* configure.ac: Use AC_CHECK_DECLS instead of gcc_AC_CHECK_DECLS
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <ctype.h> /* XXX for isupper () */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "gdb_string.h"
30 #include "dis-asm.h" /* For register styles. */
31 #include "regcache.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "arch-utils.h"
35 #include "osabi.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "trad-frame.h"
39
40 #include "arm-tdep.h"
41 #include "gdb/sim-arm.h"
42
43 #include "elf-bfd.h"
44 #include "coff/internal.h"
45 #include "elf/arm.h"
46
47 #include "gdb_assert.h"
48
49 static int arm_debug;
50
51 /* Each OS has a different mechanism for accessing the various
52 registers stored in the sigcontext structure.
53
54 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
55 function pointer) which may be used to determine the addresses
56 of the various saved registers in the sigcontext structure.
57
58 For the ARM target, there are three parameters to this function.
59 The first is the pc value of the frame under consideration, the
60 second the stack pointer of this frame, and the last is the
61 register number to fetch.
62
63 If the tm.h file does not define this macro, then it's assumed that
64 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
65 be 0.
66
67 When it comes time to multi-arching this code, see the identically
68 named machinery in ia64-tdep.c for an example of how it could be
69 done. It should not be necessary to modify the code below where
70 this macro is used. */
71
72 #ifdef SIGCONTEXT_REGISTER_ADDRESS
73 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
74 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
75 #endif
76 #else
77 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
78 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
79 #endif
80
81 /* Macros for setting and testing a bit in a minimal symbol that marks
82 it as Thumb function. The MSB of the minimal symbol's "info" field
83 is used for this purpose.
84
85 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
86 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
87
88 #define MSYMBOL_SET_SPECIAL(msym) \
89 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
90 | 0x80000000)
91
92 #define MSYMBOL_IS_SPECIAL(msym) \
93 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
94
95 /* The list of available "set arm ..." and "show arm ..." commands. */
96 static struct cmd_list_element *setarmcmdlist = NULL;
97 static struct cmd_list_element *showarmcmdlist = NULL;
98
99 /* The type of floating-point to use. Keep this in sync with enum
100 arm_float_model, and the help string in _initialize_arm_tdep. */
101 static const char *fp_model_strings[] =
102 {
103 "auto",
104 "softfpa",
105 "fpa",
106 "softvfp",
107 "vfp"
108 };
109
110 /* A variable that can be configured by the user. */
111 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
112 static const char *current_fp_model = "auto";
113
114 /* Number of different reg name sets (options). */
115 static int num_disassembly_options;
116
117 /* We have more registers than the disassembler as gdb can print the value
118 of special registers as well.
119 The general register names are overwritten by whatever is being used by
120 the disassembler at the moment. We also adjust the case of cpsr and fps. */
121
122 /* Initial value: Register names used in ARM's ISA documentation. */
123 static char * arm_register_name_strings[] =
124 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
125 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
126 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
127 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
128 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
129 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
130 "fps", "cpsr" }; /* 24 25 */
131 static char **arm_register_names = arm_register_name_strings;
132
133 /* Valid register name styles. */
134 static const char **valid_disassembly_styles;
135
136 /* Disassembly style to use. Default to "std" register names. */
137 static const char *disassembly_style;
138 /* Index to that option in the opcodes table. */
139 static int current_option;
140
141 /* This is used to keep the bfd arch_info in sync with the disassembly
142 style. */
143 static void set_disassembly_style_sfunc(char *, int,
144 struct cmd_list_element *);
145 static void set_disassembly_style (void);
146
147 static void convert_from_extended (const struct floatformat *, const void *,
148 void *);
149 static void convert_to_extended (const struct floatformat *, void *,
150 const void *);
151
152 struct arm_prologue_cache
153 {
154 /* The stack pointer at the time this frame was created; i.e. the
155 caller's stack pointer when this function was called. It is used
156 to identify this frame. */
157 CORE_ADDR prev_sp;
158
159 /* The frame base for this frame is just prev_sp + frame offset -
160 frame size. FRAMESIZE is the size of this stack frame, and
161 FRAMEOFFSET if the initial offset from the stack pointer (this
162 frame's stack pointer, not PREV_SP) to the frame base. */
163
164 int framesize;
165 int frameoffset;
166
167 /* The register used to hold the frame pointer for this frame. */
168 int framereg;
169
170 /* Saved register offsets. */
171 struct trad_frame_saved_reg *saved_regs;
172 };
173
174 /* Addresses for calling Thumb functions have the bit 0 set.
175 Here are some macros to test, set, or clear bit 0 of addresses. */
176 #define IS_THUMB_ADDR(addr) ((addr) & 1)
177 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
178 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
179
180 /* Set to true if the 32-bit mode is in use. */
181
182 int arm_apcs_32 = 1;
183
184 /* Flag set by arm_fix_call_dummy that tells whether the target
185 function is a Thumb function. This flag is checked by
186 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
187 its use in valops.c) to pass the function address as an additional
188 parameter. */
189
190 static int target_is_thumb;
191
192 /* Flag set by arm_fix_call_dummy that tells whether the calling
193 function is a Thumb function. This flag is checked by
194 arm_pc_is_thumb. */
195
196 static int caller_is_thumb;
197
198 /* Determine if the program counter specified in MEMADDR is in a Thumb
199 function. */
200
201 int
202 arm_pc_is_thumb (CORE_ADDR memaddr)
203 {
204 struct minimal_symbol *sym;
205
206 /* If bit 0 of the address is set, assume this is a Thumb address. */
207 if (IS_THUMB_ADDR (memaddr))
208 return 1;
209
210 /* Thumb functions have a "special" bit set in minimal symbols. */
211 sym = lookup_minimal_symbol_by_pc (memaddr);
212 if (sym)
213 {
214 return (MSYMBOL_IS_SPECIAL (sym));
215 }
216 else
217 {
218 return 0;
219 }
220 }
221
222 /* Determine if the program counter specified in MEMADDR is in a call
223 dummy being called from a Thumb function. */
224
225 int
226 arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
227 {
228 CORE_ADDR sp = read_sp ();
229
230 /* FIXME: Until we switch for the new call dummy macros, this heuristic
231 is the best we can do. We are trying to determine if the pc is on
232 the stack, which (hopefully) will only happen in a call dummy.
233 We hope the current stack pointer is not so far alway from the dummy
234 frame location (true if we have not pushed large data structures or
235 gone too many levels deep) and that our 1024 is not enough to consider
236 code regions as part of the stack (true for most practical purposes). */
237 if (deprecated_pc_in_call_dummy (memaddr))
238 return caller_is_thumb;
239 else
240 return 0;
241 }
242
243 /* Remove useless bits from addresses in a running program. */
244 static CORE_ADDR
245 arm_addr_bits_remove (CORE_ADDR val)
246 {
247 if (arm_apcs_32)
248 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
249 else
250 return (val & 0x03fffffc);
251 }
252
253 /* When reading symbols, we need to zap the low bit of the address,
254 which may be set to 1 for Thumb functions. */
255 static CORE_ADDR
256 arm_smash_text_address (CORE_ADDR val)
257 {
258 return val & ~1;
259 }
260
261 /* Immediately after a function call, return the saved pc. Can't
262 always go through the frames for this because on some machines the
263 new frame is not set up until the new function executes some
264 instructions. */
265
266 static CORE_ADDR
267 arm_saved_pc_after_call (struct frame_info *frame)
268 {
269 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
270 }
271
272 /* A typical Thumb prologue looks like this:
273 push {r7, lr}
274 add sp, sp, #-28
275 add r7, sp, #12
276 Sometimes the latter instruction may be replaced by:
277 mov r7, sp
278
279 or like this:
280 push {r7, lr}
281 mov r7, sp
282 sub sp, #12
283
284 or, on tpcs, like this:
285 sub sp,#16
286 push {r7, lr}
287 (many instructions)
288 mov r7, sp
289 sub sp, #12
290
291 There is always one instruction of three classes:
292 1 - push
293 2 - setting of r7
294 3 - adjusting of sp
295
296 When we have found at least one of each class we are done with the prolog.
297 Note that the "sub sp, #NN" before the push does not count.
298 */
299
300 static CORE_ADDR
301 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
302 {
303 CORE_ADDR current_pc;
304 /* findmask:
305 bit 0 - push { rlist }
306 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
307 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
308 */
309 int findmask = 0;
310
311 for (current_pc = pc;
312 current_pc + 2 < func_end && current_pc < pc + 40;
313 current_pc += 2)
314 {
315 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
316
317 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
318 {
319 findmask |= 1; /* push found */
320 }
321 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
322 sub sp, #simm */
323 {
324 if ((findmask & 1) == 0) /* before push ? */
325 continue;
326 else
327 findmask |= 4; /* add/sub sp found */
328 }
329 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
330 {
331 findmask |= 2; /* setting of r7 found */
332 }
333 else if (insn == 0x466f) /* mov r7, sp */
334 {
335 findmask |= 2; /* setting of r7 found */
336 }
337 else if (findmask == (4+2+1))
338 {
339 /* We have found one of each type of prologue instruction */
340 break;
341 }
342 else
343 /* Something in the prolog that we don't care about or some
344 instruction from outside the prolog scheduled here for
345 optimization. */
346 continue;
347 }
348
349 return current_pc;
350 }
351
352 /* Advance the PC across any function entry prologue instructions to
353 reach some "real" code.
354
355 The APCS (ARM Procedure Call Standard) defines the following
356 prologue:
357
358 mov ip, sp
359 [stmfd sp!, {a1,a2,a3,a4}]
360 stmfd sp!, {...,fp,ip,lr,pc}
361 [stfe f7, [sp, #-12]!]
362 [stfe f6, [sp, #-12]!]
363 [stfe f5, [sp, #-12]!]
364 [stfe f4, [sp, #-12]!]
