* corelow.c, exec.c, inftarg.c, m3-nat.c, op50-rom.c, procfs.c,
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 1994 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "value.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "dis-asm.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30
31 /* FIXME: Some of this code should perhaps be merged with mips-tdep.c. */
32
33 /* FIXME: Put this declaration in frame.h. */
34 extern struct obstack frame_cache_obstack;
35 \f
36
37 /* Forward declarations. */
38
39 static CORE_ADDR
40 read_next_frame_reg PARAMS ((FRAME, int));
41
42 static CORE_ADDR
43 heuristic_proc_start PARAMS ((CORE_ADDR));
44
45 static alpha_extra_func_info_t
46 heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, FRAME));
47
48 static alpha_extra_func_info_t
49 find_proc_desc PARAMS ((CORE_ADDR, FRAME));
50
51 static int
52 alpha_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR));
53
54 static void
55 reinit_frame_cache_sfunc PARAMS ((char *, int, struct cmd_list_element *));
56
57 static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc,
58 alpha_extra_func_info_t proc_desc));
59
60 static int in_prologue PARAMS ((CORE_ADDR pc,
61 alpha_extra_func_info_t proc_desc));
62
63 /* Heuristic_proc_start may hunt through the text section for a long
64 time across a 2400 baud serial line. Allows the user to limit this
65 search. */
66 static unsigned int heuristic_fence_post = 0;
67
68 /* Layout of a stack frame on the alpha:
69
70 | |
71 pdr members: | 7th ... nth arg, |
72 | `pushed' by caller. |
73 | |
74 ----------------|-------------------------------|<-- old_sp == vfp
75 ^ ^ ^ ^ | |
76 | | | | | |
77 | |localoff | Copies of 1st .. 6th |
78 | | | | | argument if necessary. |
79 | | | v | |
80 | | | --- |-------------------------------|<-- FRAME_LOCALS_ADDRESS
81 | | | | |
82 | | | | Locals and temporaries. |
83 | | | | |
84 | | | |-------------------------------|
85 | | | | |
86 |-fregoffset | Saved float registers. |
87 | | | | F9 |
88 | | | | . |
89 | | | | . |
90 | | | | F2 |
91 | | v | |
92 | | -------|-------------------------------|
93 | | | |
94 | | | Saved registers. |
95 | | | S6 |
96 |-regoffset | . |
97 | | | . |
98 | | | S0 |
99 | | | pdr.pcreg |
100 | v | |
101 | ----------|-------------------------------|
102 | | |
103 frameoffset | Argument build area, gets |
104 | | 7th ... nth arg for any |
105 | | called procedure. |
106 v | |
107 -------------|-------------------------------|<-- sp
108 | |
109 */
110
111 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
112 #define PROC_HIGH_ADDR(proc) ((proc)->pdr.iline) /* upper address bound */
113 #define PROC_DUMMY_FRAME(proc) ((proc)->pdr.iopt) /* frame for CALL_DUMMY */
114 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
115 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
116 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
117 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
118 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
119 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
120 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
121 #define PROC_LOCALOFF(proc) ((proc)->pdr.localoff)
122 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
123 #define _PROC_MAGIC_ 0x0F0F0F0F
124 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
125 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
126
127 struct linked_proc_info
128 {
129 struct alpha_extra_func_info info;
130 struct linked_proc_info *next;
131 } *linked_proc_desc_table = NULL;
132
133 \f
134 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
135 NULL). */
136
137 void
138 alpha_find_saved_regs (fci)
139 FRAME fci;
140 {
141 int ireg;
142 CORE_ADDR reg_position;
143 unsigned long mask;
144 alpha_extra_func_info_t proc_desc;
145 int returnreg;
146
147 fci->saved_regs = (struct frame_saved_regs *)
148 obstack_alloc (&frame_cache_obstack, sizeof(struct frame_saved_regs));
149 memset (fci->saved_regs, 0, sizeof (struct frame_saved_regs));
150
151 proc_desc = fci->proc_desc;
152 if (proc_desc == NULL)
153 /* I'm not sure how/whether this can happen. Normally when we can't
154 find a proc_desc, we "synthesize" one using heuristic_proc_desc
155 and set the saved_regs right away. */
156 return;
157
158 /* Fill in the offsets for the registers which gen_mask says
159 were saved. */
160
161 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
162 mask = PROC_REG_MASK (proc_desc);
163
164 returnreg = PROC_PC_REG (proc_desc);
165
166 /* Note that RA is always saved first, regardless of it's actual
167 register number. */
168 if (mask & (1 << returnreg))
169 {
170 fci->saved_regs->regs[returnreg] = reg_position;
171 reg_position += 8;
172 mask &= ~(1 << returnreg); /* Clear bit for RA so we
173 don't save again later. */
174 }
175
176 for (ireg = 0; ireg <= 31 ; ++ireg)
177 if (mask & (1 << ireg))
178 {
179 fci->saved_regs->regs[ireg] = reg_position;
180 reg_position += 8;
181 }
182
183 /* Fill in the offsets for the registers which float_mask says
184 were saved. */
185
186 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
187 mask = PROC_FREG_MASK (proc_desc);
188
189 for (ireg = 0; ireg <= 31 ; ++ireg)
190 if (mask & (1 << ireg))
191 {
192 fci->saved_regs->regs[FP0_REGNUM+ireg] = reg_position;
193 reg_position += 8;
194 }
195
196 fci->saved_regs->regs[PC_REGNUM] = fci->saved_regs->regs[returnreg];
197 }
198
199 static CORE_ADDR
200 read_next_frame_reg(fi, regno)
201 FRAME fi;
202 int regno;
203 {
204 /* If it is the frame for sigtramp we have a pointer to the sigcontext
205 on the stack.
