H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2012 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "regset.h"
37 #include "symfile.h"
38 #include "disasm.h"
39 #include "gdb_assert.h"
40 #include "exceptions.h"
41 #include "amd64-tdep.h"
42 #include "i387-tdep.h"
43
44 #include "features/i386/amd64.c"
45 #include "features/i386/amd64-avx.c"
46
47 #include "ax.h"
48 #include "ax-gdb.h"
49
50 /* Note that the AMD64 architecture was previously known as x86-64.
51 The latter is (forever) engraved into the canonical system name as
52 returned by config.guess, and used as the name for the AMD64 port
53 of GNU/Linux. The BSD's have renamed their ports to amd64; they
54 don't like to shout. For GDB we prefer the amd64_-prefix over the
55 x86_64_-prefix since it's so much easier to type. */
56
57 /* Register information. */
58
59 static const char *amd64_register_names[] =
60 {
61 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
62
63 /* %r8 is indeed register number 8. */
64 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
65 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
66
67 /* %st0 is register number 24. */
68 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
69 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
70
71 /* %xmm0 is register number 40. */
72 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
73 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
74 "mxcsr",
75 };
76
77 static const char *amd64_ymm_names[] =
78 {
79 "ymm0", "ymm1", "ymm2", "ymm3",
80 "ymm4", "ymm5", "ymm6", "ymm7",
81 "ymm8", "ymm9", "ymm10", "ymm11",
82 "ymm12", "ymm13", "ymm14", "ymm15"
83 };
84
85 static const char *amd64_ymmh_names[] =
86 {
87 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
88 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
89 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
90 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
91 };
92
93 /* The registers used to pass integer arguments during a function call. */
94 static int amd64_dummy_call_integer_regs[] =
95 {
96 AMD64_RDI_REGNUM, /* %rdi */
97 AMD64_RSI_REGNUM, /* %rsi */
98 AMD64_RDX_REGNUM, /* %rdx */
99 AMD64_RCX_REGNUM, /* %rcx */
100 8, /* %r8 */
101 9 /* %r9 */
102 };
103
104 /* DWARF Register Number Mapping as defined in the System V psABI,
105 section 3.6. */
106
107 static int amd64_dwarf_regmap[] =
108 {
109 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
110 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
111 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
112 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
113
114 /* Frame Pointer Register RBP. */
115 AMD64_RBP_REGNUM,
116
117 /* Stack Pointer Register RSP. */
118 AMD64_RSP_REGNUM,
119
120 /* Extended Integer Registers 8 - 15. */
121 8, 9, 10, 11, 12, 13, 14, 15,
122
123 /* Return Address RA. Mapped to RIP. */
124 AMD64_RIP_REGNUM,
125
126 /* SSE Registers 0 - 7. */
127 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
128 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
129 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
130 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
131
132 /* Extended SSE Registers 8 - 15. */
133 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
134 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
135 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
136 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
137
138 /* Floating Point Registers 0-7. */
139 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
140 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
141 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
142 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
143
144 /* Control and Status Flags Register. */
145 AMD64_EFLAGS_REGNUM,
146
147 /* Selector Registers. */
148 AMD64_ES_REGNUM,
149 AMD64_CS_REGNUM,
150 AMD64_SS_REGNUM,
151 AMD64_DS_REGNUM,
152 AMD64_FS_REGNUM,
153 AMD64_GS_REGNUM,
154 -1,
155 -1,
156
157 /* Segment Base Address Registers. */
158 -1,
159 -1,
160 -1,
161 -1,
162
163 /* Special Selector Registers. */
164 -1,
165 -1,
166
167 /* Floating Point Control Registers. */
168 AMD64_MXCSR_REGNUM,
169 AMD64_FCTRL_REGNUM,
170 AMD64_FSTAT_REGNUM
171 };
172
173 static const int amd64_dwarf_regmap_len =
174 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
175
176 /* Convert DWARF register number REG to the appropriate register
177 number used by GDB. */
178
179 static int
180 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
181 {
182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
183 int ymm0_regnum = tdep->ymm0_regnum;
184 int regnum = -1;
185
186 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
187 regnum = amd64_dwarf_regmap[reg];
188
189 if (regnum == -1)
190 warning (_("Unmapped DWARF Register #%d encountered."), reg);
191 else if (ymm0_regnum >= 0
192 && i386_xmm_regnum_p (gdbarch, regnum))
193 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
194
195 return regnum;
196 }
197
198 /* Map architectural register numbers to gdb register numbers. */
199
200 static const int amd64_arch_regmap[16] =
201 {
202 AMD64_RAX_REGNUM, /* %rax */
203 AMD64_RCX_REGNUM, /* %rcx */
204 AMD64_RDX_REGNUM, /* %rdx */
205 AMD64_RBX_REGNUM, /* %rbx */
206 AMD64_RSP_REGNUM, /* %rsp */
207 AMD64_RBP_REGNUM, /* %rbp */
208 AMD64_RSI_REGNUM, /* %rsi */
209 AMD64_RDI_REGNUM, /* %rdi */
210 AMD64_R8_REGNUM, /* %r8 */
211 AMD64_R9_REGNUM, /* %r9 */
212 AMD64_R10_REGNUM, /* %r10 */
213 AMD64_R11_REGNUM, /* %r11 */
214 AMD64_R12_REGNUM, /* %r12 */
215 AMD64_R13_REGNUM, /* %r13 */
216 AMD64_R14_REGNUM, /* %r14 */
217 AMD64_R15_REGNUM /* %r15 */
218 };
219
220 static const int amd64_arch_regmap_len =
221 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
222
223 /* Convert architectural register number REG to the appropriate register
224 number used by GDB. */
225
226 static int
227 amd64_arch_reg_to_regnum (int reg)
228 {
229 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
230
231 return amd64_arch_regmap[reg];
232 }
233
234 /* Register names for byte pseudo-registers. */
235
236 static const char *amd64_byte_names[] =
237 {
238 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
239 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
240 "ah", "bh", "ch", "dh"
241 };
242
243 /* Number of lower byte registers. */
244 #define AMD64_NUM_LOWER_BYTE_REGS 16
245
246 /* Register names for word pseudo-registers. */
247
248 static const char *amd64_word_names[] =
249 {
250 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
251 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
252 };
253
254 /* Register names for dword pseudo-registers. */
255
256 static const char *amd64_dword_names[] =
257 {
258 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
259 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d"
260 };
261
262 /* Return the name of register REGNUM. */
263
264 static const char *
265 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
266 {
267 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
268 if (i386_byte_regnum_p (gdbarch, regnum))
269 return amd64_byte_names[regnum - tdep->al_regnum];
270 else if (i386_ymm_regnum_p (gdbarch, regnum))
271 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
272 else if (i386_word_regnum_p (gdbarch, regnum))
273 return amd64_word_names[regnum - tdep->ax_regnum];
274 else if (i386_dword_regnum_p (gdbarch, regnum))
275 return amd64_dword_names[regnum - tdep->eax_regnum];
276 else
277 return i386_pseudo_register_name (gdbarch, regnum);
278 }
279
280 static struct value *
281 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
282 struct regcache *regcache,
283 int regnum)
284 {
285 gdb_byte raw_buf[MAX_REGISTER_SIZE];
286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
287 enum register_status status;
288 struct value *result_value;
289 gdb_byte *buf;
290
291 result_value = allocate_value (register_type (gdbarch, regnum));
292 VALUE_LVAL (result_value) = lval_register;
293 VALUE_REGNUM (result_value) = regnum;
294 buf = value_contents_raw (result_value);
295
296 if (i386_byte_regnum_p (gdbarch, regnum))
297 {
298 int gpnum = regnum - tdep->al_regnum;
299
300 /* Extract (always little endian). */
301 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
302 {
303 /* Special handling for AH, BH, CH, DH. */
304 status = regcache_raw_read (regcache,
305 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
306 raw_buf);
307 if (status == REG_VALID)
308 memcpy (buf, raw_buf + 1, 1);
309 else
310 mark_value_bytes_unavailable (result_value, 0,
311 TYPE_LENGTH (value_type (result_value)));
312 }
313 else
314 {
315 status = regcache_raw_read (regcache, gpnum, raw_buf);
316 if (status == REG_VALID)
317 memcpy (buf, raw_buf, 1);
318 else
319 mark_value_bytes_unavailable (result_value, 0,
320 TYPE_LENGTH (value_type (result_value)));
321 }
322 }
323 else if (i386_dword_regnum_p (gdbarch, regnum))
324 {
325 int gpnum = regnum - tdep->eax_regnum;
326 /* Extract (always little endian). */
327 status = regcache_raw_read (regcache, gpnum, raw_buf);
328 if (status == REG_VALID)
329 memcpy (buf, raw_buf, 4);
330 else
331 mark_value_bytes_unavailable (result_value, 0,
332 TYPE_LENGTH (value_type (result_value)));
333 }
334 else
335 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
336 result_value);
337
338 return result_value;
339 }
340
341 static void
342 amd64_pseudo_register_write (struct gdbarch *gdbarch,
