Remove pointless function initialize_interps
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
1 /* GNU/Linux on ARM target support.
2
3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "target.h"
22 #include "value.h"
23 #include "gdbtypes.h"
24 #include "floatformat.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "regcache.h"
28 #include "doublest.h"
29 #include "solib-svr4.h"
30 #include "osabi.h"
31 #include "regset.h"
32 #include "trad-frame.h"
33 #include "tramp-frame.h"
34 #include "breakpoint.h"
35 #include "auxv.h"
36 #include "xml-syscall.h"
37
38 #include "arm-tdep.h"
39 #include "arm-linux-tdep.h"
40 #include "linux-tdep.h"
41 #include "glibc-tdep.h"
42 #include "arch-utils.h"
43 #include "inferior.h"
44 #include "infrun.h"
45 #include "gdbthread.h"
46 #include "symfile.h"
47
48 #include "record-full.h"
49 #include "linux-record.h"
50
51 #include "cli/cli-utils.h"
52 #include "stap-probe.h"
53 #include "parser-defs.h"
54 #include "user-regs.h"
55 #include <ctype.h>
56 #include "elf/common.h"
57 #include <string.h>
58
59 extern int arm_apcs_32;
60
61 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
62 is to execute a particular software interrupt, rather than use a
63 particular undefined instruction to provoke a trap. Upon exection
64 of the software interrupt the kernel stops the inferior with a
65 SIGTRAP, and wakes the debugger. */
66
67 static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
68
69 static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
70
71 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
72 the operand of the swi if old-ABI compatibility is disabled. Therefore,
73 use an undefined instruction instead. This is supported as of kernel
74 version 2.5.70 (May 2003), so should be a safe assumption for EABI
75 binaries. */
76
77 static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
78
79 static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
80
81 /* All the kernels which support Thumb support using a specific undefined
82 instruction for the Thumb breakpoint. */
83
84 static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
85
86 static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
87
88 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
89 we must use a length-appropriate breakpoint for 32-bit Thumb
90 instructions. See also thumb_get_next_pc. */
91
92 static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
93
94 static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
95
96 /* Description of the longjmp buffer. The buffer is treated as an array of
97 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
98
99 The location of saved registers in this buffer (in particular the PC
100 to use after longjmp is called) varies depending on the ABI (in
101 particular the FP model) and also (possibly) the C Library.
102
103 For glibc, eglibc, and uclibc the following holds: If the FP model is
104 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
105 buffer. This is also true for the SoftFPA model. However, for the FPA
106 model the PC is at offset 21 in the buffer. */
107 #define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
108 #define ARM_LINUX_JB_PC_FPA 21
109 #define ARM_LINUX_JB_PC_EABI 9
110
111 /*
112 Dynamic Linking on ARM GNU/Linux
113 --------------------------------
114
115 Note: PLT = procedure linkage table
116 GOT = global offset table
117
118 As much as possible, ELF dynamic linking defers the resolution of
119 jump/call addresses until the last minute. The technique used is
120 inspired by the i386 ELF design, and is based on the following
121 constraints.
122
123 1) The calling technique should not force a change in the assembly
124 code produced for apps; it MAY cause changes in the way assembly
125 code is produced for position independent code (i.e. shared
126 libraries).
127
128 2) The technique must be such that all executable areas must not be
129 modified; and any modified areas must not be executed.
130
131 To do this, there are three steps involved in a typical jump:
132
133 1) in the code
134 2) through the PLT
135 3) using a pointer from the GOT
136
137 When the executable or library is first loaded, each GOT entry is
138 initialized to point to the code which implements dynamic name
139 resolution and code finding. This is normally a function in the
140 program interpreter (on ARM GNU/Linux this is usually
141 ld-linux.so.2, but it does not have to be). On the first
142 invocation, the function is located and the GOT entry is replaced
143 with the real function address. Subsequent calls go through steps
144 1, 2 and 3 and end up calling the real code.
145
146 1) In the code:
147
148 b function_call
149 bl function_call
150
151 This is typical ARM code using the 26 bit relative branch or branch
152 and link instructions. The target of the instruction
153 (function_call is usually the address of the function to be called.
154 In position independent code, the target of the instruction is
155 actually an entry in the PLT when calling functions in a shared
156 library. Note that this call is identical to a normal function
157 call, only the target differs.
158
159 2) In the PLT:
160
161 The PLT is a synthetic area, created by the linker. It exists in
162 both executables and libraries. It is an array of stubs, one per
163 imported function call. It looks like this:
164
165 PLT[0]:
166 str lr, [sp, #-4]! @push the return address (lr)
167 ldr lr, [pc, #16] @load from 6 words ahead
168 add lr, pc, lr @form an address for GOT[0]
169 ldr pc, [lr, #8]! @jump to the contents of that addr
170
171 The return address (lr) is pushed on the stack and used for
172 calculations. The load on the second line loads the lr with
173 &GOT[3] - . - 20. The addition on the third leaves:
174
175 lr = (&GOT[3] - . - 20) + (. + 8)
176 lr = (&GOT[3] - 12)
177 lr = &GOT[0]
178
179 On the fourth line, the pc and lr are both updated, so that:
180
181 pc = GOT[2]
182 lr = &GOT[0] + 8
183 = &GOT[2]
184
185 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
186 "tight", but allows us to keep all the PLT entries the same size.
187
188 PLT[n+1]:
189 ldr ip, [pc, #4] @load offset from gotoff
190 add ip, pc, ip @add the offset to the pc
191 ldr pc, [ip] @jump to that address
192 gotoff: .word GOT[n+3] - .
193
194 The load on the first line, gets an offset from the fourth word of
195 the PLT entry. The add on the second line makes ip = &GOT[n+3],
196 which contains either a pointer to PLT[0] (the fixup trampoline) or
197 a pointer to the actual code.
198
199 3) In the GOT:
200
201 The GOT contains helper pointers for both code (PLT) fixups and
202 data fixups. The first 3 entries of the GOT are special. The next
203 M entries (where M is the number of entries in the PLT) belong to
204 the PLT fixups. The next D (all remaining) entries belong to
205 various data fixups. The actual size of the GOT is 3 + M + D.
206
207 The GOT is also a synthetic area, created by the linker. It exists
208 in both executables and libraries. When the GOT is first
209 initialized , all the GOT entries relating to PLT fixups are
210 pointing to code back at PLT[0].
