* gdb.cp/maint.exp: Set complaints to a positive value.
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include <ctype.h> /* XXX for isupper () */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "gdb_string.h"
32 #include "dis-asm.h" /* For register styles. */
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "arch-utils.h"
37 #include "osabi.h"
38 #include "frame-unwind.h"
39 #include "frame-base.h"
40 #include "trad-frame.h"
41 #include "objfiles.h"
42 #include "dwarf2-frame.h"
43
44 #include "arm-tdep.h"
45 #include "gdb/sim-arm.h"
46
47 #include "elf-bfd.h"
48 #include "coff/internal.h"
49 #include "elf/arm.h"
50
51 #include "gdb_assert.h"
52
53 static int arm_debug;
54
55 /* Macros for setting and testing a bit in a minimal symbol that marks
56 it as Thumb function. The MSB of the minimal symbol's "info" field
57 is used for this purpose.
58
59 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
60 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
61
62 #define MSYMBOL_SET_SPECIAL(msym) \
63 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
64 | 0x80000000)
65
66 #define MSYMBOL_IS_SPECIAL(msym) \
67 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
68
69 /* The list of available "set arm ..." and "show arm ..." commands. */
70 static struct cmd_list_element *setarmcmdlist = NULL;
71 static struct cmd_list_element *showarmcmdlist = NULL;
72
73 /* The type of floating-point to use. Keep this in sync with enum
74 arm_float_model, and the help string in _initialize_arm_tdep. */
75 static const char *fp_model_strings[] =
76 {
77 "auto",
78 "softfpa",
79 "fpa",
80 "softvfp",
81 "vfp",
82 NULL
83 };
84
85 /* A variable that can be configured by the user. */
86 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
87 static const char *current_fp_model = "auto";
88
89 /* The ABI to use. Keep this in sync with arm_abi_kind. */
90 static const char *arm_abi_strings[] =
91 {
92 "auto",
93 "APCS",
94 "AAPCS",
95 NULL
96 };
97
98 /* A variable that can be configured by the user. */
99 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
100 static const char *arm_abi_string = "auto";
101
102 /* Number of different reg name sets (options). */
103 static int num_disassembly_options;
104
105 /* We have more registers than the disassembler as gdb can print the value
106 of special registers as well.
107 The general register names are overwritten by whatever is being used by
108 the disassembler at the moment. We also adjust the case of cpsr and fps. */
109
110 /* Initial value: Register names used in ARM's ISA documentation. */
111 static char * arm_register_name_strings[] =
112 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
113 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
114 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
115 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
116 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
117 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
118 "fps", "cpsr" }; /* 24 25 */
119 static char **arm_register_names = arm_register_name_strings;
120
121 /* Valid register name styles. */
122 static const char **valid_disassembly_styles;
123
124 /* Disassembly style to use. Default to "std" register names. */
125 static const char *disassembly_style;
126 /* Index to that option in the opcodes table. */
127 static int current_option;
128
129 /* This is used to keep the bfd arch_info in sync with the disassembly
130 style. */
131 static void set_disassembly_style_sfunc(char *, int,
132 struct cmd_list_element *);
133 static void set_disassembly_style (void);
134
135 static void convert_from_extended (const struct floatformat *, const void *,
136 void *);
137 static void convert_to_extended (const struct floatformat *, void *,
138 const void *);
139
140 struct arm_prologue_cache
141 {
142 /* The stack pointer at the time this frame was created; i.e. the
143 caller's stack pointer when this function was called. It is used
144 to identify this frame. */
145 CORE_ADDR prev_sp;
146
147 /* The frame base for this frame is just prev_sp + frame offset -
148 frame size. FRAMESIZE is the size of this stack frame, and
149 FRAMEOFFSET if the initial offset from the stack pointer (this
150 frame's stack pointer, not PREV_SP) to the frame base. */
151
152 int framesize;
153 int frameoffset;
154
155 /* The register used to hold the frame pointer for this frame. */
156 int framereg;
157
158 /* Saved register offsets. */
159 struct trad_frame_saved_reg *saved_regs;
160 };
161
162 /* Addresses for calling Thumb functions have the bit 0 set.
163 Here are some macros to test, set, or clear bit 0 of addresses. */
164 #define IS_THUMB_ADDR(addr) ((addr) & 1)
165 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
166 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
167
168 /* Set to true if the 32-bit mode is in use. */
169
170 int arm_apcs_32 = 1;
171
172 /* Determine if the program counter specified in MEMADDR is in a Thumb
173 function. */
174
175 int
176 arm_pc_is_thumb (CORE_ADDR memaddr)
177 {
178 struct minimal_symbol *sym;
179
180 /* If bit 0 of the address is set, assume this is a Thumb address. */
181 if (IS_THUMB_ADDR (memaddr))
182 return 1;
183
184 /* Thumb functions have a "special" bit set in minimal symbols. */
185 sym = lookup_minimal_symbol_by_pc (memaddr);
186 if (sym)
187 {
188 return (MSYMBOL_IS_SPECIAL (sym));
189 }
190 else
191 {
192 return 0;
193 }
194 }
195
196 /* Remove useless bits from addresses in a running program. */
197 static CORE_ADDR
198 arm_addr_bits_remove (CORE_ADDR val)
199 {
200 if (arm_apcs_32)
201 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
202 else
203 return (val & 0x03fffffc);
204 }
205
206 /* When reading symbols, we need to zap the low bit of the address,
207 which may be set to 1 for Thumb functions. */
208 static CORE_ADDR
209 arm_smash_text_address (CORE_ADDR val)
210 {
211 return val & ~1;
212 }
213
214 /* Immediately after a function call, return the saved pc. Can't
215 always go through the frames for this because on some machines the
216 new frame is not set up until the new function executes some
217 instructions. */
218
219 static CORE_ADDR
220 arm_saved_pc_after_call (struct frame_info *frame)
221 {
222 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
223 }
224
225 /* A typical Thumb prologue looks like this:
226 push {r7, lr}
227 add sp, sp, #-28
228 add r7, sp, #12
229 Sometimes the latter instruction may be replaced by:
230 mov r7, sp
231
232 or like this:
233 push {r7, lr}
234 mov r7, sp
235 sub sp, #12
236
237 or, on tpcs, like this:
238 sub sp,#16
239 push {r7, lr}
240 (many instructions)
241 mov r7, sp
242 sub sp, #12
243
244 There is always one instruction of three classes:
245 1 - push
246 2 - setting of r7
247 3 - adjusting of sp
248
249 When we have found at least one of each class we are done with the prolog.
250 Note that the "sub sp, #NN" before the push does not count.
251 */
252
253 static CORE_ADDR
254 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
255 {
256 CORE_ADDR current_pc;
257 /* findmask:
258 bit 0 - push { rlist }
259 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
260 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
261 */
262 int findmask = 0;
263
264 for (current_pc = pc;
265 current_pc + 2 < func_end && current_pc < pc + 40;
266 current_pc += 2)
267 {
268 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
269
270 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
271 {
272 findmask |= 1; /* push found */
273 }
274 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
275 sub sp, #simm */
276 {
277 if ((findmask & 1) == 0) /* before push ? */
278 continue;
279 else
280 findmask |= 4; /* add/sub sp found */
281 }
282 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
283 {
284 findmask |= 2; /* setting of r7 found */
285 }
286 else if (insn == 0x466f) /* mov r7, sp */
287 {
288 findmask |= 2; /* setting of r7 found */
289 }
290 else if (findmask == (4+2+1))
291 {
292 /* We have found one of each type of prologue instruction */
293 break;
294 }
295 else
296 /* Something in the prolog that we don't care about or some
297 instruction from outside the prolog scheduled here for
298 optimization. */
299 continue;
300 }
301
302 return current_pc;
303 }
304
305 /* Advance the PC across any function entry prologue instructions to
306 reach some "real" code.
307
308 The APCS (ARM Procedure Call Standard) defines the following
309 prologue:
310
311 mov ip, sp
312 [stmfd sp!, {a1,a2,a3,a4}]
313 stmfd sp!, {...,fp,ip,lr,pc}
314 [stfe f7, [sp, #-12]!]
315 [stfe f6, [sp, #-12]!]
316 [stfe f5, [sp, #-12]!]
317 [stfe f4, [sp, #-12]!]
318 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
319
320 static CORE_ADDR
321 arm_skip_prologue (CORE_ADDR pc)
322 {
323 unsigned long inst;
324 CORE_ADDR skip_pc;
325 CORE_ADDR func_addr, func_end = 0;
326 char *func_name;
327 struct symtab_and_line sal;
328
329 /* If we're in a dummy frame, don't even try to skip the prologue. */
330 if (deprecated_pc_in_call_dummy (pc))
331 return pc;
332
333 /* See what the symbol table says. */
334
335 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
336 {
337 struct symbol *sym;
338
339 /* Found a function. */
340 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
341 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
342 {
343 /* Don't use this trick for assembly source files. */
344 sal = find_pc_line (func_addr, 0);
345 if ((sal.line != 0) && (sal.end < func_end))
346 return sal.end;
347 }
348 }
349
350 /* Check if this is Thumb code. */
351 if (arm_pc_is_thumb (pc))
352 return thumb_skip_prologue (pc, func_end);
353
354 /* Can't find the prologue end in the symbol table, try it the hard way
355 by disassembling the instructions. */
356
357 /* Like arm_scan_prologue, stop no later than pc + 64. */
358 if (func_end == 0 || func_end > pc + 64)
359 func_end = pc + 64;
360
361 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
362 {
363 inst = read_memory_integer (skip_pc, 4);
364
365 /* "mov ip, sp" is no longer a required part of the prologue. */
366 if (inst == 0xe1a0c00d) /* mov ip, sp */
367 continue;
368
369 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
370 continue;
371
372 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
373 continue;
374
375 /* Some prologues begin with "str lr, [sp, #-4]!". */
376 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
377 continue;
378
379 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
380 continue;
381
382 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
383 continue;
384
385 /* Any insns after this point may float into the code, if it makes
386 for better instruction scheduling, so we skip them only if we
387 find them, but still consider the function to be frame-ful. */
388
389 /* We may have either one sfmfd instruction here, or several stfe
390 insns, depending on the version of floating point code we
391 support. */
392 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
393 continue;
394
395 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
396 continue;
397
398 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
399 continue;
400
401 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
402 continue;
403
404 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
405 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
406 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
407 continue;
408
409 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
410 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
411 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
412 continue;
413
414 /* Un-recognized instruction; stop scanning. */
415 break;
416 }
417
418 return skip_pc; /* End of prologue */
419 }
420
421 /* *INDENT-OFF* */
422 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
423 This function decodes a Thumb function prologue to determine:
424 1) the size of the stack frame
425 2) which registers are saved on it
426 3) the offsets of saved regs
427 4) the offset from the stack pointer to the frame pointer
428
429 A typical Thumb function prologue would create this stack frame
430 (offsets relative to FP)
431 old SP -> 24 stack parameters
432 20 LR
433 16 R7
434 R7 -> 0 local variables (16 bytes)
435 SP -> -12 additional stack space (12 bytes)
436 The frame size would thus be 36 bytes, and the frame offset would be
437 12 bytes. The frame register is R7.
