2003-04-28 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / arch-utils.c
1 /* Dynamic architecture support for GDB, the GNU debugger.
2
3 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation,
4 Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24
25 #if GDB_MULTI_ARCH
26 #include "arch-utils.h"
27 #include "gdbcmd.h"
28 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
29 #else
30 /* Just include everything in sight so that the every old definition
31 of macro is visible. */
32 #include "symtab.h"
33 #include "frame.h"
34 #include "inferior.h"
35 #include "breakpoint.h"
36 #include "gdb_wait.h"
37 #include "gdbcore.h"
38 #include "gdbcmd.h"
39 #include "target.h"
40 #include "annotate.h"
41 #endif
42 #include "gdb_string.h"
43 #include "regcache.h"
44 #include "gdb_assert.h"
45 #include "sim-regno.h"
46
47 #include "version.h"
48
49 #include "floatformat.h"
50
51 /* Use the program counter to determine the contents and size
52 of a breakpoint instruction. If no target-dependent macro
53 BREAKPOINT_FROM_PC has been defined to implement this function,
54 assume that the breakpoint doesn't depend on the PC, and
55 use the values of the BIG_BREAKPOINT and LITTLE_BREAKPOINT macros.
56 Return a pointer to a string of bytes that encode a breakpoint
57 instruction, stores the length of the string to *lenptr,
58 and optionally adjust the pc to point to the correct memory location
59 for inserting the breakpoint. */
60
61 const unsigned char *
62 legacy_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
63 {
64 /* {BIG_,LITTLE_}BREAKPOINT is the sequence of bytes we insert for a
65 breakpoint. On some machines, breakpoints are handled by the
66 target environment and we don't have to worry about them here. */
67 #ifdef BIG_BREAKPOINT
68 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
69 {
70 static unsigned char big_break_insn[] = BIG_BREAKPOINT;
71 *lenptr = sizeof (big_break_insn);
72 return big_break_insn;
73 }
74 #endif
75 #ifdef LITTLE_BREAKPOINT
76 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
77 {
78 static unsigned char little_break_insn[] = LITTLE_BREAKPOINT;
79 *lenptr = sizeof (little_break_insn);
80 return little_break_insn;
81 }
82 #endif
83 #ifdef BREAKPOINT
84 {
85 static unsigned char break_insn[] = BREAKPOINT;
86 *lenptr = sizeof (break_insn);
87 return break_insn;
88 }
89 #endif
90 *lenptr = 0;
91 return NULL;
92 }
93
94 /* Implementation of extract return value that grubs around in the
95 register cache. */
96 void
97 legacy_extract_return_value (struct type *type, struct regcache *regcache,
98 void *valbuf)
99 {
100 char *registers = deprecated_grub_regcache_for_registers (regcache);
101 bfd_byte *buf = valbuf;
102 DEPRECATED_EXTRACT_RETURN_VALUE (type, registers, buf); /* OK */
103 }
104
105 /* Implementation of store return value that grubs the register cache.
