*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <ctype.h> /* XXX for isupper () */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include "gdb_string.h"
29 #include "dis-asm.h" /* For register styles. */
30 #include "regcache.h"
31 #include "doublest.h"
32 #include "value.h"
33 #include "arch-utils.h"
34 #include "osabi.h"
35 #include "frame-unwind.h"
36 #include "frame-base.h"
37 #include "trad-frame.h"
38 #include "objfiles.h"
39 #include "dwarf2-frame.h"
40 #include "gdbtypes.h"
41 #include "prologue-value.h"
42 #include "target-descriptions.h"
43 #include "user-regs.h"
44
45 #include "arm-tdep.h"
46 #include "gdb/sim-arm.h"
47
48 #include "elf-bfd.h"
49 #include "coff/internal.h"
50 #include "elf/arm.h"
51
52 #include "gdb_assert.h"
53
54 static int arm_debug;
55
56 /* Macros for setting and testing a bit in a minimal symbol that marks
57 it as Thumb function. The MSB of the minimal symbol's "info" field
58 is used for this purpose.
59
60 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
61 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
62
63 #define MSYMBOL_SET_SPECIAL(msym) \
64 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
65 | 0x80000000)
66
67 #define MSYMBOL_IS_SPECIAL(msym) \
68 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
69
70 /* The list of available "set arm ..." and "show arm ..." commands. */
71 static struct cmd_list_element *setarmcmdlist = NULL;
72 static struct cmd_list_element *showarmcmdlist = NULL;
73
74 /* The type of floating-point to use. Keep this in sync with enum
75 arm_float_model, and the help string in _initialize_arm_tdep. */
76 static const char *fp_model_strings[] =
77 {
78 "auto",
79 "softfpa",
80 "fpa",
81 "softvfp",
82 "vfp",
83 NULL
84 };
85
86 /* A variable that can be configured by the user. */
87 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
88 static const char *current_fp_model = "auto";
89
90 /* The ABI to use. Keep this in sync with arm_abi_kind. */
91 static const char *arm_abi_strings[] =
92 {
93 "auto",
94 "APCS",
95 "AAPCS",
96 NULL
97 };
98
99 /* A variable that can be configured by the user. */
100 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
101 static const char *arm_abi_string = "auto";
102
103 /* Number of different reg name sets (options). */
104 static int num_disassembly_options;
105
106 /* The standard register names, and all the valid aliases for them. */
107 static const struct
108 {
109 const char *name;
110 int regnum;
111 } arm_register_aliases[] = {
112 /* Basic register numbers. */
113 { "r0", 0 },
114 { "r1", 1 },
115 { "r2", 2 },
116 { "r3", 3 },
117 { "r4", 4 },
118 { "r5", 5 },
119 { "r6", 6 },
120 { "r7", 7 },
121 { "r8", 8 },
122 { "r9", 9 },
123 { "r10", 10 },
124 { "r11", 11 },
125 { "r12", 12 },
126 { "r13", 13 },
127 { "r14", 14 },
128 { "r15", 15 },
129 /* Synonyms (argument and variable registers). */
130 { "a1", 0 },
131 { "a2", 1 },
132 { "a3", 2 },
133 { "a4", 3 },
134 { "v1", 4 },
135 { "v2", 5 },
136 { "v3", 6 },
137 { "v4", 7 },
138 { "v5", 8 },
139 { "v6", 9 },
140 { "v7", 10 },
141 { "v8", 11 },
142 /* Other platform-specific names for r9. */
143 { "sb", 9 },
144 { "tr", 9 },
145 /* Special names. */
146 { "ip", 12 },
147 { "sp", 13 },
148 { "lr", 14 },
149 { "pc", 15 },
150 /* Names used by GCC (not listed in the ARM EABI). */
151 { "sl", 10 },
152 { "fp", 11 },
153 /* A special name from the older ATPCS. */
154 { "wr", 7 },
155 };
156
157 static const char *const arm_register_names[] =
158 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
159 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
160 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
161 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
162 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
163 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
164 "fps", "cpsr" }; /* 24 25 */
165
166 /* Valid register name styles. */
167 static const char **valid_disassembly_styles;
168
169 /* Disassembly style to use. Default to "std" register names. */
170 static const char *disassembly_style;
171
172 /* This is used to keep the bfd arch_info in sync with the disassembly
173 style. */
174 static void set_disassembly_style_sfunc(char *, int,
175 struct cmd_list_element *);
176 static void set_disassembly_style (void);
177
178 static void convert_from_extended (const struct floatformat *, const void *,
179 void *);
180 static void convert_to_extended (const struct floatformat *, void *,
181 const void *);
182
183 struct arm_prologue_cache
184 {
185 /* The stack pointer at the time this frame was created; i.e. the
186 caller's stack pointer when this function was called. It is used
187 to identify this frame. */
188 CORE_ADDR prev_sp;
189
190 /* The frame base for this frame is just prev_sp + frame offset -
191 frame size. FRAMESIZE is the size of this stack frame, and
192 FRAMEOFFSET if the initial offset from the stack pointer (this
193 frame's stack pointer, not PREV_SP) to the frame base. */
194
195 int framesize;
196 int frameoffset;
197
198 /* The register used to hold the frame pointer for this frame. */
199 int framereg;
200
201 /* Saved register offsets. */
202 struct trad_frame_saved_reg *saved_regs;
203 };
204
205 /* Addresses for calling Thumb functions have the bit 0 set.
206 Here are some macros to test, set, or clear bit 0 of addresses. */
207 #define IS_THUMB_ADDR(addr) ((addr) & 1)
208 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
209 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
210
211 /* Set to true if the 32-bit mode is in use. */
212
213 int arm_apcs_32 = 1;
214
215 /* Determine if the program counter specified in MEMADDR is in a Thumb
216 function. */
217
218 static int
219 arm_pc_is_thumb (CORE_ADDR memaddr)
220 {
221 struct minimal_symbol *sym;
222
223 /* If bit 0 of the address is set, assume this is a Thumb address. */
224 if (IS_THUMB_ADDR (memaddr))
225 return 1;
226
227 /* Thumb functions have a "special" bit set in minimal symbols. */
228 sym = lookup_minimal_symbol_by_pc (memaddr);
229 if (sym)
230 {
231 return (MSYMBOL_IS_SPECIAL (sym));
232 }
233 else
234 {
235 return 0;
236 }
237 }
238
239 /* Remove useless bits from addresses in a running program. */
240 static CORE_ADDR
241 arm_addr_bits_remove (CORE_ADDR val)
242 {
243 if (arm_apcs_32)
244 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
245 else
246 return (val & 0x03fffffc);
247 }
248
249 /* When reading symbols, we need to zap the low bit of the address,
250 which may be set to 1 for Thumb functions. */
251 static CORE_ADDR
252 arm_smash_text_address (CORE_ADDR val)
253 {
254 return val & ~1;
255 }
256
257 /* Analyze a Thumb prologue, looking for a recognizable stack frame
258 and frame pointer. Scan until we encounter a store that could
259 clobber the stack frame unexpectedly, or an unknown instruction. */
260
261 static CORE_ADDR
262 thumb_analyze_prologue (struct gdbarch *gdbarch,
263 CORE_ADDR start, CORE_ADDR limit,
264 struct arm_prologue_cache *cache)
265 {
266 int i;
267 pv_t regs[16];
268 struct pv_area *stack;
269 struct cleanup *back_to;
270 CORE_ADDR offset;
271
272 for (i = 0; i < 16; i++)
273 regs[i] = pv_register (i, 0);
274 stack = make_pv_area (ARM_SP_REGNUM);
275 back_to = make_cleanup_free_pv_area (stack);
276
277 /* The call instruction saved PC in LR, and the current PC is not
278 interesting. Due to this file's conventions, we want the value
279 of LR at this function's entry, not at the call site, so we do
280 not record the save of the PC - when the ARM prologue analyzer
281 has also been converted to the pv mechanism, we could record the
282 save here and remove the hack in prev_register. */
283 regs[ARM_PC_REGNUM] = pv_unknown ();
284
285 while (start < limit)
286 {
287 unsigned short insn;
288
289 insn = read_memory_unsigned_integer (start, 2);
290
291 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
292 {
293 int regno;
294 int mask;
295 int stop = 0;
296
297 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
298 whether to save LR (R14). */
299 mask = (insn & 0xff) | ((insn & 0x100) << 6);
300
301 /* Calculate offsets of saved R0-R7 and LR. */
302 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
303 if (mask & (1 << regno))
304 {
305 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
306 {
307 stop = 1;
308 break;
309 }
310
311 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
312 -4);
313 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
314 }
315
316 if (stop)
317 break;
318 }
319 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
320 sub sp, #simm */
321 {
322 offset = (insn & 0x7f) << 2; /* get scaled offset */
323 if (insn & 0x80) /* Check for SUB. */
324 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
325 -offset);
326 else
327 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
328 offset);
329 }
330 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
331 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
332 (insn & 0xff) << 2);
333 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
334 {
335 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
336 int src_reg = (insn & 0x78) >> 3;
337 regs[dst_reg] = regs[src_reg];
338 }
339 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
340 {
341 /* Handle stores to the stack. Normally pushes are used,
342 but with GCC -mtpcs-frame, there may be other stores
343 in the prologue to create the frame. */
344 int regno = (insn >> 8) & 0x7;
345 pv_t addr;
346
347 offset = (insn & 0xff) << 2;
348 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
349
350 if (pv_area_store_would_trash (stack, addr))
351 break;
352
353 pv_area_store (stack, addr, 4, regs[regno]);
354 }
355 else
356 {
357 /* We don't know what this instruction is. We're finished
358 scanning. NOTE: Recognizing more safe-to-ignore
359 instructions here will improve support for optimized
360 code. */
361 break;
362 }
363
364 start += 2;
365 }
366
367 if (cache == NULL)
368 {
369 do_cleanups (back_to);
370 return start;
371 }
372
373 /* frameoffset is unused for this unwinder. */
374 cache->frameoffset = 0;
375
376 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
377 {
378 /* Frame pointer is fp. Frame size is constant. */
379 cache->framereg = ARM_FP_REGNUM;
380 cache->framesize = -regs[ARM_FP_REGNUM].k;
381 }
382 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
383 {
384 /* Frame pointer is r7. Frame size is constant. */
385 cache->framereg = THUMB_FP_REGNUM;
386 cache->framesize = -regs[THUMB_FP_REGNUM].k;
387 }
388 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
389 {
390 /* Try the stack pointer... this is a bit desperate. */
391 cache->framereg = ARM_SP_REGNUM;
392 cache->framesize = -regs[ARM_SP_REGNUM].k;
393 }
394 else
395 {
396 /* We're just out of luck. We don't know where the frame is. */
397 cache->framereg = -1;
398 cache->framesize = 0;
399 }
400
401 for (i = 0; i < 16; i++)
402 if (pv_area_find_reg (stack, gdbarch, i, &offset))
403 cache->saved_regs[i].addr = offset;
404
405 do_cleanups (back_to);
406 return start;
407 }
408
409 /* Advance the PC across any function entry prologue instructions to
410 reach some "real" code.
411
412 The APCS (ARM Procedure Call Standard) defines the following
413 prologue:
414
415 mov ip, sp
416 [stmfd sp!, {a1,a2,a3,a4}]
417 stmfd sp!, {...,fp,ip,lr,pc}
418 [stfe f7, [sp, #-12]!]
419 [stfe f6, [sp, #-12]!]
420 [stfe f5, [sp, #-12]!]
421 [stfe f4, [sp, #-12]!]
