1 /* Target-dependent code for AMD64.
3 Copyright (C) 2001-2019 Free Software Foundation, Inc.
5 Contributed by Jiri Smid, SuSE Labs.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "opcode/i386.h"
25 #include "arch-utils.h"
27 #include "dummy-frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "gdbsupport/x86-xstate.h"
44 #include "target-descriptions.h"
45 #include "arch/amd64.h"
49 #include "gdbsupport/byte-vector.h"
53 /* Note that the AMD64 architecture was previously known as x86-64.
54 The latter is (forever) engraved into the canonical system name as
55 returned by config.guess, and used as the name for the AMD64 port
56 of GNU/Linux. The BSD's have renamed their ports to amd64; they
57 don't like to shout. For GDB we prefer the amd64_-prefix over the
58 x86_64_-prefix since it's so much easier to type. */
60 /* Register information. */
62 static const char *amd64_register_names
[] =
64 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
66 /* %r8 is indeed register number 8. */
67 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
68 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
70 /* %st0 is register number 24. */
71 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
72 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
74 /* %xmm0 is register number 40. */
75 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
76 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
80 static const char *amd64_ymm_names
[] =
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 "ymm8", "ymm9", "ymm10", "ymm11",
85 "ymm12", "ymm13", "ymm14", "ymm15"
88 static const char *amd64_ymm_avx512_names
[] =
90 "ymm16", "ymm17", "ymm18", "ymm19",
91 "ymm20", "ymm21", "ymm22", "ymm23",
92 "ymm24", "ymm25", "ymm26", "ymm27",
93 "ymm28", "ymm29", "ymm30", "ymm31"
96 static const char *amd64_ymmh_names
[] =
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
101 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
104 static const char *amd64_ymmh_avx512_names
[] =
106 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
107 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
108 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
109 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
112 static const char *amd64_mpx_names
[] =
114 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
117 static const char *amd64_k_names
[] =
119 "k0", "k1", "k2", "k3",
120 "k4", "k5", "k6", "k7"
123 static const char *amd64_zmmh_names
[] =
125 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
126 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
127 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
128 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
129 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
130 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
131 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
132 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
135 static const char *amd64_zmm_names
[] =
137 "zmm0", "zmm1", "zmm2", "zmm3",
138 "zmm4", "zmm5", "zmm6", "zmm7",
139 "zmm8", "zmm9", "zmm10", "zmm11",
140 "zmm12", "zmm13", "zmm14", "zmm15",
141 "zmm16", "zmm17", "zmm18", "zmm19",
142 "zmm20", "zmm21", "zmm22", "zmm23",
143 "zmm24", "zmm25", "zmm26", "zmm27",
144 "zmm28", "zmm29", "zmm30", "zmm31"
147 static const char *amd64_xmm_avx512_names
[] = {
148 "xmm16", "xmm17", "xmm18", "xmm19",
149 "xmm20", "xmm21", "xmm22", "xmm23",
150 "xmm24", "xmm25", "xmm26", "xmm27",
151 "xmm28", "xmm29", "xmm30", "xmm31"
154 static const char *amd64_pkeys_names
[] = {
158 /* DWARF Register Number Mapping as defined in the System V psABI,
161 static int amd64_dwarf_regmap
[] =
163 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
164 AMD64_RAX_REGNUM
, AMD64_RDX_REGNUM
,
165 AMD64_RCX_REGNUM
, AMD64_RBX_REGNUM
,
166 AMD64_RSI_REGNUM
, AMD64_RDI_REGNUM
,
168 /* Frame Pointer Register RBP. */
171 /* Stack Pointer Register RSP. */
174 /* Extended Integer Registers 8 - 15. */
175 AMD64_R8_REGNUM
, /* %r8 */
176 AMD64_R9_REGNUM
, /* %r9 */
177 AMD64_R10_REGNUM
, /* %r10 */
178 AMD64_R11_REGNUM
, /* %r11 */
179 AMD64_R12_REGNUM
, /* %r12 */
180 AMD64_R13_REGNUM
, /* %r13 */
181 AMD64_R14_REGNUM
, /* %r14 */
182 AMD64_R15_REGNUM
, /* %r15 */
184 /* Return Address RA. Mapped to RIP. */
187 /* SSE Registers 0 - 7. */
188 AMD64_XMM0_REGNUM
+ 0, AMD64_XMM1_REGNUM
,
189 AMD64_XMM0_REGNUM
+ 2, AMD64_XMM0_REGNUM
+ 3,
190 AMD64_XMM0_REGNUM
+ 4, AMD64_XMM0_REGNUM
+ 5,
191 AMD64_XMM0_REGNUM
+ 6, AMD64_XMM0_REGNUM
+ 7,
193 /* Extended SSE Registers 8 - 15. */
194 AMD64_XMM0_REGNUM
+ 8, AMD64_XMM0_REGNUM
+ 9,
195 AMD64_XMM0_REGNUM
+ 10, AMD64_XMM0_REGNUM
+ 11,
196 AMD64_XMM0_REGNUM
+ 12, AMD64_XMM0_REGNUM
+ 13,
197 AMD64_XMM0_REGNUM
+ 14, AMD64_XMM0_REGNUM
+ 15,
199 /* Floating Point Registers 0-7. */
200 AMD64_ST0_REGNUM
+ 0, AMD64_ST0_REGNUM
+ 1,
201 AMD64_ST0_REGNUM
+ 2, AMD64_ST0_REGNUM
+ 3,
202 AMD64_ST0_REGNUM
+ 4, AMD64_ST0_REGNUM
+ 5,
203 AMD64_ST0_REGNUM
+ 6, AMD64_ST0_REGNUM
+ 7,
205 /* MMX Registers 0 - 7.
206 We have to handle those registers specifically, as their register
207 number within GDB depends on the target (or they may even not be
208 available at all). */
209 -1, -1, -1, -1, -1, -1, -1, -1,
211 /* Control and Status Flags Register. */
214 /* Selector Registers. */
224 /* Segment Base Address Registers. */
230 /* Special Selector Registers. */
234 /* Floating Point Control Registers. */
240 static const int amd64_dwarf_regmap_len
=
241 (sizeof (amd64_dwarf_regmap
) / sizeof (amd64_dwarf_regmap
[0]));
243 /* Convert DWARF register number REG to the appropriate register
244 number used by GDB. */
247 amd64_dwarf_reg_to_regnum (struct gdbarch
*gdbarch
, int reg
)
249 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
250 int ymm0_regnum
= tdep
->ymm0_regnum
;
253 if (reg
>= 0 && reg
< amd64_dwarf_regmap_len
)
254 regnum
= amd64_dwarf_regmap
[reg
];
257 && i386_xmm_regnum_p (gdbarch
, regnum
))
258 regnum
+= ymm0_regnum
- I387_XMM0_REGNUM (tdep
);
263 /* Map architectural register numbers to gdb register numbers. */
265 static const int amd64_arch_regmap
[16] =
267 AMD64_RAX_REGNUM
, /* %rax */
268 AMD64_RCX_REGNUM
, /* %rcx */
269 AMD64_RDX_REGNUM
, /* %rdx */
270 AMD64_RBX_REGNUM
, /* %rbx */
271 AMD64_RSP_REGNUM
, /* %rsp */
272 AMD64_RBP_REGNUM
, /* %rbp */
273 AMD64_RSI_REGNUM
, /* %rsi */
274 AMD64_RDI_REGNUM
, /* %rdi */
275 AMD64_R8_REGNUM
, /* %r8 */
276 AMD64_R9_REGNUM
, /* %r9 */
277 AMD64_R10_REGNUM
, /* %r10 */
278 AMD64_R11_REGNUM
, /* %r11 */
279 AMD64_R12_REGNUM
, /* %r12 */
280 AMD64_R13_REGNUM
, /* %r13 */
281 AMD64_R14_REGNUM
, /* %r14 */
282 AMD64_R15_REGNUM
/* %r15 */
285 static const int amd64_arch_regmap_len
=
286 (sizeof (amd64_arch_regmap
) / sizeof (amd64_arch_regmap
[0]));
288 /* Convert architectural register number REG to the appropriate register
289 number used by GDB. */
292 amd64_arch_reg_to_regnum (int reg
)
294 gdb_assert (reg
>= 0 && reg
< amd64_arch_regmap_len
);
296 return amd64_arch_regmap
[reg
];
299 /* Register names for byte pseudo-registers. */
301 static const char *amd64_byte_names
[] =
303 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
304 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
305 "ah", "bh", "ch", "dh"
308 /* Number of lower byte registers. */
309 #define AMD64_NUM_LOWER_BYTE_REGS 16
311 /* Register names for word pseudo-registers. */
313 static const char *amd64_word_names
[] =
315 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
316 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
319 /* Register names for dword pseudo-registers. */
321 static const char *amd64_dword_names
[] =
323 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
324 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
328 /* Return the name of register REGNUM. */
331 amd64_pseudo_register_name (struct gdbarch
*gdbarch
, int regnum
)
333 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
334 if (i386_byte_regnum_p (gdbarch
, regnum
))
335 return amd64_byte_names
[regnum
- tdep
->al_regnum
];
336 else if (i386_zmm_regnum_p (gdbarch
, regnum
))
337 return amd64_zmm_names
[regnum
- tdep
->zmm0_regnum
];
338 else if (i386_ymm_regnum_p (gdbarch
, regnum
))
339 return amd64_ymm_names
[regnum
- tdep
->ymm0_regnum
];
340 else if (i386_ymm_avx512_regnum_p (gdbarch
, regnum
))
341 return amd64_ymm_avx512_names
[regnum
- tdep
->ymm16_regnum
];
342 else if (i386_word_regnum_p (gdbarch
, regnum
))
343 return amd64_word_names
[regnum
- tdep
->ax_regnum
];
344 else if (i386_dword_regnum_p (gdbarch
, regnum
))
345 return amd64_dword_names
[regnum
- tdep
->eax_regnum
];
347 return i386_pseudo_register_name (gdbarch
, regnum
);
350 static struct value
*
351 amd64_pseudo_register_read_value (struct gdbarch
*gdbarch
,
352 readable_regcache
*regcache
,
355 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
357 value
*result_value
= allocate_value (register_type (gdbarch
, regnum
));
358 VALUE_LVAL (result_value
) = lval_register
;
359 VALUE_REGNUM (result_value
) = regnum
;
360 gdb_byte
*buf
= value_contents_raw (result_value
);
362 if (i386_byte_regnum_p (gdbarch
, regnum
))
364 int gpnum
= regnum
- tdep
->al_regnum
;
366 /* Extract (always little endian). */
367 if (gpnum
>= AMD64_NUM_LOWER_BYTE_REGS
)
369 gpnum
-= AMD64_NUM_LOWER_BYTE_REGS
;
370 gdb_byte raw_buf
[register_size (gdbarch
, gpnum
)];
372 /* Special handling for AH, BH, CH, DH. */
373 register_status status
= regcache
->raw_read (gpnum
, raw_buf
);
374 if (status
== REG_VALID
)
375 memcpy (buf
, raw_buf
+ 1, 1);
377 mark_value_bytes_unavailable (result_value
, 0,
378 TYPE_LENGTH (value_type (result_value
)));
382 gdb_byte raw_buf
[register_size (gdbarch
, gpnum
)];
383 register_status status
= regcache
->raw_read (gpnum
, raw_buf
);
384 if (status
== REG_VALID
)
385 memcpy (buf
, raw_buf
, 1);
387 mark_value_bytes_unavailable (result_value
, 0,
388 TYPE_LENGTH (value_type (result_value
)));
391 else if (i386_dword_regnum_p (gdbarch
, regnum
))
393 int gpnum
= regnum
- tdep
->eax_regnum
;
394 gdb_byte raw_buf
[register_size (gdbarch
, gpnum
)];
395 /* Extract (always little endian). */
396 register_status status
= regcache
->raw_read (gpnum
, raw_buf
);
397 if (status
== REG_VALID
)
398 memcpy (buf
, raw_buf
, 4);
400 mark_value_bytes_unavailable (result_value
, 0,
401 TYPE_LENGTH (value_type (result_value
)));
404 i386_pseudo_register_read_into_value (gdbarch
, regcache
, regnum
,
411 amd64_pseudo_register_write (struct gdbarch
*gdbarch
,
412 struct regcache
*regcache
,
413 int regnum
, const gdb_byte
*buf
)
415 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
417 if (i386_byte_regnum_p (gdbarch
, regnum
))
419 int gpnum
= regnum
- tdep
->al_regnum
;
421 if (gpnum
>= AMD64_NUM_LOWER_BYTE_REGS
)
423 gpnum
-= AMD64_NUM_LOWER_BYTE_REGS
;
424 gdb_byte raw_buf
