Add enum for mips breakpoint kinds
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include <ctype.h> /* XXX for isupper (). */
23
24 #include "frame.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "dis-asm.h" /* For register styles. */
30 #include "regcache.h"
31 #include "reggroups.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "arch-utils.h"
35 #include "osabi.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "trad-frame.h"
39 #include "objfiles.h"
40 #include "dwarf2-frame.h"
41 #include "gdbtypes.h"
42 #include "prologue-value.h"
43 #include "remote.h"
44 #include "target-descriptions.h"
45 #include "user-regs.h"
46 #include "observer.h"
47
48 #include "arch/arm.h"
49 #include "arch/arm-get-next-pcs.h"
50 #include "arm-tdep.h"
51 #include "gdb/sim-arm.h"
52
53 #include "elf-bfd.h"
54 #include "coff/internal.h"
55 #include "elf/arm.h"
56
57 #include "vec.h"
58
59 #include "record.h"
60 #include "record-full.h"
61 #include <algorithm>
62
63 #include "features/arm/arm-with-m.c"
64 #include "features/arm/arm-with-m-fpa-layout.c"
65 #include "features/arm/arm-with-m-vfp-d16.c"
66 #include "features/arm/arm-with-iwmmxt.c"
67 #include "features/arm/arm-with-vfpv2.c"
68 #include "features/arm/arm-with-vfpv3.c"
69 #include "features/arm/arm-with-neon.c"
70
71 static int arm_debug;
72
73 /* Macros for setting and testing a bit in a minimal symbol that marks
74 it as Thumb function. The MSB of the minimal symbol's "info" field
75 is used for this purpose.
76
77 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
78 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
79
80 #define MSYMBOL_SET_SPECIAL(msym) \
81 MSYMBOL_TARGET_FLAG_1 (msym) = 1
82
83 #define MSYMBOL_IS_SPECIAL(msym) \
84 MSYMBOL_TARGET_FLAG_1 (msym)
85
86 /* Per-objfile data used for mapping symbols. */
87 static const struct objfile_data *arm_objfile_data_key;
88
89 struct arm_mapping_symbol
90 {
91 bfd_vma value;
92 char type;
93 };
94 typedef struct arm_mapping_symbol arm_mapping_symbol_s;
95 DEF_VEC_O(arm_mapping_symbol_s);
96
97 struct arm_per_objfile
98 {
99 VEC(arm_mapping_symbol_s) **section_maps;
100 };
101
102 /* The list of available "set arm ..." and "show arm ..." commands. */
103 static struct cmd_list_element *setarmcmdlist = NULL;
104 static struct cmd_list_element *showarmcmdlist = NULL;
105
106 /* The type of floating-point to use. Keep this in sync with enum
107 arm_float_model, and the help string in _initialize_arm_tdep. */
108 static const char *const fp_model_strings[] =
109 {
110 "auto",
111 "softfpa",
112 "fpa",
113 "softvfp",
114 "vfp",
115 NULL
116 };
117
118 /* A variable that can be configured by the user. */
119 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
120 static const char *current_fp_model = "auto";
121
122 /* The ABI to use. Keep this in sync with arm_abi_kind. */
123 static const char *const arm_abi_strings[] =
124 {
125 "auto",
126 "APCS",
127 "AAPCS",
128 NULL
129 };
130
131 /* A variable that can be configured by the user. */
132 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
133 static const char *arm_abi_string = "auto";
134
135 /* The execution mode to assume. */
136 static const char *const arm_mode_strings[] =
137 {
138 "auto",
139 "arm",
140 "thumb",
141 NULL
142 };
143
144 static const char *arm_fallback_mode_string = "auto";
145 static const char *arm_force_mode_string = "auto";
146
147 /* Internal override of the execution mode. -1 means no override,
148 0 means override to ARM mode, 1 means override to Thumb mode.
149 The effect is the same as if arm_force_mode has been set by the
150 user (except the internal override has precedence over a user's
151 arm_force_mode override). */
152 static int arm_override_mode = -1;
153
154 /* Number of different reg name sets (options). */
155 static int num_disassembly_options;
156
157 /* The standard register names, and all the valid aliases for them. Note
158 that `fp', `sp' and `pc' are not added in this alias list, because they
159 have been added as builtin user registers in
160 std-regs.c:_initialize_frame_reg. */
161 static const struct
162 {
163 const char *name;
164 int regnum;
165 } arm_register_aliases[] = {
166 /* Basic register numbers. */
167 { "r0", 0 },
168 { "r1", 1 },
169 { "r2", 2 },
170 { "r3", 3 },
171 { "r4", 4 },
172 { "r5", 5 },
173 { "r6", 6 },
174 { "r7", 7 },
175 { "r8", 8 },
176 { "r9", 9 },
177 { "r10", 10 },
178 { "r11", 11 },
179 { "r12", 12 },
180 { "r13", 13 },
181 { "r14", 14 },
182 { "r15", 15 },
183 /* Synonyms (argument and variable registers). */
184 { "a1", 0 },
185 { "a2", 1 },
186 { "a3", 2 },
187 { "a4", 3 },
188 { "v1", 4 },
189 { "v2", 5 },
190 { "v3", 6 },
191 { "v4", 7 },
192 { "v5", 8 },
193 { "v6", 9 },
194 { "v7", 10 },
195 { "v8", 11 },
196 /* Other platform-specific names for r9. */
197 { "sb", 9 },
198 { "tr", 9 },
199 /* Special names. */
200 { "ip", 12 },
201 { "lr", 14 },
202 /* Names used by GCC (not listed in the ARM EABI). */
203 { "sl", 10 },
204 /* A special name from the older ATPCS. */
205 { "wr", 7 },
206 };
207
208 static const char *const arm_register_names[] =
209 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
210 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
211 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
212 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
213 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
214 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
215 "fps", "cpsr" }; /* 24 25 */
216
217 /* Valid register name styles. */
218 static const char **valid_disassembly_styles;
219
220 /* Disassembly style to use. Default to "std" register names. */
221 static const char *disassembly_style;
222
223 /* This is used to keep the bfd arch_info in sync with the disassembly
224 style. */
225 static void set_disassembly_style_sfunc(char *, int,
226 struct cmd_list_element *);
227 static void set_disassembly_style (void);
228
229 static void convert_from_extended (const struct floatformat *, const void *,
230 void *, int);
231 static void convert_to_extended (const struct floatformat *, void *,
232 const void *, int);
233
234 static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch,
235 struct regcache *regcache,
236 int regnum, gdb_byte *buf);
237 static void arm_neon_quad_write (struct gdbarch *gdbarch,
238 struct regcache *regcache,
239 int regnum, const gdb_byte *buf);
240
241 static CORE_ADDR
242 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
243
244
245 /* get_next_pcs operations. */
246 static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = {
247 arm_get_next_pcs_read_memory_unsigned_integer,
248 arm_get_next_pcs_syscall_next_pc,
249 arm_get_next_pcs_addr_bits_remove,
250 arm_get_next_pcs_is_thumb,
251 NULL,
252 };
253
254 struct arm_prologue_cache
255 {
256 /* The stack pointer at the time this frame was created; i.e. the
257 caller's stack pointer when this function was called. It is used
258 to identify this frame. */
259 CORE_ADDR prev_sp;
260
261 /* The frame base for this frame is just prev_sp - frame size.
262 FRAMESIZE is the distance from the frame pointer to the
263 initial stack pointer. */
264
265 int framesize;
266
267 /* The register used to hold the frame pointer for this frame. */
268 int framereg;
269
270 /* Saved register offsets. */
271 struct trad_frame_saved_reg *saved_regs;
272 };
273
274 static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
275 CORE_ADDR prologue_start,
276 CORE_ADDR prologue_end,
277 struct arm_prologue_cache *cache);
278
279 /* Architecture version for displaced stepping. This effects the behaviour of
280 certain instructions, and really should not be hard-wired. */
281
282 #define DISPLACED_STEPPING_ARCH_VERSION 5
283
284 /* Set to true if the 32-bit mode is in use. */
285
286 int arm_apcs_32 = 1;
287
288 /* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
289
290 int
291 arm_psr_thumb_bit (struct gdbarch *gdbarch)
292 {
293 if (gdbarch_tdep (gdbarch)->is_m)
294 return XPSR_T;
295 else
296 return CPSR_T;
297 }
298
299 /* Determine if the processor is currently executing in Thumb mode. */
300
301 int
302 arm_is_thumb (struct regcache *regcache)
303 {
304 ULONGEST cpsr;
305 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regcache));
306
307 cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM);
308
309 return (cpsr & t_bit) != 0;
310 }
311
312 /* Determine if FRAME is executing in Thumb mode. */
313
314 int
315 arm_frame_is_thumb (struct frame_info *frame)
316 {
317 CORE_ADDR cpsr;
318 ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame));
319
320 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
321 directly (from a signal frame or dummy frame) or by interpreting
322 the saved LR (from a prologue or DWARF frame). So consult it and
323 trust the unwinders. */
324 cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
325
326 return (cpsr & t_bit) != 0;
327 }
328
329 /* Callback for VEC_lower_bound. */
330
331 static inline int
332 arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
333 const struct arm_mapping_symbol *rhs)
334 {
335 return lhs->value < rhs->value;
336 }
337
338 /* Search for the mapping symbol covering MEMADDR. If one is found,
339 return its type. Otherwise, return 0. If START is non-NULL,
340 set *START to the location of the mapping symbol. */
341
342 static char
343 arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
344 {
345 struct obj_section *sec;
346
347 /* If there are mapping symbols, consult them. */
348 sec = find_pc_section (memaddr);
349 if (sec != NULL)
350 {
351 struct arm_per_objfile *data;
352 VEC(arm_mapping_symbol_s) *map;
353 struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec),
354 0 };
355 unsigned int idx;
356
357 data = (struct arm_per_objfile *) objfile_data (sec->objfile,
358 arm_objfile_data_key);
359 if (data != NULL)
360 {
361 map = data->section_maps[sec->the_bfd_section->index];
362 if (!VEC_empty (arm_mapping_symbol_s, map))
363 {
364 struct arm_mapping_symbol *map_sym;
365
366 idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
367 arm_compare_mapping_symbols);
368
369 /* VEC_lower_bound finds the earliest ordered insertion
370 point. If the following symbol starts at this exact
371 address, we use that; otherwise, the preceding
372 mapping symbol covers this address. */
373 if (idx < VEC_length (arm_mapping_symbol_s, map))
374 {
375 map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
376 if (map_sym->value == map_key.value)
377 {
378 if (start)
379 *start = map_sym->value + obj_section_addr (sec);
380 return map_sym->type;
381 }
382 }
383
384 if (idx > 0)
385 {
386 map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
387 if (start)
388 *start = map_sym->value + obj_section_addr (sec);
389 return map_sym->type;
390 }
391 }
392 }
393 }
394
395 return 0;
396 }
397
398 /* Determine if the program counter specified in MEMADDR is in a Thumb
399 function. This function should be called for addresses unrelated to
400 any executing frame; otherwise, prefer arm_frame_is_thumb. */
401
402 int
403 arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
404 {
405 struct bound_minimal_symbol sym;
406 char type;
407 struct displaced_step_closure* dsc
408 = get_displaced_step_closure_by_addr(memaddr);
409
410 /* If checking the mode of displaced instruction in copy area, the mode
411 should be determined by instruction on the original address. */
412 if (dsc)
413 {
414 if (debug_displaced)
415 fprintf_unfiltered (gdb_stdlog,
416 "displaced: check mode of %.8lx instead of %.8lx\n",
417 (unsigned long) dsc->insn_addr,
418 (unsigned long) memaddr);
419 memaddr = dsc->insn_addr;
420 }
421
422 /* If bit 0 of the address is set, assume this is a Thumb address. */
423 if (IS_THUMB_ADDR (memaddr))
424 return 1;
425
426 /* Respect internal mode override if active. */
427 if (arm_override_mode != -1)
428 return arm_override_mode;
429
430 /* If the user wants to override the symbol table, let him. */
431 if (strcmp (arm_force_mode_string, "arm") == 0)
432 return 0;
433 if (strcmp (arm_force_mode_string, "thumb") == 0)
434 return 1;
435
436 /* ARM v6-M and v7-M are always in Thumb mode. */
437 if (gdbarch_tdep (gdbarch)->is_m)
438 return 1;
439
440 /* If there are mapping symbols, consult them. */
441 type = arm_find_mapping_symbol (memaddr, NULL);
442 if (type)
443 return type == 't';
444
445 /* Thumb functions have a "special" bit set in minimal symbols. */
446 sym = lookup_minimal_symbol_by_pc (memaddr);
447 if (sym.minsym)
448 return (MSYMBOL_IS_SPECIAL (sym.minsym));
449
450 /* If the user wants to override the fallback mode, let them. */
451 if (strcmp (arm_fallback_mode_string, "arm") == 0)
452 return 0;
453 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
454 return 1;
455
456 /* If we couldn't find any symbol, but we're talking to a running
457 target, then trust the current value of $cpsr. This lets
458 "display/i $pc" always show the correct mode (though if there is
459 a symbol table we will not reach here, so it still may not be
460 displayed in the mode it will be executed). */
461 if (target_has_registers)
462 return arm_frame_is_thumb (get_current_frame ());
463
464 /* Otherwise we're out of luck; we assume ARM. */
465 return 0;
466 }
467
468 /* Determine if the address specified equals any of these magic return
469 values, called EXC_RETURN, defined by the ARM v6-M and v7-M
470 architectures.
471
472 From ARMv6-M Reference Manual B1.5.8
473 Table B1-5 Exception return behavior
474
475 EXC_RETURN Return To Return Stack
476 0xFFFFFFF1 Handler mode Main
477 0xFFFFFFF9 Thread mode Main
478 0xFFFFFFFD Thread mode Process
479
480 From ARMv7-M Reference Manual B1.5.8
481 Table B1-8 EXC_RETURN definition of exception return behavior, no FP
482
483 EXC_RETURN Return To Return Stack
484 0xFFFFFFF1 Handler mode Main
485 0xFFFFFFF9 Thread mode Main
486 0xFFFFFFFD Thread mode Process
487
488 Table B1-9 EXC_RETURN definition of exception return behavior, with
489 FP
490
491 EXC_RETURN Return To Return Stack Frame Type
492 0xFFFFFFE1 Handler mode Main Extended
493 0xFFFFFFE9 Thread mode Main Extended
494 0xFFFFFFED Thread mode Process Extended
495 0xFFFFFFF1 Handler mode Main Basic
496 0xFFFFFFF9 Thread mode Main Basic
497 0xFFFFFFFD Thread mode Process Basic
498
499 For more details see "B1.5.8 Exception return behavior"
500 in both ARMv6-M and ARMv7-M Architecture Reference Manuals. */
501
502 static int
503 arm_m_addr_is_magic (CORE_ADDR addr)
504 {
505 switch (addr)
506 {
507 /* Values from Tables in B1.5.8 the EXC_RETURN definitions of
508 the exception return behavior. */
509 case 0xffffffe1:
510 case 0xffffffe9:
511 case 0xffffffed:
512 case 0xfffffff1:
513 case 0xfffffff9:
514 case 0xfffffffd:
515 /* Address is magic. */
516 return 1;
517
518 default:
519 /* Address is not magic. */
520 return 0;
521 }
522 }
523
524 /* Remove useless bits from addresses in a running program. */
525 static CORE_ADDR
526 arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
527 {
528 /* On M-profile devices, do not strip the low bit from EXC_RETURN
529 (the magic exception return address). */
530 if (gdbarch_tdep (gdbarch)->is_m
531 && arm_m_addr_is_magic (val))
532 return val;
533
534 if (arm_apcs_32)
535 return UNMAKE_THUMB_ADDR (val);
536 else
537 return (val & 0x03fffffc);
538 }
539
540 /* Return 1 if PC is the start of a compiler helper function which
541 can be safely ignored during prologue skipping. IS_THUMB is true
542 if the function is known to be a Thumb function due to the way it
543 is being called. */
544 static int
545 skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
546 {
547 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
548 struct bound_minimal_symbol msym;
549
550 msym = lookup_minimal_symbol_by_pc (pc);
551 if (msym.minsym != NULL
552 && BMSYMBOL_VALUE_ADDRESS (msym) == pc
553 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL)
554 {
555 const char *name = MSYMBOL_LINKAGE_NAME (msym.minsym);
556
557 /* The GNU linker's Thumb call stub to foo is named
558 __foo_from_thumb. */
559 if (strstr (name, "_from_thumb") != NULL)
560 name += 2;
561
562 /* On soft-float targets, __truncdfsf2 is called to convert promoted
563 arguments to their argument types in non-prototyped
564 functions. */
565 if (startswith (name, "__truncdfsf2"))
566 return 1;
567 if (startswith (name, "__aeabi_d2f"))
568 return 1;
569
570 /* Internal functions related to thread-local storage. */
571 if (startswith (name, "__tls_get_addr"))
572 return 1;
573 if (startswith (name, "__aeabi_read_tp"))
574 return 1;
575 }
576 else
577 {
578 /* If we run against a stripped glibc, we may be unable to identify
579 special functions by name. Check for one important case,
580 __aeabi_read_tp, by comparing the *code* against the default
581 implementation (this is hand-written ARM assembler in glibc). */
582
583 if (!is_thumb
584 && read_memory_unsigned_integer (pc, 4, byte_order_for_code)
585 == 0xe3e00a0f /* mov r0, #0xffff0fff */
586 && read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code)
587 == 0xe240f01f) /* sub pc, r0, #31 */
588 return 1;
589 }
590
591 return 0;
592 }
593
594 /* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
595 the first 16-bit of instruction, and INSN2 is the second 16-bit of
596 instruction. */
597 #define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
598 ((bits ((insn1), 0, 3) << 12) \
599 | (bits ((insn1), 10, 10) << 11) \
600 | (bits ((insn2), 12, 14) << 8) \
601 | bits ((insn2), 0, 7))
602
603 /* Extract the immediate from instruction movw/movt of encoding A. INSN is
604 the 32-bit instruction. */
605 #define EXTRACT_MOVW_MOVT_IMM_A(insn) \
606 ((bits ((insn), 16, 19) << 12) \
607 | bits ((insn), 0, 11))
608
609 /* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
610
611 static unsigned int
612 thumb_expand_immediate (unsigned int imm)
613 {
614 unsigned int count = imm >> 7;
615
616 if (count < 8)
617 switch (count / 2)
618 {
619 case 0:
620 return imm & 0xff;
621 case 1:
622 return (imm & 0xff) | ((imm & 0xff) << 16);
623 case 2:
624 return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
625 case 3:
626 return (imm & 0xff) | ((imm & 0xff) << 8)
627 | ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
628 }
629
630 return (0x80 | (imm & 0x7f)) << (32 - count);
631 }
632
633 /* Return 1 if the 16-bit Thumb instruction INSN restores SP in
634 epilogue, 0 otherwise. */
635
636 static int
637 thumb_instruction_restores_sp (unsigned short insn)
638 {
639 return (insn == 0x46bd /* mov sp, r7 */
640 || (insn & 0xff80) == 0xb000 /* add sp, imm */
641 || (insn & 0xfe00) == 0xbc00); /* pop <registers> */
642 }
643
644 /* Analyze a Thumb prologue, looking for a recognizable stack frame
645 and frame pointer. Scan until we encounter a store that could
646 clobber the stack frame unexpectedly, or an unknown instruction.
647 Return the last address which is definitely safe to skip for an
648 initial breakpoint. */
649
650 static CORE_ADDR
651 thumb_analyze_prologue (struct gdbarch *gdbarch,
652 CORE_ADDR start, CORE_ADDR limit,
653 struct arm_prologue_cache *cache)
654 {
655 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
656 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
657 int i;
658 pv_t regs[16];
659 struct pv_area *stack;
660 struct cleanup *back_to;
661 CORE_ADDR offset;
662 CORE_ADDR unrecognized_pc = 0;
663
664 for (i = 0; i < 16; i++)
665 regs[i] = pv_register (i, 0);
666 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
667 back_to = make_cleanup_free_pv_area (stack);
668
669 while (start < limit)
670 {
671 unsigned short insn;
672
673 insn = read_memory_unsigned_integer (start, 2, byte_order_for_code);
674
675 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
676 {
677 int regno;
678 int mask;
679
680 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
681 break;
682
683 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
684 whether to save LR (R14). */
685 mask = (insn & 0xff) | ((insn & 0x100) << 6);
686
687 /* Calculate offsets of saved R0-R7 and LR. */
688 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
689 if (mask & (1 << regno))
690 {
691 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
692 -4);
693 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
694 }
695 }
696 else if ((insn & 0xff80) == 0xb080) /* sub sp, #imm */
697 {
698 offset = (insn & 0x7f) << 2; /* get scaled offset */
699 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
700 -offset);
701 }
702 else if (thumb_instruction_restores_sp (insn))
703 {
704 /* Don't scan past the epilogue. */
705 break;
706 }
707 else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */
708 regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
709 (insn & 0xff) << 2);
710 else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
711 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
712 regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
713 bits (insn, 6, 8));
714 else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */
715 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
716 regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
717 bits (insn, 0, 7));
718 else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
719 && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
720 && pv_is_constant (regs[bits (insn, 3, 5)]))
721 regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
722 regs[bits (insn, 6, 8)]);
723 else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */
724 && pv_is_constant (regs[bits (insn, 3, 6)]))
725 {
726 int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
727 int rm = bits (insn, 3, 6);
728 regs[rd] = pv_add (regs[rd], regs[rm]);
729 }
730 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
731 {
732 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
733 int src_reg = (insn & 0x78) >> 3;
734 regs[dst_reg] = regs[src_reg];
735 }
736 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
737 {
738 /* Handle stores to the stack. Normally pushes are used,
739 but with GCC -mtpcs-frame, there may be other stores
740 in the prologue to create the frame. */
741 int regno = (insn >> 8) & 0x7;
742 pv_t addr;
743
744 offset = (insn & 0xff) << 2;
745 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
746
747 if (pv_area_store_would_trash (stack, addr))
748 break;
749
750 pv_area_store (stack, addr, 4, regs[regno]);
751 }
752 else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */
753 {
754 int rd = bits (insn, 0, 2);
755 int rn = bits (insn, 3, 5);
756 pv_t addr;
757
758 offset = bits (insn, 6, 10) << 2;
759 addr = pv_add_constant (regs[rn], offset);
760
761 if (pv_area_store_would_trash (stack, addr))
762 break;
763
764 pv_area_store (stack, addr, 4, regs[rd]);
765 }
766 else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
767 || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
768 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
769 /* Ignore stores of argument registers to the stack. */
770 ;
771 else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
772 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
773 /* Ignore block loads from the stack, potentially copying
774 parameters from memory. */
775 ;
776 else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
777 || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
778 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
779 /* Similarly ignore single loads from the stack. */
780 ;
781 else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
782 || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
783 /* Skip register copies, i.e. saves to another register
784 instead of the stack. */
785 ;
786 else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */
787 /* Recognize constant loads; even with small stacks these are necessary
788 on Thumb. */
789 regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
790 else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
791 {
792 /* Constant pool loads, for the same reason. */
793 unsigned int constant;
794 CORE_ADDR loc;
795
796 loc = start + 4 + bits (insn, 0, 7) * 4;
797 constant = read_memory_unsigned_integer (loc, 4, byte_order);
798 regs[bits (insn, 8, 10)] = pv_constant (constant);
799 }
800 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */
801 {
802 unsigned short inst2;
803
804 inst2 = read_memory_unsigned_integer (start + 2, 2,
805 byte_order_for_code);
806
807 if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
808 {
809 /* BL, BLX. Allow some special function calls when
810 skipping the prologue; GCC generates these before
811 storing arguments to the stack. */
812 CORE_ADDR nextpc;
813 int j1, j2, imm1, imm2;
814
815 imm1 = sbits (insn, 0, 10);
816 imm2 = bits (inst2, 0, 10);
817 j1 = bit (inst2, 13);
818 j2 = bit (inst2, 11);
819
820 offset = ((imm1 << 12) + (imm2 << 1));
821 offset ^= ((!j2) << 22) | ((!j1) << 23);
822
823 nextpc = start + 4 + offset;
824 /* For BLX make sure to clear the low bits. */
825 if (bit (inst2, 12) == 0)
826 nextpc = nextpc & 0xfffffffc;
827
828 if (!skip_prologue_function (gdbarch, nextpc,
829 bit (inst2, 12) != 0))
830 break;
831 }
832
833 else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!},
834 { registers } */
835 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
836 {
837 pv_t addr = regs[bits (insn, 0, 3)];
838 int regno;
839
840 if (pv_area_store_would_trash (stack, addr))
841 break;
842
843 /* Calculate offsets of saved registers. */
844 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
845 if (inst2 & (1 << regno))
846 {
847 addr = pv_add_constant (addr, -4);
848 pv_area_store (stack, addr, 4, regs[regno]);
849 }
850
851 if (insn & 0x0020)
852 regs[bits (insn, 0, 3)] = addr;
853 }
854
855 else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2,
856 [Rn, #+/-imm]{!} */
857 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
858 {
859 int regno1 = bits (inst2, 12, 15);
860 int regno2 = bits (inst2, 8, 11);
861 pv_t addr = regs[bits (insn, 0, 3)];
862
863 offset = inst2 & 0xff;
864 if (insn & 0x0080)
865 addr = pv_add_constant (addr, offset);
866 else
867 addr = pv_add_constant (addr, -offset);
868
869 if (pv_area_store_would_trash (stack, addr))
870 break;
871
872 pv_area_store (stack, addr, 4, regs[regno1]);
873 pv_area_store (stack, pv_add_constant (addr, 4),
874 4, regs[regno2]);
875
876 if (insn & 0x0020)
877 regs[bits (insn, 0, 3)] = addr;
878 }
879
880 else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
881 && (inst2 & 0x0c00) == 0x0c00
882 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
883 {
884 int regno = bits (inst2, 12, 15);
885 pv_t addr = regs[bits (insn, 0, 3)];
886
887 offset = inst2 & 0xff;
888 if (inst2 & 0x0200)
889 addr = pv_add_constant (addr, offset);
890 else
891 addr = pv_add_constant (addr, -offset);
892
893 if (pv_area_store_would_trash (stack, addr))
894 break;
895
896 pv_area_store (stack, addr, 4, regs[regno]);
897
898 if (inst2 & 0x0100)
899 regs[bits (insn, 0, 3)] = addr;
900 }
901
902 else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
903 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
904 {
905 int regno = bits (inst2, 12, 15);
906 pv_t addr;
907
908 offset = inst2 & 0xfff;
909 addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
910
911 if (pv_area_store_would_trash (stack, addr))
912 break;
913
914 pv_area_store (stack, addr, 4, regs[regno]);
915 }
916
917 else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
918 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
919 /* Ignore stores of argument registers to the stack. */
920 ;
921
922 else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
923 && (inst2 & 0x0d00) == 0x0c00
924 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
925 /* Ignore stores of argument registers to the stack. */
926 ;
927
928 else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!],
929 { registers } */
930 && (inst2 & 0x8000) == 0x0000
931 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
932 /* Ignore block loads from the stack, potentially copying
933 parameters from memory. */
934 ;
935
936 else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2,
937 [Rn, #+/-imm] */
938 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
939 /* Similarly ignore dual loads from the stack. */
940 ;
941
942 else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
943 && (inst2 & 0x0d00) == 0x0c00
944 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
945 /* Similarly ignore single loads from the stack. */
946 ;
947
948 else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
949 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
950 /* Similarly ignore single loads from the stack. */
951 ;
952
953 else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
954 && (inst2 & 0x8000) == 0x0000)
955 {
956 unsigned int imm = ((bits (insn, 10, 10) << 11)
957 | (bits (inst2, 12, 14) << 8)
958 | bits (inst2, 0, 7));
959
960 regs[bits (inst2, 8, 11)]
961 = pv_add_constant (regs[bits (insn, 0, 3)],
962 thumb_expand_immediate (imm));
963 }
964
965 else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
966 && (inst2 & 0x8000) == 0x0000)
967 {
968 unsigned int imm = ((bits (insn, 10, 10) << 11)
969 | (bits (inst2, 12, 14) << 8)
970 | bits (inst2, 0, 7));
971
972 regs[bits (inst2, 8, 11)]
973 = pv_add_constant (regs[bits (insn, 0, 3)], imm);
974 }
975
976 else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
977 && (inst2 & 0x8000) == 0x0000)
978 {
979 unsigned int imm = ((bits (insn, 10, 10) << 11)
980 | (bits (inst2, 12, 14) << 8)
981 | bits (inst2, 0, 7));
982
983 regs[bits (inst2, 8, 11)]
984 = pv_add_constant (regs[bits (insn, 0, 3)],
985 - (CORE_ADDR) thumb_expand_immediate (imm));
986 }
987
988 else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
989 && (inst2 & 0x8000) == 0x0000)
990 {
991 unsigned int imm = ((bits (insn, 10, 10) << 11)
992 | (bits (inst2, 12, 14) << 8)
993 | bits (inst2, 0, 7));
994
995 regs[bits (inst2, 8, 11)]
996 = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
997 }
998
999 else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */
1000 {
1001 unsigned int imm = ((bits (insn, 10, 10) << 11)
1002 | (bits (inst2, 12, 14) << 8)
1003 | bits (inst2, 0, 7));
1004
1005 regs[bits (inst2, 8, 11)]
1006 = pv_constant (thumb_expand_immediate (imm));
1007 }
1008
1009 else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
1010 {
1011 unsigned int imm
1012 = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
1013
1014 regs[bits (inst2, 8, 11)] = pv_constant (imm);
1015 }
1016
1017 else if (insn == 0xea5f /* mov.w Rd,Rm */
1018 && (inst2 & 0xf0f0) == 0)
1019 {
1020 int dst_reg = (inst2 & 0x0f00) >> 8;
1021 int src_reg = inst2 & 0xf;
1022 regs[dst_reg] = regs[src_reg];
1023 }
1024
1025 else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
1026 {
1027 /* Constant pool loads. */
1028 unsigned int constant;
1029 CORE_ADDR loc;
1030
1031 offset = bits (inst2, 0, 11);
1032 if (insn & 0x0080)
1033 loc = start + 4 + offset;
1034 else
1035 loc = start + 4 - offset;
1036
1037 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1038 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1039 }
1040
1041 else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
1042 {
1043 /* Constant pool loads. */
1044 unsigned int constant;
1045 CORE_ADDR loc;
1046
1047 offset = bits (inst2, 0, 7) << 2;
1048 if (insn & 0x0080)
1049 loc = start + 4 + offset;
1050 else
1051 loc = start + 4 - offset;
1052
1053 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1054 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1055
1056 constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
1057 regs[bits (inst2, 8, 11)] = pv_constant (constant);
1058 }
1059
1060 else if (thumb2_instruction_changes_pc (insn, inst2))
1061 {
1062 /* Don't scan past anything that might change control flow. */
1063 break;
1064 }
1065 else
1066 {
1067 /* The optimizer might shove anything into the prologue,
1068 so we just skip what we don't recognize. */
1069 unrecognized_pc = start;
1070 }
1071
1072 start += 2;
1073 }
1074 else if (thumb_instruction_changes_pc (insn))
1075 {
1076 /* Don't scan past anything that might change control flow. */
1077 break;
1078 }
1079 else
1080 {
1081 /* The optimizer might shove anything into the prologue,
1082 so we just skip what we don't recognize. */
1083 unrecognized_pc = start;
1084 }
1085
1086 start += 2;
1087 }
1088
1089 if (arm_debug)
1090 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1091 paddress (gdbarch, start));
1092
1093 if (unrecognized_pc == 0)
1094 unrecognized_pc = start;
1095
1096 if (cache == NULL)
1097 {
1098 do_cleanups (back_to);
1099 return unrecognized_pc;
1100 }
1101
1102 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1103 {
1104 /* Frame pointer is fp. Frame size is constant. */
1105 cache->framereg = ARM_FP_REGNUM;
1106 cache->framesize = -regs[ARM_FP_REGNUM].k;
1107 }
1108 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
1109 {
1110 /* Frame pointer is r7. Frame size is constant. */
1111 cache->framereg = THUMB_FP_REGNUM;
1112 cache->framesize = -regs[THUMB_FP_REGNUM].k;
1113 }
1114 else
1115 {
1116 /* Try the stack pointer... this is a bit desperate. */
1117 cache->framereg = ARM_SP_REGNUM;
1118 cache->framesize = -regs[ARM_SP_REGNUM].k;
1119 }
1120
1121 for (i = 0; i < 16; i++)
1122 if (pv_area_find_reg (stack, gdbarch, i, &offset))
1123 cache->saved_regs[i].addr = offset;
1124
1125 do_cleanups (back_to);
1126 return unrecognized_pc;
1127 }
1128
1129
1130 /* Try to analyze the instructions starting from PC, which load symbol
1131 __stack_chk_guard. Return the address of instruction after loading this
1132 symbol, set the dest register number to *BASEREG, and set the size of
1133 instructions for loading symbol in OFFSET. Return 0 if instructions are
1134 not recognized. */
1135
1136 static CORE_ADDR
1137 arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
1138 unsigned int *destreg, int *offset)
1139 {
1140 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1141 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1142 unsigned int low, high, address;
1143
1144 address = 0;
1145 if (is_thumb)
1146 {
1147 unsigned short insn1
1148 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
1149
1150 if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
1151 {
1152 *destreg = bits (insn1, 8, 10);
1153 *offset = 2;
1154 address = (pc & 0xfffffffc) + 4 + (bits (insn1, 0, 7) << 2);
1155 address = read_memory_unsigned_integer (address, 4,
1156 byte_order_for_code);
1157 }
1158 else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
1159 {
1160 unsigned short insn2
1161 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
1162
1163 low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1164
1165 insn1
1166 = read_memory_unsigned_integer (pc + 4, 2, byte_order_for_code);
1167 insn2
1168 = read_memory_unsigned_integer (pc + 6, 2, byte_order_for_code);
1169
1170 /* movt Rd, #const */
1171 if ((insn1 & 0xfbc0) == 0xf2c0)
1172 {
1173 high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1174 *destreg = bits (insn2, 8, 11);
1175 *offset = 8;
1176 address = (high << 16 | low);
1177 }
1178 }
1179 }
1180 else
1181 {
1182 unsigned int insn
1183 = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
1184
1185 if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, [PC, #immed] */
1186 {
1187 address = bits (insn, 0, 11) + pc + 8;
1188 address = read_memory_unsigned_integer (address, 4,
1189 byte_order_for_code);
1190
1191 *destreg = bits (insn, 12, 15);
1192 *offset = 4;
1193 }
1194 else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
1195 {
1196 low = EXTRACT_MOVW_MOVT_IMM_A (insn);
1197
1198 insn
1199 = read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code);
1200
1201 if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
1202 {
1203 high = EXTRACT_MOVW_MOVT_IMM_A (insn);
1204 *destreg = bits (insn, 12, 15);
1205 *offset = 8;
1206 address = (high << 16 | low);
1207 }
1208 }
1209 }
1210
1211 return address;
1212 }
1213
1214 /* Try to skip a sequence of instructions used for stack protector. If PC
1215 points to the first instruction of this sequence, return the address of
1216 first instruction after this sequence, otherwise, return original PC.
