* config/obj-coffbfd.c (fill_section): Don't set NOLOAD bit for
[deliverable/binutils-gdb.git] / gdb / am29k-tdep.c
1 /* Target-machine dependent code for the AMD 29000
2 Copyright 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by Jim Kingdon.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "symtab.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28
29 /* If all these bits in an instruction word are zero, it is a "tag word"
30 which precedes a function entry point and gives stack traceback info.
31 This used to be defined as 0xff000000, but that treated 0x00000deb as
32 a tag word, while it is really used as a breakpoint. */
33 #define TAGWORD_ZERO_MASK 0xff00f800
34
35 extern CORE_ADDR text_start; /* FIXME, kludge... */
36
37 /* The user-settable top of the register stack in virtual memory. We
38 won't attempt to access any stored registers above this address, if set
39 nonzero. */
40
41 static CORE_ADDR rstack_high_address = UINT_MAX;
42
43 /* Structure to hold cached info about function prologues. */
44 struct prologue_info
45 {
46 CORE_ADDR pc; /* First addr after fn prologue */
47 unsigned rsize, msize; /* register stack frame size, mem stack ditto */
48 unsigned mfp_used : 1; /* memory frame pointer used */
49 unsigned rsize_valid : 1; /* Validity bits for the above */
50 unsigned msize_valid : 1;
51 unsigned mfp_valid : 1;
52 };
53
54 /* Examine the prologue of a function which starts at PC. Return
55 the first addess past the prologue. If MSIZE is non-NULL, then
56 set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
57 then set *RSIZE to the register stack frame size (not including
58 incoming arguments and the return address & frame pointer stored
59 with them). If no prologue is found, *RSIZE is set to zero.
60 If no prologue is found, or a prologue which doesn't involve
61 allocating a memory stack frame, then set *MSIZE to zero.
62
63 Note that both msize and rsize are in bytes. This is not consistent
64 with the _User's Manual_ with respect to rsize, but it is much more
65 convenient.
66
67 If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
68 frame pointer is being used. */
69 CORE_ADDR
70 examine_prologue (pc, rsize, msize, mfp_used)
71 CORE_ADDR pc;
72 unsigned *msize;
73 unsigned *rsize;
74 int *mfp_used;
75 {
76 long insn;
77 CORE_ADDR p = pc;
78 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
79 struct prologue_info *mi = 0;
80
81 if (msymbol != NULL)
82 mi = (struct prologue_info *) msymbol -> info;
83
84 if (mi != 0)
85 {
86 int valid = 1;
87 if (rsize != NULL)
88 {
89 *rsize = mi->rsize;
90 valid &= mi->rsize_valid;
91 }
92 if (msize != NULL)
93 {
94 *msize = mi->msize;
95 valid &= mi->msize_valid;
96 }
97 if (mfp_used != NULL)
98 {
99 *mfp_used = mi->mfp_used;
100 valid &= mi->mfp_valid;
101 }
102 if (valid)
103 return mi->pc;
104 }
105
106 if (rsize != NULL)
107 *rsize = 0;
108 if (msize != NULL)
109 *msize = 0;
110 if (mfp_used != NULL)
111 *mfp_used = 0;
112
113 /* Prologue must start with subtracting a constant from gr1.
114 Normally this is sub gr1,gr1,<rsize * 4>. */
115 insn = read_memory_integer (p, 4);
116 if ((insn & 0xffffff00) != 0x25010100)
117 {
118 /* If the frame is large, instead of a single instruction it
119 might be a pair of instructions:
120 const <reg>, <rsize * 4>
121 sub gr1,gr1,<reg>
122 */
123 int reg;
124 /* Possible value for rsize. */
125 unsigned int rsize0;
126
127 if ((insn & 0xff000000) != 0x03000000)
128 {
129 p = pc;
130 goto done;
131 }
132 reg = (insn >> 8) & 0xff;
133 rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
134 p += 4;
135 insn = read_memory_integer (p, 4);
136 if ((insn & 0xffffff00) != 0x24010100
137 || (insn & 0xff) != reg)
138 {
139 p = pc;
140 goto done;
141 }
142 if (rsize != NULL)
143 *rsize = rsize0;
144 }
145 else
146 {
147 if (rsize != NULL)
148 *rsize = (insn & 0xff);
149 }
150 p += 4;
151
152 /* Next instruction must be asgeu V_SPILL,gr1,rab.
153 * We don't check the vector number to allow for kernel debugging. The
154 * kernel will use a different trap number.