438
439 The comments for thumb_skip_prolog() describe the algorithm we use
440 to detect the end of the prolog. */
441 /* *INDENT-ON* */
442
443 static void
444 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
445 {
446 CORE_ADDR prologue_start;
447 CORE_ADDR prologue_end;
448 CORE_ADDR current_pc;
449 /* Which register has been copied to register n? */
450 int saved_reg[16];
451 /* findmask:
452 bit 0 - push { rlist }
453 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
454 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
455 */
456 int findmask = 0;
457 int i;
458
459 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
460 {
461 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
462
463 if (sal.line == 0) /* no line info, use current PC */
464 prologue_end = prev_pc;
465 else if (sal.end < prologue_end) /* next line begins after fn end */
466 prologue_end = sal.end; /* (probably means no prologue) */
467 }
468 else
469 /* We're in the boondocks: allow for
470 16 pushes, an add, and "mv fp,sp". */
471 prologue_end = prologue_start + 40;
472
473 prologue_end = min (prologue_end, prev_pc);
474
475 /* Initialize the saved register map. When register H is copied to
476 register L, we will put H in saved_reg[L]. */
477 for (i = 0; i < 16; i++)
478 saved_reg[i] = i;
479
480 /* Search the prologue looking for instructions that set up the
481 frame pointer, adjust the stack pointer, and save registers.
482 Do this until all basic prolog instructions are found. */
483
484 cache->framesize = 0;
485 for (current_pc = prologue_start;
486 (current_pc < prologue_end) && ((findmask & 7) != 7);
487 current_pc += 2)
488 {
489 unsigned short insn;
490 int regno;
491 int offset;
492
493 insn = read_memory_unsigned_integer (current_pc, 2);
494
495 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
496 {
497 int mask;
498 findmask |= 1; /* push found */
499 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
500 whether to save LR (R14). */
501 mask = (insn & 0xff) | ((insn & 0x100) << 6);
502
503 /* Calculate offsets of saved R0-R7 and LR. */
504 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
505 if (mask & (1 << regno))
506 {
507 cache->framesize += 4;
508 cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
509 /* Reset saved register map. */
510 saved_reg[regno] = regno;
511 }
512 }
513 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
514 sub sp, #simm */
515 {
516 if ((findmask & 1) == 0) /* before push? */
517 continue;
518 else
519 findmask |= 4; /* add/sub sp found */
520
521 offset = (insn & 0x7f) << 2; /* get scaled offset */
522 if (insn & 0x80) /* is it signed? (==subtracting) */
523 {
524 cache->frameoffset += offset;
525 offset = -offset;
526 }
527 cache->framesize -= offset;
528 }
529 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
530 {
531 findmask |= 2; /* setting of r7 found */
532 cache->framereg = THUMB_FP_REGNUM;
533 /* get scaled offset */
534 cache->frameoffset = (insn & 0xff) << 2;
535 }
536 else if (insn == 0x466f) /* mov r7, sp */
537 {
538 findmask |= 2; /* setting of r7 found */
539 cache->framereg = THUMB_FP_REGNUM;
540 cache->frameoffset = 0;
541 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
542 }
543 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
544 {
545 int lo_reg = insn & 7; /* dest. register (r0-r7) */
546 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
547 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
548 }
549 else
550 /* Something in the prolog that we don't care about or some
551 instruction from outside the prolog scheduled here for
552 optimization. */
553 continue;
554 }
555 }
556
557 /* This function decodes an ARM function prologue to determine:
558 1) the size of the stack frame
559 2) which registers are saved on it
560 3) the offsets of saved regs
561 4) the offset from the stack pointer to the frame pointer
562 This information is stored in the "extra" fields of the frame_info.
563
564 There are two basic forms for the ARM prologue. The fixed argument
565 function call will look like:
566
567 mov ip, sp
568 stmfd sp!, {fp, ip, lr, pc}
569 sub fp, ip, #4
570 [sub sp, sp, #4]
571
572 Which would create this stack frame (offsets relative to FP):
573 IP -> 4 (caller's stack)
574 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
575 -4 LR (return address in caller)
576 -8 IP (copy of caller's SP)
577 -12 FP (caller's FP)
578 SP -> -28 Local variables
579
580 The frame size would thus be 32 bytes, and the frame offset would be
581 28 bytes. The stmfd call can also save any of the vN registers it
582 plans to use, which increases the frame size accordingly.
583
584 Note: The stored PC is 8 off of the STMFD instruction that stored it
585 because the ARM Store instructions always store PC + 8 when you read
586 the PC register.
587
588 A variable argument function call will look like:
589
590 mov ip, sp
591 stmfd sp!, {a1, a2, a3, a4}
592 stmfd sp!, {fp, ip, lr, pc}
593 sub fp, ip, #20
594
595 Which would create this stack frame (offsets relative to FP):
596 IP -> 20 (caller's stack)
597 16 A4
598 12 A3
599 8 A2
600 4 A1
601 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
602 -4 LR (return address in caller)
603 -8 IP (copy of caller's SP)
604 -12 FP (caller's FP)
605 SP -> -28 Local variables
606
607 The frame size would thus be 48 bytes, and the frame offset would be
608 28 bytes.
609
610 There is another potential complication, which is that the optimizer
611 will try to separate the store of fp in the "stmfd" instruction from
612 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
613 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
614
615 Also, note, the original version of the ARM toolchain claimed that there
616 should be an
617
618 instruction at the end of the prologue. I have never seen GCC produce
619 this, and the ARM docs don't mention it. We still test for it below in
620 case it happens...
621
622 */
623
624 static void
625 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
626 {
627 int regno, sp_offset, fp_offset, ip_offset;
628 CORE_ADDR prologue_start, prologue_end, current_pc;
629 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
630
631 /* Assume there is no frame until proven otherwise. */
632 cache->framereg = ARM_SP_REGNUM;
633 cache->framesize = 0;
634 cache->frameoffset = 0;
635
636 /* Check for Thumb prologue. */
637 if (arm_pc_is_thumb (prev_pc))
638 {
639 thumb_scan_prologue (prev_pc, cache);
640 return;
641 }
642
643 /* Find the function prologue. If we can't find the function in
644 the symbol table, peek in the stack frame to find the PC. */
645 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
646 {
647 /* One way to find the end of the prologue (which works well
648 for unoptimized code) is to do the following:
649
650 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
651
652 if (sal.line == 0)
653 prologue_end = prev_pc;
654 else if (sal.end < prologue_end)
655 prologue_end = sal.end;
656
657 This mechanism is very accurate so long as the optimizer
658 doesn't move any instructions from the function body into the
659 prologue. If this happens, sal.end will be the last
660 instruction in the first hunk of prologue code just before
661 the first instruction that the scheduler has moved from
662 the body to the prologue.
663
664 In order to make sure that we scan all of the prologue
665 instructions, we use a slightly less accurate mechanism which
666 may scan more than necessary. To help compensate for this
667 lack of accuracy, the prologue scanning loop below contains
668 several clauses which'll cause the loop to terminate early if
669 an implausible prologue instruction is encountered.
670
671 The expression
672
673 prologue_start + 64
674
675 is a suitable endpoint since it accounts for the largest
676 possible prologue plus up to five instructions inserted by
677 the scheduler. */
678
679 if (prologue_end > prologue_start + 64)
680 {
681 prologue_end = prologue_start + 64; /* See above. */
682 }
683 }
684 else
685 {
686 /* We have no symbol information. Our only option is to assume this
687 function has a standard stack frame and the normal frame register.
688 Then, we can find the value of our frame pointer on entrance to
689 the callee (or at the present moment if this is the innermost frame).
690 The value stored there should be the address of the stmfd + 8. */
691 CORE_ADDR frame_loc;
692 LONGEST return_value;
693
694 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
695 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
696 return;
697 else
698 {
699 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
700 prologue_end = prologue_start + 64; /* See above. */
701 }
702 }
703
704 if (prev_pc < prologue_end)
705 prologue_end = prev_pc;
706
707 /* Now search the prologue looking for instructions that set up the
708 frame pointer, adjust the stack pointer, and save registers.
709
710 Be careful, however, and if it doesn't look like a prologue,
711 don't try to scan it. If, for instance, a frameless function
712 begins with stmfd sp!, then we will tell ourselves there is
713 a frame, which will confuse stack traceback, as well as "finish"
714 and other operations that rely on a knowledge of the stack
715 traceback.
716
717 In the APCS, the prologue should start with "mov ip, sp" so
718 if we don't see this as the first insn, we will stop.
