* arch-utils.h (generic_register_size): Declare.
[deliverable/binutils-gdb.git] / gdb / arch-utils.c
1 /* Dynamic architecture support for GDB, the GNU debugger.
2
3 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation,
4 Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24
25 #if GDB_MULTI_ARCH
26 #include "arch-utils.h"
27 #include "gdbcmd.h"
28 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
29 #else
30 /* Just include everything in sight so that the every old definition
31 of macro is visible. */
32 #include "gdb_string.h"
33 #include "symtab.h"
34 #include "frame.h"
35 #include "inferior.h"
36 #include "breakpoint.h"
37 #include "gdb_wait.h"
38 #include "gdbcore.h"
39 #include "gdbcmd.h"
40 #include "target.h"
41 #include "annotate.h"
42 #endif
43 #include "regcache.h"
44 #include "gdb_assert.h"
45
46 #include "version.h"
47
48 #include "floatformat.h"
49
50 /* Use the program counter to determine the contents and size
51 of a breakpoint instruction. If no target-dependent macro
52 BREAKPOINT_FROM_PC has been defined to implement this function,
53 assume that the breakpoint doesn't depend on the PC, and
54 use the values of the BIG_BREAKPOINT and LITTLE_BREAKPOINT macros.
55 Return a pointer to a string of bytes that encode a breakpoint
56 instruction, stores the length of the string to *lenptr,
57 and optionally adjust the pc to point to the correct memory location
58 for inserting the breakpoint. */
59
60 const unsigned char *
61 legacy_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
62 {
63 /* {BIG_,LITTLE_}BREAKPOINT is the sequence of bytes we insert for a
64 breakpoint. On some machines, breakpoints are handled by the
65 target environment and we don't have to worry about them here. */
66 #ifdef BIG_BREAKPOINT
67 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
68 {
69 static unsigned char big_break_insn[] = BIG_BREAKPOINT;
70 *lenptr = sizeof (big_break_insn);
71 return big_break_insn;
72 }
73 #endif
74 #ifdef LITTLE_BREAKPOINT
75 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
76 {
77 static unsigned char little_break_insn[] = LITTLE_BREAKPOINT;
78 *lenptr = sizeof (little_break_insn);
79 return little_break_insn;
80 }
81 #endif
82 #ifdef BREAKPOINT
83 {
84 static unsigned char break_insn[] = BREAKPOINT;
85 *lenptr = sizeof (break_insn);
86 return break_insn;
87 }
88 #endif
89 *lenptr = 0;
90 return NULL;
91 }
92
93 int
94 generic_frameless_function_invocation_not (struct frame_info *fi)
95 {
96 return 0;
97 }
98
99 int
100 generic_return_value_on_stack_not (struct type *type)
101 {
102 return 0;
103 }
104
105 CORE_ADDR
106 generic_skip_trampoline_code (CORE_ADDR pc)
107 {
108 return 0;
109 }
110
111 int
112 generic_in_solib_call_trampoline (CORE_ADDR pc, char *name)
113 {
114 return 0;
115 }
116
117 int
118 generic_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
119 {
120 return 0;
121 }
122
123 char *
124 legacy_register_name (int i)
125 {
126 #ifdef REGISTER_NAMES
127 static char *names[] = REGISTER_NAMES;
128 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
129 return NULL;
130 else
131 return names[i];
132 #else
133 internal_error (__FILE__, __LINE__,
134 "legacy_register_name: called.");
135 return NULL;
136 #endif
137 }
138
139 #if defined (CALL_DUMMY)
140 LONGEST legacy_call_dummy_words[] = CALL_DUMMY;
141 #else
142 LONGEST legacy_call_dummy_words[1];
143 #endif
144 int legacy_sizeof_call_dummy_words = sizeof (legacy_call_dummy_words);