[register_size (gdbarch
, gpnum
)];
426 /* Read ... AH, BH, CH, DH. */
427 regcache
->raw_read (gpnum
, raw_buf
);
428 /* ... Modify ... (always little endian). */
429 memcpy (raw_buf
+ 1, buf
, 1);
431 regcache
->raw_write (gpnum
, raw_buf
);
435 gdb_byte raw_buf
[register_size (gdbarch
, gpnum
)];
438 regcache
->raw_read (gpnum
, raw_buf
);
439 /* ... Modify ... (always little endian). */
440 memcpy (raw_buf
, buf
, 1);
442 regcache
->raw_write (gpnum
, raw_buf
);
445 else if (i386_dword_regnum_p (gdbarch
, regnum
))
447 int gpnum
= regnum
- tdep
->eax_regnum
;
448 gdb_byte raw_buf
[register_size (gdbarch
, gpnum
)];
451 regcache
->raw_read (gpnum
, raw_buf
);
452 /* ... Modify ... (always little endian). */
453 memcpy (raw_buf
, buf
, 4);
455 regcache
->raw_write (gpnum
, raw_buf
);
458 i386_pseudo_register_write (gdbarch
, regcache
, regnum
, buf
);
461 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
464 amd64_ax_pseudo_register_collect (struct gdbarch
*gdbarch
,
465 struct agent_expr
*ax
, int regnum
)
467 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
469 if (i386_byte_regnum_p (gdbarch
, regnum
))
471 int gpnum
= regnum
- tdep
->al_regnum
;
473 if (gpnum
>= AMD64_NUM_LOWER_BYTE_REGS
)
474 ax_reg_mask (ax
, gpnum
- AMD64_NUM_LOWER_BYTE_REGS
);
476 ax_reg_mask (ax
, gpnum
);
479 else if (i386_dword_regnum_p (gdbarch
, regnum
))
481 int gpnum
= regnum
- tdep
->eax_regnum
;
483 ax_reg_mask (ax
, gpnum
);
487 return i386_ax_pseudo_register_collect (gdbarch
, ax
, regnum
);
492 /* Register classes as defined in the psABI. */
506 /* Return the union class of CLASS1 and CLASS2. See the psABI for
509 static enum amd64_reg_class
510 amd64_merge_classes (enum amd64_reg_class class1
, enum amd64_reg_class class2
)
512 /* Rule (a): If both classes are equal, this is the resulting class. */
513 if (class1
== class2
)
516 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
517 is the other class. */
518 if (class1
== AMD64_NO_CLASS
)
520 if (class2
== AMD64_NO_CLASS
)
523 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
524 if (class1
== AMD64_MEMORY
|| class2
== AMD64_MEMORY
)
527 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
528 if (class1
== AMD64_INTEGER
|| class2
== AMD64_INTEGER
)
529 return AMD64_INTEGER
;
531 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
532 MEMORY is used as class. */
533 if (class1
== AMD64_X87
|| class1
== AMD64_X87UP
534 || class1
== AMD64_COMPLEX_X87
|| class2
== AMD64_X87
535 || class2
== AMD64_X87UP
|| class2
== AMD64_COMPLEX_X87
)
538 /* Rule (f): Otherwise class SSE is used. */
542 static void amd64_classify (struct type
*type
, enum amd64_reg_class theclass
[2]);
544 /* Return true if TYPE is a structure or union with unaligned fields. */
547 amd64_has_unaligned_fields (struct type
*type
)
549 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
550 || TYPE_CODE (type
) == TYPE_CODE_UNION
)
552 for (int i
= 0; i
< TYPE_NFIELDS (type
); i
++)
554 struct type
*subtype
= check_typedef (TYPE_FIELD_TYPE (type
, i
));
555 int bitpos
= TYPE_FIELD_BITPOS (type
, i
);
556 int align
= type_align(subtype
);
558 /* Ignore static fields, empty fields (for example nested
559 empty structures), and bitfields (these are handled by
561 if (field_is_static (&TYPE_FIELD (type
, i
))
562 || (TYPE_FIELD_BITSIZE (type
, i
) == 0
563 && TYPE_LENGTH (subtype
) == 0)
564 || TYPE_FIELD_PACKED (type
, i
))
570 int bytepos
= bitpos
/ 8;
571 if (bytepos
% align
!= 0)
574 if (amd64_has_unaligned_fields (subtype
))
582 /* Classify field I of TYPE starting at BITOFFSET according to the rules for
583 structures and union types, and store the result in THECLASS. */
586 amd64_classify_aggregate_field (struct type
*type
, int i
,
587 enum amd64_reg_class theclass
[2],
588 unsigned int bitoffset
)
590 struct type
*subtype
= check_typedef (TYPE_FIELD_TYPE (type
, i
));
591 int bitpos
= bitoffset
+ TYPE_FIELD_BITPOS (type
, i
);
592 int pos
= bitpos
/ 64;
593 enum amd64_reg_class subclass
[2];
594 int bitsize
= TYPE_FIELD_BITSIZE (type
, i
);
598 bitsize
= TYPE_LENGTH (subtype
) * 8;
599 endpos
= (bitpos
+ bitsize
- 1) / 64;
601 /* Ignore static fields, or empty fields, for example nested
603 if (field_is_static (&TYPE_FIELD (type
, i
)) || bitsize
== 0)
606 if (TYPE_CODE (subtype
) == TYPE_CODE_STRUCT
607 || TYPE_CODE (subtype
) == TYPE_CODE_UNION
)
609 /* Each field of an object is classified recursively. */
611 for (j
= 0; j
< TYPE_NFIELDS (subtype
); j
++)
612 amd64_classify_aggregate_field (subtype
, j
, theclass
, bitpos
);
616 gdb_assert (pos
== 0 || pos
== 1);
618 amd64_classify (subtype
, subclass
);
619 theclass
[pos
] = amd64_merge_classes (theclass
[pos
], subclass
[0]);
620 if (bitsize
<= 64 && pos
== 0 && endpos
== 1)
621 /* This is a bit of an odd case: We have a field that would
622 normally fit in one of the two eightbytes, except that
623 it is placed in a way that this field straddles them.
624 This has been seen with a structure containing an array.
626 The ABI is a bit unclear in this case, but we assume that
627 this field's class (stored in subclass[0]) must also be merged
628 into class[1]. In other words, our field has a piece stored
629 in the second eight-byte, and thus its class applies to
630 the second eight-byte as well.
632 In the case where the field length exceeds 8 bytes,
633 it should not be necessary to merge the field class
634 into class[1]. As LEN > 8, subclass[1] is necessarily
635 different from AMD64_NO_CLASS. If subclass[1] is equal
636 to subclass[0], then the normal class[1]/subclass[1]
637 merging will take care of everything. For subclass[1]
638 to be different from subclass[0], I can only see the case
639 where we have a SSE/SSEUP or X87/X87UP pair, which both
640 use up all 16 bytes of the aggregate, and are already
641 handled just fine (because each portion sits on its own
643 theclass
[1] = amd64_merge_classes (theclass
[1], subclass
[0]);
645 theclass
[1] = amd64_merge_classes (theclass
[1], subclass
[1]);
648 /* Classify TYPE according to the rules for aggregate (structures and
649 arrays) and union types, and store the result in CLASS. */
652 amd64_classify_aggregate (struct type
*type
, enum amd64_reg_class theclass
[2])
654 /* 1. If the size of an object is larger than two eightbytes, or it has
655 unaligned fields, it has class memory. */
656 if (TYPE_LENGTH (type
) > 16 || amd64_has_unaligned_fields (type
))
658 theclass
[0] = theclass
[1] = AMD64_MEMORY
;
662 /* 2. Both eightbytes get initialized to class NO_CLASS. */
663 theclass
[0] = theclass
[1] = AMD64_NO_CLASS
;
665 /* 3. Each field of an object is classified recursively so that
666 always two fields are considered. The resulting class is
667 calculated according to the classes of the fields in the
670 if (TYPE_CODE (type
) == TYPE_CODE_ARRAY
)
672 struct type
*subtype
= check_typedef (TYPE_TARGET_TYPE (type
));
674 /* All fields in an array have the same type. */
675 amd64_classify (subtype
, theclass
);
676 if (TYPE_LENGTH (type
) > 8 && theclass
[1] == AMD64_NO_CLASS
)
677 theclass
[1] = theclass
[0];
683 /* Structure or union. */
684 gdb_assert (TYPE_CODE (type
) == TYPE_CODE_STRUCT
685 || TYPE_CODE (type
) == TYPE_CODE_UNION
);
687 for (i
= 0; i
< TYPE_NFIELDS (type
); i
++)
688 amd64_classify_aggregate_field (type
, i
, theclass
, 0);
691 /* 4. Then a post merger cleanup is done: */
693 /* Rule (a): If one of the classes is MEMORY, the whole argument is
695 if (theclass
[0] == AMD64_MEMORY
|| theclass
[1] == AMD64_MEMORY
)
696 theclass
[0] = theclass
[1] = AMD64_MEMORY
;
698 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
700 if (theclass
[0] == AMD64_SSEUP
)
701 theclass
[0] = AMD64_SSE
;
702 if (theclass
[1] == AMD64_SSEUP
&& theclass
[0] != AMD64_SSE
)
703 theclass
[1] = AMD64_SSE
;
706 /* Classify TYPE, and store the result in CLASS. */
709 amd64_classify (struct type
*type
, enum amd64_reg_class theclass
[2])
711 enum type_code code
= TYPE_CODE (type
);
712 int len
= TYPE_LENGTH (type
);
714 theclass
[0] = theclass
[1] = AMD64_NO_CLASS
;
716 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
717 long, long long, and pointers are in the INTEGER class. Similarly,
718 range types, used by languages such as Ada, are also in the INTEGER
720 if ((code
== TYPE_CODE_INT
|| code
== TYPE_CODE_ENUM
721 || code
== TYPE_CODE_BOOL
|| code
== TYPE_CODE_RANGE
722 || code
== TYPE_CODE_CHAR
723 || code
== TYPE_CODE_PTR
|| TYPE_IS_REFERENCE (type
))
724 && (len
== 1 || len
== 2 || len
== 4 || len
== 8))
725 theclass
[0] = AMD64_INTEGER
;
727 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
729 else if ((code
== TYPE_CODE_FLT
|| code
== TYPE_CODE_DECFLOAT
)
730 && (len
== 4 || len
== 8))
732 theclass
[0] = AMD64_SSE
;
734 /* Arguments of types __float128, _Decimal128 and __m128 are split into
735 two halves. The least significant ones belong to class SSE, the most
736 significant one to class SSEUP. */
737 else if (code
== TYPE_CODE_DECFLOAT
&& len
== 16)
738 /* FIXME: __float128, __m128. */
739 theclass
[0] = AMD64_SSE
, theclass
[1] = AMD64_SSEUP
;
741 /* The 64-bit mantissa of arguments of type long double belongs to
742 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
744 else if (code
== TYPE_CODE_FLT
&& len
== 16)
745 /* Class X87 and X87UP. */
746 theclass
[0] = AMD64_X87
, theclass
[1] = AMD64_X87UP
;
748 /* Arguments of complex T where T is one of the types float or
749 double get treated as if they are implemented as:
757 else if (code
== TYPE_CODE_COMPLEX
&& len
== 8)
758 theclass
[0] = AMD64_SSE
;
759 else if (code
== TYPE_CODE_COMPLEX
&& len
== 16)
760 theclass
[0] = theclass
[1] = AMD64_SSE
;
762 /* A variable of type complex long double is classified as type
764 else if (code
== TYPE_CODE_COMPLEX
&& len
== 32)
765 theclass
[0] = AMD64_COMPLEX_X87
;
768 else if (code
== TYPE_CODE_ARRAY
|| code
== TYPE_CODE_STRUCT
769 || code
== TYPE_CODE_UNION
)
770 amd64_classify_aggregate (type
, theclass
);
773 static enum return_value_convention
774 amd64_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
775 struct type
*type
, struct regcache
*regcache
,
776 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
778 enum amd64_reg_class theclass
[2];
779 int len
= TYPE_LENGTH (type
);
780 static int integer_regnum
[] = { AMD64_RAX_REGNUM
, AMD64_RDX_REGNUM
};
781 static int sse_regnum
[] = { AMD64_XMM0_REGNUM
, AMD64_XMM1_REGNUM
};
786 gdb_assert (!(readbuf
&& writebuf
));
788 /* 1. Classify the return type with the classification algorithm. */
789 amd64_classify (type
, theclass
);
791 /* 2. If the type has class MEMORY, then the caller provides space
792 for the return value and passes the address of this storage in
793 %rdi as if it were the first argument to the function. In effect,
794 this address becomes a hidden first argument.
