2006-12-31 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
1 /* GNU/Linux on ARM target support.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "target.h"
25 #include "value.h"
26 #include "gdbtypes.h"
27 #include "floatformat.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "regcache.h"
31 #include "doublest.h"
32 #include "solib-svr4.h"
33 #include "osabi.h"
34 #include "regset.h"
35 #include "trad-frame.h"
36 #include "tramp-frame.h"
37
38 #include "arm-tdep.h"
39 #include "arm-linux-tdep.h"
40 #include "glibc-tdep.h"
41
42 #include "gdb_string.h"
43
44 extern int arm_apcs_32;
45
46 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
47 is to execute a particular software interrupt, rather than use a
48 particular undefined instruction to provoke a trap. Upon exection
49 of the software interrupt the kernel stops the inferior with a
50 SIGTRAP, and wakes the debugger. */
51
52 static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
53
54 static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
55
56 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
57 the operand of the swi if old-ABI compatibility is disabled. Therefore,
58 use an undefined instruction instead. This is supported as of kernel
59 version 2.5.70 (May 2003), so should be a safe assumption for EABI
60 binaries. */
61
62 static const char eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
63
64 static const char eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
65
66 /* All the kernels which support Thumb support using a specific undefined
67 instruction for the Thumb breakpoint. */
68
69 static const char arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
70
71 static const char arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
72
73 /* Description of the longjmp buffer. */
74 #define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
75 #define ARM_LINUX_JB_PC 21
76
77 /* Extract from an array REGBUF containing the (raw) register state
78 a function return value of type TYPE, and copy that, in virtual format,
79 into VALBUF. */
80 /* FIXME rearnsha/2002-02-23: This function shouldn't be necessary.
81 The ARM generic one should be able to handle the model used by
82 linux and the low-level formatting of the registers should be
83 hidden behind the regcache abstraction. */
84 static void
85 arm_linux_extract_return_value (struct type *type,
86 gdb_byte regbuf[],
87 gdb_byte *valbuf)
88 {
89 /* ScottB: This needs to be looked at to handle the different
90 floating point emulators on ARM GNU/Linux. Right now the code
91 assumes that fetch inferior registers does the right thing for
92 GDB. I suspect this won't handle NWFPE registers correctly, nor
93 will the default ARM version (arm_extract_return_value()). */
94
95 int regnum = ((TYPE_CODE_FLT == TYPE_CODE (type))
96 ? ARM_F0_REGNUM : ARM_A1_REGNUM);
97 memcpy (valbuf, &regbuf[DEPRECATED_REGISTER_BYTE (regnum)], TYPE_LENGTH (type));
98 }
99
100 /*
101 Dynamic Linking on ARM GNU/Linux
102 --------------------------------
103
104 Note: PLT = procedure linkage table
105 GOT = global offset table
106
107 As much as possible, ELF dynamic linking defers the resolution of
108 jump/call addresses until the last minute. The technique used is
109 inspired by the i386 ELF design, and is based on the following
110 constraints.
111
112 1) The calling technique should not force a change in the assembly
113 code produced for apps; it MAY cause changes in the way assembly
114 code is produced for position independent code (i.e. shared
115 libraries).
116
117 2) The technique must be such that all executable areas must not be
118 modified; and any modified areas must not be executed.
119
120 To do this, there are three steps involved in a typical jump:
121
122 1) in the code
123 2) through the PLT
124 3) using a pointer from the GOT
125
126 When the executable or library is first loaded, each GOT entry is
127 initialized to point to the code which implements dynamic name
128 resolution and code finding. This is normally a function in the
129 program interpreter (on ARM GNU/Linux this is usually
130 ld-linux.so.2, but it does not have to be). On the first
131 invocation, the function is located and the GOT entry is replaced
132 with the real function address. Subsequent calls go through steps
133 1, 2 and 3 and end up calling the real code.
134
135 1) In the code:
136
137 b function_call
138 bl function_call
139
140 This is typical ARM code using the 26 bit relative branch or branch
141 and link instructions. The target of the instruction
142 (function_call is usually the address of the function to be called.
143 In position independent code, the target of the instruction is
144 actually an entry in the PLT when calling functions in a shared
145 library. Note that this call is identical to a normal function
146 call, only the target differs.
