Pass the correct number of parameters to `symbol_file_add'.
[deliverable/binutils-gdb.git] / gdb / am29k-tdep.c
1 /* Target-machine dependent code for the AMD 29000
2 Copyright 1990, 1991 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by Jim Kingdon.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include <stdio.h>
24 #include "frame.h"
25 #include "value.h"
26 /*#include <sys/param.h> */
27 #include "symtab.h"
28 #include "inferior.h"
29
30 extern CORE_ADDR text_start; /* FIXME, kludge... */
31
32 /* Structure to hold cached info about function prologues. */
33 struct prologue_info
34 {
35 CORE_ADDR pc; /* First addr after fn prologue */
36 unsigned rsize, msize; /* register stack frame size, mem stack ditto */
37 unsigned mfp_used : 1; /* memory frame pointer used */
38 unsigned rsize_valid : 1; /* Validity bits for the above */
39 unsigned msize_valid : 1;
40 unsigned mfp_valid : 1;
41 };
42
43 /* Examine the prologue of a function which starts at PC. Return
44 the first addess past the prologue. If MSIZE is non-NULL, then
45 set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
46 then set *RSIZE to the register stack frame size (not including
47 incoming arguments and the return address & frame pointer stored
48 with them). If no prologue is found, *RSIZE is set to zero.
49 If no prologue is found, or a prologue which doesn't involve
50 allocating a memory stack frame, then set *MSIZE to zero.
51
52 Note that both msize and rsize are in bytes. This is not consistent
53 with the _User's Manual_ with respect to rsize, but it is much more
54 convenient.
55
56 If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
57 frame pointer is being used. */
58 CORE_ADDR
59 examine_prologue (pc, rsize, msize, mfp_used)
60 CORE_ADDR pc;
61 unsigned *msize;
62 unsigned *rsize;
63 int *mfp_used;
64 {
65 long insn;
66 CORE_ADDR p = pc;
67 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
68 struct prologue_info *mi = 0;
69
70 if (msymbol != NULL)
71 mi = (struct prologue_info *) msymbol -> info;
72
73 if (mi != 0)
74 {
75 int valid = 1;
76 if (rsize != NULL)
77 {
78 *rsize = mi->rsize;
79 valid &= mi->rsize_valid;
80 }
81 if (msize != NULL)
82 {
83 *msize = mi->msize;
84 valid &= mi->msize_valid;
85 }
86 if (mfp_used != NULL)
87 {
88 *mfp_used = mi->mfp_used;
89 valid &= mi->mfp_valid;
90 }
91 if (valid)
92 return mi->pc;
93 }
94
95 if (rsize != NULL)
96 *rsize = 0;
97 if (msize != NULL)
98 *msize = 0;
99 if (mfp_used != NULL)
100 *mfp_used = 0;
101
102 /* Prologue must start with subtracting a constant from gr1.
103 Normally this is sub gr1,gr1,<rsize * 4>. */
104 insn = read_memory_integer (p, 4);
105 if ((insn & 0xffffff00) != 0x25010100)
106 {
107 /* If the frame is large, instead of a single instruction it
108 might be a pair of instructions:
109 const <reg>, <rsize * 4>
110 sub gr1,gr1,<reg>
111 */
112 int reg;
113 /* Possible value for rsize. */
114 unsigned int rsize0;
115
116 if ((insn & 0xff000000) != 0x03000000)
117 {
118 p = pc;
119 goto done;
120 }
121 reg = (insn >> 8) & 0xff;
122 rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
123 p += 4;
124 insn = read_memory_integer (p, 4);
125 if ((insn & 0xffffff00) != 0x24010100
126 || (insn & 0xff) != reg)
127 {
128 p = pc;
129 goto done;
130 }
131 if (rsize != NULL)
132 *rsize = rsize0;
133 }
134 else
135 {
136 if (rsize != NULL)
137 *rsize = (insn & 0xff);
138 }
139 p += 4;
140
141 /* Next instruction must be asgeu V_SPILL,gr1,rab.
142 * We don't check the vector number to allow for kernel debugging. The
143 * kernel will use a different trap number.