1217
1218 On arm, this sequence of instructions is composed of mainly three steps,
1219 Step 1: load symbol __stack_chk_guard,
1220 Step 2: load from address of __stack_chk_guard,
1221 Step 3: store it to somewhere else.
1222
1223 Usually, instructions on step 2 and step 3 are the same on various ARM
1224 architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
1225 on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
1226 instructions in step 1 vary from different ARM architectures. On ARMv7,
1227 they are,
1228
1229 movw Rn, #:lower16:__stack_chk_guard
1230 movt Rn, #:upper16:__stack_chk_guard
1231
1232 On ARMv5t, it is,
1233
1234 ldr Rn, .Label
1235 ....
1236 .Lable:
1237 .word __stack_chk_guard
1238
1239 Since ldr/str is a very popular instruction, we can't use them as
1240 'fingerprint' or 'signature' of stack protector sequence. Here we choose
1241 sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
1242 stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
1243
1244 static CORE_ADDR
1245 arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
1246 {
1247 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1248 unsigned int basereg;
1249 struct bound_minimal_symbol stack_chk_guard;
1250 int offset;
1251 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1252 CORE_ADDR addr;
1253
1254 /* Try to parse the instructions in Step 1. */
1255 addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
1256 &basereg, &offset);
1257 if (!addr)
1258 return pc;
1259
1260 stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
1261 /* ADDR must correspond to a symbol whose name is __stack_chk_guard.
1262 Otherwise, this sequence cannot be for stack protector. */
1263 if (stack_chk_guard.minsym == NULL
1264 || !startswith (MSYMBOL_LINKAGE_NAME (stack_chk_guard.minsym), "__stack_chk_guard"))
1265 return pc;
1266
1267 if (is_thumb)
1268 {
1269 unsigned int destreg;
1270 unsigned short insn
1271 = read_memory_unsigned_integer (pc + offset, 2, byte_order_for_code);
1272
1273 /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
1274 if ((insn & 0xf800) != 0x6800)
1275 return pc;
1276 if (bits (insn, 3, 5) != basereg)
1277 return pc;
1278 destreg = bits (insn, 0, 2);
1279
1280 insn = read_memory_unsigned_integer (pc + offset + 2, 2,
1281 byte_order_for_code);
1282 /* Step 3: str Rd, [Rn, #immed], encoding T1. */
1283 if ((insn & 0xf800) != 0x6000)
1284 return pc;
1285 if (destreg != bits (insn, 0, 2))
1286 return pc;
1287 }
1288 else
1289 {
1290 unsigned int destreg;
1291 unsigned int insn
1292 = read_memory_unsigned_integer (pc + offset, 4, byte_order_for_code);
1293
1294 /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
1295 if ((insn & 0x0e500000) != 0x04100000)
1296 return pc;
1297 if (bits (insn, 16, 19) != basereg)
1298 return pc;
1299 destreg = bits (insn, 12, 15);
1300 /* Step 3: str Rd, [Rn, #immed], encoding A1. */
1301 insn = read_memory_unsigned_integer (pc + offset + 4,
1302 4, byte_order_for_code);
1303 if ((insn & 0x0e500000) != 0x04000000)
1304 return pc;
1305 if (bits (insn, 12, 15) != destreg)
1306 return pc;
1307 }
1308 /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
1309 on arm. */
1310 if (is_thumb)
1311 return pc + offset + 4;
1312 else
1313 return pc + offset + 8;
1314 }
1315
1316 /* Advance the PC across any function entry prologue instructions to
1317 reach some "real" code.
1318
1319 The APCS (ARM Procedure Call Standard) defines the following
1320 prologue:
1321
1322 mov ip, sp
1323 [stmfd sp!, {a1,a2,a3,a4}]
1324 stmfd sp!, {...,fp,ip,lr,pc}
1325 [stfe f7, [sp, #-12]!]
1326 [stfe f6, [sp, #-12]!]
1327 [stfe f5, [sp, #-12]!]
1328 [stfe f4, [sp, #-12]!]
1329 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
1330
1331 static CORE_ADDR
1332 arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1333 {
1334 CORE_ADDR func_addr, limit_pc;
1335
1336 /* See if we can determine the end of the prologue via the symbol table.
1337 If so, then return either PC, or the PC after the prologue, whichever
1338 is greater. */
1339 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1340 {
1341 CORE_ADDR post_prologue_pc
1342 = skip_prologue_using_sal (gdbarch, func_addr);
1343 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1344
1345 if (post_prologue_pc)
1346 post_prologue_pc
1347 = arm_skip_stack_protector (post_prologue_pc, gdbarch);
1348
1349
1350 /* GCC always emits a line note before the prologue and another
1351 one after, even if the two are at the same address or on the
1352 same line. Take advantage of this so that we do not need to
1353 know every instruction that might appear in the prologue. We
1354 will have producer information for most binaries; if it is
1355 missing (e.g. for -gstabs), assuming the GNU tools. */
1356 if (post_prologue_pc
1357 && (cust == NULL
1358 || COMPUNIT_PRODUCER (cust) == NULL
1359 || startswith (COMPUNIT_PRODUCER (cust), "GNU ")
1360 || startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1361 return post_prologue_pc;
1362
1363 if (post_prologue_pc != 0)
1364 {
1365 CORE_ADDR analyzed_limit;
1366
1367 /* For non-GCC compilers, make sure the entire line is an
1368 acceptable prologue; GDB will round this function's
1369 return value up to the end of the following line so we
1370 can not skip just part of a line (and we do not want to).
1371
1372 RealView does not treat the prologue specially, but does
1373 associate prologue code with the opening brace; so this
1374 lets us skip the first line if we think it is the opening
1375 brace. */
1376 if (arm_pc_is_thumb (gdbarch, func_addr))
1377 analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
1378 post_prologue_pc, NULL);
1379 else
1380 analyzed_limit = arm_analyze_prologue (gdbarch, func_addr,
1381 post_prologue_pc, NULL);
1382
1383 if (analyzed_limit != post_prologue_pc)
1384 return func_addr;
1385
1386 return post_prologue_pc;
1387 }
1388 }
1389
1390 /* Can't determine prologue from the symbol table, need to examine
1391 instructions. */
1392
1393 /* Find an upper limit on the function prologue using the debug
1394 information. If the debug information could not be used to provide
1395 that bound, then use an arbitrary large number as the upper bound. */
1396 /* Like arm_scan_prologue, stop no later than pc + 64. */
1397 limit_pc = skip_prologue_using_sal (gdbarch, pc);
1398 if (limit_pc == 0)
1399 limit_pc = pc + 64; /* Magic. */
1400
1401
1402 /* Check if this is Thumb code. */
1403 if (arm_pc_is_thumb (gdbarch, pc))
1404 return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1405 else
1406 return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1407 }
1408
1409 /* *INDENT-OFF* */
1410 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
1411 This function decodes a Thumb function prologue to determine:
1412 1) the size of the stack frame
1413 2) which registers are saved on it
1414 3) the offsets of saved regs
1415 4) the offset from the stack pointer to the frame pointer
1416
1417 A typical Thumb function prologue would create this stack frame
1418 (offsets relative to FP)
1419 old SP -> 24 stack parameters
1420 20 LR
1421 16 R7
1422 R7 -> 0 local variables (16 bytes)
1423 SP -> -12 additional stack space (12 bytes)
1424 The frame size would thus be 36 bytes, and the frame offset would be
1425 12 bytes. The frame register is R7.
1426
1427 The comments for thumb_skip_prolog() describe the algorithm we use
1428 to detect the end of the prolog. */
1429 /* *INDENT-ON* */
1430
1431 static void
1432 thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
1433 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
1434 {
1435 CORE_ADDR prologue_start;
1436 CORE_ADDR prologue_end;
1437
1438 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1439 &prologue_end))
1440 {
1441 /* See comment in arm_scan_prologue for an explanation of
1442 this heuristics. */
1443 if (prologue_end > prologue_start + 64)
1444 {
1445 prologue_end = prologue_start + 64;
1446 }
1447 }
1448 else
1449 /* We're in the boondocks: we have no idea where the start of the
1450 function is. */
1451 return;
1452
1453 prologue_end = std::min (prologue_end, prev_pc);
1454
1455 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
1456 }
1457
1458 /* Return 1 if the ARM instruction INSN restores SP in epilogue, 0
1459 otherwise. */
1460
1461 static int
1462 arm_instruction_restores_sp (unsigned int insn)
1463 {
1464 if (bits (insn, 28, 31) != INST_NV)
1465 {
1466 if ((insn & 0x0df0f000) == 0x0080d000
1467 /* ADD SP (register or immediate). */
1468 || (insn & 0x0df0f000) == 0x0040d000
1469 /* SUB SP (register or immediate). */
1470 || (insn & 0x0ffffff0) == 0x01a0d000
1471 /* MOV SP. */
1472 || (insn & 0x0fff0000) == 0x08bd0000
1473 /* POP (LDMIA). */
1474 || (insn & 0x0fff0000) == 0x049d0000)
1475 /* POP of a single register. */
1476 return 1;
1477 }
1478
1479 return 0;
1480 }
1481
1482 /* Analyze an ARM mode prologue starting at PROLOGUE_START and
1483 continuing no further than PROLOGUE_END. If CACHE is non-NULL,
1484 fill it in. Return the first address not recognized as a prologue
1485 instruction.
1486
1487 We recognize all the instructions typically found in ARM prologues,
1488 plus harmless instructions which can be skipped (either for analysis
1489 purposes, or a more restrictive set that can be skipped when finding
1490 the end of the prologue). */
1491
1492 static CORE_ADDR
1493 arm_analyze_prologue (struct gdbarch *gdbarch,
1494 CORE_ADDR prologue_start, CORE_ADDR prologue_end,
1495 struct arm_prologue_cache *cache)
1496 {
1497 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1498 int regno;
1499 CORE_ADDR offset, current_pc;
1500 pv_t regs[ARM_FPS_REGNUM];
1501 struct pv_area *stack;
1502 struct cleanup *back_to;
1503 CORE_ADDR unrecognized_pc = 0;
1504
1505 /* Search the prologue looking for instructions that set up the
1506 frame pointer, adjust the stack pointer, and save registers.
1507
1508 Be careful, however, and if it doesn't look like a prologue,
1509 don't try to scan it. If, for instance, a frameless function
1510 begins with stmfd sp!, then we will tell ourselves there is
1511 a frame, which will confuse stack traceback, as well as "finish"
1512 and other operations that rely on a knowledge of the stack
1513 traceback. */
1514
1515 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1516 regs[regno] = pv_register (regno, 0);
1517 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1518 back_to = make_cleanup_free_pv_area (stack);
1519
1520 for (current_pc = prologue_start;
1521 current_pc < prologue_end;
1522 current_pc += 4)
1523 {
1524 unsigned int insn
1525 = read_memory_unsigned_integer (current_pc, 4, byte_order_for_code);
1526
1527 if (insn == 0xe1a0c00d) /* mov ip, sp */
1528 {
1529 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
1530 continue;
1531 }
1532 else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
1533 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1534 {
1535 unsigned imm = insn & 0xff; /* immediate value */
1536 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1537 int rd = bits (insn, 12, 15);
1538 imm = (imm >> rot) | (imm << (32 - rot));
1539 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
1540 continue;
1541 }
1542 else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
1543 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1544 {
1545 unsigned imm = insn & 0xff; /* immediate value */
1546 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1547 int rd = bits (insn, 12, 15);
1548 imm = (imm >> rot) | (imm << (32 - rot));
1549 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
1550 continue;
1551 }
1552 else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd,
1553 [sp, #-4]! */
1554 {
1555 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1556 break;
1557 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
1558 pv_area_store (stack, regs[ARM_SP_REGNUM], 4,
1559 regs[bits (insn, 12, 15)]);
1560 continue;
1561 }
1562 else if ((insn & 0xffff0000) == 0xe92d0000)
1563 /* stmfd sp!, {..., fp, ip, lr, pc}
1564 or
1565 stmfd sp!, {a1, a2, a3, a4} */
1566 {
1567 int mask = insn & 0xffff;
1568
1569 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1570 break;
1571
1572 /* Calculate offsets of saved registers. */
1573 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
1574 if (mask & (1 << regno))
1575 {
1576 regs[ARM_SP_REGNUM]
1577 = pv_add_constant (regs[ARM_SP_REGNUM], -4);
1578 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
1579 }
1580 }
1581 else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
1582 || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
1583 || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
1584 {
1585 /* No need to add this to saved_regs -- it's just an arg reg. */
1586 continue;
1587 }
1588 else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
1589 || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
1590 || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
1591 {
1592 /* No need to add this to saved_regs -- it's just an arg reg. */
1593 continue;
1594 }
1595 else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn,
1596 { registers } */
1597 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1598 {
1599 /* No need to add this to saved_regs -- it's just arg regs. */
1600 continue;
1601 }
1602 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
1603 {
1604 unsigned imm = insn & 0xff; /* immediate value */
1605 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1606 imm = (imm >> rot) | (imm << (32 - rot));
1607 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
1608 }
1609 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
1610 {
1611 unsigned imm = insn & 0xff; /* immediate value */
1612 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1613 imm = (imm >> rot) | (imm << (32 - rot));
1614 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
1615 }
1616 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?,
1617 [sp, -#c]! */
1618 && gdbarch_tdep (gdbarch)->have_fpa_registers)
1619 {
1620 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1621 break;
1622
1623 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1624 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
1625 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
1626 }
1627 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
1628 [sp!] */
1629 && gdbarch_tdep (gdbarch)->have_fpa_registers)
1630 {
1631 int n_saved_fp_regs;
1632 unsigned int fp_start_reg, fp_bound_reg;
1633
1634 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1635 break;
1636
1637 if ((insn & 0x800) == 0x800) /* N0 is set */
1638 {
1639 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1640 n_saved_fp_regs = 3;
1641 else
1642 n_saved_fp_regs = 1;
1643 }
1644 else
1645 {
1646 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1647 n_saved_fp_regs = 2;
1648 else
1649 n_saved_fp_regs = 4;
1650 }
1651
1652 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
1653 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
1654 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
1655 {
1656 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1657 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
1658 regs[fp_start_reg++]);
1659 }
1660 }
1661 else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
1662 {
1663 /* Allow some special function calls when skipping the
1664 prologue; GCC generates these before storing arguments to
1665 the stack. */
1666 CORE_ADDR dest = BranchDest (current_pc, insn);
1667
1668 if (skip_prologue_function (gdbarch, dest, 0))
1669 continue;
1670 else
1671 break;
1672 }
1673 else if ((insn & 0xf0000000) != 0xe0000000)
1674 break; /* Condition not true, exit early. */
1675 else if (arm_instruction_changes_pc (insn))
1676 /* Don't scan past anything that might change control flow. */
1677 break;
1678 else if (arm_instruction_restores_sp (insn))
1679 {
1680 /* Don't scan past the epilogue. */
1681 break;
1682 }
1683 else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */
1684 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1685 /* Ignore block loads from the stack, potentially copying
1686 parameters from memory. */
1687 continue;
1688 else if ((insn & 0xfc500000) == 0xe4100000
1689 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1690 /* Similarly ignore single loads from the stack. */
1691 continue;
1692 else if ((insn & 0xffff0ff0) == 0xe1a00000)
1693 /* MOV Rd, Rm. Skip register copies, i.e. saves to another
1694 register instead of the stack. */
1695 continue;
1696 else
1697 {
1698 /* The optimizer might shove anything into the prologue, if
1699 we build up cache (cache != NULL) from scanning prologue,
1700 we just skip what we don't recognize and scan further to
1701 make cache as complete as possible. However, if we skip
1702 prologue, we'll stop immediately on unrecognized
1703 instruction. */
1704 unrecognized_pc = current_pc;
1705 if (cache != NULL)
1706 continue;
1707 else
1708 break;
1709 }
1710 }
1711
1712 if (unrecognized_pc == 0)
1713 unrecognized_pc = current_pc;
1714
1715 if (cache)
1716 {
1717 int framereg, framesize;
1718
1719 /* The frame size is just the distance from the frame register
1720 to the original stack pointer. */
1721 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1722 {
1723 /* Frame pointer is fp. */
1724 framereg = ARM_FP_REGNUM;
1725 framesize = -regs[ARM_FP_REGNUM].k;
1726 }
1727 else
1728 {
1729 /* Try the stack pointer... this is a bit desperate. */
1730 framereg = ARM_SP_REGNUM;
1731 framesize = -regs[ARM_SP_REGNUM].k;
1732 }
1733
1734 cache->framereg = framereg;
1735 cache->framesize = framesize;
1736
1737 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1738 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
1739 cache->saved_regs[regno].addr = offset;
1740 }
1741
1742 if (arm_debug)
1743 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1744 paddress (gdbarch, unrecognized_pc));
1745
1746 do_cleanups (back_to);
1747 return unrecognized_pc;
1748 }
1749
1750 static void
1751 arm_scan_prologue (struct frame_info *this_frame,
1752 struct arm_prologue_cache *cache)
1753 {
1754 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1755 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1756 CORE_ADDR prologue_start, prologue_end;
1757 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1758 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1759
1760 /* Assume there is no frame until proven otherwise. */
1761 cache->framereg = ARM_SP_REGNUM;
1762 cache->framesize = 0;
1763
1764 /* Check for Thumb prologue. */
1765 if (arm_frame_is_thumb (this_frame))
1766 {
1767 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
1768 return;
1769 }
1770
1771 /* Find the function prologue. If we can't find the function in
1772 the symbol table, peek in the stack frame to find the PC. */
1773 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1774 &prologue_end))
1775 {
1776 /* One way to find the end of the prologue (which works well
1777 for unoptimized code) is to do the following:
1778
1779 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
1780
1781 if (sal.line == 0)
1782 prologue_end = prev_pc;
1783 else if (sal.end < prologue_end)
1784 prologue_end = sal.end;
1785
1786 This mechanism is very accurate so long as the optimizer
1787 doesn't move any instructions from the function body into the
1788 prologue. If this happens, sal.end will be the last
1789 instruction in the first hunk of prologue code just before
1790 the first instruction that the scheduler has moved from
1791 the body to the prologue.
1792
1793 In order to make sure that we scan all of the prologue
1794 instructions, we use a slightly less accurate mechanism which
1795 may scan more than necessary. To help compensate for this
1796 lack of accuracy, the prologue scanning loop below contains
1797 several clauses which'll cause the loop to terminate early if
1798 an implausible prologue instruction is encountered.
1799
1800 The expression
1801
1802 prologue_start + 64
1803
1804 is a suitable endpoint since it accounts for the largest
1805 possible prologue plus up to five instructions inserted by
1806 the scheduler. */
1807
1808 if (prologue_end > prologue_start + 64)
1809 {
1810 prologue_end = prologue_start + 64; /* See above. */
1811 }
1812 }
1813 else
1814 {
1815 /* We have no symbol information. Our only option is to assume this
1816 function has a standard stack frame and the normal frame register.
1817 Then, we can find the value of our frame pointer on entrance to
1818 the callee (or at the present moment if this is the innermost frame).
1819 The value stored there should be the address of the stmfd + 8. */
1820 CORE_ADDR frame_loc;
1821 LONGEST return_value;
1822
1823 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
1824 if (!safe_read_memory_integer (frame_loc, 4, byte_order, &return_value))
1825 return;
1826 else
1827 {
1828 prologue_start = gdbarch_addr_bits_remove
1829 (gdbarch, return_value) - 8;
1830 prologue_end = prologue_start + 64; /* See above. */
1831 }
1832 }
1833
1834 if (prev_pc < prologue_end)
1835 prologue_end = prev_pc;
1836
1837 arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
1838 }
1839
1840 static struct arm_prologue_cache *
1841 arm_make_prologue_cache (struct frame_info *this_frame)
1842 {
1843 int reg;
1844 struct arm_prologue_cache *cache;
1845 CORE_ADDR unwound_fp;
1846
1847 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1848 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1849
1850 arm_scan_prologue (this_frame, cache);
1851
1852 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
1853 if (unwound_fp == 0)
1854 return cache;
1855
1856 cache->prev_sp = unwound_fp + cache->framesize;
1857
1858 /* Calculate actual addresses of saved registers using offsets
1859 determined by arm_scan_prologue. */
1860 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
1861 if (trad_frame_addr_p (cache->saved_regs, reg))
1862 cache->saved_regs[reg].addr += cache->prev_sp;
1863
1864 return cache;
1865 }
1866
1867 /* Implementation of the stop_reason hook for arm_prologue frames. */
1868
1869 static enum unwind_stop_reason
1870 arm_prologue_unwind_stop_reason (struct frame_info *this_frame,
1871 void **this_cache)
1872 {
1873 struct arm_prologue_cache *cache;
1874 CORE_ADDR pc;
1875
1876 if (*this_cache == NULL)
1877 *this_cache = arm_make_prologue_cache (this_frame);
1878 cache = (struct arm_prologue_cache *) *this_cache;
1879
1880 /* This is meant to halt the backtrace at "_start". */
1881 pc = get_frame_pc (this_frame);
1882 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
1883 return UNWIND_OUTERMOST;
1884
1885 /* If we've hit a wall, stop. */
1886 if (cache->prev_sp == 0)
1887 return UNWIND_OUTERMOST;
1888
1889 return UNWIND_NO_REASON;
1890 }
1891
1892 /* Our frame ID for a normal frame is the current function's starting PC
1893 and the caller's SP when we were called. */
1894
1895 static void
1896 arm_prologue_this_id (struct frame_info *this_frame,
1897 void **this_cache,
1898 struct frame_id *this_id)
1899 {
1900 struct arm_prologue_cache *cache;
1901 struct frame_id id;
1902 CORE_ADDR pc, func;
1903
1904 if (*this_cache == NULL)
1905 *this_cache = arm_make_prologue_cache (this_frame);
1906 cache = (struct arm_prologue_cache *) *this_cache;
1907
1908 /* Use function start address as part of the frame ID. If we cannot
1909 identify the start address (due to missing symbol information),
1910 fall back to just using the current PC. */
1911 pc = get_frame_pc (this_frame);
1912 func = get_frame_func (this_frame);
1913 if (!func)
1914 func = pc;
1915
1916 id = frame_id_build (cache->prev_sp, func);
1917 *this_id = id;
1918 }
1919
1920 static struct value *
1921 arm_prologue_prev_register (struct frame_info *this_frame,
1922 void **this_cache,
1923 int prev_regnum)
1924 {
1925 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1926 struct arm_prologue_cache *cache;
1927
1928 if (*this_cache == NULL)
1929 *this_cache = arm_make_prologue_cache (this_frame);
1930 cache = (struct arm_prologue_cache *) *this_cache;
1931
1932 /* If we are asked to unwind the PC, then we need to return the LR
1933 instead. The prologue may save PC, but it will point into this
1934 frame's prologue, not the next frame's resume location. Also
1935 strip the saved T bit. A valid LR may have the low bit set, but
1936 a valid PC never does. */
1937 if (prev_regnum == ARM_PC_REGNUM)
1938 {
1939 CORE_ADDR lr;
1940
1941 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1942 return frame_unwind_got_constant (this_frame, prev_regnum,
1943 arm_addr_bits_remove (gdbarch, lr));
1944 }
1945
1946 /* SP is generally not saved to the stack, but this frame is
1947 identified by the next frame's stack pointer at the time of the call.
1948 The value was already reconstructed into PREV_SP. */
1949 if (prev_regnum == ARM_SP_REGNUM)
1950 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
1951
1952 /* The CPSR may have been changed by the call instruction and by the
1953 called function. The only bit we can reconstruct is the T bit,
1954 by checking the low bit of LR as of the call. This is a reliable
1955 indicator of Thumb-ness except for some ARM v4T pre-interworking
1956 Thumb code, which could get away with a clear low bit as long as
1957 the called function did not use bx. Guess that all other
1958 bits are unchanged; the condition flags are presumably lost,
1959 but the processor status is likely valid. */
1960 if (prev_regnum == ARM_PS_REGNUM)
1961 {
1962 CORE_ADDR lr, cpsr;
1963 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
1964
1965 cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
1966 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1967 if (IS_THUMB_ADDR (lr))
1968 cpsr |= t_bit;
1969 else
1970 cpsr &= ~t_bit;
1971 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
1972 }
1973
1974 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1975 prev_regnum);
1976 }
1977
1978 struct frame_unwind arm_prologue_unwind = {
1979 NORMAL_FRAME,
1980 arm_prologue_unwind_stop_reason,
1981 arm_prologue_this_id,
1982 arm_prologue_prev_register,
1983 NULL,
1984 default_frame_sniffer
1985 };
1986
1987 /* Maintain a list of ARM exception table entries per objfile, similar to the
1988 list of mapping symbols. We only cache entries for standard ARM-defined
1989 personality routines; the cache will contain only the frame unwinding
1990 instructions associated with the entry (not the descriptors). */
1991
1992 static const struct objfile_data *arm_exidx_data_key;
1993
1994 struct arm_exidx_entry
1995 {
1996 bfd_vma addr;
1997 gdb_byte *entry;
1998 };
1999 typedef struct arm_exidx_entry arm_exidx_entry_s;
2000 DEF_VEC_O(arm_exidx_entry_s);
2001
2002 struct arm_exidx_data
2003 {
2004 VEC(arm_exidx_entry_s) **section_maps;
2005 };
2006
2007 static void
2008 arm_exidx_data_free (struct objfile *objfile, void *arg)
2009 {
2010 struct arm_exidx_data *data = (struct arm_exidx_data *) arg;
2011 unsigned int i;
2012
2013 for (i = 0; i < objfile->obfd->section_count; i++)
2014 VEC_free (arm_exidx_entry_s, data->section_maps[i]);
2015 }
2016
2017 static inline int
2018 arm_compare_exidx_entries (const struct arm_exidx_entry *lhs,
2019 const struct arm_exidx_entry *rhs)
2020 {
2021 return lhs->addr < rhs->addr;
2022 }
2023
2024 static struct obj_section *
2025 arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
2026 {
2027 struct obj_section *osect;
2028
2029 ALL_OBJFILE_OSECTIONS (objfile, osect)
2030 if (bfd_get_section_flags (objfile->obfd,
2031 osect->the_bfd_section) & SEC_ALLOC)
2032 {
2033 bfd_vma start, size;
2034 start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section);
2035 size = bfd_get_section_size (osect->the_bfd_section);
2036
2037 if (start <= vma && vma < start + size)
2038 return osect;
2039 }
2040
2041 return NULL;
2042 }
2043
2044 /* Parse contents of exception table and exception index sections
2045 of OBJFILE, and fill in the exception table entry cache.