145
146 void
147 generic_remote_translate_xfer_address (CORE_ADDR gdb_addr, int gdb_len,
148 CORE_ADDR * rem_addr, int *rem_len)
149 {
150 *rem_addr = gdb_addr;
151 *rem_len = gdb_len;
152 }
153
154 int
155 generic_prologue_frameless_p (CORE_ADDR ip)
156 {
157 return ip == SKIP_PROLOGUE (ip);
158 }
159
160 /* New/multi-arched targets should use the correct gdbarch field
161 instead of using this global pointer. */
162 int
163 legacy_print_insn (bfd_vma vma, disassemble_info *info)
164 {
165 return (*tm_print_insn) (vma, info);
166 }
167
168 /* Helper functions for INNER_THAN */
169
170 int
171 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
172 {
173 return (lhs < rhs);
174 }
175
176 int
177 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
178 {
179 return (lhs > rhs);
180 }
181
182
183 /* Helper functions for TARGET_{FLOAT,DOUBLE}_FORMAT */
184
185 const struct floatformat *
186 default_float_format (struct gdbarch *gdbarch)
187 {
188 #if GDB_MULTI_ARCH
189 int byte_order = gdbarch_byte_order (gdbarch);
190 #else
191 int byte_order = TARGET_BYTE_ORDER;
192 #endif
193 switch (byte_order)
194 {
195 case BFD_ENDIAN_BIG:
196 return &floatformat_ieee_single_big;
197 case BFD_ENDIAN_LITTLE:
198 return &floatformat_ieee_single_little;
199 default:
200 internal_error (__FILE__, __LINE__,
201 "default_float_format: bad byte order");
202 }
203 }
204
205
206 const struct floatformat *
207 default_double_format (struct gdbarch *gdbarch)
208 {
209 #if GDB_MULTI_ARCH
210 int byte_order = gdbarch_byte_order (gdbarch);
211 #else
212 int byte_order = TARGET_BYTE_ORDER;
213 #endif
214 switch (byte_order)
215 {
216 case BFD_ENDIAN_BIG:
217 return &floatformat_ieee_double_big;
218 case BFD_ENDIAN_LITTLE:
219 return &floatformat_ieee_double_little;
220 default:
221 internal_error (__FILE__, __LINE__,
222 "default_double_format: bad byte order");
223 }
224 }
225
226 void
227 default_print_float_info (void)
228 {
229 #ifdef FLOAT_INFO
230 #if GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL
231 #error "FLOAT_INFO defined in multi-arch"
232 #endif
233 FLOAT_INFO;
234 #else
235 printf_filtered ("No floating point info available for this processor.\n");
236 #endif
237 }
238
239 /* Misc helper functions for targets. */
240
241 int
242 frame_num_args_unknown (struct frame_info *fi)
243 {
244 return -1;
245 }
246
247
248 int
249 generic_register_convertible_not (int num)
250 {
251 return 0;
252 }
253
254
255 /* Under some ABI's that specify the `struct convention' for returning
256 structures by value, by the time we've returned from the function,
257 the return value is sitting there in the caller's buffer, but GDB
258 has no way to find the address of that buffer.
259
260 On such architectures, use this function as your
261 extract_struct_value_address method. When asked to a struct
262 returned by value in this fashion, GDB will print a nice error
263 message, instead of garbage. */
264 CORE_ADDR
265 generic_cannot_extract_struct_value_address (char *dummy)
266 {
267 return 0;
268 }
269
270 int
271 default_register_sim_regno (int num)
272 {
273 return num;
274 }
275
276
277 CORE_ADDR
278 core_addr_identity (CORE_ADDR addr)
279 {
280 return addr;
281 }
282
283 int
284 no_op_reg_to_regnum (int reg)
285 {
286 return reg;
287 }
288
289 /* For use by frame_args_address and frame_locals_address. */
290 CORE_ADDR
291 default_frame_address (struct frame_info *fi)
292 {