365 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
366
367 static CORE_ADDR
368 arm_skip_prologue (CORE_ADDR pc)
369 {
370 unsigned long inst;
371 CORE_ADDR skip_pc;
372 CORE_ADDR func_addr, func_end = 0;
373 char *func_name;
374 struct symtab_and_line sal;
375
376 /* If we're in a dummy frame, don't even try to skip the prologue. */
377 if (deprecated_pc_in_call_dummy (pc))
378 return pc;
379
380 /* See what the symbol table says. */
381
382 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
383 {
384 struct symbol *sym;
385
386 /* Found a function. */
387 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
388 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
389 {
390 /* Don't use this trick for assembly source files. */
391 sal = find_pc_line (func_addr, 0);
392 if ((sal.line != 0) && (sal.end < func_end))
393 return sal.end;
394 }
395 }
396
397 /* Check if this is Thumb code. */
398 if (arm_pc_is_thumb (pc))
399 return thumb_skip_prologue (pc, func_end);
400
401 /* Can't find the prologue end in the symbol table, try it the hard way
402 by disassembling the instructions. */
403
404 /* Like arm_scan_prologue, stop no later than pc + 64. */
405 if (func_end == 0 || func_end > pc + 64)
406 func_end = pc + 64;
407
408 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
409 {
410 inst = read_memory_integer (skip_pc, 4);
411
412 /* "mov ip, sp" is no longer a required part of the prologue. */
413 if (inst == 0xe1a0c00d) /* mov ip, sp */
414 continue;
415
416 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
417 continue;
418
419 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
420 continue;
421
422 /* Some prologues begin with "str lr, [sp, #-4]!". */
423 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
424 continue;
425
426 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
427 continue;
428
429 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
430 continue;
431
432 /* Any insns after this point may float into the code, if it makes
433 for better instruction scheduling, so we skip them only if we
434 find them, but still consider the function to be frame-ful. */
435
436 /* We may have either one sfmfd instruction here, or several stfe
437 insns, depending on the version of floating point code we
438 support. */
439 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
440 continue;
441
442 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
443 continue;
444
445 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
446 continue;
447
448 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
449 continue;
450
451 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
452 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
453 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
454 continue;
455
456 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
457 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
458 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
459 continue;
460
461 /* Un-recognized instruction; stop scanning. */
462 break;
463 }
464
465 return skip_pc; /* End of prologue */
466 }
467
468 /* *INDENT-OFF* */
469 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
470 This function decodes a Thumb function prologue to determine:
471 1) the size of the stack frame
472 2) which registers are saved on it
473 3) the offsets of saved regs
474 4) the offset from the stack pointer to the frame pointer
475
476 A typical Thumb function prologue would create this stack frame
477 (offsets relative to FP)
478 old SP -> 24 stack parameters
479 20 LR
480 16 R7
481 R7 -> 0 local variables (16 bytes)
482 SP -> -12 additional stack space (12 bytes)
483 The frame size would thus be 36 bytes, and the frame offset would be
484 12 bytes. The frame register is R7.
485
486 The comments for thumb_skip_prolog() describe the algorithm we use
487 to detect the end of the prolog. */
488 /* *INDENT-ON* */
489
490 static void
491 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
492 {
493 CORE_ADDR prologue_start;
494 CORE_ADDR prologue_end;
495 CORE_ADDR current_pc;
496 /* Which register has been copied to register n? */
497 int saved_reg[16];
498 /* findmask:
499 bit 0 - push { rlist }
500 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
501 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
502 */
503 int findmask = 0;
504 int i;
505
506 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
507 {
508 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
509
510 if (sal.line == 0) /* no line info, use current PC */
511 prologue_end = prev_pc;
512 else if (sal.end < prologue_end) /* next line begins after fn end */
513 prologue_end = sal.end; /* (probably means no prologue) */
514 }
515 else
516 /* We're in the boondocks: allow for
517 16 pushes, an add, and "mv fp,sp". */
518 prologue_end = prologue_start + 40;
519
520 prologue_end = min (prologue_end, prev_pc);
521
522 /* Initialize the saved register map. When register H is copied to
523 register L, we will put H in saved_reg[L]. */
524 for (i = 0; i < 16; i++)
525 saved_reg[i] = i;
526
527 /* Search the prologue looking for instructions that set up the
528 frame pointer, adjust the stack pointer, and save registers.
529 Do this until all basic prolog instructions are found. */
530
531 cache->framesize = 0;
532 for (current_pc = prologue_start;
533 (current_pc < prologue_end) && ((findmask & 7) != 7);
534 current_pc += 2)
535 {
536 unsigned short insn;
537 int regno;
538 int offset;
539
540 insn = read_memory_unsigned_integer (current_pc, 2);
541
542 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
543 {
544 int mask;
545 findmask |= 1; /* push found */
546 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
547 whether to save LR (R14). */
548 mask = (insn & 0xff) | ((insn & 0x100) << 6);
549
550 /* Calculate offsets of saved R0-R7 and LR. */
551 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
552 if (mask & (1 << regno))
553 {
554 cache->framesize += 4;
555 cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
556 /* Reset saved register map. */
557 saved_reg[regno] = regno;
558 }
559 }
560 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
561 sub sp, #simm */
562 {
563 if ((findmask & 1) == 0) /* before push? */
564 continue;
565 else
566 findmask |= 4; /* add/sub sp found */
567
568 offset = (insn & 0x7f) << 2; /* get scaled offset */
569 if (insn & 0x80) /* is it signed? (==subtracting) */
570 {
571 cache->frameoffset += offset;
572 offset = -offset;
573 }
574 cache->framesize -= offset;
575 }
576 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
577 {
578 findmask |= 2; /* setting of r7 found */
579 cache->framereg = THUMB_FP_REGNUM;
580 /* get scaled offset */
581 cache->frameoffset = (insn & 0xff) << 2;
582 }
583 else if (insn == 0x466f) /* mov r7, sp */
584 {
585 findmask |= 2; /* setting of r7 found */
586 cache->framereg = THUMB_FP_REGNUM;
587 cache->frameoffset = 0;
588 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
589 }
590 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
591 {
592 int lo_reg = insn & 7; /* dest. register (r0-r7) */
593 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
594 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
595 }
596 else
597 /* Something in the prolog that we don't care about or some
598 instruction from outside the prolog scheduled here for
599 optimization. */
600 continue;
601 }
602 }
603
604 /* This function decodes an ARM function prologue to determine:
605 1) the size of the stack frame
606 2) which registers are saved on it
607 3) the offsets of saved regs
608 4) the offset from the stack pointer to the frame pointer
609 This information is stored in the "extra" fields of the frame_info.
610
611 There are two basic forms for the ARM prologue. The fixed argument
612 function call will look like:
613
614 mov ip, sp
615 stmfd sp!, {fp, ip, lr, pc}
616 sub fp, ip, #4
617 [sub sp, sp, #4]
618
619 Which would create this stack frame (offsets relative to FP):
620 IP -> 4 (caller's stack)
621 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
622 -4 LR (return address in caller)
623 -8 IP (copy of caller's SP)
624 -12 FP (caller's FP)
625 SP -> -28 Local variables
626
627 The frame size would thus be 32 bytes, and the frame offset would be
628 28 bytes. The stmfd call can also save any of the vN registers it
629 plans to use, which increases the frame size accordingly.
630
631 Note: The stored PC is 8 off of the STMFD instruction that stored it
632 because the ARM Store instructions always store PC + 8 when you read
633 the PC register.
634
635 A variable argument function call will look like:
636
637 mov ip, sp
638 stmfd sp!, {a1, a2, a3, a4}
639 stmfd sp!, {fp, ip, lr, pc}
640 sub fp, ip, #20
641
642 Which would create this stack frame (offsets relative to FP):
643 IP -> 20 (caller's stack)
644 16 A4
645 12 A3
646 8 A2
647 4 A1
648 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
649 -4 LR (return address in caller)
650 -8 IP (copy of caller's SP)
651 -12 FP (caller's FP)
652 SP -> -28 Local variables
653
654 The frame size would thus be 48 bytes, and the frame offset would be
655 28 bytes.
656
657 There is another potential complication, which is that the optimizer
658 will try to separate the store of fp in the "stmfd" instruction from
659 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
660 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
661
662 Also, note, the original version of the ARM toolchain claimed that there
663 should be an
664
665 instruction at the end of the prologue. I have never seen GCC produce
666 this, and the ARM docs don't mention it. We still test for it below in
667 case it happens...
668
669 */
670
671 static void
672 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
673 {
674 int regno, sp_offset, fp_offset, ip_offset;
675 CORE_ADDR prologue_start, prologue_end, current_pc;
676 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
677
678 /* Assume there is no frame until proven otherwise. */
679 cache->framereg = ARM_SP_REGNUM;
680 cache->framesize = 0;
681 cache->frameoffset = 0;
682
683 /* Check for Thumb prologue. */
684 if (arm_pc_is_thumb (prev_pc))
685 {
686 thumb_scan_prologue (prev_pc, cache);
687 return;
688 }
689
690 /* Find the function prologue. If we can't find the function in
691 the symbol table, peek in the stack frame to find the PC. */
692 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
693 {
694 /* One way to find the end of the prologue (which works well
695 for unoptimized code) is to do the following:
696
697 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
698
699 if (sal.line == 0)
700 prologue_end = prev_pc;
701 else if (sal.end < prologue_end)
702 prologue_end = sal.end;
703
704 This mechanism is very accurate so long as the optimizer
705 doesn't move any instructions from the function body into the
706 prologue. If this happens, sal.end will be the last
707 instruction in the first hunk of prologue code just before
708 the first instruction that the scheduler has moved from
709 the body to the prologue.
710
711 In order to make sure that we scan all of the prologue
712 instructions, we use a slightly less accurate mechanism which
713 may scan more than necessary. To help compensate for this
714 lack of accuracy, the prologue scanning loop below contains
715 several clauses which'll cause the loop to terminate early if
716 an implausible prologue instruction is encountered.
717
718 The expression
719
720 prologue_start + 64
721
722 is a suitable endpoint since it accounts for the largest
723 possible prologue plus up to five instructions inserted by
724 the scheduler. */
725
726 if (prologue_end > prologue_start + 64)
727 {
728 prologue_end = prologue_start + 64; /* See above. */
729 }
730 }
731 else
732 {
733 /* We have no symbol information. Our only option is to assume this
734 function has a standard stack frame and the normal frame register.
735 Then, we can find the value of our frame pointer on entrance to
736 the callee (or at the present moment if this is the innermost frame).
737 The value stored there should be the address of the stmfd + 8. */
738 CORE_ADDR frame_loc;
739 LONGEST return_value;
740
741 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
742 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
743 return;
744 else
745 {
746 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
747 prologue_end = prologue_start + 64; /* See above. */
748 }
749 }
750
751 if (prev_pc < prologue_end)
752 prologue_end = prev_pc;
753
754 /* Now search the prologue looking for instructions that set up the
755 frame pointer, adjust the stack pointer, and save registers.
756
757 Be careful, however, and if it doesn't look like a prologue,
758 don't try to scan it. If, for instance, a frameless function
759 begins with stmfd sp!, then we will tell ourselves there is
760 a frame, which will confuse stack traceback, as well as "finish"
761 and other operations that rely on a knowledge of the stack
762 traceback.
763
764 In the APCS, the prologue should start with "mov ip, sp" so
765 if we don't see this as the first insn, we will stop.