2046
2047 For each entry that refers to a standard ARM-defined personality
2048 routine, extract the frame unwinding instructions (from either
2049 the index or the table section). The unwinding instructions
2050 are normalized by:
2051 - extracting them from the rest of the table data
2052 - converting to host endianness
2053 - appending the implicit 0xb0 ("Finish") code
2054
2055 The extracted and normalized instructions are stored for later
2056 retrieval by the arm_find_exidx_entry routine. */
2057
2058 static void
2059 arm_exidx_new_objfile (struct objfile *objfile)
2060 {
2061 struct cleanup *cleanups;
2062 struct arm_exidx_data *data;
2063 asection *exidx, *extab;
2064 bfd_vma exidx_vma = 0, extab_vma = 0;
2065 bfd_size_type exidx_size = 0, extab_size = 0;
2066 gdb_byte *exidx_data = NULL, *extab_data = NULL;
2067 LONGEST i;
2068
2069 /* If we've already touched this file, do nothing. */
2070 if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL)
2071 return;
2072 cleanups = make_cleanup (null_cleanup, NULL);
2073
2074 /* Read contents of exception table and index. */
2075 exidx = bfd_get_section_by_name (objfile->obfd, ELF_STRING_ARM_unwind);
2076 if (exidx)
2077 {
2078 exidx_vma = bfd_section_vma (objfile->obfd, exidx);
2079 exidx_size = bfd_get_section_size (exidx);
2080 exidx_data = (gdb_byte *) xmalloc (exidx_size);
2081 make_cleanup (xfree, exidx_data);
2082
2083 if (!bfd_get_section_contents (objfile->obfd, exidx,
2084 exidx_data, 0, exidx_size))
2085 {
2086 do_cleanups (cleanups);
2087 return;
2088 }
2089 }
2090
2091 extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab");
2092 if (extab)
2093 {
2094 extab_vma = bfd_section_vma (objfile->obfd, extab);
2095 extab_size = bfd_get_section_size (extab);
2096 extab_data = (gdb_byte *) xmalloc (extab_size);
2097 make_cleanup (xfree, extab_data);
2098
2099 if (!bfd_get_section_contents (objfile->obfd, extab,
2100 extab_data, 0, extab_size))
2101 {
2102 do_cleanups (cleanups);
2103 return;
2104 }
2105 }
2106
2107 /* Allocate exception table data structure. */
2108 data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data);
2109 set_objfile_data (objfile, arm_exidx_data_key, data);
2110 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
2111 objfile->obfd->section_count,
2112 VEC(arm_exidx_entry_s) *);
2113
2114 /* Fill in exception table. */
2115 for (i = 0; i < exidx_size / 8; i++)
2116 {
2117 struct arm_exidx_entry new_exidx_entry;
2118 bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8);
2119 bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4);
2120 bfd_vma addr = 0, word = 0;
2121 int n_bytes = 0, n_words = 0;
2122 struct obj_section *sec;
2123 gdb_byte *entry = NULL;
2124
2125 /* Extract address of start of function. */
2126 idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2127 idx += exidx_vma + i * 8;
2128
2129 /* Find section containing function and compute section offset. */
2130 sec = arm_obj_section_from_vma (objfile, idx);
2131 if (sec == NULL)
2132 continue;
2133 idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section);
2134
2135 /* Determine address of exception table entry. */
2136 if (val == 1)
2137 {
2138 /* EXIDX_CANTUNWIND -- no exception table entry present. */
2139 }
2140 else if ((val & 0xff000000) == 0x80000000)
2141 {
2142 /* Exception table entry embedded in .ARM.exidx
2143 -- must be short form. */
2144 word = val;
2145 n_bytes = 3;
2146 }
2147 else if (!(val & 0x80000000))
2148 {
2149 /* Exception table entry in .ARM.extab. */
2150 addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2151 addr += exidx_vma + i * 8 + 4;
2152
2153 if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size)
2154 {
2155 word = bfd_h_get_32 (objfile->obfd,
2156 extab_data + addr - extab_vma);
2157 addr += 4;
2158
2159 if ((word & 0xff000000) == 0x80000000)
2160 {
2161 /* Short form. */
2162 n_bytes = 3;
2163 }
2164 else if ((word & 0xff000000) == 0x81000000
2165 || (word & 0xff000000) == 0x82000000)
2166 {
2167 /* Long form. */
2168 n_bytes = 2;
2169 n_words = ((word >> 16) & 0xff);
2170 }
2171 else if (!(word & 0x80000000))
2172 {
2173 bfd_vma pers;
2174 struct obj_section *pers_sec;
2175 int gnu_personality = 0;
2176
2177 /* Custom personality routine. */
2178 pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2179 pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
2180
2181 /* Check whether we've got one of the variants of the
2182 GNU personality routines. */
2183 pers_sec = arm_obj_section_from_vma (objfile, pers);
2184 if (pers_sec)
2185 {
2186 static const char *personality[] =
2187 {
2188 "__gcc_personality_v0",
2189 "__gxx_personality_v0",
2190 "__gcj_personality_v0",
2191 "__gnu_objc_personality_v0",
2192 NULL
2193 };
2194
2195 CORE_ADDR pc = pers + obj_section_offset (pers_sec);
2196 int k;
2197
2198 for (k = 0; personality[k]; k++)
2199 if (lookup_minimal_symbol_by_pc_name
2200 (pc, personality[k], objfile))
2201 {
2202 gnu_personality = 1;
2203 break;
2204 }
2205 }
2206
2207 /* If so, the next word contains a word count in the high
2208 byte, followed by the same unwind instructions as the
2209 pre-defined forms. */
2210 if (gnu_personality
2211 && addr + 4 <= extab_vma + extab_size)
2212 {
2213 word = bfd_h_get_32 (objfile->obfd,
2214 extab_data + addr - extab_vma);
2215 addr += 4;
2216 n_bytes = 3;
2217 n_words = ((word >> 24) & 0xff);
2218 }
2219 }
2220 }
2221 }
2222
2223 /* Sanity check address. */
2224 if (n_words)
2225 if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size)
2226 n_words = n_bytes = 0;
2227
2228 /* The unwind instructions reside in WORD (only the N_BYTES least
2229 significant bytes are valid), followed by N_WORDS words in the
2230 extab section starting at ADDR. */
2231 if (n_bytes || n_words)
2232 {
2233 gdb_byte *p = entry
2234 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
2235 n_bytes + n_words * 4 + 1);
2236
2237 while (n_bytes--)
2238 *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
2239
2240 while (n_words--)
2241 {
2242 word = bfd_h_get_32 (objfile->obfd,
2243 extab_data + addr - extab_vma);
2244 addr += 4;
2245
2246 *p++ = (gdb_byte) ((word >> 24) & 0xff);
2247 *p++ = (gdb_byte) ((word >> 16) & 0xff);
2248 *p++ = (gdb_byte) ((word >> 8) & 0xff);
2249 *p++ = (gdb_byte) (word & 0xff);
2250 }
2251
2252 /* Implied "Finish" to terminate the list. */
2253 *p++ = 0xb0;
2254 }
2255
2256 /* Push entry onto vector. They are guaranteed to always
2257 appear in order of increasing addresses. */
2258 new_exidx_entry.addr = idx;
2259 new_exidx_entry.entry = entry;
2260 VEC_safe_push (arm_exidx_entry_s,
2261 data->section_maps[sec->the_bfd_section->index],
2262 &new_exidx_entry);
2263 }
2264
2265 do_cleanups (cleanups);
2266 }
2267
2268 /* Search for the exception table entry covering MEMADDR. If one is found,
2269 return a pointer to its data. Otherwise, return 0. If START is non-NULL,
2270 set *START to the start of the region covered by this entry. */
2271
2272 static gdb_byte *
2273 arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
2274 {
2275 struct obj_section *sec;
2276
2277 sec = find_pc_section (memaddr);
2278 if (sec != NULL)
2279 {
2280 struct arm_exidx_data *data;
2281 VEC(arm_exidx_entry_s) *map;
2282 struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
2283 unsigned int idx;
2284
2285 data = ((struct arm_exidx_data *)
2286 objfile_data (sec->objfile, arm_exidx_data_key));
2287 if (data != NULL)
2288 {
2289 map = data->section_maps[sec->the_bfd_section->index];
2290 if (!VEC_empty (arm_exidx_entry_s, map))
2291 {
2292 struct arm_exidx_entry *map_sym;
2293
2294 idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key,
2295 arm_compare_exidx_entries);
2296
2297 /* VEC_lower_bound finds the earliest ordered insertion
2298 point. If the following symbol starts at this exact
2299 address, we use that; otherwise, the preceding
2300 exception table entry covers this address. */
2301 if (idx < VEC_length (arm_exidx_entry_s, map))
2302 {
2303 map_sym = VEC_index (arm_exidx_entry_s, map, idx);
2304 if (map_sym->addr == map_key.addr)
2305 {
2306 if (start)
2307 *start = map_sym->addr + obj_section_addr (sec);
2308 return map_sym->entry;
2309 }
2310 }
2311
2312 if (idx > 0)
2313 {
2314 map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1);
2315 if (start)
2316 *start = map_sym->addr + obj_section_addr (sec);
2317 return map_sym->entry;
2318 }
2319 }
2320 }
2321 }
2322
2323 return NULL;
2324 }
2325
2326 /* Given the current frame THIS_FRAME, and its associated frame unwinding
2327 instruction list from the ARM exception table entry ENTRY, allocate and
2328 return a prologue cache structure describing how to unwind this frame.
2329
2330 Return NULL if the unwinding instruction list contains a "spare",
2331 "reserved" or "refuse to unwind" instruction as defined in section
2332 "9.3 Frame unwinding instructions" of the "Exception Handling ABI
2333 for the ARM Architecture" document. */
2334
2335 static struct arm_prologue_cache *
2336 arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry)
2337 {
2338 CORE_ADDR vsp = 0;
2339 int vsp_valid = 0;
2340
2341 struct arm_prologue_cache *cache;
2342 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2343 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2344
2345 for (;;)
2346 {
2347 gdb_byte insn;
2348
2349 /* Whenever we reload SP, we actually have to retrieve its
2350 actual value in the current frame. */
2351 if (!vsp_valid)
2352 {
2353 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2354 {
2355 int reg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2356 vsp = get_frame_register_unsigned (this_frame, reg);
2357 }
2358 else
2359 {
2360 CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr;
2361 vsp = get_frame_memory_unsigned (this_frame, addr, 4);
2362 }
2363
2364 vsp_valid = 1;
2365 }
2366
2367 /* Decode next unwind instruction. */
2368 insn = *entry++;
2369
2370 if ((insn & 0xc0) == 0)
2371 {
2372 int offset = insn & 0x3f;
2373 vsp += (offset << 2) + 4;
2374 }
2375 else if ((insn & 0xc0) == 0x40)
2376 {
2377 int offset = insn & 0x3f;
2378 vsp -= (offset << 2) + 4;
2379 }
2380 else if ((insn & 0xf0) == 0x80)
2381 {
2382 int mask = ((insn & 0xf) << 8) | *entry++;
2383 int i;
2384
2385 /* The special case of an all-zero mask identifies
2386 "Refuse to unwind". We return NULL to fall back
2387 to the prologue analyzer. */
2388 if (mask == 0)
2389 return NULL;
2390
2391 /* Pop registers r4..r15 under mask. */
2392 for (i = 0; i < 12; i++)
2393 if (mask & (1 << i))
2394 {
2395 cache->saved_regs[4 + i].addr = vsp;
2396 vsp += 4;
2397 }
2398
2399 /* Special-case popping SP -- we need to reload vsp. */
2400 if (mask & (1 << (ARM_SP_REGNUM - 4)))
2401 vsp_valid = 0;
2402 }
2403 else if ((insn & 0xf0) == 0x90)
2404 {
2405 int reg = insn & 0xf;
2406
2407 /* Reserved cases. */
2408 if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
2409 return NULL;
2410
2411 /* Set SP from another register and mark VSP for reload. */
2412 cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
2413 vsp_valid = 0;
2414 }
2415 else if ((insn & 0xf0) == 0xa0)
2416 {
2417 int count = insn & 0x7;
2418 int pop_lr = (insn & 0x8) != 0;
2419 int i;
2420
2421 /* Pop r4..r[4+count]. */
2422 for (i = 0; i <= count; i++)
2423 {
2424 cache->saved_regs[4 + i].addr = vsp;
2425 vsp += 4;
2426 }
2427
2428 /* If indicated by flag, pop LR as well. */
2429 if (pop_lr)
2430 {
2431 cache->saved_regs[ARM_LR_REGNUM].addr = vsp;
2432 vsp += 4;
2433 }
2434 }
2435 else if (insn == 0xb0)
2436 {
2437 /* We could only have updated PC by popping into it; if so, it
2438 will show up as address. Otherwise, copy LR into PC. */
2439 if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM))
2440 cache->saved_regs[ARM_PC_REGNUM]
2441 = cache->saved_regs[ARM_LR_REGNUM];
2442
2443 /* We're done. */
2444 break;
2445 }
2446 else if (insn == 0xb1)
2447 {
2448 int mask = *entry++;
2449 int i;
2450
2451 /* All-zero mask and mask >= 16 is "spare". */
2452 if (mask == 0 || mask >= 16)
2453 return NULL;
2454
2455 /* Pop r0..r3 under mask. */
2456 for (i = 0; i < 4; i++)
2457 if (mask & (1 << i))
2458 {
2459 cache->saved_regs[i].addr = vsp;
2460 vsp += 4;
2461 }
2462 }
2463 else if (insn == 0xb2)
2464 {
2465 ULONGEST offset = 0;
2466 unsigned shift = 0;
2467
2468 do
2469 {
2470 offset |= (*entry & 0x7f) << shift;
2471 shift += 7;
2472 }
2473 while (*entry++ & 0x80);
2474
2475 vsp += 0x204 + (offset << 2);
2476 }
2477 else if (insn == 0xb3)
2478 {
2479 int start = *entry >> 4;
2480 int count = (*entry++) & 0xf;
2481 int i;
2482
2483 /* Only registers D0..D15 are valid here. */
2484 if (start + count >= 16)
2485 return NULL;
2486
2487 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2488 for (i = 0; i <= count; i++)
2489 {
2490 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2491 vsp += 8;
2492 }
2493
2494 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2495 vsp += 4;
2496 }
2497 else if ((insn & 0xf8) == 0xb8)
2498 {
2499 int count = insn & 0x7;
2500 int i;
2501
2502 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2503 for (i = 0; i <= count; i++)
2504 {
2505 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2506 vsp += 8;
2507 }
2508
2509 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2510 vsp += 4;
2511 }
2512 else if (insn == 0xc6)
2513 {
2514 int start = *entry >> 4;
2515 int count = (*entry++) & 0xf;
2516 int i;
2517
2518 /* Only registers WR0..WR15 are valid. */
2519 if (start + count >= 16)
2520 return NULL;
2521
2522 /* Pop iwmmx registers WR[start]..WR[start+count]. */
2523 for (i = 0; i <= count; i++)
2524 {
2525 cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp;
2526 vsp += 8;
2527 }
2528 }
2529 else if (insn == 0xc7)
2530 {
2531 int mask = *entry++;
2532 int i;
2533
2534 /* All-zero mask and mask >= 16 is "spare". */
2535 if (mask == 0 || mask >= 16)
2536 return NULL;
2537
2538 /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
2539 for (i = 0; i < 4; i++)
2540 if (mask & (1 << i))
2541 {
2542 cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp;
2543 vsp += 4;
2544 }
2545 }
2546 else if ((insn & 0xf8) == 0xc0)
2547 {
2548 int count = insn & 0x7;
2549 int i;
2550
2551 /* Pop iwmmx registers WR[10]..WR[10+count]. */
2552 for (i = 0; i <= count; i++)
2553 {
2554 cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp;
2555 vsp += 8;
2556 }
2557 }
2558 else if (insn == 0xc8)
2559 {
2560 int start = *entry >> 4;
2561 int count = (*entry++) & 0xf;
2562 int i;
2563
2564 /* Only registers D0..D31 are valid. */
2565 if (start + count >= 16)
2566 return NULL;
2567
2568 /* Pop VFP double-precision registers
2569 D[16+start]..D[16+start+count]. */
2570 for (i = 0; i <= count; i++)
2571 {
2572 cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp;
2573 vsp += 8;
2574 }
2575 }
2576 else if (insn == 0xc9)
2577 {
2578 int start = *entry >> 4;
2579 int count = (*entry++) & 0xf;
2580 int i;
2581
2582 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2583 for (i = 0; i <= count; i++)
2584 {
2585 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2586 vsp += 8;
2587 }
2588 }
2589 else if ((insn & 0xf8) == 0xd0)
2590 {
2591 int count = insn & 0x7;
2592 int i;
2593
2594 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2595 for (i = 0; i <= count; i++)
2596 {
2597 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2598 vsp += 8;
2599 }
2600 }
2601 else
2602 {
2603 /* Everything else is "spare". */
2604 return NULL;
2605 }
2606 }
2607
2608 /* If we restore SP from a register, assume this was the frame register.
2609 Otherwise just fall back to SP as frame register. */
2610 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2611 cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2612 else
2613 cache->framereg = ARM_SP_REGNUM;
2614
2615 /* Determine offset to previous frame. */
2616 cache->framesize
2617 = vsp - get_frame_register_unsigned (this_frame, cache->framereg);
2618
2619 /* We already got the previous SP. */
2620 cache->prev_sp = vsp;
2621
2622 return cache;
2623 }
2624
2625 /* Unwinding via ARM exception table entries. Note that the sniffer
2626 already computes a filled-in prologue cache, which is then used
2627 with the same arm_prologue_this_id and arm_prologue_prev_register
2628 routines also used for prologue-parsing based unwinding. */
2629
2630 static int
2631 arm_exidx_unwind_sniffer (const struct frame_unwind *self,
2632 struct frame_info *this_frame,
2633 void **this_prologue_cache)
2634 {
2635 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2636 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2637 CORE_ADDR addr_in_block, exidx_region, func_start;
2638 struct arm_prologue_cache *cache;
2639 gdb_byte *entry;
2640
2641 /* See if we have an ARM exception table entry covering this address. */
2642 addr_in_block = get_frame_address_in_block (this_frame);
2643 entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
2644 if (!entry)
2645 return 0;
2646
2647 /* The ARM exception table does not describe unwind information
2648 for arbitrary PC values, but is guaranteed to be correct only
2649 at call sites. We have to decide here whether we want to use
2650 ARM exception table information for this frame, or fall back
2651 to using prologue parsing. (Note that if we have DWARF CFI,
2652 this sniffer isn't even called -- CFI is always preferred.)
2653
2654 Before we make this decision, however, we check whether we
2655 actually have *symbol* information for the current frame.
2656 If not, prologue parsing would not work anyway, so we might
2657 as well use the exception table and hope for the best. */
2658 if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
2659 {
2660 int exc_valid = 0;
2661
2662 /* If the next frame is "normal", we are at a call site in this
2663 frame, so exception information is guaranteed to be valid. */
2664 if (get_next_frame (this_frame)
2665 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
2666 exc_valid = 1;
2667
2668 /* We also assume exception information is valid if we're currently
2669 blocked in a system call. The system library is supposed to
2670 ensure this, so that e.g. pthread cancellation works. */
2671 if (arm_frame_is_thumb (this_frame))
2672 {
2673 LONGEST insn;
2674
2675 if (safe_read_memory_integer (get_frame_pc (this_frame) - 2, 2,
2676 byte_order_for_code, &insn)
2677 && (insn & 0xff00) == 0xdf00 /* svc */)
2678 exc_valid = 1;
2679 }
2680 else
2681 {
2682 LONGEST insn;
2683
2684 if (safe_read_memory_integer (get_frame_pc (this_frame) - 4, 4,
2685 byte_order_for_code, &insn)
2686 && (insn & 0x0f000000) == 0x0f000000 /* svc */)
2687 exc_valid = 1;
2688 }
2689
2690 /* Bail out if we don't know that exception information is valid. */
2691 if (!exc_valid)
2692 return 0;
2693
2694 /* The ARM exception index does not mark the *end* of the region
2695 covered by the entry, and some functions will not have any entry.
2696 To correctly recognize the end of the covered region, the linker
2697 should have inserted dummy records with a CANTUNWIND marker.
2698
2699 Unfortunately, current versions of GNU ld do not reliably do
2700 this, and thus we may have found an incorrect entry above.
2701 As a (temporary) sanity check, we only use the entry if it
2702 lies *within* the bounds of the function. Note that this check
2703 might reject perfectly valid entries that just happen to cover
2704 multiple functions; therefore this check ought to be removed
2705 once the linker is fixed. */
2706 if (func_start > exidx_region)
2707 return 0;
2708 }
2709
2710 /* Decode the list of unwinding instructions into a prologue cache.
2711 Note that this may fail due to e.g. a "refuse to unwind" code. */
2712 cache = arm_exidx_fill_cache (this_frame, entry);
2713 if (!cache)
2714 return 0;
2715
2716 *this_prologue_cache = cache;
2717 return 1;
2718 }
2719
2720 struct frame_unwind arm_exidx_unwind = {
2721 NORMAL_FRAME,
2722 default_frame_unwind_stop_reason,
2723 arm_prologue_this_id,
2724 arm_prologue_prev_register,
2725 NULL,
2726 arm_exidx_unwind_sniffer
2727 };
2728
2729 static struct arm_prologue_cache *
2730 arm_make_epilogue_frame_cache (struct frame_info *this_frame)
2731 {
2732 struct arm_prologue_cache *cache;
2733 int reg;
2734
2735 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2736 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2737
2738 /* Still rely on the offset calculated from prologue. */
2739 arm_scan_prologue (this_frame, cache);
2740
2741 /* Since we are in epilogue, the SP has been restored. */
2742 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2743
2744 /* Calculate actual addresses of saved registers using offsets
2745 determined by arm_scan_prologue. */
2746 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
2747 if (trad_frame_addr_p (cache->saved_regs, reg))
2748 cache->saved_regs[reg].addr += cache->prev_sp;
2749
2750 return cache;
2751 }
2752
2753 /* Implementation of function hook 'this_id' in
2754 'struct frame_uwnind' for epilogue unwinder. */
2755
2756 static void
2757 arm_epilogue_frame_this_id (struct frame_info *this_frame,
2758 void **this_cache,
2759 struct frame_id *this_id)
2760 {
2761 struct arm_prologue_cache *cache;
2762 CORE_ADDR pc, func;
2763
2764 if (*this_cache == NULL)
2765 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2766 cache = (struct arm_prologue_cache *) *this_cache;
2767
2768 /* Use function start address as part of the frame ID. If we cannot
2769 identify the start address (due to missing symbol information),
2770 fall back to just using the current PC. */
2771 pc = get_frame_pc (this_frame);
2772 func = get_frame_func (this_frame);
2773 if (func == 0)
2774 func = pc;
2775
2776 (*this_id) = frame_id_build (cache->prev_sp, pc);
2777 }
2778
2779 /* Implementation of function hook 'prev_register' in
2780 'struct frame_uwnind' for epilogue unwinder. */
2781
2782 static struct value *
2783 arm_epilogue_frame_prev_register (struct frame_info *this_frame,
2784 void **this_cache, int regnum)
2785 {
2786 if (*this_cache == NULL)
2787 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2788
2789 return arm_prologue_prev_register (this_frame, this_cache, regnum);
2790 }
2791
2792 static int arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch,
2793 CORE_ADDR pc);
2794 static int thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch,
2795 CORE_ADDR pc);
2796
2797 /* Implementation of function hook 'sniffer' in
2798 'struct frame_uwnind' for epilogue unwinder. */
2799
2800 static int
2801 arm_epilogue_frame_sniffer (const struct frame_unwind *self,
2802 struct frame_info *this_frame,
2803 void **this_prologue_cache)
2804 {
2805 if (frame_relative_level (this_frame) == 0)
2806 {
2807 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2808 CORE_ADDR pc = get_frame_pc (this_frame);
2809
2810 if (arm_frame_is_thumb (this_frame))
2811 return thumb_stack_frame_destroyed_p (gdbarch, pc);
2812 else
2813 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
2814 }
2815 else
2816 return 0;
2817 }
2818
2819 /* Frame unwinder from epilogue. */
2820
2821 static const struct frame_unwind arm_epilogue_frame_unwind =
2822 {
2823 NORMAL_FRAME,
2824 default_frame_unwind_stop_reason,
2825 arm_epilogue_frame_this_id,
2826 arm_epilogue_frame_prev_register,
2827 NULL,
2828 arm_epilogue_frame_sniffer,
2829 };
2830
2831 /* Recognize GCC's trampoline for thumb call-indirect. If we are in a
2832 trampoline, return the target PC. Otherwise return 0.
2833
2834 void call0a (char c, short s, int i, long l) {}
2835
2836 int main (void)
2837 {
2838 (*pointer_to_call0a) (c, s, i, l);
2839 }
2840
2841 Instead of calling a stub library function _call_via_xx (xx is
2842 the register name), GCC may inline the trampoline in the object
2843 file as below (register r2 has the address of call0a).
2844
2845 .global main
2846 .type main, %function
2847 ...
2848 bl .L1
2849 ...
