* elf32-s390.c (allocate_dynrelocs): For undef weak syms with
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "value.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "dis-asm.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdb_string.h"
33 #include "linespec.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "arch-utils.h"
37 #include "osabi.h"
38 #include "block.h"
39
40 #include "elf-bfd.h"
41
42 #include "alpha-tdep.h"
43
44 static gdbarch_init_ftype alpha_gdbarch_init;
45
46 static gdbarch_register_name_ftype alpha_register_name;
47 static gdbarch_register_raw_size_ftype alpha_register_raw_size;
48 static gdbarch_register_virtual_size_ftype alpha_register_virtual_size;
49 static gdbarch_register_virtual_type_ftype alpha_register_virtual_type;
50 static gdbarch_register_byte_ftype alpha_register_byte;
51 static gdbarch_cannot_fetch_register_ftype alpha_cannot_fetch_register;
52 static gdbarch_cannot_store_register_ftype alpha_cannot_store_register;
53 static gdbarch_register_convertible_ftype alpha_register_convertible;
54 static gdbarch_register_convert_to_virtual_ftype
55 alpha_register_convert_to_virtual;
56 static gdbarch_register_convert_to_raw_ftype alpha_register_convert_to_raw;
57 static gdbarch_deprecated_extract_return_value_ftype alpha_extract_return_value;
58 static gdbarch_deprecated_extract_struct_value_address_ftype
59 alpha_extract_struct_value_address;
60 static gdbarch_use_struct_convention_ftype alpha_use_struct_convention;
61
62 static gdbarch_breakpoint_from_pc_ftype alpha_breakpoint_from_pc;
63
64 static gdbarch_frame_args_address_ftype alpha_frame_args_address;
65 static gdbarch_frame_locals_address_ftype alpha_frame_locals_address;
66
67 static gdbarch_skip_prologue_ftype alpha_skip_prologue;
68
69 static gdbarch_get_longjmp_target_ftype alpha_get_longjmp_target;
70
71 struct frame_extra_info
72 {
73 alpha_extra_func_info_t proc_desc;
74 int localoff;
75 int pc_reg;
76 };
77
78 /* FIXME: Some of this code should perhaps be merged with mips-tdep.c. */
79
80 /* Prototypes for local functions. */
81
82 static void alpha_find_saved_regs (struct frame_info *);
83
84 static alpha_extra_func_info_t push_sigtramp_desc (CORE_ADDR low_addr);
85
86 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
87
88 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
89
90 static alpha_extra_func_info_t heuristic_proc_desc (CORE_ADDR,
91 CORE_ADDR,
92 struct frame_info *);
93
94 static alpha_extra_func_info_t find_proc_desc (CORE_ADDR,
95 struct frame_info *);
96
97 #if 0
98 static int alpha_in_lenient_prologue (CORE_ADDR, CORE_ADDR);
99 #endif
100
101 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
102
103 static CORE_ADDR after_prologue (CORE_ADDR pc,
104 alpha_extra_func_info_t proc_desc);
105
106 static int alpha_in_prologue (CORE_ADDR pc,
107 alpha_extra_func_info_t proc_desc);
108
109 static int alpha_about_to_return (CORE_ADDR pc);
110
111 void _initialize_alpha_tdep (void);
112
113 /* Heuristic_proc_start may hunt through the text section for a long
114 time across a 2400 baud serial line. Allows the user to limit this
115 search. */
116 static unsigned int heuristic_fence_post = 0;
117 /* *INDENT-OFF* */
118 /* Layout of a stack frame on the alpha:
119
120 | |
121 pdr members: | 7th ... nth arg, |
122 | `pushed' by caller. |
123 | |
124 ----------------|-------------------------------|<-- old_sp == vfp
125 ^ ^ ^ ^ | |
126 | | | | | |
127 | |localoff | Copies of 1st .. 6th |
128 | | | | | argument if necessary. |
129 | | | v | |
130 | | | --- |-------------------------------|<-- FRAME_LOCALS_ADDRESS
131 | | | | |
132 | | | | Locals and temporaries. |
133 | | | | |
134 | | | |-------------------------------|
135 | | | | |
136 |-fregoffset | Saved float registers. |
137 | | | | F9 |
138 | | | | . |
139 | | | | . |
140 | | | | F2 |
141 | | v | |
142 | | -------|-------------------------------|
143 | | | |
144 | | | Saved registers. |
145 | | | S6 |
146 |-regoffset | . |
147 | | | . |
148 | | | S0 |
149 | | | pdr.pcreg |
150 | v | |
151 | ----------|-------------------------------|
152 | | |
153 frameoffset | Argument build area, gets |
154 | | 7th ... nth arg for any |
155 | | called procedure. |
156 v | |
157 -------------|-------------------------------|<-- sp
158 | |
159 */
160 /* *INDENT-ON* */
161
162 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
163 /* These next two fields are kind of being hijacked. I wonder if
164 iline is too small for the values it needs to hold, if GDB is
165 running on a 32-bit host. */
166 #define PROC_HIGH_ADDR(proc) ((proc)->pdr.iline) /* upper address bound */
167 #define PROC_DUMMY_FRAME(proc) ((proc)->pdr.cbLineOffset) /*CALL_DUMMY frame */
168 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
169 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
170 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
171 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
172 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
173 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
174 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
175 #define PROC_LOCALOFF(proc) ((proc)->pdr.localoff)
176 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
177 #define _PROC_MAGIC_ 0x0F0F0F0F
178 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
179 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
180
181 struct linked_proc_info
182 {
183 struct alpha_extra_func_info info;
184 struct linked_proc_info *next;
185 }
186 *linked_proc_desc_table = NULL;
187 \f
188 static CORE_ADDR
189 alpha_frame_past_sigtramp_frame (struct frame_info *frame, CORE_ADDR pc)
190 {
191 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
192
193 if (tdep->skip_sigtramp_frame != NULL)
194 return (tdep->skip_sigtramp_frame (frame, pc));
195
196 return (0);
197 }
198
199 static LONGEST
200 alpha_dynamic_sigtramp_offset (CORE_ADDR pc)
201 {
202 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
203
204 /* Must be provided by OS/ABI variant code if supported. */
205 if (tdep->dynamic_sigtramp_offset != NULL)
206 return (tdep->dynamic_sigtramp_offset (pc));
207
208 return (-1);
209 }
210
211 #define ALPHA_PROC_SIGTRAMP_MAGIC 0x0e0f0f0f
212
213 /* Return TRUE if the procedure descriptor PROC is a procedure
214 descriptor that refers to a dynamically generated signal
215 trampoline routine. */
216 static int
217 alpha_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
218 {
219 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
220
221 if (tdep->dynamic_sigtramp_offset != NULL)
222 return (proc->pdr.isym == ALPHA_PROC_SIGTRAMP_MAGIC);
223
224 return (0);
225 }
226
227 static void
228 alpha_set_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
229 {
230 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
231
232 if (tdep->dynamic_sigtramp_offset != NULL)
233 proc->pdr.isym = ALPHA_PROC_SIGTRAMP_MAGIC;
234 }
235
236 /* Dynamically create a signal-handler caller procedure descriptor for
237 the signal-handler return code starting at address LOW_ADDR. The
238 descriptor is added to the linked_proc_desc_table. */
239
240 static alpha_extra_func_info_t
241 push_sigtramp_desc (CORE_ADDR low_addr)
242 {
243 struct linked_proc_info *link;
244 alpha_extra_func_info_t proc_desc;
245
246 link = (struct linked_proc_info *)
247 xmalloc (sizeof (struct linked_proc_info));
248 link->next = linked_proc_desc_table;
249 linked_proc_desc_table = link;
250
251 proc_desc = &link->info;
252
253 proc_desc->numargs = 0;
254 PROC_LOW_ADDR (proc_desc) = low_addr;
255 PROC_HIGH_ADDR (proc_desc) = low_addr + 3 * 4;
256 PROC_DUMMY_FRAME (proc_desc) = 0;
257 PROC_FRAME_OFFSET (proc_desc) = 0x298; /* sizeof(struct sigcontext_struct) */
258 PROC_FRAME_REG (proc_desc) = SP_REGNUM;
259 PROC_REG_MASK (proc_desc) = 0xffff;
260 PROC_FREG_MASK (proc_desc) = 0xffff;
261 PROC_PC_REG (proc_desc) = 26;
262 PROC_LOCALOFF (proc_desc) = 0;
263 alpha_set_proc_desc_is_dyn_sigtramp (proc_desc);
264 return (proc_desc);
265 }
266 \f
267
268 static const char *
269 alpha_register_name (int regno)
270 {
271 static char *register_names[] =
272 {
273 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
274 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
275 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
276 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
277 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
278 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
279 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
280 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
281 "pc", "vfp", "unique",
282 };
283
284 if (regno < 0)
285 return (NULL);
286 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
287 return (NULL);
288 return (register_names[regno]);
289 }
290
291 static int
292 alpha_cannot_fetch_register (int regno)
293 {
294 return (regno == DEPRECATED_FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
295 }
296
297 static int
298 alpha_cannot_store_register (int regno)
299 {
300 return (regno == DEPRECATED_FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
301 }
302
303 static int
304 alpha_register_convertible (int regno)
305 {
306 return (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31);
307 }
308
309 static struct type *
310 alpha_register_virtual_type (int regno)
311 {
312 return ((regno >= FP0_REGNUM && regno < (FP0_REGNUM+31))
313 ? builtin_type_double : builtin_type_long);
314 }
315
316 static int
317 alpha_register_byte (int regno)
318 {
319 return (regno * 8);
320 }
321
322 static int
323 alpha_register_raw_size (int regno)
324 {
325 return 8;
326 }
327
328 static int
329 alpha_register_virtual_size (int regno)
330 {
331 return 8;
332 }
333 \f
334
335 static CORE_ADDR
336 alpha_sigcontext_addr (struct frame_info *fi)
337 {
338 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
339
340 if (tdep->sigcontext_addr)
341 return (tdep->sigcontext_addr (fi));
342
343 return (0);
344 }
345
346 /* Guaranteed to set frame->saved_regs to some values (it never leaves it
347 NULL). */
348
349 static void
350 alpha_find_saved_regs (struct frame_info *frame)
351 {
352 int ireg;
353 CORE_ADDR reg_position;
354 unsigned long mask;
355 alpha_extra_func_info_t proc_desc;
356 int returnreg;
357
358 frame_saved_regs_zalloc (frame);
359
360 /* If it is the frame for __sigtramp, the saved registers are located
361 in a sigcontext structure somewhere on the stack. __sigtramp
362 passes a pointer to the sigcontext structure on the stack.
