0f4eaa7611de55281ed53a2f3b586b761472142c
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "doublest.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2-frame.h"
28 #include "inferior.h"
29 #include "symtab.h"
30 #include "value.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "dis-asm.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdb_string.h"
37 #include "linespec.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "arch-utils.h"
41 #include "osabi.h"
42 #include "block.h"
43
44 #include "elf-bfd.h"
45
46 #include "alpha-tdep.h"
47
48 \f
49 static const char *
50 alpha_register_name (int regno)
51 {
52 static const char * const register_names[] =
53 {
54 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
55 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
56 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
57 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
58 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
59 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
60 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
61 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
62 "pc", "", "unique"
63 };
64
65 if (regno < 0)
66 return NULL;
67 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
68 return NULL;
69 return register_names[regno];
70 }
71
72 static int
73 alpha_cannot_fetch_register (int regno)
74 {
75 return regno == ALPHA_ZERO_REGNUM;
76 }
77
78 static int
79 alpha_cannot_store_register (int regno)
80 {
81 return regno == ALPHA_ZERO_REGNUM;
82 }
83
84 static struct type *
85 alpha_register_type (struct gdbarch *gdbarch, int regno)
86 {
87 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
88 return builtin_type_void_data_ptr;
89 if (regno == ALPHA_PC_REGNUM)
90 return builtin_type_void_func_ptr;
91
92 /* Don't need to worry about little vs big endian until
93 some jerk tries to port to alpha-unicosmk. */
94 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
95 return builtin_type_ieee_double_little;
96
97 return builtin_type_int64;
98 }
99
100 /* Is REGNUM a member of REGGROUP? */
101
102 static int
103 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
104 struct reggroup *group)
105 {
106 /* Filter out any registers eliminated, but whose regnum is
107 reserved for backward compatibility, e.g. the vfp. */
108 if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0')
109 return 0;
110
111 if (group == all_reggroup)
112 return 1;
113
114 /* Zero should not be saved or restored. Technically it is a general
115 register (just as $f31 would be a float if we represented it), but
116 there's no point displaying it during "info regs", so leave it out
117 of all groups except for "all". */
118 if (regnum == ALPHA_ZERO_REGNUM)
119 return 0;
120
121 /* All other registers are saved and restored. */
122 if (group == save_reggroup || group == restore_reggroup)
123 return 1;
124
125 /* All other groups are non-overlapping. */
126
127 /* Since this is really a PALcode memory slot... */
128 if (regnum == ALPHA_UNIQUE_REGNUM)
129 return group == system_reggroup;
130
131 /* Force the FPCR to be considered part of the floating point state. */
132 if (regnum == ALPHA_FPCR_REGNUM)
133 return group == float_reggroup;
134
135 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
136 return group == float_reggroup;
137 else
138 return group == general_reggroup;
139 }
140
141 static int
142 alpha_register_byte (int regno)
143 {
144 return (regno * 8);
145 }
146
147 static int
148 alpha_register_raw_size (int regno)
149 {
150 return 8;
151 }
152
153 static int
154 alpha_register_virtual_size (int regno)
155 {
156 return 8;
157 }
158
159 /* The following represents exactly the conversion performed by
160 the LDS instruction. This applies to both single-precision
161 floating point and 32-bit integers. */
162
163 static void
164 alpha_lds (void *out, const void *in)
165 {
166 ULONGEST mem = extract_unsigned_integer (in, 4);
167 ULONGEST frac = (mem >> 0) & 0x7fffff;
168 ULONGEST sign = (mem >> 31) & 1;
169 ULONGEST exp_msb = (mem >> 30) & 1;
170 ULONGEST exp_low = (mem >> 23) & 0x7f;
171 ULONGEST exp, reg;
172
173 exp = (exp_msb << 10) | exp_low;
174 if (exp_msb)
175 {
176 if (exp_low == 0x7f)
177 exp = 0x7ff;
178 }
179 else
180 {
181 if (exp_low != 0x00)
182 exp |= 0x380;
183 }
184
185 reg = (sign << 63) | (exp << 52) | (frac << 29);
186 store_unsigned_integer (out, 8, reg);
187 }
188
189 /* Similarly, this represents exactly the conversion performed by
190 the STS instruction. */
191
192 static void
193 alpha_sts (void *out, const void *in)
194 {
195 ULONGEST reg, mem;
196
197 reg = extract_unsigned_integer (in, 8);
198 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
199 store_unsigned_integer (out, 4, mem);
200 }
201
202 /* The alpha needs a conversion between register and memory format if the
203 register is a floating point register and memory format is float, as the
204 register format must be double or memory format is an integer with 4
205 bytes or less, as the representation of integers in floating point
206 registers is different. */
207
208 static int
209 alpha_convert_register_p (int regno, struct type *type)
210 {
211 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31);
212 }
213
214 static void
215 alpha_register_to_value (struct frame_info *frame, int regnum,
216 struct type *valtype, void *out)
217 {
218 char in[MAX_REGISTER_SIZE];
219 frame_register_read (frame, regnum, in);
220 switch (TYPE_LENGTH (valtype))
221 {
222 case 4:
223 alpha_sts (out, in);
224 break;
225 case 8:
226 memcpy (out, in, 8);
227 break;
228 default:
229 error ("Cannot retrieve value from floating point register");
230 }
231 }
232
233 static void
234 alpha_value_to_register (struct frame_info *frame, int regnum,
235 struct type *valtype, const void *in)
236 {
237 char out[MAX_REGISTER_SIZE];
238 switch (TYPE_LENGTH (valtype))
239 {
240 case 4:
241 alpha_lds (out, in);
242 break;
243 case 8:
244 memcpy (out, in, 8);
245 break;
246 default:
247 error ("Cannot store value in floating point register");
248 }
249 put_frame_register (frame, regnum, out);
250 }
251
252 \f
253 /* The alpha passes the first six arguments in the registers, the rest on
254 the stack. The register arguments are stored in ARG_REG_BUFFER, and
255 then moved into the register file; this simplifies the passing of a
256 large struct which extends from the registers to the stack, plus avoids
257 three ptrace invocations per word.
