2003-04-09 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / arch-utils.c
1 /* Dynamic architecture support for GDB, the GNU debugger.
2
3 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation,
4 Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24
25 #if GDB_MULTI_ARCH
26 #include "arch-utils.h"
27 #include "gdbcmd.h"
28 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
29 #else
30 /* Just include everything in sight so that the every old definition
31 of macro is visible. */
32 #include "symtab.h"
33 #include "frame.h"
34 #include "inferior.h"
35 #include "breakpoint.h"
36 #include "gdb_wait.h"
37 #include "gdbcore.h"
38 #include "gdbcmd.h"
39 #include "target.h"
40 #include "annotate.h"
41 #endif
42 #include "gdb_string.h"
43 #include "regcache.h"
44 #include "gdb_assert.h"
45 #include "sim-regno.h"
46
47 #include "version.h"
48
49 #include "floatformat.h"
50
51 /* Use the program counter to determine the contents and size
52 of a breakpoint instruction. If no target-dependent macro
53 BREAKPOINT_FROM_PC has been defined to implement this function,
54 assume that the breakpoint doesn't depend on the PC, and
55 use the values of the BIG_BREAKPOINT and LITTLE_BREAKPOINT macros.
56 Return a pointer to a string of bytes that encode a breakpoint
57 instruction, stores the length of the string to *lenptr,
58 and optionally adjust the pc to point to the correct memory location
59 for inserting the breakpoint. */
60
61 const unsigned char *
62 legacy_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
63 {
64 /* {BIG_,LITTLE_}BREAKPOINT is the sequence of bytes we insert for a
65 breakpoint. On some machines, breakpoints are handled by the
66 target environment and we don't have to worry about them here. */
67 #ifdef BIG_BREAKPOINT
68 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
69 {
70 static unsigned char big_break_insn[] = BIG_BREAKPOINT;
71 *lenptr = sizeof (big_break_insn);
72 return big_break_insn;
73 }
74 #endif
75 #ifdef LITTLE_BREAKPOINT
76 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
77 {
78 static unsigned char little_break_insn[] = LITTLE_BREAKPOINT;
79 *lenptr = sizeof (little_break_insn);
80 return little_break_insn;
81 }
82 #endif
83 #ifdef BREAKPOINT
84 {
85 static unsigned char break_insn[] = BREAKPOINT;
86 *lenptr = sizeof (break_insn);
87 return break_insn;
88 }
89 #endif
90 *lenptr = 0;
91 return NULL;
92 }
93
94 /* Implementation of extract return value that grubs around in the
95 register cache. */
96 void
97 legacy_extract_return_value (struct type *type, struct regcache *regcache,
98 void *valbuf)
99 {
100 char *registers = deprecated_grub_regcache_for_registers (regcache);
101 bfd_byte *buf = valbuf;
102 DEPRECATED_EXTRACT_RETURN_VALUE (type, registers, buf); /* OK */
103 }
104
105 /* Implementation of store return value that grubs the register cache.