144 */
145 insn = read_memory_integer (p, 4);
146 if ((insn & 0xff00ffff) != (0x5e000100|RAB_HW_REGNUM))
147 {
148 p = pc;
149 goto done;
150 }
151 p += 4;
152
153 /* Next instruction usually sets the frame pointer (lr1) by adding
154 <size * 4> from gr1. However, this can (and high C does) be
155 deferred until anytime before the first function call. So it is
156 OK if we don't see anything which sets lr1.
157 To allow for alternate register sets (gcc -mkernel-registers) the msp
158 register number is a compile time constant. */
159
160 /* Normally this is just add lr1,gr1,<size * 4>. */
161 insn = read_memory_integer (p, 4);
162 if ((insn & 0xffffff00) == 0x15810100)
163 p += 4;
164 else
165 {
166 /* However, for large frames it can be
167 const <reg>, <size *4>
168 add lr1,gr1,<reg>
169 */
170 int reg;
171 CORE_ADDR q;
172
173 if ((insn & 0xff000000) == 0x03000000)
174 {
175 reg = (insn >> 8) & 0xff;
176 q = p + 4;
177 insn = read_memory_integer (q, 4);
178 if ((insn & 0xffffff00) == 0x14810100
179 && (insn & 0xff) == reg)
180 p = q;
181 }
182 }
183
184 /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
185 frame pointer is in use. We just check for add lr<anything>,msp,0;
186 we don't check this rsize against the first instruction, and
187 we don't check that the trace-back tag indicates a memory frame pointer
188 is in use.
189 To allow for alternate register sets (gcc -mkernel-registers) the msp
190 register number is a compile time constant.
191
192 The recommended instruction is actually "sll lr<whatever>,msp,0".
193 We check for that, too. Originally Jim Kingdon's code seemed
194 to be looking for a "sub" instruction here, but the mask was set
195 up to lose all the time. */
196 insn = read_memory_integer (p, 4);
197 if (((insn & 0xff80ffff) == (0x15800000|(MSP_HW_REGNUM<<8))) /* add */
198 || ((insn & 0xff80ffff) == (0x81800000|(MSP_HW_REGNUM<<8)))) /* sll */
199 {
200 p += 4;
201 if (mfp_used != NULL)
202 *mfp_used = 1;
203 }
204
205 /* Next comes a subtraction from msp to allocate a memory frame,
206 but only if a memory frame is
207 being used. We don't check msize against the trace-back tag.
208
209 To allow for alternate register sets (gcc -mkernel-registers) the msp
210 register number is a compile time constant.
211
212 Normally this is just
213 sub msp,msp,<msize>
214 */
215 insn = read_memory_integer (p, 4);
216 if ((insn & 0xffffff00) ==
217 (0x25000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8)))
218 {
219 p += 4;
220 if (msize != NULL)
221 *msize = insn & 0xff;
222 }
223 else
224 {
225 /* For large frames, instead of a single instruction it might
226 be
227
228 const <reg>, <msize>
229 consth <reg>, <msize> ; optional
230 sub msp,msp,<reg>
231 */
232 int reg;
233 unsigned msize0;
234 CORE_ADDR q = p;
235
236 if ((insn & 0xff000000) == 0x03000000)
237 {
238 reg = (insn >> 8) & 0xff;
239 msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
240 q += 4;
241 insn = read_memory_integer (q, 4);
242 /* Check for consth. */
243 if ((insn & 0xff000000) == 0x02000000
244 && (insn & 0x0000ff00) == reg)
245 {
246 msize0 |= (insn << 8) & 0xff000000;
247 msize0 |= (insn << 16) & 0x00ff0000;
248 q += 4;
249 insn = read_memory_integer (q, 4);
250 }
251 /* Check for sub msp,msp,<reg>. */
252 if ((insn & 0xffffff00) ==
253 (0x24000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8))
254 && (insn & 0xff) == reg)
255 {
256 p = q + 4;
257 if (msize != NULL)
258 *msize = msize0;
259 }
260 }
261 }
262
263 done:
264 if (msymbol != NULL)
265 {
266 if (mi == 0)
267 {
268 /* Add a new cache entry. */
269 mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info));
270 msymbol -> info = (char *)mi;
271 mi->rsize_valid = 0;
272 mi->msize_valid = 0;
273 mi->mfp_valid = 0;
274 }
275 /* else, cache entry exists, but info is incomplete. */
276 mi->pc = p;
277 if (rsize != NULL)
278 {
279 mi->rsize = *rsize;
280 mi->rsize_valid = 1;
281 }
282 if (msize != NULL)
283 {
284 mi->msize = *msize;
285 mi->msize_valid = 1;
286 }
287 if (mfp_used != NULL)
288 {
289 mi->mfp_used = *mfp_used;
290 mi->mfp_valid = 1;
291 }
292 }
293 return p;
294 }
295
296 /* Advance PC across any function entry prologue instructions
297 to reach some "real" code. */
298
299 CORE_ADDR
300 skip_prologue (pc)
301 CORE_ADDR pc;
302 {
303 return examine_prologue (pc, (unsigned *)NULL, (unsigned *)NULL,
304 (int *)NULL);
305 }
306 /*
307 * Examine the one or two word tag at the beginning of a function.
