Sort includes for files gdb/[a-f]*.[chyl].
[deliverable/binutils-gdb.git] / gdb / ada-tasks.c
1 /* Copyright (C) 1992-2019 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19
20 /* Local non-gdb includes. */
21 #include "ada-lang.h"
22 #include "gdbcmd.h"
23 #include "gdbcore.h"
24 #include "gdbthread.h"
25 #include "inferior.h"
26 #include "objfiles.h"
27 #include "observable.h"
28 #include "progspace.h"
29 #include "target.h"
30
31 static int ada_build_task_list ();
32
33 /* The name of the array in the GNAT runtime where the Ada Task Control
34 Block of each task is stored. */
35 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
36
37 /* The maximum number of tasks known to the Ada runtime. */
38 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
39
40 /* The name of the variable in the GNAT runtime where the head of a task
41 chain is saved. This is an alternate mechanism to find the list of known
42 tasks. */
43 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
44
45 enum task_states
46 {
47 Unactivated,
48 Runnable,
49 Terminated,
50 Activator_Sleep,
51 Acceptor_Sleep,
52 Entry_Caller_Sleep,
53 Async_Select_Sleep,
54 Delay_Sleep,
55 Master_Completion_Sleep,
56 Master_Phase_2_Sleep,
57 Interrupt_Server_Idle_Sleep,
58 Interrupt_Server_Blocked_Interrupt_Sleep,
59 Timer_Server_Sleep,
60 AST_Server_Sleep,
61 Asynchronous_Hold,
62 Interrupt_Server_Blocked_On_Event_Flag,
63 Activating,
64 Acceptor_Delay_Sleep
65 };
66
67 /* A short description corresponding to each possible task state. */
68 static const char *task_states[] = {
69 N_("Unactivated"),
70 N_("Runnable"),
71 N_("Terminated"),
72 N_("Child Activation Wait"),
73 N_("Accept or Select Term"),
74 N_("Waiting on entry call"),
75 N_("Async Select Wait"),
76 N_("Delay Sleep"),
77 N_("Child Termination Wait"),
78 N_("Wait Child in Term Alt"),
79 "",
80 "",
81 "",
82 "",
83 N_("Asynchronous Hold"),
84 "",
85 N_("Activating"),
86 N_("Selective Wait")
87 };
88
89 /* A longer description corresponding to each possible task state. */
90 static const char *long_task_states[] = {
91 N_("Unactivated"),
92 N_("Runnable"),
93 N_("Terminated"),
94 N_("Waiting for child activation"),
95 N_("Blocked in accept or select with terminate"),
96 N_("Waiting on entry call"),
97 N_("Asynchronous Selective Wait"),
98 N_("Delay Sleep"),
99 N_("Waiting for children termination"),
100 N_("Waiting for children in terminate alternative"),
101 "",
102 "",
103 "",
104 "",
105 N_("Asynchronous Hold"),
106 "",
107 N_("Activating"),
108 N_("Blocked in selective wait statement")
109 };
110
111 /* The index of certain important fields in the Ada Task Control Block
112 record and sub-records. */
113
114 struct atcb_fieldnos
115 {
116 /* Fields in record Ada_Task_Control_Block. */
117 int common;
118 int entry_calls;
119 int atc_nesting_level;
120
121 /* Fields in record Common_ATCB. */
122 int state;
123 int parent;
124 int priority;
125 int image;
126 int image_len; /* This field may be missing. */
127 int activation_link;
128 int call;
129 int ll;
130 int base_cpu;
131
132 /* Fields in Task_Primitives.Private_Data. */
133 int ll_thread;
134 int ll_lwp; /* This field may be missing. */
135
136 /* Fields in Common_ATCB.Call.all. */
137 int call_self;
138 };
139
140 /* This module's per-program-space data. */
141
142 struct ada_tasks_pspace_data
143 {
144 /* Nonzero if the data has been initialized. If set to zero,
145 it means that the data has either not been initialized, or
146 has potentially become stale. */
147 int initialized_p;
148
149 /* The ATCB record type. */
150 struct type *atcb_type;
151
152 /* The ATCB "Common" component type. */
153 struct type *atcb_common_type;
154
155 /* The type of the "ll" field, from the atcb_common_type. */
156 struct type *atcb_ll_type;
157
158 /* The type of the "call" field, from the atcb_common_type. */
159 struct type *atcb_call_type;
160
161 /* The index of various fields in the ATCB record and sub-records. */
162 struct atcb_fieldnos atcb_fieldno;
163 };
164
165 /* Key to our per-program-space data. */
166 static const struct program_space_data *ada_tasks_pspace_data_handle;
167
168 /* A cleanup routine for our per-program-space data. */
169 static void
170 ada_tasks_pspace_data_cleanup (struct program_space *pspace, void *arg)
171 {
172 struct ada_tasks_pspace_data *data
173 = (struct ada_tasks_pspace_data *) arg;
174 xfree (data);
175 }
176
177 /* The kind of data structure used by the runtime to store the list
178 of Ada tasks. */
179
180 enum ada_known_tasks_kind
181 {
182 /* Use this value when we haven't determined which kind of structure
183 is being used, or when we need to recompute it.
184
185 We set the value of this enumerate to zero on purpose: This allows
186 us to use this enumerate in a structure where setting all fields
187 to zero will result in this kind being set to unknown. */
188 ADA_TASKS_UNKNOWN = 0,
189
190 /* This value means that we did not find any task list. Unless
191 there is a bug somewhere, this means that the inferior does not
192 use tasking. */
193 ADA_TASKS_NOT_FOUND,
194
195 /* This value means that the task list is stored as an array.
196 This is the usual method, as it causes very little overhead.
197 But this method is not always used, as it does use a certain
198 amount of memory, which might be scarse in certain environments. */
199 ADA_TASKS_ARRAY,
200
201 /* This value means that the task list is stored as a linked list.
