2007-06-13 Claudio Fontana <claudio.fontana@gmail.com>
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include <ctype.h> /* XXX for isupper () */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "gdb_string.h"
31 #include "dis-asm.h" /* For register styles. */
32 #include "regcache.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "arch-utils.h"
36 #include "osabi.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "trad-frame.h"
40 #include "objfiles.h"
41 #include "dwarf2-frame.h"
42 #include "gdbtypes.h"
43 #include "prologue-value.h"
44 #include "target-descriptions.h"
45 #include "user-regs.h"
46
47 #include "arm-tdep.h"
48 #include "gdb/sim-arm.h"
49
50 #include "elf-bfd.h"
51 #include "coff/internal.h"
52 #include "elf/arm.h"
53
54 #include "gdb_assert.h"
55
56 static int arm_debug;
57
58 /* Macros for setting and testing a bit in a minimal symbol that marks
59 it as Thumb function. The MSB of the minimal symbol's "info" field
60 is used for this purpose.
61
62 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
63 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
64
65 #define MSYMBOL_SET_SPECIAL(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
67 | 0x80000000)
68
69 #define MSYMBOL_IS_SPECIAL(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
71
72 /* The list of available "set arm ..." and "show arm ..." commands. */
73 static struct cmd_list_element *setarmcmdlist = NULL;
74 static struct cmd_list_element *showarmcmdlist = NULL;
75
76 /* The type of floating-point to use. Keep this in sync with enum
77 arm_float_model, and the help string in _initialize_arm_tdep. */
78 static const char *fp_model_strings[] =
79 {
80 "auto",
81 "softfpa",
82 "fpa",
83 "softvfp",
84 "vfp",
85 NULL
86 };
87
88 /* A variable that can be configured by the user. */
89 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
90 static const char *current_fp_model = "auto";
91
92 /* The ABI to use. Keep this in sync with arm_abi_kind. */
93 static const char *arm_abi_strings[] =
94 {
95 "auto",
96 "APCS",
97 "AAPCS",
98 NULL
99 };
100
101 /* A variable that can be configured by the user. */
102 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
103 static const char *arm_abi_string = "auto";
104
105 /* Number of different reg name sets (options). */
106 static int num_disassembly_options;
107
108 /* The standard register names, and all the valid aliases for them. */
109 static const struct
110 {
111 const char *name;
112 int regnum;
113 } arm_register_aliases[] = {
114 /* Basic register numbers. */
115 { "r0", 0 },
116 { "r1", 1 },
117 { "r2", 2 },
118 { "r3", 3 },
119 { "r4", 4 },
120 { "r5", 5 },
121 { "r6", 6 },
122 { "r7", 7 },
123 { "r8", 8 },
124 { "r9", 9 },
125 { "r10", 10 },
126 { "r11", 11 },
127 { "r12", 12 },
128 { "r13", 13 },
129 { "r14", 14 },
130 { "r15", 15 },
131 /* Synonyms (argument and variable registers). */
132 { "a1", 0 },
133 { "a2", 1 },
134 { "a3", 2 },
135 { "a4", 3 },
136 { "v1", 4 },
137 { "v2", 5 },
138 { "v3", 6 },
139 { "v4", 7 },
140 { "v5", 8 },
141 { "v6", 9 },
142 { "v7", 10 },
143 { "v8", 11 },
144 /* Other platform-specific names for r9. */
145 { "sb", 9 },
146 { "tr", 9 },
147 /* Special names. */
148 { "ip", 12 },
149 { "sp", 13 },
150 { "lr", 14 },
151 { "pc", 15 },
152 /* Names used by GCC (not listed in the ARM EABI). */
153 { "sl", 10 },
154 { "fp", 11 },
155 /* A special name from the older ATPCS. */
156 { "wr", 7 },
157 };
158
159 static const char *const arm_register_names[] =
160 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
161 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
162 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
163 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
164 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
165 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
166 "fps", "cpsr" }; /* 24 25 */
167
168 /* Valid register name styles. */
169 static const char **valid_disassembly_styles;
170
171 /* Disassembly style to use. Default to "std" register names. */
172 static const char *disassembly_style;
173
174 /* This is used to keep the bfd arch_info in sync with the disassembly
175 style. */
176 static void set_disassembly_style_sfunc(char *, int,
177 struct cmd_list_element *);
178 static void set_disassembly_style (void);
179
180 static void convert_from_extended (const struct floatformat *, const void *,
181 void *);
182 static void convert_to_extended (const struct floatformat *, void *,
183 const void *);
184
185 struct arm_prologue_cache
186 {
187 /* The stack pointer at the time this frame was created; i.e. the
188 caller's stack pointer when this function was called. It is used
189 to identify this frame. */
190 CORE_ADDR prev_sp;
191
192 /* The frame base for this frame is just prev_sp + frame offset -
193 frame size. FRAMESIZE is the size of this stack frame, and
194 FRAMEOFFSET if the initial offset from the stack pointer (this
195 frame's stack pointer, not PREV_SP) to the frame base. */
196
197 int framesize;
198 int frameoffset;
199
200 /* The register used to hold the frame pointer for this frame. */
201 int framereg;
202
203 /* Saved register offsets. */
204 struct trad_frame_saved_reg *saved_regs;
205 };
206
207 /* Addresses for calling Thumb functions have the bit 0 set.
208 Here are some macros to test, set, or clear bit 0 of addresses. */
209 #define IS_THUMB_ADDR(addr) ((addr) & 1)
210 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
211 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
212
213 /* Set to true if the 32-bit mode is in use. */
214
215 int arm_apcs_32 = 1;
216
217 /* Determine if the program counter specified in MEMADDR is in a Thumb
218 function. */
219
220 static int
221 arm_pc_is_thumb (CORE_ADDR memaddr)
222 {
223 struct minimal_symbol *sym;
224
225 /* If bit 0 of the address is set, assume this is a Thumb address. */
226 if (IS_THUMB_ADDR (memaddr))
227 return 1;
228
229 /* Thumb functions have a "special" bit set in minimal symbols. */
230 sym = lookup_minimal_symbol_by_pc (memaddr);
231 if (sym)
232 {
233 return (MSYMBOL_IS_SPECIAL (sym));
234 }
235 else
236 {
237 return 0;
238 }
239 }
240
241 /* Remove useless bits from addresses in a running program. */
242 static CORE_ADDR
243 arm_addr_bits_remove (CORE_ADDR val)
244 {
245 if (arm_apcs_32)
246 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
247 else
248 return (val & 0x03fffffc);
249 }
250
251 /* When reading symbols, we need to zap the low bit of the address,
252 which may be set to 1 for Thumb functions. */
253 static CORE_ADDR
254 arm_smash_text_address (CORE_ADDR val)
255 {
256 return val & ~1;
257 }
258
259 /* Analyze a Thumb prologue, looking for a recognizable stack frame
260 and frame pointer. Scan until we encounter a store that could
261 clobber the stack frame unexpectedly, or an unknown instruction. */
262
263 static CORE_ADDR
264 thumb_analyze_prologue (struct gdbarch *gdbarch,
265 CORE_ADDR start, CORE_ADDR limit,
266 struct arm_prologue_cache *cache)
267 {
268 int i;
269 pv_t regs[16];
270 struct pv_area *stack;
271 struct cleanup *back_to;
272 CORE_ADDR offset;
273
274 for (i = 0; i < 16; i++)
275 regs[i] = pv_register (i, 0);
276 stack = make_pv_area (ARM_SP_REGNUM);
277 back_to = make_cleanup_free_pv_area (stack);
278
279 /* The call instruction saved PC in LR, and the current PC is not
280 interesting. Due to this file's conventions, we want the value
281 of LR at this function's entry, not at the call site, so we do
282 not record the save of the PC - when the ARM prologue analyzer
283 has also been converted to the pv mechanism, we could record the
284 save here and remove the hack in prev_register. */
285 regs[ARM_PC_REGNUM] = pv_unknown ();
286
287 while (start < limit)
288 {
289 unsigned short insn;
290
291 insn = read_memory_unsigned_integer (start, 2);
292
293 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
294 {
295 int regno;
296 int mask;
297 int stop = 0;
298
299 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
300 whether to save LR (R14). */
301 mask = (insn & 0xff) | ((insn & 0x100) << 6);
302
303 /* Calculate offsets of saved R0-R7 and LR. */
304 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
305 if (mask & (1 << regno))
306 {
307 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
308 {
309 stop = 1;
310 break;
311 }
312
313 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
314 -4);
315 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
316 }
317
318 if (stop)
319 break;
320 }
321 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
322 sub sp, #simm */
323 {
324 offset = (insn & 0x7f) << 2; /* get scaled offset */
325 if (insn & 0x80) /* Check for SUB. */
326 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
327 -offset);
328 else
329 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
330 offset);
331 }
332 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
333 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
334 (insn & 0xff) << 2);
335 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
336 {
337 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
338 int src_reg = (insn & 0x78) >> 3;
339 regs[dst_reg] = regs[src_reg];
340 }
341 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
342 {
343 /* Handle stores to the stack. Normally pushes are used,
344 but with GCC -mtpcs-frame, there may be other stores
345 in the prologue to create the frame. */
346 int regno = (insn >> 8) & 0x7;
347 pv_t addr;
348
349 offset = (insn & 0xff) << 2;
350 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
351
352 if (pv_area_store_would_trash (stack, addr))
353 break;
354
355 pv_area_store (stack, addr, 4, regs[regno]);
356 }
357 else
358 {
359 /* We don't know what this instruction is. We're finished
360 scanning. NOTE: Recognizing more safe-to-ignore
361 instructions here will improve support for optimized
362 code. */
363 break;
364 }
365
366 start += 2;
367 }
368
369 if (cache == NULL)
370 {
371 do_cleanups (back_to);
372 return start;
373 }
374
375 /* frameoffset is unused for this unwinder. */
376 cache->frameoffset = 0;
377
378 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
379 {
380 /* Frame pointer is fp. Frame size is constant. */
381 cache->framereg = ARM_FP_REGNUM;
382 cache->framesize = -regs[ARM_FP_REGNUM].k;
383 }
384 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
385 {
386 /* Frame pointer is r7. Frame size is constant. */
387 cache->framereg = THUMB_FP_REGNUM;
388 cache->framesize = -regs[THUMB_FP_REGNUM].k;
389 }
390 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
391 {
392 /* Try the stack pointer... this is a bit desperate. */
393 cache->framereg = ARM_SP_REGNUM;
394 cache->framesize = -regs[ARM_SP_REGNUM].k;
395 }
396 else
397 {
398 /* We're just out of luck. We don't know where the frame is. */
399 cache->framereg = -1;
400 cache->framesize = 0;
401 }
402
403 for (i = 0; i < 16; i++)
404 if (pv_area_find_reg (stack, gdbarch, i, &offset))
405 cache->saved_regs[i].addr = offset;
406
407 do_cleanups (back_to);
408 return start;
409 }
410
411 /* Advance the PC across any function entry prologue instructions to
412 reach some "real" code.
413
414 The APCS (ARM Procedure Call Standard) defines the following
415 prologue:
416
417 mov ip, sp
418 [stmfd sp!, {a1,a2,a3,a4}]
419 stmfd sp!, {...,fp,ip,lr,pc}
420 [stfe f7, [sp, #-12]!]