343 struct regcache *regcache,
344 int regnum, const gdb_byte *buf)
345 {
346 gdb_byte raw_buf[MAX_REGISTER_SIZE];
347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
348
349 if (i386_byte_regnum_p (gdbarch, regnum))
350 {
351 int gpnum = regnum - tdep->al_regnum;
352
353 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
354 {
355 /* Read ... AH, BH, CH, DH. */
356 regcache_raw_read (regcache,
357 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
358 /* ... Modify ... (always little endian). */
359 memcpy (raw_buf + 1, buf, 1);
360 /* ... Write. */
361 regcache_raw_write (regcache,
362 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
363 }
364 else
365 {
366 /* Read ... */
367 regcache_raw_read (regcache, gpnum, raw_buf);
368 /* ... Modify ... (always little endian). */
369 memcpy (raw_buf, buf, 1);
370 /* ... Write. */
371 regcache_raw_write (regcache, gpnum, raw_buf);
372 }
373 }
374 else if (i386_dword_regnum_p (gdbarch, regnum))
375 {
376 int gpnum = regnum - tdep->eax_regnum;
377
378 /* Read ... */
379 regcache_raw_read (regcache, gpnum, raw_buf);
380 /* ... Modify ... (always little endian). */
381 memcpy (raw_buf, buf, 4);
382 /* ... Write. */
383 regcache_raw_write (regcache, gpnum, raw_buf);
384 }
385 else
386 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
387 }
388
389 \f
390
391 /* Return the union class of CLASS1 and CLASS2. See the psABI for
392 details. */
393
394 static enum amd64_reg_class
395 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
396 {
397 /* Rule (a): If both classes are equal, this is the resulting class. */
398 if (class1 == class2)
399 return class1;
400
401 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
402 is the other class. */
403 if (class1 == AMD64_NO_CLASS)
404 return class2;
405 if (class2 == AMD64_NO_CLASS)
406 return class1;
407
408 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
409 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
410 return AMD64_MEMORY;
411
412 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
413 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
414 return AMD64_INTEGER;
415
416 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
417 MEMORY is used as class. */
418 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
419 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
420 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
421 return AMD64_MEMORY;
422
423 /* Rule (f): Otherwise class SSE is used. */
424 return AMD64_SSE;
425 }
426
427 /* Return non-zero if TYPE is a non-POD structure or union type. */
428
429 static int
430 amd64_non_pod_p (struct type *type)
431 {
432 /* ??? A class with a base class certainly isn't POD, but does this
433 catch all non-POD structure types? */
434 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
435 return 1;
436
437 return 0;
438 }
439
440 /* Classify TYPE according to the rules for aggregate (structures and
441 arrays) and union types, and store the result in CLASS. */
442
443 static void
444 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
445 {
446 int len = TYPE_LENGTH (type);
447
448 /* 1. If the size of an object is larger than two eightbytes, or in
449 C++, is a non-POD structure or union type, or contains
450 unaligned fields, it has class memory. */
451 if (len > 16 || amd64_non_pod_p (type))
452 {
453 class[0] = class[1] = AMD64_MEMORY;
454 return;
455 }
456
457 /* 2. Both eightbytes get initialized to class NO_CLASS. */
458 class[0] = class[1] = AMD64_NO_CLASS;
459
460 /* 3. Each field of an object is classified recursively so that
461 always two fields are considered. The resulting class is
462 calculated according to the classes of the fields in the
463 eightbyte: */
464
465 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
466 {
467 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
468
469 /* All fields in an array have the same type. */
470 amd64_classify (subtype, class);
471 if (len > 8 && class[1] == AMD64_NO_CLASS)
472 class[1] = class[0];
473 }
474 else
475 {
476 int i;
477
478 /* Structure or union. */
479 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
480 || TYPE_CODE (type) == TYPE_CODE_UNION);
481
482 for (i = 0; i < TYPE_NFIELDS (type); i++)
483 {
484 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
485 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
486 enum amd64_reg_class subclass[2];
487 int bitsize = TYPE_FIELD_BITSIZE (type, i);
488 int endpos;
489
490 if (bitsize == 0)
491 bitsize = TYPE_LENGTH (subtype) * 8;
492 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
493
494 /* Ignore static fields. */
495 if (field_is_static (&TYPE_FIELD (type, i)))
496 continue;
497
498 gdb_assert (pos == 0 || pos == 1);
499
500 amd64_classify (subtype, subclass);
501 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
502 if (bitsize <= 64 && pos == 0 && endpos == 1)
503 /* This is a bit of an odd case: We have a field that would
504 normally fit in one of the two eightbytes, except that
505 it is placed in a way that this field straddles them.
506 This has been seen with a structure containing an array.
507
508 The ABI is a bit unclear in this case, but we assume that
509 this field's class (stored in subclass[0]) must also be merged
510 into class[1]. In other words, our field has a piece stored
511 in the second eight-byte, and thus its class applies to
512 the second eight-byte as well.
513
514 In the case where the field length exceeds 8 bytes,
515 it should not be necessary to merge the field class
516 into class[1]. As LEN > 8, subclass[1] is necessarily
517 different from AMD64_NO_CLASS. If subclass[1] is equal
518 to subclass[0], then the normal class[1]/subclass[1]
519 merging will take care of everything. For subclass[1]
520 to be different from subclass[0], I can only see the case
521 where we have a SSE/SSEUP or X87/X87UP pair, which both
522 use up all 16 bytes of the aggregate, and are already
523 handled just fine (because each portion sits on its own
524 8-byte). */
525 class[1] = amd64_merge_classes (class[1], subclass[0]);
526 if (pos == 0)
527 class[1] = amd64_merge_classes (class[1], subclass[1]);
528 }
529 }
530
531 /* 4. Then a post merger cleanup is done: */
532
533 /* Rule (a): If one of the classes is MEMORY, the whole argument is
534 passed in memory. */
535 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
536 class[0] = class[1] = AMD64_MEMORY;
537
538 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
539 SSE. */
540 if (class[0] == AMD64_SSEUP)
541 class[0] = AMD64_SSE;
542 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
543 class[1] = AMD64_SSE;
544 }
545
546 /* Classify TYPE, and store the result in CLASS. */
547
548 void
549 amd64_classify (struct type *type, enum amd64_reg_class class[2])
550 {
551 enum type_code code = TYPE_CODE (type);
552 int len = TYPE_LENGTH (type);
553
554 class[0] = class[1] = AMD64_NO_CLASS;
555
556 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
557 long, long long, and pointers are in the INTEGER class. Similarly,
558 range types, used by languages such as Ada, are also in the INTEGER
559 class. */
560 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
561 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
562 || code == TYPE_CODE_CHAR
563 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
564 && (len == 1 || len == 2 || len == 4 || len == 8))
565 class[0] = AMD64_INTEGER;
566
567 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
568 are in class SSE. */
569 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
570 && (len == 4 || len == 8))
571 /* FIXME: __m64 . */
572 class[0] = AMD64_SSE;
573
574 /* Arguments of types __float128, _Decimal128 and __m128 are split into
575 two halves. The least significant ones belong to class SSE, the most
576 significant one to class SSEUP. */
577 else if (code == TYPE_CODE_DECFLOAT && len == 16)
578 /* FIXME: __float128, __m128. */
579 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
580
581 /* The 64-bit mantissa of arguments of type long double belongs to
582 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
583 class X87UP. */
584 else if (code == TYPE_CODE_FLT && len == 16)
585 /* Class X87 and X87UP. */
586 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
587
588 /* Aggregates. */
589 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
590 || code == TYPE_CODE_UNION)
591 amd64_classify_aggregate (type, class);
592 }
593
594 static enum return_value_convention
595 amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
596 struct type *type, struct regcache *regcache,
597 gdb_byte *readbuf, const gdb_byte *writebuf)
598 {
599 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
600 enum amd64_reg_class class[2];
601 int len = TYPE_LENGTH (type);
602 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
603 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
604 int integer_reg = 0;
605 int sse_reg = 0;
606 int i;
607
608 gdb_assert (!(readbuf && writebuf));
609 gdb_assert (tdep->classify);
610
611 /* 1. Classify the return type with the classification algorithm. */
612 tdep->classify (type, class);
613
614 /* 2. If the type has class MEMORY, then the caller provides space
615 for the return value and passes the address of this storage in
616 %rdi as if it were the first argument to the function. In effect,
617 this address becomes a hidden first argument.