308 * The tag word is expect to be at 'p', if it is not there, we fail
309 * by returning 0. The documentation for the tag word was taken from
310 * page 7-15 of the 29050 User's Manual. We are assuming that the
311 * m bit is in bit 22 of the tag word, which seems to be the agreed upon
312 * convention today (1/15/92).
313 * msize is return in bytes.
314 */
315 static int /* 0/1 - failure/success of finding the tag word */
316 examine_tag(p, is_trans, argcount, msize, mfp_used)
317 CORE_ADDR p;
318 int *is_trans;
319 int *argcount;
320 unsigned *msize;
321 int *mfp_used;
322 {
323 unsigned int tag1, tag2;
324
325 tag1 = read_memory_integer (p, 4);
326 if ((tag1 & 0xff000000) != 0) /* Not a tag word */
327 return 0;
328 if (tag1 & (1<<23)) /* A two word tag */
329 {
330 tag2 = read_memory_integer (p+4, 4);
331 if (msize)
332 *msize = tag2;
333 }
334 else /* A one word tag */
335 {
336 if (msize)
337 *msize = tag1 & 0x7ff;
338 }
339 if (is_trans)
340 *is_trans = ((tag1 & (1<<21)) ? 1 : 0);
341 if (argcount)
342 *argcount = (tag1 >> 16) & 0x1f;
343 if (mfp_used)
344 *mfp_used = ((tag1 & (1<<22)) ? 1 : 0);
345 return(1);
346 }
347
348 /* Initialize the frame. In addition to setting "extra" frame info,
349 we also set ->frame because we use it in a nonstandard way, and ->pc
350 because we need to know it to get the other stuff. See the diagram
351 of stacks and the frame cache in tm-29k.h for more detail. */
352 static void
353 init_frame_info (innermost_frame, fci)
354 int innermost_frame;
355 struct frame_info *fci;
356 {
357 CORE_ADDR p;
358 long insn;
359 unsigned rsize;
360 unsigned msize;
361 int mfp_used, trans;
362 struct symbol *func;
363
364 p = fci->pc;
365
366 if (innermost_frame)
367 fci->frame = read_register (GR1_REGNUM);
368 else
369 fci->frame = fci->next_frame + fci->next->rsize;
370
371 #if CALL_DUMMY_LOCATION == ON_STACK
372 This wont work;
373 #else
374 if (PC_IN_CALL_DUMMY (p, 0, 0))
375 #endif
376 {
377 fci->rsize = DUMMY_FRAME_RSIZE;
378 /* This doesn't matter since we never try to get locals or args
379 from a dummy frame. */
380 fci->msize = 0;
381 /* Dummy frames always use a memory frame pointer. */
382 fci->saved_msp =
383 read_register_stack_integer (fci->frame + DUMMY_FRAME_RSIZE - 4, 4);
384 fci->flags |= (TRANSPARENT|MFP_USED);
385 return;
386 }
387
388 func = find_pc_function (p);
389 if (func != NULL)
390 p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
391 else
392 {
393 /* Search backward to find the trace-back tag. However,
394 do not trace back beyond the start of the text segment
395 (just as a sanity check to avoid going into never-never land). */
396 while (p >= text_start
397 && ((insn = read_memory_integer (p, 4)) & 0xff000000) != 0)
398 p -= 4;
399
400 if (p < text_start)
401 {
402 /* Couldn't find the trace-back tag.
403 Something strange is going on. */
404 fci->saved_msp = 0;
405 fci->rsize = 0;
406 fci->msize = 0;
407 fci->flags = TRANSPARENT;
408 return;
409 }
410 else
411 /* Advance to the first word of the function, i.e. the word
412 after the trace-back tag. */
413 p += 4;
414 }
415 /* We've found the start of the function.
416 * Try looking for a tag word that indicates whether there is a
417 * memory frame pointer and what the memory stack allocation is.
418 * If one doesn't exist, try using a more exhaustive search of
419 * the prologue. For now we don't care about the argcount or
420 * whether or not the routine is transparent.
