2003-03-12 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "value.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "dis-asm.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdb_string.h"
33 #include "linespec.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "arch-utils.h"
37 #include "osabi.h"
38 #include "block.h"
39
40 #include "elf-bfd.h"
41
42 #include "alpha-tdep.h"
43
44 static gdbarch_init_ftype alpha_gdbarch_init;
45
46 static gdbarch_register_name_ftype alpha_register_name;
47 static gdbarch_register_raw_size_ftype alpha_register_raw_size;
48 static gdbarch_register_virtual_size_ftype alpha_register_virtual_size;
49 static gdbarch_register_virtual_type_ftype alpha_register_virtual_type;
50 static gdbarch_register_byte_ftype alpha_register_byte;
51 static gdbarch_cannot_fetch_register_ftype alpha_cannot_fetch_register;
52 static gdbarch_cannot_store_register_ftype alpha_cannot_store_register;
53 static gdbarch_register_convertible_ftype alpha_register_convertible;
54 static gdbarch_register_convert_to_virtual_ftype
55 alpha_register_convert_to_virtual;
56 static gdbarch_register_convert_to_raw_ftype alpha_register_convert_to_raw;
57 static gdbarch_store_struct_return_ftype alpha_store_struct_return;
58 static gdbarch_deprecated_extract_return_value_ftype alpha_extract_return_value;
59 static gdbarch_deprecated_extract_struct_value_address_ftype
60 alpha_extract_struct_value_address;
61 static gdbarch_use_struct_convention_ftype alpha_use_struct_convention;
62
63 static gdbarch_breakpoint_from_pc_ftype alpha_breakpoint_from_pc;
64
65 static gdbarch_frame_args_address_ftype alpha_frame_args_address;
66 static gdbarch_frame_locals_address_ftype alpha_frame_locals_address;
67
68 static gdbarch_skip_prologue_ftype alpha_skip_prologue;
69 static gdbarch_saved_pc_after_call_ftype alpha_saved_pc_after_call;
70 static gdbarch_frame_chain_ftype alpha_frame_chain;
71
72 static gdbarch_push_arguments_ftype alpha_push_arguments;
73 static gdbarch_pop_frame_ftype alpha_pop_frame;
74 static gdbarch_fix_call_dummy_ftype alpha_fix_call_dummy;
75
76 static gdbarch_get_longjmp_target_ftype alpha_get_longjmp_target;
77
78 struct frame_extra_info
79 {
80 alpha_extra_func_info_t proc_desc;
81 int localoff;
82 int pc_reg;
83 };
84
85 /* FIXME: Some of this code should perhaps be merged with mips-tdep.c. */
86
87 /* Prototypes for local functions. */
88
89 static void alpha_find_saved_regs (struct frame_info *);
90
91 static alpha_extra_func_info_t push_sigtramp_desc (CORE_ADDR low_addr);
92
93 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
94
95 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
96
97 static alpha_extra_func_info_t heuristic_proc_desc (CORE_ADDR,
98 CORE_ADDR,
99 struct frame_info *);
100
101 static alpha_extra_func_info_t find_proc_desc (CORE_ADDR,
102 struct frame_info *);
103
104 #if 0
105 static int alpha_in_lenient_prologue (CORE_ADDR, CORE_ADDR);
106 #endif
107
108 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
109
110 static CORE_ADDR after_prologue (CORE_ADDR pc,
111 alpha_extra_func_info_t proc_desc);
112
113 static int alpha_in_prologue (CORE_ADDR pc,
114 alpha_extra_func_info_t proc_desc);
115
116 static int alpha_about_to_return (CORE_ADDR pc);
117
118 void _initialize_alpha_tdep (void);
119
120 /* Heuristic_proc_start may hunt through the text section for a long
121 time across a 2400 baud serial line. Allows the user to limit this
122 search. */
123 static unsigned int heuristic_fence_post = 0;
124 /* *INDENT-OFF* */
125 /* Layout of a stack frame on the alpha:
126
127 | |
128 pdr members: | 7th ... nth arg, |
129 | `pushed' by caller. |
130 | |
131 ----------------|-------------------------------|<-- old_sp == vfp
132 ^ ^ ^ ^ | |
133 | | | | | |
134 | |localoff | Copies of 1st .. 6th |
135 | | | | | argument if necessary. |
136 | | | v | |
137 | | | --- |-------------------------------|<-- FRAME_LOCALS_ADDRESS
138 | | | | |
139 | | | | Locals and temporaries. |
140 | | | | |
141 | | | |-------------------------------|
142 | | | | |
143 |-fregoffset | Saved float registers. |
144 | | | | F9 |
145 | | | | . |
146 | | | | . |
147 | | | | F2 |
148 | | v | |
149 | | -------|-------------------------------|
150 | | | |
151 | | | Saved registers. |
152 | | | S6 |
153 |-regoffset | . |
154 | | | . |
155 | | | S0 |
156 | | | pdr.pcreg |
157 | v | |
158 | ----------|-------------------------------|
159 | | |
160 frameoffset | Argument build area, gets |
161 | | 7th ... nth arg for any |
162 | | called procedure. |
163 v | |
164 -------------|-------------------------------|<-- sp
165 | |
166 */
167 /* *INDENT-ON* */
168
169 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
170 /* These next two fields are kind of being hijacked. I wonder if
171 iline is too small for the values it needs to hold, if GDB is
172 running on a 32-bit host. */
173 #define PROC_HIGH_ADDR(proc) ((proc)->pdr.iline) /* upper address bound */
174 #define PROC_DUMMY_FRAME(proc) ((proc)->pdr.cbLineOffset) /*CALL_DUMMY frame */
175 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
176 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
177 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
178 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
179 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
180 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
181 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
182 #define PROC_LOCALOFF(proc) ((proc)->pdr.localoff)
183 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
184 #define _PROC_MAGIC_ 0x0F0F0F0F
185 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
186 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
187
188 struct linked_proc_info
189 {
190 struct alpha_extra_func_info info;
191 struct linked_proc_info *next;
192 }
193 *linked_proc_desc_table = NULL;
194 \f
195 static CORE_ADDR
196 alpha_frame_past_sigtramp_frame (struct frame_info *frame, CORE_ADDR pc)
197 {
198 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
199
200 if (tdep->skip_sigtramp_frame != NULL)
201 return (tdep->skip_sigtramp_frame (frame, pc));
202
203 return (0);
204 }
205
206 static LONGEST
207 alpha_dynamic_sigtramp_offset (CORE_ADDR pc)
208 {
209 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
210
211 /* Must be provided by OS/ABI variant code if supported. */
212 if (tdep->dynamic_sigtramp_offset != NULL)
213 return (tdep->dynamic_sigtramp_offset (pc));
214
215 return (-1);
216 }
217
218 #define ALPHA_PROC_SIGTRAMP_MAGIC 0x0e0f0f0f
219
220 /* Return TRUE if the procedure descriptor PROC is a procedure
221 descriptor that refers to a dynamically generated signal
222 trampoline routine. */
223 static int
224 alpha_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
225 {
226 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
227
228 if (tdep->dynamic_sigtramp_offset != NULL)
229 return (proc->pdr.isym == ALPHA_PROC_SIGTRAMP_MAGIC);
230
231 return (0);
232 }
233
234 static void
235 alpha_set_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
236 {
237 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
238
239 if (tdep->dynamic_sigtramp_offset != NULL)
240 proc->pdr.isym = ALPHA_PROC_SIGTRAMP_MAGIC;
241 }
242
243 /* Dynamically create a signal-handler caller procedure descriptor for
244 the signal-handler return code starting at address LOW_ADDR. The
245 descriptor is added to the linked_proc_desc_table. */
246
247 static alpha_extra_func_info_t
248 push_sigtramp_desc (CORE_ADDR low_addr)
249 {
250 struct linked_proc_info *link;
251 alpha_extra_func_info_t proc_desc;
252
253 link = (struct linked_proc_info *)
254 xmalloc (sizeof (struct linked_proc_info));
255 link->next = linked_proc_desc_table;
256 linked_proc_desc_table = link;
257
258 proc_desc = &link->info;
259
260 proc_desc->numargs = 0;
261 PROC_LOW_ADDR (proc_desc) = low_addr;
262 PROC_HIGH_ADDR (proc_desc) = low_addr + 3 * 4;
263 PROC_DUMMY_FRAME (proc_desc) = 0;
264 PROC_FRAME_OFFSET (proc_desc) = 0x298; /* sizeof(struct sigcontext_struct) */
265 PROC_FRAME_REG (proc_desc) = SP_REGNUM;
266 PROC_REG_MASK (proc_desc) = 0xffff;
267 PROC_FREG_MASK (proc_desc) = 0xffff;
268 PROC_PC_REG (proc_desc) = 26;
269 PROC_LOCALOFF (proc_desc) = 0;
270 alpha_set_proc_desc_is_dyn_sigtramp (proc_desc);
271 return (proc_desc);
272 }
273 \f
274
275 static const char *
276 alpha_register_name (int regno)
277 {
278 static char *register_names[] =
279 {
280 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
281 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
282 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
283 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
284 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
285 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
286 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
287 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
288 "pc", "vfp", "unique",
289 };
290
291 if (regno < 0)
292 return (NULL);
293 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
294 return (NULL);
295 return (register_names[regno]);
296 }
297
298 static int
299 alpha_cannot_fetch_register (int regno)
300 {
301 return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
302 }
303
304 static int
305 alpha_cannot_store_register (int regno)
306 {
307 return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
308 }
309
310 static int
311 alpha_register_convertible (int regno)
312 {
313 return (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31);
314 }
315
316 static struct type *
317 alpha_register_virtual_type (int regno)
318 {
319 return ((regno >= FP0_REGNUM && regno < (FP0_REGNUM+31))
320 ? builtin_type_double : builtin_type_long);
321 }
322
323 static int
324 alpha_register_byte (int regno)
325 {
326 return (regno * 8);
327 }
328
329 static int
330 alpha_register_raw_size (int regno)
331 {
332 return 8;
333 }
334
335 static int
336 alpha_register_virtual_size (int regno)
337 {
338 return 8;
339 }
340 \f
341
342 static CORE_ADDR
343 alpha_sigcontext_addr (struct frame_info *fi)
344 {
345 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
346
347 if (tdep->sigcontext_addr)
348 return (tdep->sigcontext_addr (fi));
349
350 return (0);
351 }
352
353 /* Guaranteed to set frame->saved_regs to some values (it never leaves it
354 NULL). */
355
356 static void
357 alpha_find_saved_regs (struct frame_info *frame)
358 {
359 int ireg;
360 CORE_ADDR reg_position;
361 unsigned long mask;
362 alpha_extra_func_info_t proc_desc;
363 int returnreg;
364
365 frame_saved_regs_zalloc (frame);
366
367 /* If it is the frame for __sigtramp, the saved registers are located
368 in a sigcontext structure somewhere on the stack. __sigtramp
369 passes a pointer to the sigcontext structure on the stack.