422 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
423
424 static CORE_ADDR
425 arm_skip_prologue (CORE_ADDR pc)
426 {
427 unsigned long inst;
428 CORE_ADDR skip_pc;
429 CORE_ADDR func_addr, func_end = 0;
430 char *func_name;
431 struct symtab_and_line sal;
432
433 /* If we're in a dummy frame, don't even try to skip the prologue. */
434 if (deprecated_pc_in_call_dummy (pc))
435 return pc;
436
437 /* See what the symbol table says. */
438
439 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
440 {
441 struct symbol *sym;
442
443 /* Found a function. */
444 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
445 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
446 {
447 /* Don't use this trick for assembly source files. */
448 sal = find_pc_line (func_addr, 0);
449 if ((sal.line != 0) && (sal.end < func_end))
450 return sal.end;
451 }
452 }
453
454 /* Can't find the prologue end in the symbol table, try it the hard way
455 by disassembling the instructions. */
456
457 /* Like arm_scan_prologue, stop no later than pc + 64. */
458 if (func_end == 0 || func_end > pc + 64)
459 func_end = pc + 64;
460
461 /* Check if this is Thumb code. */
462 if (arm_pc_is_thumb (pc))
463 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
464
465 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
466 {
467 inst = read_memory_unsigned_integer (skip_pc, 4);
468
469 /* "mov ip, sp" is no longer a required part of the prologue. */
470 if (inst == 0xe1a0c00d) /* mov ip, sp */
471 continue;
472
473 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
474 continue;
475
476 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
477 continue;
478
479 /* Some prologues begin with "str lr, [sp, #-4]!". */
480 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
481 continue;
482
483 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
484 continue;
485
486 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
487 continue;
488
489 /* Any insns after this point may float into the code, if it makes
490 for better instruction scheduling, so we skip them only if we
491 find them, but still consider the function to be frame-ful. */
492
493 /* We may have either one sfmfd instruction here, or several stfe
494 insns, depending on the version of floating point code we
495 support. */
496 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
497 continue;
498
499 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
500 continue;
501
502 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
503 continue;
504
505 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
506 continue;
507
508 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
509 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
510 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
511 continue;
512
513 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
514 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
515 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
516 continue;
517
518 /* Un-recognized instruction; stop scanning. */
519 break;
520 }
521
522 return skip_pc; /* End of prologue */
523 }
524
525 /* *INDENT-OFF* */
526 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
527 This function decodes a Thumb function prologue to determine:
528 1) the size of the stack frame
529 2) which registers are saved on it
530 3) the offsets of saved regs
531 4) the offset from the stack pointer to the frame pointer
532
533 A typical Thumb function prologue would create this stack frame
534 (offsets relative to FP)
535 old SP -> 24 stack parameters
536 20 LR
537 16 R7
538 R7 -> 0 local variables (16 bytes)
539 SP -> -12 additional stack space (12 bytes)
540 The frame size would thus be 36 bytes, and the frame offset would be
541 12 bytes. The frame register is R7.
542
543 The comments for thumb_skip_prolog() describe the algorithm we use
544 to detect the end of the prolog. */
545 /* *INDENT-ON* */
546
547 static void
548 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
549 {
550 CORE_ADDR prologue_start;
551 CORE_ADDR prologue_end;
552 CORE_ADDR current_pc;
553 /* Which register has been copied to register n? */
554 int saved_reg[16];
555 /* findmask:
556 bit 0 - push { rlist }
557 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
558 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
559 */
560 int findmask = 0;
561 int i;
562
563 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
564 {
565 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
566
567 if (sal.line == 0) /* no line info, use current PC */
568 prologue_end = prev_pc;
569 else if (sal.end < prologue_end) /* next line begins after fn end */
570 prologue_end = sal.end; /* (probably means no prologue) */
571 }
572 else
573 /* We're in the boondocks: we have no idea where the start of the
574 function is. */
575 return;
576
577 prologue_end = min (prologue_end, prev_pc);
578
579 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
580 cache);
581 }
582
583 /* This function decodes an ARM function prologue to determine:
584 1) the size of the stack frame
585 2) which registers are saved on it
586 3) the offsets of saved regs
587 4) the offset from the stack pointer to the frame pointer
588 This information is stored in the "extra" fields of the frame_info.
589
590 There are two basic forms for the ARM prologue. The fixed argument
591 function call will look like:
592
593 mov ip, sp
594 stmfd sp!, {fp, ip, lr, pc}
595 sub fp, ip, #4
596 [sub sp, sp, #4]
597
598 Which would create this stack frame (offsets relative to FP):
599 IP -> 4 (caller's stack)
600 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
601 -4 LR (return address in caller)
602 -8 IP (copy of caller's SP)
603 -12 FP (caller's FP)
604 SP -> -28 Local variables
605
606 The frame size would thus be 32 bytes, and the frame offset would be
607 28 bytes. The stmfd call can also save any of the vN registers it
608 plans to use, which increases the frame size accordingly.
609
610 Note: The stored PC is 8 off of the STMFD instruction that stored it
611 because the ARM Store instructions always store PC + 8 when you read
612 the PC register.
613
614 A variable argument function call will look like:
615
616 mov ip, sp
617 stmfd sp!, {a1, a2, a3, a4}
618 stmfd sp!, {fp, ip, lr, pc}
619 sub fp, ip, #20
620
621 Which would create this stack frame (offsets relative to FP):
622 IP -> 20 (caller's stack)
623 16 A4
624 12 A3
625 8 A2
626 4 A1
627 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
628 -4 LR (return address in caller)
629 -8 IP (copy of caller's SP)
630 -12 FP (caller's FP)
631 SP -> -28 Local variables
632
633 The frame size would thus be 48 bytes, and the frame offset would be
634 28 bytes.
635
636 There is another potential complication, which is that the optimizer
637 will try to separate the store of fp in the "stmfd" instruction from
638 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
639 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
640
641 Also, note, the original version of the ARM toolchain claimed that there
642 should be an
643
644 instruction at the end of the prologue. I have never seen GCC produce
645 this, and the ARM docs don't mention it. We still test for it below in
646 case it happens...
647
648 */
649
650 static void
651 arm_scan_prologue (struct frame_info *next_frame,
652 struct arm_prologue_cache *cache)
653 {
654 struct gdbarch *gdbarch = get_frame_arch (next_frame);
655 int regno, sp_offset, fp_offset, ip_offset;
656 CORE_ADDR prologue_start, prologue_end, current_pc;
657 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
658
659 /* Assume there is no frame until proven otherwise. */
660 cache->framereg = ARM_SP_REGNUM;
661 cache->framesize = 0;
662 cache->frameoffset = 0;
663
664 /* Check for Thumb prologue. */
665 if (arm_pc_is_thumb (prev_pc))
666 {
667 thumb_scan_prologue (prev_pc, cache);
668 return;
669 }
670
671 /* Find the function prologue. If we can't find the function in
672 the symbol table, peek in the stack frame to find the PC. */
673 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
674 {
675 /* One way to find the end of the prologue (which works well
676 for unoptimized code) is to do the following:
677
678 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
679
680 if (sal.line == 0)
681 prologue_end = prev_pc;
682 else if (sal.end < prologue_end)
683 prologue_end = sal.end;
684
685 This mechanism is very accurate so long as the optimizer
686 doesn't move any instructions from the function body into the
687 prologue. If this happens, sal.end will be the last
688 instruction in the first hunk of prologue code just before
689 the first instruction that the scheduler has moved from
690 the body to the prologue.
691
692 In order to make sure that we scan all of the prologue
693 instructions, we use a slightly less accurate mechanism which
694 may scan more than necessary. To help compensate for this
695 lack of accuracy, the prologue scanning loop below contains
696 several clauses which'll cause the loop to terminate early if
697 an implausible prologue instruction is encountered.
698
699 The expression
700
701 prologue_start + 64
702
703 is a suitable endpoint since it accounts for the largest
704 possible prologue plus up to five instructions inserted by
705 the scheduler. */
706
707 if (prologue_end > prologue_start + 64)
708 {
709 prologue_end = prologue_start + 64; /* See above. */
710 }
711 }
712 else
713 {
714 /* We have no symbol information. Our only option is to assume this
715 function has a standard stack frame and the normal frame register.
716 Then, we can find the value of our frame pointer on entrance to
717 the callee (or at the present moment if this is the innermost frame).
718 The value stored there should be the address of the stmfd + 8. */
719 CORE_ADDR frame_loc;
720 LONGEST return_value;
721
722 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
723 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
724 return;
725 else
726 {
727 prologue_start = gdbarch_addr_bits_remove
728 (gdbarch, return_value) - 8;
729 prologue_end = prologue_start + 64; /* See above. */
730 }
731 }
732
733 if (prev_pc < prologue_end)
734 prologue_end = prev_pc;
735
736 /* Now search the prologue looking for instructions that set up the
737 frame pointer, adjust the stack pointer, and save registers.
738
739 Be careful, however, and if it doesn't look like a prologue,
740 don't try to scan it. If, for instance, a frameless function
741 begins with stmfd sp!, then we will tell ourselves there is
742 a frame, which will confuse stack traceback, as well as "finish"
743 and other operations that rely on a knowledge of the stack
744 traceback.
745
746 In the APCS, the prologue should start with "mov ip, sp" so
747 if we don't see this as the first insn, we will stop.
748
749 [Note: This doesn't seem to be true any longer, so it's now an
750 optional part of the prologue. - Kevin Buettner, 2001-11-20]
751
752 [Note further: The "mov ip,sp" only seems to be missing in
753 frameless functions at optimization level "-O2" or above,
754 in which case it is often (but not always) replaced by
755 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
756
757 sp_offset = fp_offset = ip_offset = 0;
758
759 for (current_pc = prologue_start;
760 current_pc < prologue_end;
761 current_pc += 4)
762 {
763 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
764
765 if (insn == 0xe1a0c00d) /* mov ip, sp */
766 {
767 ip_offset = 0;
768 continue;
769 }
770 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
771 {
772 unsigned imm = insn & 0xff; /* immediate value */
773 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
774 imm = (imm >> rot) | (imm << (32 - rot));
775 ip_offset = imm;
776 continue;
777 }
778 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
779 {
780 unsigned imm = insn & 0xff; /* immediate value */
781 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
782 imm = (imm >> rot) | (imm << (32 - rot));
783 ip_offset = -imm;
784 continue;
785 }
786 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
787 {
788 sp_offset -= 4;
789 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
790 continue;
791 }
792 else if ((insn & 0xffff0000) == 0xe92d0000)
793 /* stmfd sp!, {..., fp, ip, lr, pc}
794 or
795 stmfd sp!, {a1, a2, a3, a4} */
796 {
797 int mask = insn & 0xffff;
798
799 /* Calculate offsets of saved registers. */
800 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
801 if (mask & (1 << regno))
802 {
803 sp_offset -= 4;
804 cache->saved_regs[regno].addr = sp_offset;
805 }
806 }
807 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
808 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
809 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
810 {
811 /* No need to add this to saved_regs -- it's just an arg reg. */
812 continue;
813 }
814 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
815 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
816 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
817 {
818 /* No need to add this to saved_regs -- it's just an arg reg. */
819 continue;
820 }
821 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
822 {
823 unsigned imm = insn & 0xff; /* immediate value */
824 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
825 imm = (imm >> rot) | (imm << (32 - rot));
826 fp_offset = -imm + ip_offset;
827 cache->framereg = ARM_FP_REGNUM;
828 }
829 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
830 {
831 unsigned imm = insn & 0xff; /* immediate value */
832 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
833 imm = (imm >> rot) | (imm << (32 - rot));
834 sp_offset -= imm;
835 }
836 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
837 && gdbarch_tdep (gdbarch)->have_fpa_registers)
838 {
839 sp_offset -= 12;
840 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
841 cache->saved_regs[regno].addr = sp_offset;
842 }
843 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
844 && gdbarch_tdep (gdbarch)->have_fpa_registers)
845 {
846 int n_saved_fp_regs;
847 unsigned int fp_start_reg, fp_bound_reg;
848
849 if ((insn & 0x800) == 0x800) /* N0 is set */
850 {
851 if ((insn & 0x40000) == 0x40000) /* N1 is set */
852 n_saved_fp_regs = 3;
853 else
854 n_saved_fp_regs = 1;
855 }
856 else
857 {
858 if ((insn & 0x40000) == 0x40000) /* N1 is set */
859 n_saved_fp_regs = 2;
860 else
861 n_saved_fp_regs = 4;
862 }
863
864 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
865 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
866 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
867 {
868 sp_offset -= 12;
869 cache->saved_regs[fp_start_reg++].addr = sp_offset;
870 }
871 }
872 else if ((insn & 0xf0000000) != 0xe0000000)
873 break; /* Condition not true, exit early */
874 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
875 break; /* Don't scan past a block load */
876 else
877 /* The optimizer might shove anything into the prologue,
878 so we just skip what we don't recognize. */
879 continue;
880 }
881
882 /* The frame size is just the negative of the offset (from the
883 original SP) of the last thing thing we pushed on the stack.