106 Takes a local copy of the buffer to avoid const problems. */
107 void
108 legacy_store_return_value (struct type *type, struct regcache *regcache,
109 const void *buf)
110 {
111 bfd_byte *b = alloca (TYPE_LENGTH (type));
112 gdb_assert (regcache == current_regcache);
113 memcpy (b, buf, TYPE_LENGTH (type));
114 DEPRECATED_STORE_RETURN_VALUE (type, b);
115 }
116
117
118 int
119 legacy_register_sim_regno (int regnum)
120 {
121 /* Only makes sense to supply raw registers. */
122 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
123 /* NOTE: cagney/2002-05-13: The old code did it this way and it is
124 suspected that some GDB/SIM combinations may rely on this
125 behavour. The default should be one2one_register_sim_regno
126 (below). */
127 if (REGISTER_NAME (regnum) != NULL
128 && REGISTER_NAME (regnum)[0] != '\0')
129 return regnum;
130 else
131 return LEGACY_SIM_REGNO_IGNORE;
132 }
133
134 int
135 generic_frameless_function_invocation_not (struct frame_info *fi)
136 {
137 return 0;
138 }
139
140 int
141 generic_return_value_on_stack_not (struct type *type)
142 {
143 return 0;
144 }
145
146 CORE_ADDR
147 generic_skip_trampoline_code (CORE_ADDR pc)
148 {
149 return 0;
150 }
151
152 int
153 generic_in_solib_call_trampoline (CORE_ADDR pc, char *name)
154 {
155 return 0;
156 }
157
158 int
159 generic_in_solib_return_trampoline (CORE_ADDR pc, char *name)
160 {
161 return 0;
162 }
163
164 int
165 generic_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
166 {
167 return 0;
168 }
169
170 const char *
171 legacy_register_name (int i)
172 {
173 #ifdef REGISTER_NAMES
174 static char *names[] = REGISTER_NAMES;
175 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
176 return NULL;
177 else
178 return names[i];
179 #else
180 internal_error (__FILE__, __LINE__,
181 "legacy_register_name: called.");
182 return NULL;
183 #endif
184 }
185
186 #if defined (CALL_DUMMY)
187 LONGEST legacy_call_dummy_words[] = CALL_DUMMY;
188 #else
189 LONGEST legacy_call_dummy_words[1];
190 #endif
191 int legacy_sizeof_call_dummy_words = sizeof (legacy_call_dummy_words);
192
193 void
194 generic_remote_translate_xfer_address (CORE_ADDR gdb_addr, int gdb_len,
195 CORE_ADDR * rem_addr, int *rem_len)
196 {
197 *rem_addr = gdb_addr;
198 *rem_len = gdb_len;
199 }
200
201 int
202 generic_prologue_frameless_p (CORE_ADDR ip)
203 {
204 return ip == SKIP_PROLOGUE (ip);
205 }
206
207 /* New/multi-arched targets should use the correct gdbarch field
208 instead of using this global pointer. */
209 int
210 legacy_print_insn (bfd_vma vma, disassemble_info *info)
211 {
212 return (*tm_print_insn) (vma, info);
213 }
214
215 /* Helper functions for INNER_THAN */
216
217 int
218 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
219 {
220 return (lhs < rhs);
221 }
222
223 int
224 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
225 {
226 return (lhs > rhs);
227 }
228
229
230 /* Helper functions for TARGET_{FLOAT,DOUBLE}_FORMAT */
231
232 const struct floatformat *
233 default_float_format (struct gdbarch *gdbarch)
234 {
235 #if GDB_MULTI_ARCH
236 int byte_order = gdbarch_byte_order (gdbarch);
237 #else
238 int byte_order = TARGET_BYTE_ORDER;
239 #endif
240 switch (byte_order)
241 {
242 case BFD_ENDIAN_BIG:
243 return &floatformat_ieee_single_big;
244 case BFD_ENDIAN_LITTLE:
245 return &floatformat_ieee_single_little;
246 default:
247 internal_error (__FILE__, __LINE__,
248 "default_float_format: bad byte order");
249 }
250 }
251
252
253 const struct floatformat *
254 default_double_format (struct gdbarch *gdbarch)
255 {
256 #if GDB_MULTI_ARCH
257 int byte_order = gdbarch_byte_order (gdbarch);
258 #else
259 int byte_order = TARGET_BYTE_ORDER;
260 #endif
261 switch (byte_order)
262 {
263 case BFD_ENDIAN_BIG:
264 return &floatformat_ieee_double_big;
265 case BFD_ENDIAN_LITTLE:
266 return &floatformat_ieee_double_little;
267 default:
268 internal_error (__FILE__, __LINE__,
269 "default_double_format: bad byte order");
270 }
271 }
272
273 /* Misc helper functions for targets. */
274
275 int
276 frame_num_args_unknown (struct frame_info *fi)
277 {
278 return -1;
279 }
280
281
282 int
283 generic_register_convertible_not (int num)
284 {
285 return 0;
286 }
287
288
289 /* Under some ABI's that specify the `struct convention' for returning
290 structures by value, by the time we've returned from the function,
291 the return value is sitting there in the caller's buffer, but GDB
292 has no way to find the address of that buffer.