293 return fi->frame;
294 }
295
296 /* Default prepare_to_procced(). */
297 int
298 default_prepare_to_proceed (int select_it)
299 {
300 return 0;
301 }
302
303 /* Generic prepare_to_proceed(). This one should be suitable for most
304 targets that support threads. */
305 int
306 generic_prepare_to_proceed (int select_it)
307 {
308 ptid_t wait_ptid;
309 struct target_waitstatus wait_status;
310
311 /* Get the last target status returned by target_wait(). */
312 get_last_target_status (&wait_ptid, &wait_status);
313
314 /* Make sure we were stopped either at a breakpoint, or because
315 of a Ctrl-C. */
316 if (wait_status.kind != TARGET_WAITKIND_STOPPED
317 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
318 wait_status.value.sig != TARGET_SIGNAL_INT))
319 {
320 return 0;
321 }
322
323 if (!ptid_equal (wait_ptid, minus_one_ptid)
324 && !ptid_equal (inferior_ptid, wait_ptid))
325 {
326 /* Switched over from WAIT_PID. */
327 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
328
329 if (wait_pc != read_pc ())
330 {
331 if (select_it)
332 {
333 /* Switch back to WAIT_PID thread. */
334 inferior_ptid = wait_ptid;
335
336 /* FIXME: This stuff came from switch_to_thread() in
337 thread.c (which should probably be a public function). */
338 flush_cached_frames ();
339 registers_changed ();
340 stop_pc = wait_pc;
341 select_frame (get_current_frame ());
342 }
343 /* We return 1 to indicate that there is a breakpoint here,
344 so we need to step over it before continuing to avoid
345 hitting it straight away. */
346 if (breakpoint_here_p (wait_pc))
347 {
348 return 1;
349 }
350 }
351 }
352 return 0;
353
354 }
355
356 void
357 init_frame_pc_noop (int fromleaf, struct frame_info *prev)
358 {
359 return;
360 }
361
362 void
363 init_frame_pc_default (int fromleaf, struct frame_info *prev)
364 {
365 if (fromleaf)
366 prev->pc = SAVED_PC_AFTER_CALL (prev->next);
367 else if (prev->next != NULL)
368 prev->pc = FRAME_SAVED_PC (prev->next);
369 else
370 prev->pc = read_pc ();
371 }
372
373 void
374 default_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
375 {
376 return;
377 }
378
379 void
380 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
381 {
382 return;
383 }
384
385 int
386 cannot_register_not (int regnum)
387 {
388 return 0;
389 }
390
391 /* Legacy version of target_virtual_frame_pointer(). Assumes that
392 there is an FP_REGNUM and that it is the same, cooked or raw. */
393
394 void
395 legacy_virtual_frame_pointer (CORE_ADDR pc,
396 int *frame_regnum,
397 LONGEST *frame_offset)
398 {
399 gdb_assert (FP_REGNUM >= 0);
400 *frame_regnum = FP_REGNUM;
401 *frame_offset = 0;
402 }
403
404 /* Assume the world is sane, every register's virtual and real size
405 is identical. */
406
407 int
408 generic_register_size (int regnum)
409 {
410 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
411 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum));
412 }
413
414 #if !defined (IN_SIGTRAMP)
415 #if defined (SIGTRAMP_START)
416 #define IN_SIGTRAMP(pc, name) \
417 ((pc) >= SIGTRAMP_START(pc) \
418 && (pc) < SIGTRAMP_END(pc) \
419 )
420 #else
421 #define IN_SIGTRAMP(pc, name) \
422 (name && STREQ ("_sigtramp", name))
423 #endif
424 #endif
425 \f
426 int
427 legacy_pc_in_sigtramp (CORE_ADDR pc, char *name)
428 {
429 return IN_SIGTRAMP(pc, name);
430 }
431
432 \f
433 /* Functions to manipulate the endianness of the target. */
434
435 /* ``target_byte_order'' is only used when non- multi-arch.