363 If the stack layout for __sigtramp changes, or if sigcontext offsets
364 change, we might have to update this code. */
365 #ifndef SIGFRAME_PC_OFF
366 #define SIGFRAME_PC_OFF (2 * 8)
367 #define SIGFRAME_REGSAVE_OFF (4 * 8)
368 #define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8)
369 #endif
370 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
371 {
372 CORE_ADDR sigcontext_addr;
373
374 sigcontext_addr = alpha_sigcontext_addr (frame);
375 if (sigcontext_addr == 0)
376 {
377 /* Don't know where the sigcontext is; just bail. */
378 return;
379 }
380 for (ireg = 0; ireg < 32; ireg++)
381 {
382 reg_position = sigcontext_addr + SIGFRAME_REGSAVE_OFF + ireg * 8;
383 get_frame_saved_regs (frame)[ireg] = reg_position;
384 }
385 for (ireg = 0; ireg < 32; ireg++)
386 {
387 reg_position = sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + ireg * 8;
388 get_frame_saved_regs (frame)[FP0_REGNUM + ireg] = reg_position;
389 }
390 get_frame_saved_regs (frame)[PC_REGNUM] = sigcontext_addr + SIGFRAME_PC_OFF;
391 return;
392 }
393
394 proc_desc = get_frame_extra_info (frame)->proc_desc;
395 if (proc_desc == NULL)
396 /* I'm not sure how/whether this can happen. Normally when we can't
397 find a proc_desc, we "synthesize" one using heuristic_proc_desc
398 and set the saved_regs right away. */
399 return;
400
401 /* Fill in the offsets for the registers which gen_mask says
402 were saved. */
403
404 reg_position = get_frame_base (frame) + PROC_REG_OFFSET (proc_desc);
405 mask = PROC_REG_MASK (proc_desc);
406
407 returnreg = PROC_PC_REG (proc_desc);
408
409 /* Note that RA is always saved first, regardless of its actual
410 register number. */
411 if (mask & (1 << returnreg))
412 {
413 get_frame_saved_regs (frame)[returnreg] = reg_position;
414 reg_position += 8;
415 mask &= ~(1 << returnreg); /* Clear bit for RA so we
416 don't save again later. */
417 }
418
419 for (ireg = 0; ireg <= 31; ++ireg)
420 if (mask & (1 << ireg))
421 {
422 get_frame_saved_regs (frame)[ireg] = reg_position;
423 reg_position += 8;
424 }
425
426 /* Fill in the offsets for the registers which float_mask says
427 were saved. */
428
429 reg_position = get_frame_base (frame) + PROC_FREG_OFFSET (proc_desc);
430 mask = PROC_FREG_MASK (proc_desc);
431
432 for (ireg = 0; ireg <= 31; ++ireg)
433 if (mask & (1 << ireg))
434 {
435 get_frame_saved_regs (frame)[FP0_REGNUM + ireg] = reg_position;
436 reg_position += 8;
437 }
438
439 get_frame_saved_regs (frame)[PC_REGNUM] = get_frame_saved_regs (frame)[returnreg];
440 }
441
442 static void
443 alpha_frame_init_saved_regs (struct frame_info *fi)
444 {
445 if (get_frame_saved_regs (fi) == NULL)
446 alpha_find_saved_regs (fi);
447 get_frame_saved_regs (fi)[SP_REGNUM] = get_frame_base (fi);
448 }
449
450 static CORE_ADDR
451 alpha_init_frame_pc_first (int fromleaf, struct frame_info *prev)
452 {
453 return (fromleaf
454 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
455 : get_next_frame (prev)
456 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
457 : read_pc ());
458 }
459
460 static CORE_ADDR
461 read_next_frame_reg (struct frame_info *fi, int regno)
462 {
463 for (; fi; fi = get_next_frame (fi))
464 {
465 /* We have to get the saved sp from the sigcontext
466 if it is a signal handler frame. */
467 if (regno == SP_REGNUM && !(get_frame_type (fi) == SIGTRAMP_FRAME))
468 return get_frame_base (fi);
469 else
470 {
471 if (get_frame_saved_regs (fi) == NULL)
472 alpha_find_saved_regs (fi);
473 if (get_frame_saved_regs (fi)[regno])
474 return read_memory_integer (get_frame_saved_regs (fi)[regno], 8);
475 }
476 }
477 return read_register (regno);
478 }
479
480 static CORE_ADDR
481 alpha_frame_saved_pc (struct frame_info *frame)
482 {
483 alpha_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
484 /* We have to get the saved pc from the sigcontext
485 if it is a signal handler frame. */
486 int pcreg = ((get_frame_type (frame) == SIGTRAMP_FRAME)
487 ? PC_REGNUM
488 : get_frame_extra_info (frame)->pc_reg);
489
490 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
491 return read_memory_integer (get_frame_base (frame) - 8, 8);
492
493 return read_next_frame_reg (frame, pcreg);
494 }
495
496 static CORE_ADDR
497 alpha_saved_pc_after_call (struct frame_info *frame)
498 {
499 CORE_ADDR pc = get_frame_pc (frame);
500 CORE_ADDR tmp;
501 alpha_extra_func_info_t proc_desc;
502 int pcreg;
503
504 /* Skip over shared library trampoline if necessary. */
505 tmp = SKIP_TRAMPOLINE_CODE (pc);
506 if (tmp != 0)
507 pc = tmp;
508
509 proc_desc = find_proc_desc (pc, get_next_frame (frame));
510 pcreg = proc_desc ? PROC_PC_REG (proc_desc) : ALPHA_RA_REGNUM;
511
512 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
513 return alpha_frame_saved_pc (frame);
514 else
515 return read_register (pcreg);
516 }
517
518
519 static struct alpha_extra_func_info temp_proc_desc;
520 static CORE_ADDR temp_saved_regs[ALPHA_NUM_REGS];
521
522 /* Nonzero if instruction at PC is a return instruction. "ret
523 $zero,($ra),1" on alpha. */
524
525 static int
526 alpha_about_to_return (CORE_ADDR pc)
527 {
528 return read_memory_integer (pc, 4) == 0x6bfa8001;
529 }
530
531
532
533 /* This fencepost looks highly suspicious to me. Removing it also
534 seems suspicious as it could affect remote debugging across serial
535 lines. */
536
537 static CORE_ADDR
538 heuristic_proc_start (CORE_ADDR pc)
539 {
540 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
541 CORE_ADDR start_pc = pc;
542 CORE_ADDR fence = start_pc - heuristic_fence_post;
543
544 if (start_pc == 0)
545 return 0;
546
547 if (heuristic_fence_post == UINT_MAX
548 || fence < tdep->vm_min_address)
549 fence = tdep->vm_min_address;
550
551 /* search back for previous return */
552 for (start_pc -= 4;; start_pc -= 4)
553 if (start_pc < fence)
554 {
555 /* It's not clear to me why we reach this point when
556 stop_soon, but with this test, at least we
557 don't print out warnings for every child forked (eg, on
558 decstation). 22apr93 rich@cygnus.com. */
559 if (stop_soon == NO_STOP_QUIETLY)
560 {
561 static int blurb_printed = 0;
562
563 if (fence == tdep->vm_min_address)
564 warning ("Hit beginning of text section without finding");
565 else
566 warning ("Hit heuristic-fence-post without finding");
567
568 warning ("enclosing function for address 0x%s", paddr_nz (pc));
569 if (!blurb_printed)
570 {
571 printf_filtered ("\
572 This warning occurs if you are debugging a function without any symbols\n\
573 (for example, in a stripped executable). In that case, you may wish to\n\
574 increase the size of the search with the `set heuristic-fence-post' command.\n\
575 \n\
576 Otherwise, you told GDB there was a function where there isn't one, or\n\
577 (more likely) you have encountered a bug in GDB.\n");
578 blurb_printed = 1;
579 }
580 }
581
582 return 0;
583 }
584 else if (alpha_about_to_return (start_pc))
585 break;
586
587 start_pc += 4; /* skip return */
588 return start_pc;
589 }
590
591 static alpha_extra_func_info_t
592 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
593 struct frame_info *next_frame)
594 {
595 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
596 CORE_ADDR vfp = sp;
597 CORE_ADDR cur_pc;
598 int frame_size;
599 int has_frame_reg = 0;