796 On return %rax will contain the address that has been passed in
797 by the caller in %rdi. */
798 if (theclass
[0] == AMD64_MEMORY
)
800 /* As indicated by the comment above, the ABI guarantees that we
801 can always find the return value just after the function has
808 regcache_raw_read_unsigned (regcache
, AMD64_RAX_REGNUM
, &addr
);
809 read_memory (addr
, readbuf
, TYPE_LENGTH (type
));
812 return RETURN_VALUE_ABI_RETURNS_ADDRESS
;
815 /* 8. If the class is COMPLEX_X87, the real part of the value is
816 returned in %st0 and the imaginary part in %st1. */
817 if (theclass
[0] == AMD64_COMPLEX_X87
)
821 regcache
->raw_read (AMD64_ST0_REGNUM
, readbuf
);
822 regcache
->raw_read (AMD64_ST1_REGNUM
, readbuf
+ 16);
827 i387_return_value (gdbarch
, regcache
);
828 regcache
->raw_write (AMD64_ST0_REGNUM
, writebuf
);
829 regcache
->raw_write (AMD64_ST1_REGNUM
, writebuf
+ 16);
831 /* Fix up the tag word such that both %st(0) and %st(1) are
833 regcache_raw_write_unsigned (regcache
, AMD64_FTAG_REGNUM
, 0xfff);
836 return RETURN_VALUE_REGISTER_CONVENTION
;
839 gdb_assert (theclass
[1] != AMD64_MEMORY
);
840 gdb_assert (len
<= 16);
842 for (i
= 0; len
> 0; i
++, len
-= 8)
850 /* 3. If the class is INTEGER, the next available register
851 of the sequence %rax, %rdx is used. */
852 regnum
= integer_regnum
[integer_reg
++];
856 /* 4. If the class is SSE, the next available SSE register
857 of the sequence %xmm0, %xmm1 is used. */
858 regnum
= sse_regnum
[sse_reg
++];
862 /* 5. If the class is SSEUP, the eightbyte is passed in the
863 upper half of the last used SSE register. */
864 gdb_assert (sse_reg
> 0);
865 regnum
= sse_regnum
[sse_reg
- 1];
870 /* 6. If the class is X87, the value is returned on the X87
871 stack in %st0 as 80-bit x87 number. */
872 regnum
= AMD64_ST0_REGNUM
;
874 i387_return_value (gdbarch
, regcache
);
878 /* 7. If the class is X87UP, the value is returned together
879 with the previous X87 value in %st0. */
880 gdb_assert (i
> 0 && theclass
[0] == AMD64_X87
);
881 regnum
= AMD64_ST0_REGNUM
;
890 gdb_assert (!"Unexpected register class.");
893 gdb_assert (regnum
!= -1);
896 regcache
->raw_read_part (regnum
, offset
, std::min (len
, 8),
899 regcache
->raw_write_part (regnum
, offset
, std::min (len
, 8),
903 return RETURN_VALUE_REGISTER_CONVENTION
;
908 amd64_push_arguments (struct regcache
*regcache
, int nargs
, struct value
**args
,
909 CORE_ADDR sp
, function_call_return_method return_method
)
911 static int integer_regnum
[] =
913 AMD64_RDI_REGNUM
, /* %rdi */
914 AMD64_RSI_REGNUM
, /* %rsi */
915 AMD64_RDX_REGNUM
, /* %rdx */
916 AMD64_RCX_REGNUM
, /* %rcx */
917 AMD64_R8_REGNUM
, /* %r8 */
918 AMD64_R9_REGNUM
/* %r9 */
920 static int sse_regnum
[] =
922 /* %xmm0 ... %xmm7 */
923 AMD64_XMM0_REGNUM
+ 0, AMD64_XMM1_REGNUM
,
924 AMD64_XMM0_REGNUM
+ 2, AMD64_XMM0_REGNUM
+ 3,
925 AMD64_XMM0_REGNUM
+ 4, AMD64_XMM0_REGNUM
+ 5,
926 AMD64_XMM0_REGNUM
+ 6, AMD64_XMM0_REGNUM
+ 7,
928 struct value
**stack_args
= XALLOCAVEC (struct value
*, nargs
);
929 int num_stack_args
= 0;
930 int num_elements
= 0;
936 /* Reserve a register for the "hidden" argument. */
937 if (return_method
== return_method_struct
)
940 for (i
= 0; i
< nargs
; i
++)
942 struct type
*type
= value_type (args
[i
]);
943 int len
= TYPE_LENGTH (type
);
944 enum amd64_reg_class theclass
[2];
945 int needed_integer_regs
= 0;
946 int needed_sse_regs
= 0;
949 /* Classify argument. */
950 amd64_classify (type
, theclass
);
952 /* Calculate the number of integer and SSE registers needed for
954 for (j
= 0; j
< 2; j
++)
956 if (theclass
[j
] == AMD64_INTEGER
)
957 needed_integer_regs
++;
958 else if (theclass
[j
] == AMD64_SSE
)
962 /* Check whether enough registers are available, and if the
963 argument should be passed in registers at all. */
964 if (integer_reg
+ needed_integer_regs
> ARRAY_SIZE (integer_regnum
)
965 || sse_reg
+ needed_sse_regs
> ARRAY_SIZE (sse_regnum
)
966 || (needed_integer_regs
== 0 && needed_sse_regs
== 0))
968 /* The argument will be passed on the stack. */
969 num_elements
+= ((len
+ 7) / 8);
970 stack_args
[num_stack_args
++] = args
[i
];
974 /* The argument will be passed in registers. */
975 const gdb_byte
*valbuf
= value_contents (args
[i
]);
978 gdb_assert (len
<= 16);
980 for (j
= 0; len
> 0; j
++, len
-= 8)
988 regnum
= integer_regnum
[integer_reg
++];
992 regnum
= sse_regnum
[sse_reg
++];
996 gdb_assert (sse_reg
> 0);
997 regnum
= sse_regnum
[sse_reg
- 1];
1001 case AMD64_NO_CLASS
:
1005 gdb_assert (!"Unexpected register class.");
1008 gdb_assert (regnum
!= -1);
1009 memset (buf
, 0, sizeof buf
);
1010 memcpy (buf
, valbuf
+ j
* 8, std::min (len
, 8));
1011 regcache
->raw_write_part (regnum
, offset
, 8, buf
);
1016 /* Allocate space for the arguments on the stack. */
1017 sp
-= num_elements
* 8;
1019 /* The psABI says that "The end of the input argument area shall be
1020 aligned on a 16 byte boundary." */
1023 /* Write out the arguments to the stack. */
1024 for (i
= 0; i
< num_stack_args
; i
++)
1026 struct type
*type
= value_type (stack_args
[i
]);
1027 const gdb_byte
*valbuf
= value_contents (stack_args
[i
]);
1028 int len
= TYPE_LENGTH (type
);
1030 write_memory (sp
+ element
* 8, valbuf
, len
);
1031 element
+= ((len
+ 7) / 8);
1034 /* The psABI says that "For calls that may call functions that use
1035 varargs or stdargs (prototype-less calls or calls to functions
1036 containing ellipsis (...) in the declaration) %al is used as
1037 hidden argument to specify the number of SSE registers used. */
1038 regcache_raw_write_unsigned (regcache
, AMD64_RAX_REGNUM
, sse_reg
);
1043 amd64_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
1044 struct regcache
*regcache
, CORE_ADDR bp_addr
,
1045 int nargs
, struct value
**args
, CORE_ADDR sp
,
1046 function_call_return_method return_method
,
1047 CORE_ADDR struct_addr
)
1049 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1052 /* BND registers can be in arbitrary values at the moment of the
1053 inferior call. This can cause boundary violations that are not
1054 due to a real bug or even desired by the user. The best to be done
1055 is set the BND registers to allow access to the whole memory, INIT
1056 state, before pushing the inferior call. */
1057 i387_reset_bnd_regs (gdbarch
, regcache
);
1059 /* Pass arguments. */
1060 sp
= amd64_push_arguments (regcache
, nargs
, args
, sp
, return_method
);
1062 /* Pass "hidden" argument". */
1063 if (return_method
== return_method_struct
)
1065 store_unsigned_integer (buf
, 8, byte_order
, struct_addr
);
1066 regcache
->cooked_write (AMD64_RDI_REGNUM
, buf
);
1069 /* Store return address. */
1071 store_unsigned_integer (buf
, 8, byte_order
, bp_addr
);
1072 write_memory (sp
, buf
, 8);
1074 /* Finally, update the stack pointer... */
1075 store_unsigned_integer (buf
, 8, byte_order
, sp
);
1076 regcache
->cooked_write (AMD64_RSP_REGNUM
, buf
);
1078 /* ...and fake a frame pointer. */
1079 regcache
->cooked_write (AMD64_RBP_REGNUM
, buf
);
1084 /* Displaced instruction handling. */
1086 /* A partially decoded instruction.
1087 This contains enough details for displaced stepping purposes. */
1091 /* The number of opcode bytes. */
1093 /* The offset of the REX/VEX instruction encoding prefix or -1 if
1095 int enc_prefix_offset
;
1096 /* The offset to the first opcode byte. */
1098 /* The offset to the modrm byte or -1 if not present. */
1101 /* The raw instruction. */
1105 struct amd64_displaced_step_closure
: public displaced_step_closure
1107 amd64_displaced_step_closure (int insn_buf_len
)
1108 : insn_buf (insn_buf_len
, 0)
1111 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1116 /* Details of the instruction. */
1117 struct amd64_insn insn_details
;
1119 /* The possibly modified insn. */
1120 gdb::byte_vector insn_buf
;
1123 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1124 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1125 at which point delete these in favor of libopcodes' versions). */
1127 static const unsigned char onebyte_has_modrm
[256] = {
1128 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1129 /* ------------------------------- */
1130 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1131 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1132 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1133 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1134 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1135 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1136 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1137 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1138 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1139 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1140 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1141 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1142 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1143 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1144 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1145 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1146 /* ------------------------------- */
1147 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1150 static const unsigned char twobyte_has_modrm
[256] = {
1151 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1152 /* ------------------------------- */
1153 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1154 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1155 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1156 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1157 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1158 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1159 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1160 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1161 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1162 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1163 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1164 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1165 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1166 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1167 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1168 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1169 /* ------------------------------- */
1170 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1173 static int amd64_syscall_p (const struct amd64_insn
*insn
, int *lengthp
);
1176 rex_prefix_p (gdb_byte pfx
)
1178 return REX_PREFIX_P (pfx
);
1181 /* True if PFX is the start of the 2-byte VEX prefix. */
1184 vex2_prefix_p (gdb_byte pfx
)
1189 /* True if PFX is the start of the 3-byte VEX prefix. */
1192 vex3_prefix_p (gdb_byte pfx
)
1197 /* Skip the legacy instruction prefixes in INSN.
1198 We assume INSN is properly sentineled so we don't have to worry
1199 about falling off the end of the buffer. */
1202 amd64_skip_prefixes (gdb_byte
*insn
)
1208 case DATA_PREFIX_OPCODE
:
1209 case ADDR_PREFIX_OPCODE
:
1210 case CS_PREFIX_OPCODE
:
1211 case DS_PREFIX_OPCODE
:
1212 case ES_PREFIX_OPCODE
:
1213 case FS_PREFIX_OPCODE
:
1214 case GS_PREFIX_OPCODE
:
1215 case SS_PREFIX_OPCODE
:
1216 case LOCK_PREFIX_OPCODE
:
1217 case REPE_PREFIX_OPCODE
:
1218 case REPNE_PREFIX_OPCODE
:
1230 /* Return an integer register (other than RSP) that is unused as an input
1232 In order to not require adding a rex prefix if the insn doesn't already
1233 have one, the result is restricted to RAX ... RDI, sans RSP.
1234 The register numbering of the result follows architecture ordering,
1238 amd64_get_unused_input_int_reg (const struct amd64_insn
*details
)
1240 /* 1 bit for each reg */
1241 int used_regs_mask
= 0;
1243 /* There can be at most 3 int regs used as inputs in an insn, and we have
1244 7 to choose from (RAX ... RDI, sans RSP).
1245 This allows us to take a conservative approach and keep things simple.
1246 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1247 that implicitly specify RAX. */
1250 used_regs_mask
|= 1 << EAX_REG_NUM
;
1251 /* Similarily avoid RDX, implicit operand in divides. */
1252 used_regs_mask
|= 1 << EDX_REG_NUM
;
1254 used_regs_mask
|= 1 << ESP_REG_NUM
;
1256 /* If the opcode is one byte long and there's no ModRM byte,
1257 assume the opcode specifies a register. */
1258 if (details
->opcode_len
== 1 && details
->modrm_offset
== -1)
1259 used_regs_mask
|= 1 << (details
->raw_insn
[details
->opcode_offset
] & 7);
1261 /* Mark used regs in the modrm/sib bytes. */
1262 if (details
->modrm_offset
!= -1)
1264 int modrm
= details
->raw_insn
[details
->modrm_offset
];
1265 int mod
= MODRM_MOD_FIELD (modrm
);
1266 int reg
= MODRM_REG_FIELD (modrm
);
1267 int rm
= MODRM_RM_FIELD (modrm
);
1268 int have_sib
= mod
!= 3 && rm
== 4;
1270 /* Assume the reg field of the modrm byte specifies a register. */
1271 used_regs_mask
|= 1 << reg
;
1275 int base
= SIB_BASE_FIELD (details
->raw_insn
[details
->modrm_offset
+ 1]);
1276 int idx
= SIB_INDEX_FIELD (details
->raw_insn
[details
->modrm_offset
+ 1]);
1277 used_regs_mask
|= 1 << base
;
1278 used_regs_mask
|= 1 << idx
;
1282 used_regs_mask
|= 1 << rm
;
1286 gdb_assert (used_regs_mask
< 256);
1287 gdb_assert (used_regs_mask
!= 255);
1289 /* Finally, find a free reg. */
1293 for (i
= 0; i
< 8; ++i
)
1295 if (! (used_regs_mask
& (1 << i
)))
1299 /* We shouldn't get here. */
1300 internal_error (__FILE__
, __LINE__
, _("unable to find free reg"));
1304 /* Extract the details of INSN that we need. */
1307 amd64_get_insn_details (gdb_byte
*insn
, struct amd64_insn
*details
)
1309 gdb_byte
*start
= insn
;
1312 details
->raw_insn
= insn
;
1314 details
->opcode_len
= -1;
1315 details
->enc_prefix_offset
= -1;
1316 details
->opcode_offset
= -1;
1317 details
->modrm_offset
= -1;
1319 /* Skip legacy instruction prefixes. */
1320 insn
= amd64_skip_prefixes (insn
);
1322 /* Skip REX/VEX instruction encoding prefixes. */
1323 if (rex_prefix_p (*insn
))
1325 details
->enc_prefix_offset
= insn
- start
;
1328 else if (vex2_prefix_p (*insn
))
1330 /* Don't record the offset in this case because this prefix has
1331 no REX.B equivalent. */
1334 else if (vex3_prefix_p (*insn
))
1336 details
->enc_prefix_offset
= insn
- start
;
1340 details
->opcode_offset
= insn
- start
;
1342 if (*insn
== TWO_BYTE_OPCODE_ESCAPE
)
1344 /* Two or three-byte opcode. */
1346 need_modrm
= twobyte_has_modrm
[*insn
];
1348 /* Check for three-byte opcode. */
1358 details
->opcode_len
= 3;
1361 details
->opcode_len
= 2;
1367 /* One-byte opcode. */
1368 need_modrm
= onebyte_has_modrm
[*insn
];
1369 details
->opcode_len
= 1;
1375 details
->modrm_offset
= insn
- start
;
1379 /* Update %rip-relative addressing in INSN.