155 */
156 insn = read_memory_integer (p, 4);
157 if ((insn & 0xff00ffff) != (0x5e000100|RAB_HW_REGNUM))
158 {
159 p = pc;
160 goto done;
161 }
162 p += 4;
163
164 /* Next instruction usually sets the frame pointer (lr1) by adding
165 <size * 4> from gr1. However, this can (and high C does) be
166 deferred until anytime before the first function call. So it is
167 OK if we don't see anything which sets lr1.
168 To allow for alternate register sets (gcc -mkernel-registers) the msp
169 register number is a compile time constant. */
170
171 /* Normally this is just add lr1,gr1,<size * 4>. */
172 insn = read_memory_integer (p, 4);
173 if ((insn & 0xffffff00) == 0x15810100)
174 p += 4;
175 else
176 {
177 /* However, for large frames it can be
178 const <reg>, <size *4>
179 add lr1,gr1,<reg>
180 */
181 int reg;
182 CORE_ADDR q;
183
184 if ((insn & 0xff000000) == 0x03000000)
185 {
186 reg = (insn >> 8) & 0xff;
187 q = p + 4;
188 insn = read_memory_integer (q, 4);
189 if ((insn & 0xffffff00) == 0x14810100
190 && (insn & 0xff) == reg)
191 p = q;
192 }
193 }
194
195 /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
196 frame pointer is in use. We just check for add lr<anything>,msp,0;
197 we don't check this rsize against the first instruction, and
198 we don't check that the trace-back tag indicates a memory frame pointer
199 is in use.
200 To allow for alternate register sets (gcc -mkernel-registers) the msp
201 register number is a compile time constant.
202
203 The recommended instruction is actually "sll lr<whatever>,msp,0".
204 We check for that, too. Originally Jim Kingdon's code seemed
205 to be looking for a "sub" instruction here, but the mask was set
206 up to lose all the time. */
207 insn = read_memory_integer (p, 4);
208 if (((insn & 0xff80ffff) == (0x15800000|(MSP_HW_REGNUM<<8))) /* add */
209 || ((insn & 0xff80ffff) == (0x81800000|(MSP_HW_REGNUM<<8)))) /* sll */
210 {
211 p += 4;
212 if (mfp_used != NULL)
213 *mfp_used = 1;
214 }
215
216 /* Next comes a subtraction from msp to allocate a memory frame,
217 but only if a memory frame is
218 being used. We don't check msize against the trace-back tag.
219
220 To allow for alternate register sets (gcc -mkernel-registers) the msp
221 register number is a compile time constant.
222
223 Normally this is just
224 sub msp,msp,<msize>
225 */
226 insn = read_memory_integer (p, 4);
227 if ((insn & 0xffffff00) ==
228 (0x25000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8)))
229 {
230 p += 4;
231 if (msize != NULL)
232 *msize = insn & 0xff;
233 }
234 else
235 {
236 /* For large frames, instead of a single instruction it might
237 be
238
239 const <reg>, <msize>
240 consth <reg>, <msize> ; optional
241 sub msp,msp,<reg>
242 */
243 int reg;
244 unsigned msize0;
245 CORE_ADDR q = p;
246
247 if ((insn & 0xff000000) == 0x03000000)
248 {
249 reg = (insn >> 8) & 0xff;
250 msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
251 q += 4;
252 insn = read_memory_integer (q, 4);
253 /* Check for consth. */
254 if ((insn & 0xff000000) == 0x02000000
255 && (insn & 0x0000ff00) == reg)
256 {
257 msize0 |= (insn << 8) & 0xff000000;
258 msize0 |= (insn << 16) & 0x00ff0000;
259 q += 4;
260 insn = read_memory_integer (q, 4);
261 }
262 /* Check for sub msp,msp,<reg>. */
263 if ((insn & 0xffffff00) ==
264 (0x24000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8))
265 && (insn & 0xff) == reg)
266 {
267 p = q + 4;
268 if (msize != NULL)
269 *msize = msize0;
270 }
271 }
272 }
273
274 done:
275 if (msymbol != NULL)
276 {
277 if (mi == 0)
278 {
279 /* Add a new cache entry. */
280 mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info));
281 msymbol -> info = (char *)mi;
282 mi->rsize_valid = 0;
283 mi->msize_valid = 0;
284 mi->mfp_valid = 0;
285 }
286 /* else, cache entry exists, but info is incomplete. */
287 mi->pc = p;
288 if (rsize != NULL)
289 {
290 mi->rsize = *rsize;
291 mi->rsize_valid = 1;
292 }
293 if (msize != NULL)
294 {
295 mi->msize = *msize;
296 mi->msize_valid = 1;
297 }
298 if (mfp_used != NULL)
299 {
300 mi->mfp_used = *mfp_used;
301 mi->mfp_valid = 1;
302 }
303 }
304 return p;
305 }
306
307 /* Advance PC across any function entry prologue instructions
308 to reach some "real" code. */
309
310 CORE_ADDR
311 skip_prologue (pc)
312 CORE_ADDR pc;
313 {
314 return examine_prologue (pc, (unsigned *)NULL, (unsigned *)NULL,
315 (int *)NULL);
316 }
317 /*
318 * Examine the one or two word tag at the beginning of a function.