600 unsigned long reg_mask = 0;
601 int pcreg = -1;
602 int regno;
603
604 if (start_pc == 0)
605 return NULL;
606 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
607 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
608 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
609
610 if (start_pc + 200 < limit_pc)
611 limit_pc = start_pc + 200;
612 frame_size = 0;
613 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
614 {
615 char buf[4];
616 unsigned long word;
617 int status;
618
619 status = read_memory_nobpt (cur_pc, buf, 4);
620 if (status)
621 memory_error (status, cur_pc);
622 word = extract_unsigned_integer (buf, 4);
623
624 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
625 {
626 if (word & 0x8000)
627 {
628 /* Consider only the first stack allocation instruction
629 to contain the static size of the frame. */
630 if (frame_size == 0)
631 frame_size += (-word) & 0xffff;
632 }
633 else
634 /* Exit loop if a positive stack adjustment is found, which
635 usually means that the stack cleanup code in the function
636 epilogue is reached. */
637 break;
638 }
639 else if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
640 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
641 {
642 int reg = (word & 0x03e00000) >> 21;
643 reg_mask |= 1 << reg;
644
645 /* Do not compute the address where the register was saved yet,
646 because we don't know yet if the offset will need to be
647 relative to $sp or $fp (we can not compute the address relative
648 to $sp if $sp is updated during the execution of the current
649 subroutine, for instance when doing some alloca). So just store
650 the offset for the moment, and compute the address later
651 when we know whether this frame has a frame pointer or not.
652 */
653 temp_saved_regs[reg] = (short) word;
654
655 /* Starting with OSF/1-3.2C, the system libraries are shipped
656 without local symbols, but they still contain procedure
657 descriptors without a symbol reference. GDB is currently
658 unable to find these procedure descriptors and uses
659 heuristic_proc_desc instead.
660 As some low level compiler support routines (__div*, __add*)
661 use a non-standard return address register, we have to
662 add some heuristics to determine the return address register,
663 or stepping over these routines will fail.
664 Usually the return address register is the first register
665 saved on the stack, but assembler optimization might
666 rearrange the register saves.
667 So we recognize only a few registers (t7, t9, ra) within
668 the procedure prologue as valid return address registers.
669 If we encounter a return instruction, we extract the
670 the return address register from it.
671
672 FIXME: Rewriting GDB to access the procedure descriptors,
673 e.g. via the minimal symbol table, might obviate this hack. */
674 if (pcreg == -1
675 && cur_pc < (start_pc + 80)
676 && (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
677 || reg == ALPHA_RA_REGNUM))
678 pcreg = reg;
679 }
680 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
681 pcreg = (word >> 16) & 0x1f;
682 else if (word == 0x47de040f || word == 0x47fe040f) /* bis sp,sp fp */
683 {
684 /* ??? I am not sure what instruction is 0x47fe040f, and I
685 am suspecting that there was a typo and should have been
686 0x47fe040f. I'm keeping it in the test above until further
687 investigation */
688 has_frame_reg = 1;
689 vfp = read_next_frame_reg (next_frame, ALPHA_GCC_FP_REGNUM);
690 }
691 }
692 if (pcreg == -1)
693 {
694 /* If we haven't found a valid return address register yet,
695 keep searching in the procedure prologue. */
696 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
697 {
698 char buf[4];
699 unsigned long word;
700
701 if (read_memory_nobpt (cur_pc, buf, 4))
702 break;
703 cur_pc += 4;
704 word = extract_unsigned_integer (buf, 4);
705
706 if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
707 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
708 {
709 int reg = (word & 0x03e00000) >> 21;
710 if (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
711 || reg == ALPHA_RA_REGNUM)
712 {
713 pcreg = reg;
714 break;
715 }
716 }
717 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
718 {
719 pcreg = (word >> 16) & 0x1f;
720 break;
721 }
722 }
723 }
724
725 if (has_frame_reg)
726 PROC_FRAME_REG (&temp_proc_desc) = ALPHA_GCC_FP_REGNUM;
727 else
728 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
729
730 /* At this point, we know which of the Stack Pointer or the Frame Pointer
731 to use as the reference address to compute the saved registers address.
732 But in both cases, the processing above has set vfp to this reference
733 address, so just need to increment the offset of each saved register
734 by this address. */
735 for (regno = 0; regno < NUM_REGS; regno++)
736 {
737 if (reg_mask & 1 << regno)
738 temp_saved_regs[regno] += vfp;
739 }
740
741 PROC_FRAME_OFFSET (&temp_proc_desc) = frame_size;
742 PROC_REG_MASK (&temp_proc_desc) = reg_mask;
743 PROC_PC_REG (&temp_proc_desc) = (pcreg == -1) ? ALPHA_RA_REGNUM : pcreg;
744 PROC_LOCALOFF (&temp_proc_desc) = 0; /* XXX - bogus */
745 return &temp_proc_desc;
746 }
747
748 /* This returns the PC of the first inst after the prologue. If we can't
749 find the prologue, then return 0. */
750
751 static CORE_ADDR
752 after_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
753 {
754 struct symtab_and_line sal;
755 CORE_ADDR func_addr, func_end;
756
757 if (!proc_desc)
758 proc_desc = find_proc_desc (pc, NULL);
759
760 if (proc_desc)
761 {
762 if (alpha_proc_desc_is_dyn_sigtramp (proc_desc))
763 return PROC_LOW_ADDR (proc_desc); /* "prologue" is in kernel */
764
765 /* If function is frameless, then we need to do it the hard way. I
766 strongly suspect that frameless always means prologueless... */
767 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
768 && PROC_FRAME_OFFSET (proc_desc) == 0)
769 return 0;
770 }
771
772 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
773 return 0; /* Unknown */
774
775 sal = find_pc_line (func_addr, 0);
776
777 if (sal.end < func_end)
778 return sal.end;
779
780 /* The line after the prologue is after the end of the function. In this
781 case, tell the caller to find the prologue the hard way. */
782
783 return 0;
784 }
785
786 /* Return non-zero if we *might* be in a function prologue. Return zero if we
787 are definitively *not* in a function prologue. */
788
789 static int
790 alpha_in_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
791 {
792 CORE_ADDR after_prologue_pc;
793
794 after_prologue_pc = after_prologue (pc, proc_desc);
795
796 if (after_prologue_pc == 0
797 || pc < after_prologue_pc)
798 return 1;
799 else
800 return 0;
801 }
802
803 static alpha_extra_func_info_t
804 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
805 {
806 alpha_extra_func_info_t proc_desc;
807 struct block *b;
808 struct symbol *sym;
809 CORE_ADDR startaddr;
810
811 /* Try to get the proc_desc from the linked call dummy proc_descs
812 if the pc is in the call dummy.
813 This is hairy. In the case of nested dummy calls we have to find the
814 right proc_desc, but we might not yet know the frame for the dummy
815 as it will be contained in the proc_desc we are searching for.