719
720 [Note: This doesn't seem to be true any longer, so it's now an
721 optional part of the prologue. - Kevin Buettner, 2001-11-20]
722
723 [Note further: The "mov ip,sp" only seems to be missing in
724 frameless functions at optimization level "-O2" or above,
725 in which case it is often (but not always) replaced by
726 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
727
728 sp_offset = fp_offset = ip_offset = 0;
729
730 for (current_pc = prologue_start;
731 current_pc < prologue_end;
732 current_pc += 4)
733 {
734 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
735
736 if (insn == 0xe1a0c00d) /* mov ip, sp */
737 {
738 ip_offset = 0;
739 continue;
740 }
741 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
742 {
743 unsigned imm = insn & 0xff; /* immediate value */
744 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
745 imm = (imm >> rot) | (imm << (32 - rot));
746 ip_offset = imm;
747 continue;
748 }
749 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
750 {
751 unsigned imm = insn & 0xff; /* immediate value */
752 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
753 imm = (imm >> rot) | (imm << (32 - rot));
754 ip_offset = -imm;
755 continue;
756 }
757 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
758 {
759 sp_offset -= 4;
760 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
761 continue;
762 }
763 else if ((insn & 0xffff0000) == 0xe92d0000)
764 /* stmfd sp!, {..., fp, ip, lr, pc}
765 or
766 stmfd sp!, {a1, a2, a3, a4} */
767 {
768 int mask = insn & 0xffff;
769
770 /* Calculate offsets of saved registers. */
771 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
772 if (mask & (1 << regno))
773 {
774 sp_offset -= 4;
775 cache->saved_regs[regno].addr = sp_offset;
776 }
777 }
778 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
779 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
780 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
781 {
782 /* No need to add this to saved_regs -- it's just an arg reg. */
783 continue;
784 }
785 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
786 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
787 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
788 {
789 /* No need to add this to saved_regs -- it's just an arg reg. */
790 continue;
791 }
792 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
793 {
794 unsigned imm = insn & 0xff; /* immediate value */
795 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
796 imm = (imm >> rot) | (imm << (32 - rot));
797 fp_offset = -imm + ip_offset;
798 cache->framereg = ARM_FP_REGNUM;
799 }
800 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
801 {
802 unsigned imm = insn & 0xff; /* immediate value */
803 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
804 imm = (imm >> rot) | (imm << (32 - rot));
805 sp_offset -= imm;
806 }
807 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
808 {
809 sp_offset -= 12;
810 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
811 cache->saved_regs[regno].addr = sp_offset;
812 }
813 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
814 {
815 int n_saved_fp_regs;
816 unsigned int fp_start_reg, fp_bound_reg;
817
818 if ((insn & 0x800) == 0x800) /* N0 is set */
819 {
820 if ((insn & 0x40000) == 0x40000) /* N1 is set */
821 n_saved_fp_regs = 3;
822 else
823 n_saved_fp_regs = 1;
824 }
825 else
826 {
827 if ((insn & 0x40000) == 0x40000) /* N1 is set */
828 n_saved_fp_regs = 2;
829 else
830 n_saved_fp_regs = 4;
831 }
832
833 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
834 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
835 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
836 {
837 sp_offset -= 12;
838 cache->saved_regs[fp_start_reg++].addr = sp_offset;
839 }
840 }
841 else if ((insn & 0xf0000000) != 0xe0000000)
842 break; /* Condition not true, exit early */
843 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
844 break; /* Don't scan past a block load */
845 else
846 /* The optimizer might shove anything into the prologue,
847 so we just skip what we don't recognize. */
848 continue;
849 }
850
851 /* The frame size is just the negative of the offset (from the
852 original SP) of the last thing thing we pushed on the stack.
853 The frame offset is [new FP] - [new SP]. */
854 cache->framesize = -sp_offset;
855 if (cache->framereg == ARM_FP_REGNUM)
856 cache->frameoffset = fp_offset - sp_offset;
857 else
858 cache->frameoffset = 0;
859 }
860
861 static struct arm_prologue_cache *
862 arm_make_prologue_cache (struct frame_info *next_frame)
863 {
864 int reg;
865 struct arm_prologue_cache *cache;
866 CORE_ADDR unwound_fp;
867
868 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
869 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
870
871 arm_scan_prologue (next_frame, cache);
872
873 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
874 if (unwound_fp == 0)
875 return cache;
876
877 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
878
879 /* Calculate actual addresses of saved registers using offsets
880 determined by arm_scan_prologue. */
881 for (reg = 0; reg < NUM_REGS; reg++)
882 if (trad_frame_addr_p (cache->saved_regs, reg))
883 cache->saved_regs[reg].addr += cache->prev_sp;
884
885 return cache;
886 }
887
888 /* Our frame ID for a normal frame is the current function's starting PC
889 and the caller's SP when we were called. */
890
891 static void
892 arm_prologue_this_id (struct frame_info *next_frame,
893 void **this_cache,
894 struct frame_id *this_id)
895 {
896 struct arm_prologue_cache *cache;
897 struct frame_id id;
898 CORE_ADDR func;
899
900 if (*this_cache == NULL)
901 *this_cache = arm_make_prologue_cache (next_frame);
902 cache = *this_cache;
903
904 func = frame_func_unwind (next_frame);
905
906 /* This is meant to halt the backtrace at "_start". Make sure we
907 don't halt it at a generic dummy frame. */
908 if (func <= LOWEST_PC)
909 return;
910
911 /* If we've hit a wall, stop. */
912 if (cache->prev_sp == 0)
913 return;
914
915 id = frame_id_build (cache->prev_sp, func);
916 *this_id = id;
917 }
918
919 static void
920 arm_prologue_prev_register (struct frame_info *next_frame,
921 void **this_cache,
922 int prev_regnum,
923 int *optimized,
924 enum lval_type *lvalp,
925 CORE_ADDR *addrp,
926 int *realnump,
927 gdb_byte *valuep)
928 {
929 struct arm_prologue_cache *cache;
930
931 if (*this_cache == NULL)
932 *this_cache = arm_make_prologue_cache (next_frame);
933 cache = *this_cache;
934
935 /* If we are asked to unwind the PC, then we need to return the LR
936 instead. The saved value of PC points into this frame's
937 prologue, not the next frame's resume location. */
938 if (prev_regnum == ARM_PC_REGNUM)
939 prev_regnum = ARM_LR_REGNUM;
940
941 /* SP is generally not saved to the stack, but this frame is
942 identified by NEXT_FRAME's stack pointer at the time of the call.
943 The value was already reconstructed into PREV_SP. */
944 if (prev_regnum == ARM_SP_REGNUM)
945 {
946 *lvalp = not_lval;
947 if (valuep)
948 store_unsigned_integer (valuep, 4, cache->prev_sp);
949 return;
950 }
951
952 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
953 optimized, lvalp, addrp, realnump, valuep);
954 }
955
956 struct frame_unwind arm_prologue_unwind = {
957 NORMAL_FRAME,
958 arm_prologue_this_id,
959 arm_prologue_prev_register
960 };
961
962 static const struct frame_unwind *
963 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
964 {
965 return &arm_prologue_unwind;
966 }
967
968 static struct arm_prologue_cache *
969 arm_make_stub_cache (struct frame_info *next_frame)
970 {
971 int reg;
972 struct arm_prologue_cache *cache;
973 CORE_ADDR unwound_fp;
974
975 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
976 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
977
978 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
979
980 return cache;
981 }
982
983 /* Our frame ID for a stub frame is the current SP and LR. */
984
985 static void
986 arm_stub_this_id (struct frame_info *next_frame,
987 void **this_cache,
988 struct frame_id *this_id)
989 {
990 struct arm_prologue_cache *cache;
991
992 if (*this_cache == NULL)
993 *this_cache = arm_make_stub_cache (next_frame);
994 cache = *this_cache;
995
996 *this_id = frame_id_build (cache->prev_sp,
997 frame_pc_unwind (next_frame));
998 }
999
1000 struct frame_unwind arm_stub_unwind = {
1001 NORMAL_FRAME,
1002 arm_stub_this_id,
1003 arm_prologue_prev_register
1004 };
1005
1006 static const struct frame_unwind *
1007 arm_stub_unwind_sniffer (struct frame_info *next_frame)
1008 {
1009 char dummy[4];
1010
1011 if (in_plt_section (frame_unwind_address_in_block (next_frame), NULL)
1012 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1013 return &arm_stub_unwind;
1014
1015 return NULL;
1016 }
1017
1018 static CORE_ADDR
1019 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1020 {
1021 struct arm_prologue_cache *cache;
1022
1023 if (*this_cache == NULL)
1024 *this_cache = arm_make_prologue_cache (next_frame);
1025 cache = *this_cache;
1026
1027 return cache->prev_sp + cache->frameoffset - cache->framesize;
1028 }
1029
1030 struct frame_base arm_normal_base = {
1031 &arm_prologue_unwind,
1032 arm_normal_frame_base,
1033 arm_normal_frame_base,
1034 arm_normal_frame_base
1035 };
1036
1037 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1038 dummy frame. The frame ID's base needs to match the TOS value
1039 saved by save_dummy_frame_tos() and returned from
1040 arm_push_dummy_call, and the PC needs to match the dummy frame's
1041 breakpoint. */
1042
1043 static struct frame_id
1044 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1045 {
1046 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1047 frame_pc_unwind (next_frame));
1048 }
1049
1050 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1051 be used to construct the previous frame's ID, after looking up the
1052 containing function). */
1053
1054 static CORE_ADDR
1055 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1056 {
1057 CORE_ADDR pc;
1058 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1059 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1060 }
1061
1062 static CORE_ADDR
1063 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1064 {
1065 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1066 }
1067
1068 /* When arguments must be pushed onto the stack, they go on in reverse
1069 order. The code below implements a FILO (stack) to do this. */
1070
1071 struct stack_item
1072 {
1073 int len;
1074 struct stack_item *prev;
1075 void *data;
1076 };
1077
1078 static struct stack_item *
1079 push_stack_item (struct stack_item *prev, void *contents, int len)
1080 {
1081 struct stack_item *si;
1082 si = xmalloc (sizeof (struct stack_item));
1083 si->data = xmalloc (len);
1084 si->len = len;
1085 si->prev = prev;
1086 memcpy (si->data, contents, len);
1087 return si;
1088 }
1089
1090 static struct stack_item *
1091 pop_stack_item (struct stack_item *si)
1092 {
1093 struct stack_item *dead = si;
1094 si = si->prev;
1095 xfree (dead->data);
1096 xfree (dead);
1097 return si;
1098 }
1099
1100
1101 /* Return the alignment (in bytes) of the given type. */