319 * The tag word is expect to be at 'p', if it is not there, we fail
320 * by returning 0. The documentation for the tag word was taken from
321 * page 7-15 of the 29050 User's Manual. We are assuming that the
322 * m bit is in bit 22 of the tag word, which seems to be the agreed upon
323 * convention today (1/15/92).
324 * msize is return in bytes.
325 */
326 static int /* 0/1 - failure/success of finding the tag word */
327 examine_tag(p, is_trans, argcount, msize, mfp_used)
328 CORE_ADDR p;
329 int *is_trans;
330 int *argcount;
331 unsigned *msize;
332 int *mfp_used;
333 {
334 unsigned int tag1, tag2;
335
336 tag1 = read_memory_integer (p, 4);
337 if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */
338 return 0;
339 if (tag1 & (1<<23)) /* A two word tag */
340 {
341 tag2 = read_memory_integer (p+4, 4);
342 if (msize)
343 *msize = tag2;
344 }
345 else /* A one word tag */
346 {
347 if (msize)
348 *msize = tag1 & 0x7ff;
349 }
350 if (is_trans)
351 *is_trans = ((tag1 & (1<<21)) ? 1 : 0);
352 if (argcount)
353 *argcount = (tag1 >> 16) & 0x1f;
354 if (mfp_used)
355 *mfp_used = ((tag1 & (1<<22)) ? 1 : 0);
356 return(1);
357 }
358
359 /* Initialize the frame. In addition to setting "extra" frame info,
360 we also set ->frame because we use it in a nonstandard way, and ->pc
361 because we need to know it to get the other stuff. See the diagram
362 of stacks and the frame cache in tm-29k.h for more detail. */
363 static void
364 init_frame_info (innermost_frame, fci)
365 int innermost_frame;
366 struct frame_info *fci;
367 {
368 CORE_ADDR p;
369 long insn;
370 unsigned rsize;
371 unsigned msize;
372 int mfp_used, trans;
373 struct symbol *func;
374
375 p = fci->pc;
376
377 if (innermost_frame)
378 fci->frame = read_register (GR1_REGNUM);
379 else
380 fci->frame = fci->next_frame + fci->next->rsize;
381
382 #if CALL_DUMMY_LOCATION == ON_STACK
383 This wont work;
384 #else
385 if (PC_IN_CALL_DUMMY (p, 0, 0))
386 #endif
387 {
388 fci->rsize = DUMMY_FRAME_RSIZE;
389 /* This doesn't matter since we never try to get locals or args
390 from a dummy frame. */
391 fci->msize = 0;
392 /* Dummy frames always use a memory frame pointer. */
393 fci->saved_msp =
394 read_register_stack_integer (fci->frame + DUMMY_FRAME_RSIZE - 4, 4);
395 fci->flags |= (TRANSPARENT|MFP_USED);
396 return;
397 }
398
399 func = find_pc_function (p);
400 if (func != NULL)
401 p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
402 else
403 {
404 /* Search backward to find the trace-back tag. However,
405 do not trace back beyond the start of the text segment
406 (just as a sanity check to avoid going into never-never land). */
407 while (p >= text_start
408 && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
409 p -= 4;
410
411 if (p < text_start)
412 {
413 /* Couldn't find the trace-back tag.
414 Something strange is going on. */
415 fci->saved_msp = 0;
416 fci->rsize = 0;
417 fci->msize = 0;
418 fci->flags = TRANSPARENT;
419 return;
420 }
421 else
422 /* Advance to the first word of the function, i.e. the word
423 after the trace-back tag. */
424 p += 4;
425 }
426 /* We've found the start of the function.
427 * Try looking for a tag word that indicates whether there is a
428 * memory frame pointer and what the memory stack allocation is.