766
767 [Note: This doesn't seem to be true any longer, so it's now an
768 optional part of the prologue. - Kevin Buettner, 2001-11-20]
769
770 [Note further: The "mov ip,sp" only seems to be missing in
771 frameless functions at optimization level "-O2" or above,
772 in which case it is often (but not always) replaced by
773 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
774
775 sp_offset = fp_offset = ip_offset = 0;
776
777 for (current_pc = prologue_start;
778 current_pc < prologue_end;
779 current_pc += 4)
780 {
781 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
782
783 if (insn == 0xe1a0c00d) /* mov ip, sp */
784 {
785 ip_offset = 0;
786 continue;
787 }
788 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
789 {
790 unsigned imm = insn & 0xff; /* immediate value */
791 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
792 imm = (imm >> rot) | (imm << (32 - rot));
793 ip_offset = imm;
794 continue;
795 }
796 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
797 {
798 unsigned imm = insn & 0xff; /* immediate value */
799 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
800 imm = (imm >> rot) | (imm << (32 - rot));
801 ip_offset = -imm;
802 continue;
803 }
804 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
805 {
806 sp_offset -= 4;
807 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
808 continue;
809 }
810 else if ((insn & 0xffff0000) == 0xe92d0000)
811 /* stmfd sp!, {..., fp, ip, lr, pc}
812 or
813 stmfd sp!, {a1, a2, a3, a4} */
814 {
815 int mask = insn & 0xffff;
816
817 /* Calculate offsets of saved registers. */
818 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
819 if (mask & (1 << regno))
820 {
821 sp_offset -= 4;
822 cache->saved_regs[regno].addr = sp_offset;
823 }
824 }
825 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
826 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
827 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
828 {
829 /* No need to add this to saved_regs -- it's just an arg reg. */
830 continue;
831 }
832 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
833 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
834 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
835 {
836 /* No need to add this to saved_regs -- it's just an arg reg. */
837 continue;
838 }
839 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
840 {
841 unsigned imm = insn & 0xff; /* immediate value */
842 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
843 imm = (imm >> rot) | (imm << (32 - rot));
844 fp_offset = -imm + ip_offset;
845 cache->framereg = ARM_FP_REGNUM;
846 }
847 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
848 {
849 unsigned imm = insn & 0xff; /* immediate value */
850 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
851 imm = (imm >> rot) | (imm << (32 - rot));
852 sp_offset -= imm;
853 }
854 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
855 {
856 sp_offset -= 12;
857 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
858 cache->saved_regs[regno].addr = sp_offset;
859 }
860 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
861 {
862 int n_saved_fp_regs;
863 unsigned int fp_start_reg, fp_bound_reg;
864
865 if ((insn & 0x800) == 0x800) /* N0 is set */
866 {
867 if ((insn & 0x40000) == 0x40000) /* N1 is set */
868 n_saved_fp_regs = 3;
869 else
870 n_saved_fp_regs = 1;
871 }
872 else
873 {
874 if ((insn & 0x40000) == 0x40000) /* N1 is set */
875 n_saved_fp_regs = 2;
876 else
877 n_saved_fp_regs = 4;
878 }
879
880 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
881 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
882 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
883 {
884 sp_offset -= 12;
885 cache->saved_regs[fp_start_reg++].addr = sp_offset;
886 }
887 }
888 else if ((insn & 0xf0000000) != 0xe0000000)
889 break; /* Condition not true, exit early */
890 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
891 break; /* Don't scan past a block load */
892 else
893 /* The optimizer might shove anything into the prologue,
894 so we just skip what we don't recognize. */
895 continue;
896 }
897
898 /* The frame size is just the negative of the offset (from the
899 original SP) of the last thing thing we pushed on the stack.
900 The frame offset is [new FP] - [new SP]. */
901 cache->framesize = -sp_offset;
902 if (cache->framereg == ARM_FP_REGNUM)
903 cache->frameoffset = fp_offset - sp_offset;
904 else
905 cache->frameoffset = 0;
906 }
907
908 static struct arm_prologue_cache *
909 arm_make_prologue_cache (struct frame_info *next_frame)
910 {
911 int reg;
912 struct arm_prologue_cache *cache;
913 CORE_ADDR unwound_fp;
914
915 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
916 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
917
918 arm_scan_prologue (next_frame, cache);
919
920 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
921 if (unwound_fp == 0)
922 return cache;
923
924 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
925
926 /* Calculate actual addresses of saved registers using offsets
927 determined by arm_scan_prologue. */
928 for (reg = 0; reg < NUM_REGS; reg++)
929 if (trad_frame_addr_p (cache->saved_regs, reg))
930 cache->saved_regs[reg].addr += cache->prev_sp;
931
932 return cache;
933 }
934
935 /* Our frame ID for a normal frame is the current function's starting PC
936 and the caller's SP when we were called. */
937
938 static void
939 arm_prologue_this_id (struct frame_info *next_frame,
940 void **this_cache,
941 struct frame_id *this_id)
942 {
943 struct arm_prologue_cache *cache;
944 struct frame_id id;
945 CORE_ADDR func;
946
947 if (*this_cache == NULL)
948 *this_cache = arm_make_prologue_cache (next_frame);
949 cache = *this_cache;
950
951 func = frame_func_unwind (next_frame);
952
953 /* This is meant to halt the backtrace at "_start". Make sure we
954 don't halt it at a generic dummy frame. */
955 if (func <= LOWEST_PC)
956 return;
957
958 /* If we've hit a wall, stop. */
959 if (cache->prev_sp == 0)
960 return;
961
962 id = frame_id_build (cache->prev_sp, func);
963 *this_id = id;
964 }
965
966 static void
967 arm_prologue_prev_register (struct frame_info *next_frame,
968 void **this_cache,
969 int prev_regnum,
970 int *optimized,
971 enum lval_type *lvalp,
972 CORE_ADDR *addrp,
973 int *realnump,
974 void *valuep)
975 {
976 struct arm_prologue_cache *cache;
977
978 if (*this_cache == NULL)
979 *this_cache = arm_make_prologue_cache (next_frame);
980 cache = *this_cache;
981
982 /* If we are asked to unwind the PC, then we need to return the LR
983 instead. The saved value of PC points into this frame's
984 prologue, not the next frame's resume location. */
985 if (prev_regnum == ARM_PC_REGNUM)
986 prev_regnum = ARM_LR_REGNUM;
987
988 /* SP is generally not saved to the stack, but this frame is
989 identified by NEXT_FRAME's stack pointer at the time of the call.
990 The value was already reconstructed into PREV_SP. */
991 if (prev_regnum == ARM_SP_REGNUM)
992 {
993 *lvalp = not_lval;
994 if (valuep)
995 store_unsigned_integer (valuep, 4, cache->prev_sp);
996 return;
997 }
998
999 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
1000 optimized, lvalp, addrp, realnump, valuep);
1001 }
1002
1003 struct frame_unwind arm_prologue_unwind = {
1004 NORMAL_FRAME,
1005 arm_prologue_this_id,
1006 arm_prologue_prev_register
1007 };
1008
1009 static const struct frame_unwind *
1010 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
1011 {
1012 return &arm_prologue_unwind;
1013 }
1014
1015 static CORE_ADDR
1016 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1017 {
1018 struct arm_prologue_cache *cache;
1019
1020 if (*this_cache == NULL)
1021 *this_cache = arm_make_prologue_cache (next_frame);
1022 cache = *this_cache;
1023
1024 return cache->prev_sp + cache->frameoffset - cache->framesize;
1025 }
1026
1027 struct frame_base arm_normal_base = {
1028 &arm_prologue_unwind,
1029 arm_normal_frame_base,
1030 arm_normal_frame_base,
1031 arm_normal_frame_base
1032 };
1033
1034 static struct arm_prologue_cache *
1035 arm_make_sigtramp_cache (struct frame_info *next_frame)
1036 {
1037 struct arm_prologue_cache *cache;
1038 int reg;
1039
1040 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
1041
1042 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1043
1044 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1045
1046 for (reg = 0; reg < NUM_REGS; reg++)
1047 cache->saved_regs[reg].addr
1048 = SIGCONTEXT_REGISTER_ADDRESS (cache->prev_sp,
1049 frame_pc_unwind (next_frame), reg);
1050
1051 /* FIXME: What about thumb mode? */
1052 cache->framereg = ARM_SP_REGNUM;
1053 cache->prev_sp
1054 = read_memory_integer (cache->saved_regs[cache->framereg].addr,
1055 register_size (current_gdbarch, cache->framereg));
1056
1057 return cache;
1058 }
1059
1060 static void
1061 arm_sigtramp_this_id (struct frame_info *next_frame,
1062 void **this_cache,
1063 struct frame_id *this_id)
1064 {
1065 struct arm_prologue_cache *cache;
1066
1067 if (*this_cache == NULL)
1068 *this_cache = arm_make_sigtramp_cache (next_frame);
1069 cache = *this_cache;
1070
1071 /* FIXME drow/2003-07-07: This isn't right if we single-step within
1072 the sigtramp frame; the PC should be the beginning of the trampoline. */
1073 *this_id = frame_id_build (cache->prev_sp, frame_pc_unwind (next_frame));
1074 }
1075
1076 static void
1077 arm_sigtramp_prev_register (struct frame_info *next_frame,
1078 void **this_cache,
1079 int prev_regnum,
1080 int *optimized,
1081 enum lval_type *lvalp,
1082 CORE_ADDR *addrp,
1083 int *realnump,
1084 void *valuep)
1085 {
1086 struct arm_prologue_cache *cache;
1087
1088 if (*this_cache == NULL)
1089 *this_cache = arm_make_sigtramp_cache (next_frame);
1090 cache = *this_cache;
1091
1092 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
1093 optimized, lvalp, addrp, realnump, valuep);
1094 }
1095
1096 struct frame_unwind arm_sigtramp_unwind = {
1097 SIGTRAMP_FRAME,
1098 arm_sigtramp_this_id,
1099 arm_sigtramp_prev_register
1100 };
1101
1102 static const struct frame_unwind *
1103 arm_sigtramp_unwind_sniffer (struct frame_info *next_frame)
1104 {
1105 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1106 && legacy_pc_in_sigtramp (frame_pc_unwind (next_frame), (char *) 0))
1107 return &arm_sigtramp_unwind;
1108
1109 return NULL;
1110 }
1111
1112 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1113 dummy frame. The frame ID's base needs to match the TOS value
1114 saved by save_dummy_frame_tos() and returned from
1115 arm_push_dummy_call, and the PC needs to match the dummy frame's
1116 breakpoint. */
1117
1118 static struct frame_id
1119 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1120 {
1121 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1122 frame_pc_unwind (next_frame));
1123 }
1124