206 If the stack layout for __sigtramp changes or if sigcontext offsets
207 change we might have to update this code. */
208 #ifndef SIGFRAME_PC_OFF
209 #define SIGFRAME_PC_OFF (2 * 8)
210 #define SIGFRAME_REGSAVE_OFF (4 * 8)
211 #endif
212 for (; fi; fi = fi->next)
213 {
214 if (fi->signal_handler_caller)
215 {
216 int offset;
217 CORE_ADDR sigcontext_addr = read_memory_integer(fi->frame, 8);
218
219 if (regno == PC_REGNUM)
220 offset = SIGFRAME_PC_OFF;
221 else if (regno < 32)
222 offset = SIGFRAME_REGSAVE_OFF + regno * 8;
223 else
224 return 0;
225 return read_memory_integer(sigcontext_addr + offset, 8);
226 }
227 else if (regno == SP_REGNUM)
228 return fi->frame;
229 else
230 {
231 if (fi->saved_regs == NULL)
232 alpha_find_saved_regs (fi);
233 if (fi->saved_regs->regs[regno])
234 return read_memory_integer(fi->saved_regs->regs[regno], 8);
235 }
236 }
237 return read_register(regno);
238 }
239
240 CORE_ADDR
241 alpha_frame_saved_pc(frame)
242 FRAME frame;
243 {
244 alpha_extra_func_info_t proc_desc = frame->proc_desc;
245 /* We have to get the saved pc from the sigcontext
246 if it is a signal handler frame. */
247 int pcreg = frame->signal_handler_caller ? PC_REGNUM
248 : (proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM);
249
250 if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
251 return read_memory_integer(frame->frame - 8, 8);
252
253 return read_next_frame_reg(frame, pcreg);
254 }
255
256 CORE_ADDR
257 alpha_saved_pc_after_call (frame)
258 FRAME frame;
259 {
260 alpha_extra_func_info_t proc_desc = find_proc_desc (frame->pc, frame->next);
261 int pcreg = proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM;
262
263 return read_register (pcreg);
264 }
265
266
267 static struct alpha_extra_func_info temp_proc_desc;
268 static struct frame_saved_regs temp_saved_regs;
269
270 /* This fencepost looks highly suspicious to me. Removing it also
271 seems suspicious as it could affect remote debugging across serial
272 lines. */
273
274 static CORE_ADDR
275 heuristic_proc_start(pc)
276 CORE_ADDR pc;
277 {
278 CORE_ADDR start_pc = pc;
279 CORE_ADDR fence = start_pc - heuristic_fence_post;
280
281 if (start_pc == 0) return 0;
282
283 if (heuristic_fence_post == UINT_MAX
284 || fence < VM_MIN_ADDRESS)
285 fence = VM_MIN_ADDRESS;
286
287 /* search back for previous return */
288 for (start_pc -= 4; ; start_pc -= 4)
289 if (start_pc < fence)
290 {
291 /* It's not clear to me why we reach this point when
292 stop_soon_quietly, but with this test, at least we
293 don't print out warnings for every child forked (eg, on
294 decstation). 22apr93 rich@cygnus.com. */
295 if (!stop_soon_quietly)
296 {
297 static int blurb_printed = 0;
298
299 if (fence == VM_MIN_ADDRESS)
300 warning("Hit beginning of text section without finding");
301 else
302 warning("Hit heuristic-fence-post without finding");
303
304 warning("enclosing function for address 0x%lx", pc);
305 if (!blurb_printed)
306 {
307 printf_filtered ("\
308 This warning occurs if you are debugging a function without any symbols\n\
309 (for example, in a stripped executable). In that case, you may wish to\n\
310 increase the size of the search with the `set heuristic-fence-post' command.\n\
311 \n\
312 Otherwise, you told GDB there was a function where there isn't one, or\n\
313 (more likely) you have encountered a bug in GDB.\n");
314 blurb_printed = 1;
315 }
316 }
317
318 return 0;
319 }
320 else if (ABOUT_TO_RETURN(start_pc))
321 break;
322
323 start_pc += 4; /* skip return */
324 return start_pc;
325 }
326
327 static alpha_extra_func_info_t
328 heuristic_proc_desc(start_pc, limit_pc, next_frame)
329 CORE_ADDR start_pc, limit_pc;
330 FRAME next_frame;
331 {
332 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
333 CORE_ADDR cur_pc;
334 int frame_size;
335 int has_frame_reg = 0;
336 unsigned long reg_mask = 0;
337
338 if (start_pc == 0)
339 return NULL;
340 memset(&temp_proc_desc, '\0', sizeof(temp_proc_desc));
341 memset(&temp_saved_regs, '\0', sizeof(struct frame_saved_regs));
342 PROC_LOW_ADDR(&temp_proc_desc) = start_pc;
343
344 if (start_pc + 200 < limit_pc)
345 limit_pc = start_pc + 200;
346 frame_size = 0;
347 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
348 {
349 char buf[4];
350 unsigned long word;
351 int status;
352
353 status = read_memory_nobpt (cur_pc, buf, 4);