370 If the stack layout for __sigtramp changes, or if sigcontext offsets
371 change, we might have to update this code. */
372 #ifndef SIGFRAME_PC_OFF
373 #define SIGFRAME_PC_OFF (2 * 8)
374 #define SIGFRAME_REGSAVE_OFF (4 * 8)
375 #define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8)
376 #endif
377 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
378 {
379 CORE_ADDR sigcontext_addr;
380
381 sigcontext_addr = alpha_sigcontext_addr (frame);
382 if (sigcontext_addr == 0)
383 {
384 /* Don't know where the sigcontext is; just bail. */
385 return;
386 }
387 for (ireg = 0; ireg < 32; ireg++)
388 {
389 reg_position = sigcontext_addr + SIGFRAME_REGSAVE_OFF + ireg * 8;
390 get_frame_saved_regs (frame)[ireg] = reg_position;
391 }
392 for (ireg = 0; ireg < 32; ireg++)
393 {
394 reg_position = sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + ireg * 8;
395 get_frame_saved_regs (frame)[FP0_REGNUM + ireg] = reg_position;
396 }
397 get_frame_saved_regs (frame)[PC_REGNUM] = sigcontext_addr + SIGFRAME_PC_OFF;
398 return;
399 }
400
401 proc_desc = get_frame_extra_info (frame)->proc_desc;
402 if (proc_desc == NULL)
403 /* I'm not sure how/whether this can happen. Normally when we can't
404 find a proc_desc, we "synthesize" one using heuristic_proc_desc
405 and set the saved_regs right away. */
406 return;
407
408 /* Fill in the offsets for the registers which gen_mask says
409 were saved. */
410
411 reg_position = get_frame_base (frame) + PROC_REG_OFFSET (proc_desc);
412 mask = PROC_REG_MASK (proc_desc);
413
414 returnreg = PROC_PC_REG (proc_desc);
415
416 /* Note that RA is always saved first, regardless of its actual
417 register number. */
418 if (mask & (1 << returnreg))
419 {
420 get_frame_saved_regs (frame)[returnreg] = reg_position;
421 reg_position += 8;
422 mask &= ~(1 << returnreg); /* Clear bit for RA so we
423 don't save again later. */
424 }
425
426 for (ireg = 0; ireg <= 31; ++ireg)
427 if (mask & (1 << ireg))
428 {
429 get_frame_saved_regs (frame)[ireg] = reg_position;
430 reg_position += 8;
431 }
432
433 /* Fill in the offsets for the registers which float_mask says
434 were saved. */
435
436 reg_position = get_frame_base (frame) + PROC_FREG_OFFSET (proc_desc);
437 mask = PROC_FREG_MASK (proc_desc);
438
439 for (ireg = 0; ireg <= 31; ++ireg)
440 if (mask & (1 << ireg))
441 {
442 get_frame_saved_regs (frame)[FP0_REGNUM + ireg] = reg_position;
443 reg_position += 8;
444 }
445
446 get_frame_saved_regs (frame)[PC_REGNUM] = get_frame_saved_regs (frame)[returnreg];
447 }
448
449 static void
450 alpha_frame_init_saved_regs (struct frame_info *fi)
451 {
452 if (get_frame_saved_regs (fi) == NULL)
453 alpha_find_saved_regs (fi);
454 get_frame_saved_regs (fi)[SP_REGNUM] = get_frame_base (fi);
455 }
456
457 static CORE_ADDR
458 alpha_init_frame_pc_first (int fromleaf, struct frame_info *prev)
459 {
460 return (fromleaf ? SAVED_PC_AFTER_CALL (get_next_frame (prev))
461 : get_next_frame (prev) ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
462 : read_pc ());
463 }
464
465 static CORE_ADDR
466 read_next_frame_reg (struct frame_info *fi, int regno)
467 {
468 for (; fi; fi = get_next_frame (fi))
469 {
470 /* We have to get the saved sp from the sigcontext
471 if it is a signal handler frame. */
472 if (regno == SP_REGNUM && !(get_frame_type (fi) == SIGTRAMP_FRAME))
473 return get_frame_base (fi);
474 else
475 {
476 if (get_frame_saved_regs (fi) == NULL)
477 alpha_find_saved_regs (fi);
478 if (get_frame_saved_regs (fi)[regno])
479 return read_memory_integer (get_frame_saved_regs (fi)[regno], 8);
480 }
481 }
482 return read_register (regno);
483 }
484
485 static CORE_ADDR
486 alpha_frame_saved_pc (struct frame_info *frame)
487 {
488 alpha_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
489 /* We have to get the saved pc from the sigcontext
490 if it is a signal handler frame. */
491 int pcreg = ((get_frame_type (frame) == SIGTRAMP_FRAME)
492 ? PC_REGNUM
493 : get_frame_extra_info (frame)->pc_reg);
494
495 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
496 return read_memory_integer (get_frame_base (frame) - 8, 8);
497
498 return read_next_frame_reg (frame, pcreg);
499 }
500
501 static CORE_ADDR
502 alpha_saved_pc_after_call (struct frame_info *frame)
503 {
504 CORE_ADDR pc = get_frame_pc (frame);
505 CORE_ADDR tmp;
506 alpha_extra_func_info_t proc_desc;
507 int pcreg;
508
509 /* Skip over shared library trampoline if necessary. */
510 tmp = SKIP_TRAMPOLINE_CODE (pc);
511 if (tmp != 0)
512 pc = tmp;
513
514 proc_desc = find_proc_desc (pc, get_next_frame (frame));
515 pcreg = proc_desc ? PROC_PC_REG (proc_desc) : ALPHA_RA_REGNUM;
516
517 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
518 return alpha_frame_saved_pc (frame);
519 else
520 return read_register (pcreg);
521 }
522
523
524 static struct alpha_extra_func_info temp_proc_desc;
525 static CORE_ADDR temp_saved_regs[ALPHA_NUM_REGS];
526
527 /* Nonzero if instruction at PC is a return instruction. "ret
528 $zero,($ra),1" on alpha. */
529
530 static int
531 alpha_about_to_return (CORE_ADDR pc)
532 {
533 return read_memory_integer (pc, 4) == 0x6bfa8001;
534 }
535
536
537
538 /* This fencepost looks highly suspicious to me. Removing it also
539 seems suspicious as it could affect remote debugging across serial
540 lines. */
541
542 static CORE_ADDR
543 heuristic_proc_start (CORE_ADDR pc)
544 {
545 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
546 CORE_ADDR start_pc = pc;
547 CORE_ADDR fence = start_pc - heuristic_fence_post;
548
549 if (start_pc == 0)
550 return 0;
551
552 if (heuristic_fence_post == UINT_MAX
553 || fence < tdep->vm_min_address)
554 fence = tdep->vm_min_address;
555
556 /* search back for previous return */
557 for (start_pc -= 4;; start_pc -= 4)
558 if (start_pc < fence)
559 {
560 /* It's not clear to me why we reach this point when
561 stop_soon_quietly, but with this test, at least we
562 don't print out warnings for every child forked (eg, on
563 decstation). 22apr93 rich@cygnus.com. */
564 if (!stop_soon_quietly)
565 {
566 static int blurb_printed = 0;
567
568 if (fence == tdep->vm_min_address)
569 warning ("Hit beginning of text section without finding");
570 else
571 warning ("Hit heuristic-fence-post without finding");
572
573 warning ("enclosing function for address 0x%s", paddr_nz (pc));
574 if (!blurb_printed)
575 {
576 printf_filtered ("\
577 This warning occurs if you are debugging a function without any symbols\n\
578 (for example, in a stripped executable). In that case, you may wish to\n\
579 increase the size of the search with the `set heuristic-fence-post' command.\n\
580 \n\
581 Otherwise, you told GDB there was a function where there isn't one, or\n\
582 (more likely) you have encountered a bug in GDB.\n");
583 blurb_printed = 1;
584 }
585 }
586
587 return 0;
588 }
589 else if (alpha_about_to_return (start_pc))
590 break;
591
592 start_pc += 4; /* skip return */
593 return start_pc;
594 }
595
596 static alpha_extra_func_info_t
597 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
598 struct frame_info *next_frame)
599 {
600 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