1381 %rip-relative addressing only uses a 32-bit displacement.
1382 32 bits is not enough to be guaranteed to cover the distance between where
1383 the real instruction is and where its copy is.
1384 Convert the insn to use base+disp addressing.
1385 We set base = pc + insn_length so we can leave disp unchanged. */
1388 fixup_riprel (struct gdbarch
*gdbarch
, amd64_displaced_step_closure
*dsc
,
1389 CORE_ADDR from
, CORE_ADDR to
, struct regcache
*regs
)
1391 const struct amd64_insn
*insn_details
= &dsc
->insn_details
;
1392 int modrm_offset
= insn_details
->modrm_offset
;
1393 gdb_byte
*insn
= insn_details
->raw_insn
+ modrm_offset
;
1396 int arch_tmp_regno
, tmp_regno
;
1397 ULONGEST orig_value
;
1399 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1402 /* Compute the rip-relative address. */
1403 insn_length
= gdb_buffered_insn_length (gdbarch
, dsc
->insn_buf
.data (),
1404 dsc
->insn_buf
.size (), from
);
1405 rip_base
= from
+ insn_length
;
1407 /* We need a register to hold the address.
1408 Pick one not used in the insn.
1409 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1410 arch_tmp_regno
= amd64_get_unused_input_int_reg (insn_details
);
1411 tmp_regno
= amd64_arch_reg_to_regnum (arch_tmp_regno
);
1413 /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */
1414 static constexpr gdb_byte VEX3_NOT_B
= 0x20;
1416 /* REX.B should be unset (VEX.!B set) as we were using rip-relative
1417 addressing, but ensure it's unset (set for VEX) anyway, tmp_regno
1419 if (insn_details
->enc_prefix_offset
!= -1)
1421 gdb_byte
*pfx
= &dsc
->insn_buf
[insn_details
->enc_prefix_offset
];
1422 if (rex_prefix_p (pfx
[0]))
1424 else if (vex3_prefix_p (pfx
[0]))
1425 pfx
[1] |= VEX3_NOT_B
;
1427 gdb_assert_not_reached ("unhandled prefix");
1430 regcache_cooked_read_unsigned (regs
, tmp_regno
, &orig_value
);
1431 dsc
->tmp_regno
= tmp_regno
;
1432 dsc
->tmp_save
= orig_value
;
1435 /* Convert the ModRM field to be base+disp. */
1436 dsc
->insn_buf
[modrm_offset
] &= ~0xc7;
1437 dsc
->insn_buf
[modrm_offset
] |= 0x80 + arch_tmp_regno
;
1439 regcache_cooked_write_unsigned (regs
, tmp_regno
, rip_base
);
1441 if (debug_displaced
)
1442 fprintf_unfiltered (gdb_stdlog
, "displaced: %%rip-relative addressing used.\n"
1443 "displaced: using temp reg %d, old value %s, new value %s\n",
1444 dsc
->tmp_regno
, paddress (gdbarch
, dsc
->tmp_save
),
1445 paddress (gdbarch
, rip_base
));
1449 fixup_displaced_copy (struct gdbarch
*gdbarch
,
1450 amd64_displaced_step_closure
*dsc
,
1451 CORE_ADDR from
, CORE_ADDR to
, struct regcache
*regs
)
1453 const struct amd64_insn
*details
= &dsc
->insn_details
;
1455 if (details
->modrm_offset
!= -1)
1457 gdb_byte modrm
= details
->raw_insn
[details
->modrm_offset
];
1459 if ((modrm
& 0xc7) == 0x05)
1461 /* The insn uses rip-relative addressing.
1463 fixup_riprel (gdbarch
, dsc
, from
, to
, regs
);
1468 struct displaced_step_closure
*
1469 amd64_displaced_step_copy_insn (struct gdbarch
*gdbarch
,
1470 CORE_ADDR from
, CORE_ADDR to
,
1471 struct regcache
*regs
)
1473 int len
= gdbarch_max_insn_length (gdbarch
);
1474 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1475 continually watch for running off the end of the buffer. */
1476 int fixup_sentinel_space
= len
;
1477 amd64_displaced_step_closure
*dsc
1478 = new amd64_displaced_step_closure (len
+ fixup_sentinel_space
);
1479 gdb_byte
*buf
= &dsc
->insn_buf
[0];
1480 struct amd64_insn
*details
= &dsc
->insn_details
;
1482 read_memory (from
, buf
, len
);
1484 /* Set up the sentinel space so we don't have to worry about running
1485 off the end of the buffer. An excessive number of leading prefixes
1486 could otherwise cause this. */
1487 memset (buf
+ len
, 0, fixup_sentinel_space
);
1489 amd64_get_insn_details (buf
, details
);
1491 /* GDB may get control back after the insn after the syscall.
1492 Presumably this is a kernel bug.
1493 If this is a syscall, make sure there's a nop afterwards. */
1497 if (amd64_syscall_p (details
, &syscall_length
))
1498 buf
[details
->opcode_offset
+ syscall_length
] = NOP_OPCODE
;
1501 /* Modify the insn to cope with the address where it will be executed from.
1502 In particular, handle any rip-relative addressing. */
1503 fixup_displaced_copy (gdbarch
, dsc
, from
, to
, regs
);
1505 write_memory (to
, buf
, len
);
1507 if (debug_displaced
)
1509 fprintf_unfiltered (gdb_stdlog
, "displaced: copy %s->%s: ",
1510 paddress (gdbarch
, from
), paddress (gdbarch
, to
));
1511 displaced_step_dump_bytes (gdb_stdlog
, buf
, len
);
1518 amd64_absolute_jmp_p (const struct amd64_insn
*details
)
1520 const gdb_byte
*insn
= &details
->raw_insn
[details
->opcode_offset
];
1522 if (insn
[0] == 0xff)
1524 /* jump near, absolute indirect (/4) */
1525 if ((insn
[1] & 0x38) == 0x20)
1528 /* jump far, absolute indirect (/5) */
1529 if ((insn
[1] & 0x38) == 0x28)
1536 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1539 amd64_jmp_p (const struct amd64_insn
*details
)
1541 const gdb_byte
*insn
= &details
->raw_insn
[details
->opcode_offset
];
1543 /* jump short, relative. */
1544 if (insn
[0] == 0xeb)
1547 /* jump near, relative. */
1548 if (insn
[0] == 0xe9)
1551 return amd64_absolute_jmp_p (details
);
1555 amd64_absolute_call_p (const struct amd64_insn
*details
)
1557 const gdb_byte
*insn
= &details
->raw_insn
[details
->opcode_offset
];
1559 if (insn
[0] == 0xff)
1561 /* Call near, absolute indirect (/2) */
1562 if ((insn
[1] & 0x38) == 0x10)
1565 /* Call far, absolute indirect (/3) */
1566 if ((insn
[1] & 0x38) == 0x18)
1574 amd64_ret_p (const struct amd64_insn
*details
)
1576 /* NOTE: gcc can emit "repz ; ret". */
1577 const gdb_byte
*insn
= &details
->raw_insn
[details
->opcode_offset
];
1581 case 0xc2: /* ret near, pop N bytes */
1582 case 0xc3: /* ret near */
1583 case 0xca: /* ret far, pop N bytes */
1584 case 0xcb: /* ret far */
1585 case 0xcf: /* iret */
1594 amd64_call_p (const struct amd64_insn
*details
)
1596 const gdb_byte
*insn
= &details
->raw_insn
[details
->opcode_offset
];
1598 if (amd64_absolute_call_p (details
))
1601 /* call near, relative */
1602 if (insn
[0] == 0xe8)
1608 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1609 length in bytes. Otherwise, return zero. */
1612 amd64_syscall_p (const struct amd64_insn
*details
, int *lengthp
)
1614 const gdb_byte
*insn
= &details
->raw_insn
[details
->opcode_offset
];
1616 if (insn
[0] == 0x0f && insn
[1] == 0x05)
1625 /* Classify the instruction at ADDR using PRED.
1626 Throw an error if the memory can't be read. */
1629 amd64_classify_insn_at (struct gdbarch
*gdbarch
, CORE_ADDR addr
,
1630 int (*pred
) (const struct amd64_insn
*))
1632 struct amd64_insn details
;
1634 int len
, classification
;
1636 len
= gdbarch_max_insn_length (gdbarch
);
1637 buf
= (gdb_byte
*) alloca (len
);
1639 read_code (addr
, buf
, len
);
1640 amd64_get_insn_details (buf
, &details
);
1642 classification
= pred (&details
);
1644 return classification
;
1647 /* The gdbarch insn_is_call method. */
1650 amd64_insn_is_call (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
1652 return amd64_classify_insn_at (gdbarch
, addr
, amd64_call_p
);
1655 /* The gdbarch insn_is_ret method. */
1658 amd64_insn_is_ret (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
1660 return amd64_classify_insn_at (gdbarch
, addr
, amd64_ret_p
);
1663 /* The gdbarch insn_is_jump method. */
1666 amd64_insn_is_jump (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
1668 return amd64_classify_insn_at (gdbarch
, addr
, amd64_jmp_p
);
1671 /* Fix up the state of registers and memory after having single-stepped
1672 a displaced instruction. */
1675 amd64_displaced_step_fixup (struct gdbarch
*gdbarch
,
1676 struct displaced_step_closure
*dsc_
,
1677 CORE_ADDR from
, CORE_ADDR to
,
1678 struct regcache
*regs
)
1680 amd64_displaced_step_closure
*dsc
= (amd64_displaced_step_closure
*) dsc_
;
1681 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1682 /* The offset we applied to the instruction's address. */
1683 ULONGEST insn_offset
= to
- from
;
1684 gdb_byte
*insn
= dsc
->insn_buf
.data ();
1685 const struct amd64_insn
*insn_details
= &dsc
->insn_details
;
1687 if (debug_displaced
)
1688 fprintf_unfiltered (gdb_stdlog
,
1689 "displaced: fixup (%s, %s), "
1690 "insn = 0x%02x 0x%02x ...\n",
1691 paddress (gdbarch
, from
), paddress (gdbarch
, to
),
1694 /* If we used a tmp reg, restore it. */
1698 if (debug_displaced
)
1699 fprintf_unfiltered (gdb_stdlog
, "displaced: restoring reg %d to %s\n",
1700 dsc
->tmp_regno
, paddress (gdbarch
, dsc
->tmp_save
));
1701 regcache_cooked_write_unsigned (regs
, dsc
->tmp_regno
, dsc
->tmp_save
);
1704 /* The list of issues to contend with here is taken from
1705 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1706 Yay for Free Software! */
1708 /* Relocate the %rip back to the program's instruction stream,
1711 /* Except in the case of absolute or indirect jump or call
1712 instructions, or a return instruction, the new rip is relative to
1713 the displaced instruction; make it relative to the original insn.
1714 Well, signal handler returns don't need relocation either, but we use the
1715 value of %rip to recognize those; see below. */
1716 if (! amd64_absolute_jmp_p (insn_details
)
1717 && ! amd64_absolute_call_p (insn_details
)
1718 && ! amd64_ret_p (insn_details
))
1723 regcache_cooked_read_unsigned (regs
, AMD64_RIP_REGNUM
, &orig_rip
);
1725 /* A signal trampoline system call changes the %rip, resuming
1726 execution of the main program after the signal handler has
1727 returned. That makes them like 'return' instructions; we
1728 shouldn't relocate %rip.
1730 But most system calls don't, and we do need to relocate %rip.
1732 Our heuristic for distinguishing these cases: if stepping
1733 over the system call instruction left control directly after
1734 the instruction, the we relocate --- control almost certainly
1735 doesn't belong in the displaced copy. Otherwise, we assume
1736 the instruction has put control where it belongs, and leave
1737 it unrelocated. Goodness help us if there are PC-relative
1739 if (amd64_syscall_p (insn_details
, &insn_len
)
1740 && orig_rip
!= to
+ insn_len
1741 /* GDB can get control back after the insn after the syscall.
