Provide the "Base CPU" in output of "info task" (if set by runtime).
[deliverable/binutils-gdb.git] / gdb / ada-tasks.c
1 /* Copyright (C) 1992-2017 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "observer.h"
20 #include "gdbcmd.h"
21 #include "target.h"
22 #include "ada-lang.h"
23 #include "gdbcore.h"
24 #include "inferior.h"
25 #include "gdbthread.h"
26 #include "progspace.h"
27 #include "objfiles.h"
28
29 /* The name of the array in the GNAT runtime where the Ada Task Control
30 Block of each task is stored. */
31 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
32
33 /* The maximum number of tasks known to the Ada runtime. */
34 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
35
36 /* The name of the variable in the GNAT runtime where the head of a task
37 chain is saved. This is an alternate mechanism to find the list of known
38 tasks. */
39 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
40
41 enum task_states
42 {
43 Unactivated,
44 Runnable,
45 Terminated,
46 Activator_Sleep,
47 Acceptor_Sleep,
48 Entry_Caller_Sleep,
49 Async_Select_Sleep,
50 Delay_Sleep,
51 Master_Completion_Sleep,
52 Master_Phase_2_Sleep,
53 Interrupt_Server_Idle_Sleep,
54 Interrupt_Server_Blocked_Interrupt_Sleep,
55 Timer_Server_Sleep,
56 AST_Server_Sleep,
57 Asynchronous_Hold,
58 Interrupt_Server_Blocked_On_Event_Flag,
59 Activating,
60 Acceptor_Delay_Sleep
61 };
62
63 /* A short description corresponding to each possible task state. */
64 static const char *task_states[] = {
65 N_("Unactivated"),
66 N_("Runnable"),
67 N_("Terminated"),
68 N_("Child Activation Wait"),
69 N_("Accept or Select Term"),
70 N_("Waiting on entry call"),
71 N_("Async Select Wait"),
72 N_("Delay Sleep"),
73 N_("Child Termination Wait"),
74 N_("Wait Child in Term Alt"),
75 "",
76 "",
77 "",
78 "",
79 N_("Asynchronous Hold"),
80 "",
81 N_("Activating"),
82 N_("Selective Wait")
83 };
84
85 /* A longer description corresponding to each possible task state. */
86 static const char *long_task_states[] = {
87 N_("Unactivated"),
88 N_("Runnable"),
89 N_("Terminated"),
90 N_("Waiting for child activation"),
91 N_("Blocked in accept or select with terminate"),
92 N_("Waiting on entry call"),
93 N_("Asynchronous Selective Wait"),
94 N_("Delay Sleep"),
95 N_("Waiting for children termination"),
96 N_("Waiting for children in terminate alternative"),
97 "",
98 "",
99 "",
100 "",
101 N_("Asynchronous Hold"),
102 "",
103 N_("Activating"),
104 N_("Blocked in selective wait statement")
105 };
106
107 /* The index of certain important fields in the Ada Task Control Block
108 record and sub-records. */
109
110 struct atcb_fieldnos
111 {
112 /* Fields in record Ada_Task_Control_Block. */
113 int common;
114 int entry_calls;
115 int atc_nesting_level;
116
117 /* Fields in record Common_ATCB. */
118 int state;
119 int parent;
120 int priority;
121 int image;
122 int image_len; /* This field may be missing. */
123 int activation_link;
124 int call;
125 int ll;
126 int base_cpu;
127
128 /* Fields in Task_Primitives.Private_Data. */
129 int ll_thread;
130 int ll_lwp; /* This field may be missing. */
131
132 /* Fields in Common_ATCB.Call.all. */
133 int call_self;
134 };
135
136 /* This module's per-program-space data. */
137
138 struct ada_tasks_pspace_data
139 {
140 /* Nonzero if the data has been initialized. If set to zero,
141 it means that the data has either not been initialized, or
142 has potentially become stale. */
143 int initialized_p;
144
145 /* The ATCB record type. */
146 struct type *atcb_type;
147
148 /* The ATCB "Common" component type. */
149 struct type *atcb_common_type;
150
151 /* The type of the "ll" field, from the atcb_common_type. */
152 struct type *atcb_ll_type;
153
154 /* The type of the "call" field, from the atcb_common_type. */
155 struct type *atcb_call_type;
156
157 /* The index of various fields in the ATCB record and sub-records. */
158 struct atcb_fieldnos atcb_fieldno;
159 };
160
161 /* Key to our per-program-space data. */
162 static const struct program_space_data *ada_tasks_pspace_data_handle;
163
164 typedef struct ada_task_info ada_task_info_s;
165 DEF_VEC_O(ada_task_info_s);
166
167 /* The kind of data structure used by the runtime to store the list
168 of Ada tasks. */
169
170 enum ada_known_tasks_kind
171 {
172 /* Use this value when we haven't determined which kind of structure
173 is being used, or when we need to recompute it.
174
175 We set the value of this enumerate to zero on purpose: This allows
176 us to use this enumerate in a structure where setting all fields
177 to zero will result in this kind being set to unknown. */
178 ADA_TASKS_UNKNOWN = 0,
179
180 /* This value means that we did not find any task list. Unless
181 there is a bug somewhere, this means that the inferior does not
182 use tasking. */
183 ADA_TASKS_NOT_FOUND,
184
185 /* This value means that the task list is stored as an array.
186 This is the usual method, as it causes very little overhead.
187 But this method is not always used, as it does use a certain
188 amount of memory, which might be scarse in certain environments. */
189 ADA_TASKS_ARRAY,
190
191 /* This value means that the task list is stored as a linked list.
192 This has more runtime overhead than the array approach, but
193 also require less memory when the number of tasks is small. */
194 ADA_TASKS_LIST,
195 };
196
197 /* This module's per-inferior data. */
198
199 struct ada_tasks_inferior_data
200 {
201 /* The type of data structure used by the runtime to store
202 the list of Ada tasks. The value of this field influences
203 the interpretation of the known_tasks_addr field below:
204 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
205 been determined yet;
206 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
207 and the known_tasks_addr is irrelevant;
208 - ADA_TASKS_ARRAY: The known_tasks is an array;
209 - ADA_TASKS_LIST: The known_tasks is a list. */
210 enum ada_known_tasks_kind known_tasks_kind;
211
212 /* The address of the known_tasks structure. This is where
213 the runtime stores the information for all Ada tasks.