293
294 On such architectures, use this function as your
295 extract_struct_value_address method. When asked to a struct
296 returned by value in this fashion, GDB will print a nice error
297 message, instead of garbage. */
298 CORE_ADDR
299 generic_cannot_extract_struct_value_address (char *dummy)
300 {
301 return 0;
302 }
303
304 CORE_ADDR
305 core_addr_identity (CORE_ADDR addr)
306 {
307 return addr;
308 }
309
310 int
311 no_op_reg_to_regnum (int reg)
312 {
313 return reg;
314 }
315
316 /* Default prepare_to_procced(). */
317 int
318 default_prepare_to_proceed (int select_it)
319 {
320 return 0;
321 }
322
323 /* Generic prepare_to_proceed(). This one should be suitable for most
324 targets that support threads. */
325 int
326 generic_prepare_to_proceed (int select_it)
327 {
328 ptid_t wait_ptid;
329 struct target_waitstatus wait_status;
330
331 /* Get the last target status returned by target_wait(). */
332 get_last_target_status (&wait_ptid, &wait_status);
333
334 /* Make sure we were stopped either at a breakpoint, or because
335 of a Ctrl-C. */
336 if (wait_status.kind != TARGET_WAITKIND_STOPPED
337 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
338 wait_status.value.sig != TARGET_SIGNAL_INT))
339 {
340 return 0;
341 }
342
343 if (!ptid_equal (wait_ptid, minus_one_ptid)
344 && !ptid_equal (inferior_ptid, wait_ptid))
345 {
346 /* Switched over from WAIT_PID. */
347 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
348
349 if (wait_pc != read_pc ())
350 {
351 if (select_it)
352 {
353 /* Switch back to WAIT_PID thread. */
354 inferior_ptid = wait_ptid;
355
356 /* FIXME: This stuff came from switch_to_thread() in
357 thread.c (which should probably be a public function). */
358 flush_cached_frames ();
359 registers_changed ();
360 stop_pc = wait_pc;
361 select_frame (get_current_frame ());
362 }
363 /* We return 1 to indicate that there is a breakpoint here,
364 so we need to step over it before continuing to avoid
365 hitting it straight away. */
366 if (breakpoint_here_p (wait_pc))
367 {
368 return 1;
369 }
370 }
371 }
372 return 0;
373
374 }
375
376 CORE_ADDR
377 init_frame_pc_noop (int fromleaf, struct frame_info *prev)
378 {
379 /* Do nothing, implies return the same PC value. */
380 return get_frame_pc (prev);
381 }
382
383 CORE_ADDR
384 init_frame_pc_default (int fromleaf, struct frame_info *prev)
385 {
386 if (fromleaf && SAVED_PC_AFTER_CALL_P ())
387 return SAVED_PC_AFTER_CALL (get_next_frame (prev));
388 else if (get_next_frame (prev) != NULL)
389 return DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev));
390 else
391 return read_pc ();
392 }
393
394 void
395 default_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
396 {
397 return;
398 }
399
400 void
401 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
402 {
403 return;
404 }
405
406 int
407 cannot_register_not (int regnum)
408 {
409 return 0;
410 }
411
412 /* Legacy version of target_virtual_frame_pointer(). Assumes that
413 there is an FP_REGNUM and that it is the same, cooked or raw. */
414
415 void
416 legacy_virtual_frame_pointer (CORE_ADDR pc,
417 int *frame_regnum,
418 LONGEST *frame_offset)
419 {
420 /* FIXME: cagney/2002-09-13: This code is used when identifying the
421 frame pointer of the current PC. It is assuming that a single
422 register and an offset can determine this. I think it should
423 instead generate a byte code expression as that would work better
424 with things like Dwarf2's CFI. */
425 if (FP_REGNUM >= 0 && FP_REGNUM < NUM_REGS)
426 *frame_regnum = FP_REGNUM;
427 else if (SP_REGNUM >= 0 && SP_REGNUM < NUM_REGS)
428 *frame_regnum = SP_REGNUM;
429 else
430 /* Should this be an internal error? I guess so, it is reflecting