1125 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1126 be used to construct the previous frame's ID, after looking up the
1127 containing function). */
1128
1129 static CORE_ADDR
1130 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1131 {
1132 CORE_ADDR pc;
1133 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1134 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1135 }
1136
1137 static CORE_ADDR
1138 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1139 {
1140 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1141 }
1142
1143 /* When arguments must be pushed onto the stack, they go on in reverse
1144 order. The code below implements a FILO (stack) to do this. */
1145
1146 struct stack_item
1147 {
1148 int len;
1149 struct stack_item *prev;
1150 void *data;
1151 };
1152
1153 static struct stack_item *
1154 push_stack_item (struct stack_item *prev, void *contents, int len)
1155 {
1156 struct stack_item *si;
1157 si = xmalloc (sizeof (struct stack_item));
1158 si->data = xmalloc (len);
1159 si->len = len;
1160 si->prev = prev;
1161 memcpy (si->data, contents, len);
1162 return si;
1163 }
1164
1165 static struct stack_item *
1166 pop_stack_item (struct stack_item *si)
1167 {
1168 struct stack_item *dead = si;
1169 si = si->prev;
1170 xfree (dead->data);
1171 xfree (dead);
1172 return si;
1173 }
1174
1175 /* We currently only support passing parameters in integer registers. This
1176 conforms with GCC's default model. Several other variants exist and
1177 we should probably support some of them based on the selected ABI. */
1178
1179 static CORE_ADDR
1180 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1181 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1182 struct value **args, CORE_ADDR sp, int struct_return,
1183 CORE_ADDR struct_addr)
1184 {
1185 int argnum;
1186 int argreg;
1187 int nstack;
1188 struct stack_item *si = NULL;
1189
1190 /* Set the return address. For the ARM, the return breakpoint is
1191 always at BP_ADDR. */
1192 /* XXX Fix for Thumb. */
1193 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1194
1195 /* Walk through the list of args and determine how large a temporary
1196 stack is required. Need to take care here as structs may be
1197 passed on the stack, and we have to to push them. */
1198 nstack = 0;
1199
1200 argreg = ARM_A1_REGNUM;
1201 nstack = 0;
1202
1203 /* Some platforms require a double-word aligned stack. Make sure sp
1204 is correctly aligned before we start. We always do this even if
1205 it isn't really needed -- it can never hurt things. */
1206 sp &= ~(CORE_ADDR)(2 * DEPRECATED_REGISTER_SIZE - 1);
1207
1208 /* The struct_return pointer occupies the first parameter
1209 passing register. */
1210 if (struct_return)
1211 {
1212 if (arm_debug)
1213 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1214 REGISTER_NAME (argreg), paddr (struct_addr));
1215 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1216 argreg++;
1217 }
1218
1219 for (argnum = 0; argnum < nargs; argnum++)
1220 {
1221 int len;
1222 struct type *arg_type;
1223 struct type *target_type;
1224 enum type_code typecode;
1225 char *val;
1226
1227 arg_type = check_typedef (value_type (args[argnum]));
1228 len = TYPE_LENGTH (arg_type);
1229 target_type = TYPE_TARGET_TYPE (arg_type);
1230 typecode = TYPE_CODE (arg_type);
1231 val = VALUE_CONTENTS (args[argnum]);
1232
1233 /* If the argument is a pointer to a function, and it is a
1234 Thumb function, create a LOCAL copy of the value and set
1235 the THUMB bit in it. */
1236 if (TYPE_CODE_PTR == typecode
1237 && target_type != NULL
1238 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1239 {
1240 CORE_ADDR regval = extract_unsigned_integer (val, len);
1241 if (arm_pc_is_thumb (regval))
1242 {
1243 val = alloca (len);
1244 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1245 }
1246 }
1247
1248 /* Copy the argument to general registers or the stack in
1249 register-sized pieces. Large arguments are split between
1250 registers and stack. */
1251 while (len > 0)
1252 {
1253 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
1254
1255 if (argreg <= ARM_LAST_ARG_REGNUM)
1256 {
1257 /* The argument is being passed in a general purpose
1258 register. */
1259 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1260 if (arm_debug)
1261 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1262 argnum, REGISTER_NAME (argreg),
1263 phex (regval, DEPRECATED_REGISTER_SIZE));
1264 regcache_cooked_write_unsigned (regcache, argreg, regval);
1265 argreg++;
1266 }
1267 else
1268 {
1269 /* Push the arguments onto the stack. */
1270 if (arm_debug)
1271 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1272 argnum, nstack);
1273 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1274 nstack += DEPRECATED_REGISTER_SIZE;
1275 }
1276
1277 len -= partial_len;
1278 val += partial_len;
1279 }
1280 }
1281 /* If we have an odd number of words to push, then decrement the stack
1282 by one word now, so first stack argument will be dword aligned. */
1283 if (nstack & 4)
1284 sp -= 4;
1285
1286 while (si)
1287 {
1288 sp -= si->len;
1289 write_memory (sp, si->data, si->len);
1290 si = pop_stack_item (si);
1291 }
1292
1293 /* Finally, update teh SP register. */
1294 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1295
1296 return sp;
1297 }
1298
1299 static void
1300 print_fpu_flags (int flags)
1301 {
1302 if (flags & (1 << 0))
1303 fputs ("IVO ", stdout);
1304 if (flags & (1 << 1))
1305 fputs ("DVZ ", stdout);
1306 if (flags & (1 << 2))
1307 fputs ("OFL ", stdout);
1308 if (flags & (1 << 3))
1309 fputs ("UFL ", stdout);
1310 if (flags & (1 << 4))
1311 fputs ("INX ", stdout);
1312 putchar ('\n');
1313 }
1314
1315 /* Print interesting information about the floating point processor
1316 (if present) or emulator. */
1317 static void
1318 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1319 struct frame_info *frame, const char *args)
1320 {
1321 unsigned long status = read_register (ARM_FPS_REGNUM);
1322 int type;
1323
1324 type = (status >> 24) & 127;
1325 if (status & (1 << 31))
1326 printf (_("Hardware FPU type %d\n"), type);
1327 else
1328 printf (_("Software FPU type %d\n"), type);
1329 /* i18n: [floating point unit] mask */
1330 fputs (_("mask: "), stdout);
1331 print_fpu_flags (status >> 16);
1332 /* i18n: [floating point unit] flags */
1333 fputs (_("flags: "), stdout);
1334 print_fpu_flags (status);
1335 }
1336
1337 /* Return the GDB type object for the "standard" data type of data in
1338 register N. */
1339
1340 static struct type *
1341 arm_register_type (struct gdbarch *gdbarch, int regnum)
1342 {
1343 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1344 {
1345 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1346 return builtin_type_arm_ext_big;
1347 else
1348 return builtin_type_arm_ext_littlebyte_bigword;
1349 }
1350 else
1351 return builtin_type_int32;
1352 }
1353
1354 /* Index within `registers' of the first byte of the space for
1355 register N. */
1356
1357 static int
1358 arm_register_byte (int regnum)
1359 {
1360 if (regnum < ARM_F0_REGNUM)
1361 return regnum * INT_REGISTER_SIZE;
1362 else if (regnum < ARM_PS_REGNUM)
1363 return (NUM_GREGS * INT_REGISTER_SIZE
1364 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
1365 else
1366 return (NUM_GREGS * INT_REGISTER_SIZE
1367 + NUM_FREGS * FP_REGISTER_SIZE
1368 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1369 }
1370
1371 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1372 static int
1373 arm_register_sim_regno (int regnum)
1374 {
1375 int reg = regnum;
1376 gdb_assert (reg >= 0 && reg < NUM_REGS);
1377
1378 if (reg < NUM_GREGS)
1379 return SIM_ARM_R0_REGNUM + reg;
1380 reg -= NUM_GREGS;
1381
1382 if (reg < NUM_FREGS)
1383 return SIM_ARM_FP0_REGNUM + reg;
1384 reg -= NUM_FREGS;
1385
1386 if (reg < NUM_SREGS)
1387 return SIM_ARM_FPS_REGNUM + reg;
1388 reg -= NUM_SREGS;
1389
1390 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1391 }
1392
1393 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1394 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1395 It is thought that this is is the floating-point register format on
1396 little-endian systems. */
1397
1398 static void
1399 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1400 void *dbl)
1401 {
1402 DOUBLEST d;
1403 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1404 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1405 else
1406 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1407 ptr, &d);
1408 floatformat_from_doublest (fmt, &d, dbl);
1409 }
1410
1411 static void
1412 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1413 {
1414 DOUBLEST d;
1415 floatformat_to_doublest (fmt, ptr, &d);
1416 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1417 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1418 else
1419 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1420 &d, dbl);
1421 }
1422
1423 static int
1424 condition_true (unsigned long cond, unsigned long status_reg)
1425 {
1426 if (cond == INST_AL || cond == INST_NV)
1427 return 1;
1428
1429 switch (cond)
1430 {
1431 case INST_EQ:
1432 return ((status_reg & FLAG_Z) != 0);
1433 case INST_NE:
1434 return ((status_reg & FLAG_Z) == 0);
1435 case INST_CS:
1436 return ((status_reg & FLAG_C) != 0);
1437 case INST_CC:
1438 return ((status_reg & FLAG_C) == 0);
1439 case INST_MI:
1440 return ((status_reg & FLAG_N) != 0);
1441 case INST_PL:
1442 return ((status_reg & FLAG_N) == 0);
1443 case INST_VS:
1444 return ((status_reg & FLAG_V) != 0);
1445 case INST_VC:
1446 return ((status_reg & FLAG_V) == 0);
1447 case INST_HI:
1448 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1449 case INST_LS:
1450 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1451 case INST_GE:
1452 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1453 case INST_LT:
1454 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1455 case INST_GT:
1456 return (((status_reg & FLAG_Z) == 0) &&
1457 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1458 case INST_LE:
1459 return (((status_reg & FLAG_Z) != 0) ||
1460 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1461 }
1462 return 1;
1463 }
1464
1465 /* Support routines for single stepping. Calculate the next PC value. */
1466 #define submask(x) ((1L << ((x) + 1)) - 1)
1467 #define bit(obj,st) (((obj) >> (st)) & 1)
1468 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1469 #define sbits(obj,st,fn) \
1470 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1471 #define BranchDest(addr,instr) \
1472 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1473 #define ARM_PC_32 1
1474
1475 static unsigned long
1476 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1477 unsigned long status_reg)
1478 {
1479 unsigned long res, shift;
1480 int rm = bits (inst, 0, 3);
1481 unsigned long shifttype = bits (inst, 5, 6);