2850 .size main, .-main
2851
2852 .L1:
2853 bx r2
2854
2855 The trampoline 'bx r2' doesn't belong to main. */
2856
2857 static CORE_ADDR
2858 arm_skip_bx_reg (struct frame_info *frame, CORE_ADDR pc)
2859 {
2860 /* The heuristics of recognizing such trampoline is that FRAME is
2861 executing in Thumb mode and the instruction on PC is 'bx Rm'. */
2862 if (arm_frame_is_thumb (frame))
2863 {
2864 gdb_byte buf[2];
2865
2866 if (target_read_memory (pc, buf, 2) == 0)
2867 {
2868 struct gdbarch *gdbarch = get_frame_arch (frame);
2869 enum bfd_endian byte_order_for_code
2870 = gdbarch_byte_order_for_code (gdbarch);
2871 uint16_t insn
2872 = extract_unsigned_integer (buf, 2, byte_order_for_code);
2873
2874 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
2875 {
2876 CORE_ADDR dest
2877 = get_frame_register_unsigned (frame, bits (insn, 3, 6));
2878
2879 /* Clear the LSB so that gdb core sets step-resume
2880 breakpoint at the right address. */
2881 return UNMAKE_THUMB_ADDR (dest);
2882 }
2883 }
2884 }
2885
2886 return 0;
2887 }
2888
2889 static struct arm_prologue_cache *
2890 arm_make_stub_cache (struct frame_info *this_frame)
2891 {
2892 struct arm_prologue_cache *cache;
2893
2894 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2895 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2896
2897 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2898
2899 return cache;
2900 }
2901
2902 /* Our frame ID for a stub frame is the current SP and LR. */
2903
2904 static void
2905 arm_stub_this_id (struct frame_info *this_frame,
2906 void **this_cache,
2907 struct frame_id *this_id)
2908 {
2909 struct arm_prologue_cache *cache;
2910
2911 if (*this_cache == NULL)
2912 *this_cache = arm_make_stub_cache (this_frame);
2913 cache = (struct arm_prologue_cache *) *this_cache;
2914
2915 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
2916 }
2917
2918 static int
2919 arm_stub_unwind_sniffer (const struct frame_unwind *self,
2920 struct frame_info *this_frame,
2921 void **this_prologue_cache)
2922 {
2923 CORE_ADDR addr_in_block;
2924 gdb_byte dummy[4];
2925 CORE_ADDR pc, start_addr;
2926 const char *name;
2927
2928 addr_in_block = get_frame_address_in_block (this_frame);
2929 pc = get_frame_pc (this_frame);
2930 if (in_plt_section (addr_in_block)
2931 /* We also use the stub winder if the target memory is unreadable
2932 to avoid having the prologue unwinder trying to read it. */
2933 || target_read_memory (pc, dummy, 4) != 0)
2934 return 1;
2935
2936 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0
2937 && arm_skip_bx_reg (this_frame, pc) != 0)
2938 return 1;
2939
2940 return 0;
2941 }
2942
2943 struct frame_unwind arm_stub_unwind = {
2944 NORMAL_FRAME,
2945 default_frame_unwind_stop_reason,
2946 arm_stub_this_id,
2947 arm_prologue_prev_register,
2948 NULL,
2949 arm_stub_unwind_sniffer
2950 };
2951
2952 /* Put here the code to store, into CACHE->saved_regs, the addresses
2953 of the saved registers of frame described by THIS_FRAME. CACHE is
2954 returned. */
2955
2956 static struct arm_prologue_cache *
2957 arm_m_exception_cache (struct frame_info *this_frame)
2958 {
2959 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2960 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2961 struct arm_prologue_cache *cache;
2962 CORE_ADDR unwound_sp;
2963 LONGEST xpsr;
2964
2965 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2966 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2967
2968 unwound_sp = get_frame_register_unsigned (this_frame,
2969 ARM_SP_REGNUM);
2970
2971 /* The hardware saves eight 32-bit words, comprising xPSR,
2972 ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in
2973 "B1.5.6 Exception entry behavior" in
2974 "ARMv7-M Architecture Reference Manual". */
2975 cache->saved_regs[0].addr = unwound_sp;
2976 cache->saved_regs[1].addr = unwound_sp + 4;
2977 cache->saved_regs[2].addr = unwound_sp + 8;
2978 cache->saved_regs[3].addr = unwound_sp + 12;
2979 cache->saved_regs[12].addr = unwound_sp + 16;
2980 cache->saved_regs[14].addr = unwound_sp + 20;
2981 cache->saved_regs[15].addr = unwound_sp + 24;
2982 cache->saved_regs[ARM_PS_REGNUM].addr = unwound_sp + 28;
2983
2984 /* If bit 9 of the saved xPSR is set, then there is a four-byte
2985 aligner between the top of the 32-byte stack frame and the
2986 previous context's stack pointer. */
2987 cache->prev_sp = unwound_sp + 32;
2988 if (safe_read_memory_integer (unwound_sp + 28, 4, byte_order, &xpsr)
2989 && (xpsr & (1 << 9)) != 0)
2990 cache->prev_sp += 4;
2991
2992 return cache;
2993 }
2994
2995 /* Implementation of function hook 'this_id' in
2996 'struct frame_uwnind'. */
2997
2998 static void
2999 arm_m_exception_this_id (struct frame_info *this_frame,
3000 void **this_cache,
3001 struct frame_id *this_id)
3002 {
3003 struct arm_prologue_cache *cache;
3004
3005 if (*this_cache == NULL)
3006 *this_cache = arm_m_exception_cache (this_frame);
3007 cache = (struct arm_prologue_cache *) *this_cache;
3008
3009 /* Our frame ID for a stub frame is the current SP and LR. */
3010 *this_id = frame_id_build (cache->prev_sp,
3011 get_frame_pc (this_frame));
3012 }
3013
3014 /* Implementation of function hook 'prev_register' in
3015 'struct frame_uwnind'. */
3016
3017 static struct value *
3018 arm_m_exception_prev_register (struct frame_info *this_frame,
3019 void **this_cache,
3020 int prev_regnum)
3021 {
3022 struct arm_prologue_cache *cache;
3023
3024 if (*this_cache == NULL)
3025 *this_cache = arm_m_exception_cache (this_frame);
3026 cache = (struct arm_prologue_cache *) *this_cache;
3027
3028 /* The value was already reconstructed into PREV_SP. */
3029 if (prev_regnum == ARM_SP_REGNUM)
3030 return frame_unwind_got_constant (this_frame, prev_regnum,
3031 cache->prev_sp);
3032
3033 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
3034 prev_regnum);
3035 }
3036
3037 /* Implementation of function hook 'sniffer' in
3038 'struct frame_uwnind'. */
3039
3040 static int
3041 arm_m_exception_unwind_sniffer (const struct frame_unwind *self,
3042 struct frame_info *this_frame,
3043 void **this_prologue_cache)
3044 {
3045 CORE_ADDR this_pc = get_frame_pc (this_frame);
3046
3047 /* No need to check is_m; this sniffer is only registered for
3048 M-profile architectures. */
3049
3050 /* Check if exception frame returns to a magic PC value. */
3051 return arm_m_addr_is_magic (this_pc);
3052 }
3053
3054 /* Frame unwinder for M-profile exceptions. */
3055
3056 struct frame_unwind arm_m_exception_unwind =
3057 {
3058 SIGTRAMP_FRAME,
3059 default_frame_unwind_stop_reason,
3060 arm_m_exception_this_id,
3061 arm_m_exception_prev_register,
3062 NULL,
3063 arm_m_exception_unwind_sniffer
3064 };
3065
3066 static CORE_ADDR
3067 arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
3068 {
3069 struct arm_prologue_cache *cache;
3070
3071 if (*this_cache == NULL)
3072 *this_cache = arm_make_prologue_cache (this_frame);
3073 cache = (struct arm_prologue_cache *) *this_cache;
3074
3075 return cache->prev_sp - cache->framesize;
3076 }
3077
3078 struct frame_base arm_normal_base = {
3079 &arm_prologue_unwind,
3080 arm_normal_frame_base,
3081 arm_normal_frame_base,
3082 arm_normal_frame_base
3083 };
3084
3085 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
3086 dummy frame. The frame ID's base needs to match the TOS value
3087 saved by save_dummy_frame_tos() and returned from
3088 arm_push_dummy_call, and the PC needs to match the dummy frame's
3089 breakpoint. */
3090
3091 static struct frame_id
3092 arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3093 {
3094 return frame_id_build (get_frame_register_unsigned (this_frame,
3095 ARM_SP_REGNUM),
3096 get_frame_pc (this_frame));
3097 }
3098
3099 /* Given THIS_FRAME, find the previous frame's resume PC (which will
3100 be used to construct the previous frame's ID, after looking up the
3101 containing function). */
3102
3103 static CORE_ADDR
3104 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
3105 {
3106 CORE_ADDR pc;
3107 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
3108 return arm_addr_bits_remove (gdbarch, pc);
3109 }
3110
3111 static CORE_ADDR
3112 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
3113 {
3114 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
3115 }
3116
3117 static struct value *
3118 arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
3119 int regnum)
3120 {
3121 struct gdbarch * gdbarch = get_frame_arch (this_frame);
3122 CORE_ADDR lr, cpsr;
3123 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
3124
3125 switch (regnum)
3126 {
3127 case ARM_PC_REGNUM:
3128 /* The PC is normally copied from the return column, which
3129 describes saves of LR. However, that version may have an
3130 extra bit set to indicate Thumb state. The bit is not
3131 part of the PC. */
3132 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3133 return frame_unwind_got_constant (this_frame, regnum,
3134 arm_addr_bits_remove (gdbarch, lr));
3135
3136 case ARM_PS_REGNUM:
3137 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
3138 cpsr = get_frame_register_unsigned (this_frame, regnum);
3139 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3140 if (IS_THUMB_ADDR (lr))
3141 cpsr |= t_bit;
3142 else
3143 cpsr &= ~t_bit;
3144 return frame_unwind_got_constant (this_frame, regnum, cpsr);
3145
3146 default:
3147 internal_error (__FILE__, __LINE__,
3148 _("Unexpected register %d"), regnum);
3149 }
3150 }
3151
3152 static void
3153 arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3154 struct dwarf2_frame_state_reg *reg,
3155 struct frame_info *this_frame)
3156 {
3157 switch (regnum)
3158 {
3159 case ARM_PC_REGNUM:
3160 case ARM_PS_REGNUM:
3161 reg->how = DWARF2_FRAME_REG_FN;
3162 reg->loc.fn = arm_dwarf2_prev_register;
3163 break;
3164 case ARM_SP_REGNUM:
3165 reg->how = DWARF2_FRAME_REG_CFA;
3166 break;
3167 }
3168 }
3169
3170 /* Implement the stack_frame_destroyed_p gdbarch method. */
3171
3172 static int
3173 thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3174 {
3175 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3176 unsigned int insn, insn2;
3177 int found_return = 0, found_stack_adjust = 0;
3178 CORE_ADDR func_start, func_end;
3179 CORE_ADDR scan_pc;
3180 gdb_byte buf[4];
3181
3182 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3183 return 0;
3184
3185 /* The epilogue is a sequence of instructions along the following lines:
3186
3187 - add stack frame size to SP or FP
3188 - [if frame pointer used] restore SP from FP
3189 - restore registers from SP [may include PC]
3190 - a return-type instruction [if PC wasn't already restored]
3191
3192 In a first pass, we scan forward from the current PC and verify the
3193 instructions we find as compatible with this sequence, ending in a
3194 return instruction.
3195
3196 However, this is not sufficient to distinguish indirect function calls
3197 within a function from indirect tail calls in the epilogue in some cases.
3198 Therefore, if we didn't already find any SP-changing instruction during
3199 forward scan, we add a backward scanning heuristic to ensure we actually
3200 are in the epilogue. */
3201
3202 scan_pc = pc;
3203 while (scan_pc < func_end && !found_return)
3204 {
3205 if (target_read_memory (scan_pc, buf, 2))
3206 break;
3207
3208 scan_pc += 2;
3209 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3210
3211 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
3212 found_return = 1;
3213 else if (insn == 0x46f7) /* mov pc, lr */
3214 found_return = 1;
3215 else if (thumb_instruction_restores_sp (insn))
3216 {
3217 if ((insn & 0xff00) == 0xbd00) /* pop <registers, PC> */
3218 found_return = 1;
3219 }
3220 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */
3221 {
3222 if (target_read_memory (scan_pc, buf, 2))
3223 break;
3224
3225 scan_pc += 2;
3226 insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
3227
3228 if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3229 {
3230 if (insn2 & 0x8000) /* <registers> include PC. */
3231 found_return = 1;
3232 }
3233 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3234 && (insn2 & 0x0fff) == 0x0b04)
3235 {
3236 if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */
3237 found_return = 1;
3238 }
3239 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3240 && (insn2 & 0x0e00) == 0x0a00)
3241 ;
3242 else
3243 break;
3244 }
3245 else
3246 break;
3247 }
3248
3249 if (!found_return)
3250 return 0;
3251
3252 /* Since any instruction in the epilogue sequence, with the possible
3253 exception of return itself, updates the stack pointer, we need to
3254 scan backwards for at most one instruction. Try either a 16-bit or
3255 a 32-bit instruction. This is just a heuristic, so we do not worry
3256 too much about false positives. */
3257
3258 if (pc - 4 < func_start)
3259 return 0;
3260 if (target_read_memory (pc - 4, buf, 4))
3261 return 0;
3262
3263 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3264 insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
3265
3266 if (thumb_instruction_restores_sp (insn2))
3267 found_stack_adjust = 1;
3268 else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3269 found_stack_adjust = 1;
3270 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3271 && (insn2 & 0x0fff) == 0x0b04)
3272 found_stack_adjust = 1;
3273 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3274 && (insn2 & 0x0e00) == 0x0a00)
3275 found_stack_adjust = 1;
3276
3277 return found_stack_adjust;
3278 }
3279
3280 static int
3281 arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc)
3282 {
3283 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3284 unsigned int insn;
3285 int found_return;
3286 CORE_ADDR func_start, func_end;
3287
3288 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3289 return 0;
3290
3291 /* We are in the epilogue if the previous instruction was a stack
3292 adjustment and the next instruction is a possible return (bx, mov
3293 pc, or pop). We could have to scan backwards to find the stack
3294 adjustment, or forwards to find the return, but this is a decent
3295 approximation. First scan forwards. */
3296
3297 found_return = 0;
3298 insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
3299 if (bits (insn, 28, 31) != INST_NV)
3300 {
3301 if ((insn & 0x0ffffff0) == 0x012fff10)
3302 /* BX. */
3303 found_return = 1;
3304 else if ((insn & 0x0ffffff0) == 0x01a0f000)
3305 /* MOV PC. */
3306 found_return = 1;
3307 else if ((insn & 0x0fff0000) == 0x08bd0000
3308 && (insn & 0x0000c000) != 0)
3309 /* POP (LDMIA), including PC or LR. */
3310 found_return = 1;
3311 }
3312
3313 if (!found_return)
3314 return 0;
3315
3316 /* Scan backwards. This is just a heuristic, so do not worry about
3317 false positives from mode changes. */
3318
3319 if (pc < func_start + 4)
3320 return 0;
3321
3322 insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
3323 if (arm_instruction_restores_sp (insn))
3324 return 1;
3325
3326 return 0;
3327 }
3328
3329 /* Implement the stack_frame_destroyed_p gdbarch method. */
3330
3331 static int
3332 arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3333 {
3334 if (arm_pc_is_thumb (gdbarch, pc))
3335 return thumb_stack_frame_destroyed_p (gdbarch, pc);
3336 else
3337 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
3338 }
3339
3340 /* When arguments must be pushed onto the stack, they go on in reverse
3341 order. The code below implements a FILO (stack) to do this. */
3342
3343 struct stack_item
3344 {
3345 int len;
3346 struct stack_item *prev;
3347 gdb_byte *data;
3348 };
3349
3350 static struct stack_item *
3351 push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
3352 {
3353 struct stack_item *si;
3354 si = XNEW (struct stack_item);
3355 si->data = (gdb_byte *) xmalloc (len);
3356 si->len = len;
3357 si->prev = prev;
3358 memcpy (si->data, contents, len);
3359 return si;
3360 }
3361
3362 static struct stack_item *
3363 pop_stack_item (struct stack_item *si)
3364 {
3365 struct stack_item *dead = si;
3366 si = si->prev;
3367 xfree (dead->data);
3368 xfree (dead);
3369 return si;
3370 }
3371
3372
3373 /* Return the alignment (in bytes) of the given type. */
3374
3375 static int
3376 arm_type_align (struct type *t)
3377 {
3378 int n;
3379 int align;
3380 int falign;
3381
3382 t = check_typedef (t);
3383 switch (TYPE_CODE (t))
3384 {
3385 default:
3386 /* Should never happen. */
3387 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
3388 return 4;
3389
3390 case TYPE_CODE_PTR:
3391 case TYPE_CODE_ENUM:
3392 case TYPE_CODE_INT:
3393 case TYPE_CODE_FLT:
3394 case TYPE_CODE_SET:
3395 case TYPE_CODE_RANGE:
3396 case TYPE_CODE_REF:
3397 case TYPE_CODE_CHAR:
3398 case TYPE_CODE_BOOL:
3399 return TYPE_LENGTH (t);
3400
3401 case TYPE_CODE_ARRAY:
3402 if (TYPE_VECTOR (t))
3403 {
3404 /* Use the natural alignment for vector types (the same for
3405 scalar type), but the maximum alignment is 64-bit. */
3406 if (TYPE_LENGTH (t) > 8)
3407 return 8;
3408 else
3409 return TYPE_LENGTH (t);
3410 }
3411 else
3412 return arm_type_align (TYPE_TARGET_TYPE (t));
3413 case TYPE_CODE_COMPLEX:
3414 return arm_type_align (TYPE_TARGET_TYPE (t));
3415
3416 case TYPE_CODE_STRUCT:
3417 case TYPE_CODE_UNION:
3418 align = 1;
3419 for (n = 0; n < TYPE_NFIELDS (t); n++)
3420 {
3421 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
3422 if (falign > align)
3423 align = falign;
3424 }
3425 return align;
3426 }
3427 }
3428
3429 /* Possible base types for a candidate for passing and returning in
3430 VFP registers. */
3431
3432 enum arm_vfp_cprc_base_type
3433 {
3434 VFP_CPRC_UNKNOWN,
3435 VFP_CPRC_SINGLE,
3436 VFP_CPRC_DOUBLE,
3437 VFP_CPRC_VEC64,
3438 VFP_CPRC_VEC128
3439 };
3440
3441 /* The length of one element of base type B. */
3442
3443 static unsigned
3444 arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
3445 {
3446 switch (b)
3447 {
3448 case VFP_CPRC_SINGLE:
3449 return 4;
3450 case VFP_CPRC_DOUBLE:
3451 return 8;
3452 case VFP_CPRC_VEC64:
3453 return 8;
3454 case VFP_CPRC_VEC128:
3455 return 16;
3456 default:
3457 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3458 (int) b);
3459 }
3460 }
3461
3462 /* The character ('s', 'd' or 'q') for the type of VFP register used
3463 for passing base type B. */
3464
3465 static int
3466 arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
3467 {
3468 switch (b)
3469 {
3470 case VFP_CPRC_SINGLE:
3471 return 's';
3472 case VFP_CPRC_DOUBLE:
3473 return 'd';
3474 case VFP_CPRC_VEC64:
3475 return 'd';
3476 case VFP_CPRC_VEC128:
3477 return 'q';
3478 default:
3479 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3480 (int) b);
3481 }
3482 }
3483
3484 /* Determine whether T may be part of a candidate for passing and
3485 returning in VFP registers, ignoring the limit on the total number
3486 of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
3487 classification of the first valid component found; if it is not
3488 VFP_CPRC_UNKNOWN, all components must have the same classification
3489 as *BASE_TYPE. If it is found that T contains a type not permitted
3490 for passing and returning in VFP registers, a type differently
3491 classified from *BASE_TYPE, or two types differently classified
3492 from each other, return -1, otherwise return the total number of
3493 base-type elements found (possibly 0 in an empty structure or
3494 array). Vector types are not currently supported, matching the
3495 generic AAPCS support. */
3496
3497 static int
3498 arm_vfp_cprc_sub_candidate (struct type *t,
3499 enum arm_vfp_cprc_base_type *base_type)
3500 {
3501 t = check_typedef (t);
3502 switch (TYPE_CODE (t))
3503 {
3504 case TYPE_CODE_FLT:
3505 switch (TYPE_LENGTH (t))
3506 {
3507 case 4:
3508 if (*base_type == VFP_CPRC_UNKNOWN)
3509 *base_type = VFP_CPRC_SINGLE;
3510 else if (*base_type != VFP_CPRC_SINGLE)
3511 return -1;
3512 return 1;
3513
3514 case 8:
3515 if (*base_type == VFP_CPRC_UNKNOWN)
3516 *base_type = VFP_CPRC_DOUBLE;
3517 else if (*base_type != VFP_CPRC_DOUBLE)
3518 return -1;
3519 return 1;
3520
3521 default:
3522 return -1;
3523 }
3524 break;
3525
3526 case TYPE_CODE_COMPLEX:
3527 /* Arguments of complex T where T is one of the types float or
3528 double get treated as if they are implemented as:
3529
3530 struct complexT
3531 {
3532 T real;
3533 T imag;
3534 };
3535
3536 */
3537 switch (TYPE_LENGTH (t))
3538 {
3539 case 8:
3540 if (*base_type == VFP_CPRC_UNKNOWN)
3541 *base_type = VFP_CPRC_SINGLE;
3542 else if (*base_type != VFP_CPRC_SINGLE)
3543 return -1;
3544 return 2;
3545
3546 case 16:
3547 if (*base_type == VFP_CPRC_UNKNOWN)
3548 *base_type = VFP_CPRC_DOUBLE;
3549 else if (*base_type != VFP_CPRC_DOUBLE)
3550 return -1;
3551 return 2;
3552
3553 default:
3554 return -1;
3555 }
3556 break;
3557
3558 case TYPE_CODE_ARRAY:
3559 {
3560 if (TYPE_VECTOR (t))
3561 {
3562 /* A 64-bit or 128-bit containerized vector type are VFP
3563 CPRCs. */
3564 switch (TYPE_LENGTH (t))
3565 {
3566 case 8:
3567 if (*base_type == VFP_CPRC_UNKNOWN)
3568 *base_type = VFP_CPRC_VEC64;
3569 return 1;
3570 case 16:
3571 if (*base_type == VFP_CPRC_UNKNOWN)
3572 *base_type = VFP_CPRC_VEC128;
3573 return 1;
3574 default:
3575 return -1;
3576 }
3577 }
3578 else
3579 {
3580 int count;
3581 unsigned unitlen;
3582
3583 count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t),
3584 base_type);
3585 if (count == -1)
3586 return -1;
3587 if (TYPE_LENGTH (t) == 0)
3588 {
3589 gdb_assert (count == 0);
3590 return 0;
3591 }
3592 else if (count == 0)
3593 return -1;
3594 unitlen = arm_vfp_cprc_unit_length (*base_type);
3595 gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
3596 return TYPE_LENGTH (t) / unitlen;
3597 }
3598 }
3599 break;
3600
3601 case TYPE_CODE_STRUCT:
3602 {
3603 int count = 0;
3604 unsigned unitlen;
3605 int i;
3606 for (i = 0; i < TYPE_NFIELDS (t); i++)
3607 {
3608 int sub_count = 0;
3609
3610 if (!field_is_static (&TYPE_FIELD (t, i)))
3611 sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3612 base_type);
3613 if (sub_count == -1)
3614 return -1;
3615 count += sub_count;
3616 }
3617 if (TYPE_LENGTH (t) == 0)
3618 {
3619 gdb_assert (count == 0);
3620 return 0;
3621 }
3622 else if (count == 0)
3623 return -1;
3624 unitlen = arm_vfp_cprc_unit_length (*base_type);
3625 if (TYPE_LENGTH (t) != unitlen * count)
3626 return -1;
3627 return count;
3628 }
3629
3630 case TYPE_CODE_UNION:
3631 {
3632 int count = 0;
3633 unsigned unitlen;
3634 int i;
3635 for (i = 0; i < TYPE_NFIELDS (t); i++)
3636 {
3637 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3638 base_type);
3639 if (sub_count == -1)
3640 return -1;
3641 count = (count > sub_count ? count : sub_count);
3642 }
3643 if (TYPE_LENGTH (t) == 0)
3644 {
3645 gdb_assert (count == 0);
3646 return 0;
3647 }
3648 else if (count == 0)
3649 return -1;
3650 unitlen = arm_vfp_cprc_unit_length (*base_type);
3651 if (TYPE_LENGTH (t) != unitlen * count)
3652 return -1;
3653 return count;
3654 }
3655
3656 default:
3657 break;
3658 }
3659
3660 return -1;
3661 }
3662
3663 /* Determine whether T is a VFP co-processor register candidate (CPRC)
3664 if passed to or returned from a non-variadic function with the VFP
3665 ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
3666 *BASE_TYPE to the base type for T and *COUNT to the number of
3667 elements of that base type before returning. */
3668
3669 static int
3670 arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
3671 int *count)
3672 {
3673 enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
3674 int c = arm_vfp_cprc_sub_candidate (t, &b);
3675 if (c <= 0 || c > 4)
3676 return 0;
3677 *base_type = b;
3678 *count = c;
3679 return 1;
3680 }
3681
3682 /* Return 1 if the VFP ABI should be used for passing arguments to and
3683 returning values from a function of type FUNC_TYPE, 0
3684 otherwise. */
3685
3686 static int
3687 arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
3688 {
3689 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3690 /* Variadic functions always use the base ABI. Assume that functions
3691 without debug info are not variadic. */
3692 if (func_type && TYPE_VARARGS (check_typedef (func_type)))
3693 return 0;
3694 /* The VFP ABI is only supported as a variant of AAPCS. */
3695 if (tdep->arm_abi != ARM_ABI_AAPCS)
3696 return 0;
3697 return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
3698 }
3699
3700 /* We currently only support passing parameters in integer registers, which
3701 conforms with GCC's default model, and VFP argument passing following
3702 the VFP variant of AAPCS. Several other variants exist and
3703 we should probably support some of them based on the selected ABI. */
3704
3705 static CORE_ADDR
3706 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3707 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3708 struct value **args, CORE_ADDR sp, int struct_return,
3709 CORE_ADDR struct_addr)
3710 {
3711 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3712 int argnum;
3713 int argreg;
3714 int nstack;
3715 struct stack_item *si = NULL;
3716 int use_vfp_abi;
3717 struct type *ftype;
3718 unsigned vfp_regs_free = (1 << 16) - 1;
3719
3720 /* Determine the type of this function and whether the VFP ABI
3721 applies. */
3722 ftype = check_typedef (value_type (function));
3723 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
3724 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
3725 use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
3726
3727 /* Set the return address. For the ARM, the return breakpoint is
3728 always at BP_ADDR. */
3729 if (arm_pc_is_thumb (gdbarch, bp_addr))
3730 bp_addr |= 1;
3731 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
3732
3733 /* Walk through the list of args and determine how large a temporary
3734 stack is required. Need to take care here as structs may be
3735 passed on the stack, and we have to push them. */
3736 nstack = 0;
3737
3738 argreg = ARM_A1_REGNUM;
3739 nstack = 0;
3740
3741 /* The struct_return pointer occupies the first parameter
3742 passing register. */
3743 if (struct_return)
3744 {
3745 if (arm_debug)
3746 fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
3747 gdbarch_register_name (gdbarch, argreg),
3748 paddress (gdbarch, struct_addr));
3749 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
3750 argreg++;
3751 }
3752
3753 for (argnum = 0; argnum < nargs; argnum++)
3754 {
3755 int len;
3756 struct type *arg_type;
3757 struct type *target_type;
3758 enum type_code typecode;
3759 const bfd_byte *val;
3760 int align;
3761 enum arm_vfp_cprc_base_type vfp_base_type;
3762 int vfp_base_count;
3763 int may_use_core_reg = 1;
3764
3765 arg_type = check_typedef (value_type (args[argnum]));
3766 len = TYPE_LENGTH (arg_type);
3767 target_type = TYPE_TARGET_TYPE (arg_type);
3768 typecode = TYPE_CODE (arg_type);
3769 val = value_contents (args[argnum]);
3770
3771 align = arm_type_align (arg_type);
3772 /* Round alignment up to a whole number of words. */
3773 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
3774 /* Different ABIs have different maximum alignments. */
3775 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
3776 {
3777 /* The APCS ABI only requires word alignment. */
3778 align = INT_REGISTER_SIZE;
3779 }
3780 else
3781 {
3782 /* The AAPCS requires at most doubleword alignment. */
3783 if (align > INT_REGISTER_SIZE * 2)
3784 align = INT_REGISTER_SIZE * 2;
3785 }
3786
3787 if (use_vfp_abi
3788 && arm_vfp_call_candidate (arg_type, &vfp_base_type,
3789 &vfp_base_count))
3790 {
3791 int regno;
3792 int unit_length;
3793 int shift;
3794 unsigned mask;
3795
3796 /* Because this is a CPRC it cannot go in a core register or
3797 cause a core register to be skipped for alignment.