431 an architectural limitation in the current design. */
432 internal_error (__FILE__, __LINE__, "No virtual frame pointer available");
433 *frame_offset = 0;
434 }
435
436 /* Assume the world is sane, every register's virtual and real size
437 is identical. */
438
439 int
440 generic_register_size (int regnum)
441 {
442 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
443 if (gdbarch_register_type_p (current_gdbarch))
444 return TYPE_LENGTH (gdbarch_register_type (current_gdbarch, regnum));
445 else
446 /* FIXME: cagney/2003-03-01: Once all architectures implement
447 gdbarch_register_type(), this entire function can go away. It
448 is made obsolete by register_size(). */
449 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum)); /* OK */
450 }
451
452 /* Assume all registers are adjacent. */
453
454 int
455 generic_register_byte (int regnum)
456 {
457 int byte;
458 int i;
459 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
460 byte = 0;
461 for (i = 0; i < regnum; i++)
462 {
463 byte += generic_register_size (i);
464 }
465 return byte;
466 }
467
468 \f
469 int
470 legacy_pc_in_sigtramp (CORE_ADDR pc, char *name)
471 {
472 #if !defined (IN_SIGTRAMP)
473 if (SIGTRAMP_START_P ())
474 return (pc) >= SIGTRAMP_START (pc) && (pc) < SIGTRAMP_END (pc);
475 else
476 return name && strcmp ("_sigtramp", name) == 0;
477 #else
478 return IN_SIGTRAMP (pc, name);
479 #endif
480 }
481
482 int
483 legacy_convert_register_p (int regnum)
484 {
485 return REGISTER_CONVERTIBLE (regnum);
486 }
487
488 void
489 legacy_register_to_value (int regnum, struct type *type,
490 char *from, char *to)
491 {
492 REGISTER_CONVERT_TO_VIRTUAL (regnum, type, from, to);
493 }
494
495 void
496 legacy_value_to_register (struct type *type, int regnum,
497 char *from, char *to)
498 {
499 REGISTER_CONVERT_TO_RAW (type, regnum, from, to);
500 }
501
502 \f
503 /* Functions to manipulate the endianness of the target. */
504
505 /* ``target_byte_order'' is only used when non- multi-arch.
506 Multi-arch targets obtain the current byte order using the
507 TARGET_BYTE_ORDER gdbarch method.
508
509 The choice of initial value is entirely arbitrary. During startup,
510 the function initialize_current_architecture() updates this value
511 based on default byte-order information extracted from BFD. */
512 int target_byte_order = BFD_ENDIAN_BIG;
513 int target_byte_order_auto = 1;
514
515 static const char endian_big[] = "big";
516 static const char endian_little[] = "little";
517 static const char endian_auto[] = "auto";
518 static const char *endian_enum[] =
519 {
520 endian_big,
521 endian_little,
522 endian_auto,
523 NULL,
524 };
525 static const char *set_endian_string;
526
527 /* Called by ``show endian''. */
528
529 static void
530 show_endian (char *args, int from_tty)
531 {
532 if (TARGET_BYTE_ORDER_AUTO)
533 printf_unfiltered ("The target endianness is set automatically (currently %s endian)\n",
534 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
535 else
536 printf_unfiltered ("The target is assumed to be %s endian\n",
537 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
538 }
539
540 static void
541 set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
542 {
543 if (set_endian_string == endian_auto)
544 {
545 target_byte_order_auto = 1;
546 }
547 else if (set_endian_string == endian_little)
548 {
549 target_byte_order_auto = 0;
550 if (GDB_MULTI_ARCH)
551 {
552 struct gdbarch_info info;
553 gdbarch_info_init (&info);
554 info.byte_order = BFD_ENDIAN_LITTLE;
555 if (! gdbarch_update_p (info))
556 {
557 printf_unfiltered ("Little endian target not supported by GDB\n");
558 }
559 }
560 else