1102
1103 static int
1104 arm_type_align (struct type *t)
1105 {
1106 int n;
1107 int align;
1108 int falign;
1109
1110 t = check_typedef (t);
1111 switch (TYPE_CODE (t))
1112 {
1113 default:
1114 /* Should never happen. */
1115 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1116 return 4;
1117
1118 case TYPE_CODE_PTR:
1119 case TYPE_CODE_ENUM:
1120 case TYPE_CODE_INT:
1121 case TYPE_CODE_FLT:
1122 case TYPE_CODE_SET:
1123 case TYPE_CODE_RANGE:
1124 case TYPE_CODE_BITSTRING:
1125 case TYPE_CODE_REF:
1126 case TYPE_CODE_CHAR:
1127 case TYPE_CODE_BOOL:
1128 return TYPE_LENGTH (t);
1129
1130 case TYPE_CODE_ARRAY:
1131 case TYPE_CODE_COMPLEX:
1132 /* TODO: What about vector types? */
1133 return arm_type_align (TYPE_TARGET_TYPE (t));
1134
1135 case TYPE_CODE_STRUCT:
1136 case TYPE_CODE_UNION:
1137 align = 1;
1138 for (n = 0; n < TYPE_NFIELDS (t); n++)
1139 {
1140 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1141 if (falign > align)
1142 align = falign;
1143 }
1144 return align;
1145 }
1146 }
1147
1148 /* We currently only support passing parameters in integer registers. This
1149 conforms with GCC's default model. Several other variants exist and
1150 we should probably support some of them based on the selected ABI. */
1151
1152 static CORE_ADDR
1153 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1154 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1155 struct value **args, CORE_ADDR sp, int struct_return,
1156 CORE_ADDR struct_addr)
1157 {
1158 int argnum;
1159 int argreg;
1160 int nstack;
1161 struct stack_item *si = NULL;
1162
1163 /* Set the return address. For the ARM, the return breakpoint is
1164 always at BP_ADDR. */
1165 /* XXX Fix for Thumb. */
1166 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1167
1168 /* Walk through the list of args and determine how large a temporary
1169 stack is required. Need to take care here as structs may be
1170 passed on the stack, and we have to to push them. */
1171 nstack = 0;
1172
1173 argreg = ARM_A1_REGNUM;
1174 nstack = 0;
1175
1176 /* Some platforms require a double-word aligned stack. Make sure sp
1177 is correctly aligned before we start. We always do this even if
1178 it isn't really needed -- it can never hurt things. */
1179 sp &= ~(CORE_ADDR)(2 * DEPRECATED_REGISTER_SIZE - 1);
1180
1181 /* The struct_return pointer occupies the first parameter
1182 passing register. */
1183 if (struct_return)
1184 {
1185 if (arm_debug)
1186 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1187 REGISTER_NAME (argreg), paddr (struct_addr));
1188 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1189 argreg++;
1190 }
1191
1192 for (argnum = 0; argnum < nargs; argnum++)
1193 {
1194 int len;
1195 struct type *arg_type;
1196 struct type *target_type;
1197 enum type_code typecode;
1198 bfd_byte *val;
1199 int align;
1200
1201 arg_type = check_typedef (value_type (args[argnum]));
1202 len = TYPE_LENGTH (arg_type);
1203 target_type = TYPE_TARGET_TYPE (arg_type);
1204 typecode = TYPE_CODE (arg_type);
1205 val = value_contents_writeable (args[argnum]);
1206
1207 align = arm_type_align (arg_type);
1208 /* Round alignment up to a whole number of words. */
1209 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1210 /* Different ABIs have different maximum alignments. */
1211 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1212 {
1213 /* The APCS ABI only requires word alignment. */
1214 align = INT_REGISTER_SIZE;
1215 }
1216 else
1217 {
1218 /* The AAPCS requires at most doubleword alignment. */
1219 if (align > INT_REGISTER_SIZE * 2)
1220 align = INT_REGISTER_SIZE * 2;
1221 }
1222
1223 /* Push stack padding for dowubleword alignment. */
1224 if (nstack & (align - 1))
1225 {
1226 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1227 nstack += INT_REGISTER_SIZE;
1228 }
1229
1230 /* Doubleword aligned quantities must go in even register pairs. */
1231 if (argreg <= ARM_LAST_ARG_REGNUM
1232 && align > INT_REGISTER_SIZE
1233 && argreg & 1)
1234 argreg++;
1235
1236 /* If the argument is a pointer to a function, and it is a
1237 Thumb function, create a LOCAL copy of the value and set
1238 the THUMB bit in it. */
1239 if (TYPE_CODE_PTR == typecode
1240 && target_type != NULL
1241 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1242 {
1243 CORE_ADDR regval = extract_unsigned_integer (val, len);
1244 if (arm_pc_is_thumb (regval))
1245 {
1246 val = alloca (len);
1247 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1248 }
1249 }
1250
1251 /* Copy the argument to general registers or the stack in
1252 register-sized pieces. Large arguments are split between
1253 registers and stack. */
1254 while (len > 0)
1255 {
1256 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
1257
1258 if (argreg <= ARM_LAST_ARG_REGNUM)
1259 {
1260 /* The argument is being passed in a general purpose
1261 register. */
1262 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1263 if (arm_debug)
1264 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1265 argnum, REGISTER_NAME (argreg),
1266 phex (regval, DEPRECATED_REGISTER_SIZE));
1267 regcache_cooked_write_unsigned (regcache, argreg, regval);
1268 argreg++;
1269 }
1270 else
1271 {
1272 /* Push the arguments onto the stack. */
1273 if (arm_debug)
1274 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1275 argnum, nstack);
1276 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1277 nstack += DEPRECATED_REGISTER_SIZE;
1278 }
1279
1280 len -= partial_len;
1281 val += partial_len;
1282 }
1283 }
1284 /* If we have an odd number of words to push, then decrement the stack
1285 by one word now, so first stack argument will be dword aligned. */
1286 if (nstack & 4)
1287 sp -= 4;
1288
1289 while (si)
1290 {
1291 sp -= si->len;
1292 write_memory (sp, si->data, si->len);
1293 si = pop_stack_item (si);
1294 }
1295
1296 /* Finally, update teh SP register. */
1297 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1298
1299 return sp;
1300 }
1301
1302 static void
1303 print_fpu_flags (int flags)
1304 {
1305 if (flags & (1 << 0))
1306 fputs ("IVO ", stdout);
1307 if (flags & (1 << 1))
1308 fputs ("DVZ ", stdout);
1309 if (flags & (1 << 2))
1310 fputs ("OFL ", stdout);
1311 if (flags & (1 << 3))
1312 fputs ("UFL ", stdout);
1313 if (flags & (1 << 4))
1314 fputs ("INX ", stdout);
1315 putchar ('\n');
1316 }
1317
1318 /* Print interesting information about the floating point processor
1319 (if present) or emulator. */
1320 static void
1321 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1322 struct frame_info *frame, const char *args)
1323 {
1324 unsigned long status = read_register (ARM_FPS_REGNUM);
1325 int type;
1326
1327 type = (status >> 24) & 127;
1328 if (status & (1 << 31))
1329 printf (_("Hardware FPU type %d\n"), type);
1330 else
1331 printf (_("Software FPU type %d\n"), type);
1332 /* i18n: [floating point unit] mask */
1333 fputs (_("mask: "), stdout);
1334 print_fpu_flags (status >> 16);
1335 /* i18n: [floating point unit] flags */
1336 fputs (_("flags: "), stdout);
1337 print_fpu_flags (status);
1338 }
1339
1340 /* Return the GDB type object for the "standard" data type of data in
1341 register N. */
1342
1343 static struct type *
1344 arm_register_type (struct gdbarch *gdbarch, int regnum)
1345 {
1346 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1347 {
1348 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1349 return builtin_type_arm_ext_big;
1350 else
1351 return builtin_type_arm_ext_littlebyte_bigword;
1352 }
1353 else
1354 return builtin_type_int32;
1355 }
1356
1357 /* Index within `registers' of the first byte of the space for
1358 register N. */
1359
1360 static int
1361 arm_register_byte (int regnum)
1362 {
1363 if (regnum < ARM_F0_REGNUM)
1364 return regnum * INT_REGISTER_SIZE;
1365 else if (regnum < ARM_PS_REGNUM)
1366 return (NUM_GREGS * INT_REGISTER_SIZE
1367 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
1368 else
1369 return (NUM_GREGS * INT_REGISTER_SIZE
1370 + NUM_FREGS * FP_REGISTER_SIZE
1371 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1372 }
1373
1374 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1375 static int
1376 arm_register_sim_regno (int regnum)
1377 {
1378 int reg = regnum;
1379 gdb_assert (reg >= 0 && reg < NUM_REGS);
1380
1381 if (reg < NUM_GREGS)
1382 return SIM_ARM_R0_REGNUM + reg;
1383 reg -= NUM_GREGS;
1384
1385 if (reg < NUM_FREGS)
1386 return SIM_ARM_FP0_REGNUM + reg;
1387 reg -= NUM_FREGS;
1388
1389 if (reg < NUM_SREGS)
1390 return SIM_ARM_FPS_REGNUM + reg;
1391 reg -= NUM_SREGS;
1392
1393 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1394 }
1395
1396 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1397 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1398 It is thought that this is is the floating-point register format on
1399 little-endian systems. */
1400
1401 static void
1402 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1403 void *dbl)
1404 {
1405 DOUBLEST d;
1406 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1407 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1408 else
1409 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1410 ptr, &d);
1411 floatformat_from_doublest (fmt, &d, dbl);
1412 }
1413
1414 static void
1415 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1416 {
1417 DOUBLEST d;
1418 floatformat_to_doublest (fmt, ptr, &d);
1419 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1420 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1421 else
1422 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1423 &d, dbl);
1424 }
1425
1426 static int
1427 condition_true (unsigned long cond, unsigned long status_reg)
1428 {
1429 if (cond == INST_AL || cond == INST_NV)
1430 return 1;
1431
1432 switch (cond)
1433 {
1434 case INST_EQ:
1435 return ((status_reg & FLAG_Z) != 0);
1436 case INST_NE:
1437 return ((status_reg & FLAG_Z) == 0);
1438 case INST_CS:
1439 return ((status_reg & FLAG_C) != 0);
1440 case INST_CC:
1441 return ((status_reg & FLAG_C) == 0);
1442 case INST_MI:
1443 return ((status_reg & FLAG_N) != 0);
1444 case INST_PL:
1445 return ((status_reg & FLAG_N) == 0);
1446 case INST_VS:
1447 return ((status_reg & FLAG_V) != 0);
1448 case INST_VC:
1449 return ((status_reg & FLAG_V) == 0);
1450 case INST_HI:
1451 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1452 case INST_LS:
1453 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1454 case INST_GE:
1455 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1456 case INST_LT:
1457 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1458 case INST_GT:
1459 return (((status_reg & FLAG_Z) == 0) &&
1460 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1461 case INST_LE:
1462 return (((status_reg & FLAG_Z) != 0) ||
1463 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1464 }
1465 return 1;
1466 }
1467
1468 /* Support routines for single stepping. Calculate the next PC value. */
1469 #define submask(x) ((1L << ((x) + 1)) - 1)
1470 #define bit(obj,st) (((obj) >> (st)) & 1)
1471 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1472 #define sbits(obj,st,fn) \
1473 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1474 #define BranchDest(addr,instr) \