258
259 We don't bother tracking which register values should go in integer
260 regs or fp regs; we load the same values into both.
261
262 If the called function is returning a structure, the address of the
263 structure to be returned is passed as a hidden first argument. */
264
265 static CORE_ADDR
266 alpha_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
267 struct regcache *regcache, CORE_ADDR bp_addr,
268 int nargs, struct value **args, CORE_ADDR sp,
269 int struct_return, CORE_ADDR struct_addr)
270 {
271 int i;
272 int accumulate_size = struct_return ? 8 : 0;
273 struct alpha_arg
274 {
275 char *contents;
276 int len;
277 int offset;
278 };
279 struct alpha_arg *alpha_args
280 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
281 struct alpha_arg *m_arg;
282 char arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
283 int required_arg_regs;
284
285 /* The ABI places the address of the called function in T12. */
286 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
287
288 /* Set the return address register to point to the entry point
289 of the program, where a breakpoint lies in wait. */
290 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
291
292 /* Lay out the arguments in memory. */
293 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
294 {
295 struct value *arg = args[i];
296 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
297
298 /* Cast argument to long if necessary as the compiler does it too. */
299 switch (TYPE_CODE (arg_type))
300 {
301 case TYPE_CODE_INT:
302 case TYPE_CODE_BOOL:
303 case TYPE_CODE_CHAR:
304 case TYPE_CODE_RANGE:
305 case TYPE_CODE_ENUM:
306 if (TYPE_LENGTH (arg_type) == 4)
307 {
308 /* 32-bit values must be sign-extended to 64 bits
309 even if the base data type is unsigned. */
310 arg_type = builtin_type_int32;
311 arg = value_cast (arg_type, arg);
312 }
313 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
314 {
315 arg_type = builtin_type_int64;
316 arg = value_cast (arg_type, arg);
317 }
318 break;
319
320 case TYPE_CODE_FLT:
321 /* "float" arguments loaded in registers must be passed in
322 register format, aka "double". */
323 if (accumulate_size < sizeof (arg_reg_buffer)
324 && TYPE_LENGTH (arg_type) == 4)
325 {
326 arg_type = builtin_type_ieee_double_little;
327 arg = value_cast (arg_type, arg);
328 }
329 /* Tru64 5.1 has a 128-bit long double, and passes this by
330 invisible reference. No one else uses this data type. */
331 else if (TYPE_LENGTH (arg_type) == 16)
332 {
333 /* Allocate aligned storage. */
334 sp = (sp & -16) - 16;
335
336 /* Write the real data into the stack. */
337 write_memory (sp, VALUE_CONTENTS (arg), 16);
338
339 /* Construct the indirection. */
340 arg_type = lookup_pointer_type (arg_type);
341 arg = value_from_pointer (arg_type, sp);
342 }
343 break;
344
345 case TYPE_CODE_COMPLEX:
346 /* ??? The ABI says that complex values are passed as two
347 separate scalar values. This distinction only matters
348 for complex float. However, GCC does not implement this. */
349
350 /* Tru64 5.1 has a 128-bit long double, and passes this by
351 invisible reference. */
352 if (TYPE_LENGTH (arg_type) == 32)
353 {
354 /* Allocate aligned storage. */
355 sp = (sp & -16) - 16;
356
357 /* Write the real data into the stack. */
358 write_memory (sp, VALUE_CONTENTS (arg), 32);
359
360 /* Construct the indirection. */
361 arg_type = lookup_pointer_type (arg_type);
362 arg = value_from_pointer (arg_type, sp);
363 }
364 break;
365
366 default:
367 break;
368 }
369 m_arg->len = TYPE_LENGTH (arg_type);
370 m_arg->offset = accumulate_size;
371 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
372 m_arg->contents = VALUE_CONTENTS (arg);
373 }
374
375 /* Determine required argument register loads, loading an argument register
376 is expensive as it uses three ptrace calls. */
377 required_arg_regs = accumulate_size / 8;
378 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
379 required_arg_regs = ALPHA_NUM_ARG_REGS;
380
381 /* Make room for the arguments on the stack. */
382 if (accumulate_size < sizeof(arg_reg_buffer))
383 accumulate_size = 0;
384 else
385 accumulate_size -= sizeof(arg_reg_buffer);
386 sp -= accumulate_size;
387
388 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
389 sp &= ~15;
390
391 /* `Push' arguments on the stack. */
392 for (i = nargs; m_arg--, --i >= 0;)
393 {
394 char *contents = m_arg->contents;
395 int offset = m_arg->offset;
396 int len = m_arg->len;
397
398 /* Copy the bytes destined for registers into arg_reg_buffer. */
399 if (offset < sizeof(arg_reg_buffer))
400 {
401 if (offset + len <= sizeof(arg_reg_buffer))
402 {
403 memcpy (arg_reg_buffer + offset, contents, len);
404 continue;
405 }
406 else
407 {
408 int tlen = sizeof(arg_reg_buffer) - offset;
409 memcpy (arg_reg_buffer + offset, contents, tlen);
410 offset += tlen;
411 contents += tlen;
412 len -= tlen;
413 }
414 }
415
416 /* Everything else goes to the stack. */
417 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
418 }
419 if (struct_return)
420 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
421
422 /* Load the argument registers. */
423 for (i = 0; i < required_arg_regs; i++)
424 {
425 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
426 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
427 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
428 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
429 }
430
431 /* Finally, update the stack pointer. */
432 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
433
434 return sp;
435 }
436
437 /* Extract from REGCACHE the value about to be returned from a function
438 and copy it into VALBUF. */
439
440 static void
441 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
442 void *valbuf)
443 {
444 int length = TYPE_LENGTH (valtype);
445 char raw_buffer[ALPHA_REGISTER_SIZE];
446 ULONGEST l;
447
448 switch (TYPE_CODE (valtype))
449 {
450 case TYPE_CODE_FLT:
451 switch (length)
452 {
453 case 4:
454 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
455 alpha_sts (valbuf, raw_buffer);
456 break;
457
458 case 8:
459 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
460 break;
461
462 case 16:
463 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
464 read_memory (l, valbuf, 16);
465 break;
466
467 default:
468 internal_error (__FILE__, __LINE__, "unknown floating point width");
469 }
470 break;
471
472 case TYPE_CODE_COMPLEX:
473 switch (length)
474 {
475 case 8:
476 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
477 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