1742 Presumably this is a kernel bug.
1743 Fixup ensures its a nop, we add one to the length for it. */
1744 && orig_rip
!= to
+ insn_len
+ 1)
1746 if (debug_displaced
)
1747 fprintf_unfiltered (gdb_stdlog
,
1748 "displaced: syscall changed %%rip; "
1749 "not relocating\n");
1753 ULONGEST rip
= orig_rip
- insn_offset
;
1755 /* If we just stepped over a breakpoint insn, we don't backup
1756 the pc on purpose; this is to match behaviour without
1759 regcache_cooked_write_unsigned (regs
, AMD64_RIP_REGNUM
, rip
);
1761 if (debug_displaced
)
1762 fprintf_unfiltered (gdb_stdlog
,
1764 "relocated %%rip from %s to %s\n",
1765 paddress (gdbarch
, orig_rip
),
1766 paddress (gdbarch
, rip
));
1770 /* If the instruction was PUSHFL, then the TF bit will be set in the
1771 pushed value, and should be cleared. We'll leave this for later,
1772 since GDB already messes up the TF flag when stepping over a
1775 /* If the instruction was a call, the return address now atop the
1776 stack is the address following the copied instruction. We need
1777 to make it the address following the original instruction. */
1778 if (amd64_call_p (insn_details
))
1782 const ULONGEST retaddr_len
= 8;
1784 regcache_cooked_read_unsigned (regs
, AMD64_RSP_REGNUM
, &rsp
);
1785 retaddr
= read_memory_unsigned_integer (rsp
, retaddr_len
, byte_order
);
1786 retaddr
= (retaddr
- insn_offset
) & 0xffffffffffffffffULL
;
1787 write_memory_unsigned_integer (rsp
, retaddr_len
, byte_order
, retaddr
);
1789 if (debug_displaced
)
1790 fprintf_unfiltered (gdb_stdlog
,
1791 "displaced: relocated return addr at %s "
1793 paddress (gdbarch
, rsp
),
1794 paddress (gdbarch
, retaddr
));
1798 /* If the instruction INSN uses RIP-relative addressing, return the
1799 offset into the raw INSN where the displacement to be adjusted is
1800 found. Returns 0 if the instruction doesn't use RIP-relative
1804 rip_relative_offset (struct amd64_insn
*insn
)
1806 if (insn
->modrm_offset
!= -1)
1808 gdb_byte modrm
= insn
->raw_insn
[insn
->modrm_offset
];
1810 if ((modrm
& 0xc7) == 0x05)
1812 /* The displacement is found right after the ModRM byte. */
1813 return insn
->modrm_offset
+ 1;
1821 append_insns (CORE_ADDR
*to
, ULONGEST len
, const gdb_byte
*buf
)
1823 target_write_memory (*to
, buf
, len
);
1828 amd64_relocate_instruction (struct gdbarch
*gdbarch
,
1829 CORE_ADDR
*to
, CORE_ADDR oldloc
)
1831 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1832 int len
= gdbarch_max_insn_length (gdbarch
);
1833 /* Extra space for sentinels. */
1834 int fixup_sentinel_space
= len
;
1835 gdb_byte
*buf
= (gdb_byte
*) xmalloc (len
+ fixup_sentinel_space
);
1836 struct amd64_insn insn_details
;
1838 LONGEST rel32
, newrel
;
1842 read_memory (oldloc
, buf
, len
);
1844 /* Set up the sentinel space so we don't have to worry about running
1845 off the end of the buffer. An excessive number of leading prefixes
1846 could otherwise cause this. */
1847 memset (buf
+ len
, 0, fixup_sentinel_space
);
1850 amd64_get_insn_details (insn
, &insn_details
);
1852 insn_length
= gdb_buffered_insn_length (gdbarch
, insn
, len
, oldloc
);
1854 /* Skip legacy instruction prefixes. */
1855 insn
= amd64_skip_prefixes (insn
);
1857 /* Adjust calls with 32-bit relative addresses as push/jump, with
1858 the address pushed being the location where the original call in
1859 the user program would return to. */
1860 if (insn
[0] == 0xe8)
1862 gdb_byte push_buf
[32];
1866 /* Where "ret" in the original code will return to. */
1867 ret_addr
= oldloc
+ insn_length
;
1869 /* If pushing an address higher than or equal to 0x80000000,
1870 avoid 'pushq', as that sign extends its 32-bit operand, which
1871 would be incorrect. */
1872 if (ret_addr
<= 0x7fffffff)
1874 push_buf
[0] = 0x68; /* pushq $... */
1875 store_unsigned_integer (&push_buf
[1], 4, byte_order
, ret_addr
);
1880 push_buf
[i
++] = 0x48; /* sub $0x8,%rsp */
1881 push_buf
[i
++] = 0x83;
1882 push_buf
[i
++] = 0xec;
1883 push_buf
[i
++] = 0x08;
1885 push_buf
[i
++] = 0xc7; /* movl $imm,(%rsp) */
1886 push_buf
[i
++] = 0x04;
1887 push_buf
[i
++] = 0x24;
1888 store_unsigned_integer (&push_buf
[i
], 4, byte_order
,
1889 ret_addr
& 0xffffffff);
1892 push_buf
[i
++] = 0xc7; /* movl $imm,4(%rsp) */
1893 push_buf
[i
++] = 0x44;
1894 push_buf
[i
++] = 0x24;
1895 push_buf
[i
++] = 0x04;
1896 store_unsigned_integer (&push_buf
[i
], 4, byte_order
,
1900 gdb_assert (i
<= sizeof (push_buf
));
1901 /* Push the push. */
1902 append_insns (to
, i
, push_buf
);
1904 /* Convert the relative call to a relative jump. */
1907 /* Adjust the destination offset. */
1908 rel32
= extract_signed_integer (insn
+ 1, 4, byte_order
);
1909 newrel
= (oldloc
- *to
) + rel32
;
1910 store_signed_integer (insn
+ 1, 4, byte_order
, newrel
);
1912 if (debug_displaced
)
1913 fprintf_unfiltered (gdb_stdlog
,
1914 "Adjusted insn rel32=%s at %s to"
1915 " rel32=%s at %s\n",
1916 hex_string (rel32
), paddress (gdbarch
, oldloc
),
1917 hex_string (newrel
), paddress (gdbarch
, *to
));
1919 /* Write the adjusted jump into its displaced location. */
1920 append_insns (to
, 5, insn
);
1924 offset
= rip_relative_offset (&insn_details
);
1927 /* Adjust jumps with 32-bit relative addresses. Calls are
1928 already handled above. */
1929 if (insn
[0] == 0xe9)
1931 /* Adjust conditional jumps. */
1932 else if (insn
[0] == 0x0f && (insn
[1] & 0xf0) == 0x80)
1938 rel32
= extract_signed_integer (insn
+ offset
, 4, byte_order
);
1939 newrel
= (oldloc
- *to
) + rel32
;
1940 store_signed_integer (insn
+ offset
, 4, byte_order
, newrel
);
1941 if (debug_displaced
)
1942 fprintf_unfiltered (gdb_stdlog
,
1943 "Adjusted insn rel32=%s at %s to"
1944 " rel32=%s at %s\n",
1945 hex_string (rel32
), paddress (gdbarch
, oldloc
),
1946 hex_string (newrel
), paddress (gdbarch
, *to
));
1949 /* Write the adjusted instruction into its displaced location. */
1950 append_insns (to
, insn_length
, buf
);
1954 /* The maximum number of saved registers. This should include %rip. */
1955 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1957 struct amd64_frame_cache
1962 CORE_ADDR sp_offset
;
1965 /* Saved registers. */
1966 CORE_ADDR saved_regs
[AMD64_NUM_SAVED_REGS
];
1970 /* Do we have a frame? */
1974 /* Initialize a frame cache. */
1977 amd64_init_frame_cache (struct amd64_frame_cache
*cache
)
1984 cache
->sp_offset
= -8;
1987 /* Saved registers. We initialize these to -1 since zero is a valid
1988 offset (that's where %rbp is supposed to be stored).
1989 The values start out as being offsets, and are later converted to
1990 addresses (at which point -1 is interpreted as an address, still meaning
1992 for (i
= 0; i
< AMD64_NUM_SAVED_REGS
; i
++)
1993 cache
->saved_regs
[i
] = -1;
1994 cache
->saved_sp
= 0;
1995 cache
->saved_sp_reg
= -1;
1997 /* Frameless until proven otherwise. */
1998 cache
->frameless_p
= 1;
2001 /* Allocate and initialize a frame cache. */
2003 static struct amd64_frame_cache
*
2004 amd64_alloc_frame_cache (void)
2006 struct amd64_frame_cache
*cache
;
2008 cache
= FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache
);
2009 amd64_init_frame_cache (cache
);
2013 /* GCC 4.4 and later, can put code in the prologue to realign the
2014 stack pointer. Check whether PC points to such code, and update
2015 CACHE accordingly. Return the first instruction after the code
2016 sequence or CURRENT_PC, whichever is smaller. If we don't
2017 recognize the code, return PC. */
2020 amd64_analyze_stack_align (CORE_ADDR pc
, CORE_ADDR current_pc
,
2021 struct amd64_frame_cache
*cache
)
2023 /* There are 2 code sequences to re-align stack before the frame
2026 1. Use a caller-saved saved register:
2032 2. Use a callee-saved saved register:
2039 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2041 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2042 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2047 int offset
, offset_and
;
2049 if (target_read_code (pc
, buf
, sizeof buf
))
2052 /* Check caller-saved saved register. The first instruction has
2053 to be "leaq 8(%rsp), %reg". */
2054 if ((buf
[0] & 0xfb) == 0x48
2059 /* MOD must be binary 10 and R/M must be binary 100. */
2060 if ((buf
[2] & 0xc7) != 0x44)
2063 /* REG has register number. */
2064 reg
= (buf
[2] >> 3) & 7;
2066 /* Check the REX.R bit. */
2074 /* Check callee-saved saved register. The first instruction
2075 has to be "pushq %reg". */
2077 if ((buf
[0] & 0xf8) == 0x50)
2079 else if ((buf
[0] & 0xf6) == 0x40
2080 && (buf
[1] & 0xf8) == 0x50)
2082 /* Check the REX.B bit. */
2083 if ((buf
[0] & 1) != 0)
2092 reg
+= buf
[offset
] & 0x7;
2096 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2097 if ((buf
[offset
] & 0xfb) != 0x48
2098 || buf
[offset
+ 1] != 0x8d
2099 || buf
[offset
+ 3] != 0x24
2100 || buf
[offset
+ 4] != 0x10)
2103 /* MOD must be binary 10 and R/M must be binary 100. */
2104 if ((buf
[offset
+ 2] & 0xc7) != 0x44)
2107 /* REG has register number. */
2108 r
= (buf
[offset
+ 2] >> 3) & 7;
2110 /* Check the REX.R bit. */
2111 if (buf
[offset
] == 0x4c)
2114 /* Registers in pushq and leaq have to be the same. */
2121 /* Rigister can't be %rsp nor %rbp. */
2122 if (reg
== 4 || reg
== 5)
2125 /* The next instruction has to be "andq $-XXX, %rsp". */
2126 if (buf
[offset
] != 0x48
2127 || buf
[offset
+ 2] != 0xe4
2128 || (buf
[offset
+ 1] != 0x81 && buf
[offset
+ 1] != 0x83))
2131 offset_and
= offset
;
2132 offset
+= buf
[offset
+ 1] == 0x81 ? 7 : 4;
2134 /* The next instruction has to be "pushq -8(%reg)". */
2136 if (buf
[offset
] == 0xff)
2138 else if ((buf
[offset
] & 0xf6) == 0x40
2139 && buf
[offset
+ 1] == 0xff)
2141 /* Check the REX.B bit. */
2142 if ((buf
[offset
] & 0x1) != 0)
2149 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2151 if (buf
[offset
+ 1] != 0xf8
2152 || (buf
[offset
] & 0xf8) != 0x70)
2155 /* R/M has register. */
2156 r
+= buf
[offset
] & 7;
2158 /* Registers in leaq and pushq have to be the same. */
2162 if (current_pc
> pc
+ offset_and
)
2163 cache
->saved_sp_reg
= amd64_arch_reg_to_regnum (reg
);
2165 return std::min (pc
+ offset
+ 2, current_pc
);
2168 /* Similar to amd64_analyze_stack_align for x32. */
2171 amd64_x32_analyze_stack_align (CORE_ADDR pc
, CORE_ADDR current_pc
,
2172 struct amd64_frame_cache
*cache
)
2174 /* There are 2 code sequences to re-align stack before the frame
2177 1. Use a caller-saved saved register:
2185 [addr32] leal 8(%rsp), %reg
2187 [addr32] pushq -8(%reg)
2189 2. Use a callee-saved saved register:
2199 [addr32] leal 16(%rsp), %reg
2201 [addr32] pushq -8(%reg)
2203 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2205 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2206 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2208 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2210 0x83 0xe4 0xf0 andl $-16, %esp
2211 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2216 int offset
, offset_and
;
2218 if (target_read_memory (pc
, buf
, sizeof buf
))
2221 /* Skip optional addr32 prefix. */
2222 offset
= buf
[0] == 0x67 ? 1 : 0;
2224 /* Check caller-saved saved register. The first instruction has
2225 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2226 if (((buf
[offset
] & 0xfb) == 0x48 || (buf
[offset
] & 0xfb) == 0x40)
2227 && buf
[offset
+ 1] == 0x8d
2228 && buf
[offset
+ 3] == 0x24
2229 && buf
[offset
+ 4] == 0x8)
2231 /* MOD must be binary 10 and R/M must be binary 100. */
2232 if ((buf
[offset
+ 2] & 0xc7) != 0x44)
2235 /* REG has register number. */
2236 reg
= (buf
[offset
+ 2] >> 3) & 7;
2238 /* Check the REX.R bit. */
2239 if ((buf
[offset
] & 0x4) != 0)
2246 /* Check callee-saved saved register. The first instruction
2247 has to be "pushq %reg". */
2249 if ((buf
[offset
] & 0xf6) == 0x40
2250 && (buf
[offset
+ 1] & 0xf8) == 0x50)
2252 /* Check the REX.B bit. */
2253 if ((buf
[offset
] & 1) != 0)
2258 else if ((buf
[offset
] & 0xf8) != 0x50)
2262 reg
+= buf
[offset
] & 0x7;
2266 /* Skip optional addr32 prefix. */
2267 if (buf
[offset
] == 0x67)
2270 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2271 "leal 16(%rsp), %reg". */
2272 if (((buf
[offset
] & 0xfb) != 0x48 && (buf
[offset
] & 0xfb) != 0x40)
2273 || buf
[offset
+ 1] != 0x8d
2274 || buf
[offset
+ 3] != 0x24
2275 || buf
[offset
+ 4] != 0x10)
2278 /* MOD must be binary 10 and R/M must be binary 100. */
2279 if ((buf
[offset
+ 2] & 0xc7) != 0x44)
2282 /* REG has register number. */
2283 r
= (buf
[offset
+ 2] >> 3) & 7;
2285 /* Check the REX.R bit. */
2286 if ((buf
[offset
] & 0x4) != 0)
2289 /* Registers in pushq and leaq have to be the same. */
2296 /* Rigister can't be %rsp nor %rbp. */
2297 if (reg
== 4 || reg
== 5)
2300 /* The next instruction may be "andq $-XXX, %rsp" or
2301 "andl $-XXX, %esp". */
2302 if (buf
[offset
] != 0x48)
2305 if (buf
[offset
+ 2] != 0xe4
2306 || (buf
[offset
+ 1] != 0x81 && buf
[offset
+ 1] != 0x83))
2309 offset_and
= offset
;
2310 offset
+= buf
[offset
+ 1] == 0x81 ? 7 : 4;
2312 /* Skip optional addr32 prefix. */
2313 if (buf
[offset
] == 0x67)
2316 /* The next instruction has to be "pushq -8(%reg)". */
2318 if (buf
[offset
] == 0xff)
2320 else if ((buf
[offset
] & 0xf6) == 0x40
2321 && buf
[offset
+ 1] == 0xff)
2323 /* Check the REX.B bit. */
2324 if ((buf
[offset
] & 0x1) != 0)
2331 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2333 if (buf
[offset
+ 1] != 0xf8
2334 || (buf
[offset
] & 0xf8) != 0x70)
2337 /* R/M has register. */
2338 r
+= buf
[offset
] & 7;
2340 /* Registers in leaq and pushq have to be the same. */
2344 if (current_pc
> pc
+ offset_and
)
2345 cache
->saved_sp_reg
= amd64_arch_reg_to_regnum (reg
);
2347 return std::min (pc
+ offset
+ 2, current_pc
);
2350 /* Do a limited analysis of the prologue at PC and update CACHE
2351 accordingly. Bail out early if CURRENT_PC is reached. Return the
2352 address where the analysis stopped.