211
212 The special entries in the GOT are:
213
214 GOT[0] = linked list pointer used by the dynamic loader
215 GOT[1] = pointer to the reloc table for this module
216 GOT[2] = pointer to the fixup/resolver code
217
218 The first invocation of function call comes through and uses the
219 fixup/resolver code. On the entry to the fixup/resolver code:
220
221 ip = &GOT[n+3]
222 lr = &GOT[2]
223 stack[0] = return address (lr) of the function call
224 [r0, r1, r2, r3] are still the arguments to the function call
225
226 This is enough information for the fixup/resolver code to work
227 with. Before the fixup/resolver code returns, it actually calls
228 the requested function and repairs &GOT[n+3]. */
229
230 /* The constants below were determined by examining the following files
231 in the linux kernel sources:
232
233 arch/arm/kernel/signal.c
234 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
235 include/asm-arm/unistd.h
236 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
237
238 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
239 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
240
241 /* For ARM EABI, the syscall number is not in the SWI instruction
242 (instead it is loaded into r7). We recognize the pattern that
243 glibc uses... alternatively, we could arrange to do this by
244 function name, but they are not always exported. */
245 #define ARM_SET_R7_SIGRETURN 0xe3a07077
246 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
247 #define ARM_EABI_SYSCALL 0xef000000
248
249 /* Equivalent patterns for Thumb2. */
250 #define THUMB2_SET_R7_SIGRETURN1 0xf04f
251 #define THUMB2_SET_R7_SIGRETURN2 0x0777
252 #define THUMB2_SET_R7_RT_SIGRETURN1 0xf04f
253 #define THUMB2_SET_R7_RT_SIGRETURN2 0x07ad
254 #define THUMB2_EABI_SYSCALL 0xdf00
255
256 /* OABI syscall restart trampoline, used for EABI executables too
257 whenever OABI support has been enabled in the kernel. */
258 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
259 #define ARM_LDR_PC_SP_12 0xe49df00c
260 #define ARM_LDR_PC_SP_4 0xe49df004
261
262 static void
263 arm_linux_sigtramp_cache (struct frame_info *this_frame,
264 struct trad_frame_cache *this_cache,
265 CORE_ADDR func, int regs_offset)
266 {
267 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
268 CORE_ADDR base = sp + regs_offset;
269 int i;
270
271 for (i = 0; i < 16; i++)
272 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
273
274 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
275
276 /* The VFP or iWMMXt registers may be saved on the stack, but there's
277 no reliable way to restore them (yet). */
278
279 /* Save a frame ID. */
280 trad_frame_set_id (this_cache, frame_id_build (sp, func));
281 }
282
283 /* There are a couple of different possible stack layouts that
284 we need to support.
285
286 Before version 2.6.18, the kernel used completely independent
287 layouts for non-RT and RT signals. For non-RT signals the stack
288 began directly with a struct sigcontext. For RT signals the stack
289 began with two redundant pointers (to the siginfo and ucontext),
290 and then the siginfo and ucontext.
291
292 As of version 2.6.18, the non-RT signal frame layout starts with
293 a ucontext and the RT signal frame starts with a siginfo and then
294 a ucontext. Also, the ucontext now has a designated save area
295 for coprocessor registers.
296
297 For RT signals, it's easy to tell the difference: we look for
298 pinfo, the pointer to the siginfo. If it has the expected
299 value, we have an old layout. If it doesn't, we have the new
300 layout.
301
302 For non-RT signals, it's a bit harder. We need something in one
303 layout or the other with a recognizable offset and value. We can't
304 use the return trampoline, because ARM usually uses SA_RESTORER,
305 in which case the stack return trampoline is not filled in.
306 We can't use the saved stack pointer, because sigaltstack might
307 be in use. So for now we guess the new layout... */
308
309 /* There are three words (trap_no, error_code, oldmask) in
310 struct sigcontext before r0. */
311 #define ARM_SIGCONTEXT_R0 0xc
312
313 /* There are five words (uc_flags, uc_link, and three for uc_stack)
314 in the ucontext_t before the sigcontext. */
315 #define ARM_UCONTEXT_SIGCONTEXT 0x14
316
317 /* There are three elements in an rt_sigframe before the ucontext:
318 pinfo, puc, and info. The first two are pointers and the third
319 is a struct siginfo, with size 128 bytes. We could follow puc
320 to the ucontext, but it's simpler to skip the whole thing. */
321 #define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
322 #define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
323
324 #define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
325
326 #define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
327
328 static void
329 arm_linux_sigreturn_init (const struct tramp_frame *self,
330 struct frame_info *this_frame,
331 struct trad_frame_cache *this_cache,
332 CORE_ADDR func)
333 {
334 struct gdbarch *gdbarch = get_frame_arch (this_frame);
335 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
336 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
337 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
338
339 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
340 arm_linux_sigtramp_cache (this_frame, this_cache, func,
341 ARM_UCONTEXT_SIGCONTEXT
342 + ARM_SIGCONTEXT_R0);
343 else
344 arm_linux_sigtramp_cache (this_frame, this_cache, func,
345 ARM_SIGCONTEXT_R0);
346 }
347
348 static void
349 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
350 struct frame_info *this_frame,
351 struct trad_frame_cache *this_cache,
352 CORE_ADDR func)
353 {
354 struct gdbarch *gdbarch = get_frame_arch (this_frame);
355 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
356 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
357 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
358
359 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
360 arm_linux_sigtramp_cache (this_frame, this_cache, func,
361 ARM_OLD_RT_SIGFRAME_UCONTEXT
362 + ARM_UCONTEXT_SIGCONTEXT
363 + ARM_SIGCONTEXT_R0);
364 else
365 arm_linux_sigtramp_cache (this_frame, this_cache, func,
366 ARM_NEW_RT_SIGFRAME_UCONTEXT
367 + ARM_UCONTEXT_SIGCONTEXT
368 + ARM_SIGCONTEXT_R0);
369 }
370
371 static void
372 arm_linux_restart_syscall_init (const struct tramp_frame *self,
373 struct frame_info *this_frame,
374 struct trad_frame_cache *this_cache,
375 CORE_ADDR func)
376 {
