*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / arch-utils.c
1 /* Dynamic architecture support for GDB, the GNU debugger.
2
3 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation,
4 Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24
25 #include "arch-utils.h"
26 #include "buildsym.h"
27 #include "gdbcmd.h"
28 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
29 #include "gdb_string.h"
30 #include "regcache.h"
31 #include "gdb_assert.h"
32 #include "sim-regno.h"
33
34 #include "version.h"
35
36 #include "floatformat.h"
37
38 /* Implementation of extract return value that grubs around in the
39 register cache. */
40 void
41 legacy_extract_return_value (struct type *type, struct regcache *regcache,
42 void *valbuf)
43 {
44 char *registers = deprecated_grub_regcache_for_registers (regcache);
45 bfd_byte *buf = valbuf;
46 DEPRECATED_EXTRACT_RETURN_VALUE (type, registers, buf); /* OK */
47 }
48
49 /* Implementation of store return value that grubs the register cache.
50 Takes a local copy of the buffer to avoid const problems. */
51 void
52 legacy_store_return_value (struct type *type, struct regcache *regcache,
53 const void *buf)
54 {
55 bfd_byte *b = alloca (TYPE_LENGTH (type));
56 gdb_assert (regcache == current_regcache);
57 memcpy (b, buf, TYPE_LENGTH (type));
58 DEPRECATED_STORE_RETURN_VALUE (type, b);
59 }
60
61
62 int
63 always_use_struct_convention (int gcc_p, struct type *value_type)
64 {
65 return 1;
66 }
67
68
69 int
70 legacy_register_sim_regno (int regnum)
71 {
72 /* Only makes sense to supply raw registers. */
73 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
74 /* NOTE: cagney/2002-05-13: The old code did it this way and it is
75 suspected that some GDB/SIM combinations may rely on this
76 behavour. The default should be one2one_register_sim_regno
77 (below). */
78 if (REGISTER_NAME (regnum) != NULL
79 && REGISTER_NAME (regnum)[0] != '\0')
80 return regnum;
81 else
82 return LEGACY_SIM_REGNO_IGNORE;
83 }
84
85 int
86 generic_frameless_function_invocation_not (struct frame_info *fi)
87 {
88 return 0;
89 }
90
91 int
92 generic_return_value_on_stack_not (struct type *type)
93 {
94 return 0;
95 }
96
97 CORE_ADDR
98 generic_skip_trampoline_code (CORE_ADDR pc)
99 {
100 return 0;
101 }
102
103 int
104 generic_in_solib_call_trampoline (CORE_ADDR pc, char *name)
105 {
106 return 0;
107 }
108
109 int
110 generic_in_solib_return_trampoline (CORE_ADDR pc, char *name)
111 {
112 return 0;
113 }
114
115 int
116 generic_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
117 {
118 return 0;
119 }
120
121 #if defined (CALL_DUMMY)
122 LONGEST legacy_call_dummy_words[] = CALL_DUMMY;
123 #else
124 LONGEST legacy_call_dummy_words[1];
125 #endif
126 int legacy_sizeof_call_dummy_words = sizeof (legacy_call_dummy_words);
127
128 void
129 generic_remote_translate_xfer_address (struct gdbarch *gdbarch,
130 struct regcache *regcache,
131 CORE_ADDR gdb_addr, int gdb_len,
132 CORE_ADDR * rem_addr, int *rem_len)
133 {
134 *rem_addr = gdb_addr;
135 *rem_len = gdb_len;
136 }
137
138 int
139 generic_prologue_frameless_p (CORE_ADDR ip)
140 {
141 return ip == SKIP_PROLOGUE (ip);
142 }
143
144 /* Helper functions for INNER_THAN */
145
146 int
147 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
148 {
149 return (lhs < rhs);
150 }
151
152 int
153 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
154 {
155 return (lhs > rhs);
156 }
157
158
159 /* Helper functions for TARGET_{FLOAT,DOUBLE}_FORMAT */
160
161 const struct floatformat *
162 default_float_format (struct gdbarch *gdbarch)
163 {
164 int byte_order = gdbarch_byte_order (gdbarch);
165 switch (byte_order)
166 {
167 case BFD_ENDIAN_BIG:
168 return &floatformat_ieee_single_big;
169 case BFD_ENDIAN_LITTLE:
170 return &floatformat_ieee_single_little;
171 default:
172 internal_error (__FILE__, __LINE__,
173 "default_float_format: bad byte order");
174 }
175 }
176
177
