (type0) >= 0)
8252 {
8253 if (dval == NULL && valaddr == NULL && address == 0)
8254 return type0;
8255 return to_record_with_fixed_variant_part (type0, valaddr, address,
8256 dval);
8257 }
8258 else
8259 {
8260 TYPE_FIXED_INSTANCE (type0) = 1;
8261 return type0;
8262 }
8263
8264 }
8265
8266 /* An ordinary record type (with fixed-length fields) that describes
8267 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8268 union type. Any necessary discriminants' values should be in DVAL,
8269 a record value. That is, this routine selects the appropriate
8270 branch of the union at ADDR according to the discriminant value
8271 indicated in the union's type name. Returns VAR_TYPE0 itself if
8272 it represents a variant subject to a pragma Unchecked_Union. */
8273
8274 static struct type *
8275 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8276 CORE_ADDR address, struct value *dval)
8277 {
8278 int which;
8279 struct type *templ_type;
8280 struct type *var_type;
8281
8282 if (var_type0->code () == TYPE_CODE_PTR)
8283 var_type = TYPE_TARGET_TYPE (var_type0);
8284 else
8285 var_type = var_type0;
8286
8287 templ_type = ada_find_parallel_type (var_type, "___XVU");
8288
8289 if (templ_type != NULL)
8290 var_type = templ_type;
8291
8292 if (is_unchecked_variant (var_type, value_type (dval)))
8293 return var_type0;
8294 which = ada_which_variant_applies (var_type, dval);
8295
8296 if (which < 0)
8297 return empty_record (var_type);
8298 else if (is_dynamic_field (var_type, which))
8299 return to_fixed_record_type
8300 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8301 valaddr, address, dval);
8302 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8303 return
8304 to_fixed_record_type
8305 (var_type->field (which).type (), valaddr, address, dval);
8306 else
8307 return var_type->field (which).type ();
8308 }
8309
8310 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8311 ENCODING_TYPE, a type following the GNAT conventions for discrete
8312 type encodings, only carries redundant information. */
8313
8314 static int
8315 ada_is_redundant_range_encoding (struct type *range_type,
8316 struct type *encoding_type)
8317 {
8318 const char *bounds_str;
8319 int n;
8320 LONGEST lo, hi;
8321
8322 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8323
8324 if (get_base_type (range_type)->code ()
8325 != get_base_type (encoding_type)->code ())
8326 {
8327 /* The compiler probably used a simple base type to describe
8328 the range type instead of the range's actual base type,
8329 expecting us to get the real base type from the encoding
8330 anyway. In this situation, the encoding cannot be ignored
8331 as redundant. */
8332 return 0;
8333 }
8334
8335 if (is_dynamic_type (range_type))
8336 return 0;
8337
8338 if (encoding_type->name () == NULL)
8339 return 0;
8340
8341 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8342 if (bounds_str == NULL)
8343 return 0;
8344
8345 n = 8; /* Skip "___XDLU_". */
8346 if (!ada_scan_number (bounds_str, n, &lo, &n))
8347 return 0;
8348 if (TYPE_LOW_BOUND (range_type) != lo)
8349 return 0;
8350
8351 n += 2; /* Skip the "__" separator between the two bounds. */
8352 if (!ada_scan_number (bounds_str, n, &hi, &n))
8353 return 0;
8354 if (TYPE_HIGH_BOUND (range_type) != hi)
8355 return 0;
8356
8357 return 1;
8358 }
8359
8360 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8361 a type following the GNAT encoding for describing array type
8362 indices, only carries redundant information. */
8363
8364 static int
8365 ada_is_redundant_index_type_desc (struct type *array_type,
8366 struct type *desc_type)
8367 {
8368 struct type *this_layer = check_typedef (array_type);
8369 int i;
8370
8371 for (i = 0; i < desc_type->num_fields (); i++)
8372 {
8373 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8374 desc_type->field (i).type ()))
8375 return 0;
8376 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8377 }
8378
8379 return 1;
8380 }
8381
8382 /* Assuming that TYPE0 is an array type describing the type of a value
8383 at ADDR, and that DVAL describes a record containing any
8384 discriminants used in TYPE0, returns a type for the value that
8385 contains no dynamic components (that is, no components whose sizes
8386 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8387 true, gives an error message if the resulting type's size is over
8388 varsize_limit. */
8389
8390 static struct type *
8391 to_fixed_array_type (struct type *type0, struct value *dval,
8392 int ignore_too_big)
8393 {
8394 struct type *index_type_desc;
8395 struct type *result;
8396 int constrained_packed_array_p;
8397 static const char *xa_suffix = "___XA";
8398
8399 type0 = ada_check_typedef (type0);
8400 if (TYPE_FIXED_INSTANCE (type0))
8401 return type0;
8402
8403 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8404 if (constrained_packed_array_p)
8405 type0 = decode_constrained_packed_array_type (type0);
8406
8407 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8408
8409 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8410 encoding suffixed with 'P' may still be generated. If so,
8411 it should be used to find the XA type. */
8412
8413 if (index_type_desc == NULL)
8414 {
8415 const char *type_name = ada_type_name (type0);
8416
8417 if (type_name != NULL)
8418 {
8419 const int len = strlen (type_name);
8420 char *name = (char *) alloca (len + strlen (xa_suffix));
8421
8422 if (type_name[len - 1] == 'P')
8423 {
8424 strcpy (name, type_name);
8425 strcpy (name + len - 1, xa_suffix);
8426 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8427 }
8428 }
8429 }
8430
8431 ada_fixup_array_indexes_type (index_type_desc);
8432 if (index_type_desc != NULL
8433 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8434 {
8435 /* Ignore this ___XA parallel type, as it does not bring any
8436 useful information. This allows us to avoid creating fixed
8437 versions of the array's index types, which would be identical
8438 to the original ones. This, in turn, can also help avoid
8439 the creation of fixed versions of the array itself. */
8440 index_type_desc = NULL;
8441 }
8442
8443 if (index_type_desc == NULL)
8444 {
8445 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8446
8447 /* NOTE: elt_type---the fixed version of elt_type0---should never
8448 depend on the contents of the array in properly constructed
8449 debugging data. */
8450 /* Create a fixed version of the array element type.
8451 We're not providing the address of an element here,
8452 and thus the actual object value cannot be inspected to do
8453 the conversion. This should not be a problem, since arrays of
8454 unconstrained objects are not allowed. In particular, all
8455 the elements of an array of a tagged type should all be of
8456 the same type specified in the debugging info. No need to
8457 consult the object tag. */
8458 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8459
8460 /* Make sure we always create a new array type when dealing with
8461 packed array types, since we're going to fix-up the array
8462 type length and element bitsize a little further down. */
8463 if (elt_type0 == elt_type && !constrained_packed_array_p)
8464 result = type0;
8465 else
8466 result = create_array_type (alloc_type_copy (type0),
8467 elt_type, type0->index_type ());
8468 }
8469 else
8470 {
8471 int i;
8472 struct type *elt_type0;
8473
8474 elt_type0 = type0;
8475 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8476 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8477
8478 /* NOTE: result---the fixed version of elt_type0---should never
8479 depend on the contents of the array in properly constructed
8480 debugging data. */
8481 /* Create a fixed version of the array element type.
8482 We're not providing the address of an element here,
8483 and thus the actual object value cannot be inspected to do
8484 the conversion. This should not be a problem, since arrays of
8485 unconstrained objects are not allowed. In particular, all
8486 the elements of an array of a tagged type should all be of
8487 the same type specified in the debugging info. No need to
8488 consult the object tag. */
8489 result =
8490 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8491
8492 elt_type0 = type0;
8493 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8494 {
8495 struct type *range_type =
8496 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8497
8498 result = create_array_type (alloc_type_copy (elt_type0),
8499 result, range_type);
8500 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8501 }
8502 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8503 error (_("array type with dynamic size is larger than varsize-limit"));
8504 }
8505
8506 /* We want to preserve the type name. This can be useful when
8507 trying to get the type name of a value that has already been
8508 printed (for instance, if the user did "print VAR; whatis $". */
8509 result->set_name (type0->name ());
8510
8511 if (constrained_packed_array_p)
8512 {
8513 /* So far, the resulting type has been created as if the original
8514 type was a regular (non-packed) array type. As a result, the
8515 bitsize of the array elements needs to be set again, and the array
8516 length needs to be recomputed based on that bitsize. */
8517 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8518 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8519
8520 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8521 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8522 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8523 TYPE_LENGTH (result)++;
8524 }
8525
8526 TYPE_FIXED_INSTANCE (result) = 1;
8527 return result;
8528 }
8529
8530
8531 /* A standard type (containing no dynamically sized components)
8532 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8533 DVAL describes a record containing any discriminants used in TYPE0,
8534 and may be NULL if there are none, or if the object of type TYPE at
8535 ADDRESS or in VALADDR contains these discriminants.
8536
8537 If CHECK_TAG is not null, in the case of tagged types, this function
8538 attempts to locate the object's tag and use it to compute the actual
8539 type. However, when ADDRESS is null, we cannot use it to determine the
8540 location of the tag, and therefore compute the tagged type's actual type.
8541 So we return the tagged type without consulting the tag. */
8542
8543 static struct type *
8544 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8545 CORE_ADDR address, struct value *dval, int check_tag)
8546 {
8547 type = ada_check_typedef (type);
8548
8549 /* Only un-fixed types need to be handled here. */
8550 if (!HAVE_GNAT_AUX_INFO (type))
8551 return type;
8552
8553 switch (type->code ())
8554 {
8555 default:
8556 return type;
8557 case TYPE_CODE_STRUCT:
8558 {
8559 struct type *static_type = to_static_fixed_type (type);
8560 struct type *fixed_record_type =
8561 to_fixed_record_type (type, valaddr, address, NULL);
8562
8563 /* If STATIC_TYPE is a tagged type and we know the object's address,
8564 then we can determine its tag, and compute the object's actual
8565 type from there. Note that we have to use the fixed record
8566 type (the parent part of the record may have dynamic fields
8567 and the way the location of _tag is expressed may depend on
8568 them). */
8569
8570 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8571 {
8572 struct value *tag =
8573 value_tag_from_contents_and_address
8574 (fixed_record_type,
8575 valaddr,
8576 address);
8577 struct type *real_type = type_from_tag (tag);
8578 struct value *obj =
8579 value_from_contents_and_address (fixed_record_type,
8580 valaddr,
8581 address);
8582 fixed_record_type = value_type (obj);
8583 if (real_type != NULL)
8584 return to_fixed_record_type
8585 (real_type, NULL,
8586 value_address (ada_tag_value_at_base_address (obj)), NULL);
8587 }
8588
8589 /* Check to see if there is a parallel ___XVZ variable.
8590 If there is, then it provides the actual size of our type. */
8591 else if (ada_type_name (fixed_record_type) != NULL)
8592 {
8593 const char *name = ada_type_name (fixed_record_type);
8594 char *xvz_name
8595 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8596 bool xvz_found = false;
8597 LONGEST size;
8598
8599 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8600 try
8601 {
8602 xvz_found = get_int_var_value (xvz_name, size);
8603 }
8604 catch (const gdb_exception_error &except)
8605 {
8606 /* We found the variable, but somehow failed to read
8607 its value. Rethrow the same error, but with a little
8608 bit more information, to help the user understand
8609 what went wrong (Eg: the variable might have been
8610 optimized out). */
8611 throw_error (except.error,
8612 _("unable to read value of %s (%s)"),
8613 xvz_name, except.what ());
8614 }
8615
8616 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8617 {
8618 fixed_record_type = copy_type (fixed_record_type);
8619 TYPE_LENGTH (fixed_record_type) = size;
8620
8621 /* The FIXED_RECORD_TYPE may have be a stub. We have
8622 observed this when the debugging info is STABS, and
8623 apparently it is something that is hard to fix.
8624
8625 In practice, we don't need the actual type definition
8626 at all, because the presence of the XVZ variable allows us
8627 to assume that there must be a XVS type as well, which we
8628 should be able to use later, when we need the actual type
8629 definition.
8630
8631 In the meantime, pretend that the "fixed" type we are
8632 returning is NOT a stub, because this can cause trouble
8633 when using this type to create new types targeting it.
8634 Indeed, the associated creation routines often check
8635 whether the target type is a stub and will try to replace
8636 it, thus using a type with the wrong size. This, in turn,
8637 might cause the new type to have the wrong size too.
8638 Consider the case of an array, for instance, where the size
8639 of the array is computed from the number of elements in
8640 our array multiplied by the size of its element. */
8641 TYPE_STUB (fixed_record_type) = 0;
8642 }
8643 }
8644 return fixed_record_type;
8645 }
8646 case TYPE_CODE_ARRAY:
8647 return to_fixed_array_type (type, dval, 1);
8648 case TYPE_CODE_UNION:
8649 if (dval == NULL)
8650 return type;
8651 else
8652 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8653 }
8654 }
8655
8656 /* The same as ada_to_fixed_type_1, except that it preserves the type
8657 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8658
8659 The typedef layer needs be preserved in order to differentiate between
8660 arrays and array pointers when both types are implemented using the same
8661 fat pointer. In the array pointer case, the pointer is encoded as
8662 a typedef of the pointer type. For instance, considering:
8663
8664 type String_Access is access String;
8665 S1 : String_Access := null;
8666
8667 To the debugger, S1 is defined as a typedef of type String. But
8668 to the user, it is a pointer. So if the user tries to print S1,
8669 we should not dereference the array, but print the array address
8670 instead.
8671
8672 If we didn't preserve the typedef layer, we would lose the fact that
8673 the type is to be presented as a pointer (needs de-reference before
8674 being printed). And we would also use the source-level type name. */
8675
8676 struct type *
8677 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8678 CORE_ADDR address, struct value *dval, int check_tag)
8679
8680 {
8681 struct type *fixed_type =
8682 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8683
8684 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8685 then preserve the typedef layer.
8686
8687 Implementation note: We can only check the main-type portion of
8688 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8689 from TYPE now returns a type that has the same instance flags
8690 as TYPE. For instance, if TYPE is a "typedef const", and its
8691 target type is a "struct", then the typedef elimination will return
8692 a "const" version of the target type. See check_typedef for more
8693 details about how the typedef layer elimination is done.
8694
8695 brobecker/2010-11-19: It seems to me that the only case where it is
8696 useful to preserve the typedef layer is when dealing with fat pointers.
8697 Perhaps, we could add a check for that and preserve the typedef layer
8698 only in that situation. But this seems unnecessary so far, probably
8699 because we call check_typedef/ada_check_typedef pretty much everywhere.
8700 */
8701 if (type->code () == TYPE_CODE_TYPEDEF
8702 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8703 == TYPE_MAIN_TYPE (fixed_type)))
8704 return type;
8705
8706 return fixed_type;
8707 }
8708
8709 /* A standard (static-sized) type corresponding as well as possible to
8710 TYPE0, but based on no runtime data. */
8711
8712 static struct type *
8713 to_static_fixed_type (struct type *type0)
8714 {
8715 struct type *type;
8716
8717 if (type0 == NULL)
8718 return NULL;
8719
8720 if (TYPE_FIXED_INSTANCE (type0))
8721 return type0;
8722
8723 type0 = ada_check_typedef (type0);
8724
8725 switch (type0->code ())
8726 {
8727 default:
8728 return type0;
8729 case TYPE_CODE_STRUCT:
8730 type = dynamic_template_type (type0);
8731 if (type != NULL)
8732 return template_to_static_fixed_type (type);
8733 else
8734 return template_to_static_fixed_type (type0);
8735 case TYPE_CODE_UNION:
8736 type = ada_find_parallel_type (type0, "___XVU");
8737 if (type != NULL)
8738 return template_to_static_fixed_type (type);
8739 else
8740 return template_to_static_fixed_type (type0);
8741 }
8742 }
8743
8744 /* A static approximation of TYPE with all type wrappers removed. */
8745
8746 static struct type *
8747 static_unwrap_type (struct type *type)
8748 {
8749 if (ada_is_aligner_type (type))
8750 {
8751 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8752 if (ada_type_name (type1) == NULL)
8753 type1->set_name (ada_type_name (type));
8754
8755 return static_unwrap_type (type1);
8756 }
8757 else
8758 {
8759 struct type *raw_real_type = ada_get_base_type (type);
8760
8761 if (raw_real_type == type)
8762 return type;
8763 else
8764 return to_static_fixed_type (raw_real_type);
8765 }
8766 }
8767
8768 /* In some cases, incomplete and private types require
8769 cross-references that are not resolved as records (for example,
8770 type Foo;
8771 type FooP is access Foo;
8772 V: FooP;
8773 type Foo is array ...;
8774 ). In these cases, since there is no mechanism for producing
8775 cross-references to such types, we instead substitute for FooP a
8776 stub enumeration type that is nowhere resolved, and whose tag is
8777 the name of the actual type. Call these types "non-record stubs". */
8778
8779 /* A type equivalent to TYPE that is not a non-record stub, if one
8780 exists, otherwise TYPE. */
8781
8782 struct type *
8783 ada_check_typedef (struct type *type)
8784 {
8785 if (type == NULL)
8786 return NULL;
8787
8788 /* If our type is an access to an unconstrained array, which is encoded
8789 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8790 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8791 what allows us to distinguish between fat pointers that represent
8792 array types, and fat pointers that represent array access types
8793 (in both cases, the compiler implements them as fat pointers). */
8794 if (ada_is_access_to_unconstrained_array (type))
8795 return type;
8796
8797 type = check_typedef (type);
8798 if (type == NULL || type->code () != TYPE_CODE_ENUM
8799 || !TYPE_STUB (type)
8800 || type->name () == NULL)
8801 return type;
8802 else
8803 {
8804 const char *name = type->name ();
8805 struct type *type1 = ada_find_any_type (name);
8806
8807 if (type1 == NULL)
8808 return type;
8809
8810 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8811 stubs pointing to arrays, as we don't create symbols for array
8812 types, only for the typedef-to-array types). If that's the case,
8813 strip the typedef layer. */
8814 if (type1->code () == TYPE_CODE_TYPEDEF)
8815 type1 = ada_check_typedef (type1);
8816
8817 return type1;
8818 }
8819 }
8820
8821 /* A value representing the data at VALADDR/ADDRESS as described by
8822 type TYPE0, but with a standard (static-sized) type that correctly
8823 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8824 type, then return VAL0 [this feature is simply to avoid redundant
8825 creation of struct values]. */
8826
8827 static struct value *
8828 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8829 struct value *val0)
8830 {
8831 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8832
8833 if (type == type0 && val0 != NULL)
8834 return val0;
8835
8836 if (VALUE_LVAL (val0) != lval_memory)
8837 {
8838 /* Our value does not live in memory; it could be a convenience
8839 variable, for instance. Create a not_lval value using val0's
8840 contents. */
8841 return value_from_contents (type, value_contents (val0));
8842 }
8843
8844 return value_from_contents_and_address (type, 0, address);
8845 }
8846
8847 /* A value representing VAL, but with a standard (static-sized) type
8848 that correctly describes it. Does not necessarily create a new
8849 value. */
8850
8851 struct value *
8852 ada_to_fixed_value (struct value *val)
8853 {
8854 val = unwrap_value (val);
8855 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8856 return val;
8857 }
8858 \f
8859
8860 /* Attributes */
8861
8862 /* Table mapping attribute numbers to names.
8863 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8864
8865 static const char *attribute_names[] = {
8866 "<?>",
8867
8868 "first",
8869 "last",
8870 "length",
8871 "image",
8872 "max",
8873 "min",
8874 "modulus",
8875 "pos",
8876 "size",
8877 "tag",
8878 "val",
8879 0
8880 };
8881
8882 static const char *
8883 ada_attribute_name (enum exp_opcode n)
8884 {
8885 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8886 return attribute_names[n - OP_ATR_FIRST + 1];
8887 else
8888 return attribute_names[0];
8889 }
8890
8891 /* Evaluate the 'POS attribute applied to ARG. */
8892
8893 static LONGEST
8894 pos_atr (struct value *arg)
8895 {
8896 struct value *val = coerce_ref (arg);
8897 struct type *type = value_type (val);
8898 LONGEST result;
8899
8900 if (!discrete_type_p (type))
8901 error (_("'POS only defined on discrete types"));
8902
8903 if (!discrete_position (type, value_as_long (val), &result))
8904 error (_("enumeration value is invalid: can't find 'POS"));
8905
8906 return result;
8907 }
8908
8909 static struct value *
8910 value_pos_atr (struct type *type, struct value *arg)
8911 {
8912 return value_from_longest (type, pos_atr (arg));
8913 }
8914
8915 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8916
8917 static struct value *
8918 val_atr (struct type *type, LONGEST val)
8919 {
8920 gdb_assert (discrete_type_p (type));
8921 if (type->code () == TYPE_CODE_RANGE)
8922 type = TYPE_TARGET_TYPE (type);
8923 if (type->code () == TYPE_CODE_ENUM)
8924 {
8925 if (val < 0 || val >= type->num_fields ())
8926 error (_("argument to 'VAL out of range"));
8927 val = TYPE_FIELD_ENUMVAL (type, val);
8928 }
8929 return value_from_longest (type, val);
8930 }
8931
8932 static struct value *
8933 value_val_atr (struct type *type, struct value *arg)
8934 {
8935 if (!discrete_type_p (type))
8936 error (_("'VAL only defined on discrete types"));
8937 if (!integer_type_p (value_type (arg)))
8938 error (_("'VAL requires integral argument"));
8939
8940 return val_atr (type, value_as_long (arg));
8941 }
8942 \f
8943
8944 /* Evaluation */
8945
8946 /* True if TYPE appears to be an Ada character type.
8947 [At the moment, this is true only for Character and Wide_Character;
8948 It is a heuristic test that could stand improvement]. */
8949
8950 bool
8951 ada_is_character_type (struct type *type)
8952 {
8953 const char *name;
8954
8955 /* If the type code says it's a character, then assume it really is,
8956 and don't check any further. */
8957 if (type->code () == TYPE_CODE_CHAR)
8958 return true;
8959
8960 /* Otherwise, assume it's a character type iff it is a discrete type
8961 with a known character type name. */
8962 name = ada_type_name (type);
8963 return (name != NULL
8964 && (type->code () == TYPE_CODE_INT
8965 || type->code () == TYPE_CODE_RANGE)
8966 && (strcmp (name, "character") == 0
8967 || strcmp (name, "wide_character") == 0
8968 || strcmp (name, "wide_wide_character") == 0
8969 || strcmp (name, "unsigned char") == 0));
8970 }
8971
8972 /* True if TYPE appears to be an Ada string type. */
8973
8974 bool
8975 ada_is_string_type (struct type *type)
8976 {
8977 type = ada_check_typedef (type);
8978 if (type != NULL
8979 && type->code () != TYPE_CODE_PTR
8980 && (ada_is_simple_array_type (type)
8981 || ada_is_array_descriptor_type (type))
8982 && ada_array_arity (type) == 1)
8983 {
8984 struct type *elttype = ada_array_element_type (type, 1);
8985
8986 return ada_is_character_type (elttype);
8987 }
8988 else
8989 return false;
8990 }
8991
8992 /* The compiler sometimes provides a parallel XVS type for a given
8993 PAD type. Normally, it is safe to follow the PAD type directly,
8994 but older versions of the compiler have a bug that causes the offset
8995 of its "F" field to be wrong. Following that field in that case
8996 would lead to incorrect results, but this can be worked around
8997 by ignoring the PAD type and using the associated XVS type instead.