214 The interpretation of this field depends on KNOWN_TASKS_KIND
215 above. */
216 CORE_ADDR known_tasks_addr;
217
218 /* Type of elements of the known task. Usually a pointer. */
219 struct type *known_tasks_element;
220
221 /* Number of elements in the known tasks array. */
222 unsigned int known_tasks_length;
223
224 /* When nonzero, this flag indicates that the task_list field
225 below is up to date. When set to zero, the list has either
226 not been initialized, or has potentially become stale. */
227 int task_list_valid_p;
228
229 /* The list of Ada tasks.
230
231 Note: To each task we associate a number that the user can use to
232 reference it - this number is printed beside each task in the tasks
233 info listing displayed by "info tasks". This number is equal to
234 its index in the vector + 1. Reciprocally, to compute the index
235 of a task in the vector, we need to substract 1 from its number. */
236 VEC(ada_task_info_s) *task_list;
237 };
238
239 /* Key to our per-inferior data. */
240 static const struct inferior_data *ada_tasks_inferior_data_handle;
241
242 /* Return the ada-tasks module's data for the given program space (PSPACE).
243 If none is found, add a zero'ed one now.
244
245 This function always returns a valid object. */
246
247 static struct ada_tasks_pspace_data *
248 get_ada_tasks_pspace_data (struct program_space *pspace)
249 {
250 struct ada_tasks_pspace_data *data;
251
252 data = ((struct ada_tasks_pspace_data *)
253 program_space_data (pspace, ada_tasks_pspace_data_handle));
254 if (data == NULL)
255 {
256 data = XCNEW (struct ada_tasks_pspace_data);
257 set_program_space_data (pspace, ada_tasks_pspace_data_handle, data);
258 }
259
260 return data;
261 }
262
263 /* Return the ada-tasks module's data for the given inferior (INF).
264 If none is found, add a zero'ed one now.
265
266 This function always returns a valid object.
267
268 Note that we could use an observer of the inferior-created event
269 to make sure that the ada-tasks per-inferior data always exists.
270 But we prefered this approach, as it avoids this entirely as long
271 as the user does not use any of the tasking features. This is
272 quite possible, particularly in the case where the inferior does
273 not use tasking. */
274
275 static struct ada_tasks_inferior_data *
276 get_ada_tasks_inferior_data (struct inferior *inf)
277 {
278 struct ada_tasks_inferior_data *data;
279
280 data = ((struct ada_tasks_inferior_data *)
281 inferior_data (inf, ada_tasks_inferior_data_handle));
282 if (data == NULL)
283 {
284 data = XCNEW (struct ada_tasks_inferior_data);
285 set_inferior_data (inf, ada_tasks_inferior_data_handle, data);
286 }
287
288 return data;
289 }
290
291 /* Return the task number of the task whose ptid is PTID, or zero
292 if the task could not be found. */
293
294 int
295 ada_get_task_number (ptid_t ptid)
296 {
297 int i;
298 struct inferior *inf = find_inferior_ptid (ptid);
299 struct ada_tasks_inferior_data *data;
300
301 gdb_assert (inf != NULL);
302 data = get_ada_tasks_inferior_data (inf);
303
304 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++)
305 if (ptid_equal (VEC_index (ada_task_info_s, data->task_list, i)->ptid,
306 ptid))
307 return i + 1;
308
309 return 0; /* No matching task found. */
310 }
311
312 /* Return the task number of the task running in inferior INF which
313 matches TASK_ID , or zero if the task could not be found. */
314
315 static int
316 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
317 {
318 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
319 int i;
320
321 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++)
322 {
323 struct ada_task_info *task_info =
324 VEC_index (ada_task_info_s, data->task_list, i);
325
326 if (task_info->task_id == task_id)
327 return i + 1;
328 }
329
330 /* Task not found. Return 0. */
331 return 0;
332 }
333
334 /* Return non-zero if TASK_NUM is a valid task number. */
335
336 int
337 valid_task_id (int task_num)
338 {
339 struct ada_tasks_inferior_data *data;
340
341 ada_build_task_list ();
342 data = get_ada_tasks_inferior_data (current_inferior ());
343 return (task_num > 0
344 && task_num <= VEC_length (ada_task_info_s, data->task_list));
345 }
346
347 /* Return non-zero iff the task STATE corresponds to a non-terminated
348 task state. */
349
350 static int
351 ada_task_is_alive (struct ada_task_info *task_info)
352 {
353 return (task_info->state != Terminated);
354 }
355
356 /* Call the ITERATOR function once for each Ada task that hasn't been
357 terminated yet. */
358
359 void
360 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype *iterator)
361 {
362 int i, nb_tasks;
363 struct ada_task_info *task;
364 struct ada_tasks_inferior_data *data;
365
366 ada_build_task_list ();
367 data = get_ada_tasks_inferior_data (current_inferior ());
368 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
369
370 for (i = 0; i < nb_tasks; i++)
371 {
372 task = VEC_index (ada_task_info_s, data->task_list, i);
373 if (!ada_task_is_alive (task))
374 continue;
375 iterator (task);
376 }
377 }
378
379 /* Extract the contents of the value as a string whose length is LENGTH,
380 and store the result in DEST. */
381
382 static void
383 value_as_string (char *dest, struct value *val, int length)
384 {
385 memcpy (dest, value_contents (val), length);
386 dest[length] = '\0';
387 }
388
389 /* Extract the string image from the fat string corresponding to VAL,
390 and store it in DEST. If the string length is greater than MAX_LEN,
391 then truncate the result to the first MAX_LEN characters of the fat
392 string. */
393
394 static void
395 read_fat_string_value (char *dest, struct value *val, int max_len)
396 {
397 struct value *array_val;
398 struct value *bounds_val;
399 int len;
400
401 /* The following variables are made static to avoid recomputing them
402 each time this function is called. */
403 static int initialize_fieldnos = 1;
404 static int array_fieldno;
405 static int bounds_fieldno;
406 static int upper_bound_fieldno;
407
408 /* Get the index of the fields that we will need to read in order
409 to extract the string from the fat string. */
410 if (initialize_fieldnos)
411 {
412 struct type *type = value_type (val);
413 struct type *bounds_type;
414
415 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
416 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
417
418 bounds_type = TYPE_FIELD_TYPE (type, bounds_fieldno);
419 if (TYPE_CODE (bounds_type) == TYPE_CODE_PTR)
420 bounds_type = TYPE_TARGET_TYPE (bounds_type);
421 if (TYPE_CODE (bounds_type) != TYPE_CODE_STRUCT)
422 error (_("Unknown task name format. Aborting"));
423 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
424
425 initialize_fieldnos = 0;
426 }
427
428 /* Get the size of the task image by checking the value of the bounds.