429 * If one doesn't exist, try using a more exhaustive search of
430 * the prologue. For now we don't care about the argcount or
431 * whether or not the routine is transparent.
432 */
433 if (examine_tag(p-4,&trans,NULL,&msize,&mfp_used)) /* Found a good tag */
434 examine_prologue (p, &rsize, 0, 0);
435 else /* No tag try prologue */
436 examine_prologue (p, &rsize, &msize, &mfp_used);
437
438 fci->rsize = rsize;
439 fci->msize = msize;
440 fci->flags = 0;
441 if (mfp_used)
442 fci->flags |= MFP_USED;
443 if (trans)
444 fci->flags |= TRANSPARENT;
445 if (innermost_frame)
446 {
447 fci->saved_msp = read_register (MSP_REGNUM) + msize;
448 }
449 else
450 {
451 if (mfp_used)
452 fci->saved_msp =
453 read_register_stack_integer (fci->frame + rsize - 4, 4);
454 else
455 fci->saved_msp = fci->next->saved_msp + msize;
456 }
457 }
458
459 void
460 init_extra_frame_info (fci)
461 struct frame_info *fci;
462 {
463 if (fci->next == 0)
464 /* Assume innermost frame. May produce strange results for "info frame"
465 but there isn't any way to tell the difference. */
466 init_frame_info (1, fci);
467 else {
468 /* We're in get_prev_frame_info.
469 Take care of everything in init_frame_pc. */
470 ;
471 }
472 }
473
474 void
475 init_frame_pc (fromleaf, fci)
476 int fromleaf;
477 struct frame_info *fci;
478 {
479 fci->pc = (fromleaf ? SAVED_PC_AFTER_CALL (fci->next) :
480 fci->next ? FRAME_SAVED_PC (fci->next) : read_pc ());
481 init_frame_info (fromleaf, fci);
482 }
483 \f
484 /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
485 offsets being relative to the memory stack pointer (high C) or
486 saved_msp (gcc). */
487
488 CORE_ADDR
489 frame_locals_address (fi)
490 struct frame_info *fi;
491 {
492 if (fi->flags & MFP_USED)
493 return fi->saved_msp;
494 else
495 return fi->saved_msp - fi->msize;
496 }
497 \f
498 /* Routines for reading the register stack. The caller gets to treat
499 the register stack as a uniform stack in memory, from address $gr1
500 straight through $rfb and beyond. */
501
502 /* Analogous to read_memory except the length is understood to be 4.
503 Also, myaddr can be NULL (meaning don't bother to read), and
504 if actual_mem_addr is non-NULL, store there the address that it
505 was fetched from (or if from a register the offset within
506 registers). Set *LVAL to lval_memory or lval_register, depending
507 on where it came from. */
508 void
509 read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
510 CORE_ADDR memaddr;
511 char *myaddr;
512 CORE_ADDR *actual_mem_addr;
513 enum lval_type *lval;
514 {
515 long rfb = read_register (RFB_REGNUM);
516 long rsp = read_register (RSP_REGNUM);
517
518 /* If we don't do this 'info register' stops in the middle. */
519 if (memaddr >= rstack_high_address)
520 {
521 int val = -1; /* a bogus value */
522 /* It's in a local register, but off the end of the stack. */
523 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
524 if (myaddr != NULL)
525 *(int*)myaddr = val; /* Provide bogusness */
526 supply_register(regnum, (char *)&val); /* More bogusness */
527 if (lval != NULL)
528 *lval = lval_register;
529 if (actual_mem_addr != NULL)
530 *actual_mem_addr = REGISTER_BYTE (regnum);
531 }
532 /* If it's in the part of the register stack that's in real registers,
533 get the value from the registers. If it's anywhere else in memory
534 (e.g. in another thread's saved stack), skip this part and get
535 it from real live memory. */
536 else if (memaddr < rfb && memaddr >= rsp)
537 {
538 /* It's in a register. */
539 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
540 if (regnum > LR0_REGNUM + 127)
541 error ("Attempt to read register stack out of range.");
542 if (myaddr != NULL)
543 read_register_gen (regnum, myaddr);
544 if (lval != NULL)
545 *lval = lval_register;
546 if (actual_mem_addr != NULL)
547 *actual_mem_addr = REGISTER_BYTE (regnum);
548 }
549 else
550 {
551 /* It's in the memory portion of the register stack. */
552 if (myaddr != NULL)
553 read_memory (memaddr, myaddr, 4);
554 if (lval != NULL)
555 *lval = lval_memory;
556 if (actual_mem_addr != NULL)
557 *actual_mem_addr = memaddr;
558 }
559 }