601 CORE_ADDR vfp = sp;
602 CORE_ADDR cur_pc;
603 int frame_size;
604 int has_frame_reg = 0;
605 unsigned long reg_mask = 0;
606 int pcreg = -1;
607 int regno;
608
609 if (start_pc == 0)
610 return NULL;
611 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
612 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
613 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
614
615 if (start_pc + 200 < limit_pc)
616 limit_pc = start_pc + 200;
617 frame_size = 0;
618 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
619 {
620 char buf[4];
621 unsigned long word;
622 int status;
623
624 status = read_memory_nobpt (cur_pc, buf, 4);
625 if (status)
626 memory_error (status, cur_pc);
627 word = extract_unsigned_integer (buf, 4);
628
629 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
630 {
631 if (word & 0x8000)
632 {
633 /* Consider only the first stack allocation instruction
634 to contain the static size of the frame. */
635 if (frame_size == 0)
636 frame_size += (-word) & 0xffff;
637 }
638 else
639 /* Exit loop if a positive stack adjustment is found, which
640 usually means that the stack cleanup code in the function
641 epilogue is reached. */
642 break;
643 }
644 else if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
645 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
646 {
647 int reg = (word & 0x03e00000) >> 21;
648 reg_mask |= 1 << reg;
649
650 /* Do not compute the address where the register was saved yet,
651 because we don't know yet if the offset will need to be
652 relative to $sp or $fp (we can not compute the address relative
653 to $sp if $sp is updated during the execution of the current
654 subroutine, for instance when doing some alloca). So just store
655 the offset for the moment, and compute the address later
656 when we know whether this frame has a frame pointer or not.
657 */
658 temp_saved_regs[reg] = (short) word;
659
660 /* Starting with OSF/1-3.2C, the system libraries are shipped
661 without local symbols, but they still contain procedure
662 descriptors without a symbol reference. GDB is currently
663 unable to find these procedure descriptors and uses
664 heuristic_proc_desc instead.
665 As some low level compiler support routines (__div*, __add*)
666 use a non-standard return address register, we have to
667 add some heuristics to determine the return address register,
668 or stepping over these routines will fail.
669 Usually the return address register is the first register
670 saved on the stack, but assembler optimization might
671 rearrange the register saves.
672 So we recognize only a few registers (t7, t9, ra) within
673 the procedure prologue as valid return address registers.
674 If we encounter a return instruction, we extract the
675 the return address register from it.
676
677 FIXME: Rewriting GDB to access the procedure descriptors,
678 e.g. via the minimal symbol table, might obviate this hack. */
679 if (pcreg == -1
680 && cur_pc < (start_pc + 80)
681 && (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
682 || reg == ALPHA_RA_REGNUM))
683 pcreg = reg;
684 }
685 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
686 pcreg = (word >> 16) & 0x1f;
687 else if (word == 0x47de040f || word == 0x47fe040f) /* bis sp,sp fp */
688 {
689 /* ??? I am not sure what instruction is 0x47fe040f, and I
690 am suspecting that there was a typo and should have been
691 0x47fe040f. I'm keeping it in the test above until further
692 investigation */
693 has_frame_reg = 1;
694 vfp = read_next_frame_reg (next_frame, ALPHA_GCC_FP_REGNUM);
695 }
696 }
697 if (pcreg == -1)
698 {
699 /* If we haven't found a valid return address register yet,
700 keep searching in the procedure prologue. */
701 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
702 {
703 char buf[4];
704 unsigned long word;
705
706 if (read_memory_nobpt (cur_pc, buf, 4))
707 break;
708 cur_pc += 4;
709 word = extract_unsigned_integer (buf, 4);
710
711 if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
712 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
713 {
714 int reg = (word & 0x03e00000) >> 21;
715 if (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
716 || reg == ALPHA_RA_REGNUM)
717 {
718 pcreg = reg;
719 break;
720 }
721 }
722 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
723 {
724 pcreg = (word >> 16) & 0x1f;
725 break;
726 }
727 }
728 }
729
730 if (has_frame_reg)
731 PROC_FRAME_REG (&temp_proc_desc) = ALPHA_GCC_FP_REGNUM;
732 else
733 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
734
735 /* At this point, we know which of the Stack Pointer or the Frame Pointer
736 to use as the reference address to compute the saved registers address.
737 But in both cases, the processing above has set vfp to this reference
738 address, so just need to increment the offset of each saved register
739 by this address. */
740 for (regno = 0; regno < NUM_REGS; regno++)
741 {
742 if (reg_mask & 1 << regno)
743 temp_saved_regs[regno] += vfp;
744 }
745
746 PROC_FRAME_OFFSET (&temp_proc_desc) = frame_size;
747 PROC_REG_MASK (&temp_proc_desc) = reg_mask;
748 PROC_PC_REG (&temp_proc_desc) = (pcreg == -1) ? ALPHA_RA_REGNUM : pcreg;
749 PROC_LOCALOFF (&temp_proc_desc) = 0; /* XXX - bogus */
750 return &temp_proc_desc;
751 }
752
753 /* This returns the PC of the first inst after the prologue. If we can't
754 find the prologue, then return 0. */
755
756 static CORE_ADDR
757 after_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
758 {
759 struct symtab_and_line sal;
760 CORE_ADDR func_addr, func_end;
761
762 if (!proc_desc)
763 proc_desc = find_proc_desc (pc, NULL);
764
765 if (proc_desc)
766 {
767 if (alpha_proc_desc_is_dyn_sigtramp (proc_desc))
768 return PROC_LOW_ADDR (proc_desc); /* "prologue" is in kernel */
769
770 /* If function is frameless, then we need to do it the hard way. I
771 strongly suspect that frameless always means prologueless... */
772 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
773 && PROC_FRAME_OFFSET (proc_desc) == 0)
774 return 0;
775 }
776
777 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
778 return 0; /* Unknown */
779
780 sal = find_pc_line (func_addr, 0);
781
782 if (sal.end < func_end)
783 return sal.end;
784
785 /* The line after the prologue is after the end of the function. In this
786 case, tell the caller to find the prologue the hard way. */
787
788 return 0;
789 }
790
791 /* Return non-zero if we *might* be in a function prologue. Return zero if we
792 are definitively *not* in a function prologue. */
793
794 static int
795 alpha_in_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
796 {
797 CORE_ADDR after_prologue_pc;
798
799 after_prologue_pc = after_prologue (pc, proc_desc);
800
801 if (after_prologue_pc == 0
802 || pc < after_prologue_pc)
803 return 1;
804 else
805 return 0;
806 }
807
808 static alpha_extra_func_info_t
809 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
810 {
811 alpha_extra_func_info_t proc_desc;
812 struct block *b;
813 struct symbol *sym;
814 CORE_ADDR startaddr;
815
816 /* Try to get the proc_desc from the linked call dummy proc_descs
817 if the pc is in the call dummy.
