Make the literal argument to pow a double, not an integer
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2019 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "gdbsupport/x86-xstate.h"
43 #include <algorithm>
44 #include "target-descriptions.h"
45 #include "arch/amd64.h"
46 #include "producer.h"
47 #include "ax.h"
48 #include "ax-gdb.h"
49 #include "gdbsupport/byte-vector.h"
50 #include "osabi.h"
51 #include "x86-tdep.h"
52
53 /* Note that the AMD64 architecture was previously known as x86-64.
54 The latter is (forever) engraved into the canonical system name as
55 returned by config.guess, and used as the name for the AMD64 port
56 of GNU/Linux. The BSD's have renamed their ports to amd64; they
57 don't like to shout. For GDB we prefer the amd64_-prefix over the
58 x86_64_-prefix since it's so much easier to type. */
59
60 /* Register information. */
61
62 static const char *amd64_register_names[] =
63 {
64 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
65
66 /* %r8 is indeed register number 8. */
67 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
68 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
69
70 /* %st0 is register number 24. */
71 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
72 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
73
74 /* %xmm0 is register number 40. */
75 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
76 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
77 "mxcsr",
78 };
79
80 static const char *amd64_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 "ymm8", "ymm9", "ymm10", "ymm11",
85 "ymm12", "ymm13", "ymm14", "ymm15"
86 };
87
88 static const char *amd64_ymm_avx512_names[] =
89 {
90 "ymm16", "ymm17", "ymm18", "ymm19",
91 "ymm20", "ymm21", "ymm22", "ymm23",
92 "ymm24", "ymm25", "ymm26", "ymm27",
93 "ymm28", "ymm29", "ymm30", "ymm31"
94 };
95
96 static const char *amd64_ymmh_names[] =
97 {
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
101 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
102 };
103
104 static const char *amd64_ymmh_avx512_names[] =
105 {
106 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
107 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
108 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
109 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
110 };
111
112 static const char *amd64_mpx_names[] =
113 {
114 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
115 };
116
117 static const char *amd64_k_names[] =
118 {
119 "k0", "k1", "k2", "k3",
120 "k4", "k5", "k6", "k7"
121 };
122
123 static const char *amd64_zmmh_names[] =
124 {
125 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
126 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
127 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
128 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
129 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
130 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
131 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
132 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
133 };
134
135 static const char *amd64_zmm_names[] =
136 {
137 "zmm0", "zmm1", "zmm2", "zmm3",
138 "zmm4", "zmm5", "zmm6", "zmm7",
139 "zmm8", "zmm9", "zmm10", "zmm11",
140 "zmm12", "zmm13", "zmm14", "zmm15",
141 "zmm16", "zmm17", "zmm18", "zmm19",
142 "zmm20", "zmm21", "zmm22", "zmm23",
143 "zmm24", "zmm25", "zmm26", "zmm27",
144 "zmm28", "zmm29", "zmm30", "zmm31"
145 };
146
147 static const char *amd64_xmm_avx512_names[] = {
148 "xmm16", "xmm17", "xmm18", "xmm19",
149 "xmm20", "xmm21", "xmm22", "xmm23",
150 "xmm24", "xmm25", "xmm26", "xmm27",
151 "xmm28", "xmm29", "xmm30", "xmm31"
152 };
153
154 static const char *amd64_pkeys_names[] = {
155 "pkru"
156 };
157
158 /* DWARF Register Number Mapping as defined in the System V psABI,
159 section 3.6. */
160
161 static int amd64_dwarf_regmap[] =
162 {
163 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
164 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
165 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
166 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
167
168 /* Frame Pointer Register RBP. */
169 AMD64_RBP_REGNUM,
170
171 /* Stack Pointer Register RSP. */
172 AMD64_RSP_REGNUM,
173
174 /* Extended Integer Registers 8 - 15. */
175 AMD64_R8_REGNUM, /* %r8 */
176 AMD64_R9_REGNUM, /* %r9 */
177 AMD64_R10_REGNUM, /* %r10 */
178 AMD64_R11_REGNUM, /* %r11 */
179 AMD64_R12_REGNUM, /* %r12 */
180 AMD64_R13_REGNUM, /* %r13 */
181 AMD64_R14_REGNUM, /* %r14 */
182 AMD64_R15_REGNUM, /* %r15 */
183
184 /* Return Address RA. Mapped to RIP. */
185 AMD64_RIP_REGNUM,
186
187 /* SSE Registers 0 - 7. */
188 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
189 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
190 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
191 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
192
193 /* Extended SSE Registers 8 - 15. */
194 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
195 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
196 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
197 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
198
199 /* Floating Point Registers 0-7. */
200 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
201 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
202 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
203 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
204
205 /* MMX Registers 0 - 7.
206 We have to handle those registers specifically, as their register
207 number within GDB depends on the target (or they may even not be
208 available at all). */
209 -1, -1, -1, -1, -1, -1, -1, -1,
210
211 /* Control and Status Flags Register. */
212 AMD64_EFLAGS_REGNUM,
213
214 /* Selector Registers. */
215 AMD64_ES_REGNUM,
216 AMD64_CS_REGNUM,
217 AMD64_SS_REGNUM,
218 AMD64_DS_REGNUM,
219 AMD64_FS_REGNUM,
220 AMD64_GS_REGNUM,
221 -1,
222 -1,
223
224 /* Segment Base Address Registers. */
225 -1,
226 -1,
227 -1,
228 -1,
229
230 /* Special Selector Registers. */
231 -1,
232 -1,
233
234 /* Floating Point Control Registers. */
235 AMD64_MXCSR_REGNUM,
236 AMD64_FCTRL_REGNUM,
237 AMD64_FSTAT_REGNUM
238 };
239
240 static const int amd64_dwarf_regmap_len =
241 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
242
243 /* Convert DWARF register number REG to the appropriate register
244 number used by GDB. */
245
246 static int
247 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
248 {
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int ymm0_regnum = tdep->ymm0_regnum;
251 int regnum = -1;
252
253 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
254 regnum = amd64_dwarf_regmap[reg];
255
256 if (ymm0_regnum >= 0
257 && i386_xmm_regnum_p (gdbarch, regnum))
258 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
259
260 return regnum;
261 }
262
263 /* Map architectural register numbers to gdb register numbers. */
264
265 static const int amd64_arch_regmap[16] =
266 {
267 AMD64_RAX_REGNUM, /* %rax */
268 AMD64_RCX_REGNUM, /* %rcx */
269 AMD64_RDX_REGNUM, /* %rdx */
270 AMD64_RBX_REGNUM, /* %rbx */
271 AMD64_RSP_REGNUM, /* %rsp */
272 AMD64_RBP_REGNUM, /* %rbp */
273 AMD64_RSI_REGNUM, /* %rsi */
274 AMD64_RDI_REGNUM, /* %rdi */
275 AMD64_R8_REGNUM, /* %r8 */
276 AMD64_R9_REGNUM, /* %r9 */
277 AMD64_R10_REGNUM, /* %r10 */
278 AMD64_R11_REGNUM, /* %r11 */
279 AMD64_R12_REGNUM, /* %r12 */
280 AMD64_R13_REGNUM, /* %r13 */
281 AMD64_R14_REGNUM, /* %r14 */
282 AMD64_R15_REGNUM /* %r15 */
283 };
284
285 static const int amd64_arch_regmap_len =
286 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
287
288 /* Convert architectural register number REG to the appropriate register
289 number used by GDB. */
290
291 static int
292 amd64_arch_reg_to_regnum (int reg)
293 {
294 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
295
296 return amd64_arch_regmap[reg];
297 }
298
299 /* Register names for byte pseudo-registers. */
300
301 static const char *amd64_byte_names[] =
302 {
303 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
304 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
305 "ah", "bh", "ch", "dh"
306 };
307
308 /* Number of lower byte registers. */
309 #define AMD64_NUM_LOWER_BYTE_REGS 16
310
311 /* Register names for word pseudo-registers. */
312
313 static const char *amd64_word_names[] =
314 {
315 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
316 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
317 };
318
319 /* Register names for dword pseudo-registers. */
320
321 static const char *amd64_dword_names[] =
322 {
323 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
324 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
325 "eip"
326 };
327
328 /* Return the name of register REGNUM. */
329
330 static const char *
331 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
332 {
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 if (i386_byte_regnum_p (gdbarch, regnum))
335 return amd64_byte_names[regnum - tdep->al_regnum];
336 else if (i386_zmm_regnum_p (gdbarch, regnum))
337 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
338 else if (i386_ymm_regnum_p (gdbarch, regnum))
339 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
340 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
341 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
342 else if (i386_word_regnum_p (gdbarch, regnum))
343 return amd64_word_names[regnum - tdep->ax_regnum];
344 else if (i386_dword_regnum_p (gdbarch, regnum))
345 return amd64_dword_names[regnum - tdep->eax_regnum];
346 else
347 return i386_pseudo_register_name (gdbarch, regnum);
348 }
349
350 static struct value *
351 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
352 readable_regcache *regcache,
353 int regnum)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
357 value *result_value = allocate_value (register_type (gdbarch, regnum));
358 VALUE_LVAL (result_value) = lval_register;
359 VALUE_REGNUM (result_value) = regnum;
360 gdb_byte *buf = value_contents_raw (result_value);
361
362 if (i386_byte_regnum_p (gdbarch, regnum))
363 {
364 int gpnum = regnum - tdep->al_regnum;
365
366 /* Extract (always little endian). */
367 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
368 {
369 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
370 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
371
372 /* Special handling for AH, BH, CH, DH. */
373 register_status status = regcache->raw_read (gpnum, raw_buf);
374 if (status == REG_VALID)
375 memcpy (buf, raw_buf + 1, 1);
376 else
377 mark_value_bytes_unavailable (result_value, 0,
378 TYPE_LENGTH (value_type (result_value)));
379 }
380 else
381 {
382 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
383 register_status status = regcache->raw_read (gpnum, raw_buf);
384 if (status == REG_VALID)
385 memcpy (buf, raw_buf, 1);
386 else
387 mark_value_bytes_unavailable (result_value, 0,
388 TYPE_LENGTH (value_type (result_value)));
389 }
390 }
391 else if (i386_dword_regnum_p (gdbarch, regnum))
392 {
393 int gpnum = regnum - tdep->eax_regnum;
394 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
395 /* Extract (always little endian). */
396 register_status status = regcache->raw_read (gpnum, raw_buf);
397 if (status == REG_VALID)
398 memcpy (buf, raw_buf, 4);
399 else
400 mark_value_bytes_unavailable (result_value, 0,
401 TYPE_LENGTH (value_type (result_value)));
402 }
403 else
404 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
405 result_value);
406
407 return result_value;
408 }
409
410 static void
411 amd64_pseudo_register_write (struct gdbarch *gdbarch,
412 struct regcache *regcache,
413 int regnum, const gdb_byte *buf)
414 {
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416
417 if (i386_byte_regnum_p (gdbarch, regnum))
418 {
419 int gpnum = regnum - tdep->al_regnum;
420
421 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
422 {
423 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
424 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