202 This has more runtime overhead than the array approach, but
203 also require less memory when the number of tasks is small. */
204 ADA_TASKS_LIST,
205 };
206
207 /* This module's per-inferior data. */
208
209 struct ada_tasks_inferior_data
210 {
211 /* The type of data structure used by the runtime to store
212 the list of Ada tasks. The value of this field influences
213 the interpretation of the known_tasks_addr field below:
214 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
215 been determined yet;
216 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
217 and the known_tasks_addr is irrelevant;
218 - ADA_TASKS_ARRAY: The known_tasks is an array;
219 - ADA_TASKS_LIST: The known_tasks is a list. */
220 enum ada_known_tasks_kind known_tasks_kind = ADA_TASKS_UNKNOWN;
221
222 /* The address of the known_tasks structure. This is where
223 the runtime stores the information for all Ada tasks.
224 The interpretation of this field depends on KNOWN_TASKS_KIND
225 above. */
226 CORE_ADDR known_tasks_addr = 0;
227
228 /* Type of elements of the known task. Usually a pointer. */
229 struct type *known_tasks_element = nullptr;
230
231 /* Number of elements in the known tasks array. */
232 unsigned int known_tasks_length = 0;
233
234 /* When nonzero, this flag indicates that the task_list field
235 below is up to date. When set to zero, the list has either
236 not been initialized, or has potentially become stale. */
237 bool task_list_valid_p = false;
238
239 /* The list of Ada tasks.
240
241 Note: To each task we associate a number that the user can use to
242 reference it - this number is printed beside each task in the tasks
243 info listing displayed by "info tasks". This number is equal to
244 its index in the vector + 1. Reciprocally, to compute the index
245 of a task in the vector, we need to substract 1 from its number. */
246 std::vector<ada_task_info> task_list;
247 };
248
249 /* Key to our per-inferior data. */
250 static const struct inferior_data *ada_tasks_inferior_data_handle;
251
252 /* Return the ada-tasks module's data for the given program space (PSPACE).
253 If none is found, add a zero'ed one now.
254
255 This function always returns a valid object. */
256
257 static struct ada_tasks_pspace_data *
258 get_ada_tasks_pspace_data (struct program_space *pspace)
259 {
260 struct ada_tasks_pspace_data *data;
261
262 data = ((struct ada_tasks_pspace_data *)
263 program_space_data (pspace, ada_tasks_pspace_data_handle));
264 if (data == NULL)
265 {
266 data = XCNEW (struct ada_tasks_pspace_data);
267 set_program_space_data (pspace, ada_tasks_pspace_data_handle, data);
268 }
269
270 return data;
271 }
272
273 /* Return the ada-tasks module's data for the given inferior (INF).
274 If none is found, add a zero'ed one now.
275
276 This function always returns a valid object.
277
278 Note that we could use an observer of the inferior-created event
279 to make sure that the ada-tasks per-inferior data always exists.
280 But we prefered this approach, as it avoids this entirely as long
281 as the user does not use any of the tasking features. This is
282 quite possible, particularly in the case where the inferior does
283 not use tasking. */
284
285 static struct ada_tasks_inferior_data *
286 get_ada_tasks_inferior_data (struct inferior *inf)
287 {
288 struct ada_tasks_inferior_data *data;
289
290 data = ((struct ada_tasks_inferior_data *)
291 inferior_data (inf, ada_tasks_inferior_data_handle));
292 if (data == NULL)
293 {
294 data = new ada_tasks_inferior_data;
295 set_inferior_data (inf, ada_tasks_inferior_data_handle, data);
296 }
297
298 return data;
299 }
300
301 /* A cleanup routine for our per-inferior data. */
302 static void
303 ada_tasks_inferior_data_cleanup (struct inferior *inf, void *arg)
304 {
305 struct ada_tasks_inferior_data *data
306 = (struct ada_tasks_inferior_data *) arg;
307 delete data;
308 }
309
310 /* Return the task number of the task whose thread is THREAD, or zero
311 if the task could not be found. */
312
313 int
314 ada_get_task_number (thread_info *thread)
315 {
316 struct inferior *inf = thread->inf;
317 struct ada_tasks_inferior_data *data;
318
319 gdb_assert (inf != NULL);
320 data = get_ada_tasks_inferior_data (inf);
321
322 for (int i = 0; i < data->task_list.size (); i++)
323 if (data->task_list[i].ptid == thread->ptid)
324 return i + 1;
325
326 return 0; /* No matching task found. */
327 }
328
329 /* Return the task number of the task running in inferior INF which
330 matches TASK_ID , or zero if the task could not be found. */
331
332 static int
333 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
334 {
335 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
336
337 for (int i = 0; i < data->task_list.size (); i++)
338 {
339 if (data->task_list[i].task_id == task_id)
340 return i + 1;
341 }
342
343 /* Task not found. Return 0. */
344 return 0;
345 }
346
347 /* Return non-zero if TASK_NUM is a valid task number. */
348
349 int
350 valid_task_id (int task_num)
351 {
352 struct ada_tasks_inferior_data *data;
353
354 ada_build_task_list ();
355 data = get_ada_tasks_inferior_data (current_inferior ());
356 return task_num > 0 && task_num <= data->task_list.size ();
357 }
358
359 /* Return non-zero iff the task STATE corresponds to a non-terminated
360 task state. */
361
362 static int
363 ada_task_is_alive (struct ada_task_info *task_info)
364 {
365 return (task_info->state != Terminated);
366 }
367
368 /* Search through the list of known tasks for the one whose ptid is
369 PTID, and return it. Return NULL if the task was not found. */
370
371 struct ada_task_info *
372 ada_get_task_info_from_ptid (ptid_t ptid)
373 {
374 struct ada_tasks_inferior_data *data;
375
376 ada_build_task_list ();
377 data = get_ada_tasks_inferior_data (current_inferior ());
378
379 for (ada_task_info &task : data->task_list)
380 {
381 if (task.ptid == ptid)
382 return &task;
383 }
384
385 return NULL;
386 }
387
388 /* Call the ITERATOR function once for each Ada task that hasn't been
389 terminated yet. */
390
391 void
392 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype *iterator)
393 {
394 struct ada_tasks_inferior_data *data;
395
396 ada_build_task_list ();
397 data = get_ada_tasks_inferior_data (current_inferior ());
398
399 for (ada_task_info &task : data->task_list)
400 {
401 if (!ada_task_is_alive (&task))
402 continue;
403 iterator (&task);
404 }
405 }
406
407 /* Extract the contents of the value as a string whose length is LENGTH,
408 and store the result in DEST. */
409
410 static void
411 value_as_string (char *dest, struct value *val, int length)
412 {
413 memcpy (dest, value_contents (val), length);
414 dest[length] = '\0';
415 }
416
417 /* Extract the string image from the fat string corresponding to VAL,
418 and store it in DEST. If the string length is greater than MAX_LEN,
419 then truncate the result to the first MAX_LEN characters of the fat
420 string. */
421
422 static void
423 read_fat_string_value (char *dest, struct value *val, int max_len)
424 {
425 struct value *array_val;
426 struct value *bounds_val;
427 int len;
428
429 /* The following variables are made static to avoid recomputing them
430 each time this function is called. */
431 static int initialize_fieldnos = 1;
432 static int array_fieldno;
433 static int bounds_fieldno;
434 static int upper_bound_fieldno;
435
436 /* Get the index of the fields that we will need to read in order
437 to extract the string from the fat string. */
438 if (initialize_fieldnos)
439 {
440 struct type *type = value_type (val);
441 struct type *bounds_type;
442
443 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
444 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
445
446 bounds_type = TYPE_FIELD_TYPE (type, bounds_fieldno);
447 if (TYPE_CODE (bounds_type) == TYPE_CODE_PTR)
448 bounds_type = TYPE_TARGET_TYPE (bounds_type);
449 if (TYPE_CODE (bounds_type) != TYPE_CODE_STRUCT)
450 error (_("Unknown task name format. Aborting"));
451 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
452
453 initialize_fieldnos = 0;
454 }
455
456 /* Get the size of the task image by checking the value of the bounds.