354 if (status)
355 memory_error (status, cur_pc);
356 word = extract_unsigned_integer (buf, 4);
357
358 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
359 frame_size += (-word) & 0xffff;
360 else if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
361 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
362 {
363 int reg = (word & 0x03e00000) >> 21;
364 reg_mask |= 1 << reg;
365 temp_saved_regs.regs[reg] = sp + (short)word;
366 }
367 else if (word == 0x47de040f) /* bis sp,sp fp */
368 has_frame_reg = 1;
369 }
370 if (has_frame_reg)
371 PROC_FRAME_REG(&temp_proc_desc) = GCC_FP_REGNUM;
372 else
373 PROC_FRAME_REG(&temp_proc_desc) = SP_REGNUM;
374 PROC_FRAME_OFFSET(&temp_proc_desc) = frame_size;
375 PROC_REG_MASK(&temp_proc_desc) = reg_mask;
376 PROC_PC_REG(&temp_proc_desc) = RA_REGNUM;
377 PROC_LOCALOFF(&temp_proc_desc) = 0; /* XXX - bogus */
378 return &temp_proc_desc;
379 }
380
381 /* This returns the PC of the first inst after the prologue. If we can't
382 find the prologue, then return 0. */
383
384 static CORE_ADDR
385 after_prologue (pc, proc_desc)
386 CORE_ADDR pc;
387 alpha_extra_func_info_t proc_desc;
388 {
389 struct block *b;
390 struct symtab_and_line sal;
391 CORE_ADDR func_addr, func_end;
392
393 if (!proc_desc)
394 proc_desc = find_proc_desc (pc, NULL);
395
396 if (proc_desc)
397 {
398 /* If function is frameless, then we need to do it the hard way. I
399 strongly suspect that frameless always means prologueless... */
400 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
401 && PROC_FRAME_OFFSET (proc_desc) == 0)
402 return 0;
403 }
404
405 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
406 return 0; /* Unknown */
407
408 sal = find_pc_line (func_addr, 0);
409
410 if (sal.end < func_end)
411 return sal.end;
412
413 /* The line after the prologue is after the end of the function. In this
414 case, tell the caller to find the prologue the hard way. */
415
416 return 0;
417 }
418
419 /* Return non-zero if we *might* be in a function prologue. Return zero if we
420 are definatly *not* in a function prologue. */
421
422 static int
423 in_prologue (pc, proc_desc)
424 CORE_ADDR pc;
425 alpha_extra_func_info_t proc_desc;
426 {
427 CORE_ADDR after_prologue_pc;
428
429 after_prologue_pc = after_prologue (pc, proc_desc);
430
431 if (after_prologue_pc == 0
432 || pc < after_prologue_pc)
433 return 1;
434 else
435 return 0;
436 }
437
438 static alpha_extra_func_info_t
439 find_proc_desc(pc, next_frame)
440 CORE_ADDR pc;
441 FRAME next_frame;
442 {
443 alpha_extra_func_info_t proc_desc;
444 struct block *b;
445 struct symbol *sym;
446 CORE_ADDR startaddr;
447
448 /* Try to get the proc_desc from the linked call dummy proc_descs
449 if the pc is in the call dummy.
450 This is hairy. In the case of nested dummy calls we have to find the
451 right proc_desc, but we might not yet know the frame for the dummy
452 as it will be contained in the proc_desc we are searching for.
453 So we have to find the proc_desc whose frame is closest to the current
454 stack pointer. */
455
456 if (PC_IN_CALL_DUMMY (pc, 0, 0))
457 {
458 struct linked_proc_info *link;
459 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
460 alpha_extra_func_info_t found_proc_desc = NULL;
461 long min_distance = LONG_MAX;
462
463 for (link = linked_proc_desc_table; link; link = link->next)
464 {
465 long distance = (CORE_ADDR) PROC_DUMMY_FRAME (&link->info) - sp;
466 if (distance > 0 && distance < min_distance)
467 {
468 min_distance = distance;
469 found_proc_desc = &link->info;
470 }
471 }
472 if (found_proc_desc != NULL)
473 return found_proc_desc;
474 }
475
476 b = block_for_pc(pc);
477
478 find_pc_partial_function (pc, NULL, &startaddr, NULL);
479 if (b == NULL)
480 sym = NULL;
481 else
482 {
483 if (startaddr > BLOCK_START (b))
484 /* This is the "pathological" case referred to in a comment in
485 print_frame_info. It might be better to move this check into
486 symbol reading. */
487 sym = NULL;
488 else
489 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE,
490 0, NULL);
491 }
492
493 if (sym)
494 {
495 /* IF this is the topmost frame AND
496 * (this proc does not have debugging information OR
497 * the PC is in the procedure prologue)
498 * THEN create a "heuristic" proc_desc (by analyzing
499 * the actual code) to replace the "official" proc_desc.