478 break;
479
480 case 16:
481 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
482 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM+1,
483 (char *)valbuf + 8);
484 break;
485
486 case 32:
487 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
488 read_memory (l, valbuf, 32);
489 break;
490
491 default:
492 internal_error (__FILE__, __LINE__, "unknown floating point width");
493 }
494 break;
495
496 default:
497 /* Assume everything else degenerates to an integer. */
498 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
499 store_unsigned_integer (valbuf, length, l);
500 break;
501 }
502 }
503
504 /* Extract from REGCACHE the address of a structure about to be returned
505 from a function. */
506
507 static CORE_ADDR
508 alpha_extract_struct_value_address (struct regcache *regcache)
509 {
510 ULONGEST addr;
511 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
512 return addr;
513 }
514
515 /* Insert the given value into REGCACHE as if it was being
516 returned by a function. */
517
518 static void
519 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
520 const void *valbuf)
521 {
522 int length = TYPE_LENGTH (valtype);
523 char raw_buffer[ALPHA_REGISTER_SIZE];
524 ULONGEST l;
525
526 switch (TYPE_CODE (valtype))
527 {
528 case TYPE_CODE_FLT:
529 switch (length)
530 {
531 case 4:
532 alpha_lds (raw_buffer, valbuf);
533 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
534 break;
535
536 case 8:
537 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
538 break;
539
540 case 16:
541 /* FIXME: 128-bit long doubles are returned like structures:
542 by writing into indirect storage provided by the caller
543 as the first argument. */
544 error ("Cannot set a 128-bit long double return value.");
545
546 default:
547 internal_error (__FILE__, __LINE__, "unknown floating point width");
548 }
549 break;
550
551 case TYPE_CODE_COMPLEX:
552 switch (length)
553 {
554 case 8:
555 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
556 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
557 break;
558
559 case 16:
560 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
561 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM+1,
562 (const char *)valbuf + 8);
563 break;
564
565 case 32:
566 /* FIXME: 128-bit long doubles are returned like structures:
567 by writing into indirect storage provided by the caller
568 as the first argument. */
569 error ("Cannot set a 128-bit long double return value.");
570
571 default:
572 internal_error (__FILE__, __LINE__, "unknown floating point width");
573 }
574 break;
575
576 default:
577 /* Assume everything else degenerates to an integer. */
578 /* 32-bit values must be sign-extended to 64 bits
579 even if the base data type is unsigned. */
580 if (length == 4)
581 valtype = builtin_type_int32;
582 l = unpack_long (valtype, valbuf);
583 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
584 break;
585 }
586 }
587
588 \f
589 static const unsigned char *
590 alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
591 {
592 static const unsigned char alpha_breakpoint[] =
593 { 0x80, 0, 0, 0 }; /* call_pal bpt */
594
595 *lenptr = sizeof(alpha_breakpoint);
596 return (alpha_breakpoint);
597 }
598
599 \f
600 /* This returns the PC of the first insn after the prologue.
601 If we can't find the prologue, then return 0. */
602
603 CORE_ADDR
604 alpha_after_prologue (CORE_ADDR pc)
605 {
606 struct symtab_and_line sal;
607 CORE_ADDR func_addr, func_end;
608
609 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
610 return 0;
611
612 sal = find_pc_line (func_addr, 0);
613 if (sal.end < func_end)
614 return sal.end;
615
616 /* The line after the prologue is after the end of the function. In this
617 case, tell the caller to find the prologue the hard way. */
618 return 0;
619 }
620
621 /* Read an instruction from memory at PC, looking through breakpoints. */
622
623 unsigned int
624 alpha_read_insn (CORE_ADDR pc)
625 {
626 char buf[4];
627 int status;
628
629 status = read_memory_nobpt (pc, buf, 4);
630 if (status)
631 memory_error (status, pc);
632 return extract_unsigned_integer (buf, 4);
633 }
634
635 /* To skip prologues, I use this predicate. Returns either PC itself
636 if the code at PC does not look like a function prologue; otherwise
637 returns an address that (if we're lucky) follows the prologue. If
638 LENIENT, then we must skip everything which is involved in setting
639 up the frame (it's OK to skip more, just so long as we don't skip
640 anything which might clobber the registers which are being saved. */
641
642 static CORE_ADDR
643 alpha_skip_prologue (CORE_ADDR pc)
644 {
645 unsigned long inst;
646 int offset;
647 CORE_ADDR post_prologue_pc;
648 char buf[4];
649
650 /* Silently return the unaltered pc upon memory errors.
651 This could happen on OSF/1 if decode_line_1 tries to skip the
652 prologue for quickstarted shared library functions when the
653 shared library is not yet mapped in.
654 Reading target memory is slow over serial lines, so we perform
655 this check only if the target has shared libraries (which all
656 Alpha targets do). */
657 if (target_read_memory (pc, buf, 4))
658 return pc;
659
660 /* See if we can determine the end of the prologue via the symbol table.
661 If so, then return either PC, or the PC after the prologue, whichever
662 is greater. */
663
664 post_prologue_pc = alpha_after_prologue (pc);
665 if (post_prologue_pc != 0)
666 return max (pc, post_prologue_pc);
667
668 /* Can't determine prologue from the symbol table, need to examine
669 instructions. */
670
671 /* Skip the typical prologue instructions. These are the stack adjustment
672 instruction and the instructions that save registers on the stack
673 or in the gcc frame. */
674 for (offset = 0; offset < 100; offset += 4)
675 {
676 inst = alpha_read_insn (pc + offset);
677
678 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
679 continue;
680 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
681 continue;
682 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
683 continue;
684 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
685 continue;
686
687 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
688 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
689 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
690 continue;
691
692 if (inst == 0x47de040f) /* bis sp,sp,fp */
693 continue;
694 if (inst == 0x47fe040f) /* bis zero,sp,fp */
695 continue;
696
697 break;
698 }
699 return pc + offset;
700 }
701
702 \f
703 /* Figure out where the longjmp will land.