436 Multi-arch targets obtain the current byte order using the
437 TARGET_BYTE_ORDER gdbarch method.
438
439 The choice of initial value is entirely arbitrary. During startup,
440 the function initialize_current_architecture() updates this value
441 based on default byte-order information extracted from BFD. */
442 int target_byte_order = BFD_ENDIAN_BIG;
443 int target_byte_order_auto = 1;
444
445 static const char endian_big[] = "big";
446 static const char endian_little[] = "little";
447 static const char endian_auto[] = "auto";
448 static const char *endian_enum[] =
449 {
450 endian_big,
451 endian_little,
452 endian_auto,
453 NULL,
454 };
455 static const char *set_endian_string;
456
457 /* Called by ``show endian''. */
458
459 static void
460 show_endian (char *args, int from_tty)
461 {
462 if (TARGET_BYTE_ORDER_AUTO)
463 printf_unfiltered ("The target endianness is set automatically (currently %s endian)\n",
464 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
465 else
466 printf_unfiltered ("The target is assumed to be %s endian\n",
467 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
468 }
469
470 static void
471 set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
472 {
473 if (set_endian_string == endian_auto)
474 {
475 target_byte_order_auto = 1;
476 }
477 else if (set_endian_string == endian_little)
478 {
479 target_byte_order_auto = 0;
480 if (GDB_MULTI_ARCH)
481 {
482 struct gdbarch_info info;
483 gdbarch_info_init (&info);
484 info.byte_order = BFD_ENDIAN_LITTLE;
485 if (! gdbarch_update_p (info))
486 {
487 printf_unfiltered ("Little endian target not supported by GDB\n");
488 }
489 }
490 else
491 {
492 target_byte_order = BFD_ENDIAN_LITTLE;
493 }
494 }
495 else if (set_endian_string == endian_big)
496 {
497 target_byte_order_auto = 0;
498 if (GDB_MULTI_ARCH)
499 {
500 struct gdbarch_info info;
501 gdbarch_info_init (&info);
502 info.byte_order = BFD_ENDIAN_BIG;
503 if (! gdbarch_update_p (info))
504 {
505 printf_unfiltered ("Big endian target not supported by GDB\n");
506 }
507 }
508 else
509 {
510 target_byte_order = BFD_ENDIAN_BIG;
511 }
512 }
513 else
514 internal_error (__FILE__, __LINE__,
515 "set_endian: bad value");
516 show_endian (NULL, from_tty);
517 }
518
519 /* Set the endianness from a BFD. */
520
521 static void
522 set_endian_from_file (bfd *abfd)
523 {
524 int want;
525 if (GDB_MULTI_ARCH)
526 internal_error (__FILE__, __LINE__,
527 "set_endian_from_file: not for multi-arch");
528 if (bfd_big_endian (abfd))
529 want = BFD_ENDIAN_BIG;
530 else
531 want = BFD_ENDIAN_LITTLE;
532 if (TARGET_BYTE_ORDER_AUTO)
533 target_byte_order = want;
534 else if (TARGET_BYTE_ORDER != want)
535 warning ("%s endian file does not match %s endian target.",
536 want == BFD_ENDIAN_BIG ? "big" : "little",
537 TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little");
538 }
539
540
541 /* Functions to manipulate the architecture of the target */
542
543 enum set_arch { set_arch_auto, set_arch_manual };
544
545 int target_architecture_auto = 1;
546
547 const char *set_architecture_string;
548
549 /* Old way of changing the current architecture. */
550
551 extern const struct bfd_arch_info bfd_default_arch_struct;
552 const struct bfd_arch_info *target_architecture = &bfd_default_arch_struct;
553 int (*target_architecture_hook) (const struct bfd_arch_info *ap);
554
555 static int
556 arch_ok (const struct bfd_arch_info *arch)
557 {
558 if (GDB_MULTI_ARCH)
559 internal_error (__FILE__, __LINE__,
560 "arch_ok: not multi-arched");
561 /* Should be performing the more basic check that the binary is
562 compatible with GDB. */
563 /* Check with the target that the architecture is valid. */
564 return (target_architecture_hook == NULL
565 || target_architecture_hook (arch));
566 }
567
568 static void
569 set_arch (const struct bfd_arch_info *arch,
570 enum set_arch type)
571 {
572 if (GDB_MULTI_ARCH)
573 internal_error (__FILE__, __LINE__,
574 "set_arch: not multi-arched");
575 switch (type)
576 {
577 case set_arch_auto:
578 if (!arch_ok (arch))
579 warning ("Target may not support %s architecture",
580 arch->printable_name);
581 target_architecture = arch;
582 break;
583 case set_arch_manual:
584 if (!arch_ok (arch))