884 The frame offset is [new FP] - [new SP]. */
885 cache->framesize = -sp_offset;
886 if (cache->framereg == ARM_FP_REGNUM)
887 cache->frameoffset = fp_offset - sp_offset;
888 else
889 cache->frameoffset = 0;
890 }
891
892 static struct arm_prologue_cache *
893 arm_make_prologue_cache (struct frame_info *next_frame)
894 {
895 int reg;
896 struct arm_prologue_cache *cache;
897 CORE_ADDR unwound_fp;
898
899 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
900 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
901
902 arm_scan_prologue (next_frame, cache);
903
904 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
905 if (unwound_fp == 0)
906 return cache;
907
908 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
909
910 /* Calculate actual addresses of saved registers using offsets
911 determined by arm_scan_prologue. */
912 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (next_frame)); reg++)
913 if (trad_frame_addr_p (cache->saved_regs, reg))
914 cache->saved_regs[reg].addr += cache->prev_sp;
915
916 return cache;
917 }
918
919 /* Our frame ID for a normal frame is the current function's starting PC
920 and the caller's SP when we were called. */
921
922 static void
923 arm_prologue_this_id (struct frame_info *next_frame,
924 void **this_cache,
925 struct frame_id *this_id)
926 {
927 struct arm_prologue_cache *cache;
928 struct frame_id id;
929 CORE_ADDR func;
930
931 if (*this_cache == NULL)
932 *this_cache = arm_make_prologue_cache (next_frame);
933 cache = *this_cache;
934
935 func = frame_func_unwind (next_frame, NORMAL_FRAME);
936
937 /* This is meant to halt the backtrace at "_start". Make sure we
938 don't halt it at a generic dummy frame. */
939 if (func <= LOWEST_PC)
940 return;
941
942 /* If we've hit a wall, stop. */
943 if (cache->prev_sp == 0)
944 return;
945
946 id = frame_id_build (cache->prev_sp, func);
947 *this_id = id;
948 }
949
950 static void
951 arm_prologue_prev_register (struct frame_info *next_frame,
952 void **this_cache,
953 int prev_regnum,
954 int *optimized,
955 enum lval_type *lvalp,
956 CORE_ADDR *addrp,
957 int *realnump,
958 gdb_byte *valuep)
959 {
960 struct arm_prologue_cache *cache;
961
962 if (*this_cache == NULL)
963 *this_cache = arm_make_prologue_cache (next_frame);
964 cache = *this_cache;
965
966 /* If we are asked to unwind the PC, then we need to return the LR
967 instead. The saved value of PC points into this frame's
968 prologue, not the next frame's resume location. */
969 if (prev_regnum == ARM_PC_REGNUM)
970 prev_regnum = ARM_LR_REGNUM;
971
972 /* SP is generally not saved to the stack, but this frame is
973 identified by NEXT_FRAME's stack pointer at the time of the call.
974 The value was already reconstructed into PREV_SP. */
975 if (prev_regnum == ARM_SP_REGNUM)
976 {
977 *lvalp = not_lval;
978 if (valuep)
979 store_unsigned_integer (valuep, 4, cache->prev_sp);
980 return;
981 }
982
983 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
984 optimized, lvalp, addrp, realnump, valuep);
985 }
986
987 struct frame_unwind arm_prologue_unwind = {
988 NORMAL_FRAME,
989 arm_prologue_this_id,
990 arm_prologue_prev_register
991 };
992
993 static const struct frame_unwind *
994 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
995 {
996 return &arm_prologue_unwind;
997 }
998
999 static struct arm_prologue_cache *
1000 arm_make_stub_cache (struct frame_info *next_frame)
1001 {
1002 int reg;
1003 struct arm_prologue_cache *cache;
1004 CORE_ADDR unwound_fp;
1005
1006 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1007 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1008
1009 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1010
1011 return cache;
1012 }
1013
1014 /* Our frame ID for a stub frame is the current SP and LR. */
1015
1016 static void
1017 arm_stub_this_id (struct frame_info *next_frame,
1018 void **this_cache,
1019 struct frame_id *this_id)
1020 {
1021 struct arm_prologue_cache *cache;
1022
1023 if (*this_cache == NULL)
1024 *this_cache = arm_make_stub_cache (next_frame);
1025 cache = *this_cache;
1026
1027 *this_id = frame_id_build (cache->prev_sp,
1028 frame_pc_unwind (next_frame));
1029 }
1030
1031 struct frame_unwind arm_stub_unwind = {
1032 NORMAL_FRAME,
1033 arm_stub_this_id,
1034 arm_prologue_prev_register
1035 };
1036
1037 static const struct frame_unwind *
1038 arm_stub_unwind_sniffer (struct frame_info *next_frame)
1039 {
1040 CORE_ADDR addr_in_block;
1041 char dummy[4];
1042
1043 addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1044 if (in_plt_section (addr_in_block, NULL)
1045 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1046 return &arm_stub_unwind;
1047
1048 return NULL;
1049 }
1050
1051 static CORE_ADDR
1052 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1053 {
1054 struct arm_prologue_cache *cache;
1055
1056 if (*this_cache == NULL)
1057 *this_cache = arm_make_prologue_cache (next_frame);
1058 cache = *this_cache;
1059
1060 return cache->prev_sp + cache->frameoffset - cache->framesize;
1061 }
1062
1063 struct frame_base arm_normal_base = {
1064 &arm_prologue_unwind,
1065 arm_normal_frame_base,
1066 arm_normal_frame_base,
1067 arm_normal_frame_base
1068 };
1069
1070 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1071 dummy frame. The frame ID's base needs to match the TOS value
1072 saved by save_dummy_frame_tos() and returned from
1073 arm_push_dummy_call, and the PC needs to match the dummy frame's
1074 breakpoint. */
1075
1076 static struct frame_id
1077 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1078 {
1079 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1080 frame_pc_unwind (next_frame));
1081 }
1082
1083 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1084 be used to construct the previous frame's ID, after looking up the
1085 containing function). */
1086
1087 static CORE_ADDR
1088 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1089 {
1090 CORE_ADDR pc;
1091 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1092 return arm_addr_bits_remove (pc);
1093 }
1094
1095 static CORE_ADDR
1096 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1097 {
1098 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1099 }
1100
1101 /* When arguments must be pushed onto the stack, they go on in reverse
1102 order. The code below implements a FILO (stack) to do this. */
1103
1104 struct stack_item
1105 {
1106 int len;
1107 struct stack_item *prev;
1108 void *data;
1109 };
1110
1111 static struct stack_item *
1112 push_stack_item (struct stack_item *prev, void *contents, int len)
1113 {
1114 struct stack_item *si;
1115 si = xmalloc (sizeof (struct stack_item));
1116 si->data = xmalloc (len);
1117 si->len = len;
1118 si->prev = prev;
1119 memcpy (si->data, contents, len);
1120 return si;
1121 }
1122
1123 static struct stack_item *
1124 pop_stack_item (struct stack_item *si)
1125 {
1126 struct stack_item *dead = si;
1127 si = si->prev;
1128 xfree (dead->data);
1129 xfree (dead);
1130 return si;
1131 }
1132
1133
1134 /* Return the alignment (in bytes) of the given type. */
1135
1136 static int
1137 arm_type_align (struct type *t)
1138 {
1139 int n;
1140 int align;
1141 int falign;
1142
1143 t = check_typedef (t);
1144 switch (TYPE_CODE (t))
1145 {
1146 default:
1147 /* Should never happen. */
1148 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1149 return 4;
1150
1151 case TYPE_CODE_PTR:
1152 case TYPE_CODE_ENUM:
1153 case TYPE_CODE_INT:
1154 case TYPE_CODE_FLT:
1155 case TYPE_CODE_SET:
1156 case TYPE_CODE_RANGE:
1157 case TYPE_CODE_BITSTRING:
1158 case TYPE_CODE_REF:
1159 case TYPE_CODE_CHAR:
1160 case TYPE_CODE_BOOL:
1161 return TYPE_LENGTH (t);
1162
1163 case TYPE_CODE_ARRAY:
1164 case TYPE_CODE_COMPLEX:
1165 /* TODO: What about vector types? */
1166 return arm_type_align (TYPE_TARGET_TYPE (t));
1167
1168 case TYPE_CODE_STRUCT:
1169 case TYPE_CODE_UNION:
1170 align = 1;
1171 for (n = 0; n < TYPE_NFIELDS (t); n++)
1172 {
1173 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1174 if (falign > align)
1175 align = falign;
1176 }
1177 return align;
1178 }
1179 }
1180
1181 /* We currently only support passing parameters in integer registers. This
1182 conforms with GCC's default model. Several other variants exist and
1183 we should probably support some of them based on the selected ABI. */
1184
1185 static CORE_ADDR
1186 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1187 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1188 struct value **args, CORE_ADDR sp, int struct_return,
1189 CORE_ADDR struct_addr)
1190 {
1191 int argnum;
1192 int argreg;
1193 int nstack;
1194 struct stack_item *si = NULL;
1195
1196 /* Set the return address. For the ARM, the return breakpoint is
1197 always at BP_ADDR. */
1198 /* XXX Fix for Thumb. */
1199 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1200
1201 /* Walk through the list of args and determine how large a temporary
1202 stack is required. Need to take care here as structs may be
1203 passed on the stack, and we have to to push them. */
1204 nstack = 0;
1205
1206 argreg = ARM_A1_REGNUM;
1207 nstack = 0;
1208
1209 /* The struct_return pointer occupies the first parameter
1210 passing register. */
1211 if (struct_return)
1212 {
1213 if (arm_debug)
1214 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1215 gdbarch_register_name (gdbarch, argreg),
1216 paddr (struct_addr));
1217 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1218 argreg++;
1219 }
1220
1221 for (argnum = 0; argnum < nargs; argnum++)
1222 {
1223 int len;
1224 struct type *arg_type;
1225 struct type *target_type;
1226 enum type_code typecode;
1227 bfd_byte *val;
1228 int align;
1229
1230 arg_type = check_typedef (value_type (args[argnum]));
1231 len = TYPE_LENGTH (arg_type);
1232 target_type = TYPE_TARGET_TYPE (arg_type);
1233 typecode = TYPE_CODE (arg_type);
1234 val = value_contents_writeable (args[argnum]);
1235
1236 align = arm_type_align (arg_type);
1237 /* Round alignment up to a whole number of words. */
1238 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1239 /* Different ABIs have different maximum alignments. */
1240 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1241 {
1242 /* The APCS ABI only requires word alignment. */
1243 align = INT_REGISTER_SIZE;
1244 }
1245 else
1246 {
1247 /* The AAPCS requires at most doubleword alignment. */
1248 if (align > INT_REGISTER_SIZE * 2)
1249 align = INT_REGISTER_SIZE * 2;
1250 }
1251
1252 /* Push stack padding for dowubleword alignment. */
1253 if (nstack & (align - 1))
1254 {
1255 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1256 nstack += INT_REGISTER_SIZE;
1257 }
1258
1259 /* Doubleword aligned quantities must go in even register pairs. */
1260 if (argreg <= ARM_LAST_ARG_REGNUM
1261 && align > INT_REGISTER_SIZE
1262 && argreg & 1)
1263 argreg++;
1264