106 Takes a local copy of the buffer to avoid const problems. */
107 void
108 legacy_store_return_value (struct type *type, struct regcache *regcache,
109 const void *buf)
110 {
111 bfd_byte *b = alloca (TYPE_LENGTH (type));
112 gdb_assert (regcache == current_regcache);
113 memcpy (b, buf, TYPE_LENGTH (type));
114 DEPRECATED_STORE_RETURN_VALUE (type, b);
115 }
116
117
118 int
119 legacy_register_sim_regno (int regnum)
120 {
121 /* Only makes sense to supply raw registers. */
122 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
123 /* NOTE: cagney/2002-05-13: The old code did it this way and it is
124 suspected that some GDB/SIM combinations may rely on this
125 behavour. The default should be one2one_register_sim_regno
126 (below). */
127 if (REGISTER_NAME (regnum) != NULL
128 && REGISTER_NAME (regnum)[0] != '\0')
129 return regnum;
130 else
131 return LEGACY_SIM_REGNO_IGNORE;
132 }
133
134 int
135 generic_frameless_function_invocation_not (struct frame_info *fi)
136 {
137 return 0;
138 }
139
140 int
141 generic_return_value_on_stack_not (struct type *type)
142 {
143 return 0;
144 }
145
146 CORE_ADDR
147 generic_skip_trampoline_code (CORE_ADDR pc)
148 {
149 return 0;
150 }
151
152 int
153 generic_in_solib_call_trampoline (CORE_ADDR pc, char *name)
154 {
155 return 0;
156 }
157
158 int
159 generic_in_solib_return_trampoline (CORE_ADDR pc, char *name)
160 {
161 return 0;
162 }
163
164 int
165 generic_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
166 {
167 return 0;
168 }
169
170 const char *
171 legacy_register_name (int i)
172 {
173 #ifdef REGISTER_NAMES
174 static char *names[] = REGISTER_NAMES;
175 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
176 return NULL;
177 else
178 return names[i];
179 #else
180 internal_error (__FILE__, __LINE__,
181 "legacy_register_name: called.");
182 return NULL;
183 #endif
184 }
185
186 #if defined (CALL_DUMMY)
187 LONGEST legacy_call_dummy_words[] = CALL_DUMMY;
188 #else
189 LONGEST legacy_call_dummy_words[1];
190 #endif
191 int legacy_sizeof_call_dummy_words = sizeof (legacy_call_dummy_words);
192
193 void
194 generic_remote_translate_xfer_address (CORE_ADDR gdb_addr, int gdb_len,
195 CORE_ADDR * rem_addr, int *rem_len)
196 {
197 *rem_addr = gdb_addr;
198 *rem_len = gdb_len;
199 }
200
201 int
202 generic_prologue_frameless_p (CORE_ADDR ip)
203 {
204 return ip == SKIP_PROLOGUE (ip);
205 }
206
207 /* New/multi-arched targets should use the correct gdbarch field
208 instead of using this global pointer. */
209 int
210 legacy_print_insn (bfd_vma vma, disassemble_info *info)
211 {
212 return (*deprecated_tm_print_insn) (vma, info);
213 }
214
215 /* Helper functions for INNER_THAN */
216
217 int
218 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
219 {
220 return (lhs < rhs);
221 }
222
223 int
224 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
225 {
226 return (lhs > rhs);
227 }
228
229
230 /* Helper functions for TARGET_{FLOAT,DOUBLE}_FORMAT */
231
232 const struct floatformat *
233 default_float_format (struct gdbarch *gdbarch)
234 {
235 #if GDB_MULTI_ARCH
236 int byte_order = gdbarch_byte_order (gdbarch);
237 #else
238 int byte_order = TARGET_BYTE_ORDER;
239 #endif
240 switch (byte_order)
241 {
242 case BFD_ENDIAN_BIG:
243 return &floatformat_ieee_single_big;
244 case BFD_ENDIAN_LITTLE:
245 return &floatformat_ieee_single_little;
246 default:
247 internal_error (__FILE__, __LINE__,
248 "default_float_format: bad byte order");
249 }
250 }
251
252
253 const struct floatformat *
254 default_double_format (struct gdbarch *gdbarch)
255 {
256 #if GDB_MULTI_ARCH
257 int byte_order = gdbarch_byte_order (gdbarch);
258 #else
259 int byte_order = TARGET_BYTE_ORDER;
260 #endif
261 switch (byte_order)
262 {
263 case BFD_ENDIAN_BIG:
264 return &floatformat_ieee_double_big;
265 case BFD_ENDIAN_LITTLE:
266 return &floatformat_ieee_double_little;
267 default:
268 internal_error (__FILE__, __LINE__,
269 "default_double_format: bad byte order");
270 }
271 }
272
273 /* Misc helper functions for targets. */
274
275 int
276 frame_num_args_unknown (struct frame_info *fi)
277 {
278 return -1;
279 }
280
281
282 int
283 generic_register_convertible_not (int num)
284 {
285 return 0;
286 }
287
288
289 /* Under some ABI's that specify the `struct convention' for returning
290 structures by value, by the time we've returned from the function,
291 the return value is sitting there in the caller's buffer, but GDB
292 has no way to find the address of that buffer.