457 The lower bound is always 1, so we only need to read the upper bound. */
458 bounds_val = value_ind (value_field (val, bounds_fieldno));
459 len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
460
461 /* Make sure that we do not read more than max_len characters... */
462 if (len > max_len)
463 len = max_len;
464
465 /* Extract LEN characters from the fat string. */
466 array_val = value_ind (value_field (val, array_fieldno));
467 read_memory (value_address (array_val), (gdb_byte *) dest, len);
468
469 /* Add the NUL character to close the string. */
470 dest[len] = '\0';
471 }
472
473 /* Get, from the debugging information, the type description of all types
474 related to the Ada Task Control Block that are needed in order to
475 read the list of known tasks in the Ada runtime. If all of the info
476 needed to do so is found, then save that info in the module's per-
477 program-space data, and return NULL. Otherwise, if any information
478 cannot be found, leave the per-program-space data untouched, and
479 return an error message explaining what was missing (that error
480 message does NOT need to be deallocated). */
481
482 const char *
483 ada_get_tcb_types_info (void)
484 {
485 struct type *type;
486 struct type *common_type;
487 struct type *ll_type;
488 struct type *call_type;
489 struct atcb_fieldnos fieldnos;
490 struct ada_tasks_pspace_data *pspace_data;
491
492 const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
493 const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
494 const char *common_atcb_name = "system__tasking__common_atcb";
495 const char *private_data_name = "system__task_primitives__private_data";
496 const char *entry_call_record_name = "system__tasking__entry_call_record";
497
498 /* ATCB symbols may be found in several compilation units. As we
499 are only interested in one instance, use standard (literal,
500 C-like) lookups to get the first match. */
501
502 struct symbol *atcb_sym =
503 lookup_symbol_in_language (atcb_name, NULL, STRUCT_DOMAIN,
504 language_c, NULL).symbol;
505 const struct symbol *common_atcb_sym =
506 lookup_symbol_in_language (common_atcb_name, NULL, STRUCT_DOMAIN,
507 language_c, NULL).symbol;
508 const struct symbol *private_data_sym =
509 lookup_symbol_in_language (private_data_name, NULL, STRUCT_DOMAIN,
510 language_c, NULL).symbol;
511 const struct symbol *entry_call_record_sym =
512 lookup_symbol_in_language (entry_call_record_name, NULL, STRUCT_DOMAIN,
513 language_c, NULL).symbol;
514
515 if (atcb_sym == NULL || atcb_sym->type == NULL)
516 {
517 /* In Ravenscar run-time libs, the ATCB does not have a dynamic
518 size, so the symbol name differs. */
519 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL,
520 STRUCT_DOMAIN, language_c,
521 NULL).symbol;
522
523 if (atcb_sym == NULL || atcb_sym->type == NULL)
524 return _("Cannot find Ada_Task_Control_Block type");
525
526 type = atcb_sym->type;
527 }
528 else
529 {
530 /* Get a static representation of the type record
531 Ada_Task_Control_Block. */
532 type = atcb_sym->type;
533 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
534 }
535
536 if (common_atcb_sym == NULL || common_atcb_sym->type == NULL)
537 return _("Cannot find Common_ATCB type");
538 if (private_data_sym == NULL || private_data_sym->type == NULL)
539 return _("Cannot find Private_Data type");
540 if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL)
541 return _("Cannot find Entry_Call_Record type");
542
543 /* Get the type for Ada_Task_Control_Block.Common. */
544 common_type = common_atcb_sym->type;
545
546 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */
547 ll_type = private_data_sym->type;
548
549 /* Get the type for Common_ATCB.Call.all. */
550 call_type = entry_call_record_sym->type;
551
552 /* Get the field indices. */
553 fieldnos.common = ada_get_field_index (type, "common", 0);
554 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
555 fieldnos.atc_nesting_level =
556 ada_get_field_index (type, "atc_nesting_level", 1);
557 fieldnos.state = ada_get_field_index (common_type, "state", 0);
558 fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
559 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
560 fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
561 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
562 fieldnos.activation_link = ada_get_field_index (common_type,
563 "activation_link", 1);
564 fieldnos.call = ada_get_field_index (common_type, "call", 1);
565 fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
566 fieldnos.base_cpu = ada_get_field_index (common_type, "base_cpu", 0);
567 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
568 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
569 fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
570
571 /* On certain platforms such as x86-windows, the "lwp" field has been
572 named "thread_id". This field will likely be renamed in the future,
573 but we need to support both possibilities to avoid an unnecessary
574 dependency on a recent compiler. We therefore try locating the
575 "thread_id" field in place of the "lwp" field if we did not find
576 the latter. */
577 if (fieldnos.ll_lwp < 0)
578 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
579
580 /* Set all the out parameters all at once, now that we are certain
581 that there are no potential error() anymore. */
582 pspace_data = get_ada_tasks_pspace_data (current_program_space);
583 pspace_data->initialized_p = 1;
584 pspace_data->atcb_type = type;
585 pspace_data->atcb_common_type = common_type;
586 pspace_data->atcb_ll_type = ll_type;
587 pspace_data->atcb_call_type = call_type;
588 pspace_data->atcb_fieldno = fieldnos;
589 return NULL;
590 }
591
592 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
593 component of its ATCB record. This PTID needs to match the PTID used
594 by the thread layer. */
595
596 static ptid_t
597 ptid_from_atcb_common (struct value *common_value)
598 {
599 long thread = 0;
600 CORE_ADDR lwp = 0;
601 struct value *ll_value;
602 ptid_t ptid;
603 const struct ada_tasks_pspace_data *pspace_data