704 We expect the first arg to be a pointer to the jmp_buf structure from
705 which we extract the PC (JB_PC) that we will land at. The PC is copied
706 into the "pc". This routine returns true on success. */
707
708 static int
709 alpha_get_longjmp_target (CORE_ADDR *pc)
710 {
711 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
712 CORE_ADDR jb_addr;
713 char raw_buffer[ALPHA_REGISTER_SIZE];
714
715 jb_addr = read_register (ALPHA_A0_REGNUM);
716
717 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
718 raw_buffer, tdep->jb_elt_size))
719 return 0;
720
721 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
722 return 1;
723 }
724
725 \f
726 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
727 describe the location and shape of the sigcontext structure. After
728 that, all registers are in memory, so it's easy. */
729 /* ??? Shouldn't we be able to do this generically, rather than with
730 OSABI data specific to Alpha? */
731
732 struct alpha_sigtramp_unwind_cache
733 {
734 CORE_ADDR sigcontext_addr;
735 };
736
737 static struct alpha_sigtramp_unwind_cache *
738 alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
739 void **this_prologue_cache)
740 {
741 struct alpha_sigtramp_unwind_cache *info;
742 struct gdbarch_tdep *tdep;
743
744 if (*this_prologue_cache)
745 return *this_prologue_cache;
746
747 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
748 *this_prologue_cache = info;
749
750 tdep = gdbarch_tdep (current_gdbarch);
751 info->sigcontext_addr = tdep->sigcontext_addr (next_frame);
752
753 return info;
754 }
755
756 /* Return the address of REGNUM in a sigtramp frame. Since this is
757 all arithmetic, it doesn't seem worthwhile to cache it. */
758
759 static CORE_ADDR
760 alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, int regnum)
761 {
762 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
763
764 if (regnum >= 0 && regnum < 32)
765 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
766 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
767 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
768 else if (regnum == ALPHA_PC_REGNUM)
769 return sigcontext_addr + tdep->sc_pc_offset;
770
771 return 0;
772 }
773
774 /* Given a GDB frame, determine the address of the calling function's
775 frame. This will be used to create a new GDB frame struct. */
776
777 static void
778 alpha_sigtramp_frame_this_id (struct frame_info *next_frame,
779 void **this_prologue_cache,
780 struct frame_id *this_id)
781 {
782 struct alpha_sigtramp_unwind_cache *info
783 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
784 struct gdbarch_tdep *tdep;
785 CORE_ADDR stack_addr, code_addr;
786
787 /* If the OSABI couldn't locate the sigcontext, give up. */
788 if (info->sigcontext_addr == 0)
789 return;
790
791 /* If we have dynamic signal trampolines, find their start.
792 If we do not, then we must assume there is a symbol record
793 that can provide the start address. */
794 tdep = gdbarch_tdep (current_gdbarch);
795 if (tdep->dynamic_sigtramp_offset)
796 {
797 int offset;
798 code_addr = frame_pc_unwind (next_frame);
799 offset = tdep->dynamic_sigtramp_offset (code_addr);
800 if (offset >= 0)
801 code_addr -= offset;
802 else
803 code_addr = 0;
804 }
805 else
806 code_addr = frame_func_unwind (next_frame);
807
808 /* The stack address is trivially read from the sigcontext. */
809 stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr,
810 ALPHA_SP_REGNUM);
811 stack_addr = get_frame_memory_unsigned (next_frame, stack_addr,
812 ALPHA_REGISTER_SIZE);
813
814 *this_id = frame_id_build (stack_addr, code_addr);
815 }
816
817 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
818
819 static void
820 alpha_sigtramp_frame_prev_register (struct frame_info *next_frame,
821 void **this_prologue_cache,
822 int regnum, int *optimizedp,
823 enum lval_type *lvalp, CORE_ADDR *addrp,
824 int *realnump, void *bufferp)
825 {
826 struct alpha_sigtramp_unwind_cache *info
827 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
828 CORE_ADDR addr;
829
830 if (info->sigcontext_addr != 0)
831 {
832 /* All integer and fp registers are stored in memory. */
833 addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum);
834 if (addr != 0)
835 {
836 *optimizedp = 0;
837 *lvalp = lval_memory;
838 *addrp = addr;
839 *realnump = -1;
840 if (bufferp != NULL)
841 get_frame_memory (next_frame, addr, bufferp, ALPHA_REGISTER_SIZE);
842 return;
843 }
844 }
845
846 /* This extra register may actually be in the sigcontext, but our
847 current description of it in alpha_sigtramp_frame_unwind_cache
848 doesn't include it. Too bad. Fall back on whatever's in the
849 outer frame. */
850 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
851 realnump, bufferp);
852 }
853
854 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
855 SIGTRAMP_FRAME,
856 alpha_sigtramp_frame_this_id,
857 alpha_sigtramp_frame_prev_register
858 };
859
860 static const struct frame_unwind *
861 alpha_sigtramp_frame_sniffer (struct frame_info *next_frame)
862 {
863 CORE_ADDR pc = frame_pc_unwind (next_frame);
864 char *name;
865
866 /* We shouldn't even bother to try if the OSABI didn't register
867 a sigcontext_addr handler. */
868 if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
869 return NULL;
870
871 /* Otherwise we should be in a signal frame. */
872 find_pc_partial_function (pc, &name, NULL, NULL);
873 if (DEPRECATED_PC_IN_SIGTRAMP (pc, name))
874 return &alpha_sigtramp_frame_unwind;
875
876 return NULL;
877 }
878 \f
879 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
880 something about the traditional layout of alpha stack frames. */
881
882 struct alpha_heuristic_unwind_cache
883 {
884 CORE_ADDR *saved_regs;
885 CORE_ADDR vfp;
886 CORE_ADDR start_pc;
887 int return_reg;
888 };
889
890 /* Heuristic_proc_start may hunt through the text section for a long