293
294 On such architectures, use this function as your
295 extract_struct_value_address method. When asked to a struct
296 returned by value in this fashion, GDB will print a nice error
297 message, instead of garbage. */
298 CORE_ADDR
299 generic_cannot_extract_struct_value_address (char *dummy)
300 {
301 return 0;
302 }
303
304 CORE_ADDR
305 core_addr_identity (CORE_ADDR addr)
306 {
307 return addr;
308 }
309
310 int
311 no_op_reg_to_regnum (int reg)
312 {
313 return reg;
314 }
315
316 /* Default prepare_to_procced(). */
317 int
318 default_prepare_to_proceed (int select_it)
319 {
320 return 0;
321 }
322
323 /* Generic prepare_to_proceed(). This one should be suitable for most
324 targets that support threads. */
325 int
326 generic_prepare_to_proceed (int select_it)
327 {
328 ptid_t wait_ptid;
329 struct target_waitstatus wait_status;
330
331 /* Get the last target status returned by target_wait(). */
332 get_last_target_status (&wait_ptid, &wait_status);
333
334 /* Make sure we were stopped either at a breakpoint, or because
335 of a Ctrl-C. */
336 if (wait_status.kind != TARGET_WAITKIND_STOPPED
337 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
338 wait_status.value.sig != TARGET_SIGNAL_INT))
339 {
340 return 0;
341 }
342
343 if (!ptid_equal (wait_ptid, minus_one_ptid)
344 && !ptid_equal (inferior_ptid, wait_ptid))
345 {
346 /* Switched over from WAIT_PID. */
347 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
348
349 if (wait_pc != read_pc ())
350 {
351 if (select_it)
352 {
353 /* Switch back to WAIT_PID thread. */
354 inferior_ptid = wait_ptid;
355
356 /* FIXME: This stuff came from switch_to_thread() in
357 thread.c (which should probably be a public function). */
358 flush_cached_frames ();
359 registers_changed ();
360 stop_pc = wait_pc;
361 select_frame (get_current_frame ());
362 }
363 /* We return 1 to indicate that there is a breakpoint here,
364 so we need to step over it before continuing to avoid
365 hitting it straight away. */
366 if (breakpoint_here_p (wait_pc))
367 {
368 return 1;
369 }
370 }
371 }
372 return 0;
373
374 }
375
376 CORE_ADDR
377 init_frame_pc_noop (int fromleaf, struct frame_info *prev)
378 {
379 /* Do nothing, implies return the same PC value. */
380 return get_frame_pc (prev);
381 }
382
383 CORE_ADDR
384 init_frame_pc_default (int fromleaf, struct frame_info *prev)
385 {
386 if (fromleaf && DEPRECATED_SAVED_PC_AFTER_CALL_P ())
387 return DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev));
388 else if (get_next_frame (prev) != NULL)
389 return DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev));
390 else
391 return read_pc ();
392 }
393
394 void
395 default_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
396 {
397 return;
398 }
399
400 void
401 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
402 {
403 return;
404 }
405
406 int
407 cannot_register_not (int regnum)
408 {
409 return 0;
410 }
411
412 /* Legacy version of target_virtual_frame_pointer(). Assumes that
413 there is an DEPRECATED_FP_REGNUM and that it is the same, cooked or
414 raw. */
415
416 void
417 legacy_virtual_frame_pointer (CORE_ADDR pc,
418 int *frame_regnum,
419 LONGEST *frame_offset)
420 {
421 /* FIXME: cagney/2002-09-13: This code is used when identifying the
422 frame pointer of the current PC. It is assuming that a single
423 register and an offset can determine this. I think it should
424 instead generate a byte code expression as that would work better
425 with things like Dwarf2's CFI. */
426 if (DEPRECATED_FP_REGNUM >= 0 && DEPRECATED_FP_REGNUM < NUM_REGS)
427 *frame_regnum = DEPRECATED_FP_REGNUM;
428 else if (SP_REGNUM >= 0 && SP_REGNUM < NUM_REGS)
429 *frame_regnum = SP_REGNUM;