604 = get_ada_tasks_pspace_data (current_program_space);
605
606 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
607
608 if (pspace_data->atcb_fieldno.ll_lwp >= 0)
609 lwp = value_as_address (value_field (ll_value,
610 pspace_data->atcb_fieldno.ll_lwp));
611 thread = value_as_long (value_field (ll_value,
612 pspace_data->atcb_fieldno.ll_thread));
613
614 ptid = target_get_ada_task_ptid (lwp, thread);
615
616 return ptid;
617 }
618
619 /* Read the ATCB data of a given task given its TASK_ID (which is in practice
620 the address of its assocated ATCB record), and store the result inside
621 TASK_INFO. */
622
623 static void
624 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
625 {
626 struct value *tcb_value;
627 struct value *common_value;
628 struct value *atc_nesting_level_value;
629 struct value *entry_calls_value;
630 struct value *entry_calls_value_element;
631 int called_task_fieldno = -1;
632 static const char ravenscar_task_name[] = "Ravenscar task";
633 const struct ada_tasks_pspace_data *pspace_data
634 = get_ada_tasks_pspace_data (current_program_space);
635
636 /* Clear the whole structure to start with, so that everything
637 is always initialized the same. */
638 memset (task_info, 0, sizeof (struct ada_task_info));
639
640 if (!pspace_data->initialized_p)
641 {
642 const char *err_msg = ada_get_tcb_types_info ();
643
644 if (err_msg != NULL)
645 error (_("%s. Aborting"), err_msg);
646 }
647
648 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
649 NULL, task_id);
650 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
651
652 /* Fill in the task_id. */
653
654 task_info->task_id = task_id;
655
656 /* Compute the name of the task.
657
658 Depending on the GNAT version used, the task image is either a fat
659 string, or a thin array of characters. Older versions of GNAT used
660 to use fat strings, and therefore did not need an extra field in
661 the ATCB to store the string length. For efficiency reasons, newer
662 versions of GNAT replaced the fat string by a static buffer, but this
663 also required the addition of a new field named "Image_Len" containing
664 the length of the task name. The method used to extract the task name
665 is selected depending on the existence of this field.
666
667 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
668 we may want to get it from the first user frame of the stack. For now,
669 we just give a dummy name. */
670
671 if (pspace_data->atcb_fieldno.image_len == -1)
672 {
673 if (pspace_data->atcb_fieldno.image >= 0)
674 read_fat_string_value (task_info->name,
675 value_field (common_value,
676 pspace_data->atcb_fieldno.image),
677 sizeof (task_info->name) - 1);
678 else
679 {
680 struct bound_minimal_symbol msym;
681
682 msym = lookup_minimal_symbol_by_pc (task_id);
683 if (msym.minsym)
684 {
685 const char *full_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
686 const char *task_name = full_name;
687 const char *p;
688
689 /* Strip the prefix. */
690 for (p = full_name; *p; p++)
691 if (p[0] == '_' && p[1] == '_')
692 task_name = p + 2;
693
694 /* Copy the task name. */
695 strncpy (task_info->name, task_name, sizeof (task_info->name));
696 task_info->name[sizeof (task_info->name) - 1] = 0;
697 }
698 else
699 {
700 /* No symbol found. Use a default name. */
701 strcpy (task_info->name, ravenscar_task_name);
702 }
703 }
704 }
705 else
706 {
707 int len = value_as_long
708 (value_field (common_value,
709 pspace_data->atcb_fieldno.image_len));
710
711 value_as_string (task_info->name,
712 value_field (common_value,
713 pspace_data->atcb_fieldno.image),
714 len);
715 }
716
717 /* Compute the task state and priority. */
718
719 task_info->state =
720 value_as_long (value_field (common_value,
721 pspace_data->atcb_fieldno.state));
722 task_info->priority =
723 value_as_long (value_field (common_value,
724 pspace_data->atcb_fieldno.priority));
725
726 /* If the ATCB contains some information about the parent task,
727 then compute it as well. Otherwise, zero. */
728
729 if (pspace_data->atcb_fieldno.parent >= 0)
730 task_info->parent =
731 value_as_address (value_field (common_value,
732 pspace_data->atcb_fieldno.parent));
733
734 /* If the task is in an entry call waiting for another task,
735 then determine which task it is. */
736
737 if (task_info->state == Entry_Caller_Sleep
738 && pspace_data->atcb_fieldno.atc_nesting_level > 0
739 && pspace_data->atcb_fieldno.entry_calls > 0)
740 {
741 /* Let My_ATCB be the Ada task control block of a task calling the
742 entry of another task; then the Task_Id of the called task is
743 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */
744 atc_nesting_level_value =
745 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
746 entry_calls_value =
747 ada_coerce_to_simple_array_ptr
748 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
749 entry_calls_value_element =
750 value_subscript (entry_calls_value,
751 value_as_long (atc_nesting_level_value));
752 called_task_fieldno =
753 ada_get_field_index (value_type (entry_calls_value_element),
754 "called_task", 0);
755 task_info->called_task =
756 value_as_address (value_field (entry_calls_value_element,
757 called_task_fieldno));
758 }
759
760 /* If the ATCB cotnains some information about RV callers, then
761 compute the "caller_task". Otherwise, leave it as zero. */
762
763 if (pspace_data->atcb_fieldno.call >= 0)
764 {
765 /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
766 If Common_ATCB.Call is null, then there is no caller. */
767 const CORE_ADDR call =
768 value_as_address (value_field (common_value,
769 pspace_data->atcb_fieldno.call));
770 struct value *call_val;
771
772 if (call != 0)
773 {
774 call_val =
775 value_from_contents_and_address (pspace_data->atcb_call_type,
776 NULL, call);
777 task_info->caller_task =
778 value_as_address
779 (value_field (call_val, pspace_data->atcb_fieldno.call_self));
780 }
781 }
782
783 task_info->base_cpu
784 = value_as_long (value_field (common_value,
785 pspace_data->atcb_fieldno.base_cpu));
786
787 /* And finally, compute the task ptid. Note that there is not point