425
426 /* Read ... AH, BH, CH, DH. */
427 regcache->raw_read (gpnum, raw_buf);
428 /* ... Modify ... (always little endian). */
429 memcpy (raw_buf + 1, buf, 1);
430 /* ... Write. */
431 regcache->raw_write (gpnum, raw_buf);
432 }
433 else
434 {
435 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
436
437 /* Read ... */
438 regcache->raw_read (gpnum, raw_buf);
439 /* ... Modify ... (always little endian). */
440 memcpy (raw_buf, buf, 1);
441 /* ... Write. */
442 regcache->raw_write (gpnum, raw_buf);
443 }
444 }
445 else if (i386_dword_regnum_p (gdbarch, regnum))
446 {
447 int gpnum = regnum - tdep->eax_regnum;
448 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
449
450 /* Read ... */
451 regcache->raw_read (gpnum, raw_buf);
452 /* ... Modify ... (always little endian). */
453 memcpy (raw_buf, buf, 4);
454 /* ... Write. */
455 regcache->raw_write (gpnum, raw_buf);
456 }
457 else
458 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
459 }
460
461 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
462
463 static int
464 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
465 struct agent_expr *ax, int regnum)
466 {
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468
469 if (i386_byte_regnum_p (gdbarch, regnum))
470 {
471 int gpnum = regnum - tdep->al_regnum;
472
473 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
474 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
475 else
476 ax_reg_mask (ax, gpnum);
477 return 0;
478 }
479 else if (i386_dword_regnum_p (gdbarch, regnum))
480 {
481 int gpnum = regnum - tdep->eax_regnum;
482
483 ax_reg_mask (ax, gpnum);
484 return 0;
485 }
486 else
487 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
488 }
489
490 \f
491
492 /* Register classes as defined in the psABI. */
493
494 enum amd64_reg_class
495 {
496 AMD64_INTEGER,
497 AMD64_SSE,
498 AMD64_SSEUP,
499 AMD64_X87,
500 AMD64_X87UP,
501 AMD64_COMPLEX_X87,
502 AMD64_NO_CLASS,
503 AMD64_MEMORY
504 };
505
506 /* Return the union class of CLASS1 and CLASS2. See the psABI for
507 details. */
508
509 static enum amd64_reg_class
510 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
511 {
512 /* Rule (a): If both classes are equal, this is the resulting class. */
513 if (class1 == class2)
514 return class1;
515
516 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
517 is the other class. */
518 if (class1 == AMD64_NO_CLASS)
519 return class2;
520 if (class2 == AMD64_NO_CLASS)
521 return class1;
522
523 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
524 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
525 return AMD64_MEMORY;
526
527 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
528 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
529 return AMD64_INTEGER;
530
531 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
532 MEMORY is used as class. */
533 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
534 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
535 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
536 return AMD64_MEMORY;
537
538 /* Rule (f): Otherwise class SSE is used. */
539 return AMD64_SSE;
540 }
541
542 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
543
544 /* Return true if TYPE is a structure or union with unaligned fields. */
545
546 static bool
547 amd64_has_unaligned_fields (struct type *type)
548 {
549 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
550 || TYPE_CODE (type) == TYPE_CODE_UNION)
551 {
552 for (int i = 0; i < TYPE_NFIELDS (type); i++)
553 {
554 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
555 int bitpos = TYPE_FIELD_BITPOS (type, i);
556 int align = type_align(subtype);
557
558 /* Ignore static fields, empty fields (for example nested
559 empty structures), and bitfields (these are handled by
560 the caller). */
561 if (field_is_static (&TYPE_FIELD (type, i))
562 || (TYPE_FIELD_BITSIZE (type, i) == 0
563 && TYPE_LENGTH (subtype) == 0)
564 || TYPE_FIELD_PACKED (type, i))
565 continue;
566
567 if (bitpos % 8 != 0)
568 return true;
569
570 int bytepos = bitpos / 8;
571 if (bytepos % align != 0)
572 return true;
573
574 if (amd64_has_unaligned_fields (subtype))
575 return true;
576 }
577 }
578
579 return false;
580 }
581
582 /* Classify field I of TYPE starting at BITOFFSET according to the rules for
583 structures and union types, and store the result in THECLASS. */
584
585 static void
586 amd64_classify_aggregate_field (struct type *type, int i,
587 enum amd64_reg_class theclass[2],
588 unsigned int bitoffset)
589 {
590 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
591 int bitpos = bitoffset + TYPE_FIELD_BITPOS (type, i);
592 int pos = bitpos / 64;
593 enum amd64_reg_class subclass[2];
594 int bitsize = TYPE_FIELD_BITSIZE (type, i);
595 int endpos;
596
597 if (bitsize == 0)
598 bitsize = TYPE_LENGTH (subtype) * 8;
599 endpos = (bitpos + bitsize - 1) / 64;
600
601 /* Ignore static fields, or empty fields, for example nested
602 empty structures.*/
603 if (field_is_static (&TYPE_FIELD (type, i)) || bitsize == 0)
604 return;
605
606 if (TYPE_CODE (subtype) == TYPE_CODE_STRUCT
607 || TYPE_CODE (subtype) == TYPE_CODE_UNION)
608 {
609 /* Each field of an object is classified recursively. */
610 int j;
611 for (j = 0; j < TYPE_NFIELDS (subtype); j++)
612 amd64_classify_aggregate_field (subtype, j, theclass, bitpos);
613 return;
614 }
615
616 gdb_assert (pos == 0 || pos == 1);
617
618 amd64_classify (subtype, subclass);
619 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
620 if (bitsize <= 64 && pos == 0 && endpos == 1)
621 /* This is a bit of an odd case: We have a field that would
622 normally fit in one of the two eightbytes, except that
623 it is placed in a way that this field straddles them.
624 This has been seen with a structure containing an array.
625
626 The ABI is a bit unclear in this case, but we assume that
627 this field's class (stored in subclass[0]) must also be merged
628 into class[1]. In other words, our field has a piece stored
629 in the second eight-byte, and thus its class applies to
630 the second eight-byte as well.
631
632 In the case where the field length exceeds 8 bytes,
633 it should not be necessary to merge the field class
634 into class[1]. As LEN > 8, subclass[1] is necessarily
635 different from AMD64_NO_CLASS. If subclass[1] is equal
636 to subclass[0], then the normal class[1]/subclass[1]
637 merging will take care of everything. For subclass[1]
638 to be different from subclass[0], I can only see the case
639 where we have a SSE/SSEUP or X87/X87UP pair, which both
640 use up all 16 bytes of the aggregate, and are already
641 handled just fine (because each portion sits on its own
642 8-byte). */
643 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
644 if (pos == 0)
645 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
646 }
647
648 /* Classify TYPE according to the rules for aggregate (structures and
649 arrays) and union types, and store the result in CLASS. */
650
651 static void
652 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
653 {
654 /* 1. If the size of an object is larger than two eightbytes, or it has
655 unaligned fields, it has class memory. */
656 if (TYPE_LENGTH (type) > 16 || amd64_has_unaligned_fields (type))
657 {
658 theclass[0] = theclass[1] = AMD64_MEMORY;
659 return;
660 }
661
662 /* 2. Both eightbytes get initialized to class NO_CLASS. */
663 theclass[0] = theclass[1] = AMD64_NO_CLASS;
664
665 /* 3. Each field of an object is classified recursively so that
666 always two fields are considered. The resulting class is
667 calculated according to the classes of the fields in the
668 eightbyte: */
669
670 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
671 {
672 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
673
674 /* All fields in an array have the same type. */
675 amd64_classify (subtype, theclass);
676 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
677 theclass[1] = theclass[0];
678 }
679 else
680 {
681 int i;
682
683 /* Structure or union. */
684 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
685 || TYPE_CODE (type) == TYPE_CODE_UNION);
686
687 for (i = 0; i < TYPE_NFIELDS (type); i++)
688 amd64_classify_aggregate_field (type, i, theclass, 0);
689 }
690
691 /* 4. Then a post merger cleanup is done: */
692
693 /* Rule (a): If one of the classes is MEMORY, the whole argument is
694 passed in memory. */
695 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
696 theclass[0] = theclass[1] = AMD64_MEMORY;
697
698 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
699 SSE. */
700 if (theclass[0] == AMD64_SSEUP)
701 theclass[0] = AMD64_SSE;
702 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
703 theclass[1] = AMD64_SSE;
704 }
705
706 /* Classify TYPE, and store the result in CLASS. */
707
708 static void
709 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
710 {
711 enum type_code code = TYPE_CODE (type);
712 int len = TYPE_LENGTH (type);
713
714 theclass[0] = theclass[1] = AMD64_NO_CLASS;
715
716 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
717 long, long long, and pointers are in the INTEGER class. Similarly,
718 range types, used by languages such as Ada, are also in the INTEGER
719 class. */
720 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
721 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
722 || code == TYPE_CODE_CHAR
723 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
724 && (len == 1 || len == 2 || len == 4 || len == 8))
725 theclass[0] = AMD64_INTEGER;
726
727 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
728 are in class SSE. */
729 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
730 && (len == 4 || len == 8))
731 /* FIXME: __m64 . */
732 theclass[0] = AMD64_SSE;
733
734 /* Arguments of types __float128, _Decimal128 and __m128 are split into
735 two halves. The least significant ones belong to class SSE, the most
736 significant one to class SSEUP. */
737 else if (code == TYPE_CODE_DECFLOAT && len == 16)
738 /* FIXME: __float128, __m128. */
739 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
740
741 /* The 64-bit mantissa of arguments of type long double belongs to
742 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
743 class X87UP. */
744 else if (code == TYPE_CODE_FLT && len == 16)
745 /* Class X87 and X87UP. */
746 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
747
748 /* Arguments of complex T where T is one of the types float or
749 double get treated as if they are implemented as:
750
751 struct complexT {
752 T real;
753 T imag;
754 };
755
756 */
757 else if (code == TYPE_CODE_COMPLEX && len == 8)
758 theclass[0] = AMD64_SSE;
759 else if (code == TYPE_CODE_COMPLEX && len == 16)
760 theclass[0] = theclass[1] = AMD64_SSE;
761
762 /* A variable of type complex long double is classified as type
763 COMPLEX_X87. */
764 else if (code == TYPE_CODE_COMPLEX && len == 32)
765 theclass[0] = AMD64_COMPLEX_X87;
766
767 /* Aggregates. */
768 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
769 || code == TYPE_CODE_UNION)
770 amd64_classify_aggregate (type, theclass);
771 }
772
773 static enum return_value_convention
774 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
775 struct type *type, struct regcache *regcache,
776 gdb_byte *readbuf, const gdb_byte *writebuf)
777 {
778 enum amd64_reg_class theclass[2];
779 int len = TYPE_LENGTH (type);
780 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
781 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
782 int integer_reg = 0;
783 int sse_reg = 0;
784 int i;
785
786 gdb_assert (!(readbuf && writebuf));
787
788 /* 1. Classify the return type with the classification algorithm. */
789 amd64_classify (type, theclass);
790
791 /* 2. If the type has class MEMORY, then the caller provides space
792 for the return value and passes the address of this storage in
793 %rdi as if it were the first argument to the function. In effect,
794 this address becomes a hidden first argument.