421 [stfe f6, [sp, #-12]!]
422 [stfe f5, [sp, #-12]!]
423 [stfe f4, [sp, #-12]!]
424 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
425
426 static CORE_ADDR
427 arm_skip_prologue (CORE_ADDR pc)
428 {
429 unsigned long inst;
430 CORE_ADDR skip_pc;
431 CORE_ADDR func_addr, func_end = 0;
432 char *func_name;
433 struct symtab_and_line sal;
434
435 /* If we're in a dummy frame, don't even try to skip the prologue. */
436 if (deprecated_pc_in_call_dummy (pc))
437 return pc;
438
439 /* See what the symbol table says. */
440
441 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
442 {
443 struct symbol *sym;
444
445 /* Found a function. */
446 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
447 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
448 {
449 /* Don't use this trick for assembly source files. */
450 sal = find_pc_line (func_addr, 0);
451 if ((sal.line != 0) && (sal.end < func_end))
452 return sal.end;
453 }
454 }
455
456 /* Can't find the prologue end in the symbol table, try it the hard way
457 by disassembling the instructions. */
458
459 /* Like arm_scan_prologue, stop no later than pc + 64. */
460 if (func_end == 0 || func_end > pc + 64)
461 func_end = pc + 64;
462
463 /* Check if this is Thumb code. */
464 if (arm_pc_is_thumb (pc))
465 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
466
467 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
468 {
469 inst = read_memory_unsigned_integer (skip_pc, 4);
470
471 /* "mov ip, sp" is no longer a required part of the prologue. */
472 if (inst == 0xe1a0c00d) /* mov ip, sp */
473 continue;
474
475 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
479 continue;
480
481 /* Some prologues begin with "str lr, [sp, #-4]!". */
482 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
483 continue;
484
485 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
486 continue;
487
488 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
489 continue;
490
491 /* Any insns after this point may float into the code, if it makes
492 for better instruction scheduling, so we skip them only if we
493 find them, but still consider the function to be frame-ful. */
494
495 /* We may have either one sfmfd instruction here, or several stfe
496 insns, depending on the version of floating point code we
497 support. */
498 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
499 continue;
500
501 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
502 continue;
503
504 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
505 continue;
506
507 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
508 continue;
509
510 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
511 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
512 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
513 continue;
514
515 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
516 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
517 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
518 continue;
519
520 /* Un-recognized instruction; stop scanning. */
521 break;
522 }
523
524 return skip_pc; /* End of prologue */
525 }
526
527 /* *INDENT-OFF* */
528 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
529 This function decodes a Thumb function prologue to determine:
530 1) the size of the stack frame
531 2) which registers are saved on it
532 3) the offsets of saved regs
533 4) the offset from the stack pointer to the frame pointer
534
535 A typical Thumb function prologue would create this stack frame
536 (offsets relative to FP)
537 old SP -> 24 stack parameters
538 20 LR
539 16 R7
540 R7 -> 0 local variables (16 bytes)
541 SP -> -12 additional stack space (12 bytes)
542 The frame size would thus be 36 bytes, and the frame offset would be
543 12 bytes. The frame register is R7.
544
545 The comments for thumb_skip_prolog() describe the algorithm we use
546 to detect the end of the prolog. */
547 /* *INDENT-ON* */
548
549 static void
550 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
551 {
552 CORE_ADDR prologue_start;
553 CORE_ADDR prologue_end;
554 CORE_ADDR current_pc;
555 /* Which register has been copied to register n? */
556 int saved_reg[16];
557 /* findmask:
558 bit 0 - push { rlist }
559 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
560 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
561 */
562 int findmask = 0;
563 int i;
564
565 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
566 {
567 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
568
569 if (sal.line == 0) /* no line info, use current PC */
570 prologue_end = prev_pc;
571 else if (sal.end < prologue_end) /* next line begins after fn end */
572 prologue_end = sal.end; /* (probably means no prologue) */
573 }
574 else
575 /* We're in the boondocks: we have no idea where the start of the
576 function is. */
577 return;
578
579 prologue_end = min (prologue_end, prev_pc);
580
581 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
582 cache);
583 }
584
585 /* This function decodes an ARM function prologue to determine:
586 1) the size of the stack frame
587 2) which registers are saved on it
588 3) the offsets of saved regs
589 4) the offset from the stack pointer to the frame pointer
590 This information is stored in the "extra" fields of the frame_info.
591
592 There are two basic forms for the ARM prologue. The fixed argument
593 function call will look like:
594
595 mov ip, sp
596 stmfd sp!, {fp, ip, lr, pc}
597 sub fp, ip, #4
598 [sub sp, sp, #4]
599
600 Which would create this stack frame (offsets relative to FP):
601 IP -> 4 (caller's stack)
602 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
603 -4 LR (return address in caller)
604 -8 IP (copy of caller's SP)
605 -12 FP (caller's FP)
606 SP -> -28 Local variables
607
608 The frame size would thus be 32 bytes, and the frame offset would be
609 28 bytes. The stmfd call can also save any of the vN registers it
610 plans to use, which increases the frame size accordingly.
611
612 Note: The stored PC is 8 off of the STMFD instruction that stored it
613 because the ARM Store instructions always store PC + 8 when you read
614 the PC register.
615
616 A variable argument function call will look like:
617
618 mov ip, sp
619 stmfd sp!, {a1, a2, a3, a4}
620 stmfd sp!, {fp, ip, lr, pc}
621 sub fp, ip, #20
622
623 Which would create this stack frame (offsets relative to FP):
624 IP -> 20 (caller's stack)
625 16 A4
626 12 A3
627 8 A2
628 4 A1
629 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
630 -4 LR (return address in caller)
631 -8 IP (copy of caller's SP)
632 -12 FP (caller's FP)
633 SP -> -28 Local variables
634
635 The frame size would thus be 48 bytes, and the frame offset would be
636 28 bytes.
637
638 There is another potential complication, which is that the optimizer
639 will try to separate the store of fp in the "stmfd" instruction from
640 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
641 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
642
643 Also, note, the original version of the ARM toolchain claimed that there
644 should be an
645
646 instruction at the end of the prologue. I have never seen GCC produce
647 this, and the ARM docs don't mention it. We still test for it below in
648 case it happens...
649
650 */
651
652 static void
653 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
654 {
655 int regno, sp_offset, fp_offset, ip_offset;
656 CORE_ADDR prologue_start, prologue_end, current_pc;
657 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
658
659 /* Assume there is no frame until proven otherwise. */
660 cache->framereg = ARM_SP_REGNUM;
661 cache->framesize = 0;
662 cache->frameoffset = 0;
663
664 /* Check for Thumb prologue. */
665 if (arm_pc_is_thumb (prev_pc))
666 {
667 thumb_scan_prologue (prev_pc, cache);
668 return;
669 }
670
671 /* Find the function prologue. If we can't find the function in
672 the symbol table, peek in the stack frame to find the PC. */
673 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
674 {
675 /* One way to find the end of the prologue (which works well
676 for unoptimized code) is to do the following:
677
678 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
679
680 if (sal.line == 0)
681 prologue_end = prev_pc;
682 else if (sal.end < prologue_end)
683 prologue_end = sal.end;
684
685 This mechanism is very accurate so long as the optimizer
686 doesn't move any instructions from the function body into the
687 prologue. If this happens, sal.end will be the last
688 instruction in the first hunk of prologue code just before
689 the first instruction that the scheduler has moved from
690 the body to the prologue.
691
692 In order to make sure that we scan all of the prologue
693 instructions, we use a slightly less accurate mechanism which
694 may scan more than necessary. To help compensate for this
695 lack of accuracy, the prologue scanning loop below contains
696 several clauses which'll cause the loop to terminate early if
697 an implausible prologue instruction is encountered.
698
699 The expression
700
701 prologue_start + 64
702
703 is a suitable endpoint since it accounts for the largest
704 possible prologue plus up to five instructions inserted by
705 the scheduler. */
706
707 if (prologue_end > prologue_start + 64)
708 {
709 prologue_end = prologue_start + 64; /* See above. */
710 }
711 }
712 else
713 {
714 /* We have no symbol information. Our only option is to assume this
715 function has a standard stack frame and the normal frame register.
716 Then, we can find the value of our frame pointer on entrance to
717 the callee (or at the present moment if this is the innermost frame).
718 The value stored there should be the address of the stmfd + 8. */
719 CORE_ADDR frame_loc;
720 LONGEST return_value;
721
722 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
723 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
724 return;
725 else
726 {
727 prologue_start = gdbarch_addr_bits_remove
728 (current_gdbarch, return_value) - 8;
729 prologue_end = prologue_start + 64; /* See above. */
730 }
731 }
732
733 if (prev_pc < prologue_end)
734 prologue_end = prev_pc;
735
736 /* Now search the prologue looking for instructions that set up the
737 frame pointer, adjust the stack pointer, and save registers.
738
739 Be careful, however, and if it doesn't look like a prologue,
740 don't try to scan it. If, for instance, a frameless function
741 begins with stmfd sp!, then we will tell ourselves there is
742 a frame, which will confuse stack traceback, as well as "finish"
743 and other operations that rely on a knowledge of the stack
744 traceback.
745
746 In the APCS, the prologue should start with "mov ip, sp" so
747 if we don't see this as the first insn, we will stop.
748
749 [Note: This doesn't seem to be true any longer, so it's now an
750 optional part of the prologue. - Kevin Buettner, 2001-11-20]
751
752 [Note further: The "mov ip,sp" only seems to be missing in
753 frameless functions at optimization level "-O2" or above,
754 in which case it is often (but not always) replaced by
755 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
756
757 sp_offset = fp_offset = ip_offset = 0;
758
759 for (current_pc = prologue_start;
760 current_pc < prologue_end;
761 current_pc += 4)
762 {
763 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
764
765 if (insn == 0xe1a0c00d) /* mov ip, sp */
766 {
767 ip_offset = 0;
768 continue;
769 }
770 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
771 {
772 unsigned imm = insn & 0xff; /* immediate value */
773 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
774 imm = (imm >> rot) | (imm << (32 - rot));
775 ip_offset = imm;
776 continue;
777 }
778 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
779 {
780 unsigned imm = insn & 0xff; /* immediate value */
781 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
782 imm = (imm >> rot) | (imm << (32 - rot));
783 ip_offset = -imm;
784 continue;
785 }
786 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
787 {
788 sp_offset -= 4;
789 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
790 continue;
791 }
792 else if ((insn & 0xffff0000) == 0xe92d0000)
793 /* stmfd sp!, {..., fp, ip, lr, pc}
794 or
795 stmfd sp!, {a1, a2, a3, a4} */
796 {
797 int mask = insn & 0xffff;
798
799 /* Calculate offsets of saved registers. */
800 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
801 if (mask & (1 << regno))
802 {
803 sp_offset -= 4;
804 cache->saved_regs[regno].addr = sp_offset;
805 }
806 }
807 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
808 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
809 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
810 {
811 /* No need to add this to saved_regs -- it's just an arg reg. */
812 continue;
813 }
814 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
815 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
816 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
817 {
818 /* No need to add this to saved_regs -- it's just an arg reg. */
819 continue;
820 }
821 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
822 {
823 unsigned imm = insn & 0xff; /* immediate value */
824 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
825 imm = (imm >> rot) | (imm << (32 - rot));
826 fp_offset = -imm + ip_offset;
827 cache->framereg = ARM_FP_REGNUM;
828 }
829 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
830 {
831 unsigned imm = insn & 0xff; /* immediate value */
832 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
833 imm = (imm >> rot) | (imm << (32 - rot));
834 sp_offset -= imm;
835 }
836 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
837 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
838 {
839 sp_offset -= 12;
840 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
841 cache->saved_regs[regno].addr = sp_offset;
842 }
843 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
844 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
845 {
846 int n_saved_fp_regs;
847 unsigned int fp_start_reg, fp_bound_reg;
848
849 if ((insn & 0x800) == 0x800) /* N0 is set */
850 {
851 if ((insn & 0x40000) == 0x40000) /* N1 is set */
852 n_saved_fp_regs = 3;
853 else
854 n_saved_fp_regs = 1;
855 }
856 else
857 {
858 if ((insn & 0x40000) == 0x40000) /* N1 is set */
859 n_saved_fp_regs = 2;
860 else
861 n_saved_fp_regs = 4;
862 }
863
864 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
865 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
866 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
867 {
868 sp_offset -= 12;
869 cache->saved_regs[fp_start_reg++].addr = sp_offset;
870 }
871 }
872 else if ((insn & 0xf0000000) != 0xe0000000)
873 break; /* Condition not true, exit early */
874 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
875 break; /* Don't scan past a block load */
876 else
877 /* The optimizer might shove anything into the prologue,
878 so we just skip what we don't recognize. */
879 continue;
880 }
881
882 /* The frame size is just the negative of the offset (from the
883 original SP) of the last thing thing we pushed on the stack.