788 in computing it if the task is no longer alive, in which case
789 it is good enough to set its ptid to the null_ptid. */
790 if (ada_task_is_alive (task_info))
791 task_info->ptid = ptid_from_atcb_common (common_value);
792 else
793 task_info->ptid = null_ptid;
794 }
795
796 /* Read the ATCB info of the given task (identified by TASK_ID), and
797 add the result to the given inferior's TASK_LIST. */
798
799 static void
800 add_ada_task (CORE_ADDR task_id, struct inferior *inf)
801 {
802 struct ada_task_info task_info;
803 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
804
805 read_atcb (task_id, &task_info);
806 data->task_list.push_back (task_info);
807 }
808
809 /* Read the Known_Tasks array from the inferior memory, and store
810 it in the current inferior's TASK_LIST. Return true upon success. */
811
812 static bool
813 read_known_tasks_array (struct ada_tasks_inferior_data *data)
814 {
815 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
816 const int known_tasks_size = target_ptr_byte * data->known_tasks_length;
817 gdb_byte *known_tasks = (gdb_byte *) alloca (known_tasks_size);
818 int i;
819
820 /* Build a new list by reading the ATCBs from the Known_Tasks array
821 in the Ada runtime. */
822 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size);
823 for (i = 0; i < data->known_tasks_length; i++)
824 {
825 CORE_ADDR task_id =
826 extract_typed_address (known_tasks + i * target_ptr_byte,
827 data->known_tasks_element);
828
829 if (task_id != 0)
830 add_ada_task (task_id, current_inferior ());
831 }
832
833 return true;
834 }
835
836 /* Read the known tasks from the inferior memory, and store it in
837 the current inferior's TASK_LIST. Return true upon success. */
838
839 static bool
840 read_known_tasks_list (struct ada_tasks_inferior_data *data)
841 {
842 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
843 gdb_byte *known_tasks = (gdb_byte *) alloca (target_ptr_byte);
844 CORE_ADDR task_id;
845 const struct ada_tasks_pspace_data *pspace_data
846 = get_ada_tasks_pspace_data (current_program_space);
847
848 /* Sanity check. */
849 if (pspace_data->atcb_fieldno.activation_link < 0)
850 return false;
851
852 /* Build a new list by reading the ATCBs. Read head of the list. */
853 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte);
854 task_id = extract_typed_address (known_tasks, data->known_tasks_element);
855 while (task_id != 0)
856 {
857 struct value *tcb_value;
858 struct value *common_value;
859
860 add_ada_task (task_id, current_inferior ());
861
862 /* Read the chain. */
863 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
864 NULL, task_id);
865 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
866 task_id = value_as_address
867 (value_field (common_value,
868 pspace_data->atcb_fieldno.activation_link));
869 }
870
871 return true;
872 }
873
874 /* Set all fields of the current inferior ada-tasks data pointed by DATA.
875 Do nothing if those fields are already set and still up to date. */
876
877 static void
878 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data)
879 {
880 struct bound_minimal_symbol msym;
881 struct symbol *sym;
882
883 /* Return now if already set. */
884 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
885 return;
886
887 /* Try array. */
888
889 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL);
890 if (msym.minsym != NULL)
891 {
892 data->known_tasks_kind = ADA_TASKS_ARRAY;
893 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
894
895 /* Try to get pointer type and array length from the symtab. */
896 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN,
897 language_c, NULL).symbol;
898 if (sym != NULL)
899 {
900 /* Validate. */
901 struct type *type = check_typedef (SYMBOL_TYPE (sym));
902 struct type *eltype = NULL;
903 struct type *idxtype = NULL;
904
905 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
906 eltype = check_typedef (TYPE_TARGET_TYPE (type));
907 if (eltype != NULL
908 && TYPE_CODE (eltype) == TYPE_CODE_PTR)
909 idxtype = check_typedef (TYPE_INDEX_TYPE (type));
910 if (idxtype != NULL
911 && !TYPE_LOW_BOUND_UNDEFINED (idxtype)
912 && !TYPE_HIGH_BOUND_UNDEFINED (idxtype))
913 {
914 data->known_tasks_element = eltype;
915 data->known_tasks_length =
916 TYPE_HIGH_BOUND (idxtype) - TYPE_LOW_BOUND (idxtype) + 1;
917 return;
918 }
919 }
920
921 /* Fallback to default values. The runtime may have been stripped (as
922 in some distributions), but it is likely that the executable still
923 contains debug information on the task type (due to implicit with of
924 Ada.Tasking). */
925 data->known_tasks_element =
926 builtin_type (target_gdbarch ())->builtin_data_ptr;
927 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS;
928 return;
929 }
930
931
932 /* Try list. */
933
934 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL);
935 if (msym.minsym != NULL)
936 {
937 data->known_tasks_kind = ADA_TASKS_LIST;
938 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
939 data->known_tasks_length = 1;
940
941 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN,
942 language_c, NULL).symbol;
943 if (sym != NULL && SYMBOL_VALUE_ADDRESS (sym) != 0)
944 {
945 /* Validate. */
946 struct type *type = check_typedef (SYMBOL_TYPE (sym));
947
948 if (TYPE_CODE (type) == TYPE_CODE_PTR)
949 {
950 data->known_tasks_element = type;
951 return;
952 }
953 }
954
955 /* Fallback to default values. */
956 data->known_tasks_element =
957 builtin_type (target_gdbarch ())->builtin_data_ptr;
958 data->known_tasks_length = 1;
959 return;
960 }
961
962 /* Can't find tasks. */
963
964 data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
965 data->known_tasks_addr = 0;
966 }
967
968 /* Read the known tasks from the current inferior's memory, and store it
969 in the current inferior's data TASK_LIST. */
970
971 static void
972 read_known_tasks ()
973 {
974 struct ada_tasks_inferior_data *data =
975 get_ada_tasks_inferior_data (current_inferior ());
976
977 /* Step 1: Clear the current list, if necessary. */
978 data->task_list.clear ();
979
980 /* Step 2: do the real work.