795
796 On return %rax will contain the address that has been passed in
797 by the caller in %rdi. */
798 if (theclass[0] == AMD64_MEMORY)
799 {
800 /* As indicated by the comment above, the ABI guarantees that we
801 can always find the return value just after the function has
802 returned. */
803
804 if (readbuf)
805 {
806 ULONGEST addr;
807
808 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
809 read_memory (addr, readbuf, TYPE_LENGTH (type));
810 }
811
812 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
813 }
814
815 /* 8. If the class is COMPLEX_X87, the real part of the value is
816 returned in %st0 and the imaginary part in %st1. */
817 if (theclass[0] == AMD64_COMPLEX_X87)
818 {
819 if (readbuf)
820 {
821 regcache->raw_read (AMD64_ST0_REGNUM, readbuf);
822 regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16);
823 }
824
825 if (writebuf)
826 {
827 i387_return_value (gdbarch, regcache);
828 regcache->raw_write (AMD64_ST0_REGNUM, writebuf);
829 regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16);
830
831 /* Fix up the tag word such that both %st(0) and %st(1) are
832 marked as valid. */
833 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
834 }
835
836 return RETURN_VALUE_REGISTER_CONVENTION;
837 }
838
839 gdb_assert (theclass[1] != AMD64_MEMORY);
840 gdb_assert (len <= 16);
841
842 for (i = 0; len > 0; i++, len -= 8)
843 {
844 int regnum = -1;
845 int offset = 0;
846
847 switch (theclass[i])
848 {
849 case AMD64_INTEGER:
850 /* 3. If the class is INTEGER, the next available register
851 of the sequence %rax, %rdx is used. */
852 regnum = integer_regnum[integer_reg++];
853 break;
854
855 case AMD64_SSE:
856 /* 4. If the class is SSE, the next available SSE register
857 of the sequence %xmm0, %xmm1 is used. */
858 regnum = sse_regnum[sse_reg++];
859 break;
860
861 case AMD64_SSEUP:
862 /* 5. If the class is SSEUP, the eightbyte is passed in the
863 upper half of the last used SSE register. */
864 gdb_assert (sse_reg > 0);
865 regnum = sse_regnum[sse_reg - 1];
866 offset = 8;
867 break;
868
869 case AMD64_X87:
870 /* 6. If the class is X87, the value is returned on the X87
871 stack in %st0 as 80-bit x87 number. */
872 regnum = AMD64_ST0_REGNUM;
873 if (writebuf)
874 i387_return_value (gdbarch, regcache);
875 break;
876
877 case AMD64_X87UP:
878 /* 7. If the class is X87UP, the value is returned together
879 with the previous X87 value in %st0. */
880 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
881 regnum = AMD64_ST0_REGNUM;
882 offset = 8;
883 len = 2;
884 break;
885
886 case AMD64_NO_CLASS:
887 continue;
888
889 default:
890 gdb_assert (!"Unexpected register class.");
891 }
892
893 gdb_assert (regnum != -1);
894
895 if (readbuf)
896 regcache->raw_read_part (regnum, offset, std::min (len, 8),
897 readbuf + i * 8);
898 if (writebuf)
899 regcache->raw_write_part (regnum, offset, std::min (len, 8),
900 writebuf + i * 8);
901 }
902
903 return RETURN_VALUE_REGISTER_CONVENTION;
904 }
905 \f
906
907 static CORE_ADDR
908 amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args,
909 CORE_ADDR sp, function_call_return_method return_method)
910 {
911 static int integer_regnum[] =
912 {
913 AMD64_RDI_REGNUM, /* %rdi */
914 AMD64_RSI_REGNUM, /* %rsi */
915 AMD64_RDX_REGNUM, /* %rdx */
916 AMD64_RCX_REGNUM, /* %rcx */
917 AMD64_R8_REGNUM, /* %r8 */
918 AMD64_R9_REGNUM /* %r9 */
919 };
920 static int sse_regnum[] =
921 {
922 /* %xmm0 ... %xmm7 */
923 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
924 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
925 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
926 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
927 };
928 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
929 int num_stack_args = 0;
930 int num_elements = 0;
931 int element = 0;
932 int integer_reg = 0;
933 int sse_reg = 0;
934 int i;
935
936 /* Reserve a register for the "hidden" argument. */
937 if (return_method == return_method_struct)
938 integer_reg++;
939
940 for (i = 0; i < nargs; i++)
941 {
942 struct type *type = value_type (args[i]);
943 int len = TYPE_LENGTH (type);
944 enum amd64_reg_class theclass[2];
945 int needed_integer_regs = 0;
946 int needed_sse_regs = 0;
947 int j;
948
949 /* Classify argument. */
950 amd64_classify (type, theclass);
951
952 /* Calculate the number of integer and SSE registers needed for
953 this argument. */
954 for (j = 0; j < 2; j++)
955 {
956 if (theclass[j] == AMD64_INTEGER)
957 needed_integer_regs++;
958 else if (theclass[j] == AMD64_SSE)
959 needed_sse_regs++;
960 }
961
962 /* Check whether enough registers are available, and if the
963 argument should be passed in registers at all. */
964 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
965 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
966 || (needed_integer_regs == 0 && needed_sse_regs == 0))
967 {
968 /* The argument will be passed on the stack. */
969 num_elements += ((len + 7) / 8);
970 stack_args[num_stack_args++] = args[i];
971 }
972 else
973 {
974 /* The argument will be passed in registers. */
975 const gdb_byte *valbuf = value_contents (args[i]);
976 gdb_byte buf[8];
977
978 gdb_assert (len <= 16);
979
980 for (j = 0; len > 0; j++, len -= 8)
981 {
982 int regnum = -1;
983 int offset = 0;
984
985 switch (theclass[j])
986 {
987 case AMD64_INTEGER:
988 regnum = integer_regnum[integer_reg++];
989 break;
990
991 case AMD64_SSE:
992 regnum = sse_regnum[sse_reg++];
993 break;
994
995 case AMD64_SSEUP:
996 gdb_assert (sse_reg > 0);
997 regnum = sse_regnum[sse_reg - 1];
998 offset = 8;
999 break;
1000
1001 case AMD64_NO_CLASS:
1002 continue;
1003
1004 default:
1005 gdb_assert (!"Unexpected register class.");
1006 }
1007
1008 gdb_assert (regnum != -1);
1009 memset (buf, 0, sizeof buf);
1010 memcpy (buf, valbuf + j * 8, std::min (len, 8));
1011 regcache->raw_write_part (regnum, offset, 8, buf);
1012 }
1013 }
1014 }
1015
1016 /* Allocate space for the arguments on the stack. */
1017 sp -= num_elements * 8;
1018
1019 /* The psABI says that "The end of the input argument area shall be
1020 aligned on a 16 byte boundary." */
1021 sp &= ~0xf;
1022
1023 /* Write out the arguments to the stack. */
1024 for (i = 0; i < num_stack_args; i++)
1025 {
1026 struct type *type = value_type (stack_args[i]);
1027 const gdb_byte *valbuf = value_contents (stack_args[i]);
1028 int len = TYPE_LENGTH (type);
1029
1030 write_memory (sp + element * 8, valbuf, len);
1031 element += ((len + 7) / 8);
1032 }
1033
1034 /* The psABI says that "For calls that may call functions that use
1035 varargs or stdargs (prototype-less calls or calls to functions
1036 containing ellipsis (...) in the declaration) %al is used as
1037 hidden argument to specify the number of SSE registers used. */
1038 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
1039 return sp;
1040 }
1041
1042 static CORE_ADDR
1043 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1044 struct regcache *regcache, CORE_ADDR bp_addr,
1045 int nargs, struct value **args, CORE_ADDR sp,
1046 function_call_return_method return_method,
1047 CORE_ADDR struct_addr)
1048 {
1049 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1050 gdb_byte buf[8];
1051
1052 /* BND registers can be in arbitrary values at the moment of the
1053 inferior call. This can cause boundary violations that are not
1054 due to a real bug or even desired by the user. The best to be done
1055 is set the BND registers to allow access to the whole memory, INIT
1056 state, before pushing the inferior call. */
1057 i387_reset_bnd_regs (gdbarch, regcache);
1058
1059 /* Pass arguments. */
1060 sp = amd64_push_arguments (regcache, nargs, args, sp, return_method);
1061
1062 /* Pass "hidden" argument". */
1063 if (return_method == return_method_struct)
1064 {
1065 store_unsigned_integer (buf, 8, byte_order, struct_addr);
1066 regcache->cooked_write (AMD64_RDI_REGNUM, buf);
1067 }
1068
1069 /* Store return address. */
1070 sp -= 8;
1071 store_unsigned_integer (buf, 8, byte_order, bp_addr);
1072 write_memory (sp, buf, 8);
1073
1074 /* Finally, update the stack pointer... */
1075 store_unsigned_integer (buf, 8, byte_order, sp);
1076 regcache->cooked_write (AMD64_RSP_REGNUM, buf);
1077
1078 /* ...and fake a frame pointer. */
1079 regcache->cooked_write (AMD64_RBP_REGNUM, buf);
1080
1081 return sp + 16;
1082 }
1083 \f
1084 /* Displaced instruction handling. */
1085
1086 /* A partially decoded instruction.
1087 This contains enough details for displaced stepping purposes. */
1088
1089 struct amd64_insn
1090 {
1091 /* The number of opcode bytes. */
1092 int opcode_len;
1093 /* The offset of the REX/VEX instruction encoding prefix or -1 if
1094 not present. */
1095 int enc_prefix_offset;
1096 /* The offset to the first opcode byte. */
1097 int opcode_offset;
1098 /* The offset to the modrm byte or -1 if not present. */
1099 int modrm_offset;
1100
1101 /* The raw instruction. */
1102 gdb_byte *raw_insn;
1103 };
1104
1105 struct amd64_displaced_step_closure : public displaced_step_closure
1106 {
1107 amd64_displaced_step_closure (int insn_buf_len)
1108 : insn_buf (insn_buf_len, 0)
1109 {}
1110
1111 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1112 int tmp_used = 0;
1113 int tmp_regno;
1114 ULONGEST tmp_save;
1115
1116 /* Details of the instruction. */
1117 struct amd64_insn insn_details;
1118
1119 /* The possibly modified insn. */
1120 gdb::byte_vector insn_buf;
1121 };
1122
1123 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1124 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1125 at which point delete these in favor of libopcodes' versions). */
1126
1127 static const unsigned char onebyte_has_modrm[256] = {
1128 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1129 /* ------------------------------- */
1130 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1131 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1132 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1133 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1134 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1135 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1136 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1137 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1138 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1139 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1140 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1141 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1142 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1143 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1144 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1145 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1146 /* ------------------------------- */
1147 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1148 };
1149
1150 static const unsigned char twobyte_has_modrm[256] = {
1151 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1152 /* ------------------------------- */
1153 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1154 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1155 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1156 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1157 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1158 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1159 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1160 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1161 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1162 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1163 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1164 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1165 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1166 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1167 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1168 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1169 /* ------------------------------- */
1170 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1171 };
1172
1173 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1174
1175 static int
1176 rex_prefix_p (gdb_byte pfx)
1177 {
1178 return REX_PREFIX_P (pfx);
1179 }
1180
1181 /* True if PFX is the start of the 2-byte VEX prefix. */
1182
1183 static bool
1184 vex2_prefix_p (gdb_byte pfx)
1185 {
1186 return pfx == 0xc5;
1187 }
1188
1189 /* True if PFX is the start of the 3-byte VEX prefix. */
1190
1191 static bool
1192 vex3_prefix_p (gdb_byte pfx)
1193 {
1194 return pfx == 0xc4;
1195 }
1196
1197 /* Skip the legacy instruction prefixes in INSN.
1198 We assume INSN is properly sentineled so we don't have to worry
1199 about falling off the end of the buffer. */
1200
1201 static gdb_byte *
1202 amd64_skip_prefixes (gdb_byte *insn)
1203 {
1204 while (1)
1205 {
1206 switch (*insn)
1207 {
1208 case DATA_PREFIX_OPCODE:
1209 case ADDR_PREFIX_OPCODE:
1210 case CS_PREFIX_OPCODE:
1211 case DS_PREFIX_OPCODE:
1212 case ES_PREFIX_OPCODE:
1213 case FS_PREFIX_OPCODE:
1214 case GS_PREFIX_OPCODE:
1215 case SS_PREFIX_OPCODE:
1216 case LOCK_PREFIX_OPCODE:
1217 case REPE_PREFIX_OPCODE:
1218 case REPNE_PREFIX_OPCODE:
1219 ++insn;
1220 continue;
1221 default:
1222 break;
1223 }
1224 break;
1225 }
1226
1227 return insn;
1228 }
1229
1230 /* Return an integer register (other than RSP) that is unused as an input
1231 operand in INSN.
1232 In order to not require adding a rex prefix if the insn doesn't already
1233 have one, the result is restricted to RAX ... RDI, sans RSP.
1234 The register numbering of the result follows architecture ordering,
1235 e.g. RDI = 7. */
1236
1237 static int
1238 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1239 {
1240 /* 1 bit for each reg */
1241 int used_regs_mask = 0;
1242
1243 /* There can be at most 3 int regs used as inputs in an insn, and we have
1244 7 to choose from (RAX ... RDI, sans RSP).