891 time across a 2400 baud serial line. Allows the user to limit this
892 search. */
893 static unsigned int heuristic_fence_post = 0;
894
895 /* Attempt to locate the start of the function containing PC. We assume that
896 the previous function ends with an about_to_return insn. Not foolproof by
897 any means, since gcc is happy to put the epilogue in the middle of a
898 function. But we're guessing anyway... */
899
900 static CORE_ADDR
901 alpha_heuristic_proc_start (CORE_ADDR pc)
902 {
903 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
904 CORE_ADDR last_non_nop = pc;
905 CORE_ADDR fence = pc - heuristic_fence_post;
906 CORE_ADDR orig_pc = pc;
907 CORE_ADDR func;
908
909 if (pc == 0)
910 return 0;
911
912 /* First see if we can find the start of the function from minimal
913 symbol information. This can succeed with a binary that doesn't
914 have debug info, but hasn't been stripped. */
915 func = get_pc_function_start (pc);
916 if (func)
917 return func;
918
919 if (heuristic_fence_post == UINT_MAX
920 || fence < tdep->vm_min_address)
921 fence = tdep->vm_min_address;
922
923 /* Search back for previous return; also stop at a 0, which might be
924 seen for instance before the start of a code section. Don't include
925 nops, since this usually indicates padding between functions. */
926 for (pc -= 4; pc >= fence; pc -= 4)
927 {
928 unsigned int insn = alpha_read_insn (pc);
929 switch (insn)
930 {
931 case 0: /* invalid insn */
932 case 0x6bfa8001: /* ret $31,($26),1 */
933 return last_non_nop;
934
935 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
936 case 0x47ff041f: /* nop: bis $31,$31,$31 */
937 break;
938
939 default:
940 last_non_nop = pc;
941 break;
942 }
943 }
944
945 /* It's not clear to me why we reach this point when stopping quietly,
946 but with this test, at least we don't print out warnings for every
947 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
948 if (stop_soon == NO_STOP_QUIETLY)
949 {
950 static int blurb_printed = 0;
951
952 if (fence == tdep->vm_min_address)
953 warning ("Hit beginning of text section without finding");
954 else
955 warning ("Hit heuristic-fence-post without finding");
956 warning ("enclosing function for address 0x%s", paddr_nz (orig_pc));
957
958 if (!blurb_printed)
959 {
960 printf_filtered ("\
961 This warning occurs if you are debugging a function without any symbols\n\
962 (for example, in a stripped executable). In that case, you may wish to\n\
963 increase the size of the search with the `set heuristic-fence-post' command.\n\
964 \n\
965 Otherwise, you told GDB there was a function where there isn't one, or\n\
966 (more likely) you have encountered a bug in GDB.\n");
967 blurb_printed = 1;
968 }
969 }
970
971 return 0;
972 }
973
974 static struct alpha_heuristic_unwind_cache *
975 alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame,
976 void **this_prologue_cache,
977 CORE_ADDR start_pc)
978 {
979 struct alpha_heuristic_unwind_cache *info;
980 ULONGEST val;
981 CORE_ADDR limit_pc, cur_pc;
982 int frame_reg, frame_size, return_reg, reg;
983
984 if (*this_prologue_cache)
985 return *this_prologue_cache;
986
987 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
988 *this_prologue_cache = info;
989 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
990
991 limit_pc = frame_pc_unwind (next_frame);
992 if (start_pc == 0)
993 start_pc = alpha_heuristic_proc_start (limit_pc);
994 info->start_pc = start_pc;
995
996 frame_reg = ALPHA_SP_REGNUM;
997 frame_size = 0;
998 return_reg = -1;
999
1000 /* If we've identified a likely place to start, do code scanning. */
1001 if (start_pc != 0)
1002 {
1003 /* Limit the forward search to 50 instructions. */
1004 if (start_pc + 200 < limit_pc)
1005 limit_pc = start_pc + 200;
1006
1007 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
1008 {
1009 unsigned int word = alpha_read_insn (cur_pc);
1010
1011 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1012 {
1013 if (word & 0x8000)
1014 {
1015 /* Consider only the first stack allocation instruction
1016 to contain the static size of the frame. */
1017 if (frame_size == 0)
1018 frame_size = (-word) & 0xffff;
1019 }
1020 else
1021 {
1022 /* Exit loop if a positive stack adjustment is found, which
1023 usually means that the stack cleanup code in the function
1024 epilogue is reached. */
1025 break;
1026 }
1027 }
1028 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1029 {
1030 reg = (word & 0x03e00000) >> 21;
1031
1032 /* Ignore this instruction if we have already encountered
1033 an instruction saving the same register earlier in the
1034 function code. The current instruction does not tell
1035 us where the original value upon function entry is saved.
1036 All it says is that the function we are scanning reused
1037 that register for some computation of its own, and is now
1038 saving its result. */
1039 if (info->saved_regs[reg])
1040 continue;
1041
1042 if (reg == 31)
1043 continue;
1044
1045 /* Do not compute the address where the register was saved yet,
1046 because we don't know yet if the offset will need to be
1047 relative to $sp or $fp (we can not compute the address
1048 relative to $sp if $sp is updated during the execution of
1049 the current subroutine, for instance when doing some alloca).
1050 So just store the offset for the moment, and compute the
1051 address later when we know whether this frame has a frame
1052 pointer or not. */
1053 /* Hack: temporarily add one, so that the offset is non-zero
1054 and we can tell which registers have save offsets below. */
1055 info->saved_regs[reg] = (word & 0xffff) + 1;
1056
1057 /* Starting with OSF/1-3.2C, the system libraries are shipped
1058 without local symbols, but they still contain procedure
1059 descriptors without a symbol reference. GDB is currently
1060 unable to find these procedure descriptors and uses
1061 heuristic_proc_desc instead.