818 This is hairy. In the case of nested dummy calls we have to find the
819 right proc_desc, but we might not yet know the frame for the dummy
820 as it will be contained in the proc_desc we are searching for.
821 So we have to find the proc_desc whose frame is closest to the current
822 stack pointer. */
823
824 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
825 {
826 struct linked_proc_info *link;
827 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
828 alpha_extra_func_info_t found_proc_desc = NULL;
829 long min_distance = LONG_MAX;
830
831 for (link = linked_proc_desc_table; link; link = link->next)
832 {
833 long distance = (CORE_ADDR) PROC_DUMMY_FRAME (&link->info) - sp;
834 if (distance > 0 && distance < min_distance)
835 {
836 min_distance = distance;
837 found_proc_desc = &link->info;
838 }
839 }
840 if (found_proc_desc != NULL)
841 return found_proc_desc;
842 }
843
844 b = block_for_pc (pc);
845
846 find_pc_partial_function (pc, NULL, &startaddr, NULL);
847 if (b == NULL)
848 sym = NULL;
849 else
850 {
851 if (startaddr > BLOCK_START (b))
852 /* This is the "pathological" case referred to in a comment in
853 print_frame_info. It might be better to move this check into
854 symbol reading. */
855 sym = NULL;
856 else
857 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE,
858 0, NULL);
859 }
860
861 /* If we never found a PDR for this function in symbol reading, then
862 examine prologues to find the information. */
863 if (sym && ((mips_extra_func_info_t) SYMBOL_VALUE (sym))->pdr.framereg == -1)
864 sym = NULL;
865
866 if (sym)
867 {
868 /* IF this is the topmost frame AND
869 * (this proc does not have debugging information OR
870 * the PC is in the procedure prologue)
871 * THEN create a "heuristic" proc_desc (by analyzing
872 * the actual code) to replace the "official" proc_desc.
873 */
874 proc_desc = (alpha_extra_func_info_t) SYMBOL_VALUE (sym);
875 if (next_frame == NULL)
876 {
877 if (PROC_DESC_IS_DUMMY (proc_desc) || alpha_in_prologue (pc, proc_desc))
878 {
879 alpha_extra_func_info_t found_heuristic =
880 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
881 pc, next_frame);
882 if (found_heuristic)
883 {
884 PROC_LOCALOFF (found_heuristic) =
885 PROC_LOCALOFF (proc_desc);
886 PROC_PC_REG (found_heuristic) = PROC_PC_REG (proc_desc);
887 proc_desc = found_heuristic;
888 }
889 }
890 }
891 }
892 else
893 {
894 long offset;
895
896 /* Is linked_proc_desc_table really necessary? It only seems to be used
897 by procedure call dummys. However, the procedures being called ought
898 to have their own proc_descs, and even if they don't,
899 heuristic_proc_desc knows how to create them! */
900
901 register struct linked_proc_info *link;
902 for (link = linked_proc_desc_table; link; link = link->next)
903 if (PROC_LOW_ADDR (&link->info) <= pc
904 && PROC_HIGH_ADDR (&link->info) > pc)
905 return &link->info;
906
907 /* If PC is inside a dynamically generated sigtramp handler,
908 create and push a procedure descriptor for that code: */
909 offset = alpha_dynamic_sigtramp_offset (pc);
910 if (offset >= 0)
911 return push_sigtramp_desc (pc - offset);
912
913 /* If heuristic_fence_post is non-zero, determine the procedure
914 start address by examining the instructions.
915 This allows us to find the start address of static functions which
916 have no symbolic information, as startaddr would have been set to
917 the preceding global function start address by the
918 find_pc_partial_function call above. */
919 if (startaddr == 0 || heuristic_fence_post != 0)
920 startaddr = heuristic_proc_start (pc);
921
922 proc_desc =
923 heuristic_proc_desc (startaddr, pc, next_frame);
924 }
925 return proc_desc;
926 }
927
928 alpha_extra_func_info_t cached_proc_desc;
929
930 static CORE_ADDR
931 alpha_frame_chain (struct frame_info *frame)
932 {
933 alpha_extra_func_info_t proc_desc;
934 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
935
936 if (saved_pc == 0 || inside_entry_file (saved_pc))
937 return 0;
938
939 proc_desc = find_proc_desc (saved_pc, frame);
940 if (!proc_desc)
941 return 0;
942
943 cached_proc_desc = proc_desc;
944
945 /* Fetch the frame pointer for a dummy frame from the procedure
946 descriptor. */
947 if (PROC_DESC_IS_DUMMY (proc_desc))
948 return (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
949
950 /* If no frame pointer and frame size is zero, we must be at end
951 of stack (or otherwise hosed). If we don't check frame size,
952 we loop forever if we see a zero size frame. */
953 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
954 && PROC_FRAME_OFFSET (proc_desc) == 0
955 /* The previous frame from a sigtramp frame might be frameless
956 and have frame size zero. */
957 && !(get_frame_type (frame) == SIGTRAMP_FRAME))
958 return alpha_frame_past_sigtramp_frame (frame, saved_pc);
959 else
960 return read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
961 + PROC_FRAME_OFFSET (proc_desc);
962 }
963
964 void
965 alpha_print_extra_frame_info (struct frame_info *fi)
966 {
967 if (fi
968 && get_frame_extra_info (fi)
969 && get_frame_extra_info (fi)->proc_desc
970 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
971 printf_filtered (" frame pointer is at %s+%s\n",
972 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
973 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
974 }
975
976 static void
977 alpha_init_extra_frame_info (int fromleaf, struct frame_info *frame)
978 {
979 /* Use proc_desc calculated in frame_chain */
980 alpha_extra_func_info_t proc_desc =
981 get_next_frame (frame)
982 ? cached_proc_desc
983 : find_proc_desc (get_frame_pc (frame), get_next_frame (frame));
984
985 frame_extra_info_zalloc (frame, sizeof (struct frame_extra_info));
986
987 /* NOTE: cagney/2003-01-03: No need to set saved_regs to NULL,
988 always NULL by default. */
989 /* frame->saved_regs = NULL; */
990 get_frame_extra_info (frame)->localoff = 0;
991 get_frame_extra_info (frame)->pc_reg = ALPHA_RA_REGNUM;
992 get_frame_extra_info (frame)->proc_desc = proc_desc == &temp_proc_desc ? 0 : proc_desc;
993 if (proc_desc)
994 {
995 /* Get the locals offset and the saved pc register from the
996 procedure descriptor, they are valid even if we are in the
997 middle of the prologue. */
998 get_frame_extra_info (frame)->localoff = PROC_LOCALOFF (proc_desc);
999 get_frame_extra_info (frame)->pc_reg = PROC_PC_REG (proc_desc);
1000
1001 /* Fixup frame-pointer - only needed for top frame */
1002
1003 /* Fetch the frame pointer for a dummy frame from the procedure
1004 descriptor. */
1005 if (PROC_DESC_IS_DUMMY (proc_desc))
1006 deprecated_update_frame_base_hack (frame, (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc));
1007
1008 /* This may not be quite right, if proc has a real frame register.
1009 Get the value of the frame relative sp, procedure might have been
1010 interrupted by a signal at it's very start. */
1011 else if (get_frame_pc (frame) == PROC_LOW_ADDR (proc_desc)
1012 && !alpha_proc_desc_is_dyn_sigtramp (proc_desc))
1013 deprecated_update_frame_base_hack (frame, read_next_frame_reg (get_next_frame (frame), SP_REGNUM));
1014 else
1015 deprecated_update_frame_base_hack (frame, read_next_frame_reg (get_next_frame (frame), PROC_FRAME_REG (proc_desc))
1016 + PROC_FRAME_OFFSET (proc_desc));
1017
1018 if (proc_desc == &temp_proc_desc)
1019 {
1020 char *name;
1021
1022 /* Do not set the saved registers for a sigtramp frame,
1023 alpha_find_saved_registers will do that for us. We can't
1024 use (get_frame_type (frame) == SIGTRAMP_FRAME), it is not
1025 yet set. */
1026 /* FIXME: cagney/2002-11-18: This problem will go away once
1027 frame.c:get_prev_frame() is modified to set the frame's
1028 type before calling functions like this. */
1029 find_pc_partial_function (get_frame_pc (frame), &name,
1030 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
1031 if (!PC_IN_SIGTRAMP (get_frame_pc (frame), name))
1032 {
1033 frame_saved_regs_zalloc (frame);
1034 memcpy (get_frame_saved_regs (frame), temp_saved_regs,
1035 SIZEOF_FRAME_SAVED_REGS);
1036 get_frame_saved_regs (frame)[PC_REGNUM]
1037 = get_frame_saved_regs (frame)[ALPHA_RA_REGNUM];
1038 }
1039 }
1040 }
1041 }
1042
1043 static CORE_ADDR
1044 alpha_frame_locals_address (struct frame_info *fi)
1045 {
1046 return (get_frame_base (fi) - get_frame_extra_info (fi)->localoff);
1047 }
1048
1049 static CORE_ADDR
1050 alpha_frame_args_address (struct frame_info *fi)
1051 {
1052 return (get_frame_base (fi) - (ALPHA_NUM_ARG_REGS * 8));
1053 }
1054
1055 /* ALPHA stack frames are almost impenetrable. When execution stops,
1056 we basically have to look at symbol information for the function
1057 that we stopped in, which tells us *which* register (if any) is
1058 the base of the frame pointer, and what offset from that register
1059 the frame itself is at.