1475 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1476 #define ARM_PC_32 1
1477
1478 static unsigned long
1479 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1480 unsigned long status_reg)
1481 {
1482 unsigned long res, shift;
1483 int rm = bits (inst, 0, 3);
1484 unsigned long shifttype = bits (inst, 5, 6);
1485
1486 if (bit (inst, 4))
1487 {
1488 int rs = bits (inst, 8, 11);
1489 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1490 }
1491 else
1492 shift = bits (inst, 7, 11);
1493
1494 res = (rm == 15
1495 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1496 + (bit (inst, 4) ? 12 : 8))
1497 : read_register (rm));
1498
1499 switch (shifttype)
1500 {
1501 case 0: /* LSL */
1502 res = shift >= 32 ? 0 : res << shift;
1503 break;
1504
1505 case 1: /* LSR */
1506 res = shift >= 32 ? 0 : res >> shift;
1507 break;
1508
1509 case 2: /* ASR */
1510 if (shift >= 32)
1511 shift = 31;
1512 res = ((res & 0x80000000L)
1513 ? ~((~res) >> shift) : res >> shift);
1514 break;
1515
1516 case 3: /* ROR/RRX */
1517 shift &= 31;
1518 if (shift == 0)
1519 res = (res >> 1) | (carry ? 0x80000000L : 0);
1520 else
1521 res = (res >> shift) | (res << (32 - shift));
1522 break;
1523 }
1524
1525 return res & 0xffffffff;
1526 }
1527
1528 /* Return number of 1-bits in VAL. */
1529
1530 static int
1531 bitcount (unsigned long val)
1532 {
1533 int nbits;
1534 for (nbits = 0; val != 0; nbits++)
1535 val &= val - 1; /* delete rightmost 1-bit in val */
1536 return nbits;
1537 }
1538
1539 CORE_ADDR
1540 thumb_get_next_pc (CORE_ADDR pc)
1541 {
1542 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1543 unsigned short inst1 = read_memory_integer (pc, 2);
1544 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1545 unsigned long offset;
1546
1547 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1548 {
1549 CORE_ADDR sp;
1550
1551 /* Fetch the saved PC from the stack. It's stored above
1552 all of the other registers. */
1553 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
1554 sp = read_register (ARM_SP_REGNUM);
1555 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1556 nextpc = ADDR_BITS_REMOVE (nextpc);
1557 if (nextpc == pc)
1558 error (_("Infinite loop detected"));
1559 }
1560 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1561 {
1562 unsigned long status = read_register (ARM_PS_REGNUM);
1563 unsigned long cond = bits (inst1, 8, 11);
1564 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1565 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1566 }
1567 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1568 {
1569 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1570 }
1571 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1572 {
1573 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1574 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1575 nextpc = pc_val + offset;
1576 /* For BLX make sure to clear the low bits. */
1577 if (bits (inst2, 11, 12) == 1)
1578 nextpc = nextpc & 0xfffffffc;
1579 }
1580 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1581 {
1582 if (bits (inst1, 3, 6) == 0x0f)
1583 nextpc = pc_val;
1584 else
1585 nextpc = read_register (bits (inst1, 3, 6));
1586
1587 nextpc = ADDR_BITS_REMOVE (nextpc);
1588 if (nextpc == pc)
1589 error (_("Infinite loop detected"));
1590 }
1591
1592 return nextpc;
1593 }
1594
1595 CORE_ADDR
1596 arm_get_next_pc (CORE_ADDR pc)
1597 {
1598 unsigned long pc_val;
1599 unsigned long this_instr;
1600 unsigned long status;
1601 CORE_ADDR nextpc;
1602
1603 if (arm_pc_is_thumb (pc))
1604 return thumb_get_next_pc (pc);
1605
1606 pc_val = (unsigned long) pc;
1607 this_instr = read_memory_integer (pc, 4);
1608 status = read_register (ARM_PS_REGNUM);
1609 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1610
1611 if (condition_true (bits (this_instr, 28, 31), status))
1612 {
1613 switch (bits (this_instr, 24, 27))
1614 {
1615 case 0x0:
1616 case 0x1: /* data processing */
1617 case 0x2:
1618 case 0x3:
1619 {
1620 unsigned long operand1, operand2, result = 0;
1621 unsigned long rn;
1622 int c;
1623
1624 if (bits (this_instr, 12, 15) != 15)
1625 break;
1626
1627 if (bits (this_instr, 22, 25) == 0
1628 && bits (this_instr, 4, 7) == 9) /* multiply */
1629 error (_("Invalid update to pc in instruction"));
1630
1631 /* BX <reg>, BLX <reg> */
1632 if (bits (this_instr, 4, 28) == 0x12fff1
1633 || bits (this_instr, 4, 28) == 0x12fff3)
1634 {
1635 rn = bits (this_instr, 0, 3);
1636 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1637 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1638
1639 if (nextpc == pc)
1640 error (_("Infinite loop detected"));
1641
1642 return nextpc;
1643 }
1644
1645 /* Multiply into PC */
1646 c = (status & FLAG_C) ? 1 : 0;
1647 rn = bits (this_instr, 16, 19);
1648 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1649
1650 if (bit (this_instr, 25))
1651 {
1652 unsigned long immval = bits (this_instr, 0, 7);
1653 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1654 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1655 & 0xffffffff;
1656 }
1657 else /* operand 2 is a shifted register */
1658 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1659
1660 switch (bits (this_instr, 21, 24))
1661 {
1662 case 0x0: /*and */
1663 result = operand1 & operand2;
1664 break;
1665
1666 case 0x1: /*eor */
1667 result = operand1 ^ operand2;
1668 break;
1669
1670 case 0x2: /*sub */
1671 result = operand1 - operand2;
1672 break;
1673
1674 case 0x3: /*rsb */
1675 result = operand2 - operand1;
1676 break;
1677
1678 case 0x4: /*add */
1679 result = operand1 + operand2;
1680 break;
1681
1682 case 0x5: /*adc */
1683 result = operand1 + operand2 + c;
1684 break;
1685
1686 case 0x6: /*sbc */
1687 result = operand1 - operand2 + c;
1688 break;
1689
1690 case 0x7: /*rsc */
1691 result = operand2 - operand1 + c;
1692 break;
1693
1694 case 0x8:
1695 case 0x9:
1696 case 0xa:
1697 case 0xb: /* tst, teq, cmp, cmn */
1698 result = (unsigned long) nextpc;
1699 break;
1700
1701 case 0xc: /*orr */
1702 result = operand1 | operand2;
1703 break;
1704
1705 case 0xd: /*mov */
1706 /* Always step into a function. */
1707 result = operand2;
1708 break;
1709
1710 case 0xe: /*bic */
1711 result = operand1 & ~operand2;
1712 break;
1713
1714 case 0xf: /*mvn */
1715 result = ~operand2;
1716 break;
1717 }
1718 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1719
1720 if (nextpc == pc)
1721 error (_("Infinite loop detected"));
1722 break;
1723 }
1724
1725 case 0x4:
1726 case 0x5: /* data transfer */
1727 case 0x6:
1728 case 0x7:
1729 if (bit (this_instr, 20))
1730 {
1731 /* load */
1732 if (bits (this_instr, 12, 15) == 15)
1733 {
1734 /* rd == pc */
1735 unsigned long rn;
1736 unsigned long base;
1737
1738 if (bit (this_instr, 22))
1739 error (_("Invalid update to pc in instruction"));
1740
1741 /* byte write to PC */
1742 rn = bits (this_instr, 16, 19);
1743 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1744 if (bit (this_instr, 24))
1745 {
1746 /* pre-indexed */
1747 int c = (status & FLAG_C) ? 1 : 0;
1748 unsigned long offset =
1749 (bit (this_instr, 25)
1750 ? shifted_reg_val (this_instr, c, pc_val, status)
1751 : bits (this_instr, 0, 11));
1752
1753 if (bit (this_instr, 23))
1754 base += offset;
1755 else
1756 base -= offset;
1757 }
1758 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1759 4);
1760
1761 nextpc = ADDR_BITS_REMOVE (nextpc);
1762
1763 if (nextpc == pc)
1764 error (_("Infinite loop detected"));
1765 }
1766 }
1767 break;
1768
1769 case 0x8:
1770 case 0x9: /* block transfer */
1771 if (bit (this_instr, 20))
1772 {
1773 /* LDM */
1774 if (bit (this_instr, 15))
1775 {
1776 /* loading pc */
1777 int offset = 0;
1778
1779 if (bit (this_instr, 23))
1780 {
1781 /* up */
1782 unsigned long reglist = bits (this_instr, 0, 14);
1783 offset = bitcount (reglist) * 4;
1784 if (bit (this_instr, 24)) /* pre */
1785 offset += 4;
1786 }
1787 else if (bit (this_instr, 24))
1788 offset = -4;
1789
1790 {
1791 unsigned long rn_val =
1792 read_register (bits (this_instr, 16, 19));
1793 nextpc =
1794 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1795 + offset),
1796 4);
1797 }
1798 nextpc = ADDR_BITS_REMOVE (nextpc);
1799 if (nextpc == pc)
1800 error (_("Infinite loop detected"));
1801 }
1802 }
1803 break;
1804
1805 case 0xb: /* branch & link */
1806 case 0xa: /* branch */
1807 {
1808 nextpc = BranchDest (pc, this_instr);
1809
1810 /* BLX */
1811 if (bits (this_instr, 28, 31) == INST_NV)
1812 nextpc |= bit (this_instr, 24) << 1;
1813
1814 nextpc = ADDR_BITS_REMOVE (nextpc);
1815 if (nextpc == pc)
1816 error (_("Infinite loop detected"));
1817 break;
1818 }
1819
1820 case 0xc:
1821 case 0xd:
1822 case 0xe: /* coproc ops */
1823 case 0xf: /* SWI */
1824 break;
1825
1826 default:
1827 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
1828 return (pc);
1829 }
1830 }
1831
1832 return nextpc;
1833 }
1834
1835 /* single_step() is called just before we want to resume the inferior,
1836 if we want to single-step it but there is no hardware or kernel
1837 single-step support. We find the target of the coming instruction
1838 and breakpoint it.
1839
1840 single_step() is also called just after the inferior stops. If we
1841 had set up a simulated single-step, we undo our damage. */
1842
1843 static void
1844 arm_software_single_step (enum target_signal sig, int insert_bpt)
1845 {
1846 static int next_pc; /* State between setting and unsetting. */
1847 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1848
1849 if (insert_bpt)
1850 {
1851 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1852 target_insert_breakpoint (next_pc, break_mem);
1853 }
1854 else
1855 target_remove_breakpoint (next_pc, break_mem);
1856 }
1857
1858 #include "bfd-in2.h"
1859 #include "libcoff.h"
1860
1861 static int
1862 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1863 {
1864 if (arm_pc_is_thumb (memaddr))
1865 {
1866 static asymbol *asym;
1867 static combined_entry_type ce;
1868 static struct coff_symbol_struct csym;
1869 static struct bfd fake_bfd;
1870 static bfd_target fake_target;
1871
1872 if (csym.native == NULL)
1873 {
1874 /* Create a fake symbol vector containing a Thumb symbol.
1875 This is solely so that the code in print_insn_little_arm()
1876 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1877 the presence of a Thumb symbol and switch to decoding
1878 Thumb instructions. */
1879
1880 fake_target.flavour = bfd_target_coff_flavour;
1881 fake_bfd.xvec = &fake_target;
1882 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1883 csym.native = &ce;
1884 csym.symbol.the_bfd = &fake_bfd;
1885 csym.symbol.name = "fake";
1886 asym = (asymbol *) & csym;
1887 }
1888
1889 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1890 info->symbols = &asym;
1891 }
1892 else
1893 info->symbols = NULL;
1894
1895 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1896 return print_insn_big_arm (memaddr, info);
1897 else
1898 return print_insn_little_arm (memaddr, info);
1899 }
1900
1901 /* The following define instruction sequences that will cause ARM
1902 cpu's to take an undefined instruction trap. These are used to
1903 signal a breakpoint to GDB.