884 The frame offset is [new FP] - [new SP]. */
885 cache->framesize = -sp_offset;
886 if (cache->framereg == ARM_FP_REGNUM)
887 cache->frameoffset = fp_offset - sp_offset;
888 else
889 cache->frameoffset = 0;
890 }
891
892 static struct arm_prologue_cache *
893 arm_make_prologue_cache (struct frame_info *next_frame)
894 {
895 int reg;
896 struct arm_prologue_cache *cache;
897 CORE_ADDR unwound_fp;
898
899 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
900 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
901
902 arm_scan_prologue (next_frame, cache);
903
904 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
905 if (unwound_fp == 0)
906 return cache;
907
908 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
909
910 /* Calculate actual addresses of saved registers using offsets
911 determined by arm_scan_prologue. */
912 for (reg = 0; reg < gdbarch_num_regs (current_gdbarch); reg++)
913 if (trad_frame_addr_p (cache->saved_regs, reg))
914 cache->saved_regs[reg].addr += cache->prev_sp;
915
916 return cache;
917 }
918
919 /* Our frame ID for a normal frame is the current function's starting PC
920 and the caller's SP when we were called. */
921
922 static void
923 arm_prologue_this_id (struct frame_info *next_frame,
924 void **this_cache,
925 struct frame_id *this_id)
926 {
927 struct arm_prologue_cache *cache;
928 struct frame_id id;
929 CORE_ADDR func;
930
931 if (*this_cache == NULL)
932 *this_cache = arm_make_prologue_cache (next_frame);
933 cache = *this_cache;
934
935 func = frame_func_unwind (next_frame, NORMAL_FRAME);
936
937 /* This is meant to halt the backtrace at "_start". Make sure we
938 don't halt it at a generic dummy frame. */
939 if (func <= LOWEST_PC)
940 return;
941
942 /* If we've hit a wall, stop. */
943 if (cache->prev_sp == 0)
944 return;
945
946 id = frame_id_build (cache->prev_sp, func);
947 *this_id = id;
948 }
949
950 static void
951 arm_prologue_prev_register (struct frame_info *next_frame,
952 void **this_cache,
953 int prev_regnum,
954 int *optimized,
955 enum lval_type *lvalp,
956 CORE_ADDR *addrp,
957 int *realnump,
958 gdb_byte *valuep)
959 {
960 struct arm_prologue_cache *cache;
961
962 if (*this_cache == NULL)
963 *this_cache = arm_make_prologue_cache (next_frame);
964 cache = *this_cache;
965
966 /* If we are asked to unwind the PC, then we need to return the LR
967 instead. The saved value of PC points into this frame's
968 prologue, not the next frame's resume location. */
969 if (prev_regnum == ARM_PC_REGNUM)
970 prev_regnum = ARM_LR_REGNUM;
971
972 /* SP is generally not saved to the stack, but this frame is
973 identified by NEXT_FRAME's stack pointer at the time of the call.
974 The value was already reconstructed into PREV_SP. */
975 if (prev_regnum == ARM_SP_REGNUM)
976 {
977 *lvalp = not_lval;
978 if (valuep)
979 store_unsigned_integer (valuep, 4, cache->prev_sp);
980 return;
981 }
982
983 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
984 optimized, lvalp, addrp, realnump, valuep);
985 }
986
987 struct frame_unwind arm_prologue_unwind = {
988 NORMAL_FRAME,
989 arm_prologue_this_id,
990 arm_prologue_prev_register
991 };
992
993 static const struct frame_unwind *
994 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
995 {
996 return &arm_prologue_unwind;
997 }
998
999 static struct arm_prologue_cache *
1000 arm_make_stub_cache (struct frame_info *next_frame)
1001 {
1002 int reg;
1003 struct arm_prologue_cache *cache;
1004 CORE_ADDR unwound_fp;
1005
1006 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1007 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1008
1009 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1010
1011 return cache;
1012 }
1013
1014 /* Our frame ID for a stub frame is the current SP and LR. */
1015
1016 static void
1017 arm_stub_this_id (struct frame_info *next_frame,
1018 void **this_cache,
1019 struct frame_id *this_id)
1020 {
1021 struct arm_prologue_cache *cache;
1022
1023 if (*this_cache == NULL)
1024 *this_cache = arm_make_stub_cache (next_frame);
1025 cache = *this_cache;
1026
1027 *this_id = frame_id_build (cache->prev_sp,
1028 frame_pc_unwind (next_frame));
1029 }
1030
1031 struct frame_unwind arm_stub_unwind = {
1032 NORMAL_FRAME,
1033 arm_stub_this_id,
1034 arm_prologue_prev_register
1035 };
1036
1037 static const struct frame_unwind *
1038 arm_stub_unwind_sniffer (struct frame_info *next_frame)
1039 {
1040 CORE_ADDR addr_in_block;
1041 char dummy[4];
1042
1043 addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1044 if (in_plt_section (addr_in_block, NULL)
1045 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1046 return &arm_stub_unwind;
1047
1048 return NULL;
1049 }
1050
1051 static CORE_ADDR
1052 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1053 {
1054 struct arm_prologue_cache *cache;
1055
1056 if (*this_cache == NULL)
1057 *this_cache = arm_make_prologue_cache (next_frame);
1058 cache = *this_cache;
1059
1060 return cache->prev_sp + cache->frameoffset - cache->framesize;
1061 }
1062
1063 struct frame_base arm_normal_base = {
1064 &arm_prologue_unwind,
1065 arm_normal_frame_base,
1066 arm_normal_frame_base,
1067 arm_normal_frame_base
1068 };
1069
1070 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1071 dummy frame. The frame ID's base needs to match the TOS value
1072 saved by save_dummy_frame_tos() and returned from
1073 arm_push_dummy_call, and the PC needs to match the dummy frame's
1074 breakpoint. */
1075
1076 static struct frame_id
1077 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1078 {
1079 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1080 frame_pc_unwind (next_frame));
1081 }
1082
1083 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1084 be used to construct the previous frame's ID, after looking up the
1085 containing function). */
1086
1087 static CORE_ADDR
1088 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1089 {
1090 CORE_ADDR pc;
1091 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1092 return arm_addr_bits_remove (pc);
1093 }
1094
1095 static CORE_ADDR
1096 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1097 {
1098 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1099 }
1100
1101 /* When arguments must be pushed onto the stack, they go on in reverse
1102 order. The code below implements a FILO (stack) to do this. */
1103
1104 struct stack_item
1105 {
1106 int len;
1107 struct stack_item *prev;
1108 void *data;
1109 };
1110
1111 static struct stack_item *
1112 push_stack_item (struct stack_item *prev, void *contents, int len)
1113 {
1114 struct stack_item *si;
1115 si = xmalloc (sizeof (struct stack_item));
1116 si->data = xmalloc (len);
1117 si->len = len;
1118 si->prev = prev;
1119 memcpy (si->data, contents, len);
1120 return si;
1121 }
1122
1123 static struct stack_item *
1124 pop_stack_item (struct stack_item *si)
1125 {
1126 struct stack_item *dead = si;
1127 si = si->prev;
1128 xfree (dead->data);
1129 xfree (dead);
1130 return si;
1131 }
1132
1133
1134 /* Return the alignment (in bytes) of the given type. */
1135
1136 static int
1137 arm_type_align (struct type *t)
1138 {
1139 int n;
1140 int align;
1141 int falign;
1142
1143 t = check_typedef (t);
1144 switch (TYPE_CODE (t))
1145 {
1146 default:
1147 /* Should never happen. */
1148 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1149 return 4;
1150
1151 case TYPE_CODE_PTR:
1152 case TYPE_CODE_ENUM:
1153 case TYPE_CODE_INT:
1154 case TYPE_CODE_FLT:
1155 case TYPE_CODE_SET:
1156 case TYPE_CODE_RANGE:
1157 case TYPE_CODE_BITSTRING:
1158 case TYPE_CODE_REF:
1159 case TYPE_CODE_CHAR:
1160 case TYPE_CODE_BOOL:
1161 return TYPE_LENGTH (t);
1162
1163 case TYPE_CODE_ARRAY:
1164 case TYPE_CODE_COMPLEX:
1165 /* TODO: What about vector types? */
1166 return arm_type_align (TYPE_TARGET_TYPE (t));
1167
1168 case TYPE_CODE_STRUCT:
1169 case TYPE_CODE_UNION:
1170 align = 1;
1171 for (n = 0; n < TYPE_NFIELDS (t); n++)
1172 {
1173 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1174 if (falign > align)
1175 align = falign;
1176 }
1177 return align;
1178 }
1179 }
1180
1181 /* We currently only support passing parameters in integer registers. This
1182 conforms with GCC's default model. Several other variants exist and
1183 we should probably support some of them based on the selected ABI. */
1184
1185 static CORE_ADDR
1186 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1187 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1188 struct value **args, CORE_ADDR sp, int struct_return,
1189 CORE_ADDR struct_addr)
1190 {
1191 int argnum;
1192 int argreg;
1193 int nstack;
1194 struct stack_item *si = NULL;
1195
1196 /* Set the return address. For the ARM, the return breakpoint is
1197 always at BP_ADDR. */
1198 /* XXX Fix for Thumb. */
1199 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1200
1201 /* Walk through the list of args and determine how large a temporary
1202 stack is required. Need to take care here as structs may be
1203 passed on the stack, and we have to to push them. */
1204 nstack = 0;
1205
1206 argreg = ARM_A1_REGNUM;
1207 nstack = 0;
1208
1209 /* The struct_return pointer occupies the first parameter
1210 passing register. */
1211 if (struct_return)
1212 {
1213 if (arm_debug)
1214 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1215 gdbarch_register_name (current_gdbarch, argreg),
1216 paddr (struct_addr));
1217 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1218 argreg++;
1219 }
1220
1221 for (argnum = 0; argnum < nargs; argnum++)
1222 {
1223 int len;
1224 struct type *arg_type;
1225 struct type *target_type;
1226 enum type_code typecode;
1227 bfd_byte *val;
1228 int align;
1229
1230 arg_type = check_typedef (value_type (args[argnum]));
1231 len = TYPE_LENGTH (arg_type);
1232 target_type = TYPE_TARGET_TYPE (arg_type);
1233 typecode = TYPE_CODE (arg_type);
1234 val = value_contents_writeable (args[argnum]);
1235
1236 align = arm_type_align (arg_type);
1237 /* Round alignment up to a whole number of words. */
1238 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1239 /* Different ABIs have different maximum alignments. */
1240 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1241 {
1242 /* The APCS ABI only requires word alignment. */
1243 align = INT_REGISTER_SIZE;
1244 }
1245 else
1246 {
1247 /* The AAPCS requires at most doubleword alignment. */
1248 if (align > INT_REGISTER_SIZE * 2)
1249 align = INT_REGISTER_SIZE * 2;
1250 }
1251
1252 /* Push stack padding for dowubleword alignment. */
1253 if (nstack & (align - 1))