178 const struct floatformat *
179 default_double_format (struct gdbarch *gdbarch)
180 {
181 int byte_order = gdbarch_byte_order (gdbarch);
182 switch (byte_order)
183 {
184 case BFD_ENDIAN_BIG:
185 return &floatformat_ieee_double_big;
186 case BFD_ENDIAN_LITTLE:
187 return &floatformat_ieee_double_little;
188 default:
189 internal_error (__FILE__, __LINE__,
190 "default_double_format: bad byte order");
191 }
192 }
193
194 /* Misc helper functions for targets. */
195
196 int
197 deprecated_register_convertible_not (int num)
198 {
199 return 0;
200 }
201
202
203 CORE_ADDR
204 core_addr_identity (CORE_ADDR addr)
205 {
206 return addr;
207 }
208
209 CORE_ADDR
210 convert_from_func_ptr_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr,
211 struct target_ops *targ)
212 {
213 return addr;
214 }
215
216 int
217 no_op_reg_to_regnum (int reg)
218 {
219 return reg;
220 }
221
222 CORE_ADDR
223 deprecated_init_frame_pc_default (int fromleaf, struct frame_info *prev)
224 {
225 if (fromleaf && DEPRECATED_SAVED_PC_AFTER_CALL_P ())
226 return DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev));
227 else if (get_next_frame (prev) != NULL)
228 return DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev));
229 else
230 return read_pc ();
231 }
232
233 void
234 default_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
235 {
236 return;
237 }
238
239 void
240 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
241 {
242 return;
243 }
244
245 int
246 cannot_register_not (int regnum)
247 {
248 return 0;
249 }
250
251 /* Legacy version of target_virtual_frame_pointer(). Assumes that
252 there is an DEPRECATED_FP_REGNUM and that it is the same, cooked or
253 raw. */
254
255 void
256 legacy_virtual_frame_pointer (CORE_ADDR pc,
257 int *frame_regnum,
258 LONGEST *frame_offset)
259 {
260 /* FIXME: cagney/2002-09-13: This code is used when identifying the
261 frame pointer of the current PC. It is assuming that a single
262 register and an offset can determine this. I think it should
263 instead generate a byte code expression as that would work better
264 with things like Dwarf2's CFI. */
265 if (DEPRECATED_FP_REGNUM >= 0 && DEPRECATED_FP_REGNUM < NUM_REGS)
266 *frame_regnum = DEPRECATED_FP_REGNUM;
267 else if (SP_REGNUM >= 0 && SP_REGNUM < NUM_REGS)
268 *frame_regnum = SP_REGNUM;
269 else
270 /* Should this be an internal error? I guess so, it is reflecting
271 an architectural limitation in the current design. */
272 internal_error (__FILE__, __LINE__, "No virtual frame pointer available");
273 *frame_offset = 0;
274 }
275
276 /* Assume the world is sane, every register's virtual and real size
277 is identical. */
278
279 int
280 generic_register_size (int regnum)
281 {
282 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
283 if (gdbarch_register_type_p (current_gdbarch))
284 return TYPE_LENGTH (gdbarch_register_type (current_gdbarch, regnum));
285 else
286 /* FIXME: cagney/2003-03-01: Once all architectures implement
287 gdbarch_register_type(), this entire function can go away. It
288 is made obsolete by register_size(). */
289 return TYPE_LENGTH (DEPRECATED_REGISTER_VIRTUAL_TYPE (regnum)); /* OK */
290 }
291
292 /* Assume all registers are adjacent. */
293
294 int
295 generic_register_byte (int regnum)
296 {
297 int byte;
298 int i;
299 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
300 byte = 0;
301 for (i = 0; i < regnum; i++)
302 {
303 byte += generic_register_size (i);
304 }
305 return byte;
306 }
307
308 \f
309 int
310 legacy_pc_in_sigtramp (CORE_ADDR pc, char *name)
311 {
312 #if !defined (IN_SIGTRAMP)
313 if (SIGTRAMP_START_P ())
314 return (pc) >= SIGTRAMP_START (pc) && (pc) < SIGTRAMP_END (pc);
315 else
316 return name && strcmp ("_sigtramp", name) == 0;
317 #else
318 return IN_SIGTRAMP (pc, name);
319 #endif
320 }
321
322 int
323 legacy_convert_register_p (int regnum, struct type *type)
324 {
325 return DEPRECATED_REGISTER_CONVERTIBLE (regnum);