421 */
422 if (examine_tag(p-4,&trans,NULL,&msize,&mfp_used)) /* Found a good tag */
423 examine_prologue (p, &rsize, 0, 0);
424 else /* No tag try prologue */
425 examine_prologue (p, &rsize, &msize, &mfp_used);
426
427 fci->rsize = rsize;
428 fci->msize = msize;
429 fci->flags = 0;
430 if (mfp_used)
431 fci->flags |= MFP_USED;
432 if (trans)
433 fci->flags |= TRANSPARENT;
434 if (innermost_frame)
435 {
436 fci->saved_msp = read_register (MSP_REGNUM) + msize;
437 }
438 else
439 {
440 if (mfp_used)
441 fci->saved_msp =
442 read_register_stack_integer (fci->frame + rsize - 4, 4);
443 else
444 fci->saved_msp = fci->next->saved_msp + msize;
445 }
446 }
447
448 void
449 init_extra_frame_info (fci)
450 struct frame_info *fci;
451 {
452 if (fci->next == 0)
453 /* Assume innermost frame. May produce strange results for "info frame"
454 but there isn't any way to tell the difference. */
455 init_frame_info (1, fci);
456 else {
457 /* We're in get_prev_frame_info.
458 Take care of everything in init_frame_pc. */
459 ;
460 }
461 }
462
463 void
464 init_frame_pc (fromleaf, fci)
465 int fromleaf;
466 struct frame_info *fci;
467 {
468 fci->pc = (fromleaf ? SAVED_PC_AFTER_CALL (fci->next) :
469 fci->next ? FRAME_SAVED_PC (fci->next) : read_pc ());
470 init_frame_info (fromleaf, fci);
471 }
472 \f
473 /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
474 offsets being relative to the memory stack pointer (high C) or
475 saved_msp (gcc). */
476
477 CORE_ADDR
478 frame_locals_address (fi)
479 struct frame_info *fi;
480 {
481 if (fi->flags & MFP_USED)
482 return fi->saved_msp;
483 else
484 return fi->saved_msp - fi->msize;
485 }
486 \f
487 /* Routines for reading the register stack. The caller gets to treat
488 the register stack as a uniform stack in memory, from address $gr1
489 straight through $rfb and beyond. */
490
491 /* Analogous to read_memory except the length is understood to be 4.
492 Also, myaddr can be NULL (meaning don't bother to read), and
493 if actual_mem_addr is non-NULL, store there the address that it
494 was fetched from (or if from a register the offset within
495 registers). Set *LVAL to lval_memory or lval_register, depending
496 on where it came from. */
497 void
498 read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
499 CORE_ADDR memaddr;
500 char *myaddr;
501 CORE_ADDR *actual_mem_addr;
502 enum lval_type *lval;
503 {
504 long rfb = read_register (RFB_REGNUM);
505 long rsp = read_register (RSP_REGNUM);
506
507 #ifdef RSTACK_HIGH_ADDR /* Highest allowed address in register stack */
508 /* If we don't do this 'info register' stops in the middle. */
509 if (memaddr >= RSTACK_HIGH_ADDR)
510 {
511 int val=-1; /* a bogus value */
512 /* It's in a local register, but off the end of the stack. */
513 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
514 if (myaddr != NULL)
515 *(int*)myaddr = val; /* Provide bogusness */
516 supply_register(regnum,&val); /* More bogusness */
517 if (lval != NULL)
518 *lval = lval_register;
519 if (actual_mem_addr != NULL)
520 *actual_mem_addr = REGISTER_BYTE (regnum);
521 }
522 else
523 #endif /* RSTACK_HIGH_ADDR */
524 if (memaddr < rfb)
525 {
526 /* It's in a register. */
527 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
528 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
529 error ("Attempt to read register stack out of range.");
530 if (myaddr != NULL)
531 read_register_gen (regnum, myaddr);
532 if (lval != NULL)
533 *lval = lval_register;
534 if (actual_mem_addr != NULL)
535 *actual_mem_addr = REGISTER_BYTE (regnum);
536 }
537 else
538 {
539 /* It's in the memory portion of the register stack. */
540 if (myaddr != NULL)
541 read_memory (memaddr, myaddr, 4);
542 if (lval != NULL)
543 *lval = lval_memory;
544 if (actual_mem_addr != NULL)
545 *actual_mem_addr = memaddr;
546 }
547 }
548
549 /* Analogous to read_memory_integer
550 except the length is understood to be 4. */
551 long