500 */
501 proc_desc = (alpha_extra_func_info_t)SYMBOL_VALUE(sym);
502 if (next_frame == NULL)
503 {
504 if (PROC_DESC_IS_DUMMY (proc_desc) || in_prologue (pc, proc_desc))
505 {
506 alpha_extra_func_info_t found_heuristic =
507 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
508 pc, next_frame);
509 PROC_LOCALOFF (found_heuristic) = PROC_LOCALOFF (proc_desc);
510 if (found_heuristic)
511 proc_desc = found_heuristic;
512 }
513 }
514 }
515 else
516 {
517 /* Is linked_proc_desc_table really necessary? It only seems to be used
518 by procedure call dummys. However, the procedures being called ought
519 to have their own proc_descs, and even if they don't,
520 heuristic_proc_desc knows how to create them! */
521
522 register struct linked_proc_info *link;
523 for (link = linked_proc_desc_table; link; link = link->next)
524 if (PROC_LOW_ADDR(&link->info) <= pc
525 && PROC_HIGH_ADDR(&link->info) > pc)
526 return &link->info;
527
528 if (startaddr == 0)
529 startaddr = heuristic_proc_start (pc);
530
531 proc_desc =
532 heuristic_proc_desc (startaddr, pc, next_frame);
533 }
534 return proc_desc;
535 }
536
537 alpha_extra_func_info_t cached_proc_desc;
538
539 FRAME_ADDR
540 alpha_frame_chain(frame)
541 FRAME frame;
542 {
543 alpha_extra_func_info_t proc_desc;
544 CORE_ADDR saved_pc = FRAME_SAVED_PC(frame);
545
546 if (saved_pc == 0 || inside_entry_file (saved_pc))
547 return 0;
548
549 proc_desc = find_proc_desc(saved_pc, frame);
550 if (!proc_desc)
551 return 0;
552
553 cached_proc_desc = proc_desc;
554
555 /* Fetch the frame pointer for a dummy frame from the procedure
556 descriptor. */
557 if (PROC_DESC_IS_DUMMY(proc_desc))
558 return (FRAME_ADDR) PROC_DUMMY_FRAME(proc_desc);
559
560 /* If no frame pointer and frame size is zero, we must be at end
561 of stack (or otherwise hosed). If we don't check frame size,
562 we loop forever if we see a zero size frame. */
563 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
564 && PROC_FRAME_OFFSET (proc_desc) == 0
565 /* The previous frame from a sigtramp frame might be frameless
566 and have frame size zero. */
567 && !frame->signal_handler_caller)
568 {
569 /* The alpha __sigtramp routine is frameless and has a frame size
570 of zero, but we are able to backtrace through it. */
571 char *name;
572 find_pc_partial_function (saved_pc, &name,
573 (CORE_ADDR *)NULL, (CORE_ADDR *)NULL);
574 if (IN_SIGTRAMP (saved_pc, name))
575 return frame->frame;
576 else
577 return 0;
578 }
579 else
580 return read_next_frame_reg(frame, PROC_FRAME_REG(proc_desc))
581 + PROC_FRAME_OFFSET(proc_desc);
582 }
583
584 void
585 init_extra_frame_info(fci)
586 struct frame_info *fci;
587 {
588 /* Use proc_desc calculated in frame_chain */
589 alpha_extra_func_info_t proc_desc =
590 fci->next ? cached_proc_desc : find_proc_desc(fci->pc, fci->next);
591
592 fci->saved_regs = NULL;
593 fci->proc_desc =
594 proc_desc == &temp_proc_desc ? 0 : proc_desc;
595 if (proc_desc)
596 {
597 /* Get the locals offset from the procedure descriptor, it is valid
598 even if we are in the middle of the prologue. */
599 fci->localoff = PROC_LOCALOFF(proc_desc);
600
601 /* Fixup frame-pointer - only needed for top frame */
602
603 /* Fetch the frame pointer for a dummy frame from the procedure
604 descriptor. */
605 if (PROC_DESC_IS_DUMMY(proc_desc))
606 fci->frame = (FRAME_ADDR) PROC_DUMMY_FRAME(proc_desc);
607
608 /* This may not be quite right, if proc has a real frame register.
609 Get the value of the frame relative sp, procedure might have been
610 interrupted by a signal at it's very start. */
611 else if (fci->pc == PROC_LOW_ADDR (proc_desc) && !PROC_DESC_IS_DUMMY (proc_desc))
612 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
613 else
614 fci->frame = read_next_frame_reg (fci->next, PROC_FRAME_REG (proc_desc))
615 + PROC_FRAME_OFFSET (proc_desc);
616
617 if (proc_desc == &temp_proc_desc)
618 {
619 fci->saved_regs = (struct frame_saved_regs*)
620 obstack_alloc (&frame_cache_obstack,
621 sizeof (struct frame_saved_regs));
622 *fci->saved_regs = temp_saved_regs;
623 fci->saved_regs->regs[PC_REGNUM] = fci->saved_regs->regs[RA_REGNUM];
624 }
625 }
626 }
627
628 /* ALPHA stack frames are almost impenetrable. When execution stops,
629 we basically have to look at symbol information for the function
630 that we stopped in, which tells us *which* register (if any) is
631 the base of the frame pointer, and what offset from that register
632 the frame itself is at.