1254 {
1255 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1256 nstack += INT_REGISTER_SIZE;
1257 }
1258
1259 /* Doubleword aligned quantities must go in even register pairs. */
1260 if (argreg <= ARM_LAST_ARG_REGNUM
1261 && align > INT_REGISTER_SIZE
1262 && argreg & 1)
1263 argreg++;
1264
1265 /* If the argument is a pointer to a function, and it is a
1266 Thumb function, create a LOCAL copy of the value and set
1267 the THUMB bit in it. */
1268 if (TYPE_CODE_PTR == typecode
1269 && target_type != NULL
1270 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1271 {
1272 CORE_ADDR regval = extract_unsigned_integer (val, len);
1273 if (arm_pc_is_thumb (regval))
1274 {
1275 val = alloca (len);
1276 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1277 }
1278 }
1279
1280 /* Copy the argument to general registers or the stack in
1281 register-sized pieces. Large arguments are split between
1282 registers and stack. */
1283 while (len > 0)
1284 {
1285 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
1286
1287 if (argreg <= ARM_LAST_ARG_REGNUM)
1288 {
1289 /* The argument is being passed in a general purpose
1290 register. */
1291 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1292 if (arm_debug)
1293 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1294 argnum,
1295 gdbarch_register_name
1296 (current_gdbarch, argreg),
1297 phex (regval, DEPRECATED_REGISTER_SIZE));
1298 regcache_cooked_write_unsigned (regcache, argreg, regval);
1299 argreg++;
1300 }
1301 else
1302 {
1303 /* Push the arguments onto the stack. */
1304 if (arm_debug)
1305 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1306 argnum, nstack);
1307 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1308 nstack += DEPRECATED_REGISTER_SIZE;
1309 }
1310
1311 len -= partial_len;
1312 val += partial_len;
1313 }
1314 }
1315 /* If we have an odd number of words to push, then decrement the stack
1316 by one word now, so first stack argument will be dword aligned. */
1317 if (nstack & 4)
1318 sp -= 4;
1319
1320 while (si)
1321 {
1322 sp -= si->len;
1323 write_memory (sp, si->data, si->len);
1324 si = pop_stack_item (si);
1325 }
1326
1327 /* Finally, update teh SP register. */
1328 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1329
1330 return sp;
1331 }
1332
1333
1334 /* Always align the frame to an 8-byte boundary. This is required on
1335 some platforms and harmless on the rest. */
1336
1337 static CORE_ADDR
1338 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1339 {
1340 /* Align the stack to eight bytes. */
1341 return sp & ~ (CORE_ADDR) 7;
1342 }
1343
1344 static void
1345 print_fpu_flags (int flags)
1346 {
1347 if (flags & (1 << 0))
1348 fputs ("IVO ", stdout);
1349 if (flags & (1 << 1))
1350 fputs ("DVZ ", stdout);
1351 if (flags & (1 << 2))
1352 fputs ("OFL ", stdout);
1353 if (flags & (1 << 3))
1354 fputs ("UFL ", stdout);
1355 if (flags & (1 << 4))
1356 fputs ("INX ", stdout);
1357 putchar ('\n');
1358 }
1359
1360 /* Print interesting information about the floating point processor
1361 (if present) or emulator. */
1362 static void
1363 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1364 struct frame_info *frame, const char *args)
1365 {
1366 unsigned long status = read_register (ARM_FPS_REGNUM);
1367 int type;
1368
1369 type = (status >> 24) & 127;
1370 if (status & (1 << 31))
1371 printf (_("Hardware FPU type %d\n"), type);
1372 else
1373 printf (_("Software FPU type %d\n"), type);
1374 /* i18n: [floating point unit] mask */
1375 fputs (_("mask: "), stdout);
1376 print_fpu_flags (status >> 16);
1377 /* i18n: [floating point unit] flags */
1378 fputs (_("flags: "), stdout);
1379 print_fpu_flags (status);
1380 }
1381
1382 /* Return the GDB type object for the "standard" data type of data in
1383 register N. */
1384
1385 static struct type *
1386 arm_register_type (struct gdbarch *gdbarch, int regnum)
1387 {
1388 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1389 return builtin_type_arm_ext;
1390 else if (regnum == ARM_SP_REGNUM)
1391 return builtin_type_void_data_ptr;
1392 else if (regnum == ARM_PC_REGNUM)
1393 return builtin_type_void_func_ptr;
1394 else if (regnum >= ARRAY_SIZE (arm_register_names))
1395 /* These registers are only supported on targets which supply
1396 an XML description. */
1397 return builtin_type_int0;
1398 else
1399 return builtin_type_uint32;
1400 }
1401
1402 /* Map a DWARF register REGNUM onto the appropriate GDB register
1403 number. */
1404
1405 static int
1406 arm_dwarf_reg_to_regnum (int reg)
1407 {
1408 /* Core integer regs. */
1409 if (reg >= 0 && reg <= 15)
1410 return reg;
1411
1412 /* Legacy FPA encoding. These were once used in a way which
1413 overlapped with VFP register numbering, so their use is
1414 discouraged, but GDB doesn't support the ARM toolchain
1415 which used them for VFP. */
1416 if (reg >= 16 && reg <= 23)
1417 return ARM_F0_REGNUM + reg - 16;
1418
1419 /* New assignments for the FPA registers. */
1420 if (reg >= 96 && reg <= 103)
1421 return ARM_F0_REGNUM + reg - 96;
1422
1423 /* WMMX register assignments. */
1424 if (reg >= 104 && reg <= 111)
1425 return ARM_WCGR0_REGNUM + reg - 104;
1426
1427 if (reg >= 112 && reg <= 127)
1428 return ARM_WR0_REGNUM + reg - 112;
1429
1430 if (reg >= 192 && reg <= 199)
1431 return ARM_WC0_REGNUM + reg - 192;
1432
1433 return -1;
1434 }
1435
1436 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1437 static int
1438 arm_register_sim_regno (int regnum)
1439 {
1440 int reg = regnum;
1441 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (current_gdbarch));
1442
1443 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1444 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1445
1446 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1447 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1448
1449 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1450 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1451
1452 if (reg < NUM_GREGS)
1453 return SIM_ARM_R0_REGNUM + reg;
1454 reg -= NUM_GREGS;
1455
1456 if (reg < NUM_FREGS)
1457 return SIM_ARM_FP0_REGNUM + reg;
1458 reg -= NUM_FREGS;
1459
1460 if (reg < NUM_SREGS)
1461 return SIM_ARM_FPS_REGNUM + reg;
1462 reg -= NUM_SREGS;
1463
1464 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1465 }
1466
1467 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1468 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1469 It is thought that this is is the floating-point register format on
1470 little-endian systems. */
1471
1472 static void
1473 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1474 void *dbl)
1475 {
1476 DOUBLEST d;
1477 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1478 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1479 else
1480 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1481 ptr, &d);
1482 floatformat_from_doublest (fmt, &d, dbl);
1483 }
1484
1485 static void
1486 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1487 {
1488 DOUBLEST d;
1489 floatformat_to_doublest (fmt, ptr, &d);
1490 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1491 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1492 else
1493 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1494 &d, dbl);
1495 }
1496
1497 static int
1498 condition_true (unsigned long cond, unsigned long status_reg)
1499 {
1500 if (cond == INST_AL || cond == INST_NV)
1501 return 1;
1502
1503 switch (cond)
1504 {
1505 case INST_EQ:
1506 return ((status_reg & FLAG_Z) != 0);
1507 case INST_NE:
1508 return ((status_reg & FLAG_Z) == 0);
1509 case INST_CS:
1510 return ((status_reg & FLAG_C) != 0);
1511 case INST_CC:
1512 return ((status_reg & FLAG_C) == 0);
1513 case INST_MI:
1514 return ((status_reg & FLAG_N) != 0);
1515 case INST_PL:
1516 return ((status_reg & FLAG_N) == 0);
1517 case INST_VS:
1518 return ((status_reg & FLAG_V) != 0);
1519 case INST_VC:
1520 return ((status_reg & FLAG_V) == 0);
1521 case INST_HI:
1522 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1523 case INST_LS:
1524 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1525 case INST_GE:
1526 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1527 case INST_LT:
1528 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1529 case INST_GT:
1530 return (((status_reg & FLAG_Z) == 0) &&
1531 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1532 case INST_LE:
1533 return (((status_reg & FLAG_Z) != 0) ||
1534 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1535 }
1536 return 1;
1537 }
1538
1539 /* Support routines for single stepping. Calculate the next PC value. */
1540 #define submask(x) ((1L << ((x) + 1)) - 1)
1541 #define bit(obj,st) (((obj) >> (st)) & 1)
1542 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1543 #define sbits(obj,st,fn) \
1544 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1545 #define BranchDest(addr,instr) \
1546 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1547 #define ARM_PC_32 1
1548
1549 static unsigned long
1550 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1551 unsigned long status_reg)
1552 {
1553 unsigned long res, shift;
1554 int rm = bits (inst, 0, 3);
1555 unsigned long shifttype = bits (inst, 5, 6);
1556
1557 if (bit (inst, 4))
1558 {
1559 int rs = bits (inst, 8, 11);
1560 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1561 }
1562 else
1563 shift = bits (inst, 7, 11);
1564
1565 res = (rm == 15
1566 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1567 + (bit (inst, 4) ? 12 : 8))
1568 : read_register (rm));
1569
1570 switch (shifttype)
1571 {
1572 case 0: /* LSL */
1573 res = shift >= 32 ? 0 : res << shift;
1574 break;
1575
1576 case 1: /* LSR */
1577 res = shift >= 32 ? 0 : res >> shift;
1578 break;
1579
1580 case 2: /* ASR */
1581 if (shift >= 32)
1582 shift = 31;
1583 res = ((res & 0x80000000L)
1584 ? ~((~res) >> shift) : res >> shift);
1585 break;
1586
1587 case 3: /* ROR/RRX */
1588 shift &= 31;
1589 if (shift == 0)
1590 res = (res >> 1) | (carry ? 0x80000000L : 0);
1591 else
1592 res = (res >> shift) | (res << (32 - shift));
1593 break;
1594 }
1595
1596 return res & 0xffffffff;
1597 }
1598
1599 /* Return number of 1-bits in VAL. */
1600
1601 static int
1602 bitcount (unsigned long val)
1603 {
1604 int nbits;
1605 for (nbits = 0; val != 0; nbits++)
1606 val &= val - 1; /* delete rightmost 1-bit in val */
1607 return nbits;
1608 }
1609
1610 static CORE_ADDR
1611 thumb_get_next_pc (CORE_ADDR pc)
1612 {
1613 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1614 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