429 The lower bound is always 1, so we only need to read the upper bound. */
430 bounds_val = value_ind (value_field (val, bounds_fieldno));
431 len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
432
433 /* Make sure that we do not read more than max_len characters... */
434 if (len > max_len)
435 len = max_len;
436
437 /* Extract LEN characters from the fat string. */
438 array_val = value_ind (value_field (val, array_fieldno));
439 read_memory (value_address (array_val), (gdb_byte *) dest, len);
440
441 /* Add the NUL character to close the string. */
442 dest[len] = '\0';
443 }
444
445 /* Get from the debugging information the type description of all types
446 related to the Ada Task Control Block that will be needed in order to
447 read the list of known tasks in the Ada runtime. Also return the
448 associated ATCB_FIELDNOS.
449
450 Error handling: Any data missing from the debugging info will cause
451 an error to be raised, and none of the return values to be set.
452 Users of this function can depend on the fact that all or none of the
453 return values will be set. */
454
455 static void
456 get_tcb_types_info (void)
457 {
458 struct type *type;
459 struct type *common_type;
460 struct type *ll_type;
461 struct type *call_type;
462 struct atcb_fieldnos fieldnos;
463 struct ada_tasks_pspace_data *pspace_data;
464
465 const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
466 const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
467 const char *common_atcb_name = "system__tasking__common_atcb";
468 const char *private_data_name = "system__task_primitives__private_data";
469 const char *entry_call_record_name = "system__tasking__entry_call_record";
470
471 /* ATCB symbols may be found in several compilation units. As we
472 are only interested in one instance, use standard (literal,
473 C-like) lookups to get the first match. */
474
475 struct symbol *atcb_sym =
476 lookup_symbol_in_language (atcb_name, NULL, STRUCT_DOMAIN,
477 language_c, NULL).symbol;
478 const struct symbol *common_atcb_sym =
479 lookup_symbol_in_language (common_atcb_name, NULL, STRUCT_DOMAIN,
480 language_c, NULL).symbol;
481 const struct symbol *private_data_sym =
482 lookup_symbol_in_language (private_data_name, NULL, STRUCT_DOMAIN,
483 language_c, NULL).symbol;
484 const struct symbol *entry_call_record_sym =
485 lookup_symbol_in_language (entry_call_record_name, NULL, STRUCT_DOMAIN,
486 language_c, NULL).symbol;
487
488 if (atcb_sym == NULL || atcb_sym->type == NULL)
489 {
490 /* In Ravenscar run-time libs, the ATCB does not have a dynamic
491 size, so the symbol name differs. */
492 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL,
493 STRUCT_DOMAIN, language_c,
494 NULL).symbol;
495
496 if (atcb_sym == NULL || atcb_sym->type == NULL)
497 error (_("Cannot find Ada_Task_Control_Block type. Aborting"));
498
499 type = atcb_sym->type;
500 }
501 else
502 {
503 /* Get a static representation of the type record
504 Ada_Task_Control_Block. */
505 type = atcb_sym->type;
506 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
507 }
508
509 if (common_atcb_sym == NULL || common_atcb_sym->type == NULL)
510 error (_("Cannot find Common_ATCB type. Aborting"));
511 if (private_data_sym == NULL || private_data_sym->type == NULL)
512 error (_("Cannot find Private_Data type. Aborting"));
513 if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL)
514 error (_("Cannot find Entry_Call_Record type. Aborting"));
515
516 /* Get the type for Ada_Task_Control_Block.Common. */
517 common_type = common_atcb_sym->type;
518
519 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */
520 ll_type = private_data_sym->type;
521
522 /* Get the type for Common_ATCB.Call.all. */
523 call_type = entry_call_record_sym->type;
524
525 /* Get the field indices. */
526 fieldnos.common = ada_get_field_index (type, "common", 0);
527 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
528 fieldnos.atc_nesting_level =
529 ada_get_field_index (type, "atc_nesting_level", 1);
530 fieldnos.state = ada_get_field_index (common_type, "state", 0);
531 fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
532 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
533 fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
534 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
535 fieldnos.activation_link = ada_get_field_index (common_type,
536 "activation_link", 1);
537 fieldnos.call = ada_get_field_index (common_type, "call", 1);
538 fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
539 fieldnos.base_cpu = ada_get_field_index (common_type, "base_cpu", 0);
540 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
541 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
542 fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
543
544 /* On certain platforms such as x86-windows, the "lwp" field has been
545 named "thread_id". This field will likely be renamed in the future,
546 but we need to support both possibilities to avoid an unnecessary
547 dependency on a recent compiler. We therefore try locating the
548 "thread_id" field in place of the "lwp" field if we did not find
549 the latter. */
550 if (fieldnos.ll_lwp < 0)
551 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
552
553 /* Set all the out parameters all at once, now that we are certain
554 that there are no potential error() anymore. */
555 pspace_data = get_ada_tasks_pspace_data (current_program_space);
556 pspace_data->initialized_p = 1;
557 pspace_data->atcb_type = type;
558 pspace_data->atcb_common_type = common_type;
559 pspace_data->atcb_ll_type = ll_type;
560 pspace_data->atcb_call_type = call_type;
561 pspace_data->atcb_fieldno = fieldnos;
562 }
563
564 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
565 component of its ATCB record. This PTID needs to match the PTID used
566 by the thread layer. */
567
568 static ptid_t
569 ptid_from_atcb_common (struct value *common_value)
570 {
571 long thread = 0;
572 CORE_ADDR lwp = 0;
573 struct value *ll_value;
574 ptid_t ptid;
575 const struct ada_tasks_pspace_data *pspace_data
576 = get_ada_tasks_pspace_data (current_program_space);
577
578 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
579
580 if (pspace_data->atcb_fieldno.ll_lwp >= 0)
581 lwp = value_as_address (value_field (ll_value,
582 pspace_data->atcb_fieldno.ll_lwp));
583 thread = value_as_long (value_field (ll_value,
584 pspace_data->atcb_fieldno.ll_thread));
585
586 ptid = target_get_ada_task_ptid (lwp, thread);
587
588 return ptid;
589 }
590
591 /* Read the ATCB data of a given task given its TASK_ID (which is in practice
592 the address of its assocated ATCB record), and store the result inside
593 TASK_INFO. */
594
595 static void
596 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
597 {
598 struct value *tcb_value;
599 struct value *common_value;
600 struct value *atc_nesting_level_value;
601 struct value *entry_calls_value;
602 struct value *entry_calls_value_element;
603 int called_task_fieldno = -1;
604 static const char ravenscar_task_name[] = "Ravenscar task";
605 const struct ada_tasks_pspace_data *pspace_data
606 = get_ada_tasks_pspace_data (current_program_space);
607
608 if (!pspace_data->initialized_p)
609 get_tcb_types_info ();
610
611 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
612 NULL, task_id);
613 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
614
615 /* Fill in the task_id. */
616
617 task_info->task_id = task_id;
618
619 /* Compute the name of the task.