1245 This allows us to take a conservative approach and keep things simple.
1246 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1247 that implicitly specify RAX. */
1248
1249 /* Avoid RAX. */
1250 used_regs_mask |= 1 << EAX_REG_NUM;
1251 /* Similarily avoid RDX, implicit operand in divides. */
1252 used_regs_mask |= 1 << EDX_REG_NUM;
1253 /* Avoid RSP. */
1254 used_regs_mask |= 1 << ESP_REG_NUM;
1255
1256 /* If the opcode is one byte long and there's no ModRM byte,
1257 assume the opcode specifies a register. */
1258 if (details->opcode_len == 1 && details->modrm_offset == -1)
1259 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1260
1261 /* Mark used regs in the modrm/sib bytes. */
1262 if (details->modrm_offset != -1)
1263 {
1264 int modrm = details->raw_insn[details->modrm_offset];
1265 int mod = MODRM_MOD_FIELD (modrm);
1266 int reg = MODRM_REG_FIELD (modrm);
1267 int rm = MODRM_RM_FIELD (modrm);
1268 int have_sib = mod != 3 && rm == 4;
1269
1270 /* Assume the reg field of the modrm byte specifies a register. */
1271 used_regs_mask |= 1 << reg;
1272
1273 if (have_sib)
1274 {
1275 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1276 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1277 used_regs_mask |= 1 << base;
1278 used_regs_mask |= 1 << idx;
1279 }
1280 else
1281 {
1282 used_regs_mask |= 1 << rm;
1283 }
1284 }
1285
1286 gdb_assert (used_regs_mask < 256);
1287 gdb_assert (used_regs_mask != 255);
1288
1289 /* Finally, find a free reg. */
1290 {
1291 int i;
1292
1293 for (i = 0; i < 8; ++i)
1294 {
1295 if (! (used_regs_mask & (1 << i)))
1296 return i;
1297 }
1298
1299 /* We shouldn't get here. */
1300 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1301 }
1302 }
1303
1304 /* Extract the details of INSN that we need. */
1305
1306 static void
1307 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1308 {
1309 gdb_byte *start = insn;
1310 int need_modrm;
1311
1312 details->raw_insn = insn;
1313
1314 details->opcode_len = -1;
1315 details->enc_prefix_offset = -1;
1316 details->opcode_offset = -1;
1317 details->modrm_offset = -1;
1318
1319 /* Skip legacy instruction prefixes. */
1320 insn = amd64_skip_prefixes (insn);
1321
1322 /* Skip REX/VEX instruction encoding prefixes. */
1323 if (rex_prefix_p (*insn))
1324 {
1325 details->enc_prefix_offset = insn - start;
1326 ++insn;
1327 }
1328 else if (vex2_prefix_p (*insn))
1329 {
1330 /* Don't record the offset in this case because this prefix has
1331 no REX.B equivalent. */
1332 insn += 2;
1333 }
1334 else if (vex3_prefix_p (*insn))
1335 {
1336 details->enc_prefix_offset = insn - start;
1337 insn += 3;
1338 }
1339
1340 details->opcode_offset = insn - start;
1341
1342 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1343 {
1344 /* Two or three-byte opcode. */
1345 ++insn;
1346 need_modrm = twobyte_has_modrm[*insn];
1347
1348 /* Check for three-byte opcode. */
1349 switch (*insn)
1350 {
1351 case 0x24:
1352 case 0x25:
1353 case 0x38:
1354 case 0x3a:
1355 case 0x7a:
1356 case 0x7b:
1357 ++insn;
1358 details->opcode_len = 3;
1359 break;
1360 default:
1361 details->opcode_len = 2;
1362 break;
1363 }
1364 }
1365 else
1366 {
1367 /* One-byte opcode. */
1368 need_modrm = onebyte_has_modrm[*insn];
1369 details->opcode_len = 1;
1370 }
1371
1372 if (need_modrm)
1373 {
1374 ++insn;
1375 details->modrm_offset = insn - start;
1376 }
1377 }
1378
1379 /* Update %rip-relative addressing in INSN.
1380
1381 %rip-relative addressing only uses a 32-bit displacement.
1382 32 bits is not enough to be guaranteed to cover the distance between where
1383 the real instruction is and where its copy is.
1384 Convert the insn to use base+disp addressing.
1385 We set base = pc + insn_length so we can leave disp unchanged. */
1386
1387 static void
1388 fixup_riprel (struct gdbarch *gdbarch, amd64_displaced_step_closure *dsc,
1389 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1390 {
1391 const struct amd64_insn *insn_details = &dsc->insn_details;
1392 int modrm_offset = insn_details->modrm_offset;
1393 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1394 CORE_ADDR rip_base;
1395 int insn_length;
1396 int arch_tmp_regno, tmp_regno;
1397 ULONGEST orig_value;
1398
1399 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1400 ++insn;
1401
1402 /* Compute the rip-relative address. */
1403 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
1404 dsc->insn_buf.size (), from);
1405 rip_base = from + insn_length;
1406
1407 /* We need a register to hold the address.
1408 Pick one not used in the insn.
1409 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1410 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1411 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1412
1413 /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */
1414 static constexpr gdb_byte VEX3_NOT_B = 0x20;
1415
1416 /* REX.B should be unset (VEX.!B set) as we were using rip-relative
1417 addressing, but ensure it's unset (set for VEX) anyway, tmp_regno
1418 is not r8-r15. */
1419 if (insn_details->enc_prefix_offset != -1)
1420 {
1421 gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset];
1422 if (rex_prefix_p (pfx[0]))
1423 pfx[0] &= ~REX_B;
1424 else if (vex3_prefix_p (pfx[0]))
1425 pfx[1] |= VEX3_NOT_B;
1426 else
1427 gdb_assert_not_reached ("unhandled prefix");
1428 }
1429
1430 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1431 dsc->tmp_regno = tmp_regno;
1432 dsc->tmp_save = orig_value;
1433 dsc->tmp_used = 1;
1434
1435 /* Convert the ModRM field to be base+disp. */
1436 dsc->insn_buf[modrm_offset] &= ~0xc7;
1437 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1438
1439 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1440
1441 if (debug_displaced)
1442 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1443 "displaced: using temp reg %d, old value %s, new value %s\n",
1444 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1445 paddress (gdbarch, rip_base));
1446 }
1447
1448 static void
1449 fixup_displaced_copy (struct gdbarch *gdbarch,
1450 amd64_displaced_step_closure *dsc,
1451 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1452 {
1453 const struct amd64_insn *details = &dsc->insn_details;
1454
1455 if (details->modrm_offset != -1)
1456 {
1457 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1458
1459 if ((modrm & 0xc7) == 0x05)
1460 {
1461 /* The insn uses rip-relative addressing.
1462 Deal with it. */
1463 fixup_riprel (gdbarch, dsc, from, to, regs);
1464 }
1465 }
1466 }
1467
1468 struct displaced_step_closure *
1469 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1470 CORE_ADDR from, CORE_ADDR to,
1471 struct regcache *regs)
1472 {
1473 int len = gdbarch_max_insn_length (gdbarch);
1474 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1475 continually watch for running off the end of the buffer. */
1476 int fixup_sentinel_space = len;
1477 amd64_displaced_step_closure *dsc
1478 = new amd64_displaced_step_closure (len + fixup_sentinel_space);
1479 gdb_byte *buf = &dsc->insn_buf[0];
1480 struct amd64_insn *details = &dsc->insn_details;
1481
1482 read_memory (from, buf, len);
1483
1484 /* Set up the sentinel space so we don't have to worry about running
1485 off the end of the buffer. An excessive number of leading prefixes
1486 could otherwise cause this. */
1487 memset (buf + len, 0, fixup_sentinel_space);
1488
1489 amd64_get_insn_details (buf, details);
1490
1491 /* GDB may get control back after the insn after the syscall.
1492 Presumably this is a kernel bug.
1493 If this is a syscall, make sure there's a nop afterwards. */
1494 {
1495 int syscall_length;
1496
1497 if (amd64_syscall_p (details, &syscall_length))
1498 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1499 }
1500
1501 /* Modify the insn to cope with the address where it will be executed from.
1502 In particular, handle any rip-relative addressing. */
1503 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1504
1505 write_memory (to, buf, len);
1506
1507 if (debug_displaced)
1508 {
1509 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1510 paddress (gdbarch, from), paddress (gdbarch, to));
1511 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1512 }
1513
1514 return dsc;
1515 }
1516
1517 static int
1518 amd64_absolute_jmp_p (const struct amd64_insn *details)
1519 {
1520 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1521
1522 if (insn[0] == 0xff)
1523 {
1524 /* jump near, absolute indirect (/4) */
1525 if ((insn[1] & 0x38) == 0x20)
1526 return 1;
1527
1528 /* jump far, absolute indirect (/5) */
1529 if ((insn[1] & 0x38) == 0x28)
1530 return 1;
1531 }
1532
1533 return 0;
1534 }
1535
1536 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1537
1538 static int
1539 amd64_jmp_p (const struct amd64_insn *details)
1540 {
1541 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1542
1543 /* jump short, relative. */
1544 if (insn[0] == 0xeb)
1545 return 1;
1546
1547 /* jump near, relative. */
1548 if (insn[0] == 0xe9)
1549 return 1;
1550
1551 return amd64_absolute_jmp_p (details);
1552 }
1553
1554 static int
1555 amd64_absolute_call_p (const struct amd64_insn *details)
1556 {
1557 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1558
1559 if (insn[0] == 0xff)
1560 {
1561 /* Call near, absolute indirect (/2) */
1562 if ((insn[1] & 0x38) == 0x10)
1563 return 1;
1564
1565 /* Call far, absolute indirect (/3) */
1566 if ((insn[1] & 0x38) == 0x18)
1567 return 1;
1568 }
1569
1570 return 0;
1571 }
1572
1573 static int
1574 amd64_ret_p (const struct amd64_insn *details)
1575 {
1576 /* NOTE: gcc can emit "repz ; ret". */
1577 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1578
1579 switch (insn[0])
1580 {
1581 case 0xc2: /* ret near, pop N bytes */
1582 case 0xc3: /* ret near */
1583 case 0xca: /* ret far, pop N bytes */
1584 case 0xcb: /* ret far */
1585 case 0xcf: /* iret */
1586 return 1;
1587
1588 default:
1589 return 0;
1590 }
1591 }
1592
1593 static int
1594 amd64_call_p (const struct amd64_insn *details)
1595 {
1596 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1597
1598 if (amd64_absolute_call_p (details))
1599 return 1;
1600
1601 /* call near, relative */
1602 if (insn[0] == 0xe8)
1603 return 1;
1604
1605 return 0;
1606 }
1607
1608 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1609 length in bytes. Otherwise, return zero. */
1610
1611 static int
1612 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1613 {
1614 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1615
1616 if (insn[0] == 0x0f && insn[1] == 0x05)
1617 {
1618 *lengthp = 2;
1619 return 1;
1620 }
1621
1622 return 0;
1623 }
1624
1625 /* Classify the instruction at ADDR using PRED.
1626 Throw an error if the memory can't be read. */
1627
1628 static int
1629 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1630 int (*pred) (const struct amd64_insn *))
1631 {
1632 struct amd64_insn details;
1633 gdb_byte *buf;
1634 int len, classification;
1635
1636 len = gdbarch_max_insn_length (gdbarch);
1637 buf = (gdb_byte *) alloca (len);
1638
1639 read_code (addr, buf, len);
1640 amd64_get_insn_details (buf, &details);
1641
1642 classification = pred (&details);
1643
1644 return classification;
1645 }
1646
1647 /* The gdbarch insn_is_call method. */
1648
1649 static int
1650 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1651 {
1652 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1653 }
1654
1655 /* The gdbarch insn_is_ret method. */
1656
1657 static int
1658 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1659 {
1660 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1661 }
1662
1663 /* The gdbarch insn_is_jump method. */
1664
1665 static int
1666 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1667 {
1668 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1669 }
1670
1671 /* Fix up the state of registers and memory after having single-stepped
1672 a displaced instruction. */
1673
1674 void
1675 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1676 struct displaced_step_closure *dsc_,
1677 CORE_ADDR from, CORE_ADDR to,
1678 struct regcache *regs)
1679 {
1680 amd64_displaced_step_closure *dsc = (amd64_displaced_step_closure *) dsc_;
1681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1682 /* The offset we applied to the instruction's address. */
1683 ULONGEST insn_offset = to - from;
1684 gdb_byte *insn = dsc->insn_buf.data ();
1685 const struct amd64_insn *insn_details = &dsc->insn_details;
1686
1687 if (debug_displaced)
1688 fprintf_unfiltered (gdb_stdlog,
1689 "displaced: fixup (%s, %s), "
1690 "insn = 0x%02x 0x%02x ...\n",
1691 paddress (gdbarch, from), paddress (gdbarch, to),
1692 insn[0], insn[1]);
1693
1694 /* If we used a tmp reg, restore it. */
1695
1696 if (dsc->tmp_used)
1697 {
1698 if (debug_displaced)
1699 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1700 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1701 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1702 }
1703
1704 /* The list of issues to contend with here is taken from
1705 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1706 Yay for Free Software! */
1707
1708 /* Relocate the %rip back to the program's instruction stream,
1709 if necessary. */
1710
1711 /* Except in the case of absolute or indirect jump or call
1712 instructions, or a return instruction, the new rip is relative to
1713 the displaced instruction; make it relative to the original insn.