377 struct gdbarch *gdbarch = get_frame_arch (this_frame);
378 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
379 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
380 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
381 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
382 int sp_offset;
383
384 /* There are two variants of this trampoline; with older kernels, the
385 stub is placed on the stack, while newer kernels use the stub from
386 the vector page. They are identical except that the older version
387 increments SP by 12 (to skip stored PC and the stub itself), while
388 the newer version increments SP only by 4 (just the stored PC). */
389 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
390 sp_offset = 4;
391 else
392 sp_offset = 12;
393
394 /* Update Thumb bit in CPSR. */
395 if (pc & 1)
396 cpsr |= t_bit;
397 else
398 cpsr &= ~t_bit;
399
400 /* Remove Thumb bit from PC. */
401 pc = gdbarch_addr_bits_remove (gdbarch, pc);
402
403 /* Save previous register values. */
404 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
405 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
406 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
407
408 /* Save a frame ID. */
409 trad_frame_set_id (this_cache, frame_id_build (sp, func));
410 }
411
412 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
413 SIGTRAMP_FRAME,
414 4,
415 {
416 { ARM_LINUX_SIGRETURN_INSTR, -1 },
417 { TRAMP_SENTINEL_INSN }
418 },
419 arm_linux_sigreturn_init
420 };
421
422 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
423 SIGTRAMP_FRAME,
424 4,
425 {
426 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
427 { TRAMP_SENTINEL_INSN }
428 },
429 arm_linux_rt_sigreturn_init
430 };
431
432 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
433 SIGTRAMP_FRAME,
434 4,
435 {
436 { ARM_SET_R7_SIGRETURN, -1 },
437 { ARM_EABI_SYSCALL, -1 },
438 { TRAMP_SENTINEL_INSN }
439 },
440 arm_linux_sigreturn_init
441 };
442
443 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
444 SIGTRAMP_FRAME,
445 4,
446 {
447 { ARM_SET_R7_RT_SIGRETURN, -1 },
448 { ARM_EABI_SYSCALL, -1 },
449 { TRAMP_SENTINEL_INSN }
450 },
451 arm_linux_rt_sigreturn_init
452 };
453
454 static struct tramp_frame thumb2_eabi_linux_sigreturn_tramp_frame = {
455 SIGTRAMP_FRAME,
456 2,
457 {
458 { THUMB2_SET_R7_SIGRETURN1, -1 },
459 { THUMB2_SET_R7_SIGRETURN2, -1 },
460 { THUMB2_EABI_SYSCALL, -1 },
461 { TRAMP_SENTINEL_INSN }
462 },
463 arm_linux_sigreturn_init
464 };
465
466 static struct tramp_frame thumb2_eabi_linux_rt_sigreturn_tramp_frame = {
467 SIGTRAMP_FRAME,
468 2,
469 {
470 { THUMB2_SET_R7_RT_SIGRETURN1, -1 },
471 { THUMB2_SET_R7_RT_SIGRETURN2, -1 },
472 { THUMB2_EABI_SYSCALL, -1 },
473 { TRAMP_SENTINEL_INSN }
474 },
475 arm_linux_rt_sigreturn_init
476 };
477
478 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
479 NORMAL_FRAME,
480 4,
481 {
482 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
483 { ARM_LDR_PC_SP_12, -1 },
484 { TRAMP_SENTINEL_INSN }
485 },
486 arm_linux_restart_syscall_init
487 };
488
489 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
490 NORMAL_FRAME,
491 4,
492 {
493 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
494 { ARM_LDR_PC_SP_4, -1 },
495 { TRAMP_SENTINEL_INSN }
496 },
497 arm_linux_restart_syscall_init
498 };
499
500 /* Core file and register set support. */
501
502 #define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
503
504 void
505 arm_linux_supply_gregset (const struct regset *regset,
506 struct regcache *regcache,
507 int regnum, const void *gregs_buf, size_t len)
508 {
509 struct gdbarch *gdbarch = get_regcache_arch (regcache);
510 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
511 const gdb_byte *gregs = gregs_buf;
512 int regno;
513 CORE_ADDR reg_pc;
514 gdb_byte pc_buf[INT_REGISTER_SIZE];
515
516 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
517 if (regnum == -1 || regnum == regno)
518 regcache_raw_supply (regcache, regno,
519 gregs + INT_REGISTER_SIZE * regno);
520
521 if (regnum == ARM_PS_REGNUM || regnum == -1)
522 {
523 if (arm_apcs_32)
524 regcache_raw_supply (regcache, ARM_PS_REGNUM,
525 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
526 else
527 regcache_raw_supply (regcache, ARM_PS_REGNUM,
528 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
529 }
530
531 if (regnum == ARM_PC_REGNUM || regnum == -1)
532 {
533 reg_pc = extract_unsigned_integer (gregs
534 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
535 INT_REGISTER_SIZE, byte_order);
536 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
537 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
538 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
539 }
540 }
541
542 void
543 arm_linux_collect_gregset (const struct regset *regset,
544 const struct regcache *regcache,
545 int regnum, void *gregs_buf, size_t len)
546 {
547 gdb_byte *gregs = gregs_buf;
548 int regno;
549
550 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
551 if (regnum == -1 || regnum == regno)
552 regcache_raw_collect (regcache, regno,
553 gregs + INT_REGISTER_SIZE * regno);
554
555 if (regnum == ARM_PS_REGNUM || regnum == -1)
556 {
557 if (arm_apcs_32)
558 regcache_raw_collect (regcache, ARM_PS_REGNUM,
559 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
560 else
561 regcache_raw_collect (regcache, ARM_PS_REGNUM,
562 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
563 }
564
565 if (regnum == ARM_PC_REGNUM || regnum == -1)
566 regcache_raw_collect (regcache, ARM_PC_REGNUM,
567 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
568 }
569
570 /* Support for register format used by the NWFPE FPA emulator. */
571
572 #define typeNone 0x00
573 #define typeSingle 0x01
574 #define typeDouble 0x02
575 #define typeExtended 0x03
576
577 void
578 supply_nwfpe_register (struct regcache *regcache, int regno,
579 const gdb_byte *regs)
580 {
581 const gdb_byte *reg_data;
582 gdb_byte reg_tag;
583 gdb_byte buf[FP_REGISTER_SIZE];
584
585 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
586 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
587 memset (buf, 0, FP_REGISTER_SIZE);
588
589 switch (reg_tag)
590 {
591 case typeSingle:
592 memcpy (buf, reg_data, 4);
593 break;
594 case typeDouble:
595 memcpy (buf, reg_data + 4, 4);
596 memcpy (buf + 4, reg_data, 4);
597 break;
598 case typeExtended:
599 /* We want sign and exponent, then least significant bits,
600 then most significant. NWFPE does sign, most, least. */
601 memcpy (buf, reg_data, 4);
602 memcpy (buf + 4, reg_data + 8, 4);