147
148 2) In the PLT:
149
150 The PLT is a synthetic area, created by the linker. It exists in
151 both executables and libraries. It is an array of stubs, one per
152 imported function call. It looks like this:
153
154 PLT[0]:
155 str lr, [sp, #-4]! @push the return address (lr)
156 ldr lr, [pc, #16] @load from 6 words ahead
157 add lr, pc, lr @form an address for GOT[0]
158 ldr pc, [lr, #8]! @jump to the contents of that addr
159
160 The return address (lr) is pushed on the stack and used for
161 calculations. The load on the second line loads the lr with
162 &GOT[3] - . - 20. The addition on the third leaves:
163
164 lr = (&GOT[3] - . - 20) + (. + 8)
165 lr = (&GOT[3] - 12)
166 lr = &GOT[0]
167
168 On the fourth line, the pc and lr are both updated, so that:
169
170 pc = GOT[2]
171 lr = &GOT[0] + 8
172 = &GOT[2]
173
174 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
175 "tight", but allows us to keep all the PLT entries the same size.
176
177 PLT[n+1]:
178 ldr ip, [pc, #4] @load offset from gotoff
179 add ip, pc, ip @add the offset to the pc
180 ldr pc, [ip] @jump to that address
181 gotoff: .word GOT[n+3] - .
182
183 The load on the first line, gets an offset from the fourth word of
184 the PLT entry. The add on the second line makes ip = &GOT[n+3],
185 which contains either a pointer to PLT[0] (the fixup trampoline) or
186 a pointer to the actual code.
187
188 3) In the GOT:
189
190 The GOT contains helper pointers for both code (PLT) fixups and
191 data fixups. The first 3 entries of the GOT are special. The next
192 M entries (where M is the number of entries in the PLT) belong to
193 the PLT fixups. The next D (all remaining) entries belong to
194 various data fixups. The actual size of the GOT is 3 + M + D.
195
196 The GOT is also a synthetic area, created by the linker. It exists
197 in both executables and libraries. When the GOT is first
198 initialized , all the GOT entries relating to PLT fixups are
199 pointing to code back at PLT[0].
200
201 The special entries in the GOT are:
202
203 GOT[0] = linked list pointer used by the dynamic loader
204 GOT[1] = pointer to the reloc table for this module
205 GOT[2] = pointer to the fixup/resolver code
206
207 The first invocation of function call comes through and uses the
208 fixup/resolver code. On the entry to the fixup/resolver code:
209
210 ip = &GOT[n+3]
211 lr = &GOT[2]
212 stack[0] = return address (lr) of the function call
213 [r0, r1, r2, r3] are still the arguments to the function call
214
215 This is enough information for the fixup/resolver code to work
216 with. Before the fixup/resolver code returns, it actually calls
217 the requested function and repairs &GOT[n+3]. */
218
219 /* The constants below were determined by examining the following files
220 in the linux kernel sources:
221
222 arch/arm/kernel/signal.c
223 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
224 include/asm-arm/unistd.h
225 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
226
227 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
228 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
229
230 /* For ARM EABI, the syscall number is not in the SWI instruction
231 (instead it is loaded into r7). We recognize the pattern that
232 glibc uses... alternatively, we could arrange to do this by
233 function name, but they are not always exported. */
234 #define ARM_SET_R7_SIGRETURN 0xe3a07077
235 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
236 #define ARM_EABI_SYSCALL 0xef000000
237
238 static void
239 arm_linux_sigtramp_cache (struct frame_info *next_frame,
240 struct trad_frame_cache *this_cache,
241 CORE_ADDR func, int regs_offset)
242 {
243 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
244 CORE_ADDR base = sp + regs_offset;
245 int i;
246
247 for (i = 0; i < 16; i++)
248 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
249
250 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
251
252 /* The VFP or iWMMXt registers may be saved on the stack, but there's
253 no reliable way to restore them (yet). */
254
255 /* Save a frame ID. */
256 trad_frame_set_id (this_cache, frame_id_build (sp, func));
257 }
258
259 /* There are a couple of different possible stack layouts that
260 we need to support.
261
262 Before version 2.6.18, the kernel used completely independent
263 layouts for non-RT and RT signals. For non-RT signals the stack
264 began directly with a struct sigcontext. For RT signals the stack
265 began with two redundant pointers (to the siginfo and ucontext),
266 and then the siginfo and ucontext.