3798 Either it goes in VFP registers and the rest of this loop
3799 iteration is skipped for this argument, or it goes on the
3800 stack (and the stack alignment code is correct for this
3801 case). */
3802 may_use_core_reg = 0;
3803
3804 unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
3805 shift = unit_length / 4;
3806 mask = (1 << (shift * vfp_base_count)) - 1;
3807 for (regno = 0; regno < 16; regno += shift)
3808 if (((vfp_regs_free >> regno) & mask) == mask)
3809 break;
3810
3811 if (regno < 16)
3812 {
3813 int reg_char;
3814 int reg_scaled;
3815 int i;
3816
3817 vfp_regs_free &= ~(mask << regno);
3818 reg_scaled = regno / shift;
3819 reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
3820 for (i = 0; i < vfp_base_count; i++)
3821 {
3822 char name_buf[4];
3823 int regnum;
3824 if (reg_char == 'q')
3825 arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
3826 val + i * unit_length);
3827 else
3828 {
3829 xsnprintf (name_buf, sizeof (name_buf), "%c%d",
3830 reg_char, reg_scaled + i);
3831 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
3832 strlen (name_buf));
3833 regcache_cooked_write (regcache, regnum,
3834 val + i * unit_length);
3835 }
3836 }
3837 continue;
3838 }
3839 else
3840 {
3841 /* This CPRC could not go in VFP registers, so all VFP
3842 registers are now marked as used. */
3843 vfp_regs_free = 0;
3844 }
3845 }
3846
3847 /* Push stack padding for dowubleword alignment. */
3848 if (nstack & (align - 1))
3849 {
3850 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3851 nstack += INT_REGISTER_SIZE;
3852 }
3853
3854 /* Doubleword aligned quantities must go in even register pairs. */
3855 if (may_use_core_reg
3856 && argreg <= ARM_LAST_ARG_REGNUM
3857 && align > INT_REGISTER_SIZE
3858 && argreg & 1)
3859 argreg++;
3860
3861 /* If the argument is a pointer to a function, and it is a
3862 Thumb function, create a LOCAL copy of the value and set
3863 the THUMB bit in it. */
3864 if (TYPE_CODE_PTR == typecode
3865 && target_type != NULL
3866 && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type)))
3867 {
3868 CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
3869 if (arm_pc_is_thumb (gdbarch, regval))
3870 {
3871 bfd_byte *copy = (bfd_byte *) alloca (len);
3872 store_unsigned_integer (copy, len, byte_order,
3873 MAKE_THUMB_ADDR (regval));
3874 val = copy;
3875 }
3876 }
3877
3878 /* Copy the argument to general registers or the stack in
3879 register-sized pieces. Large arguments are split between
3880 registers and stack. */
3881 while (len > 0)
3882 {
3883 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
3884 CORE_ADDR regval
3885 = extract_unsigned_integer (val, partial_len, byte_order);
3886
3887 if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
3888 {
3889 /* The argument is being passed in a general purpose
3890 register. */
3891 if (byte_order == BFD_ENDIAN_BIG)
3892 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
3893 if (arm_debug)
3894 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
3895 argnum,
3896 gdbarch_register_name
3897 (gdbarch, argreg),
3898 phex (regval, INT_REGISTER_SIZE));
3899 regcache_cooked_write_unsigned (regcache, argreg, regval);
3900 argreg++;
3901 }
3902 else
3903 {
3904 gdb_byte buf[INT_REGISTER_SIZE];
3905
3906 memset (buf, 0, sizeof (buf));
3907 store_unsigned_integer (buf, partial_len, byte_order, regval);
3908
3909 /* Push the arguments onto the stack. */
3910 if (arm_debug)
3911 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
3912 argnum, nstack);
3913 si = push_stack_item (si, buf, INT_REGISTER_SIZE);
3914 nstack += INT_REGISTER_SIZE;
3915 }
3916
3917 len -= partial_len;
3918 val += partial_len;
3919 }
3920 }
3921 /* If we have an odd number of words to push, then decrement the stack
3922 by one word now, so first stack argument will be dword aligned. */
3923 if (nstack & 4)
3924 sp -= 4;
3925
3926 while (si)
3927 {
3928 sp -= si->len;
3929 write_memory (sp, si->data, si->len);
3930 si = pop_stack_item (si);
3931 }
3932
3933 /* Finally, update teh SP register. */
3934 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
3935
3936 return sp;
3937 }
3938
3939
3940 /* Always align the frame to an 8-byte boundary. This is required on
3941 some platforms and harmless on the rest. */
3942
3943 static CORE_ADDR
3944 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3945 {
3946 /* Align the stack to eight bytes. */
3947 return sp & ~ (CORE_ADDR) 7;
3948 }
3949
3950 static void
3951 print_fpu_flags (struct ui_file *file, int flags)
3952 {
3953 if (flags & (1 << 0))
3954 fputs_filtered ("IVO ", file);
3955 if (flags & (1 << 1))
3956 fputs_filtered ("DVZ ", file);
3957 if (flags & (1 << 2))
3958 fputs_filtered ("OFL ", file);
3959 if (flags & (1 << 3))
3960 fputs_filtered ("UFL ", file);
3961 if (flags & (1 << 4))
3962 fputs_filtered ("INX ", file);
3963 fputc_filtered ('\n', file);
3964 }
3965
3966 /* Print interesting information about the floating point processor
3967 (if present) or emulator. */
3968 static void
3969 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
3970 struct frame_info *frame, const char *args)
3971 {
3972 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
3973 int type;
3974
3975 type = (status >> 24) & 127;
3976 if (status & (1 << 31))
3977 fprintf_filtered (file, _("Hardware FPU type %d\n"), type);
3978 else
3979 fprintf_filtered (file, _("Software FPU type %d\n"), type);
3980 /* i18n: [floating point unit] mask */
3981 fputs_filtered (_("mask: "), file);
3982 print_fpu_flags (file, status >> 16);
3983 /* i18n: [floating point unit] flags */
3984 fputs_filtered (_("flags: "), file);
3985 print_fpu_flags (file, status);
3986 }
3987
3988 /* Construct the ARM extended floating point type. */
3989 static struct type *
3990 arm_ext_type (struct gdbarch *gdbarch)
3991 {
3992 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3993
3994 if (!tdep->arm_ext_type)
3995 tdep->arm_ext_type
3996 = arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
3997 floatformats_arm_ext);
3998
3999 return tdep->arm_ext_type;
4000 }
4001
4002 static struct type *
4003 arm_neon_double_type (struct gdbarch *gdbarch)
4004 {
4005 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4006
4007 if (tdep->neon_double_type == NULL)
4008 {
4009 struct type *t, *elem;
4010
4011 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
4012 TYPE_CODE_UNION);
4013 elem = builtin_type (gdbarch)->builtin_uint8;
4014 append_composite_type_field (t, "u8", init_vector_type (elem, 8));
4015 elem = builtin_type (gdbarch)->builtin_uint16;
4016 append_composite_type_field (t, "u16", init_vector_type (elem, 4));
4017 elem = builtin_type (gdbarch)->builtin_uint32;
4018 append_composite_type_field (t, "u32", init_vector_type (elem, 2));
4019 elem = builtin_type (gdbarch)->builtin_uint64;
4020 append_composite_type_field (t, "u64", elem);
4021 elem = builtin_type (gdbarch)->builtin_float;
4022 append_composite_type_field (t, "f32", init_vector_type (elem, 2));
4023 elem = builtin_type (gdbarch)->builtin_double;
4024 append_composite_type_field (t, "f64", elem);
4025
4026 TYPE_VECTOR (t) = 1;
4027 TYPE_NAME (t) = "neon_d";
4028 tdep->neon_double_type = t;
4029 }
4030
4031 return tdep->neon_double_type;
4032 }
4033
4034 /* FIXME: The vector types are not correctly ordered on big-endian
4035 targets. Just as s0 is the low bits of d0, d0[0] is also the low
4036 bits of d0 - regardless of what unit size is being held in d0. So
4037 the offset of the first uint8 in d0 is 7, but the offset of the
4038 first float is 4. This code works as-is for little-endian
4039 targets. */
4040
4041 static struct type *
4042 arm_neon_quad_type (struct gdbarch *gdbarch)
4043 {
4044 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4045
4046 if (tdep->neon_quad_type == NULL)
4047 {
4048 struct type *t, *elem;
4049
4050 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
4051 TYPE_CODE_UNION);
4052 elem = builtin_type (gdbarch)->builtin_uint8;
4053 append_composite_type_field (t, "u8", init_vector_type (elem, 16));
4054 elem = builtin_type (gdbarch)->builtin_uint16;
4055 append_composite_type_field (t, "u16", init_vector_type (elem, 8));
4056 elem = builtin_type (gdbarch)->builtin_uint32;
4057 append_composite_type_field (t, "u32", init_vector_type (elem, 4));
4058 elem = builtin_type (gdbarch)->builtin_uint64;
4059 append_composite_type_field (t, "u64", init_vector_type (elem, 2));
4060 elem = builtin_type (gdbarch)->builtin_float;
4061 append_composite_type_field (t, "f32", init_vector_type (elem, 4));
4062 elem = builtin_type (gdbarch)->builtin_double;
4063 append_composite_type_field (t, "f64", init_vector_type (elem, 2));
4064
4065 TYPE_VECTOR (t) = 1;
4066 TYPE_NAME (t) = "neon_q";
4067 tdep->neon_quad_type = t;
4068 }
4069
4070 return tdep->neon_quad_type;
4071 }
4072
4073 /* Return the GDB type object for the "standard" data type of data in
4074 register N. */
4075
4076 static struct type *
4077 arm_register_type (struct gdbarch *gdbarch, int regnum)
4078 {
4079 int num_regs = gdbarch_num_regs (gdbarch);
4080
4081 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
4082 && regnum >= num_regs && regnum < num_regs + 32)
4083 return builtin_type (gdbarch)->builtin_float;
4084
4085 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
4086 && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
4087 return arm_neon_quad_type (gdbarch);
4088
4089 /* If the target description has register information, we are only
4090 in this function so that we can override the types of
4091 double-precision registers for NEON. */
4092 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
4093 {
4094 struct type *t = tdesc_register_type (gdbarch, regnum);
4095
4096 if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
4097 && TYPE_CODE (t) == TYPE_CODE_FLT
4098 && gdbarch_tdep (gdbarch)->have_neon)
4099 return arm_neon_double_type (gdbarch);
4100 else
4101 return t;
4102 }
4103
4104 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
4105 {
4106 if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
4107 return builtin_type (gdbarch)->builtin_void;
4108
4109 return arm_ext_type (gdbarch);
4110 }
4111 else if (regnum == ARM_SP_REGNUM)
4112 return builtin_type (gdbarch)->builtin_data_ptr;
4113 else if (regnum == ARM_PC_REGNUM)
4114 return builtin_type (gdbarch)->builtin_func_ptr;
4115 else if (regnum >= ARRAY_SIZE (arm_register_names))
4116 /* These registers are only supported on targets which supply
4117 an XML description. */
4118 return builtin_type (gdbarch)->builtin_int0;
4119 else
4120 return builtin_type (gdbarch)->builtin_uint32;
4121 }
4122
4123 /* Map a DWARF register REGNUM onto the appropriate GDB register
4124 number. */
4125
4126 static int
4127 arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
4128 {
4129 /* Core integer regs. */
4130 if (reg >= 0 && reg <= 15)
4131 return reg;
4132
4133 /* Legacy FPA encoding. These were once used in a way which
4134 overlapped with VFP register numbering, so their use is
4135 discouraged, but GDB doesn't support the ARM toolchain
4136 which used them for VFP. */
4137 if (reg >= 16 && reg <= 23)
4138 return ARM_F0_REGNUM + reg - 16;
4139
4140 /* New assignments for the FPA registers. */
4141 if (reg >= 96 && reg <= 103)
4142 return ARM_F0_REGNUM + reg - 96;
4143
4144 /* WMMX register assignments. */
4145 if (reg >= 104 && reg <= 111)
4146 return ARM_WCGR0_REGNUM + reg - 104;
4147
4148 if (reg >= 112 && reg <= 127)
4149 return ARM_WR0_REGNUM + reg - 112;
4150
4151 if (reg >= 192 && reg <= 199)
4152 return ARM_WC0_REGNUM + reg - 192;
4153
4154 /* VFP v2 registers. A double precision value is actually
4155 in d1 rather than s2, but the ABI only defines numbering
4156 for the single precision registers. This will "just work"
4157 in GDB for little endian targets (we'll read eight bytes,
4158 starting in s0 and then progressing to s1), but will be
4159 reversed on big endian targets with VFP. This won't
4160 be a problem for the new Neon quad registers; you're supposed
4161 to use DW_OP_piece for those. */
4162 if (reg >= 64 && reg <= 95)
4163 {
4164 char name_buf[4];
4165
4166 xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64);
4167 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4168 strlen (name_buf));
4169 }
4170
4171 /* VFP v3 / Neon registers. This range is also used for VFP v2
4172 registers, except that it now describes d0 instead of s0. */
4173 if (reg >= 256 && reg <= 287)
4174 {
4175 char name_buf[4];
4176
4177 xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256);
4178 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4179 strlen (name_buf));
4180 }
4181
4182 return -1;
4183 }
4184
4185 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
4186 static int
4187 arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
4188 {
4189 int reg = regnum;
4190 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
4191
4192 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
4193 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
4194
4195 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
4196 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
4197
4198 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
4199 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
4200
4201 if (reg < NUM_GREGS)
4202 return SIM_ARM_R0_REGNUM + reg;
4203 reg -= NUM_GREGS;
4204
4205 if (reg < NUM_FREGS)
4206 return SIM_ARM_FP0_REGNUM + reg;
4207 reg -= NUM_FREGS;
4208
4209 if (reg < NUM_SREGS)
4210 return SIM_ARM_FPS_REGNUM + reg;
4211 reg -= NUM_SREGS;
4212
4213 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
4214 }
4215
4216 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
4217 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
4218 It is thought that this is is the floating-point register format on
4219 little-endian systems. */
4220
4221 static void
4222 convert_from_extended (const struct floatformat *fmt, const void *ptr,
4223 void *dbl, int endianess)
4224 {
4225 DOUBLEST d;
4226
4227 if (endianess == BFD_ENDIAN_BIG)
4228 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
4229 else
4230 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
4231 ptr, &d);
4232 floatformat_from_doublest (fmt, &d, dbl);
4233 }
4234
4235 static void
4236 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
4237 int endianess)
4238 {
4239 DOUBLEST d;
4240
4241 floatformat_to_doublest (fmt, ptr, &d);
4242 if (endianess == BFD_ENDIAN_BIG)
4243 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
4244 else
4245 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
4246 &d, dbl);
4247 }
4248
4249 /* Like insert_single_step_breakpoint, but make sure we use a breakpoint
4250 of the appropriate mode (as encoded in the PC value), even if this
4251 differs from what would be expected according to the symbol tables. */
4252
4253 void
4254 arm_insert_single_step_breakpoint (struct gdbarch *gdbarch,
4255 struct address_space *aspace,
4256 CORE_ADDR pc)
4257 {
4258 scoped_restore save_override_mode
4259 = make_scoped_restore (&arm_override_mode,
4260 (int) IS_THUMB_ADDR (pc));
4261 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4262
4263 insert_single_step_breakpoint (gdbarch, aspace, pc);
4264 }
4265
4266 /* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
4267 the buffer to be NEW_LEN bytes ending at ENDADDR. Return
4268 NULL if an error occurs. BUF is freed. */
4269
4270 static gdb_byte *
4271 extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
4272 int old_len, int new_len)
4273 {
4274 gdb_byte *new_buf;
4275 int bytes_to_read = new_len - old_len;
4276
4277 new_buf = (gdb_byte *) xmalloc (new_len);
4278 memcpy (new_buf + bytes_to_read, buf, old_len);
4279 xfree (buf);
4280 if (target_read_memory (endaddr - new_len, new_buf, bytes_to_read) != 0)
4281 {
4282 xfree (new_buf);
4283 return NULL;
4284 }
4285 return new_buf;
4286 }
4287
4288 /* An IT block is at most the 2-byte IT instruction followed by
4289 four 4-byte instructions. The furthest back we must search to
4290 find an IT block that affects the current instruction is thus
4291 2 + 3 * 4 == 14 bytes. */
4292 #define MAX_IT_BLOCK_PREFIX 14
4293
4294 /* Use a quick scan if there are more than this many bytes of
4295 code. */
4296 #define IT_SCAN_THRESHOLD 32
4297
4298 /* Adjust a breakpoint's address to move breakpoints out of IT blocks.
4299 A breakpoint in an IT block may not be hit, depending on the
4300 condition flags. */
4301 static CORE_ADDR
4302 arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
4303 {
4304 gdb_byte *buf;
4305 char map_type;
4306 CORE_ADDR boundary, func_start;
4307 int buf_len;
4308 enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
4309 int i, any, last_it, last_it_count;
4310
4311 /* If we are using BKPT breakpoints, none of this is necessary. */
4312 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
4313 return bpaddr;
4314
4315 /* ARM mode does not have this problem. */
4316 if (!arm_pc_is_thumb (gdbarch, bpaddr))
4317 return bpaddr;
4318
4319 /* We are setting a breakpoint in Thumb code that could potentially
4320 contain an IT block. The first step is to find how much Thumb
4321 code there is; we do not need to read outside of known Thumb
4322 sequences. */
4323 map_type = arm_find_mapping_symbol (bpaddr, &boundary);
4324 if (map_type == 0)
4325 /* Thumb-2 code must have mapping symbols to have a chance. */
4326 return bpaddr;
4327
4328 bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
4329
4330 if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
4331 && func_start > boundary)
4332 boundary = func_start;
4333
4334 /* Search for a candidate IT instruction. We have to do some fancy
4335 footwork to distinguish a real IT instruction from the second
4336 half of a 32-bit instruction, but there is no need for that if
4337 there's no candidate. */
4338 buf_len = std::min (bpaddr - boundary, (CORE_ADDR) MAX_IT_BLOCK_PREFIX);
4339 if (buf_len == 0)
4340 /* No room for an IT instruction. */
4341 return bpaddr;
4342
4343 buf = (gdb_byte *) xmalloc (buf_len);
4344 if (target_read_memory (bpaddr - buf_len, buf, buf_len) != 0)
4345 return bpaddr;
4346 any = 0;
4347 for (i = 0; i < buf_len; i += 2)
4348 {
4349 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4350 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4351 {
4352 any = 1;
4353 break;
4354 }
4355 }
4356
4357 if (any == 0)
4358 {
4359 xfree (buf);
4360 return bpaddr;
4361 }
4362
4363 /* OK, the code bytes before this instruction contain at least one
4364 halfword which resembles an IT instruction. We know that it's
4365 Thumb code, but there are still two possibilities. Either the
4366 halfword really is an IT instruction, or it is the second half of
4367 a 32-bit Thumb instruction. The only way we can tell is to
4368 scan forwards from a known instruction boundary. */
4369 if (bpaddr - boundary > IT_SCAN_THRESHOLD)
4370 {
4371 int definite;
4372
4373 /* There's a lot of code before this instruction. Start with an
4374 optimistic search; it's easy to recognize halfwords that can
4375 not be the start of a 32-bit instruction, and use that to
4376 lock on to the instruction boundaries. */
4377 buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
4378 if (buf == NULL)
4379 return bpaddr;
4380 buf_len = IT_SCAN_THRESHOLD;
4381
4382 definite = 0;
4383 for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
4384 {
4385 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4386 if (thumb_insn_size (inst1) == 2)
4387 {
4388 definite = 1;
4389 break;
4390 }
4391 }
4392
4393 /* At this point, if DEFINITE, BUF[I] is the first place we
4394 are sure that we know the instruction boundaries, and it is far
4395 enough from BPADDR that we could not miss an IT instruction
4396 affecting BPADDR. If ! DEFINITE, give up - start from a
4397 known boundary. */
4398 if (! definite)
4399 {
4400 buf = extend_buffer_earlier (buf, bpaddr, buf_len,
4401 bpaddr - boundary);
4402 if (buf == NULL)
4403 return bpaddr;
4404 buf_len = bpaddr - boundary;
4405 i = 0;
4406 }
4407 }
4408 else
4409 {
4410 buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
4411 if (buf == NULL)
4412 return bpaddr;
4413 buf_len = bpaddr - boundary;
4414 i = 0;
4415 }
4416
4417 /* Scan forwards. Find the last IT instruction before BPADDR. */
4418 last_it = -1;
4419 last_it_count = 0;
4420 while (i < buf_len)
4421 {
4422 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4423 last_it_count--;
4424 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4425 {
4426 last_it = i;
4427 if (inst1 & 0x0001)
4428 last_it_count = 4;
4429 else if (inst1 & 0x0002)
4430 last_it_count = 3;
4431 else if (inst1 & 0x0004)
4432 last_it_count = 2;
4433 else
4434 last_it_count = 1;
4435 }
4436 i += thumb_insn_size (inst1);
4437 }
4438
4439 xfree (buf);
4440
4441 if (last_it == -1)
4442 /* There wasn't really an IT instruction after all. */
4443 return bpaddr;
4444
4445 if (last_it_count < 1)
4446 /* It was too far away. */
4447 return bpaddr;
4448
4449 /* This really is a trouble spot. Move the breakpoint to the IT
4450 instruction. */
4451 return bpaddr - buf_len + last_it;
4452 }
4453
4454 /* ARM displaced stepping support.
4455
4456 Generally ARM displaced stepping works as follows:
4457
4458 1. When an instruction is to be single-stepped, it is first decoded by
4459 arm_process_displaced_insn. Depending on the type of instruction, it is
4460 then copied to a scratch location, possibly in a modified form. The
4461 copy_* set of functions performs such modification, as necessary. A
4462 breakpoint is placed after the modified instruction in the scratch space
4463 to return control to GDB. Note in particular that instructions which
4464 modify the PC will no longer do so after modification.
4465
4466 2. The instruction is single-stepped, by setting the PC to the scratch
4467 location address, and resuming. Control returns to GDB when the
4468 breakpoint is hit.
4469
4470 3. A cleanup function (cleanup_*) is called corresponding to the copy_*
4471 function used for the current instruction. This function's job is to
4472 put the CPU/memory state back to what it would have been if the
4473 instruction had been executed unmodified in its original location. */
4474
4475 /* NOP instruction (mov r0, r0). */
4476 #define ARM_NOP 0xe1a00000
4477 #define THUMB_NOP 0x4600
4478
4479 /* Helper for register reads for displaced stepping. In particular, this
4480 returns the PC as it would be seen by the instruction at its original
4481 location. */
4482
4483 ULONGEST
4484 displaced_read_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4485 int regno)
4486 {
4487 ULONGEST ret;
4488 CORE_ADDR from = dsc->insn_addr;
4489
4490 if (regno == ARM_PC_REGNUM)
4491 {
4492 /* Compute pipeline offset:
4493 - When executing an ARM instruction, PC reads as the address of the
4494 current instruction plus 8.
4495 - When executing a Thumb instruction, PC reads as the address of the
4496 current instruction plus 4. */
4497
4498 if (!dsc->is_thumb)
4499 from += 8;
4500 else
4501 from += 4;
4502
4503 if (debug_displaced)
4504 fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
4505 (unsigned long) from);
4506 return (ULONGEST) from;
4507 }
4508 else
4509 {
4510 regcache_cooked_read_unsigned (regs, regno, &ret);
4511 if (debug_displaced)
4512 fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
4513 regno, (unsigned long) ret);
4514 return ret;
4515 }
4516 }
4517
4518 static int
4519 displaced_in_arm_mode (struct regcache *regs)
4520 {
4521 ULONGEST ps;
4522 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
4523
4524 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4525
4526 return (ps & t_bit) == 0;
4527 }
4528
4529 /* Write to the PC as from a branch instruction. */
4530
4531 static void
4532 branch_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4533 ULONGEST val)
4534 {
4535 if (!dsc->is_thumb)
4536 /* Note: If bits 0/1 are set, this branch would be unpredictable for
4537 architecture versions < 6. */
4538 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4539 val & ~(ULONGEST) 0x3);
4540 else
4541 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4542 val & ~(ULONGEST) 0x1);
4543 }
4544
4545 /* Write to the PC as from a branch-exchange instruction. */
4546
4547 static void
4548 bx_write_pc (struct regcache *regs, ULONGEST val)
4549 {
4550 ULONGEST ps;
4551 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
4552
4553 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4554
4555 if ((val & 1) == 1)
4556 {
4557 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
4558 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
4559 }
4560 else if ((val & 2) == 0)
4561 {
4562 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
4563 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
4564 }
4565 else
4566 {
4567 /* Unpredictable behaviour. Try to do something sensible (switch to ARM
4568 mode, align dest to 4 bytes). */
4569 warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
4570 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
4571 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
4572 }
4573 }
4574
4575 /* Write to the PC as if from a load instruction. */
4576
4577 static void
4578 load_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4579 ULONGEST val)
4580 {
4581 if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
4582 bx_write_pc (regs, val);
4583 else
4584 branch_write_pc (regs, dsc, val);
4585 }
4586
4587 /* Write to the PC as if from an ALU instruction. */
4588
4589 static void
4590 alu_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4591 ULONGEST val)
4592 {
4593 if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb)
4594 bx_write_pc (regs, val);
4595 else
4596 branch_write_pc (regs, dsc, val);
4597 }
4598
4599 /* Helper for writing to registers for displaced stepping. Writing to the PC
4600 has a varying effects depending on the instruction which does the write:
4601 this is controlled by the WRITE_PC argument. */
4602
4603 void
4604 displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4605 int regno, ULONGEST val, enum pc_write_style write_pc)
4606 {
4607 if (regno == ARM_PC_REGNUM)
4608 {
4609 if (debug_displaced)
4610 fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
4611 (unsigned long) val);
4612 switch (write_pc)
4613 {
4614 case BRANCH_WRITE_PC:
4615 branch_write_pc (regs, dsc, val);
4616 break;
4617
4618 case BX_WRITE_PC:
4619 bx_write_pc (regs, val);
4620 break;
4621
4622 case LOAD_WRITE_PC:
4623 load_write_pc (regs, dsc, val);
4624 break;
4625
4626 case ALU_WRITE_PC:
4627 alu_write_pc (regs, dsc, val);
4628 break;
4629
4630 case CANNOT_WRITE_PC:
4631 warning (_("Instruction wrote to PC in an unexpected way when "
4632 "single-stepping"));
4633 break;
4634
4635 default:
4636 internal_error (__FILE__, __LINE__,
4637 _("Invalid argument to displaced_write_reg"));
4638 }
4639
4640 dsc->wrote_to_pc = 1;
4641 }
4642 else
4643 {
4644 if (debug_displaced)
4645 fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
4646 regno, (unsigned long) val);
4647 regcache_cooked_write_unsigned (regs, regno, val);
4648 }
4649 }
4650
4651 /* This function is used to concisely determine if an instruction INSN
4652 references PC. Register fields of interest in INSN should have the
4653 corresponding fields of BITMASK set to 0b1111. The function
4654 returns return 1 if any of these fields in INSN reference the PC
4655 (also 0b1111, r15), else it returns 0. */
4656
4657 static int
4658 insn_references_pc (uint32_t insn, uint32_t bitmask)
4659 {
4660 uint32_t lowbit = 1;
4661
4662 while (bitmask != 0)
4663 {
4664 uint32_t mask;
4665
4666 for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
4667 ;
4668
4669 if (!lowbit)
4670 break;
4671
4672 mask = lowbit * 0xf;
4673
4674 if ((insn & mask) == mask)
4675 return 1;
4676
4677 bitmask &= ~mask;
4678 }
4679
4680 return 0;
4681 }
4682
4683 /* The simplest copy function. Many instructions have the same effect no
4684 matter what address they are executed at: in those cases, use this. */
4685
4686 static int
4687 arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn,
4688 const char *iname, struct displaced_step_closure *dsc)
4689 {
4690 if (debug_displaced)
4691 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
4692 "opcode/class '%s' unmodified\n", (unsigned long) insn,
4693 iname);
4694
4695 dsc->modinsn[0] = insn;
4696
4697 return 0;
4698 }
4699
4700 static int
4701 thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1,
4702 uint16_t insn2, const char *iname,
4703 struct displaced_step_closure *dsc)
4704 {
4705 if (debug_displaced)
4706 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, "
4707 "opcode/class '%s' unmodified\n", insn1, insn2,
4708 iname);
4709
4710 dsc->modinsn[0] = insn1;
4711 dsc->modinsn[1] = insn2;
4712 dsc->numinsns = 2;
4713
4714 return 0;
4715 }
4716
4717 /* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any
4718 modification. */
4719 static int
4720 thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, uint16_t insn,
4721 const char *iname,
4722 struct displaced_step_closure *dsc)
4723 {
4724 if (debug_displaced)
4725 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, "
4726 "opcode/class '%s' unmodified\n", insn,
4727 iname);
4728
4729 dsc->modinsn[0] = insn;
4730
4731 return 0;
4732 }
4733
4734 /* Preload instructions with immediate offset. */
4735
4736 static void
4737 cleanup_preload (struct gdbarch *gdbarch,
4738 struct regcache *regs, struct displaced_step_closure *dsc)
4739 {
4740 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4741 if (!dsc->u.preload.immed)
4742 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
4743 }
4744
4745 static void
4746 install_preload (struct gdbarch *gdbarch, struct regcache *regs,
4747 struct displaced_step_closure *dsc, unsigned int rn)
4748 {
4749 ULONGEST rn_val;
4750 /* Preload instructions:
4751
4752 {pli/pld} [rn, #+/-imm]
4753 ->
4754 {pli/pld} [r0, #+/-imm]. */
4755
4756 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4757 rn_val = displaced_read_reg (regs, dsc, rn);
4758 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4759 dsc->u.preload.immed = 1;
4760
4761 dsc->cleanup = &cleanup_preload;
4762 }
4763
4764 static int
4765 arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
4766 struct displaced_step_closure *dsc)
4767 {
4768 unsigned int rn = bits (insn, 16, 19);
4769
4770 if (!insn_references_pc (insn, 0x000f0000ul))
4771 return arm_copy_unmodified (gdbarch, insn, "preload", dsc);
4772
4773 if (debug_displaced)
4774 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4775 (unsigned long) insn);
4776
4777 dsc->modinsn[0] = insn & 0xfff0ffff;
4778
4779 install_preload (gdbarch, regs, dsc, rn);
4780
4781 return 0;
4782 }
4783
4784 static int
4785 thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
4786 struct regcache *regs, struct displaced_step_closure *dsc)
4787 {
4788 unsigned int rn = bits (insn1, 0, 3);
4789 unsigned int u_bit = bit (insn1, 7);
4790 int imm12 = bits (insn2, 0, 11);
4791 ULONGEST pc_val;
4792
4793 if (rn != ARM_PC_REGNUM)
4794 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc);
4795
4796 /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and
4797 PLD (literal) Encoding T1. */
4798 if (debug_displaced)
4799 fprintf_unfiltered (gdb_stdlog,
4800 "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n",
4801 (unsigned int) dsc->insn_addr, u_bit ? '+' : '-',
4802 imm12);
4803
4804 if (!u_bit)
4805 imm12 = -1 * imm12;
4806
4807 /* Rewrite instruction {pli/pld} PC imm12 into:
4808 Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12
4809
4810 {pli/pld} [r0, r1]
4811
4812 Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */
4813
4814 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4815 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4816
4817 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
4818
4819 displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC);
4820 displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC);
4821 dsc->u.preload.immed = 0;
4822
4823 /* {pli/pld} [r0, r1] */
4824 dsc->modinsn[0] = insn1 & 0xfff0;
4825 dsc->modinsn[1] = 0xf001;
4826 dsc->numinsns = 2;
4827
4828 dsc->cleanup = &cleanup_preload;
4829 return 0;
4830 }
4831
4832 /* Preload instructions with register offset. */
4833
4834 static void
4835 install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs,
4836 struct displaced_step_closure *dsc, unsigned int rn,
4837 unsigned int rm)
4838 {
4839 ULONGEST rn_val, rm_val;
4840
4841 /* Preload register-offset instructions:
4842
4843 {pli/pld} [rn, rm {, shift}]
4844 ->
4845 {pli/pld} [r0, r1 {, shift}]. */
4846
4847 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4848 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4849 rn_val = displaced_read_reg (regs, dsc, rn);
4850 rm_val = displaced_read_reg (regs, dsc, rm);
4851 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4852 displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
4853 dsc->u.preload.immed = 0;
4854
4855 dsc->cleanup = &cleanup_preload;
4856 }
4857
4858 static int
4859 arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
4860 struct regcache *regs,
4861 struct displaced_step_closure *dsc)
4862 {
4863 unsigned int rn = bits (insn, 16, 19);
4864 unsigned int rm = bits (insn, 0, 3);
4865
4866
4867 if (!insn_references_pc (insn, 0x000f000ful))
4868 return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc);
4869
4870 if (debug_displaced)
4871 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4872 (unsigned long) insn);
4873
4874 dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
4875
4876 install_preload_reg (gdbarch, regs, dsc, rn, rm);
4877 return 0;
4878 }
4879
4880 /* Copy/cleanup coprocessor load and store instructions. */
4881
4882 static void
4883 cleanup_copro_load_store (struct gdbarch *gdbarch,
4884 struct regcache *regs,
4885 struct displaced_step_closure *dsc)
4886 {
4887 ULONGEST rn_val = displaced_read_reg (regs, dsc, 0);
4888
4889 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4890
4891 if (dsc->u.ldst.writeback)
4892 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
4893 }
4894
4895 static void
4896 install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs,
4897 struct displaced_step_closure *dsc,
4898 int writeback, unsigned int rn)
4899 {
4900 ULONGEST rn_val;
4901
4902 /* Coprocessor load/store instructions:
4903
4904 {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
4905 ->
4906 {stc/stc2} [r0, #+/-imm].