1904
1905 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1906 modes. A different instruction is required for each mode. The ARM
1907 cpu's can also be big or little endian. Thus four different
1908 instructions are needed to support all cases.
1909
1910 Note: ARMv4 defines several new instructions that will take the
1911 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1912 not in fact add the new instructions. The new undefined
1913 instructions in ARMv4 are all instructions that had no defined
1914 behaviour in earlier chips. There is no guarantee that they will
1915 raise an exception, but may be treated as NOP's. In practice, it
1916 may only safe to rely on instructions matching:
1917
1918 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1919 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1920 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1921
1922 Even this may only true if the condition predicate is true. The
1923 following use a condition predicate of ALWAYS so it is always TRUE.
1924
1925 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1926 and NetBSD all use a software interrupt rather than an undefined
1927 instruction to force a trap. This can be handled by by the
1928 abi-specific code during establishment of the gdbarch vector. */
1929
1930
1931 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1932 override these definitions. */
1933 #ifndef ARM_LE_BREAKPOINT
1934 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1935 #endif
1936 #ifndef ARM_BE_BREAKPOINT
1937 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1938 #endif
1939 #ifndef THUMB_LE_BREAKPOINT
1940 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1941 #endif
1942 #ifndef THUMB_BE_BREAKPOINT
1943 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1944 #endif
1945
1946 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
1947 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
1948 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
1949 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
1950
1951 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
1952 the program counter value to determine whether a 16-bit or 32-bit
1953 breakpoint should be used. It returns a pointer to a string of
1954 bytes that encode a breakpoint instruction, stores the length of
1955 the string to *lenptr, and adjusts the program counter (if
1956 necessary) to point to the actual memory location where the
1957 breakpoint should be inserted. */
1958
1959 /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
1960 breakpoints and storing their handles instread of what was in
1961 memory. It is nice that this is the same size as a handle -
1962 otherwise remote-rdp will have to change. */
1963
1964 static const unsigned char *
1965 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1966 {
1967 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1968
1969 if (arm_pc_is_thumb (*pcptr))
1970 {
1971 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1972 *lenptr = tdep->thumb_breakpoint_size;
1973 return tdep->thumb_breakpoint;
1974 }
1975 else
1976 {
1977 *lenptr = tdep->arm_breakpoint_size;
1978 return tdep->arm_breakpoint;
1979 }
1980 }
1981
1982 /* Extract from an array REGBUF containing the (raw) register state a
1983 function return value of type TYPE, and copy that, in virtual
1984 format, into VALBUF. */
1985
1986 static void
1987 arm_extract_return_value (struct type *type, struct regcache *regs,
1988 gdb_byte *valbuf)
1989 {
1990 if (TYPE_CODE_FLT == TYPE_CODE (type))
1991 {
1992 switch (gdbarch_tdep (current_gdbarch)->fp_model)
1993 {
1994 case ARM_FLOAT_FPA:
1995 {
1996 /* The value is in register F0 in internal format. We need to
1997 extract the raw value and then convert it to the desired
1998 internal type. */
1999 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2000
2001 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2002 convert_from_extended (floatformat_from_type (type), tmpbuf,
2003 valbuf);
2004 }
2005 break;
2006
2007 case ARM_FLOAT_SOFT_FPA:
2008 case ARM_FLOAT_SOFT_VFP:
2009 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2010 if (TYPE_LENGTH (type) > 4)
2011 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2012 valbuf + INT_REGISTER_SIZE);
2013 break;
2014
2015 default:
2016 internal_error
2017 (__FILE__, __LINE__,
2018 _("arm_extract_return_value: Floating point model not supported"));
2019 break;
2020 }
2021 }
2022 else if (TYPE_CODE (type) == TYPE_CODE_INT
2023 || TYPE_CODE (type) == TYPE_CODE_CHAR
2024 || TYPE_CODE (type) == TYPE_CODE_BOOL
2025 || TYPE_CODE (type) == TYPE_CODE_PTR
2026 || TYPE_CODE (type) == TYPE_CODE_REF
2027 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2028 {
2029 /* If the the type is a plain integer, then the access is
2030 straight-forward. Otherwise we have to play around a bit more. */
2031 int len = TYPE_LENGTH (type);
2032 int regno = ARM_A1_REGNUM;
2033 ULONGEST tmp;
2034
2035 while (len > 0)
2036 {
2037 /* By using store_unsigned_integer we avoid having to do
2038 anything special for small big-endian values. */
2039 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2040 store_unsigned_integer (valbuf,
2041 (len > INT_REGISTER_SIZE
2042 ? INT_REGISTER_SIZE : len),
2043 tmp);
2044 len -= INT_REGISTER_SIZE;
2045 valbuf += INT_REGISTER_SIZE;
2046 }
2047 }
2048 else
2049 {
2050 /* For a structure or union the behaviour is as if the value had
2051 been stored to word-aligned memory and then loaded into
2052 registers with 32-bit load instruction(s). */
2053 int len = TYPE_LENGTH (type);
2054 int regno = ARM_A1_REGNUM;
2055 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2056
2057 while (len > 0)
2058 {
2059 regcache_cooked_read (regs, regno++, tmpbuf);
2060 memcpy (valbuf, tmpbuf,
2061 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2062 len -= INT_REGISTER_SIZE;
2063 valbuf += INT_REGISTER_SIZE;
2064 }
2065 }
2066 }
2067
2068
2069 /* Will a function return an aggregate type in memory or in a
2070 register? Return 0 if an aggregate type can be returned in a
2071 register, 1 if it must be returned in memory. */
2072
2073 static int
2074 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2075 {
2076 int nRc;
2077 enum type_code code;
2078
2079 CHECK_TYPEDEF (type);
2080
2081 /* In the ARM ABI, "integer" like aggregate types are returned in
2082 registers. For an aggregate type to be integer like, its size
2083 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2084 offset of each addressable subfield must be zero. Note that bit
2085 fields are not addressable, and all addressable subfields of
2086 unions always start at offset zero.
2087
2088 This function is based on the behaviour of GCC 2.95.1.
2089 See: gcc/arm.c: arm_return_in_memory() for details.
2090
2091 Note: All versions of GCC before GCC 2.95.2 do not set up the
2092 parameters correctly for a function returning the following
2093 structure: struct { float f;}; This should be returned in memory,
2094 not a register. Richard Earnshaw sent me a patch, but I do not
2095 know of any way to detect if a function like the above has been
2096 compiled with the correct calling convention. */
2097
2098 /* All aggregate types that won't fit in a register must be returned
2099 in memory. */
2100 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
2101 {
2102 return 1;
2103 }
2104
2105 /* The AAPCS says all aggregates not larger than a word are returned
2106 in a register. */
2107 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2108 return 0;
2109
2110 /* The only aggregate types that can be returned in a register are
2111 structs and unions. Arrays must be returned in memory. */
2112 code = TYPE_CODE (type);
2113 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2114 {
2115 return 1;
2116 }
2117
2118 /* Assume all other aggregate types can be returned in a register.
2119 Run a check for structures, unions and arrays. */
2120 nRc = 0;
2121
2122 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2123 {
2124 int i;
2125 /* Need to check if this struct/union is "integer" like. For
2126 this to be true, its size must be less than or equal to
2127 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2128 subfield must be zero. Note that bit fields are not
2129 addressable, and unions always start at offset zero. If any
2130 of the subfields is a floating point type, the struct/union
2131 cannot be an integer type. */
2132
2133 /* For each field in the object, check:
2134 1) Is it FP? --> yes, nRc = 1;
2135 2) Is it addressable (bitpos != 0) and
2136 not packed (bitsize == 0)?