267
268 As of version 2.6.18, the non-RT signal frame layout starts with
269 a ucontext and the RT signal frame starts with a siginfo and then
270 a ucontext. Also, the ucontext now has a designated save area
271 for coprocessor registers.
272
273 For RT signals, it's easy to tell the difference: we look for
274 pinfo, the pointer to the siginfo. If it has the expected
275 value, we have an old layout. If it doesn't, we have the new
276 layout.
277
278 For non-RT signals, it's a bit harder. We need something in one
279 layout or the other with a recognizable offset and value. We can't
280 use the return trampoline, because ARM usually uses SA_RESTORER,
281 in which case the stack return trampoline is not filled in.
282 We can't use the saved stack pointer, because sigaltstack might
283 be in use. So for now we guess the new layout... */
284
285 /* There are three words (trap_no, error_code, oldmask) in
286 struct sigcontext before r0. */
287 #define ARM_SIGCONTEXT_R0 0xc
288
289 /* There are five words (uc_flags, uc_link, and three for uc_stack)
290 in the ucontext_t before the sigcontext. */
291 #define ARM_UCONTEXT_SIGCONTEXT 0x14
292
293 /* There are three elements in an rt_sigframe before the ucontext:
294 pinfo, puc, and info. The first two are pointers and the third
295 is a struct siginfo, with size 128 bytes. We could follow puc
296 to the ucontext, but it's simpler to skip the whole thing. */
297 #define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
298 #define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
299
300 #define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
301
302 #define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
303
304 static void
305 arm_linux_sigreturn_init (const struct tramp_frame *self,
306 struct frame_info *next_frame,
307 struct trad_frame_cache *this_cache,
308 CORE_ADDR func)
309 {
310 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
311 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4);
312
313 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
314 arm_linux_sigtramp_cache (next_frame, this_cache, func,
315 ARM_UCONTEXT_SIGCONTEXT
316 + ARM_SIGCONTEXT_R0);
317 else
318 arm_linux_sigtramp_cache (next_frame, this_cache, func,
319 ARM_SIGCONTEXT_R0);
320 }
321
322 static void
323 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
324 struct frame_info *next_frame,
325 struct trad_frame_cache *this_cache,
326 CORE_ADDR func)
327 {
328 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
329 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4);
330
331 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
332 arm_linux_sigtramp_cache (next_frame, this_cache, func,
333 ARM_OLD_RT_SIGFRAME_UCONTEXT
334 + ARM_UCONTEXT_SIGCONTEXT
335 + ARM_SIGCONTEXT_R0);
336 else
337 arm_linux_sigtramp_cache (next_frame, this_cache, func,
338 ARM_NEW_RT_SIGFRAME_UCONTEXT
339 + ARM_UCONTEXT_SIGCONTEXT
340 + ARM_SIGCONTEXT_R0);
341 }
342
343 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
344 SIGTRAMP_FRAME,
345 4,
346 {
347 { ARM_LINUX_SIGRETURN_INSTR, -1 },
348 { TRAMP_SENTINEL_INSN }
349 },
350 arm_linux_sigreturn_init
351 };
352
353 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
354 SIGTRAMP_FRAME,
355 4,
356 {
357 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
358 { TRAMP_SENTINEL_INSN }
359 },
360 arm_linux_rt_sigreturn_init
361 };
362
363 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
364 SIGTRAMP_FRAME,
365 4,
366 {
367 { ARM_SET_R7_SIGRETURN, -1 },
368 { ARM_EABI_SYSCALL, -1 },
369 { TRAMP_SENTINEL_INSN }
370 },
371 arm_linux_sigreturn_init
372 };
373
374 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
375 SIGTRAMP_FRAME,
376 4,
377 {
378 { ARM_SET_R7_RT_SIGRETURN, -1 },
379 { ARM_EABI_SYSCALL, -1 },
380 { TRAMP_SENTINEL_INSN }
381 },
382 arm_linux_rt_sigreturn_init
383 };
384
385 /* Core file and register set support. */
386
387 #define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
388
389 void
390 arm_linux_supply_gregset (const struct regset *regset,
391 struct regcache *regcache,