816 So we have to find the proc_desc whose frame is closest to the current
817 stack pointer. */
818
819 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
820 {
821 struct linked_proc_info *link;
822 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
823 alpha_extra_func_info_t found_proc_desc = NULL;
824 long min_distance = LONG_MAX;
825
826 for (link = linked_proc_desc_table; link; link = link->next)
827 {
828 long distance = (CORE_ADDR) PROC_DUMMY_FRAME (&link->info) - sp;
829 if (distance > 0 && distance < min_distance)
830 {
831 min_distance = distance;
832 found_proc_desc = &link->info;
833 }
834 }
835 if (found_proc_desc != NULL)
836 return found_proc_desc;
837 }
838
839 b = block_for_pc (pc);
840
841 find_pc_partial_function (pc, NULL, &startaddr, NULL);
842 if (b == NULL)
843 sym = NULL;
844 else
845 {
846 if (startaddr > BLOCK_START (b))
847 /* This is the "pathological" case referred to in a comment in
848 print_frame_info. It might be better to move this check into
849 symbol reading. */
850 sym = NULL;
851 else
852 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE,
853 0, NULL);
854 }
855
856 /* If we never found a PDR for this function in symbol reading, then
857 examine prologues to find the information. */
858 if (sym && ((mips_extra_func_info_t) SYMBOL_VALUE (sym))->pdr.framereg == -1)
859 sym = NULL;
860
861 if (sym)
862 {
863 /* IF this is the topmost frame AND
864 * (this proc does not have debugging information OR
865 * the PC is in the procedure prologue)
866 * THEN create a "heuristic" proc_desc (by analyzing
867 * the actual code) to replace the "official" proc_desc.
868 */
869 proc_desc = (alpha_extra_func_info_t) SYMBOL_VALUE (sym);
870 if (next_frame == NULL)
871 {
872 if (PROC_DESC_IS_DUMMY (proc_desc) || alpha_in_prologue (pc, proc_desc))
873 {
874 alpha_extra_func_info_t found_heuristic =
875 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
876 pc, next_frame);
877 if (found_heuristic)
878 {
879 PROC_LOCALOFF (found_heuristic) =
880 PROC_LOCALOFF (proc_desc);
881 PROC_PC_REG (found_heuristic) = PROC_PC_REG (proc_desc);
882 proc_desc = found_heuristic;
883 }
884 }
885 }
886 }
887 else
888 {
889 long offset;
890
891 /* Is linked_proc_desc_table really necessary? It only seems to be used
892 by procedure call dummys. However, the procedures being called ought
893 to have their own proc_descs, and even if they don't,
894 heuristic_proc_desc knows how to create them! */
895
896 register struct linked_proc_info *link;
897 for (link = linked_proc_desc_table; link; link = link->next)
898 if (PROC_LOW_ADDR (&link->info) <= pc
899 && PROC_HIGH_ADDR (&link->info) > pc)
900 return &link->info;
901
902 /* If PC is inside a dynamically generated sigtramp handler,
903 create and push a procedure descriptor for that code: */
904 offset = alpha_dynamic_sigtramp_offset (pc);
905 if (offset >= 0)
906 return push_sigtramp_desc (pc - offset);
907
908 /* If heuristic_fence_post is non-zero, determine the procedure
909 start address by examining the instructions.
910 This allows us to find the start address of static functions which
911 have no symbolic information, as startaddr would have been set to
912 the preceding global function start address by the
913 find_pc_partial_function call above. */
914 if (startaddr == 0 || heuristic_fence_post != 0)
915 startaddr = heuristic_proc_start (pc);
916
917 proc_desc =
918 heuristic_proc_desc (startaddr, pc, next_frame);
919 }
920 return proc_desc;
921 }
922
923 alpha_extra_func_info_t cached_proc_desc;
924
925 static CORE_ADDR
926 alpha_frame_chain (struct frame_info *frame)
927 {
928 alpha_extra_func_info_t proc_desc;
929 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
930
931 if (saved_pc == 0 || inside_entry_file (saved_pc))
932 return 0;
933
934 proc_desc = find_proc_desc (saved_pc, frame);
935 if (!proc_desc)
936 return 0;
937
938 cached_proc_desc = proc_desc;
939
940 /* Fetch the frame pointer for a dummy frame from the procedure
941 descriptor. */
942 if (PROC_DESC_IS_DUMMY (proc_desc))
943 return (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
944
945 /* If no frame pointer and frame size is zero, we must be at end
946 of stack (or otherwise hosed). If we don't check frame size,
947 we loop forever if we see a zero size frame. */
948 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
949 && PROC_FRAME_OFFSET (proc_desc) == 0
950 /* The previous frame from a sigtramp frame might be frameless
951 and have frame size zero. */
952 && !(get_frame_type (frame) == SIGTRAMP_FRAME))
953 return alpha_frame_past_sigtramp_frame (frame, saved_pc);
954 else
955 return read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
956 + PROC_FRAME_OFFSET (proc_desc);
957 }
958
959 void
960 alpha_print_extra_frame_info (struct frame_info *fi)
961 {
962 if (fi
963 && get_frame_extra_info (fi)
964 && get_frame_extra_info (fi)->proc_desc
965 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
966 printf_filtered (" frame pointer is at %s+%s\n",
967 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
968 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
969 }
970
971 static void
972 alpha_init_extra_frame_info (int fromleaf, struct frame_info *frame)
973 {
974 /* Use proc_desc calculated in frame_chain */
975 alpha_extra_func_info_t proc_desc =
976 get_next_frame (frame)
977 ? cached_proc_desc
978 : find_proc_desc (get_frame_pc (frame), get_next_frame (frame));
979
980 frame_extra_info_zalloc (frame, sizeof (struct frame_extra_info));
981
982 /* NOTE: cagney/2003-01-03: No need to set saved_regs to NULL,
983 always NULL by default. */
984 /* frame->saved_regs = NULL; */
985 get_frame_extra_info (frame)->localoff = 0;
986 get_frame_extra_info (frame)->pc_reg = ALPHA_RA_REGNUM;
987 get_frame_extra_info (frame)->proc_desc = proc_desc == &temp_proc_desc ? 0 : proc_desc;
988 if (proc_desc)
989 {
990 /* Get the locals offset and the saved pc register from the
991 procedure descriptor, they are valid even if we are in the
992 middle of the prologue. */
993 get_frame_extra_info (frame)->localoff = PROC_LOCALOFF (proc_desc);
994 get_frame_extra_info (frame)->pc_reg = PROC_PC_REG (proc_desc);
995
996 /* Fixup frame-pointer - only needed for top frame */
997
998 /* Fetch the frame pointer for a dummy frame from the procedure
999 descriptor. */
1000 if (PROC_DESC_IS_DUMMY (proc_desc))
1001 deprecated_update_frame_base_hack (frame, (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc));
1002
1003 /* This may not be quite right, if proc has a real frame register.
1004 Get the value of the frame relative sp, procedure might have been
1005 interrupted by a signal at it's very start. */
1006 else if (get_frame_pc (frame) == PROC_LOW_ADDR (proc_desc)
1007 && !alpha_proc_desc_is_dyn_sigtramp (proc_desc))
1008 deprecated_update_frame_base_hack (frame, read_next_frame_reg (get_next_frame (frame), SP_REGNUM));
1009 else
1010 deprecated_update_frame_base_hack (frame, read_next_frame_reg (get_next_frame (frame), PROC_FRAME_REG (proc_desc))
1011 + PROC_FRAME_OFFSET (proc_desc));
1012
1013 if (proc_desc == &temp_proc_desc)
1014 {
1015 char *name;
1016
1017 /* Do not set the saved registers for a sigtramp frame,
1018 alpha_find_saved_registers will do that for us. We can't
1019 use (get_frame_type (frame) == SIGTRAMP_FRAME), it is not
1020 yet set. */
1021 /* FIXME: cagney/2002-11-18: This problem will go away once
1022 frame.c:get_prev_frame() is modified to set the frame's
1023 type before calling functions like this. */
1024 find_pc_partial_function (get_frame_pc (frame), &name,
1025 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
1026 if (!PC_IN_SIGTRAMP (get_frame_pc (frame), name))
1027 {
1028 frame_saved_regs_zalloc (frame);
1029 memcpy (get_frame_saved_regs (frame), temp_saved_regs,
1030 SIZEOF_FRAME_SAVED_REGS);
1031 get_frame_saved_regs (frame)[PC_REGNUM]
1032 = get_frame_saved_regs (frame)[ALPHA_RA_REGNUM];
1033 }
1034 }
1035 }
1036 }
1037
1038 static CORE_ADDR
1039 alpha_frame_locals_address (struct frame_info *fi)
1040 {
1041 return (get_frame_base (fi) - get_frame_extra_info (fi)->localoff);
1042 }
1043
1044 static CORE_ADDR
1045 alpha_frame_args_address (struct frame_info *fi)
1046 {
1047 return (get_frame_base (fi) - (ALPHA_NUM_ARG_REGS * 8));
1048 }
1049
1050 /* ALPHA stack frames are almost impenetrable. When execution stops,
1051 we basically have to look at symbol information for the function
1052 that we stopped in, which tells us *which* register (if any) is
1053 the base of the frame pointer, and what offset from that register
1054 the frame itself is at.