585 {
586 printf_unfiltered ("Target does not support `%s' architecture.\n",
587 arch->printable_name);
588 }
589 else
590 {
591 target_architecture_auto = 0;
592 target_architecture = arch;
593 }
594 break;
595 }
596 if (gdbarch_debug)
597 gdbarch_dump (current_gdbarch, gdb_stdlog);
598 }
599
600 /* Set the architecture from arch/machine (deprecated) */
601
602 void
603 set_architecture_from_arch_mach (enum bfd_architecture arch,
604 unsigned long mach)
605 {
606 const struct bfd_arch_info *wanted = bfd_lookup_arch (arch, mach);
607 if (GDB_MULTI_ARCH)
608 internal_error (__FILE__, __LINE__,
609 "set_architecture_from_arch_mach: not multi-arched");
610 if (wanted != NULL)
611 set_arch (wanted, set_arch_manual);
612 else
613 internal_error (__FILE__, __LINE__,
614 "gdbarch: hardwired architecture/machine not recognized");
615 }
616
617 /* Set the architecture from a BFD (deprecated) */
618
619 static void
620 set_architecture_from_file (bfd *abfd)
621 {
622 const struct bfd_arch_info *wanted = bfd_get_arch_info (abfd);
623 if (GDB_MULTI_ARCH)
624 internal_error (__FILE__, __LINE__,
625 "set_architecture_from_file: not multi-arched");
626 if (target_architecture_auto)
627 {
628 set_arch (wanted, set_arch_auto);
629 }
630 else if (wanted != target_architecture)
631 {
632 warning ("%s architecture file may be incompatible with %s target.",
633 wanted->printable_name,
634 target_architecture->printable_name);
635 }
636 }
637
638
639 /* Called if the user enters ``show architecture'' without an
640 argument. */
641
642 static void
643 show_architecture (char *args, int from_tty)
644 {
645 const char *arch;
646 arch = TARGET_ARCHITECTURE->printable_name;
647 if (target_architecture_auto)
648 printf_filtered ("The target architecture is set automatically (currently %s)\n", arch);
649 else
650 printf_filtered ("The target architecture is assumed to be %s\n", arch);
651 }
652
653
654 /* Called if the user enters ``set architecture'' with or without an
655 argument. */
656
657 static void
658 set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
659 {
660 if (strcmp (set_architecture_string, "auto") == 0)
661 {
662 target_architecture_auto = 1;
663 }
664 else if (GDB_MULTI_ARCH)
665 {
666 struct gdbarch_info info;
667 gdbarch_info_init (&info);
668 info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
669 if (info.bfd_arch_info == NULL)
670 internal_error (__FILE__, __LINE__,
671 "set_architecture: bfd_scan_arch failed");
672 if (gdbarch_update_p (info))
673 target_architecture_auto = 0;
674 else
675 printf_unfiltered ("Architecture `%s' not recognized.\n",
676 set_architecture_string);
677 }
678 else
679 {
680 const struct bfd_arch_info *arch
681 = bfd_scan_arch (set_architecture_string);
682 if (arch == NULL)
683 internal_error (__FILE__, __LINE__,
684 "set_architecture: bfd_scan_arch failed");
685 set_arch (arch, set_arch_manual);
686 }
687 show_architecture (NULL, from_tty);
688 }
689
690 /* Set the dynamic target-system-dependent parameters (architecture,
691 byte-order) using information found in the BFD */
692
693 void
694 set_gdbarch_from_file (bfd *abfd)
695 {
696 if (GDB_MULTI_ARCH)
697 {
698 struct gdbarch_info info;
699 gdbarch_info_init (&info);
700 info.abfd = abfd;
701 if (! gdbarch_update_p (info))
702 error ("Architecture of file not recognized.\n");
703 }
704 else
705 {
706 set_architecture_from_file (abfd);
707 set_endian_from_file (abfd);
708 }
709 }
710
711 /* Initialize the current architecture. Update the ``set
712 architecture'' command so that it specifies a list of valid
713 architectures. */
714
715 #ifdef DEFAULT_BFD_ARCH
716 extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
717 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
718 #else
719 static const bfd_arch_info_type *default_bfd_arch;
720 #endif
721
722 #ifdef DEFAULT_BFD_VEC
723 extern const bfd_target DEFAULT_BFD_VEC;
724 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
725 #else
726 static const bfd_target *default_bfd_vec;
727 #endif
728
729 void
730 initialize_current_architecture (void)
731 {
732 const char **arches = gdbarch_printable_names ();
733
734 /* determine a default architecture and byte order. */
735 struct gdbarch_info info;