1265 /* If the argument is a pointer to a function, and it is a
1266 Thumb function, create a LOCAL copy of the value and set
1267 the THUMB bit in it. */
1268 if (TYPE_CODE_PTR == typecode
1269 && target_type != NULL
1270 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1271 {
1272 CORE_ADDR regval = extract_unsigned_integer (val, len);
1273 if (arm_pc_is_thumb (regval))
1274 {
1275 val = alloca (len);
1276 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1277 }
1278 }
1279
1280 /* Copy the argument to general registers or the stack in
1281 register-sized pieces. Large arguments are split between
1282 registers and stack. */
1283 while (len > 0)
1284 {
1285 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
1286
1287 if (argreg <= ARM_LAST_ARG_REGNUM)
1288 {
1289 /* The argument is being passed in a general purpose
1290 register. */
1291 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1292 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1293 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
1294 if (arm_debug)
1295 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1296 argnum,
1297 gdbarch_register_name
1298 (gdbarch, argreg),
1299 phex (regval, INT_REGISTER_SIZE));
1300 regcache_cooked_write_unsigned (regcache, argreg, regval);
1301 argreg++;
1302 }
1303 else
1304 {
1305 /* Push the arguments onto the stack. */
1306 if (arm_debug)
1307 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1308 argnum, nstack);
1309 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1310 nstack += INT_REGISTER_SIZE;
1311 }
1312
1313 len -= partial_len;
1314 val += partial_len;
1315 }
1316 }
1317 /* If we have an odd number of words to push, then decrement the stack
1318 by one word now, so first stack argument will be dword aligned. */
1319 if (nstack & 4)
1320 sp -= 4;
1321
1322 while (si)
1323 {
1324 sp -= si->len;
1325 write_memory (sp, si->data, si->len);
1326 si = pop_stack_item (si);
1327 }
1328
1329 /* Finally, update teh SP register. */
1330 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1331
1332 return sp;
1333 }
1334
1335
1336 /* Always align the frame to an 8-byte boundary. This is required on
1337 some platforms and harmless on the rest. */
1338
1339 static CORE_ADDR
1340 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1341 {
1342 /* Align the stack to eight bytes. */
1343 return sp & ~ (CORE_ADDR) 7;
1344 }
1345
1346 static void
1347 print_fpu_flags (int flags)
1348 {
1349 if (flags & (1 << 0))
1350 fputs ("IVO ", stdout);
1351 if (flags & (1 << 1))
1352 fputs ("DVZ ", stdout);
1353 if (flags & (1 << 2))
1354 fputs ("OFL ", stdout);
1355 if (flags & (1 << 3))
1356 fputs ("UFL ", stdout);
1357 if (flags & (1 << 4))
1358 fputs ("INX ", stdout);
1359 putchar ('\n');
1360 }
1361
1362 /* Print interesting information about the floating point processor
1363 (if present) or emulator. */
1364 static void
1365 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1366 struct frame_info *frame, const char *args)
1367 {
1368 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
1369 int type;
1370
1371 type = (status >> 24) & 127;
1372 if (status & (1 << 31))
1373 printf (_("Hardware FPU type %d\n"), type);
1374 else
1375 printf (_("Software FPU type %d\n"), type);
1376 /* i18n: [floating point unit] mask */
1377 fputs (_("mask: "), stdout);
1378 print_fpu_flags (status >> 16);
1379 /* i18n: [floating point unit] flags */
1380 fputs (_("flags: "), stdout);
1381 print_fpu_flags (status);
1382 }
1383
1384 /* Return the GDB type object for the "standard" data type of data in
1385 register N. */
1386
1387 static struct type *
1388 arm_register_type (struct gdbarch *gdbarch, int regnum)
1389 {
1390 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1391 return builtin_type_arm_ext;
1392 else if (regnum == ARM_SP_REGNUM)
1393 return builtin_type_void_data_ptr;
1394 else if (regnum == ARM_PC_REGNUM)
1395 return builtin_type_void_func_ptr;
1396 else if (regnum >= ARRAY_SIZE (arm_register_names))
1397 /* These registers are only supported on targets which supply
1398 an XML description. */
1399 return builtin_type_int0;
1400 else
1401 return builtin_type_uint32;
1402 }
1403
1404 /* Map a DWARF register REGNUM onto the appropriate GDB register
1405 number. */
1406
1407 static int
1408 arm_dwarf_reg_to_regnum (int reg)
1409 {
1410 /* Core integer regs. */
1411 if (reg >= 0 && reg <= 15)
1412 return reg;
1413
1414 /* Legacy FPA encoding. These were once used in a way which
1415 overlapped with VFP register numbering, so their use is
1416 discouraged, but GDB doesn't support the ARM toolchain
1417 which used them for VFP. */
1418 if (reg >= 16 && reg <= 23)
1419 return ARM_F0_REGNUM + reg - 16;
1420
1421 /* New assignments for the FPA registers. */
1422 if (reg >= 96 && reg <= 103)
1423 return ARM_F0_REGNUM + reg - 96;
1424
1425 /* WMMX register assignments. */
1426 if (reg >= 104 && reg <= 111)
1427 return ARM_WCGR0_REGNUM + reg - 104;
1428
1429 if (reg >= 112 && reg <= 127)
1430 return ARM_WR0_REGNUM + reg - 112;
1431
1432 if (reg >= 192 && reg <= 199)
1433 return ARM_WC0_REGNUM + reg - 192;
1434
1435 return -1;
1436 }
1437
1438 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1439 static int
1440 arm_register_sim_regno (int regnum)
1441 {
1442 int reg = regnum;
1443 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (current_gdbarch));
1444
1445 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1446 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1447
1448 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1449 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1450
1451 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1452 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1453
1454 if (reg < NUM_GREGS)
1455 return SIM_ARM_R0_REGNUM + reg;
1456 reg -= NUM_GREGS;
1457
1458 if (reg < NUM_FREGS)
1459 return SIM_ARM_FP0_REGNUM + reg;
1460 reg -= NUM_FREGS;
1461
1462 if (reg < NUM_SREGS)
1463 return SIM_ARM_FPS_REGNUM + reg;
1464 reg -= NUM_SREGS;
1465
1466 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1467 }
1468
1469 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1470 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1471 It is thought that this is is the floating-point register format on
1472 little-endian systems. */
1473
1474 static void
1475 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1476 void *dbl)
1477 {
1478 DOUBLEST d;
1479 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1480 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1481 else
1482 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1483 ptr, &d);
1484 floatformat_from_doublest (fmt, &d, dbl);
1485 }
1486
1487 static void
1488 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1489 {
1490 DOUBLEST d;
1491 floatformat_to_doublest (fmt, ptr, &d);
1492 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1493 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1494 else
1495 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1496 &d, dbl);
1497 }
1498
1499 static int
1500 condition_true (unsigned long cond, unsigned long status_reg)
1501 {
1502 if (cond == INST_AL || cond == INST_NV)
1503 return 1;
1504
1505 switch (cond)
1506 {
1507 case INST_EQ:
1508 return ((status_reg & FLAG_Z) != 0);
1509 case INST_NE:
1510 return ((status_reg & FLAG_Z) == 0);
1511 case INST_CS:
1512 return ((status_reg & FLAG_C) != 0);
1513 case INST_CC:
1514 return ((status_reg & FLAG_C) == 0);
1515 case INST_MI:
1516 return ((status_reg & FLAG_N) != 0);
1517 case INST_PL:
1518 return ((status_reg & FLAG_N) == 0);
1519 case INST_VS:
1520 return ((status_reg & FLAG_V) != 0);
1521 case INST_VC:
1522 return ((status_reg & FLAG_V) == 0);
1523 case INST_HI:
1524 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1525 case INST_LS:
1526 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1527 case INST_GE:
1528 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1529 case INST_LT:
1530 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1531 case INST_GT:
1532 return (((status_reg & FLAG_Z) == 0) &&
1533 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1534 case INST_LE:
1535 return (((status_reg & FLAG_Z) != 0) ||
1536 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1537 }
1538 return 1;
1539 }
1540
1541 /* Support routines for single stepping. Calculate the next PC value. */
1542 #define submask(x) ((1L << ((x) + 1)) - 1)
1543 #define bit(obj,st) (((obj) >> (st)) & 1)
1544 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1545 #define sbits(obj,st,fn) \
1546 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1547 #define BranchDest(addr,instr) \
1548 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1549 #define ARM_PC_32 1
1550
1551 static unsigned long
1552 shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
1553 unsigned long pc_val, unsigned long status_reg)
1554 {
1555 unsigned long res, shift;
1556 int rm = bits (inst, 0, 3);
1557 unsigned long shifttype = bits (inst, 5, 6);
1558
1559 if (bit (inst, 4))
1560 {
1561 int rs = bits (inst, 8, 11);
1562 shift = (rs == 15 ? pc_val + 8
1563 : get_frame_register_unsigned (frame, rs)) & 0xFF;
1564 }
1565 else
1566 shift = bits (inst, 7, 11);
1567
1568 res = (rm == 15
1569 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1570 + (bit (inst, 4) ? 12 : 8))
1571 : get_frame_register_unsigned (frame, rm));
1572
1573 switch (shifttype)
1574 {
1575 case 0: /* LSL */
1576 res = shift >= 32 ? 0 : res << shift;
1577 break;
1578
1579 case 1: /* LSR */
1580 res = shift >= 32 ? 0 : res >> shift;
1581 break;
1582
1583 case 2: /* ASR */
1584 if (shift >= 32)
1585 shift = 31;
1586 res = ((res & 0x80000000L)
1587 ? ~((~res) >> shift) : res >> shift);
1588 break;
1589
1590 case 3: /* ROR/RRX */
1591 shift &= 31;
1592 if (shift == 0)
1593 res = (res >> 1) | (carry ? 0x80000000L : 0);
1594 else
1595 res = (res >> shift) | (res << (32 - shift));
1596 break;
1597 }
1598
1599 return res & 0xffffffff;
1600 }
1601
1602 /* Return number of 1-bits in VAL. */
1603
1604 static int
1605 bitcount (unsigned long val)
1606 {
1607 int nbits;
1608 for (nbits = 0; val != 0; nbits++)
1609 val &= val - 1; /* delete rightmost 1-bit in val */
1610 return nbits;
1611 }
1612
1613 static CORE_ADDR
1614 thumb_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
1615 {
1616 struct gdbarch *gdbarch = get_frame_arch (frame);
1617 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1618 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
1619 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1620 unsigned long offset;
1621
1622 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1623 {
1624 CORE_ADDR sp;
1625
1626 /* Fetch the saved PC from the stack. It's stored above
1627 all of the other registers. */
1628 offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
1629 sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