2137 --> yes, nRc = 1
2138 */
2139
2140 for (i = 0; i < TYPE_NFIELDS (type); i++)
2141 {
2142 enum type_code field_type_code;
2143 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2144
2145 /* Is it a floating point type field? */
2146 if (field_type_code == TYPE_CODE_FLT)
2147 {
2148 nRc = 1;
2149 break;
2150 }
2151
2152 /* If bitpos != 0, then we have to care about it. */
2153 if (TYPE_FIELD_BITPOS (type, i) != 0)
2154 {
2155 /* Bitfields are not addressable. If the field bitsize is
2156 zero, then the field is not packed. Hence it cannot be
2157 a bitfield or any other packed type. */
2158 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2159 {
2160 nRc = 1;
2161 break;
2162 }
2163 }
2164 }
2165 }
2166
2167 return nRc;
2168 }
2169
2170 /* Write into appropriate registers a function return value of type
2171 TYPE, given in virtual format. */
2172
2173 static void
2174 arm_store_return_value (struct type *type, struct regcache *regs,
2175 const gdb_byte *valbuf)
2176 {
2177 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2178 {
2179 char buf[MAX_REGISTER_SIZE];
2180
2181 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2182 {
2183 case ARM_FLOAT_FPA:
2184
2185 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2186 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2187 break;
2188
2189 case ARM_FLOAT_SOFT_FPA:
2190 case ARM_FLOAT_SOFT_VFP:
2191 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2192 if (TYPE_LENGTH (type) > 4)
2193 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2194 valbuf + INT_REGISTER_SIZE);
2195 break;
2196
2197 default:
2198 internal_error
2199 (__FILE__, __LINE__,
2200 _("arm_store_return_value: Floating point model not supported"));
2201 break;
2202 }
2203 }
2204 else if (TYPE_CODE (type) == TYPE_CODE_INT
2205 || TYPE_CODE (type) == TYPE_CODE_CHAR
2206 || TYPE_CODE (type) == TYPE_CODE_BOOL
2207 || TYPE_CODE (type) == TYPE_CODE_PTR
2208 || TYPE_CODE (type) == TYPE_CODE_REF
2209 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2210 {
2211 if (TYPE_LENGTH (type) <= 4)
2212 {
2213 /* Values of one word or less are zero/sign-extended and
2214 returned in r0. */
2215 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2216 LONGEST val = unpack_long (type, valbuf);
2217
2218 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2219 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2220 }
2221 else
2222 {
2223 /* Integral values greater than one word are stored in consecutive
2224 registers starting with r0. This will always be a multiple of
2225 the regiser size. */
2226 int len = TYPE_LENGTH (type);
2227 int regno = ARM_A1_REGNUM;
2228
2229 while (len > 0)
2230 {
2231 regcache_cooked_write (regs, regno++, valbuf);
2232 len -= INT_REGISTER_SIZE;
2233 valbuf += INT_REGISTER_SIZE;
2234 }
2235 }
2236 }
2237 else
2238 {
2239 /* For a structure or union the behaviour is as if the value had
2240 been stored to word-aligned memory and then loaded into
2241 registers with 32-bit load instruction(s). */
2242 int len = TYPE_LENGTH (type);
2243 int regno = ARM_A1_REGNUM;
2244 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2245
2246 while (len > 0)
2247 {
2248 memcpy (tmpbuf, valbuf,
2249 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2250 regcache_cooked_write (regs, regno++, tmpbuf);
2251 len -= INT_REGISTER_SIZE;
2252 valbuf += INT_REGISTER_SIZE;
2253 }
2254 }
2255 }
2256
2257
2258 /* Handle function return values. */
2259
2260 static enum return_value_convention
2261 arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
2262 struct regcache *regcache, gdb_byte *readbuf,
2263 const gdb_byte *writebuf)
2264 {
2265 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2266 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2267 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2268 {
2269 if (arm_return_in_memory (gdbarch, valtype))
2270 return RETURN_VALUE_STRUCT_CONVENTION;
2271 }
2272
2273 if (writebuf)
2274 arm_store_return_value (valtype, regcache, writebuf);
2275
2276 if (readbuf)
2277 arm_extract_return_value (valtype, regcache, readbuf);
2278
2279 return RETURN_VALUE_REGISTER_CONVENTION;
2280 }
2281
2282
2283 static int
2284 arm_get_longjmp_target (CORE_ADDR *pc)
2285 {
2286 CORE_ADDR jb_addr;
2287 char buf[INT_REGISTER_SIZE];
2288 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2289
2290 jb_addr = read_register (ARM_A1_REGNUM);
2291
2292 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2293 INT_REGISTER_SIZE))
2294 return 0;
2295
2296 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2297 return 1;
2298 }
2299
2300 /* Return non-zero if the PC is inside a thumb call thunk. */
2301
2302 int
2303 arm_in_call_stub (CORE_ADDR pc, char *name)
2304 {
2305 CORE_ADDR start_addr;
2306
2307 /* Find the starting address of the function containing the PC. If
2308 the caller didn't give us a name, look it up at the same time. */
2309 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2310 &start_addr, NULL))
2311 return 0;
2312
2313 return strncmp (name, "_call_via_r", 11) == 0;
2314 }
2315
2316 /* If PC is in a Thumb call or return stub, return the address of the
2317 target PC, which is in a register. The thunk functions are called
2318 _called_via_xx, where x is the register name. The possible names
2319 are r0-r9, sl, fp, ip, sp, and lr. */
2320
2321 CORE_ADDR
2322 arm_skip_stub (CORE_ADDR pc)
2323 {
2324 char *name;
2325 CORE_ADDR start_addr;
2326
2327 /* Find the starting address and name of the function containing the PC. */
2328 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2329 return 0;
2330
2331 /* Call thunks always start with "_call_via_". */
2332 if (strncmp (name, "_call_via_", 10) == 0)
2333 {
2334 /* Use the name suffix to determine which register contains the
2335 target PC. */
2336 static char *table[15] =
2337 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2338 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2339 };
2340 int regno;
2341
2342 for (regno = 0; regno <= 14; regno++)
2343 if (strcmp (&name[10], table[regno]) == 0)
2344 return read_register (regno);
2345 }
2346
2347 return 0; /* not a stub */
2348 }
2349
2350 static void
2351 set_arm_command (char *args, int from_tty)
2352 {
2353 printf_unfiltered (_("\
2354 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2355 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2356 }
2357
2358 static void
2359 show_arm_command (char *args, int from_tty)
2360 {
2361 cmd_show_list (showarmcmdlist, from_tty, "");
2362 }
2363
2364 static void
2365 arm_update_current_architecture (void)
2366 {
2367 struct gdbarch_info info;
2368
2369 /* If the current architecture is not ARM, we have nothing to do. */
2370 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2371 return;
2372
2373 /* Update the architecture. */
2374 gdbarch_info_init (&info);
2375
2376 if (!gdbarch_update_p (info))
2377 internal_error (__FILE__, __LINE__, "could not update architecture");
2378 }
2379
2380 static void
2381 set_fp_model_sfunc (char *args, int from_tty,
2382 struct cmd_list_element *c)
2383 {
2384 enum arm_float_model fp_model;
2385
2386 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2387 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2388 {
2389 arm_fp_model = fp_model;
2390 break;
2391 }
2392
2393 if (fp_model == ARM_FLOAT_LAST)
2394 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2395 current_fp_model);
2396
2397 arm_update_current_architecture ();
2398 }
2399
2400 static void
2401 show_fp_model (struct ui_file *file, int from_tty,
2402 struct cmd_list_element *c, const char *value)
2403 {
2404 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2405
2406 if (arm_fp_model == ARM_FLOAT_AUTO
2407 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2408 fprintf_filtered (file, _("\
2409 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2410 fp_model_strings[tdep->fp_model]);
2411 else
2412 fprintf_filtered (file, _("\
2413 The current ARM floating point model is \"%s\".\n"),
2414 fp_model_strings[arm_fp_model]);
2415 }
2416
2417 static void
2418 arm_set_abi (char *args, int from_tty,
2419 struct cmd_list_element *c)
2420 {
2421 enum arm_abi_kind arm_abi;
2422
2423 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2424 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2425 {
2426 arm_abi_global = arm_abi;
2427 break;
2428 }
2429
2430 if (arm_abi == ARM_ABI_LAST)
2431 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2432 arm_abi_string);
2433
2434 arm_update_current_architecture ();
2435 }
2436
2437 static void
2438 arm_show_abi (struct ui_file *file, int from_tty,
2439 struct cmd_list_element *c, const char *value)
2440 {
2441 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2442
2443 if (arm_abi_global == ARM_ABI_AUTO
2444 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2445 fprintf_filtered (file, _("\
2446 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2447 arm_abi_strings[tdep->arm_abi]);
2448 else
2449 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2450 arm_abi_string);
2451 }
2452
2453 /* If the user changes the register disassembly style used for info
2454 register and other commands, we have to also switch the style used
2455 in opcodes for disassembly output. This function is run in the "set
2456 arm disassembly" command, and does that. */
2457
2458 static void
2459 set_disassembly_style_sfunc (char *args, int from_tty,
2460 struct cmd_list_element *c)
2461 {
2462 set_disassembly_style ();
2463 }
2464 \f
2465 /* Return the ARM register name corresponding to register I. */
2466 static const char *
2467 arm_register_name (int i)
2468 {
2469 return arm_register_names[i];
2470 }
2471
2472 static void
2473 set_disassembly_style (void)
2474 {
2475 const char *setname, *setdesc, *const *regnames;
2476 int numregs, j;
2477
2478 /* Find the style that the user wants in the opcodes table. */
2479 int current = 0;
2480 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2481 while ((disassembly_style != setname)
2482 && (current < num_disassembly_options))
2483 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2484 current_option = current;
2485
2486 /* Fill our copy. */
2487 for (j = 0; j < numregs; j++)
2488 arm_register_names[j] = (char *) regnames[j];
2489
2490 /* Adjust case. */
2491 if (isupper (*regnames[ARM_PC_REGNUM]))
2492 {
2493 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2494 arm_register_names[ARM_PS_REGNUM] = "CPSR";
2495 }
2496 else
2497 {
2498 arm_register_names[ARM_FPS_REGNUM] = "fps";
2499 arm_register_names[ARM_PS_REGNUM] = "cpsr";
2500 }
2501
2502 /* Synchronize the disassembler. */
2503 set_arm_regname_option (current);
2504 }
2505
2506 /* Test whether the coff symbol specific value corresponds to a Thumb
2507 function. */
2508
2509 static int
2510 coff_sym_is_thumb (int val)
2511 {
2512 return (val == C_THUMBEXT ||
2513 val == C_THUMBSTAT ||
2514 val == C_THUMBEXTFUNC ||
2515 val == C_THUMBSTATFUNC ||
2516 val == C_THUMBLABEL);
2517 }
2518
2519 /* arm_coff_make_msymbol_special()
2520 arm_elf_make_msymbol_special()
2521
2522 These functions test whether the COFF or ELF symbol corresponds to
2523 an address in thumb code, and set a "special" bit in a minimal
2524 symbol to indicate that it does. */
2525
2526 static void
2527 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2528 {
2529 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2530 STT_ARM_TFUNC). */
2531 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2532 == STT_LOPROC)
2533 MSYMBOL_SET_SPECIAL (msym);
2534 }
2535
2536 static void
2537 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2538 {
2539 if (coff_sym_is_thumb (val))
2540 MSYMBOL_SET_SPECIAL (msym);
2541 }
2542
2543 static void
2544 arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2545 {
2546 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2547
2548 /* If necessary, set the T bit. */
2549 if (arm_apcs_32)
2550 {
2551 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2552 if (arm_pc_is_thumb (pc))
2553 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2554 else
2555 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2556 }
2557 }
2558 \f
2559 static enum gdb_osabi
2560 arm_elf_osabi_sniffer (bfd *abfd)
2561 {
2562 unsigned int elfosabi;
2563 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2564
2565 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2566
2567 if (elfosabi == ELFOSABI_ARM)
2568 /* GNU tools use this value. Check note sections in this case,
2569 as well. */
2570 bfd_map_over_sections (abfd,
2571 generic_elf_osabi_sniff_abi_tag_sections,
2572 &osabi);
2573
2574 /* Anything else will be handled by the generic ELF sniffer. */
2575 return osabi;
2576 }
2577
2578 \f
2579 /* Initialize the current architecture based on INFO. If possible,
2580 re-use an architecture from ARCHES, which is a list of
2581 architectures already created during this debugging session.