1615 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1616 unsigned long offset;
1617
1618 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1619 {
1620 CORE_ADDR sp;
1621
1622 /* Fetch the saved PC from the stack. It's stored above
1623 all of the other registers. */
1624 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
1625 sp = read_register (ARM_SP_REGNUM);
1626 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
1627 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1628 if (nextpc == pc)
1629 error (_("Infinite loop detected"));
1630 }
1631 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1632 {
1633 unsigned long status = read_register (ARM_PS_REGNUM);
1634 unsigned long cond = bits (inst1, 8, 11);
1635 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1636 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1637 }
1638 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1639 {
1640 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1641 }
1642 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1643 {
1644 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
1645 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1646 nextpc = pc_val + offset;
1647 /* For BLX make sure to clear the low bits. */
1648 if (bits (inst2, 11, 12) == 1)
1649 nextpc = nextpc & 0xfffffffc;
1650 }
1651 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1652 {
1653 if (bits (inst1, 3, 6) == 0x0f)
1654 nextpc = pc_val;
1655 else
1656 nextpc = read_register (bits (inst1, 3, 6));
1657
1658 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1659 if (nextpc == pc)
1660 error (_("Infinite loop detected"));
1661 }
1662
1663 return nextpc;
1664 }
1665
1666 static CORE_ADDR
1667 arm_get_next_pc (CORE_ADDR pc)
1668 {
1669 unsigned long pc_val;
1670 unsigned long this_instr;
1671 unsigned long status;
1672 CORE_ADDR nextpc;
1673
1674 if (arm_pc_is_thumb (pc))
1675 return thumb_get_next_pc (pc);
1676
1677 pc_val = (unsigned long) pc;
1678 this_instr = read_memory_unsigned_integer (pc, 4);
1679 status = read_register (ARM_PS_REGNUM);
1680 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1681
1682 if (condition_true (bits (this_instr, 28, 31), status))
1683 {
1684 switch (bits (this_instr, 24, 27))
1685 {
1686 case 0x0:
1687 case 0x1: /* data processing */
1688 case 0x2:
1689 case 0x3:
1690 {
1691 unsigned long operand1, operand2, result = 0;
1692 unsigned long rn;
1693 int c;
1694
1695 if (bits (this_instr, 12, 15) != 15)
1696 break;
1697
1698 if (bits (this_instr, 22, 25) == 0
1699 && bits (this_instr, 4, 7) == 9) /* multiply */
1700 error (_("Invalid update to pc in instruction"));
1701
1702 /* BX <reg>, BLX <reg> */
1703 if (bits (this_instr, 4, 27) == 0x12fff1
1704 || bits (this_instr, 4, 27) == 0x12fff3)
1705 {
1706 rn = bits (this_instr, 0, 3);
1707 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1708 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1709 (current_gdbarch, result);
1710
1711 if (nextpc == pc)
1712 error (_("Infinite loop detected"));
1713
1714 return nextpc;
1715 }
1716
1717 /* Multiply into PC */
1718 c = (status & FLAG_C) ? 1 : 0;
1719 rn = bits (this_instr, 16, 19);
1720 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1721
1722 if (bit (this_instr, 25))
1723 {
1724 unsigned long immval = bits (this_instr, 0, 7);
1725 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1726 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1727 & 0xffffffff;
1728 }
1729 else /* operand 2 is a shifted register */
1730 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1731
1732 switch (bits (this_instr, 21, 24))
1733 {
1734 case 0x0: /*and */
1735 result = operand1 & operand2;
1736 break;
1737
1738 case 0x1: /*eor */
1739 result = operand1 ^ operand2;
1740 break;
1741
1742 case 0x2: /*sub */
1743 result = operand1 - operand2;
1744 break;
1745
1746 case 0x3: /*rsb */
1747 result = operand2 - operand1;
1748 break;
1749
1750 case 0x4: /*add */
1751 result = operand1 + operand2;
1752 break;
1753
1754 case 0x5: /*adc */
1755 result = operand1 + operand2 + c;
1756 break;
1757
1758 case 0x6: /*sbc */
1759 result = operand1 - operand2 + c;
1760 break;
1761
1762 case 0x7: /*rsc */
1763 result = operand2 - operand1 + c;
1764 break;
1765
1766 case 0x8:
1767 case 0x9:
1768 case 0xa:
1769 case 0xb: /* tst, teq, cmp, cmn */
1770 result = (unsigned long) nextpc;
1771 break;
1772
1773 case 0xc: /*orr */
1774 result = operand1 | operand2;
1775 break;
1776
1777 case 0xd: /*mov */
1778 /* Always step into a function. */
1779 result = operand2;
1780 break;
1781
1782 case 0xe: /*bic */
1783 result = operand1 & ~operand2;
1784 break;
1785
1786 case 0xf: /*mvn */
1787 result = ~operand2;
1788 break;
1789 }
1790 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1791 (current_gdbarch, result);
1792
1793 if (nextpc == pc)
1794 error (_("Infinite loop detected"));
1795 break;
1796 }
1797
1798 case 0x4:
1799 case 0x5: /* data transfer */
1800 case 0x6:
1801 case 0x7:
1802 if (bit (this_instr, 20))
1803 {
1804 /* load */
1805 if (bits (this_instr, 12, 15) == 15)
1806 {
1807 /* rd == pc */
1808 unsigned long rn;
1809 unsigned long base;
1810
1811 if (bit (this_instr, 22))
1812 error (_("Invalid update to pc in instruction"));
1813
1814 /* byte write to PC */
1815 rn = bits (this_instr, 16, 19);
1816 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1817 if (bit (this_instr, 24))
1818 {
1819 /* pre-indexed */
1820 int c = (status & FLAG_C) ? 1 : 0;
1821 unsigned long offset =
1822 (bit (this_instr, 25)
1823 ? shifted_reg_val (this_instr, c, pc_val, status)
1824 : bits (this_instr, 0, 11));
1825
1826 if (bit (this_instr, 23))
1827 base += offset;
1828 else
1829 base -= offset;
1830 }
1831 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1832 4);
1833
1834 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1835
1836 if (nextpc == pc)
1837 error (_("Infinite loop detected"));
1838 }
1839 }
1840 break;
1841
1842 case 0x8:
1843 case 0x9: /* block transfer */
1844 if (bit (this_instr, 20))
1845 {
1846 /* LDM */
1847 if (bit (this_instr, 15))
1848 {
1849 /* loading pc */
1850 int offset = 0;
1851
1852 if (bit (this_instr, 23))
1853 {
1854 /* up */
1855 unsigned long reglist = bits (this_instr, 0, 14);
1856 offset = bitcount (reglist) * 4;
1857 if (bit (this_instr, 24)) /* pre */
1858 offset += 4;
1859 }
1860 else if (bit (this_instr, 24))
1861 offset = -4;
1862
1863 {
1864 unsigned long rn_val =
1865 read_register (bits (this_instr, 16, 19));
1866 nextpc =
1867 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1868 + offset),
1869 4);
1870 }
1871 nextpc = gdbarch_addr_bits_remove
1872 (current_gdbarch, nextpc);
1873 if (nextpc == pc)
1874 error (_("Infinite loop detected"));
1875 }
1876 }
1877 break;
1878
1879 case 0xb: /* branch & link */
1880 case 0xa: /* branch */
1881 {
1882 nextpc = BranchDest (pc, this_instr);
1883
1884 /* BLX */
1885 if (bits (this_instr, 28, 31) == INST_NV)
1886 nextpc |= bit (this_instr, 24) << 1;
1887
1888 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1889 if (nextpc == pc)
1890 error (_("Infinite loop detected"));
1891 break;
1892 }
1893
1894 case 0xc:
1895 case 0xd:
1896 case 0xe: /* coproc ops */
1897 case 0xf: /* SWI */
1898 break;
1899
1900 default:
1901 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
1902 return (pc);
1903 }
1904 }
1905
1906 return nextpc;
1907 }
1908
1909 /* single_step() is called just before we want to resume the inferior,
1910 if we want to single-step it but there is no hardware or kernel
1911 single-step support. We find the target of the coming instruction
1912 and breakpoint it. */
1913
1914 int
1915 arm_software_single_step (struct regcache *regcache)
1916 {
1917 /* NOTE: This may insert the wrong breakpoint instruction when
1918 single-stepping over a mode-changing instruction, if the
1919 CPSR heuristics are used. */
1920
1921 CORE_ADDR next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1922 insert_single_step_breakpoint (next_pc);
1923
1924 return 1;
1925 }
1926
1927 #include "bfd-in2.h"
1928 #include "libcoff.h"
1929
1930 static int
1931 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1932 {
1933 if (arm_pc_is_thumb (memaddr))
1934 {
1935 static asymbol *asym;
1936 static combined_entry_type ce;
1937 static struct coff_symbol_struct csym;
1938 static struct bfd fake_bfd;
1939 static bfd_target fake_target;
1940
1941 if (csym.native == NULL)
1942 {
1943 /* Create a fake symbol vector containing a Thumb symbol.
1944 This is solely so that the code in print_insn_little_arm()
1945 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1946 the presence of a Thumb symbol and switch to decoding
1947 Thumb instructions. */
1948
1949 fake_target.flavour = bfd_target_coff_flavour;
1950 fake_bfd.xvec = &fake_target;
1951 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1952 csym.native = &ce;
1953 csym.symbol.the_bfd = &fake_bfd;
1954 csym.symbol.name = "fake";
1955 asym = (asymbol *) & csym;
1956 }
1957
1958 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1959 info->symbols = &asym;
1960 }
1961 else
1962 info->symbols = NULL;
1963
1964 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1965 return print_insn_big_arm (memaddr, info);
1966 else
1967 return print_insn_little_arm (memaddr, info);
1968 }
1969
1970 /* The following define instruction sequences that will cause ARM
1971 cpu's to take an undefined instruction trap. These are used to
1972 signal a breakpoint to GDB.
1973
1974 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1975 modes. A different instruction is required for each mode. The ARM
1976 cpu's can also be big or little endian. Thus four different
1977 instructions are needed to support all cases.
1978
1979 Note: ARMv4 defines several new instructions that will take the
1980 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1981 not in fact add the new instructions. The new undefined
1982 instructions in ARMv4 are all instructions that had no defined
1983 behaviour in earlier chips. There is no guarantee that they will
1984 raise an exception, but may be treated as NOP's. In practice, it
1985 may only safe to rely on instructions matching:
1986
1987 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1988 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1989 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1990
1991 Even this may only true if the condition predicate is true. The
1992 following use a condition predicate of ALWAYS so it is always TRUE.