618
619 On return %rax will contain the address that has been passed in
620 by the caller in %rdi. */
621 if (class[0] == AMD64_MEMORY)
622 {
623 /* As indicated by the comment above, the ABI guarantees that we
624 can always find the return value just after the function has
625 returned. */
626
627 if (readbuf)
628 {
629 ULONGEST addr;
630
631 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
632 read_memory (addr, readbuf, TYPE_LENGTH (type));
633 }
634
635 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
636 }
637
638 gdb_assert (class[1] != AMD64_MEMORY);
639 gdb_assert (len <= 16);
640
641 for (i = 0; len > 0; i++, len -= 8)
642 {
643 int regnum = -1;
644 int offset = 0;
645
646 switch (class[i])
647 {
648 case AMD64_INTEGER:
649 /* 3. If the class is INTEGER, the next available register
650 of the sequence %rax, %rdx is used. */
651 regnum = integer_regnum[integer_reg++];
652 break;
653
654 case AMD64_SSE:
655 /* 4. If the class is SSE, the next available SSE register
656 of the sequence %xmm0, %xmm1 is used. */
657 regnum = sse_regnum[sse_reg++];
658 break;
659
660 case AMD64_SSEUP:
661 /* 5. If the class is SSEUP, the eightbyte is passed in the
662 upper half of the last used SSE register. */
663 gdb_assert (sse_reg > 0);
664 regnum = sse_regnum[sse_reg - 1];
665 offset = 8;
666 break;
667
668 case AMD64_X87:
669 /* 6. If the class is X87, the value is returned on the X87
670 stack in %st0 as 80-bit x87 number. */
671 regnum = AMD64_ST0_REGNUM;
672 if (writebuf)
673 i387_return_value (gdbarch, regcache);
674 break;
675
676 case AMD64_X87UP:
677 /* 7. If the class is X87UP, the value is returned together
678 with the previous X87 value in %st0. */
679 gdb_assert (i > 0 && class[0] == AMD64_X87);
680 regnum = AMD64_ST0_REGNUM;
681 offset = 8;
682 len = 2;
683 break;
684
685 case AMD64_NO_CLASS:
686 continue;
687
688 default:
689 gdb_assert (!"Unexpected register class.");
690 }
691
692 gdb_assert (regnum != -1);
693
694 if (readbuf)
695 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
696 readbuf + i * 8);
697 if (writebuf)
698 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
699 writebuf + i * 8);
700 }
701
702 return RETURN_VALUE_REGISTER_CONVENTION;
703 }
704 \f
705
706 static CORE_ADDR
707 amd64_push_arguments (struct regcache *regcache, int nargs,
708 struct value **args, CORE_ADDR sp, int struct_return)
709 {
710 struct gdbarch *gdbarch = get_regcache_arch (regcache);
711 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
712 int *integer_regs = tdep->call_dummy_integer_regs;
713 int num_integer_regs = tdep->call_dummy_num_integer_regs;
714
715 static int sse_regnum[] =
716 {
717 /* %xmm0 ... %xmm7 */
718 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
719 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
720 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
721 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
722 };
723 struct value **stack_args = alloca (nargs * sizeof (struct value *));
724 /* An array that mirrors the stack_args array. For all arguments
725 that are passed by MEMORY, if that argument's address also needs
726 to be stored in a register, the ARG_ADDR_REGNO array will contain
727 that register number (or a negative value otherwise). */
728 int *arg_addr_regno = alloca (nargs * sizeof (int));
729 int num_stack_args = 0;
730 int num_elements = 0;
731 int element = 0;
732 int integer_reg = 0;
733 int sse_reg = 0;
734 int i;
735
736 gdb_assert (tdep->classify);
737
738 /* Reserve a register for the "hidden" argument. */
739 if (struct_return)
740 integer_reg++;
741
742 for (i = 0; i < nargs; i++)
743 {
744 struct type *type = value_type (args[i]);
745 int len = TYPE_LENGTH (type);
746 enum amd64_reg_class class[2];
747 int needed_integer_regs = 0;
748 int needed_sse_regs = 0;
749 int j;
750
751 /* Classify argument. */
752 tdep->classify (type, class);
753
754 /* Calculate the number of integer and SSE registers needed for
755 this argument. */
756 for (j = 0; j < 2; j++)
757 {
758 if (class[j] == AMD64_INTEGER)
759 needed_integer_regs++;
760 else if (class[j] == AMD64_SSE)
761 needed_sse_regs++;
762 }
763
764 /* Check whether enough registers are available, and if the
765 argument should be passed in registers at all. */
766 if (integer_reg + needed_integer_regs > num_integer_regs
767 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
768 || (needed_integer_regs == 0 && needed_sse_regs == 0))
769 {
770 /* The argument will be passed on the stack. */
771 num_elements += ((len + 7) / 8);
772 stack_args[num_stack_args] = args[i];
773 /* If this is an AMD64_MEMORY argument whose address must also
774 be passed in one of the integer registers, reserve that
775 register and associate this value to that register so that
776 we can store the argument address as soon as we know it. */
777 if (class[0] == AMD64_MEMORY
778 && tdep->memory_args_by_pointer
779 && integer_reg < tdep->call_dummy_num_integer_regs)
780 arg_addr_regno[num_stack_args] =
781 tdep->call_dummy_integer_regs[integer_reg++];
782 else
783 arg_addr_regno[num_stack_args] = -1;
784 num_stack_args++;
785 }
786 else
787 {
788 /* The argument will be passed in registers. */
789 const gdb_byte *valbuf = value_contents (args[i]);
790 gdb_byte buf[8];
791
792 gdb_assert (len <= 16);
793
794 for (j = 0; len > 0; j++, len -= 8)
795 {
796 int regnum = -1;
797 int offset = 0;
798
799 switch (class[j])
800 {
801 case AMD64_INTEGER:
802 regnum = integer_regs[integer_reg++];
803 break;
804
805 case AMD64_SSE:
806 regnum = sse_regnum[sse_reg++];
807 break;
808
809 case AMD64_SSEUP:
810 gdb_assert (sse_reg > 0);
811 regnum = sse_regnum[sse_reg - 1];
812 offset = 8;
813 break;
814
815 default:
816 gdb_assert (!"Unexpected register class.");
817 }
818
819 gdb_assert (regnum != -1);
820 memset (buf, 0, sizeof buf);
821 memcpy (buf, valbuf + j * 8, min (len, 8));
822 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
823 }
824 }
825 }
826
827 /* Allocate space for the arguments on the stack. */
828 sp -= num_elements * 8;
829
830 /* The psABI says that "The end of the input argument area shall be
831 aligned on a 16 byte boundary." */
832 sp &= ~0xf;
833
834 /* Write out the arguments to the stack. */
835 for (i = 0; i < num_stack_args; i++)
836 {
837 struct type *type = value_type (stack_args[i]);
838 const gdb_byte *valbuf = value_contents (stack_args[i]);
839 int len = TYPE_LENGTH (type);
840 CORE_ADDR arg_addr = sp + element * 8;
841
842 write_memory (arg_addr, valbuf, len);
843 if (arg_addr_regno[i] >= 0)
844 {
845 /* We also need to store the address of that argument in
846 the given register. */
847 gdb_byte buf[8];
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
850 store_unsigned_integer (buf, 8, byte_order, arg_addr);
851 regcache_cooked_write (regcache, arg_addr_regno[i], buf);
852 }
853 element += ((len + 7) / 8);
854 }
855
856 /* The psABI says that "For calls that may call functions that use
857 varargs or stdargs (prototype-less calls or calls to functions
858 containing ellipsis (...) in the declaration) %al is used as
859 hidden argument to specify the number of SSE registers used. */
860 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
861 return sp;
862 }
863
864 static CORE_ADDR
865 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
866 struct regcache *regcache, CORE_ADDR bp_addr,
867 int nargs, struct value **args, CORE_ADDR sp,
868 int struct_return, CORE_ADDR struct_addr)
869 {
870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
872 gdb_byte buf[8];
873
874 /* Pass arguments. */
875 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
876
877 /* Pass "hidden" argument". */
878 if (struct_return)
879 {
880 /* The "hidden" argument is passed throught the first argument
881 register. */
882 const int arg_regnum = tdep->call_dummy_integer_regs[0];
883
884 store_unsigned_integer (buf, 8, byte_order, struct_addr);
885 regcache_cooked_write (regcache, arg_regnum, buf);
886 }
887
888 /* Reserve some memory on the stack for the integer-parameter registers,
889 if required by the ABI. */
890 if (tdep->integer_param_regs_saved_in_caller_frame)
891 sp -= tdep->call_dummy_num_integer_regs * 8;
892
893 /* Store return address. */
894 sp -= 8;
895 store_unsigned_integer (buf, 8, byte_order, bp_addr);
896 write_memory (sp, buf, 8);
897
898 /* Finally, update the stack pointer... */
899 store_unsigned_integer (buf, 8, byte_order, sp);
900 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
901
902 /* ...and fake a frame pointer. */
903 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
904
905 return sp + 16;
906 }
907 \f
908 /* Displaced instruction handling. */
909
910 /* A partially decoded instruction.
911 This contains enough details for displaced stepping purposes. */
912
913 struct amd64_insn
914 {
915 /* The number of opcode bytes. */
916 int opcode_len;
917 /* The offset of the rex prefix or -1 if not present. */
918 int rex_offset;
919 /* The offset to the first opcode byte. */
920 int opcode_offset;
921 /* The offset to the modrm byte or -1 if not present. */
922 int modrm_offset;
923
924 /* The raw instruction. */
925 gdb_byte *raw_insn;
926 };
927
928 struct displaced_step_closure
929 {
930 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
931 int tmp_used;
932 int tmp_regno;
933 ULONGEST tmp_save;
934
935 /* Details of the instruction. */
936 struct amd64_insn insn_details;
937
938 /* Amount of space allocated to insn_buf. */
939 int max_len;
940
941 /* The possibly modified insn.
942 This is a variable-length field. */
943 gdb_byte insn_buf[1];
944 };
945
946 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
947 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
948 at which point delete these in favor of libopcodes' versions). */
949
950 static const unsigned char onebyte_has_modrm[256] = {
951 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
952 /* ------------------------------- */
953 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
954 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
955 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
956 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
957 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
958 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
959 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
960 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
961 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
962 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
963 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
964 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
965 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
966 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
967 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
968 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
969 /* ------------------------------- */
970 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
971 };
972
973 static const unsigned char twobyte_has_modrm[256] = {
974 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
975 /* ------------------------------- */
976 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
977 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
978 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
979 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
980 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
981 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
982 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
983 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
984 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
985 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
986 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
987 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
988 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
989 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
990 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
991 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
992 /* ------------------------------- */
993 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
994 };
995
996 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
997
998 static int
999 rex_prefix_p (gdb_byte pfx)
1000 {
1001 return REX_PREFIX_P (pfx);
1002 }
1003
1004 /* Skip the legacy instruction prefixes in INSN.
1005 We assume INSN is properly sentineled so we don't have to worry
1006 about falling off the end of the buffer. */
1007
1008 static gdb_byte *
1009 amd64_skip_prefixes (gdb_byte *insn)
1010 {
1011 while (1)
1012 {
1013 switch (*insn)
1014 {
1015 case DATA_PREFIX_OPCODE:
1016 case ADDR_PREFIX_OPCODE:
1017 case CS_PREFIX_OPCODE:
1018 case DS_PREFIX_OPCODE:
1019 case ES_PREFIX_OPCODE:
1020 case FS_PREFIX_OPCODE:
1021 case GS_PREFIX_OPCODE:
1022 case SS_PREFIX_OPCODE:
1023 case LOCK_PREFIX_OPCODE:
1024 case REPE_PREFIX_OPCODE:
1025 case REPNE_PREFIX_OPCODE:
1026 ++insn;
1027 continue;
1028 default:
1029 break;
1030 }
1031 break;
1032 }
1033
1034 return insn;
1035 }
1036
1037 /* Return an integer register (other than RSP) that is unused as an input
1038 operand in INSN.
1039 In order to not require adding a rex prefix if the insn doesn't already
1040 have one, the result is restricted to RAX ... RDI, sans RSP.
1041 The register numbering of the result follows architecture ordering,
1042 e.g. RDI = 7. */
1043
1044 static int
1045 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1046 {
1047 /* 1 bit for each reg */
1048 int used_regs_mask = 0;
1049
1050 /* There can be at most 3 int regs used as inputs in an insn, and we have
1051 7 to choose from (RAX ... RDI, sans RSP).