1062 As some low level compiler support routines (__div*, __add*)
1063 use a non-standard return address register, we have to
1064 add some heuristics to determine the return address register,
1065 or stepping over these routines will fail.
1066 Usually the return address register is the first register
1067 saved on the stack, but assembler optimization might
1068 rearrange the register saves.
1069 So we recognize only a few registers (t7, t9, ra) within
1070 the procedure prologue as valid return address registers.
1071 If we encounter a return instruction, we extract the
1072 the return address register from it.
1073
1074 FIXME: Rewriting GDB to access the procedure descriptors,
1075 e.g. via the minimal symbol table, might obviate this hack. */
1076 if (return_reg == -1
1077 && cur_pc < (start_pc + 80)
1078 && (reg == ALPHA_T7_REGNUM
1079 || reg == ALPHA_T9_REGNUM
1080 || reg == ALPHA_RA_REGNUM))
1081 return_reg = reg;
1082 }
1083 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1084 return_reg = (word >> 16) & 0x1f;
1085 else if (word == 0x47de040f) /* bis sp,sp,fp */
1086 frame_reg = ALPHA_GCC_FP_REGNUM;
1087 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1088 frame_reg = ALPHA_GCC_FP_REGNUM;
1089 }
1090
1091 /* If we haven't found a valid return address register yet, keep
1092 searching in the procedure prologue. */
1093 if (return_reg == -1)
1094 {
1095 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1096 {
1097 unsigned int word = alpha_read_insn (cur_pc);
1098
1099 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1100 {
1101 reg = (word & 0x03e00000) >> 21;
1102 if (reg == ALPHA_T7_REGNUM
1103 || reg == ALPHA_T9_REGNUM
1104 || reg == ALPHA_RA_REGNUM)
1105 {
1106 return_reg = reg;
1107 break;
1108 }
1109 }
1110 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1111 {
1112 return_reg = (word >> 16) & 0x1f;
1113 break;
1114 }
1115
1116 cur_pc += 4;
1117 }
1118 }
1119 }
1120
1121 /* Failing that, do default to the customary RA. */
1122 if (return_reg == -1)
1123 return_reg = ALPHA_RA_REGNUM;
1124 info->return_reg = return_reg;
1125
1126 frame_unwind_unsigned_register (next_frame, frame_reg, &val);
1127 info->vfp = val + frame_size;
1128
1129 /* Convert offsets to absolute addresses. See above about adding
1130 one to the offsets to make all detected offsets non-zero. */
1131 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1132 if (info->saved_regs[reg])
1133 info->saved_regs[reg] += val - 1;
1134
1135 return info;
1136 }
1137
1138 /* Given a GDB frame, determine the address of the calling function's
1139 frame. This will be used to create a new GDB frame struct. */
1140
1141 static void
1142 alpha_heuristic_frame_this_id (struct frame_info *next_frame,
1143 void **this_prologue_cache,
1144 struct frame_id *this_id)
1145 {
1146 struct alpha_heuristic_unwind_cache *info
1147 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1148
1149 *this_id = frame_id_build (info->vfp, info->start_pc);
1150 }
1151
1152 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1153
1154 static void
1155 alpha_heuristic_frame_prev_register (struct frame_info *next_frame,
1156 void **this_prologue_cache,
1157 int regnum, int *optimizedp,
1158 enum lval_type *lvalp, CORE_ADDR *addrp,
1159 int *realnump, void *bufferp)
1160 {
1161 struct alpha_heuristic_unwind_cache *info
1162 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1163
1164 /* The PC of the previous frame is stored in the link register of
1165 the current frame. Frob regnum so that we pull the value from
1166 the correct place. */
1167 if (regnum == ALPHA_PC_REGNUM)
1168 regnum = info->return_reg;
1169
1170 /* For all registers known to be saved in the current frame,
1171 do the obvious and pull the value out. */
1172 if (info->saved_regs[regnum])
1173 {
1174 *optimizedp = 0;
1175 *lvalp = lval_memory;
1176 *addrp = info->saved_regs[regnum];
1177 *realnump = -1;
1178 if (bufferp != NULL)
1179 get_frame_memory (next_frame, *addrp, bufferp, ALPHA_REGISTER_SIZE);
1180 return;
1181 }
1182
1183 /* The stack pointer of the previous frame is computed by popping
1184 the current stack frame. */
1185 if (regnum == ALPHA_SP_REGNUM)
1186 {
1187 *optimizedp = 0;
1188 *lvalp = not_lval;
1189 *addrp = 0;
1190 *realnump = -1;
1191 if (bufferp != NULL)
1192 store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp);
1193 return;
1194 }
1195
1196 /* Otherwise assume the next frame has the same register value. */
1197 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
1198 realnump, bufferp);
1199 }
1200
1201 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1202 NORMAL_FRAME,
1203 alpha_heuristic_frame_this_id,
1204 alpha_heuristic_frame_prev_register
1205 };
1206
1207 static const struct frame_unwind *
1208 alpha_heuristic_frame_sniffer (struct frame_info *next_frame)
1209 {
1210 return &alpha_heuristic_frame_unwind;
1211 }
1212
1213 static CORE_ADDR
1214 alpha_heuristic_frame_base_address (struct frame_info *next_frame,
1215 void **this_prologue_cache)
1216 {
1217 struct alpha_heuristic_unwind_cache *info
1218 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1219
1220 return info->vfp;
1221 }
1222
1223 static const struct frame_base alpha_heuristic_frame_base = {
1224 &alpha_heuristic_frame_unwind,
1225 alpha_heuristic_frame_base_address,
1226 alpha_heuristic_frame_base_address,
1227 alpha_heuristic_frame_base_address
1228 };
1229
1230 /* Just like reinit_frame_cache, but with the right arguments to be
1231 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1232
1233 static void
1234 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1235 {
1236 reinit_frame_cache ();
1237 }
1238
1239 \f
1240 /* ALPHA stack frames are almost impenetrable. When execution stops,
1241 we basically have to look at symbol information for the function
1242 that we stopped in, which tells us *which* register (if any) is
1243 the base of the frame pointer, and what offset from that register
1244 the frame itself is at.