603 memcpy (buf + 8, reg_data + 4, 4);
604 break;
605 default:
606 break;
607 }
608
609 regcache_raw_supply (regcache, regno, buf);
610 }
611
612 void
613 collect_nwfpe_register (const struct regcache *regcache, int regno,
614 gdb_byte *regs)
615 {
616 gdb_byte *reg_data;
617 gdb_byte reg_tag;
618 gdb_byte buf[FP_REGISTER_SIZE];
619
620 regcache_raw_collect (regcache, regno, buf);
621
622 /* NOTE drow/2006-06-07: This code uses the tag already in the
623 register buffer. I've preserved that when moving the code
624 from the native file to the target file. But this doesn't
625 always make sense. */
626
627 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
628 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
629
630 switch (reg_tag)
631 {
632 case typeSingle:
633 memcpy (reg_data, buf, 4);
634 break;
635 case typeDouble:
636 memcpy (reg_data, buf + 4, 4);
637 memcpy (reg_data + 4, buf, 4);
638 break;
639 case typeExtended:
640 memcpy (reg_data, buf, 4);
641 memcpy (reg_data + 4, buf + 8, 4);
642 memcpy (reg_data + 8, buf + 4, 4);
643 break;
644 default:
645 break;
646 }
647 }
648
649 void
650 arm_linux_supply_nwfpe (const struct regset *regset,
651 struct regcache *regcache,
652 int regnum, const void *regs_buf, size_t len)
653 {
654 const gdb_byte *regs = regs_buf;
655 int regno;
656
657 if (regnum == ARM_FPS_REGNUM || regnum == -1)
658 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
659 regs + NWFPE_FPSR_OFFSET);
660
661 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
662 if (regnum == -1 || regnum == regno)
663 supply_nwfpe_register (regcache, regno, regs);
664 }
665
666 void
667 arm_linux_collect_nwfpe (const struct regset *regset,
668 const struct regcache *regcache,
669 int regnum, void *regs_buf, size_t len)
670 {
671 gdb_byte *regs = regs_buf;
672 int regno;
673
674 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
675 if (regnum == -1 || regnum == regno)
676 collect_nwfpe_register (regcache, regno, regs);
677
678 if (regnum == ARM_FPS_REGNUM || regnum == -1)
679 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
680 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
681 }
682
683 /* Support VFP register format. */
684
685 #define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
686
687 static void
688 arm_linux_supply_vfp (const struct regset *regset,
689 struct regcache *regcache,
690 int regnum, const void *regs_buf, size_t len)
691 {
692 const gdb_byte *regs = regs_buf;
693 int regno;
694
695 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
696 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
697
698 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
699 if (regnum == -1 || regnum == regno)
700 regcache_raw_supply (regcache, regno,
701 regs + (regno - ARM_D0_REGNUM) * 8);
702 }
703
704 static void
705 arm_linux_collect_vfp (const struct regset *regset,
706 const struct regcache *regcache,
707 int regnum, void *regs_buf, size_t len)
708 {
709 gdb_byte *regs = regs_buf;
710 int regno;
711
712 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
713 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
714
715 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
716 if (regnum == -1 || regnum == regno)
717 regcache_raw_collect (regcache, regno,
718 regs + (regno - ARM_D0_REGNUM) * 8);
719 }
720
721 static const struct regset arm_linux_gregset =
722 {
723 NULL, arm_linux_supply_gregset, arm_linux_collect_gregset
724 };
725
726 static const struct regset arm_linux_fpregset =
727 {
728 NULL, arm_linux_supply_nwfpe, arm_linux_collect_nwfpe
729 };
730
731 static const struct regset arm_linux_vfpregset =
732 {
733 NULL, arm_linux_supply_vfp, arm_linux_collect_vfp
734 };
735
736 /* Return the appropriate register set for the core section identified
737 by SECT_NAME and SECT_SIZE. */
738
739 static const struct regset *
740 arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
741 const char *sect_name, size_t sect_size)
742 {
743 if (strcmp (sect_name, ".reg") == 0
744 && sect_size == ARM_LINUX_SIZEOF_GREGSET)
745 return &arm_linux_gregset;
746
747 if (strcmp (sect_name, ".reg2") == 0
748 && sect_size == ARM_LINUX_SIZEOF_NWFPE)
749 return &arm_linux_fpregset;
750
751 if (strcmp (sect_name, ".reg-arm-vfp") == 0
752 && sect_size == ARM_LINUX_SIZEOF_VFP)
753 return &arm_linux_vfpregset;
754
755 return NULL;
756 }
757
758 /* Core file register set sections. */
759
760 static struct core_regset_section arm_linux_fpa_regset_sections[] =
761 {
762 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
763 { ".reg2", ARM_LINUX_SIZEOF_NWFPE, "FPA floating-point" },
764 { NULL, 0}
765 };
766
767 static struct core_regset_section arm_linux_vfp_regset_sections[] =
768 {
769 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
770 { ".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, "VFP floating-point" },
771 { NULL, 0}
772 };
773
774 /* Determine target description from core file. */
775
776 static const struct target_desc *
777 arm_linux_core_read_description (struct gdbarch *gdbarch,
778 struct target_ops *target,
779 bfd *abfd)
780 {
781 CORE_ADDR arm_hwcap = 0;
782
783 if (target_auxv_search (target, AT_HWCAP, &arm_hwcap) != 1)
784 return NULL;
785
786 if (arm_hwcap & HWCAP_VFP)
787 {
788 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
789 Neon with VFPv3-D32. */
790 if (arm_hwcap & HWCAP_NEON)
791 return tdesc_arm_with_neon;
792 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
793 return tdesc_arm_with_vfpv3;
794 else
795 return tdesc_arm_with_vfpv2;
796 }
797
798 return NULL;
799 }
800
801
802 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
803 return 1. In addition, set IS_THUMB depending on whether we
804 will return to ARM or Thumb code. Return 0 if it is not a
805 rt_sigreturn/sigreturn syscall. */
806 static int
807 arm_linux_sigreturn_return_addr (struct frame_info *frame,
808 unsigned long svc_number,
809 CORE_ADDR *pc, int *is_thumb)
810 {
811 /* Is this a sigreturn or rt_sigreturn syscall? */
812 if (svc_number == 119 || svc_number == 173)
813 {
814 if (get_frame_type (frame) == SIGTRAMP_FRAME)
815 {
816 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
817 CORE_ADDR cpsr
818 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
819
820 *is_thumb = (cpsr & t_bit) != 0;
821 *pc = frame_unwind_caller_pc (frame);
822 return 1;
823 }
824 }
825 return 0;
826 }
827
828 /* At a ptrace syscall-stop, return the syscall number. This either
829 comes from the SWI instruction (OABI) or from r7 (EABI).