633
634 This presents a problem when trying to examine a stack in memory
635 (that isn't executing at the moment), using the "frame" command. We
636 don't have a PC, nor do we have any registers except SP.
637
638 This routine takes two arguments, SP and PC, and tries to make the
639 cached frames look as if these two arguments defined a frame on the
640 cache. This allows the rest of info frame to extract the important
641 arguments without difficulty. */
642
643 FRAME
644 setup_arbitrary_frame (argc, argv)
645 int argc;
646 FRAME_ADDR *argv;
647 {
648 if (argc != 2)
649 error ("ALPHA frame specifications require two arguments: sp and pc");
650
651 return create_new_frame (argv[0], argv[1]);
652 }
653
654 /* The alpha passes the first six arguments in the registers, the rest on
655 the stack. The register arguments are eventually transferred to the
656 argument transfer area immediately below the stack by the called function
657 anyway. So we `push' at least six arguments on the stack, `reload' the
658 argument registers and then adjust the stack pointer to point past the
659 sixth argument. This algorithm simplifies the passing of a large struct
660 which extends from the registers to the stack.
661 If the called function is returning a structure, the address of the
662 structure to be returned is passed as a hidden first argument. */
663
664 CORE_ADDR
665 alpha_push_arguments (nargs, args, sp, struct_return, struct_addr)
666 int nargs;
667 value_ptr *args;
668 CORE_ADDR sp;
669 int struct_return;
670 CORE_ADDR struct_addr;
671 {
672 register i;
673 int accumulate_size = struct_return ? 8 : 0;
674 int arg_regs_size = ALPHA_NUM_ARG_REGS * 8;
675 struct alpha_arg { char *contents; int len; int offset; };
676 struct alpha_arg *alpha_args =
677 (struct alpha_arg*)alloca (nargs * sizeof (struct alpha_arg));
678 register struct alpha_arg *m_arg;
679 char raw_buffer[sizeof (CORE_ADDR)];
680 int required_arg_regs;
681
682 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
683 {
684 value_ptr arg = value_arg_coerce (args[i]);
685 /* Cast argument to long if necessary as the compiler does it too. */
686 if (TYPE_LENGTH (VALUE_TYPE (arg)) < TYPE_LENGTH (builtin_type_long))
687 arg = value_cast (builtin_type_long, arg);
688 m_arg->len = TYPE_LENGTH (VALUE_TYPE (arg));
689 m_arg->offset = accumulate_size;
690 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
691 m_arg->contents = VALUE_CONTENTS(arg);
692 }
693
694 /* Determine required argument register loads, loading an argument register
695 is expensive as it uses three ptrace calls. */
696 required_arg_regs = accumulate_size / 8;
697 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
698 required_arg_regs = ALPHA_NUM_ARG_REGS;
699
700 /* Make room for the arguments on the stack. */
701 if (accumulate_size < arg_regs_size)
702 accumulate_size = arg_regs_size;
703 sp -= accumulate_size;
704
705 /* Keep sp aligned to a multiple of 16 as the compiler does it too. */
706 sp &= ~15;
707
708 /* `Push' arguments on the stack. */
709 for (i = nargs; m_arg--, --i >= 0; )
710 write_memory(sp + m_arg->offset, m_arg->contents, m_arg->len);
711 if (struct_return)
712 {
713 store_address (raw_buffer, sizeof (CORE_ADDR), struct_addr);
714 write_memory (sp, raw_buffer, sizeof (CORE_ADDR));
715 }
716
717 /* Load the argument registers. */
718 for (i = 0; i < required_arg_regs; i++)
719 {
720 LONGEST val;
721
722 val = read_memory_integer (sp + i * 8, 8);
723 write_register (A0_REGNUM + i, val);
724 write_register (FPA0_REGNUM + i, val);
725 }
726
727 return sp + arg_regs_size;
728 }
729
730 void
731 alpha_push_dummy_frame()
732 {
733 int ireg;
734 struct linked_proc_info *link;
735 alpha_extra_func_info_t proc_desc;
736 CORE_ADDR sp = read_register (SP_REGNUM);
737 CORE_ADDR save_address;
738 char raw_buffer[MAX_REGISTER_RAW_SIZE];
739 unsigned long mask;
740
741 link = (struct linked_proc_info *) xmalloc(sizeof (struct linked_proc_info));
742 link->next = linked_proc_desc_table;
743 linked_proc_desc_table = link;
744
745 proc_desc = &link->info;
746
747 /*
748 * The registers we must save are all those not preserved across
749 * procedure calls.
750 * In addition, we must save the PC and RA.
751 *
752 * Dummy frame layout:
753 * (high memory)
754 * Saved PC
755 * Saved F30
756 * ...
757 * Saved F0
758 * Saved R29
759 * ...