326 }
327
328 void
329 legacy_register_to_value (struct frame_info *frame, int regnum,
330 struct type *type, void *to)
331 {
332 char from[MAX_REGISTER_SIZE];
333 get_frame_register (frame, regnum, from);
334 DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL (regnum, type, from, to);
335 }
336
337 void
338 legacy_value_to_register (struct frame_info *frame, int regnum,
339 struct type *type, const void *tmp)
340 {
341 char to[MAX_REGISTER_SIZE];
342 char *from = alloca (TYPE_LENGTH (type));
343 memcpy (from, from, TYPE_LENGTH (type));
344 DEPRECATED_REGISTER_CONVERT_TO_RAW (type, regnum, from, to);
345 put_frame_register (frame, regnum, to);
346 }
347
348 int
349 default_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
350 {
351 if (DEPRECATED_REG_STRUCT_HAS_ADDR_P ()
352 && DEPRECATED_REG_STRUCT_HAS_ADDR (processing_gcc_compilation, type))
353 {
354 CHECK_TYPEDEF (type);
355
356 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
357 || TYPE_CODE (type) == TYPE_CODE_UNION
358 || TYPE_CODE (type) == TYPE_CODE_SET
359 || TYPE_CODE (type) == TYPE_CODE_BITSTRING);
360 }
361
362 return 0;
363 }
364
365 \f
366 /* Functions to manipulate the endianness of the target. */
367
368 /* ``target_byte_order'' is only used when non- multi-arch.
369 Multi-arch targets obtain the current byte order using the
370 TARGET_BYTE_ORDER gdbarch method.
371
372 The choice of initial value is entirely arbitrary. During startup,
373 the function initialize_current_architecture() updates this value
374 based on default byte-order information extracted from BFD. */
375 int target_byte_order = BFD_ENDIAN_BIG;
376 int target_byte_order_auto = 1;
377
378 static const char endian_big[] = "big";
379 static const char endian_little[] = "little";
380 static const char endian_auto[] = "auto";
381 static const char *endian_enum[] =
382 {
383 endian_big,
384 endian_little,
385 endian_auto,
386 NULL,
387 };
388 static const char *set_endian_string;
389
390 /* Called by ``show endian''. */
391
392 static void
393 show_endian (char *args, int from_tty)
394 {
395 if (TARGET_BYTE_ORDER_AUTO)
396 printf_unfiltered ("The target endianness is set automatically (currently %s endian)\n",
397 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
398 else
399 printf_unfiltered ("The target is assumed to be %s endian\n",
400 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
401 }
402
403 static void
404 set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
405 {
406 if (set_endian_string == endian_auto)
407 {
408 target_byte_order_auto = 1;
409 }
410 else if (set_endian_string == endian_little)
411 {
412 struct gdbarch_info info;
413 target_byte_order_auto = 0;
414 gdbarch_info_init (&info);
415 info.byte_order = BFD_ENDIAN_LITTLE;
416 if (! gdbarch_update_p (info))
417 printf_unfiltered ("Little endian target not supported by GDB\n");
418 }
419 else if (set_endian_string == endian_big)
420 {
421 struct gdbarch_info info;
422 target_byte_order_auto = 0;
423 gdbarch_info_init (&info);
424 info.byte_order = BFD_ENDIAN_BIG;
425 if (! gdbarch_update_p (info))
426 printf_unfiltered ("Big endian target not supported by GDB\n");
427 }
428 else
429 internal_error (__FILE__, __LINE__,
430 "set_endian: bad value");
431 show_endian (NULL, from_tty);
432 }
433
434 /* Functions to manipulate the architecture of the target */
435
436 enum set_arch { set_arch_auto, set_arch_manual };
437
438 int target_architecture_auto = 1;
439
440 const char *set_architecture_string;
441
442 /* Called if the user enters ``show architecture'' without an
443 argument. */
444
445 static void
446 show_architecture (char *args, int from_tty)
447 {
448 const char *arch;
449 arch = TARGET_ARCHITECTURE->printable_name;
450 if (target_architecture_auto)
451 printf_filtered ("The target architecture is set automatically (currently %s)\n", arch);
452 else