830
831 When the function fails, it should return -1. */
832
833 static LONGEST
834 arm_linux_get_syscall_number (struct gdbarch *gdbarch,
835 ptid_t ptid)
836 {
837 struct regcache *regs = get_thread_regcache (ptid);
838 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
839
840 ULONGEST pc;
841 ULONGEST cpsr;
842 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
843 int is_thumb;
844 ULONGEST svc_number = -1;
845
846 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
847 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
848 is_thumb = (cpsr & t_bit) != 0;
849
850 if (is_thumb)
851 {
852 regcache_cooked_read_unsigned (regs, 7, &svc_number);
853 }
854 else
855 {
856 enum bfd_endian byte_order_for_code =
857 gdbarch_byte_order_for_code (gdbarch);
858
859 /* PC gets incremented before the syscall-stop, so read the
860 previous instruction. */
861 unsigned long this_instr =
862 read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
863
864 unsigned long svc_operand = (0x00ffffff & this_instr);
865
866 if (svc_operand)
867 {
868 /* OABI */
869 svc_number = svc_operand - 0x900000;
870 }
871 else
872 {
873 /* EABI */
874 regcache_cooked_read_unsigned (regs, 7, &svc_number);
875 }
876 }
877
878 return svc_number;
879 }
880
881 /* When FRAME is at a syscall instruction, return the PC of the next
882 instruction to be executed. */
883
884 static CORE_ADDR
885 arm_linux_syscall_next_pc (struct frame_info *frame)
886 {
887 CORE_ADDR pc = get_frame_pc (frame);
888 CORE_ADDR return_addr = 0;
889 int is_thumb = arm_frame_is_thumb (frame);
890 ULONGEST svc_number = 0;
891
892 if (is_thumb)
893 {
894 svc_number = get_frame_register_unsigned (frame, 7);
895 return_addr = pc + 2;
896 }
897 else
898 {
899 struct gdbarch *gdbarch = get_frame_arch (frame);
900 enum bfd_endian byte_order_for_code =
901 gdbarch_byte_order_for_code (gdbarch);
902 unsigned long this_instr =
903 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
904
905 unsigned long svc_operand = (0x00ffffff & this_instr);
906 if (svc_operand) /* OABI. */
907 {
908 svc_number = svc_operand - 0x900000;
909 }
910 else /* EABI. */
911 {
912 svc_number = get_frame_register_unsigned (frame, 7);
913 }
914
915 return_addr = pc + 4;
916 }
917
918 arm_linux_sigreturn_return_addr (frame, svc_number, &return_addr, &is_thumb);
919
920 /* Addresses for calling Thumb functions have the bit 0 set. */
921 if (is_thumb)
922 return_addr |= 1;
923
924 return return_addr;
925 }
926
927
928 /* Insert a single step breakpoint at the next executed instruction. */
929
930 static int
931 arm_linux_software_single_step (struct frame_info *frame)
932 {
933 struct gdbarch *gdbarch = get_frame_arch (frame);
934 struct address_space *aspace = get_frame_address_space (frame);
935 CORE_ADDR next_pc;
936
937 if (arm_deal_with_atomic_sequence (frame))
938 return 1;
939
940 next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
941
942 /* The Linux kernel offers some user-mode helpers in a high page. We can
943 not read this page (as of 2.6.23), and even if we could then we couldn't
944 set breakpoints in it, and even if we could then the atomic operations
945 would fail when interrupted. They are all called as functions and return
946 to the address in LR, so step to there instead. */
947 if (next_pc > 0xffff0000)
948 next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
949
950 arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
951
952 return 1;
953 }
954
955 /* Support for displaced stepping of Linux SVC instructions. */
956
957 static void
958 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
959 struct regcache *regs,
960 struct displaced_step_closure *dsc)
961 {
962 CORE_ADDR from = dsc->insn_addr;
963 ULONGEST apparent_pc;
964 int within_scratch;
965
966 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
967
968 within_scratch = (apparent_pc >= dsc->scratch_base
969 && apparent_pc < (dsc->scratch_base
970 + DISPLACED_MODIFIED_INSNS * 4 + 4));
971
972 if (debug_displaced)
973 {
974 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
975 "SVC step ", (unsigned long) apparent_pc);
976 if (within_scratch)
977 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
978 else
979 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
980 }
981
982 if (within_scratch)
983 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
984 }
985
986 static int
987 arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
988 struct displaced_step_closure *dsc)
989 {
990 CORE_ADDR return_to = 0;
991
992 struct frame_info *frame;
993 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
994 int is_sigreturn = 0;
995 int is_thumb;
996
997 frame = get_current_frame ();
998
999 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
1000 &return_to, &is_thumb);
1001 if (is_sigreturn)
1002 {
1003 struct symtab_and_line sal;
1004
1005 if (debug_displaced)
1006 fprintf_unfiltered (gdb_stdlog, "displaced: found "
1007 "sigreturn/rt_sigreturn SVC call. PC in frame = %lx\n",
1008 (unsigned long) get_frame_pc (frame));
1009
1010 if (debug_displaced)
1011 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
1012 "Setting momentary breakpoint.\n", (unsigned long) return_to);
1013
1014 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
1015 == NULL);
1016
1017 sal = find_pc_line (return_to, 0);
1018 sal.pc = return_to;
1019 sal.section = find_pc_overlay (return_to);
1020 sal.explicit_pc = 1;
1021
1022 frame = get_prev_frame (frame);
1023
1024 if (frame)
1025 {
1026 inferior_thread ()->control.step_resume_breakpoint
1027 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
1028 bp_step_resume);
1029
1030 /* set_momentary_breakpoint invalidates FRAME. */
1031 frame = NULL;
1032
1033 /* We need to make sure we actually insert the momentary
1034 breakpoint set above. */
1035 insert_breakpoints ();
1036 }
1037 else if (debug_displaced)
1038 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
1039 "frame to set momentary breakpoint for "
1040 "sigreturn/rt_sigreturn\n");
1041 }
1042 else if (debug_displaced)
1043 fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
1044 "SVC call not in signal trampoline frame\n");
1045
1046
1047 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1048 location, else nothing.
1049 Insn: unmodified svc.
1050 Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
1051 else leave pc alone. */
1052
1053
1054 dsc->cleanup = &arm_linux_cleanup_svc;
1055 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1056 instruction. */
1057 dsc->wrote_to_pc = 1;
1058
1059 return 0;
1060 }
1061
1062
1063 /* The following two functions implement single-stepping over calls to Linux
1064 kernel helper routines, which perform e.g. atomic operations on architecture
1065 variants which don't support them natively.
1066
1067 When this function is called, the PC will be pointing at the kernel helper
1068 (at an address inaccessible to GDB), and r14 will point to the return
1069 address. Displaced stepping always executes code in the copy area:
1070 so, make the copy-area instruction branch back to the kernel helper (the
1071 "from" address), and make r14 point to the breakpoint in the copy area. In
1072 that way, we regain control once the kernel helper returns, and can clean
1073 up appropriately (as if we had just returned from the kernel helper as it
1074 would have been called from the non-displaced location). */
1075
1076 static void
1077 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
1078 struct regcache *regs,
1079 struct displaced_step_closure *dsc)
1080 {
1081 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1082 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1083 }
1084
1085 static void
1086 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1087 CORE_ADDR to, struct regcache *regs,
1088 struct displaced_step_closure *dsc)
1089 {
1090 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1091
1092 dsc->numinsns = 1;
1093 dsc->insn_addr = from;
1094 dsc->cleanup = &cleanup_kernel_helper_return;
1095 /* Say we wrote to the PC, else cleanup will set PC to the next
1096 instruction in the helper, which isn't helpful. */
1097 dsc->wrote_to_pc = 1;
1098
1099 /* Preparation: tmp[0] <- r14
1100 r14 <- <scratch space>+4
1101 *(<scratch space>+8) <- from
1102 Insn: ldr pc, [r14, #4]
1103 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1104
1105 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
1106 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1107 CANNOT_WRITE_PC);
1108 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1109
1110 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1111 }
1112
1113 /* Linux-specific displaced step instruction copying function. Detects when
1114 the program has stepped into a Linux kernel helper routine (which must be
1115 handled as a special case), falling back to arm_displaced_step_copy_insn()
1116 if it hasn't. */
1117
1118 static struct displaced_step_closure *
1119 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1120 CORE_ADDR from, CORE_ADDR to,
1121 struct regcache *regs)
1122 {
1123 struct displaced_step_closure *dsc
1124 = xmalloc (sizeof (struct displaced_step_closure));
1125
1126 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1127 stop at the return location. */
1128 if (from > 0xffff0000)
1129 {
1130 if (debug_displaced)
1131 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1132 "at %.8lx\n", (unsigned long) from);
1133
1134 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
1135 }
1136 else
1137 {
1138 /* Override the default handling of SVC instructions. */
1139 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1140
1141 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
1142 }
1143
1144 arm_displaced_init_closure (gdbarch, from, to, dsc);
1145
1146 return dsc;
1147 }
1148
1149 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1150 gdbarch.h. */
1151
1152 static int
1153 arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1154 {
1155 return (*s == '#' || *s == '$' || isdigit (*s) /* Literal number. */
1156 || *s == '[' /* Register indirection or
1157 displacement. */
1158 || isalpha (*s)); /* Register value. */
1159 }
1160
1161 /* This routine is used to parse a special token in ARM's assembly.