736 gdbarch_info_init (&info);
737
738 /* Find a default architecture. */
739 if (info.bfd_arch_info == NULL
740 && default_bfd_arch != NULL)
741 info.bfd_arch_info = default_bfd_arch;
742 if (info.bfd_arch_info == NULL)
743 {
744 /* Choose the architecture by taking the first one
745 alphabetically. */
746 const char *chosen = arches[0];
747 const char **arch;
748 for (arch = arches; *arch != NULL; arch++)
749 {
750 if (strcmp (*arch, chosen) < 0)
751 chosen = *arch;
752 }
753 if (chosen == NULL)
754 internal_error (__FILE__, __LINE__,
755 "initialize_current_architecture: No arch");
756 info.bfd_arch_info = bfd_scan_arch (chosen);
757 if (info.bfd_arch_info == NULL)
758 internal_error (__FILE__, __LINE__,
759 "initialize_current_architecture: Arch not found");
760 }
761
762 /* Take several guesses at a byte order. */
763 if (info.byte_order == BFD_ENDIAN_UNKNOWN
764 && default_bfd_vec != NULL)
765 {
766 /* Extract BFD's default vector's byte order. */
767 switch (default_bfd_vec->byteorder)
768 {
769 case BFD_ENDIAN_BIG:
770 info.byte_order = BFD_ENDIAN_BIG;
771 break;
772 case BFD_ENDIAN_LITTLE:
773 info.byte_order = BFD_ENDIAN_LITTLE;
774 break;
775 default:
776 break;
777 }
778 }
779 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
780 {
781 /* look for ``*el-*'' in the target name. */
782 const char *chp;
783 chp = strchr (target_name, '-');
784 if (chp != NULL
785 && chp - 2 >= target_name
786 && strncmp (chp - 2, "el", 2) == 0)
787 info.byte_order = BFD_ENDIAN_LITTLE;
788 }
789 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
790 {
791 /* Wire it to big-endian!!! */
792 info.byte_order = BFD_ENDIAN_BIG;
793 }
794
795 if (GDB_MULTI_ARCH)
796 {
797 if (! gdbarch_update_p (info))
798 {
799 internal_error (__FILE__, __LINE__,
800 "initialize_current_architecture: Selection of initial architecture failed");
801 }
802 }
803 else
804 {
805 /* If the multi-arch logic comes up with a byte-order (from BFD)
806 use it for the non-multi-arch case. */
807 if (info.byte_order != BFD_ENDIAN_UNKNOWN)
808 target_byte_order = info.byte_order;
809 initialize_non_multiarch ();
810 }
811
812 /* Create the ``set architecture'' command appending ``auto'' to the
813 list of architectures. */
814 {
815 struct cmd_list_element *c;
816 /* Append ``auto''. */
817 int nr;
818 for (nr = 0; arches[nr] != NULL; nr++);
819 arches = xrealloc (arches, sizeof (char*) * (nr + 2));
820 arches[nr + 0] = "auto";
821 arches[nr + 1] = NULL;
822 /* FIXME: add_set_enum_cmd() uses an array of ``char *'' instead
823 of ``const char *''. We just happen to know that the casts are
824 safe. */
825 c = add_set_enum_cmd ("architecture", class_support,
826 arches, &set_architecture_string,
827 "Set architecture of target.",
828 &setlist);
829 set_cmd_sfunc (c, set_architecture);
830 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
831 /* Don't use set_from_show - need to print both auto/manual and
832 current setting. */
833 add_cmd ("architecture", class_support, show_architecture,
834 "Show the current target architecture", &showlist);
835 }
836 }
837
838
839 /* Initialize a gdbarch info to values that will be automatically
840 overridden. Note: Originally, this ``struct info'' was initialized
841 using memset(0). Unfortunatly, that ran into problems, namely
842 BFD_ENDIAN_BIG is zero. An explicit initialization function that
843 can explicitly set each field to a well defined value is used. */
844
845 void
846 gdbarch_info_init (struct gdbarch_info *info)
847 {
848 memset (info, 0, sizeof (struct gdbarch_info));
849 info->byte_order = BFD_ENDIAN_UNKNOWN;
850 }
851
852 /* */
853
854 extern initialize_file_ftype _initialize_gdbarch_utils;
855
856 void
857 _initialize_gdbarch_utils (void)
858 {
859 struct cmd_list_element *c;
860 c = add_set_enum_cmd ("endian", class_support,
861 endian_enum, &set_endian_string,
862 "Set endianness of target.",
863 &setlist);
864 set_cmd_sfunc (c, set_endian);
865 /* Don't use set_from_show - need to print both auto/manual and
866 current setting. */
867 add_cmd ("endian", class_support, show_endian,
868 "Show the current byte-order", &showlist);
869 }
This page took 0.220745 seconds and 4 git commands to generate.