1482
1483 if (bit (inst, 4))
1484 {
1485 int rs = bits (inst, 8, 11);
1486 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1487 }
1488 else
1489 shift = bits (inst, 7, 11);
1490
1491 res = (rm == 15
1492 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1493 + (bit (inst, 4) ? 12 : 8))
1494 : read_register (rm));
1495
1496 switch (shifttype)
1497 {
1498 case 0: /* LSL */
1499 res = shift >= 32 ? 0 : res << shift;
1500 break;
1501
1502 case 1: /* LSR */
1503 res = shift >= 32 ? 0 : res >> shift;
1504 break;
1505
1506 case 2: /* ASR */
1507 if (shift >= 32)
1508 shift = 31;
1509 res = ((res & 0x80000000L)
1510 ? ~((~res) >> shift) : res >> shift);
1511 break;
1512
1513 case 3: /* ROR/RRX */
1514 shift &= 31;
1515 if (shift == 0)
1516 res = (res >> 1) | (carry ? 0x80000000L : 0);
1517 else
1518 res = (res >> shift) | (res << (32 - shift));
1519 break;
1520 }
1521
1522 return res & 0xffffffff;
1523 }
1524
1525 /* Return number of 1-bits in VAL. */
1526
1527 static int
1528 bitcount (unsigned long val)
1529 {
1530 int nbits;
1531 for (nbits = 0; val != 0; nbits++)
1532 val &= val - 1; /* delete rightmost 1-bit in val */
1533 return nbits;
1534 }
1535
1536 CORE_ADDR
1537 thumb_get_next_pc (CORE_ADDR pc)
1538 {
1539 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1540 unsigned short inst1 = read_memory_integer (pc, 2);
1541 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1542 unsigned long offset;
1543
1544 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1545 {
1546 CORE_ADDR sp;
1547
1548 /* Fetch the saved PC from the stack. It's stored above
1549 all of the other registers. */
1550 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
1551 sp = read_register (ARM_SP_REGNUM);
1552 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1553 nextpc = ADDR_BITS_REMOVE (nextpc);
1554 if (nextpc == pc)
1555 error (_("Infinite loop detected"));
1556 }
1557 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1558 {
1559 unsigned long status = read_register (ARM_PS_REGNUM);
1560 unsigned long cond = bits (inst1, 8, 11);
1561 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1562 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1563 }
1564 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1565 {
1566 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1567 }
1568 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1569 {
1570 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1571 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1572 nextpc = pc_val + offset;
1573 /* For BLX make sure to clear the low bits. */
1574 if (bits (inst2, 11, 12) == 1)
1575 nextpc = nextpc & 0xfffffffc;
1576 }
1577 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1578 {
1579 if (bits (inst1, 3, 6) == 0x0f)
1580 nextpc = pc_val;
1581 else
1582 nextpc = read_register (bits (inst1, 3, 6));
1583
1584 nextpc = ADDR_BITS_REMOVE (nextpc);
1585 if (nextpc == pc)
1586 error (_("Infinite loop detected"));
1587 }
1588
1589 return nextpc;
1590 }
1591
1592 CORE_ADDR
1593 arm_get_next_pc (CORE_ADDR pc)
1594 {
1595 unsigned long pc_val;
1596 unsigned long this_instr;
1597 unsigned long status;
1598 CORE_ADDR nextpc;
1599
1600 if (arm_pc_is_thumb (pc))
1601 return thumb_get_next_pc (pc);
1602
1603 pc_val = (unsigned long) pc;
1604 this_instr = read_memory_integer (pc, 4);
1605 status = read_register (ARM_PS_REGNUM);
1606 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1607
1608 if (condition_true (bits (this_instr, 28, 31), status))
1609 {
1610 switch (bits (this_instr, 24, 27))
1611 {
1612 case 0x0:
1613 case 0x1: /* data processing */
1614 case 0x2:
1615 case 0x3:
1616 {
1617 unsigned long operand1, operand2, result = 0;
1618 unsigned long rn;
1619 int c;
1620
1621 if (bits (this_instr, 12, 15) != 15)
1622 break;
1623
1624 if (bits (this_instr, 22, 25) == 0
1625 && bits (this_instr, 4, 7) == 9) /* multiply */
1626 error (_("Invalid update to pc in instruction"));
1627
1628 /* BX <reg>, BLX <reg> */
1629 if (bits (this_instr, 4, 28) == 0x12fff1
1630 || bits (this_instr, 4, 28) == 0x12fff3)
1631 {
1632 rn = bits (this_instr, 0, 3);
1633 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1634 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1635
1636 if (nextpc == pc)
1637 error (_("Infinite loop detected"));
1638
1639 return nextpc;
1640 }
1641
1642 /* Multiply into PC */
1643 c = (status & FLAG_C) ? 1 : 0;
1644 rn = bits (this_instr, 16, 19);
1645 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1646
1647 if (bit (this_instr, 25))
1648 {
1649 unsigned long immval = bits (this_instr, 0, 7);
1650 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1651 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1652 & 0xffffffff;
1653 }
1654 else /* operand 2 is a shifted register */
1655 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1656
1657 switch (bits (this_instr, 21, 24))
1658 {
1659 case 0x0: /*and */
1660 result = operand1 & operand2;
1661 break;
1662
1663 case 0x1: /*eor */
1664 result = operand1 ^ operand2;
1665 break;
1666
1667 case 0x2: /*sub */
1668 result = operand1 - operand2;
1669 break;
1670
1671 case 0x3: /*rsb */
1672 result = operand2 - operand1;
1673 break;
1674
1675 case 0x4: /*add */
1676 result = operand1 + operand2;
1677 break;
1678
1679 case 0x5: /*adc */
1680 result = operand1 + operand2 + c;
1681 break;
1682
1683 case 0x6: /*sbc */
1684 result = operand1 - operand2 + c;
1685 break;
1686
1687 case 0x7: /*rsc */
1688 result = operand2 - operand1 + c;
1689 break;
1690
1691 case 0x8:
1692 case 0x9:
1693 case 0xa:
1694 case 0xb: /* tst, teq, cmp, cmn */
1695 result = (unsigned long) nextpc;
1696 break;
1697
1698 case 0xc: /*orr */
1699 result = operand1 | operand2;
1700 break;
1701
1702 case 0xd: /*mov */
1703 /* Always step into a function. */
1704 result = operand2;
1705 break;
1706
1707 case 0xe: /*bic */
1708 result = operand1 & ~operand2;
1709 break;
1710
1711 case 0xf: /*mvn */
1712 result = ~operand2;
1713 break;
1714 }
1715 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1716
1717 if (nextpc == pc)
1718 error (_("Infinite loop detected"));
1719 break;
1720 }
1721
1722 case 0x4:
1723 case 0x5: /* data transfer */
1724 case 0x6:
1725 case 0x7:
1726 if (bit (this_instr, 20))
1727 {
1728 /* load */
1729 if (bits (this_instr, 12, 15) == 15)
1730 {
1731 /* rd == pc */
1732 unsigned long rn;
1733 unsigned long base;
1734
1735 if (bit (this_instr, 22))
1736 error (_("Invalid update to pc in instruction"));
1737
1738 /* byte write to PC */
1739 rn = bits (this_instr, 16, 19);
1740 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1741 if (bit (this_instr, 24))
1742 {
1743 /* pre-indexed */
1744 int c = (status & FLAG_C) ? 1 : 0;
1745 unsigned long offset =
1746 (bit (this_instr, 25)
1747 ? shifted_reg_val (this_instr, c, pc_val, status)
1748 : bits (this_instr, 0, 11));
1749
1750 if (bit (this_instr, 23))
1751 base += offset;
1752 else
1753 base -= offset;
1754 }
1755 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1756 4);
1757
1758 nextpc = ADDR_BITS_REMOVE (nextpc);
1759
1760 if (nextpc == pc)
1761 error (_("Infinite loop detected"));
1762 }
1763 }
1764 break;
1765
1766 case 0x8:
1767 case 0x9: /* block transfer */
1768 if (bit (this_instr, 20))
1769 {
1770 /* LDM */
1771 if (bit (this_instr, 15))
1772 {
1773 /* loading pc */
1774 int offset = 0;
1775
1776 if (bit (this_instr, 23))
1777 {
1778 /* up */
1779 unsigned long reglist = bits (this_instr, 0, 14);
1780 offset = bitcount (reglist) * 4;
1781 if (bit (this_instr, 24)) /* pre */
1782 offset += 4;
1783 }
1784 else if (bit (this_instr, 24))
1785 offset = -4;
1786
1787 {
1788 unsigned long rn_val =
1789 read_register (bits (this_instr, 16, 19));
1790 nextpc =
1791 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1792 + offset),
1793 4);
1794 }
1795 nextpc = ADDR_BITS_REMOVE (nextpc);
1796 if (nextpc == pc)
1797 error (_("Infinite loop detected"));
1798 }
1799 }
1800 break;
1801
1802 case 0xb: /* branch & link */
1803 case 0xa: /* branch */
1804 {
1805 nextpc = BranchDest (pc, this_instr);
1806
1807 /* BLX */
1808 if (bits (this_instr, 28, 31) == INST_NV)
1809 nextpc |= bit (this_instr, 24) << 1;
1810
1811 nextpc = ADDR_BITS_REMOVE (nextpc);
1812 if (nextpc == pc)
1813 error (_("Infinite loop detected"));
1814 break;
1815 }
1816
1817 case 0xc:
1818 case 0xd:
1819 case 0xe: /* coproc ops */
1820 case 0xf: /* SWI */
1821 break;
1822
1823 default:
1824 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
1825 return (pc);
1826 }
1827 }
1828
1829 return nextpc;
1830 }
1831
1832 /* single_step() is called just before we want to resume the inferior,
1833 if we want to single-step it but there is no hardware or kernel
1834 single-step support. We find the target of the coming instruction
1835 and breakpoint it.
1836
1837 single_step() is also called just after the inferior stops. If we
1838 had set up a simulated single-step, we undo our damage. */
1839
1840 static void
1841 arm_software_single_step (enum target_signal sig, int insert_bpt)
1842 {
1843 static int next_pc; /* State between setting and unsetting. */
1844 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1845
1846 if (insert_bpt)
1847 {
1848 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1849 target_insert_breakpoint (next_pc, break_mem);
1850 }
1851 else
1852 target_remove_breakpoint (next_pc, break_mem);
1853 }
1854
1855 #include "bfd-in2.h"
1856 #include "libcoff.h"
1857
1858 static int
1859 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1860 {
1861 if (arm_pc_is_thumb (memaddr))
1862 {
1863 static asymbol *asym;
1864 static combined_entry_type ce;
1865 static struct coff_symbol_struct csym;
1866 static struct bfd fake_bfd;
1867 static bfd_target fake_target;
1868
1869 if (csym.native == NULL)
1870 {
1871 /* Create a fake symbol vector containing a Thumb symbol.
1872 This is solely so that the code in print_insn_little_arm()
1873 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1874 the presence of a Thumb symbol and switch to decoding
1875 Thumb instructions. */
1876
1877 fake_target.flavour = bfd_target_coff_flavour;
1878 fake_bfd.xvec = &fake_target;
1879 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1880 csym.native = &ce;
1881 csym.symbol.the_bfd = &fake_bfd;
1882 csym.symbol.name = "fake";
1883 asym = (asymbol *) & csym;
1884 }
1885
1886 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1887 info->symbols = &asym;
1888 }
1889 else
1890 info->symbols = NULL;
1891
1892 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1893 return print_insn_big_arm (memaddr, info);
1894 else
1895 return print_insn_little_arm (memaddr, info);
1896 }
1897
1898 /* The following define instruction sequences that will cause ARM
1899 cpu's to take an undefined instruction trap. These are used to
1900 signal a breakpoint to GDB.