8998
8999 Set to True if the debugger should trust the contents of PAD types.
9000 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9001 static bool trust_pad_over_xvs = true;
9002
9003 /* True if TYPE is a struct type introduced by the compiler to force the
9004 alignment of a value. Such types have a single field with a
9005 distinctive name. */
9006
9007 int
9008 ada_is_aligner_type (struct type *type)
9009 {
9010 type = ada_check_typedef (type);
9011
9012 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9013 return 0;
9014
9015 return (type->code () == TYPE_CODE_STRUCT
9016 && type->num_fields () == 1
9017 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9018 }
9019
9020 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9021 the parallel type. */
9022
9023 struct type *
9024 ada_get_base_type (struct type *raw_type)
9025 {
9026 struct type *real_type_namer;
9027 struct type *raw_real_type;
9028
9029 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9030 return raw_type;
9031
9032 if (ada_is_aligner_type (raw_type))
9033 /* The encoding specifies that we should always use the aligner type.
9034 So, even if this aligner type has an associated XVS type, we should
9035 simply ignore it.
9036
9037 According to the compiler gurus, an XVS type parallel to an aligner
9038 type may exist because of a stabs limitation. In stabs, aligner
9039 types are empty because the field has a variable-sized type, and
9040 thus cannot actually be used as an aligner type. As a result,
9041 we need the associated parallel XVS type to decode the type.
9042 Since the policy in the compiler is to not change the internal
9043 representation based on the debugging info format, we sometimes
9044 end up having a redundant XVS type parallel to the aligner type. */
9045 return raw_type;
9046
9047 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9048 if (real_type_namer == NULL
9049 || real_type_namer->code () != TYPE_CODE_STRUCT
9050 || real_type_namer->num_fields () != 1)
9051 return raw_type;
9052
9053 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9054 {
9055 /* This is an older encoding form where the base type needs to be
9056 looked up by name. We prefer the newer encoding because it is
9057 more efficient. */
9058 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9059 if (raw_real_type == NULL)
9060 return raw_type;
9061 else
9062 return raw_real_type;
9063 }
9064
9065 /* The field in our XVS type is a reference to the base type. */
9066 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9067 }
9068
9069 /* The type of value designated by TYPE, with all aligners removed. */
9070
9071 struct type *
9072 ada_aligned_type (struct type *type)
9073 {
9074 if (ada_is_aligner_type (type))
9075 return ada_aligned_type (type->field (0).type ());
9076 else
9077 return ada_get_base_type (type);
9078 }
9079
9080
9081 /* The address of the aligned value in an object at address VALADDR
9082 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9083
9084 const gdb_byte *
9085 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9086 {
9087 if (ada_is_aligner_type (type))
9088 return ada_aligned_value_addr (type->field (0).type (),
9089 valaddr +
9090 TYPE_FIELD_BITPOS (type,
9091 0) / TARGET_CHAR_BIT);
9092 else
9093 return valaddr;
9094 }
9095
9096
9097
9098 /* The printed representation of an enumeration literal with encoded
9099 name NAME. The value is good to the next call of ada_enum_name. */
9100 const char *
9101 ada_enum_name (const char *name)
9102 {
9103 static char *result;
9104 static size_t result_len = 0;
9105 const char *tmp;
9106
9107 /* First, unqualify the enumeration name:
9108 1. Search for the last '.' character. If we find one, then skip
9109 all the preceding characters, the unqualified name starts
9110 right after that dot.
9111 2. Otherwise, we may be debugging on a target where the compiler
9112 translates dots into "__". Search forward for double underscores,
9113 but stop searching when we hit an overloading suffix, which is
9114 of the form "__" followed by digits. */
9115
9116 tmp = strrchr (name, '.');
9117 if (tmp != NULL)
9118 name = tmp + 1;
9119 else
9120 {
9121 while ((tmp = strstr (name, "__")) != NULL)
9122 {
9123 if (isdigit (tmp[2]))
9124 break;
9125 else
9126 name = tmp + 2;
9127 }
9128 }
9129
9130 if (name[0] == 'Q')
9131 {
9132 int v;
9133
9134 if (name[1] == 'U' || name[1] == 'W')
9135 {
9136 if (sscanf (name + 2, "%x", &v) != 1)
9137 return name;
9138 }
9139 else if (((name[1] >= '0' && name[1] <= '9')
9140 || (name[1] >= 'a' && name[1] <= 'z'))
9141 && name[2] == '\0')
9142 {
9143 GROW_VECT (result, result_len, 4);
9144 xsnprintf (result, result_len, "'%c'", name[1]);
9145 return result;
9146 }
9147 else
9148 return name;
9149
9150 GROW_VECT (result, result_len, 16);
9151 if (isascii (v) && isprint (v))
9152 xsnprintf (result, result_len, "'%c'", v);
9153 else if (name[1] == 'U')
9154 xsnprintf (result, result_len, "[\"%02x\"]", v);
9155 else
9156 xsnprintf (result, result_len, "[\"%04x\"]", v);
9157
9158 return result;
9159 }
9160 else
9161 {
9162 tmp = strstr (name, "__");
9163 if (tmp == NULL)
9164 tmp = strstr (name, "$");
9165 if (tmp != NULL)
9166 {
9167 GROW_VECT (result, result_len, tmp - name + 1);
9168 strncpy (result, name, tmp - name);
9169 result[tmp - name] = '\0';
9170 return result;
9171 }
9172
9173 return name;
9174 }
9175 }
9176
9177 /* Evaluate the subexpression of EXP starting at *POS as for
9178 evaluate_type, updating *POS to point just past the evaluated
9179 expression. */
9180
9181 static struct value *
9182 evaluate_subexp_type (struct expression *exp, int *pos)
9183 {
9184 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9185 }
9186
9187 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9188 value it wraps. */
9189
9190 static struct value *
9191 unwrap_value (struct value *val)
9192 {
9193 struct type *type = ada_check_typedef (value_type (val));
9194
9195 if (ada_is_aligner_type (type))
9196 {
9197 struct value *v = ada_value_struct_elt (val, "F", 0);
9198 struct type *val_type = ada_check_typedef (value_type (v));
9199
9200 if (ada_type_name (val_type) == NULL)
9201 val_type->set_name (ada_type_name (type));
9202
9203 return unwrap_value (v);
9204 }
9205 else
9206 {
9207 struct type *raw_real_type =
9208 ada_check_typedef (ada_get_base_type (type));
9209
9210 /* If there is no parallel XVS or XVE type, then the value is
9211 already unwrapped. Return it without further modification. */
9212 if ((type == raw_real_type)
9213 && ada_find_parallel_type (type, "___XVE") == NULL)
9214 return val;
9215
9216 return
9217 coerce_unspec_val_to_type
9218 (val, ada_to_fixed_type (raw_real_type, 0,
9219 value_address (val),
9220 NULL, 1));
9221 }
9222 }
9223
9224 static struct value *
9225 cast_from_fixed (struct type *type, struct value *arg)
9226 {
9227 struct value *scale = ada_scaling_factor (value_type (arg));
9228 arg = value_cast (value_type (scale), arg);
9229
9230 arg = value_binop (arg, scale, BINOP_MUL);
9231 return value_cast (type, arg);
9232 }
9233
9234 static struct value *
9235 cast_to_fixed (struct type *type, struct value *arg)
9236 {
9237 if (type == value_type (arg))
9238 return arg;
9239
9240 struct value *scale = ada_scaling_factor (type);
9241 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9242 arg = cast_from_fixed (value_type (scale), arg);
9243 else
9244 arg = value_cast (value_type (scale), arg);
9245
9246 arg = value_binop (arg, scale, BINOP_DIV);
9247 return value_cast (type, arg);
9248 }
9249
9250 /* Given two array types T1 and T2, return nonzero iff both arrays
9251 contain the same number of elements. */
9252
9253 static int
9254 ada_same_array_size_p (struct type *t1, struct type *t2)
9255 {
9256 LONGEST lo1, hi1, lo2, hi2;
9257
9258 /* Get the array bounds in order to verify that the size of
9259 the two arrays match. */
9260 if (!get_array_bounds (t1, &lo1, &hi1)
9261 || !get_array_bounds (t2, &lo2, &hi2))
9262 error (_("unable to determine array bounds"));
9263
9264 /* To make things easier for size comparison, normalize a bit
9265 the case of empty arrays by making sure that the difference
9266 between upper bound and lower bound is always -1. */
9267 if (lo1 > hi1)
9268 hi1 = lo1 - 1;
9269 if (lo2 > hi2)
9270 hi2 = lo2 - 1;
9271
9272 return (hi1 - lo1 == hi2 - lo2);
9273 }
9274
9275 /* Assuming that VAL is an array of integrals, and TYPE represents
9276 an array with the same number of elements, but with wider integral
9277 elements, return an array "casted" to TYPE. In practice, this
9278 means that the returned array is built by casting each element
9279 of the original array into TYPE's (wider) element type. */
9280
9281 static struct value *
9282 ada_promote_array_of_integrals (struct type *type, struct value *val)
9283 {
9284 struct type *elt_type = TYPE_TARGET_TYPE (type);
9285 LONGEST lo, hi;
9286 struct value *res;
9287 LONGEST i;
9288
9289 /* Verify that both val and type are arrays of scalars, and
9290 that the size of val's elements is smaller than the size
9291 of type's element. */
9292 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9293 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9294 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9295 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9296 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9297 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9298
9299 if (!get_array_bounds (type, &lo, &hi))
9300 error (_("unable to determine array bounds"));
9301
9302 res = allocate_value (type);
9303
9304 /* Promote each array element. */
9305 for (i = 0; i < hi - lo + 1; i++)
9306 {
9307 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9308
9309 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9310 value_contents_all (elt), TYPE_LENGTH (elt_type));
9311 }
9312
9313 return res;
9314 }
9315
9316 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9317 return the converted value. */
9318
9319 static struct value *
9320 coerce_for_assign (struct type *type, struct value *val)
9321 {
9322 struct type *type2 = value_type (val);
9323
9324 if (type == type2)
9325 return val;
9326
9327 type2 = ada_check_typedef (type2);
9328 type = ada_check_typedef (type);
9329
9330 if (type2->code () == TYPE_CODE_PTR
9331 && type->code () == TYPE_CODE_ARRAY)
9332 {
9333 val = ada_value_ind (val);
9334 type2 = value_type (val);
9335 }
9336
9337 if (type2->code () == TYPE_CODE_ARRAY
9338 && type->code () == TYPE_CODE_ARRAY)
9339 {
9340 if (!ada_same_array_size_p (type, type2))
9341 error (_("cannot assign arrays of different length"));
9342
9343 if (is_integral_type (TYPE_TARGET_TYPE (type))
9344 && is_integral_type (TYPE_TARGET_TYPE (type2))
9345 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9346 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9347 {
9348 /* Allow implicit promotion of the array elements to
9349 a wider type. */
9350 return ada_promote_array_of_integrals (type, val);
9351 }
9352
9353 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9354 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9355 error (_("Incompatible types in assignment"));
9356 deprecated_set_value_type (val, type);
9357 }
9358 return val;
9359 }
9360
9361 static struct value *
9362 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9363 {
9364 struct value *val;
9365 struct type *type1, *type2;
9366 LONGEST v, v1, v2;
9367
9368 arg1 = coerce_ref (arg1);
9369 arg2 = coerce_ref (arg2);
9370 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9371 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9372
9373 if (type1->code () != TYPE_CODE_INT
9374 || type2->code () != TYPE_CODE_INT)
9375 return value_binop (arg1, arg2, op);
9376
9377 switch (op)
9378 {
9379 case BINOP_MOD:
9380 case BINOP_DIV:
9381 case BINOP_REM:
9382 break;
9383 default:
9384 return value_binop (arg1, arg2, op);
9385 }
9386
9387 v2 = value_as_long (arg2);
9388 if (v2 == 0)
9389 error (_("second operand of %s must not be zero."), op_string (op));
9390
9391 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9392 return value_binop (arg1, arg2, op);
9393
9394 v1 = value_as_long (arg1);
9395 switch (op)
9396 {
9397 case BINOP_DIV:
9398 v = v1 / v2;
9399 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9400 v += v > 0 ? -1 : 1;
9401 break;
9402 case BINOP_REM:
9403 v = v1 % v2;
9404 if (v * v1 < 0)
9405 v -= v2;
9406 break;
9407 default:
9408 /* Should not reach this point. */
9409 v = 0;
9410 }
9411
9412 val = allocate_value (type1);
9413 store_unsigned_integer (value_contents_raw (val),
9414 TYPE_LENGTH (value_type (val)),
9415 type_byte_order (type1), v);
9416 return val;
9417 }
9418
9419 static int
9420 ada_value_equal (struct value *arg1, struct value *arg2)
9421 {
9422 if (ada_is_direct_array_type (value_type (arg1))
9423 || ada_is_direct_array_type (value_type (arg2)))
9424 {
9425 struct type *arg1_type, *arg2_type;
9426
9427 /* Automatically dereference any array reference before
9428 we attempt to perform the comparison. */
9429 arg1 = ada_coerce_ref (arg1);
9430 arg2 = ada_coerce_ref (arg2);
9431
9432 arg1 = ada_coerce_to_simple_array (arg1);
9433 arg2 = ada_coerce_to_simple_array (arg2);
9434
9435 arg1_type = ada_check_typedef (value_type (arg1));
9436 arg2_type = ada_check_typedef (value_type (arg2));
9437
9438 if (arg1_type->code () != TYPE_CODE_ARRAY
9439 || arg2_type->code () != TYPE_CODE_ARRAY)
9440 error (_("Attempt to compare array with non-array"));
9441 /* FIXME: The following works only for types whose
9442 representations use all bits (no padding or undefined bits)
9443 and do not have user-defined equality. */
9444 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9445 && memcmp (value_contents (arg1), value_contents (arg2),
9446 TYPE_LENGTH (arg1_type)) == 0);
9447 }
9448 return value_equal (arg1, arg2);
9449 }
9450
9451 /* Total number of component associations in the aggregate starting at
9452 index PC in EXP. Assumes that index PC is the start of an
9453 OP_AGGREGATE. */
9454
9455 static int
9456 num_component_specs (struct expression *exp, int pc)
9457 {
9458 int n, m, i;
9459
9460 m = exp->elts[pc + 1].longconst;
9461 pc += 3;
9462 n = 0;
9463 for (i = 0; i < m; i += 1)
9464 {
9465 switch (exp->elts[pc].opcode)
9466 {
9467 default:
9468 n += 1;
9469 break;
9470 case OP_CHOICES:
9471 n += exp->elts[pc + 1].longconst;
9472 break;
9473 }
9474 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9475 }
9476 return n;
9477 }
9478
9479 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9480 component of LHS (a simple array or a record), updating *POS past
9481 the expression, assuming that LHS is contained in CONTAINER. Does
9482 not modify the inferior's memory, nor does it modify LHS (unless
9483 LHS == CONTAINER). */
9484
9485 static void
9486 assign_component (struct value *container, struct value *lhs, LONGEST index,
9487 struct expression *exp, int *pos)
9488 {
9489 struct value *mark = value_mark ();
9490 struct value *elt;
9491 struct type *lhs_type = check_typedef (value_type (lhs));
9492
9493 if (lhs_type->code () == TYPE_CODE_ARRAY)
9494 {
9495 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9496 struct value *index_val = value_from_longest (index_type, index);
9497
9498 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9499 }
9500 else
9501 {
9502 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9503 elt = ada_to_fixed_value (elt);
9504 }
9505
9506 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9507 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9508 else
9509 value_assign_to_component (container, elt,
9510 ada_evaluate_subexp (NULL, exp, pos,
9511 EVAL_NORMAL));
9512
9513 value_free_to_mark (mark);
9514 }
9515
9516 /* Assuming that LHS represents an lvalue having a record or array
9517 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9518 of that aggregate's value to LHS, advancing *POS past the
9519 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9520 lvalue containing LHS (possibly LHS itself). Does not modify
9521 the inferior's memory, nor does it modify the contents of
9522 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9523
9524 static struct value *
9525 assign_aggregate (struct value *container,
9526 struct value *lhs, struct expression *exp,
9527 int *pos, enum noside noside)
9528 {
9529 struct type *lhs_type;
9530 int n = exp->elts[*pos+1].longconst;
9531 LONGEST low_index, high_index;
9532 int num_specs;
9533 LONGEST *indices;
9534 int max_indices, num_indices;
9535 int i;
9536
9537 *pos += 3;
9538 if (noside != EVAL_NORMAL)
9539 {
9540 for (i = 0; i < n; i += 1)
9541 ada_evaluate_subexp (NULL, exp, pos, noside);
9542 return container;
9543 }
9544
9545 container = ada_coerce_ref (container);
9546 if (ada_is_direct_array_type (value_type (container)))
9547 container = ada_coerce_to_simple_array (container);
9548 lhs = ada_coerce_ref (lhs);
9549 if (!deprecated_value_modifiable (lhs))
9550 error (_("Left operand of assignment is not a modifiable lvalue."));
9551
9552 lhs_type = check_typedef (value_type (lhs));
9553 if (ada_is_direct_array_type (lhs_type))
9554 {
9555 lhs = ada_coerce_to_simple_array (lhs);
9556 lhs_type = check_typedef (value_type (lhs));
9557 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9558 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9559 }
9560 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9561 {
9562 low_index = 0;
9563 high_index = num_visible_fields (lhs_type) - 1;
9564 }
9565 else
9566 error (_("Left-hand side must be array or record."));
9567
9568 num_specs = num_component_specs (exp, *pos - 3);
9569 max_indices = 4 * num_specs + 4;
9570 indices = XALLOCAVEC (LONGEST, max_indices);
9571 indices[0] = indices[1] = low_index - 1;
9572 indices[2] = indices[3] = high_index + 1;
9573 num_indices = 4;
9574
9575 for (i = 0; i < n; i += 1)
9576 {
9577 switch (exp->elts[*pos].opcode)
9578 {
9579 case OP_CHOICES:
9580 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9581 &num_indices, max_indices,
9582 low_index, high_index);
9583 break;
9584 case OP_POSITIONAL:
9585 aggregate_assign_positional (container, lhs, exp, pos, indices,
9586 &num_indices, max_indices,
9587 low_index, high_index);
9588 break;
9589 case OP_OTHERS:
9590 if (i != n-1)
9591 error (_("Misplaced 'others' clause"));
9592 aggregate_assign_others (container, lhs, exp, pos, indices,
9593 num_indices, low_index, high_index);
9594 break;
9595 default:
9596 error (_("Internal error: bad aggregate clause"));
9597 }
9598 }
9599
9600 return container;
9601 }
9602
9603 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9604 construct at *POS, updating *POS past the construct, given that
9605 the positions are relative to lower bound LOW, where HIGH is the
9606 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9607 updating *NUM_INDICES as needed. CONTAINER is as for
9608 assign_aggregate. */
9609 static void
9610 aggregate_assign_positional (struct value *container,
9611 struct value *lhs, struct expression *exp,
9612 int *pos, LONGEST *indices, int *num_indices,
9613 int max_indices, LONGEST low, LONGEST high)
9614 {
9615 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9616
9617 if (ind - 1 == high)
9618 warning (_("Extra components in aggregate ignored."));
9619 if (ind <= high)
9620 {
9621 add_component_interval (ind, ind, indices, num_indices, max_indices);
9622 *pos += 3;
9623 assign_component (container, lhs, ind, exp, pos);
9624 }
9625 else
9626 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9627 }
9628
9629 /* Assign into the components of LHS indexed by the OP_CHOICES
9630 construct at *POS, updating *POS past the construct, given that
9631 the allowable indices are LOW..HIGH. Record the indices assigned
9632 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9633 needed. CONTAINER is as for assign_aggregate. */
9634 static void
9635 aggregate_assign_from_choices (struct value *container,
9636 struct value *lhs, struct expression *exp,
9637 int *pos, LONGEST *indices, int *num_indices,
9638 int max_indices, LONGEST low, LONGEST high)
9639 {
9640 int j;
9641 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9642 int choice_pos, expr_pc;
9643 int is_array = ada_is_direct_array_type (value_type (lhs));
9644
9645 choice_pos = *pos += 3;
9646
9647 for (j = 0; j < n_choices; j += 1)
9648 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9649 expr_pc = *pos;
9650 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9651
9652 for (j = 0; j < n_choices; j += 1)
9653 {
9654 LONGEST lower, upper;
9655 enum exp_opcode op = exp->elts[choice_pos].opcode;
9656
9657 if (op == OP_DISCRETE_RANGE)
9658 {
9659 choice_pos += 1;
9660 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9661 EVAL_NORMAL));
9662 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9663 EVAL_NORMAL));
9664 }
9665 else if (is_array)
9666 {
9667 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9668 EVAL_NORMAL));
9669 upper = lower;
9670 }
9671 else
9672 {
9673 int ind;
9674 const char *name;
9675
9676 switch (op)
9677 {
9678 case OP_NAME:
9679 name = &exp->elts[choice_pos + 2].string;
9680 break;
9681 case OP_VAR_VALUE:
9682 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9683 break;
9684 default:
9685 error (_("Invalid record component association."));
9686 }
9687 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9688 ind = 0;
9689 if (! find_struct_field (name, value_type (lhs), 0,
9690 NULL, NULL, NULL, NULL, &ind))
9691 error (_("Unknown component name: %s."), name);
9692 lower = upper = ind;
9693 }
9694
9695 if (lower <= upper && (lower < low || upper > high))
9696 error (_("Index in component association out of bounds."));
9697
9698 add_component_interval (lower, upper, indices, num_indices,
9699 max_indices);
9700 while (lower <= upper)
9701 {
9702 int pos1;
9703
9704 pos1 = expr_pc;
9705 assign_component (container, lhs, lower, exp, &pos1);
9706 lower += 1;
9707 }
9708 }
9709 }
9710
9711 /* Assign the value of the expression in the OP_OTHERS construct in
9712 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9713 have not been previously assigned. The index intervals already assigned
9714 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9715 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9716 static void
9717 aggregate_assign_others (struct value *container,
9718 struct value *lhs, struct expression *exp,
9719 int *pos, LONGEST *indices, int num_indices,
9720 LONGEST low, LONGEST high)
9721 {
9722 int i;
9723 int expr_pc = *pos + 1;
9724
9725 for (i = 0; i < num_indices - 2; i += 2)
9726 {
9727 LONGEST ind;
9728
9729 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9730 {
9731 int localpos;
9732
9733 localpos = expr_pc;
9734 assign_component (container, lhs, ind, exp, &localpos);
9735 }
9736 }
9737 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9738 }
9739
9740 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9741 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9742 modifying *SIZE as needed. It is an error if *SIZE exceeds
9743 MAX_SIZE. The resulting intervals do not overlap. */
9744 static void
9745 add_component_interval (LONGEST low, LONGEST high,
9746 LONGEST* indices, int *size, int max_size)
9747 {
9748 int i, j;
9749
9750 for (i = 0; i < *size; i += 2) {
9751 if (high >= indices[i] && low <= indices[i + 1])
9752 {
9753 int kh;
9754
9755 for (kh = i + 2; kh < *size; kh += 2)
9756 if (high < indices[kh])
9757 break;
9758 if (low < indices[i])
9759 indices[i] = low;
9760 indices[i + 1] = indices[kh - 1];
9761 if (high > indices[i + 1])
9762 indices[i + 1] = high;
9763 memcpy (indices + i + 2, indices + kh, *size - kh);
9764 *size -= kh - i - 2;
9765 return;
9766 }
9767 else if (high < indices[i])
9768 break;
9769 }
9770
9771 if (*size == max_size)
9772 error (_("Internal error: miscounted aggregate components."));
9773 *size += 2;
9774 for (j = *size-1; j >= i+2; j -= 1)
9775 indices[j] = indices[j - 2];
9776 indices[i] = low;
9777 indices[i + 1] = high;
9778 }
9779
9780 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9781 is different. */
9782
9783 static struct value *
9784 ada_value_cast (struct type *type, struct value *arg2)
9785 {
9786 if (type == ada_check_typedef (value_type (arg2)))
9787 return arg2;
9788
9789 if (ada_is_gnat_encoded_fixed_point_type (type))
9790 return cast_to_fixed (type, arg2);
9791
9792 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
9793 return cast_from_fixed (type, arg2);
9794
9795 return value_cast (type, arg2);
9796 }
9797
9798 /* Evaluating Ada expressions, and printing their result.