1052 This allows us to take a conservative approach and keep things simple.
1053 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1054 that implicitly specify RAX. */
1055
1056 /* Avoid RAX. */
1057 used_regs_mask |= 1 << EAX_REG_NUM;
1058 /* Similarily avoid RDX, implicit operand in divides. */
1059 used_regs_mask |= 1 << EDX_REG_NUM;
1060 /* Avoid RSP. */
1061 used_regs_mask |= 1 << ESP_REG_NUM;
1062
1063 /* If the opcode is one byte long and there's no ModRM byte,
1064 assume the opcode specifies a register. */
1065 if (details->opcode_len == 1 && details->modrm_offset == -1)
1066 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1067
1068 /* Mark used regs in the modrm/sib bytes. */
1069 if (details->modrm_offset != -1)
1070 {
1071 int modrm = details->raw_insn[details->modrm_offset];
1072 int mod = MODRM_MOD_FIELD (modrm);
1073 int reg = MODRM_REG_FIELD (modrm);
1074 int rm = MODRM_RM_FIELD (modrm);
1075 int have_sib = mod != 3 && rm == 4;
1076
1077 /* Assume the reg field of the modrm byte specifies a register. */
1078 used_regs_mask |= 1 << reg;
1079
1080 if (have_sib)
1081 {
1082 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1083 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1084 used_regs_mask |= 1 << base;
1085 used_regs_mask |= 1 << idx;
1086 }
1087 else
1088 {
1089 used_regs_mask |= 1 << rm;
1090 }
1091 }
1092
1093 gdb_assert (used_regs_mask < 256);
1094 gdb_assert (used_regs_mask != 255);
1095
1096 /* Finally, find a free reg. */
1097 {
1098 int i;
1099
1100 for (i = 0; i < 8; ++i)
1101 {
1102 if (! (used_regs_mask & (1 << i)))
1103 return i;
1104 }
1105
1106 /* We shouldn't get here. */
1107 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1108 }
1109 }
1110
1111 /* Extract the details of INSN that we need. */
1112
1113 static void
1114 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1115 {
1116 gdb_byte *start = insn;
1117 int need_modrm;
1118
1119 details->raw_insn = insn;
1120
1121 details->opcode_len = -1;
1122 details->rex_offset = -1;
1123 details->opcode_offset = -1;
1124 details->modrm_offset = -1;
1125
1126 /* Skip legacy instruction prefixes. */
1127 insn = amd64_skip_prefixes (insn);
1128
1129 /* Skip REX instruction prefix. */
1130 if (rex_prefix_p (*insn))
1131 {
1132 details->rex_offset = insn - start;
1133 ++insn;
1134 }
1135
1136 details->opcode_offset = insn - start;
1137
1138 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1139 {
1140 /* Two or three-byte opcode. */
1141 ++insn;
1142 need_modrm = twobyte_has_modrm[*insn];
1143
1144 /* Check for three-byte opcode. */
1145 switch (*insn)
1146 {
1147 case 0x24:
1148 case 0x25:
1149 case 0x38:
1150 case 0x3a:
1151 case 0x7a:
1152 case 0x7b:
1153 ++insn;
1154 details->opcode_len = 3;
1155 break;
1156 default:
1157 details->opcode_len = 2;
1158 break;
1159 }
1160 }
1161 else
1162 {
1163 /* One-byte opcode. */
1164 need_modrm = onebyte_has_modrm[*insn];
1165 details->opcode_len = 1;
1166 }
1167
1168 if (need_modrm)
1169 {
1170 ++insn;
1171 details->modrm_offset = insn - start;
1172 }
1173 }
1174
1175 /* Update %rip-relative addressing in INSN.
1176
1177 %rip-relative addressing only uses a 32-bit displacement.
1178 32 bits is not enough to be guaranteed to cover the distance between where
1179 the real instruction is and where its copy is.
1180 Convert the insn to use base+disp addressing.
1181 We set base = pc + insn_length so we can leave disp unchanged. */
1182
1183 static void
1184 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1185 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1186 {
1187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1188 const struct amd64_insn *insn_details = &dsc->insn_details;
1189 int modrm_offset = insn_details->modrm_offset;
1190 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1191 CORE_ADDR rip_base;
1192 int32_t disp;
1193 int insn_length;
1194 int arch_tmp_regno, tmp_regno;
1195 ULONGEST orig_value;
1196
1197 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1198 ++insn;
1199
1200 /* Compute the rip-relative address. */
1201 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1202 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1203 dsc->max_len, from);
1204 rip_base = from + insn_length;
1205
1206 /* We need a register to hold the address.
1207 Pick one not used in the insn.
1208 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1209 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1210 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1211
1212 /* REX.B should be unset as we were using rip-relative addressing,
1213 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1214 if (insn_details->rex_offset != -1)
1215 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1216
1217 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1218 dsc->tmp_regno = tmp_regno;
1219 dsc->tmp_save = orig_value;
1220 dsc->tmp_used = 1;
1221
1222 /* Convert the ModRM field to be base+disp. */
1223 dsc->insn_buf[modrm_offset] &= ~0xc7;
1224 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1225
1226 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1227
1228 if (debug_displaced)
1229 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1230 "displaced: using temp reg %d, old value %s, new value %s\n",
1231 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1232 paddress (gdbarch, rip_base));
1233 }
1234
1235 static void
1236 fixup_displaced_copy (struct gdbarch *gdbarch,
1237 struct displaced_step_closure *dsc,
1238 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1239 {
1240 const struct amd64_insn *details = &dsc->insn_details;
1241
1242 if (details->modrm_offset != -1)
1243 {
1244 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1245
1246 if ((modrm & 0xc7) == 0x05)
1247 {
1248 /* The insn uses rip-relative addressing.
1249 Deal with it. */
1250 fixup_riprel (gdbarch, dsc, from, to, regs);
1251 }
1252 }
1253 }
1254
1255 struct displaced_step_closure *
1256 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1257 CORE_ADDR from, CORE_ADDR to,
1258 struct regcache *regs)
1259 {
1260 int len = gdbarch_max_insn_length (gdbarch);
1261 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1262 continually watch for running off the end of the buffer. */
1263 int fixup_sentinel_space = len;
1264 struct displaced_step_closure *dsc =
1265 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1266 gdb_byte *buf = &dsc->insn_buf[0];
1267 struct amd64_insn *details = &dsc->insn_details;
1268
1269 dsc->tmp_used = 0;
1270 dsc->max_len = len + fixup_sentinel_space;
1271
1272 read_memory (from, buf, len);
1273
1274 /* Set up the sentinel space so we don't have to worry about running
1275 off the end of the buffer. An excessive number of leading prefixes
1276 could otherwise cause this. */
1277 memset (buf + len, 0, fixup_sentinel_space);
1278
1279 amd64_get_insn_details (buf, details);
1280
1281 /* GDB may get control back after the insn after the syscall.
1282 Presumably this is a kernel bug.
1283 If this is a syscall, make sure there's a nop afterwards. */
1284 {
1285 int syscall_length;
1286
1287 if (amd64_syscall_p (details, &syscall_length))
1288 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1289 }
1290
1291 /* Modify the insn to cope with the address where it will be executed from.
1292 In particular, handle any rip-relative addressing. */
1293 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1294
1295 write_memory (to, buf, len);
1296
1297 if (debug_displaced)
1298 {
1299 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1300 paddress (gdbarch, from), paddress (gdbarch, to));
1301 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1302 }
1303
1304 return dsc;
1305 }
1306
1307 static int
1308 amd64_absolute_jmp_p (const struct amd64_insn *details)
1309 {
1310 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1311
1312 if (insn[0] == 0xff)
1313 {
1314 /* jump near, absolute indirect (/4) */
1315 if ((insn[1] & 0x38) == 0x20)
1316 return 1;
1317
1318 /* jump far, absolute indirect (/5) */
1319 if ((insn[1] & 0x38) == 0x28)
1320 return 1;
1321 }
1322
1323 return 0;
1324 }
1325
1326 static int
1327 amd64_absolute_call_p (const struct amd64_insn *details)
1328 {
1329 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1330
1331 if (insn[0] == 0xff)
1332 {
1333 /* Call near, absolute indirect (/2) */
1334 if ((insn[1] & 0x38) == 0x10)
1335 return 1;
1336
1337 /* Call far, absolute indirect (/3) */
1338 if ((insn[1] & 0x38) == 0x18)
1339 return 1;
1340 }
1341
1342 return 0;
1343 }
1344
1345 static int
1346 amd64_ret_p (const struct amd64_insn *details)
1347 {
1348 /* NOTE: gcc can emit "repz ; ret". */
1349 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1350
1351 switch (insn[0])
1352 {
1353 case 0xc2: /* ret near, pop N bytes */
1354 case 0xc3: /* ret near */
1355 case 0xca: /* ret far, pop N bytes */
1356 case 0xcb: /* ret far */
1357 case 0xcf: /* iret */
1358 return 1;
1359
1360 default:
1361 return 0;
1362 }
1363 }
1364
1365 static int
1366 amd64_call_p (const struct amd64_insn *details)
1367 {
1368 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1369
1370 if (amd64_absolute_call_p (details))
1371 return 1;
1372
1373 /* call near, relative */
1374 if (insn[0] == 0xe8)
1375 return 1;
1376
1377 return 0;
1378 }
1379
1380 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1381 length in bytes. Otherwise, return zero. */
1382
1383 static int
1384 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1385 {
1386 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1387
1388 if (insn[0] == 0x0f && insn[1] == 0x05)
1389 {
1390 *lengthp = 2;
1391 return 1;
1392 }
1393
1394 return 0;
1395 }
1396
1397 /* Fix up the state of registers and memory after having single-stepped
1398 a displaced instruction. */
1399
1400 void
1401 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1402 struct displaced_step_closure *dsc,
1403 CORE_ADDR from, CORE_ADDR to,
1404 struct regcache *regs)
1405 {
1406 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1407 /* The offset we applied to the instruction's address. */
1408 ULONGEST insn_offset = to - from;
1409 gdb_byte *insn = dsc->insn_buf;
1410 const struct amd64_insn *insn_details = &dsc->insn_details;
1411
1412 if (debug_displaced)
1413 fprintf_unfiltered (gdb_stdlog,
1414 "displaced: fixup (%s, %s), "
1415 "insn = 0x%02x 0x%02x ...\n",
1416 paddress (gdbarch, from), paddress (gdbarch, to),
1417 insn[0], insn[1]);
1418
1419 /* If we used a tmp reg, restore it. */
1420
1421 if (dsc->tmp_used)
1422 {
1423 if (debug_displaced)
1424 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1425 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1426 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1427 }
1428
1429 /* The list of issues to contend with here is taken from
1430 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1431 Yay for Free Software! */
1432
1433 /* Relocate the %rip back to the program's instruction stream,
1434 if necessary. */
1435
1436 /* Except in the case of absolute or indirect jump or call
1437 instructions, or a return instruction, the new rip is relative to
1438 the displaced instruction; make it relative to the original insn.