1901
1902 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1903 modes. A different instruction is required for each mode. The ARM
1904 cpu's can also be big or little endian. Thus four different
1905 instructions are needed to support all cases.
1906
1907 Note: ARMv4 defines several new instructions that will take the
1908 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1909 not in fact add the new instructions. The new undefined
1910 instructions in ARMv4 are all instructions that had no defined
1911 behaviour in earlier chips. There is no guarantee that they will
1912 raise an exception, but may be treated as NOP's. In practice, it
1913 may only safe to rely on instructions matching:
1914
1915 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1916 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1917 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1918
1919 Even this may only true if the condition predicate is true. The
1920 following use a condition predicate of ALWAYS so it is always TRUE.
1921
1922 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1923 and NetBSD all use a software interrupt rather than an undefined
1924 instruction to force a trap. This can be handled by by the
1925 abi-specific code during establishment of the gdbarch vector. */
1926
1927
1928 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1929 override these definitions. */
1930 #ifndef ARM_LE_BREAKPOINT
1931 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1932 #endif
1933 #ifndef ARM_BE_BREAKPOINT
1934 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1935 #endif
1936 #ifndef THUMB_LE_BREAKPOINT
1937 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1938 #endif
1939 #ifndef THUMB_BE_BREAKPOINT
1940 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1941 #endif
1942
1943 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
1944 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
1945 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
1946 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
1947
1948 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
1949 the program counter value to determine whether a 16-bit or 32-bit
1950 breakpoint should be used. It returns a pointer to a string of
1951 bytes that encode a breakpoint instruction, stores the length of
1952 the string to *lenptr, and adjusts the program counter (if
1953 necessary) to point to the actual memory location where the
1954 breakpoint should be inserted. */
1955
1956 /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
1957 breakpoints and storing their handles instread of what was in
1958 memory. It is nice that this is the same size as a handle -
1959 otherwise remote-rdp will have to change. */
1960
1961 static const unsigned char *
1962 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1963 {
1964 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1965
1966 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
1967 {
1968 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1969 *lenptr = tdep->thumb_breakpoint_size;
1970 return tdep->thumb_breakpoint;
1971 }
1972 else
1973 {
1974 *lenptr = tdep->arm_breakpoint_size;
1975 return tdep->arm_breakpoint;
1976 }
1977 }
1978
1979 /* Extract from an array REGBUF containing the (raw) register state a
1980 function return value of type TYPE, and copy that, in virtual
1981 format, into VALBUF. */
1982
1983 static void
1984 arm_extract_return_value (struct type *type,
1985 struct regcache *regs,
1986 void *dst)
1987 {
1988 bfd_byte *valbuf = dst;
1989
1990 if (TYPE_CODE_FLT == TYPE_CODE (type))
1991 {
1992 switch (arm_get_fp_model (current_gdbarch))
1993 {
1994 case ARM_FLOAT_FPA:
1995 {
1996 /* The value is in register F0 in internal format. We need to
1997 extract the raw value and then convert it to the desired
1998 internal type. */
1999 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2000
2001 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2002 convert_from_extended (floatformat_from_type (type), tmpbuf,
2003 valbuf);
2004 }
2005 break;
2006
2007 case ARM_FLOAT_SOFT_FPA:
2008 case ARM_FLOAT_SOFT_VFP:
2009 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2010 if (TYPE_LENGTH (type) > 4)
2011 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2012 valbuf + INT_REGISTER_SIZE);
2013 break;
2014
2015 default:
2016 internal_error
2017 (__FILE__, __LINE__,
2018 _("arm_extract_return_value: Floating point model not supported"));
2019 break;
2020 }
2021 }
2022 else if (TYPE_CODE (type) == TYPE_CODE_INT
2023 || TYPE_CODE (type) == TYPE_CODE_CHAR
2024 || TYPE_CODE (type) == TYPE_CODE_BOOL
2025 || TYPE_CODE (type) == TYPE_CODE_PTR
2026 || TYPE_CODE (type) == TYPE_CODE_REF
2027 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2028 {
2029 /* If the the type is a plain integer, then the access is
2030 straight-forward. Otherwise we have to play around a bit more. */
2031 int len = TYPE_LENGTH (type);
2032 int regno = ARM_A1_REGNUM;
2033 ULONGEST tmp;
2034
2035 while (len > 0)
2036 {
2037 /* By using store_unsigned_integer we avoid having to do
2038 anything special for small big-endian values. */
2039 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2040 store_unsigned_integer (valbuf,
2041 (len > INT_REGISTER_SIZE
2042 ? INT_REGISTER_SIZE : len),
2043 tmp);
2044 len -= INT_REGISTER_SIZE;
2045 valbuf += INT_REGISTER_SIZE;
2046 }
2047 }
2048 else
2049 {
2050 /* For a structure or union the behaviour is as if the value had
2051 been stored to word-aligned memory and then loaded into
2052 registers with 32-bit load instruction(s). */
2053 int len = TYPE_LENGTH (type);
2054 int regno = ARM_A1_REGNUM;
2055 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2056
2057 while (len > 0)
2058 {
2059 regcache_cooked_read (regs, regno++, tmpbuf);
2060 memcpy (valbuf, tmpbuf,
2061 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2062 len -= INT_REGISTER_SIZE;
2063 valbuf += INT_REGISTER_SIZE;
2064 }
2065 }
2066 }
2067
2068 /* Extract from an array REGBUF containing the (raw) register state
2069 the address in which a function should return its structure value. */
2070
2071 static CORE_ADDR
2072 arm_extract_struct_value_address (struct regcache *regcache)
2073 {
2074 ULONGEST ret;
2075
2076 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2077 return ret;
2078 }
2079
2080 /* Will a function return an aggregate type in memory or in a
2081 register? Return 0 if an aggregate type can be returned in a
2082 register, 1 if it must be returned in memory. */
2083
2084 static int
2085 arm_use_struct_convention (int gcc_p, struct type *type)
2086 {
2087 int nRc;
2088 enum type_code code;
2089
2090 CHECK_TYPEDEF (type);
2091
2092 /* In the ARM ABI, "integer" like aggregate types are returned in
2093 registers. For an aggregate type to be integer like, its size
2094 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2095 offset of each addressable subfield must be zero. Note that bit
2096 fields are not addressable, and all addressable subfields of
2097 unions always start at offset zero.
2098
2099 This function is based on the behaviour of GCC 2.95.1.
2100 See: gcc/arm.c: arm_return_in_memory() for details.
2101
2102 Note: All versions of GCC before GCC 2.95.2 do not set up the
2103 parameters correctly for a function returning the following
2104 structure: struct { float f;}; This should be returned in memory,
2105 not a register. Richard Earnshaw sent me a patch, but I do not
2106 know of any way to detect if a function like the above has been
2107 compiled with the correct calling convention. */
2108
2109 /* All aggregate types that won't fit in a register must be returned
2110 in memory. */
2111 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
2112 {
2113 return 1;
2114 }
2115
2116 /* The only aggregate types that can be returned in a register are
2117 structs and unions. Arrays must be returned in memory. */
2118 code = TYPE_CODE (type);
2119 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2120 {
2121 return 1;
2122 }
2123
2124 /* Assume all other aggregate types can be returned in a register.
2125 Run a check for structures, unions and arrays. */
2126 nRc = 0;
2127
2128 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2129 {
2130 int i;
2131 /* Need to check if this struct/union is "integer" like. For
2132 this to be true, its size must be less than or equal to
2133 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2134 subfield must be zero. Note that bit fields are not
2135 addressable, and unions always start at offset zero. If any
2136 of the subfields is a floating point type, the struct/union
2137 cannot be an integer type. */
2138
2139 /* For each field in the object, check:
2140 1) Is it FP? --> yes, nRc = 1;
2141 2) Is it addressable (bitpos != 0) and
2142 not packed (bitsize == 0)?