4907
4908 ldc/ldc2 are handled identically. */
4909
4910 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4911 rn_val = displaced_read_reg (regs, dsc, rn);
4912 /* PC should be 4-byte aligned. */
4913 rn_val = rn_val & 0xfffffffc;
4914 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4915
4916 dsc->u.ldst.writeback = writeback;
4917 dsc->u.ldst.rn = rn;
4918
4919 dsc->cleanup = &cleanup_copro_load_store;
4920 }
4921
4922 static int
4923 arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
4924 struct regcache *regs,
4925 struct displaced_step_closure *dsc)
4926 {
4927 unsigned int rn = bits (insn, 16, 19);
4928
4929 if (!insn_references_pc (insn, 0x000f0000ul))
4930 return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc);
4931
4932 if (debug_displaced)
4933 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4934 "load/store insn %.8lx\n", (unsigned long) insn);
4935
4936 dsc->modinsn[0] = insn & 0xfff0ffff;
4937
4938 install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn);
4939
4940 return 0;
4941 }
4942
4943 static int
4944 thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1,
4945 uint16_t insn2, struct regcache *regs,
4946 struct displaced_step_closure *dsc)
4947 {
4948 unsigned int rn = bits (insn1, 0, 3);
4949
4950 if (rn != ARM_PC_REGNUM)
4951 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
4952 "copro load/store", dsc);
4953
4954 if (debug_displaced)
4955 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4956 "load/store insn %.4x%.4x\n", insn1, insn2);
4957
4958 dsc->modinsn[0] = insn1 & 0xfff0;
4959 dsc->modinsn[1] = insn2;
4960 dsc->numinsns = 2;
4961
4962 /* This function is called for copying instruction LDC/LDC2/VLDR, which
4963 doesn't support writeback, so pass 0. */
4964 install_copro_load_store (gdbarch, regs, dsc, 0, rn);
4965
4966 return 0;
4967 }
4968
4969 /* Clean up branch instructions (actually perform the branch, by setting
4970 PC). */
4971
4972 static void
4973 cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
4974 struct displaced_step_closure *dsc)
4975 {
4976 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
4977 int branch_taken = condition_true (dsc->u.branch.cond, status);
4978 enum pc_write_style write_pc = dsc->u.branch.exchange
4979 ? BX_WRITE_PC : BRANCH_WRITE_PC;
4980
4981 if (!branch_taken)
4982 return;
4983
4984 if (dsc->u.branch.link)
4985 {
4986 /* The value of LR should be the next insn of current one. In order
4987 not to confuse logic hanlding later insn `bx lr', if current insn mode
4988 is Thumb, the bit 0 of LR value should be set to 1. */
4989 ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size;
4990
4991 if (dsc->is_thumb)
4992 next_insn_addr |= 0x1;
4993
4994 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr,
4995 CANNOT_WRITE_PC);
4996 }
4997
4998 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc);
4999 }
5000
5001 /* Copy B/BL/BLX instructions with immediate destinations. */
5002
5003 static void
5004 install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs,
5005 struct displaced_step_closure *dsc,
5006 unsigned int cond, int exchange, int link, long offset)
5007 {
5008 /* Implement "BL<cond> <label>" as:
5009
5010 Preparation: cond <- instruction condition
5011 Insn: mov r0, r0 (nop)
5012 Cleanup: if (condition true) { r14 <- pc; pc <- label }.
5013
5014 B<cond> similar, but don't set r14 in cleanup. */
5015
5016 dsc->u.branch.cond = cond;
5017 dsc->u.branch.link = link;
5018 dsc->u.branch.exchange = exchange;
5019
5020 dsc->u.branch.dest = dsc->insn_addr;
5021 if (link && exchange)
5022 /* For BLX, offset is computed from the Align (PC, 4). */
5023 dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc;
5024
5025 if (dsc->is_thumb)
5026 dsc->u.branch.dest += 4 + offset;
5027 else
5028 dsc->u.branch.dest += 8 + offset;
5029
5030 dsc->cleanup = &cleanup_branch;
5031 }
5032 static int
5033 arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
5034 struct regcache *regs, struct displaced_step_closure *dsc)
5035 {
5036 unsigned int cond = bits (insn, 28, 31);
5037 int exchange = (cond == 0xf);
5038 int link = exchange || bit (insn, 24);
5039 long offset;
5040
5041 if (debug_displaced)
5042 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
5043 "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
5044 (unsigned long) insn);
5045 if (exchange)
5046 /* For BLX, set bit 0 of the destination. The cleanup_branch function will
5047 then arrange the switch into Thumb mode. */
5048 offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
5049 else
5050 offset = bits (insn, 0, 23) << 2;
5051
5052 if (bit (offset, 25))
5053 offset = offset | ~0x3ffffff;
5054
5055 dsc->modinsn[0] = ARM_NOP;
5056
5057 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
5058 return 0;
5059 }
5060
5061 static int
5062 thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1,
5063 uint16_t insn2, struct regcache *regs,
5064 struct displaced_step_closure *dsc)
5065 {
5066 int link = bit (insn2, 14);
5067 int exchange = link && !bit (insn2, 12);
5068 int cond = INST_AL;
5069 long offset = 0;
5070 int j1 = bit (insn2, 13);
5071 int j2 = bit (insn2, 11);
5072 int s = sbits (insn1, 10, 10);
5073 int i1 = !(j1 ^ bit (insn1, 10));
5074 int i2 = !(j2 ^ bit (insn1, 10));
5075
5076 if (!link && !exchange) /* B */
5077 {
5078 offset = (bits (insn2, 0, 10) << 1);
5079 if (bit (insn2, 12)) /* Encoding T4 */
5080 {
5081 offset |= (bits (insn1, 0, 9) << 12)
5082 | (i2 << 22)
5083 | (i1 << 23)
5084 | (s << 24);
5085 cond = INST_AL;
5086 }
5087 else /* Encoding T3 */
5088 {
5089 offset |= (bits (insn1, 0, 5) << 12)
5090 | (j1 << 18)
5091 | (j2 << 19)
5092 | (s << 20);
5093 cond = bits (insn1, 6, 9);
5094 }
5095 }
5096 else
5097 {
5098 offset = (bits (insn1, 0, 9) << 12);
5099 offset |= ((i2 << 22) | (i1 << 23) | (s << 24));
5100 offset |= exchange ?
5101 (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1);
5102 }
5103
5104 if (debug_displaced)
5105 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn "
5106 "%.4x %.4x with offset %.8lx\n",
5107 link ? (exchange) ? "blx" : "bl" : "b",
5108 insn1, insn2, offset);
5109
5110 dsc->modinsn[0] = THUMB_NOP;
5111
5112 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
5113 return 0;
5114 }
5115
5116 /* Copy B Thumb instructions. */
5117 static int
5118 thumb_copy_b (struct gdbarch *gdbarch, uint16_t insn,
5119 struct displaced_step_closure *dsc)
5120 {
5121 unsigned int cond = 0;
5122 int offset = 0;
5123 unsigned short bit_12_15 = bits (insn, 12, 15);
5124 CORE_ADDR from = dsc->insn_addr;
5125
5126 if (bit_12_15 == 0xd)
5127 {
5128 /* offset = SignExtend (imm8:0, 32) */
5129 offset = sbits ((insn << 1), 0, 8);
5130 cond = bits (insn, 8, 11);
5131 }
5132 else if (bit_12_15 == 0xe) /* Encoding T2 */
5133 {
5134 offset = sbits ((insn << 1), 0, 11);
5135 cond = INST_AL;
5136 }
5137
5138 if (debug_displaced)
5139 fprintf_unfiltered (gdb_stdlog,
5140 "displaced: copying b immediate insn %.4x "
5141 "with offset %d\n", insn, offset);
5142
5143 dsc->u.branch.cond = cond;
5144 dsc->u.branch.link = 0;
5145 dsc->u.branch.exchange = 0;
5146 dsc->u.branch.dest = from + 4 + offset;
5147
5148 dsc->modinsn[0] = THUMB_NOP;
5149
5150 dsc->cleanup = &cleanup_branch;
5151
5152 return 0;
5153 }
5154
5155 /* Copy BX/BLX with register-specified destinations. */
5156
5157 static void
5158 install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs,
5159 struct displaced_step_closure *dsc, int link,
5160 unsigned int cond, unsigned int rm)
5161 {
5162 /* Implement {BX,BLX}<cond> <reg>" as:
5163
5164 Preparation: cond <- instruction condition
5165 Insn: mov r0, r0 (nop)
5166 Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
5167
5168 Don't set r14 in cleanup for BX. */
5169
5170 dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm);
5171
5172 dsc->u.branch.cond = cond;
5173 dsc->u.branch.link = link;
5174
5175 dsc->u.branch.exchange = 1;
5176
5177 dsc->cleanup = &cleanup_branch;
5178 }
5179
5180 static int
5181 arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
5182 struct regcache *regs, struct displaced_step_closure *dsc)
5183 {
5184 unsigned int cond = bits (insn, 28, 31);
5185 /* BX: x12xxx1x
5186 BLX: x12xxx3x. */
5187 int link = bit (insn, 5);
5188 unsigned int rm = bits (insn, 0, 3);
5189
5190 if (debug_displaced)
5191 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx",
5192 (unsigned long) insn);
5193
5194 dsc->modinsn[0] = ARM_NOP;
5195
5196 install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm);
5197 return 0;
5198 }
5199
5200 static int
5201 thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn,
5202 struct regcache *regs,
5203 struct displaced_step_closure *dsc)
5204 {
5205 int link = bit (insn, 7);
5206 unsigned int rm = bits (insn, 3, 6);
5207
5208 if (debug_displaced)
5209 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x",
5210 (unsigned short) insn);
5211
5212 dsc->modinsn[0] = THUMB_NOP;
5213
5214 install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm);
5215
5216 return 0;
5217 }
5218
5219
5220 /* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
5221
5222 static void
5223 cleanup_alu_imm (struct gdbarch *gdbarch,
5224 struct regcache *regs, struct displaced_step_closure *dsc)
5225 {
5226 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
5227 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5228 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5229 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5230 }
5231
5232 static int
5233 arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5234 struct displaced_step_closure *dsc)
5235 {
5236 unsigned int rn = bits (insn, 16, 19);
5237 unsigned int rd = bits (insn, 12, 15);
5238 unsigned int op = bits (insn, 21, 24);
5239 int is_mov = (op == 0xd);
5240 ULONGEST rd_val, rn_val;
5241
5242 if (!insn_references_pc (insn, 0x000ff000ul))
5243 return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
5244
5245 if (debug_displaced)
5246 fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
5247 "%.8lx\n", is_mov ? "move" : "ALU",
5248 (unsigned long) insn);
5249
5250 /* Instruction is of form:
5251
5252 <op><cond> rd, [rn,] #imm
5253
5254 Rewrite as:
5255
5256 Preparation: tmp1, tmp2 <- r0, r1;
5257 r0, r1 <- rd, rn
5258 Insn: <op><cond> r0, r1, #imm
5259 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5260 */
5261
5262 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5263 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5264 rn_val = displaced_read_reg (regs, dsc, rn);
5265 rd_val = displaced_read_reg (regs, dsc, rd);
5266 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5267 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5268 dsc->rd = rd;
5269
5270 if (is_mov)
5271 dsc->modinsn[0] = insn & 0xfff00fff;
5272 else
5273 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
5274
5275 dsc->cleanup = &cleanup_alu_imm;
5276
5277 return 0;
5278 }
5279
5280 static int
5281 thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1,
5282 uint16_t insn2, struct regcache *regs,
5283 struct displaced_step_closure *dsc)
5284 {
5285 unsigned int op = bits (insn1, 5, 8);
5286 unsigned int rn, rm, rd;
5287 ULONGEST rd_val, rn_val;
5288
5289 rn = bits (insn1, 0, 3); /* Rn */
5290 rm = bits (insn2, 0, 3); /* Rm */
5291 rd = bits (insn2, 8, 11); /* Rd */
5292
5293 /* This routine is only called for instruction MOV. */
5294 gdb_assert (op == 0x2 && rn == 0xf);
5295
5296 if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM)
5297 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc);
5298
5299 if (debug_displaced)
5300 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n",
5301 "ALU", insn1, insn2);
5302
5303 /* Instruction is of form:
5304
5305 <op><cond> rd, [rn,] #imm
5306
5307 Rewrite as:
5308
5309 Preparation: tmp1, tmp2 <- r0, r1;
5310 r0, r1 <- rd, rn
5311 Insn: <op><cond> r0, r1, #imm
5312 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5313 */
5314
5315 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5316 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5317 rn_val = displaced_read_reg (regs, dsc, rn);
5318 rd_val = displaced_read_reg (regs, dsc, rd);
5319 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5320 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5321 dsc->rd = rd;
5322
5323 dsc->modinsn[0] = insn1;
5324 dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1);
5325 dsc->numinsns = 2;
5326
5327 dsc->cleanup = &cleanup_alu_imm;
5328
5329 return 0;
5330 }
5331
5332 /* Copy/cleanup arithmetic/logic insns with register RHS. */
5333
5334 static void
5335 cleanup_alu_reg (struct gdbarch *gdbarch,
5336 struct regcache *regs, struct displaced_step_closure *dsc)
5337 {
5338 ULONGEST rd_val;
5339 int i;
5340
5341 rd_val = displaced_read_reg (regs, dsc, 0);
5342
5343 for (i = 0; i < 3; i++)
5344 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5345
5346 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5347 }
5348
5349 static void
5350 install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs,
5351 struct displaced_step_closure *dsc,
5352 unsigned int rd, unsigned int rn, unsigned int rm)
5353 {
5354 ULONGEST rd_val, rn_val, rm_val;
5355
5356 /* Instruction is of form:
5357
5358 <op><cond> rd, [rn,] rm [, <shift>]
5359
5360 Rewrite as:
5361
5362 Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
5363 r0, r1, r2 <- rd, rn, rm
5364 Insn: <op><cond> r0, [r1,] r2 [, <shift>]
5365 Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
5366 */
5367
5368 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5369 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5370 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5371 rd_val = displaced_read_reg (regs, dsc, rd);
5372 rn_val = displaced_read_reg (regs, dsc, rn);
5373 rm_val = displaced_read_reg (regs, dsc, rm);
5374 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5375 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5376 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5377 dsc->rd = rd;
5378
5379 dsc->cleanup = &cleanup_alu_reg;
5380 }
5381
5382 static int
5383 arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5384 struct displaced_step_closure *dsc)
5385 {
5386 unsigned int op = bits (insn, 21, 24);
5387 int is_mov = (op == 0xd);
5388
5389 if (!insn_references_pc (insn, 0x000ff00ful))
5390 return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc);
5391
5392 if (debug_displaced)
5393 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
5394 is_mov ? "move" : "ALU", (unsigned long) insn);
5395
5396 if (is_mov)
5397 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
5398 else
5399 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
5400
5401 install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19),
5402 bits (insn, 0, 3));
5403 return 0;
5404 }
5405
5406 static int
5407 thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn,
5408 struct regcache *regs,
5409 struct displaced_step_closure *dsc)
5410 {
5411 unsigned rm, rd;
5412
5413 rm = bits (insn, 3, 6);
5414 rd = (bit (insn, 7) << 3) | bits (insn, 0, 2);
5415
5416 if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM)
5417 return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc);
5418
5419 if (debug_displaced)
5420 fprintf_unfiltered (gdb_stdlog, "displaced: copying ALU reg insn %.4x\n",
5421 (unsigned short) insn);
5422
5423 dsc->modinsn[0] = ((insn & 0xff00) | 0x10);
5424
5425 install_alu_reg (gdbarch, regs, dsc, rd, rd, rm);
5426
5427 return 0;
5428 }
5429
5430 /* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
5431
5432 static void
5433 cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
5434 struct regcache *regs,
5435 struct displaced_step_closure *dsc)
5436 {
5437 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
5438 int i;
5439
5440 for (i = 0; i < 4; i++)
5441 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5442
5443 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5444 }
5445
5446 static void
5447 install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs,
5448 struct displaced_step_closure *dsc,
5449 unsigned int rd, unsigned int rn, unsigned int rm,
5450 unsigned rs)
5451 {
5452 int i;
5453 ULONGEST rd_val, rn_val, rm_val, rs_val;
5454
5455 /* Instruction is of form:
5456
5457 <op><cond> rd, [rn,] rm, <shift> rs
5458
5459 Rewrite as:
5460
5461 Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
5462 r0, r1, r2, r3 <- rd, rn, rm, rs
5463 Insn: <op><cond> r0, r1, r2, <shift> r3
5464 Cleanup: tmp5 <- r0
5465 r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
5466 rd <- tmp5
5467 */
5468
5469 for (i = 0; i < 4; i++)
5470 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
5471
5472 rd_val = displaced_read_reg (regs, dsc, rd);
5473 rn_val = displaced_read_reg (regs, dsc, rn);
5474 rm_val = displaced_read_reg (regs, dsc, rm);
5475 rs_val = displaced_read_reg (regs, dsc, rs);
5476 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5477 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5478 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5479 displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
5480 dsc->rd = rd;
5481 dsc->cleanup = &cleanup_alu_shifted_reg;
5482 }
5483
5484 static int
5485 arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
5486 struct regcache *regs,
5487 struct displaced_step_closure *dsc)
5488 {
5489 unsigned int op = bits (insn, 21, 24);
5490 int is_mov = (op == 0xd);
5491 unsigned int rd, rn, rm, rs;
5492
5493 if (!insn_references_pc (insn, 0x000fff0ful))
5494 return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
5495
5496 if (debug_displaced)
5497 fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
5498 "%.8lx\n", is_mov ? "move" : "ALU",
5499 (unsigned long) insn);
5500
5501 rn = bits (insn, 16, 19);
5502 rm = bits (insn, 0, 3);
5503 rs = bits (insn, 8, 11);
5504 rd = bits (insn, 12, 15);
5505
5506 if (is_mov)
5507 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
5508 else
5509 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
5510
5511 install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs);
5512
5513 return 0;
5514 }
5515
5516 /* Clean up load instructions. */
5517
5518 static void
5519 cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
5520 struct displaced_step_closure *dsc)
5521 {
5522 ULONGEST rt_val, rt_val2 = 0, rn_val;
5523
5524 rt_val = displaced_read_reg (regs, dsc, 0);
5525 if (dsc->u.ldst.xfersize == 8)
5526 rt_val2 = displaced_read_reg (regs, dsc, 1);
5527 rn_val = displaced_read_reg (regs, dsc, 2);
5528
5529 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5530 if (dsc->u.ldst.xfersize > 4)
5531 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5532 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5533 if (!dsc->u.ldst.immed)
5534 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5535
5536 /* Handle register writeback. */
5537 if (dsc->u.ldst.writeback)
5538 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5539 /* Put result in right place. */
5540 displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
5541 if (dsc->u.ldst.xfersize == 8)
5542 displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
5543 }
5544
5545 /* Clean up store instructions. */
5546
5547 static void
5548 cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
5549 struct displaced_step_closure *dsc)
5550 {
5551 ULONGEST rn_val = displaced_read_reg (regs, dsc, 2);
5552
5553 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5554 if (dsc->u.ldst.xfersize > 4)
5555 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5556 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5557 if (!dsc->u.ldst.immed)
5558 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5559 if (!dsc->u.ldst.restore_r4)
5560 displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
5561
5562 /* Writeback. */
5563 if (dsc->u.ldst.writeback)
5564 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5565 }
5566
5567 /* Copy "extra" load/store instructions. These are halfword/doubleword
5568 transfers, which have a different encoding to byte/word transfers. */
5569
5570 static int
5571 arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unprivileged,
5572 struct regcache *regs, struct displaced_step_closure *dsc)
5573 {
5574 unsigned int op1 = bits (insn, 20, 24);
5575 unsigned int op2 = bits (insn, 5, 6);
5576 unsigned int rt = bits (insn, 12, 15);
5577 unsigned int rn = bits (insn, 16, 19);
5578 unsigned int rm = bits (insn, 0, 3);
5579 char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
5580 char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
5581 int immed = (op1 & 0x4) != 0;
5582 int opcode;
5583 ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
5584
5585 if (!insn_references_pc (insn, 0x000ff00ful))
5586 return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc);
5587
5588 if (debug_displaced)
5589 fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
5590 "insn %.8lx\n", unprivileged ? "unprivileged " : "",
5591 (unsigned long) insn);
5592
5593 opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
5594
5595 if (opcode < 0)
5596 internal_error (__FILE__, __LINE__,
5597 _("copy_extra_ld_st: instruction decode error"));
5598
5599 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5600 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5601 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5602 if (!immed)
5603 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5604
5605 rt_val = displaced_read_reg (regs, dsc, rt);
5606 if (bytesize[opcode] == 8)
5607 rt_val2 = displaced_read_reg (regs, dsc, rt + 1);
5608 rn_val = displaced_read_reg (regs, dsc, rn);
5609 if (!immed)
5610 rm_val = displaced_read_reg (regs, dsc, rm);
5611
5612 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5613 if (bytesize[opcode] == 8)
5614 displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
5615 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5616 if (!immed)
5617 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5618
5619 dsc->rd = rt;
5620 dsc->u.ldst.xfersize = bytesize[opcode];
5621 dsc->u.ldst.rn = rn;
5622 dsc->u.ldst.immed = immed;
5623 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
5624 dsc->u.ldst.restore_r4 = 0;
5625
5626 if (immed)
5627 /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
5628 ->
5629 {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
5630 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5631 else
5632 /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
5633 ->
5634 {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
5635 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5636
5637 dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
5638
5639 return 0;
5640 }
5641
5642 /* Copy byte/half word/word loads and stores. */
5643
5644 static void
5645 install_load_store (struct gdbarch *gdbarch, struct regcache *regs,
5646 struct displaced_step_closure *dsc, int load,
5647 int immed, int writeback, int size, int usermode,
5648 int rt, int rm, int rn)
5649 {
5650 ULONGEST rt_val, rn_val, rm_val = 0;
5651
5652 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5653 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5654 if (!immed)
5655 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5656 if (!load)
5657 dsc->tmp[4] = displaced_read_reg (regs, dsc, 4);
5658
5659 rt_val = displaced_read_reg (regs, dsc, rt);
5660 rn_val = displaced_read_reg (regs, dsc, rn);
5661 if (!immed)
5662 rm_val = displaced_read_reg (regs, dsc, rm);
5663
5664 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5665 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5666 if (!immed)
5667 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5668 dsc->rd = rt;
5669 dsc->u.ldst.xfersize = size;
5670 dsc->u.ldst.rn = rn;
5671 dsc->u.ldst.immed = immed;
5672 dsc->u.ldst.writeback = writeback;
5673
5674 /* To write PC we can do:
5675
5676 Before this sequence of instructions:
5677 r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
5678 r2 is the Rn value got from dispalced_read_reg.
5679
5680 Insn1: push {pc} Write address of STR instruction + offset on stack
5681 Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
5682 Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
5683 = addr(Insn1) + offset - addr(Insn3) - 8
5684 = offset - 16
5685 Insn4: add r4, r4, #8 r4 = offset - 8
5686 Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
5687 = from + offset
5688 Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
5689
5690 Otherwise we don't know what value to write for PC, since the offset is
5691 architecture-dependent (sometimes PC+8, sometimes PC+12). More details
5692 of this can be found in Section "Saving from r15" in
5693 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
5694
5695 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5696 }
5697
5698
5699 static int
5700 thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1,
5701 uint16_t insn2, struct regcache *regs,
5702 struct displaced_step_closure *dsc, int size)
5703 {
5704 unsigned int u_bit = bit (insn1, 7);
5705 unsigned int rt = bits (insn2, 12, 15);
5706 int imm12 = bits (insn2, 0, 11);
5707 ULONGEST pc_val;
5708
5709 if (debug_displaced)
5710 fprintf_unfiltered (gdb_stdlog,
5711 "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n",
5712 (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-',
5713 imm12);
5714
5715 if (!u_bit)
5716 imm12 = -1 * imm12;
5717
5718 /* Rewrite instruction LDR Rt imm12 into:
5719
5720 Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12
5721
5722 LDR R0, R2, R3,
5723
5724 Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */
5725
5726
5727 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5728 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5729 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5730
5731 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
5732
5733 pc_val = pc_val & 0xfffffffc;
5734
5735 displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC);
5736 displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC);
5737
5738 dsc->rd = rt;
5739
5740 dsc->u.ldst.xfersize = size;
5741 dsc->u.ldst.immed = 0;
5742 dsc->u.ldst.writeback = 0;
5743 dsc->u.ldst.restore_r4 = 0;
5744
5745 /* LDR R0, R2, R3 */
5746 dsc->modinsn[0] = 0xf852;
5747 dsc->modinsn[1] = 0x3;
5748 dsc->numinsns = 2;
5749
5750 dsc->cleanup = &cleanup_load;
5751
5752 return 0;
5753 }
5754
5755 static int
5756 thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1,
5757 uint16_t insn2, struct regcache *regs,
5758 struct displaced_step_closure *dsc,
5759 int writeback, int immed)
5760 {
5761 unsigned int rt = bits (insn2, 12, 15);
5762 unsigned int rn = bits (insn1, 0, 3);
5763 unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */
5764 /* In LDR (register), there is also a register Rm, which is not allowed to
5765 be PC, so we don't have to check it. */
5766
5767 if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
5768 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load",
5769 dsc);
5770
5771 if (debug_displaced)
5772 fprintf_unfiltered (gdb_stdlog,
5773 "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n",
5774 rt, rn, insn1, insn2);
5775
5776 install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4,
5777 0, rt, rm, rn);
5778
5779 dsc->u.ldst.restore_r4 = 0;
5780
5781 if (immed)
5782 /* ldr[b]<cond> rt, [rn, #imm], etc.
5783 ->
5784 ldr[b]<cond> r0, [r2, #imm]. */
5785 {
5786 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5787 dsc->modinsn[1] = insn2 & 0x0fff;
5788 }
5789 else
5790 /* ldr[b]<cond> rt, [rn, rm], etc.
5791 ->
5792 ldr[b]<cond> r0, [r2, r3]. */
5793 {
5794 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5795 dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3;
5796 }
5797
5798 dsc->numinsns = 2;
5799
5800 return 0;
5801 }
5802
5803
5804 static int
5805 arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
5806 struct regcache *regs,
5807 struct displaced_step_closure *dsc,
5808 int load, int size, int usermode)
5809 {
5810 int immed = !bit (insn, 25);
5811 int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0);
5812 unsigned int rt = bits (insn, 12, 15);
5813 unsigned int rn = bits (insn, 16, 19);
5814 unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
5815
5816 if (!insn_references_pc (insn, 0x000ff00ful))
5817 return arm_copy_unmodified (gdbarch, insn, "load/store", dsc);
5818
5819 if (debug_displaced)
5820 fprintf_unfiltered (gdb_stdlog,
5821 "displaced: copying %s%s r%d [r%d] insn %.8lx\n",
5822 load ? (size == 1 ? "ldrb" : "ldr")
5823 : (size == 1 ? "strb" : "str"), usermode ? "t" : "",
5824 rt, rn,
5825 (unsigned long) insn);
5826
5827 install_load_store (gdbarch, regs, dsc, load, immed, writeback, size,
5828 usermode, rt, rm, rn);
5829
5830 if (load || rt != ARM_PC_REGNUM)
5831 {
5832 dsc->u.ldst.restore_r4 = 0;
5833
5834 if (immed)
5835 /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
5836 ->
5837 {ldr,str}[b]<cond> r0, [r2, #imm]. */
5838 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5839 else
5840 /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
5841 ->
5842 {ldr,str}[b]<cond> r0, [r2, r3]. */
5843 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5844 }
5845 else
5846 {
5847 /* We need to use r4 as scratch. Make sure it's restored afterwards. */
5848 dsc->u.ldst.restore_r4 = 1;
5849 dsc->modinsn[0] = 0xe92d8000; /* push {pc} */
5850 dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */
5851 dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
5852 dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
5853 dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
5854
5855 /* As above. */
5856 if (immed)
5857 dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
5858 else
5859 dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
5860
5861 dsc->numinsns = 6;
5862 }
5863
5864 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5865
5866 return 0;
5867 }
5868
5869 /* Cleanup LDM instructions with fully-populated register list. This is an
5870 unfortunate corner case: it's impossible to implement correctly by modifying
5871 the instruction. The issue is as follows: we have an instruction,
5872
5873 ldm rN, {r0-r15}
5874
5875 which we must rewrite to avoid loading PC. A possible solution would be to
5876 do the load in two halves, something like (with suitable cleanup
5877 afterwards):
5878
5879 mov r8, rN
5880 ldm[id][ab] r8!, {r0-r7}
5881 str r7, <temp>
5882 ldm[id][ab] r8, {r7-r14}
5883 <bkpt>
5884
5885 but at present there's no suitable place for <temp>, since the scratch space
5886 is overwritten before the cleanup routine is called. For now, we simply
5887 emulate the instruction. */
5888
5889 static void
5890 cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
5891 struct displaced_step_closure *dsc)
5892 {
5893 int inc = dsc->u.block.increment;
5894 int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
5895 int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
5896 uint32_t regmask = dsc->u.block.regmask;
5897 int regno = inc ? 0 : 15;
5898 CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
5899 int exception_return = dsc->u.block.load && dsc->u.block.user
5900 && (regmask & 0x8000) != 0;
5901 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5902 int do_transfer = condition_true (dsc->u.block.cond, status);
5903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5904
5905 if (!do_transfer)
5906 return;
5907
5908 /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
5909 sensible we can do here. Complain loudly. */
5910 if (exception_return)
5911 error (_("Cannot single-step exception return"));
5912
5913 /* We don't handle any stores here for now. */
5914 gdb_assert (dsc->u.block.load != 0);
5915
5916 if (debug_displaced)
5917 fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
5918 "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
5919 dsc->u.block.increment ? "inc" : "dec",
5920 dsc->u.block.before ? "before" : "after");
5921
5922 while (regmask)
5923 {
5924 uint32_t memword;
5925
5926 if (inc)
5927 while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0)
5928 regno++;
5929 else
5930 while (regno >= 0 && (regmask & (1 << regno)) == 0)
5931 regno--;
5932
5933 xfer_addr += bump_before;
5934
5935 memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
5936 displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
5937
5938 xfer_addr += bump_after;
5939
5940 regmask &= ~(1 << regno);
5941 }
5942
5943 if (dsc->u.block.writeback)
5944 displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
5945 CANNOT_WRITE_PC);
5946 }
5947
5948 /* Clean up an STM which included the PC in the register list. */
5949
5950 static void
5951 cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
5952 struct displaced_step_closure *dsc)
5953 {
5954 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5955 int store_executed = condition_true (dsc->u.block.cond, status);
5956 CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
5957 CORE_ADDR stm_insn_addr;
5958 uint32_t pc_val;
5959 long offset;
5960 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5961
5962 /* If condition code fails, there's nothing else to do. */
5963 if (!store_executed)
5964 return;
5965
5966 if (dsc->u.block.increment)
5967 {
5968 pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
5969
5970 if (dsc->u.block.before)
5971 pc_stored_at += 4;
5972 }
5973 else
5974 {
5975 pc_stored_at = dsc->u.block.xfer_addr;
5976
5977 if (dsc->u.block.before)
5978 pc_stored_at -= 4;
5979 }
5980
5981 pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
5982 stm_insn_addr = dsc->scratch_base;
5983 offset = pc_val - stm_insn_addr;
5984
5985 if (debug_displaced)
5986 fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
5987 "STM instruction\n", offset);
5988
5989 /* Rewrite the stored PC to the proper value for the non-displaced original
5990 instruction. */
5991 write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
5992 dsc->insn_addr + offset);
5993 }
5994
5995 /* Clean up an LDM which includes the PC in the register list. We clumped all
5996 the registers in the transferred list into a contiguous range r0...rX (to
5997 avoid loading PC directly and losing control of the debugged program), so we
5998 must undo that here. */
5999
6000 static void
6001 cleanup_block_load_pc (struct gdbarch *gdbarch,
6002 struct regcache *regs,
6003 struct displaced_step_closure *dsc)
6004 {
6005 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
6006 int load_executed = condition_true (dsc->u.block.cond, status);
6007 unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM;
6008 unsigned int regs_loaded = bitcount (mask);
6009 unsigned int num_to_shuffle = regs_loaded, clobbered;
6010
6011 /* The method employed here will fail if the register list is fully populated
6012 (we need to avoid loading PC directly). */
6013 gdb_assert (num_to_shuffle < 16);
6014
6015 if (!load_executed)
6016 return;
6017
6018 clobbered = (1 << num_to_shuffle) - 1;
6019
6020 while (num_to_shuffle > 0)
6021 {
6022 if ((mask & (1 << write_reg)) != 0)
6023 {
6024 unsigned int read_reg = num_to_shuffle - 1;
6025
6026 if (read_reg != write_reg)
6027 {
6028 ULONGEST rval = displaced_read_reg (regs, dsc, read_reg);
6029 displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
6030 if (debug_displaced)
6031 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
6032 "loaded register r%d to r%d\n"), read_reg,
6033 write_reg);
6034 }
6035 else if (debug_displaced)
6036 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
6037 "r%d already in the right place\n"),
6038 write_reg);
6039
6040 clobbered &= ~(1 << write_reg);
6041
6042 num_to_shuffle--;
6043 }
6044
6045 write_reg--;
6046 }
6047
6048 /* Restore any registers we scribbled over. */
6049 for (write_reg = 0; clobbered != 0; write_reg++)
6050 {
6051 if ((clobbered & (1 << write_reg)) != 0)
6052 {
6053 displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
6054 CANNOT_WRITE_PC);
6055 if (debug_displaced)
6056 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
6057 "clobbered register r%d\n"), write_reg);
6058 clobbered &= ~(1 << write_reg);
6059 }
6060 }
6061
6062 /* Perform register writeback manually. */
6063 if (dsc->u.block.writeback)
6064 {
6065 ULONGEST new_rn_val = dsc->u.block.xfer_addr;
6066
6067 if (dsc->u.block.increment)
6068 new_rn_val += regs_loaded * 4;
6069 else
6070 new_rn_val -= regs_loaded * 4;
6071
6072 displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
6073 CANNOT_WRITE_PC);
6074 }
6075 }
6076
6077 /* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
6078 in user-level code (in particular exception return, ldm rn, {...pc}^). */
6079
6080 static int
6081 arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn,
6082 struct regcache *regs,
6083 struct displaced_step_closure *dsc)
6084 {
6085 int load = bit (insn, 20);
6086 int user = bit (insn, 22);
6087 int increment = bit (insn, 23);
6088 int before = bit (insn, 24);
6089 int writeback = bit (insn, 21);
6090 int rn = bits (insn, 16, 19);
6091
6092 /* Block transfers which don't mention PC can be run directly
6093 out-of-line. */
6094 if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0)
6095 return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
6096
6097 if (rn == ARM_PC_REGNUM)
6098 {
6099 warning (_("displaced: Unpredictable LDM or STM with "
6100 "base register r15"));
6101 return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
6102 }
6103
6104 if (debug_displaced)
6105 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6106 "%.8lx\n", (unsigned long) insn);
6107
6108 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
6109 dsc->u.block.rn = rn;
6110
6111 dsc->u.block.load = load;
6112 dsc->u.block.user = user;
6113 dsc->u.block.increment = increment;
6114 dsc->u.block.before = before;
6115 dsc->u.block.writeback = writeback;
6116 dsc->u.block.cond = bits (insn, 28, 31);
6117
6118 dsc->u.block.regmask = insn & 0xffff;
6119
6120 if (load)
6121 {
6122 if ((insn & 0xffff) == 0xffff)
6123 {
6124 /* LDM with a fully-populated register list. This case is
6125 particularly tricky. Implement for now by fully emulating the
6126 instruction (which might not behave perfectly in all cases, but
6127 these instructions should be rare enough for that not to matter
6128 too much). */
6129 dsc->modinsn[0] = ARM_NOP;
6130
6131 dsc->cleanup = &cleanup_block_load_all;
6132 }
6133 else
6134 {
6135 /* LDM of a list of registers which includes PC. Implement by
6136 rewriting the list of registers to be transferred into a
6137 contiguous chunk r0...rX before doing the transfer, then shuffling
6138 registers into the correct places in the cleanup routine. */
6139 unsigned int regmask = insn & 0xffff;
6140 unsigned int num_in_list = bitcount (regmask), new_regmask;
6141 unsigned int i;
6142
6143 for (i = 0; i < num_in_list; i++)
6144 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6145
6146 /* Writeback makes things complicated. We need to avoid clobbering
6147 the base register with one of the registers in our modified
6148 register list, but just using a different register can't work in
6149 all cases, e.g.:
6150
6151 ldm r14!, {r0-r13,pc}
6152
6153 which would need to be rewritten as:
6154
6155 ldm rN!, {r0-r14}
6156
6157 but that can't work, because there's no free register for N.