620
621 Depending on the GNAT version used, the task image is either a fat
622 string, or a thin array of characters. Older versions of GNAT used
623 to use fat strings, and therefore did not need an extra field in
624 the ATCB to store the string length. For efficiency reasons, newer
625 versions of GNAT replaced the fat string by a static buffer, but this
626 also required the addition of a new field named "Image_Len" containing
627 the length of the task name. The method used to extract the task name
628 is selected depending on the existence of this field.
629
630 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
631 we may want to get it from the first user frame of the stack. For now,
632 we just give a dummy name. */
633
634 if (pspace_data->atcb_fieldno.image_len == -1)
635 {
636 if (pspace_data->atcb_fieldno.image >= 0)
637 read_fat_string_value (task_info->name,
638 value_field (common_value,
639 pspace_data->atcb_fieldno.image),
640 sizeof (task_info->name) - 1);
641 else
642 {
643 struct bound_minimal_symbol msym;
644
645 msym = lookup_minimal_symbol_by_pc (task_id);
646 if (msym.minsym)
647 {
648 const char *full_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
649 const char *task_name = full_name;
650 const char *p;
651
652 /* Strip the prefix. */
653 for (p = full_name; *p; p++)
654 if (p[0] == '_' && p[1] == '_')
655 task_name = p + 2;
656
657 /* Copy the task name. */
658 strncpy (task_info->name, task_name, sizeof (task_info->name));
659 task_info->name[sizeof (task_info->name) - 1] = 0;
660 }
661 else
662 {
663 /* No symbol found. Use a default name. */
664 strcpy (task_info->name, ravenscar_task_name);
665 }
666 }
667 }
668 else
669 {
670 int len = value_as_long
671 (value_field (common_value,
672 pspace_data->atcb_fieldno.image_len));
673
674 value_as_string (task_info->name,
675 value_field (common_value,
676 pspace_data->atcb_fieldno.image),
677 len);
678 }
679
680 /* Compute the task state and priority. */
681
682 task_info->state =
683 value_as_long (value_field (common_value,
684 pspace_data->atcb_fieldno.state));
685 task_info->priority =
686 value_as_long (value_field (common_value,
687 pspace_data->atcb_fieldno.priority));
688
689 /* If the ATCB contains some information about the parent task,
690 then compute it as well. Otherwise, zero. */
691
692 if (pspace_data->atcb_fieldno.parent >= 0)
693 task_info->parent =
694 value_as_address (value_field (common_value,
695 pspace_data->atcb_fieldno.parent));
696 else
697 task_info->parent = 0;
698
699
700 /* If the ATCB contains some information about entry calls, then
701 compute the "called_task" as well. Otherwise, zero. */
702
703 if (pspace_data->atcb_fieldno.atc_nesting_level > 0
704 && pspace_data->atcb_fieldno.entry_calls > 0)
705 {
706 /* Let My_ATCB be the Ada task control block of a task calling the
707 entry of another task; then the Task_Id of the called task is
708 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */
709 atc_nesting_level_value =
710 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
711 entry_calls_value =
712 ada_coerce_to_simple_array_ptr
713 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
714 entry_calls_value_element =
715 value_subscript (entry_calls_value,
716 value_as_long (atc_nesting_level_value));
717 called_task_fieldno =
718 ada_get_field_index (value_type (entry_calls_value_element),
719 "called_task", 0);
720 task_info->called_task =
721 value_as_address (value_field (entry_calls_value_element,
722 called_task_fieldno));
723 }
724 else
725 {
726 task_info->called_task = 0;
727 }
728
729 /* If the ATCB cotnains some information about RV callers,
730 then compute the "caller_task". Otherwise, zero. */
731
732 task_info->caller_task = 0;
733 if (pspace_data->atcb_fieldno.call >= 0)
734 {
735 /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
736 If Common_ATCB.Call is null, then there is no caller. */
737 const CORE_ADDR call =
738 value_as_address (value_field (common_value,
739 pspace_data->atcb_fieldno.call));
740 struct value *call_val;
741
742 if (call != 0)
743 {
744 call_val =
745 value_from_contents_and_address (pspace_data->atcb_call_type,
746 NULL, call);
747 task_info->caller_task =
748 value_as_address
749 (value_field (call_val, pspace_data->atcb_fieldno.call_self));
750 }
751 }
752
753 task_info->base_cpu
754 = value_as_long (value_field (common_value,
755 pspace_data->atcb_fieldno.base_cpu));
756
757 /* And finally, compute the task ptid. Note that there are situations
758 where this cannot be determined:
759 - The task is no longer alive - the ptid is irrelevant;
760 - We are debugging a core file - the thread is not always
761 completely preserved for us to link back a task to its
762 underlying thread. Since we do not support task switching
763 when debugging core files anyway, we don't need to compute
764 that task ptid.