2143 --> yes, nRc = 1
2144 */
2145
2146 for (i = 0; i < TYPE_NFIELDS (type); i++)
2147 {
2148 enum type_code field_type_code;
2149 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2150
2151 /* Is it a floating point type field? */
2152 if (field_type_code == TYPE_CODE_FLT)
2153 {
2154 nRc = 1;
2155 break;
2156 }
2157
2158 /* If bitpos != 0, then we have to care about it. */
2159 if (TYPE_FIELD_BITPOS (type, i) != 0)
2160 {
2161 /* Bitfields are not addressable. If the field bitsize is
2162 zero, then the field is not packed. Hence it cannot be
2163 a bitfield or any other packed type. */
2164 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2165 {
2166 nRc = 1;
2167 break;
2168 }
2169 }
2170 }
2171 }
2172
2173 return nRc;
2174 }
2175
2176 /* Write into appropriate registers a function return value of type
2177 TYPE, given in virtual format. */
2178
2179 static void
2180 arm_store_return_value (struct type *type, struct regcache *regs,
2181 const void *src)
2182 {
2183 const bfd_byte *valbuf = src;
2184
2185 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2186 {
2187 char buf[MAX_REGISTER_SIZE];
2188
2189 switch (arm_get_fp_model (current_gdbarch))
2190 {
2191 case ARM_FLOAT_FPA:
2192
2193 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2194 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2195 break;
2196
2197 case ARM_FLOAT_SOFT_FPA:
2198 case ARM_FLOAT_SOFT_VFP:
2199 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2200 if (TYPE_LENGTH (type) > 4)
2201 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2202 valbuf + INT_REGISTER_SIZE);
2203 break;
2204
2205 default:
2206 internal_error
2207 (__FILE__, __LINE__,
2208 _("arm_store_return_value: Floating point model not supported"));
2209 break;
2210 }
2211 }
2212 else if (TYPE_CODE (type) == TYPE_CODE_INT
2213 || TYPE_CODE (type) == TYPE_CODE_CHAR
2214 || TYPE_CODE (type) == TYPE_CODE_BOOL
2215 || TYPE_CODE (type) == TYPE_CODE_PTR
2216 || TYPE_CODE (type) == TYPE_CODE_REF
2217 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2218 {
2219 if (TYPE_LENGTH (type) <= 4)
2220 {
2221 /* Values of one word or less are zero/sign-extended and
2222 returned in r0. */
2223 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2224 LONGEST val = unpack_long (type, valbuf);
2225
2226 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2227 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2228 }
2229 else
2230 {
2231 /* Integral values greater than one word are stored in consecutive
2232 registers starting with r0. This will always be a multiple of
2233 the regiser size. */
2234 int len = TYPE_LENGTH (type);
2235 int regno = ARM_A1_REGNUM;
2236
2237 while (len > 0)
2238 {
2239 regcache_cooked_write (regs, regno++, valbuf);
2240 len -= INT_REGISTER_SIZE;
2241 valbuf += INT_REGISTER_SIZE;
2242 }
2243 }
2244 }
2245 else
2246 {
2247 /* For a structure or union the behaviour is as if the value had
2248 been stored to word-aligned memory and then loaded into
2249 registers with 32-bit load instruction(s). */
2250 int len = TYPE_LENGTH (type);
2251 int regno = ARM_A1_REGNUM;
2252 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2253
2254 while (len > 0)
2255 {
2256 memcpy (tmpbuf, valbuf,
2257 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2258 regcache_cooked_write (regs, regno++, tmpbuf);
2259 len -= INT_REGISTER_SIZE;
2260 valbuf += INT_REGISTER_SIZE;
2261 }
2262 }
2263 }
2264
2265 static int
2266 arm_get_longjmp_target (CORE_ADDR *pc)
2267 {
2268 CORE_ADDR jb_addr;
2269 char buf[INT_REGISTER_SIZE];
2270 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2271
2272 jb_addr = read_register (ARM_A1_REGNUM);
2273
2274 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2275 INT_REGISTER_SIZE))
2276 return 0;
2277
2278 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2279 return 1;
2280 }
2281
2282 /* Return non-zero if the PC is inside a thumb call thunk. */
2283
2284 int
2285 arm_in_call_stub (CORE_ADDR pc, char *name)
2286 {
2287 CORE_ADDR start_addr;
2288
2289 /* Find the starting address of the function containing the PC. If
2290 the caller didn't give us a name, look it up at the same time. */
2291 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2292 &start_addr, NULL))
2293 return 0;
2294
2295 return strncmp (name, "_call_via_r", 11) == 0;
2296 }
2297
2298 /* If PC is in a Thumb call or return stub, return the address of the
2299 target PC, which is in a register. The thunk functions are called
2300 _called_via_xx, where x is the register name. The possible names
2301 are r0-r9, sl, fp, ip, sp, and lr. */
2302
2303 CORE_ADDR
2304 arm_skip_stub (CORE_ADDR pc)
2305 {
2306 char *name;
2307 CORE_ADDR start_addr;
2308
2309 /* Find the starting address and name of the function containing the PC. */
2310 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2311 return 0;
2312
2313 /* Call thunks always start with "_call_via_". */
2314 if (strncmp (name, "_call_via_", 10) == 0)
2315 {
2316 /* Use the name suffix to determine which register contains the
2317 target PC. */
2318 static char *table[15] =
2319 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2320 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2321 };
2322 int regno;
2323
2324 for (regno = 0; regno <= 14; regno++)
2325 if (strcmp (&name[10], table[regno]) == 0)
2326 return read_register (regno);
2327 }
2328
2329 return 0; /* not a stub */
2330 }
2331
2332 static void
2333 set_arm_command (char *args, int from_tty)
2334 {
2335 printf_unfiltered (_("\
2336 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2337 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2338 }
2339
2340 static void
2341 show_arm_command (char *args, int from_tty)
2342 {
2343 cmd_show_list (showarmcmdlist, from_tty, "");
2344 }
2345
2346 enum arm_float_model
2347 arm_get_fp_model (struct gdbarch *gdbarch)
2348 {
2349 if (arm_fp_model == ARM_FLOAT_AUTO)
2350 return gdbarch_tdep (gdbarch)->fp_model;
2351
2352 return arm_fp_model;
2353 }
2354
2355 static void
2356 arm_set_fp (struct gdbarch *gdbarch)
2357 {
2358 enum arm_float_model fp_model = arm_get_fp_model (gdbarch);
2359
2360 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2361 && (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA))
2362 {
2363 set_gdbarch_double_format (gdbarch,
2364 &floatformat_ieee_double_littlebyte_bigword);
2365 set_gdbarch_long_double_format
2366 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2367 }
2368 else
2369 {
2370 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2371 set_gdbarch_long_double_format (gdbarch,
2372 &floatformat_ieee_double_little);
2373 }
2374 }
2375
2376 static void
2377 set_fp_model_sfunc (char *args, int from_tty,
2378 struct cmd_list_element *c)
2379 {
2380 enum arm_float_model fp_model;
2381
2382 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2383 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2384 {
2385 arm_fp_model = fp_model;
2386 break;
2387 }
2388
2389 if (fp_model == ARM_FLOAT_LAST)
2390 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2391 current_fp_model);
2392
2393 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2394 arm_set_fp (current_gdbarch);
2395 }
2396
2397 static void
2398 show_fp_model (char *args, int from_tty,
2399 struct cmd_list_element *c)
2400 {
2401 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2402
2403 if (arm_fp_model == ARM_FLOAT_AUTO
2404 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2405 /* i18n: "the default [floating point model] for the current ABI..." */
2406 printf_filtered (_(" - the default for the current ABI is \"%s\".\n"),
2407 fp_model_strings[tdep->fp_model]);
2408 }
2409
2410 /* If the user changes the register disassembly style used for info
2411 register and other commands, we have to also switch the style used
2412 in opcodes for disassembly output. This function is run in the "set
2413 arm disassembly" command, and does that. */
2414
2415 static void
2416 set_disassembly_style_sfunc (char *args, int from_tty,
2417 struct cmd_list_element *c)
2418 {
2419 set_disassembly_style ();
2420 }
2421 \f
2422 /* Return the ARM register name corresponding to register I. */
2423 static const char *
2424 arm_register_name (int i)
2425 {
2426 return arm_register_names[i];
2427 }
2428
2429 static void
2430 set_disassembly_style (void)
2431 {
2432 const char *setname, *setdesc, **regnames;
2433 int numregs, j;
2434
2435 /* Find the style that the user wants in the opcodes table. */
2436 int current = 0;
2437 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2438 while ((disassembly_style != setname)
2439 && (current < num_disassembly_options))
2440 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2441 current_option = current;
2442
2443 /* Fill our copy. */
2444 for (j = 0; j < numregs; j++)
2445 arm_register_names[j] = (char *) regnames[j];
2446
2447 /* Adjust case. */
2448 if (isupper (*regnames[ARM_PC_REGNUM]))
2449 {
2450 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2451 arm_register_names[ARM_PS_REGNUM] = "CPSR";
2452 }
2453 else
2454 {
2455 arm_register_names[ARM_FPS_REGNUM] = "fps";
2456 arm_register_names[ARM_PS_REGNUM] = "cpsr";
2457 }
2458
2459 /* Synchronize the disassembler. */
2460 set_arm_regname_option (current);
2461 }
2462
2463 /* arm_othernames implements the "othernames" command. This is deprecated
2464 by the "set arm disassembly" command. */
2465
2466 static void
2467 arm_othernames (char *names, int n)
2468 {
2469 /* Circle through the various flavors. */
2470 current_option = (current_option + 1) % num_disassembly_options;
2471
2472 disassembly_style = valid_disassembly_styles[current_option];
2473 set_disassembly_style ();
2474 }
2475
2476 /* Test whether the coff symbol specific value corresponds to a Thumb
2477 function. */
2478
2479 static int
2480 coff_sym_is_thumb (int val)
2481 {
2482 return (val == C_THUMBEXT ||
2483 val == C_THUMBSTAT ||
2484 val == C_THUMBEXTFUNC ||
2485 val == C_THUMBSTATFUNC ||
2486 val == C_THUMBLABEL);
2487 }
2488
2489 /* arm_coff_make_msymbol_special()
2490 arm_elf_make_msymbol_special()
2491
2492 These functions test whether the COFF or ELF symbol corresponds to
2493 an address in thumb code, and set a "special" bit in a minimal
2494 symbol to indicate that it does. */
2495
2496 static void
2497 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2498 {
2499 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2500 STT_ARM_TFUNC). */
2501 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2502 == STT_LOPROC)
2503 MSYMBOL_SET_SPECIAL (msym);
2504 }
2505
2506 static void
2507 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2508 {
2509 if (coff_sym_is_thumb (val))
2510 MSYMBOL_SET_SPECIAL (msym);
2511 }
2512
2513 static void
2514 arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2515 {
2516 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2517
2518 /* If necessary, set the T bit. */
2519 if (arm_apcs_32)
2520 {
2521 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2522 if (arm_pc_is_thumb (pc))
2523 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2524 else
2525 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2526 }
2527 }
2528 \f
2529 static enum gdb_osabi
2530 arm_elf_osabi_sniffer (bfd *abfd)
2531 {
2532 unsigned int elfosabi, eflags;
2533 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2534
2535 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2536
2537 switch (elfosabi)
2538 {
2539 case ELFOSABI_NONE:
2540 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2541 file are conforming to the base specification for that machine
2542 (there are no OS-specific extensions). In order to determine the
2543 real OS in use we must look for OS notes that have been added. */
2544 bfd_map_over_sections (abfd,
2545 generic_elf_osabi_sniff_abi_tag_sections,
2546 &osabi);
2547 if (osabi == GDB_OSABI_UNKNOWN)
2548 {
2549 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2550 field for more information. */
2551 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2552 switch (eflags)
2553 {
2554 case EF_ARM_EABI_VER1:
2555 osabi = GDB_OSABI_ARM_EABI_V1;
2556 break;
2557
2558 case EF_ARM_EABI_VER2:
2559 osabi = GDB_OSABI_ARM_EABI_V2;
2560 break;
2561
2562 case EF_ARM_EABI_UNKNOWN:
2563 /* Assume GNU tools. */
2564 osabi = GDB_OSABI_ARM_APCS;
2565 break;
2566
2567 default:
2568 internal_error (__FILE__, __LINE__,
2569 _("\
2570 arm_elf_osabi_sniffer: Unknown ARM EABI version 0x%x"),
2571 eflags);
2572 }
2573 }
2574 break;
2575
2576 case ELFOSABI_ARM:
2577 /* GNU tools use this value. Check note sections in this case,
2578 as well. */
2579 bfd_map_over_sections (abfd,
2580 generic_elf_osabi_sniff_abi_tag_sections,
2581 &osabi);
2582 if (osabi == GDB_OSABI_UNKNOWN)
2583 {
2584 /* Assume APCS ABI. */
2585 osabi = GDB_OSABI_ARM_APCS;
2586 }
2587 break;
2588
2589 case ELFOSABI_FREEBSD:
2590 osabi = GDB_OSABI_FREEBSD_ELF;
2591 break;
2592
2593 case ELFOSABI_NETBSD:
2594 osabi = GDB_OSABI_NETBSD_ELF;
2595 break;
2596
2597 case ELFOSABI_LINUX:
2598 osabi = GDB_OSABI_LINUX;
2599 break;
2600 }
2601
2602 return osabi;
2603 }
2604
2605 \f
2606 /* Initialize the current architecture based on INFO. If possible,
2607 re-use an architecture from ARCHES, which is a list of
2608 architectures already created during this debugging session.