1714 Well, signal handler returns don't need relocation either, but we use the
1715 value of %rip to recognize those; see below. */
1716 if (! amd64_absolute_jmp_p (insn_details)
1717 && ! amd64_absolute_call_p (insn_details)
1718 && ! amd64_ret_p (insn_details))
1719 {
1720 ULONGEST orig_rip;
1721 int insn_len;
1722
1723 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1724
1725 /* A signal trampoline system call changes the %rip, resuming
1726 execution of the main program after the signal handler has
1727 returned. That makes them like 'return' instructions; we
1728 shouldn't relocate %rip.
1729
1730 But most system calls don't, and we do need to relocate %rip.
1731
1732 Our heuristic for distinguishing these cases: if stepping
1733 over the system call instruction left control directly after
1734 the instruction, the we relocate --- control almost certainly
1735 doesn't belong in the displaced copy. Otherwise, we assume
1736 the instruction has put control where it belongs, and leave
1737 it unrelocated. Goodness help us if there are PC-relative
1738 system calls. */
1739 if (amd64_syscall_p (insn_details, &insn_len)
1740 && orig_rip != to + insn_len
1741 /* GDB can get control back after the insn after the syscall.
1742 Presumably this is a kernel bug.
1743 Fixup ensures its a nop, we add one to the length for it. */
1744 && orig_rip != to + insn_len + 1)
1745 {
1746 if (debug_displaced)
1747 fprintf_unfiltered (gdb_stdlog,
1748 "displaced: syscall changed %%rip; "
1749 "not relocating\n");
1750 }
1751 else
1752 {
1753 ULONGEST rip = orig_rip - insn_offset;
1754
1755 /* If we just stepped over a breakpoint insn, we don't backup
1756 the pc on purpose; this is to match behaviour without
1757 stepping. */
1758
1759 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1760
1761 if (debug_displaced)
1762 fprintf_unfiltered (gdb_stdlog,
1763 "displaced: "
1764 "relocated %%rip from %s to %s\n",
1765 paddress (gdbarch, orig_rip),
1766 paddress (gdbarch, rip));
1767 }
1768 }
1769
1770 /* If the instruction was PUSHFL, then the TF bit will be set in the
1771 pushed value, and should be cleared. We'll leave this for later,
1772 since GDB already messes up the TF flag when stepping over a
1773 pushfl. */
1774
1775 /* If the instruction was a call, the return address now atop the
1776 stack is the address following the copied instruction. We need
1777 to make it the address following the original instruction. */
1778 if (amd64_call_p (insn_details))
1779 {
1780 ULONGEST rsp;
1781 ULONGEST retaddr;
1782 const ULONGEST retaddr_len = 8;
1783
1784 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1785 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1786 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1787 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1788
1789 if (debug_displaced)
1790 fprintf_unfiltered (gdb_stdlog,
1791 "displaced: relocated return addr at %s "
1792 "to %s\n",
1793 paddress (gdbarch, rsp),
1794 paddress (gdbarch, retaddr));
1795 }
1796 }
1797
1798 /* If the instruction INSN uses RIP-relative addressing, return the
1799 offset into the raw INSN where the displacement to be adjusted is
1800 found. Returns 0 if the instruction doesn't use RIP-relative
1801 addressing. */
1802
1803 static int
1804 rip_relative_offset (struct amd64_insn *insn)
1805 {
1806 if (insn->modrm_offset != -1)
1807 {
1808 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1809
1810 if ((modrm & 0xc7) == 0x05)
1811 {
1812 /* The displacement is found right after the ModRM byte. */
1813 return insn->modrm_offset + 1;
1814 }
1815 }
1816
1817 return 0;
1818 }
1819
1820 static void
1821 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1822 {
1823 target_write_memory (*to, buf, len);
1824 *to += len;
1825 }
1826
1827 static void
1828 amd64_relocate_instruction (struct gdbarch *gdbarch,
1829 CORE_ADDR *to, CORE_ADDR oldloc)
1830 {
1831 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1832 int len = gdbarch_max_insn_length (gdbarch);
1833 /* Extra space for sentinels. */
1834 int fixup_sentinel_space = len;
1835 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1836 struct amd64_insn insn_details;
1837 int offset = 0;
1838 LONGEST rel32, newrel;
1839 gdb_byte *insn;
1840 int insn_length;
1841
1842 read_memory (oldloc, buf, len);
1843
1844 /* Set up the sentinel space so we don't have to worry about running
1845 off the end of the buffer. An excessive number of leading prefixes
1846 could otherwise cause this. */
1847 memset (buf + len, 0, fixup_sentinel_space);
1848
1849 insn = buf;
1850 amd64_get_insn_details (insn, &insn_details);
1851
1852 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1853
1854 /* Skip legacy instruction prefixes. */
1855 insn = amd64_skip_prefixes (insn);
1856
1857 /* Adjust calls with 32-bit relative addresses as push/jump, with
1858 the address pushed being the location where the original call in
1859 the user program would return to. */
1860 if (insn[0] == 0xe8)
1861 {
1862 gdb_byte push_buf[32];
1863 CORE_ADDR ret_addr;
1864 int i = 0;
1865
1866 /* Where "ret" in the original code will return to. */
1867 ret_addr = oldloc + insn_length;
1868
1869 /* If pushing an address higher than or equal to 0x80000000,
1870 avoid 'pushq', as that sign extends its 32-bit operand, which
1871 would be incorrect. */
1872 if (ret_addr <= 0x7fffffff)
1873 {
1874 push_buf[0] = 0x68; /* pushq $... */
1875 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1876 i = 5;
1877 }
1878 else
1879 {
1880 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1881 push_buf[i++] = 0x83;
1882 push_buf[i++] = 0xec;
1883 push_buf[i++] = 0x08;
1884
1885 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1886 push_buf[i++] = 0x04;
1887 push_buf[i++] = 0x24;
1888 store_unsigned_integer (&push_buf[i], 4, byte_order,
1889 ret_addr & 0xffffffff);
1890 i += 4;
1891
1892 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1893 push_buf[i++] = 0x44;
1894 push_buf[i++] = 0x24;
1895 push_buf[i++] = 0x04;
1896 store_unsigned_integer (&push_buf[i], 4, byte_order,
1897 ret_addr >> 32);
1898 i += 4;
1899 }
1900 gdb_assert (i <= sizeof (push_buf));
1901 /* Push the push. */
1902 append_insns (to, i, push_buf);
1903
1904 /* Convert the relative call to a relative jump. */
1905 insn[0] = 0xe9;
1906
1907 /* Adjust the destination offset. */
1908 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1909 newrel = (oldloc - *to) + rel32;
1910 store_signed_integer (insn + 1, 4, byte_order, newrel);
1911
1912 if (debug_displaced)
1913 fprintf_unfiltered (gdb_stdlog,
1914 "Adjusted insn rel32=%s at %s to"
1915 " rel32=%s at %s\n",
1916 hex_string (rel32), paddress (gdbarch, oldloc),
1917 hex_string (newrel), paddress (gdbarch, *to));
1918
1919 /* Write the adjusted jump into its displaced location. */
1920 append_insns (to, 5, insn);
1921 return;
1922 }
1923
1924 offset = rip_relative_offset (&insn_details);
1925 if (!offset)
1926 {
1927 /* Adjust jumps with 32-bit relative addresses. Calls are
1928 already handled above. */
1929 if (insn[0] == 0xe9)
1930 offset = 1;
1931 /* Adjust conditional jumps. */
1932 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1933 offset = 2;
1934 }
1935
1936 if (offset)
1937 {
1938 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1939 newrel = (oldloc - *to) + rel32;
1940 store_signed_integer (insn + offset, 4, byte_order, newrel);
1941 if (debug_displaced)
1942 fprintf_unfiltered (gdb_stdlog,
1943 "Adjusted insn rel32=%s at %s to"
1944 " rel32=%s at %s\n",
1945 hex_string (rel32), paddress (gdbarch, oldloc),
1946 hex_string (newrel), paddress (gdbarch, *to));
1947 }
1948
1949 /* Write the adjusted instruction into its displaced location. */
1950 append_insns (to, insn_length, buf);
1951 }
1952
1953 \f
1954 /* The maximum number of saved registers. This should include %rip. */
1955 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1956
1957 struct amd64_frame_cache
1958 {
1959 /* Base address. */
1960 CORE_ADDR base;
1961 int base_p;
1962 CORE_ADDR sp_offset;
1963 CORE_ADDR pc;
1964
1965 /* Saved registers. */
1966 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1967 CORE_ADDR saved_sp;
1968 int saved_sp_reg;
1969
1970 /* Do we have a frame? */
1971 int frameless_p;
1972 };
1973
1974 /* Initialize a frame cache. */
1975
1976 static void
1977 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1978 {
1979 int i;
1980
1981 /* Base address. */
1982 cache->base = 0;
1983 cache->base_p = 0;
1984 cache->sp_offset = -8;
1985 cache->pc = 0;
1986
1987 /* Saved registers. We initialize these to -1 since zero is a valid
1988 offset (that's where %rbp is supposed to be stored).