765 In either case, we don't need that ptid, and it is just good enough
766 to set it to null_ptid. */
767
768 if (target_has_execution && ada_task_is_alive (task_info))
769 task_info->ptid = ptid_from_atcb_common (common_value);
770 else
771 task_info->ptid = null_ptid;
772 }
773
774 /* Read the ATCB info of the given task (identified by TASK_ID), and
775 add the result to the given inferior's TASK_LIST. */
776
777 static void
778 add_ada_task (CORE_ADDR task_id, struct inferior *inf)
779 {
780 struct ada_task_info task_info;
781 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
782
783 read_atcb (task_id, &task_info);
784 VEC_safe_push (ada_task_info_s, data->task_list, &task_info);
785 }
786
787 /* Read the Known_Tasks array from the inferior memory, and store
788 it in the current inferior's TASK_LIST. Return non-zero upon success. */
789
790 static int
791 read_known_tasks_array (struct ada_tasks_inferior_data *data)
792 {
793 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
794 const int known_tasks_size = target_ptr_byte * data->known_tasks_length;
795 gdb_byte *known_tasks = (gdb_byte *) alloca (known_tasks_size);
796 int i;
797
798 /* Build a new list by reading the ATCBs from the Known_Tasks array
799 in the Ada runtime. */
800 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size);
801 for (i = 0; i < data->known_tasks_length; i++)
802 {
803 CORE_ADDR task_id =
804 extract_typed_address (known_tasks + i * target_ptr_byte,
805 data->known_tasks_element);
806
807 if (task_id != 0)
808 add_ada_task (task_id, current_inferior ());
809 }
810
811 return 1;
812 }
813
814 /* Read the known tasks from the inferior memory, and store it in
815 the current inferior's TASK_LIST. Return non-zero upon success. */
816
817 static int
818 read_known_tasks_list (struct ada_tasks_inferior_data *data)
819 {
820 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
821 gdb_byte *known_tasks = (gdb_byte *) alloca (target_ptr_byte);
822 CORE_ADDR task_id;
823 const struct ada_tasks_pspace_data *pspace_data
824 = get_ada_tasks_pspace_data (current_program_space);
825
826 /* Sanity check. */
827 if (pspace_data->atcb_fieldno.activation_link < 0)
828 return 0;
829
830 /* Build a new list by reading the ATCBs. Read head of the list. */
831 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte);
832 task_id = extract_typed_address (known_tasks, data->known_tasks_element);
833 while (task_id != 0)
834 {
835 struct value *tcb_value;
836 struct value *common_value;
837
838 add_ada_task (task_id, current_inferior ());
839
840 /* Read the chain. */
841 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
842 NULL, task_id);
843 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
844 task_id = value_as_address
845 (value_field (common_value,
846 pspace_data->atcb_fieldno.activation_link));
847 }
848
849 return 1;
850 }
851
852 /* Set all fields of the current inferior ada-tasks data pointed by DATA.
853 Do nothing if those fields are already set and still up to date. */
854
855 static void
856 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data)
857 {
858 struct bound_minimal_symbol msym;
859 struct symbol *sym;
860
861 /* Return now if already set. */
862 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
863 return;
864
865 /* Try array. */
866
867 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL);
868 if (msym.minsym != NULL)
869 {
870 data->known_tasks_kind = ADA_TASKS_ARRAY;
871 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
872
873 /* Try to get pointer type and array length from the symtab. */
874 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN,
875 language_c, NULL).symbol;
876 if (sym != NULL)
877 {
878 /* Validate. */
879 struct type *type = check_typedef (SYMBOL_TYPE (sym));
880 struct type *eltype = NULL;
881 struct type *idxtype = NULL;
882
883 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
884 eltype = check_typedef (TYPE_TARGET_TYPE (type));
885 if (eltype != NULL
886 && TYPE_CODE (eltype) == TYPE_CODE_PTR)
887 idxtype = check_typedef (TYPE_INDEX_TYPE (type));
888 if (idxtype != NULL
889 && !TYPE_LOW_BOUND_UNDEFINED (idxtype)
890 && !TYPE_HIGH_BOUND_UNDEFINED (idxtype))
891 {
892 data->known_tasks_element = eltype;
893 data->known_tasks_length =
894 TYPE_HIGH_BOUND (idxtype) - TYPE_LOW_BOUND (idxtype) + 1;
895 return;
896 }
897 }
898
899 /* Fallback to default values. The runtime may have been stripped (as
900 in some distributions), but it is likely that the executable still
901 contains debug information on the task type (due to implicit with of
902 Ada.Tasking). */
903 data->known_tasks_element =
904 builtin_type (target_gdbarch ())->builtin_data_ptr;
905 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS;
906 return;
907 }
908
909
910 /* Try list. */
911
912 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL);
913 if (msym.minsym != NULL)
914 {
915 data->known_tasks_kind = ADA_TASKS_LIST;
916 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
917 data->known_tasks_length = 1;
918
919 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN,
920 language_c, NULL).symbol;
921 if (sym != NULL && SYMBOL_VALUE_ADDRESS (sym) != 0)
922 {
923 /* Validate. */
924 struct type *type = check_typedef (SYMBOL_TYPE (sym));
925
926 if (TYPE_CODE (type) == TYPE_CODE_PTR)
927 {
928 data->known_tasks_element = type;
929 return;
930 }
931 }
932
933 /* Fallback to default values. */
934 data->known_tasks_element =
935 builtin_type (target_gdbarch ())->builtin_data_ptr;
936 data->known_tasks_length = 1;
937 return;
938 }
939
940 /* Can't find tasks. */
941
942 data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
943 data->known_tasks_addr = 0;
944 }
945
946 /* Read the known tasks from the current inferior's memory, and store it
947 in the current inferior's data TASK_LIST.