1245
1246 This presents a problem when trying to examine a stack in memory
1247 (that isn't executing at the moment), using the "frame" command. We
1248 don't have a PC, nor do we have any registers except SP.
1249
1250 This routine takes two arguments, SP and PC, and tries to make the
1251 cached frames look as if these two arguments defined a frame on the
1252 cache. This allows the rest of info frame to extract the important
1253 arguments without difficulty. */
1254
1255 struct frame_info *
1256 alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
1257 {
1258 if (argc != 2)
1259 error ("ALPHA frame specifications require two arguments: sp and pc");
1260
1261 return create_new_frame (argv[0], argv[1]);
1262 }
1263
1264 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1265 dummy frame. The frame ID's base needs to match the TOS value
1266 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1267 breakpoint. */
1268
1269 static struct frame_id
1270 alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1271 {
1272 ULONGEST base;
1273 frame_unwind_unsigned_register (next_frame, ALPHA_SP_REGNUM, &base);
1274 return frame_id_build (base, frame_pc_unwind (next_frame));
1275 }
1276
1277 static CORE_ADDR
1278 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1279 {
1280 ULONGEST pc;
1281 frame_unwind_unsigned_register (next_frame, ALPHA_PC_REGNUM, &pc);
1282 return pc;
1283 }
1284
1285 \f
1286 /* Helper routines for alpha*-nat.c files to move register sets to and
1287 from core files. The UNIQUE pointer is allowed to be NULL, as most
1288 targets don't supply this value in their core files. */
1289
1290 void
1291 alpha_supply_int_regs (int regno, const void *r0_r30,
1292 const void *pc, const void *unique)
1293 {
1294 int i;
1295
1296 for (i = 0; i < 31; ++i)
1297 if (regno == i || regno == -1)
1298 supply_register (i, (const char *)r0_r30 + i*8);
1299
1300 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1301 supply_register (ALPHA_ZERO_REGNUM, NULL);
1302
1303 if (regno == ALPHA_PC_REGNUM || regno == -1)
1304 supply_register (ALPHA_PC_REGNUM, pc);
1305
1306 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1307 supply_register (ALPHA_UNIQUE_REGNUM, unique);
1308 }
1309
1310 void
1311 alpha_fill_int_regs (int regno, void *r0_r30, void *pc, void *unique)
1312 {
1313 int i;
1314
1315 for (i = 0; i < 31; ++i)
1316 if (regno == i || regno == -1)
1317 regcache_collect (i, (char *)r0_r30 + i*8);
1318
1319 if (regno == ALPHA_PC_REGNUM || regno == -1)
1320 regcache_collect (ALPHA_PC_REGNUM, pc);
1321
1322 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1323 regcache_collect (ALPHA_UNIQUE_REGNUM, unique);
1324 }
1325
1326 void
1327 alpha_supply_fp_regs (int regno, const void *f0_f30, const void *fpcr)
1328 {
1329 int i;
1330
1331 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1332 if (regno == i || regno == -1)
1333 supply_register (i, (const char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
1334
1335 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1336 supply_register (ALPHA_FPCR_REGNUM, fpcr);
1337 }
1338
1339 void
1340 alpha_fill_fp_regs (int regno, void *f0_f30, void *fpcr)
1341 {
1342 int i;
1343
1344 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1345 if (regno == i || regno == -1)
1346 regcache_collect (i, (char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
1347
1348 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1349 regcache_collect (ALPHA_FPCR_REGNUM, fpcr);
1350 }
1351
1352 \f
1353 /* alpha_software_single_step() is called just before we want to resume
1354 the inferior, if we want to single-step it but there is no hardware
1355 or kernel single-step support (NetBSD on Alpha, for example). We find
1356 the target of the coming instruction and breakpoint it.
1357
1358 single_step is also called just after the inferior stops. If we had
1359 set up a simulated single-step, we undo our damage. */
1360
1361 static CORE_ADDR
1362 alpha_next_pc (CORE_ADDR pc)
1363 {
1364 unsigned int insn;
1365 unsigned int op;
1366 int offset;
1367 LONGEST rav;
1368
1369 insn = alpha_read_insn (pc);
1370
1371 /* Opcode is top 6 bits. */
1372 op = (insn >> 26) & 0x3f;
1373
1374 if (op == 0x1a)
1375 {
1376 /* Jump format: target PC is:
1377 RB & ~3 */
1378 return (read_register ((insn >> 16) & 0x1f) & ~3);
1379 }
1380
1381 if ((op & 0x30) == 0x30)
1382 {
1383 /* Branch format: target PC is:
1384 (new PC) + (4 * sext(displacement)) */
1385 if (op == 0x30 || /* BR */
1386 op == 0x34) /* BSR */
1387 {
1388 branch_taken:
1389 offset = (insn & 0x001fffff);
1390 if (offset & 0x00100000)
1391 offset |= 0xffe00000;
1392 offset *= 4;
1393 return (pc + 4 + offset);
1394 }
1395
1396 /* Need to determine if branch is taken; read RA. */
1397 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1398 switch (op)
1399 {
1400 case 0x38: /* BLBC */
1401 if ((rav & 1) == 0)
1402 goto branch_taken;
1403 break;
1404 case 0x3c: /* BLBS */
1405 if (rav & 1)
1406 goto branch_taken;
1407 break;
1408 case 0x39: /* BEQ */
1409 if (rav == 0)
1410 goto branch_taken;
1411 break;
1412 case 0x3d: /* BNE */
1413 if (rav != 0)
1414 goto branch_taken;
1415 break;
1416 case 0x3a: /* BLT */
1417 if (rav < 0)
1418 goto branch_taken;
1419 break;
1420 case 0x3b: /* BLE */
1421 if (rav <= 0)
1422 goto branch_taken;
1423 break;
1424 case 0x3f: /* BGT */
1425 if (rav > 0)
1426 goto branch_taken;
1427 break;
1428 case 0x3e: /* BGE */
1429 if (rav >= 0)
1430 goto branch_taken;
1431 break;
1432
1433 /* ??? Missing floating-point branches. */
1434 }
1435 }
1436
1437 /* Not a branch or branch not taken; target PC is:
1438 pc + 4 */
1439 return (pc + 4);
1440 }
1441
1442 void
1443 alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1444 {
1445 static CORE_ADDR next_pc;
1446 typedef char binsn_quantum[BREAKPOINT_MAX];
1447 static binsn_quantum break_mem;
1448 CORE_ADDR pc;
1449
1450 if (insert_breakpoints_p)
1451 {
1452 pc = read_pc ();
1453 next_pc = alpha_next_pc (pc);
1454
1455 target_insert_breakpoint (next_pc, break_mem);
1456 }
1457 else
1458 {
1459 target_remove_breakpoint (next_pc, break_mem);
1460 write_pc (next_pc);
1461 }
1462 }
1463
1464 \f
1465 /* Initialize the current architecture based on INFO. If possible, re-use an
1466 architecture from ARCHES, which is a list of architectures already created
1467 during this debugging session.