2354 We will handle only functions beginning with:
2357 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2359 or (for the X32 ABI):
2362 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2364 Any function that doesn't start with one of these sequences will be
2365 assumed to have no prologue and thus no valid frame pointer in
2369 amd64_analyze_prologue (struct gdbarch
*gdbarch
,
2370 CORE_ADDR pc
, CORE_ADDR current_pc
,
2371 struct amd64_frame_cache
*cache
)
2373 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2374 /* There are two variations of movq %rsp, %rbp. */
2375 static const gdb_byte mov_rsp_rbp_1
[3] = { 0x48, 0x89, 0xe5 };
2376 static const gdb_byte mov_rsp_rbp_2
[3] = { 0x48, 0x8b, 0xec };
2377 /* Ditto for movl %esp, %ebp. */
2378 static const gdb_byte mov_esp_ebp_1
[2] = { 0x89, 0xe5 };
2379 static const gdb_byte mov_esp_ebp_2
[2] = { 0x8b, 0xec };
2384 if (current_pc
<= pc
)
2387 if (gdbarch_ptr_bit (gdbarch
) == 32)
2388 pc
= amd64_x32_analyze_stack_align (pc
, current_pc
, cache
);
2390 pc
= amd64_analyze_stack_align (pc
, current_pc
, cache
);
2392 op
= read_code_unsigned_integer (pc
, 1, byte_order
);
2394 if (op
== 0x55) /* pushq %rbp */
2396 /* Take into account that we've executed the `pushq %rbp' that
2397 starts this instruction sequence. */
2398 cache
->saved_regs
[AMD64_RBP_REGNUM
] = 0;
2399 cache
->sp_offset
+= 8;
2401 /* If that's all, return now. */
2402 if (current_pc
<= pc
+ 1)
2405 read_code (pc
+ 1, buf
, 3);
2407 /* Check for `movq %rsp, %rbp'. */
2408 if (memcmp (buf
, mov_rsp_rbp_1
, 3) == 0
2409 || memcmp (buf
, mov_rsp_rbp_2
, 3) == 0)
2411 /* OK, we actually have a frame. */
2412 cache
->frameless_p
= 0;
2416 /* For X32, also check for `movq %esp, %ebp'. */
2417 if (gdbarch_ptr_bit (gdbarch
) == 32)
2419 if (memcmp (buf
, mov_esp_ebp_1
, 2) == 0
2420 || memcmp (buf
, mov_esp_ebp_2
, 2) == 0)
2422 /* OK, we actually have a frame. */
2423 cache
->frameless_p
= 0;
2434 /* Work around false termination of prologue - GCC PR debug/48827.
2436 START_PC is the first instruction of a function, PC is its minimal already
2437 determined advanced address. Function returns PC if it has nothing to do.
2441 <-- here is 0 lines advance - the false prologue end marker.
2442 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2443 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2444 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2445 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2446 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2447 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2448 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2449 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2453 amd64_skip_xmm_prologue (CORE_ADDR pc
, CORE_ADDR start_pc
)
2455 struct symtab_and_line start_pc_sal
, next_sal
;
2456 gdb_byte buf
[4 + 8 * 7];
2462 start_pc_sal
= find_pc_sect_line (start_pc
, NULL
, 0);
2463 if (start_pc_sal
.symtab
== NULL
2464 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2465 (SYMTAB_COMPUNIT (start_pc_sal
.symtab
))) < 6
2466 || start_pc_sal
.pc
!= start_pc
|| pc
>= start_pc_sal
.end
)
2469 next_sal
= find_pc_sect_line (start_pc_sal
.end
, NULL
, 0);
2470 if (next_sal
.line
!= start_pc_sal
.line
)
2473 /* START_PC can be from overlayed memory, ignored here. */
2474 if (target_read_code (next_sal
.pc
- 4, buf
, sizeof (buf
)) != 0)
2478 if (buf
[0] != 0x84 || buf
[1] != 0xc0)
2485 for (xmmreg
= 0; xmmreg
< 8; xmmreg
++)
2487 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2488 if (buf
[offset
] != 0x0f || buf
[offset
+ 1] != 0x29
2489 || (buf
[offset
+ 2] & 0x3f) != (xmmreg
<< 3 | 0x5))
2493 if ((buf
[offset
+ 2] & 0xc0) == 0x40)
2495 /* 8-bit displacement. */
2499 else if ((buf
[offset
+ 2] & 0xc0) == 0x80)
2501 /* 32-bit displacement. */
2509 if (offset
- 4 != buf
[3])
2512 return next_sal
.end
;
2515 /* Return PC of first real instruction. */
2518 amd64_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR start_pc
)
2520 struct amd64_frame_cache cache
;
2522 CORE_ADDR func_addr
;
2524 if (find_pc_partial_function (start_pc
, NULL
, &func_addr
, NULL
))
2526 CORE_ADDR post_prologue_pc
2527 = skip_prologue_using_sal (gdbarch
, func_addr
);
2528 struct compunit_symtab
*cust
= find_pc_compunit_symtab (func_addr
);
2530 /* Clang always emits a line note before the prologue and another
2531 one after. We trust clang to emit usable line notes. */
2532 if (post_prologue_pc
2534 && COMPUNIT_PRODUCER (cust
) != NULL
2535 && startswith (COMPUNIT_PRODUCER (cust
), "clang ")))
2536 return std::max (start_pc
, post_prologue_pc
);
2539 amd64_init_frame_cache (&cache
);
2540 pc
= amd64_analyze_prologue (gdbarch
, start_pc
, 0xffffffffffffffffLL
,
2542 if (cache
.frameless_p
)
2545 return amd64_skip_xmm_prologue (pc
, start_pc
);
2549 /* Normal frames. */
2552 amd64_frame_cache_1 (struct frame_info
*this_frame
,
2553 struct amd64_frame_cache
*cache
)
2555 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2556 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2560 cache
->pc
= get_frame_func (this_frame
);
2562 amd64_analyze_prologue (gdbarch
, cache
->pc
, get_frame_pc (this_frame
),
2565 if (cache
->frameless_p
)
2567 /* We didn't find a valid frame. If we're at the start of a
2568 function, or somewhere half-way its prologue, the function's
2569 frame probably hasn't been fully setup yet. Try to
2570 reconstruct the base address for the stack frame by looking
2571 at the stack pointer. For truly "frameless" functions this
2574 if (cache
->saved_sp_reg
!= -1)
2576 /* Stack pointer has been saved. */
2577 get_frame_register (this_frame
, cache
->saved_sp_reg
, buf
);
2578 cache
->saved_sp
= extract_unsigned_integer (buf
, 8, byte_order
);
2580 /* We're halfway aligning the stack. */
2581 cache
->base
= ((cache
->saved_sp
- 8) & 0xfffffffffffffff0LL
) - 8;
2582 cache
->saved_regs
[AMD64_RIP_REGNUM
] = cache
->saved_sp
- 8;
2584 /* This will be added back below. */
2585 cache
->saved_regs
[AMD64_RIP_REGNUM
] -= cache
->base
;
2589 get_frame_register (this_frame
, AMD64_RSP_REGNUM
, buf
);
2590 cache
->base
= extract_unsigned_integer (buf
, 8, byte_order
)
2596 get_frame_register (this_frame
, AMD64_RBP_REGNUM
, buf
);
2597 cache
->base
= extract_unsigned_integer (buf
, 8, byte_order
);
2600 /* Now that we have the base address for the stack frame we can
2601 calculate the value of %rsp in the calling frame. */
2602 cache
->saved_sp
= cache
->base
+ 16;
2604 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2605 frame we find it at the same offset from the reconstructed base
2606 address. If we're halfway aligning the stack, %rip is handled
2607 differently (see above). */
2608 if (!cache
->frameless_p
|| cache
->saved_sp_reg
== -1)
2609 cache
->saved_regs
[AMD64_RIP_REGNUM
] = 8;
2611 /* Adjust all the saved registers such that they contain addresses
2612 instead of offsets. */
2613 for (i
= 0; i
< AMD64_NUM_SAVED_REGS
; i
++)
2614 if (cache
->saved_regs
[i
] != -1)
2615 cache
->saved_regs
[i
] += cache
->base
;
2620 static struct amd64_frame_cache
*
2621 amd64_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2623 struct amd64_frame_cache
*cache
;
2626 return (struct amd64_frame_cache
*) *this_cache
;
2628 cache
= amd64_alloc_frame_cache ();
2629 *this_cache
= cache
;
2633 amd64_frame_cache_1 (this_frame
, cache
);
2635 catch (const gdb_exception_error
&ex
)
2637 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2644 static enum unwind_stop_reason
2645 amd64_frame_unwind_stop_reason (struct frame_info
*this_frame
,
2648 struct amd64_frame_cache
*cache
=
2649 amd64_frame_cache (this_frame
, this_cache
);
2652 return UNWIND_UNAVAILABLE
;
2654 /* This marks the outermost frame. */
2655 if (cache
->base
== 0)
2656 return UNWIND_OUTERMOST
;
2658 return UNWIND_NO_REASON
;
2662 amd64_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
2663 struct frame_id
*this_id
)
2665 struct amd64_frame_cache
*cache
=
2666 amd64_frame_cache (this_frame
, this_cache
);
2669 (*this_id
) = frame_id_build_unavailable_stack (cache
->pc
);
2670 else if (cache
->base
== 0)
2672 /* This marks the outermost frame. */
2676 (*this_id
) = frame_id_build (cache
->base
+ 16, cache
->pc
);
2679 static struct value
*
2680 amd64_frame_prev_register (struct frame_info
*this_frame
, void **this_cache
,
2683 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2684 struct amd64_frame_cache
*cache
=
2685 amd64_frame_cache (this_frame
, this_cache
);
2687 gdb_assert (regnum
>= 0);
2689 if (regnum
== gdbarch_sp_regnum (gdbarch
) && cache
->saved_sp
)
2690 return frame_unwind_got_constant (this_frame
, regnum
, cache
->saved_sp
);
2692 if (regnum
< AMD64_NUM_SAVED_REGS
&& cache
->saved_regs
[regnum
] != -1)
2693 return frame_unwind_got_memory (this_frame
, regnum
,
2694 cache
->saved_regs
[regnum
]);
2696 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
2699 static const struct frame_unwind amd64_frame_unwind
=
2702 amd64_frame_unwind_stop_reason
,
2703 amd64_frame_this_id
,
2704 amd64_frame_prev_register
,
2706 default_frame_sniffer
2709 /* Generate a bytecode expression to get the value of the saved PC. */
2712 amd64_gen_return_address (struct gdbarch
*gdbarch
,
2713 struct agent_expr
*ax
, struct axs_value
*value
,
2716 /* The following sequence assumes the traditional use of the base
2718 ax_reg (ax
, AMD64_RBP_REGNUM
);
2720 ax_simple (ax
, aop_add
);
2721 value
->type
= register_type (gdbarch
, AMD64_RIP_REGNUM
);
2722 value
->kind
= axs_lvalue_memory
;
2726 /* Signal trampolines. */
2728 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2729 64-bit variants. This would require using identical frame caches
2730 on both platforms. */
2732 static struct amd64_frame_cache
*
2733 amd64_sigtramp_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2735 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2736 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2737 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2738 struct amd64_frame_cache
*cache
;
2744 return (struct amd64_frame_cache
*) *this_cache
;
2746 cache
= amd64_alloc_frame_cache ();
2750 get_frame_register (this_frame
, AMD64_RSP_REGNUM
, buf
);
2751 cache
->base
= extract_unsigned_integer (buf
, 8, byte_order
) - 8;
2753 addr
= tdep
->sigcontext_addr (this_frame
);
2754 gdb_assert (tdep
->sc_reg_offset
);
2755 gdb_assert (tdep
->sc_num_regs
<= AMD64_NUM_SAVED_REGS
);
2756 for (i
= 0; i
< tdep
->sc_num_regs
; i
++)
2757 if (tdep
->sc_reg_offset
[i
] != -1)
2758 cache
->saved_regs
[i
] = addr
+ tdep
->sc_reg_offset
[i
];
2762 catch (const gdb_exception_error
&ex
)
2764 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2768 *this_cache
= cache
;
2772 static enum unwind_stop_reason
2773 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info
*this_frame
,
2776 struct amd64_frame_cache
*cache
=
2777 amd64_sigtramp_frame_cache (this_frame
, this_cache
);
2780 return UNWIND_UNAVAILABLE
;
2782 return UNWIND_NO_REASON
;
2786 amd64_sigtramp_frame_this_id (struct frame_info
*this_frame
,
2787 void **this_cache
, struct frame_id
*this_id
)
2789 struct amd64_frame_cache
*cache
=
2790 amd64_sigtramp_frame_cache (this_frame
, this_cache
);
2793 (*this_id
) = frame_id_build_unavailable_stack (get_frame_pc (this_frame
));
2794 else if (cache
->base
== 0)
2796 /* This marks the outermost frame. */
2800 (*this_id
) = frame_id_build (cache
->base
+ 16, get_frame_pc (this_frame
));
2803 static struct value
*