9799 ------------------------------------------------------
9800
9801 1. Introduction:
9802 ----------------
9803
9804 We usually evaluate an Ada expression in order to print its value.
9805 We also evaluate an expression in order to print its type, which
9806 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9807 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9808 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9809 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9810 similar.
9811
9812 Evaluating expressions is a little more complicated for Ada entities
9813 than it is for entities in languages such as C. The main reason for
9814 this is that Ada provides types whose definition might be dynamic.
9815 One example of such types is variant records. Or another example
9816 would be an array whose bounds can only be known at run time.
9817
9818 The following description is a general guide as to what should be
9819 done (and what should NOT be done) in order to evaluate an expression
9820 involving such types, and when. This does not cover how the semantic
9821 information is encoded by GNAT as this is covered separatly. For the
9822 document used as the reference for the GNAT encoding, see exp_dbug.ads
9823 in the GNAT sources.
9824
9825 Ideally, we should embed each part of this description next to its
9826 associated code. Unfortunately, the amount of code is so vast right
9827 now that it's hard to see whether the code handling a particular
9828 situation might be duplicated or not. One day, when the code is
9829 cleaned up, this guide might become redundant with the comments
9830 inserted in the code, and we might want to remove it.
9831
9832 2. ``Fixing'' an Entity, the Simple Case:
9833 -----------------------------------------
9834
9835 When evaluating Ada expressions, the tricky issue is that they may
9836 reference entities whose type contents and size are not statically
9837 known. Consider for instance a variant record:
9838
9839 type Rec (Empty : Boolean := True) is record
9840 case Empty is
9841 when True => null;
9842 when False => Value : Integer;
9843 end case;
9844 end record;
9845 Yes : Rec := (Empty => False, Value => 1);
9846 No : Rec := (empty => True);
9847
9848 The size and contents of that record depends on the value of the
9849 descriminant (Rec.Empty). At this point, neither the debugging
9850 information nor the associated type structure in GDB are able to
9851 express such dynamic types. So what the debugger does is to create
9852 "fixed" versions of the type that applies to the specific object.
9853 We also informally refer to this operation as "fixing" an object,
9854 which means creating its associated fixed type.
9855
9856 Example: when printing the value of variable "Yes" above, its fixed
9857 type would look like this:
9858
9859 type Rec is record
9860 Empty : Boolean;
9861 Value : Integer;
9862 end record;
9863
9864 On the other hand, if we printed the value of "No", its fixed type
9865 would become:
9866
9867 type Rec is record
9868 Empty : Boolean;
9869 end record;
9870
9871 Things become a little more complicated when trying to fix an entity
9872 with a dynamic type that directly contains another dynamic type,
9873 such as an array of variant records, for instance. There are
9874 two possible cases: Arrays, and records.
9875
9876 3. ``Fixing'' Arrays:
9877 ---------------------
9878
9879 The type structure in GDB describes an array in terms of its bounds,
9880 and the type of its elements. By design, all elements in the array
9881 have the same type and we cannot represent an array of variant elements
9882 using the current type structure in GDB. When fixing an array,
9883 we cannot fix the array element, as we would potentially need one
9884 fixed type per element of the array. As a result, the best we can do
9885 when fixing an array is to produce an array whose bounds and size
9886 are correct (allowing us to read it from memory), but without having
9887 touched its element type. Fixing each element will be done later,
9888 when (if) necessary.
9889
9890 Arrays are a little simpler to handle than records, because the same
9891 amount of memory is allocated for each element of the array, even if
9892 the amount of space actually used by each element differs from element
9893 to element. Consider for instance the following array of type Rec:
9894
9895 type Rec_Array is array (1 .. 2) of Rec;
9896
9897 The actual amount of memory occupied by each element might be different
9898 from element to element, depending on the value of their discriminant.
9899 But the amount of space reserved for each element in the array remains
9900 fixed regardless. So we simply need to compute that size using
9901 the debugging information available, from which we can then determine
9902 the array size (we multiply the number of elements of the array by
9903 the size of each element).
9904
9905 The simplest case is when we have an array of a constrained element
9906 type. For instance, consider the following type declarations:
9907
9908 type Bounded_String (Max_Size : Integer) is
9909 Length : Integer;
9910 Buffer : String (1 .. Max_Size);
9911 end record;
9912 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9913
9914 In this case, the compiler describes the array as an array of
9915 variable-size elements (identified by its XVS suffix) for which
9916 the size can be read in the parallel XVZ variable.
9917
9918 In the case of an array of an unconstrained element type, the compiler
9919 wraps the array element inside a private PAD type. This type should not
9920 be shown to the user, and must be "unwrap"'ed before printing. Note
9921 that we also use the adjective "aligner" in our code to designate
9922 these wrapper types.
9923
9924 In some cases, the size allocated for each element is statically
9925 known. In that case, the PAD type already has the correct size,
9926 and the array element should remain unfixed.
9927
9928 But there are cases when this size is not statically known.
9929 For instance, assuming that "Five" is an integer variable:
9930
9931 type Dynamic is array (1 .. Five) of Integer;
9932 type Wrapper (Has_Length : Boolean := False) is record
9933 Data : Dynamic;
9934 case Has_Length is
9935 when True => Length : Integer;
9936 when False => null;
9937 end case;
9938 end record;
9939 type Wrapper_Array is array (1 .. 2) of Wrapper;
9940
9941 Hello : Wrapper_Array := (others => (Has_Length => True,
9942 Data => (others => 17),
9943 Length => 1));
9944
9945
9946 The debugging info would describe variable Hello as being an
9947 array of a PAD type. The size of that PAD type is not statically
9948 known, but can be determined using a parallel XVZ variable.
9949 In that case, a copy of the PAD type with the correct size should
9950 be used for the fixed array.
9951
9952 3. ``Fixing'' record type objects:
9953 ----------------------------------
9954
9955 Things are slightly different from arrays in the case of dynamic
9956 record types. In this case, in order to compute the associated
9957 fixed type, we need to determine the size and offset of each of
9958 its components. This, in turn, requires us to compute the fixed
9959 type of each of these components.
9960
9961 Consider for instance the example:
9962
9963 type Bounded_String (Max_Size : Natural) is record
9964 Str : String (1 .. Max_Size);
9965 Length : Natural;
9966 end record;
9967 My_String : Bounded_String (Max_Size => 10);
9968
9969 In that case, the position of field "Length" depends on the size
9970 of field Str, which itself depends on the value of the Max_Size
9971 discriminant. In order to fix the type of variable My_String,
9972 we need to fix the type of field Str. Therefore, fixing a variant
9973 record requires us to fix each of its components.
9974
9975 However, if a component does not have a dynamic size, the component
9976 should not be fixed. In particular, fields that use a PAD type
9977 should not fixed. Here is an example where this might happen
9978 (assuming type Rec above):
9979
9980 type Container (Big : Boolean) is record
9981 First : Rec;
9982 After : Integer;
9983 case Big is
9984 when True => Another : Integer;
9985 when False => null;
9986 end case;
9987 end record;
9988 My_Container : Container := (Big => False,
9989 First => (Empty => True),
9990 After => 42);
9991
9992 In that example, the compiler creates a PAD type for component First,
9993 whose size is constant, and then positions the component After just
9994 right after it. The offset of component After is therefore constant
9995 in this case.
9996
9997 The debugger computes the position of each field based on an algorithm
9998 that uses, among other things, the actual position and size of the field
9999 preceding it. Let's now imagine that the user is trying to print
10000 the value of My_Container. If the type fixing was recursive, we would
10001 end up computing the offset of field After based on the size of the
10002 fixed version of field First. And since in our example First has
10003 only one actual field, the size of the fixed type is actually smaller
10004 than the amount of space allocated to that field, and thus we would
10005 compute the wrong offset of field After.
10006
10007 To make things more complicated, we need to watch out for dynamic
10008 components of variant records (identified by the ___XVL suffix in
10009 the component name). Even if the target type is a PAD type, the size
10010 of that type might not be statically known. So the PAD type needs
10011 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10012 we might end up with the wrong size for our component. This can be
10013 observed with the following type declarations:
10014
10015 type Octal is new Integer range 0 .. 7;
10016 type Octal_Array is array (Positive range <>) of Octal;
10017 pragma Pack (Octal_Array);
10018
10019 type Octal_Buffer (Size : Positive) is record
10020 Buffer : Octal_Array (1 .. Size);
10021 Length : Integer;
10022 end record;
10023
10024 In that case, Buffer is a PAD type whose size is unset and needs
10025 to be computed by fixing the unwrapped type.
10026
10027 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10028 ----------------------------------------------------------
10029
10030 Lastly, when should the sub-elements of an entity that remained unfixed
10031 thus far, be actually fixed?
10032
10033 The answer is: Only when referencing that element. For instance
10034 when selecting one component of a record, this specific component
10035 should be fixed at that point in time. Or when printing the value
10036 of a record, each component should be fixed before its value gets
10037 printed. Similarly for arrays, the element of the array should be
10038 fixed when printing each element of the array, or when extracting
10039 one element out of that array. On the other hand, fixing should
10040 not be performed on the elements when taking a slice of an array!
10041
10042 Note that one of the side effects of miscomputing the offset and
10043 size of each field is that we end up also miscomputing the size
10044 of the containing type. This can have adverse results when computing
10045 the value of an entity. GDB fetches the value of an entity based
10046 on the size of its type, and thus a wrong size causes GDB to fetch
10047 the wrong amount of memory. In the case where the computed size is
10048 too small, GDB fetches too little data to print the value of our
10049 entity. Results in this case are unpredictable, as we usually read
10050 past the buffer containing the data =:-o. */
10051
10052 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10053 for that subexpression cast to TO_TYPE. Advance *POS over the
10054 subexpression. */
10055
10056 static value *
10057 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10058 enum noside noside, struct type *to_type)
10059 {
10060 int pc = *pos;
10061
10062 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10063 || exp->elts[pc].opcode == OP_VAR_VALUE)
10064 {
10065 (*pos) += 4;
10066
10067 value *val;
10068 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10069 {
10070 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10071 return value_zero (to_type, not_lval);
10072
10073 val = evaluate_var_msym_value (noside,
10074 exp->elts[pc + 1].objfile,
10075 exp->elts[pc + 2].msymbol);
10076 }
10077 else
10078 val = evaluate_var_value (noside,
10079 exp->elts[pc + 1].block,
10080 exp->elts[pc + 2].symbol);
10081
10082 if (noside == EVAL_SKIP)
10083 return eval_skip_value (exp);
10084
10085 val = ada_value_cast (to_type, val);
10086
10087 /* Follow the Ada language semantics that do not allow taking
10088 an address of the result of a cast (view conversion in Ada). */
10089 if (VALUE_LVAL (val) == lval_memory)
10090 {
10091 if (value_lazy (val))
10092 value_fetch_lazy (val);
10093 VALUE_LVAL (val) = not_lval;
10094 }
10095 return val;
10096 }
10097
10098 value *val = evaluate_subexp (to_type, exp, pos, noside);
10099 if (noside == EVAL_SKIP)
10100 return eval_skip_value (exp);
10101 return ada_value_cast (to_type, val);
10102 }
10103
10104 /* Implement the evaluate_exp routine in the exp_descriptor structure
10105 for the Ada language. */
10106
10107 static struct value *
10108 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10109 int *pos, enum noside noside)
10110 {
10111 enum exp_opcode op;
10112 int tem;
10113 int pc;
10114 int preeval_pos;
10115 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10116 struct type *type;
10117 int nargs, oplen;
10118 struct value **argvec;
10119
10120 pc = *pos;
10121 *pos += 1;
10122 op = exp->elts[pc].opcode;
10123
10124 switch (op)
10125 {
10126 default:
10127 *pos -= 1;
10128 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10129
10130 if (noside == EVAL_NORMAL)
10131 arg1 = unwrap_value (arg1);
10132
10133 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10134 then we need to perform the conversion manually, because
10135 evaluate_subexp_standard doesn't do it. This conversion is
10136 necessary in Ada because the different kinds of float/fixed
10137 types in Ada have different representations.
10138
10139 Similarly, we need to perform the conversion from OP_LONG
10140 ourselves. */
10141 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10142 arg1 = ada_value_cast (expect_type, arg1);
10143
10144 return arg1;
10145
10146 case OP_STRING:
10147 {
10148 struct value *result;
10149
10150 *pos -= 1;
10151 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10152 /* The result type will have code OP_STRING, bashed there from
10153 OP_ARRAY. Bash it back. */
10154 if (value_type (result)->code () == TYPE_CODE_STRING)
10155 value_type (result)->set_code (TYPE_CODE_ARRAY);
10156 return result;
10157 }
10158
10159 case UNOP_CAST:
10160 (*pos) += 2;
10161 type = exp->elts[pc + 1].type;
10162 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10163
10164 case UNOP_QUAL:
10165 (*pos) += 2;
10166 type = exp->elts[pc + 1].type;
10167 return ada_evaluate_subexp (type, exp, pos, noside);
10168
10169 case BINOP_ASSIGN:
10170 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10171 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10172 {
10173 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10174 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10175 return arg1;
10176 return ada_value_assign (arg1, arg1);
10177 }
10178 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10179 except if the lhs of our assignment is a convenience variable.
10180 In the case of assigning to a convenience variable, the lhs
10181 should be exactly the result of the evaluation of the rhs. */
10182 type = value_type (arg1);
10183 if (VALUE_LVAL (arg1) == lval_internalvar)
10184 type = NULL;
10185 arg2 = evaluate_subexp (type, exp, pos, noside);
10186 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10187 return arg1;
10188 if (VALUE_LVAL (arg1) == lval_internalvar)
10189 {
10190 /* Nothing. */
10191 }
10192 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10193 arg2 = cast_to_fixed (value_type (arg1), arg2);
10194 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10195 error
10196 (_("Fixed-point values must be assigned to fixed-point variables"));
10197 else
10198 arg2 = coerce_for_assign (value_type (arg1), arg2);
10199 return ada_value_assign (arg1, arg2);
10200
10201 case BINOP_ADD:
10202 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10203 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10204 if (noside == EVAL_SKIP)
10205 goto nosideret;
10206 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10207 return (value_from_longest
10208 (value_type (arg1),
10209 value_as_long (arg1) + value_as_long (arg2)));
10210 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10211 return (value_from_longest
10212 (value_type (arg2),
10213 value_as_long (arg1) + value_as_long (arg2)));
10214 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10215 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10216 && value_type (arg1) != value_type (arg2))
10217 error (_("Operands of fixed-point addition must have the same type"));
10218 /* Do the addition, and cast the result to the type of the first
10219 argument. We cannot cast the result to a reference type, so if
10220 ARG1 is a reference type, find its underlying type. */
10221 type = value_type (arg1);
10222 while (type->code () == TYPE_CODE_REF)
10223 type = TYPE_TARGET_TYPE (type);
10224 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10225 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10226
10227 case BINOP_SUB:
10228 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10229 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10230 if (noside == EVAL_SKIP)
10231 goto nosideret;
10232 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10233 return (value_from_longest
10234 (value_type (arg1),
10235 value_as_long (arg1) - value_as_long (arg2)));
10236 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10237 return (value_from_longest
10238 (value_type (arg2),
10239 value_as_long (arg1) - value_as_long (arg2)));
10240 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10241 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10242 && value_type (arg1) != value_type (arg2))
10243 error (_("Operands of fixed-point subtraction "
10244 "must have the same type"));
10245 /* Do the substraction, and cast the result to the type of the first
10246 argument. We cannot cast the result to a reference type, so if
10247 ARG1 is a reference type, find its underlying type. */
10248 type = value_type (arg1);
10249 while (type->code () == TYPE_CODE_REF)
10250 type = TYPE_TARGET_TYPE (type);
10251 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10252 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10253
10254 case BINOP_MUL:
10255 case BINOP_DIV:
10256 case BINOP_REM:
10257 case BINOP_MOD:
10258 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10259 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10260 if (noside == EVAL_SKIP)
10261 goto nosideret;
10262 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10263 {
10264 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10265 return value_zero (value_type (arg1), not_lval);
10266 }
10267 else
10268 {
10269 type = builtin_type (exp->gdbarch)->builtin_double;
10270 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10271 arg1 = cast_from_fixed (type, arg1);
10272 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10273 arg2 = cast_from_fixed (type, arg2);
10274 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10275 return ada_value_binop (arg1, arg2, op);
10276 }
10277
10278 case BINOP_EQUAL:
10279 case BINOP_NOTEQUAL:
10280 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10281 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10282 if (noside == EVAL_SKIP)
10283 goto nosideret;
10284 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10285 tem = 0;
10286 else
10287 {
10288 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10289 tem = ada_value_equal (arg1, arg2);
10290 }
10291 if (op == BINOP_NOTEQUAL)
10292 tem = !tem;
10293 type = language_bool_type (exp->language_defn, exp->gdbarch);
10294 return value_from_longest (type, (LONGEST) tem);
10295
10296 case UNOP_NEG:
10297 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10298 if (noside == EVAL_SKIP)
10299 goto nosideret;
10300 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10301 return value_cast (value_type (arg1), value_neg (arg1));
10302 else
10303 {
10304 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10305 return value_neg (arg1);
10306 }
10307
10308 case BINOP_LOGICAL_AND:
10309 case BINOP_LOGICAL_OR:
10310 case UNOP_LOGICAL_NOT:
10311 {
10312 struct value *val;
10313
10314 *pos -= 1;
10315 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10316 type = language_bool_type (exp->language_defn, exp->gdbarch);
10317 return value_cast (type, val);
10318 }
10319
10320 case BINOP_BITWISE_AND:
10321 case BINOP_BITWISE_IOR:
10322 case BINOP_BITWISE_XOR:
10323 {
10324 struct value *val;
10325
10326 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10327 *pos = pc;
10328 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10329
10330 return value_cast (value_type (arg1), val);
10331 }
10332
10333 case OP_VAR_VALUE:
10334 *pos -= 1;
10335
10336 if (noside == EVAL_SKIP)
10337 {
10338 *pos += 4;
10339 goto nosideret;
10340 }
10341
10342 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10343 /* Only encountered when an unresolved symbol occurs in a
10344 context other than a function call, in which case, it is
10345 invalid. */
10346 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10347 exp->elts[pc + 2].symbol->print_name ());
10348
10349 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10350 {
10351 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10352 /* Check to see if this is a tagged type. We also need to handle
10353 the case where the type is a reference to a tagged type, but
10354 we have to be careful to exclude pointers to tagged types.
10355 The latter should be shown as usual (as a pointer), whereas
10356 a reference should mostly be transparent to the user. */
10357 if (ada_is_tagged_type (type, 0)
10358 || (type->code () == TYPE_CODE_REF
10359 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10360 {
10361 /* Tagged types are a little special in the fact that the real
10362 type is dynamic and can only be determined by inspecting the
10363 object's tag. This means that we need to get the object's
10364 value first (EVAL_NORMAL) and then extract the actual object
10365 type from its tag.
10366
10367 Note that we cannot skip the final step where we extract
10368 the object type from its tag, because the EVAL_NORMAL phase
10369 results in dynamic components being resolved into fixed ones.
10370 This can cause problems when trying to print the type
10371 description of tagged types whose parent has a dynamic size:
10372 We use the type name of the "_parent" component in order
10373 to print the name of the ancestor type in the type description.
10374 If that component had a dynamic size, the resolution into
10375 a fixed type would result in the loss of that type name,
10376 thus preventing us from printing the name of the ancestor
10377 type in the type description. */
10378 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10379
10380 if (type->code () != TYPE_CODE_REF)
10381 {
10382 struct type *actual_type;
10383
10384 actual_type = type_from_tag (ada_value_tag (arg1));
10385 if (actual_type == NULL)
10386 /* If, for some reason, we were unable to determine
10387 the actual type from the tag, then use the static
10388 approximation that we just computed as a fallback.
10389 This can happen if the debugging information is
10390 incomplete, for instance. */
10391 actual_type = type;
10392 return value_zero (actual_type, not_lval);
10393 }
10394 else
10395 {
10396 /* In the case of a ref, ada_coerce_ref takes care
10397 of determining the actual type. But the evaluation
10398 should return a ref as it should be valid to ask
10399 for its address; so rebuild a ref after coerce. */
10400 arg1 = ada_coerce_ref (arg1);
10401 return value_ref (arg1, TYPE_CODE_REF);
10402 }
10403 }
10404
10405 /* Records and unions for which GNAT encodings have been
10406 generated need to be statically fixed as well.
10407 Otherwise, non-static fixing produces a type where
10408 all dynamic properties are removed, which prevents "ptype"
10409 from being able to completely describe the type.