1468
1469 Called e.g. at program startup, when reading a core file, and when reading
1470 a binary file. */
1471
1472 static struct gdbarch *
1473 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1474 {
1475 struct gdbarch_tdep *tdep;
1476 struct gdbarch *gdbarch;
1477
1478 /* Try to determine the ABI of the object we are loading. */
1479 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1480 {
1481 /* If it's an ECOFF file, assume it's OSF/1. */
1482 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1483 info.osabi = GDB_OSABI_OSF1;
1484 }
1485
1486 /* Find a candidate among extant architectures. */
1487 arches = gdbarch_list_lookup_by_info (arches, &info);
1488 if (arches != NULL)
1489 return arches->gdbarch;
1490
1491 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1492 gdbarch = gdbarch_alloc (&info, tdep);
1493
1494 /* Lowest text address. This is used by heuristic_proc_start()
1495 to decide when to stop looking. */
1496 tdep->vm_min_address = (CORE_ADDR) 0x120000000;
1497
1498 tdep->dynamic_sigtramp_offset = NULL;
1499 tdep->sigcontext_addr = NULL;
1500 tdep->sc_pc_offset = 2 * 8;
1501 tdep->sc_regs_offset = 4 * 8;
1502 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1503
1504 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1505
1506 /* Type sizes */
1507 set_gdbarch_short_bit (gdbarch, 16);
1508 set_gdbarch_int_bit (gdbarch, 32);
1509 set_gdbarch_long_bit (gdbarch, 64);
1510 set_gdbarch_long_long_bit (gdbarch, 64);
1511 set_gdbarch_float_bit (gdbarch, 32);
1512 set_gdbarch_double_bit (gdbarch, 64);
1513 set_gdbarch_long_double_bit (gdbarch, 64);
1514 set_gdbarch_ptr_bit (gdbarch, 64);
1515
1516 /* Register info */
1517 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1518 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1519 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1520 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1521
1522 set_gdbarch_register_name (gdbarch, alpha_register_name);
1523 set_gdbarch_deprecated_register_byte (gdbarch, alpha_register_byte);
1524 set_gdbarch_deprecated_register_raw_size (gdbarch, alpha_register_raw_size);
1525 set_gdbarch_deprecated_register_virtual_size (gdbarch, alpha_register_virtual_size);
1526 set_gdbarch_register_type (gdbarch, alpha_register_type);
1527
1528 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1529 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1530
1531 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1532 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1533 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1534
1535 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1536
1537 /* Prologue heuristics. */
1538 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1539
1540 /* Disassembler. */
1541 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1542
1543 /* Call info. */
1544
1545 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
1546 set_gdbarch_extract_return_value (gdbarch, alpha_extract_return_value);
1547 set_gdbarch_store_return_value (gdbarch, alpha_store_return_value);
1548 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, alpha_extract_struct_value_address);
1549
1550 /* Settings for calling functions in the inferior. */
1551 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1552
1553 /* Methods for saving / extracting a dummy frame's ID. */
1554 set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id);
1555
1556 /* Return the unwound PC value. */
1557 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1558
1559 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1560 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1561
1562 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1563 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1564
1565 /* Hook in ABI-specific overrides, if they have been registered. */
1566 gdbarch_init_osabi (info, gdbarch);
1567
1568 /* Now that we have tuned the configuration, set a few final things
1569 based on what the OS ABI has told us. */
1570
1571 if (tdep->jb_pc >= 0)
1572 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1573
1574 frame_unwind_append_sniffer (gdbarch, alpha_sigtramp_frame_sniffer);
1575 frame_unwind_append_sniffer (gdbarch, alpha_heuristic_frame_sniffer);
1576
1577 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1578
1579 return gdbarch;
1580 }
1581
1582 void
1583 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1584 {
1585 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1586 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1587 }
1588
1589 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1590
1591 void
1592 _initialize_alpha_tdep (void)
1593 {
1594 struct cmd_list_element *c;
1595
1596 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1597
1598 /* Let the user set the fence post for heuristic_proc_start. */
1599
1600 /* We really would like to have both "0" and "unlimited" work, but
1601 command.c doesn't deal with that. So make it a var_zinteger
1602 because the user can always use "999999" or some such for unlimited. */
1603 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
1604 (char *) &heuristic_fence_post,
1605 "\
1606 Set the distance searched for the start of a function.\n\
1607 If you are debugging a stripped executable, GDB needs to search through the\n\
1608 program for the start of a function. This command sets the distance of the\n\
1609 search. The only need to set it is when debugging a stripped executable.",
1610 &setlist);
1611 /* We need to throw away the frame cache when we set this, since it
1612 might change our ability to get backtraces. */
1613 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
1614 add_show_from_set (c, &showlist);
1615 }
This page took 0.064178 seconds and 4 git commands to generate.