2804 amd64_sigtramp_frame_prev_register (struct frame_info
*this_frame
,
2805 void **this_cache
, int regnum
)
2807 /* Make sure we've initialized the cache. */
2808 amd64_sigtramp_frame_cache (this_frame
, this_cache
);
2810 return amd64_frame_prev_register (this_frame
, this_cache
, regnum
);
2814 amd64_sigtramp_frame_sniffer (const struct frame_unwind
*self
,
2815 struct frame_info
*this_frame
,
2818 struct gdbarch_tdep
*tdep
= gdbarch_tdep (get_frame_arch (this_frame
));
2820 /* We shouldn't even bother if we don't have a sigcontext_addr
2822 if (tdep
->sigcontext_addr
== NULL
)
2825 if (tdep
->sigtramp_p
!= NULL
)
2827 if (tdep
->sigtramp_p (this_frame
))
2831 if (tdep
->sigtramp_start
!= 0)
2833 CORE_ADDR pc
= get_frame_pc (this_frame
);
2835 gdb_assert (tdep
->sigtramp_end
!= 0);
2836 if (pc
>= tdep
->sigtramp_start
&& pc
< tdep
->sigtramp_end
)
2843 static const struct frame_unwind amd64_sigtramp_frame_unwind
=
2846 amd64_sigtramp_frame_unwind_stop_reason
,
2847 amd64_sigtramp_frame_this_id
,
2848 amd64_sigtramp_frame_prev_register
,
2850 amd64_sigtramp_frame_sniffer
2855 amd64_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
2857 struct amd64_frame_cache
*cache
=
2858 amd64_frame_cache (this_frame
, this_cache
);
2863 static const struct frame_base amd64_frame_base
=
2865 &amd64_frame_unwind
,
2866 amd64_frame_base_address
,
2867 amd64_frame_base_address
,
2868 amd64_frame_base_address
2871 /* Normal frames, but in a function epilogue. */
2873 /* Implement the stack_frame_destroyed_p gdbarch method.
2875 The epilogue is defined here as the 'ret' instruction, which will
2876 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2877 the function's stack frame. */
2880 amd64_stack_frame_destroyed_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
2883 struct compunit_symtab
*cust
;
2885 cust
= find_pc_compunit_symtab (pc
);
2886 if (cust
!= NULL
&& COMPUNIT_EPILOGUE_UNWIND_VALID (cust
))
2889 if (target_read_memory (pc
, &insn
, 1))
2890 return 0; /* Can't read memory at pc. */
2892 if (insn
!= 0xc3) /* 'ret' instruction. */
2899 amd64_epilogue_frame_sniffer (const struct frame_unwind
*self
,
2900 struct frame_info
*this_frame
,
2901 void **this_prologue_cache
)
2903 if (frame_relative_level (this_frame
) == 0)
2904 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame
),
2905 get_frame_pc (this_frame
));
2910 static struct amd64_frame_cache
*
2911 amd64_epilogue_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
2913 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
2914 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2915 struct amd64_frame_cache
*cache
;
2919 return (struct amd64_frame_cache
*) *this_cache
;
2921 cache
= amd64_alloc_frame_cache ();
2922 *this_cache
= cache
;
2926 /* Cache base will be %esp plus cache->sp_offset (-8). */
2927 get_frame_register (this_frame
, AMD64_RSP_REGNUM
, buf
);
2928 cache
->base
= extract_unsigned_integer (buf
, 8,
2929 byte_order
) + cache
->sp_offset
;
2931 /* Cache pc will be the frame func. */
2932 cache
->pc
= get_frame_pc (this_frame
);
2934 /* The saved %esp will be at cache->base plus 16. */
2935 cache
->saved_sp
= cache
->base
+ 16;
2937 /* The saved %eip will be at cache->base plus 8. */
2938 cache
->saved_regs
[AMD64_RIP_REGNUM
] = cache
->base
+ 8;
2942 catch (const gdb_exception_error
&ex
)
2944 if (ex
.error
!= NOT_AVAILABLE_ERROR
)
2951 static enum unwind_stop_reason
2952 amd64_epilogue_frame_unwind_stop_reason (struct frame_info
*this_frame
,
2955 struct amd64_frame_cache
*cache
2956 = amd64_epilogue_frame_cache (this_frame
, this_cache
);
2959 return UNWIND_UNAVAILABLE
;
2961 return UNWIND_NO_REASON
;
2965 amd64_epilogue_frame_this_id (struct frame_info
*this_frame
,
2967 struct frame_id
*this_id
)
2969 struct amd64_frame_cache
*cache
= amd64_epilogue_frame_cache (this_frame
,
2973 (*this_id
) = frame_id_build_unavailable_stack (cache
->pc
);
2975 (*this_id
) = frame_id_build (cache
->base
+ 8, cache
->pc
);
2978 static const struct frame_unwind amd64_epilogue_frame_unwind
=
2981 amd64_epilogue_frame_unwind_stop_reason
,
2982 amd64_epilogue_frame_this_id
,
2983 amd64_frame_prev_register
,
2985 amd64_epilogue_frame_sniffer
2988 static struct frame_id
2989 amd64_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
2993 fp
= get_frame_register_unsigned (this_frame
, AMD64_RBP_REGNUM
);
2995 return frame_id_build (fp
+ 16, get_frame_pc (this_frame
));
2998 /* 16 byte align the SP per frame requirements. */
3001 amd64_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
3003 return sp
& -(CORE_ADDR
)16;
3007 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3008 in the floating-point register set REGSET to register cache
3009 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3012 amd64_supply_fpregset (const struct regset
*regset
, struct regcache
*regcache
,
3013 int regnum
, const void *fpregs
, size_t len
)
3015 struct gdbarch
*gdbarch
= regcache
->arch ();
3016 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3018 gdb_assert (len
>= tdep
->sizeof_fpregset
);
3019 amd64_supply_fxsave (regcache
, regnum
, fpregs
);
3022 /* Collect register REGNUM from the register cache REGCACHE and store
3023 it in the buffer specified by FPREGS and LEN as described by the
3024 floating-point register set REGSET. If REGNUM is -1, do this for
3025 all registers in REGSET. */
3028 amd64_collect_fpregset (const struct regset
*regset
,
3029 const struct regcache
*regcache
,
3030 int regnum
, void *fpregs
, size_t len
)
3032 struct gdbarch
*gdbarch
= regcache
->arch ();
3033 const struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3035 gdb_assert (len
>= tdep
->sizeof_fpregset
);
3036 amd64_collect_fxsave (regcache
, regnum
, fpregs
);
3039 const struct regset amd64_fpregset
=
3041 NULL
, amd64_supply_fpregset
, amd64_collect_fpregset
3045 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
3046 %rdi. We expect its value to be a pointer to the jmp_buf structure
3047 from which we extract the address that we will land at. This
3048 address is copied into PC. This routine returns non-zero on
3052 amd64_get_longjmp_target (struct frame_info
*frame
, CORE_ADDR
*pc
)
3056 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
3057 int jb_pc_offset
= gdbarch_tdep (gdbarch
)->jb_pc_offset
;
3058 int len
= TYPE_LENGTH (builtin_type (gdbarch
)->builtin_func_ptr
);
3060 /* If JB_PC_OFFSET is -1, we have no way to find out where the
3061 longjmp will land. */
3062 if (jb_pc_offset
== -1)
3065 get_frame_register (frame
, AMD64_RDI_REGNUM
, buf
);
3066 jb_addr
= extract_typed_address
3067 (buf
, builtin_type (gdbarch
)->builtin_data_ptr
);
3068 if (target_read_memory (jb_addr
+ jb_pc_offset
, buf
, len
))
3071 *pc
= extract_typed_address (buf
, builtin_type (gdbarch
)->builtin_func_ptr
);
3076 static const int amd64_record_regmap
[] =
3078 AMD64_RAX_REGNUM
, AMD64_RCX_REGNUM
, AMD64_RDX_REGNUM
, AMD64_RBX_REGNUM
,
3079 AMD64_RSP_REGNUM
, AMD64_RBP_REGNUM
, AMD64_RSI_REGNUM
, AMD64_RDI_REGNUM
,
3080 AMD64_R8_REGNUM
, AMD64_R9_REGNUM
, AMD64_R10_REGNUM
, AMD64_R11_REGNUM
,
3081 AMD64_R12_REGNUM
, AMD64_R13_REGNUM
, AMD64_R14_REGNUM
, AMD64_R15_REGNUM
,
3082 AMD64_RIP_REGNUM
, AMD64_EFLAGS_REGNUM
, AMD64_CS_REGNUM
, AMD64_SS_REGNUM
,
3083 AMD64_DS_REGNUM
, AMD64_ES_REGNUM
, AMD64_FS_REGNUM
, AMD64_GS_REGNUM
3086 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
3089 amd64_in_indirect_branch_thunk (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
3091 return x86_in_indirect_branch_thunk (pc
, amd64_register_names
,
3097 amd64_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
,
3098 const target_desc
*default_tdesc
)
3100 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3101 const struct target_desc
*tdesc
= info
.target_desc
;
3102 static const char *const stap_integer_prefixes
[] = { "$", NULL
};
3103 static const char *const stap_register_prefixes
[] = { "%", NULL
};
3104 static const char *const stap_register_indirection_prefixes
[] = { "(",
3106 static const char *const stap_register_indirection_suffixes
[] = { ")",
3109 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3110 floating-point registers. */
3111 tdep
->sizeof_fpregset
= I387_SIZEOF_FXSAVE
;
3112 tdep
->fpregset
= &amd64_fpregset
;
3114 if (! tdesc_has_registers (tdesc
))
3115 tdesc
= default_tdesc
;
3116 tdep
->tdesc
= tdesc
;
3118 tdep
->num_core_regs
= AMD64_NUM_GREGS
+ I387_NUM_REGS
;
3119 tdep
->register_names
= amd64_register_names
;
3121 if (tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.avx512") != NULL
)
3123 tdep
->zmmh_register_names
= amd64_zmmh_names
;
3124 tdep
->k_register_names
= amd64_k_names
;
3125 tdep
->xmm_avx512_register_names
= amd64_xmm_avx512_names
;
3126 tdep
->ymm16h_register_names
= amd64_ymmh_avx512_names
;
3128 tdep
->num_zmm_regs
= 32;
3129 tdep
->num_xmm_avx512_regs
= 16;
3130 tdep
->num_ymm_avx512_regs
= 16;
3132 tdep
->zmm0h_regnum
= AMD64_ZMM0H_REGNUM
;
3133 tdep
->k0_regnum
= AMD64_K0_REGNUM
;
3134 tdep
->xmm16_regnum
= AMD64_XMM16_REGNUM
;
3135 tdep
->ymm16h_regnum
= AMD64_YMM16H_REGNUM
;
3138 if (tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.avx") != NULL
)
3140 tdep
->ymmh_register_names
= amd64_ymmh_names
;
3141 tdep
->num_ymm_regs
= 16;
3142 tdep
->ymm0h_regnum
= AMD64_YMM0H_REGNUM
;
3145 if (tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.mpx") != NULL
)
3147 tdep
->mpx_register_names
= amd64_mpx_names
;
3148 tdep
->bndcfgu_regnum
= AMD64_BNDCFGU_REGNUM
;
3149 tdep
->bnd0r_regnum
= AMD64_BND0R_REGNUM
;
3152 if (tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.segments") != NULL
)
3154 tdep
->fsbase_regnum
= AMD64_FSBASE_REGNUM
;
3157 if (tdesc_find_feature (tdesc
, "org.gnu.gdb.i386.pkeys") != NULL
)
3159 tdep
->pkeys_register_names
= amd64_pkeys_names
;
3160 tdep
->pkru_regnum
= AMD64_PKRU_REGNUM
;
3161 tdep
->num_pkeys_regs
= 1;
3164 tdep
->num_byte_regs
= 20;
3165 tdep
->num_word_regs
= 16;
3166 tdep
->num_dword_regs
= 16;
3167 /* Avoid wiring in the MMX registers for now. */
3168 tdep
->num_mmx_regs
= 0;
3170 set_gdbarch_pseudo_register_read_value (gdbarch
,
3171 amd64_pseudo_register_read_value
);
3172 set_gdbarch_pseudo_register_write (gdbarch
,
3173 amd64_pseudo_register_write
);
3174 set_gdbarch_ax_pseudo_register_collect (gdbarch
,
3175 amd64_ax_pseudo_register_collect
);
3177 set_tdesc_pseudo_register_name (gdbarch
, amd64_pseudo_register_name
);
3179 /* AMD64 has an FPU and 16 SSE registers. */
3180 tdep
->st0_regnum
= AMD64_ST0_REGNUM
;
3181 tdep
->num_xmm_regs
= 16;
3183 /* This is what all the fuss is about. */
3184 set_gdbarch_long_bit (gdbarch
, 64);
3185 set_gdbarch_long_long_bit (gdbarch
, 64);
3186 set_gdbarch_ptr_bit (gdbarch
, 64);
3188 /* In contrast to the i386, on AMD64 a `long double' actually takes
3189 up 128 bits, even though it's still based on the i387 extended
3190 floating-point format which has only 80 significant bits. */
3191 set_gdbarch_long_double_bit (gdbarch
, 128);
3193 set_gdbarch_num_regs (gdbarch
, AMD64_NUM_REGS
);
3195 /* Register numbers of various important registers. */
3196 set_gdbarch_sp_regnum (gdbarch
, AMD64_RSP_REGNUM
); /* %rsp */
3197 set_gdbarch_pc_regnum (gdbarch
, AMD64_RIP_REGNUM
); /* %rip */
3198 set_gdbarch_ps_regnum (gdbarch
, AMD64_EFLAGS_REGNUM
); /* %eflags */
3199 set_gdbarch_fp0_regnum (gdbarch
, AMD64_ST0_REGNUM
); /* %st(0) */
3201 /* The "default" register numbering scheme for AMD64 is referred to
3202 as the "DWARF Register Number Mapping" in the System V psABI.