1989 The values start out as being offsets, and are later converted to
1990 addresses (at which point -1 is interpreted as an address, still meaning
1991 "invalid"). */
1992 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1993 cache->saved_regs[i] = -1;
1994 cache->saved_sp = 0;
1995 cache->saved_sp_reg = -1;
1996
1997 /* Frameless until proven otherwise. */
1998 cache->frameless_p = 1;
1999 }
2000
2001 /* Allocate and initialize a frame cache. */
2002
2003 static struct amd64_frame_cache *
2004 amd64_alloc_frame_cache (void)
2005 {
2006 struct amd64_frame_cache *cache;
2007
2008 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
2009 amd64_init_frame_cache (cache);
2010 return cache;
2011 }
2012
2013 /* GCC 4.4 and later, can put code in the prologue to realign the
2014 stack pointer. Check whether PC points to such code, and update
2015 CACHE accordingly. Return the first instruction after the code
2016 sequence or CURRENT_PC, whichever is smaller. If we don't
2017 recognize the code, return PC. */
2018
2019 static CORE_ADDR
2020 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2021 struct amd64_frame_cache *cache)
2022 {
2023 /* There are 2 code sequences to re-align stack before the frame
2024 gets set up:
2025
2026 1. Use a caller-saved saved register:
2027
2028 leaq 8(%rsp), %reg
2029 andq $-XXX, %rsp
2030 pushq -8(%reg)
2031
2032 2. Use a callee-saved saved register:
2033
2034 pushq %reg
2035 leaq 16(%rsp), %reg
2036 andq $-XXX, %rsp
2037 pushq -8(%reg)
2038
2039 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2040
2041 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2042 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2043 */
2044
2045 gdb_byte buf[18];
2046 int reg, r;
2047 int offset, offset_and;
2048
2049 if (target_read_code (pc, buf, sizeof buf))
2050 return pc;
2051
2052 /* Check caller-saved saved register. The first instruction has
2053 to be "leaq 8(%rsp), %reg". */
2054 if ((buf[0] & 0xfb) == 0x48
2055 && buf[1] == 0x8d
2056 && buf[3] == 0x24
2057 && buf[4] == 0x8)
2058 {
2059 /* MOD must be binary 10 and R/M must be binary 100. */
2060 if ((buf[2] & 0xc7) != 0x44)
2061 return pc;
2062
2063 /* REG has register number. */
2064 reg = (buf[2] >> 3) & 7;
2065
2066 /* Check the REX.R bit. */
2067 if (buf[0] == 0x4c)
2068 reg += 8;
2069
2070 offset = 5;
2071 }
2072 else
2073 {
2074 /* Check callee-saved saved register. The first instruction
2075 has to be "pushq %reg". */
2076 reg = 0;
2077 if ((buf[0] & 0xf8) == 0x50)
2078 offset = 0;
2079 else if ((buf[0] & 0xf6) == 0x40
2080 && (buf[1] & 0xf8) == 0x50)
2081 {
2082 /* Check the REX.B bit. */
2083 if ((buf[0] & 1) != 0)
2084 reg = 8;
2085
2086 offset = 1;
2087 }
2088 else
2089 return pc;
2090
2091 /* Get register. */
2092 reg += buf[offset] & 0x7;
2093
2094 offset++;
2095
2096 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2097 if ((buf[offset] & 0xfb) != 0x48
2098 || buf[offset + 1] != 0x8d
2099 || buf[offset + 3] != 0x24
2100 || buf[offset + 4] != 0x10)
2101 return pc;
2102
2103 /* MOD must be binary 10 and R/M must be binary 100. */
2104 if ((buf[offset + 2] & 0xc7) != 0x44)
2105 return pc;
2106
2107 /* REG has register number. */
2108 r = (buf[offset + 2] >> 3) & 7;
2109
2110 /* Check the REX.R bit. */
2111 if (buf[offset] == 0x4c)
2112 r += 8;
2113
2114 /* Registers in pushq and leaq have to be the same. */
2115 if (reg != r)
2116 return pc;
2117
2118 offset += 5;
2119 }
2120
2121 /* Rigister can't be %rsp nor %rbp. */
2122 if (reg == 4 || reg == 5)
2123 return pc;
2124
2125 /* The next instruction has to be "andq $-XXX, %rsp". */
2126 if (buf[offset] != 0x48
2127 || buf[offset + 2] != 0xe4
2128 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2129 return pc;
2130
2131 offset_and = offset;
2132 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2133
2134 /* The next instruction has to be "pushq -8(%reg)". */
2135 r = 0;
2136 if (buf[offset] == 0xff)
2137 offset++;
2138 else if ((buf[offset] & 0xf6) == 0x40
2139 && buf[offset + 1] == 0xff)
2140 {
2141 /* Check the REX.B bit. */
2142 if ((buf[offset] & 0x1) != 0)
2143 r = 8;
2144 offset += 2;
2145 }
2146 else
2147 return pc;
2148
2149 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2150 01. */
2151 if (buf[offset + 1] != 0xf8
2152 || (buf[offset] & 0xf8) != 0x70)
2153 return pc;
2154
2155 /* R/M has register. */
2156 r += buf[offset] & 7;
2157
2158 /* Registers in leaq and pushq have to be the same. */
2159 if (reg != r)
2160 return pc;
2161
2162 if (current_pc > pc + offset_and)
2163 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2164
2165 return std::min (pc + offset + 2, current_pc);
2166 }
2167
2168 /* Similar to amd64_analyze_stack_align for x32. */
2169
2170 static CORE_ADDR
2171 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2172 struct amd64_frame_cache *cache)
2173 {
2174 /* There are 2 code sequences to re-align stack before the frame
2175 gets set up:
2176
2177 1. Use a caller-saved saved register:
2178
2179 leaq 8(%rsp), %reg
2180 andq $-XXX, %rsp
2181 pushq -8(%reg)
2182
2183 or
2184
2185 [addr32] leal 8(%rsp), %reg
2186 andl $-XXX, %esp
2187 [addr32] pushq -8(%reg)
2188
2189 2. Use a callee-saved saved register:
2190
2191 pushq %reg
2192 leaq 16(%rsp), %reg
2193 andq $-XXX, %rsp
2194 pushq -8(%reg)
2195
2196 or
2197
2198 pushq %reg
2199 [addr32] leal 16(%rsp), %reg
2200 andl $-XXX, %esp
2201 [addr32] pushq -8(%reg)
2202
2203 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2204
2205 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2206 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2207
2208 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2209
2210 0x83 0xe4 0xf0 andl $-16, %esp
2211 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2212 */
2213
2214 gdb_byte buf[19];
2215 int reg, r;
2216 int offset, offset_and;
2217
2218 if (target_read_memory (pc, buf, sizeof buf))
2219 return pc;
2220
2221 /* Skip optional addr32 prefix. */
2222 offset = buf[0] == 0x67 ? 1 : 0;
2223
2224 /* Check caller-saved saved register. The first instruction has
2225 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2226 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2227 && buf[offset + 1] == 0x8d
2228 && buf[offset + 3] == 0x24
2229 && buf[offset + 4] == 0x8)
2230 {
2231 /* MOD must be binary 10 and R/M must be binary 100. */
2232 if ((buf[offset + 2] & 0xc7) != 0x44)
2233 return pc;
2234
2235 /* REG has register number. */
2236 reg = (buf[offset + 2] >> 3) & 7;
2237
2238 /* Check the REX.R bit. */
2239 if ((buf[offset] & 0x4) != 0)
2240 reg += 8;
2241
2242 offset += 5;
2243 }
2244 else
2245 {
2246 /* Check callee-saved saved register. The first instruction
2247 has to be "pushq %reg". */
2248 reg = 0;
2249 if ((buf[offset] & 0xf6) == 0x40
2250 && (buf[offset + 1] & 0xf8) == 0x50)
2251 {
2252 /* Check the REX.B bit. */
2253 if ((buf[offset] & 1) != 0)
2254 reg = 8;
2255
2256 offset += 1;
2257 }
2258 else if ((buf[offset] & 0xf8) != 0x50)
2259 return pc;
2260
2261 /* Get register. */
2262 reg += buf[offset] & 0x7;
2263
2264 offset++;
2265
2266 /* Skip optional addr32 prefix. */
2267 if (buf[offset] == 0x67)
2268 offset++;
2269
2270 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2271 "leal 16(%rsp), %reg". */
2272 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2273 || buf[offset + 1] != 0x8d
2274 || buf[offset + 3] != 0x24
2275 || buf[offset + 4] != 0x10)
2276 return pc;
2277
2278 /* MOD must be binary 10 and R/M must be binary 100. */
2279 if ((buf[offset + 2] & 0xc7) != 0x44)
2280 return pc;
2281
2282 /* REG has register number. */
2283 r = (buf[offset + 2] >> 3) & 7;
2284
2285 /* Check the REX.R bit. */
2286 if ((buf[offset] & 0x4) != 0)
2287 r += 8;
2288
2289 /* Registers in pushq and leaq have to be the same. */
2290 if (reg != r)
2291 return pc;
2292
2293 offset += 5;
2294 }
2295
2296 /* Rigister can't be %rsp nor %rbp. */
2297 if (reg == 4 || reg == 5)
2298 return pc;
2299
2300 /* The next instruction may be "andq $-XXX, %rsp" or
2301 "andl $-XXX, %esp". */
2302 if (buf[offset] != 0x48)
2303 offset--;
2304
2305 if (buf[offset + 2] != 0xe4
2306 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2307 return pc;
2308
2309 offset_and = offset;
2310 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2311
2312 /* Skip optional addr32 prefix. */
2313 if (buf[offset] == 0x67)
2314 offset++;
2315
2316 /* The next instruction has to be "pushq -8(%reg)". */
2317 r = 0;
2318 if (buf[offset] == 0xff)
2319 offset++;
2320 else if ((buf[offset] & 0xf6) == 0x40
2321 && buf[offset + 1] == 0xff)
2322 {
2323 /* Check the REX.B bit. */
2324 if ((buf[offset] & 0x1) != 0)
2325 r = 8;
2326 offset += 2;
2327 }
2328 else
2329 return pc;
2330
2331 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2332 01. */
2333 if (buf[offset + 1] != 0xf8
2334 || (buf[offset] & 0xf8) != 0x70)
2335 return pc;
2336
2337 /* R/M has register. */
2338 r += buf[offset] & 7;
2339
2340 /* Registers in leaq and pushq have to be the same. */
2341 if (reg != r)
2342 return pc;
2343
2344 if (current_pc > pc + offset_and)
2345 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2346
2347 return std::min (pc + offset + 2, current_pc);
2348 }
2349
2350 /* Do a limited analysis of the prologue at PC and update CACHE
2351 accordingly. Bail out early if CURRENT_PC is reached. Return the
2352 address where the analysis stopped.
2353
2354 We will handle only functions beginning with:
2355
2356 pushq %rbp 0x55
2357 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2358
2359 or (for the X32 ABI):
2360
2361 pushq %rbp 0x55
2362 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2363
2364 Any function that doesn't start with one of these sequences will be
2365 assumed to have no prologue and thus no valid frame pointer in
2366 %rbp. */
2367
2368 static CORE_ADDR
2369 amd64_analyze_prologue (struct gdbarch *gdbarch,
2370 CORE_ADDR pc, CORE_ADDR current_pc,
2371 struct amd64_frame_cache *cache)
2372 {
2373 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2374 /* There are two variations of movq %rsp, %rbp. */
2375 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2376 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2377 /* Ditto for movl %esp, %ebp. */
2378 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2379 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2380
2381 gdb_byte buf[3];
2382 gdb_byte op;
2383
2384 if (current_pc <= pc)
2385 return current_pc;
2386
2387 if (gdbarch_ptr_bit (gdbarch) == 32)
2388 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2389 else
2390 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2391
2392 op = read_code_unsigned_integer (pc, 1, byte_order);
2393
2394 if (op == 0x55) /* pushq %rbp */
2395 {
2396 /* Take into account that we've executed the `pushq %rbp' that
2397 starts this instruction sequence. */
2398 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2399 cache->sp_offset += 8;
2400
2401 /* If that's all, return now. */
2402 if (current_pc <= pc + 1)
2403 return current_pc;
2404
2405 read_code (pc + 1, buf, 3);
2406
2407 /* Check for `movq %rsp, %rbp'. */
2408 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2409 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2410 {
2411 /* OK, we actually have a frame. */
2412 cache->frameless_p = 0;
2413 return pc + 4;
2414 }
2415
2416 /* For X32, also check for `movq %esp, %ebp'. */
2417 if (gdbarch_ptr_bit (gdbarch) == 32)
2418 {
2419 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2420 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2421 {
2422 /* OK, we actually have a frame. */
2423 cache->frameless_p = 0;
2424 return pc + 3;
2425 }
2426 }
2427
2428 return pc + 1;
2429 }
2430
2431 return pc;
2432 }
2433
2434 /* Work around false termination of prologue - GCC PR debug/48827.
2435
2436 START_PC is the first instruction of a function, PC is its minimal already
2437 determined advanced address. Function returns PC if it has nothing to do.
2438
2439 84 c0 test %al,%al
2440 74 23 je after
2441 <-- here is 0 lines advance - the false prologue end marker.