1055
1056 This presents a problem when trying to examine a stack in memory
1057 (that isn't executing at the moment), using the "frame" command. We
1058 don't have a PC, nor do we have any registers except SP.
1059
1060 This routine takes two arguments, SP and PC, and tries to make the
1061 cached frames look as if these two arguments defined a frame on the
1062 cache. This allows the rest of info frame to extract the important
1063 arguments without difficulty. */
1064
1065 struct frame_info *
1066 alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
1067 {
1068 if (argc != 2)
1069 error ("ALPHA frame specifications require two arguments: sp and pc");
1070
1071 return create_new_frame (argv[0], argv[1]);
1072 }
1073
1074 /* The alpha passes the first six arguments in the registers, the rest on
1075 the stack. The register arguments are eventually transferred to the
1076 argument transfer area immediately below the stack by the called function
1077 anyway. So we `push' at least six arguments on the stack, `reload' the
1078 argument registers and then adjust the stack pointer to point past the
1079 sixth argument. This algorithm simplifies the passing of a large struct
1080 which extends from the registers to the stack.
1081 If the called function is returning a structure, the address of the
1082 structure to be returned is passed as a hidden first argument. */
1083
1084 static CORE_ADDR
1085 alpha_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1086 int struct_return, CORE_ADDR struct_addr)
1087 {
1088 int i;
1089 int accumulate_size = struct_return ? 8 : 0;
1090 int arg_regs_size = ALPHA_NUM_ARG_REGS * 8;
1091 struct alpha_arg
1092 {
1093 char *contents;
1094 int len;
1095 int offset;
1096 };
1097 struct alpha_arg *alpha_args =
1098 (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
1099 register struct alpha_arg *m_arg;
1100 char raw_buffer[sizeof (CORE_ADDR)];
1101 int required_arg_regs;
1102
1103 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
1104 {
1105 struct value *arg = args[i];
1106 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1107 /* Cast argument to long if necessary as the compiler does it too. */
1108 switch (TYPE_CODE (arg_type))
1109 {
1110 case TYPE_CODE_INT:
1111 case TYPE_CODE_BOOL:
1112 case TYPE_CODE_CHAR:
1113 case TYPE_CODE_RANGE:
1114 case TYPE_CODE_ENUM:
1115 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
1116 {
1117 arg_type = builtin_type_long;
1118 arg = value_cast (arg_type, arg);
1119 }
1120 break;
1121 default:
1122 break;
1123 }
1124 m_arg->len = TYPE_LENGTH (arg_type);
1125 m_arg->offset = accumulate_size;
1126 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
1127 m_arg->contents = VALUE_CONTENTS (arg);
1128 }
1129
1130 /* Determine required argument register loads, loading an argument register
1131 is expensive as it uses three ptrace calls. */
1132 required_arg_regs = accumulate_size / 8;
1133 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
1134 required_arg_regs = ALPHA_NUM_ARG_REGS;
1135
1136 /* Make room for the arguments on the stack. */
1137 if (accumulate_size < arg_regs_size)
1138 accumulate_size = arg_regs_size;
1139 sp -= accumulate_size;
1140
1141 /* Keep sp aligned to a multiple of 16 as the compiler does it too. */
1142 sp &= ~15;
1143
1144 /* `Push' arguments on the stack. */
1145 for (i = nargs; m_arg--, --i >= 0;)
1146 write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
1147 if (struct_return)
1148 {
1149 store_address (raw_buffer, sizeof (CORE_ADDR), struct_addr);
1150 write_memory (sp, raw_buffer, sizeof (CORE_ADDR));
1151 }
1152
1153 /* Load the argument registers. */
1154 for (i = 0; i < required_arg_regs; i++)
1155 {
1156 LONGEST val;
1157
1158 val = read_memory_integer (sp + i * 8, 8);
1159 write_register (ALPHA_A0_REGNUM + i, val);
1160 write_register (ALPHA_FPA0_REGNUM + i, val);
1161 }
1162
1163 return sp + arg_regs_size;
1164 }
1165
1166 static void
1167 alpha_push_dummy_frame (void)
1168 {
1169 int ireg;
1170 struct linked_proc_info *link;
1171 alpha_extra_func_info_t proc_desc;
1172 CORE_ADDR sp = read_register (SP_REGNUM);
1173 CORE_ADDR save_address;
1174 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1175 unsigned long mask;
1176
1177 link = (struct linked_proc_info *) xmalloc (sizeof (struct linked_proc_info));
1178 link->next = linked_proc_desc_table;
1179 linked_proc_desc_table = link;
1180
1181 proc_desc = &link->info;
1182
1183 /*
1184 * The registers we must save are all those not preserved across
1185 * procedure calls.
1186 * In addition, we must save the PC and RA.
1187 *
1188 * Dummy frame layout:
1189 * (high memory)
1190 * Saved PC
1191 * Saved F30
1192 * ...
1193 * Saved F0
1194 * Saved R29
1195 * ...
1196 * Saved R0
1197 * Saved R26 (RA)
1198 * Parameter build area
1199 * (low memory)
1200 */
1201
1202 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<31. */
1203 #define MASK(i,j) ((((LONGEST)1 << ((j)+1)) - 1) ^ (((LONGEST)1 << (i)) - 1))
1204 #define GEN_REG_SAVE_MASK (MASK(0,8) | MASK(16,29))
1205 #define GEN_REG_SAVE_COUNT 24
1206 #define FLOAT_REG_SAVE_MASK (MASK(0,1) | MASK(10,30))
1207 #define FLOAT_REG_SAVE_COUNT 23
1208 /* The special register is the PC as we have no bit for it in the save masks.
1209 alpha_frame_saved_pc knows where the pc is saved in a dummy frame. */
1210 #define SPECIAL_REG_SAVE_COUNT 1
1211
1212 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
1213 PROC_FREG_MASK (proc_desc) = FLOAT_REG_SAVE_MASK;
1214 /* PROC_REG_OFFSET is the offset from the dummy frame to the saved RA,
1215 but keep SP aligned to a multiple of 16. */
1216 PROC_REG_OFFSET (proc_desc) =
1217 -((8 * (SPECIAL_REG_SAVE_COUNT
1218 + GEN_REG_SAVE_COUNT
1219 + FLOAT_REG_SAVE_COUNT)
1220 + 15) & ~15);
1221 PROC_FREG_OFFSET (proc_desc) =
1222 PROC_REG_OFFSET (proc_desc) + 8 * GEN_REG_SAVE_COUNT;
1223
1224 /* Save general registers.
1225 The return address register is the first saved register, all other
1226 registers follow in ascending order.
1227 The PC is saved immediately below the SP. */
1228 save_address = sp + PROC_REG_OFFSET (proc_desc);
1229 store_address (raw_buffer, 8, read_register (ALPHA_RA_REGNUM));
1230 write_memory (save_address, raw_buffer, 8);
1231 save_address += 8;
1232 mask = PROC_REG_MASK (proc_desc) & 0xffffffffL;
1233 for (ireg = 0; mask; ireg++, mask >>= 1)
1234 if (mask & 1)
1235 {
1236 if (ireg == ALPHA_RA_REGNUM)
1237 continue;
1238 store_address (raw_buffer, 8, read_register (ireg));
1239 write_memory (save_address, raw_buffer, 8);
1240 save_address += 8;
1241 }
1242
1243 store_address (raw_buffer, 8, read_register (PC_REGNUM));
1244 write_memory (sp - 8, raw_buffer, 8);
1245
1246 /* Save floating point registers. */
1247 save_address = sp + PROC_FREG_OFFSET (proc_desc);
1248 mask = PROC_FREG_MASK (proc_desc) & 0xffffffffL;
1249 for (ireg = 0; mask; ireg++, mask >>= 1)
1250 if (mask & 1)
1251 {
1252 store_address (raw_buffer, 8, read_register (ireg + FP0_REGNUM));
1253 write_memory (save_address, raw_buffer, 8);
1254 save_address += 8;
1255 }
1256
1257 /* Set and save the frame address for the dummy.