552 read_register_stack_integer (memaddr, len)
553 CORE_ADDR memaddr;
554 int len;
555 {
556 long buf;
557 read_register_stack (memaddr, &buf, NULL, NULL);
558 SWAP_TARGET_AND_HOST (&buf, 4);
559 return buf;
560 }
561
562 /* Copy 4 bytes from GDB memory at MYADDR into inferior memory
563 at MEMADDR and put the actual address written into in
564 *ACTUAL_MEM_ADDR. */
565 static void
566 write_register_stack (memaddr, myaddr, actual_mem_addr)
567 CORE_ADDR memaddr;
568 char *myaddr;
569 CORE_ADDR *actual_mem_addr;
570 {
571 long rfb = read_register (RFB_REGNUM);
572 long rsp = read_register (RSP_REGNUM);
573 #ifdef RSTACK_HIGH_ADDR /* Highest allowed address in register stack */
574 /* If we don't do this 'info register' stops in the middle. */
575 if (memaddr >= RSTACK_HIGH_ADDR)
576 {
577 /* It's in a register, but off the end of the stack. */
578 if (actual_mem_addr != NULL)
579 *actual_mem_addr = NULL;
580 }
581 else
582 #endif /* RSTACK_HIGH_ADDR */
583 if (memaddr < rfb)
584 {
585 /* It's in a register. */
586 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
587 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
588 error ("Attempt to read register stack out of range.");
589 if (myaddr != NULL)
590 write_register (regnum, *(long *)myaddr);
591 if (actual_mem_addr != NULL)
592 *actual_mem_addr = NULL;
593 }
594 else
595 {
596 /* It's in the memory portion of the register stack. */
597 if (myaddr != NULL)
598 write_memory (memaddr, myaddr, 4);
599 if (actual_mem_addr != NULL)
600 *actual_mem_addr = memaddr;
601 }
602 }
603 \f
604 /* Find register number REGNUM relative to FRAME and put its
605 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
606 was optimized out (and thus can't be fetched). If the variable
607 was fetched from memory, set *ADDRP to where it was fetched from,
608 otherwise it was fetched from a register.
609
610 The argument RAW_BUFFER must point to aligned memory. */
611 void
612 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
613 char *raw_buffer;
614 int *optimized;
615 CORE_ADDR *addrp;
616 FRAME frame;
617 int regnum;
618 enum lval_type *lvalp;
619 {
620 struct frame_info *fi;
621 CORE_ADDR addr;
622 enum lval_type lval;
623
624 if (frame == 0)
625 return;
626
627 fi = get_frame_info (frame);
628
629 /* Once something has a register number, it doesn't get optimized out. */
630 if (optimized != NULL)
631 *optimized = 0;
632 if (regnum == RSP_REGNUM)
633 {
634 if (raw_buffer != NULL)
635 *(CORE_ADDR *)raw_buffer = fi->frame;
636 if (lvalp != NULL)
637 *lvalp = not_lval;
638 return;
639 }
640 else if (regnum == PC_REGNUM)
641 {
642 if (raw_buffer != NULL)
643 *(CORE_ADDR *)raw_buffer = fi->pc;
644
645 /* Not sure we have to do this. */
646 if (lvalp != NULL)
647 *lvalp = not_lval;
648
649 return;
650 }
651 else if (regnum == MSP_REGNUM)
652 {
653 if (raw_buffer != NULL)
654 {
655 if (fi->next != NULL)
656 *(CORE_ADDR *)raw_buffer = fi->next->saved_msp;
657 else
658 *(CORE_ADDR *)raw_buffer = read_register (MSP_REGNUM);
659 }
660 /* The value may have been computed, not fetched. */
661 if (lvalp != NULL)
662 *lvalp = not_lval;
663 return;
664 }
665 else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
666 {
667 /* These registers are not saved over procedure calls,
668 so just print out the current values. */
669 if (raw_buffer != NULL)
670 *(CORE_ADDR *)raw_buffer = read_register (regnum);
671 if (lvalp != NULL)
672 *lvalp = lval_register;
673 if (addrp != NULL)
674 *addrp = REGISTER_BYTE (regnum);
675 return;
676 }
677
678 addr = fi->frame + (regnum - LR0_REGNUM) * 4;
679 if (raw_buffer != NULL)
680 read_register_stack (addr, raw_buffer, &addr, &lval);
681 if (lvalp != NULL)
682 *lvalp = lval;
683 if (addrp != NULL)
684 *addrp = addr;
685 }
686 \f
687
688 /* Discard from the stack the innermost frame,
689 restoring all saved registers. */
690
691 void
692 pop_frame ()
693 {
694 FRAME frame = get_current_frame ();