2442 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2443 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2444 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2445 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2446 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2447 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2448 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2449 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2450 after: */
2451
2452 static CORE_ADDR
2453 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2454 {
2455 struct symtab_and_line start_pc_sal, next_sal;
2456 gdb_byte buf[4 + 8 * 7];
2457 int offset, xmmreg;
2458
2459 if (pc == start_pc)
2460 return pc;
2461
2462 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2463 if (start_pc_sal.symtab == NULL
2464 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2465 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2466 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2467 return pc;
2468
2469 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2470 if (next_sal.line != start_pc_sal.line)
2471 return pc;
2472
2473 /* START_PC can be from overlayed memory, ignored here. */
2474 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2475 return pc;
2476
2477 /* test %al,%al */
2478 if (buf[0] != 0x84 || buf[1] != 0xc0)
2479 return pc;
2480 /* je AFTER */
2481 if (buf[2] != 0x74)
2482 return pc;
2483
2484 offset = 4;
2485 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2486 {
2487 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2488 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2489 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2490 return pc;
2491
2492 /* 0b01?????? */
2493 if ((buf[offset + 2] & 0xc0) == 0x40)
2494 {
2495 /* 8-bit displacement. */
2496 offset += 4;
2497 }
2498 /* 0b10?????? */
2499 else if ((buf[offset + 2] & 0xc0) == 0x80)
2500 {
2501 /* 32-bit displacement. */
2502 offset += 7;
2503 }
2504 else
2505 return pc;
2506 }
2507
2508 /* je AFTER */
2509 if (offset - 4 != buf[3])
2510 return pc;
2511
2512 return next_sal.end;
2513 }
2514
2515 /* Return PC of first real instruction. */
2516
2517 static CORE_ADDR
2518 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2519 {
2520 struct amd64_frame_cache cache;
2521 CORE_ADDR pc;
2522 CORE_ADDR func_addr;
2523
2524 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2525 {
2526 CORE_ADDR post_prologue_pc
2527 = skip_prologue_using_sal (gdbarch, func_addr);
2528 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2529
2530 /* Clang always emits a line note before the prologue and another
2531 one after. We trust clang to emit usable line notes. */
2532 if (post_prologue_pc
2533 && (cust != NULL
2534 && COMPUNIT_PRODUCER (cust) != NULL
2535 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
2536 return std::max (start_pc, post_prologue_pc);
2537 }
2538
2539 amd64_init_frame_cache (&cache);
2540 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2541 &cache);
2542 if (cache.frameless_p)
2543 return start_pc;
2544
2545 return amd64_skip_xmm_prologue (pc, start_pc);
2546 }
2547 \f
2548
2549 /* Normal frames. */
2550
2551 static void
2552 amd64_frame_cache_1 (struct frame_info *this_frame,
2553 struct amd64_frame_cache *cache)
2554 {
2555 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2556 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2557 gdb_byte buf[8];
2558 int i;
2559
2560 cache->pc = get_frame_func (this_frame);
2561 if (cache->pc != 0)
2562 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2563 cache);
2564
2565 if (cache->frameless_p)
2566 {
2567 /* We didn't find a valid frame. If we're at the start of a
2568 function, or somewhere half-way its prologue, the function's
2569 frame probably hasn't been fully setup yet. Try to
2570 reconstruct the base address for the stack frame by looking
2571 at the stack pointer. For truly "frameless" functions this
2572 might work too. */
2573
2574 if (cache->saved_sp_reg != -1)
2575 {
2576 /* Stack pointer has been saved. */
2577 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2578 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2579
2580 /* We're halfway aligning the stack. */
2581 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2582 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2583
2584 /* This will be added back below. */
2585 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2586 }
2587 else
2588 {
2589 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2590 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2591 + cache->sp_offset;
2592 }
2593 }
2594 else
2595 {
2596 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2597 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2598 }
2599
2600 /* Now that we have the base address for the stack frame we can
2601 calculate the value of %rsp in the calling frame. */
2602 cache->saved_sp = cache->base + 16;
2603
2604 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2605 frame we find it at the same offset from the reconstructed base
2606 address. If we're halfway aligning the stack, %rip is handled
2607 differently (see above). */
2608 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2609 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2610
2611 /* Adjust all the saved registers such that they contain addresses
2612 instead of offsets. */
2613 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2614 if (cache->saved_regs[i] != -1)
2615 cache->saved_regs[i] += cache->base;
2616
2617 cache->base_p = 1;
2618 }
2619
2620 static struct amd64_frame_cache *
2621 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2622 {
2623 struct amd64_frame_cache *cache;
2624
2625 if (*this_cache)
2626 return (struct amd64_frame_cache *) *this_cache;
2627
2628 cache = amd64_alloc_frame_cache ();
2629 *this_cache = cache;
2630
2631 try
2632 {
2633 amd64_frame_cache_1 (this_frame, cache);
2634 }
2635 catch (const gdb_exception_error &ex)
2636 {
2637 if (ex.error != NOT_AVAILABLE_ERROR)
2638 throw;
2639 }
2640
2641 return cache;
2642 }
2643
2644 static enum unwind_stop_reason
2645 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2646 void **this_cache)
2647 {
2648 struct amd64_frame_cache *cache =
2649 amd64_frame_cache (this_frame, this_cache);
2650
2651 if (!cache->base_p)
2652 return UNWIND_UNAVAILABLE;
2653
2654 /* This marks the outermost frame. */
2655 if (cache->base == 0)
2656 return UNWIND_OUTERMOST;
2657
2658 return UNWIND_NO_REASON;
2659 }
2660
2661 static void
2662 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2663 struct frame_id *this_id)
2664 {
2665 struct amd64_frame_cache *cache =
2666 amd64_frame_cache (this_frame, this_cache);
2667
2668 if (!cache->base_p)
2669 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2670 else if (cache->base == 0)
2671 {
2672 /* This marks the outermost frame. */
2673 return;
2674 }
2675 else
2676 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2677 }
2678
2679 static struct value *
2680 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2681 int regnum)
2682 {
2683 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2684 struct amd64_frame_cache *cache =
2685 amd64_frame_cache (this_frame, this_cache);
2686
2687 gdb_assert (regnum >= 0);
2688
2689 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2690 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2691
2692 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2693 return frame_unwind_got_memory (this_frame, regnum,
2694 cache->saved_regs[regnum]);
2695
2696 return frame_unwind_got_register (this_frame, regnum, regnum);
2697 }
2698
2699 static const struct frame_unwind amd64_frame_unwind =
2700 {
2701 NORMAL_FRAME,
2702 amd64_frame_unwind_stop_reason,
2703 amd64_frame_this_id,
2704 amd64_frame_prev_register,
2705 NULL,
2706 default_frame_sniffer
2707 };
2708 \f
2709 /* Generate a bytecode expression to get the value of the saved PC. */
2710
2711 static void
2712 amd64_gen_return_address (struct gdbarch *gdbarch,
2713 struct agent_expr *ax, struct axs_value *value,
2714 CORE_ADDR scope)
2715 {
2716 /* The following sequence assumes the traditional use of the base
2717 register. */
2718 ax_reg (ax, AMD64_RBP_REGNUM);
2719 ax_const_l (ax, 8);
2720 ax_simple (ax, aop_add);
2721 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2722 value->kind = axs_lvalue_memory;
2723 }
2724 \f
2725
2726 /* Signal trampolines. */
2727
2728 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2729 64-bit variants. This would require using identical frame caches
2730 on both platforms. */
2731
2732 static struct amd64_frame_cache *
2733 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2734 {
2735 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2736 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2737 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2738 struct amd64_frame_cache *cache;
2739 CORE_ADDR addr;
2740 gdb_byte buf[8];
2741 int i;
2742
2743 if (*this_cache)
2744 return (struct amd64_frame_cache *) *this_cache;
2745
2746 cache = amd64_alloc_frame_cache ();
2747
2748 try
2749 {
2750 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2751 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2752
2753 addr = tdep->sigcontext_addr (this_frame);
2754 gdb_assert (tdep->sc_reg_offset);
2755 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2756 for (i = 0; i < tdep->sc_num_regs; i++)
2757 if (tdep->sc_reg_offset[i] != -1)
2758 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2759
2760 cache->base_p = 1;
2761 }
2762 catch (const gdb_exception_error &ex)
2763 {
2764 if (ex.error != NOT_AVAILABLE_ERROR)
2765 throw;
2766 }
2767
2768 *this_cache = cache;
2769 return cache;
2770 }
2771
2772 static enum unwind_stop_reason
2773 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2774 void **this_cache)
2775 {
2776 struct amd64_frame_cache *cache =
2777 amd64_sigtramp_frame_cache (this_frame, this_cache);
2778
2779 if (!cache->base_p)
2780 return UNWIND_UNAVAILABLE;
2781
2782 return UNWIND_NO_REASON;
2783 }
2784
2785 static void
2786 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2787 void **this_cache, struct frame_id *this_id)
2788 {
2789 struct amd64_frame_cache *cache =
2790 amd64_sigtramp_frame_cache (this_frame, this_cache);
2791
2792 if (!cache->base_p)
2793 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2794 else if (cache->base == 0)
2795 {
2796 /* This marks the outermost frame. */
2797 return;
2798 }
2799 else
2800 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2801 }
2802
2803 static struct value *
2804 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2805 void **this_cache, int regnum)
2806 {
2807 /* Make sure we've initialized the cache. */
2808 amd64_sigtramp_frame_cache (this_frame, this_cache);
2809
2810 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2811 }
2812
2813 static int
2814 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2815 struct frame_info *this_frame,
2816 void **this_cache)
2817 {
2818 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2819
2820 /* We shouldn't even bother if we don't have a sigcontext_addr
2821 handler. */
2822 if (tdep->sigcontext_addr == NULL)
2823 return 0;
2824
2825 if (tdep->sigtramp_p != NULL)
2826 {
2827 if (tdep->sigtramp_p (this_frame))
2828 return 1;
2829 }
2830
2831 if (tdep->sigtramp_start != 0)
2832 {
2833 CORE_ADDR pc = get_frame_pc (this_frame);
2834
2835 gdb_assert (tdep->sigtramp_end != 0);
2836 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2837 return 1;
2838 }
2839
2840 return 0;
2841 }
2842
2843 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2844 {
2845 SIGTRAMP_FRAME,
2846 amd64_sigtramp_frame_unwind_stop_reason,
2847 amd64_sigtramp_frame_this_id,
2848 amd64_sigtramp_frame_prev_register,
2849 NULL,
2850 amd64_sigtramp_frame_sniffer
2851 };
2852 \f
2853
2854 static CORE_ADDR
2855 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2856 {
2857 struct amd64_frame_cache *cache =
2858 amd64_frame_cache (this_frame, this_cache);
2859
2860 return cache->base;
2861 }
2862
2863 static const struct frame_base amd64_frame_base =
2864 {
2865 &amd64_frame_unwind,
2866 amd64_frame_base_address,
2867 amd64_frame_base_address,
2868 amd64_frame_base_address
2869 };
2870
2871 /* Normal frames, but in a function epilogue. */
2872
2873 /* Implement the stack_frame_destroyed_p gdbarch method.
2874
2875 The epilogue is defined here as the 'ret' instruction, which will
2876 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2877 the function's stack frame. */
2878
2879 static int
2880 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2881 {
2882 gdb_byte insn;
2883 struct compunit_symtab *cust;
2884
2885 cust = find_pc_compunit_symtab (pc);
2886 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2887 return 0;
2888
2889 if (target_read_memory (pc, &insn, 1))
2890 return 0; /* Can't read memory at pc. */
2891
2892 if (insn != 0xc3) /* 'ret' instruction. */
2893 return 0;
2894
2895 return 1;
2896 }
2897
2898 static int
2899 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2900 struct frame_info *this_frame,
2901 void **this_prologue_cache)
2902 {
2903 if (frame_relative_level (this_frame) == 0)
2904 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2905 get_frame_pc (this_frame));
2906 else
2907 return 0;
2908 }
2909
2910 static struct amd64_frame_cache *
2911 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2912 {
2913 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2914 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2915 struct amd64_frame_cache *cache;
2916 gdb_byte buf[8];
2917
2918 if (*this_cache)
2919 return (struct amd64_frame_cache *) *this_cache;
2920
2921 cache = amd64_alloc_frame_cache ();
2922 *this_cache = cache;
2923
2924 try
2925 {
2926 /* Cache base will be %esp plus cache->sp_offset (-8). */
2927 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2928 cache->base = extract_unsigned_integer (buf, 8,
2929 byte_order) + cache->sp_offset;
2930
2931 /* Cache pc will be the frame func. */
2932 cache->pc = get_frame_pc (this_frame);
2933
2934 /* The saved %esp will be at cache->base plus 16. */
2935 cache->saved_sp = cache->base + 16;
2936
2937 /* The saved %eip will be at cache->base plus 8. */
2938 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2939
2940 cache->base_p = 1;
2941 }
2942 catch (const gdb_exception_error &ex)
2943 {
2944 if (ex.error != NOT_AVAILABLE_ERROR)
2945 throw;
2946 }
2947
2948 return cache;
2949 }
2950
2951 static enum unwind_stop_reason
2952 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2953 void **this_cache)
2954 {
2955 struct amd64_frame_cache *cache
2956 = amd64_epilogue_frame_cache (this_frame, this_cache);
2957
2958 if (!cache->base_p)
2959 return UNWIND_UNAVAILABLE;
2960
2961 return UNWIND_NO_REASON;
2962 }
2963
2964 static void
2965 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2966 void **this_cache,
2967 struct frame_id *this_id)
2968 {
2969 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2970 this_cache);
2971
2972 if (!cache->base_p)
2973 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2974 else
2975 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2976 }
2977
2978 static const struct frame_unwind amd64_epilogue_frame_unwind =
2979 {
2980 NORMAL_FRAME,
2981 amd64_epilogue_frame_unwind_stop_reason,
2982 amd64_epilogue_frame_this_id,
2983 amd64_frame_prev_register,
2984 NULL,
2985 amd64_epilogue_frame_sniffer
2986 };
2987
2988 static struct frame_id
2989 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2990 {
2991 CORE_ADDR fp;
2992
2993 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2994
2995 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2996 }
2997
2998 /* 16 byte align the SP per frame requirements. */
2999
3000 static CORE_ADDR
3001 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3002 {
3003 return sp & -(CORE_ADDR)16;
3004 }
3005 \f
3006