2582
2583 Called e.g. at program startup, when reading a core file, and when
2584 reading a binary file. */
2585
2586 static struct gdbarch *
2587 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2588 {
2589 struct gdbarch_tdep *tdep;
2590 struct gdbarch *gdbarch;
2591 struct gdbarch_list *best_arch;
2592 enum arm_abi_kind arm_abi = arm_abi_global;
2593 enum arm_float_model fp_model = arm_fp_model;
2594
2595 /* If we have an object to base this architecture on, try to determine
2596 its ABI. */
2597
2598 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
2599 {
2600 int ei_osabi;
2601
2602 switch (bfd_get_flavour (info.abfd))
2603 {
2604 case bfd_target_aout_flavour:
2605 /* Assume it's an old APCS-style ABI. */
2606 arm_abi = ARM_ABI_APCS;
2607 break;
2608
2609 case bfd_target_coff_flavour:
2610 /* Assume it's an old APCS-style ABI. */
2611 /* XXX WinCE? */
2612 arm_abi = ARM_ABI_APCS;
2613 break;
2614
2615 case bfd_target_elf_flavour:
2616 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2617 if (ei_osabi == ELFOSABI_ARM)
2618 {
2619 /* GNU tools used to use this value, but do not for EABI
2620 objects. There's nowhere to tag an EABI version anyway,
2621 so assume APCS. */
2622 arm_abi = ARM_ABI_APCS;
2623 }
2624 else if (ei_osabi == ELFOSABI_NONE)
2625 {
2626 int e_flags, eabi_ver;
2627
2628 e_flags = elf_elfheader (info.abfd)->e_flags;
2629 eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2630
2631 switch (eabi_ver)
2632 {
2633 case EF_ARM_EABI_UNKNOWN:
2634 /* Assume GNU tools. */
2635 arm_abi = ARM_ABI_APCS;
2636 break;
2637
2638 case EF_ARM_EABI_VER4:
2639 arm_abi = ARM_ABI_AAPCS;
2640 /* EABI binaries default to VFP float ordering. */
2641 if (fp_model == ARM_FLOAT_AUTO)
2642 fp_model = ARM_FLOAT_SOFT_VFP;
2643 break;
2644
2645 default:
2646 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2647 arm_abi = ARM_ABI_APCS;
2648 break;
2649 }
2650 }
2651 break;
2652
2653 default:
2654 /* Leave it as "auto". */
2655 break;
2656 }
2657 }
2658
2659 /* Now that we have inferred any architecture settings that we
2660 can, try to inherit from the last ARM ABI. */
2661 if (arches != NULL)
2662 {
2663 if (arm_abi == ARM_ABI_AUTO)
2664 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2665
2666 if (fp_model == ARM_FLOAT_AUTO)
2667 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2668 }
2669 else
2670 {
2671 /* There was no prior ARM architecture; fill in default values. */
2672
2673 if (arm_abi == ARM_ABI_AUTO)
2674 arm_abi = ARM_ABI_APCS;
2675
2676 /* We used to default to FPA for generic ARM, but almost nobody
2677 uses that now, and we now provide a way for the user to force
2678 the model. So default to the most useful variant. */
2679 if (fp_model == ARM_FLOAT_AUTO)
2680 fp_model = ARM_FLOAT_SOFT_FPA;
2681 }
2682
2683 /* If there is already a candidate, use it. */
2684 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2685 best_arch != NULL;
2686 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2687 {
2688 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2689 continue;
2690
2691 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2692 continue;
2693
2694 /* Found a match. */
2695 break;
2696 }
2697
2698 if (best_arch != NULL)
2699 return best_arch->gdbarch;
2700
2701 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2702 gdbarch = gdbarch_alloc (&info, tdep);
2703
2704 /* Record additional information about the architecture we are defining.
2705 These are gdbarch discriminators, like the OSABI. */
2706 tdep->arm_abi = arm_abi;
2707 tdep->fp_model = fp_model;
2708
2709 /* Breakpoints. */
2710 switch (info.byte_order)
2711 {
2712 case BFD_ENDIAN_BIG:
2713 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2714 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2715 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2716 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2717
2718 break;
2719
2720 case BFD_ENDIAN_LITTLE:
2721 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2722 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2723 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2724 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2725
2726 break;
2727
2728 default:
2729 internal_error (__FILE__, __LINE__,
2730 _("arm_gdbarch_init: bad byte order for float format"));
2731 }
2732
2733 /* On ARM targets char defaults to unsigned. */
2734 set_gdbarch_char_signed (gdbarch, 0);
2735
2736 /* This should be low enough for everything. */
2737 tdep->lowest_pc = 0x20;
2738 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2739
2740 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2741
2742 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2743
2744 /* Frame handling. */
2745 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2746 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2747 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2748
2749 frame_base_set_default (gdbarch, &arm_normal_base);
2750
2751 /* Address manipulation. */
2752 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2753 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2754
2755 /* Advance PC across function entry code. */
2756 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2757
2758 /* Get the PC when a frame might not be available. */
2759 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2760
2761 /* The stack grows downward. */
2762 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2763
2764 /* Breakpoint manipulation. */
2765 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2766
2767 /* Information about registers, etc. */
2768 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2769 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2770 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2771 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2772 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
2773 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2774 set_gdbarch_register_type (gdbarch, arm_register_type);
2775
2776 /* Internal <-> external register number maps. */
2777 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2778
2779 /* Integer registers are 4 bytes. */
2780 set_gdbarch_deprecated_register_size (gdbarch, 4);
2781 set_gdbarch_register_name (gdbarch, arm_register_name);
2782
2783 /* Returning results. */
2784 set_gdbarch_return_value (gdbarch, arm_return_value);
2785
2786 /* Single stepping. */
2787 /* XXX For an RDI target we should ask the target if it can single-step. */
2788 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2789
2790 /* Disassembly. */
2791 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2792
2793 /* Minsymbol frobbing. */
2794 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2795 set_gdbarch_coff_make_msymbol_special (gdbarch,
2796 arm_coff_make_msymbol_special);
2797
2798 /* Hook in the ABI-specific overrides, if they have been registered. */
2799 gdbarch_init_osabi (info, gdbarch);
2800
2801 /* Add some default predicates. */
2802 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
2803 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2804 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2805
2806 /* Now we have tuned the configuration, set a few final things,
2807 based on what the OS ABI has told us. */
2808
2809 if (tdep->jb_pc >= 0)
2810 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2811
2812 /* Floating point sizes and format. */
2813 switch (info.byte_order)
2814 {
2815 case BFD_ENDIAN_BIG:
2816 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2817 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2818 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2819 break;
2820
2821 case BFD_ENDIAN_LITTLE:
2822 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2823 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
2824 {
2825 set_gdbarch_double_format
2826 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2827 set_gdbarch_long_double_format
2828 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2829 }
2830 else
2831 {
2832 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2833 set_gdbarch_long_double_format (gdbarch,
2834 &floatformat_ieee_double_little);
2835 }
2836 break;
2837
2838 default:
2839 internal_error (__FILE__, __LINE__,
2840 _("arm_gdbarch_init: bad byte order for float format"));
2841 }
2842
2843 return gdbarch;
2844 }
2845
2846 static void
2847 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2848 {
2849 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2850
2851 if (tdep == NULL)
2852 return;
2853
2854 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
2855 (unsigned long) tdep->lowest_pc);
2856 }
2857
2858 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2859
2860 void
2861 _initialize_arm_tdep (void)
2862 {
2863 struct ui_file *stb;
2864 long length;
2865 struct cmd_list_element *new_set, *new_show;
2866 const char *setname;
2867 const char *setdesc;
2868 const char *const *regnames;
2869 int numregs, i, j;
2870 static char *helptext;
2871 char regdesc[1024], *rdptr = regdesc;
2872 size_t rest = sizeof (regdesc);
2873
2874 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
2875
2876 /* Register an ELF OS ABI sniffer for ARM binaries. */
2877 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2878 bfd_target_elf_flavour,
2879 arm_elf_osabi_sniffer);
2880
2881 /* Get the number of possible sets of register names defined in opcodes. */
2882 num_disassembly_options = get_arm_regname_num_options ();
2883
2884 /* Add root prefix command for all "set arm"/"show arm" commands. */
2885 add_prefix_cmd ("arm", no_class, set_arm_command,
2886 _("Various ARM-specific commands."),
2887 &setarmcmdlist, "set arm ", 0, &setlist);
2888
2889 add_prefix_cmd ("arm", no_class, show_arm_command,
2890 _("Various ARM-specific commands."),
2891 &showarmcmdlist, "show arm ", 0, &showlist);
2892
2893 /* Sync the opcode insn printer with our register viewer. */
2894 parse_arm_disassembler_option ("reg-names-std");
2895
2896 /* Initialize the array that will be passed to
2897 add_setshow_enum_cmd(). */
2898 valid_disassembly_styles
2899 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
2900 for (i = 0; i < num_disassembly_options; i++)
2901 {
2902 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
2903 valid_disassembly_styles[i] = setname;
2904 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
2905 rdptr += length;
2906 rest -= length;
2907 /* Copy the default names (if found) and synchronize disassembler. */
2908 if (!strcmp (setname, "std"))
2909 {
2910 disassembly_style = setname;
2911 current_option = i;
2912 for (j = 0; j < numregs; j++)
2913 arm_register_names[j] = (char *) regnames[j];
2914 set_arm_regname_option (i);
2915 }
2916 }
2917 /* Mark the end of valid options. */
2918 valid_disassembly_styles[num_disassembly_options] = NULL;
2919
2920 /* Create the help text. */
2921 stb = mem_fileopen ();
2922 fprintf_unfiltered (stb, "%s%s%s",
2923 _("The valid values are:\n"),
2924 regdesc,
2925 _("The default is \"std\"."));
2926 helptext = ui_file_xstrdup (stb, &length);
2927 ui_file_delete (stb);
2928
2929 add_setshow_enum_cmd("disassembler", no_class,
2930 valid_disassembly_styles, &disassembly_style,
2931 _("Set the disassembly style."),
2932 _("Show the disassembly style."),
2933 helptext,
2934 set_disassembly_style_sfunc,
2935 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
2936 &setarmcmdlist, &showarmcmdlist);
2937
2938 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
2939 _("Set usage of ARM 32-bit mode."),
2940 _("Show usage of ARM 32-bit mode."),
2941 _("When off, a 26-bit PC will be used."),
2942 NULL,
2943 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
2944 &setarmcmdlist, &showarmcmdlist);
2945
2946 /* Add a command to allow the user to force the FPU model. */
2947 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
2948 _("Set the floating point type."),
2949 _("Show the floating point type."),
2950 _("auto - Determine the FP typefrom the OS-ABI.\n\
2951 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
2952 fpa - FPA co-processor (GCC compiled).\n\
2953 softvfp - Software FP with pure-endian doubles.\n\
2954 vfp - VFP co-processor."),
2955 set_fp_model_sfunc, show_fp_model,
2956 &setarmcmdlist, &showarmcmdlist);
2957
2958 /* Add a command to allow the user to force the ABI. */
2959 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
2960 _("Set the ABI."),
2961 _("Show the ABI."),
2962 NULL, arm_set_abi, arm_show_abi,
2963 &setarmcmdlist, &showarmcmdlist);
2964
2965 /* Debugging flag. */
2966 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
2967 _("Set ARM debugging."),
2968 _("Show ARM debugging."),
2969 _("When on, arm-specific debugging is enabled."),
2970 NULL,
2971 NULL, /* FIXME: i18n: "ARM debugging is %s. */
2972 &setdebuglist, &showdebuglist);
2973 }
This page took 0.117647 seconds and 4 git commands to generate.