1630 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
1631 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1632 if (nextpc == pc)
1633 error (_("Infinite loop detected"));
1634 }
1635 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1636 {
1637 unsigned long status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
1638 unsigned long cond = bits (inst1, 8, 11);
1639 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1640 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1641 }
1642 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1643 {
1644 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1645 }
1646 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1647 {
1648 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
1649 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1650 nextpc = pc_val + offset;
1651 /* For BLX make sure to clear the low bits. */
1652 if (bits (inst2, 11, 12) == 1)
1653 nextpc = nextpc & 0xfffffffc;
1654 }
1655 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1656 {
1657 if (bits (inst1, 3, 6) == 0x0f)
1658 nextpc = pc_val;
1659 else
1660 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
1661
1662 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1663 if (nextpc == pc)
1664 error (_("Infinite loop detected"));
1665 }
1666
1667 return nextpc;
1668 }
1669
1670 CORE_ADDR
1671 arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
1672 {
1673 struct gdbarch *gdbarch = get_frame_arch (frame);
1674 unsigned long pc_val;
1675 unsigned long this_instr;
1676 unsigned long status;
1677 CORE_ADDR nextpc;
1678
1679 if (arm_pc_is_thumb (pc))
1680 return thumb_get_next_pc (frame, pc);
1681
1682 pc_val = (unsigned long) pc;
1683 this_instr = read_memory_unsigned_integer (pc, 4);
1684 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
1685 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1686
1687 if (bits (this_instr, 28, 31) == INST_NV)
1688 switch (bits (this_instr, 24, 27))
1689 {
1690 case 0xa:
1691 case 0xb:
1692 {
1693 /* Branch with Link and change to Thumb. */
1694 nextpc = BranchDest (pc, this_instr);
1695 nextpc |= bit (this_instr, 24) << 1;
1696
1697 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1698 if (nextpc == pc)
1699 error (_("Infinite loop detected"));
1700 break;
1701 }
1702 case 0xc:
1703 case 0xd:
1704 case 0xe:
1705 /* Coprocessor register transfer. */
1706 if (bits (this_instr, 12, 15) == 15)
1707 error (_("Invalid update to pc in instruction"));
1708 break;
1709 }
1710 else if (condition_true (bits (this_instr, 28, 31), status))
1711 {
1712 switch (bits (this_instr, 24, 27))
1713 {
1714 case 0x0:
1715 case 0x1: /* data processing */
1716 case 0x2:
1717 case 0x3:
1718 {
1719 unsigned long operand1, operand2, result = 0;
1720 unsigned long rn;
1721 int c;
1722
1723 if (bits (this_instr, 12, 15) != 15)
1724 break;
1725
1726 if (bits (this_instr, 22, 25) == 0
1727 && bits (this_instr, 4, 7) == 9) /* multiply */
1728 error (_("Invalid update to pc in instruction"));
1729
1730 /* BX <reg>, BLX <reg> */
1731 if (bits (this_instr, 4, 27) == 0x12fff1
1732 || bits (this_instr, 4, 27) == 0x12fff3)
1733 {
1734 rn = bits (this_instr, 0, 3);
1735 result = (rn == 15) ? pc_val + 8
1736 : get_frame_register_unsigned (frame, rn);
1737 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1738 (gdbarch, result);
1739
1740 if (nextpc == pc)
1741 error (_("Infinite loop detected"));
1742
1743 return nextpc;
1744 }
1745
1746 /* Multiply into PC */
1747 c = (status & FLAG_C) ? 1 : 0;
1748 rn = bits (this_instr, 16, 19);
1749 operand1 = (rn == 15) ? pc_val + 8
1750 : get_frame_register_unsigned (frame, rn);
1751
1752 if (bit (this_instr, 25))
1753 {
1754 unsigned long immval = bits (this_instr, 0, 7);
1755 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1756 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1757 & 0xffffffff;
1758 }
1759 else /* operand 2 is a shifted register */
1760 operand2 = shifted_reg_val (frame, this_instr, c, pc_val, status);
1761
1762 switch (bits (this_instr, 21, 24))
1763 {
1764 case 0x0: /*and */
1765 result = operand1 & operand2;
1766 break;
1767
1768 case 0x1: /*eor */
1769 result = operand1 ^ operand2;
1770 break;
1771
1772 case 0x2: /*sub */
1773 result = operand1 - operand2;
1774 break;
1775
1776 case 0x3: /*rsb */
1777 result = operand2 - operand1;
1778 break;
1779
1780 case 0x4: /*add */
1781 result = operand1 + operand2;
1782 break;
1783
1784 case 0x5: /*adc */
1785 result = operand1 + operand2 + c;
1786 break;
1787
1788 case 0x6: /*sbc */
1789 result = operand1 - operand2 + c;
1790 break;
1791
1792 case 0x7: /*rsc */
1793 result = operand2 - operand1 + c;
1794 break;
1795
1796 case 0x8:
1797 case 0x9:
1798 case 0xa:
1799 case 0xb: /* tst, teq, cmp, cmn */
1800 result = (unsigned long) nextpc;
1801 break;
1802
1803 case 0xc: /*orr */
1804 result = operand1 | operand2;
1805 break;
1806
1807 case 0xd: /*mov */
1808 /* Always step into a function. */
1809 result = operand2;
1810 break;
1811
1812 case 0xe: /*bic */
1813 result = operand1 & ~operand2;
1814 break;
1815
1816 case 0xf: /*mvn */
1817 result = ~operand2;
1818 break;
1819 }
1820 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1821 (gdbarch, result);
1822
1823 if (nextpc == pc)
1824 error (_("Infinite loop detected"));
1825 break;
1826 }
1827
1828 case 0x4:
1829 case 0x5: /* data transfer */
1830 case 0x6:
1831 case 0x7:
1832 if (bit (this_instr, 20))
1833 {
1834 /* load */
1835 if (bits (this_instr, 12, 15) == 15)
1836 {
1837 /* rd == pc */
1838 unsigned long rn;
1839 unsigned long base;
1840
1841 if (bit (this_instr, 22))
1842 error (_("Invalid update to pc in instruction"));
1843
1844 /* byte write to PC */
1845 rn = bits (this_instr, 16, 19);
1846 base = (rn == 15) ? pc_val + 8
1847 : get_frame_register_unsigned (frame, rn);
1848 if (bit (this_instr, 24))
1849 {
1850 /* pre-indexed */
1851 int c = (status & FLAG_C) ? 1 : 0;
1852 unsigned long offset =
1853 (bit (this_instr, 25)
1854 ? shifted_reg_val (frame, this_instr, c, pc_val, status)
1855 : bits (this_instr, 0, 11));
1856
1857 if (bit (this_instr, 23))
1858 base += offset;
1859 else
1860 base -= offset;
1861 }
1862 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1863 4);
1864
1865 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1866
1867 if (nextpc == pc)
1868 error (_("Infinite loop detected"));
1869 }
1870 }
1871 break;
1872
1873 case 0x8:
1874 case 0x9: /* block transfer */
1875 if (bit (this_instr, 20))
1876 {
1877 /* LDM */
1878 if (bit (this_instr, 15))
1879 {
1880 /* loading pc */
1881 int offset = 0;
1882
1883 if (bit (this_instr, 23))
1884 {
1885 /* up */
1886 unsigned long reglist = bits (this_instr, 0, 14);
1887 offset = bitcount (reglist) * 4;
1888 if (bit (this_instr, 24)) /* pre */
1889 offset += 4;
1890 }
1891 else if (bit (this_instr, 24))
1892 offset = -4;
1893
1894 {
1895 unsigned long rn_val =
1896 get_frame_register_unsigned (frame,
1897 bits (this_instr, 16, 19));
1898 nextpc =
1899 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1900 + offset),
1901 4);
1902 }
1903 nextpc = gdbarch_addr_bits_remove
1904 (gdbarch, nextpc);
1905 if (nextpc == pc)
1906 error (_("Infinite loop detected"));
1907 }
1908 }
1909 break;
1910
1911 case 0xb: /* branch & link */
1912 case 0xa: /* branch */
1913 {
1914 nextpc = BranchDest (pc, this_instr);
1915
1916 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1917 if (nextpc == pc)
1918 error (_("Infinite loop detected"));
1919 break;
1920 }
1921
1922 case 0xc:
1923 case 0xd:
1924 case 0xe: /* coproc ops */
1925 case 0xf: /* SWI */
1926 break;
1927
1928 default:
1929 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
1930 return (pc);
1931 }
1932 }
1933
1934 return nextpc;
1935 }
1936
1937 /* single_step() is called just before we want to resume the inferior,
1938 if we want to single-step it but there is no hardware or kernel
1939 single-step support. We find the target of the coming instruction
1940 and breakpoint it. */
1941
1942 int
1943 arm_software_single_step (struct frame_info *frame)
1944 {
1945 /* NOTE: This may insert the wrong breakpoint instruction when
1946 single-stepping over a mode-changing instruction, if the
1947 CPSR heuristics are used. */
1948
1949 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
1950 insert_single_step_breakpoint (next_pc);
1951
1952 return 1;
1953 }
1954
1955 #include "bfd-in2.h"
1956 #include "libcoff.h"
1957
1958 static int
1959 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1960 {
1961 if (arm_pc_is_thumb (memaddr))
1962 {
1963 static asymbol *asym;
1964 static combined_entry_type ce;
1965 static struct coff_symbol_struct csym;
1966 static struct bfd fake_bfd;
1967 static bfd_target fake_target;
1968
1969 if (csym.native == NULL)
1970 {
1971 /* Create a fake symbol vector containing a Thumb symbol.
1972 This is solely so that the code in print_insn_little_arm()
1973 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1974 the presence of a Thumb symbol and switch to decoding
1975 Thumb instructions. */
1976
1977 fake_target.flavour = bfd_target_coff_flavour;
1978 fake_bfd.xvec = &fake_target;
1979 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1980 csym.native = &ce;
1981 csym.symbol.the_bfd = &fake_bfd;
1982 csym.symbol.name = "fake";
1983 asym = (asymbol *) & csym;
1984 }
1985
1986 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1987 info->symbols = &asym;
1988 }
1989 else
1990 info->symbols = NULL;
1991
1992 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1993 return print_insn_big_arm (memaddr, info);
1994 else
1995 return print_insn_little_arm (memaddr, info);
1996 }
1997
1998 /* The following define instruction sequences that will cause ARM
1999 cpu's to take an undefined instruction trap. These are used to
2000 signal a breakpoint to GDB.
2001
2002 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2003 modes. A different instruction is required for each mode. The ARM
2004 cpu's can also be big or little endian. Thus four different
2005 instructions are needed to support all cases.
2006
2007 Note: ARMv4 defines several new instructions that will take the
2008 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2009 not in fact add the new instructions. The new undefined
2010 instructions in ARMv4 are all instructions that had no defined
2011 behaviour in earlier chips. There is no guarantee that they will
2012 raise an exception, but may be treated as NOP's. In practice, it
2013 may only safe to rely on instructions matching:
2014
2015 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2016 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2017 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2018
2019 Even this may only true if the condition predicate is true. The
2020 following use a condition predicate of ALWAYS so it is always TRUE.