6158
6159 Solve this by turning off the writeback bit, and emulating
6160 writeback manually in the cleanup routine. */
6161
6162 if (writeback)
6163 insn &= ~(1 << 21);
6164
6165 new_regmask = (1 << num_in_list) - 1;
6166
6167 if (debug_displaced)
6168 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6169 "{..., pc}: original reg list %.4x, modified "
6170 "list %.4x\n"), rn, writeback ? "!" : "",
6171 (int) insn & 0xffff, new_regmask);
6172
6173 dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
6174
6175 dsc->cleanup = &cleanup_block_load_pc;
6176 }
6177 }
6178 else
6179 {
6180 /* STM of a list of registers which includes PC. Run the instruction
6181 as-is, but out of line: this will store the wrong value for the PC,
6182 so we must manually fix up the memory in the cleanup routine.
6183 Doing things this way has the advantage that we can auto-detect
6184 the offset of the PC write (which is architecture-dependent) in
6185 the cleanup routine. */
6186 dsc->modinsn[0] = insn;
6187
6188 dsc->cleanup = &cleanup_block_store_pc;
6189 }
6190
6191 return 0;
6192 }
6193
6194 static int
6195 thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6196 struct regcache *regs,
6197 struct displaced_step_closure *dsc)
6198 {
6199 int rn = bits (insn1, 0, 3);
6200 int load = bit (insn1, 4);
6201 int writeback = bit (insn1, 5);
6202
6203 /* Block transfers which don't mention PC can be run directly
6204 out-of-line. */
6205 if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0)
6206 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc);
6207
6208 if (rn == ARM_PC_REGNUM)
6209 {
6210 warning (_("displaced: Unpredictable LDM or STM with "
6211 "base register r15"));
6212 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6213 "unpredictable ldm/stm", dsc);
6214 }
6215
6216 if (debug_displaced)
6217 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6218 "%.4x%.4x\n", insn1, insn2);
6219
6220 /* Clear bit 13, since it should be always zero. */
6221 dsc->u.block.regmask = (insn2 & 0xdfff);
6222 dsc->u.block.rn = rn;
6223
6224 dsc->u.block.load = load;
6225 dsc->u.block.user = 0;
6226 dsc->u.block.increment = bit (insn1, 7);
6227 dsc->u.block.before = bit (insn1, 8);
6228 dsc->u.block.writeback = writeback;
6229 dsc->u.block.cond = INST_AL;
6230 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
6231
6232 if (load)
6233 {
6234 if (dsc->u.block.regmask == 0xffff)
6235 {
6236 /* This branch is impossible to happen. */
6237 gdb_assert (0);
6238 }
6239 else
6240 {
6241 unsigned int regmask = dsc->u.block.regmask;
6242 unsigned int num_in_list = bitcount (regmask), new_regmask;
6243 unsigned int i;
6244
6245 for (i = 0; i < num_in_list; i++)
6246 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6247
6248 if (writeback)
6249 insn1 &= ~(1 << 5);
6250
6251 new_regmask = (1 << num_in_list) - 1;
6252
6253 if (debug_displaced)
6254 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6255 "{..., pc}: original reg list %.4x, modified "
6256 "list %.4x\n"), rn, writeback ? "!" : "",
6257 (int) dsc->u.block.regmask, new_regmask);
6258
6259 dsc->modinsn[0] = insn1;
6260 dsc->modinsn[1] = (new_regmask & 0xffff);
6261 dsc->numinsns = 2;
6262
6263 dsc->cleanup = &cleanup_block_load_pc;
6264 }
6265 }
6266 else
6267 {
6268 dsc->modinsn[0] = insn1;
6269 dsc->modinsn[1] = insn2;
6270 dsc->numinsns = 2;
6271 dsc->cleanup = &cleanup_block_store_pc;
6272 }
6273 return 0;
6274 }
6275
6276 /* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs.
6277 This is used to avoid a dependency on BFD's bfd_endian enum. */
6278
6279 ULONGEST
6280 arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len,
6281 int byte_order)
6282 {
6283 return read_memory_unsigned_integer (memaddr, len,
6284 (enum bfd_endian) byte_order);
6285 }
6286
6287 /* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs. */
6288
6289 CORE_ADDR
6290 arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self,
6291 CORE_ADDR val)
6292 {
6293 return gdbarch_addr_bits_remove (get_regcache_arch (self->regcache), val);
6294 }
6295
6296 /* Wrapper over syscall_next_pc for use in get_next_pcs. */
6297
6298 static CORE_ADDR
6299 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
6300 {
6301 return 0;
6302 }
6303
6304 /* Wrapper over arm_is_thumb for use in arm_get_next_pcs. */
6305
6306 int
6307 arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self)
6308 {
6309 return arm_is_thumb (self->regcache);
6310 }
6311
6312 /* single_step() is called just before we want to resume the inferior,
6313 if we want to single-step it but there is no hardware or kernel
6314 single-step support. We find the target of the coming instructions
6315 and breakpoint them. */
6316
6317 int
6318 arm_software_single_step (struct frame_info *frame)
6319 {
6320 struct regcache *regcache = get_current_regcache ();
6321 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6322 struct address_space *aspace = get_regcache_aspace (regcache);
6323 struct arm_get_next_pcs next_pcs_ctx;
6324 CORE_ADDR pc;
6325 int i;
6326 VEC (CORE_ADDR) *next_pcs = NULL;
6327 struct cleanup *old_chain = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
6328
6329 arm_get_next_pcs_ctor (&next_pcs_ctx,
6330 &arm_get_next_pcs_ops,
6331 gdbarch_byte_order (gdbarch),
6332 gdbarch_byte_order_for_code (gdbarch),
6333 0,
6334 regcache);
6335
6336 next_pcs = arm_get_next_pcs (&next_pcs_ctx);
6337
6338 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
6339 arm_insert_single_step_breakpoint (gdbarch, aspace, pc);
6340
6341 do_cleanups (old_chain);
6342
6343 return 1;
6344 }
6345
6346 /* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
6347 for Linux, where some SVC instructions must be treated specially. */
6348
6349 static void
6350 cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
6351 struct displaced_step_closure *dsc)
6352 {
6353 CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size;
6354
6355 if (debug_displaced)
6356 fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
6357 "%.8lx\n", (unsigned long) resume_addr);
6358
6359 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
6360 }
6361
6362
6363 /* Common copy routine for svc instruciton. */
6364
6365 static int
6366 install_svc (struct gdbarch *gdbarch, struct regcache *regs,
6367 struct displaced_step_closure *dsc)
6368 {
6369 /* Preparation: none.
6370 Insn: unmodified svc.
6371 Cleanup: pc <- insn_addr + insn_size. */
6372
6373 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
6374 instruction. */
6375 dsc->wrote_to_pc = 1;
6376
6377 /* Allow OS-specific code to override SVC handling. */
6378 if (dsc->u.svc.copy_svc_os)
6379 return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc);
6380 else
6381 {
6382 dsc->cleanup = &cleanup_svc;
6383 return 0;
6384 }
6385 }
6386
6387 static int
6388 arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn,
6389 struct regcache *regs, struct displaced_step_closure *dsc)
6390 {
6391
6392 if (debug_displaced)
6393 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
6394 (unsigned long) insn);
6395
6396 dsc->modinsn[0] = insn;
6397
6398 return install_svc (gdbarch, regs, dsc);
6399 }
6400
6401 static int
6402 thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn,
6403 struct regcache *regs, struct displaced_step_closure *dsc)
6404 {
6405
6406 if (debug_displaced)
6407 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n",
6408 insn);
6409
6410 dsc->modinsn[0] = insn;
6411
6412 return install_svc (gdbarch, regs, dsc);
6413 }
6414
6415 /* Copy undefined instructions. */
6416
6417 static int
6418 arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn,
6419 struct displaced_step_closure *dsc)
6420 {
6421 if (debug_displaced)
6422 fprintf_unfiltered (gdb_stdlog,
6423 "displaced: copying undefined insn %.8lx\n",
6424 (unsigned long) insn);
6425
6426 dsc->modinsn[0] = insn;
6427
6428 return 0;
6429 }
6430
6431 static int
6432 thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6433 struct displaced_step_closure *dsc)
6434 {
6435
6436 if (debug_displaced)
6437 fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn "
6438 "%.4x %.4x\n", (unsigned short) insn1,
6439 (unsigned short) insn2);
6440
6441 dsc->modinsn[0] = insn1;
6442 dsc->modinsn[1] = insn2;
6443 dsc->numinsns = 2;
6444
6445 return 0;
6446 }
6447
6448 /* Copy unpredictable instructions. */
6449
6450 static int
6451 arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
6452 struct displaced_step_closure *dsc)
6453 {
6454 if (debug_displaced)
6455 fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
6456 "%.8lx\n", (unsigned long) insn);
6457
6458 dsc->modinsn[0] = insn;
6459
6460 return 0;
6461 }
6462
6463 /* The decode_* functions are instruction decoding helpers. They mostly follow
6464 the presentation in the ARM ARM. */
6465
6466 static int
6467 arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
6468 struct regcache *regs,
6469 struct displaced_step_closure *dsc)
6470 {
6471 unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
6472 unsigned int rn = bits (insn, 16, 19);
6473
6474 if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0)
6475 return arm_copy_unmodified (gdbarch, insn, "cps", dsc);
6476 else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1)
6477 return arm_copy_unmodified (gdbarch, insn, "setend", dsc);
6478 else if ((op1 & 0x60) == 0x20)
6479 return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
6480 else if ((op1 & 0x71) == 0x40)
6481 return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store",
6482 dsc);
6483 else if ((op1 & 0x77) == 0x41)
6484 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6485 else if ((op1 & 0x77) == 0x45)
6486 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */
6487 else if ((op1 & 0x77) == 0x51)
6488 {
6489 if (rn != 0xf)
6490 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6491 else
6492 return arm_copy_unpred (gdbarch, insn, dsc);
6493 }
6494 else if ((op1 & 0x77) == 0x55)
6495 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6496 else if (op1 == 0x57)
6497 switch (op2)
6498 {
6499 case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc);
6500 case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc);
6501 case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc);
6502 case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc);
6503 default: return arm_copy_unpred (gdbarch, insn, dsc);
6504 }
6505 else if ((op1 & 0x63) == 0x43)
6506 return arm_copy_unpred (gdbarch, insn, dsc);
6507 else if ((op2 & 0x1) == 0x0)
6508 switch (op1 & ~0x80)
6509 {
6510 case 0x61:
6511 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6512 case 0x65:
6513 return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
6514 case 0x71: case 0x75:
6515 /* pld/pldw reg. */
6516 return arm_copy_preload_reg (gdbarch, insn, regs, dsc);
6517 case 0x63: case 0x67: case 0x73: case 0x77:
6518 return arm_copy_unpred (gdbarch, insn, dsc);
6519 default:
6520 return arm_copy_undef (gdbarch, insn, dsc);
6521 }
6522 else
6523 return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
6524 }
6525
6526 static int
6527 arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
6528 struct regcache *regs,
6529 struct displaced_step_closure *dsc)
6530 {
6531 if (bit (insn, 27) == 0)
6532 return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
6533 /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
6534 else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
6535 {
6536 case 0x0: case 0x2:
6537 return arm_copy_unmodified (gdbarch, insn, "srs", dsc);
6538
6539 case 0x1: case 0x3:
6540 return arm_copy_unmodified (gdbarch, insn, "rfe", dsc);
6541
6542 case 0x4: case 0x5: case 0x6: case 0x7:
6543 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
6544
6545 case 0x8:
6546 switch ((insn & 0xe00000) >> 21)
6547 {
6548 case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
6549 /* stc/stc2. */
6550 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6551
6552 case 0x2:
6553 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6554
6555 default:
6556 return arm_copy_undef (gdbarch, insn, dsc);
6557 }
6558
6559 case 0x9:
6560 {
6561 int rn_f = (bits (insn, 16, 19) == 0xf);
6562 switch ((insn & 0xe00000) >> 21)
6563 {
6564 case 0x1: case 0x3:
6565 /* ldc/ldc2 imm (undefined for rn == pc). */
6566 return rn_f ? arm_copy_undef (gdbarch, insn, dsc)
6567 : arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6568
6569 case 0x2:
6570 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6571
6572 case 0x4: case 0x5: case 0x6: case 0x7:
6573 /* ldc/ldc2 lit (undefined for rn != pc). */
6574 return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc)
6575 : arm_copy_undef (gdbarch, insn, dsc);
6576
6577 default:
6578 return arm_copy_undef (gdbarch, insn, dsc);
6579 }
6580 }
6581
6582 case 0xa:
6583 return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
6584
6585 case 0xb:
6586 if (bits (insn, 16, 19) == 0xf)
6587 /* ldc/ldc2 lit. */
6588 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6589 else
6590 return arm_copy_undef (gdbarch, insn, dsc);
6591
6592 case 0xc:
6593 if (bit (insn, 4))
6594 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6595 else
6596 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6597
6598 case 0xd:
6599 if (bit (insn, 4))
6600 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6601 else
6602 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6603
6604 default:
6605 return arm_copy_undef (gdbarch, insn, dsc);
6606 }
6607 }
6608
6609 /* Decode miscellaneous instructions in dp/misc encoding space. */
6610
6611 static int
6612 arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
6613 struct regcache *regs,
6614 struct displaced_step_closure *dsc)
6615 {
6616 unsigned int op2 = bits (insn, 4, 6);
6617 unsigned int op = bits (insn, 21, 22);
6618
6619 switch (op2)
6620 {
6621 case 0x0:
6622 return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
6623
6624 case 0x1:
6625 if (op == 0x1) /* bx. */
6626 return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc);
6627 else if (op == 0x3)
6628 return arm_copy_unmodified (gdbarch, insn, "clz", dsc);
6629 else
6630 return arm_copy_undef (gdbarch, insn, dsc);
6631
6632 case 0x2:
6633 if (op == 0x1)
6634 /* Not really supported. */
6635 return arm_copy_unmodified (gdbarch, insn, "bxj", dsc);
6636 else
6637 return arm_copy_undef (gdbarch, insn, dsc);
6638
6639 case 0x3:
6640 if (op == 0x1)
6641 return arm_copy_bx_blx_reg (gdbarch, insn,
6642 regs, dsc); /* blx register. */
6643 else
6644 return arm_copy_undef (gdbarch, insn, dsc);
6645
6646 case 0x5:
6647 return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
6648
6649 case 0x7:
6650 if (op == 0x1)
6651 return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc);
6652 else if (op == 0x3)
6653 /* Not really supported. */
6654 return arm_copy_unmodified (gdbarch, insn, "smc", dsc);
6655
6656 default:
6657 return arm_copy_undef (gdbarch, insn, dsc);
6658 }
6659 }
6660
6661 static int
6662 arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn,
6663 struct regcache *regs,
6664 struct displaced_step_closure *dsc)
6665 {
6666 if (bit (insn, 25))
6667 switch (bits (insn, 20, 24))
6668 {
6669 case 0x10:
6670 return arm_copy_unmodified (gdbarch, insn, "movw", dsc);
6671
6672 case 0x14:
6673 return arm_copy_unmodified (gdbarch, insn, "movt", dsc);
6674
6675 case 0x12: case 0x16:
6676 return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc);
6677
6678 default:
6679 return arm_copy_alu_imm (gdbarch, insn, regs, dsc);
6680 }
6681 else
6682 {
6683 uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
6684
6685 if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
6686 return arm_copy_alu_reg (gdbarch, insn, regs, dsc);
6687 else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
6688 return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
6689 else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
6690 return arm_decode_miscellaneous (gdbarch, insn, regs, dsc);
6691 else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
6692 return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
6693 else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
6694 return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc);
6695 else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
6696 return arm_copy_unmodified (gdbarch, insn, "synch", dsc);
6697 else if (op2 == 0xb || (op2 & 0xd) == 0xd)
6698 /* 2nd arg means "unprivileged". */
6699 return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
6700 dsc);
6701 }
6702
6703 /* Should be unreachable. */
6704 return 1;
6705 }
6706
6707 static int
6708 arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
6709 struct regcache *regs,
6710 struct displaced_step_closure *dsc)
6711 {
6712 int a = bit (insn, 25), b = bit (insn, 4);
6713 uint32_t op1 = bits (insn, 20, 24);
6714
6715 if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
6716 || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
6717 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0);
6718 else if ((!a && (op1 & 0x17) == 0x02)
6719 || (a && (op1 & 0x17) == 0x02 && !b))
6720 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1);
6721 else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
6722 || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
6723 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0);
6724 else if ((!a && (op1 & 0x17) == 0x03)
6725 || (a && (op1 & 0x17) == 0x03 && !b))
6726 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1);
6727 else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
6728 || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
6729 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
6730 else if ((!a && (op1 & 0x17) == 0x06)
6731 || (a && (op1 & 0x17) == 0x06 && !b))
6732 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
6733 else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
6734 || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
6735 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
6736 else if ((!a && (op1 & 0x17) == 0x07)
6737 || (a && (op1 & 0x17) == 0x07 && !b))
6738 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
6739
6740 /* Should be unreachable. */
6741 return 1;
6742 }
6743
6744 static int
6745 arm_decode_media (struct gdbarch *gdbarch, uint32_t insn,
6746 struct displaced_step_closure *dsc)
6747 {
6748 switch (bits (insn, 20, 24))
6749 {
6750 case 0x00: case 0x01: case 0x02: case 0x03:
6751 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
6752
6753 case 0x04: case 0x05: case 0x06: case 0x07:
6754 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
6755
6756 case 0x08: case 0x09: case 0x0a: case 0x0b:
6757 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
6758 return arm_copy_unmodified (gdbarch, insn,
6759 "decode/pack/unpack/saturate/reverse", dsc);
6760
6761 case 0x18:
6762 if (bits (insn, 5, 7) == 0) /* op2. */
6763 {
6764 if (bits (insn, 12, 15) == 0xf)
6765 return arm_copy_unmodified (gdbarch, insn, "usad8", dsc);
6766 else
6767 return arm_copy_unmodified (gdbarch, insn, "usada8", dsc);
6768 }
6769 else
6770 return arm_copy_undef (gdbarch, insn, dsc);
6771
6772 case 0x1a: case 0x1b:
6773 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6774 return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc);
6775 else
6776 return arm_copy_undef (gdbarch, insn, dsc);
6777
6778 case 0x1c: case 0x1d:
6779 if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
6780 {
6781 if (bits (insn, 0, 3) == 0xf)
6782 return arm_copy_unmodified (gdbarch, insn, "bfc", dsc);
6783 else
6784 return arm_copy_unmodified (gdbarch, insn, "bfi", dsc);
6785 }
6786 else
6787 return arm_copy_undef (gdbarch, insn, dsc);
6788
6789 case 0x1e: case 0x1f:
6790 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6791 return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc);
6792 else
6793 return arm_copy_undef (gdbarch, insn, dsc);
6794 }
6795
6796 /* Should be unreachable. */
6797 return 1;
6798 }
6799
6800 static int
6801 arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, uint32_t insn,
6802 struct regcache *regs,
6803 struct displaced_step_closure *dsc)
6804 {
6805 if (bit (insn, 25))
6806 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
6807 else
6808 return arm_copy_block_xfer (gdbarch, insn, regs, dsc);
6809 }
6810
6811 static int
6812 arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
6813 struct regcache *regs,
6814 struct displaced_step_closure *dsc)
6815 {
6816 unsigned int opcode = bits (insn, 20, 24);
6817
6818 switch (opcode)
6819 {
6820 case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
6821 return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
6822
6823 case 0x08: case 0x0a: case 0x0c: case 0x0e:
6824 case 0x12: case 0x16:
6825 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
6826
6827 case 0x09: case 0x0b: case 0x0d: case 0x0f:
6828 case 0x13: case 0x17:
6829 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
6830
6831 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6832 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6833 /* Note: no writeback for these instructions. Bit 25 will always be
6834 zero though (via caller), so the following works OK. */
6835 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6836 }
6837
6838 /* Should be unreachable. */
6839 return 1;
6840 }
6841
6842 /* Decode shifted register instructions. */
6843
6844 static int
6845 thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1,
6846 uint16_t insn2, struct regcache *regs,
6847 struct displaced_step_closure *dsc)
6848 {
6849 /* PC is only allowed to be used in instruction MOV. */
6850
6851 unsigned int op = bits (insn1, 5, 8);
6852 unsigned int rn = bits (insn1, 0, 3);
6853
6854 if (op == 0x2 && rn == 0xf) /* MOV */
6855 return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc);
6856 else
6857 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6858 "dp (shift reg)", dsc);
6859 }
6860
6861
6862 /* Decode extension register load/store. Exactly the same as
6863 arm_decode_ext_reg_ld_st. */
6864
6865 static int
6866 thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1,
6867 uint16_t insn2, struct regcache *regs,
6868 struct displaced_step_closure *dsc)
6869 {
6870 unsigned int opcode = bits (insn1, 4, 8);
6871
6872 switch (opcode)
6873 {
6874 case 0x04: case 0x05:
6875 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6876 "vfp/neon vmov", dsc);
6877
6878 case 0x08: case 0x0c: /* 01x00 */
6879 case 0x0a: case 0x0e: /* 01x10 */
6880 case 0x12: case 0x16: /* 10x10 */
6881 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6882 "vfp/neon vstm/vpush", dsc);
6883
6884 case 0x09: case 0x0d: /* 01x01 */
6885 case 0x0b: case 0x0f: /* 01x11 */
6886 case 0x13: case 0x17: /* 10x11 */
6887 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6888 "vfp/neon vldm/vpop", dsc);
6889
6890 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6891 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6892 "vstr", dsc);
6893 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6894 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc);
6895 }
6896
6897 /* Should be unreachable. */
6898 return 1;
6899 }
6900
6901 static int
6902 arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn,
6903 struct regcache *regs, struct displaced_step_closure *dsc)
6904 {
6905 unsigned int op1 = bits (insn, 20, 25);
6906 int op = bit (insn, 4);
6907 unsigned int coproc = bits (insn, 8, 11);
6908
6909 if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
6910 return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
6911 else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
6912 && (coproc & 0xe) != 0xa)
6913 /* stc/stc2. */
6914 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6915 else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
6916 && (coproc & 0xe) != 0xa)
6917 /* ldc/ldc2 imm/lit. */
6918 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6919 else if ((op1 & 0x3e) == 0x00)
6920 return arm_copy_undef (gdbarch, insn, dsc);
6921 else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
6922 return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
6923 else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
6924 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6925 else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
6926 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6927 else if ((op1 & 0x30) == 0x20 && !op)
6928 {
6929 if ((coproc & 0xe) == 0xa)
6930 return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
6931 else
6932 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6933 }
6934 else if ((op1 & 0x30) == 0x20 && op)
6935 return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
6936 else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
6937 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6938 else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
6939 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6940 else if ((op1 & 0x30) == 0x30)
6941 return arm_copy_svc (gdbarch, insn, regs, dsc);
6942 else
6943 return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
6944 }
6945
6946 static int
6947 thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1,
6948 uint16_t insn2, struct regcache *regs,
6949 struct displaced_step_closure *dsc)
6950 {
6951 unsigned int coproc = bits (insn2, 8, 11);
6952 unsigned int bit_5_8 = bits (insn1, 5, 8);
6953 unsigned int bit_9 = bit (insn1, 9);
6954 unsigned int bit_4 = bit (insn1, 4);
6955
6956 if (bit_9 == 0)
6957 {
6958 if (bit_5_8 == 2)
6959 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6960 "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2",
6961 dsc);
6962 else if (bit_5_8 == 0) /* UNDEFINED. */
6963 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
6964 else
6965 {
6966 /*coproc is 101x. SIMD/VFP, ext registers load/store. */
6967 if ((coproc & 0xe) == 0xa)
6968 return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs,
6969 dsc);
6970 else /* coproc is not 101x. */
6971 {
6972 if (bit_4 == 0) /* STC/STC2. */
6973 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6974 "stc/stc2", dsc);
6975 else /* LDC/LDC2 {literal, immeidate}. */
6976 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2,
6977 regs, dsc);
6978 }
6979 }
6980 }
6981 else
6982 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc);
6983
6984 return 0;
6985 }
6986
6987 static void
6988 install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs,
6989 struct displaced_step_closure *dsc, int rd)
6990 {
6991 /* ADR Rd, #imm
6992
6993 Rewrite as:
6994
6995 Preparation: Rd <- PC
6996 Insn: ADD Rd, #imm
6997 Cleanup: Null.
6998 */
6999
7000 /* Rd <- PC */
7001 int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
7002 displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC);
7003 }
7004
7005 static int
7006 thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs,
7007 struct displaced_step_closure *dsc,
7008 int rd, unsigned int imm)
7009 {
7010
7011 /* Encoding T2: ADDS Rd, #imm */
7012 dsc->modinsn[0] = (0x3000 | (rd << 8) | imm);
7013
7014 install_pc_relative (gdbarch, regs, dsc, rd);
7015
7016 return 0;
7017 }
7018
7019 static int
7020 thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn,
7021 struct regcache *regs,
7022 struct displaced_step_closure *dsc)
7023 {
7024 unsigned int rd = bits (insn, 8, 10);
7025 unsigned int imm8 = bits (insn, 0, 7);
7026
7027 if (debug_displaced)
7028 fprintf_unfiltered (gdb_stdlog,
7029 "displaced: copying thumb adr r%d, #%d insn %.4x\n",
7030 rd, imm8, insn);
7031
7032 return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8);
7033 }
7034
7035 static int
7036 thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1,
7037 uint16_t insn2, struct regcache *regs,
7038 struct displaced_step_closure *dsc)
7039 {
7040 unsigned int rd = bits (insn2, 8, 11);
7041 /* Since immediate has the same encoding in ADR ADD and SUB, so we simply
7042 extract raw immediate encoding rather than computing immediate. When
7043 generating ADD or SUB instruction, we can simply perform OR operation to
7044 set immediate into ADD. */
7045 unsigned int imm_3_8 = insn2 & 0x70ff;
7046 unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */
7047
7048 if (debug_displaced)
7049 fprintf_unfiltered (gdb_stdlog,
7050 "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n",
7051 rd, imm_i, imm_3_8, insn1, insn2);
7052
7053 if (bit (insn1, 7)) /* Encoding T2 */
7054 {
7055 /* Encoding T3: SUB Rd, Rd, #imm */
7056 dsc->modinsn[0] = (0xf1a0 | rd | imm_i);
7057 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7058 }
7059 else /* Encoding T3 */
7060 {
7061 /* Encoding T3: ADD Rd, Rd, #imm */
7062 dsc->modinsn[0] = (0xf100 | rd | imm_i);
7063 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7064 }
7065 dsc->numinsns = 2;
7066
7067 install_pc_relative (gdbarch, regs, dsc, rd);
7068
7069 return 0;
7070 }
7071
7072 static int
7073 thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, uint16_t insn1,
7074 struct regcache *regs,
7075 struct displaced_step_closure *dsc)
7076 {
7077 unsigned int rt = bits (insn1, 8, 10);
7078 unsigned int pc;
7079 int imm8 = (bits (insn1, 0, 7) << 2);
7080
7081 /* LDR Rd, #imm8
7082
7083 Rwrite as:
7084
7085 Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8;
7086
7087 Insn: LDR R0, [R2, R3];
7088 Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */
7089
7090 if (debug_displaced)
7091 fprintf_unfiltered (gdb_stdlog,
7092 "displaced: copying thumb ldr r%d [pc #%d]\n"
7093 , rt, imm8);
7094
7095 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
7096 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
7097 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
7098 pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
7099 /* The assembler calculates the required value of the offset from the
7100 Align(PC,4) value of this instruction to the label. */
7101 pc = pc & 0xfffffffc;
7102
7103 displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC);
7104 displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC);
7105
7106 dsc->rd = rt;
7107 dsc->u.ldst.xfersize = 4;
7108 dsc->u.ldst.rn = 0;
7109 dsc->u.ldst.immed = 0;
7110 dsc->u.ldst.writeback = 0;
7111 dsc->u.ldst.restore_r4 = 0;
7112
7113 dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/
7114
7115 dsc->cleanup = &cleanup_load;
7116
7117 return 0;
7118 }
7119
7120 /* Copy Thumb cbnz/cbz insruction. */
7121
7122 static int
7123 thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1,
7124 struct regcache *regs,
7125 struct displaced_step_closure *dsc)
7126 {
7127 int non_zero = bit (insn1, 11);
7128 unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1);
7129 CORE_ADDR from = dsc->insn_addr;
7130 int rn = bits (insn1, 0, 2);
7131 int rn_val = displaced_read_reg (regs, dsc, rn);
7132
7133 dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero);
7134 /* CBNZ and CBZ do not affect the condition flags. If condition is true,
7135 set it INST_AL, so cleanup_branch will know branch is taken, otherwise,
7136 condition is false, let it be, cleanup_branch will do nothing. */
7137 if (dsc->u.branch.cond)
7138 {
7139 dsc->u.branch.cond = INST_AL;
7140 dsc->u.branch.dest = from + 4 + imm5;
7141 }
7142 else
7143 dsc->u.branch.dest = from + 2;
7144
7145 dsc->u.branch.link = 0;
7146 dsc->u.branch.exchange = 0;
7147
7148 if (debug_displaced)
7149 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]"
7150 " insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz",
7151 rn, rn_val, insn1, dsc->u.branch.dest);
7152
7153 dsc->modinsn[0] = THUMB_NOP;
7154
7155 dsc->cleanup = &cleanup_branch;
7156 return 0;
7157 }
7158
7159 /* Copy Table Branch Byte/Halfword */
7160 static int
7161 thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1,
7162 uint16_t insn2, struct regcache *regs,
7163 struct displaced_step_closure *dsc)
7164 {
7165 ULONGEST rn_val, rm_val;
7166 int is_tbh = bit (insn2, 4);
7167 CORE_ADDR halfwords = 0;
7168 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7169
7170 rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3));
7171 rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3));
7172
7173 if (is_tbh)
7174 {
7175 gdb_byte buf[2];
7176
7177 target_read_memory (rn_val + 2 * rm_val, buf, 2);
7178 halfwords = extract_unsigned_integer (buf, 2, byte_order);
7179 }
7180 else
7181 {
7182 gdb_byte buf[1];
7183
7184 target_read_memory (rn_val + rm_val, buf, 1);
7185 halfwords = extract_unsigned_integer (buf, 1, byte_order);
7186 }
7187
7188 if (debug_displaced)
7189 fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x"
7190 " offset 0x%x\n", is_tbh ? "tbh" : "tbb",
7191 (unsigned int) rn_val, (unsigned int) rm_val,
7192 (unsigned int) halfwords);
7193
7194 dsc->u.branch.cond = INST_AL;
7195 dsc->u.branch.link = 0;
7196 dsc->u.branch.exchange = 0;
7197 dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords;
7198
7199 dsc->cleanup = &cleanup_branch;
7200
7201 return 0;
7202 }
7203
7204 static void
7205 cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs,
7206 struct displaced_step_closure *dsc)
7207 {
7208 /* PC <- r7 */
7209 int val = displaced_read_reg (regs, dsc, 7);
7210 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC);
7211
7212 /* r7 <- r8 */
7213 val = displaced_read_reg (regs, dsc, 8);
7214 displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC);
7215
7216 /* r8 <- tmp[0] */
7217 displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC);
7218
7219 }
7220
7221 static int
7222 thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, uint16_t insn1,
7223 struct regcache *regs,
7224 struct displaced_step_closure *dsc)
7225 {
7226 dsc->u.block.regmask = insn1 & 0x00ff;
7227
7228 /* Rewrite instruction: POP {rX, rY, ...,rZ, PC}
7229 to :
7230
7231 (1) register list is full, that is, r0-r7 are used.