760 * Saved R0
761 * Saved R26 (RA)
762 * Parameter build area
763 * (low memory)
764 */
765
766 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<31. */
767 #define MASK(i,j) (((1L << ((j)+1)) - 1) ^ ((1L << (i)) - 1))
768 #define GEN_REG_SAVE_MASK (MASK(0,8) | MASK(16,29))
769 #define GEN_REG_SAVE_COUNT 24
770 #define FLOAT_REG_SAVE_MASK (MASK(0,1) | MASK(10,30))
771 #define FLOAT_REG_SAVE_COUNT 23
772 /* The special register is the PC as we have no bit for it in the save masks.
773 alpha_frame_saved_pc knows where the pc is saved in a dummy frame. */
774 #define SPECIAL_REG_SAVE_COUNT 1
775
776 PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK;
777 PROC_FREG_MASK(proc_desc) = FLOAT_REG_SAVE_MASK;
778 /* PROC_REG_OFFSET is the offset from the dummy frame to the saved RA,
779 but keep SP aligned to a multiple of 16. */
780 PROC_REG_OFFSET(proc_desc) =
781 - ((8 * (SPECIAL_REG_SAVE_COUNT
782 + GEN_REG_SAVE_COUNT
783 + FLOAT_REG_SAVE_COUNT)
784 + 15) & ~15);
785 PROC_FREG_OFFSET(proc_desc) =
786 PROC_REG_OFFSET(proc_desc) + 8 * GEN_REG_SAVE_COUNT;
787
788 /* Save general registers.
789 The return address register is the first saved register, all other
790 registers follow in ascending order.
791 The PC is saved immediately below the SP. */
792 save_address = sp + PROC_REG_OFFSET(proc_desc);
793 store_address (raw_buffer, 8, read_register (RA_REGNUM));
794 write_memory (save_address, raw_buffer, 8);
795 save_address += 8;
796 mask = PROC_REG_MASK(proc_desc) & 0xffffffffL;
797 for (ireg = 0; mask; ireg++, mask >>= 1)
798 if (mask & 1)
799 {
800 if (ireg == RA_REGNUM)
801 continue;
802 store_address (raw_buffer, 8, read_register (ireg));
803 write_memory (save_address, raw_buffer, 8);
804 save_address += 8;
805 }
806
807 store_address (raw_buffer, 8, read_register (PC_REGNUM));
808 write_memory (sp - 8, raw_buffer, 8);
809
810 /* Save floating point registers. */
811 save_address = sp + PROC_FREG_OFFSET(proc_desc);
812 mask = PROC_FREG_MASK(proc_desc) & 0xffffffffL;
813 for (ireg = 0; mask; ireg++, mask >>= 1)
814 if (mask & 1)
815 {
816 store_address (raw_buffer, 8, read_register (ireg + FP0_REGNUM));
817 write_memory (save_address, raw_buffer, 8);
818 save_address += 8;
819 }
820
821 /* Set and save the frame address for the dummy.
822 This is tricky. The only registers that are suitable for a frame save
823 are those that are preserved across procedure calls (s0-s6). But if
824 a read system call is interrupted and then a dummy call is made
825 (see testsuite/gdb.t17/interrupt.exp) the dummy call hangs till the read
826 is satisfied. Then it returns with the s0-s6 registers set to the values
827 on entry to the read system call and our dummy frame pointer would be
828 destroyed. So we save the dummy frame in the proc_desc and handle the
829 retrieval of the frame pointer of a dummy specifically. The frame register
830 is set to the virtual frame (pseudo) register, it's value will always
831 be read as zero and will help us to catch any errors in the dummy frame
832 retrieval code. */
833 PROC_DUMMY_FRAME(proc_desc) = sp;
834 PROC_FRAME_REG(proc_desc) = FP_REGNUM;
835 PROC_FRAME_OFFSET(proc_desc) = 0;
836 sp += PROC_REG_OFFSET(proc_desc);
837 write_register (SP_REGNUM, sp);
838
839 PROC_LOW_ADDR(proc_desc) = CALL_DUMMY_ADDRESS ();
840 PROC_HIGH_ADDR(proc_desc) = PROC_LOW_ADDR(proc_desc) + 4;
841
842 SET_PROC_DESC_IS_DUMMY(proc_desc);
843 PROC_PC_REG(proc_desc) = RA_REGNUM;
844 }
845
846 void
847 alpha_pop_frame()
848 {
849 register int regnum;
850 FRAME frame = get_current_frame ();
851 CORE_ADDR new_sp = frame->frame;
852
853 alpha_extra_func_info_t proc_desc = frame->proc_desc;
854
855 write_register (PC_REGNUM, FRAME_SAVED_PC(frame));
856 if (frame->saved_regs == NULL)
857 alpha_find_saved_regs (frame);
858 if (proc_desc)
859 {
860 for (regnum = 32; --regnum >= 0; )
861 if (PROC_REG_MASK(proc_desc) & (1 << regnum))
862 write_register (regnum,
863 read_memory_integer (frame->saved_regs->regs[regnum],
864 8));
865 for (regnum = 32; --regnum >= 0; )
866 if (PROC_FREG_MASK(proc_desc) & (1 << regnum))
867 write_register (regnum + FP0_REGNUM,
868 read_memory_integer (frame->saved_regs->regs[regnum + FP0_REGNUM], 8));
869 }
870 write_register (SP_REGNUM, new_sp);
871 flush_cached_frames ();
872
873 if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
874 {
875 struct linked_proc_info *pi_ptr, *prev_ptr;
876
877 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
878 pi_ptr != NULL;
879 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
880 {
881 if (&pi_ptr->info == proc_desc)
882 break;
883 }
884
885 if (pi_ptr == NULL)
886 error ("Can't locate dummy extra frame info\n");
887
888 if (prev_ptr != NULL)
889 prev_ptr->next = pi_ptr->next;
890 else
891 linked_proc_desc_table = pi_ptr->next;
892
893 free (pi_ptr);
894 }
895 }
896 \f
897 /* To skip prologues, I use this predicate. Returns either PC itself
898 if the code at PC does not look like a function prologue; otherwise
899 returns an address that (if we're lucky) follows the prologue. If
900 LENIENT, then we must skip everything which is involved in setting
901 up the frame (it's OK to skip more, just so long as we don't skip
902 anything which might clobber the registers which are being saved.