2021
2022 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2023 and NetBSD all use a software interrupt rather than an undefined
2024 instruction to force a trap. This can be handled by by the
2025 abi-specific code during establishment of the gdbarch vector. */
2026
2027 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2028 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2029 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
2030 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
2031
2032 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2033 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2034 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2035 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2036
2037 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2038 the program counter value to determine whether a 16-bit or 32-bit
2039 breakpoint should be used. It returns a pointer to a string of
2040 bytes that encode a breakpoint instruction, stores the length of
2041 the string to *lenptr, and adjusts the program counter (if
2042 necessary) to point to the actual memory location where the
2043 breakpoint should be inserted. */
2044
2045 static const unsigned char *
2046 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2047 {
2048 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2049
2050 if (arm_pc_is_thumb (*pcptr))
2051 {
2052 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2053 *lenptr = tdep->thumb_breakpoint_size;
2054 return tdep->thumb_breakpoint;
2055 }
2056 else
2057 {
2058 *lenptr = tdep->arm_breakpoint_size;
2059 return tdep->arm_breakpoint;
2060 }
2061 }
2062
2063 /* Extract from an array REGBUF containing the (raw) register state a
2064 function return value of type TYPE, and copy that, in virtual
2065 format, into VALBUF. */
2066
2067 static void
2068 arm_extract_return_value (struct type *type, struct regcache *regs,
2069 gdb_byte *valbuf)
2070 {
2071 if (TYPE_CODE_FLT == TYPE_CODE (type))
2072 {
2073 switch (gdbarch_tdep (get_regcache_arch (regs))->fp_model)
2074 {
2075 case ARM_FLOAT_FPA:
2076 {
2077 /* The value is in register F0 in internal format. We need to
2078 extract the raw value and then convert it to the desired
2079 internal type. */
2080 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2081
2082 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2083 convert_from_extended (floatformat_from_type (type), tmpbuf,
2084 valbuf);
2085 }
2086 break;
2087
2088 case ARM_FLOAT_SOFT_FPA:
2089 case ARM_FLOAT_SOFT_VFP:
2090 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2091 if (TYPE_LENGTH (type) > 4)
2092 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2093 valbuf + INT_REGISTER_SIZE);
2094 break;
2095
2096 default:
2097 internal_error
2098 (__FILE__, __LINE__,
2099 _("arm_extract_return_value: Floating point model not supported"));
2100 break;
2101 }
2102 }
2103 else if (TYPE_CODE (type) == TYPE_CODE_INT
2104 || TYPE_CODE (type) == TYPE_CODE_CHAR
2105 || TYPE_CODE (type) == TYPE_CODE_BOOL
2106 || TYPE_CODE (type) == TYPE_CODE_PTR
2107 || TYPE_CODE (type) == TYPE_CODE_REF
2108 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2109 {
2110 /* If the the type is a plain integer, then the access is
2111 straight-forward. Otherwise we have to play around a bit more. */
2112 int len = TYPE_LENGTH (type);
2113 int regno = ARM_A1_REGNUM;
2114 ULONGEST tmp;
2115
2116 while (len > 0)
2117 {
2118 /* By using store_unsigned_integer we avoid having to do
2119 anything special for small big-endian values. */
2120 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2121 store_unsigned_integer (valbuf,
2122 (len > INT_REGISTER_SIZE
2123 ? INT_REGISTER_SIZE : len),
2124 tmp);
2125 len -= INT_REGISTER_SIZE;
2126 valbuf += INT_REGISTER_SIZE;
2127 }
2128 }
2129 else
2130 {
2131 /* For a structure or union the behaviour is as if the value had
2132 been stored to word-aligned memory and then loaded into
2133 registers with 32-bit load instruction(s). */
2134 int len = TYPE_LENGTH (type);
2135 int regno = ARM_A1_REGNUM;
2136 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2137
2138 while (len > 0)
2139 {
2140 regcache_cooked_read (regs, regno++, tmpbuf);
2141 memcpy (valbuf, tmpbuf,
2142 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2143 len -= INT_REGISTER_SIZE;
2144 valbuf += INT_REGISTER_SIZE;
2145 }
2146 }
2147 }
2148
2149
2150 /* Will a function return an aggregate type in memory or in a
2151 register? Return 0 if an aggregate type can be returned in a
2152 register, 1 if it must be returned in memory. */
2153
2154 static int
2155 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2156 {
2157 int nRc;
2158 enum type_code code;
2159
2160 CHECK_TYPEDEF (type);
2161
2162 /* In the ARM ABI, "integer" like aggregate types are returned in
2163 registers. For an aggregate type to be integer like, its size
2164 must be less than or equal to INT_REGISTER_SIZE and the
2165 offset of each addressable subfield must be zero. Note that bit
2166 fields are not addressable, and all addressable subfields of
2167 unions always start at offset zero.
2168
2169 This function is based on the behaviour of GCC 2.95.1.
2170 See: gcc/arm.c: arm_return_in_memory() for details.
2171
2172 Note: All versions of GCC before GCC 2.95.2 do not set up the
2173 parameters correctly for a function returning the following
2174 structure: struct { float f;}; This should be returned in memory,
2175 not a register. Richard Earnshaw sent me a patch, but I do not
2176 know of any way to detect if a function like the above has been
2177 compiled with the correct calling convention. */
2178
2179 /* All aggregate types that won't fit in a register must be returned
2180 in memory. */
2181 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
2182 {
2183 return 1;
2184 }
2185
2186 /* The AAPCS says all aggregates not larger than a word are returned
2187 in a register. */
2188 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2189 return 0;
2190
2191 /* The only aggregate types that can be returned in a register are
2192 structs and unions. Arrays must be returned in memory. */
2193 code = TYPE_CODE (type);
2194 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2195 {
2196 return 1;
2197 }
2198
2199 /* Assume all other aggregate types can be returned in a register.
2200 Run a check for structures, unions and arrays. */
2201 nRc = 0;
2202
2203 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2204 {
2205 int i;
2206 /* Need to check if this struct/union is "integer" like. For
2207 this to be true, its size must be less than or equal to
2208 INT_REGISTER_SIZE and the offset of each addressable
2209 subfield must be zero. Note that bit fields are not
2210 addressable, and unions always start at offset zero. If any
2211 of the subfields is a floating point type, the struct/union
2212 cannot be an integer type. */
2213
2214 /* For each field in the object, check:
2215 1) Is it FP? --> yes, nRc = 1;
2216 2) Is it addressable (bitpos != 0) and
2217 not packed (bitsize == 0)?
2218 --> yes, nRc = 1
2219 */
2220
2221 for (i = 0; i < TYPE_NFIELDS (type); i++)
2222 {
2223 enum type_code field_type_code;
2224 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2225
2226 /* Is it a floating point type field? */
2227 if (field_type_code == TYPE_CODE_FLT)
2228 {
2229 nRc = 1;
2230 break;
2231 }
2232
2233 /* If bitpos != 0, then we have to care about it. */
2234 if (TYPE_FIELD_BITPOS (type, i) != 0)
2235 {
2236 /* Bitfields are not addressable. If the field bitsize is
2237 zero, then the field is not packed. Hence it cannot be
2238 a bitfield or any other packed type. */
2239 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2240 {
2241 nRc = 1;
2242 break;
2243 }
2244 }
2245 }
2246 }
2247
2248 return nRc;
2249 }
2250
2251 /* Write into appropriate registers a function return value of type
2252 TYPE, given in virtual format. */
2253
2254 static void
2255 arm_store_return_value (struct type *type, struct regcache *regs,
2256 const gdb_byte *valbuf)
2257 {
2258 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2259 {
2260 char buf[MAX_REGISTER_SIZE];
2261
2262 switch (gdbarch_tdep (get_regcache_arch (regs))->fp_model)
2263 {
2264 case ARM_FLOAT_FPA:
2265
2266 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2267 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2268 break;
2269
2270 case ARM_FLOAT_SOFT_FPA:
2271 case ARM_FLOAT_SOFT_VFP:
2272 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2273 if (TYPE_LENGTH (type) > 4)
2274 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2275 valbuf + INT_REGISTER_SIZE);
2276 break;
2277
2278 default:
2279 internal_error
2280 (__FILE__, __LINE__,
2281 _("arm_store_return_value: Floating point model not supported"));
2282 break;
2283 }
2284 }
2285 else if (TYPE_CODE (type) == TYPE_CODE_INT
2286 || TYPE_CODE (type) == TYPE_CODE_CHAR
2287 || TYPE_CODE (type) == TYPE_CODE_BOOL
2288 || TYPE_CODE (type) == TYPE_CODE_PTR
2289 || TYPE_CODE (type) == TYPE_CODE_REF
2290 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2291 {
2292 if (TYPE_LENGTH (type) <= 4)
2293 {
2294 /* Values of one word or less are zero/sign-extended and
2295 returned in r0. */
2296 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2297 LONGEST val = unpack_long (type, valbuf);
2298
2299 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2300 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2301 }
2302 else
2303 {
2304 /* Integral values greater than one word are stored in consecutive
2305 registers starting with r0. This will always be a multiple of
2306 the regiser size. */
2307 int len = TYPE_LENGTH (type);
2308 int regno = ARM_A1_REGNUM;
2309
2310 while (len > 0)
2311 {
2312 regcache_cooked_write (regs, regno++, valbuf);
2313 len -= INT_REGISTER_SIZE;
2314 valbuf += INT_REGISTER_SIZE;
2315 }
2316 }
2317 }
2318 else
2319 {
2320 /* For a structure or union the behaviour is as if the value had
2321 been stored to word-aligned memory and then loaded into
2322 registers with 32-bit load instruction(s). */
2323 int len = TYPE_LENGTH (type);
2324 int regno = ARM_A1_REGNUM;
2325 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2326
2327 while (len > 0)
2328 {
2329 memcpy (tmpbuf, valbuf,
2330 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2331 regcache_cooked_write (regs, regno++, tmpbuf);
2332 len -= INT_REGISTER_SIZE;
2333 valbuf += INT_REGISTER_SIZE;
2334 }
2335 }
2336 }
2337
2338
2339 /* Handle function return values. */
2340
2341 static enum return_value_convention
2342 arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
2343 struct regcache *regcache, gdb_byte *readbuf,
2344 const gdb_byte *writebuf)
2345 {
2346 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2347
2348 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2349 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2350 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2351 {
2352 if (tdep->struct_return == pcc_struct_return
2353 || arm_return_in_memory (gdbarch, valtype))
2354 return RETURN_VALUE_STRUCT_CONVENTION;
2355 }
2356
2357 if (writebuf)
2358 arm_store_return_value (valtype, regcache, writebuf);
2359
2360 if (readbuf)
2361 arm_extract_return_value (valtype, regcache, readbuf);
2362
2363 return RETURN_VALUE_REGISTER_CONVENTION;
2364 }
2365
2366
2367 static int
2368 arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2369 {
2370 CORE_ADDR jb_addr;
2371 char buf[INT_REGISTER_SIZE];
2372 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
2373
2374 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
2375
2376 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2377 INT_REGISTER_SIZE))
2378 return 0;
2379
2380 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2381 return 1;
2382 }
2383
2384 /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
2385 return the target PC. Otherwise return 0. */
2386
2387 CORE_ADDR
2388 arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
2389 {
2390 char *name;
2391 int namelen;
2392 CORE_ADDR start_addr;
2393
2394 /* Find the starting address and name of the function containing the PC. */
2395 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2396 return 0;
2397
2398 /* If PC is in a Thumb call or return stub, return the address of the
2399 target PC, which is in a register. The thunk functions are called
2400 _call_via_xx, where x is the register name. The possible names
2401 are r0-r9, sl, fp, ip, sp, and lr. */
2402 if (strncmp (name, "_call_via_", 10) == 0)
2403 {
2404 /* Use the name suffix to determine which register contains the
2405 target PC. */
2406 static char *table[15] =
2407 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2408 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2409 };
2410 int regno;
2411 int offset = strlen (name) - 2;
2412
2413 for (regno = 0; regno <= 14; regno++)
2414 if (strcmp (&name[offset], table[regno]) == 0)
2415 return get_frame_register_unsigned (frame, regno);
2416 }
2417
2418 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
2419 non-interworking calls to foo. We could decode the stubs
2420 to find the target but it's easier to use the symbol table. */
2421 namelen = strlen (name);
2422 if (name[0] == '_' && name[1] == '_'
2423 && ((namelen > 2 + strlen ("_from_thumb")
2424 && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
2425 strlen ("_from_thumb")) == 0)
2426 || (namelen > 2 + strlen ("_from_arm")
2427 && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
2428 strlen ("_from_arm")) == 0)))
2429 {
2430 char *target_name;
2431 int target_len = namelen - 2;
2432 struct minimal_symbol *minsym;