453 printf_filtered ("The target architecture is assumed to be %s\n", arch);
454 }
455
456
457 /* Called if the user enters ``set architecture'' with or without an
458 argument. */
459
460 static void
461 set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
462 {
463 if (strcmp (set_architecture_string, "auto") == 0)
464 {
465 target_architecture_auto = 1;
466 }
467 else
468 {
469 struct gdbarch_info info;
470 gdbarch_info_init (&info);
471 info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
472 if (info.bfd_arch_info == NULL)
473 internal_error (__FILE__, __LINE__,
474 "set_architecture: bfd_scan_arch failed");
475 if (gdbarch_update_p (info))
476 target_architecture_auto = 0;
477 else
478 printf_unfiltered ("Architecture `%s' not recognized.\n",
479 set_architecture_string);
480 }
481 show_architecture (NULL, from_tty);
482 }
483
484 /* FIXME: kettenis/20031124: Of the functions that follow, only
485 gdbarch_from_bfd is supposed to survive. The others will
486 dissappear since in the future GDB will (hopefully) be truly
487 multi-arch. However, for now we're still stuck with the concept of
488 a single active architecture. */
489
490 /* Make GDBARCH the currently selected architecture. */
491
492 static void
493 deprecated_select_gdbarch_hack (struct gdbarch *gdbarch)
494 {
495 struct gdbarch_info info;
496
497 /* FIXME: kettenis/20031024: The only way to select a specific
498 architecture is to clone its `struct gdbarch_info', and update
499 according to that copy. This is gross, but significant work will
500 need to be done before we can take a more sane approach. */
501 gdbarch_info_init (&info);
502 info.bfd_arch_info = gdbarch_bfd_arch_info (gdbarch);
503 info.byte_order = gdbarch_byte_order (gdbarch);
504 info.osabi = gdbarch_osabi (gdbarch);
505 gdbarch_update_p (info);
506 gdb_assert (gdbarch == current_gdbarch);
507 }
508
509 /* Return the architecture for ABFD. If no suitable architecture
510 could be find, return NULL. */
511
512 struct gdbarch *
513 gdbarch_from_bfd (bfd *abfd)
514 {
515 struct gdbarch *old_gdbarch = current_gdbarch;
516 struct gdbarch *new_gdbarch;
517 struct gdbarch_info info;
518
519 /* FIXME: kettenis/20031024: The only way to find the architecture
520 for a certain BFD is by doing an architecture update. This
521 activates the architecture, so we need to reactivate the old
522 architecture. This is gross, but significant work will need to
523 be done before we can take a more sane approach. */
524 gdbarch_info_init (&info);
525 info.abfd = abfd;
526 if (! gdbarch_update_p (info))
527 return NULL;
528
529 new_gdbarch = current_gdbarch;
530 deprecated_select_gdbarch_hack (old_gdbarch);
531 return new_gdbarch;
532 }
533
534 /* Set the dynamic target-system-dependent parameters (architecture,
535 byte-order) using information found in the BFD */
536
537 void
538 set_gdbarch_from_file (bfd *abfd)
539 {
540 struct gdbarch *gdbarch;
541
542 gdbarch = gdbarch_from_bfd (abfd);
543 if (gdbarch == NULL)
544 error ("Architecture of file not recognized.\n");
545 deprecated_select_gdbarch_hack (gdbarch);
546 }
547
548 /* Initialize the current architecture. Update the ``set
549 architecture'' command so that it specifies a list of valid
550 architectures. */
551
552 #ifdef DEFAULT_BFD_ARCH
553 extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
554 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
555 #else
556 static const bfd_arch_info_type *default_bfd_arch;
557 #endif
558
559 #ifdef DEFAULT_BFD_VEC
560 extern const bfd_target DEFAULT_BFD_VEC;
561 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
562 #else
563 static const bfd_target *default_bfd_vec;
564 #endif
565
566 void
567 initialize_current_architecture (void)
568 {
569 const char **arches = gdbarch_printable_names ();
570
571 /* determine a default architecture and byte order. */
572 struct gdbarch_info info;
573 gdbarch_info_init (&info);
574
575 /* Find a default architecture. */