560
561 /* Analogous to read_memory_integer
562 except the length is understood to be 4. */
563 long
564 read_register_stack_integer (memaddr, len)
565 CORE_ADDR memaddr;
566 int len;
567 {
568 long buf;
569 read_register_stack (memaddr, &buf, NULL, NULL);
570 SWAP_TARGET_AND_HOST (&buf, 4);
571 return buf;
572 }
573
574 /* Copy 4 bytes from GDB memory at MYADDR into inferior memory
575 at MEMADDR and put the actual address written into in
576 *ACTUAL_MEM_ADDR. */
577 static void
578 write_register_stack (memaddr, myaddr, actual_mem_addr)
579 CORE_ADDR memaddr;
580 char *myaddr;
581 CORE_ADDR *actual_mem_addr;
582 {
583 long rfb = read_register (RFB_REGNUM);
584 long rsp = read_register (RSP_REGNUM);
585 /* If we don't do this 'info register' stops in the middle. */
586 if (memaddr >= rstack_high_address)
587 {
588 /* It's in a register, but off the end of the stack. */
589 if (actual_mem_addr != NULL)
590 *actual_mem_addr = 0;
591 }
592 else if (memaddr < rfb)
593 {
594 /* It's in a register. */
595 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
596 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
597 error ("Attempt to read register stack out of range.");
598 if (myaddr != NULL)
599 write_register (regnum, *(long *)myaddr);
600 if (actual_mem_addr != NULL)
601 *actual_mem_addr = 0;
602 }
603 else
604 {
605 /* It's in the memory portion of the register stack. */
606 if (myaddr != NULL)
607 write_memory (memaddr, myaddr, 4);
608 if (actual_mem_addr != NULL)
609 *actual_mem_addr = memaddr;
610 }
611 }
612 \f
613 /* Find register number REGNUM relative to FRAME and put its
614 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
615 was optimized out (and thus can't be fetched). If the variable
616 was fetched from memory, set *ADDRP to where it was fetched from,
617 otherwise it was fetched from a register.
618
619 The argument RAW_BUFFER must point to aligned memory. */
620 void
621 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
622 char *raw_buffer;
623 int *optimized;
624 CORE_ADDR *addrp;
625 FRAME frame;
626 int regnum;
627 enum lval_type *lvalp;
628 {
629 struct frame_info *fi;
630 CORE_ADDR addr;
631 enum lval_type lval;
632
633 if (frame == 0)
634 return;
635
636 fi = get_frame_info (frame);
637
638 /* Once something has a register number, it doesn't get optimized out. */
639 if (optimized != NULL)
640 *optimized = 0;
641 if (regnum == RSP_REGNUM)
642 {
643 if (raw_buffer != NULL)
644 *(CORE_ADDR *)raw_buffer = fi->frame;
645 if (lvalp != NULL)
646 *lvalp = not_lval;
647 return;
648 }
649 else if (regnum == PC_REGNUM)
650 {
651 if (raw_buffer != NULL)
652 *(CORE_ADDR *)raw_buffer = fi->pc;
653
654 /* Not sure we have to do this. */
655 if (lvalp != NULL)
656 *lvalp = not_lval;
657
658 return;
659 }
660 else if (regnum == MSP_REGNUM)
661 {
662 if (raw_buffer != NULL)
663 {
664 if (fi->next != NULL)
665 *(CORE_ADDR *)raw_buffer = fi->next->saved_msp;
666 else
667 *(CORE_ADDR *)raw_buffer = read_register (MSP_REGNUM);
668 }
669 /* The value may have been computed, not fetched. */
670 if (lvalp != NULL)
671 *lvalp = not_lval;
672 return;
673 }
674 else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
675 {
676 /* These registers are not saved over procedure calls,
677 so just print out the current values. */
678 if (raw_buffer != NULL)
679 *(CORE_ADDR *)raw_buffer = read_register (regnum);
680 if (lvalp != NULL)
681 *lvalp = lval_register;
682 if (addrp != NULL)
683 *addrp = REGISTER_BYTE (regnum);
684 return;
685 }
686
687 addr = fi->frame + (regnum - LR0_REGNUM) * 4;
688 if (raw_buffer != NULL)
689 read_register_stack (addr, raw_buffer, &addr, &lval);
690 if (lvalp != NULL)
691 *lvalp = lval;
692 if (addrp != NULL)
693 *addrp = addr;
694 }
695 \f
696
697 /* Discard from the stack the innermost frame,
698 restoring all saved registers. */
699
700 void
701 pop_frame ()
702 {
703 FRAME frame = get_current_frame ();
704 struct frame_info *fi = get_frame_info (frame);
705 CORE_ADDR rfb = read_register (RFB_REGNUM);
706 CORE_ADDR gr1 = fi->frame + fi->rsize;
707 CORE_ADDR lr1;
708 int i;
709
710 /* If popping a dummy frame, need to restore registers. */