2433 struct objfile *objfile;
2434 struct obj_section *sec;
2435
2436 if (name[namelen - 1] == 'b')
2437 target_len -= strlen ("_from_thumb");
2438 else
2439 target_len -= strlen ("_from_arm");
2440
2441 target_name = alloca (target_len + 1);
2442 memcpy (target_name, name + 2, target_len);
2443 target_name[target_len] = '\0';
2444
2445 sec = find_pc_section (pc);
2446 objfile = (sec == NULL) ? NULL : sec->objfile;
2447 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
2448 if (minsym != NULL)
2449 return SYMBOL_VALUE_ADDRESS (minsym);
2450 else
2451 return 0;
2452 }
2453
2454 return 0; /* not a stub */
2455 }
2456
2457 static void
2458 set_arm_command (char *args, int from_tty)
2459 {
2460 printf_unfiltered (_("\
2461 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2462 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2463 }
2464
2465 static void
2466 show_arm_command (char *args, int from_tty)
2467 {
2468 cmd_show_list (showarmcmdlist, from_tty, "");
2469 }
2470
2471 static void
2472 arm_update_current_architecture (void)
2473 {
2474 struct gdbarch_info info;
2475
2476 /* If the current architecture is not ARM, we have nothing to do. */
2477 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2478 return;
2479
2480 /* Update the architecture. */
2481 gdbarch_info_init (&info);
2482
2483 if (!gdbarch_update_p (info))
2484 internal_error (__FILE__, __LINE__, "could not update architecture");
2485 }
2486
2487 static void
2488 set_fp_model_sfunc (char *args, int from_tty,
2489 struct cmd_list_element *c)
2490 {
2491 enum arm_float_model fp_model;
2492
2493 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2494 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2495 {
2496 arm_fp_model = fp_model;
2497 break;
2498 }
2499
2500 if (fp_model == ARM_FLOAT_LAST)
2501 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2502 current_fp_model);
2503
2504 arm_update_current_architecture ();
2505 }
2506
2507 static void
2508 show_fp_model (struct ui_file *file, int from_tty,
2509 struct cmd_list_element *c, const char *value)
2510 {
2511 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2512
2513 if (arm_fp_model == ARM_FLOAT_AUTO
2514 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2515 fprintf_filtered (file, _("\
2516 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2517 fp_model_strings[tdep->fp_model]);
2518 else
2519 fprintf_filtered (file, _("\
2520 The current ARM floating point model is \"%s\".\n"),
2521 fp_model_strings[arm_fp_model]);
2522 }
2523
2524 static void
2525 arm_set_abi (char *args, int from_tty,
2526 struct cmd_list_element *c)
2527 {
2528 enum arm_abi_kind arm_abi;
2529
2530 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2531 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2532 {
2533 arm_abi_global = arm_abi;
2534 break;
2535 }
2536
2537 if (arm_abi == ARM_ABI_LAST)
2538 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2539 arm_abi_string);
2540
2541 arm_update_current_architecture ();
2542 }
2543
2544 static void
2545 arm_show_abi (struct ui_file *file, int from_tty,
2546 struct cmd_list_element *c, const char *value)
2547 {
2548 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2549
2550 if (arm_abi_global == ARM_ABI_AUTO
2551 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2552 fprintf_filtered (file, _("\
2553 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2554 arm_abi_strings[tdep->arm_abi]);
2555 else
2556 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2557 arm_abi_string);
2558 }
2559
2560 /* If the user changes the register disassembly style used for info
2561 register and other commands, we have to also switch the style used
2562 in opcodes for disassembly output. This function is run in the "set
2563 arm disassembly" command, and does that. */
2564
2565 static void
2566 set_disassembly_style_sfunc (char *args, int from_tty,
2567 struct cmd_list_element *c)
2568 {
2569 set_disassembly_style ();
2570 }
2571 \f
2572 /* Return the ARM register name corresponding to register I. */
2573 static const char *
2574 arm_register_name (int i)
2575 {
2576 if (i >= ARRAY_SIZE (arm_register_names))
2577 /* These registers are only supported on targets which supply
2578 an XML description. */
2579 return "";
2580
2581 return arm_register_names[i];
2582 }
2583
2584 static void
2585 set_disassembly_style (void)
2586 {
2587 int current;
2588
2589 /* Find the style that the user wants. */
2590 for (current = 0; current < num_disassembly_options; current++)
2591 if (disassembly_style == valid_disassembly_styles[current])
2592 break;
2593 gdb_assert (current < num_disassembly_options);
2594
2595 /* Synchronize the disassembler. */
2596 set_arm_regname_option (current);
2597 }
2598
2599 /* Test whether the coff symbol specific value corresponds to a Thumb
2600 function. */
2601
2602 static int
2603 coff_sym_is_thumb (int val)
2604 {
2605 return (val == C_THUMBEXT ||
2606 val == C_THUMBSTAT ||
2607 val == C_THUMBEXTFUNC ||
2608 val == C_THUMBSTATFUNC ||
2609 val == C_THUMBLABEL);
2610 }
2611
2612 /* arm_coff_make_msymbol_special()
2613 arm_elf_make_msymbol_special()
2614
2615 These functions test whether the COFF or ELF symbol corresponds to
2616 an address in thumb code, and set a "special" bit in a minimal
2617 symbol to indicate that it does. */
2618
2619 static void
2620 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2621 {
2622 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2623 STT_ARM_TFUNC). */
2624 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2625 == STT_LOPROC)
2626 MSYMBOL_SET_SPECIAL (msym);
2627 }
2628
2629 static void
2630 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2631 {
2632 if (coff_sym_is_thumb (val))
2633 MSYMBOL_SET_SPECIAL (msym);
2634 }
2635
2636 static void
2637 arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
2638 {
2639 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
2640
2641 /* If necessary, set the T bit. */
2642 if (arm_apcs_32)
2643 {
2644 ULONGEST val;
2645 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
2646 if (arm_pc_is_thumb (pc))
2647 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, val | 0x20);
2648 else
2649 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
2650 val & ~(ULONGEST) 0x20);
2651 }
2652 }
2653
2654 static struct value *
2655 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2656 {
2657 const int *reg_p = baton;
2658 return value_of_register (*reg_p, frame);
2659 }
2660 \f
2661 static enum gdb_osabi
2662 arm_elf_osabi_sniffer (bfd *abfd)
2663 {
2664 unsigned int elfosabi;
2665 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2666
2667 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2668
2669 if (elfosabi == ELFOSABI_ARM)
2670 /* GNU tools use this value. Check note sections in this case,
2671 as well. */
2672 bfd_map_over_sections (abfd,
2673 generic_elf_osabi_sniff_abi_tag_sections,
2674 &osabi);
2675
2676 /* Anything else will be handled by the generic ELF sniffer. */
2677 return osabi;
2678 }
2679
2680 \f
2681 /* Initialize the current architecture based on INFO. If possible,
2682 re-use an architecture from ARCHES, which is a list of
2683 architectures already created during this debugging session.
2684
2685 Called e.g. at program startup, when reading a core file, and when
2686 reading a binary file. */
2687
2688 static struct gdbarch *
2689 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2690 {
2691 struct gdbarch_tdep *tdep;
2692 struct gdbarch *gdbarch;
2693 struct gdbarch_list *best_arch;
2694 enum arm_abi_kind arm_abi = arm_abi_global;
2695 enum arm_float_model fp_model = arm_fp_model;
2696 struct tdesc_arch_data *tdesc_data = NULL;
2697 int i;
2698 int have_fpa_registers = 1;
2699
2700 /* Check any target description for validity. */
2701 if (tdesc_has_registers (info.target_desc))
2702 {
2703 /* For most registers we require GDB's default names; but also allow
2704 the numeric names for sp / lr / pc, as a convenience. */
2705 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2706 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2707 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2708
2709 const struct tdesc_feature *feature;
2710 int i, valid_p;
2711
2712 feature = tdesc_find_feature (info.target_desc,
2713 "org.gnu.gdb.arm.core");
2714 if (feature == NULL)
2715 return NULL;
2716
2717 tdesc_data = tdesc_data_alloc ();
2718
2719 valid_p = 1;
2720 for (i = 0; i < ARM_SP_REGNUM; i++)
2721 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2722 arm_register_names[i]);
2723 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2724 ARM_SP_REGNUM,
2725 arm_sp_names);
2726 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2727 ARM_LR_REGNUM,
2728 arm_lr_names);
2729 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2730 ARM_PC_REGNUM,
2731 arm_pc_names);
2732 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2733 ARM_PS_REGNUM, "cpsr");
2734
2735 if (!valid_p)
2736 {
2737 tdesc_data_cleanup (tdesc_data);
2738 return NULL;
2739 }
2740
2741 feature = tdesc_find_feature (info.target_desc,
2742 "org.gnu.gdb.arm.fpa");
2743 if (feature != NULL)
2744 {
2745 valid_p = 1;
2746 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2747 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2748 arm_register_names[i]);
2749 if (!valid_p)
2750 {
2751 tdesc_data_cleanup (tdesc_data);
2752 return NULL;
2753 }
2754 }
2755 else
2756 have_fpa_registers = 0;
2757
2758 feature = tdesc_find_feature (info.target_desc,
2759 "org.gnu.gdb.xscale.iwmmxt");
2760 if (feature != NULL)
2761 {
2762 static const char *const iwmmxt_names[] = {
2763 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2764 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2765 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2766 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2767 };
2768
2769 valid_p = 1;
2770 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2771 valid_p
2772 &= tdesc_numbered_register (feature, tdesc_data, i,
2773 iwmmxt_names[i - ARM_WR0_REGNUM]);
2774
2775 /* Check for the control registers, but do not fail if they
2776 are missing. */
2777 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2778 tdesc_numbered_register (feature, tdesc_data, i,
2779 iwmmxt_names[i - ARM_WR0_REGNUM]);
2780
2781 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2782 valid_p
2783 &= tdesc_numbered_register (feature, tdesc_data, i,
2784 iwmmxt_names[i - ARM_WR0_REGNUM]);
2785
2786 if (!valid_p)
2787 {
2788 tdesc_data_cleanup (tdesc_data);
2789 return NULL;
2790 }
2791 }
2792 }
2793
2794 /* If we have an object to base this architecture on, try to determine
2795 its ABI. */
2796
2797 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
2798 {
2799 int ei_osabi, e_flags;
2800
2801 switch (bfd_get_flavour (info.abfd))
2802 {
2803 case bfd_target_aout_flavour:
2804 /* Assume it's an old APCS-style ABI. */
2805 arm_abi = ARM_ABI_APCS;
2806 break;
2807
2808 case bfd_target_coff_flavour:
2809 /* Assume it's an old APCS-style ABI. */
2810 /* XXX WinCE? */
2811 arm_abi = ARM_ABI_APCS;
2812 break;
2813
2814 case bfd_target_elf_flavour:
2815 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2816 e_flags = elf_elfheader (info.abfd)->e_flags;
2817
2818 if (ei_osabi == ELFOSABI_ARM)
2819 {
2820 /* GNU tools used to use this value, but do not for EABI
2821 objects. There's nowhere to tag an EABI version
2822 anyway, so assume APCS. */
2823 arm_abi = ARM_ABI_APCS;
2824 }
2825 else if (ei_osabi == ELFOSABI_NONE)
2826 {
2827 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2828
2829 switch (eabi_ver)
2830 {
2831 case EF_ARM_EABI_UNKNOWN:
2832 /* Assume GNU tools. */
2833 arm_abi = ARM_ABI_APCS;
2834 break;
2835
2836 case EF_ARM_EABI_VER4:
2837 case EF_ARM_EABI_VER5:
2838 arm_abi = ARM_ABI_AAPCS;
2839 /* EABI binaries default to VFP float ordering. */
2840 if (fp_model == ARM_FLOAT_AUTO)
2841 fp_model = ARM_FLOAT_SOFT_VFP;
2842 break;
2843
2844 default:
2845 /* Leave it as "auto". */
2846 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2847 break;
2848 }
2849 }
2850
2851 if (fp_model == ARM_FLOAT_AUTO)
2852 {
2853 int e_flags = elf_elfheader (info.abfd)->e_flags;
2854
2855 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2856 {
2857 case 0:
2858 /* Leave it as "auto". Strictly speaking this case
2859 means FPA, but almost nobody uses that now, and
2860 many toolchains fail to set the appropriate bits
2861 for the floating-point model they use. */
2862 break;
2863 case EF_ARM_SOFT_FLOAT:
2864 fp_model = ARM_FLOAT_SOFT_FPA;
2865 break;
2866 case EF_ARM_VFP_FLOAT:
2867 fp_model = ARM_FLOAT_VFP;
2868 break;
2869 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2870 fp_model = ARM_FLOAT_SOFT_VFP;
2871 break;
2872 }
2873 }
2874 break;
2875
2876 default:
2877 /* Leave it as "auto". */
2878 break;
2879 }
2880 }
2881
2882 /* If there is already a candidate, use it. */
2883 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2884 best_arch != NULL;
2885 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2886 {
2887 if (arm_abi != ARM_ABI_AUTO
2888 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2889 continue;
2890
2891 if (fp_model != ARM_FLOAT_AUTO
2892 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2893 continue;
2894
2895 /* Found a match. */
2896 break;
2897 }
2898
2899 if (best_arch != NULL)
2900 {
2901 if (tdesc_data != NULL)
2902 tdesc_data_cleanup (tdesc_data);
2903 return best_arch->gdbarch;
2904 }
2905
2906 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2907 gdbarch = gdbarch_alloc (&info, tdep);
2908
2909 /* Record additional information about the architecture we are defining.