903 Currently we must not skip more on the alpha, but we might the lenient
904 stuff some day. */
905
906 CORE_ADDR
907 alpha_skip_prologue (pc, lenient)
908 CORE_ADDR pc;
909 int lenient;
910 {
911 unsigned long inst;
912 int offset;
913 CORE_ADDR post_prologue_pc;
914 char buf[4];
915
916 #ifdef GDB_TARGET_HAS_SHARED_LIBS
917 /* Silently return the unaltered pc upon memory errors.
918 This could happen on OSF/1 if decode_line_1 tries to skip the
919 prologue for quickstarted shared library functions when the
920 shared library is not yet mapped in.
921 Reading target memory is slow over serial lines, so we perform
922 this check only if the target has shared libraries. */
923 if (target_read_memory (pc, buf, 4))
924 return pc;
925 #endif
926
927 /* See if we can determine the end of the prologue via the symbol table.
928 If so, then return either PC, or the PC after the prologue, whichever
929 is greater. */
930
931 post_prologue_pc = after_prologue (pc, NULL);
932
933 if (post_prologue_pc != 0)
934 return max (pc, post_prologue_pc);
935
936 /* Can't determine prologue from the symbol table, need to examine
937 instructions. */
938
939 /* Skip the typical prologue instructions. These are the stack adjustment
940 instruction and the instructions that save registers on the stack
941 or in the gcc frame. */
942 for (offset = 0; offset < 100; offset += 4)
943 {
944 int status;
945
946 status = read_memory_nobpt (pc + offset, buf, 4);
947 if (status)
948 memory_error (status, pc + offset);
949 inst = extract_unsigned_integer (buf, 4);
950
951 /* The alpha has no delay slots. But let's keep the lenient stuff,
952 we might need it for something else in the future. */
953 if (lenient && 0)
954 continue;
955
956 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
957 continue;
958 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
959 continue;
960 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
961 continue;
962 else if ((inst & 0xfc1f0000) == 0xb41e0000
963 && (inst & 0xffff0000) != 0xb7fe0000)
964 continue; /* stq reg,n($sp) */
965 /* reg != $zero */
966 else if ((inst & 0xfc1f0000) == 0x9c1e0000
967 && (inst & 0xffff0000) != 0x9ffe0000)
968 continue; /* stt reg,n($sp) */
969 /* reg != $zero */
970 else if (inst == 0x47de040f) /* bis sp,sp,fp */
971 continue;
972 else
973 break;
974 }
975 return pc + offset;
976 }
977
978 /* Is address PC in the prologue (loosely defined) for function at
979 STARTADDR? */
980
981 static int
982 alpha_in_lenient_prologue (startaddr, pc)
983 CORE_ADDR startaddr;
984 CORE_ADDR pc;
985 {
986 CORE_ADDR end_prologue = alpha_skip_prologue (startaddr, 1);
987 return pc >= startaddr && pc < end_prologue;
988 }
989
990 /* The alpha needs a conversion between register and memory format if
991 the register is a floating point register and
992 memory format is float, as the register format must be double
993 or
994 memory format is an integer with 4 bytes or less, as the representation
995 of integers in floating point registers is different. */
996 void
997 alpha_register_convert_to_virtual (regnum, valtype, raw_buffer, virtual_buffer)
998 int regnum;
999 struct type *valtype;
1000 char *raw_buffer;
1001 char *virtual_buffer;
1002 {
1003 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1004 {
1005 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (regnum));
1006 return;
1007 }
1008
1009 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1010 {
1011 double d = extract_floating (raw_buffer, REGISTER_RAW_SIZE (regnum));
1012 store_floating (virtual_buffer, TYPE_LENGTH (valtype), d);
1013 }
1014 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1015 {
1016 unsigned LONGEST l;
1017 l = extract_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum));
1018 l = ((l >> 32) & 0xc0000000) | ((l >> 29) & 0x3fffffff);
1019 store_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype), l);
1020 }
1021 else
1022 error ("Cannot retrieve value from floating point register");
1023 }
1024
1025 void
1026 alpha_register_convert_to_raw (valtype, regnum, virtual_buffer, raw_buffer)
1027 struct type *valtype;
1028 int regnum;
1029 char *virtual_buffer;
1030 char *raw_buffer;
1031 {
1032 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1033 {