1060
1061 This presents a problem when trying to examine a stack in memory
1062 (that isn't executing at the moment), using the "frame" command. We
1063 don't have a PC, nor do we have any registers except SP.
1064
1065 This routine takes two arguments, SP and PC, and tries to make the
1066 cached frames look as if these two arguments defined a frame on the
1067 cache. This allows the rest of info frame to extract the important
1068 arguments without difficulty. */
1069
1070 struct frame_info *
1071 alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
1072 {
1073 if (argc != 2)
1074 error ("ALPHA frame specifications require two arguments: sp and pc");
1075
1076 return create_new_frame (argv[0], argv[1]);
1077 }
1078
1079 /* The alpha passes the first six arguments in the registers, the rest on
1080 the stack. The register arguments are eventually transferred to the
1081 argument transfer area immediately below the stack by the called function
1082 anyway. So we `push' at least six arguments on the stack, `reload' the
1083 argument registers and then adjust the stack pointer to point past the
1084 sixth argument. This algorithm simplifies the passing of a large struct
1085 which extends from the registers to the stack.
1086 If the called function is returning a structure, the address of the
1087 structure to be returned is passed as a hidden first argument. */
1088
1089 static CORE_ADDR
1090 alpha_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1091 int struct_return, CORE_ADDR struct_addr)
1092 {
1093 int i;
1094 int accumulate_size = struct_return ? 8 : 0;
1095 int arg_regs_size = ALPHA_NUM_ARG_REGS * 8;
1096 struct alpha_arg
1097 {
1098 char *contents;
1099 int len;
1100 int offset;
1101 };
1102 struct alpha_arg *alpha_args =
1103 (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
1104 register struct alpha_arg *m_arg;
1105 char raw_buffer[sizeof (CORE_ADDR)];
1106 int required_arg_regs;
1107
1108 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
1109 {
1110 struct value *arg = args[i];
1111 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1112 /* Cast argument to long if necessary as the compiler does it too. */
1113 switch (TYPE_CODE (arg_type))
1114 {
1115 case TYPE_CODE_INT:
1116 case TYPE_CODE_BOOL:
1117 case TYPE_CODE_CHAR:
1118 case TYPE_CODE_RANGE:
1119 case TYPE_CODE_ENUM:
1120 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
1121 {
1122 arg_type = builtin_type_long;
1123 arg = value_cast (arg_type, arg);
1124 }
1125 break;
1126 default:
1127 break;
1128 }
1129 m_arg->len = TYPE_LENGTH (arg_type);
1130 m_arg->offset = accumulate_size;
1131 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
1132 m_arg->contents = VALUE_CONTENTS (arg);
1133 }
1134
1135 /* Determine required argument register loads, loading an argument register
1136 is expensive as it uses three ptrace calls. */
1137 required_arg_regs = accumulate_size / 8;
1138 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
1139 required_arg_regs = ALPHA_NUM_ARG_REGS;
1140
1141 /* Make room for the arguments on the stack. */
1142 if (accumulate_size < arg_regs_size)
1143 accumulate_size = arg_regs_size;
1144 sp -= accumulate_size;
1145
1146 /* Keep sp aligned to a multiple of 16 as the compiler does it too. */
1147 sp &= ~15;
1148
1149 /* `Push' arguments on the stack. */
1150 for (i = nargs; m_arg--, --i >= 0;)
1151 write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
1152 if (struct_return)
1153 {
1154 store_address (raw_buffer, sizeof (CORE_ADDR), struct_addr);
1155 write_memory (sp, raw_buffer, sizeof (CORE_ADDR));
1156 }
1157
1158 /* Load the argument registers. */
1159 for (i = 0; i < required_arg_regs; i++)
1160 {
1161 LONGEST val;
1162
1163 val = read_memory_integer (sp + i * 8, 8);
1164 write_register (ALPHA_A0_REGNUM + i, val);
1165 write_register (ALPHA_FPA0_REGNUM + i, val);
1166 }
1167
1168 return sp + arg_regs_size;
1169 }
1170
1171 static void
1172 alpha_push_dummy_frame (void)
1173 {
1174 int ireg;
1175 struct linked_proc_info *link;
1176 alpha_extra_func_info_t proc_desc;
1177 CORE_ADDR sp = read_register (SP_REGNUM);
1178 CORE_ADDR save_address;
1179 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1180 unsigned long mask;
1181
1182 link = (struct linked_proc_info *) xmalloc (sizeof (struct linked_proc_info));
1183 link->next = linked_proc_desc_table;
1184 linked_proc_desc_table = link;
1185
1186 proc_desc = &link->info;
1187
1188 /*
1189 * The registers we must save are all those not preserved across
1190 * procedure calls.
1191 * In addition, we must save the PC and RA.
1192 *
1193 * Dummy frame layout:
1194 * (high memory)
1195 * Saved PC
1196 * Saved F30
1197 * ...
1198 * Saved F0
1199 * Saved R29
1200 * ...
1201 * Saved R0
1202 * Saved R26 (RA)
1203 * Parameter build area
1204 * (low memory)
1205 */
1206
1207 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<31. */
1208 #define MASK(i,j) ((((LONGEST)1 << ((j)+1)) - 1) ^ (((LONGEST)1 << (i)) - 1))
1209 #define GEN_REG_SAVE_MASK (MASK(0,8) | MASK(16,29))
1210 #define GEN_REG_SAVE_COUNT 24
1211 #define FLOAT_REG_SAVE_MASK (MASK(0,1) | MASK(10,30))
1212 #define FLOAT_REG_SAVE_COUNT 23
1213 /* The special register is the PC as we have no bit for it in the save masks.
1214 alpha_frame_saved_pc knows where the pc is saved in a dummy frame. */
1215 #define SPECIAL_REG_SAVE_COUNT 1
1216
1217 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
1218 PROC_FREG_MASK (proc_desc) = FLOAT_REG_SAVE_MASK;
1219 /* PROC_REG_OFFSET is the offset from the dummy frame to the saved RA,
1220 but keep SP aligned to a multiple of 16. */
1221 PROC_REG_OFFSET (proc_desc) =
1222 -((8 * (SPECIAL_REG_SAVE_COUNT
1223 + GEN_REG_SAVE_COUNT
1224 + FLOAT_REG_SAVE_COUNT)
1225 + 15) & ~15);
1226 PROC_FREG_OFFSET (proc_desc) =
1227 PROC_REG_OFFSET (proc_desc) + 8 * GEN_REG_SAVE_COUNT;
1228
1229 /* Save general registers.
1230 The return address register is the first saved register, all other
1231 registers follow in ascending order.
1232 The PC is saved immediately below the SP. */
1233 save_address = sp + PROC_REG_OFFSET (proc_desc);
1234 store_address (raw_buffer, 8, read_register (ALPHA_RA_REGNUM));
1235 write_memory (save_address, raw_buffer, 8);
1236 save_address += 8;
1237 mask = PROC_REG_MASK (proc_desc) & 0xffffffffL;
1238 for (ireg = 0; mask; ireg++, mask >>= 1)
1239 if (mask & 1)
1240 {
1241 if (ireg == ALPHA_RA_REGNUM)
1242 continue;
1243 store_address (raw_buffer, 8, read_register (ireg));
1244 write_memory (save_address, raw_buffer, 8);
1245 save_address += 8;
1246 }
1247
1248 store_address (raw_buffer, 8, read_register (PC_REGNUM));
1249 write_memory (sp - 8, raw_buffer, 8);
1250
1251 /* Save floating point registers. */
1252 save_address = sp + PROC_FREG_OFFSET (proc_desc);
1253 mask = PROC_FREG_MASK (proc_desc) & 0xffffffffL;
1254 for (ireg = 0; mask; ireg++, mask >>= 1)
1255 if (mask & 1)
1256 {
1257 store_address (raw_buffer, 8, read_register (ireg + FP0_REGNUM));
1258 write_memory (save_address, raw_buffer, 8);
1259 save_address += 8;
1260 }
1261
1262 /* Set and save the frame address for the dummy.