1439 Well, signal handler returns don't need relocation either, but we use the
1440 value of %rip to recognize those; see below. */
1441 if (! amd64_absolute_jmp_p (insn_details)
1442 && ! amd64_absolute_call_p (insn_details)
1443 && ! amd64_ret_p (insn_details))
1444 {
1445 ULONGEST orig_rip;
1446 int insn_len;
1447
1448 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1449
1450 /* A signal trampoline system call changes the %rip, resuming
1451 execution of the main program after the signal handler has
1452 returned. That makes them like 'return' instructions; we
1453 shouldn't relocate %rip.
1454
1455 But most system calls don't, and we do need to relocate %rip.
1456
1457 Our heuristic for distinguishing these cases: if stepping
1458 over the system call instruction left control directly after
1459 the instruction, the we relocate --- control almost certainly
1460 doesn't belong in the displaced copy. Otherwise, we assume
1461 the instruction has put control where it belongs, and leave
1462 it unrelocated. Goodness help us if there are PC-relative
1463 system calls. */
1464 if (amd64_syscall_p (insn_details, &insn_len)
1465 && orig_rip != to + insn_len
1466 /* GDB can get control back after the insn after the syscall.
1467 Presumably this is a kernel bug.
1468 Fixup ensures its a nop, we add one to the length for it. */
1469 && orig_rip != to + insn_len + 1)
1470 {
1471 if (debug_displaced)
1472 fprintf_unfiltered (gdb_stdlog,
1473 "displaced: syscall changed %%rip; "
1474 "not relocating\n");
1475 }
1476 else
1477 {
1478 ULONGEST rip = orig_rip - insn_offset;
1479
1480 /* If we just stepped over a breakpoint insn, we don't backup
1481 the pc on purpose; this is to match behaviour without
1482 stepping. */
1483
1484 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1485
1486 if (debug_displaced)
1487 fprintf_unfiltered (gdb_stdlog,
1488 "displaced: "
1489 "relocated %%rip from %s to %s\n",
1490 paddress (gdbarch, orig_rip),
1491 paddress (gdbarch, rip));
1492 }
1493 }
1494
1495 /* If the instruction was PUSHFL, then the TF bit will be set in the
1496 pushed value, and should be cleared. We'll leave this for later,
1497 since GDB already messes up the TF flag when stepping over a
1498 pushfl. */
1499
1500 /* If the instruction was a call, the return address now atop the
1501 stack is the address following the copied instruction. We need
1502 to make it the address following the original instruction. */
1503 if (amd64_call_p (insn_details))
1504 {
1505 ULONGEST rsp;
1506 ULONGEST retaddr;
1507 const ULONGEST retaddr_len = 8;
1508
1509 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1510 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1511 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1512 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1513
1514 if (debug_displaced)
1515 fprintf_unfiltered (gdb_stdlog,
1516 "displaced: relocated return addr at %s "
1517 "to %s\n",
1518 paddress (gdbarch, rsp),
1519 paddress (gdbarch, retaddr));
1520 }
1521 }
1522
1523 /* If the instruction INSN uses RIP-relative addressing, return the
1524 offset into the raw INSN where the displacement to be adjusted is
1525 found. Returns 0 if the instruction doesn't use RIP-relative
1526 addressing. */
1527
1528 static int
1529 rip_relative_offset (struct amd64_insn *insn)
1530 {
1531 if (insn->modrm_offset != -1)
1532 {
1533 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1534
1535 if ((modrm & 0xc7) == 0x05)
1536 {
1537 /* The displacement is found right after the ModRM byte. */
1538 return insn->modrm_offset + 1;
1539 }
1540 }
1541
1542 return 0;
1543 }
1544
1545 static void
1546 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1547 {
1548 target_write_memory (*to, buf, len);
1549 *to += len;
1550 }
1551
1552 static void
1553 amd64_relocate_instruction (struct gdbarch *gdbarch,
1554 CORE_ADDR *to, CORE_ADDR oldloc)
1555 {
1556 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1557 int len = gdbarch_max_insn_length (gdbarch);
1558 /* Extra space for sentinels. */
1559 int fixup_sentinel_space = len;
1560 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1561 struct amd64_insn insn_details;
1562 int offset = 0;
1563 LONGEST rel32, newrel;
1564 gdb_byte *insn;
1565 int insn_length;
1566
1567 read_memory (oldloc, buf, len);
1568
1569 /* Set up the sentinel space so we don't have to worry about running
1570 off the end of the buffer. An excessive number of leading prefixes
1571 could otherwise cause this. */
1572 memset (buf + len, 0, fixup_sentinel_space);
1573
1574 insn = buf;
1575 amd64_get_insn_details (insn, &insn_details);
1576
1577 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1578
1579 /* Skip legacy instruction prefixes. */
1580 insn = amd64_skip_prefixes (insn);
1581
1582 /* Adjust calls with 32-bit relative addresses as push/jump, with
1583 the address pushed being the location where the original call in
1584 the user program would return to. */
1585 if (insn[0] == 0xe8)
1586 {
1587 gdb_byte push_buf[16];
1588 unsigned int ret_addr;
1589
1590 /* Where "ret" in the original code will return to. */
1591 ret_addr = oldloc + insn_length;
1592 push_buf[0] = 0x68; /* pushq $... */
1593 memcpy (&push_buf[1], &ret_addr, 4);
1594 /* Push the push. */
1595 append_insns (to, 5, push_buf);
1596
1597 /* Convert the relative call to a relative jump. */
1598 insn[0] = 0xe9;
1599
1600 /* Adjust the destination offset. */
1601 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1602 newrel = (oldloc - *to) + rel32;
1603 store_signed_integer (insn + 1, 4, byte_order, newrel);
1604
1605 if (debug_displaced)
1606 fprintf_unfiltered (gdb_stdlog,
1607 "Adjusted insn rel32=%s at %s to"
1608 " rel32=%s at %s\n",
1609 hex_string (rel32), paddress (gdbarch, oldloc),
1610 hex_string (newrel), paddress (gdbarch, *to));
1611
1612 /* Write the adjusted jump into its displaced location. */
1613 append_insns (to, 5, insn);
1614 return;
1615 }
1616
1617 offset = rip_relative_offset (&insn_details);
1618 if (!offset)
1619 {
1620 /* Adjust jumps with 32-bit relative addresses. Calls are
1621 already handled above. */
1622 if (insn[0] == 0xe9)
1623 offset = 1;
1624 /* Adjust conditional jumps. */
1625 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1626 offset = 2;
1627 }
1628
1629 if (offset)
1630 {
1631 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1632 newrel = (oldloc - *to) + rel32;
1633 store_signed_integer (insn + offset, 4, byte_order, newrel);
1634 if (debug_displaced)
1635 fprintf_unfiltered (gdb_stdlog,
1636 "Adjusted insn rel32=%s at %s to"
1637 " rel32=%s at %s\n",
1638 hex_string (rel32), paddress (gdbarch, oldloc),
1639 hex_string (newrel), paddress (gdbarch, *to));
1640 }
1641
1642 /* Write the adjusted instruction into its displaced location. */
1643 append_insns (to, insn_length, buf);
1644 }
1645
1646 \f
1647 /* The maximum number of saved registers. This should include %rip. */
1648 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1649
1650 struct amd64_frame_cache
1651 {
1652 /* Base address. */
1653 CORE_ADDR base;
1654 int base_p;
1655 CORE_ADDR sp_offset;
1656 CORE_ADDR pc;
1657
1658 /* Saved registers. */
1659 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1660 CORE_ADDR saved_sp;
1661 int saved_sp_reg;
1662
1663 /* Do we have a frame? */
1664 int frameless_p;
1665 };
1666
1667 /* Initialize a frame cache. */
1668
1669 static void
1670 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1671 {
1672 int i;
1673
1674 /* Base address. */
1675 cache->base = 0;
1676 cache->base_p = 0;
1677 cache->sp_offset = -8;
1678 cache->pc = 0;
1679
1680 /* Saved registers. We initialize these to -1 since zero is a valid
1681 offset (that's where %rbp is supposed to be stored).