2609
2610 Called e.g. at program startup, when reading a core file, and when
2611 reading a binary file. */
2612
2613 static struct gdbarch *
2614 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2615 {
2616 struct gdbarch_tdep *tdep;
2617 struct gdbarch *gdbarch;
2618
2619 /* Try to deterimine the ABI of the object we are loading. */
2620
2621 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2622 {
2623 switch (bfd_get_flavour (info.abfd))
2624 {
2625 case bfd_target_aout_flavour:
2626 /* Assume it's an old APCS-style ABI. */
2627 info.osabi = GDB_OSABI_ARM_APCS;
2628 break;
2629
2630 case bfd_target_coff_flavour:
2631 /* Assume it's an old APCS-style ABI. */
2632 /* XXX WinCE? */
2633 info.osabi = GDB_OSABI_ARM_APCS;
2634 break;
2635
2636 default:
2637 /* Leave it as "unknown". */
2638 break;
2639 }
2640 }
2641
2642 /* If there is already a candidate, use it. */
2643 arches = gdbarch_list_lookup_by_info (arches, &info);
2644 if (arches != NULL)
2645 return arches->gdbarch;
2646
2647 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2648 gdbarch = gdbarch_alloc (&info, tdep);
2649
2650 /* We used to default to FPA for generic ARM, but almost nobody uses that
2651 now, and we now provide a way for the user to force the model. So
2652 default to the most useful variant. */
2653 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
2654
2655 /* Breakpoints. */
2656 switch (info.byte_order)
2657 {
2658 case BFD_ENDIAN_BIG:
2659 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2660 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2661 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2662 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2663
2664 break;
2665
2666 case BFD_ENDIAN_LITTLE:
2667 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2668 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2669 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2670 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2671
2672 break;
2673
2674 default:
2675 internal_error (__FILE__, __LINE__,
2676 _("arm_gdbarch_init: bad byte order for float format"));
2677 }
2678
2679 /* On ARM targets char defaults to unsigned. */
2680 set_gdbarch_char_signed (gdbarch, 0);
2681
2682 /* This should be low enough for everything. */
2683 tdep->lowest_pc = 0x20;
2684 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2685
2686 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2687
2688 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2689
2690 /* Frame handling. */
2691 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2692 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2693 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2694
2695 frame_base_set_default (gdbarch, &arm_normal_base);
2696
2697 /* Address manipulation. */
2698 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2699 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2700
2701 /* Advance PC across function entry code. */
2702 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2703
2704 /* Get the PC when a frame might not be available. */
2705 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2706
2707 /* The stack grows downward. */
2708 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2709
2710 /* Breakpoint manipulation. */
2711 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2712
2713 /* Information about registers, etc. */
2714 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2715 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2716 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2717 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2718 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
2719 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2720 set_gdbarch_register_type (gdbarch, arm_register_type);
2721
2722 /* Internal <-> external register number maps. */
2723 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2724
2725 /* Integer registers are 4 bytes. */
2726 set_gdbarch_deprecated_register_size (gdbarch, 4);
2727 set_gdbarch_register_name (gdbarch, arm_register_name);
2728
2729 /* Returning results. */
2730 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2731 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
2732 set_gdbarch_deprecated_use_struct_convention (gdbarch, arm_use_struct_convention);
2733 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, arm_extract_struct_value_address);
2734
2735 /* Single stepping. */
2736 /* XXX For an RDI target we should ask the target if it can single-step. */
2737 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2738
2739 /* Disassembly. */
2740 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2741
2742 /* Minsymbol frobbing. */
2743 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2744 set_gdbarch_coff_make_msymbol_special (gdbarch,
2745 arm_coff_make_msymbol_special);
2746
2747 /* Hook in the ABI-specific overrides, if they have been registered. */
2748 gdbarch_init_osabi (info, gdbarch);
2749
2750 /* Add some default predicates. */
2751 frame_unwind_append_sniffer (gdbarch, arm_sigtramp_unwind_sniffer);
2752 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2753
2754 /* Now we have tuned the configuration, set a few final things,
2755 based on what the OS ABI has told us. */
2756
2757 if (tdep->jb_pc >= 0)
2758 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2759
2760 /* Floating point sizes and format. */
2761 switch (info.byte_order)
2762 {
2763 case BFD_ENDIAN_BIG:
2764 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2765 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2766 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2767
2768 break;
2769
2770 case BFD_ENDIAN_LITTLE:
2771 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2772 arm_set_fp (gdbarch);
2773 break;
2774
2775 default:
2776 internal_error (__FILE__, __LINE__,
2777 _("arm_gdbarch_init: bad byte order for float format"));
2778 }
2779
2780 return gdbarch;
2781 }
2782
2783 static void
2784 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2785 {
2786 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2787
2788 if (tdep == NULL)
2789 return;
2790
2791 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
2792 (unsigned long) tdep->lowest_pc);
2793 }
2794
2795 static void
2796 arm_init_abi_eabi_v1 (struct gdbarch_info info,
2797 struct gdbarch *gdbarch)
2798 {
2799 /* Place-holder. */
2800 }
2801
2802 static void
2803 arm_init_abi_eabi_v2 (struct gdbarch_info info,
2804 struct gdbarch *gdbarch)
2805 {
2806 /* Place-holder. */
2807 }
2808
2809 static void
2810 arm_init_abi_apcs (struct gdbarch_info info,
2811 struct gdbarch *gdbarch)
2812 {
2813 /* Place-holder. */
2814 }
2815
2816 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2817
2818 void
2819 _initialize_arm_tdep (void)
2820 {
2821 struct ui_file *stb;
2822 long length;
2823 struct cmd_list_element *new_set, *new_show;
2824 const char *setname;
2825 const char *setdesc;
2826 const char **regnames;
2827 int numregs, i, j;
2828 static char *helptext;
2829 char regdesc[1024], *rdptr = regdesc;
2830 size_t rest = sizeof (regdesc);
2831
2832 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
2833
2834 /* Register an ELF OS ABI sniffer for ARM binaries. */
2835 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2836 bfd_target_elf_flavour,
2837 arm_elf_osabi_sniffer);
2838
2839 /* Register some ABI variants for embedded systems. */
2840 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
2841 arm_init_abi_eabi_v1);
2842 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
2843 arm_init_abi_eabi_v2);
2844 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
2845 arm_init_abi_apcs);
2846
2847 /* Get the number of possible sets of register names defined in opcodes. */
2848 num_disassembly_options = get_arm_regname_num_options ();
2849
2850 /* Add root prefix command for all "set arm"/"show arm" commands. */
2851 add_prefix_cmd ("arm", no_class, set_arm_command,
2852 _("Various ARM-specific commands."),
2853 &setarmcmdlist, "set arm ", 0, &setlist);
2854
2855 add_prefix_cmd ("arm", no_class, show_arm_command,
2856 _("Various ARM-specific commands."),
2857 &showarmcmdlist, "show arm ", 0, &showlist);
2858
2859 /* Sync the opcode insn printer with our register viewer. */
2860 parse_arm_disassembler_option ("reg-names-std");
2861
2862 /* Initialize the array that will be passed to add_set_enum_cmd(). */
2863 valid_disassembly_styles
2864 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
2865 for (i = 0; i < num_disassembly_options; i++)
2866 {
2867 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
2868 valid_disassembly_styles[i] = setname;
2869 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
2870 rdptr += length;
2871 rest -= length;
2872 /* Copy the default names (if found) and synchronize disassembler. */
2873 if (!strcmp (setname, "std"))
2874 {
2875 disassembly_style = setname;
2876 current_option = i;
2877 for (j = 0; j < numregs; j++)
2878 arm_register_names[j] = (char *) regnames[j];
2879 set_arm_regname_option (i);
2880 }
2881 }
2882 /* Mark the end of valid options. */
2883 valid_disassembly_styles[num_disassembly_options] = NULL;
2884
2885 /* Create the help text. */
2886 stb = mem_fileopen ();
2887 fprintf_unfiltered (stb, "%s%s%s",
2888 _("The valid values are:\n"),
2889 regdesc,
2890 _("The default is \"std\"."));
2891 helptext = ui_file_xstrdup (stb, &length);
2892 ui_file_delete (stb);
2893
2894 /* Add the deprecated disassembly-flavor command. */
2895 add_setshow_enum_cmd("disassembly-flavor", no_class,
2896 valid_disassembly_styles,
2897 &disassembly_style,
2898 _("Set the disassembly style."),
2899 _("Show the disassembly style."),
2900 helptext,
2901 _("The disassembly style is \"%s\"."),
2902 set_disassembly_style_sfunc, NULL,
2903 &setlist, &showlist, &new_set, &new_show);
2904 deprecate_cmd (new_set, "set arm disassembly");
2905 deprecate_cmd (new_show, "show arm disassembly");
2906
2907 /* And now add the new interface. */
2908 add_setshow_enum_cmd("disassembler", no_class,
2909 valid_disassembly_styles, &disassembly_style,
2910 _("Set the disassembly style."),
2911 _("Show the disassembly style."),
2912 helptext,
2913 _("The disassembly style is \"%s\"."),
2914 set_disassembly_style_sfunc, NULL,
2915 &setarmcmdlist, &showarmcmdlist, NULL, NULL);
2916
2917 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
2918 _("Set usage of ARM 32-bit mode."),
2919 _("Show usage of ARM 32-bit mode."),
2920 _("When off, a 26-bit PC will be used."),
2921 _("Usage of ARM 32-bit mode is %s."),
2922 NULL, NULL,
2923 &setarmcmdlist, &showarmcmdlist);
2924
2925 /* Add a command to allow the user to force the FPU model. */
2926 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
2927 _("Set the floating point type."),
2928 _("Show the floating point type."),
2929 _("auto - Determine the FP typefrom the OS-ABI.\n\
2930 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
2931 fpa - FPA co-processor (GCC compiled).\n\
2932 softvfp - Software FP with pure-endian doubles.\n\
2933 vfp - VFP co-processor."),
2934 _("The floating point type is \"%s\"."),
2935 set_fp_model_sfunc, show_fp_model,
2936 &setarmcmdlist, &showarmcmdlist, NULL, NULL);
2937
2938 /* Add the deprecated "othernames" command. */
2939 deprecate_cmd (add_com ("othernames", class_obscure, arm_othernames,
2940 _("Switch to the next set of register names.")),
2941 "set arm disassembly");
2942
2943 /* Debugging flag. */
2944 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
2945 _("Set ARM debugging."),
2946 _("Show ARM debugging."),
2947 _("When on, arm-specific debugging is enabled."),
2948 _("ARM debugging is %s."),
2949 NULL, NULL,
2950 &setdebuglist, &showdebuglist);
2951 }
This page took 0.091553 seconds and 4 git commands to generate.