561 {
562 target_byte_order = BFD_ENDIAN_LITTLE;
563 }
564 }
565 else if (set_endian_string == endian_big)
566 {
567 target_byte_order_auto = 0;
568 if (GDB_MULTI_ARCH)
569 {
570 struct gdbarch_info info;
571 gdbarch_info_init (&info);
572 info.byte_order = BFD_ENDIAN_BIG;
573 if (! gdbarch_update_p (info))
574 {
575 printf_unfiltered ("Big endian target not supported by GDB\n");
576 }
577 }
578 else
579 {
580 target_byte_order = BFD_ENDIAN_BIG;
581 }
582 }
583 else
584 internal_error (__FILE__, __LINE__,
585 "set_endian: bad value");
586 show_endian (NULL, from_tty);
587 }
588
589 /* Set the endianness from a BFD. */
590
591 static void
592 set_endian_from_file (bfd *abfd)
593 {
594 int want;
595 if (GDB_MULTI_ARCH)
596 internal_error (__FILE__, __LINE__,
597 "set_endian_from_file: not for multi-arch");
598 if (bfd_big_endian (abfd))
599 want = BFD_ENDIAN_BIG;
600 else
601 want = BFD_ENDIAN_LITTLE;
602 if (TARGET_BYTE_ORDER_AUTO)
603 target_byte_order = want;
604 else if (TARGET_BYTE_ORDER != want)
605 warning ("%s endian file does not match %s endian target.",
606 want == BFD_ENDIAN_BIG ? "big" : "little",
607 TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little");
608 }
609
610
611 /* Functions to manipulate the architecture of the target */
612
613 enum set_arch { set_arch_auto, set_arch_manual };
614
615 int target_architecture_auto = 1;
616
617 const char *set_architecture_string;
618
619 /* Old way of changing the current architecture. */
620
621 extern const struct bfd_arch_info bfd_default_arch_struct;
622 const struct bfd_arch_info *target_architecture = &bfd_default_arch_struct;
623 int (*target_architecture_hook) (const struct bfd_arch_info *ap);
624
625 static int
626 arch_ok (const struct bfd_arch_info *arch)
627 {
628 if (GDB_MULTI_ARCH)
629 internal_error (__FILE__, __LINE__,
630 "arch_ok: not multi-arched");
631 /* Should be performing the more basic check that the binary is
632 compatible with GDB. */
633 /* Check with the target that the architecture is valid. */
634 return (target_architecture_hook == NULL
635 || target_architecture_hook (arch));
636 }
637
638 static void
639 set_arch (const struct bfd_arch_info *arch,
640 enum set_arch type)
641 {
642 if (GDB_MULTI_ARCH)
643 internal_error (__FILE__, __LINE__,
644 "set_arch: not multi-arched");
645 switch (type)
646 {
647 case set_arch_auto:
648 if (!arch_ok (arch))
649 warning ("Target may not support %s architecture",
650 arch->printable_name);
651 target_architecture = arch;
652 break;
653 case set_arch_manual:
654 if (!arch_ok (arch))
655 {
656 printf_unfiltered ("Target does not support `%s' architecture.\n",
657 arch->printable_name);
658 }
659 else
660 {
661 target_architecture_auto = 0;
662 target_architecture = arch;
663 }
664 break;
665 }
666 if (gdbarch_debug)
667 gdbarch_dump (current_gdbarch, gdb_stdlog);
668 }
669
670 /* Set the architecture from arch/machine (deprecated) */
671
672 void
673 set_architecture_from_arch_mach (enum bfd_architecture arch,
674 unsigned long mach)
675 {
676 const struct bfd_arch_info *wanted = bfd_lookup_arch (arch, mach);
677 if (GDB_MULTI_ARCH)
678 internal_error (__FILE__, __LINE__,
679 "set_architecture_from_arch_mach: not multi-arched");
680 if (wanted != NULL)
681 set_arch (wanted, set_arch_manual);
682 else
683 internal_error (__FILE__, __LINE__,
684 "gdbarch: hardwired architecture/machine not recognized");
685 }
686
687 /* Set the architecture from a BFD (deprecated) */
688
689 static void
690 set_architecture_from_file (bfd *abfd)
691 {
692 const struct bfd_arch_info *wanted = bfd_get_arch_info (abfd);
693 if (GDB_MULTI_ARCH)
694 internal_error (__FILE__, __LINE__,