10410 For instance, a case statement in a variant record would be
10411 replaced by the relevant components based on the actual
10412 value of the discriminants. */
10413 if ((type->code () == TYPE_CODE_STRUCT
10414 && dynamic_template_type (type) != NULL)
10415 || (type->code () == TYPE_CODE_UNION
10416 && ada_find_parallel_type (type, "___XVU") != NULL))
10417 {
10418 *pos += 4;
10419 return value_zero (to_static_fixed_type (type), not_lval);
10420 }
10421 }
10422
10423 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10424 return ada_to_fixed_value (arg1);
10425
10426 case OP_FUNCALL:
10427 (*pos) += 2;
10428
10429 /* Allocate arg vector, including space for the function to be
10430 called in argvec[0] and a terminating NULL. */
10431 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10432 argvec = XALLOCAVEC (struct value *, nargs + 2);
10433
10434 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10435 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10436 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10437 exp->elts[pc + 5].symbol->print_name ());
10438 else
10439 {
10440 for (tem = 0; tem <= nargs; tem += 1)
10441 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10442 argvec[tem] = 0;
10443
10444 if (noside == EVAL_SKIP)
10445 goto nosideret;
10446 }
10447
10448 if (ada_is_constrained_packed_array_type
10449 (desc_base_type (value_type (argvec[0]))))
10450 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10451 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10452 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10453 /* This is a packed array that has already been fixed, and
10454 therefore already coerced to a simple array. Nothing further
10455 to do. */
10456 ;
10457 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10458 {
10459 /* Make sure we dereference references so that all the code below
10460 feels like it's really handling the referenced value. Wrapping
10461 types (for alignment) may be there, so make sure we strip them as
10462 well. */
10463 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10464 }
10465 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10466 && VALUE_LVAL (argvec[0]) == lval_memory)
10467 argvec[0] = value_addr (argvec[0]);
10468
10469 type = ada_check_typedef (value_type (argvec[0]));
10470
10471 /* Ada allows us to implicitly dereference arrays when subscripting
10472 them. So, if this is an array typedef (encoding use for array
10473 access types encoded as fat pointers), strip it now. */
10474 if (type->code () == TYPE_CODE_TYPEDEF)
10475 type = ada_typedef_target_type (type);
10476
10477 if (type->code () == TYPE_CODE_PTR)
10478 {
10479 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10480 {
10481 case TYPE_CODE_FUNC:
10482 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10483 break;
10484 case TYPE_CODE_ARRAY:
10485 break;
10486 case TYPE_CODE_STRUCT:
10487 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10488 argvec[0] = ada_value_ind (argvec[0]);
10489 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10490 break;
10491 default:
10492 error (_("cannot subscript or call something of type `%s'"),
10493 ada_type_name (value_type (argvec[0])));
10494 break;
10495 }
10496 }
10497
10498 switch (type->code ())
10499 {
10500 case TYPE_CODE_FUNC:
10501 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10502 {
10503 if (TYPE_TARGET_TYPE (type) == NULL)
10504 error_call_unknown_return_type (NULL);
10505 return allocate_value (TYPE_TARGET_TYPE (type));
10506 }
10507 return call_function_by_hand (argvec[0], NULL,
10508 gdb::make_array_view (argvec + 1,
10509 nargs));
10510 case TYPE_CODE_INTERNAL_FUNCTION:
10511 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10512 /* We don't know anything about what the internal
10513 function might return, but we have to return
10514 something. */
10515 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10516 not_lval);
10517 else
10518 return call_internal_function (exp->gdbarch, exp->language_defn,
10519 argvec[0], nargs, argvec + 1);
10520
10521 case TYPE_CODE_STRUCT:
10522 {
10523 int arity;
10524
10525 arity = ada_array_arity (type);
10526 type = ada_array_element_type (type, nargs);
10527 if (type == NULL)
10528 error (_("cannot subscript or call a record"));
10529 if (arity != nargs)
10530 error (_("wrong number of subscripts; expecting %d"), arity);
10531 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10532 return value_zero (ada_aligned_type (type), lval_memory);
10533 return
10534 unwrap_value (ada_value_subscript
10535 (argvec[0], nargs, argvec + 1));
10536 }
10537 case TYPE_CODE_ARRAY:
10538 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10539 {
10540 type = ada_array_element_type (type, nargs);
10541 if (type == NULL)
10542 error (_("element type of array unknown"));
10543 else
10544 return value_zero (ada_aligned_type (type), lval_memory);
10545 }
10546 return
10547 unwrap_value (ada_value_subscript
10548 (ada_coerce_to_simple_array (argvec[0]),
10549 nargs, argvec + 1));
10550 case TYPE_CODE_PTR: /* Pointer to array */
10551 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10552 {
10553 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10554 type = ada_array_element_type (type, nargs);
10555 if (type == NULL)
10556 error (_("element type of array unknown"));
10557 else
10558 return value_zero (ada_aligned_type (type), lval_memory);
10559 }
10560 return
10561 unwrap_value (ada_value_ptr_subscript (argvec[0],
10562 nargs, argvec + 1));
10563
10564 default:
10565 error (_("Attempt to index or call something other than an "
10566 "array or function"));
10567 }
10568
10569 case TERNOP_SLICE:
10570 {
10571 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10572 struct value *low_bound_val =
10573 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10574 struct value *high_bound_val =
10575 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10576 LONGEST low_bound;
10577 LONGEST high_bound;
10578
10579 low_bound_val = coerce_ref (low_bound_val);
10580 high_bound_val = coerce_ref (high_bound_val);
10581 low_bound = value_as_long (low_bound_val);
10582 high_bound = value_as_long (high_bound_val);
10583
10584 if (noside == EVAL_SKIP)
10585 goto nosideret;
10586
10587 /* If this is a reference to an aligner type, then remove all
10588 the aligners. */
10589 if (value_type (array)->code () == TYPE_CODE_REF
10590 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10591 TYPE_TARGET_TYPE (value_type (array)) =
10592 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10593
10594 if (ada_is_constrained_packed_array_type (value_type (array)))
10595 error (_("cannot slice a packed array"));
10596
10597 /* If this is a reference to an array or an array lvalue,
10598 convert to a pointer. */
10599 if (value_type (array)->code () == TYPE_CODE_REF
10600 || (value_type (array)->code () == TYPE_CODE_ARRAY
10601 && VALUE_LVAL (array) == lval_memory))
10602 array = value_addr (array);
10603
10604 if (noside == EVAL_AVOID_SIDE_EFFECTS
10605 && ada_is_array_descriptor_type (ada_check_typedef
10606 (value_type (array))))
10607 return empty_array (ada_type_of_array (array, 0), low_bound,
10608 high_bound);
10609
10610 array = ada_coerce_to_simple_array_ptr (array);
10611
10612 /* If we have more than one level of pointer indirection,
10613 dereference the value until we get only one level. */
10614 while (value_type (array)->code () == TYPE_CODE_PTR
10615 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10616 == TYPE_CODE_PTR))
10617 array = value_ind (array);
10618
10619 /* Make sure we really do have an array type before going further,
10620 to avoid a SEGV when trying to get the index type or the target
10621 type later down the road if the debug info generated by
10622 the compiler is incorrect or incomplete. */
10623 if (!ada_is_simple_array_type (value_type (array)))
10624 error (_("cannot take slice of non-array"));
10625
10626 if (ada_check_typedef (value_type (array))->code ()
10627 == TYPE_CODE_PTR)
10628 {
10629 struct type *type0 = ada_check_typedef (value_type (array));
10630
10631 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10632 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10633 else
10634 {
10635 struct type *arr_type0 =
10636 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10637
10638 return ada_value_slice_from_ptr (array, arr_type0,
10639 longest_to_int (low_bound),
10640 longest_to_int (high_bound));
10641 }
10642 }
10643 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10644 return array;
10645 else if (high_bound < low_bound)
10646 return empty_array (value_type (array), low_bound, high_bound);
10647 else
10648 return ada_value_slice (array, longest_to_int (low_bound),
10649 longest_to_int (high_bound));
10650 }
10651
10652 case UNOP_IN_RANGE:
10653 (*pos) += 2;
10654 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10655 type = check_typedef (exp->elts[pc + 1].type);
10656
10657 if (noside == EVAL_SKIP)
10658 goto nosideret;
10659
10660 switch (type->code ())
10661 {
10662 default:
10663 lim_warning (_("Membership test incompletely implemented; "
10664 "always returns true"));
10665 type = language_bool_type (exp->language_defn, exp->gdbarch);
10666 return value_from_longest (type, (LONGEST) 1);
10667
10668 case TYPE_CODE_RANGE:
10669 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10670 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10671 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10672 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10673 type = language_bool_type (exp->language_defn, exp->gdbarch);
10674 return
10675 value_from_longest (type,
10676 (value_less (arg1, arg3)
10677 || value_equal (arg1, arg3))
10678 && (value_less (arg2, arg1)
10679 || value_equal (arg2, arg1)));
10680 }
10681
10682 case BINOP_IN_BOUNDS:
10683 (*pos) += 2;
10684 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10685 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10686
10687 if (noside == EVAL_SKIP)
10688 goto nosideret;
10689
10690 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10691 {
10692 type = language_bool_type (exp->language_defn, exp->gdbarch);
10693 return value_zero (type, not_lval);
10694 }
10695
10696 tem = longest_to_int (exp->elts[pc + 1].longconst);
10697
10698 type = ada_index_type (value_type (arg2), tem, "range");
10699 if (!type)
10700 type = value_type (arg1);
10701
10702 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10703 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10704
10705 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10706 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10707 type = language_bool_type (exp->language_defn, exp->gdbarch);
10708 return
10709 value_from_longest (type,
10710 (value_less (arg1, arg3)
10711 || value_equal (arg1, arg3))
10712 && (value_less (arg2, arg1)
10713 || value_equal (arg2, arg1)));
10714
10715 case TERNOP_IN_RANGE:
10716 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10717 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10718 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10719
10720 if (noside == EVAL_SKIP)
10721 goto nosideret;
10722
10723 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10724 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10725 type = language_bool_type (exp->language_defn, exp->gdbarch);
10726 return
10727 value_from_longest (type,
10728 (value_less (arg1, arg3)
10729 || value_equal (arg1, arg3))
10730 && (value_less (arg2, arg1)
10731 || value_equal (arg2, arg1)));
10732
10733 case OP_ATR_FIRST:
10734 case OP_ATR_LAST:
10735 case OP_ATR_LENGTH:
10736 {
10737 struct type *type_arg;
10738
10739 if (exp->elts[*pos].opcode == OP_TYPE)
10740 {
10741 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10742 arg1 = NULL;
10743 type_arg = check_typedef (exp->elts[pc + 2].type);
10744 }
10745 else
10746 {
10747 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10748 type_arg = NULL;
10749 }
10750
10751 if (exp->elts[*pos].opcode != OP_LONG)
10752 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10753 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10754 *pos += 4;
10755
10756 if (noside == EVAL_SKIP)
10757 goto nosideret;
10758 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10759 {
10760 if (type_arg == NULL)
10761 type_arg = value_type (arg1);
10762
10763 if (ada_is_constrained_packed_array_type (type_arg))
10764 type_arg = decode_constrained_packed_array_type (type_arg);
10765
10766 if (!discrete_type_p (type_arg))
10767 {
10768 switch (op)
10769 {
10770 default: /* Should never happen. */
10771 error (_("unexpected attribute encountered"));
10772 case OP_ATR_FIRST:
10773 case OP_ATR_LAST:
10774 type_arg = ada_index_type (type_arg, tem,
10775 ada_attribute_name (op));
10776 break;
10777 case OP_ATR_LENGTH:
10778 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10779 break;
10780 }
10781 }
10782
10783 return value_zero (type_arg, not_lval);
10784 }
10785 else if (type_arg == NULL)
10786 {
10787 arg1 = ada_coerce_ref (arg1);
10788
10789 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10790 arg1 = ada_coerce_to_simple_array (arg1);
10791
10792 if (op == OP_ATR_LENGTH)
10793 type = builtin_type (exp->gdbarch)->builtin_int;
10794 else
10795 {
10796 type = ada_index_type (value_type (arg1), tem,
10797 ada_attribute_name (op));
10798 if (type == NULL)
10799 type = builtin_type (exp->gdbarch)->builtin_int;
10800 }
10801
10802 switch (op)
10803 {
10804 default: /* Should never happen. */
10805 error (_("unexpected attribute encountered"));
10806 case OP_ATR_FIRST:
10807 return value_from_longest
10808 (type, ada_array_bound (arg1, tem, 0));
10809 case OP_ATR_LAST:
10810 return value_from_longest
10811 (type, ada_array_bound (arg1, tem, 1));
10812 case OP_ATR_LENGTH:
10813 return value_from_longest
10814 (type, ada_array_length (arg1, tem));
10815 }
10816 }
10817 else if (discrete_type_p (type_arg))
10818 {
10819 struct type *range_type;
10820 const char *name = ada_type_name (type_arg);
10821
10822 range_type = NULL;
10823 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10824 range_type = to_fixed_range_type (type_arg, NULL);
10825 if (range_type == NULL)
10826 range_type = type_arg;
10827 switch (op)
10828 {
10829 default:
10830 error (_("unexpected attribute encountered"));
10831 case OP_ATR_FIRST:
10832 return value_from_longest
10833 (range_type, ada_discrete_type_low_bound (range_type));
10834 case OP_ATR_LAST:
10835 return value_from_longest
10836 (range_type, ada_discrete_type_high_bound (range_type));
10837 case OP_ATR_LENGTH:
10838 error (_("the 'length attribute applies only to array types"));
10839 }
10840 }
10841 else if (type_arg->code () == TYPE_CODE_FLT)
10842 error (_("unimplemented type attribute"));
10843 else
10844 {
10845 LONGEST low, high;
10846
10847 if (ada_is_constrained_packed_array_type (type_arg))
10848 type_arg = decode_constrained_packed_array_type (type_arg);
10849
10850 if (op == OP_ATR_LENGTH)
10851 type = builtin_type (exp->gdbarch)->builtin_int;
10852 else
10853 {
10854 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10855 if (type == NULL)
10856 type = builtin_type (exp->gdbarch)->builtin_int;
10857 }
10858
10859 switch (op)
10860 {
10861 default:
10862 error (_("unexpected attribute encountered"));
10863 case OP_ATR_FIRST:
10864 low = ada_array_bound_from_type (type_arg, tem, 0);
10865 return value_from_longest (type, low);
10866 case OP_ATR_LAST:
10867 high = ada_array_bound_from_type (type_arg, tem, 1);
10868 return value_from_longest (type, high);
10869 case OP_ATR_LENGTH:
10870 low = ada_array_bound_from_type (type_arg, tem, 0);
10871 high = ada_array_bound_from_type (type_arg, tem, 1);
10872 return value_from_longest (type, high - low + 1);
10873 }
10874 }
10875 }
10876
10877 case OP_ATR_TAG:
10878 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10879 if (noside == EVAL_SKIP)
10880 goto nosideret;
10881
10882 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10883 return value_zero (ada_tag_type (arg1), not_lval);
10884
10885 return ada_value_tag (arg1);
10886
10887 case OP_ATR_MIN:
10888 case OP_ATR_MAX:
10889 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10890 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10891 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10892 if (noside == EVAL_SKIP)
10893 goto nosideret;
10894 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10895 return value_zero (value_type (arg1), not_lval);
10896 else
10897 {
10898 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10899 return value_binop (arg1, arg2,
10900 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10901 }
10902
10903 case OP_ATR_MODULUS:
10904 {
10905 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10906
10907 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10908 if (noside == EVAL_SKIP)
10909 goto nosideret;
10910
10911 if (!ada_is_modular_type (type_arg))
10912 error (_("'modulus must be applied to modular type"));
10913
10914 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10915 ada_modulus (type_arg));
10916 }
10917
10918
10919 case OP_ATR_POS:
10920 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10921 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10922 if (noside == EVAL_SKIP)
10923 goto nosideret;
10924 type = builtin_type (exp->gdbarch)->builtin_int;
10925 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10926 return value_zero (type, not_lval);
10927 else
10928 return value_pos_atr (type, arg1);
10929
10930 case OP_ATR_SIZE:
10931 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10932 type = value_type (arg1);
10933
10934 /* If the argument is a reference, then dereference its type, since
10935 the user is really asking for the size of the actual object,
10936 not the size of the pointer. */
10937 if (type->code () == TYPE_CODE_REF)
10938 type = TYPE_TARGET_TYPE (type);
10939
10940 if (noside == EVAL_SKIP)
10941 goto nosideret;
10942 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10943 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10944 else
10945 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10946 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10947
10948 case OP_ATR_VAL:
10949 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10950 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10951 type = exp->elts[pc + 2].type;
10952 if (noside == EVAL_SKIP)
10953 goto nosideret;
10954 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10955 return value_zero (type, not_lval);
10956 else
10957 return value_val_atr (type, arg1);
10958
10959 case BINOP_EXP:
10960 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10961 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10962 if (noside == EVAL_SKIP)
10963 goto nosideret;
10964 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10965 return value_zero (value_type (arg1), not_lval);
10966 else
10967 {
10968 /* For integer exponentiation operations,
10969 only promote the first argument. */
10970 if (is_integral_type (value_type (arg2)))
10971 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10972 else
10973 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10974
10975 return value_binop (arg1, arg2, op);
10976 }
10977
10978 case UNOP_PLUS:
10979 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10980 if (noside == EVAL_SKIP)
10981 goto nosideret;
10982 else
10983 return arg1;
10984
10985 case UNOP_ABS:
10986 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10987 if (noside == EVAL_SKIP)
10988 goto nosideret;
10989 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10990 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10991 return value_neg (arg1);
10992 else
10993 return arg1;
10994
10995 case UNOP_IND:
10996 preeval_pos = *pos;
10997 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10998 if (noside == EVAL_SKIP)
10999 goto nosideret;
11000 type = ada_check_typedef (value_type (arg1));
11001 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11002 {
11003 if (ada_is_array_descriptor_type (type))
11004 /* GDB allows dereferencing GNAT array descriptors. */
11005 {
11006 struct type *arrType = ada_type_of_array (arg1, 0);
11007
11008 if (arrType == NULL)
11009 error (_("Attempt to dereference null array pointer."));
11010 return value_at_lazy (arrType, 0);
11011 }
11012 else if (type->code () == TYPE_CODE_PTR
11013 || type->code () == TYPE_CODE_REF
11014 /* In C you can dereference an array to get the 1st elt. */
11015 || type->code () == TYPE_CODE_ARRAY)
11016 {
11017 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11018 only be determined by inspecting the object's tag.
11019 This means that we need to evaluate completely the
11020 expression in order to get its type. */
11021
11022 if ((type->code () == TYPE_CODE_REF
11023 || type->code () == TYPE_CODE_PTR)
11024 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11025 {
11026 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11027 EVAL_NORMAL);
11028 type = value_type (ada_value_ind (arg1));
11029 }
11030 else
11031 {
11032 type = to_static_fixed_type
11033 (ada_aligned_type
11034 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11035 }
11036 ada_ensure_varsize_limit (type);
11037 return value_zero (type, lval_memory);
11038 }
11039 else if (type->code () == TYPE_CODE_INT)
11040 {
11041 /* GDB allows dereferencing an int. */
11042 if (expect_type == NULL)
11043 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11044 lval_memory);
11045 else
11046 {
11047 expect_type =
11048 to_static_fixed_type (ada_aligned_type (expect_type));
11049 return value_zero (expect_type, lval_memory);
11050 }
11051 }
11052 else
11053 error (_("Attempt to take contents of a non-pointer value."));
11054 }
11055 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11056 type = ada_check_typedef (value_type (arg1));
11057
11058 if (type->code () == TYPE_CODE_INT)
11059 /* GDB allows dereferencing an int. If we were given
11060 the expect_type, then use that as the target type.
11061 Otherwise, assume that the target type is an int. */
11062 {
11063 if (expect_type != NULL)
11064 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11065 arg1));
11066 else
11067 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11068 (CORE_ADDR) value_as_address (arg1));
11069 }
11070
11071 if (ada_is_array_descriptor_type (type))
11072 /* GDB allows dereferencing GNAT array descriptors. */
11073 return ada_coerce_to_simple_array (arg1);
11074 else
11075 return ada_value_ind (arg1);
11076
11077 case STRUCTOP_STRUCT:
11078 tem = longest_to_int (exp->elts[pc + 1].longconst);
11079 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11080 preeval_pos = *pos;
11081 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11082 if (noside == EVAL_SKIP)
11083 goto nosideret;
11084 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11085 {
11086 struct type *type1 = value_type (arg1);
11087
11088 if (ada_is_tagged_type (type1, 1))
11089 {
11090 type = ada_lookup_struct_elt_type (type1,
11091 &exp->elts[pc + 2].string,
11092 1, 1);
11093
11094 /* If the field is not found, check if it exists in the
11095 extension of this object's type. This means that we
11096 need to evaluate completely the expression. */
11097
11098 if (type == NULL)
11099 {
11100 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11101 EVAL_NORMAL);
11102 arg1 = ada_value_struct_elt (arg1,
11103 &exp->elts[pc + 2].string,
11104 0);
11105 arg1 = unwrap_value (arg1);
11106 type = value_type (ada_to_fixed_value (arg1));
11107 }
11108 }
11109 else
11110 type =
11111 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11112 0);
11113
11114 return value_zero (ada_aligned_type (type), lval_memory);
11115 }
11116 else
11117 {
11118 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11119 arg1 = unwrap_value (arg1);
11120 return ada_to_fixed_value (arg1);
11121 }
11122
11123 case OP_TYPE:
11124 /* The value is not supposed to be used. This is here to make it
11125 easier to accommodate expressions that contain types. */
11126 (*pos) += 2;
11127 if (noside == EVAL_SKIP)
11128 goto nosideret;
11129 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11130 return allocate_value (exp->elts[pc + 1].type);
11131 else
11132 error (_("Attempt to use a type name as an expression"));
11133
11134 case OP_AGGREGATE:
11135 case OP_CHOICES:
11136 case OP_OTHERS:
11137 case OP_DISCRETE_RANGE:
11138 case OP_POSITIONAL:
11139 case OP_NAME:
11140 if (noside == EVAL_NORMAL)
11141 switch (op)
11142 {
11143 case OP_NAME:
11144 error (_("Undefined name, ambiguous name, or renaming used in "
11145 "component association: %s."), &exp->elts[pc+2].string);
11146 case OP_AGGREGATE:
11147 error (_("Aggregates only allowed on the right of an assignment"));
11148 default:
11149 internal_error (__FILE__, __LINE__,
11150 _("aggregate apparently mangled"));
11151 }
11152
11153 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11154 *pos += oplen - 1;
11155 for (tem = 0; tem < nargs; tem += 1)
11156 ada_evaluate_subexp (NULL, exp, pos, noside);
11157 goto nosideret;
11158 }
11159
11160 nosideret:
11161 return eval_skip_value (exp);
11162 }
11163 \f
11164
11165 /* Fixed point */
11166
11167 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11168 type name that encodes the 'small and 'delta information.