1258 This is tricky. The only registers that are suitable for a frame save
1259 are those that are preserved across procedure calls (s0-s6). But if
1260 a read system call is interrupted and then a dummy call is made
1261 (see testsuite/gdb.t17/interrupt.exp) the dummy call hangs till the read
1262 is satisfied. Then it returns with the s0-s6 registers set to the values
1263 on entry to the read system call and our dummy frame pointer would be
1264 destroyed. So we save the dummy frame in the proc_desc and handle the
1265 retrieval of the frame pointer of a dummy specifically. The frame register
1266 is set to the virtual frame (pseudo) register, it's value will always
1267 be read as zero and will help us to catch any errors in the dummy frame
1268 retrieval code. */
1269 PROC_DUMMY_FRAME (proc_desc) = sp;
1270 PROC_FRAME_REG (proc_desc) = DEPRECATED_FP_REGNUM;
1271 PROC_FRAME_OFFSET (proc_desc) = 0;
1272 sp += PROC_REG_OFFSET (proc_desc);
1273 write_register (SP_REGNUM, sp);
1274
1275 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
1276 PROC_HIGH_ADDR (proc_desc) = PROC_LOW_ADDR (proc_desc) + 4;
1277
1278 SET_PROC_DESC_IS_DUMMY (proc_desc);
1279 PROC_PC_REG (proc_desc) = ALPHA_RA_REGNUM;
1280 }
1281
1282 static void
1283 alpha_pop_frame (void)
1284 {
1285 register int regnum;
1286 struct frame_info *frame = get_current_frame ();
1287 CORE_ADDR new_sp = get_frame_base (frame);
1288
1289 alpha_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
1290
1291 /* we need proc_desc to know how to restore the registers;
1292 if it is NULL, construct (a temporary) one */
1293 if (proc_desc == NULL)
1294 proc_desc = find_proc_desc (get_frame_pc (frame), get_next_frame (frame));
1295
1296 /* Question: should we copy this proc_desc and save it in
1297 frame->proc_desc? If we do, who will free it?
1298 For now, we don't save a copy... */
1299
1300 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
1301 if (get_frame_saved_regs (frame) == NULL)
1302 alpha_find_saved_regs (frame);
1303 if (proc_desc)
1304 {
1305 for (regnum = 32; --regnum >= 0;)
1306 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
1307 write_register (regnum,
1308 read_memory_integer (get_frame_saved_regs (frame)[regnum],
1309 8));
1310 for (regnum = 32; --regnum >= 0;)
1311 if (PROC_FREG_MASK (proc_desc) & (1 << regnum))
1312 write_register (regnum + FP0_REGNUM,
1313 read_memory_integer (get_frame_saved_regs (frame)[regnum + FP0_REGNUM], 8));
1314 }
1315 write_register (SP_REGNUM, new_sp);
1316 flush_cached_frames ();
1317
1318 if (proc_desc && (PROC_DESC_IS_DUMMY (proc_desc)
1319 || alpha_proc_desc_is_dyn_sigtramp (proc_desc)))
1320 {
1321 struct linked_proc_info *pi_ptr, *prev_ptr;
1322
1323 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
1324 pi_ptr != NULL;
1325 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
1326 {
1327 if (&pi_ptr->info == proc_desc)
1328 break;
1329 }
1330
1331 if (pi_ptr == NULL)
1332 error ("Can't locate dummy extra frame info\n");
1333
1334 if (prev_ptr != NULL)
1335 prev_ptr->next = pi_ptr->next;
1336 else
1337 linked_proc_desc_table = pi_ptr->next;
1338
1339 xfree (pi_ptr);
1340 }
1341 }
1342 \f
1343 /* To skip prologues, I use this predicate. Returns either PC itself
1344 if the code at PC does not look like a function prologue; otherwise
1345 returns an address that (if we're lucky) follows the prologue. If
1346 LENIENT, then we must skip everything which is involved in setting
1347 up the frame (it's OK to skip more, just so long as we don't skip
1348 anything which might clobber the registers which are being saved.
1349 Currently we must not skip more on the alpha, but we might need the
1350 lenient stuff some day. */
1351
1352 static CORE_ADDR
1353 alpha_skip_prologue_internal (CORE_ADDR pc, int lenient)
1354 {
1355 unsigned long inst;
1356 int offset;
1357 CORE_ADDR post_prologue_pc;
1358 char buf[4];
1359
1360 /* Silently return the unaltered pc upon memory errors.
1361 This could happen on OSF/1 if decode_line_1 tries to skip the
1362 prologue for quickstarted shared library functions when the
1363 shared library is not yet mapped in.
1364 Reading target memory is slow over serial lines, so we perform
1365 this check only if the target has shared libraries (which all
1366 Alpha targets do). */
1367 if (target_read_memory (pc, buf, 4))
1368 return pc;
1369
1370 /* See if we can determine the end of the prologue via the symbol table.
1371 If so, then return either PC, or the PC after the prologue, whichever
1372 is greater. */
1373
1374 post_prologue_pc = after_prologue (pc, NULL);
1375
1376 if (post_prologue_pc != 0)
1377 return max (pc, post_prologue_pc);
1378
1379 /* Can't determine prologue from the symbol table, need to examine
1380 instructions. */
1381
1382 /* Skip the typical prologue instructions. These are the stack adjustment
1383 instruction and the instructions that save registers on the stack
1384 or in the gcc frame. */
1385 for (offset = 0; offset < 100; offset += 4)
1386 {
1387 int status;
1388
1389 status = read_memory_nobpt (pc + offset, buf, 4);
1390 if (status)
1391 memory_error (status, pc + offset);
1392 inst = extract_unsigned_integer (buf, 4);
1393
1394 /* The alpha has no delay slots. But let's keep the lenient stuff,
1395 we might need it for something else in the future. */
1396 if (lenient && 0)
1397 continue;
1398
1399 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
1400 continue;
1401 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
1402 continue;
1403 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1404 continue;
1405 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
1406 continue;
1407
1408 if ((inst & 0xfc1f0000) == 0xb41e0000
1409 && (inst & 0xffff0000) != 0xb7fe0000)
1410 continue; /* stq reg,n($sp) */
1411 /* reg != $zero */
1412 if ((inst & 0xfc1f0000) == 0x9c1e0000
1413 && (inst & 0xffff0000) != 0x9ffe0000)
1414 continue; /* stt reg,n($sp) */
1415 /* reg != $zero */
1416 if (inst == 0x47de040f) /* bis sp,sp,fp */
1417 continue;
1418
1419 break;
1420 }
1421 return pc + offset;
1422 }
1423
1424 static CORE_ADDR
1425 alpha_skip_prologue (CORE_ADDR addr)
1426 {
1427 return (alpha_skip_prologue_internal (addr, 0));
1428 }
1429
1430 #if 0
1431 /* Is address PC in the prologue (loosely defined) for function at
1432 STARTADDR? */
1433
1434 static int
1435 alpha_in_lenient_prologue (CORE_ADDR startaddr, CORE_ADDR pc)
1436 {
1437 CORE_ADDR end_prologue = alpha_skip_prologue_internal (startaddr, 1);
1438 return pc >= startaddr && pc < end_prologue;
1439 }
1440 #endif
1441
1442 /* The alpha needs a conversion between register and memory format if
1443 the register is a floating point register and
1444 memory format is float, as the register format must be double
1445 or
1446 memory format is an integer with 4 bytes or less, as the representation
1447 of integers in floating point registers is different. */
1448 static void
1449 alpha_register_convert_to_virtual (int regnum, struct type *valtype,
1450 char *raw_buffer, char *virtual_buffer)
1451 {
1452 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1453 {
1454 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (regnum));
1455 return;
1456 }
1457
1458 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1459 {
1460 double d = deprecated_extract_floating (raw_buffer, REGISTER_RAW_SIZE (regnum));
1461 deprecated_store_floating (virtual_buffer, TYPE_LENGTH (valtype), d);
1462 }
1463 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1464 {
1465 ULONGEST l;
1466 l = extract_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum));
1467 l = ((l >> 32) & 0xc0000000) | ((l >> 29) & 0x3fffffff);
1468 store_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype), l);
1469 }
1470 else
1471 error ("Cannot retrieve value from floating point register");
1472 }
1473
1474 static void
1475 alpha_register_convert_to_raw (struct type *valtype, int regnum,
1476 char *virtual_buffer, char *raw_buffer)
1477 {
1478 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1479 {