695 "set_architecture_from_file: not multi-arched");
696 if (target_architecture_auto)
697 {
698 set_arch (wanted, set_arch_auto);
699 }
700 else if (wanted != target_architecture)
701 {
702 warning ("%s architecture file may be incompatible with %s target.",
703 wanted->printable_name,
704 target_architecture->printable_name);
705 }
706 }
707
708
709 /* Called if the user enters ``show architecture'' without an
710 argument. */
711
712 static void
713 show_architecture (char *args, int from_tty)
714 {
715 const char *arch;
716 arch = TARGET_ARCHITECTURE->printable_name;
717 if (target_architecture_auto)
718 printf_filtered ("The target architecture is set automatically (currently %s)\n", arch);
719 else
720 printf_filtered ("The target architecture is assumed to be %s\n", arch);
721 }
722
723
724 /* Called if the user enters ``set architecture'' with or without an
725 argument. */
726
727 static void
728 set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
729 {
730 if (strcmp (set_architecture_string, "auto") == 0)
731 {
732 target_architecture_auto = 1;
733 }
734 else if (GDB_MULTI_ARCH)
735 {
736 struct gdbarch_info info;
737 gdbarch_info_init (&info);
738 info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
739 if (info.bfd_arch_info == NULL)
740 internal_error (__FILE__, __LINE__,
741 "set_architecture: bfd_scan_arch failed");
742 if (gdbarch_update_p (info))
743 target_architecture_auto = 0;
744 else
745 printf_unfiltered ("Architecture `%s' not recognized.\n",
746 set_architecture_string);
747 }
748 else
749 {
750 const struct bfd_arch_info *arch
751 = bfd_scan_arch (set_architecture_string);
752 if (arch == NULL)
753 internal_error (__FILE__, __LINE__,
754 "set_architecture: bfd_scan_arch failed");
755 set_arch (arch, set_arch_manual);
756 }
757 show_architecture (NULL, from_tty);
758 }
759
760 /* Set the dynamic target-system-dependent parameters (architecture,
761 byte-order) using information found in the BFD */
762
763 void
764 set_gdbarch_from_file (bfd *abfd)
765 {
766 if (GDB_MULTI_ARCH)
767 {
768 struct gdbarch_info info;
769 gdbarch_info_init (&info);
770 info.abfd = abfd;
771 if (! gdbarch_update_p (info))
772 error ("Architecture of file not recognized.\n");
773 }
774 else
775 {
776 set_architecture_from_file (abfd);
777 set_endian_from_file (abfd);
778 }
779 }
780
781 /* Initialize the current architecture. Update the ``set
782 architecture'' command so that it specifies a list of valid
783 architectures. */
784
785 #ifdef DEFAULT_BFD_ARCH
786 extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
787 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
788 #else
789 static const bfd_arch_info_type *default_bfd_arch;
790 #endif
791
792 #ifdef DEFAULT_BFD_VEC
793 extern const bfd_target DEFAULT_BFD_VEC;
794 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
795 #else
796 static const bfd_target *default_bfd_vec;
797 #endif
798
799 void
800 initialize_current_architecture (void)
801 {
802 const char **arches = gdbarch_printable_names ();
803
804 /* determine a default architecture and byte order. */
805 struct gdbarch_info info;
806 gdbarch_info_init (&info);
807
808 /* Find a default architecture. */
809 if (info.bfd_arch_info == NULL
810 && default_bfd_arch != NULL)
811 info.bfd_arch_info = default_bfd_arch;
812 if (info.bfd_arch_info == NULL)
813 {
814 /* Choose the architecture by taking the first one
815 alphabetically. */
816 const char *chosen = arches[0];
817 const char **arch;
818 for (arch = arches; *arch != NULL; arch++)
819 {
820 if (strcmp (*arch, chosen) < 0)
821 chosen = *arch;
822 }
823 if (chosen == NULL)
824 internal_error (__FILE__, __LINE__,