11169 Otherwise, return NULL. */
11170
11171 static const char *
11172 gnat_encoded_fixed_type_info (struct type *type)
11173 {
11174 const char *name = ada_type_name (type);
11175 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11176
11177 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11178 {
11179 const char *tail = strstr (name, "___XF_");
11180
11181 if (tail == NULL)
11182 return NULL;
11183 else
11184 return tail + 5;
11185 }
11186 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11187 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
11188 else
11189 return NULL;
11190 }
11191
11192 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11193
11194 int
11195 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11196 {
11197 return gnat_encoded_fixed_type_info (type) != NULL;
11198 }
11199
11200 /* Return non-zero iff TYPE represents a System.Address type. */
11201
11202 int
11203 ada_is_system_address_type (struct type *type)
11204 {
11205 return (type->name () && strcmp (type->name (), "system__address") == 0);
11206 }
11207
11208 /* Assuming that TYPE is the representation of an Ada fixed-point
11209 type, return the target floating-point type to be used to represent
11210 of this type during internal computation. */
11211
11212 static struct type *
11213 ada_scaling_type (struct type *type)
11214 {
11215 return builtin_type (get_type_arch (type))->builtin_long_double;
11216 }
11217
11218 /* Assuming that TYPE is the representation of an Ada fixed-point
11219 type, return its delta, or NULL if the type is malformed and the
11220 delta cannot be determined. */
11221
11222 struct value *
11223 gnat_encoded_fixed_point_delta (struct type *type)
11224 {
11225 const char *encoding = gnat_encoded_fixed_type_info (type);
11226 struct type *scale_type = ada_scaling_type (type);
11227
11228 long long num, den;
11229
11230 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11231 return nullptr;
11232 else
11233 return value_binop (value_from_longest (scale_type, num),
11234 value_from_longest (scale_type, den), BINOP_DIV);
11235 }
11236
11237 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11238 the scaling factor ('SMALL value) associated with the type. */
11239
11240 struct value *
11241 ada_scaling_factor (struct type *type)
11242 {
11243 const char *encoding = gnat_encoded_fixed_type_info (type);
11244 struct type *scale_type = ada_scaling_type (type);
11245
11246 long long num0, den0, num1, den1;
11247 int n;
11248
11249 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11250 &num0, &den0, &num1, &den1);
11251
11252 if (n < 2)
11253 return value_from_longest (scale_type, 1);
11254 else if (n == 4)
11255 return value_binop (value_from_longest (scale_type, num1),
11256 value_from_longest (scale_type, den1), BINOP_DIV);
11257 else
11258 return value_binop (value_from_longest (scale_type, num0),
11259 value_from_longest (scale_type, den0), BINOP_DIV);
11260 }
11261
11262 \f
11263
11264 /* Range types */
11265
11266 /* Scan STR beginning at position K for a discriminant name, and
11267 return the value of that discriminant field of DVAL in *PX. If
11268 PNEW_K is not null, put the position of the character beyond the
11269 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11270 not alter *PX and *PNEW_K if unsuccessful. */
11271
11272 static int
11273 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11274 int *pnew_k)
11275 {
11276 static char *bound_buffer = NULL;
11277 static size_t bound_buffer_len = 0;
11278 const char *pstart, *pend, *bound;
11279 struct value *bound_val;
11280
11281 if (dval == NULL || str == NULL || str[k] == '\0')
11282 return 0;
11283
11284 pstart = str + k;
11285 pend = strstr (pstart, "__");
11286 if (pend == NULL)
11287 {
11288 bound = pstart;
11289 k += strlen (bound);
11290 }
11291 else
11292 {
11293 int len = pend - pstart;
11294
11295 /* Strip __ and beyond. */
11296 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11297 strncpy (bound_buffer, pstart, len);
11298 bound_buffer[len] = '\0';
11299
11300 bound = bound_buffer;
11301 k = pend - str;
11302 }
11303
11304 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11305 if (bound_val == NULL)
11306 return 0;
11307
11308 *px = value_as_long (bound_val);
11309 if (pnew_k != NULL)
11310 *pnew_k = k;
11311 return 1;
11312 }
11313
11314 /* Value of variable named NAME in the current environment. If
11315 no such variable found, then if ERR_MSG is null, returns 0, and
11316 otherwise causes an error with message ERR_MSG. */
11317
11318 static struct value *
11319 get_var_value (const char *name, const char *err_msg)
11320 {
11321 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11322
11323 std::vector<struct block_symbol> syms;
11324 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11325 get_selected_block (0),
11326 VAR_DOMAIN, &syms, 1);
11327
11328 if (nsyms != 1)
11329 {
11330 if (err_msg == NULL)
11331 return 0;
11332 else
11333 error (("%s"), err_msg);
11334 }
11335
11336 return value_of_variable (syms[0].symbol, syms[0].block);
11337 }
11338
11339 /* Value of integer variable named NAME in the current environment.
11340 If no such variable is found, returns false. Otherwise, sets VALUE
11341 to the variable's value and returns true. */
11342
11343 bool
11344 get_int_var_value (const char *name, LONGEST &value)
11345 {
11346 struct value *var_val = get_var_value (name, 0);
11347
11348 if (var_val == 0)
11349 return false;
11350
11351 value = value_as_long (var_val);
11352 return true;
11353 }
11354
11355
11356 /* Return a range type whose base type is that of the range type named
11357 NAME in the current environment, and whose bounds are calculated
11358 from NAME according to the GNAT range encoding conventions.
11359 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11360 corresponding range type from debug information; fall back to using it
11361 if symbol lookup fails. If a new type must be created, allocate it
11362 like ORIG_TYPE was. The bounds information, in general, is encoded
11363 in NAME, the base type given in the named range type. */
11364
11365 static struct type *
11366 to_fixed_range_type (struct type *raw_type, struct value *dval)
11367 {
11368 const char *name;
11369 struct type *base_type;
11370 const char *subtype_info;
11371
11372 gdb_assert (raw_type != NULL);
11373 gdb_assert (raw_type->name () != NULL);
11374
11375 if (raw_type->code () == TYPE_CODE_RANGE)
11376 base_type = TYPE_TARGET_TYPE (raw_type);
11377 else
11378 base_type = raw_type;
11379
11380 name = raw_type->name ();
11381 subtype_info = strstr (name, "___XD");
11382 if (subtype_info == NULL)
11383 {
11384 LONGEST L = ada_discrete_type_low_bound (raw_type);
11385 LONGEST U = ada_discrete_type_high_bound (raw_type);
11386
11387 if (L < INT_MIN || U > INT_MAX)
11388 return raw_type;
11389 else
11390 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11391 L, U);
11392 }
11393 else
11394 {
11395 static char *name_buf = NULL;
11396 static size_t name_len = 0;
11397 int prefix_len = subtype_info - name;
11398 LONGEST L, U;
11399 struct type *type;
11400 const char *bounds_str;
11401 int n;
11402
11403 GROW_VECT (name_buf, name_len, prefix_len + 5);
11404 strncpy (name_buf, name, prefix_len);
11405 name_buf[prefix_len] = '\0';
11406
11407 subtype_info += 5;
11408 bounds_str = strchr (subtype_info, '_');
11409 n = 1;
11410
11411 if (*subtype_info == 'L')
11412 {
11413 if (!ada_scan_number (bounds_str, n, &L, &n)
11414 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11415 return raw_type;
11416 if (bounds_str[n] == '_')
11417 n += 2;
11418 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11419 n += 1;
11420 subtype_info += 1;
11421 }
11422 else
11423 {
11424 strcpy (name_buf + prefix_len, "___L");
11425 if (!get_int_var_value (name_buf, L))
11426 {
11427 lim_warning (_("Unknown lower bound, using 1."));
11428 L = 1;
11429 }
11430 }
11431
11432 if (*subtype_info == 'U')
11433 {
11434 if (!ada_scan_number (bounds_str, n, &U, &n)
11435 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11436 return raw_type;
11437 }
11438 else
11439 {
11440 strcpy (name_buf + prefix_len, "___U");
11441 if (!get_int_var_value (name_buf, U))
11442 {
11443 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11444 U = L;
11445 }
11446 }
11447
11448 type = create_static_range_type (alloc_type_copy (raw_type),
11449 base_type, L, U);
11450 /* create_static_range_type alters the resulting type's length
11451 to match the size of the base_type, which is not what we want.
11452 Set it back to the original range type's length. */
11453 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11454 type->set_name (name);
11455 return type;
11456 }
11457 }
11458
11459 /* True iff NAME is the name of a range type. */
11460
11461 int
11462 ada_is_range_type_name (const char *name)
11463 {
11464 return (name != NULL && strstr (name, "___XD"));
11465 }
11466 \f
11467
11468 /* Modular types */
11469
11470 /* True iff TYPE is an Ada modular type. */
11471
11472 int
11473 ada_is_modular_type (struct type *type)
11474 {
11475 struct type *subranged_type = get_base_type (type);
11476
11477 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11478 && subranged_type->code () == TYPE_CODE_INT
11479 && TYPE_UNSIGNED (subranged_type));
11480 }
11481
11482 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11483
11484 ULONGEST
11485 ada_modulus (struct type *type)
11486 {
11487 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11488 }
11489 \f
11490
11491 /* Ada exception catchpoint support:
11492 ---------------------------------
11493
11494 We support 3 kinds of exception catchpoints:
11495 . catchpoints on Ada exceptions
11496 . catchpoints on unhandled Ada exceptions
11497 . catchpoints on failed assertions
11498
11499 Exceptions raised during failed assertions, or unhandled exceptions
11500 could perfectly be caught with the general catchpoint on Ada exceptions.
11501 However, we can easily differentiate these two special cases, and having
11502 the option to distinguish these two cases from the rest can be useful
11503 to zero-in on certain situations.
11504
11505 Exception catchpoints are a specialized form of breakpoint,
11506 since they rely on inserting breakpoints inside known routines
11507 of the GNAT runtime. The implementation therefore uses a standard
11508 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11509 of breakpoint_ops.
11510
11511 Support in the runtime for exception catchpoints have been changed
11512 a few times already, and these changes affect the implementation
11513 of these catchpoints. In order to be able to support several
11514 variants of the runtime, we use a sniffer that will determine
11515 the runtime variant used by the program being debugged. */
11516
11517 /* Ada's standard exceptions.
11518
11519 The Ada 83 standard also defined Numeric_Error. But there so many
11520 situations where it was unclear from the Ada 83 Reference Manual
11521 (RM) whether Constraint_Error or Numeric_Error should be raised,
11522 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11523 Interpretation saying that anytime the RM says that Numeric_Error
11524 should be raised, the implementation may raise Constraint_Error.
11525 Ada 95 went one step further and pretty much removed Numeric_Error
11526 from the list of standard exceptions (it made it a renaming of
11527 Constraint_Error, to help preserve compatibility when compiling
11528 an Ada83 compiler). As such, we do not include Numeric_Error from
11529 this list of standard exceptions. */
11530
11531 static const char *standard_exc[] = {
11532 "constraint_error",
11533 "program_error",
11534 "storage_error",
11535 "tasking_error"
11536 };
11537
11538 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11539
11540 /* A structure that describes how to support exception catchpoints
11541 for a given executable. */
11542
11543 struct exception_support_info
11544 {
11545 /* The name of the symbol to break on in order to insert
11546 a catchpoint on exceptions. */
11547 const char *catch_exception_sym;
11548
11549 /* The name of the symbol to break on in order to insert
11550 a catchpoint on unhandled exceptions. */
11551 const char *catch_exception_unhandled_sym;
11552
11553 /* The name of the symbol to break on in order to insert
11554 a catchpoint on failed assertions. */
11555 const char *catch_assert_sym;
11556
11557 /* The name of the symbol to break on in order to insert
11558 a catchpoint on exception handling. */
11559 const char *catch_handlers_sym;
11560
11561 /* Assuming that the inferior just triggered an unhandled exception
11562 catchpoint, this function is responsible for returning the address
11563 in inferior memory where the name of that exception is stored.
11564 Return zero if the address could not be computed. */
11565 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11566 };
11567
11568 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11569 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11570
11571 /* The following exception support info structure describes how to
11572 implement exception catchpoints with the latest version of the
11573 Ada runtime (as of 2019-08-??). */
11574
11575 static const struct exception_support_info default_exception_support_info =
11576 {
11577 "__gnat_debug_raise_exception", /* catch_exception_sym */
11578 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11579 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11580 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11581 ada_unhandled_exception_name_addr
11582 };
11583
11584 /* The following exception support info structure describes how to
11585 implement exception catchpoints with an earlier version of the
11586 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11587
11588 static const struct exception_support_info exception_support_info_v0 =
11589 {
11590 "__gnat_debug_raise_exception", /* catch_exception_sym */
11591 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11592 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11593 "__gnat_begin_handler", /* catch_handlers_sym */
11594 ada_unhandled_exception_name_addr
11595 };
11596
11597 /* The following exception support info structure describes how to
11598 implement exception catchpoints with a slightly older version
11599 of the Ada runtime. */
11600
11601 static const struct exception_support_info exception_support_info_fallback =
11602 {
11603 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11604 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11605 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11606 "__gnat_begin_handler", /* catch_handlers_sym */
11607 ada_unhandled_exception_name_addr_from_raise
11608 };
11609
11610 /* Return nonzero if we can detect the exception support routines
11611 described in EINFO.
11612
11613 This function errors out if an abnormal situation is detected
11614 (for instance, if we find the exception support routines, but
11615 that support is found to be incomplete). */
11616
11617 static int
11618 ada_has_this_exception_support (const struct exception_support_info *einfo)
11619 {
11620 struct symbol *sym;
11621
11622 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11623 that should be compiled with debugging information. As a result, we
11624 expect to find that symbol in the symtabs. */
11625
11626 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11627 if (sym == NULL)
11628 {
11629 /* Perhaps we did not find our symbol because the Ada runtime was
11630 compiled without debugging info, or simply stripped of it.
11631 It happens on some GNU/Linux distributions for instance, where
11632 users have to install a separate debug package in order to get
11633 the runtime's debugging info. In that situation, let the user
11634 know why we cannot insert an Ada exception catchpoint.
11635
11636 Note: Just for the purpose of inserting our Ada exception
11637 catchpoint, we could rely purely on the associated minimal symbol.
11638 But we would be operating in degraded mode anyway, since we are
11639 still lacking the debugging info needed later on to extract
11640 the name of the exception being raised (this name is printed in
11641 the catchpoint message, and is also used when trying to catch
11642 a specific exception). We do not handle this case for now. */
11643 struct bound_minimal_symbol msym
11644 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11645
11646 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11647 error (_("Your Ada runtime appears to be missing some debugging "
11648 "information.\nCannot insert Ada exception catchpoint "
11649 "in this configuration."));
11650
11651 return 0;
11652 }
11653
11654 /* Make sure that the symbol we found corresponds to a function. */
11655
11656 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11657 {
11658 error (_("Symbol \"%s\" is not a function (class = %d)"),
11659 sym->linkage_name (), SYMBOL_CLASS (sym));
11660 return 0;
11661 }
11662
11663 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11664 if (sym == NULL)
11665 {
11666 struct bound_minimal_symbol msym
11667 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11668
11669 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11670 error (_("Your Ada runtime appears to be missing some debugging "
11671 "information.\nCannot insert Ada exception catchpoint "
11672 "in this configuration."));
11673
11674 return 0;
11675 }
11676
11677 /* Make sure that the symbol we found corresponds to a function. */
11678
11679 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11680 {
11681 error (_("Symbol \"%s\" is not a function (class = %d)"),
11682 sym->linkage_name (), SYMBOL_CLASS (sym));
11683 return 0;
11684 }
11685
11686 return 1;
11687 }
11688
11689 /* Inspect the Ada runtime and determine which exception info structure
11690 should be used to provide support for exception catchpoints.
11691
11692 This function will always set the per-inferior exception_info,
11693 or raise an error. */
11694
11695 static void
11696 ada_exception_support_info_sniffer (void)
11697 {
11698 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11699
11700 /* If the exception info is already known, then no need to recompute it. */
11701 if (data->exception_info != NULL)
11702 return;
11703
11704 /* Check the latest (default) exception support info. */
11705 if (ada_has_this_exception_support (&default_exception_support_info))
11706 {
11707 data->exception_info = &default_exception_support_info;
11708 return;
11709 }
11710
11711 /* Try the v0 exception suport info. */
11712 if (ada_has_this_exception_support (&exception_support_info_v0))
11713 {
11714 data->exception_info = &exception_support_info_v0;
11715 return;
11716 }
11717
11718 /* Try our fallback exception suport info. */
11719 if (ada_has_this_exception_support (&exception_support_info_fallback))
11720 {
11721 data->exception_info = &exception_support_info_fallback;
11722 return;
11723 }
11724
11725 /* Sometimes, it is normal for us to not be able to find the routine
11726 we are looking for. This happens when the program is linked with
11727 the shared version of the GNAT runtime, and the program has not been
11728 started yet. Inform the user of these two possible causes if
11729 applicable. */
11730
11731 if (ada_update_initial_language (language_unknown) != language_ada)
11732 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11733
11734 /* If the symbol does not exist, then check that the program is
11735 already started, to make sure that shared libraries have been
11736 loaded. If it is not started, this may mean that the symbol is
11737 in a shared library. */
11738
11739 if (inferior_ptid.pid () == 0)
11740 error (_("Unable to insert catchpoint. Try to start the program first."));
11741
11742 /* At this point, we know that we are debugging an Ada program and
11743 that the inferior has been started, but we still are not able to
11744 find the run-time symbols. That can mean that we are in
11745 configurable run time mode, or that a-except as been optimized
11746 out by the linker... In any case, at this point it is not worth
11747 supporting this feature. */
11748
11749 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11750 }
11751
11752 /* True iff FRAME is very likely to be that of a function that is
11753 part of the runtime system. This is all very heuristic, but is
11754 intended to be used as advice as to what frames are uninteresting
11755 to most users. */
11756
11757 static int
11758 is_known_support_routine (struct frame_info *frame)
11759 {
11760 enum language func_lang;
11761 int i;
11762 const char *fullname;
11763
11764 /* If this code does not have any debugging information (no symtab),
11765 This cannot be any user code. */
11766
11767 symtab_and_line sal = find_frame_sal (frame);
11768 if (sal.symtab == NULL)
11769 return 1;
11770
11771 /* If there is a symtab, but the associated source file cannot be
11772 located, then assume this is not user code: Selecting a frame
11773 for which we cannot display the code would not be very helpful
11774 for the user. This should also take care of case such as VxWorks
11775 where the kernel has some debugging info provided for a few units. */
11776
11777 fullname = symtab_to_fullname (sal.symtab);
11778 if (access (fullname, R_OK) != 0)
11779 return 1;
11780
11781 /* Check the unit filename against the Ada runtime file naming.
11782 We also check the name of the objfile against the name of some
11783 known system libraries that sometimes come with debugging info
11784 too. */
11785
11786 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11787 {
11788 re_comp (known_runtime_file_name_patterns[i]);
11789 if (re_exec (lbasename (sal.symtab->filename)))
11790 return 1;
11791 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11792 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11793 return 1;
11794 }
11795
11796 /* Check whether the function is a GNAT-generated entity. */
11797
11798 gdb::unique_xmalloc_ptr<char> func_name
11799 = find_frame_funname (frame, &func_lang, NULL);
11800 if (func_name == NULL)
11801 return 1;
11802
11803 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11804 {
11805 re_comp (known_auxiliary_function_name_patterns[i]);
11806 if (re_exec (func_name.get ()))
11807 return 1;
11808 }
11809
11810 return 0;
11811 }
11812
11813 /* Find the first frame that contains debugging information and that is not
11814 part of the Ada run-time, starting from FI and moving upward. */
11815
11816 void
11817 ada_find_printable_frame (struct frame_info *fi)
11818 {
11819 for (; fi != NULL; fi = get_prev_frame (fi))
11820 {
11821 if (!is_known_support_routine (fi))
11822 {
11823 select_frame (fi);
11824 break;
11825 }
11826 }
11827
11828 }
11829
11830 /* Assuming that the inferior just triggered an unhandled exception
11831 catchpoint, return the address in inferior memory where the name
11832 of the exception is stored.
11833
11834 Return zero if the address could not be computed. */
11835
11836 static CORE_ADDR
11837 ada_unhandled_exception_name_addr (void)
11838 {
11839 return parse_and_eval_address ("e.full_name");
11840 }
11841
11842 /* Same as ada_unhandled_exception_name_addr, except that this function
11843 should be used when the inferior uses an older version of the runtime,
11844 where the exception name needs to be extracted from a specific frame
11845 several frames up in the callstack. */
11846
11847 static CORE_ADDR
11848 ada_unhandled_exception_name_addr_from_raise (void)
11849 {
11850 int frame_level;
11851 struct frame_info *fi;
11852 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11853
11854 /* To determine the name of this exception, we need to select
11855 the frame corresponding to RAISE_SYM_NAME. This frame is
11856 at least 3 levels up, so we simply skip the first 3 frames
11857 without checking the name of their associated function. */
11858 fi = get_current_frame ();
11859 for (frame_level = 0; frame_level < 3; frame_level += 1)
11860 if (fi != NULL)
11861 fi = get_prev_frame (fi);
11862
11863 while (fi != NULL)
11864 {
11865 enum language func_lang;
11866
11867 gdb::unique_xmalloc_ptr<char> func_name
11868 = find_frame_funname (fi, &func_lang, NULL);
11869 if (func_name != NULL)
11870 {
11871 if (strcmp (func_name.get (),
11872 data->exception_info->catch_exception_sym) == 0)
11873 break; /* We found the frame we were looking for... */
11874 }
11875 fi = get_prev_frame (fi);
11876 }
11877
11878 if (fi == NULL)
11879 return 0;
11880
11881 select_frame (fi);
11882 return parse_and_eval_address ("id.full_name");
11883 }
11884
11885 /* Assuming the inferior just triggered an Ada exception catchpoint
11886 (of any type), return the address in inferior memory where the name
11887 of the exception is stored, if applicable.
11888
11889 Assumes the selected frame is the current frame.
11890
11891 Return zero if the address could not be computed, or if not relevant. */
11892
11893 static CORE_ADDR
11894 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11895 struct breakpoint *b)
11896 {
11897 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11898
11899 switch (ex)
11900 {
11901 case ada_catch_exception:
11902 return (parse_and_eval_address ("e.full_name"));
11903 break;
11904
11905 case ada_catch_exception_unhandled:
11906 return data->exception_info->unhandled_exception_name_addr ();
11907 break;
11908
11909 case ada_catch_handlers:
11910 return 0; /* The runtimes does not provide access to the exception
11911 name. */
11912 break;
11913
11914 case ada_catch_assert:
11915 return 0; /* Exception name is not relevant in this case. */
11916 break;
11917
11918 default:
11919 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11920 break;
11921 }
11922
11923 return 0; /* Should never be reached. */
11924 }
11925
11926 /* Assuming the inferior is stopped at an exception catchpoint,
11927 return the message which was associated to the exception, if
11928 available. Return NULL if the message could not be retrieved.
11929
11930 Note: The exception message can be associated to an exception
11931 either through the use of the Raise_Exception function, or
11932 more simply (Ada 2005 and later), via:
11933
11934 raise Exception_Name with "exception message";
11935
11936 */
11937
11938 static gdb::unique_xmalloc_ptr<char>
11939 ada_exception_message_1 (void)
11940 {
11941 struct value *e_msg_val;
11942 int e_msg_len;
11943
11944 /* For runtimes that support this feature, the exception message
11945 is passed as an unbounded string argument called "message". */
11946 e_msg_val = parse_and_eval ("message");
11947 if (e_msg_val == NULL)
11948 return NULL; /* Exception message not supported. */
11949
11950 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11951 gdb_assert (e_msg_val != NULL);
11952 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11953
11954 /* If the message string is empty, then treat it as if there was
11955 no exception message. */
11956 if (e_msg_len <= 0)
11957 return NULL;
11958
11959 return target_read_string (value_address (e_msg_val), INT_MAX);
11960 }
11961
11962 /* Same as ada_exception_message_1, except that all exceptions are
11963 contained here (returning NULL instead). */
11964
11965 static gdb::unique_xmalloc_ptr<char>
11966 ada_exception_message (void)
11967 {
11968 gdb::unique_xmalloc_ptr<char> e_msg;
11969
11970 try
11971 {
11972 e_msg = ada_exception_message_1 ();
11973 }
11974 catch (const gdb_exception_error &e)
11975 {
11976 e_msg.reset (nullptr);
11977 }
11978
11979 return e_msg;
11980 }
11981
11982 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11983 any error that ada_exception_name_addr_1 might cause to be thrown.
11984 When an error is intercepted, a warning with the error message is printed,
11985 and zero is returned. */
11986
11987 static CORE_ADDR
11988 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11989 struct breakpoint *b)
11990 {
11991 CORE_ADDR result = 0;
11992
11993 try
11994 {
11995 result = ada_exception_name_addr_1 (ex, b);
11996 }
11997
11998 catch (const gdb_exception_error &e)
11999 {
12000 warning (_("failed to get exception name: %s"), e.what ());
12001 return 0;
12002 }
12003
12004 return result;
12005 }
12006
12007 static std::string ada_exception_catchpoint_cond_string
12008 (const char *excep_string,
12009 enum ada_exception_catchpoint_kind ex);
12010
12011 /* Ada catchpoints.
12012
12013 In the case of catchpoints on Ada exceptions, the catchpoint will
12014 stop the target on every exception the program throws. When a user
12015 specifies the name of a specific exception, we translate this
12016 request into a condition expression (in text form), and then parse
12017 it into an expression stored in each of the catchpoint's locations.