1480 memcpy (raw_buffer, virtual_buffer, REGISTER_RAW_SIZE (regnum));
1481 return;
1482 }
1483
1484 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1485 {
1486 double d = deprecated_extract_floating (virtual_buffer, TYPE_LENGTH (valtype));
1487 deprecated_store_floating (raw_buffer, REGISTER_RAW_SIZE (regnum), d);
1488 }
1489 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1490 {
1491 ULONGEST l;
1492 if (TYPE_UNSIGNED (valtype))
1493 l = extract_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype));
1494 else
1495 l = extract_signed_integer (virtual_buffer, TYPE_LENGTH (valtype));
1496 l = ((l & 0xc0000000) << 32) | ((l & 0x3fffffff) << 29);
1497 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), l);
1498 }
1499 else
1500 error ("Cannot store value in floating point register");
1501 }
1502
1503 static const unsigned char *
1504 alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1505 {
1506 static const unsigned char alpha_breakpoint[] =
1507 { 0x80, 0, 0, 0 }; /* call_pal bpt */
1508
1509 *lenptr = sizeof(alpha_breakpoint);
1510 return (alpha_breakpoint);
1511 }
1512
1513 /* Given a return value in `regbuf' with a type `valtype',
1514 extract and copy its value into `valbuf'. */
1515
1516 static void
1517 alpha_extract_return_value (struct type *valtype,
1518 char regbuf[ALPHA_REGISTER_BYTES], char *valbuf)
1519 {
1520 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1521 alpha_register_convert_to_virtual (FP0_REGNUM, valtype,
1522 regbuf + REGISTER_BYTE (FP0_REGNUM),
1523 valbuf);
1524 else
1525 memcpy (valbuf, regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1526 TYPE_LENGTH (valtype));
1527 }
1528
1529 /* Given a return value in `regbuf' with a type `valtype',
1530 write its value into the appropriate register. */
1531
1532 static void
1533 alpha_store_return_value (struct type *valtype, char *valbuf)
1534 {
1535 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1536 int regnum = ALPHA_V0_REGNUM;
1537 int length = TYPE_LENGTH (valtype);
1538
1539 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1540 {
1541 regnum = FP0_REGNUM;
1542 length = REGISTER_RAW_SIZE (regnum);
1543 alpha_register_convert_to_raw (valtype, regnum, valbuf, raw_buffer);
1544 }
1545 else
1546 memcpy (raw_buffer, valbuf, length);
1547
1548 deprecated_write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, length);
1549 }
1550
1551 /* Just like reinit_frame_cache, but with the right arguments to be
1552 callable as an sfunc. */
1553
1554 static void
1555 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1556 {
1557 reinit_frame_cache ();
1558 }
1559
1560 /* This is the definition of CALL_DUMMY_ADDRESS. It's a heuristic that is used
1561 to find a convenient place in the text segment to stick a breakpoint to
1562 detect the completion of a target function call (ala call_function_by_hand).
1563 */
1564
1565 CORE_ADDR
1566 alpha_call_dummy_address (void)
1567 {
1568 CORE_ADDR entry;
1569 struct minimal_symbol *sym;
1570
1571 entry = entry_point_address ();
1572
1573 if (entry != 0)
1574 return entry;
1575
1576 sym = lookup_minimal_symbol ("_Prelude", NULL, symfile_objfile);
1577
1578 if (!sym || MSYMBOL_TYPE (sym) != mst_text)
1579 return 0;
1580 else
1581 return SYMBOL_VALUE_ADDRESS (sym) + 4;
1582 }
1583
1584 static void
1585 alpha_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1586 struct value **args, struct type *type, int gcc_p)
1587 {
1588 CORE_ADDR bp_address = CALL_DUMMY_ADDRESS ();
1589
1590 if (bp_address == 0)
1591 error ("no place to put call");
1592 write_register (ALPHA_RA_REGNUM, bp_address);
1593 write_register (ALPHA_T12_REGNUM, fun);
1594 }
1595
1596 /* On the Alpha, the call dummy code is nevery copied to user space
1597 (see alpha_fix_call_dummy() above). The contents of this do not
1598 matter. */
1599 LONGEST alpha_call_dummy_words[] = { 0 };
1600
1601 static int
1602 alpha_use_struct_convention (int gcc_p, struct type *type)
1603 {
1604 /* Structures are returned by ref in extra arg0. */
1605 return 1;
1606 }
1607
1608 static void
1609 alpha_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1610 {
1611 /* Store the address of the place in which to copy the structure the
1612 subroutine will return. Handled by alpha_push_arguments. */
1613 }
1614
1615 static CORE_ADDR
1616 alpha_extract_struct_value_address (char *regbuf)
1617 {
1618 return (extract_address (regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1619 REGISTER_RAW_SIZE (ALPHA_V0_REGNUM)));
1620 }
1621
1622 /* Figure out where the longjmp will land.
1623 We expect the first arg to be a pointer to the jmp_buf structure from
1624 which we extract the PC (JB_PC) that we will land at. The PC is copied
1625 into the "pc". This routine returns true on success. */
1626
1627 static int
1628 alpha_get_longjmp_target (CORE_ADDR *pc)
1629 {
1630 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1631 CORE_ADDR jb_addr;
1632 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1633
1634 jb_addr = read_register (ALPHA_A0_REGNUM);
1635
1636 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
1637 raw_buffer, tdep->jb_elt_size))
1638 return 0;
1639
1640 *pc = extract_address (raw_buffer, tdep->jb_elt_size);
1641 return 1;
1642 }
1643
1644 /* alpha_software_single_step() is called just before we want to resume
1645 the inferior, if we want to single-step it but there is no hardware
1646 or kernel single-step support (NetBSD on Alpha, for example). We find
1647 the target of the coming instruction and breakpoint it.
1648
1649 single_step is also called just after the inferior stops. If we had
1650 set up a simulated single-step, we undo our damage. */
1651
1652 static CORE_ADDR
1653 alpha_next_pc (CORE_ADDR pc)
1654 {
1655 unsigned int insn;
1656 unsigned int op;
1657 int offset;
1658 LONGEST rav;
1659
1660 insn = read_memory_unsigned_integer (pc, sizeof (insn));
1661
1662 /* Opcode is top 6 bits. */
1663 op = (insn >> 26) & 0x3f;
1664
1665 if (op == 0x1a)
1666 {
1667 /* Jump format: target PC is:
1668 RB & ~3 */
1669 return (read_register ((insn >> 16) & 0x1f) & ~3);
1670 }
1671
1672 if ((op & 0x30) == 0x30)
1673 {
1674 /* Branch format: target PC is:
1675 (new PC) + (4 * sext(displacement)) */
1676 if (op == 0x30 || /* BR */
1677 op == 0x34) /* BSR */
1678 {
1679 branch_taken:
1680 offset = (insn & 0x001fffff);
1681 if (offset & 0x00100000)
1682 offset |= 0xffe00000;
1683 offset *= 4;
1684 return (pc + 4 + offset);
1685 }
1686
1687 /* Need to determine if branch is taken; read RA. */
1688 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1689 switch (op)
1690 {
1691 case 0x38: /* BLBC */
1692 if ((rav & 1) == 0)
1693 goto branch_taken;
1694 break;
1695 case 0x3c: /* BLBS */
1696 if (rav & 1)
1697 goto branch_taken;
1698 break;
1699 case 0x39: /* BEQ */
1700 if (rav == 0)
1701 goto branch_taken;
1702 break;
1703 case 0x3d: /* BNE */
1704 if (rav != 0)
1705 goto branch_taken;
1706 break;
1707 case 0x3a: /* BLT */
1708 if (rav < 0)
1709 goto branch_taken;
1710 break;
1711 case 0x3b: /* BLE */
1712 if (rav <= 0)
1713 goto branch_taken;
1714 break;
1715 case 0x3f: /* BGT */
1716 if (rav > 0)
1717 goto branch_taken;
1718 break;
1719 case 0x3e: /* BGE */
1720 if (rav >= 0)
1721 goto branch_taken;
1722 break;
1723 }
1724 }
1725
1726 /* Not a branch or branch not taken; target PC is:
1727 pc + 4 */
1728 return (pc + 4);
1729 }
1730
1731 void
1732 alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1733 {
1734 static CORE_ADDR next_pc;
1735 typedef char binsn_quantum[BREAKPOINT_MAX];
1736 static binsn_quantum break_mem;
1737 CORE_ADDR pc;
1738
1739 if (insert_breakpoints_p)
1740 {
1741 pc = read_pc ();
1742 next_pc = alpha_next_pc (pc);
1743
1744 target_insert_breakpoint (next_pc, break_mem);
1745 }
1746 else
1747 {
1748 target_remove_breakpoint (next_pc, break_mem);
1749 write_pc (next_pc);
1750 }
1751 }
1752
1753 \f
1754
1755 /* Initialize the current architecture based on INFO. If possible, re-use an
1756 architecture from ARCHES, which is a list of architectures already created
1757 during this debugging session.