948 Return non-zero upon success. */
949
950 static int
951 read_known_tasks (void)
952 {
953 struct ada_tasks_inferior_data *data =
954 get_ada_tasks_inferior_data (current_inferior ());
955
956 /* Step 1: Clear the current list, if necessary. */
957 VEC_truncate (ada_task_info_s, data->task_list, 0);
958
959 /* Step 2: do the real work.
960 If the application does not use task, then no more needs to be done.
961 It is important to have the task list cleared (see above) before we
962 return, as we don't want a stale task list to be used... This can
963 happen for instance when debugging a non-multitasking program after
964 having debugged a multitasking one. */
965 ada_tasks_inferior_data_sniffer (data);
966 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
967
968 switch (data->known_tasks_kind)
969 {
970 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */
971 return 0;
972 case ADA_TASKS_ARRAY:
973 return read_known_tasks_array (data);
974 case ADA_TASKS_LIST:
975 return read_known_tasks_list (data);
976 }
977
978 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
979 array unless needed. Then report a success. */
980 data->task_list_valid_p = 1;
981
982 return 1;
983 }
984
985 /* Build the task_list by reading the Known_Tasks array from
986 the inferior, and return the number of tasks in that list
987 (zero means that the program is not using tasking at all). */
988
989 int
990 ada_build_task_list (void)
991 {
992 struct ada_tasks_inferior_data *data;
993
994 if (!target_has_stack)
995 error (_("Cannot inspect Ada tasks when program is not running"));
996
997 data = get_ada_tasks_inferior_data (current_inferior ());
998 if (!data->task_list_valid_p)
999 read_known_tasks ();
1000
1001 return VEC_length (ada_task_info_s, data->task_list);
1002 }
1003
1004 /* Print a table providing a short description of all Ada tasks
1005 running inside inferior INF. If ARG_STR is set, it will be
1006 interpreted as a task number, and the table will be limited to
1007 that task only. */
1008
1009 void
1010 print_ada_task_info (struct ui_out *uiout,
1011 char *arg_str,
1012 struct inferior *inf)
1013 {
1014 struct ada_tasks_inferior_data *data;
1015 int taskno, nb_tasks;
1016 int taskno_arg = 0;
1017 int nb_columns;
1018
1019 if (ada_build_task_list () == 0)
1020 {
1021 uiout->message (_("Your application does not use any Ada tasks.\n"));
1022 return;
1023 }
1024
1025 if (arg_str != NULL && arg_str[0] != '\0')
1026 taskno_arg = value_as_long (parse_and_eval (arg_str));
1027
1028 if (uiout->is_mi_like_p ())
1029 /* In GDB/MI mode, we want to provide the thread ID corresponding
1030 to each task. This allows clients to quickly find the thread
1031 associated to any task, which is helpful for commands that
1032 take a --thread argument. However, in order to be able to
1033 provide that thread ID, the thread list must be up to date
1034 first. */
1035 target_update_thread_list ();
1036
1037 data = get_ada_tasks_inferior_data (inf);
1038
1039 /* Compute the number of tasks that are going to be displayed
1040 in the output. If an argument was given, there will be
1041 at most 1 entry. Otherwise, there will be as many entries
1042 as we have tasks. */
1043 if (taskno_arg)
1044 {
1045 if (taskno_arg > 0
1046 && taskno_arg <= VEC_length (ada_task_info_s, data->task_list))
1047 nb_tasks = 1;
1048 else
1049 nb_tasks = 0;
1050 }
1051 else
1052 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
1053
1054 nb_columns = uiout->is_mi_like_p () ? 8 : 7;
1055 ui_out_emit_table table_emitter (uiout, nb_columns, nb_tasks, "tasks");
1056 uiout->table_header (1, ui_left, "current", "");
1057 uiout->table_header (3, ui_right, "id", "ID");
1058 uiout->table_header (9, ui_right, "task-id", "TID");
1059 /* The following column is provided in GDB/MI mode only because
1060 it is only really useful in that mode, and also because it
1061 allows us to keep the CLI output shorter and more compact. */
1062 if (uiout->is_mi_like_p ())
1063 uiout->table_header (4, ui_right, "thread-id", "");
1064 uiout->table_header (4, ui_right, "parent-id", "P-ID");
1065 uiout->table_header (3, ui_right, "priority", "Pri");
1066 uiout->table_header (22, ui_left, "state", "State");
1067 /* Use ui_noalign for the last column, to prevent the CLI uiout
1068 from printing an extra space at the end of each row. This
1069 is a bit of a hack, but does get the job done. */
1070 uiout->table_header (1, ui_noalign, "name", "Name");
1071 uiout->table_body ();
1072
1073 for (taskno = 1;
1074 taskno <= VEC_length (ada_task_info_s, data->task_list);
1075 taskno++)
1076 {
1077 const struct ada_task_info *const task_info =
1078 VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1079 int parent_id;
1080
1081 gdb_assert (task_info != NULL);
1082
1083 /* If the user asked for the output to be restricted
1084 to one task only, and this is not the task, skip
1085 to the next one. */
1086 if (taskno_arg && taskno != taskno_arg)
1087 continue;
1088
1089 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1090
1091 /* Print a star if this task is the current task (or the task
1092 currently selected). */
1093 if (ptid_equal (task_info->ptid, inferior_ptid))
1094 uiout->field_string ("current", "*");
1095 else
1096 uiout->field_skip ("current");