12018 We then use this condition to check whether the exception that was
12019 raised is the one the user is interested in. If not, then the
12020 target is resumed again. We store the name of the requested
12021 exception, in order to be able to re-set the condition expression
12022 when symbols change. */
12023
12024 /* An instance of this type is used to represent an Ada catchpoint
12025 breakpoint location. */
12026
12027 class ada_catchpoint_location : public bp_location
12028 {
12029 public:
12030 ada_catchpoint_location (breakpoint *owner)
12031 : bp_location (owner, bp_loc_software_breakpoint)
12032 {}
12033
12034 /* The condition that checks whether the exception that was raised
12035 is the specific exception the user specified on catchpoint
12036 creation. */
12037 expression_up excep_cond_expr;
12038 };
12039
12040 /* An instance of this type is used to represent an Ada catchpoint. */
12041
12042 struct ada_catchpoint : public breakpoint
12043 {
12044 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12045 : m_kind (kind)
12046 {
12047 }
12048
12049 /* The name of the specific exception the user specified. */
12050 std::string excep_string;
12051
12052 /* What kind of catchpoint this is. */
12053 enum ada_exception_catchpoint_kind m_kind;
12054 };
12055
12056 /* Parse the exception condition string in the context of each of the
12057 catchpoint's locations, and store them for later evaluation. */
12058
12059 static void
12060 create_excep_cond_exprs (struct ada_catchpoint *c,
12061 enum ada_exception_catchpoint_kind ex)
12062 {
12063 struct bp_location *bl;
12064
12065 /* Nothing to do if there's no specific exception to catch. */
12066 if (c->excep_string.empty ())
12067 return;
12068
12069 /* Same if there are no locations... */
12070 if (c->loc == NULL)
12071 return;
12072
12073 /* Compute the condition expression in text form, from the specific
12074 expection we want to catch. */
12075 std::string cond_string
12076 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12077
12078 /* Iterate over all the catchpoint's locations, and parse an
12079 expression for each. */
12080 for (bl = c->loc; bl != NULL; bl = bl->next)
12081 {
12082 struct ada_catchpoint_location *ada_loc
12083 = (struct ada_catchpoint_location *) bl;
12084 expression_up exp;
12085
12086 if (!bl->shlib_disabled)
12087 {
12088 const char *s;
12089
12090 s = cond_string.c_str ();
12091 try
12092 {
12093 exp = parse_exp_1 (&s, bl->address,
12094 block_for_pc (bl->address),
12095 0);
12096 }
12097 catch (const gdb_exception_error &e)
12098 {
12099 warning (_("failed to reevaluate internal exception condition "
12100 "for catchpoint %d: %s"),
12101 c->number, e.what ());
12102 }
12103 }
12104
12105 ada_loc->excep_cond_expr = std::move (exp);
12106 }
12107 }
12108
12109 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12110 structure for all exception catchpoint kinds. */
12111
12112 static struct bp_location *
12113 allocate_location_exception (struct breakpoint *self)
12114 {
12115 return new ada_catchpoint_location (self);
12116 }
12117
12118 /* Implement the RE_SET method in the breakpoint_ops structure for all
12119 exception catchpoint kinds. */
12120
12121 static void
12122 re_set_exception (struct breakpoint *b)
12123 {
12124 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12125
12126 /* Call the base class's method. This updates the catchpoint's
12127 locations. */
12128 bkpt_breakpoint_ops.re_set (b);
12129
12130 /* Reparse the exception conditional expressions. One for each
12131 location. */
12132 create_excep_cond_exprs (c, c->m_kind);
12133 }
12134
12135 /* Returns true if we should stop for this breakpoint hit. If the
12136 user specified a specific exception, we only want to cause a stop
12137 if the program thrown that exception. */
12138
12139 static int
12140 should_stop_exception (const struct bp_location *bl)
12141 {
12142 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12143 const struct ada_catchpoint_location *ada_loc
12144 = (const struct ada_catchpoint_location *) bl;
12145 int stop;
12146
12147 struct internalvar *var = lookup_internalvar ("_ada_exception");
12148 if (c->m_kind == ada_catch_assert)
12149 clear_internalvar (var);
12150 else
12151 {
12152 try
12153 {
12154 const char *expr;
12155
12156 if (c->m_kind == ada_catch_handlers)
12157 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12158 ".all.occurrence.id");
12159 else
12160 expr = "e";
12161
12162 struct value *exc = parse_and_eval (expr);
12163 set_internalvar (var, exc);
12164 }
12165 catch (const gdb_exception_error &ex)
12166 {
12167 clear_internalvar (var);
12168 }
12169 }
12170
12171 /* With no specific exception, should always stop. */
12172 if (c->excep_string.empty ())
12173 return 1;
12174
12175 if (ada_loc->excep_cond_expr == NULL)
12176 {
12177 /* We will have a NULL expression if back when we were creating
12178 the expressions, this location's had failed to parse. */
12179 return 1;
12180 }
12181
12182 stop = 1;
12183 try
12184 {
12185 struct value *mark;
12186
12187 mark = value_mark ();
12188 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12189 value_free_to_mark (mark);
12190 }
12191 catch (const gdb_exception &ex)
12192 {
12193 exception_fprintf (gdb_stderr, ex,
12194 _("Error in testing exception condition:\n"));
12195 }
12196
12197 return stop;
12198 }
12199
12200 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12201 for all exception catchpoint kinds. */
12202
12203 static void
12204 check_status_exception (bpstat bs)
12205 {
12206 bs->stop = should_stop_exception (bs->bp_location_at);
12207 }
12208
12209 /* Implement the PRINT_IT method in the breakpoint_ops structure
12210 for all exception catchpoint kinds. */
12211
12212 static enum print_stop_action
12213 print_it_exception (bpstat bs)
12214 {
12215 struct ui_out *uiout = current_uiout;
12216 struct breakpoint *b = bs->breakpoint_at;
12217
12218 annotate_catchpoint (b->number);
12219
12220 if (uiout->is_mi_like_p ())
12221 {
12222 uiout->field_string ("reason",
12223 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12224 uiout->field_string ("disp", bpdisp_text (b->disposition));
12225 }
12226
12227 uiout->text (b->disposition == disp_del
12228 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12229 uiout->field_signed ("bkptno", b->number);
12230 uiout->text (", ");
12231
12232 /* ada_exception_name_addr relies on the selected frame being the
12233 current frame. Need to do this here because this function may be
12234 called more than once when printing a stop, and below, we'll
12235 select the first frame past the Ada run-time (see
12236 ada_find_printable_frame). */
12237 select_frame (get_current_frame ());
12238
12239 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12240 switch (c->m_kind)
12241 {
12242 case ada_catch_exception:
12243 case ada_catch_exception_unhandled:
12244 case ada_catch_handlers:
12245 {
12246 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12247 char exception_name[256];
12248
12249 if (addr != 0)
12250 {
12251 read_memory (addr, (gdb_byte *) exception_name,
12252 sizeof (exception_name) - 1);
12253 exception_name [sizeof (exception_name) - 1] = '\0';
12254 }
12255 else
12256 {
12257 /* For some reason, we were unable to read the exception
12258 name. This could happen if the Runtime was compiled
12259 without debugging info, for instance. In that case,
12260 just replace the exception name by the generic string
12261 "exception" - it will read as "an exception" in the
12262 notification we are about to print. */
12263 memcpy (exception_name, "exception", sizeof ("exception"));
12264 }
12265 /* In the case of unhandled exception breakpoints, we print
12266 the exception name as "unhandled EXCEPTION_NAME", to make
12267 it clearer to the user which kind of catchpoint just got
12268 hit. We used ui_out_text to make sure that this extra
12269 info does not pollute the exception name in the MI case. */
12270 if (c->m_kind == ada_catch_exception_unhandled)
12271 uiout->text ("unhandled ");
12272 uiout->field_string ("exception-name", exception_name);
12273 }
12274 break;
12275 case ada_catch_assert:
12276 /* In this case, the name of the exception is not really
12277 important. Just print "failed assertion" to make it clearer
12278 that his program just hit an assertion-failure catchpoint.
12279 We used ui_out_text because this info does not belong in
12280 the MI output. */
12281 uiout->text ("failed assertion");
12282 break;
12283 }
12284
12285 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12286 if (exception_message != NULL)
12287 {
12288 uiout->text (" (");
12289 uiout->field_string ("exception-message", exception_message.get ());
12290 uiout->text (")");
12291 }
12292
12293 uiout->text (" at ");
12294 ada_find_printable_frame (get_current_frame ());
12295
12296 return PRINT_SRC_AND_LOC;
12297 }
12298
12299 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12300 for all exception catchpoint kinds. */
12301
12302 static void
12303 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12304 {
12305 struct ui_out *uiout = current_uiout;
12306 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12307 struct value_print_options opts;
12308
12309 get_user_print_options (&opts);
12310
12311 if (opts.addressprint)
12312 uiout->field_skip ("addr");
12313
12314 annotate_field (5);
12315 switch (c->m_kind)
12316 {
12317 case ada_catch_exception:
12318 if (!c->excep_string.empty ())
12319 {
12320 std::string msg = string_printf (_("`%s' Ada exception"),
12321 c->excep_string.c_str ());
12322
12323 uiout->field_string ("what", msg);
12324 }
12325 else
12326 uiout->field_string ("what", "all Ada exceptions");
12327
12328 break;
12329
12330 case ada_catch_exception_unhandled:
12331 uiout->field_string ("what", "unhandled Ada exceptions");
12332 break;
12333
12334 case ada_catch_handlers:
12335 if (!c->excep_string.empty ())
12336 {
12337 uiout->field_fmt ("what",
12338 _("`%s' Ada exception handlers"),
12339 c->excep_string.c_str ());
12340 }
12341 else
12342 uiout->field_string ("what", "all Ada exceptions handlers");
12343 break;
12344
12345 case ada_catch_assert:
12346 uiout->field_string ("what", "failed Ada assertions");
12347 break;
12348
12349 default:
12350 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12351 break;
12352 }
12353 }
12354
12355 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12356 for all exception catchpoint kinds. */
12357
12358 static void
12359 print_mention_exception (struct breakpoint *b)
12360 {
12361 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12362 struct ui_out *uiout = current_uiout;
12363
12364 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12365 : _("Catchpoint "));
12366 uiout->field_signed ("bkptno", b->number);
12367 uiout->text (": ");
12368
12369 switch (c->m_kind)
12370 {
12371 case ada_catch_exception:
12372 if (!c->excep_string.empty ())
12373 {
12374 std::string info = string_printf (_("`%s' Ada exception"),
12375 c->excep_string.c_str ());
12376 uiout->text (info.c_str ());
12377 }
12378 else
12379 uiout->text (_("all Ada exceptions"));
12380 break;
12381
12382 case ada_catch_exception_unhandled:
12383 uiout->text (_("unhandled Ada exceptions"));
12384 break;
12385
12386 case ada_catch_handlers:
12387 if (!c->excep_string.empty ())
12388 {
12389 std::string info
12390 = string_printf (_("`%s' Ada exception handlers"),
12391 c->excep_string.c_str ());
12392 uiout->text (info.c_str ());
12393 }
12394 else
12395 uiout->text (_("all Ada exceptions handlers"));
12396 break;
12397
12398 case ada_catch_assert:
12399 uiout->text (_("failed Ada assertions"));
12400 break;
12401
12402 default:
12403 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12404 break;
12405 }
12406 }
12407
12408 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12409 for all exception catchpoint kinds. */
12410
12411 static void
12412 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12413 {
12414 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12415
12416 switch (c->m_kind)
12417 {
12418 case ada_catch_exception:
12419 fprintf_filtered (fp, "catch exception");
12420 if (!c->excep_string.empty ())
12421 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12422 break;
12423
12424 case ada_catch_exception_unhandled:
12425 fprintf_filtered (fp, "catch exception unhandled");
12426 break;
12427
12428 case ada_catch_handlers:
12429 fprintf_filtered (fp, "catch handlers");
12430 break;
12431
12432 case ada_catch_assert:
12433 fprintf_filtered (fp, "catch assert");
12434 break;
12435
12436 default:
12437 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12438 }
12439 print_recreate_thread (b, fp);
12440 }
12441
12442 /* Virtual tables for various breakpoint types. */
12443 static struct breakpoint_ops catch_exception_breakpoint_ops;
12444 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12445 static struct breakpoint_ops catch_assert_breakpoint_ops;
12446 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12447
12448 /* See ada-lang.h. */
12449
12450 bool
12451 is_ada_exception_catchpoint (breakpoint *bp)
12452 {
12453 return (bp->ops == &catch_exception_breakpoint_ops
12454 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12455 || bp->ops == &catch_assert_breakpoint_ops
12456 || bp->ops == &catch_handlers_breakpoint_ops);
12457 }
12458
12459 /* Split the arguments specified in a "catch exception" command.
12460 Set EX to the appropriate catchpoint type.
12461 Set EXCEP_STRING to the name of the specific exception if
12462 specified by the user.
12463 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12464 "catch handlers" command. False otherwise.
12465 If a condition is found at the end of the arguments, the condition
12466 expression is stored in COND_STRING (memory must be deallocated
12467 after use). Otherwise COND_STRING is set to NULL. */
12468
12469 static void
12470 catch_ada_exception_command_split (const char *args,
12471 bool is_catch_handlers_cmd,
12472 enum ada_exception_catchpoint_kind *ex,
12473 std::string *excep_string,
12474 std::string *cond_string)
12475 {
12476 std::string exception_name;
12477
12478 exception_name = extract_arg (&args);
12479 if (exception_name == "if")
12480 {
12481 /* This is not an exception name; this is the start of a condition
12482 expression for a catchpoint on all exceptions. So, "un-get"
12483 this token, and set exception_name to NULL. */
12484 exception_name.clear ();
12485 args -= 2;
12486 }
12487
12488 /* Check to see if we have a condition. */
12489
12490 args = skip_spaces (args);
12491 if (startswith (args, "if")
12492 && (isspace (args[2]) || args[2] == '\0'))
12493 {
12494 args += 2;
12495 args = skip_spaces (args);
12496
12497 if (args[0] == '\0')
12498 error (_("Condition missing after `if' keyword"));
12499 *cond_string = args;
12500
12501 args += strlen (args);
12502 }
12503
12504 /* Check that we do not have any more arguments. Anything else
12505 is unexpected. */
12506
12507 if (args[0] != '\0')
12508 error (_("Junk at end of expression"));
12509
12510 if (is_catch_handlers_cmd)
12511 {
12512 /* Catch handling of exceptions. */
12513 *ex = ada_catch_handlers;
12514 *excep_string = exception_name;
12515 }
12516 else if (exception_name.empty ())
12517 {
12518 /* Catch all exceptions. */
12519 *ex = ada_catch_exception;
12520 excep_string->clear ();
12521 }
12522 else if (exception_name == "unhandled")
12523 {
12524 /* Catch unhandled exceptions. */
12525 *ex = ada_catch_exception_unhandled;
12526 excep_string->clear ();
12527 }
12528 else
12529 {
12530 /* Catch a specific exception. */
12531 *ex = ada_catch_exception;
12532 *excep_string = exception_name;
12533 }
12534 }
12535
12536 /* Return the name of the symbol on which we should break in order to
12537 implement a catchpoint of the EX kind. */
12538
12539 static const char *
12540 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12541 {
12542 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12543
12544 gdb_assert (data->exception_info != NULL);
12545
12546 switch (ex)
12547 {
12548 case ada_catch_exception:
12549 return (data->exception_info->catch_exception_sym);
12550 break;
12551 case ada_catch_exception_unhandled:
12552 return (data->exception_info->catch_exception_unhandled_sym);
12553 break;
12554 case ada_catch_assert:
12555 return (data->exception_info->catch_assert_sym);
12556 break;
12557 case ada_catch_handlers:
12558 return (data->exception_info->catch_handlers_sym);
12559 break;
12560 default:
12561 internal_error (__FILE__, __LINE__,
12562 _("unexpected catchpoint kind (%d)"), ex);
12563 }
12564 }
12565
12566 /* Return the breakpoint ops "virtual table" used for catchpoints
12567 of the EX kind. */
12568
12569 static const struct breakpoint_ops *
12570 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12571 {
12572 switch (ex)
12573 {
12574 case ada_catch_exception:
12575 return (&catch_exception_breakpoint_ops);
12576 break;
12577 case ada_catch_exception_unhandled:
12578 return (&catch_exception_unhandled_breakpoint_ops);
12579 break;
12580 case ada_catch_assert:
12581 return (&catch_assert_breakpoint_ops);
12582 break;
12583 case ada_catch_handlers:
12584 return (&catch_handlers_breakpoint_ops);
12585 break;
12586 default:
12587 internal_error (__FILE__, __LINE__,
12588 _("unexpected catchpoint kind (%d)"), ex);
12589 }
12590 }
12591
12592 /* Return the condition that will be used to match the current exception
12593 being raised with the exception that the user wants to catch. This
12594 assumes that this condition is used when the inferior just triggered
12595 an exception catchpoint.
12596 EX: the type of catchpoints used for catching Ada exceptions. */
12597
12598 static std::string
12599 ada_exception_catchpoint_cond_string (const char *excep_string,
12600 enum ada_exception_catchpoint_kind ex)
12601 {
12602 int i;
12603 bool is_standard_exc = false;
12604 std::string result;
12605
12606 if (ex == ada_catch_handlers)
12607 {
12608 /* For exception handlers catchpoints, the condition string does
12609 not use the same parameter as for the other exceptions. */
12610 result = ("long_integer (GNAT_GCC_exception_Access"
12611 "(gcc_exception).all.occurrence.id)");
12612 }
12613 else
12614 result = "long_integer (e)";
12615
12616 /* The standard exceptions are a special case. They are defined in
12617 runtime units that have been compiled without debugging info; if
12618 EXCEP_STRING is the not-fully-qualified name of a standard
12619 exception (e.g. "constraint_error") then, during the evaluation
12620 of the condition expression, the symbol lookup on this name would
12621 *not* return this standard exception. The catchpoint condition
12622 may then be set only on user-defined exceptions which have the
12623 same not-fully-qualified name (e.g. my_package.constraint_error).
12624
12625 To avoid this unexcepted behavior, these standard exceptions are
12626 systematically prefixed by "standard". This means that "catch
12627 exception constraint_error" is rewritten into "catch exception
12628 standard.constraint_error".
12629
12630 If an exception named constraint_error is defined in another package of
12631 the inferior program, then the only way to specify this exception as a
12632 breakpoint condition is to use its fully-qualified named:
12633 e.g. my_package.constraint_error. */
12634
12635 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12636 {
12637 if (strcmp (standard_exc [i], excep_string) == 0)
12638 {
12639 is_standard_exc = true;
12640 break;
12641 }
12642 }
12643
12644 result += " = ";
12645
12646 if (is_standard_exc)
12647 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12648 else
12649 string_appendf (result, "long_integer (&%s)", excep_string);
12650
12651 return result;
12652 }
12653
12654 /* Return the symtab_and_line that should be used to insert an exception
12655 catchpoint of the TYPE kind.
12656
12657 ADDR_STRING returns the name of the function where the real
12658 breakpoint that implements the catchpoints is set, depending on the
12659 type of catchpoint we need to create. */
12660
12661 static struct symtab_and_line
12662 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12663 std::string *addr_string, const struct breakpoint_ops **ops)
12664 {
12665 const char *sym_name;
12666 struct symbol *sym;
12667
12668 /* First, find out which exception support info to use. */
12669 ada_exception_support_info_sniffer ();
12670
12671 /* Then lookup the function on which we will break in order to catch
12672 the Ada exceptions requested by the user. */
12673 sym_name = ada_exception_sym_name (ex);
12674 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12675
12676 if (sym == NULL)
12677 error (_("Catchpoint symbol not found: %s"), sym_name);
12678
12679 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12680 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12681
12682 /* Set ADDR_STRING. */
12683 *addr_string = sym_name;
12684
12685 /* Set OPS. */
12686 *ops = ada_exception_breakpoint_ops (ex);
12687
12688 return find_function_start_sal (sym, 1);
12689 }
12690
12691 /* Create an Ada exception catchpoint.
12692
12693 EX_KIND is the kind of exception catchpoint to be created.
12694
12695 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12696 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12697 of the exception to which this catchpoint applies.
12698
12699 COND_STRING, if not empty, is the catchpoint condition.
12700
12701 TEMPFLAG, if nonzero, means that the underlying breakpoint
12702 should be temporary.
12703
12704 FROM_TTY is the usual argument passed to all commands implementations. */
12705
12706 void
12707 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12708 enum ada_exception_catchpoint_kind ex_kind,
12709 const std::string &excep_string,
12710 const std::string &cond_string,
12711 int tempflag,
12712 int disabled,
12713 int from_tty)
12714 {
12715 std::string addr_string;
12716 const struct breakpoint_ops *ops = NULL;
12717 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12718
12719 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12720 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12721 ops, tempflag, disabled, from_tty);
12722 c->excep_string = excep_string;
12723 create_excep_cond_exprs (c.get (), ex_kind);
12724 if (!cond_string.empty ())
12725 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12726 install_breakpoint (0, std::move (c), 1);
12727 }
12728
12729 /* Implement the "catch exception" command. */
12730
12731 static void
12732 catch_ada_exception_command (const char *arg_entry, int from_tty,
12733 struct cmd_list_element *command)
12734 {
12735 const char *arg = arg_entry;
12736 struct gdbarch *gdbarch = get_current_arch ();
12737 int tempflag;
12738 enum ada_exception_catchpoint_kind ex_kind;
12739 std::string excep_string;
12740 std::string cond_string;
12741
12742 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12743
12744 if (!arg)
12745 arg = "";
12746 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12747 &cond_string);
12748 create_ada_exception_catchpoint (gdbarch, ex_kind,
12749 excep_string, cond_string,
12750 tempflag, 1 /* enabled */,
12751 from_tty);
12752 }
12753
12754 /* Implement the "catch handlers" command. */
12755
12756 static void
12757 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12758 struct cmd_list_element *command)
12759 {
12760 const char *arg = arg_entry;
12761 struct gdbarch *gdbarch = get_current_arch ();
12762 int tempflag;
12763 enum ada_exception_catchpoint_kind ex_kind;
12764 std::string excep_string;
12765 std::string cond_string;
12766
12767 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12768
12769 if (!arg)
12770 arg = "";
12771 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12772 &cond_string);
12773 create_ada_exception_catchpoint (gdbarch, ex_kind,
12774 excep_string, cond_string,
12775 tempflag, 1 /* enabled */,
12776 from_tty);
12777 }
12778
12779 /* Completion function for the Ada "catch" commands. */
12780
12781 static void
12782 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12783 const char *text, const char *word)
12784 {
12785 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12786
12787 for (const ada_exc_info &info : exceptions)
12788 {
12789 if (startswith (info.name, word))
12790 tracker.add_completion (make_unique_xstrdup (info.name));
12791 }
12792 }
12793
12794 /* Split the arguments specified in a "catch assert" command.
12795
12796 ARGS contains the command's arguments (or the empty string if
12797 no arguments were passed).