1162
1163 The special tokens parsed by it are:
1164
1165 - Register displacement (e.g, [fp, #-8])
1166
1167 It returns one if the special token has been parsed successfully,
1168 or zero if the current token is not considered special. */
1169
1170 static int
1171 arm_stap_parse_special_token (struct gdbarch *gdbarch,
1172 struct stap_parse_info *p)
1173 {
1174 if (*p->arg == '[')
1175 {
1176 /* Temporary holder for lookahead. */
1177 const char *tmp = p->arg;
1178 char *endp;
1179 /* Used to save the register name. */
1180 const char *start;
1181 char *regname;
1182 int len, offset;
1183 int got_minus = 0;
1184 long displacement;
1185 struct stoken str;
1186
1187 ++tmp;
1188 start = tmp;
1189
1190 /* Register name. */
1191 while (isalnum (*tmp))
1192 ++tmp;
1193
1194 if (*tmp != ',')
1195 return 0;
1196
1197 len = tmp - start;
1198 regname = alloca (len + 2);
1199
1200 offset = 0;
1201 if (isdigit (*start))
1202 {
1203 /* If we are dealing with a register whose name begins with a
1204 digit, it means we should prefix the name with the letter
1205 `r', because GDB expects this name pattern. Otherwise (e.g.,
1206 we are dealing with the register `fp'), we don't need to
1207 add such a prefix. */
1208 regname[0] = 'r';
1209 offset = 1;
1210 }
1211
1212 strncpy (regname + offset, start, len);
1213 len += offset;
1214 regname[len] = '\0';
1215
1216 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1217 error (_("Invalid register name `%s' on expression `%s'."),
1218 regname, p->saved_arg);
1219
1220 ++tmp;
1221 tmp = skip_spaces_const (tmp);
1222 if (*tmp == '#' || *tmp == '$')
1223 ++tmp;
1224
1225 if (*tmp == '-')
1226 {
1227 ++tmp;
1228 got_minus = 1;
1229 }
1230
1231 displacement = strtol (tmp, &endp, 10);
1232 tmp = endp;
1233
1234 /* Skipping last `]'. */
1235 if (*tmp++ != ']')
1236 return 0;
1237
1238 /* The displacement. */
1239 write_exp_elt_opcode (&p->pstate, OP_LONG);
1240 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
1241 write_exp_elt_longcst (&p->pstate, displacement);
1242 write_exp_elt_opcode (&p->pstate, OP_LONG);
1243 if (got_minus)
1244 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
1245
1246 /* The register name. */
1247 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1248 str.ptr = regname;
1249 str.length = len;
1250 write_exp_string (&p->pstate, str);
1251 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1252
1253 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
1254
1255 /* Casting to the expected type. */
1256 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1257 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
1258 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1259
1260 write_exp_elt_opcode (&p->pstate, UNOP_IND);
1261
1262 p->arg = tmp;
1263 }
1264 else
1265 return 0;
1266
1267 return 1;
1268 }
1269
1270 /* ARM process record-replay constructs: syscall, signal etc. */
1271
1272 struct linux_record_tdep arm_linux_record_tdep;
1273
1274 /* arm_canonicalize_syscall maps from the native arm Linux set
1275 of syscall ids into a canonical set of syscall ids used by
1276 process record. */
1277
1278 static enum gdb_syscall
1279 arm_canonicalize_syscall (int syscall)
1280 {
1281 enum { sys_process_vm_writev = 377 };
1282
1283 if (syscall <= gdb_sys_sched_getaffinity)
1284 return syscall;
1285 else if (syscall >= 243 && syscall <= 247)
1286 return syscall + 2;
1287 else if (syscall >= 248 && syscall <= 253)
1288 return syscall + 4;
1289
1290 return -1;
1291 }
1292
1293 /* Record all registers but PC register for process-record. */
1294
1295 static int
1296 arm_all_but_pc_registers_record (struct regcache *regcache)
1297 {
1298 int i;
1299
1300 for (i = 0; i < ARM_PC_REGNUM; i++)
1301 {
1302 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM + i))
1303 return -1;
1304 }
1305
1306 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1307 return -1;
1308
1309 return 0;
1310 }
1311
1312 /* Handler for arm system call instruction recording. */
1313
1314 static int
1315 arm_linux_syscall_record (struct regcache *regcache, unsigned long svc_number)
1316 {
1317 int ret = 0;
1318 enum gdb_syscall syscall_gdb;
1319
1320 syscall_gdb = arm_canonicalize_syscall (svc_number);
1321
1322 if (syscall_gdb < 0)
1323 {
1324 printf_unfiltered (_("Process record and replay target doesn't "
1325 "support syscall number %s\n"),
1326 plongest (svc_number));
1327 return -1;
1328 }
1329
1330 if (syscall_gdb == gdb_sys_sigreturn
1331 || syscall_gdb == gdb_sys_rt_sigreturn)
1332 {
1333 if (arm_all_but_pc_registers_record (regcache))
1334 return -1;
1335 return 0;
1336 }
1337
1338 ret = record_linux_system_call (syscall_gdb, regcache,
1339 &arm_linux_record_tdep);
1340 if (ret != 0)
1341 return ret;
1342
1343 /* Record the return value of the system call. */
1344 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM))
1345 return -1;
1346 /* Record LR. */
1347 if (record_full_arch_list_add_reg (regcache, ARM_LR_REGNUM))
1348 return -1;
1349 /* Record CPSR. */
1350 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1351 return -1;
1352
1353 return 0;
1354 }
1355
1356 /* Implement the skip_trampoline_code gdbarch method. */
1357
1358 static CORE_ADDR
1359 arm_linux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1360 {
1361 CORE_ADDR target_pc = arm_skip_stub (frame, pc);
1362
1363 if (target_pc != 0)
1364 return target_pc;
1365
1366 return find_solib_trampoline_target (frame, pc);
1367 }
1368
1369 static void
1370 arm_linux_init_abi (struct gdbarch_info info,
1371 struct gdbarch *gdbarch)
1372 {
1373 static const char *const stap_integer_prefixes[] = { "#", "$", "", NULL };
1374 static const char *const stap_register_prefixes[] = { "r", NULL };
1375 static const char *const stap_register_indirection_prefixes[] = { "[",
1376 NULL };
1377 static const char *const stap_register_indirection_suffixes[] = { "]",
1378 NULL };
1379 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1380
1381 linux_init_abi (info, gdbarch);
1382
1383 tdep->lowest_pc = 0x8000;
1384 if (info.byte_order == BFD_ENDIAN_BIG)
1385 {
1386 if (tdep->arm_abi == ARM_ABI_AAPCS)
1387 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1388 else
1389 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
1390 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
1391 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
1392 }
1393 else
1394 {