1097
1098 /* Print the task number. */
1099 uiout->field_int ("id", taskno);
1100
1101 /* Print the Task ID. */
1102 uiout->field_fmt ("task-id", "%9lx", (long) task_info->task_id);
1103
1104 /* Print the associated Thread ID. */
1105 if (uiout->is_mi_like_p ())
1106 {
1107 const int thread_id = ptid_to_global_thread_id (task_info->ptid);
1108
1109 if (thread_id != 0)
1110 uiout->field_int ("thread-id", thread_id);
1111 else
1112 /* This should never happen unless there is a bug somewhere,
1113 but be resilient when that happens. */
1114 uiout->field_skip ("thread-id");
1115 }
1116
1117 /* Print the ID of the parent task. */
1118 parent_id = get_task_number_from_id (task_info->parent, inf);
1119 if (parent_id)
1120 uiout->field_int ("parent-id", parent_id);
1121 else
1122 uiout->field_skip ("parent-id");
1123
1124 /* Print the base priority of the task. */
1125 uiout->field_int ("priority", task_info->priority);
1126
1127 /* Print the task current state. */
1128 if (task_info->caller_task)
1129 uiout->field_fmt ("state",
1130 _("Accepting RV with %-4d"),
1131 get_task_number_from_id (task_info->caller_task,
1132 inf));
1133 else if (task_info->state == Entry_Caller_Sleep
1134 && task_info->called_task)
1135 uiout->field_fmt ("state",
1136 _("Waiting on RV with %-3d"),
1137 get_task_number_from_id (task_info->called_task,
1138 inf));
1139 else
1140 uiout->field_string ("state", task_states[task_info->state]);
1141
1142 /* Finally, print the task name. */
1143 uiout->field_fmt ("name",
1144 "%s",
1145 task_info->name[0] != '\0' ? task_info->name
1146 : _("<no name>"));
1147
1148 uiout->text ("\n");
1149 }
1150 }
1151
1152 /* Print a detailed description of the Ada task whose ID is TASKNO_STR
1153 for the given inferior (INF). */
1154
1155 static void
1156 info_task (struct ui_out *uiout, const char *taskno_str, struct inferior *inf)
1157 {
1158 const int taskno = value_as_long (parse_and_eval (taskno_str));
1159 struct ada_task_info *task_info;
1160 int parent_taskno = 0;
1161 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1162
1163 if (ada_build_task_list () == 0)
1164 {
1165 uiout->message (_("Your application does not use any Ada tasks.\n"));
1166 return;
1167 }
1168
1169 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list))
1170 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1171 "see the IDs of currently known tasks"), taskno);
1172 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1173
1174 /* Print the Ada task ID. */
1175 printf_filtered (_("Ada Task: %s\n"),
1176 paddress (target_gdbarch (), task_info->task_id));
1177
1178 /* Print the name of the task. */
1179 if (task_info->name[0] != '\0')
1180 printf_filtered (_("Name: %s\n"), task_info->name);
1181 else
1182 printf_filtered (_("<no name>\n"));
1183
1184 /* Print the TID and LWP. */
1185 printf_filtered (_("Thread: %#lx\n"), ptid_get_tid (task_info->ptid));
1186 printf_filtered (_("LWP: %#lx\n"), ptid_get_lwp (task_info->ptid));
1187
1188 /* If set, print the base CPU. */
1189 if (task_info->base_cpu != 0)
1190 printf_filtered (_("Base CPU: %d\n"), task_info->base_cpu);
1191
1192 /* Print who is the parent (if any). */
1193 if (task_info->parent != 0)
1194 parent_taskno = get_task_number_from_id (task_info->parent, inf);
1195 if (parent_taskno)
1196 {
1197 struct ada_task_info *parent =
1198 VEC_index (ada_task_info_s, data->task_list, parent_taskno - 1);
1199
1200 printf_filtered (_("Parent: %d"), parent_taskno);
1201 if (parent->name[0] != '\0')
1202 printf_filtered (" (%s)", parent->name);
1203 printf_filtered ("\n");
1204 }
1205 else
1206 printf_filtered (_("No parent\n"));
1207
1208 /* Print the base priority. */
1209 printf_filtered (_("Base Priority: %d\n"), task_info->priority);
1210
1211 /* print the task current state. */
1212 {
1213 int target_taskno = 0;
1214
1215 if (task_info->caller_task)
1216 {
1217 target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1218 printf_filtered (_("State: Accepting rendezvous with %d"),
1219 target_taskno);
1220 }
1221 else if (task_info->state == Entry_Caller_Sleep && task_info->called_task)
1222 {
1223 target_taskno = get_task_number_from_id (task_info->called_task, inf);
1224 printf_filtered (_("State: Waiting on task %d's entry"),
1225 target_taskno);
1226 }
1227 else
1228 printf_filtered (_("State: %s"), _(long_task_states[task_info->state]));
1229
1230 if (target_taskno)
1231 {
1232 struct ada_task_info *target_task_info =
1233 VEC_index (ada_task_info_s, data->task_list, target_taskno - 1);
1234
1235 if (target_task_info->name[0] != '\0')
1236 printf_filtered (" (%s)", target_task_info->name);
1237 }
1238
1239 printf_filtered ("\n");
1240 }
1241 }
1242
1243 /* If ARG is empty or null, then print a list of all Ada tasks.
1244 Otherwise, print detailed information about the task whose ID
1245 is ARG.
1246
1247 Does nothing if the program doesn't use Ada tasking. */
1248
1249 static void
1250 info_tasks_command (const char *arg, int from_tty)
1251 {
1252 struct ui_out *uiout = current_uiout;
1253
1254 if (arg == NULL || *arg == '\0')
1255 print_ada_task_info (uiout, NULL, current_inferior ());
1256 else
1257 info_task (uiout, arg, current_inferior ());
1258 }
1259
1260 /* Print a message telling the user id of the current task.