1993
1994 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1995 and NetBSD all use a software interrupt rather than an undefined
1996 instruction to force a trap. This can be handled by by the
1997 abi-specific code during establishment of the gdbarch vector. */
1998
1999 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2000 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2001 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
2002 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
2003
2004 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2005 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2006 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2007 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2008
2009 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2010 the program counter value to determine whether a 16-bit or 32-bit
2011 breakpoint should be used. It returns a pointer to a string of
2012 bytes that encode a breakpoint instruction, stores the length of
2013 the string to *lenptr, and adjusts the program counter (if
2014 necessary) to point to the actual memory location where the
2015 breakpoint should be inserted. */
2016
2017 static const unsigned char *
2018 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2019 {
2020 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2021
2022 if (arm_pc_is_thumb (*pcptr))
2023 {
2024 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2025 *lenptr = tdep->thumb_breakpoint_size;
2026 return tdep->thumb_breakpoint;
2027 }
2028 else
2029 {
2030 *lenptr = tdep->arm_breakpoint_size;
2031 return tdep->arm_breakpoint;
2032 }
2033 }
2034
2035 /* Extract from an array REGBUF containing the (raw) register state a
2036 function return value of type TYPE, and copy that, in virtual
2037 format, into VALBUF. */
2038
2039 static void
2040 arm_extract_return_value (struct type *type, struct regcache *regs,
2041 gdb_byte *valbuf)
2042 {
2043 if (TYPE_CODE_FLT == TYPE_CODE (type))
2044 {
2045 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2046 {
2047 case ARM_FLOAT_FPA:
2048 {
2049 /* The value is in register F0 in internal format. We need to
2050 extract the raw value and then convert it to the desired
2051 internal type. */
2052 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2053
2054 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2055 convert_from_extended (floatformat_from_type (type), tmpbuf,
2056 valbuf);
2057 }
2058 break;
2059
2060 case ARM_FLOAT_SOFT_FPA:
2061 case ARM_FLOAT_SOFT_VFP:
2062 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2063 if (TYPE_LENGTH (type) > 4)
2064 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2065 valbuf + INT_REGISTER_SIZE);
2066 break;
2067
2068 default:
2069 internal_error
2070 (__FILE__, __LINE__,
2071 _("arm_extract_return_value: Floating point model not supported"));
2072 break;
2073 }
2074 }
2075 else if (TYPE_CODE (type) == TYPE_CODE_INT
2076 || TYPE_CODE (type) == TYPE_CODE_CHAR
2077 || TYPE_CODE (type) == TYPE_CODE_BOOL
2078 || TYPE_CODE (type) == TYPE_CODE_PTR
2079 || TYPE_CODE (type) == TYPE_CODE_REF
2080 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2081 {
2082 /* If the the type is a plain integer, then the access is
2083 straight-forward. Otherwise we have to play around a bit more. */
2084 int len = TYPE_LENGTH (type);
2085 int regno = ARM_A1_REGNUM;
2086 ULONGEST tmp;
2087
2088 while (len > 0)
2089 {
2090 /* By using store_unsigned_integer we avoid having to do
2091 anything special for small big-endian values. */
2092 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2093 store_unsigned_integer (valbuf,
2094 (len > INT_REGISTER_SIZE
2095 ? INT_REGISTER_SIZE : len),
2096 tmp);
2097 len -= INT_REGISTER_SIZE;
2098 valbuf += INT_REGISTER_SIZE;
2099 }
2100 }
2101 else
2102 {
2103 /* For a structure or union the behaviour is as if the value had
2104 been stored to word-aligned memory and then loaded into
2105 registers with 32-bit load instruction(s). */
2106 int len = TYPE_LENGTH (type);
2107 int regno = ARM_A1_REGNUM;
2108 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2109
2110 while (len > 0)
2111 {
2112 regcache_cooked_read (regs, regno++, tmpbuf);
2113 memcpy (valbuf, tmpbuf,
2114 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2115 len -= INT_REGISTER_SIZE;
2116 valbuf += INT_REGISTER_SIZE;
2117 }
2118 }
2119 }
2120
2121
2122 /* Will a function return an aggregate type in memory or in a
2123 register? Return 0 if an aggregate type can be returned in a
2124 register, 1 if it must be returned in memory. */
2125
2126 static int
2127 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2128 {
2129 int nRc;
2130 enum type_code code;
2131
2132 CHECK_TYPEDEF (type);
2133
2134 /* In the ARM ABI, "integer" like aggregate types are returned in
2135 registers. For an aggregate type to be integer like, its size
2136 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2137 offset of each addressable subfield must be zero. Note that bit
2138 fields are not addressable, and all addressable subfields of
2139 unions always start at offset zero.
2140
2141 This function is based on the behaviour of GCC 2.95.1.
2142 See: gcc/arm.c: arm_return_in_memory() for details.
2143
2144 Note: All versions of GCC before GCC 2.95.2 do not set up the
2145 parameters correctly for a function returning the following
2146 structure: struct { float f;}; This should be returned in memory,
2147 not a register. Richard Earnshaw sent me a patch, but I do not
2148 know of any way to detect if a function like the above has been
2149 compiled with the correct calling convention. */
2150
2151 /* All aggregate types that won't fit in a register must be returned
2152 in memory. */
2153 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
2154 {
2155 return 1;
2156 }
2157
2158 /* The AAPCS says all aggregates not larger than a word are returned
2159 in a register. */
2160 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2161 return 0;
2162
2163 /* The only aggregate types that can be returned in a register are
2164 structs and unions. Arrays must be returned in memory. */
2165 code = TYPE_CODE (type);
2166 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2167 {
2168 return 1;
2169 }
2170
2171 /* Assume all other aggregate types can be returned in a register.
2172 Run a check for structures, unions and arrays. */
2173 nRc = 0;
2174
2175 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2176 {
2177 int i;
2178 /* Need to check if this struct/union is "integer" like. For
2179 this to be true, its size must be less than or equal to
2180 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2181 subfield must be zero. Note that bit fields are not
2182 addressable, and unions always start at offset zero. If any
2183 of the subfields is a floating point type, the struct/union
2184 cannot be an integer type. */
2185
2186 /* For each field in the object, check:
2187 1) Is it FP? --> yes, nRc = 1;
2188 2) Is it addressable (bitpos != 0) and
2189 not packed (bitsize == 0)?
2190 --> yes, nRc = 1
2191 */
2192
2193 for (i = 0; i < TYPE_NFIELDS (type); i++)
2194 {
2195 enum type_code field_type_code;
2196 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2197
2198 /* Is it a floating point type field? */
2199 if (field_type_code == TYPE_CODE_FLT)
2200 {
2201 nRc = 1;
2202 break;
2203 }
2204
2205 /* If bitpos != 0, then we have to care about it. */
2206 if (TYPE_FIELD_BITPOS (type, i) != 0)
2207 {
2208 /* Bitfields are not addressable. If the field bitsize is
2209 zero, then the field is not packed. Hence it cannot be
2210 a bitfield or any other packed type. */
2211 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2212 {
2213 nRc = 1;
2214 break;
2215 }
2216 }
2217 }
2218 }
2219
2220 return nRc;
2221 }
2222
2223 /* Write into appropriate registers a function return value of type
2224 TYPE, given in virtual format. */
2225
2226 static void
2227 arm_store_return_value (struct type *type, struct regcache *regs,
2228 const gdb_byte *valbuf)
2229 {
2230 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2231 {
2232 char buf[MAX_REGISTER_SIZE];
2233
2234 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2235 {
2236 case ARM_FLOAT_FPA:
2237
2238 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2239 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2240 break;
2241
2242 case ARM_FLOAT_SOFT_FPA:
2243 case ARM_FLOAT_SOFT_VFP:
2244 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2245 if (TYPE_LENGTH (type) > 4)
2246 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2247 valbuf + INT_REGISTER_SIZE);
2248 break;
2249
2250 default:
2251 internal_error
2252 (__FILE__, __LINE__,
2253 _("arm_store_return_value: Floating point model not supported"));
2254 break;
2255 }
2256 }
2257 else if (TYPE_CODE (type) == TYPE_CODE_INT
2258 || TYPE_CODE (type) == TYPE_CODE_CHAR
2259 || TYPE_CODE (type) == TYPE_CODE_BOOL
2260 || TYPE_CODE (type) == TYPE_CODE_PTR
2261 || TYPE_CODE (type) == TYPE_CODE_REF
2262 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2263 {
2264 if (TYPE_LENGTH (type) <= 4)
2265 {
2266 /* Values of one word or less are zero/sign-extended and
2267 returned in r0. */
2268 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2269 LONGEST val = unpack_long (type, valbuf);
2270
2271 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2272 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2273 }
2274 else
2275 {
2276 /* Integral values greater than one word are stored in consecutive
2277 registers starting with r0. This will always be a multiple of
2278 the regiser size. */
2279 int len = TYPE_LENGTH (type);
2280 int regno = ARM_A1_REGNUM;
2281
2282 while (len > 0)
2283 {
2284 regcache_cooked_write (regs, regno++, valbuf);
2285 len -= INT_REGISTER_SIZE;
2286 valbuf += INT_REGISTER_SIZE;
2287 }
2288 }
2289 }
2290 else
2291 {
2292 /* For a structure or union the behaviour is as if the value had
2293 been stored to word-aligned memory and then loaded into
2294 registers with 32-bit load instruction(s). */
2295 int len = TYPE_LENGTH (type);
2296 int regno = ARM_A1_REGNUM;
2297 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2298
2299 while (len > 0)
2300 {
2301 memcpy (tmpbuf, valbuf,
2302 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2303 regcache_cooked_write (regs, regno++, tmpbuf);
2304 len -= INT_REGISTER_SIZE;
2305 valbuf += INT_REGISTER_SIZE;
2306 }
2307 }
2308 }
2309
2310
2311 /* Handle function return values. */
2312
2313 static enum return_value_convention
2314 arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
2315 struct regcache *regcache, gdb_byte *readbuf,
2316 const gdb_byte *writebuf)
2317 {
2318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2319
2320 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2321 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2322 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2323 {
2324 if (tdep->struct_return == pcc_struct_return
2325 || arm_return_in_memory (gdbarch, valtype))
2326 return RETURN_VALUE_STRUCT_CONVENTION;
2327 }
2328
2329 if (writebuf)
2330 arm_store_return_value (valtype, regcache, writebuf);
2331
2332 if (readbuf)
2333 arm_extract_return_value (valtype, regcache, readbuf);
2334
2335 return RETURN_VALUE_REGISTER_CONVENTION;
2336 }
2337
2338
2339 static int
2340 arm_get_longjmp_target (CORE_ADDR *pc)
2341 {
2342 CORE_ADDR jb_addr;
2343 char buf[INT_REGISTER_SIZE];
2344 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2345
2346 jb_addr = read_register (ARM_A1_REGNUM);
2347
2348 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2349 INT_REGISTER_SIZE))
2350 return 0;
2351
2352 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2353 return 1;
2354 }
2355
2356 /* Return non-zero if the PC is inside a thumb call thunk. */
2357
2358 int
2359 arm_in_call_stub (CORE_ADDR pc, char *name)
2360 {
2361 CORE_ADDR start_addr;
2362
2363 /* Find the starting address of the function containing the PC. If
2364 the caller didn't give us a name, look it up at the same time. */
2365 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2366 &start_addr, NULL))
2367 return 0;
2368
2369 return strncmp (name, "_call_via_r", 11) == 0;
2370 }
2371
2372 /* If PC is in a Thumb call or return stub, return the address of the
2373 target PC, which is in a register. The thunk functions are called
2374 _called_via_xx, where x is the register name. The possible names
2375 are r0-r9, sl, fp, ip, sp, and lr. */
2376
2377 CORE_ADDR
2378 arm_skip_stub (CORE_ADDR pc)
2379 {
2380 char *name;
2381 CORE_ADDR start_addr;
2382
2383 /* Find the starting address and name of the function containing the PC. */
2384 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2385 return 0;
2386
2387 /* Call thunks always start with "_call_via_". */
2388 if (strncmp (name, "_call_via_", 10) == 0)
2389 {
2390 /* Use the name suffix to determine which register contains the
2391 target PC. */
2392 static char *table[15] =
2393 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2394 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2395 };
2396 int regno;
2397
2398 for (regno = 0; regno <= 14; regno++)
2399 if (strcmp (&name[10], table[regno]) == 0)
2400 return read_register (regno);
2401 }
2402
2403 return 0; /* not a stub */
2404 }
2405
2406 static void
2407 set_arm_command (char *args, int from_tty)
2408 {
2409 printf_unfiltered (_("\
2410 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2411 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2412 }