981 If the application does not use task, then no more needs to be done.
982 It is important to have the task list cleared (see above) before we
983 return, as we don't want a stale task list to be used... This can
984 happen for instance when debugging a non-multitasking program after
985 having debugged a multitasking one. */
986 ada_tasks_inferior_data_sniffer (data);
987 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
988
989 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
990 array unless needed. */
991 switch (data->known_tasks_kind)
992 {
993 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */
994 break;
995 case ADA_TASKS_ARRAY:
996 data->task_list_valid_p = read_known_tasks_array (data);
997 break;
998 case ADA_TASKS_LIST:
999 data->task_list_valid_p = read_known_tasks_list (data);
1000 break;
1001 }
1002 }
1003
1004 /* Build the task_list by reading the Known_Tasks array from
1005 the inferior, and return the number of tasks in that list
1006 (zero means that the program is not using tasking at all). */
1007
1008 static int
1009 ada_build_task_list ()
1010 {
1011 struct ada_tasks_inferior_data *data;
1012
1013 if (!target_has_stack)
1014 error (_("Cannot inspect Ada tasks when program is not running"));
1015
1016 data = get_ada_tasks_inferior_data (current_inferior ());
1017 if (!data->task_list_valid_p)
1018 read_known_tasks ();
1019
1020 return data->task_list.size ();
1021 }
1022
1023 /* Print a table providing a short description of all Ada tasks
1024 running inside inferior INF. If ARG_STR is set, it will be
1025 interpreted as a task number, and the table will be limited to
1026 that task only. */
1027
1028 void
1029 print_ada_task_info (struct ui_out *uiout,
1030 char *arg_str,
1031 struct inferior *inf)
1032 {
1033 struct ada_tasks_inferior_data *data;
1034 int taskno, nb_tasks;
1035 int taskno_arg = 0;
1036 int nb_columns;
1037
1038 if (ada_build_task_list () == 0)
1039 {
1040 uiout->message (_("Your application does not use any Ada tasks.\n"));
1041 return;
1042 }
1043
1044 if (arg_str != NULL && arg_str[0] != '\0')
1045 taskno_arg = value_as_long (parse_and_eval (arg_str));
1046
1047 if (uiout->is_mi_like_p ())
1048 /* In GDB/MI mode, we want to provide the thread ID corresponding
1049 to each task. This allows clients to quickly find the thread
1050 associated to any task, which is helpful for commands that
1051 take a --thread argument. However, in order to be able to
1052 provide that thread ID, the thread list must be up to date
1053 first. */
1054 target_update_thread_list ();
1055
1056 data = get_ada_tasks_inferior_data (inf);
1057
1058 /* Compute the number of tasks that are going to be displayed
1059 in the output. If an argument was given, there will be
1060 at most 1 entry. Otherwise, there will be as many entries
1061 as we have tasks. */
1062 if (taskno_arg)
1063 {
1064 if (taskno_arg > 0 && taskno_arg <= data->task_list.size ())
1065 nb_tasks = 1;
1066 else
1067 nb_tasks = 0;
1068 }
1069 else
1070 nb_tasks = data->task_list.size ();
1071
1072 nb_columns = uiout->is_mi_like_p () ? 8 : 7;
1073 ui_out_emit_table table_emitter (uiout, nb_columns, nb_tasks, "tasks");
1074 uiout->table_header (1, ui_left, "current", "");
1075 uiout->table_header (3, ui_right, "id", "ID");
1076 uiout->table_header (9, ui_right, "task-id", "TID");
1077 /* The following column is provided in GDB/MI mode only because
1078 it is only really useful in that mode, and also because it
1079 allows us to keep the CLI output shorter and more compact. */
1080 if (uiout->is_mi_like_p ())
1081 uiout->table_header (4, ui_right, "thread-id", "");
1082 uiout->table_header (4, ui_right, "parent-id", "P-ID");
1083 uiout->table_header (3, ui_right, "priority", "Pri");
1084 uiout->table_header (22, ui_left, "state", "State");
1085 /* Use ui_noalign for the last column, to prevent the CLI uiout
1086 from printing an extra space at the end of each row. This
1087 is a bit of a hack, but does get the job done. */
1088 uiout->table_header (1, ui_noalign, "name", "Name");
1089 uiout->table_body ();
1090
1091 for (taskno = 1; taskno <= data->task_list.size (); taskno++)
1092 {
1093 const struct ada_task_info *const task_info =
1094 &data->task_list[taskno - 1];
1095 int parent_id;
1096
1097 gdb_assert (task_info != NULL);
1098
1099 /* If the user asked for the output to be restricted
1100 to one task only, and this is not the task, skip
1101 to the next one. */
1102 if (taskno_arg && taskno != taskno_arg)
1103 continue;
1104
1105 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1106
1107 /* Print a star if this task is the current task (or the task
1108 currently selected). */
1109 if (task_info->ptid == inferior_ptid)
1110 uiout->field_string ("current", "*");
1111 else
1112 uiout->field_skip ("current");
1113
1114 /* Print the task number. */
1115 uiout->field_int ("id", taskno);
1116
1117 /* Print the Task ID. */