825 "initialize_current_architecture: No arch");
826 info.bfd_arch_info = bfd_scan_arch (chosen);
827 if (info.bfd_arch_info == NULL)
828 internal_error (__FILE__, __LINE__,
829 "initialize_current_architecture: Arch not found");
830 }
831
832 /* Take several guesses at a byte order. */
833 if (info.byte_order == BFD_ENDIAN_UNKNOWN
834 && default_bfd_vec != NULL)
835 {
836 /* Extract BFD's default vector's byte order. */
837 switch (default_bfd_vec->byteorder)
838 {
839 case BFD_ENDIAN_BIG:
840 info.byte_order = BFD_ENDIAN_BIG;
841 break;
842 case BFD_ENDIAN_LITTLE:
843 info.byte_order = BFD_ENDIAN_LITTLE;
844 break;
845 default:
846 break;
847 }
848 }
849 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
850 {
851 /* look for ``*el-*'' in the target name. */
852 const char *chp;
853 chp = strchr (target_name, '-');
854 if (chp != NULL
855 && chp - 2 >= target_name
856 && strncmp (chp - 2, "el", 2) == 0)
857 info.byte_order = BFD_ENDIAN_LITTLE;
858 }
859 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
860 {
861 /* Wire it to big-endian!!! */
862 info.byte_order = BFD_ENDIAN_BIG;
863 }
864
865 if (GDB_MULTI_ARCH)
866 {
867 if (! gdbarch_update_p (info))
868 {
869 internal_error (__FILE__, __LINE__,
870 "initialize_current_architecture: Selection of initial architecture failed");
871 }
872 }
873 else
874 {
875 /* If the multi-arch logic comes up with a byte-order (from BFD)
876 use it for the non-multi-arch case. */
877 if (info.byte_order != BFD_ENDIAN_UNKNOWN)
878 target_byte_order = info.byte_order;
879 initialize_non_multiarch ();
880 }
881
882 /* Create the ``set architecture'' command appending ``auto'' to the
883 list of architectures. */
884 {
885 struct cmd_list_element *c;
886 /* Append ``auto''. */
887 int nr;
888 for (nr = 0; arches[nr] != NULL; nr++);
889 arches = xrealloc (arches, sizeof (char*) * (nr + 2));
890 arches[nr + 0] = "auto";
891 arches[nr + 1] = NULL;
892 /* FIXME: add_set_enum_cmd() uses an array of ``char *'' instead
893 of ``const char *''. We just happen to know that the casts are
894 safe. */
895 c = add_set_enum_cmd ("architecture", class_support,
896 arches, &set_architecture_string,
897 "Set architecture of target.",
898 &setlist);
899 set_cmd_sfunc (c, set_architecture);
900 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
901 /* Don't use set_from_show - need to print both auto/manual and
902 current setting. */
903 add_cmd ("architecture", class_support, show_architecture,
904 "Show the current target architecture", &showlist);
905 }
906 }
907
908
909 /* Initialize a gdbarch info to values that will be automatically
910 overridden. Note: Originally, this ``struct info'' was initialized
911 using memset(0). Unfortunatly, that ran into problems, namely
912 BFD_ENDIAN_BIG is zero. An explicit initialization function that
913 can explicitly set each field to a well defined value is used. */
914
915 void
916 gdbarch_info_init (struct gdbarch_info *info)
917 {
918 memset (info, 0, sizeof (struct gdbarch_info));
919 info->byte_order = BFD_ENDIAN_UNKNOWN;
920 info->osabi = GDB_OSABI_UNINITIALIZED;
921 }
922
923 /* */
924
925 extern initialize_file_ftype _initialize_gdbarch_utils;
926
927 void
928 _initialize_gdbarch_utils (void)
929 {
930 struct cmd_list_element *c;
931 c = add_set_enum_cmd ("endian", class_support,
932 endian_enum, &set_endian_string,
933 "Set endianness of target.",
934 &setlist);
935 set_cmd_sfunc (c, set_endian);
936 /* Don't use set_from_show - need to print both auto/manual and
937 current setting. */
938 add_cmd ("endian", class_support, show_endian,
939 "Show the current byte-order", &showlist);
940 }
This page took 0.072208 seconds and 4 git commands to generate.