3007 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3008 in the floating-point register set REGSET to register cache
3009 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3010
3011 static void
3012 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3013 int regnum, const void *fpregs, size_t len)
3014 {
3015 struct gdbarch *gdbarch = regcache->arch ();
3016 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3017
3018 gdb_assert (len >= tdep->sizeof_fpregset);
3019 amd64_supply_fxsave (regcache, regnum, fpregs);
3020 }
3021
3022 /* Collect register REGNUM from the register cache REGCACHE and store
3023 it in the buffer specified by FPREGS and LEN as described by the
3024 floating-point register set REGSET. If REGNUM is -1, do this for
3025 all registers in REGSET. */
3026
3027 static void
3028 amd64_collect_fpregset (const struct regset *regset,
3029 const struct regcache *regcache,
3030 int regnum, void *fpregs, size_t len)
3031 {
3032 struct gdbarch *gdbarch = regcache->arch ();
3033 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3034
3035 gdb_assert (len >= tdep->sizeof_fpregset);
3036 amd64_collect_fxsave (regcache, regnum, fpregs);
3037 }
3038
3039 const struct regset amd64_fpregset =
3040 {
3041 NULL, amd64_supply_fpregset, amd64_collect_fpregset
3042 };
3043 \f
3044
3045 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
3046 %rdi. We expect its value to be a pointer to the jmp_buf structure
3047 from which we extract the address that we will land at. This
3048 address is copied into PC. This routine returns non-zero on
3049 success. */
3050
3051 static int
3052 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
3053 {
3054 gdb_byte buf[8];
3055 CORE_ADDR jb_addr;
3056 struct gdbarch *gdbarch = get_frame_arch (frame);
3057 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
3058 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
3059
3060 /* If JB_PC_OFFSET is -1, we have no way to find out where the
3061 longjmp will land. */
3062 if (jb_pc_offset == -1)
3063 return 0;
3064
3065 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
3066 jb_addr= extract_typed_address
3067 (buf, builtin_type (gdbarch)->builtin_data_ptr);
3068 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
3069 return 0;
3070
3071 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
3072
3073 return 1;
3074 }
3075
3076 static const int amd64_record_regmap[] =
3077 {
3078 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
3079 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
3080 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
3081 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
3082 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
3083 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
3084 };
3085
3086 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
3087
3088 static bool
3089 amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
3090 {
3091 return x86_in_indirect_branch_thunk (pc, amd64_register_names,
3092 AMD64_RAX_REGNUM,
3093 AMD64_RIP_REGNUM);
3094 }
3095
3096 void
3097 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3098 const target_desc *default_tdesc)
3099 {
3100 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3101 const struct target_desc *tdesc = info.target_desc;
3102 static const char *const stap_integer_prefixes[] = { "$", NULL };
3103 static const char *const stap_register_prefixes[] = { "%", NULL };
3104 static const char *const stap_register_indirection_prefixes[] = { "(",
3105 NULL };
3106 static const char *const stap_register_indirection_suffixes[] = { ")",
3107 NULL };
3108
3109 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3110 floating-point registers. */
3111 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
3112 tdep->fpregset = &amd64_fpregset;
3113
3114 if (! tdesc_has_registers (tdesc))
3115 tdesc = default_tdesc;
3116 tdep->tdesc = tdesc;
3117
3118 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3119 tdep->register_names = amd64_register_names;
3120
3121 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3122 {
3123 tdep->zmmh_register_names = amd64_zmmh_names;
3124 tdep->k_register_names = amd64_k_names;
3125 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3126 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3127
3128 tdep->num_zmm_regs = 32;
3129 tdep->num_xmm_avx512_regs = 16;
3130 tdep->num_ymm_avx512_regs = 16;
3131
3132 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3133 tdep->k0_regnum = AMD64_K0_REGNUM;
3134 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3135 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3136 }
3137
3138 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3139 {
3140 tdep->ymmh_register_names = amd64_ymmh_names;
3141 tdep->num_ymm_regs = 16;
3142 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3143 }
3144
3145 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3146 {
3147 tdep->mpx_register_names = amd64_mpx_names;
3148 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3149 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3150 }
3151
3152 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3153 {
3154 tdep->fsbase_regnum = AMD64_FSBASE_REGNUM;
3155 }
3156
3157 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3158 {
3159 tdep->pkeys_register_names = amd64_pkeys_names;
3160 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3161 tdep->num_pkeys_regs = 1;
3162 }
3163
3164 tdep->num_byte_regs = 20;
3165 tdep->num_word_regs = 16;
3166 tdep->num_dword_regs = 16;
3167 /* Avoid wiring in the MMX registers for now. */
3168 tdep->num_mmx_regs = 0;
3169
3170 set_gdbarch_pseudo_register_read_value (gdbarch,
3171 amd64_pseudo_register_read_value);
3172 set_gdbarch_pseudo_register_write (gdbarch,
3173 amd64_pseudo_register_write);
3174 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3175 amd64_ax_pseudo_register_collect);
3176
3177 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3178
3179 /* AMD64 has an FPU and 16 SSE registers. */
3180 tdep->st0_regnum = AMD64_ST0_REGNUM;
3181 tdep->num_xmm_regs = 16;
3182
3183 /* This is what all the fuss is about. */
3184 set_gdbarch_long_bit (gdbarch, 64);
3185 set_gdbarch_long_long_bit (gdbarch, 64);
3186 set_gdbarch_ptr_bit (gdbarch, 64);
3187
3188 /* In contrast to the i386, on AMD64 a `long double' actually takes
3189 up 128 bits, even though it's still based on the i387 extended
3190 floating-point format which has only 80 significant bits. */
3191 set_gdbarch_long_double_bit (gdbarch, 128);
3192
3193 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3194
3195 /* Register numbers of various important registers. */
3196 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3197 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3198 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3199 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3200
3201 /* The "default" register numbering scheme for AMD64 is referred to
3202 as the "DWARF Register Number Mapping" in the System V psABI.
3203 The preferred debugging format for all known AMD64 targets is
3204 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3205 DWARF-1), but we provide the same mapping just in case. This
3206 mapping is also used for stabs, which GCC does support. */
3207 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3208 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3209
3210 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3211 be in use on any of the supported AMD64 targets. */
3212
3213 /* Call dummy code. */
3214 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3215 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3216 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3217
3218 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3219 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3220 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3221
3222 set_gdbarch_return_value (gdbarch, amd64_return_value);
3223
3224 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3225
3226 tdep->record_regmap = amd64_record_regmap;
3227
3228 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3229
3230 /* Hook the function epilogue frame unwinder. This unwinder is
3231 appended to the list first, so that it supercedes the other
3232 unwinders in function epilogues. */
3233 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3234
3235 /* Hook the prologue-based frame unwinders. */
3236 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3237 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3238 frame_base_set_default (gdbarch, &amd64_frame_base);
3239
3240 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3241
3242 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3243
3244 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3245
3246 /* SystemTap variables and functions. */
3247 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3248 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3249 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3250 stap_register_indirection_prefixes);
3251 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3252 stap_register_indirection_suffixes);
3253 set_gdbarch_stap_is_single_operand (gdbarch,
3254 i386_stap_is_single_operand);
3255 set_gdbarch_stap_parse_special_token (gdbarch,
3256 i386_stap_parse_special_token);
3257 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3258 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3259 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3260
3261 set_gdbarch_in_indirect_branch_thunk (gdbarch,
3262 amd64_in_indirect_branch_thunk);
3263 }
3264
3265 /* Initialize ARCH for x86-64, no osabi. */
3266
3267 static void
3268 amd64_none_init_abi (gdbarch_info info, gdbarch *arch)
3269 {
3270 amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK,
3271 true));
3272 }
3273
3274 static struct type *
3275 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3276 {
3277 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3278
3279 switch (regnum - tdep->eax_regnum)
3280 {
3281 case AMD64_RBP_REGNUM: /* %ebp */
3282 case AMD64_RSP_REGNUM: /* %esp */
3283 return builtin_type (gdbarch)->builtin_data_ptr;
3284 case AMD64_RIP_REGNUM: /* %eip */
3285 return builtin_type (gdbarch)->builtin_func_ptr;
3286 }
3287
3288 return i386_pseudo_register_type (gdbarch, regnum);
3289 }
3290
3291 void
3292 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3293 const target_desc *default_tdesc)
3294 {
3295 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3296
3297 amd64_init_abi (info, gdbarch, default_tdesc);
3298
3299 tdep->num_dword_regs = 17;
3300 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3301
3302 set_gdbarch_long_bit (gdbarch, 32);
3303 set_gdbarch_ptr_bit (gdbarch, 32);
3304 }
3305
3306 /* Initialize ARCH for x64-32, no osabi. */
3307
3308 static void
3309 amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch)
3310 {
3311 amd64_x32_init_abi (info, arch,
3312 amd64_target_description (X86_XSTATE_SSE_MASK, true));
3313 }
3314
3315 /* Return the target description for a specified XSAVE feature mask. */
3316
3317 const struct target_desc *
3318 amd64_target_description (uint64_t xcr0, bool segments)
3319 {
3320 static target_desc *amd64_tdescs \
3321 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
3322 target_desc **tdesc;
3323
3324 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
3325 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
3326 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
3327 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
3328 [segments ? 1 : 0];
3329
3330 if (*tdesc == NULL)
3331 *tdesc = amd64_create_target_description (xcr0, false, false,
3332 segments);
3333
3334 return *tdesc;
3335 }
3336
3337 void
3338 _initialize_amd64_tdep (void)
3339 {
3340 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE,
3341 amd64_none_init_abi);
3342 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE,
3343 amd64_x32_none_init_abi);
3344 }
3345 \f
3346
3347 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3348 sense that the instruction pointer and data pointer are simply
3349 64-bit offsets into the code segment and the data segment instead
3350 of a selector offset pair. The functions below store the upper 32
3351 bits of these pointers (instead of just the 16-bits of the segment
3352 selector). */
3353
3354 /* Fill register REGNUM in REGCACHE with the appropriate
3355 floating-point or SSE register value from *FXSAVE. If REGNUM is
3356 -1, do this for all registers. This function masks off any of the
3357 reserved bits in *FXSAVE. */
3358
3359 void
3360 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3361 const void *fxsave)
3362 {
3363 struct gdbarch *gdbarch = regcache->arch ();
3364 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3365
3366 i387_supply_fxsave (regcache, regnum, fxsave);
3367
3368 if (fxsave
3369 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3370 {
3371 const gdb_byte *regs = (const gdb_byte *) fxsave;
3372
3373 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3374 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3375 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3376 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3377 }
3378 }
3379
3380 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3381
3382 void
3383 amd64_supply_xsave (struct regcache *regcache, int regnum,
3384 const void *xsave)
3385 {
3386 struct gdbarch *gdbarch = regcache->arch ();
3387 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3388
3389 i387_supply_xsave (regcache, regnum, xsave);
3390
3391 if (xsave
3392 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3393 {
3394 const gdb_byte *regs = (const gdb_byte *) xsave;
3395 ULONGEST clear_bv;
3396
3397 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
3398
3399 /* If the FISEG and FOSEG registers have not been initialised yet
3400 (their CLEAR_BV bit is set) then their default values of zero will
3401 have already been setup by I387_SUPPLY_XSAVE. */
3402 if (!(clear_bv & X86_XSTATE_X87))
3403 {
3404 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3405 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3406 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3407 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3408 }
3409 }
3410 }
3411
3412 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3413 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3414 all registers. This function doesn't touch any of the reserved
3415 bits in *FXSAVE. */
3416
3417 void
3418 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3419 void *fxsave)
3420 {
3421 struct gdbarch *gdbarch = regcache->arch ();
3422 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3423 gdb_byte *regs = (gdb_byte *) fxsave;
3424
3425 i387_collect_fxsave (regcache, regnum, fxsave);
3426
3427 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3428 {
3429 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3430 regcache->raw_collect (I387_FISEG_REGNUM (tdep), regs + 12);
3431 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3432 regcache->raw_collect (I387_FOSEG_REGNUM (tdep), regs + 20);
3433 }
3434 }
3435
3436 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3437
3438 void
3439 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3440 void *xsave, int gcore)
3441 {
3442 struct gdbarch *gdbarch = regcache->arch ();
3443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3444 gdb_byte *regs = (gdb_byte *) xsave;
3445
3446 i387_collect_xsave (regcache, regnum, xsave, gcore);
3447
3448 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3449 {
3450 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3451 regcache->raw_collect (I387_FISEG_REGNUM (tdep),
3452 regs + 12);
3453 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3454 regcache->raw_collect (I387_FOSEG_REGNUM (tdep),
3455 regs + 20);
3456 }
3457 }
This page took 0.150517 seconds and 4 git commands to generate.