711 if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
712 read_register (SP_REGNUM),
713 FRAME_FP (fi)))
714 {
715 int lrnum = LR0_REGNUM + DUMMY_ARG/4;
716 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
717 write_register (SR_REGNUM (i + 128),read_register (lrnum++));
718 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
719 write_register (SR_REGNUM(i+160), read_register (lrnum++));
720 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
721 write_register (RETURN_REGNUM + i, read_register (lrnum++));
722 /* Restore the PCs. */
723 write_register(PC_REGNUM, read_register (lrnum++));
724 write_register(NPC_REGNUM, read_register (lrnum));
725 }
726
727 /* Restore the memory stack pointer. */
728 write_register (MSP_REGNUM, fi->saved_msp);
729 /* Restore the register stack pointer. */
730 write_register (GR1_REGNUM, gr1);
731 /* Check whether we need to fill registers. */
732 lr1 = read_register (LR0_REGNUM + 1);
733 if (lr1 > rfb)
734 {
735 /* Fill. */
736 int num_bytes = lr1 - rfb;
737 int i;
738 long word;
739 write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
740 write_register (RFB_REGNUM, lr1);
741 for (i = 0; i < num_bytes; i += 4)
742 {
743 /* Note: word is in host byte order. */
744 word = read_memory_integer (rfb + i, 4);
745 write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
746 }
747 }
748 flush_cached_frames ();
749 set_current_frame (create_new_frame (0, read_pc()));
750 }
751
752 /* Push an empty stack frame, to record the current PC, etc. */
753
754 void
755 push_dummy_frame ()
756 {
757 long w;
758 CORE_ADDR rab, gr1;
759 CORE_ADDR msp = read_register (MSP_REGNUM);
760 int lrnum, i, saved_lr0;
761
762
763 /* Allocate the new frame. */
764 gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
765 write_register (GR1_REGNUM, gr1);
766
767 rab = read_register (RAB_REGNUM);
768 if (gr1 < rab)
769 {
770 /* We need to spill registers. */
771 int num_bytes = rab - gr1;
772 CORE_ADDR rfb = read_register (RFB_REGNUM);
773 int i;
774 long word;
775
776 write_register (RFB_REGNUM, rfb - num_bytes);
777 write_register (RAB_REGNUM, gr1);
778 for (i = 0; i < num_bytes; i += 4)
779 {
780 /* Note: word is in target byte order. */
781 read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
782 write_memory (rfb - num_bytes + i, (char *) &word, 4);
783 }
784 }
785
786 /* There are no arguments in to the dummy frame, so we don't need
787 more than rsize plus the return address and lr1. */
788 write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
789
790 /* Set the memory frame pointer. */
791 write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
792
793 /* Allocate arg_slop. */
794 write_register (MSP_REGNUM, msp - 16 * 4);
795
796 /* Save registers. */
797 lrnum = LR0_REGNUM + DUMMY_ARG/4;
798 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
799 write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
800 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
801 write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
802 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
803 write_register (lrnum++, read_register (RETURN_REGNUM + i));
804 /* Save the PCs. */
805 write_register (lrnum++, read_register (PC_REGNUM));
806 write_register (lrnum, read_register (NPC_REGNUM));
807 }
808
809
810 void
811 _initialize_29k()
812 {
813 extern CORE_ADDR text_end;
814
815 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
816 add_show_from_set
817 (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
818 (char *)&rstack_high_address,
819 "Set top address in memory of the register stack.\n\
820 Attempts to access registers saved above this address will be ignored\n\
821 or will produce the value -1.", &setlist),
822 &showlist);
823
824 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
825 add_show_from_set
826 (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
827 (char *)&text_end,
828 "Set address in memory where small amounts of RAM can be used\n\
829 when making function calls into the inferior.", &setlist),
830 &showlist);
831 }
This page took 0.047686 seconds and 4 git commands to generate.