1395 if (tdep->arm_abi == ARM_ABI_AAPCS)
1396 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1397 else
1398 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
1399 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
1400 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
1401 }
1402 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
1403 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
1404 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
1405
1406 if (tdep->fp_model == ARM_FLOAT_AUTO)
1407 tdep->fp_model = ARM_FLOAT_FPA;
1408
1409 switch (tdep->fp_model)
1410 {
1411 case ARM_FLOAT_FPA:
1412 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1413 break;
1414 case ARM_FLOAT_SOFT_FPA:
1415 case ARM_FLOAT_SOFT_VFP:
1416 case ARM_FLOAT_VFP:
1417 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1418 break;
1419 default:
1420 internal_error
1421 (__FILE__, __LINE__,
1422 _("arm_linux_init_abi: Floating point model not supported"));
1423 break;
1424 }
1425 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
1426
1427 set_solib_svr4_fetch_link_map_offsets
1428 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1429
1430 /* Single stepping. */
1431 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
1432
1433 /* Shared library handling. */
1434 set_gdbarch_skip_trampoline_code (gdbarch, arm_linux_skip_trampoline_code);
1435 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1436
1437 /* Enable TLS support. */
1438 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1439 svr4_fetch_objfile_link_map);
1440
1441 tramp_frame_prepend_unwinder (gdbarch,
1442 &arm_linux_sigreturn_tramp_frame);
1443 tramp_frame_prepend_unwinder (gdbarch,
1444 &arm_linux_rt_sigreturn_tramp_frame);
1445 tramp_frame_prepend_unwinder (gdbarch,
1446 &arm_eabi_linux_sigreturn_tramp_frame);
1447 tramp_frame_prepend_unwinder (gdbarch,
1448 &arm_eabi_linux_rt_sigreturn_tramp_frame);
1449 tramp_frame_prepend_unwinder (gdbarch,
1450 &thumb2_eabi_linux_sigreturn_tramp_frame);
1451 tramp_frame_prepend_unwinder (gdbarch,
1452 &thumb2_eabi_linux_rt_sigreturn_tramp_frame);
1453 tramp_frame_prepend_unwinder (gdbarch,
1454 &arm_linux_restart_syscall_tramp_frame);
1455 tramp_frame_prepend_unwinder (gdbarch,
1456 &arm_kernel_linux_restart_syscall_tramp_frame);
1457
1458 /* Core file support. */
1459 set_gdbarch_regset_from_core_section (gdbarch,
1460 arm_linux_regset_from_core_section);
1461 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1462
1463 if (tdep->have_vfp_registers)
1464 set_gdbarch_core_regset_sections (gdbarch, arm_linux_vfp_regset_sections);
1465 else if (tdep->have_fpa_registers)
1466 set_gdbarch_core_regset_sections (gdbarch, arm_linux_fpa_regset_sections);
1467
1468 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
1469
1470 /* Displaced stepping. */
1471 set_gdbarch_displaced_step_copy_insn (gdbarch,
1472 arm_linux_displaced_step_copy_insn);
1473 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1474 set_gdbarch_displaced_step_free_closure (gdbarch,
1475 simple_displaced_step_free_closure);
1476 set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
1477
1478 /* Reversible debugging, process record. */
1479 set_gdbarch_process_record (gdbarch, arm_process_record);
1480
1481 /* SystemTap functions. */
1482 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1483 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
1484 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1485 stap_register_indirection_prefixes);
1486 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1487 stap_register_indirection_suffixes);
1488 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1489 set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1490 set_gdbarch_stap_parse_special_token (gdbarch,
1491 arm_stap_parse_special_token);
1492
1493 tdep->syscall_next_pc = arm_linux_syscall_next_pc;
1494
1495 /* `catch syscall' */
1496 set_xml_syscall_file_name ("syscalls/arm-linux.xml");
1497 set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1498
1499 /* Syscall record. */
1500 tdep->arm_syscall_record = arm_linux_syscall_record;
1501
1502 /* Initialize the arm_linux_record_tdep. */
1503 /* These values are the size of the type that will be used in a system
1504 call. They are obtained from Linux Kernel source. */
1505 arm_linux_record_tdep.size_pointer
1506 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1507 arm_linux_record_tdep.size__old_kernel_stat = 32;
1508 arm_linux_record_tdep.size_tms = 16;
1509 arm_linux_record_tdep.size_loff_t = 8;
1510 arm_linux_record_tdep.size_flock = 16;
1511 arm_linux_record_tdep.size_oldold_utsname = 45;
1512 arm_linux_record_tdep.size_ustat = 20;
1513 arm_linux_record_tdep.size_old_sigaction = 140;
1514 arm_linux_record_tdep.size_old_sigset_t = 128;
1515 arm_linux_record_tdep.size_rlimit = 8;
1516 arm_linux_record_tdep.size_rusage = 72;
1517 arm_linux_record_tdep.size_timeval = 8;
1518 arm_linux_record_tdep.size_timezone = 8;
1519 arm_linux_record_tdep.size_old_gid_t = 2;
1520 arm_linux_record_tdep.size_old_uid_t = 2;
1521 arm_linux_record_tdep.size_fd_set = 128;
1522 arm_linux_record_tdep.size_dirent = 268;
1523 arm_linux_record_tdep.size_dirent64 = 276;
1524 arm_linux_record_tdep.size_statfs = 64;
1525 arm_linux_record_tdep.size_statfs64 = 84;
1526 arm_linux_record_tdep.size_sockaddr = 16;
1527 arm_linux_record_tdep.size_int
1528 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
1529 arm_linux_record_tdep.size_long
1530 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1531 arm_linux_record_tdep.size_ulong
1532 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1533 arm_linux_record_tdep.size_msghdr = 28;
1534 arm_linux_record_tdep.size_itimerval = 16;
1535 arm_linux_record_tdep.size_stat = 88;
1536 arm_linux_record_tdep.size_old_utsname = 325;
1537 arm_linux_record_tdep.size_sysinfo = 64;
1538 arm_linux_record_tdep.size_msqid_ds = 88;
1539 arm_linux_record_tdep.size_shmid_ds = 84;
1540 arm_linux_record_tdep.size_new_utsname = 390;
1541 arm_linux_record_tdep.size_timex = 128;
1542 arm_linux_record_tdep.size_mem_dqinfo = 24;
1543 arm_linux_record_tdep.size_if_dqblk = 68;
1544 arm_linux_record_tdep.size_fs_quota_stat = 68;
1545 arm_linux_record_tdep.size_timespec = 8;
1546 arm_linux_record_tdep.size_pollfd = 8;
1547 arm_linux_record_tdep.size_NFS_FHSIZE = 32;
1548 arm_linux_record_tdep.size_knfsd_fh = 132;