1034 memcpy (raw_buffer, virtual_buffer, REGISTER_RAW_SIZE (regnum));
1035 return;
1036 }
1037
1038 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1039 {
1040 double d = extract_floating (virtual_buffer, TYPE_LENGTH (valtype));
1041 store_floating (raw_buffer, REGISTER_RAW_SIZE (regnum), d);
1042 }
1043 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1044 {
1045 unsigned LONGEST l;
1046 if (TYPE_UNSIGNED (valtype))
1047 l = extract_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype));
1048 else
1049 l = extract_signed_integer (virtual_buffer, TYPE_LENGTH (valtype));
1050 l = ((l & 0xc0000000) << 32) | ((l & 0x3fffffff) << 29);
1051 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), l);
1052 }
1053 else
1054 error ("Cannot store value in floating point register");
1055 }
1056
1057 /* Given a return value in `regbuf' with a type `valtype',
1058 extract and copy its value into `valbuf'. */
1059 void
1060 alpha_extract_return_value (valtype, regbuf, valbuf)
1061 struct type *valtype;
1062 char regbuf[REGISTER_BYTES];
1063 char *valbuf;
1064 {
1065 int regnum;
1066
1067 regnum = TYPE_CODE (valtype) == TYPE_CODE_FLT ? FP0_REGNUM : V0_REGNUM;
1068
1069 memcpy (valbuf, regbuf + REGISTER_BYTE (regnum), TYPE_LENGTH (valtype));
1070 }
1071
1072 /* Given a return value in `regbuf' with a type `valtype',
1073 write its value into the appropriate register. */
1074 void
1075 alpha_store_return_value (valtype, valbuf)
1076 struct type *valtype;
1077 char *valbuf;
1078 {
1079 int regnum;
1080 char raw_buffer[MAX_REGISTER_RAW_SIZE];
1081
1082 regnum = TYPE_CODE (valtype) == TYPE_CODE_FLT ? FP0_REGNUM : V0_REGNUM;
1083 memcpy(raw_buffer, valbuf, TYPE_LENGTH (valtype));
1084
1085 write_register_bytes(REGISTER_BYTE (regnum), raw_buffer, TYPE_LENGTH (valtype));
1086 }
1087
1088 /* Print the instruction at address MEMADDR in debugged memory,
1089 on STREAM. Returns length of the instruction, in bytes. */
1090
1091 int
1092 print_insn (memaddr, stream)
1093 CORE_ADDR memaddr;
1094 GDB_FILE *stream;
1095 {
1096 disassemble_info info;
1097
1098 GDB_INIT_DISASSEMBLE_INFO(info, stream);
1099
1100 return print_insn_alpha (memaddr, &info);
1101 }
1102
1103 /* Just like reinit_frame_cache, but with the right arguments to be
1104 callable as an sfunc. */
1105 static void
1106 reinit_frame_cache_sfunc (args, from_tty, c)
1107 char *args;
1108 int from_tty;
1109 struct cmd_list_element *c;
1110 {
1111 reinit_frame_cache ();
1112 }
1113
1114 /* This is the definition of CALL_DUMMY_ADDRESS. It's a heuristic that is used
1115 to find a convenient place in the text segment to stick a breakpoint to
1116 detect the completion of a target function call (ala call_function_by_hand).
1117 */
1118
1119 CORE_ADDR
1120 alpha_call_dummy_address ()
1121 {
1122 CORE_ADDR entry;
1123 struct minimal_symbol *sym;
1124
1125 entry = entry_point_address ();
1126
1127 if (entry != 0)
1128 return entry;
1129
1130 sym = lookup_minimal_symbol ("_Prelude", symfile_objfile);
1131
1132 if (!sym || MSYMBOL_TYPE (sym) != mst_text)
1133 return 0;
1134 else
1135 return SYMBOL_VALUE_ADDRESS (sym) + 4;
1136 }
1137
1138 void
1139 _initialize_alpha_tdep ()
1140 {
1141 struct cmd_list_element *c;
1142
1143 /* Let the user set the fence post for heuristic_proc_start. */
1144
1145 /* We really would like to have both "0" and "unlimited" work, but
1146 command.c doesn't deal with that. So make it a var_zinteger
1147 because the user can always use "999999" or some such for unlimited. */
1148 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
1149 (char *) &heuristic_fence_post,
1150 "\
1151 Set the distance searched for the start of a function.\n\
1152 If you are debugging a stripped executable, GDB needs to search through the\n\
1153 program for the start of a function. This command sets the distance of the\n\
1154 search. The only need to set it is when debugging a stripped executable.",
1155 &setlist);
1156 /* We need to throw away the frame cache when we set this, since it
1157 might change our ability to get backtraces. */
1158 c->function.sfunc = reinit_frame_cache_sfunc;
1159 add_show_from_set (c, &showlist);
1160 }
This page took 0.053267 seconds and 4 git commands to generate.