392 int regnum, const void *gregs_buf, size_t len)
393 {
394 const gdb_byte *gregs = gregs_buf;
395 int regno;
396 CORE_ADDR reg_pc;
397 gdb_byte pc_buf[INT_REGISTER_SIZE];
398
399 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
400 if (regnum == -1 || regnum == regno)
401 regcache_raw_supply (regcache, regno,
402 gregs + INT_REGISTER_SIZE * regno);
403
404 if (regnum == ARM_PS_REGNUM || regnum == -1)
405 {
406 if (arm_apcs_32)
407 regcache_raw_supply (regcache, ARM_PS_REGNUM,
408 gregs + INT_REGISTER_SIZE * ARM_CPSR_REGNUM);
409 else
410 regcache_raw_supply (regcache, ARM_PS_REGNUM,
411 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
412 }
413
414 if (regnum == ARM_PC_REGNUM || regnum == -1)
415 {
416 reg_pc = extract_unsigned_integer (gregs
417 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
418 INT_REGISTER_SIZE);
419 reg_pc = ADDR_BITS_REMOVE (reg_pc);
420 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, reg_pc);
421 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
422 }
423 }
424
425 void
426 arm_linux_collect_gregset (const struct regset *regset,
427 const struct regcache *regcache,
428 int regnum, void *gregs_buf, size_t len)
429 {
430 gdb_byte *gregs = gregs_buf;
431 int regno;
432
433 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
434 if (regnum == -1 || regnum == regno)
435 regcache_raw_collect (regcache, regno,
436 gregs + INT_REGISTER_SIZE * regno);
437
438 if (regnum == ARM_PS_REGNUM || regnum == -1)
439 {
440 if (arm_apcs_32)
441 regcache_raw_collect (regcache, ARM_PS_REGNUM,
442 gregs + INT_REGISTER_SIZE * ARM_CPSR_REGNUM);
443 else
444 regcache_raw_collect (regcache, ARM_PS_REGNUM,
445 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
446 }
447
448 if (regnum == ARM_PC_REGNUM || regnum == -1)
449 regcache_raw_collect (regcache, ARM_PC_REGNUM,
450 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
451 }
452
453 /* Support for register format used by the NWFPE FPA emulator. */
454
455 #define typeNone 0x00
456 #define typeSingle 0x01
457 #define typeDouble 0x02
458 #define typeExtended 0x03
459
460 void
461 supply_nwfpe_register (struct regcache *regcache, int regno,
462 const gdb_byte *regs)
463 {
464 const gdb_byte *reg_data;
465 gdb_byte reg_tag;
466 gdb_byte buf[FP_REGISTER_SIZE];
467
468 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
469 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
470 memset (buf, 0, FP_REGISTER_SIZE);
471
472 switch (reg_tag)
473 {
474 case typeSingle:
475 memcpy (buf, reg_data, 4);
476 break;
477 case typeDouble:
478 memcpy (buf, reg_data + 4, 4);
479 memcpy (buf + 4, reg_data, 4);
480 break;
481 case typeExtended:
482 /* We want sign and exponent, then least significant bits,
483 then most significant. NWFPE does sign, most, least. */
484 memcpy (buf, reg_data, 4);
485 memcpy (buf + 4, reg_data + 8, 4);
486 memcpy (buf + 8, reg_data + 4, 4);
487 break;
488 default:
489 break;
490 }
491
492 regcache_raw_supply (regcache, regno, buf);
493 }
494
495 void
496 collect_nwfpe_register (const struct regcache *regcache, int regno,
497 gdb_byte *regs)
498 {
499 gdb_byte *reg_data;
500 gdb_byte reg_tag;
501 gdb_byte buf[FP_REGISTER_SIZE];
502
503 regcache_raw_collect (regcache, regno, buf);
504
505 /* NOTE drow/2006-06-07: This code uses the tag already in the
506 register buffer. I've preserved that when moving the code
507 from the native file to the target file. But this doesn't
508 always make sense. */
509
510 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
511 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
512
513 switch (reg_tag)
514 {
515 case typeSingle:
516 memcpy (reg_data, buf, 4);
517 break;
518 case typeDouble:
519 memcpy (reg_data, buf + 4, 4);
520 memcpy (reg_data + 4, buf, 4);
521 break;
522 case typeExtended:
523 memcpy (reg_data, buf, 4);
524 memcpy (reg_data + 4, buf + 8, 4);
525 memcpy (reg_data + 8, buf + 4, 4);
526 break;
527 default:
528 break;
529 }
530 }
531
532 void
533 arm_linux_supply_nwfpe (const struct regset *regset,