12798
12799 If ARGS contains a condition, set COND_STRING to that condition
12800 (the memory needs to be deallocated after use). */
12801
12802 static void
12803 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12804 {
12805 args = skip_spaces (args);
12806
12807 /* Check whether a condition was provided. */
12808 if (startswith (args, "if")
12809 && (isspace (args[2]) || args[2] == '\0'))
12810 {
12811 args += 2;
12812 args = skip_spaces (args);
12813 if (args[0] == '\0')
12814 error (_("condition missing after `if' keyword"));
12815 cond_string.assign (args);
12816 }
12817
12818 /* Otherwise, there should be no other argument at the end of
12819 the command. */
12820 else if (args[0] != '\0')
12821 error (_("Junk at end of arguments."));
12822 }
12823
12824 /* Implement the "catch assert" command. */
12825
12826 static void
12827 catch_assert_command (const char *arg_entry, int from_tty,
12828 struct cmd_list_element *command)
12829 {
12830 const char *arg = arg_entry;
12831 struct gdbarch *gdbarch = get_current_arch ();
12832 int tempflag;
12833 std::string cond_string;
12834
12835 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12836
12837 if (!arg)
12838 arg = "";
12839 catch_ada_assert_command_split (arg, cond_string);
12840 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12841 "", cond_string,
12842 tempflag, 1 /* enabled */,
12843 from_tty);
12844 }
12845
12846 /* Return non-zero if the symbol SYM is an Ada exception object. */
12847
12848 static int
12849 ada_is_exception_sym (struct symbol *sym)
12850 {
12851 const char *type_name = SYMBOL_TYPE (sym)->name ();
12852
12853 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12854 && SYMBOL_CLASS (sym) != LOC_BLOCK
12855 && SYMBOL_CLASS (sym) != LOC_CONST
12856 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12857 && type_name != NULL && strcmp (type_name, "exception") == 0);
12858 }
12859
12860 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12861 Ada exception object. This matches all exceptions except the ones
12862 defined by the Ada language. */
12863
12864 static int
12865 ada_is_non_standard_exception_sym (struct symbol *sym)
12866 {
12867 int i;
12868
12869 if (!ada_is_exception_sym (sym))
12870 return 0;
12871
12872 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12873 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12874 return 0; /* A standard exception. */
12875
12876 /* Numeric_Error is also a standard exception, so exclude it.
12877 See the STANDARD_EXC description for more details as to why
12878 this exception is not listed in that array. */
12879 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12880 return 0;
12881
12882 return 1;
12883 }
12884
12885 /* A helper function for std::sort, comparing two struct ada_exc_info
12886 objects.
12887
12888 The comparison is determined first by exception name, and then
12889 by exception address. */
12890
12891 bool
12892 ada_exc_info::operator< (const ada_exc_info &other) const
12893 {
12894 int result;
12895
12896 result = strcmp (name, other.name);
12897 if (result < 0)
12898 return true;
12899 if (result == 0 && addr < other.addr)
12900 return true;
12901 return false;
12902 }
12903
12904 bool
12905 ada_exc_info::operator== (const ada_exc_info &other) const
12906 {
12907 return addr == other.addr && strcmp (name, other.name) == 0;
12908 }
12909
12910 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12911 routine, but keeping the first SKIP elements untouched.
12912
12913 All duplicates are also removed. */
12914
12915 static void
12916 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12917 int skip)
12918 {
12919 std::sort (exceptions->begin () + skip, exceptions->end ());
12920 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12921 exceptions->end ());
12922 }
12923
12924 /* Add all exceptions defined by the Ada standard whose name match
12925 a regular expression.
12926
12927 If PREG is not NULL, then this regexp_t object is used to
12928 perform the symbol name matching. Otherwise, no name-based
12929 filtering is performed.
12930
12931 EXCEPTIONS is a vector of exceptions to which matching exceptions
12932 gets pushed. */
12933
12934 static void
12935 ada_add_standard_exceptions (compiled_regex *preg,
12936 std::vector<ada_exc_info> *exceptions)
12937 {
12938 int i;
12939
12940 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12941 {
12942 if (preg == NULL
12943 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12944 {
12945 struct bound_minimal_symbol msymbol
12946 = ada_lookup_simple_minsym (standard_exc[i]);
12947
12948 if (msymbol.minsym != NULL)
12949 {
12950 struct ada_exc_info info
12951 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12952
12953 exceptions->push_back (info);
12954 }
12955 }
12956 }
12957 }
12958
12959 /* Add all Ada exceptions defined locally and accessible from the given
12960 FRAME.
12961
12962 If PREG is not NULL, then this regexp_t object is used to
12963 perform the symbol name matching. Otherwise, no name-based
12964 filtering is performed.
12965
12966 EXCEPTIONS is a vector of exceptions to which matching exceptions
12967 gets pushed. */
12968
12969 static void
12970 ada_add_exceptions_from_frame (compiled_regex *preg,
12971 struct frame_info *frame,
12972 std::vector<ada_exc_info> *exceptions)
12973 {
12974 const struct block *block = get_frame_block (frame, 0);
12975
12976 while (block != 0)
12977 {
12978 struct block_iterator iter;
12979 struct symbol *sym;
12980
12981 ALL_BLOCK_SYMBOLS (block, iter, sym)
12982 {
12983 switch (SYMBOL_CLASS (sym))
12984 {
12985 case LOC_TYPEDEF:
12986 case LOC_BLOCK:
12987 case LOC_CONST:
12988 break;
12989 default:
12990 if (ada_is_exception_sym (sym))
12991 {
12992 struct ada_exc_info info = {sym->print_name (),
12993 SYMBOL_VALUE_ADDRESS (sym)};
12994
12995 exceptions->push_back (info);
12996 }
12997 }
12998 }
12999 if (BLOCK_FUNCTION (block) != NULL)
13000 break;
13001 block = BLOCK_SUPERBLOCK (block);
13002 }
13003 }
13004
13005 /* Return true if NAME matches PREG or if PREG is NULL. */
13006
13007 static bool
13008 name_matches_regex (const char *name, compiled_regex *preg)
13009 {
13010 return (preg == NULL
13011 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13012 }
13013
13014 /* Add all exceptions defined globally whose name name match
13015 a regular expression, excluding standard exceptions.
13016
13017 The reason we exclude standard exceptions is that they need
13018 to be handled separately: Standard exceptions are defined inside
13019 a runtime unit which is normally not compiled with debugging info,
13020 and thus usually do not show up in our symbol search. However,
13021 if the unit was in fact built with debugging info, we need to
13022 exclude them because they would duplicate the entry we found
13023 during the special loop that specifically searches for those
13024 standard exceptions.
13025
13026 If PREG is not NULL, then this regexp_t object is used to
13027 perform the symbol name matching. Otherwise, no name-based
13028 filtering is performed.
13029
13030 EXCEPTIONS is a vector of exceptions to which matching exceptions
13031 gets pushed. */
13032
13033 static void
13034 ada_add_global_exceptions (compiled_regex *preg,
13035 std::vector<ada_exc_info> *exceptions)
13036 {
13037 /* In Ada, the symbol "search name" is a linkage name, whereas the
13038 regular expression used to do the matching refers to the natural
13039 name. So match against the decoded name. */
13040 expand_symtabs_matching (NULL,
13041 lookup_name_info::match_any (),
13042 [&] (const char *search_name)
13043 {
13044 std::string decoded = ada_decode (search_name);
13045 return name_matches_regex (decoded.c_str (), preg);
13046 },
13047 NULL,
13048 VARIABLES_DOMAIN);
13049
13050 for (objfile *objfile : current_program_space->objfiles ())
13051 {
13052 for (compunit_symtab *s : objfile->compunits ())
13053 {
13054 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13055 int i;
13056
13057 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13058 {
13059 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13060 struct block_iterator iter;
13061 struct symbol *sym;
13062
13063 ALL_BLOCK_SYMBOLS (b, iter, sym)
13064 if (ada_is_non_standard_exception_sym (sym)
13065 && name_matches_regex (sym->natural_name (), preg))
13066 {
13067 struct ada_exc_info info
13068 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13069
13070 exceptions->push_back (info);
13071 }
13072 }
13073 }
13074 }
13075 }
13076
13077 /* Implements ada_exceptions_list with the regular expression passed
13078 as a regex_t, rather than a string.
13079
13080 If not NULL, PREG is used to filter out exceptions whose names
13081 do not match. Otherwise, all exceptions are listed. */
13082
13083 static std::vector<ada_exc_info>
13084 ada_exceptions_list_1 (compiled_regex *preg)
13085 {
13086 std::vector<ada_exc_info> result;
13087 int prev_len;
13088
13089 /* First, list the known standard exceptions. These exceptions
13090 need to be handled separately, as they are usually defined in
13091 runtime units that have been compiled without debugging info. */
13092
13093 ada_add_standard_exceptions (preg, &result);
13094
13095 /* Next, find all exceptions whose scope is local and accessible
13096 from the currently selected frame. */
13097
13098 if (has_stack_frames ())
13099 {
13100 prev_len = result.size ();
13101 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13102 &result);
13103 if (result.size () > prev_len)
13104 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13105 }
13106
13107 /* Add all exceptions whose scope is global. */
13108
13109 prev_len = result.size ();
13110 ada_add_global_exceptions (preg, &result);
13111 if (result.size () > prev_len)
13112 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13113
13114 return result;
13115 }
13116
13117 /* Return a vector of ada_exc_info.
13118
13119 If REGEXP is NULL, all exceptions are included in the result.
13120 Otherwise, it should contain a valid regular expression,
13121 and only the exceptions whose names match that regular expression
13122 are included in the result.
13123
13124 The exceptions are sorted in the following order:
13125 - Standard exceptions (defined by the Ada language), in
13126 alphabetical order;
13127 - Exceptions only visible from the current frame, in
13128 alphabetical order;
13129 - Exceptions whose scope is global, in alphabetical order. */
13130
13131 std::vector<ada_exc_info>
13132 ada_exceptions_list (const char *regexp)
13133 {
13134 if (regexp == NULL)
13135 return ada_exceptions_list_1 (NULL);
13136
13137 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13138 return ada_exceptions_list_1 (&reg);
13139 }
13140
13141 /* Implement the "info exceptions" command. */
13142
13143 static void
13144 info_exceptions_command (const char *regexp, int from_tty)
13145 {
13146 struct gdbarch *gdbarch = get_current_arch ();
13147
13148 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13149
13150 if (regexp != NULL)
13151 printf_filtered
13152 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13153 else
13154 printf_filtered (_("All defined Ada exceptions:\n"));
13155
13156 for (const ada_exc_info &info : exceptions)
13157 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13158 }
13159
13160 /* Operators */
13161 /* Information about operators given special treatment in functions
13162 below. */
13163 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13164
13165 #define ADA_OPERATORS \
13166 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13167 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13168 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13169 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13170 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13171 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13172 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13173 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13174 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13175 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13176 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13177 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13178 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13179 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13180 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13181 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13182 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13183 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13184 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13185
13186 static void
13187 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13188 int *argsp)
13189 {
13190 switch (exp->elts[pc - 1].opcode)
13191 {
13192 default:
13193 operator_length_standard (exp, pc, oplenp, argsp);
13194 break;
13195
13196 #define OP_DEFN(op, len, args, binop) \
13197 case op: *oplenp = len; *argsp = args; break;
13198 ADA_OPERATORS;
13199 #undef OP_DEFN
13200
13201 case OP_AGGREGATE:
13202 *oplenp = 3;
13203 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13204 break;
13205
13206 case OP_CHOICES:
13207 *oplenp = 3;
13208 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13209 break;
13210 }
13211 }
13212
13213 /* Implementation of the exp_descriptor method operator_check. */
13214
13215 static int
13216 ada_operator_check (struct expression *exp, int pos,
13217 int (*objfile_func) (struct objfile *objfile, void *data),
13218 void *data)
13219 {
13220 const union exp_element *const elts = exp->elts;
13221 struct type *type = NULL;
13222
13223 switch (elts[pos].opcode)
13224 {
13225 case UNOP_IN_RANGE:
13226 case UNOP_QUAL:
13227 type = elts[pos + 1].type;
13228 break;
13229
13230 default:
13231 return operator_check_standard (exp, pos, objfile_func, data);
13232 }
13233
13234 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13235
13236 if (type && TYPE_OBJFILE (type)
13237 && (*objfile_func) (TYPE_OBJFILE (type), data))
13238 return 1;
13239
13240 return 0;
13241 }
13242
13243 static const char *
13244 ada_op_name (enum exp_opcode opcode)
13245 {
13246 switch (opcode)
13247 {
13248 default:
13249 return op_name_standard (opcode);
13250
13251 #define OP_DEFN(op, len, args, binop) case op: return #op;
13252 ADA_OPERATORS;
13253 #undef OP_DEFN
13254
13255 case OP_AGGREGATE:
13256 return "OP_AGGREGATE";
13257 case OP_CHOICES:
13258 return "OP_CHOICES";
13259 case OP_NAME:
13260 return "OP_NAME";
13261 }
13262 }
13263
13264 /* As for operator_length, but assumes PC is pointing at the first
13265 element of the operator, and gives meaningful results only for the
13266 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13267
13268 static void
13269 ada_forward_operator_length (struct expression *exp, int pc,
13270 int *oplenp, int *argsp)
13271 {
13272 switch (exp->elts[pc].opcode)
13273 {
13274 default:
13275 *oplenp = *argsp = 0;
13276 break;
13277
13278 #define OP_DEFN(op, len, args, binop) \
13279 case op: *oplenp = len; *argsp = args; break;
13280 ADA_OPERATORS;
13281 #undef OP_DEFN
13282
13283 case OP_AGGREGATE:
13284 *oplenp = 3;
13285 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13286 break;
13287
13288 case OP_CHOICES:
13289 *oplenp = 3;
13290 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13291 break;
13292
13293 case OP_STRING:
13294 case OP_NAME:
13295 {
13296 int len = longest_to_int (exp->elts[pc + 1].longconst);
13297
13298 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13299 *argsp = 0;
13300 break;
13301 }
13302 }
13303 }
13304
13305 static int
13306 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13307 {
13308 enum exp_opcode op = exp->elts[elt].opcode;
13309 int oplen, nargs;
13310 int pc = elt;
13311 int i;
13312
13313 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13314
13315 switch (op)
13316 {
13317 /* Ada attributes ('Foo). */
13318 case OP_ATR_FIRST:
13319 case OP_ATR_LAST:
13320 case OP_ATR_LENGTH:
13321 case OP_ATR_IMAGE:
13322 case OP_ATR_MAX:
13323 case OP_ATR_MIN:
13324 case OP_ATR_MODULUS:
13325 case OP_ATR_POS:
13326 case OP_ATR_SIZE:
13327 case OP_ATR_TAG:
13328 case OP_ATR_VAL:
13329 break;
13330
13331 case UNOP_IN_RANGE:
13332 case UNOP_QUAL:
13333 /* XXX: gdb_sprint_host_address, type_sprint */
13334 fprintf_filtered (stream, _("Type @"));
13335 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13336 fprintf_filtered (stream, " (");
13337 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13338 fprintf_filtered (stream, ")");
13339 break;
13340 case BINOP_IN_BOUNDS:
13341 fprintf_filtered (stream, " (%d)",
13342 longest_to_int (exp->elts[pc + 2].longconst));
13343 break;
13344 case TERNOP_IN_RANGE:
13345 break;
13346
13347 case OP_AGGREGATE:
13348 case OP_OTHERS:
13349 case OP_DISCRETE_RANGE:
13350 case OP_POSITIONAL:
13351 case OP_CHOICES:
13352 break;
13353
13354 case OP_NAME:
13355 case OP_STRING:
13356 {
13357 char *name = &exp->elts[elt + 2].string;
13358 int len = longest_to_int (exp->elts[elt + 1].longconst);
13359
13360 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13361 break;
13362 }
13363
13364 default:
13365 return dump_subexp_body_standard (exp, stream, elt);
13366 }
13367
13368 elt += oplen;
13369 for (i = 0; i < nargs; i += 1)
13370 elt = dump_subexp (exp, stream, elt);
13371
13372 return elt;
13373 }
13374
13375 /* The Ada extension of print_subexp (q.v.). */
13376
13377 static void
13378 ada_print_subexp (struct expression *exp, int *pos,
13379 struct ui_file *stream, enum precedence prec)
13380 {
13381 int oplen, nargs, i;
13382 int pc = *pos;
13383 enum exp_opcode op = exp->elts[pc].opcode;
13384
13385 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13386
13387 *pos += oplen;
13388 switch (op)
13389 {
13390 default:
13391 *pos -= oplen;
13392 print_subexp_standard (exp, pos, stream, prec);
13393 return;
13394
13395 case OP_VAR_VALUE:
13396 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13397 return;
13398
13399 case BINOP_IN_BOUNDS:
13400 /* XXX: sprint_subexp */
13401 print_subexp (exp, pos, stream, PREC_SUFFIX);
13402 fputs_filtered (" in ", stream);
13403 print_subexp (exp, pos, stream, PREC_SUFFIX);
13404 fputs_filtered ("'range", stream);
13405 if (exp->elts[pc + 1].longconst > 1)
13406 fprintf_filtered (stream, "(%ld)",
13407 (long) exp->elts[pc + 1].longconst);
13408 return;
13409
13410 case TERNOP_IN_RANGE:
13411 if (prec >= PREC_EQUAL)
13412 fputs_filtered ("(", stream);
13413 /* XXX: sprint_subexp */
13414 print_subexp (exp, pos, stream, PREC_SUFFIX);
13415 fputs_filtered (" in ", stream);
13416 print_subexp (exp, pos, stream, PREC_EQUAL);
13417 fputs_filtered (" .. ", stream);
13418 print_subexp (exp, pos, stream, PREC_EQUAL);
13419 if (prec >= PREC_EQUAL)
13420 fputs_filtered (")", stream);
13421 return;
13422
13423 case OP_ATR_FIRST:
13424 case OP_ATR_LAST:
13425 case OP_ATR_LENGTH:
13426 case OP_ATR_IMAGE:
13427 case OP_ATR_MAX:
13428 case OP_ATR_MIN:
13429 case OP_ATR_MODULUS:
13430 case OP_ATR_POS:
13431 case OP_ATR_SIZE:
13432 case OP_ATR_TAG:
13433 case OP_ATR_VAL:
13434 if (exp->elts[*pos].opcode == OP_TYPE)
13435 {
13436 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13437 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13438 &type_print_raw_options);
13439 *pos += 3;
13440 }
13441 else
13442 print_subexp (exp, pos, stream, PREC_SUFFIX);
13443 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13444 if (nargs > 1)
13445 {
13446 int tem;
13447
13448 for (tem = 1; tem < nargs; tem += 1)
13449 {
13450 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13451 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13452 }
13453 fputs_filtered (")", stream);
13454 }
13455 return;
13456
13457 case UNOP_QUAL:
13458 type_print (exp->elts[pc + 1].type, "", stream, 0);
13459 fputs_filtered ("'(", stream);
13460 print_subexp (exp, pos, stream, PREC_PREFIX);
13461 fputs_filtered (")", stream);
13462 return;
13463
13464 case UNOP_IN_RANGE:
13465 /* XXX: sprint_subexp */
13466 print_subexp (exp, pos, stream, PREC_SUFFIX);
13467 fputs_filtered (" in ", stream);
13468 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13469 &type_print_raw_options);
13470 return;
13471
13472 case OP_DISCRETE_RANGE:
13473 print_subexp (exp, pos, stream, PREC_SUFFIX);
13474 fputs_filtered ("..", stream);
13475 print_subexp (exp, pos, stream, PREC_SUFFIX);
13476 return;
13477
13478 case OP_OTHERS:
13479 fputs_filtered ("others => ", stream);
13480 print_subexp (exp, pos, stream, PREC_SUFFIX);
13481 return;
13482
13483 case OP_CHOICES:
13484 for (i = 0; i < nargs-1; i += 1)
13485 {
13486 if (i > 0)
13487 fputs_filtered ("|", stream);
13488 print_subexp (exp, pos, stream, PREC_SUFFIX);
13489 }
13490 fputs_filtered (" => ", stream);
13491 print_subexp (exp, pos, stream, PREC_SUFFIX);
13492 return;
13493
13494 case OP_POSITIONAL:
13495 print_subexp (exp, pos, stream, PREC_SUFFIX);
13496 return;
13497
13498 case OP_AGGREGATE:
13499 fputs_filtered ("(", stream);
13500 for (i = 0; i < nargs; i += 1)
13501 {
13502 if (i > 0)
13503 fputs_filtered (", ", stream);
13504 print_subexp (exp, pos, stream, PREC_SUFFIX);
13505 }
13506 fputs_filtered (")", stream);
13507 return;
13508 }
13509 }
13510
13511 /* Table mapping opcodes into strings for printing operators
13512 and precedences of the operators. */
13513
13514 static const struct op_print ada_op_print_tab[] = {
13515 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13516 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13517 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13518 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13519 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13520 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13521 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13522 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13523 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13524 {">=", BINOP_GEQ, PREC_ORDER, 0},
13525 {">", BINOP_GTR, PREC_ORDER, 0},
13526 {"<", BINOP_LESS, PREC_ORDER, 0},
13527 {">>", BINOP_RSH, PREC_SHIFT, 0},
13528 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13529 {"+", BINOP_ADD, PREC_ADD, 0},
13530 {"-", BINOP_SUB, PREC_ADD, 0},
13531 {"&", BINOP_CONCAT, PREC_ADD, 0},
13532 {"*", BINOP_MUL, PREC_MUL, 0},
13533 {"/", BINOP_DIV, PREC_MUL, 0},
13534 {"rem", BINOP_REM, PREC_MUL, 0},
13535 {"mod", BINOP_MOD, PREC_MUL, 0},
13536 {"**", BINOP_EXP, PREC_REPEAT, 0},
13537 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13538 {"-", UNOP_NEG, PREC_PREFIX, 0},
13539 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13540 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13541 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13542 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13543 {".all", UNOP_IND, PREC_SUFFIX, 1},
13544 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13545 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13546 {NULL, OP_NULL, PREC_SUFFIX, 0}
13547 };
13548 \f
13549 enum ada_primitive_types {
13550 ada_primitive_type_int,
13551 ada_primitive_type_long,
13552 ada_primitive_type_short,
13553 ada_primitive_type_char,
13554 ada_primitive_type_float,
13555 ada_primitive_type_double,
13556 ada_primitive_type_void,
13557 ada_primitive_type_long_long,
13558 ada_primitive_type_long_double,
13559 ada_primitive_type_natural,
13560 ada_primitive_type_positive,
13561 ada_primitive_type_system_address,
13562 ada_primitive_type_storage_offset,
13563 nr_ada_primitive_types
13564 };
13565
13566 \f
13567 /* Language vector */
13568
13569 /* Not really used, but needed in the ada_language_defn. */
13570
13571 static void
13572 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13573 {
13574 ada_emit_char (c, type, stream, quoter, 1);
13575 }
13576
13577 static int
13578 parse (struct parser_state *ps)
13579 {
13580 warnings_issued = 0;
13581 return ada_parse (ps);
13582 }
13583
13584 static const struct exp_descriptor ada_exp_descriptor = {
13585 ada_print_subexp,
13586 ada_operator_length,
13587 ada_operator_check,
13588 ada_op_name,
13589 ada_dump_subexp_body,
13590 ada_evaluate_subexp
13591 };
13592
13593 /* symbol_name_matcher_ftype adapter for wild_match. */
13594
13595 static bool
13596 do_wild_match (const char *symbol_search_name,
13597 const lookup_name_info &lookup_name,
13598 completion_match_result *comp_match_res)
13599 {
13600 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13601 }
13602
13603 /* symbol_name_matcher_ftype adapter for full_match. */
13604