1263 This is tricky. The only registers that are suitable for a frame save
1264 are those that are preserved across procedure calls (s0-s6). But if
1265 a read system call is interrupted and then a dummy call is made
1266 (see testsuite/gdb.t17/interrupt.exp) the dummy call hangs till the read
1267 is satisfied. Then it returns with the s0-s6 registers set to the values
1268 on entry to the read system call and our dummy frame pointer would be
1269 destroyed. So we save the dummy frame in the proc_desc and handle the
1270 retrieval of the frame pointer of a dummy specifically. The frame register
1271 is set to the virtual frame (pseudo) register, it's value will always
1272 be read as zero and will help us to catch any errors in the dummy frame
1273 retrieval code. */
1274 PROC_DUMMY_FRAME (proc_desc) = sp;
1275 PROC_FRAME_REG (proc_desc) = FP_REGNUM;
1276 PROC_FRAME_OFFSET (proc_desc) = 0;
1277 sp += PROC_REG_OFFSET (proc_desc);
1278 write_register (SP_REGNUM, sp);
1279
1280 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
1281 PROC_HIGH_ADDR (proc_desc) = PROC_LOW_ADDR (proc_desc) + 4;
1282
1283 SET_PROC_DESC_IS_DUMMY (proc_desc);
1284 PROC_PC_REG (proc_desc) = ALPHA_RA_REGNUM;
1285 }
1286
1287 static void
1288 alpha_pop_frame (void)
1289 {
1290 register int regnum;
1291 struct frame_info *frame = get_current_frame ();
1292 CORE_ADDR new_sp = get_frame_base (frame);
1293
1294 alpha_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
1295
1296 /* we need proc_desc to know how to restore the registers;
1297 if it is NULL, construct (a temporary) one */
1298 if (proc_desc == NULL)
1299 proc_desc = find_proc_desc (get_frame_pc (frame), get_next_frame (frame));
1300
1301 /* Question: should we copy this proc_desc and save it in
1302 frame->proc_desc? If we do, who will free it?
1303 For now, we don't save a copy... */
1304
1305 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
1306 if (get_frame_saved_regs (frame) == NULL)
1307 alpha_find_saved_regs (frame);
1308 if (proc_desc)
1309 {
1310 for (regnum = 32; --regnum >= 0;)
1311 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
1312 write_register (regnum,
1313 read_memory_integer (get_frame_saved_regs (frame)[regnum],
1314 8));
1315 for (regnum = 32; --regnum >= 0;)
1316 if (PROC_FREG_MASK (proc_desc) & (1 << regnum))
1317 write_register (regnum + FP0_REGNUM,
1318 read_memory_integer (get_frame_saved_regs (frame)[regnum + FP0_REGNUM], 8));
1319 }
1320 write_register (SP_REGNUM, new_sp);
1321 flush_cached_frames ();
1322
1323 if (proc_desc && (PROC_DESC_IS_DUMMY (proc_desc)
1324 || alpha_proc_desc_is_dyn_sigtramp (proc_desc)))
1325 {
1326 struct linked_proc_info *pi_ptr, *prev_ptr;
1327
1328 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
1329 pi_ptr != NULL;
1330 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
1331 {
1332 if (&pi_ptr->info == proc_desc)
1333 break;
1334 }
1335
1336 if (pi_ptr == NULL)
1337 error ("Can't locate dummy extra frame info\n");
1338
1339 if (prev_ptr != NULL)
1340 prev_ptr->next = pi_ptr->next;
1341 else
1342 linked_proc_desc_table = pi_ptr->next;
1343
1344 xfree (pi_ptr);
1345 }
1346 }
1347 \f
1348 /* To skip prologues, I use this predicate. Returns either PC itself
1349 if the code at PC does not look like a function prologue; otherwise
1350 returns an address that (if we're lucky) follows the prologue. If
1351 LENIENT, then we must skip everything which is involved in setting
1352 up the frame (it's OK to skip more, just so long as we don't skip
1353 anything which might clobber the registers which are being saved.
1354 Currently we must not skip more on the alpha, but we might need the
1355 lenient stuff some day. */
1356
1357 static CORE_ADDR
1358 alpha_skip_prologue_internal (CORE_ADDR pc, int lenient)
1359 {
1360 unsigned long inst;
1361 int offset;
1362 CORE_ADDR post_prologue_pc;
1363 char buf[4];
1364
1365 /* Silently return the unaltered pc upon memory errors.
1366 This could happen on OSF/1 if decode_line_1 tries to skip the
1367 prologue for quickstarted shared library functions when the
1368 shared library is not yet mapped in.
1369 Reading target memory is slow over serial lines, so we perform
1370 this check only if the target has shared libraries (which all
1371 Alpha targets do). */
1372 if (target_read_memory (pc, buf, 4))
1373 return pc;
1374
1375 /* See if we can determine the end of the prologue via the symbol table.
1376 If so, then return either PC, or the PC after the prologue, whichever
1377 is greater. */
1378
1379 post_prologue_pc = after_prologue (pc, NULL);
1380
1381 if (post_prologue_pc != 0)
1382 return max (pc, post_prologue_pc);
1383
1384 /* Can't determine prologue from the symbol table, need to examine
1385 instructions. */
1386
1387 /* Skip the typical prologue instructions. These are the stack adjustment
1388 instruction and the instructions that save registers on the stack
1389 or in the gcc frame. */
1390 for (offset = 0; offset < 100; offset += 4)
1391 {
1392 int status;
1393
1394 status = read_memory_nobpt (pc + offset, buf, 4);
1395 if (status)
1396 memory_error (status, pc + offset);
1397 inst = extract_unsigned_integer (buf, 4);
1398
1399 /* The alpha has no delay slots. But let's keep the lenient stuff,
1400 we might need it for something else in the future. */
1401 if (lenient && 0)
1402 continue;
1403
1404 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
1405 continue;
1406 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
1407 continue;
1408 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1409 continue;
1410 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
1411 continue;
1412
1413 if ((inst & 0xfc1f0000) == 0xb41e0000
1414 && (inst & 0xffff0000) != 0xb7fe0000)
1415 continue; /* stq reg,n($sp) */
1416 /* reg != $zero */
1417 if ((inst & 0xfc1f0000) == 0x9c1e0000
1418 && (inst & 0xffff0000) != 0x9ffe0000)
1419 continue; /* stt reg,n($sp) */
1420 /* reg != $zero */
1421 if (inst == 0x47de040f) /* bis sp,sp,fp */
1422 continue;
1423
1424 break;
1425 }
1426 return pc + offset;
1427 }
1428
1429 static CORE_ADDR
1430 alpha_skip_prologue (CORE_ADDR addr)
1431 {
1432 return (alpha_skip_prologue_internal (addr, 0));
1433 }
1434
1435 #if 0
1436 /* Is address PC in the prologue (loosely defined) for function at
1437 STARTADDR? */
1438
1439 static int
1440 alpha_in_lenient_prologue (CORE_ADDR startaddr, CORE_ADDR pc)
1441 {
1442 CORE_ADDR end_prologue = alpha_skip_prologue_internal (startaddr, 1);
1443 return pc >= startaddr && pc < end_prologue;
1444 }
1445 #endif
1446
1447 /* The alpha needs a conversion between register and memory format if
1448 the register is a floating point register and
1449 memory format is float, as the register format must be double
1450 or
1451 memory format is an integer with 4 bytes or less, as the representation
1452 of integers in floating point registers is different. */
1453 static void
1454 alpha_register_convert_to_virtual (int regnum, struct type *valtype,
1455 char *raw_buffer, char *virtual_buffer)
1456 {
1457 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1458 {
1459 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (regnum));
1460 return;
1461 }
1462
1463 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1464 {
1465 double d = extract_floating (raw_buffer, REGISTER_RAW_SIZE (regnum));
1466 store_floating (virtual_buffer, TYPE_LENGTH (valtype), d);
1467 }
1468 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1469 {
1470 ULONGEST l;
1471 l = extract_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum));
1472 l = ((l >> 32) & 0xc0000000) | ((l >> 29) & 0x3fffffff);
1473 store_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype), l);
1474 }
1475 else
1476 error ("Cannot retrieve value from floating point register");
1477 }
1478
1479 static void
1480 alpha_register_convert_to_raw (struct type *valtype, int regnum,
1481 char *virtual_buffer, char *raw_buffer)
1482 {
1483 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1484 {