1758
1759 Called e.g. at program startup, when reading a core file, and when reading
1760 a binary file. */
1761
1762 static struct gdbarch *
1763 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1764 {
1765 struct gdbarch_tdep *tdep;
1766 struct gdbarch *gdbarch;
1767
1768 /* Try to determine the ABI of the object we are loading. */
1769 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1770 {
1771 /* If it's an ECOFF file, assume it's OSF/1. */
1772 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1773 info.osabi = GDB_OSABI_OSF1;
1774 }
1775
1776 /* Find a candidate among extant architectures. */
1777 arches = gdbarch_list_lookup_by_info (arches, &info);
1778 if (arches != NULL)
1779 return arches->gdbarch;
1780
1781 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1782 gdbarch = gdbarch_alloc (&info, tdep);
1783
1784 /* Lowest text address. This is used by heuristic_proc_start() to
1785 decide when to stop looking. */
1786 tdep->vm_min_address = (CORE_ADDR) 0x120000000;
1787
1788 tdep->dynamic_sigtramp_offset = NULL;
1789 tdep->skip_sigtramp_frame = NULL;
1790 tdep->sigcontext_addr = NULL;
1791
1792 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1793
1794 /* Type sizes */
1795 set_gdbarch_short_bit (gdbarch, 16);
1796 set_gdbarch_int_bit (gdbarch, 32);
1797 set_gdbarch_long_bit (gdbarch, 64);
1798 set_gdbarch_long_long_bit (gdbarch, 64);
1799 set_gdbarch_float_bit (gdbarch, 32);
1800 set_gdbarch_double_bit (gdbarch, 64);
1801 set_gdbarch_long_double_bit (gdbarch, 64);
1802 set_gdbarch_ptr_bit (gdbarch, 64);
1803
1804 /* Register info */
1805 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1806 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1807 set_gdbarch_deprecated_fp_regnum (gdbarch, ALPHA_FP_REGNUM);
1808 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1809 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1810
1811 set_gdbarch_register_name (gdbarch, alpha_register_name);
1812 set_gdbarch_deprecated_register_size (gdbarch, ALPHA_REGISTER_SIZE);
1813 set_gdbarch_register_bytes (gdbarch, ALPHA_REGISTER_BYTES);
1814 set_gdbarch_register_byte (gdbarch, alpha_register_byte);
1815 set_gdbarch_register_raw_size (gdbarch, alpha_register_raw_size);
1816 set_gdbarch_deprecated_max_register_raw_size (gdbarch, ALPHA_MAX_REGISTER_RAW_SIZE);
1817 set_gdbarch_register_virtual_size (gdbarch, alpha_register_virtual_size);
1818 set_gdbarch_deprecated_max_register_virtual_size (gdbarch,
1819 ALPHA_MAX_REGISTER_VIRTUAL_SIZE);
1820 set_gdbarch_register_virtual_type (gdbarch, alpha_register_virtual_type);
1821
1822 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1823 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1824
1825 set_gdbarch_register_convertible (gdbarch, alpha_register_convertible);
1826 set_gdbarch_register_convert_to_virtual (gdbarch,
1827 alpha_register_convert_to_virtual);
1828 set_gdbarch_register_convert_to_raw (gdbarch, alpha_register_convert_to_raw);
1829
1830 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1831
1832 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1833 set_gdbarch_frameless_function_invocation (gdbarch,
1834 generic_frameless_function_invocation_not);
1835
1836 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, alpha_saved_pc_after_call);
1837
1838 set_gdbarch_deprecated_frame_chain (gdbarch, alpha_frame_chain);
1839 set_gdbarch_deprecated_frame_saved_pc (gdbarch, alpha_frame_saved_pc);
1840
1841 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, alpha_frame_init_saved_regs);
1842
1843 set_gdbarch_use_struct_convention (gdbarch, alpha_use_struct_convention);
1844 set_gdbarch_deprecated_extract_return_value (gdbarch, alpha_extract_return_value);
1845
1846 set_gdbarch_deprecated_store_struct_return (gdbarch, alpha_store_struct_return);
1847 set_gdbarch_deprecated_store_return_value (gdbarch, alpha_store_return_value);
1848 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
1849 alpha_extract_struct_value_address);
1850
1851 /* Settings for calling functions in the inferior. */
1852 set_gdbarch_deprecated_use_generic_dummy_frames (gdbarch, 0);
1853 set_gdbarch_deprecated_push_arguments (gdbarch, alpha_push_arguments);
1854 set_gdbarch_deprecated_pop_frame (gdbarch, alpha_pop_frame);
1855
1856 /* On the Alpha, the call dummy code is never copied to user space,
1857 stopping the user call is achieved via a bp_call_dummy breakpoint.
1858 But we need a fake CALL_DUMMY definition to enable the proper
1859 call_function_by_hand and to avoid zero length array warnings. */
1860 set_gdbarch_deprecated_call_dummy_words (gdbarch, alpha_call_dummy_words);
1861 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, 0);
1862 set_gdbarch_frame_args_address (gdbarch, alpha_frame_args_address);
1863 set_gdbarch_frame_locals_address (gdbarch, alpha_frame_locals_address);
1864 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, alpha_init_extra_frame_info);
1865
1866 /* Alpha OSF/1 inhibits execution of code on the stack. But there is
1867 no need for a dummy on the Alpha. PUSH_ARGUMENTS takes care of all
1868 argument handling and bp_call_dummy takes care of stopping the dummy. */
1869 set_gdbarch_call_dummy_address (gdbarch, alpha_call_dummy_address);
1870 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
1871 set_gdbarch_deprecated_push_dummy_frame (gdbarch, alpha_push_dummy_frame);
1872 /* Should be using push_dummy_call. */
1873 set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp);
1874 set_gdbarch_deprecated_fix_call_dummy (gdbarch, alpha_fix_call_dummy);
1875 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
1876 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, alpha_init_frame_pc_first);
1877
1878 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1879 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1880
1881 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1882 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1883
1884 set_gdbarch_function_start_offset (gdbarch, 0);
1885 set_gdbarch_frame_args_skip (gdbarch, 0);
1886
1887 /* Hook in ABI-specific overrides, if they have been registered. */
1888 gdbarch_init_osabi (info, gdbarch);
1889
1890 /* Now that we have tuned the configuration, set a few final things
1891 based on what the OS ABI has told us. */
1892
1893 if (tdep->jb_pc >= 0)
1894 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1895
1896 return gdbarch;
1897 }
1898
1899 static void
1900 alpha_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1901 {
1902 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1903
1904 if (tdep == NULL)
1905 return;
1906
1907 fprintf_unfiltered (file,
1908 "alpha_dump_tdep: vm_min_address = 0x%lx\n",
1909 (long) tdep->vm_min_address);
1910
1911 fprintf_unfiltered (file,
1912 "alpha_dump_tdep: jb_pc = %d\n",
1913 tdep->jb_pc);
1914 fprintf_unfiltered (file,
1915 "alpha_dump_tdep: jb_elt_size = %ld\n",
1916 (long) tdep->jb_elt_size);
1917 }
1918
1919 void
1920 _initialize_alpha_tdep (void)
1921 {
1922 struct cmd_list_element *c;
1923
1924 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, alpha_dump_tdep);
1925
1926 deprecated_tm_print_insn = print_insn_alpha;
1927
1928 /* Let the user set the fence post for heuristic_proc_start. */
1929
1930 /* We really would like to have both "0" and "unlimited" work, but
1931 command.c doesn't deal with that. So make it a var_zinteger
1932 because the user can always use "999999" or some such for unlimited. */
1933 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
1934 (char *) &heuristic_fence_post,
1935 "\
1936 Set the distance searched for the start of a function.\n\
1937 If you are debugging a stripped executable, GDB needs to search through the\n\
1938 program for the start of a function. This command sets the distance of the\n\
1939 search. The only need to set it is when debugging a stripped executable.",
1940 &setlist);
1941 /* We need to throw away the frame cache when we set this, since it
1942 might change our ability to get backtraces. */
1943 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
1944 add_show_from_set (c, &showlist);
1945 }
This page took 0.129361 seconds and 4 git commands to generate.