2413
2414 static void
2415 show_arm_command (char *args, int from_tty)
2416 {
2417 cmd_show_list (showarmcmdlist, from_tty, "");
2418 }
2419
2420 static void
2421 arm_update_current_architecture (void)
2422 {
2423 struct gdbarch_info info;
2424
2425 /* If the current architecture is not ARM, we have nothing to do. */
2426 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2427 return;
2428
2429 /* Update the architecture. */
2430 gdbarch_info_init (&info);
2431
2432 if (!gdbarch_update_p (info))
2433 internal_error (__FILE__, __LINE__, "could not update architecture");
2434 }
2435
2436 static void
2437 set_fp_model_sfunc (char *args, int from_tty,
2438 struct cmd_list_element *c)
2439 {
2440 enum arm_float_model fp_model;
2441
2442 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2443 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2444 {
2445 arm_fp_model = fp_model;
2446 break;
2447 }
2448
2449 if (fp_model == ARM_FLOAT_LAST)
2450 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2451 current_fp_model);
2452
2453 arm_update_current_architecture ();
2454 }
2455
2456 static void
2457 show_fp_model (struct ui_file *file, int from_tty,
2458 struct cmd_list_element *c, const char *value)
2459 {
2460 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2461
2462 if (arm_fp_model == ARM_FLOAT_AUTO
2463 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2464 fprintf_filtered (file, _("\
2465 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2466 fp_model_strings[tdep->fp_model]);
2467 else
2468 fprintf_filtered (file, _("\
2469 The current ARM floating point model is \"%s\".\n"),
2470 fp_model_strings[arm_fp_model]);
2471 }
2472
2473 static void
2474 arm_set_abi (char *args, int from_tty,
2475 struct cmd_list_element *c)
2476 {
2477 enum arm_abi_kind arm_abi;
2478
2479 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2480 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2481 {
2482 arm_abi_global = arm_abi;
2483 break;
2484 }
2485
2486 if (arm_abi == ARM_ABI_LAST)
2487 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2488 arm_abi_string);
2489
2490 arm_update_current_architecture ();
2491 }
2492
2493 static void
2494 arm_show_abi (struct ui_file *file, int from_tty,
2495 struct cmd_list_element *c, const char *value)
2496 {
2497 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2498
2499 if (arm_abi_global == ARM_ABI_AUTO
2500 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2501 fprintf_filtered (file, _("\
2502 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2503 arm_abi_strings[tdep->arm_abi]);
2504 else
2505 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2506 arm_abi_string);
2507 }
2508
2509 /* If the user changes the register disassembly style used for info
2510 register and other commands, we have to also switch the style used
2511 in opcodes for disassembly output. This function is run in the "set
2512 arm disassembly" command, and does that. */
2513
2514 static void
2515 set_disassembly_style_sfunc (char *args, int from_tty,
2516 struct cmd_list_element *c)
2517 {
2518 set_disassembly_style ();
2519 }
2520 \f
2521 /* Return the ARM register name corresponding to register I. */
2522 static const char *
2523 arm_register_name (int i)
2524 {
2525 if (i >= ARRAY_SIZE (arm_register_names))
2526 /* These registers are only supported on targets which supply
2527 an XML description. */
2528 return "";
2529
2530 return arm_register_names[i];
2531 }
2532
2533 static void
2534 set_disassembly_style (void)
2535 {
2536 int current;
2537
2538 /* Find the style that the user wants. */
2539 for (current = 0; current < num_disassembly_options; current++)
2540 if (disassembly_style == valid_disassembly_styles[current])
2541 break;
2542 gdb_assert (current < num_disassembly_options);
2543
2544 /* Synchronize the disassembler. */
2545 set_arm_regname_option (current);
2546 }
2547
2548 /* Test whether the coff symbol specific value corresponds to a Thumb
2549 function. */
2550
2551 static int
2552 coff_sym_is_thumb (int val)
2553 {
2554 return (val == C_THUMBEXT ||
2555 val == C_THUMBSTAT ||
2556 val == C_THUMBEXTFUNC ||
2557 val == C_THUMBSTATFUNC ||
2558 val == C_THUMBLABEL);
2559 }
2560
2561 /* arm_coff_make_msymbol_special()
2562 arm_elf_make_msymbol_special()
2563
2564 These functions test whether the COFF or ELF symbol corresponds to
2565 an address in thumb code, and set a "special" bit in a minimal
2566 symbol to indicate that it does. */
2567
2568 static void
2569 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2570 {
2571 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2572 STT_ARM_TFUNC). */
2573 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2574 == STT_LOPROC)
2575 MSYMBOL_SET_SPECIAL (msym);
2576 }
2577
2578 static void
2579 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2580 {
2581 if (coff_sym_is_thumb (val))
2582 MSYMBOL_SET_SPECIAL (msym);
2583 }
2584
2585 static void
2586 arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2587 {
2588 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2589
2590 /* If necessary, set the T bit. */
2591 if (arm_apcs_32)
2592 {
2593 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2594 if (arm_pc_is_thumb (pc))
2595 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2596 else
2597 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2598 }
2599 }
2600
2601 static struct value *
2602 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2603 {
2604 const int *reg_p = baton;
2605 return value_of_register (*reg_p, frame);
2606 }
2607 \f
2608 static enum gdb_osabi
2609 arm_elf_osabi_sniffer (bfd *abfd)
2610 {
2611 unsigned int elfosabi;
2612 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2613
2614 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2615
2616 if (elfosabi == ELFOSABI_ARM)
2617 /* GNU tools use this value. Check note sections in this case,
2618 as well. */
2619 bfd_map_over_sections (abfd,
2620 generic_elf_osabi_sniff_abi_tag_sections,
2621 &osabi);
2622
2623 /* Anything else will be handled by the generic ELF sniffer. */
2624 return osabi;
2625 }
2626
2627 \f
2628 /* Initialize the current architecture based on INFO. If possible,
2629 re-use an architecture from ARCHES, which is a list of
2630 architectures already created during this debugging session.
2631
2632 Called e.g. at program startup, when reading a core file, and when
2633 reading a binary file. */
2634
2635 static struct gdbarch *
2636 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2637 {
2638 struct gdbarch_tdep *tdep;
2639 struct gdbarch *gdbarch;
2640 struct gdbarch_list *best_arch;
2641 enum arm_abi_kind arm_abi = arm_abi_global;
2642 enum arm_float_model fp_model = arm_fp_model;
2643 struct tdesc_arch_data *tdesc_data = NULL;
2644 int i;
2645 int have_fpa_registers = 1;
2646
2647 /* Check any target description for validity. */
2648 if (tdesc_has_registers (info.target_desc))
2649 {
2650 /* For most registers we require GDB's default names; but also allow
2651 the numeric names for sp / lr / pc, as a convenience. */
2652 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2653 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2654 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2655
2656 const struct tdesc_feature *feature;
2657 int i, valid_p;
2658
2659 feature = tdesc_find_feature (info.target_desc,
2660 "org.gnu.gdb.arm.core");
2661 if (feature == NULL)
2662 return NULL;
2663
2664 tdesc_data = tdesc_data_alloc ();
2665
2666 valid_p = 1;
2667 for (i = 0; i < ARM_SP_REGNUM; i++)
2668 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2669 arm_register_names[i]);
2670 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2671 ARM_SP_REGNUM,
2672 arm_sp_names);
2673 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2674 ARM_LR_REGNUM,
2675 arm_lr_names);
2676 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2677 ARM_PC_REGNUM,
2678 arm_pc_names);
2679 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2680 ARM_PS_REGNUM, "cpsr");
2681
2682 if (!valid_p)
2683 {
2684 tdesc_data_cleanup (tdesc_data);
2685 return NULL;
2686 }
2687
2688 feature = tdesc_find_feature (info.target_desc,
2689 "org.gnu.gdb.arm.fpa");
2690 if (feature != NULL)
2691 {
2692 valid_p = 1;
2693 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2694 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2695 arm_register_names[i]);
2696 if (!valid_p)
2697 {
2698 tdesc_data_cleanup (tdesc_data);
2699 return NULL;
2700 }
2701 }
2702 else
2703 have_fpa_registers = 0;
2704
2705 feature = tdesc_find_feature (info.target_desc,
2706 "org.gnu.gdb.xscale.iwmmxt");
2707 if (feature != NULL)
2708 {
2709 static const char *const iwmmxt_names[] = {
2710 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2711 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2712 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2713 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2714 };
2715
2716 valid_p = 1;
2717 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2718 valid_p
2719 &= tdesc_numbered_register (feature, tdesc_data, i,
2720 iwmmxt_names[i - ARM_WR0_REGNUM]);
2721
2722 /* Check for the control registers, but do not fail if they
2723 are missing. */
2724 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2725 tdesc_numbered_register (feature, tdesc_data, i,
2726 iwmmxt_names[i - ARM_WR0_REGNUM]);
2727
2728 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2729 valid_p
2730 &= tdesc_numbered_register (feature, tdesc_data, i,
2731 iwmmxt_names[i - ARM_WR0_REGNUM]);
2732
2733 if (!valid_p)
2734 {
2735 tdesc_data_cleanup (tdesc_data);
2736 return NULL;
2737 }
2738 }
2739 }
2740
2741 /* If we have an object to base this architecture on, try to determine
2742 its ABI. */
2743
2744 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
2745 {
2746 int ei_osabi, e_flags;
2747
2748 switch (bfd_get_flavour (info.abfd))
2749 {
2750 case bfd_target_aout_flavour:
2751 /* Assume it's an old APCS-style ABI. */
2752 arm_abi = ARM_ABI_APCS;
2753 break;
2754
2755 case bfd_target_coff_flavour:
2756 /* Assume it's an old APCS-style ABI. */
2757 /* XXX WinCE? */
2758 arm_abi = ARM_ABI_APCS;
2759 break;
2760
2761 case bfd_target_elf_flavour:
2762 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2763 e_flags = elf_elfheader (info.abfd)->e_flags;
2764
2765 if (ei_osabi == ELFOSABI_ARM)
2766 {
2767 /* GNU tools used to use this value, but do not for EABI
2768 objects. There's nowhere to tag an EABI version
2769 anyway, so assume APCS. */
2770 arm_abi = ARM_ABI_APCS;
2771 }
2772 else if (ei_osabi == ELFOSABI_NONE)
2773 {
2774 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2775
2776 switch (eabi_ver)
2777 {
2778 case EF_ARM_EABI_UNKNOWN:
2779 /* Assume GNU tools. */
2780 arm_abi = ARM_ABI_APCS;
2781 break;
2782
2783 case EF_ARM_EABI_VER4:
2784 case EF_ARM_EABI_VER5:
2785 arm_abi = ARM_ABI_AAPCS;
2786 /* EABI binaries default to VFP float ordering. */
2787 if (fp_model == ARM_FLOAT_AUTO)
2788 fp_model = ARM_FLOAT_SOFT_VFP;
2789 break;
2790
2791 default:
2792 /* Leave it as "auto". */
2793 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2794 break;
2795 }
2796 }
2797
2798 if (fp_model == ARM_FLOAT_AUTO)
2799 {
2800 int e_flags = elf_elfheader (info.abfd)->e_flags;
2801
2802 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2803 {
2804 case 0:
2805 /* Leave it as "auto". Strictly speaking this case
2806 means FPA, but almost nobody uses that now, and
2807 many toolchains fail to set the appropriate bits
2808 for the floating-point model they use. */
2809 break;
2810 case EF_ARM_SOFT_FLOAT:
2811 fp_model = ARM_FLOAT_SOFT_FPA;
2812 break;
2813 case EF_ARM_VFP_FLOAT:
2814 fp_model = ARM_FLOAT_VFP;
2815 break;
2816 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2817 fp_model = ARM_FLOAT_SOFT_VFP;
2818 break;
2819 }
2820 }
2821 break;
2822
2823 default:
2824 /* Leave it as "auto". */
2825 break;
2826 }
2827 }
2828
2829 /* Now that we have inferred any architecture settings that we
2830 can, try to inherit from the last ARM ABI. */
2831 if (arches != NULL)
2832 {
2833 if (arm_abi == ARM_ABI_AUTO)
2834 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2835
2836 if (fp_model == ARM_FLOAT_AUTO)
2837 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2838 }
2839 else
2840 {
2841 /* There was no prior ARM architecture; fill in default values. */
2842
2843 if (arm_abi == ARM_ABI_AUTO)
2844 arm_abi = ARM_ABI_APCS;
2845
2846 /* We used to default to FPA for generic ARM, but almost nobody
2847 uses that now, and we now provide a way for the user to force
2848 the model. So default to the most useful variant. */
2849 if (fp_model == ARM_FLOAT_AUTO)
2850 fp_model = ARM_FLOAT_SOFT_FPA;
2851 }
2852
2853 /* If there is already a candidate, use it. */
2854 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2855 best_arch != NULL;
2856 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2857 {
2858 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2859 continue;
2860
2861 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2862 continue;
2863
2864 /* Found a match. */
2865 break;
2866 }
2867
2868 if (best_arch != NULL)
2869 {
2870 if (tdesc_data != NULL)
2871 tdesc_data_cleanup (tdesc_data);
2872 return best_arch->gdbarch;
2873 }
2874
2875 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2876 gdbarch = gdbarch_alloc (&info, tdep);
2877
2878 /* Record additional information about the architecture we are defining.