430 else
431 /* Should this be an internal error? I guess so, it is reflecting
432 an architectural limitation in the current design. */
433 internal_error (__FILE__, __LINE__, "No virtual frame pointer available");
434 *frame_offset = 0;
435 }
436
437 /* Assume the world is sane, every register's virtual and real size
438 is identical. */
439
440 int
441 generic_register_size (int regnum)
442 {
443 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
444 if (gdbarch_register_type_p (current_gdbarch))
445 return TYPE_LENGTH (gdbarch_register_type (current_gdbarch, regnum));
446 else
447 /* FIXME: cagney/2003-03-01: Once all architectures implement
448 gdbarch_register_type(), this entire function can go away. It
449 is made obsolete by register_size(). */
450 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum)); /* OK */
451 }
452
453 /* Assume all registers are adjacent. */
454
455 int
456 generic_register_byte (int regnum)
457 {
458 int byte;
459 int i;
460 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
461 byte = 0;
462 for (i = 0; i < regnum; i++)
463 {
464 byte += generic_register_size (i);
465 }
466 return byte;
467 }
468
469 \f
470 int
471 legacy_pc_in_sigtramp (CORE_ADDR pc, char *name)
472 {
473 #if !defined (IN_SIGTRAMP)
474 if (SIGTRAMP_START_P ())
475 return (pc) >= SIGTRAMP_START (pc) && (pc) < SIGTRAMP_END (pc);
476 else
477 return name && strcmp ("_sigtramp", name) == 0;
478 #else
479 return IN_SIGTRAMP (pc, name);
480 #endif
481 }
482
483 int
484 legacy_convert_register_p (int regnum)
485 {
486 return REGISTER_CONVERTIBLE (regnum);
487 }
488
489 void
490 legacy_register_to_value (int regnum, struct type *type,
491 char *from, char *to)
492 {
493 REGISTER_CONVERT_TO_VIRTUAL (regnum, type, from, to);
494 }
495
496 void
497 legacy_value_to_register (struct type *type, int regnum,
498 char *from, char *to)
499 {
500 REGISTER_CONVERT_TO_RAW (type, regnum, from, to);
501 }
502
503 \f
504 /* Functions to manipulate the endianness of the target. */
505
506 /* ``target_byte_order'' is only used when non- multi-arch.
507 Multi-arch targets obtain the current byte order using the
508 TARGET_BYTE_ORDER gdbarch method.
509
510 The choice of initial value is entirely arbitrary. During startup,
511 the function initialize_current_architecture() updates this value
512 based on default byte-order information extracted from BFD. */
513 int target_byte_order = BFD_ENDIAN_BIG;
514 int target_byte_order_auto = 1;
515
516 static const char endian_big[] = "big";
517 static const char endian_little[] = "little";
518 static const char endian_auto[] = "auto";
519 static const char *endian_enum[] =
520 {
521 endian_big,
522 endian_little,
523 endian_auto,
524 NULL,
525 };
526 static const char *set_endian_string;
527
528 /* Called by ``show endian''. */
529
530 static void
531 show_endian (char *args, int from_tty)
532 {
533 if (TARGET_BYTE_ORDER_AUTO)
534 printf_unfiltered ("The target endianness is set automatically (currently %s endian)\n",
535 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
536 else
537 printf_unfiltered ("The target is assumed to be %s endian\n",
538 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
539 }
540
541 static void
542 set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
543 {
544 if (set_endian_string == endian_auto)
545 {
546 target_byte_order_auto = 1;
547 }
548 else if (set_endian_string == endian_little)
549 {
550 target_byte_order_auto = 0;
551 if (GDB_MULTI_ARCH)
552 {
553 struct gdbarch_info info;
554 gdbarch_info_init (&info);
555 info.byte_order = BFD_ENDIAN_LITTLE;
556 if (! gdbarch_update_p (info))
557 {
558 printf_unfiltered ("Little endian target not supported by GDB\n");