1682 The values start out as being offsets, and are later converted to
1683 addresses (at which point -1 is interpreted as an address, still meaning
1684 "invalid"). */
1685 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1686 cache->saved_regs[i] = -1;
1687 cache->saved_sp = 0;
1688 cache->saved_sp_reg = -1;
1689
1690 /* Frameless until proven otherwise. */
1691 cache->frameless_p = 1;
1692 }
1693
1694 /* Allocate and initialize a frame cache. */
1695
1696 static struct amd64_frame_cache *
1697 amd64_alloc_frame_cache (void)
1698 {
1699 struct amd64_frame_cache *cache;
1700
1701 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1702 amd64_init_frame_cache (cache);
1703 return cache;
1704 }
1705
1706 /* GCC 4.4 and later, can put code in the prologue to realign the
1707 stack pointer. Check whether PC points to such code, and update
1708 CACHE accordingly. Return the first instruction after the code
1709 sequence or CURRENT_PC, whichever is smaller. If we don't
1710 recognize the code, return PC. */
1711
1712 static CORE_ADDR
1713 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1714 struct amd64_frame_cache *cache)
1715 {
1716 /* There are 2 code sequences to re-align stack before the frame
1717 gets set up:
1718
1719 1. Use a caller-saved saved register:
1720
1721 leaq 8(%rsp), %reg
1722 andq $-XXX, %rsp
1723 pushq -8(%reg)
1724
1725 2. Use a callee-saved saved register:
1726
1727 pushq %reg
1728 leaq 16(%rsp), %reg
1729 andq $-XXX, %rsp
1730 pushq -8(%reg)
1731
1732 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1733
1734 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1735 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1736 */
1737
1738 gdb_byte buf[18];
1739 int reg, r;
1740 int offset, offset_and;
1741
1742 if (target_read_memory (pc, buf, sizeof buf))
1743 return pc;
1744
1745 /* Check caller-saved saved register. The first instruction has
1746 to be "leaq 8(%rsp), %reg". */
1747 if ((buf[0] & 0xfb) == 0x48
1748 && buf[1] == 0x8d
1749 && buf[3] == 0x24
1750 && buf[4] == 0x8)
1751 {
1752 /* MOD must be binary 10 and R/M must be binary 100. */
1753 if ((buf[2] & 0xc7) != 0x44)
1754 return pc;
1755
1756 /* REG has register number. */
1757 reg = (buf[2] >> 3) & 7;
1758
1759 /* Check the REX.R bit. */
1760 if (buf[0] == 0x4c)
1761 reg += 8;
1762
1763 offset = 5;
1764 }
1765 else
1766 {
1767 /* Check callee-saved saved register. The first instruction
1768 has to be "pushq %reg". */
1769 reg = 0;
1770 if ((buf[0] & 0xf8) == 0x50)
1771 offset = 0;
1772 else if ((buf[0] & 0xf6) == 0x40
1773 && (buf[1] & 0xf8) == 0x50)
1774 {
1775 /* Check the REX.B bit. */
1776 if ((buf[0] & 1) != 0)
1777 reg = 8;
1778
1779 offset = 1;
1780 }
1781 else
1782 return pc;
1783
1784 /* Get register. */
1785 reg += buf[offset] & 0x7;
1786
1787 offset++;
1788
1789 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1790 if ((buf[offset] & 0xfb) != 0x48
1791 || buf[offset + 1] != 0x8d
1792 || buf[offset + 3] != 0x24
1793 || buf[offset + 4] != 0x10)
1794 return pc;
1795
1796 /* MOD must be binary 10 and R/M must be binary 100. */
1797 if ((buf[offset + 2] & 0xc7) != 0x44)
1798 return pc;
1799
1800 /* REG has register number. */
1801 r = (buf[offset + 2] >> 3) & 7;
1802
1803 /* Check the REX.R bit. */
1804 if (buf[offset] == 0x4c)
1805 r += 8;
1806
1807 /* Registers in pushq and leaq have to be the same. */
1808 if (reg != r)
1809 return pc;
1810
1811 offset += 5;
1812 }
1813
1814 /* Rigister can't be %rsp nor %rbp. */
1815 if (reg == 4 || reg == 5)
1816 return pc;
1817
1818 /* The next instruction has to be "andq $-XXX, %rsp". */
1819 if (buf[offset] != 0x48
1820 || buf[offset + 2] != 0xe4
1821 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1822 return pc;
1823
1824 offset_and = offset;
1825 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1826
1827 /* The next instruction has to be "pushq -8(%reg)". */
1828 r = 0;
1829 if (buf[offset] == 0xff)
1830 offset++;
1831 else if ((buf[offset] & 0xf6) == 0x40
1832 && buf[offset + 1] == 0xff)
1833 {
1834 /* Check the REX.B bit. */
1835 if ((buf[offset] & 0x1) != 0)
1836 r = 8;
1837 offset += 2;
1838 }
1839 else
1840 return pc;
1841
1842 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1843 01. */
1844 if (buf[offset + 1] != 0xf8
1845 || (buf[offset] & 0xf8) != 0x70)
1846 return pc;
1847
1848 /* R/M has register. */
1849 r += buf[offset] & 7;
1850
1851 /* Registers in leaq and pushq have to be the same. */
1852 if (reg != r)
1853 return pc;
1854
1855 if (current_pc > pc + offset_and)
1856 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1857
1858 return min (pc + offset + 2, current_pc);
1859 }
1860
1861 /* Do a limited analysis of the prologue at PC and update CACHE
1862 accordingly. Bail out early if CURRENT_PC is reached. Return the
1863 address where the analysis stopped.
1864
1865 We will handle only functions beginning with:
1866
1867 pushq %rbp 0x55
1868 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
1869
1870 or (for the X32 ABI):
1871
1872 pushq %rbp 0x55
1873 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
1874
1875 Any function that doesn't start with one of these sequences will be
1876 assumed to have no prologue and thus no valid frame pointer in
1877 %rbp. */
1878
1879 static CORE_ADDR
1880 amd64_analyze_prologue (struct gdbarch *gdbarch,
1881 CORE_ADDR pc, CORE_ADDR current_pc,
1882 struct amd64_frame_cache *cache)
1883 {
1884 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1885 /* There are two variations of movq %rsp, %rbp. */
1886 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
1887 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
1888 /* Ditto for movl %esp, %ebp. */
1889 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
1890 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
1891
1892 gdb_byte buf[3];
1893 gdb_byte op;
1894
1895 if (current_pc <= pc)
1896 return current_pc;
1897
1898 pc = amd64_analyze_stack_align (pc, current_pc, cache);
1899
1900 op = read_memory_unsigned_integer (pc, 1, byte_order);
1901
1902 if (op == 0x55) /* pushq %rbp */
1903 {
1904 /* Take into account that we've executed the `pushq %rbp' that
1905 starts this instruction sequence. */
1906 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
1907 cache->sp_offset += 8;
1908
1909 /* If that's all, return now. */
1910 if (current_pc <= pc + 1)
1911 return current_pc;
1912
1913 read_memory (pc + 1, buf, 3);
1914
1915 /* Check for `movq %rsp, %rbp'. */
1916 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
1917 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
1918 {
1919 /* OK, we actually have a frame. */
1920 cache->frameless_p = 0;
1921 return pc + 4;
1922 }
1923
1924 /* For X32, also check for `movq %esp, %ebp'. */
1925 if (gdbarch_ptr_bit (gdbarch) == 32)
1926 {
1927 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
1928 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
1929 {
1930 /* OK, we actually have a frame. */
1931 cache->frameless_p = 0;
1932 return pc + 3;
1933 }
1934 }
1935
1936 return pc + 1;
1937 }
1938
1939 return pc;
1940 }
1941
1942 /* Work around false termination of prologue - GCC PR debug/48827.
1943
1944 START_PC is the first instruction of a function, PC is its minimal already
1945 determined advanced address. Function returns PC if it has nothing to do.
1946
1947 84 c0 test %al,%al
1948 74 23 je after
1949 <-- here is 0 lines advance - the false prologue end marker.
1950 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
1951 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
1952 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
1953 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
1954 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
1955 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
1956 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
1957 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
1958 after: */
1959
1960 static CORE_ADDR
1961 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
1962 {
1963 struct symtab_and_line start_pc_sal, next_sal;
1964 gdb_byte buf[4 + 8 * 7];
1965 int offset, xmmreg;
1966
1967 if (pc == start_pc)
1968 return pc;
1969
1970 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
1971 if (start_pc_sal.symtab == NULL
1972 || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6
1973 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
1974 return pc;
1975
1976 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
1977 if (next_sal.line != start_pc_sal.line)
1978 return pc;
1979
1980 /* START_PC can be from overlayed memory, ignored here. */
1981 if (target_read_memory (next_sal.pc - 4, buf, sizeof (buf)) != 0)
1982 return pc;
1983
1984 /* test %al,%al */
1985 if (buf[0] != 0x84 || buf[1] != 0xc0)
1986 return pc;
1987 /* je AFTER */
1988 if (buf[2] != 0x74)
1989 return pc;
1990
1991 offset = 4;
1992 for (xmmreg = 0; xmmreg < 8; xmmreg++)
1993 {
1994 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
1995 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
1996 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
1997 return pc;
1998
1999 /* 0b01?????? */
2000 if ((buf[offset + 2] & 0xc0) == 0x40)
2001 {
2002 /* 8-bit displacement. */
2003 offset += 4;
2004 }
2005 /* 0b10?????? */
2006 else if ((buf[offset + 2] & 0xc0) == 0x80)
2007 {
2008 /* 32-bit displacement. */
2009 offset += 7;
2010 }
2011 else
2012 return pc;
2013 }
2014
2015 /* je AFTER */
2016 if (offset - 4 != buf[3])
2017 return pc;
2018
2019 return next_sal.end;
2020 }
2021
2022 /* Return PC of first real instruction. */
2023
2024 static CORE_ADDR
2025 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2026 {
2027 struct amd64_frame_cache cache;
2028 CORE_ADDR pc;
2029
2030 amd64_init_frame_cache (&cache);
2031 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2032 &cache);
2033 if (cache.frameless_p)
2034 return start_pc;
2035
2036 return amd64_skip_xmm_prologue (pc, start_pc);
2037 }
2038 \f
2039
2040 /* Normal frames. */
2041
2042 static void
2043 amd64_frame_cache_1 (struct frame_info *this_frame,
2044 struct amd64_frame_cache *cache)
2045 {
2046 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2047 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2048 gdb_byte buf[8];
2049 int i;
2050
2051 cache->pc = get_frame_func (this_frame);
2052 if (cache->pc != 0)
2053 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2054 cache);
2055
2056 if (cache->frameless_p)
2057 {
2058 /* We didn't find a valid frame. If we're at the start of a
2059 function, or somewhere half-way its prologue, the function's
2060 frame probably hasn't been fully setup yet. Try to
2061 reconstruct the base address for the stack frame by looking
2062 at the stack pointer. For truly "frameless" functions this
2063 might work too. */
2064
2065 if (cache->saved_sp_reg != -1)
2066 {
2067 /* Stack pointer has been saved. */
2068 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2069 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2070
2071 /* We're halfway aligning the stack. */
2072 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2073 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2074
2075 /* This will be added back below. */
2076 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2077 }
2078 else
2079 {
2080 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2081 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2082 + cache->sp_offset;
2083 }
2084 }
2085 else
2086 {
2087 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2088 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2089 }
2090
2091 /* Now that we have the base address for the stack frame we can
2092 calculate the value of %rsp in the calling frame. */