2879 These are gdbarch discriminators, like the OSABI. */
2880 tdep->arm_abi = arm_abi;
2881 tdep->fp_model = fp_model;
2882 tdep->have_fpa_registers = have_fpa_registers;
2883
2884 /* Breakpoints. */
2885 switch (info.byte_order)
2886 {
2887 case BFD_ENDIAN_BIG:
2888 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2889 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2890 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2891 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2892
2893 break;
2894
2895 case BFD_ENDIAN_LITTLE:
2896 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2897 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2898 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2899 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2900
2901 break;
2902
2903 default:
2904 internal_error (__FILE__, __LINE__,
2905 _("arm_gdbarch_init: bad byte order for float format"));
2906 }
2907
2908 /* On ARM targets char defaults to unsigned. */
2909 set_gdbarch_char_signed (gdbarch, 0);
2910
2911 /* This should be low enough for everything. */
2912 tdep->lowest_pc = 0x20;
2913 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2914
2915 /* The default, for both APCS and AAPCS, is to return small
2916 structures in registers. */
2917 tdep->struct_return = reg_struct_return;
2918
2919 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2920 set_gdbarch_frame_align (gdbarch, arm_frame_align);
2921
2922 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2923
2924 /* Frame handling. */
2925 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2926 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2927 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2928
2929 frame_base_set_default (gdbarch, &arm_normal_base);
2930
2931 /* Address manipulation. */
2932 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2933 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2934
2935 /* Advance PC across function entry code. */
2936 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2937
2938 /* Skip trampolines. */
2939 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
2940
2941 /* The stack grows downward. */
2942 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2943
2944 /* Breakpoint manipulation. */
2945 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2946
2947 /* Information about registers, etc. */
2948 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2949 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2950 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2951 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
2952 set_gdbarch_register_type (gdbarch, arm_register_type);
2953
2954 /* This "info float" is FPA-specific. Use the generic version if we
2955 do not have FPA. */
2956 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
2957 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2958
2959 /* Internal <-> external register number maps. */
2960 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2961 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2962 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2963
2964 /* Integer registers are 4 bytes. */
2965 set_gdbarch_deprecated_register_size (gdbarch, 4);
2966 set_gdbarch_register_name (gdbarch, arm_register_name);
2967
2968 /* Returning results. */
2969 set_gdbarch_return_value (gdbarch, arm_return_value);
2970
2971 /* Disassembly. */
2972 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2973
2974 /* Minsymbol frobbing. */
2975 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2976 set_gdbarch_coff_make_msymbol_special (gdbarch,
2977 arm_coff_make_msymbol_special);
2978
2979 /* Virtual tables. */
2980 set_gdbarch_vbit_in_delta (gdbarch, 1);
2981
2982 /* Hook in the ABI-specific overrides, if they have been registered. */
2983 gdbarch_init_osabi (info, gdbarch);
2984
2985 /* Add some default predicates. */
2986 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
2987 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2988 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2989
2990 /* Now we have tuned the configuration, set a few final things,
2991 based on what the OS ABI has told us. */
2992
2993 if (tdep->jb_pc >= 0)
2994 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2995
2996 /* Floating point sizes and format. */
2997 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2998 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
2999 {
3000 set_gdbarch_double_format
3001 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3002 set_gdbarch_long_double_format
3003 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3004 }
3005 else
3006 {
3007 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3008 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
3009 }
3010
3011 if (tdesc_data)
3012 tdesc_use_registers (gdbarch, tdesc_data);
3013
3014 /* Add standard register aliases. We add aliases even for those
3015 nanes which are used by the current architecture - it's simpler,
3016 and does no harm, since nothing ever lists user registers. */
3017 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3018 user_reg_add (gdbarch, arm_register_aliases[i].name,
3019 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3020
3021 return gdbarch;
3022 }
3023
3024 static void
3025 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3026 {
3027 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3028
3029 if (tdep == NULL)
3030 return;
3031
3032 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
3033 (unsigned long) tdep->lowest_pc);
3034 }
3035
3036 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3037
3038 void
3039 _initialize_arm_tdep (void)
3040 {
3041 struct ui_file *stb;
3042 long length;
3043 struct cmd_list_element *new_set, *new_show;
3044 const char *setname;
3045 const char *setdesc;
3046 const char *const *regnames;
3047 int numregs, i, j;
3048 static char *helptext;
3049 char regdesc[1024], *rdptr = regdesc;
3050 size_t rest = sizeof (regdesc);
3051
3052 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3053
3054 /* Register an ELF OS ABI sniffer for ARM binaries. */
3055 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3056 bfd_target_elf_flavour,
3057 arm_elf_osabi_sniffer);
3058
3059 /* Get the number of possible sets of register names defined in opcodes. */
3060 num_disassembly_options = get_arm_regname_num_options ();
3061
3062 /* Add root prefix command for all "set arm"/"show arm" commands. */
3063 add_prefix_cmd ("arm", no_class, set_arm_command,
3064 _("Various ARM-specific commands."),
3065 &setarmcmdlist, "set arm ", 0, &setlist);
3066
3067 add_prefix_cmd ("arm", no_class, show_arm_command,
3068 _("Various ARM-specific commands."),
3069 &showarmcmdlist, "show arm ", 0, &showlist);
3070
3071 /* Sync the opcode insn printer with our register viewer. */
3072 parse_arm_disassembler_option ("reg-names-std");
3073
3074 /* Initialize the array that will be passed to
3075 add_setshow_enum_cmd(). */
3076 valid_disassembly_styles
3077 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3078 for (i = 0; i < num_disassembly_options; i++)
3079 {
3080 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3081 valid_disassembly_styles[i] = setname;
3082 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3083 rdptr += length;
3084 rest -= length;
3085 /* When we find the default names, tell the disassembler to use
3086 them. */
3087 if (!strcmp (setname, "std"))
3088 {
3089 disassembly_style = setname;
3090 set_arm_regname_option (i);
3091 }
3092 }
3093 /* Mark the end of valid options. */
3094 valid_disassembly_styles[num_disassembly_options] = NULL;
3095
3096 /* Create the help text. */
3097 stb = mem_fileopen ();
3098 fprintf_unfiltered (stb, "%s%s%s",
3099 _("The valid values are:\n"),
3100 regdesc,
3101 _("The default is \"std\"."));
3102 helptext = ui_file_xstrdup (stb, &length);
3103 ui_file_delete (stb);
3104
3105 add_setshow_enum_cmd("disassembler", no_class,
3106 valid_disassembly_styles, &disassembly_style,
3107 _("Set the disassembly style."),
3108 _("Show the disassembly style."),
3109 helptext,
3110 set_disassembly_style_sfunc,
3111 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
3112 &setarmcmdlist, &showarmcmdlist);
3113
3114 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3115 _("Set usage of ARM 32-bit mode."),
3116 _("Show usage of ARM 32-bit mode."),
3117 _("When off, a 26-bit PC will be used."),
3118 NULL,
3119 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
3120 &setarmcmdlist, &showarmcmdlist);
3121
3122 /* Add a command to allow the user to force the FPU model. */
3123 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3124 _("Set the floating point type."),
3125 _("Show the floating point type."),
3126 _("auto - Determine the FP typefrom the OS-ABI.\n\
3127 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3128 fpa - FPA co-processor (GCC compiled).\n\
3129 softvfp - Software FP with pure-endian doubles.\n\
3130 vfp - VFP co-processor."),
3131 set_fp_model_sfunc, show_fp_model,
3132 &setarmcmdlist, &showarmcmdlist);
3133
3134 /* Add a command to allow the user to force the ABI. */
3135 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3136 _("Set the ABI."),
3137 _("Show the ABI."),
3138 NULL, arm_set_abi, arm_show_abi,
3139 &setarmcmdlist, &showarmcmdlist);
3140
3141 /* Debugging flag. */
3142 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3143 _("Set ARM debugging."),
3144 _("Show ARM debugging."),
3145 _("When on, arm-specific debugging is enabled."),
3146 NULL,
3147 NULL, /* FIXME: i18n: "ARM debugging is %s. */
3148 &setdebuglist, &showdebuglist);
3149 }
This page took 0.096248 seconds and 4 git commands to generate.