559 }
560 }
561 else
562 {
563 target_byte_order = BFD_ENDIAN_LITTLE;
564 }
565 }
566 else if (set_endian_string == endian_big)
567 {
568 target_byte_order_auto = 0;
569 if (GDB_MULTI_ARCH)
570 {
571 struct gdbarch_info info;
572 gdbarch_info_init (&info);
573 info.byte_order = BFD_ENDIAN_BIG;
574 if (! gdbarch_update_p (info))
575 {
576 printf_unfiltered ("Big endian target not supported by GDB\n");
577 }
578 }
579 else
580 {
581 target_byte_order = BFD_ENDIAN_BIG;
582 }
583 }
584 else
585 internal_error (__FILE__, __LINE__,
586 "set_endian: bad value");
587 show_endian (NULL, from_tty);
588 }
589
590 /* Set the endianness from a BFD. */
591
592 static void
593 set_endian_from_file (bfd *abfd)
594 {
595 int want;
596 if (GDB_MULTI_ARCH)
597 internal_error (__FILE__, __LINE__,
598 "set_endian_from_file: not for multi-arch");
599 if (bfd_big_endian (abfd))
600 want = BFD_ENDIAN_BIG;
601 else
602 want = BFD_ENDIAN_LITTLE;
603 if (TARGET_BYTE_ORDER_AUTO)
604 target_byte_order = want;
605 else if (TARGET_BYTE_ORDER != want)
606 warning ("%s endian file does not match %s endian target.",
607 want == BFD_ENDIAN_BIG ? "big" : "little",
608 TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little");
609 }
610
611
612 /* Functions to manipulate the architecture of the target */
613
614 enum set_arch { set_arch_auto, set_arch_manual };
615
616 int target_architecture_auto = 1;
617
618 const char *set_architecture_string;
619
620 /* Old way of changing the current architecture. */
621
622 extern const struct bfd_arch_info bfd_default_arch_struct;
623 const struct bfd_arch_info *target_architecture = &bfd_default_arch_struct;
624 int (*target_architecture_hook) (const struct bfd_arch_info *ap);
625
626 static int
627 arch_ok (const struct bfd_arch_info *arch)
628 {
629 if (GDB_MULTI_ARCH)
630 internal_error (__FILE__, __LINE__,
631 "arch_ok: not multi-arched");
632 /* Should be performing the more basic check that the binary is
633 compatible with GDB. */
634 /* Check with the target that the architecture is valid. */
635 return (target_architecture_hook == NULL
636 || target_architecture_hook (arch));
637 }
638
639 static void
640 set_arch (const struct bfd_arch_info *arch,
641 enum set_arch type)
642 {
643 if (GDB_MULTI_ARCH)
644 internal_error (__FILE__, __LINE__,
645 "set_arch: not multi-arched");
646 switch (type)
647 {
648 case set_arch_auto:
649 if (!arch_ok (arch))
650 warning ("Target may not support %s architecture",
651 arch->printable_name);
652 target_architecture = arch;
653 break;
654 case set_arch_manual:
655 if (!arch_ok (arch))
656 {
657 printf_unfiltered ("Target does not support `%s' architecture.\n",
658 arch->printable_name);
659 }
660 else
661 {
662 target_architecture_auto = 0;
663 target_architecture = arch;
664 }
665 break;
666 }
667 if (gdbarch_debug)
668 gdbarch_dump (current_gdbarch, gdb_stdlog);
669 }
670
671 /* Set the architecture from arch/machine (deprecated) */
672
673 void
674 set_architecture_from_arch_mach (enum bfd_architecture arch,
675 unsigned long mach)
676 {
677 const struct bfd_arch_info *wanted = bfd_lookup_arch (arch, mach);
678 if (GDB_MULTI_ARCH)
679 internal_error (__FILE__, __LINE__,
680 "set_architecture_from_arch_mach: not multi-arched");
681 if (wanted != NULL)
682 set_arch (wanted, set_arch_manual);
683 else
684 internal_error (__FILE__, __LINE__,
685 "gdbarch: hardwired architecture/machine not recognized");
686 }
687
688 /* Set the architecture from a BFD (deprecated) */
689
690 static void
691 set_architecture_from_file (bfd *abfd)
692 {
693 const struct bfd_arch_info *wanted = bfd_get_arch_info (abfd);
694 if (GDB_MULTI_ARCH)
695 internal_error (__FILE__, __LINE__,