1549 arm_linux_record_tdep.size_TASK_COMM_LEN = 16;
1550 arm_linux_record_tdep.size_sigaction = 140;
1551 arm_linux_record_tdep.size_sigset_t = 8;
1552 arm_linux_record_tdep.size_siginfo_t = 128;
1553 arm_linux_record_tdep.size_cap_user_data_t = 12;
1554 arm_linux_record_tdep.size_stack_t = 12;
1555 arm_linux_record_tdep.size_off_t = arm_linux_record_tdep.size_long;
1556 arm_linux_record_tdep.size_stat64 = 96;
1557 arm_linux_record_tdep.size_gid_t = 2;
1558 arm_linux_record_tdep.size_uid_t = 2;
1559 arm_linux_record_tdep.size_PAGE_SIZE = 4096;
1560 arm_linux_record_tdep.size_flock64 = 24;
1561 arm_linux_record_tdep.size_user_desc = 16;
1562 arm_linux_record_tdep.size_io_event = 32;
1563 arm_linux_record_tdep.size_iocb = 64;
1564 arm_linux_record_tdep.size_epoll_event = 12;
1565 arm_linux_record_tdep.size_itimerspec
1566 = arm_linux_record_tdep.size_timespec * 2;
1567 arm_linux_record_tdep.size_mq_attr = 32;
1568 arm_linux_record_tdep.size_siginfo = 128;
1569 arm_linux_record_tdep.size_termios = 36;
1570 arm_linux_record_tdep.size_termios2 = 44;
1571 arm_linux_record_tdep.size_pid_t = 4;
1572 arm_linux_record_tdep.size_winsize = 8;
1573 arm_linux_record_tdep.size_serial_struct = 60;
1574 arm_linux_record_tdep.size_serial_icounter_struct = 80;
1575 arm_linux_record_tdep.size_hayes_esp_config = 12;
1576 arm_linux_record_tdep.size_size_t = 4;
1577 arm_linux_record_tdep.size_iovec = 8;
1578
1579 /* These values are the second argument of system call "sys_ioctl".
1580 They are obtained from Linux Kernel source. */
1581 arm_linux_record_tdep.ioctl_TCGETS = 0x5401;
1582 arm_linux_record_tdep.ioctl_TCSETS = 0x5402;
1583 arm_linux_record_tdep.ioctl_TCSETSW = 0x5403;
1584 arm_linux_record_tdep.ioctl_TCSETSF = 0x5404;
1585 arm_linux_record_tdep.ioctl_TCGETA = 0x5405;
1586 arm_linux_record_tdep.ioctl_TCSETA = 0x5406;
1587 arm_linux_record_tdep.ioctl_TCSETAW = 0x5407;
1588 arm_linux_record_tdep.ioctl_TCSETAF = 0x5408;
1589 arm_linux_record_tdep.ioctl_TCSBRK = 0x5409;
1590 arm_linux_record_tdep.ioctl_TCXONC = 0x540a;
1591 arm_linux_record_tdep.ioctl_TCFLSH = 0x540b;
1592 arm_linux_record_tdep.ioctl_TIOCEXCL = 0x540c;
1593 arm_linux_record_tdep.ioctl_TIOCNXCL = 0x540d;
1594 arm_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e;
1595 arm_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f;
1596 arm_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
1597 arm_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
1598 arm_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
1599 arm_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
1600 arm_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
1601 arm_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
1602 arm_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
1603 arm_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
1604 arm_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
1605 arm_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
1606 arm_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a;
1607 arm_linux_record_tdep.ioctl_FIONREAD = 0x541b;
1608 arm_linux_record_tdep.ioctl_TIOCINQ = arm_linux_record_tdep.ioctl_FIONREAD;
1609 arm_linux_record_tdep.ioctl_TIOCLINUX = 0x541c;
1610 arm_linux_record_tdep.ioctl_TIOCCONS = 0x541d;
1611 arm_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e;
1612 arm_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f;
1613 arm_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
1614 arm_linux_record_tdep.ioctl_FIONBIO = 0x5421;
1615 arm_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
1616 arm_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1617 arm_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1618 arm_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1619 arm_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1620 arm_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1621 arm_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1622 arm_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1623 arm_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1624 arm_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1625 arm_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1626 arm_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1627 arm_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1628 arm_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1629 arm_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1630 arm_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1631 arm_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1632 arm_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1633 arm_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1634 arm_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1635 arm_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1636 arm_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1637 arm_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1638 arm_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1639 arm_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a;
1640 arm_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b;
1641 arm_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c;
1642 arm_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d;
1643 arm_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e;
1644 arm_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f;
1645 arm_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1646
1647 /* These values are the second argument of system call "sys_fcntl"
1648 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1649 arm_linux_record_tdep.fcntl_F_GETLK = 5;
1650 arm_linux_record_tdep.fcntl_F_GETLK64 = 12;
1651 arm_linux_record_tdep.fcntl_F_SETLK64 = 13;
1652 arm_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1653
1654 arm_linux_record_tdep.arg1 = ARM_A1_REGNUM + 1;
1655 arm_linux_record_tdep.arg2 = ARM_A1_REGNUM + 2;
1656 arm_linux_record_tdep.arg3 = ARM_A1_REGNUM + 3;
1657 arm_linux_record_tdep.arg4 = ARM_A1_REGNUM + 3;
1658 }
1659
1660 /* Provide a prototype to silence -Wmissing-prototypes. */
1661 extern initialize_file_ftype _initialize_arm_linux_tdep;
1662
1663 void
1664 _initialize_arm_linux_tdep (void)
1665 {
1666 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1667 arm_linux_init_abi);
1668 }
This page took 0.065859 seconds and 4 git commands to generate.