1485 memcpy (raw_buffer, virtual_buffer, REGISTER_RAW_SIZE (regnum));
1486 return;
1487 }
1488
1489 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1490 {
1491 double d = extract_floating (virtual_buffer, TYPE_LENGTH (valtype));
1492 store_floating (raw_buffer, REGISTER_RAW_SIZE (regnum), d);
1493 }
1494 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1495 {
1496 ULONGEST l;
1497 if (TYPE_UNSIGNED (valtype))
1498 l = extract_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype));
1499 else
1500 l = extract_signed_integer (virtual_buffer, TYPE_LENGTH (valtype));
1501 l = ((l & 0xc0000000) << 32) | ((l & 0x3fffffff) << 29);
1502 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), l);
1503 }
1504 else
1505 error ("Cannot store value in floating point register");
1506 }
1507
1508 static const unsigned char *
1509 alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1510 {
1511 static const unsigned char alpha_breakpoint[] =
1512 { 0x80, 0, 0, 0 }; /* call_pal bpt */
1513
1514 *lenptr = sizeof(alpha_breakpoint);
1515 return (alpha_breakpoint);
1516 }
1517
1518 /* Given a return value in `regbuf' with a type `valtype',
1519 extract and copy its value into `valbuf'. */
1520
1521 static void
1522 alpha_extract_return_value (struct type *valtype,
1523 char regbuf[ALPHA_REGISTER_BYTES], char *valbuf)
1524 {
1525 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1526 alpha_register_convert_to_virtual (FP0_REGNUM, valtype,
1527 regbuf + REGISTER_BYTE (FP0_REGNUM),
1528 valbuf);
1529 else
1530 memcpy (valbuf, regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1531 TYPE_LENGTH (valtype));
1532 }
1533
1534 /* Given a return value in `regbuf' with a type `valtype',
1535 write its value into the appropriate register. */
1536
1537 static void
1538 alpha_store_return_value (struct type *valtype, char *valbuf)
1539 {
1540 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1541 int regnum = ALPHA_V0_REGNUM;
1542 int length = TYPE_LENGTH (valtype);
1543
1544 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1545 {
1546 regnum = FP0_REGNUM;
1547 length = REGISTER_RAW_SIZE (regnum);
1548 alpha_register_convert_to_raw (valtype, regnum, valbuf, raw_buffer);
1549 }
1550 else
1551 memcpy (raw_buffer, valbuf, length);
1552
1553 deprecated_write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, length);
1554 }
1555
1556 /* Just like reinit_frame_cache, but with the right arguments to be
1557 callable as an sfunc. */
1558
1559 static void
1560 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1561 {
1562 reinit_frame_cache ();
1563 }
1564
1565 /* This is the definition of CALL_DUMMY_ADDRESS. It's a heuristic that is used
1566 to find a convenient place in the text segment to stick a breakpoint to
1567 detect the completion of a target function call (ala call_function_by_hand).
1568 */
1569
1570 CORE_ADDR
1571 alpha_call_dummy_address (void)
1572 {
1573 CORE_ADDR entry;
1574 struct minimal_symbol *sym;
1575
1576 entry = entry_point_address ();
1577
1578 if (entry != 0)
1579 return entry;
1580
1581 sym = lookup_minimal_symbol ("_Prelude", NULL, symfile_objfile);
1582
1583 if (!sym || MSYMBOL_TYPE (sym) != mst_text)
1584 return 0;
1585 else
1586 return SYMBOL_VALUE_ADDRESS (sym) + 4;
1587 }
1588
1589 static void
1590 alpha_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1591 struct value **args, struct type *type, int gcc_p)
1592 {
1593 CORE_ADDR bp_address = CALL_DUMMY_ADDRESS ();
1594
1595 if (bp_address == 0)
1596 error ("no place to put call");
1597 write_register (ALPHA_RA_REGNUM, bp_address);
1598 write_register (ALPHA_T12_REGNUM, fun);
1599 }
1600
1601 /* On the Alpha, the call dummy code is nevery copied to user space
1602 (see alpha_fix_call_dummy() above). The contents of this do not
1603 matter. */
1604 LONGEST alpha_call_dummy_words[] = { 0 };
1605
1606 static int
1607 alpha_use_struct_convention (int gcc_p, struct type *type)
1608 {
1609 /* Structures are returned by ref in extra arg0. */
1610 return 1;
1611 }
1612
1613 static void
1614 alpha_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1615 {
1616 /* Store the address of the place in which to copy the structure the
1617 subroutine will return. Handled by alpha_push_arguments. */
1618 }
1619
1620 static CORE_ADDR
1621 alpha_extract_struct_value_address (char *regbuf)
1622 {
1623 return (extract_address (regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1624 REGISTER_RAW_SIZE (ALPHA_V0_REGNUM)));
1625 }
1626
1627 /* Figure out where the longjmp will land.
1628 We expect the first arg to be a pointer to the jmp_buf structure from
1629 which we extract the PC (JB_PC) that we will land at. The PC is copied
1630 into the "pc". This routine returns true on success. */
1631
1632 static int
1633 alpha_get_longjmp_target (CORE_ADDR *pc)
1634 {
1635 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1636 CORE_ADDR jb_addr;
1637 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1638
1639 jb_addr = read_register (ALPHA_A0_REGNUM);
1640
1641 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
1642 raw_buffer, tdep->jb_elt_size))
1643 return 0;
1644
1645 *pc = extract_address (raw_buffer, tdep->jb_elt_size);
1646 return 1;
1647 }
1648
1649 /* alpha_software_single_step() is called just before we want to resume
1650 the inferior, if we want to single-step it but there is no hardware
1651 or kernel single-step support (NetBSD on Alpha, for example). We find
1652 the target of the coming instruction and breakpoint it.
1653
1654 single_step is also called just after the inferior stops. If we had
1655 set up a simulated single-step, we undo our damage. */
1656
1657 static CORE_ADDR
1658 alpha_next_pc (CORE_ADDR pc)
1659 {
1660 unsigned int insn;
1661 unsigned int op;
1662 int offset;
1663 LONGEST rav;
1664
1665 insn = read_memory_unsigned_integer (pc, sizeof (insn));
1666
1667 /* Opcode is top 6 bits. */
1668 op = (insn >> 26) & 0x3f;
1669
1670 if (op == 0x1a)
1671 {
1672 /* Jump format: target PC is:
1673 RB & ~3 */
1674 return (read_register ((insn >> 16) & 0x1f) & ~3);
1675 }
1676
1677 if ((op & 0x30) == 0x30)
1678 {
1679 /* Branch format: target PC is:
1680 (new PC) + (4 * sext(displacement)) */
1681 if (op == 0x30 || /* BR */
1682 op == 0x34) /* BSR */
1683 {
1684 branch_taken:
1685 offset = (insn & 0x001fffff);
1686 if (offset & 0x00100000)
1687 offset |= 0xffe00000;
1688 offset *= 4;
1689 return (pc + 4 + offset);
1690 }
1691
1692 /* Need to determine if branch is taken; read RA. */
1693 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1694 switch (op)
1695 {
1696 case 0x38: /* BLBC */
1697 if ((rav & 1) == 0)
1698 goto branch_taken;
1699 break;
1700 case 0x3c: /* BLBS */
1701 if (rav & 1)
1702 goto branch_taken;
1703 break;
1704 case 0x39: /* BEQ */
1705 if (rav == 0)
1706 goto branch_taken;
1707 break;
1708 case 0x3d: /* BNE */
1709 if (rav != 0)
1710 goto branch_taken;
1711 break;
1712 case 0x3a: /* BLT */
1713 if (rav < 0)
1714 goto branch_taken;
1715 break;
1716 case 0x3b: /* BLE */
1717 if (rav <= 0)
1718 goto branch_taken;
1719 break;
1720 case 0x3f: /* BGT */
1721 if (rav > 0)
1722 goto branch_taken;
1723 break;
1724 case 0x3e: /* BGE */
1725 if (rav >= 0)
1726 goto branch_taken;
1727 break;
1728 }
1729 }
1730
1731 /* Not a branch or branch not taken; target PC is:
1732 pc + 4 */
1733 return (pc + 4);
1734 }
1735
1736 void
1737 alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1738 {
1739 static CORE_ADDR next_pc;
1740 typedef char binsn_quantum[BREAKPOINT_MAX];
1741 static binsn_quantum break_mem;
1742 CORE_ADDR pc;
1743
1744 if (insert_breakpoints_p)
1745 {
1746 pc = read_pc ();
1747 next_pc = alpha_next_pc (pc);
1748
1749 target_insert_breakpoint (next_pc, break_mem);
1750 }
1751 else
1752 {
1753 target_remove_breakpoint (next_pc, break_mem);
1754 write_pc (next_pc);
1755 }
1756 }
1757
1758 \f
1759
1760 /* Initialize the current architecture based on INFO. If possible, re-use an
1761 architecture from ARCHES, which is a list of architectures already created
1762 during this debugging session.