696 "set_architecture_from_file: not multi-arched");
697 if (target_architecture_auto)
698 {
699 set_arch (wanted, set_arch_auto);
700 }
701 else if (wanted != target_architecture)
702 {
703 warning ("%s architecture file may be incompatible with %s target.",
704 wanted->printable_name,
705 target_architecture->printable_name);
706 }
707 }
708
709
710 /* Called if the user enters ``show architecture'' without an
711 argument. */
712
713 static void
714 show_architecture (char *args, int from_tty)
715 {
716 const char *arch;
717 arch = TARGET_ARCHITECTURE->printable_name;
718 if (target_architecture_auto)
719 printf_filtered ("The target architecture is set automatically (currently %s)\n", arch);
720 else
721 printf_filtered ("The target architecture is assumed to be %s\n", arch);
722 }
723
724
725 /* Called if the user enters ``set architecture'' with or without an
726 argument. */
727
728 static void
729 set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
730 {
731 if (strcmp (set_architecture_string, "auto") == 0)
732 {
733 target_architecture_auto = 1;
734 }
735 else if (GDB_MULTI_ARCH)
736 {
737 struct gdbarch_info info;
738 gdbarch_info_init (&info);
739 info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
740 if (info.bfd_arch_info == NULL)
741 internal_error (__FILE__, __LINE__,
742 "set_architecture: bfd_scan_arch failed");
743 if (gdbarch_update_p (info))
744 target_architecture_auto = 0;
745 else
746 printf_unfiltered ("Architecture `%s' not recognized.\n",
747 set_architecture_string);
748 }
749 else
750 {
751 const struct bfd_arch_info *arch
752 = bfd_scan_arch (set_architecture_string);
753 if (arch == NULL)
754 internal_error (__FILE__, __LINE__,
755 "set_architecture: bfd_scan_arch failed");
756 set_arch (arch, set_arch_manual);
757 }
758 show_architecture (NULL, from_tty);
759 }
760
761 /* Set the dynamic target-system-dependent parameters (architecture,
762 byte-order) using information found in the BFD */
763
764 void
765 set_gdbarch_from_file (bfd *abfd)
766 {
767 if (GDB_MULTI_ARCH)
768 {
769 struct gdbarch_info info;
770 gdbarch_info_init (&info);
771 info.abfd = abfd;
772 if (! gdbarch_update_p (info))
773 error ("Architecture of file not recognized.\n");
774 }
775 else
776 {
777 set_architecture_from_file (abfd);
778 set_endian_from_file (abfd);
779 }
780 }
781
782 /* Initialize the current architecture. Update the ``set
783 architecture'' command so that it specifies a list of valid
784 architectures. */
785
786 #ifdef DEFAULT_BFD_ARCH
787 extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
788 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
789 #else
790 static const bfd_arch_info_type *default_bfd_arch;
791 #endif
792
793 #ifdef DEFAULT_BFD_VEC
794 extern const bfd_target DEFAULT_BFD_VEC;
795 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
796 #else
797 static const bfd_target *default_bfd_vec;
798 #endif
799
800 void
801 initialize_current_architecture (void)
802 {
803 const char **arches = gdbarch_printable_names ();
804
805 /* determine a default architecture and byte order. */
806 struct gdbarch_info info;
807 gdbarch_info_init (&info);
808
809 /* Find a default architecture. */
810 if (info.bfd_arch_info == NULL
811 && default_bfd_arch != NULL)
812 info.bfd_arch_info = default_bfd_arch;
813 if (info.bfd_arch_info == NULL)
814 {
815 /* Choose the architecture by taking the first one
816 alphabetically. */
817 const char *chosen = arches[0];
818 const char **arch;
819 for (arch = arches; *arch != NULL; arch++)
820 {
821 if (strcmp (*arch, chosen) < 0)
822 chosen = *arch;
823 }
824 if (chosen == NULL)
825 internal_error (__FILE__, __LINE__,