2093 cache->saved_sp = cache->base + 16;
2094
2095 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2096 frame we find it at the same offset from the reconstructed base
2097 address. If we're halfway aligning the stack, %rip is handled
2098 differently (see above). */
2099 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2100 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2101
2102 /* Adjust all the saved registers such that they contain addresses
2103 instead of offsets. */
2104 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2105 if (cache->saved_regs[i] != -1)
2106 cache->saved_regs[i] += cache->base;
2107
2108 cache->base_p = 1;
2109 }
2110
2111 static struct amd64_frame_cache *
2112 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2113 {
2114 volatile struct gdb_exception ex;
2115 struct amd64_frame_cache *cache;
2116
2117 if (*this_cache)
2118 return *this_cache;
2119
2120 cache = amd64_alloc_frame_cache ();
2121 *this_cache = cache;
2122
2123 TRY_CATCH (ex, RETURN_MASK_ERROR)
2124 {
2125 amd64_frame_cache_1 (this_frame, cache);
2126 }
2127 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2128 throw_exception (ex);
2129
2130 return cache;
2131 }
2132
2133 static enum unwind_stop_reason
2134 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2135 void **this_cache)
2136 {
2137 struct amd64_frame_cache *cache =
2138 amd64_frame_cache (this_frame, this_cache);
2139
2140 if (!cache->base_p)
2141 return UNWIND_UNAVAILABLE;
2142
2143 /* This marks the outermost frame. */
2144 if (cache->base == 0)
2145 return UNWIND_OUTERMOST;
2146
2147 return UNWIND_NO_REASON;
2148 }
2149
2150 static void
2151 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2152 struct frame_id *this_id)
2153 {
2154 struct amd64_frame_cache *cache =
2155 amd64_frame_cache (this_frame, this_cache);
2156
2157 if (!cache->base_p)
2158 return;
2159
2160 /* This marks the outermost frame. */
2161 if (cache->base == 0)
2162 return;
2163
2164 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2165 }
2166
2167 static struct value *
2168 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2169 int regnum)
2170 {
2171 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2172 struct amd64_frame_cache *cache =
2173 amd64_frame_cache (this_frame, this_cache);
2174
2175 gdb_assert (regnum >= 0);
2176
2177 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2178 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2179
2180 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2181 return frame_unwind_got_memory (this_frame, regnum,
2182 cache->saved_regs[regnum]);
2183
2184 return frame_unwind_got_register (this_frame, regnum, regnum);
2185 }
2186
2187 static const struct frame_unwind amd64_frame_unwind =
2188 {
2189 NORMAL_FRAME,
2190 amd64_frame_unwind_stop_reason,
2191 amd64_frame_this_id,
2192 amd64_frame_prev_register,
2193 NULL,
2194 default_frame_sniffer
2195 };
2196 \f
2197 /* Generate a bytecode expression to get the value of the saved PC. */
2198
2199 static void
2200 amd64_gen_return_address (struct gdbarch *gdbarch,
2201 struct agent_expr *ax, struct axs_value *value,
2202 CORE_ADDR scope)
2203 {
2204 /* The following sequence assumes the traditional use of the base
2205 register. */
2206 ax_reg (ax, AMD64_RBP_REGNUM);
2207 ax_const_l (ax, 8);
2208 ax_simple (ax, aop_add);
2209 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2210 value->kind = axs_lvalue_memory;
2211 }
2212 \f
2213
2214 /* Signal trampolines. */
2215
2216 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2217 64-bit variants. This would require using identical frame caches
2218 on both platforms. */
2219
2220 static struct amd64_frame_cache *
2221 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2222 {
2223 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2225 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2226 volatile struct gdb_exception ex;
2227 struct amd64_frame_cache *cache;
2228 CORE_ADDR addr;
2229 gdb_byte buf[8];
2230 int i;
2231
2232 if (*this_cache)
2233 return *this_cache;
2234
2235 cache = amd64_alloc_frame_cache ();
2236
2237 TRY_CATCH (ex, RETURN_MASK_ERROR)
2238 {
2239 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2240 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2241
2242 addr = tdep->sigcontext_addr (this_frame);
2243 gdb_assert (tdep->sc_reg_offset);
2244 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2245 for (i = 0; i < tdep->sc_num_regs; i++)
2246 if (tdep->sc_reg_offset[i] != -1)
2247 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2248
2249 cache->base_p = 1;
2250 }
2251 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2252 throw_exception (ex);
2253
2254 *this_cache = cache;
2255 return cache;
2256 }
2257
2258 static enum unwind_stop_reason
2259 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2260 void **this_cache)
2261 {
2262 struct amd64_frame_cache *cache =
2263 amd64_sigtramp_frame_cache (this_frame, this_cache);
2264
2265 if (!cache->base_p)
2266 return UNWIND_UNAVAILABLE;
2267
2268 return UNWIND_NO_REASON;
2269 }
2270
2271 static void
2272 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2273 void **this_cache, struct frame_id *this_id)
2274 {
2275 struct amd64_frame_cache *cache =
2276 amd64_sigtramp_frame_cache (this_frame, this_cache);
2277
2278 if (!cache->base_p)
2279 return;
2280
2281 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2282 }
2283
2284 static struct value *
2285 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2286 void **this_cache, int regnum)
2287 {
2288 /* Make sure we've initialized the cache. */
2289 amd64_sigtramp_frame_cache (this_frame, this_cache);
2290
2291 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2292 }
2293
2294 static int
2295 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2296 struct frame_info *this_frame,
2297 void **this_cache)
2298 {
2299 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2300
2301 /* We shouldn't even bother if we don't have a sigcontext_addr
2302 handler. */
2303 if (tdep->sigcontext_addr == NULL)
2304 return 0;
2305
2306 if (tdep->sigtramp_p != NULL)
2307 {
2308 if (tdep->sigtramp_p (this_frame))
2309 return 1;
2310 }
2311
2312 if (tdep->sigtramp_start != 0)
2313 {
2314 CORE_ADDR pc = get_frame_pc (this_frame);
2315
2316 gdb_assert (tdep->sigtramp_end != 0);
2317 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2318 return 1;
2319 }
2320
2321 return 0;
2322 }
2323
2324 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2325 {
2326 SIGTRAMP_FRAME,
2327 amd64_sigtramp_frame_unwind_stop_reason,
2328 amd64_sigtramp_frame_this_id,
2329 amd64_sigtramp_frame_prev_register,
2330 NULL,
2331 amd64_sigtramp_frame_sniffer
2332 };
2333 \f
2334
2335 static CORE_ADDR
2336 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2337 {
2338 struct amd64_frame_cache *cache =
2339 amd64_frame_cache (this_frame, this_cache);
2340
2341 return cache->base;
2342 }
2343
2344 static const struct frame_base amd64_frame_base =
2345 {
2346 &amd64_frame_unwind,
2347 amd64_frame_base_address,
2348 amd64_frame_base_address,
2349 amd64_frame_base_address
2350 };
2351
2352 /* Normal frames, but in a function epilogue. */
2353
2354 /* The epilogue is defined here as the 'ret' instruction, which will
2355 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2356 the function's stack frame. */
2357
2358 static int
2359 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2360 {
2361 gdb_byte insn;
2362 struct symtab *symtab;
2363
2364 symtab = find_pc_symtab (pc);
2365 if (symtab && symtab->epilogue_unwind_valid)
2366 return 0;
2367
2368 if (target_read_memory (pc, &insn, 1))
2369 return 0; /* Can't read memory at pc. */
2370
2371 if (insn != 0xc3) /* 'ret' instruction. */
2372 return 0;
2373
2374 return 1;
2375 }
2376
2377 static int
2378 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2379 struct frame_info *this_frame,
2380 void **this_prologue_cache)
2381 {
2382 if (frame_relative_level (this_frame) == 0)
2383 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2384 get_frame_pc (this_frame));
2385 else
2386 return 0;
2387 }
2388
2389 static struct amd64_frame_cache *
2390 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2391 {
2392 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2393 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2394 volatile struct gdb_exception ex;
2395 struct amd64_frame_cache *cache;
2396 gdb_byte buf[8];
2397
2398 if (*this_cache)
2399 return *this_cache;
2400
2401 cache = amd64_alloc_frame_cache ();
2402 *this_cache = cache;
2403
2404 TRY_CATCH (ex, RETURN_MASK_ERROR)
2405 {
2406 /* Cache base will be %esp plus cache->sp_offset (-8). */
2407 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2408 cache->base = extract_unsigned_integer (buf, 8,
2409 byte_order) + cache->sp_offset;
2410
2411 /* Cache pc will be the frame func. */
2412 cache->pc = get_frame_pc (this_frame);
2413
2414 /* The saved %esp will be at cache->base plus 16. */
2415 cache->saved_sp = cache->base + 16;
2416
2417 /* The saved %eip will be at cache->base plus 8. */
2418 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2419
2420 cache->base_p = 1;
2421 }
2422 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2423 throw_exception (ex);
2424
2425 return cache;
2426 }
2427
2428 static enum unwind_stop_reason
2429 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2430 void **this_cache)
2431 {
2432 struct amd64_frame_cache *cache
2433 = amd64_epilogue_frame_cache (this_frame, this_cache);
2434
2435 if (!cache->base_p)
2436 return UNWIND_UNAVAILABLE;
2437
2438 return UNWIND_NO_REASON;
2439 }
2440
2441 static void
2442 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2443 void **this_cache,
2444 struct frame_id *this_id)
2445 {
2446 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2447 this_cache);
2448
2449 if (!cache->base_p)
2450 return;
2451
2452 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2453 }
2454
2455 static const struct frame_unwind amd64_epilogue_frame_unwind =
2456 {
2457 NORMAL_FRAME,
2458 amd64_epilogue_frame_unwind_stop_reason,
2459 amd64_epilogue_frame_this_id,
2460 amd64_frame_prev_register,
2461 NULL,
2462 amd64_epilogue_frame_sniffer
2463 };
2464
2465 static struct frame_id
2466 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2467 {
2468 CORE_ADDR fp;
2469
2470 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2471
2472 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2473 }
2474
2475 /* 16 byte align the SP per frame requirements. */
2476
2477 static CORE_ADDR
2478 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2479 {
2480 return sp & -(CORE_ADDR)16;
2481 }
2482 \f
2483
2484 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2485 in the floating-point register set REGSET to register cache
2486 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2487
2488 static void
2489 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2490 int regnum, const void *fpregs, size_t len)
2491 {
2492 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2493
2494 gdb_assert (len == tdep->sizeof_fpregset);
2495 amd64_supply_fxsave (regcache, regnum, fpregs);
2496 }
2497
2498 /* Collect register REGNUM from the register cache REGCACHE and store
2499 it in the buffer specified by FPREGS and LEN as described by the
2500 floating-point register set REGSET. If REGNUM is -1, do this for
2501 all registers in REGSET. */
2502
2503 static void
2504 amd64_collect_fpregset (const struct regset *regset,
2505 const struct regcache *regcache,
2506 int regnum, void *fpregs, size_t len)
2507 {
2508 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2509
2510 gdb_assert (len == tdep->sizeof_fpregset);