534 struct regcache *regcache,
535 int regnum, const void *regs_buf, size_t len)
536 {
537 const gdb_byte *regs = regs_buf;
538 int regno;
539
540 if (regnum == ARM_FPS_REGNUM || regnum == -1)
541 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
542 regs + NWFPE_FPSR_OFFSET);
543
544 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
545 if (regnum == -1 || regnum == regno)
546 supply_nwfpe_register (regcache, regno, regs);
547 }
548
549 void
550 arm_linux_collect_nwfpe (const struct regset *regset,
551 const struct regcache *regcache,
552 int regnum, void *regs_buf, size_t len)
553 {
554 gdb_byte *regs = regs_buf;
555 int regno;
556
557 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
558 if (regnum == -1 || regnum == regno)
559 collect_nwfpe_register (regcache, regno, regs);
560
561 if (regnum == ARM_FPS_REGNUM || regnum == -1)
562 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
563 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
564 }
565
566 /* Return the appropriate register set for the core section identified
567 by SECT_NAME and SECT_SIZE. */
568
569 static const struct regset *
570 arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
571 const char *sect_name, size_t sect_size)
572 {
573 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
574
575 if (strcmp (sect_name, ".reg") == 0
576 && sect_size == ARM_LINUX_SIZEOF_GREGSET)
577 {
578 if (tdep->gregset == NULL)
579 tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset,
580 arm_linux_collect_gregset);
581 return tdep->gregset;
582 }
583
584 if (strcmp (sect_name, ".reg2") == 0
585 && sect_size == ARM_LINUX_SIZEOF_NWFPE)
586 {
587 if (tdep->fpregset == NULL)
588 tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe,
589 arm_linux_collect_nwfpe);
590 return tdep->fpregset;
591 }
592
593 return NULL;
594 }
595
596 static void
597 arm_linux_init_abi (struct gdbarch_info info,
598 struct gdbarch *gdbarch)
599 {
600 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
601
602 tdep->lowest_pc = 0x8000;
603 if (info.byte_order == BFD_ENDIAN_BIG)
604 {
605 if (tdep->arm_abi == ARM_ABI_AAPCS)
606 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
607 else
608 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
609 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
610 }
611 else
612 {
613 if (tdep->arm_abi == ARM_ABI_AAPCS)
614 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
615 else
616 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
617 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
618 }
619 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
620 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
621
622 if (tdep->fp_model == ARM_FLOAT_AUTO)
623 tdep->fp_model = ARM_FLOAT_FPA;
624
625 tdep->jb_pc = ARM_LINUX_JB_PC;
626 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
627
628 set_solib_svr4_fetch_link_map_offsets
629 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
630
631 /* The following override shouldn't be needed. */
632 set_gdbarch_deprecated_extract_return_value (gdbarch, arm_linux_extract_return_value);
633
634 /* Shared library handling. */
635 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
636 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
637
638 /* Enable TLS support. */
639 set_gdbarch_fetch_tls_load_module_address (gdbarch,
640 svr4_fetch_objfile_link_map);
641
642 tramp_frame_prepend_unwinder (gdbarch,
643 &arm_linux_sigreturn_tramp_frame);
644 tramp_frame_prepend_unwinder (gdbarch,
645 &arm_linux_rt_sigreturn_tramp_frame);
646 tramp_frame_prepend_unwinder (gdbarch,
647 &arm_eabi_linux_sigreturn_tramp_frame);
648 tramp_frame_prepend_unwinder (gdbarch,
649 &arm_eabi_linux_rt_sigreturn_tramp_frame);
650
651 /* Core file support. */
652 set_gdbarch_regset_from_core_section (gdbarch,
653 arm_linux_regset_from_core_section);
654 }
655
656 void
657 _initialize_arm_linux_tdep (void)
658 {
659 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
660 arm_linux_init_abi);
661 }
This page took 0.044834 seconds and 4 git commands to generate.