1763
1764 Called e.g. at program startup, when reading a core file, and when reading
1765 a binary file. */
1766
1767 static struct gdbarch *
1768 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1769 {
1770 struct gdbarch_tdep *tdep;
1771 struct gdbarch *gdbarch;
1772
1773 /* Try to determine the ABI of the object we are loading. */
1774 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1775 {
1776 /* If it's an ECOFF file, assume it's OSF/1. */
1777 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1778 info.osabi = GDB_OSABI_OSF1;
1779 }
1780
1781 /* Find a candidate among extant architectures. */
1782 arches = gdbarch_list_lookup_by_info (arches, &info);
1783 if (arches != NULL)
1784 return arches->gdbarch;
1785
1786 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1787 gdbarch = gdbarch_alloc (&info, tdep);
1788
1789 /* Lowest text address. This is used by heuristic_proc_start() to
1790 decide when to stop looking. */
1791 tdep->vm_min_address = (CORE_ADDR) 0x120000000;
1792
1793 tdep->dynamic_sigtramp_offset = NULL;
1794 tdep->skip_sigtramp_frame = NULL;
1795 tdep->sigcontext_addr = NULL;
1796
1797 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1798
1799 /* Type sizes */
1800 set_gdbarch_short_bit (gdbarch, 16);
1801 set_gdbarch_int_bit (gdbarch, 32);
1802 set_gdbarch_long_bit (gdbarch, 64);
1803 set_gdbarch_long_long_bit (gdbarch, 64);
1804 set_gdbarch_float_bit (gdbarch, 32);
1805 set_gdbarch_double_bit (gdbarch, 64);
1806 set_gdbarch_long_double_bit (gdbarch, 64);
1807 set_gdbarch_ptr_bit (gdbarch, 64);
1808
1809 /* Register info */
1810 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1811 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1812 set_gdbarch_fp_regnum (gdbarch, ALPHA_FP_REGNUM);
1813 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1814 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1815
1816 set_gdbarch_register_name (gdbarch, alpha_register_name);
1817 set_gdbarch_register_size (gdbarch, ALPHA_REGISTER_SIZE);
1818 set_gdbarch_register_bytes (gdbarch, ALPHA_REGISTER_BYTES);
1819 set_gdbarch_register_byte (gdbarch, alpha_register_byte);
1820 set_gdbarch_register_raw_size (gdbarch, alpha_register_raw_size);
1821 set_gdbarch_deprecated_max_register_raw_size (gdbarch, ALPHA_MAX_REGISTER_RAW_SIZE);
1822 set_gdbarch_register_virtual_size (gdbarch, alpha_register_virtual_size);
1823 set_gdbarch_deprecated_max_register_virtual_size (gdbarch,
1824 ALPHA_MAX_REGISTER_VIRTUAL_SIZE);
1825 set_gdbarch_register_virtual_type (gdbarch, alpha_register_virtual_type);
1826
1827 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1828 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1829
1830 set_gdbarch_register_convertible (gdbarch, alpha_register_convertible);
1831 set_gdbarch_register_convert_to_virtual (gdbarch,
1832 alpha_register_convert_to_virtual);
1833 set_gdbarch_register_convert_to_raw (gdbarch, alpha_register_convert_to_raw);
1834
1835 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1836
1837 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1838 set_gdbarch_frameless_function_invocation (gdbarch,
1839 generic_frameless_function_invocation_not);
1840
1841 set_gdbarch_saved_pc_after_call (gdbarch, alpha_saved_pc_after_call);
1842
1843 set_gdbarch_frame_chain (gdbarch, alpha_frame_chain);
1844 set_gdbarch_deprecated_frame_saved_pc (gdbarch, alpha_frame_saved_pc);
1845
1846 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, alpha_frame_init_saved_regs);
1847
1848 set_gdbarch_use_struct_convention (gdbarch, alpha_use_struct_convention);
1849 set_gdbarch_deprecated_extract_return_value (gdbarch, alpha_extract_return_value);
1850
1851 set_gdbarch_store_struct_return (gdbarch, alpha_store_struct_return);
1852 set_gdbarch_deprecated_store_return_value (gdbarch, alpha_store_return_value);
1853 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
1854 alpha_extract_struct_value_address);
1855
1856 /* Settings for calling functions in the inferior. */
1857 set_gdbarch_deprecated_use_generic_dummy_frames (gdbarch, 0);
1858 set_gdbarch_call_dummy_length (gdbarch, 0);
1859 set_gdbarch_push_arguments (gdbarch, alpha_push_arguments);
1860 set_gdbarch_pop_frame (gdbarch, alpha_pop_frame);
1861
1862 /* On the Alpha, the call dummy code is never copied to user space,
1863 stopping the user call is achieved via a bp_call_dummy breakpoint.
1864 But we need a fake CALL_DUMMY definition to enable the proper
1865 call_function_by_hand and to avoid zero length array warnings. */
1866 set_gdbarch_call_dummy_p (gdbarch, 1);
1867 set_gdbarch_call_dummy_words (gdbarch, alpha_call_dummy_words);
1868 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1869 set_gdbarch_frame_args_address (gdbarch, alpha_frame_args_address);
1870 set_gdbarch_frame_locals_address (gdbarch, alpha_frame_locals_address);
1871 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, alpha_init_extra_frame_info);
1872
1873 /* Alpha OSF/1 inhibits execution of code on the stack. But there is
1874 no need for a dummy on the Alpha. PUSH_ARGUMENTS takes care of all
1875 argument handling and bp_call_dummy takes care of stopping the dummy. */
1876 set_gdbarch_call_dummy_address (gdbarch, alpha_call_dummy_address);
1877 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1878 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1879 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1880 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
1881 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1882 set_gdbarch_deprecated_push_dummy_frame (gdbarch, alpha_push_dummy_frame);
1883 set_gdbarch_fix_call_dummy (gdbarch, alpha_fix_call_dummy);
1884 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
1885 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, alpha_init_frame_pc_first);
1886
1887 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1888 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1889
1890 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1891 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1892
1893 set_gdbarch_function_start_offset (gdbarch, 0);
1894 set_gdbarch_frame_args_skip (gdbarch, 0);
1895
1896 /* Hook in ABI-specific overrides, if they have been registered. */
1897 gdbarch_init_osabi (info, gdbarch);
1898
1899 /* Now that we have tuned the configuration, set a few final things
1900 based on what the OS ABI has told us. */
1901
1902 if (tdep->jb_pc >= 0)
1903 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1904
1905 return gdbarch;
1906 }
1907
1908 static void
1909 alpha_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1910 {
1911 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1912
1913 if (tdep == NULL)
1914 return;
1915
1916 fprintf_unfiltered (file,
1917 "alpha_dump_tdep: vm_min_address = 0x%lx\n",
1918 (long) tdep->vm_min_address);
1919
1920 fprintf_unfiltered (file,
1921 "alpha_dump_tdep: jb_pc = %d\n",
1922 tdep->jb_pc);
1923 fprintf_unfiltered (file,
1924 "alpha_dump_tdep: jb_elt_size = %ld\n",
1925 (long) tdep->jb_elt_size);
1926 }
1927
1928 void
1929 _initialize_alpha_tdep (void)
1930 {
1931 struct cmd_list_element *c;
1932
1933 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, alpha_dump_tdep);
1934
1935 tm_print_insn = print_insn_alpha;
1936
1937 /* Let the user set the fence post for heuristic_proc_start. */
1938
1939 /* We really would like to have both "0" and "unlimited" work, but
1940 command.c doesn't deal with that. So make it a var_zinteger
1941 because the user can always use "999999" or some such for unlimited. */
1942 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
1943 (char *) &heuristic_fence_post,
1944 "\
1945 Set the distance searched for the start of a function.\n\
1946 If you are debugging a stripped executable, GDB needs to search through the\n\
1947 program for the start of a function. This command sets the distance of the\n\
1948 search. The only need to set it is when debugging a stripped executable.",
1949 &setlist);
1950 /* We need to throw away the frame cache when we set this, since it
1951 might change our ability to get backtraces. */
1952 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
1953 add_show_from_set (c, &showlist);
1954 }
This page took 0.068665 seconds and 4 git commands to generate.