826 "initialize_current_architecture: No arch");
827 info.bfd_arch_info = bfd_scan_arch (chosen);
828 if (info.bfd_arch_info == NULL)
829 internal_error (__FILE__, __LINE__,
830 "initialize_current_architecture: Arch not found");
831 }
832
833 /* Take several guesses at a byte order. */
834 if (info.byte_order == BFD_ENDIAN_UNKNOWN
835 && default_bfd_vec != NULL)
836 {
837 /* Extract BFD's default vector's byte order. */
838 switch (default_bfd_vec->byteorder)
839 {
840 case BFD_ENDIAN_BIG:
841 info.byte_order = BFD_ENDIAN_BIG;
842 break;
843 case BFD_ENDIAN_LITTLE:
844 info.byte_order = BFD_ENDIAN_LITTLE;
845 break;
846 default:
847 break;
848 }
849 }
850 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
851 {
852 /* look for ``*el-*'' in the target name. */
853 const char *chp;
854 chp = strchr (target_name, '-');
855 if (chp != NULL
856 && chp - 2 >= target_name
857 && strncmp (chp - 2, "el", 2) == 0)
858 info.byte_order = BFD_ENDIAN_LITTLE;
859 }
860 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
861 {
862 /* Wire it to big-endian!!! */
863 info.byte_order = BFD_ENDIAN_BIG;
864 }
865
866 if (GDB_MULTI_ARCH)
867 {
868 if (! gdbarch_update_p (info))
869 {
870 internal_error (__FILE__, __LINE__,
871 "initialize_current_architecture: Selection of initial architecture failed");
872 }
873 }
874 else
875 {
876 /* If the multi-arch logic comes up with a byte-order (from BFD)
877 use it for the non-multi-arch case. */
878 if (info.byte_order != BFD_ENDIAN_UNKNOWN)
879 target_byte_order = info.byte_order;
880 initialize_non_multiarch ();
881 }
882
883 /* Create the ``set architecture'' command appending ``auto'' to the
884 list of architectures. */
885 {
886 struct cmd_list_element *c;
887 /* Append ``auto''. */
888 int nr;
889 for (nr = 0; arches[nr] != NULL; nr++);
890 arches = xrealloc (arches, sizeof (char*) * (nr + 2));
891 arches[nr + 0] = "auto";
892 arches[nr + 1] = NULL;
893 /* FIXME: add_set_enum_cmd() uses an array of ``char *'' instead
894 of ``const char *''. We just happen to know that the casts are
895 safe. */
896 c = add_set_enum_cmd ("architecture", class_support,
897 arches, &set_architecture_string,
898 "Set architecture of target.",
899 &setlist);
900 set_cmd_sfunc (c, set_architecture);
901 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
902 /* Don't use set_from_show - need to print both auto/manual and
903 current setting. */
904 add_cmd ("architecture", class_support, show_architecture,
905 "Show the current target architecture", &showlist);
906 }
907 }
908
909
910 /* Initialize a gdbarch info to values that will be automatically
911 overridden. Note: Originally, this ``struct info'' was initialized
912 using memset(0). Unfortunatly, that ran into problems, namely
913 BFD_ENDIAN_BIG is zero. An explicit initialization function that
914 can explicitly set each field to a well defined value is used. */
915
916 void
917 gdbarch_info_init (struct gdbarch_info *info)
918 {
919 memset (info, 0, sizeof (struct gdbarch_info));
920 info->byte_order = BFD_ENDIAN_UNKNOWN;
921 info->osabi = GDB_OSABI_UNINITIALIZED;
922 }
923
924 /* */
925
926 extern initialize_file_ftype _initialize_gdbarch_utils;
927
928 void
929 _initialize_gdbarch_utils (void)
930 {
931 struct cmd_list_element *c;
932 c = add_set_enum_cmd ("endian", class_support,
933 endian_enum, &set_endian_string,
934 "Set endianness of target.",
935 &setlist);
936 set_cmd_sfunc (c, set_endian);
937 /* Don't use set_from_show - need to print both auto/manual and
938 current setting. */
939 add_cmd ("endian", class_support, show_endian,
940 "Show the current byte-order", &showlist);
941 }
This page took 0.050313 seconds and 5 git commands to generate.