695 struct frame_info *fi = get_frame_info (frame);
696 CORE_ADDR rfb = read_register (RFB_REGNUM);
697 CORE_ADDR gr1 = fi->frame + fi->rsize;
698 CORE_ADDR lr1;
699 int i;
700
701 /* If popping a dummy frame, need to restore registers. */
702 if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
703 read_register (SP_REGNUM),
704 FRAME_FP (fi)))
705 {
706 int lrnum = LR0_REGNUM + DUMMY_ARG/4;
707 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
708 write_register (SR_REGNUM (i + 128),read_register (lrnum++));
709 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
710 write_register (SR_REGNUM(i+160), read_register (lrnum++));
711 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
712 write_register (RETURN_REGNUM + i, read_register (lrnum++));
713 /* Restore the PCs. */
714 write_register(PC_REGNUM, read_register (lrnum++));
715 write_register(NPC_REGNUM, read_register (lrnum));
716 }
717
718 /* Restore the memory stack pointer. */
719 write_register (MSP_REGNUM, fi->saved_msp);
720 /* Restore the register stack pointer. */
721 write_register (GR1_REGNUM, gr1);
722 /* Check whether we need to fill registers. */
723 lr1 = read_register (LR0_REGNUM + 1);
724 if (lr1 > rfb)
725 {
726 /* Fill. */
727 int num_bytes = lr1 - rfb;
728 int i;
729 long word;
730 write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
731 write_register (RFB_REGNUM, lr1);
732 for (i = 0; i < num_bytes; i += 4)
733 {
734 /* Note: word is in host byte order. */
735 word = read_memory_integer (rfb + i, 4);
736 write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
737 }
738 }
739 flush_cached_frames ();
740 set_current_frame (create_new_frame (0, read_pc()));
741 }
742
743 /* Push an empty stack frame, to record the current PC, etc. */
744
745 void
746 push_dummy_frame ()
747 {
748 long w;
749 CORE_ADDR rab, gr1;
750 CORE_ADDR msp = read_register (MSP_REGNUM);
751 int lrnum, i, saved_lr0;
752
753
754 /* Allocate the new frame. */
755 gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
756 write_register (GR1_REGNUM, gr1);
757
758 rab = read_register (RAB_REGNUM);
759 if (gr1 < rab)
760 {
761 /* We need to spill registers. */
762 int num_bytes = rab - gr1;
763 CORE_ADDR rfb = read_register (RFB_REGNUM);
764 int i;
765 long word;
766
767 write_register (RFB_REGNUM, rfb - num_bytes);
768 write_register (RAB_REGNUM, gr1);
769 for (i = 0; i < num_bytes; i += 4)
770 {
771 /* Note: word is in target byte order. */
772 read_register_gen (LR0_REGNUM + i / 4, &word);
773 write_memory (rfb - num_bytes + i, &word, 4);
774 }
775 }
776
777 /* There are no arguments in to the dummy frame, so we don't need
778 more than rsize plus the return address and lr1. */
779 write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
780
781 /* Set the memory frame pointer. */
782 write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
783
784 /* Allocate arg_slop. */
785 write_register (MSP_REGNUM, msp - 16 * 4);
786
787 /* Save registers. */
788 lrnum = LR0_REGNUM + DUMMY_ARG/4;
789 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
790 write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
791 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
792 write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
793 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
794 write_register (lrnum++, read_register (RETURN_REGNUM + i));
795 /* Save the PCs. */
796 write_register (lrnum++, read_register (PC_REGNUM));
797 write_register (lrnum, read_register (NPC_REGNUM));
798 }
799
800 reginv_com (args, fromtty)
801 char *args;
802 int fromtty;
803 {
804 registers_changed();
805 if (fromtty)
806 printf_filtered("Gdb's register cache invalidated.\n");
807 }
808
809 /* We use this mostly for debugging gdb */
810 void
811 _initialize_29k()
812 {
813 add_com ("reginv ", class_obscure, reginv_com,
814 "Invalidate gdb's internal register cache.");
815 }
816
This page took 0.055756 seconds and 4 git commands to generate.