1118 uiout->field_fmt ("task-id", "%9lx", (long) task_info->task_id);
1119
1120 /* Print the associated Thread ID. */
1121 if (uiout->is_mi_like_p ())
1122 {
1123 thread_info *thread = find_thread_ptid (task_info->ptid);
1124
1125 if (thread != NULL)
1126 uiout->field_int ("thread-id", thread->global_num);
1127 else
1128 /* This should never happen unless there is a bug somewhere,
1129 but be resilient when that happens. */
1130 uiout->field_skip ("thread-id");
1131 }
1132
1133 /* Print the ID of the parent task. */
1134 parent_id = get_task_number_from_id (task_info->parent, inf);
1135 if (parent_id)
1136 uiout->field_int ("parent-id", parent_id);
1137 else
1138 uiout->field_skip ("parent-id");
1139
1140 /* Print the base priority of the task. */
1141 uiout->field_int ("priority", task_info->priority);
1142
1143 /* Print the task current state. */
1144 if (task_info->caller_task)
1145 uiout->field_fmt ("state",
1146 _("Accepting RV with %-4d"),
1147 get_task_number_from_id (task_info->caller_task,
1148 inf));
1149 else if (task_info->called_task)
1150 uiout->field_fmt ("state",
1151 _("Waiting on RV with %-3d"),
1152 get_task_number_from_id (task_info->called_task,
1153 inf));
1154 else
1155 uiout->field_string ("state", task_states[task_info->state]);
1156
1157 /* Finally, print the task name. */
1158 uiout->field_fmt ("name",
1159 "%s",
1160 task_info->name[0] != '\0' ? task_info->name
1161 : _("<no name>"));
1162
1163 uiout->text ("\n");
1164 }
1165 }
1166
1167 /* Print a detailed description of the Ada task whose ID is TASKNO_STR
1168 for the given inferior (INF). */
1169
1170 static void
1171 info_task (struct ui_out *uiout, const char *taskno_str, struct inferior *inf)
1172 {
1173 const int taskno = value_as_long (parse_and_eval (taskno_str));
1174 struct ada_task_info *task_info;
1175 int parent_taskno = 0;
1176 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1177
1178 if (ada_build_task_list () == 0)
1179 {
1180 uiout->message (_("Your application does not use any Ada tasks.\n"));
1181 return;
1182 }
1183
1184 if (taskno <= 0 || taskno > data->task_list.size ())
1185 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1186 "see the IDs of currently known tasks"), taskno);
1187 task_info = &data->task_list[taskno - 1];
1188
1189 /* Print the Ada task ID. */
1190 printf_filtered (_("Ada Task: %s\n"),
1191 paddress (target_gdbarch (), task_info->task_id));
1192
1193 /* Print the name of the task. */
1194 if (task_info->name[0] != '\0')
1195 printf_filtered (_("Name: %s\n"), task_info->name);
1196 else
1197 printf_filtered (_("<no name>\n"));
1198
1199 /* Print the TID and LWP. */
1200 printf_filtered (_("Thread: %#lx\n"), task_info->ptid.tid ());
1201 printf_filtered (_("LWP: %#lx\n"), task_info->ptid.lwp ());
1202
1203 /* If set, print the base CPU. */
1204 if (task_info->base_cpu != 0)
1205 printf_filtered (_("Base CPU: %d\n"), task_info->base_cpu);
1206
1207 /* Print who is the parent (if any). */
1208 if (task_info->parent != 0)
1209 parent_taskno = get_task_number_from_id (task_info->parent, inf);
1210 if (parent_taskno)
1211 {
1212 struct ada_task_info *parent = &data->task_list[parent_taskno - 1];
1213
1214 printf_filtered (_("Parent: %d"), parent_taskno);
1215 if (parent->name[0] != '\0')
1216 printf_filtered (" (%s)", parent->name);
1217 printf_filtered ("\n");
1218 }
1219 else
1220 printf_filtered (_("No parent\n"));
1221
1222 /* Print the base priority. */
1223 printf_filtered (_("Base Priority: %d\n"), task_info->priority);
1224
1225 /* print the task current state. */
1226 {
1227 int target_taskno = 0;
1228
1229 if (task_info->caller_task)
1230 {
1231 target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1232 printf_filtered (_("State: Accepting rendezvous with %d"),
1233 target_taskno);
1234 }
1235 else if (task_info->called_task)
1236 {
1237 target_taskno = get_task_number_from_id (task_info->called_task, inf);
1238 printf_filtered (_("State: Waiting on task %d's entry"),
1239 target_taskno);
1240 }
1241 else
1242 printf_filtered (_("State: %s"), _(long_task_states[task_info->state]));
1243
1244 if (target_taskno)
1245 {
1246 ada_task_info *target_task_info = &data->task_list[target_taskno - 1];
1247
1248 if (target_task_info->name[0] != '\0')
1249 printf_filtered (" (%s)", target_task_info->name);
1250 }
1251
1252 printf_filtered ("\n");
1253 }
1254 }
1255
1256 /* If ARG is empty or null, then print a list of all Ada tasks.
1257 Otherwise, print detailed information about the task whose ID
1258 is ARG.
1259
1260 Does nothing if the program doesn't use Ada tasking. */
1261
1262 static void
1263 info_tasks_command (const char *arg, int from_tty)
1264 {
1265 struct ui_out *uiout = current_uiout;
1266
1267 if (arg == NULL || *arg == '\0')
1268 print_ada_task_info (uiout, NULL, current_inferior ());
1269 else
1270 info_task (uiout, arg, current_inferior ());
1271 }
1272
1273 /* Print a message telling the user id of the current task.