13605 static bool
13606 do_full_match (const char *symbol_search_name,
13607 const lookup_name_info &lookup_name,
13608 completion_match_result *comp_match_res)
13609 {
13610 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13611 }
13612
13613 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13614
13615 static bool
13616 do_exact_match (const char *symbol_search_name,
13617 const lookup_name_info &lookup_name,
13618 completion_match_result *comp_match_res)
13619 {
13620 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13621 }
13622
13623 /* Build the Ada lookup name for LOOKUP_NAME. */
13624
13625 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13626 {
13627 gdb::string_view user_name = lookup_name.name ();
13628
13629 if (user_name[0] == '<')
13630 {
13631 if (user_name.back () == '>')
13632 m_encoded_name
13633 = user_name.substr (1, user_name.size () - 2).to_string ();
13634 else
13635 m_encoded_name
13636 = user_name.substr (1, user_name.size () - 1).to_string ();
13637 m_encoded_p = true;
13638 m_verbatim_p = true;
13639 m_wild_match_p = false;
13640 m_standard_p = false;
13641 }
13642 else
13643 {
13644 m_verbatim_p = false;
13645
13646 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13647
13648 if (!m_encoded_p)
13649 {
13650 const char *folded = ada_fold_name (user_name);
13651 const char *encoded = ada_encode_1 (folded, false);
13652 if (encoded != NULL)
13653 m_encoded_name = encoded;
13654 else
13655 m_encoded_name = user_name.to_string ();
13656 }
13657 else
13658 m_encoded_name = user_name.to_string ();
13659
13660 /* Handle the 'package Standard' special case. See description
13661 of m_standard_p. */
13662 if (startswith (m_encoded_name.c_str (), "standard__"))
13663 {
13664 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13665 m_standard_p = true;
13666 }
13667 else
13668 m_standard_p = false;
13669
13670 /* If the name contains a ".", then the user is entering a fully
13671 qualified entity name, and the match must not be done in wild
13672 mode. Similarly, if the user wants to complete what looks
13673 like an encoded name, the match must not be done in wild
13674 mode. Also, in the standard__ special case always do
13675 non-wild matching. */
13676 m_wild_match_p
13677 = (lookup_name.match_type () != symbol_name_match_type::FULL
13678 && !m_encoded_p
13679 && !m_standard_p
13680 && user_name.find ('.') == std::string::npos);
13681 }
13682 }
13683
13684 /* symbol_name_matcher_ftype method for Ada. This only handles
13685 completion mode. */
13686
13687 static bool
13688 ada_symbol_name_matches (const char *symbol_search_name,
13689 const lookup_name_info &lookup_name,
13690 completion_match_result *comp_match_res)
13691 {
13692 return lookup_name.ada ().matches (symbol_search_name,
13693 lookup_name.match_type (),
13694 comp_match_res);
13695 }
13696
13697 /* A name matcher that matches the symbol name exactly, with
13698 strcmp. */
13699
13700 static bool
13701 literal_symbol_name_matcher (const char *symbol_search_name,
13702 const lookup_name_info &lookup_name,
13703 completion_match_result *comp_match_res)
13704 {
13705 gdb::string_view name_view = lookup_name.name ();
13706
13707 if (lookup_name.completion_mode ()
13708 ? (strncmp (symbol_search_name, name_view.data (),
13709 name_view.size ()) == 0)
13710 : symbol_search_name == name_view)
13711 {
13712 if (comp_match_res != NULL)
13713 comp_match_res->set_match (symbol_search_name);
13714 return true;
13715 }
13716 else
13717 return false;
13718 }
13719
13720 /* Implement the "get_symbol_name_matcher" language_defn method for
13721 Ada. */
13722
13723 static symbol_name_matcher_ftype *
13724 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13725 {
13726 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13727 return literal_symbol_name_matcher;
13728
13729 if (lookup_name.completion_mode ())
13730 return ada_symbol_name_matches;
13731 else
13732 {
13733 if (lookup_name.ada ().wild_match_p ())
13734 return do_wild_match;
13735 else if (lookup_name.ada ().verbatim_p ())
13736 return do_exact_match;
13737 else
13738 return do_full_match;
13739 }
13740 }
13741
13742 static const char *ada_extensions[] =
13743 {
13744 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13745 };
13746
13747 /* Constant data that describes the Ada language. */
13748
13749 extern const struct language_data ada_language_data =
13750 {
13751 "ada", /* Language name */
13752 "Ada",
13753 language_ada,
13754 range_check_off,
13755 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13756 that's not quite what this means. */
13757 array_row_major,
13758 macro_expansion_no,
13759 ada_extensions,
13760 &ada_exp_descriptor,
13761 parse,
13762 resolve,
13763 ada_printchar, /* Print a character constant */
13764 ada_printstr, /* Function to print string constant */
13765 emit_char, /* Function to print single char (not used) */
13766 ada_print_typedef, /* Print a typedef using appropriate syntax */
13767 ada_value_print_inner, /* la_value_print_inner */
13768 ada_value_print, /* Print a top-level value */
13769 NULL, /* name_of_this */
13770 true, /* la_store_sym_names_in_linkage_form_p */
13771 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13772 ada_op_print_tab, /* expression operators for printing */
13773 0, /* c-style arrays */
13774 1, /* String lower bound */
13775 &ada_varobj_ops,
13776 ada_is_string_type,
13777 "(...)" /* la_struct_too_deep_ellipsis */
13778 };
13779
13780 /* Class representing the Ada language. */
13781
13782 class ada_language : public language_defn
13783 {
13784 public:
13785 ada_language ()
13786 : language_defn (language_ada, ada_language_data)
13787 { /* Nothing. */ }
13788
13789 /* Print an array element index using the Ada syntax. */
13790
13791 void print_array_index (struct type *index_type,
13792 LONGEST index,
13793 struct ui_file *stream,
13794 const value_print_options *options) const override
13795 {
13796 struct value *index_value = val_atr (index_type, index);
13797
13798 LA_VALUE_PRINT (index_value, stream, options);
13799 fprintf_filtered (stream, " => ");
13800 }
13801
13802 /* Implement the "read_var_value" language_defn method for Ada. */
13803
13804 struct value *read_var_value (struct symbol *var,
13805 const struct block *var_block,
13806 struct frame_info *frame) const override
13807 {
13808 /* The only case where default_read_var_value is not sufficient
13809 is when VAR is a renaming... */
13810 if (frame != nullptr)
13811 {
13812 const struct block *frame_block = get_frame_block (frame, NULL);
13813 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13814 return ada_read_renaming_var_value (var, frame_block);
13815 }
13816
13817 /* This is a typical case where we expect the default_read_var_value
13818 function to work. */
13819 return language_defn::read_var_value (var, var_block, frame);
13820 }
13821
13822 /* See language.h. */
13823 void language_arch_info (struct gdbarch *gdbarch,
13824 struct language_arch_info *lai) const override
13825 {
13826 const struct builtin_type *builtin = builtin_type (gdbarch);
13827
13828 lai->primitive_type_vector
13829 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13830 struct type *);
13831
13832 lai->primitive_type_vector [ada_primitive_type_int]
13833 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13834 0, "integer");
13835 lai->primitive_type_vector [ada_primitive_type_long]
13836 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13837 0, "long_integer");
13838 lai->primitive_type_vector [ada_primitive_type_short]
13839 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13840 0, "short_integer");
13841 lai->string_char_type
13842 = lai->primitive_type_vector [ada_primitive_type_char]
13843 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13844 lai->primitive_type_vector [ada_primitive_type_float]
13845 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13846 "float", gdbarch_float_format (gdbarch));
13847 lai->primitive_type_vector [ada_primitive_type_double]
13848 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13849 "long_float", gdbarch_double_format (gdbarch));
13850 lai->primitive_type_vector [ada_primitive_type_long_long]
13851 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13852 0, "long_long_integer");
13853 lai->primitive_type_vector [ada_primitive_type_long_double]
13854 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13855 "long_long_float", gdbarch_long_double_format (gdbarch));
13856 lai->primitive_type_vector [ada_primitive_type_natural]
13857 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13858 0, "natural");
13859 lai->primitive_type_vector [ada_primitive_type_positive]
13860 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13861 0, "positive");
13862 lai->primitive_type_vector [ada_primitive_type_void]
13863 = builtin->builtin_void;
13864
13865 lai->primitive_type_vector [ada_primitive_type_system_address]
13866 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13867 "void"));
13868 lai->primitive_type_vector [ada_primitive_type_system_address]
13869 ->set_name ("system__address");
13870
13871 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13872 type. This is a signed integral type whose size is the same as
13873 the size of addresses. */
13874 {
13875 unsigned int addr_length = TYPE_LENGTH
13876 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13877
13878 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13879 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13880 "storage_offset");
13881 }
13882
13883 lai->bool_type_symbol = NULL;
13884 lai->bool_type_default = builtin->builtin_bool;
13885 }
13886
13887 /* See language.h. */
13888
13889 bool iterate_over_symbols
13890 (const struct block *block, const lookup_name_info &name,
13891 domain_enum domain,
13892 gdb::function_view<symbol_found_callback_ftype> callback) const override
13893 {
13894 std::vector<struct block_symbol> results;
13895
13896 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
13897 for (block_symbol &sym : results)
13898 {
13899 if (!callback (&sym))
13900 return false;
13901 }
13902
13903 return true;
13904 }
13905
13906 /* See language.h. */
13907 bool sniff_from_mangled_name (const char *mangled,
13908 char **out) const override
13909 {
13910 std::string demangled = ada_decode (mangled);
13911
13912 *out = NULL;
13913
13914 if (demangled != mangled && demangled[0] != '<')
13915 {
13916 /* Set the gsymbol language to Ada, but still return 0.
13917 Two reasons for that:
13918
13919 1. For Ada, we prefer computing the symbol's decoded name
13920 on the fly rather than pre-compute it, in order to save
13921 memory (Ada projects are typically very large).
13922
13923 2. There are some areas in the definition of the GNAT
13924 encoding where, with a bit of bad luck, we might be able
13925 to decode a non-Ada symbol, generating an incorrect
13926 demangled name (Eg: names ending with "TB" for instance
13927 are identified as task bodies and so stripped from
13928 the decoded name returned).
13929
13930 Returning true, here, but not setting *DEMANGLED, helps us get
13931 a little bit of the best of both worlds. Because we're last,
13932 we should not affect any of the other languages that were
13933 able to demangle the symbol before us; we get to correctly
13934 tag Ada symbols as such; and even if we incorrectly tagged a
13935 non-Ada symbol, which should be rare, any routing through the
13936 Ada language should be transparent (Ada tries to behave much
13937 like C/C++ with non-Ada symbols). */
13938 return true;
13939 }
13940
13941 return false;
13942 }
13943
13944 /* See language.h. */
13945
13946 char *demangle (const char *mangled, int options) const override
13947 {
13948 return ada_la_decode (mangled, options);
13949 }
13950
13951 /* See language.h. */
13952
13953 void print_type (struct type *type, const char *varstring,
13954 struct ui_file *stream, int show, int level,
13955 const struct type_print_options *flags) const override
13956 {
13957 ada_print_type (type, varstring, stream, show, level, flags);
13958 }
13959
13960 /* See language.h. */
13961
13962 const char *word_break_characters (void) const override
13963 {
13964 return ada_completer_word_break_characters;
13965 }
13966
13967 /* See language.h. */
13968
13969 void collect_symbol_completion_matches (completion_tracker &tracker,
13970 complete_symbol_mode mode,
13971 symbol_name_match_type name_match_type,
13972 const char *text, const char *word,
13973 enum type_code code) const override
13974 {
13975 struct symbol *sym;
13976 const struct block *b, *surrounding_static_block = 0;
13977 struct block_iterator iter;
13978
13979 gdb_assert (code == TYPE_CODE_UNDEF);
13980
13981 lookup_name_info lookup_name (text, name_match_type, true);
13982
13983 /* First, look at the partial symtab symbols. */
13984 expand_symtabs_matching (NULL,
13985 lookup_name,
13986 NULL,
13987 NULL,
13988 ALL_DOMAIN);
13989
13990 /* At this point scan through the misc symbol vectors and add each
13991 symbol you find to the list. Eventually we want to ignore
13992 anything that isn't a text symbol (everything else will be
13993 handled by the psymtab code above). */
13994
13995 for (objfile *objfile : current_program_space->objfiles ())
13996 {
13997 for (minimal_symbol *msymbol : objfile->msymbols ())
13998 {
13999 QUIT;
14000
14001 if (completion_skip_symbol (mode, msymbol))
14002 continue;
14003
14004 language symbol_language = msymbol->language ();
14005
14006 /* Ada minimal symbols won't have their language set to Ada. If
14007 we let completion_list_add_name compare using the
14008 default/C-like matcher, then when completing e.g., symbols in a
14009 package named "pck", we'd match internal Ada symbols like
14010 "pckS", which are invalid in an Ada expression, unless you wrap
14011 them in '<' '>' to request a verbatim match.
14012
14013 Unfortunately, some Ada encoded names successfully demangle as
14014 C++ symbols (using an old mangling scheme), such as "name__2Xn"
14015 -> "Xn::name(void)" and thus some Ada minimal symbols end up
14016 with the wrong language set. Paper over that issue here. */
14017 if (symbol_language == language_auto
14018 || symbol_language == language_cplus)
14019 symbol_language = language_ada;
14020
14021 completion_list_add_name (tracker,
14022 symbol_language,
14023 msymbol->linkage_name (),
14024 lookup_name, text, word);
14025 }
14026 }
14027
14028 /* Search upwards from currently selected frame (so that we can
14029 complete on local vars. */
14030
14031 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
14032 {
14033 if (!BLOCK_SUPERBLOCK (b))
14034 surrounding_static_block = b; /* For elmin of dups */
14035
14036 ALL_BLOCK_SYMBOLS (b, iter, sym)
14037 {
14038 if (completion_skip_symbol (mode, sym))
14039 continue;
14040
14041 completion_list_add_name (tracker,
14042 sym->language (),
14043 sym->linkage_name (),
14044 lookup_name, text, word);
14045 }
14046 }
14047
14048 /* Go through the symtabs and check the externs and statics for
14049 symbols which match. */
14050
14051 for (objfile *objfile : current_program_space->objfiles ())
14052 {
14053 for (compunit_symtab *s : objfile->compunits ())
14054 {
14055 QUIT;
14056 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
14057 ALL_BLOCK_SYMBOLS (b, iter, sym)
14058 {
14059 if (completion_skip_symbol (mode, sym))
14060 continue;
14061
14062 completion_list_add_name (tracker,
14063 sym->language (),
14064 sym->linkage_name (),
14065 lookup_name, text, word);
14066 }
14067 }
14068 }
14069
14070 for (objfile *objfile : current_program_space->objfiles ())
14071 {
14072 for (compunit_symtab *s : objfile->compunits ())
14073 {
14074 QUIT;
14075 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
14076 /* Don't do this block twice. */
14077 if (b == surrounding_static_block)
14078 continue;
14079 ALL_BLOCK_SYMBOLS (b, iter, sym)
14080 {
14081 if (completion_skip_symbol (mode, sym))
14082 continue;
14083
14084 completion_list_add_name (tracker,
14085 sym->language (),
14086 sym->linkage_name (),
14087 lookup_name, text, word);
14088 }
14089 }
14090 }
14091 }
14092
14093 /* See language.h. */
14094
14095 gdb::unique_xmalloc_ptr<char> watch_location_expression
14096 (struct type *type, CORE_ADDR addr) const override
14097 {
14098 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
14099 std::string name = type_to_string (type);
14100 return gdb::unique_xmalloc_ptr<char>
14101 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
14102 }
14103
14104 protected:
14105 /* See language.h. */
14106
14107 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
14108 (const lookup_name_info &lookup_name) const override
14109 {
14110 return ada_get_symbol_name_matcher (lookup_name);
14111 }
14112 };
14113
14114 /* Single instance of the Ada language class. */
14115
14116 static ada_language ada_language_defn;
14117
14118 /* Command-list for the "set/show ada" prefix command. */
14119 static struct cmd_list_element *set_ada_list;
14120 static struct cmd_list_element *show_ada_list;
14121
14122 static void
14123 initialize_ada_catchpoint_ops (void)
14124 {
14125 struct breakpoint_ops *ops;
14126
14127 initialize_breakpoint_ops ();
14128
14129 ops = &catch_exception_breakpoint_ops;
14130 *ops = bkpt_breakpoint_ops;
14131 ops->allocate_location = allocate_location_exception;
14132 ops->re_set = re_set_exception;
14133 ops->check_status = check_status_exception;
14134 ops->print_it = print_it_exception;
14135 ops->print_one = print_one_exception;
14136 ops->print_mention = print_mention_exception;
14137 ops->print_recreate = print_recreate_exception;
14138
14139 ops = &catch_exception_unhandled_breakpoint_ops;
14140 *ops = bkpt_breakpoint_ops;
14141 ops->allocate_location = allocate_location_exception;
14142 ops->re_set = re_set_exception;
14143 ops->check_status = check_status_exception;
14144 ops->print_it = print_it_exception;
14145 ops->print_one = print_one_exception;
14146 ops->print_mention = print_mention_exception;
14147 ops->print_recreate = print_recreate_exception;
14148
14149 ops = &catch_assert_breakpoint_ops;
14150 *ops = bkpt_breakpoint_ops;
14151 ops->allocate_location = allocate_location_exception;
14152 ops->re_set = re_set_exception;
14153 ops->check_status = check_status_exception;
14154 ops->print_it = print_it_exception;
14155 ops->print_one = print_one_exception;
14156 ops->print_mention = print_mention_exception;
14157 ops->print_recreate = print_recreate_exception;
14158
14159 ops = &catch_handlers_breakpoint_ops;
14160 *ops = bkpt_breakpoint_ops;
14161 ops->allocate_location = allocate_location_exception;
14162 ops->re_set = re_set_exception;
14163 ops->check_status = check_status_exception;
14164 ops->print_it = print_it_exception;
14165 ops->print_one = print_one_exception;
14166 ops->print_mention = print_mention_exception;
14167 ops->print_recreate = print_recreate_exception;
14168 }
14169
14170 /* This module's 'new_objfile' observer. */
14171
14172 static void
14173 ada_new_objfile_observer (struct objfile *objfile)
14174 {
14175 ada_clear_symbol_cache ();
14176 }
14177
14178 /* This module's 'free_objfile' observer. */
14179
14180 static void
14181 ada_free_objfile_observer (struct objfile *objfile)
14182 {
14183 ada_clear_symbol_cache ();
14184 }
14185
14186 void _initialize_ada_language ();
14187 void
14188 _initialize_ada_language ()
14189 {
14190 initialize_ada_catchpoint_ops ();
14191
14192 add_basic_prefix_cmd ("ada", no_class,
14193 _("Prefix command for changing Ada-specific settings."),
14194 &set_ada_list, "set ada ", 0, &setlist);
14195
14196 add_show_prefix_cmd ("ada", no_class,
14197 _("Generic command for showing Ada-specific settings."),
14198 &show_ada_list, "show ada ", 0, &showlist);
14199
14200 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14201 &trust_pad_over_xvs, _("\
14202 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14203 Show whether an optimization trusting PAD types over XVS types is activated."),
14204 _("\
14205 This is related to the encoding used by the GNAT compiler. The debugger\n\
14206 should normally trust the contents of PAD types, but certain older versions\n\
14207 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14208 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14209 work around this bug. It is always safe to turn this option \"off\", but\n\
14210 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14211 this option to \"off\" unless necessary."),
14212 NULL, NULL, &set_ada_list, &show_ada_list);
14213
14214 add_setshow_boolean_cmd ("print-signatures", class_vars,
14215 &print_signatures, _("\
14216 Enable or disable the output of formal and return types for functions in the \
14217 overloads selection menu."), _("\
14218 Show whether the output of formal and return types for functions in the \
14219 overloads selection menu is activated."),
14220 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14221
14222 add_catch_command ("exception", _("\
14223 Catch Ada exceptions, when raised.\n\
14224 Usage: catch exception [ARG] [if CONDITION]\n\
14225 Without any argument, stop when any Ada exception is raised.\n\
14226 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14227 being raised does not have a handler (and will therefore lead to the task's\n\
14228 termination).\n\
14229 Otherwise, the catchpoint only stops when the name of the exception being\n\
14230 raised is the same as ARG.\n\
14231 CONDITION is a boolean expression that is evaluated to see whether the\n\
14232 exception should cause a stop."),
14233 catch_ada_exception_command,
14234 catch_ada_completer,
14235 CATCH_PERMANENT,
14236 CATCH_TEMPORARY);
14237
14238 add_catch_command ("handlers", _("\
14239 Catch Ada exceptions, when handled.\n\
14240 Usage: catch handlers [ARG] [if CONDITION]\n\
14241 Without any argument, stop when any Ada exception is handled.\n\
14242 With an argument, catch only exceptions with the given name.\n\
14243 CONDITION is a boolean expression that is evaluated to see whether the\n\
14244 exception should cause a stop."),
14245 catch_ada_handlers_command,
14246 catch_ada_completer,
14247 CATCH_PERMANENT,
14248 CATCH_TEMPORARY);
14249 add_catch_command ("assert", _("\
14250 Catch failed Ada assertions, when raised.\n\
14251 Usage: catch assert [if CONDITION]\n\
14252 CONDITION is a boolean expression that is evaluated to see whether the\n\
14253 exception should cause a stop."),
14254 catch_assert_command,
14255 NULL,
14256 CATCH_PERMANENT,
14257 CATCH_TEMPORARY);
14258
14259 varsize_limit = 65536;
14260 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14261 &varsize_limit, _("\
14262 Set the maximum number of bytes allowed in a variable-size object."), _("\
14263 Show the maximum number of bytes allowed in a variable-size object."), _("\
14264 Attempts to access an object whose size is not a compile-time constant\n\
14265 and exceeds this limit will cause an error."),
14266 NULL, NULL, &setlist, &showlist);
14267
14268 add_info ("exceptions", info_exceptions_command,
14269 _("\
14270 List all Ada exception names.\n\
14271 Usage: info exceptions [REGEXP]\n\
14272 If a regular expression is passed as an argument, only those matching\n\
14273 the regular expression are listed."));
14274
14275 add_basic_prefix_cmd ("ada", class_maintenance,
14276 _("Set Ada maintenance-related variables."),
14277 &maint_set_ada_cmdlist, "maintenance set ada ",
14278 0/*allow-unknown*/, &maintenance_set_cmdlist);
14279
14280 add_show_prefix_cmd ("ada", class_maintenance,
14281 _("Show Ada maintenance-related variables."),
14282 &maint_show_ada_cmdlist, "maintenance show ada ",
14283 0/*allow-unknown*/, &maintenance_show_cmdlist);
14284
14285 add_setshow_boolean_cmd
14286 ("ignore-descriptive-types", class_maintenance,
14287 &ada_ignore_descriptive_types_p,
14288 _("Set whether descriptive types generated by GNAT should be ignored."),
14289 _("Show whether descriptive types generated by GNAT should be ignored."),
14290 _("\
14291 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14292 DWARF attribute."),
14293 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14294
14295 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14296 NULL, xcalloc, xfree);
14297
14298 /* The ada-lang observers. */
14299 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14300 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14301 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14302 }
This page took 0.355741 seconds and 5 git commands to generate.