1261 This function assumes that tasking is in use in the inferior. */
1262
1263 static void
1264 display_current_task_id (void)
1265 {
1266 const int current_task = ada_get_task_number (inferior_ptid);
1267
1268 if (current_task == 0)
1269 printf_filtered (_("[Current task is unknown]\n"));
1270 else
1271 printf_filtered (_("[Current task is %d]\n"), current_task);
1272 }
1273
1274 /* Parse and evaluate TIDSTR into a task id, and try to switch to
1275 that task. Print an error message if the task switch failed. */
1276
1277 static void
1278 task_command_1 (const char *taskno_str, int from_tty, struct inferior *inf)
1279 {
1280 const int taskno = value_as_long (parse_and_eval (taskno_str));
1281 struct ada_task_info *task_info;
1282 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1283
1284 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list))
1285 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1286 "see the IDs of currently known tasks"), taskno);
1287 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1288
1289 if (!ada_task_is_alive (task_info))
1290 error (_("Cannot switch to task %d: Task is no longer running"), taskno);
1291
1292 /* On some platforms, the thread list is not updated until the user
1293 performs a thread-related operation (by using the "info threads"
1294 command, for instance). So this thread list may not be up to date
1295 when the user attempts this task switch. Since we cannot switch
1296 to the thread associated to our task if GDB does not know about
1297 that thread, we need to make sure that any new threads gets added
1298 to the thread list. */
1299 target_update_thread_list ();
1300
1301 /* Verify that the ptid of the task we want to switch to is valid
1302 (in other words, a ptid that GDB knows about). Otherwise, we will
1303 cause an assertion failure later on, when we try to determine
1304 the ptid associated thread_info data. We should normally never
1305 encounter such an error, but the wrong ptid can actually easily be
1306 computed if target_get_ada_task_ptid has not been implemented for
1307 our target (yet). Rather than cause an assertion error in that case,
1308 it's nicer for the user to just refuse to perform the task switch. */
1309 if (!find_thread_ptid (task_info->ptid))
1310 error (_("Unable to compute thread ID for task %d.\n"
1311 "Cannot switch to this task."),
1312 taskno);
1313
1314 switch_to_thread (task_info->ptid);
1315 ada_find_printable_frame (get_selected_frame (NULL));
1316 printf_filtered (_("[Switching to task %d]\n"), taskno);
1317 print_stack_frame (get_selected_frame (NULL),
1318 frame_relative_level (get_selected_frame (NULL)),
1319 SRC_AND_LOC, 1);
1320 }
1321
1322
1323 /* Print the ID of the current task if TASKNO_STR is empty or NULL.
1324 Otherwise, switch to the task indicated by TASKNO_STR. */
1325
1326 static void
1327 task_command (const char *taskno_str, int from_tty)
1328 {
1329 struct ui_out *uiout = current_uiout;
1330
1331 if (ada_build_task_list () == 0)
1332 {
1333 uiout->message (_("Your application does not use any Ada tasks.\n"));
1334 return;
1335 }
1336
1337 if (taskno_str == NULL || taskno_str[0] == '\0')
1338 display_current_task_id ();
1339 else
1340 {
1341 /* Task switching in core files doesn't work, either because:
1342 1. Thread support is not implemented with core files
1343 2. Thread support is implemented, but the thread IDs created
1344 after having read the core file are not the same as the ones
1345 that were used during the program life, before the crash.
1346 As a consequence, there is no longer a way for the debugger
1347 to find the associated thead ID of any given Ada task.
1348 So, instead of attempting a task switch without giving the user
1349 any clue as to what might have happened, just error-out with
1350 a message explaining that this feature is not supported. */
1351 if (!target_has_execution)
1352 error (_("\
1353 Task switching not supported when debugging from core files\n\
1354 (use thread support instead)"));
1355 task_command_1 (taskno_str, from_tty, current_inferior ());
1356 }
1357 }
1358
1359 /* Indicate that the given inferior's task list may have changed,
1360 so invalidate the cache. */
1361
1362 static void
1363 ada_task_list_changed (struct inferior *inf)
1364 {
1365 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1366
1367 data->task_list_valid_p = 0;
1368 }
1369
1370 /* Invalidate the per-program-space data. */
1371
1372 static void
1373 ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1374 {
1375 get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1376 }
1377
1378 /* Invalidate the per-inferior data. */
1379
1380 static void
1381 ada_tasks_invalidate_inferior_data (struct inferior *inf)
1382 {
1383 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1384
1385 data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1386 data->task_list_valid_p = 0;
1387 }
1388
1389 /* The 'normal_stop' observer notification callback. */
1390
1391 static void
1392 ada_tasks_normal_stop_observer (struct bpstats *unused_args, int unused_args2)
1393 {
1394 /* The inferior has been resumed, and just stopped. This means that
1395 our task_list needs to be recomputed before it can be used again. */
1396 ada_task_list_changed (current_inferior ());
1397 }
1398
1399 /* A routine to be called when the objfiles have changed. */
1400
1401 static void
1402 ada_tasks_new_objfile_observer (struct objfile *objfile)
1403 {
1404 struct inferior *inf;
1405
1406 /* Invalidate the relevant data in our program-space data. */
1407
1408 if (objfile == NULL)
1409 {
1410 /* All objfiles are being cleared, so we should clear all
1411 our caches for all program spaces. */
1412 struct program_space *pspace;
1413
1414 for (pspace = program_spaces; pspace != NULL; pspace = pspace->next)
1415 ada_tasks_invalidate_pspace_data (pspace);
1416 }
1417 else
1418 {
1419 /* The associated program-space data might have changed after
1420 this objfile was added. Invalidate all cached data. */
1421 ada_tasks_invalidate_pspace_data (objfile->pspace);
1422 }
1423
1424 /* Invalidate the per-inferior cache for all inferiors using
1425 this objfile (or, in other words, for all inferiors who have
1426 the same program-space as the objfile's program space).
1427 If all objfiles are being cleared (OBJFILE is NULL), then
1428 clear the caches for all inferiors. */
1429
1430 for (inf = inferior_list; inf != NULL; inf = inf->next)
1431 if (objfile == NULL || inf->pspace == objfile->pspace)
1432 ada_tasks_invalidate_inferior_data (inf);
1433 }
1434
1435 void
1436 _initialize_tasks (void)
1437 {
1438 ada_tasks_pspace_data_handle = register_program_space_data ();
1439 ada_tasks_inferior_data_handle = register_inferior_data ();
1440
1441 /* Attach various observers. */
1442 observer_attach_normal_stop (ada_tasks_normal_stop_observer);
1443 observer_attach_new_objfile (ada_tasks_new_objfile_observer);
1444
1445 /* Some new commands provided by this module. */
1446 add_info ("tasks", info_tasks_command,
1447 _("Provide information about all known Ada tasks"));
1448 add_cmd ("task", class_run, task_command,
1449 _("Use this command to switch between Ada tasks.\n\
1450 Without argument, this command simply prints the current task ID"),
1451 &cmdlist);
1452 }
This page took 0.064545 seconds and 5 git commands to generate.