2910 These are gdbarch discriminators, like the OSABI. */
2911 tdep->arm_abi = arm_abi;
2912 tdep->fp_model = fp_model;
2913 tdep->have_fpa_registers = have_fpa_registers;
2914
2915 /* Breakpoints. */
2916 switch (info.byte_order)
2917 {
2918 case BFD_ENDIAN_BIG:
2919 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2920 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2921 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2922 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2923
2924 break;
2925
2926 case BFD_ENDIAN_LITTLE:
2927 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2928 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2929 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2930 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2931
2932 break;
2933
2934 default:
2935 internal_error (__FILE__, __LINE__,
2936 _("arm_gdbarch_init: bad byte order for float format"));
2937 }
2938
2939 /* On ARM targets char defaults to unsigned. */
2940 set_gdbarch_char_signed (gdbarch, 0);
2941
2942 /* This should be low enough for everything. */
2943 tdep->lowest_pc = 0x20;
2944 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2945
2946 /* The default, for both APCS and AAPCS, is to return small
2947 structures in registers. */
2948 tdep->struct_return = reg_struct_return;
2949
2950 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2951 set_gdbarch_frame_align (gdbarch, arm_frame_align);
2952
2953 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2954
2955 /* Frame handling. */
2956 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2957 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2958 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2959
2960 frame_base_set_default (gdbarch, &arm_normal_base);
2961
2962 /* Address manipulation. */
2963 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2964 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2965
2966 /* Advance PC across function entry code. */
2967 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2968
2969 /* Skip trampolines. */
2970 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
2971
2972 /* The stack grows downward. */
2973 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2974
2975 /* Breakpoint manipulation. */
2976 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2977
2978 /* Information about registers, etc. */
2979 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2980 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2981 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2982 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
2983 set_gdbarch_register_type (gdbarch, arm_register_type);
2984
2985 /* This "info float" is FPA-specific. Use the generic version if we
2986 do not have FPA. */
2987 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
2988 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2989
2990 /* Internal <-> external register number maps. */
2991 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2992 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2993 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2994
2995 set_gdbarch_register_name (gdbarch, arm_register_name);
2996
2997 /* Returning results. */
2998 set_gdbarch_return_value (gdbarch, arm_return_value);
2999
3000 /* Disassembly. */
3001 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
3002
3003 /* Minsymbol frobbing. */
3004 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
3005 set_gdbarch_coff_make_msymbol_special (gdbarch,
3006 arm_coff_make_msymbol_special);
3007
3008 /* Virtual tables. */
3009 set_gdbarch_vbit_in_delta (gdbarch, 1);
3010
3011 /* Hook in the ABI-specific overrides, if they have been registered. */
3012 gdbarch_init_osabi (info, gdbarch);
3013
3014 /* Add some default predicates. */
3015 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
3016 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3017 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
3018
3019 /* Now we have tuned the configuration, set a few final things,
3020 based on what the OS ABI has told us. */
3021
3022 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
3023 binaries are always marked. */
3024 if (tdep->arm_abi == ARM_ABI_AUTO)
3025 tdep->arm_abi = ARM_ABI_APCS;
3026
3027 /* We used to default to FPA for generic ARM, but almost nobody
3028 uses that now, and we now provide a way for the user to force
3029 the model. So default to the most useful variant. */
3030 if (tdep->fp_model == ARM_FLOAT_AUTO)
3031 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
3032
3033 if (tdep->jb_pc >= 0)
3034 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3035
3036 /* Floating point sizes and format. */
3037 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3038 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
3039 {
3040 set_gdbarch_double_format
3041 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3042 set_gdbarch_long_double_format
3043 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3044 }
3045 else
3046 {
3047 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3048 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
3049 }
3050
3051 if (tdesc_data)
3052 tdesc_use_registers (gdbarch, tdesc_data);
3053
3054 /* Add standard register aliases. We add aliases even for those
3055 nanes which are used by the current architecture - it's simpler,
3056 and does no harm, since nothing ever lists user registers. */
3057 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3058 user_reg_add (gdbarch, arm_register_aliases[i].name,
3059 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3060
3061 return gdbarch;
3062 }
3063
3064 static void
3065 arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3066 {
3067 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3068
3069 if (tdep == NULL)
3070 return;
3071
3072 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
3073 (unsigned long) tdep->lowest_pc);
3074 }
3075
3076 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3077
3078 void
3079 _initialize_arm_tdep (void)
3080 {
3081 struct ui_file *stb;
3082 long length;
3083 struct cmd_list_element *new_set, *new_show;
3084 const char *setname;
3085 const char *setdesc;
3086 const char *const *regnames;
3087 int numregs, i, j;
3088 static char *helptext;
3089 char regdesc[1024], *rdptr = regdesc;
3090 size_t rest = sizeof (regdesc);
3091
3092 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3093
3094 /* Register an ELF OS ABI sniffer for ARM binaries. */
3095 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3096 bfd_target_elf_flavour,
3097 arm_elf_osabi_sniffer);
3098
3099 /* Get the number of possible sets of register names defined in opcodes. */
3100 num_disassembly_options = get_arm_regname_num_options ();
3101
3102 /* Add root prefix command for all "set arm"/"show arm" commands. */
3103 add_prefix_cmd ("arm", no_class, set_arm_command,
3104 _("Various ARM-specific commands."),
3105 &setarmcmdlist, "set arm ", 0, &setlist);
3106
3107 add_prefix_cmd ("arm", no_class, show_arm_command,
3108 _("Various ARM-specific commands."),
3109 &showarmcmdlist, "show arm ", 0, &showlist);
3110
3111 /* Sync the opcode insn printer with our register viewer. */
3112 parse_arm_disassembler_option ("reg-names-std");
3113
3114 /* Initialize the array that will be passed to
3115 add_setshow_enum_cmd(). */
3116 valid_disassembly_styles
3117 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3118 for (i = 0; i < num_disassembly_options; i++)
3119 {
3120 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3121 valid_disassembly_styles[i] = setname;
3122 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3123 rdptr += length;
3124 rest -= length;
3125 /* When we find the default names, tell the disassembler to use
3126 them. */
3127 if (!strcmp (setname, "std"))
3128 {
3129 disassembly_style = setname;
3130 set_arm_regname_option (i);
3131 }
3132 }
3133 /* Mark the end of valid options. */
3134 valid_disassembly_styles[num_disassembly_options] = NULL;
3135
3136 /* Create the help text. */
3137 stb = mem_fileopen ();
3138 fprintf_unfiltered (stb, "%s%s%s",
3139 _("The valid values are:\n"),
3140 regdesc,
3141 _("The default is \"std\"."));
3142 helptext = ui_file_xstrdup (stb, &length);
3143 ui_file_delete (stb);
3144
3145 add_setshow_enum_cmd("disassembler", no_class,
3146 valid_disassembly_styles, &disassembly_style,
3147 _("Set the disassembly style."),
3148 _("Show the disassembly style."),
3149 helptext,
3150 set_disassembly_style_sfunc,
3151 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
3152 &setarmcmdlist, &showarmcmdlist);
3153
3154 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3155 _("Set usage of ARM 32-bit mode."),
3156 _("Show usage of ARM 32-bit mode."),
3157 _("When off, a 26-bit PC will be used."),
3158 NULL,
3159 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
3160 &setarmcmdlist, &showarmcmdlist);
3161
3162 /* Add a command to allow the user to force the FPU model. */
3163 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3164 _("Set the floating point type."),
3165 _("Show the floating point type."),
3166 _("auto - Determine the FP typefrom the OS-ABI.\n\
3167 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3168 fpa - FPA co-processor (GCC compiled).\n\
3169 softvfp - Software FP with pure-endian doubles.\n\
3170 vfp - VFP co-processor."),
3171 set_fp_model_sfunc, show_fp_model,
3172 &setarmcmdlist, &showarmcmdlist);
3173
3174 /* Add a command to allow the user to force the ABI. */
3175 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3176 _("Set the ABI."),
3177 _("Show the ABI."),
3178 NULL, arm_set_abi, arm_show_abi,
3179 &setarmcmdlist, &showarmcmdlist);
3180
3181 /* Debugging flag. */
3182 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3183 _("Set ARM debugging."),
3184 _("Show ARM debugging."),
3185 _("When on, arm-specific debugging is enabled."),
3186 NULL,
3187 NULL, /* FIXME: i18n: "ARM debugging is %s. */
3188 &setdebuglist, &showdebuglist);
3189 }
This page took 0.099653 seconds and 4 git commands to generate.