2511 amd64_collect_fxsave (regcache, regnum, fpregs);
2512 }
2513
2514 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2515
2516 static void
2517 amd64_supply_xstateregset (const struct regset *regset,
2518 struct regcache *regcache, int regnum,
2519 const void *xstateregs, size_t len)
2520 {
2521 amd64_supply_xsave (regcache, regnum, xstateregs);
2522 }
2523
2524 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2525
2526 static void
2527 amd64_collect_xstateregset (const struct regset *regset,
2528 const struct regcache *regcache,
2529 int regnum, void *xstateregs, size_t len)
2530 {
2531 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2532 }
2533
2534 /* Return the appropriate register set for the core section identified
2535 by SECT_NAME and SECT_SIZE. */
2536
2537 static const struct regset *
2538 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2539 const char *sect_name, size_t sect_size)
2540 {
2541 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2542
2543 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2544 {
2545 if (tdep->fpregset == NULL)
2546 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2547 amd64_collect_fpregset);
2548
2549 return tdep->fpregset;
2550 }
2551
2552 if (strcmp (sect_name, ".reg-xstate") == 0)
2553 {
2554 if (tdep->xstateregset == NULL)
2555 tdep->xstateregset = regset_alloc (gdbarch,
2556 amd64_supply_xstateregset,
2557 amd64_collect_xstateregset);
2558
2559 return tdep->xstateregset;
2560 }
2561
2562 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2563 }
2564 \f
2565
2566 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2567 %rdi. We expect its value to be a pointer to the jmp_buf structure
2568 from which we extract the address that we will land at. This
2569 address is copied into PC. This routine returns non-zero on
2570 success. */
2571
2572 static int
2573 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2574 {
2575 gdb_byte buf[8];
2576 CORE_ADDR jb_addr;
2577 struct gdbarch *gdbarch = get_frame_arch (frame);
2578 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2579 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2580
2581 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2582 longjmp will land. */
2583 if (jb_pc_offset == -1)
2584 return 0;
2585
2586 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2587 jb_addr= extract_typed_address
2588 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2589 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2590 return 0;
2591
2592 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2593
2594 return 1;
2595 }
2596
2597 static const int amd64_record_regmap[] =
2598 {
2599 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2600 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2601 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2602 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2603 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2604 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2605 };
2606
2607 void
2608 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2609 {
2610 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2611 const struct target_desc *tdesc = info.target_desc;
2612
2613 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2614 floating-point registers. */
2615 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2616
2617 if (! tdesc_has_registers (tdesc))
2618 tdesc = tdesc_amd64;
2619 tdep->tdesc = tdesc;
2620
2621 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2622 tdep->register_names = amd64_register_names;
2623
2624 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2625 {
2626 tdep->ymmh_register_names = amd64_ymmh_names;
2627 tdep->num_ymm_regs = 16;
2628 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2629 }
2630
2631 tdep->num_byte_regs = 20;
2632 tdep->num_word_regs = 16;
2633 tdep->num_dword_regs = 16;
2634 /* Avoid wiring in the MMX registers for now. */
2635 tdep->num_mmx_regs = 0;
2636
2637 set_gdbarch_pseudo_register_read_value (gdbarch,
2638 amd64_pseudo_register_read_value);
2639 set_gdbarch_pseudo_register_write (gdbarch,
2640 amd64_pseudo_register_write);
2641
2642 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2643
2644 /* AMD64 has an FPU and 16 SSE registers. */
2645 tdep->st0_regnum = AMD64_ST0_REGNUM;
2646 tdep->num_xmm_regs = 16;
2647
2648 /* This is what all the fuss is about. */
2649 set_gdbarch_long_bit (gdbarch, 64);
2650 set_gdbarch_long_long_bit (gdbarch, 64);
2651 set_gdbarch_ptr_bit (gdbarch, 64);
2652
2653 /* In contrast to the i386, on AMD64 a `long double' actually takes
2654 up 128 bits, even though it's still based on the i387 extended
2655 floating-point format which has only 80 significant bits. */
2656 set_gdbarch_long_double_bit (gdbarch, 128);
2657
2658 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2659
2660 /* Register numbers of various important registers. */
2661 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2662 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2663 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2664 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2665
2666 /* The "default" register numbering scheme for AMD64 is referred to
2667 as the "DWARF Register Number Mapping" in the System V psABI.
2668 The preferred debugging format for all known AMD64 targets is
2669 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2670 DWARF-1), but we provide the same mapping just in case. This
2671 mapping is also used for stabs, which GCC does support. */
2672 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2673 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2674
2675 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2676 be in use on any of the supported AMD64 targets. */
2677
2678 /* Call dummy code. */
2679 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2680 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2681 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2682 tdep->call_dummy_num_integer_regs =
2683 ARRAY_SIZE (amd64_dummy_call_integer_regs);
2684 tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
2685 tdep->classify = amd64_classify;
2686
2687 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2688 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2689 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2690
2691 set_gdbarch_return_value (gdbarch, amd64_return_value);
2692
2693 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2694
2695 tdep->record_regmap = amd64_record_regmap;
2696
2697 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2698
2699 /* Hook the function epilogue frame unwinder. This unwinder is
2700 appended to the list first, so that it supercedes the other
2701 unwinders in function epilogues. */
2702 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2703
2704 /* Hook the prologue-based frame unwinders. */
2705 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2706 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2707 frame_base_set_default (gdbarch, &amd64_frame_base);
2708
2709 /* If we have a register mapping, enable the generic core file support. */
2710 if (tdep->gregset_reg_offset)
2711 set_gdbarch_regset_from_core_section (gdbarch,
2712 amd64_regset_from_core_section);
2713
2714 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2715
2716 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2717
2718 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
2719
2720 /* SystemTap variables and functions. */
2721 set_gdbarch_stap_integer_prefix (gdbarch, "$");
2722 set_gdbarch_stap_register_prefix (gdbarch, "%");
2723 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
2724 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
2725 set_gdbarch_stap_is_single_operand (gdbarch,
2726 i386_stap_is_single_operand);
2727 set_gdbarch_stap_parse_special_token (gdbarch,
2728 i386_stap_parse_special_token);
2729 }
2730
2731 /* Provide a prototype to silence -Wmissing-prototypes. */
2732 void _initialize_amd64_tdep (void);
2733
2734 void
2735 _initialize_amd64_tdep (void)
2736 {
2737 initialize_tdesc_amd64 ();
2738 initialize_tdesc_amd64_avx ();
2739 }
2740 \f
2741
2742 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2743 sense that the instruction pointer and data pointer are simply
2744 64-bit offsets into the code segment and the data segment instead
2745 of a selector offset pair. The functions below store the upper 32
2746 bits of these pointers (instead of just the 16-bits of the segment
2747 selector). */
2748
2749 /* Fill register REGNUM in REGCACHE with the appropriate
2750 floating-point or SSE register value from *FXSAVE. If REGNUM is
2751 -1, do this for all registers. This function masks off any of the
2752 reserved bits in *FXSAVE. */
2753
2754 void
2755 amd64_supply_fxsave (struct regcache *regcache, int regnum,
2756 const void *fxsave)
2757 {
2758 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2760
2761 i387_supply_fxsave (regcache, regnum, fxsave);
2762
2763 if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
2764 {
2765 const gdb_byte *regs = fxsave;
2766
2767 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2768 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2769 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2770 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2771 }
2772 }
2773
2774 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
2775
2776 void
2777 amd64_supply_xsave (struct regcache *regcache, int regnum,
2778 const void *xsave)
2779 {
2780 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2781 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2782
2783 i387_supply_xsave (regcache, regnum, xsave);
2784
2785 if (xsave && gdbarch_ptr_bit (gdbarch) == 64)
2786 {
2787 const gdb_byte *regs = xsave;
2788
2789 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2790 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
2791 regs + 12);
2792 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2793 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
2794 regs + 20);
2795 }
2796 }
2797
2798 /* Fill register REGNUM (if it is a floating-point or SSE register) in
2799 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
2800 all registers. This function doesn't touch any of the reserved
2801 bits in *FXSAVE. */
2802
2803 void
2804 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
2805 void *fxsave)
2806 {
2807 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2808 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2809 gdb_byte *regs = fxsave;
2810
2811 i387_collect_fxsave (regcache, regnum, fxsave);
2812
2813 if (gdbarch_ptr_bit (gdbarch) == 64)
2814 {
2815 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2816 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2817 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2818 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2819 }
2820 }
2821
2822 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
2823
2824 void
2825 amd64_collect_xsave (const struct regcache *regcache, int regnum,
2826 void *xsave, int gcore)
2827 {
2828 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2829 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2830 gdb_byte *regs = xsave;
2831
2832 i387_collect_xsave (regcache, regnum, xsave, gcore);
2833
2834 if (gdbarch_ptr_bit (gdbarch) == 64)
2835 {
2836 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2837 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
2838 regs + 12);
2839 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2840 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
2841 regs + 20);
2842 }
2843 }
This page took 0.087492 seconds and 5 git commands to generate.