576 if (info.bfd_arch_info == NULL
577 && default_bfd_arch != NULL)
578 info.bfd_arch_info = default_bfd_arch;
579 if (info.bfd_arch_info == NULL)
580 {
581 /* Choose the architecture by taking the first one
582 alphabetically. */
583 const char *chosen = arches[0];
584 const char **arch;
585 for (arch = arches; *arch != NULL; arch++)
586 {
587 if (strcmp (*arch, chosen) < 0)
588 chosen = *arch;
589 }
590 if (chosen == NULL)
591 internal_error (__FILE__, __LINE__,
592 "initialize_current_architecture: No arch");
593 info.bfd_arch_info = bfd_scan_arch (chosen);
594 if (info.bfd_arch_info == NULL)
595 internal_error (__FILE__, __LINE__,
596 "initialize_current_architecture: Arch not found");
597 }
598
599 /* Take several guesses at a byte order. */
600 if (info.byte_order == BFD_ENDIAN_UNKNOWN
601 && default_bfd_vec != NULL)
602 {
603 /* Extract BFD's default vector's byte order. */
604 switch (default_bfd_vec->byteorder)
605 {
606 case BFD_ENDIAN_BIG:
607 info.byte_order = BFD_ENDIAN_BIG;
608 break;
609 case BFD_ENDIAN_LITTLE:
610 info.byte_order = BFD_ENDIAN_LITTLE;
611 break;
612 default:
613 break;
614 }
615 }
616 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
617 {
618 /* look for ``*el-*'' in the target name. */
619 const char *chp;
620 chp = strchr (target_name, '-');
621 if (chp != NULL
622 && chp - 2 >= target_name
623 && strncmp (chp - 2, "el", 2) == 0)
624 info.byte_order = BFD_ENDIAN_LITTLE;
625 }
626 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
627 {
628 /* Wire it to big-endian!!! */
629 info.byte_order = BFD_ENDIAN_BIG;
630 }
631
632 if (! gdbarch_update_p (info))
633 internal_error (__FILE__, __LINE__,
634 "initialize_current_architecture: Selection of initial architecture failed");
635
636 /* Create the ``set architecture'' command appending ``auto'' to the
637 list of architectures. */
638 {
639 struct cmd_list_element *c;
640 /* Append ``auto''. */
641 int nr;
642 for (nr = 0; arches[nr] != NULL; nr++);
643 arches = xrealloc (arches, sizeof (char*) * (nr + 2));
644 arches[nr + 0] = "auto";
645 arches[nr + 1] = NULL;
646 /* FIXME: add_set_enum_cmd() uses an array of ``char *'' instead
647 of ``const char *''. We just happen to know that the casts are
648 safe. */
649 c = add_set_enum_cmd ("architecture", class_support,
650 arches, &set_architecture_string,
651 "Set architecture of target.",
652 &setlist);
653 set_cmd_sfunc (c, set_architecture);
654 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
655 /* Don't use set_from_show - need to print both auto/manual and
656 current setting. */
657 add_cmd ("architecture", class_support, show_architecture,
658 "Show the current target architecture", &showlist);
659 }
660 }
661
662
663 /* Initialize a gdbarch info to values that will be automatically
664 overridden. Note: Originally, this ``struct info'' was initialized
665 using memset(0). Unfortunately, that ran into problems, namely
666 BFD_ENDIAN_BIG is zero. An explicit initialization function that
667 can explicitly set each field to a well defined value is used. */
668
669 void
670 gdbarch_info_init (struct gdbarch_info *info)
671 {
672 memset (info, 0, sizeof (struct gdbarch_info));
673 info->byte_order = BFD_ENDIAN_UNKNOWN;
674 info->osabi = GDB_OSABI_UNINITIALIZED;
675 }
676
677 /* */
678
679 extern initialize_file_ftype _initialize_gdbarch_utils; /* -Wmissing-prototypes */
680
681 void
682 _initialize_gdbarch_utils (void)
683 {
684 struct cmd_list_element *c;
685 c = add_set_enum_cmd ("endian", class_support,
686 endian_enum, &set_endian_string,
687 "Set endianness of target.",
688 &setlist);
689 set_cmd_sfunc (c, set_endian);
690 /* Don't use set_from_show - need to print both auto/manual and
691 current setting. */
692 add_cmd ("endian", class_support, show_endian,
693 "Show the current byte-order", &showlist);
694 }
This page took 0.04352 seconds and 4 git commands to generate.