1274 This function assumes that tasking is in use in the inferior. */
1275
1276 static void
1277 display_current_task_id (void)
1278 {
1279 const int current_task = ada_get_task_number (inferior_thread ());
1280
1281 if (current_task == 0)
1282 printf_filtered (_("[Current task is unknown]\n"));
1283 else
1284 printf_filtered (_("[Current task is %d]\n"), current_task);
1285 }
1286
1287 /* Parse and evaluate TIDSTR into a task id, and try to switch to
1288 that task. Print an error message if the task switch failed. */
1289
1290 static void
1291 task_command_1 (const char *taskno_str, int from_tty, struct inferior *inf)
1292 {
1293 const int taskno = value_as_long (parse_and_eval (taskno_str));
1294 struct ada_task_info *task_info;
1295 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1296
1297 if (taskno <= 0 || taskno > data->task_list.size ())
1298 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1299 "see the IDs of currently known tasks"), taskno);
1300 task_info = &data->task_list[taskno - 1];
1301
1302 if (!ada_task_is_alive (task_info))
1303 error (_("Cannot switch to task %d: Task is no longer running"), taskno);
1304
1305 /* On some platforms, the thread list is not updated until the user
1306 performs a thread-related operation (by using the "info threads"
1307 command, for instance). So this thread list may not be up to date
1308 when the user attempts this task switch. Since we cannot switch
1309 to the thread associated to our task if GDB does not know about
1310 that thread, we need to make sure that any new threads gets added
1311 to the thread list. */
1312 target_update_thread_list ();
1313
1314 /* Verify that the ptid of the task we want to switch to is valid
1315 (in other words, a ptid that GDB knows about). Otherwise, we will
1316 cause an assertion failure later on, when we try to determine
1317 the ptid associated thread_info data. We should normally never
1318 encounter such an error, but the wrong ptid can actually easily be
1319 computed if target_get_ada_task_ptid has not been implemented for
1320 our target (yet). Rather than cause an assertion error in that case,
1321 it's nicer for the user to just refuse to perform the task switch. */
1322 thread_info *tp = find_thread_ptid (task_info->ptid);
1323 if (tp == NULL)
1324 error (_("Unable to compute thread ID for task %d.\n"
1325 "Cannot switch to this task."),
1326 taskno);
1327
1328 switch_to_thread (tp);
1329 ada_find_printable_frame (get_selected_frame (NULL));
1330 printf_filtered (_("[Switching to task %d]\n"), taskno);
1331 print_stack_frame (get_selected_frame (NULL),
1332 frame_relative_level (get_selected_frame (NULL)),
1333 SRC_AND_LOC, 1);
1334 }
1335
1336
1337 /* Print the ID of the current task if TASKNO_STR is empty or NULL.
1338 Otherwise, switch to the task indicated by TASKNO_STR. */
1339
1340 static void
1341 task_command (const char *taskno_str, int from_tty)
1342 {
1343 struct ui_out *uiout = current_uiout;
1344
1345 if (ada_build_task_list () == 0)
1346 {
1347 uiout->message (_("Your application does not use any Ada tasks.\n"));
1348 return;
1349 }
1350
1351 if (taskno_str == NULL || taskno_str[0] == '\0')
1352 display_current_task_id ();
1353 else
1354 task_command_1 (taskno_str, from_tty, current_inferior ());
1355 }
1356
1357 /* Indicate that the given inferior's task list may have changed,
1358 so invalidate the cache. */
1359
1360 static void
1361 ada_task_list_changed (struct inferior *inf)
1362 {
1363 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1364
1365 data->task_list_valid_p = false;
1366 }
1367
1368 /* Invalidate the per-program-space data. */
1369
1370 static void
1371 ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1372 {
1373 get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1374 }
1375
1376 /* Invalidate the per-inferior data. */
1377
1378 static void
1379 ada_tasks_invalidate_inferior_data (struct inferior *inf)
1380 {
1381 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1382
1383 data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1384 data->task_list_valid_p = false;
1385 }
1386
1387 /* The 'normal_stop' observer notification callback. */
1388
1389 static void
1390 ada_tasks_normal_stop_observer (struct bpstats *unused_args, int unused_args2)
1391 {
1392 /* The inferior has been resumed, and just stopped. This means that
1393 our task_list needs to be recomputed before it can be used again. */
1394 ada_task_list_changed (current_inferior ());
1395 }
1396
1397 /* A routine to be called when the objfiles have changed. */
1398
1399 static void
1400 ada_tasks_new_objfile_observer (struct objfile *objfile)
1401 {
1402 struct inferior *inf;
1403
1404 /* Invalidate the relevant data in our program-space data. */
1405
1406 if (objfile == NULL)
1407 {
1408 /* All objfiles are being cleared, so we should clear all
1409 our caches for all program spaces. */
1410 struct program_space *pspace;
1411
1412 for (pspace = program_spaces; pspace != NULL; pspace = pspace->next)
1413 ada_tasks_invalidate_pspace_data (pspace);
1414 }
1415 else
1416 {
1417 /* The associated program-space data might have changed after
1418 this objfile was added. Invalidate all cached data. */
1419 ada_tasks_invalidate_pspace_data (objfile->pspace);
1420 }
1421
1422 /* Invalidate the per-inferior cache for all inferiors using
1423 this objfile (or, in other words, for all inferiors who have
1424 the same program-space as the objfile's program space).
1425 If all objfiles are being cleared (OBJFILE is NULL), then
1426 clear the caches for all inferiors. */
1427
1428 for (inf = inferior_list; inf != NULL; inf = inf->next)
1429 if (objfile == NULL || inf->pspace == objfile->pspace)
1430 ada_tasks_invalidate_inferior_data (inf);
1431 }
1432
1433 void
1434 _initialize_tasks (void)
1435 {
1436 ada_tasks_pspace_data_handle
1437 = register_program_space_data_with_cleanup (NULL,
1438 ada_tasks_pspace_data_cleanup);
1439 ada_tasks_inferior_data_handle
1440 = register_inferior_data_with_cleanup (NULL,
1441 ada_tasks_inferior_data_cleanup);
1442
1443 /* Attach various observers. */
1444 gdb::observers::normal_stop.attach (ada_tasks_normal_stop_observer);
1445 gdb::observers::new_objfile.attach (ada_tasks_new_objfile_observer);
1446
1447 /* Some new commands provided by this module. */
1448 add_info ("tasks", info_tasks_command,
1449 _("Provide information about all known Ada tasks"));
1450 add_cmd ("task", class_run, task_command,
1451 _("Use this command to switch between Ada tasks.\n\
1452 Without argument, this command simply prints the current task ID"),
1453 &cmdlist);
1454 }
This page took 0.061478 seconds and 4 git commands to generate.