3203 The preferred debugging format for all known AMD64 targets is
3204 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3205 DWARF-1), but we provide the same mapping just in case. This
3206 mapping is also used for stabs, which GCC does support. */
3207 set_gdbarch_stab_reg_to_regnum (gdbarch
, amd64_dwarf_reg_to_regnum
);
3208 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
, amd64_dwarf_reg_to_regnum
);
3210 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3211 be in use on any of the supported AMD64 targets. */
3213 /* Call dummy code. */
3214 set_gdbarch_push_dummy_call (gdbarch
, amd64_push_dummy_call
);
3215 set_gdbarch_frame_align (gdbarch
, amd64_frame_align
);
3216 set_gdbarch_frame_red_zone_size (gdbarch
, 128);
3218 set_gdbarch_convert_register_p (gdbarch
, i387_convert_register_p
);
3219 set_gdbarch_register_to_value (gdbarch
, i387_register_to_value
);
3220 set_gdbarch_value_to_register (gdbarch
, i387_value_to_register
);
3222 set_gdbarch_return_value (gdbarch
, amd64_return_value
);
3224 set_gdbarch_skip_prologue (gdbarch
, amd64_skip_prologue
);
3226 tdep
->record_regmap
= amd64_record_regmap
;
3228 set_gdbarch_dummy_id (gdbarch
, amd64_dummy_id
);
3230 /* Hook the function epilogue frame unwinder. This unwinder is
3231 appended to the list first, so that it supercedes the other
3232 unwinders in function epilogues. */
3233 frame_unwind_prepend_unwinder (gdbarch
, &amd64_epilogue_frame_unwind
);
3235 /* Hook the prologue-based frame unwinders. */
3236 frame_unwind_append_unwinder (gdbarch
, &amd64_sigtramp_frame_unwind
);
3237 frame_unwind_append_unwinder (gdbarch
, &amd64_frame_unwind
);
3238 frame_base_set_default (gdbarch
, &amd64_frame_base
);
3240 set_gdbarch_get_longjmp_target (gdbarch
, amd64_get_longjmp_target
);
3242 set_gdbarch_relocate_instruction (gdbarch
, amd64_relocate_instruction
);
3244 set_gdbarch_gen_return_address (gdbarch
, amd64_gen_return_address
);
3246 /* SystemTap variables and functions. */
3247 set_gdbarch_stap_integer_prefixes (gdbarch
, stap_integer_prefixes
);
3248 set_gdbarch_stap_register_prefixes (gdbarch
, stap_register_prefixes
);
3249 set_gdbarch_stap_register_indirection_prefixes (gdbarch
,
3250 stap_register_indirection_prefixes
);
3251 set_gdbarch_stap_register_indirection_suffixes (gdbarch
,
3252 stap_register_indirection_suffixes
);
3253 set_gdbarch_stap_is_single_operand (gdbarch
,
3254 i386_stap_is_single_operand
);
3255 set_gdbarch_stap_parse_special_token (gdbarch
,
3256 i386_stap_parse_special_token
);
3257 set_gdbarch_insn_is_call (gdbarch
, amd64_insn_is_call
);
3258 set_gdbarch_insn_is_ret (gdbarch
, amd64_insn_is_ret
);
3259 set_gdbarch_insn_is_jump (gdbarch
, amd64_insn_is_jump
);
3261 set_gdbarch_in_indirect_branch_thunk (gdbarch
,
3262 amd64_in_indirect_branch_thunk
);
3265 /* Initialize ARCH for x86-64, no osabi. */
3268 amd64_none_init_abi (gdbarch_info info
, gdbarch
*arch
)
3270 amd64_init_abi (info
, arch
, amd64_target_description (X86_XSTATE_SSE_MASK
,
3274 static struct type
*
3275 amd64_x32_pseudo_register_type (struct gdbarch
*gdbarch
, int regnum
)
3277 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3279 switch (regnum
- tdep
->eax_regnum
)
3281 case AMD64_RBP_REGNUM
: /* %ebp */
3282 case AMD64_RSP_REGNUM
: /* %esp */
3283 return builtin_type (gdbarch
)->builtin_data_ptr
;
3284 case AMD64_RIP_REGNUM
: /* %eip */
3285 return builtin_type (gdbarch
)->builtin_func_ptr
;
3288 return i386_pseudo_register_type (gdbarch
, regnum
);
3292 amd64_x32_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
,
3293 const target_desc
*default_tdesc
)
3295 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3297 amd64_init_abi (info
, gdbarch
, default_tdesc
);
3299 tdep
->num_dword_regs
= 17;
3300 set_tdesc_pseudo_register_type (gdbarch
, amd64_x32_pseudo_register_type
);
3302 set_gdbarch_long_bit (gdbarch
, 32);
3303 set_gdbarch_ptr_bit (gdbarch
, 32);
3306 /* Initialize ARCH for x64-32, no osabi. */
3309 amd64_x32_none_init_abi (gdbarch_info info
, gdbarch
*arch
)
3311 amd64_x32_init_abi (info
, arch
,
3312 amd64_target_description (X86_XSTATE_SSE_MASK
, true));
3315 /* Return the target description for a specified XSAVE feature mask. */
3317 const struct target_desc
*
3318 amd64_target_description (uint64_t xcr0
, bool segments
)
3320 static target_desc
*amd64_tdescs \
3321 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
3322 target_desc
**tdesc
;
3324 tdesc
= &amd64_tdescs
[(xcr0
& X86_XSTATE_AVX
) ? 1 : 0]
3325 [(xcr0
& X86_XSTATE_MPX
) ? 1 : 0]
3326 [(xcr0
& X86_XSTATE_AVX512
) ? 1 : 0]
3327 [(xcr0
& X86_XSTATE_PKRU
) ? 1 : 0]
3331 *tdesc
= amd64_create_target_description (xcr0
, false, false,
3338 _initialize_amd64_tdep (void)
3340 gdbarch_register_osabi (bfd_arch_i386
, bfd_mach_x86_64
, GDB_OSABI_NONE
,
3341 amd64_none_init_abi
);
3342 gdbarch_register_osabi (bfd_arch_i386
, bfd_mach_x64_32
, GDB_OSABI_NONE
,
3343 amd64_x32_none_init_abi
);
3347 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3348 sense that the instruction pointer and data pointer are simply
3349 64-bit offsets into the code segment and the data segment instead
3350 of a selector offset pair. The functions below store the upper 32
3351 bits of these pointers (instead of just the 16-bits of the segment
3354 /* Fill register REGNUM in REGCACHE with the appropriate
3355 floating-point or SSE register value from *FXSAVE. If REGNUM is
3356 -1, do this for all registers. This function masks off any of the
3357 reserved bits in *FXSAVE. */
3360 amd64_supply_fxsave (struct regcache
*regcache
, int regnum
,
3363 struct gdbarch
*gdbarch
= regcache
->arch ();
3364 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3366 i387_supply_fxsave (regcache
, regnum
, fxsave
);
3369 && gdbarch_bfd_arch_info (gdbarch
)->bits_per_word
== 64)
3371 const gdb_byte
*regs
= (const gdb_byte
*) fxsave
;
3373 if (regnum
== -1 || regnum
== I387_FISEG_REGNUM (tdep
))
3374 regcache
->raw_supply (I387_FISEG_REGNUM (tdep
), regs
+ 12);
3375 if (regnum
== -1 || regnum
== I387_FOSEG_REGNUM (tdep
))
3376 regcache
->raw_supply (I387_FOSEG_REGNUM (tdep
), regs
+ 20);
3380 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3383 amd64_supply_xsave (struct regcache
*regcache
, int regnum
,
3386 struct gdbarch
*gdbarch
= regcache
->arch ();
3387 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3389 i387_supply_xsave (regcache
, regnum
, xsave
);
3392 && gdbarch_bfd_arch_info (gdbarch
)->bits_per_word
== 64)
3394 const gdb_byte
*regs
= (const gdb_byte
*) xsave
;
3397 clear_bv
= i387_xsave_get_clear_bv (gdbarch
, xsave
);
3399 /* If the FISEG and FOSEG registers have not been initialised yet
3400 (their CLEAR_BV bit is set) then their default values of zero will
3401 have already been setup by I387_SUPPLY_XSAVE. */
3402 if (!(clear_bv
& X86_XSTATE_X87
))
3404 if (regnum
== -1 || regnum
== I387_FISEG_REGNUM (tdep
))
3405 regcache
->raw_supply (I387_FISEG_REGNUM (tdep
), regs
+ 12);
3406 if (regnum
== -1 || regnum
== I387_FOSEG_REGNUM (tdep
))
3407 regcache
->raw_supply (I387_FOSEG_REGNUM (tdep
), regs
+ 20);
3412 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3413 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3414 all registers. This function doesn't touch any of the reserved
3418 amd64_collect_fxsave (const struct regcache
*regcache
, int regnum
,
3421 struct gdbarch
*gdbarch
= regcache
->arch ();
3422 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3423 gdb_byte
*regs
= (gdb_byte
*) fxsave
;
3425 i387_collect_fxsave (regcache
, regnum
, fxsave
);
3427 if (gdbarch_bfd_arch_info (gdbarch
)->bits_per_word
== 64)
3429 if (regnum
== -1 || regnum
== I387_FISEG_REGNUM (tdep
))
3430 regcache
->raw_collect (I387_FISEG_REGNUM (tdep
), regs
+ 12);
3431 if (regnum
== -1 || regnum
== I387_FOSEG_REGNUM (tdep
))
3432 regcache
->raw_collect (I387_FOSEG_REGNUM (tdep
), regs
+ 20);
3436 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3439 amd64_collect_xsave (const struct regcache
*regcache
, int regnum
,
3440 void *xsave
, int gcore
)
3442 struct gdbarch
*gdbarch
= regcache
->arch ();
3443 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3444 gdb_byte
*regs
= (gdb_byte
*) xsave
;
3446 i387_collect_xsave (regcache
, regnum
, xsave
, gcore
);
3448 if (gdbarch_bfd_arch_info (gdbarch
)->bits_per_word
== 64)
3450 if (regnum
== -1 || regnum
== I387_FISEG_REGNUM (tdep
))
3451 regcache
->raw_collect (I387_FISEG_REGNUM (tdep
),
3453 if (regnum
== -1 || regnum
== I387_FOSEG_REGNUM (tdep
))
3454 regcache
->raw_collect (I387_FOSEG_REGNUM (tdep
),