7232 Prepare: tmp[0] <- r8
7233
7234 POP {r0, r1, ...., r6, r7}; remove PC from reglist
7235 MOV r8, r7; Move value of r7 to r8;
7236 POP {r7}; Store PC value into r7.
7237
7238 Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0]
7239
7240 (2) register list is not full, supposing there are N registers in
7241 register list (except PC, 0 <= N <= 7).
7242 Prepare: for each i, 0 - N, tmp[i] <- ri.
7243
7244 POP {r0, r1, ...., rN};
7245
7246 Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN
7247 from tmp[] properly.
7248 */
7249 if (debug_displaced)
7250 fprintf_unfiltered (gdb_stdlog,
7251 "displaced: copying thumb pop {%.8x, pc} insn %.4x\n",
7252 dsc->u.block.regmask, insn1);
7253
7254 if (dsc->u.block.regmask == 0xff)
7255 {
7256 dsc->tmp[0] = displaced_read_reg (regs, dsc, 8);
7257
7258 dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */
7259 dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */
7260 dsc->modinsn[2] = 0xbc80; /* POP {r7} */
7261
7262 dsc->numinsns = 3;
7263 dsc->cleanup = &cleanup_pop_pc_16bit_all;
7264 }
7265 else
7266 {
7267 unsigned int num_in_list = bitcount (dsc->u.block.regmask);
7268 unsigned int i;
7269 unsigned int new_regmask;
7270
7271 for (i = 0; i < num_in_list + 1; i++)
7272 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
7273
7274 new_regmask = (1 << (num_in_list + 1)) - 1;
7275
7276 if (debug_displaced)
7277 fprintf_unfiltered (gdb_stdlog, _("displaced: POP "
7278 "{..., pc}: original reg list %.4x,"
7279 " modified list %.4x\n"),
7280 (int) dsc->u.block.regmask, new_regmask);
7281
7282 dsc->u.block.regmask |= 0x8000;
7283 dsc->u.block.writeback = 0;
7284 dsc->u.block.cond = INST_AL;
7285
7286 dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff);
7287
7288 dsc->cleanup = &cleanup_block_load_pc;
7289 }
7290
7291 return 0;
7292 }
7293
7294 static void
7295 thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7296 struct regcache *regs,
7297 struct displaced_step_closure *dsc)
7298 {
7299 unsigned short op_bit_12_15 = bits (insn1, 12, 15);
7300 unsigned short op_bit_10_11 = bits (insn1, 10, 11);
7301 int err = 0;
7302
7303 /* 16-bit thumb instructions. */
7304 switch (op_bit_12_15)
7305 {
7306 /* Shift (imme), add, subtract, move and compare. */
7307 case 0: case 1: case 2: case 3:
7308 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7309 "shift/add/sub/mov/cmp",
7310 dsc);
7311 break;
7312 case 4:
7313 switch (op_bit_10_11)
7314 {
7315 case 0: /* Data-processing */
7316 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7317 "data-processing",
7318 dsc);
7319 break;
7320 case 1: /* Special data instructions and branch and exchange. */
7321 {
7322 unsigned short op = bits (insn1, 7, 9);
7323 if (op == 6 || op == 7) /* BX or BLX */
7324 err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc);
7325 else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */
7326 err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc);
7327 else
7328 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data",
7329 dsc);
7330 }
7331 break;
7332 default: /* LDR (literal) */
7333 err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc);
7334 }
7335 break;
7336 case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */
7337 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc);
7338 break;
7339 case 10:
7340 if (op_bit_10_11 < 2) /* Generate PC-relative address */
7341 err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc);
7342 else /* Generate SP-relative address */
7343 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc);
7344 break;
7345 case 11: /* Misc 16-bit instructions */
7346 {
7347 switch (bits (insn1, 8, 11))
7348 {
7349 case 1: case 3: case 9: case 11: /* CBNZ, CBZ */
7350 err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc);
7351 break;
7352 case 12: case 13: /* POP */
7353 if (bit (insn1, 8)) /* PC is in register list. */
7354 err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc);
7355 else
7356 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc);
7357 break;
7358 case 15: /* If-Then, and hints */
7359 if (bits (insn1, 0, 3))
7360 /* If-Then makes up to four following instructions conditional.
7361 IT instruction itself is not conditional, so handle it as a
7362 common unmodified instruction. */
7363 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then",
7364 dsc);
7365 else
7366 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc);
7367 break;
7368 default:
7369 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc);
7370 }
7371 }
7372 break;
7373 case 12:
7374 if (op_bit_10_11 < 2) /* Store multiple registers */
7375 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc);
7376 else /* Load multiple registers */
7377 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc);
7378 break;
7379 case 13: /* Conditional branch and supervisor call */
7380 if (bits (insn1, 9, 11) != 7) /* conditional branch */
7381 err = thumb_copy_b (gdbarch, insn1, dsc);
7382 else
7383 err = thumb_copy_svc (gdbarch, insn1, regs, dsc);
7384 break;
7385 case 14: /* Unconditional branch */
7386 err = thumb_copy_b (gdbarch, insn1, dsc);
7387 break;
7388 default:
7389 err = 1;
7390 }
7391
7392 if (err)
7393 internal_error (__FILE__, __LINE__,
7394 _("thumb_process_displaced_16bit_insn: Instruction decode error"));
7395 }
7396
7397 static int
7398 decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch,
7399 uint16_t insn1, uint16_t insn2,
7400 struct regcache *regs,
7401 struct displaced_step_closure *dsc)
7402 {
7403 int rt = bits (insn2, 12, 15);
7404 int rn = bits (insn1, 0, 3);
7405 int op1 = bits (insn1, 7, 8);
7406
7407 switch (bits (insn1, 5, 6))
7408 {
7409 case 0: /* Load byte and memory hints */
7410 if (rt == 0xf) /* PLD/PLI */
7411 {
7412 if (rn == 0xf)
7413 /* PLD literal or Encoding T3 of PLI(immediate, literal). */
7414 return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc);
7415 else
7416 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7417 "pli/pld", dsc);
7418 }
7419 else
7420 {
7421 if (rn == 0xf) /* LDRB/LDRSB (literal) */
7422 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7423 1);
7424 else
7425 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7426 "ldrb{reg, immediate}/ldrbt",
7427 dsc);
7428 }
7429
7430 break;
7431 case 1: /* Load halfword and memory hints. */
7432 if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */
7433 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7434 "pld/unalloc memhint", dsc);
7435 else
7436 {
7437 if (rn == 0xf)
7438 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7439 2);
7440 else
7441 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7442 "ldrh/ldrht", dsc);
7443 }
7444 break;
7445 case 2: /* Load word */
7446 {
7447 int insn2_bit_8_11 = bits (insn2, 8, 11);
7448
7449 if (rn == 0xf)
7450 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4);
7451 else if (op1 == 0x1) /* Encoding T3 */
7452 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc,
7453 0, 1);
7454 else /* op1 == 0x0 */
7455 {
7456 if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9)
7457 /* LDR (immediate) */
7458 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7459 dsc, bit (insn2, 8), 1);
7460 else if (insn2_bit_8_11 == 0xe) /* LDRT */
7461 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7462 "ldrt", dsc);
7463 else
7464 /* LDR (register) */
7465 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7466 dsc, 0, 0);
7467 }
7468 break;
7469 }
7470 default:
7471 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
7472 break;
7473 }
7474 return 0;
7475 }
7476
7477 static void
7478 thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7479 uint16_t insn2, struct regcache *regs,
7480 struct displaced_step_closure *dsc)
7481 {
7482 int err = 0;
7483 unsigned short op = bit (insn2, 15);
7484 unsigned int op1 = bits (insn1, 11, 12);
7485
7486 switch (op1)
7487 {
7488 case 1:
7489 {
7490 switch (bits (insn1, 9, 10))
7491 {
7492 case 0:
7493 if (bit (insn1, 6))
7494 {
7495 /* Load/store {dual, execlusive}, table branch. */
7496 if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1
7497 && bits (insn2, 5, 7) == 0)
7498 err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs,
7499 dsc);
7500 else
7501 /* PC is not allowed to use in load/store {dual, exclusive}
7502 instructions. */
7503 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7504 "load/store dual/ex", dsc);
7505 }
7506 else /* load/store multiple */
7507 {
7508 switch (bits (insn1, 7, 8))
7509 {
7510 case 0: case 3: /* SRS, RFE */
7511 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7512 "srs/rfe", dsc);
7513 break;
7514 case 1: case 2: /* LDM/STM/PUSH/POP */
7515 err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc);
7516 break;
7517 }
7518 }
7519 break;
7520
7521 case 1:
7522 /* Data-processing (shift register). */
7523 err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs,
7524 dsc);
7525 break;
7526 default: /* Coprocessor instructions. */
7527 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7528 break;
7529 }
7530 break;
7531 }
7532 case 2: /* op1 = 2 */
7533 if (op) /* Branch and misc control. */
7534 {
7535 if (bit (insn2, 14) /* BLX/BL */
7536 || bit (insn2, 12) /* Unconditional branch */
7537 || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */
7538 err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc);
7539 else
7540 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7541 "misc ctrl", dsc);
7542 }
7543 else
7544 {
7545 if (bit (insn1, 9)) /* Data processing (plain binary imm). */
7546 {
7547 int op = bits (insn1, 4, 8);
7548 int rn = bits (insn1, 0, 3);
7549 if ((op == 0 || op == 0xa) && rn == 0xf)
7550 err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2,
7551 regs, dsc);
7552 else
7553 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7554 "dp/pb", dsc);
7555 }
7556 else /* Data processing (modified immeidate) */
7557 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7558 "dp/mi", dsc);
7559 }
7560 break;
7561 case 3: /* op1 = 3 */
7562 switch (bits (insn1, 9, 10))
7563 {
7564 case 0:
7565 if (bit (insn1, 4))
7566 err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2,
7567 regs, dsc);
7568 else /* NEON Load/Store and Store single data item */
7569 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7570 "neon elt/struct load/store",
7571 dsc);
7572 break;
7573 case 1: /* op1 = 3, bits (9, 10) == 1 */
7574 switch (bits (insn1, 7, 8))
7575 {
7576 case 0: case 1: /* Data processing (register) */
7577 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7578 "dp(reg)", dsc);
7579 break;
7580 case 2: /* Multiply and absolute difference */
7581 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7582 "mul/mua/diff", dsc);
7583 break;
7584 case 3: /* Long multiply and divide */
7585 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7586 "lmul/lmua", dsc);
7587 break;
7588 }
7589 break;
7590 default: /* Coprocessor instructions */
7591 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7592 break;
7593 }
7594 break;
7595 default:
7596 err = 1;
7597 }
7598
7599 if (err)
7600 internal_error (__FILE__, __LINE__,
7601 _("thumb_process_displaced_32bit_insn: Instruction decode error"));
7602
7603 }
7604
7605 static void
7606 thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7607 struct regcache *regs,
7608 struct displaced_step_closure *dsc)
7609 {
7610 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7611 uint16_t insn1
7612 = read_memory_unsigned_integer (from, 2, byte_order_for_code);
7613
7614 if (debug_displaced)
7615 fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x "
7616 "at %.8lx\n", insn1, (unsigned long) from);
7617
7618 dsc->is_thumb = 1;
7619 dsc->insn_size = thumb_insn_size (insn1);
7620 if (thumb_insn_size (insn1) == 4)
7621 {
7622 uint16_t insn2
7623 = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code);
7624 thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc);
7625 }
7626 else
7627 thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc);
7628 }
7629
7630 void
7631 arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7632 CORE_ADDR to, struct regcache *regs,
7633 struct displaced_step_closure *dsc)
7634 {
7635 int err = 0;
7636 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7637 uint32_t insn;
7638
7639 /* Most displaced instructions use a 1-instruction scratch space, so set this
7640 here and override below if/when necessary. */
7641 dsc->numinsns = 1;
7642 dsc->insn_addr = from;
7643 dsc->scratch_base = to;
7644 dsc->cleanup = NULL;
7645 dsc->wrote_to_pc = 0;
7646
7647 if (!displaced_in_arm_mode (regs))
7648 return thumb_process_displaced_insn (gdbarch, from, regs, dsc);
7649
7650 dsc->is_thumb = 0;
7651 dsc->insn_size = 4;
7652 insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
7653 if (debug_displaced)
7654 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
7655 "at %.8lx\n", (unsigned long) insn,
7656 (unsigned long) from);
7657
7658 if ((insn & 0xf0000000) == 0xf0000000)
7659 err = arm_decode_unconditional (gdbarch, insn, regs, dsc);
7660 else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
7661 {
7662 case 0x0: case 0x1: case 0x2: case 0x3:
7663 err = arm_decode_dp_misc (gdbarch, insn, regs, dsc);
7664 break;
7665
7666 case 0x4: case 0x5: case 0x6:
7667 err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
7668 break;
7669
7670 case 0x7:
7671 err = arm_decode_media (gdbarch, insn, dsc);
7672 break;
7673
7674 case 0x8: case 0x9: case 0xa: case 0xb:
7675 err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
7676 break;
7677
7678 case 0xc: case 0xd: case 0xe: case 0xf:
7679 err = arm_decode_svc_copro (gdbarch, insn, regs, dsc);
7680 break;
7681 }
7682
7683 if (err)
7684 internal_error (__FILE__, __LINE__,
7685 _("arm_process_displaced_insn: Instruction decode error"));
7686 }
7687
7688 /* Actually set up the scratch space for a displaced instruction. */
7689
7690 void
7691 arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
7692 CORE_ADDR to, struct displaced_step_closure *dsc)
7693 {
7694 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7695 unsigned int i, len, offset;
7696 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7697 int size = dsc->is_thumb? 2 : 4;
7698 const gdb_byte *bkp_insn;
7699
7700 offset = 0;
7701 /* Poke modified instruction(s). */
7702 for (i = 0; i < dsc->numinsns; i++)
7703 {
7704 if (debug_displaced)
7705 {
7706 fprintf_unfiltered (gdb_stdlog, "displaced: writing insn ");
7707 if (size == 4)
7708 fprintf_unfiltered (gdb_stdlog, "%.8lx",
7709 dsc->modinsn[i]);
7710 else if (size == 2)
7711 fprintf_unfiltered (gdb_stdlog, "%.4x",
7712 (unsigned short)dsc->modinsn[i]);
7713
7714 fprintf_unfiltered (gdb_stdlog, " at %.8lx\n",
7715 (unsigned long) to + offset);
7716
7717 }
7718 write_memory_unsigned_integer (to + offset, size,
7719 byte_order_for_code,
7720 dsc->modinsn[i]);
7721 offset += size;
7722 }
7723
7724 /* Choose the correct breakpoint instruction. */
7725 if (dsc->is_thumb)
7726 {
7727 bkp_insn = tdep->thumb_breakpoint;
7728 len = tdep->thumb_breakpoint_size;
7729 }
7730 else
7731 {
7732 bkp_insn = tdep->arm_breakpoint;
7733 len = tdep->arm_breakpoint_size;
7734 }
7735
7736 /* Put breakpoint afterwards. */
7737 write_memory (to + offset, bkp_insn, len);
7738
7739 if (debug_displaced)
7740 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
7741 paddress (gdbarch, from), paddress (gdbarch, to));
7742 }
7743
7744 /* Entry point for cleaning things up after a displaced instruction has been
7745 single-stepped. */
7746
7747 void
7748 arm_displaced_step_fixup (struct gdbarch *gdbarch,
7749 struct displaced_step_closure *dsc,
7750 CORE_ADDR from, CORE_ADDR to,
7751 struct regcache *regs)
7752 {
7753 if (dsc->cleanup)
7754 dsc->cleanup (gdbarch, regs, dsc);
7755
7756 if (!dsc->wrote_to_pc)
7757 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
7758 dsc->insn_addr + dsc->insn_size);
7759
7760 }
7761
7762 #include "bfd-in2.h"
7763 #include "libcoff.h"
7764
7765 static int
7766 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
7767 {
7768 struct gdbarch *gdbarch = (struct gdbarch *) info->application_data;
7769
7770 if (arm_pc_is_thumb (gdbarch, memaddr))
7771 {
7772 static asymbol *asym;
7773 static combined_entry_type ce;
7774 static struct coff_symbol_struct csym;
7775 static struct bfd fake_bfd;
7776 static bfd_target fake_target;
7777
7778 if (csym.native == NULL)
7779 {
7780 /* Create a fake symbol vector containing a Thumb symbol.
7781 This is solely so that the code in print_insn_little_arm()
7782 and print_insn_big_arm() in opcodes/arm-dis.c will detect
7783 the presence of a Thumb symbol and switch to decoding
7784 Thumb instructions. */
7785
7786 fake_target.flavour = bfd_target_coff_flavour;
7787 fake_bfd.xvec = &fake_target;
7788 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
7789 csym.native = &ce;
7790 csym.symbol.the_bfd = &fake_bfd;
7791 csym.symbol.name = "fake";
7792 asym = (asymbol *) & csym;
7793 }
7794
7795 memaddr = UNMAKE_THUMB_ADDR (memaddr);
7796 info->symbols = &asym;
7797 }
7798 else
7799 info->symbols = NULL;
7800
7801 if (info->endian == BFD_ENDIAN_BIG)
7802 return print_insn_big_arm (memaddr, info);
7803 else
7804 return print_insn_little_arm (memaddr, info);
7805 }
7806
7807 /* The following define instruction sequences that will cause ARM
7808 cpu's to take an undefined instruction trap. These are used to
7809 signal a breakpoint to GDB.
7810
7811 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
7812 modes. A different instruction is required for each mode. The ARM
7813 cpu's can also be big or little endian. Thus four different
7814 instructions are needed to support all cases.
7815
7816 Note: ARMv4 defines several new instructions that will take the
7817 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
7818 not in fact add the new instructions. The new undefined
7819 instructions in ARMv4 are all instructions that had no defined
7820 behaviour in earlier chips. There is no guarantee that they will
7821 raise an exception, but may be treated as NOP's. In practice, it
7822 may only safe to rely on instructions matching:
7823
7824 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7825 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
7826 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
7827
7828 Even this may only true if the condition predicate is true. The
7829 following use a condition predicate of ALWAYS so it is always TRUE.
7830
7831 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
7832 and NetBSD all use a software interrupt rather than an undefined
7833 instruction to force a trap. This can be handled by by the
7834 abi-specific code during establishment of the gdbarch vector. */
7835
7836 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
7837 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
7838 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
7839 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
7840
7841 static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
7842 static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
7843 static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
7844 static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
7845
7846 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
7847 the program counter value to determine whether a 16-bit or 32-bit
7848 breakpoint should be used. It returns a pointer to a string of
7849 bytes that encode a breakpoint instruction, stores the length of
7850 the string to *lenptr, and adjusts the program counter (if
7851 necessary) to point to the actual memory location where the
7852 breakpoint should be inserted. */
7853
7854 static const unsigned char *
7855 arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
7856 {
7857 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7858 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7859
7860 if (arm_pc_is_thumb (gdbarch, *pcptr))
7861 {
7862 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
7863
7864 /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
7865 check whether we are replacing a 32-bit instruction. */
7866 if (tdep->thumb2_breakpoint != NULL)
7867 {
7868 gdb_byte buf[2];
7869 if (target_read_memory (*pcptr, buf, 2) == 0)
7870 {
7871 unsigned short inst1;
7872 inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
7873 if (thumb_insn_size (inst1) == 4)
7874 {
7875 *lenptr = tdep->thumb2_breakpoint_size;
7876 return tdep->thumb2_breakpoint;
7877 }
7878 }
7879 }
7880
7881 *lenptr = tdep->thumb_breakpoint_size;
7882 return tdep->thumb_breakpoint;
7883 }
7884 else
7885 {
7886 *lenptr = tdep->arm_breakpoint_size;
7887 return tdep->arm_breakpoint;
7888 }
7889 }
7890
7891 static void
7892 arm_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
7893 int *kindptr)
7894 {
7895 arm_breakpoint_from_pc (gdbarch, pcptr, kindptr);
7896
7897 if (arm_pc_is_thumb (gdbarch, *pcptr) && *kindptr == 4)
7898 /* The documented magic value for a 32-bit Thumb-2 breakpoint, so
7899 that this is not confused with a 32-bit ARM breakpoint. */
7900 *kindptr = ARM_BP_KIND_THUMB2;
7901 }
7902
7903 /* Extract from an array REGBUF containing the (raw) register state a
7904 function return value of type TYPE, and copy that, in virtual
7905 format, into VALBUF. */
7906
7907 static void
7908 arm_extract_return_value (struct type *type, struct regcache *regs,
7909 gdb_byte *valbuf)
7910 {
7911 struct gdbarch *gdbarch = get_regcache_arch (regs);
7912 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7913
7914 if (TYPE_CODE_FLT == TYPE_CODE (type))
7915 {
7916 switch (gdbarch_tdep (gdbarch)->fp_model)
7917 {
7918 case ARM_FLOAT_FPA:
7919 {
7920 /* The value is in register F0 in internal format. We need to
7921 extract the raw value and then convert it to the desired
7922 internal type. */
7923 bfd_byte tmpbuf[FP_REGISTER_SIZE];
7924
7925 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
7926 convert_from_extended (floatformat_from_type (type), tmpbuf,
7927 valbuf, gdbarch_byte_order (gdbarch));
7928 }
7929 break;
7930
7931 case ARM_FLOAT_SOFT_FPA:
7932 case ARM_FLOAT_SOFT_VFP:
7933 /* ARM_FLOAT_VFP can arise if this is a variadic function so
7934 not using the VFP ABI code. */
7935 case ARM_FLOAT_VFP:
7936 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
7937 if (TYPE_LENGTH (type) > 4)
7938 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7939 valbuf + INT_REGISTER_SIZE);
7940 break;
7941
7942 default:
7943 internal_error (__FILE__, __LINE__,
7944 _("arm_extract_return_value: "
7945 "Floating point model not supported"));
7946 break;
7947 }
7948 }
7949 else if (TYPE_CODE (type) == TYPE_CODE_INT
7950 || TYPE_CODE (type) == TYPE_CODE_CHAR
7951 || TYPE_CODE (type) == TYPE_CODE_BOOL
7952 || TYPE_CODE (type) == TYPE_CODE_PTR
7953 || TYPE_CODE (type) == TYPE_CODE_REF
7954 || TYPE_CODE (type) == TYPE_CODE_ENUM)
7955 {
7956 /* If the type is a plain integer, then the access is
7957 straight-forward. Otherwise we have to play around a bit
7958 more. */
7959 int len = TYPE_LENGTH (type);
7960 int regno = ARM_A1_REGNUM;
7961 ULONGEST tmp;
7962
7963 while (len > 0)
7964 {
7965 /* By using store_unsigned_integer we avoid having to do
7966 anything special for small big-endian values. */
7967 regcache_cooked_read_unsigned (regs, regno++, &tmp);
7968 store_unsigned_integer (valbuf,
7969 (len > INT_REGISTER_SIZE
7970 ? INT_REGISTER_SIZE : len),
7971 byte_order, tmp);
7972 len -= INT_REGISTER_SIZE;
7973 valbuf += INT_REGISTER_SIZE;
7974 }
7975 }
7976 else
7977 {
7978 /* For a structure or union the behaviour is as if the value had
7979 been stored to word-aligned memory and then loaded into
7980 registers with 32-bit load instruction(s). */
7981 int len = TYPE_LENGTH (type);
7982 int regno = ARM_A1_REGNUM;
7983 bfd_byte tmpbuf[INT_REGISTER_SIZE];
7984
7985 while (len > 0)
7986 {
7987 regcache_cooked_read (regs, regno++, tmpbuf);
7988 memcpy (valbuf, tmpbuf,
7989 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
7990 len -= INT_REGISTER_SIZE;
7991 valbuf += INT_REGISTER_SIZE;
7992 }
7993 }
7994 }
7995
7996
7997 /* Will a function return an aggregate type in memory or in a
7998 register? Return 0 if an aggregate type can be returned in a
7999 register, 1 if it must be returned in memory. */
8000
8001 static int
8002 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
8003 {
8004 enum type_code code;
8005
8006 type = check_typedef (type);
8007
8008 /* Simple, non-aggregate types (ie not including vectors and
8009 complex) are always returned in a register (or registers). */
8010 code = TYPE_CODE (type);
8011 if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code
8012 && TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code)
8013 return 0;
8014
8015 if (TYPE_CODE_ARRAY == code && TYPE_VECTOR (type))
8016 {
8017 /* Vector values should be returned using ARM registers if they
8018 are not over 16 bytes. */
8019 return (TYPE_LENGTH (type) > 16);
8020 }
8021
8022 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
8023 {
8024 /* The AAPCS says all aggregates not larger than a word are returned
8025 in a register. */
8026 if (TYPE_LENGTH (type) <= INT_REGISTER_SIZE)
8027 return 0;
8028
8029 return 1;
8030 }
8031 else
8032 {
8033 int nRc;
8034
8035 /* All aggregate types that won't fit in a register must be returned
8036 in memory. */
8037 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
8038 return 1;
8039
8040 /* In the ARM ABI, "integer" like aggregate types are returned in
8041 registers. For an aggregate type to be integer like, its size
8042 must be less than or equal to INT_REGISTER_SIZE and the
8043 offset of each addressable subfield must be zero. Note that bit
8044 fields are not addressable, and all addressable subfields of
8045 unions always start at offset zero.
8046
8047 This function is based on the behaviour of GCC 2.95.1.
8048 See: gcc/arm.c: arm_return_in_memory() for details.
8049
8050 Note: All versions of GCC before GCC 2.95.2 do not set up the
8051 parameters correctly for a function returning the following
8052 structure: struct { float f;}; This should be returned in memory,
8053 not a register. Richard Earnshaw sent me a patch, but I do not
8054 know of any way to detect if a function like the above has been
8055 compiled with the correct calling convention. */
8056
8057 /* Assume all other aggregate types can be returned in a register.
8058 Run a check for structures, unions and arrays. */
8059 nRc = 0;
8060
8061 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
8062 {
8063 int i;
8064 /* Need to check if this struct/union is "integer" like. For
8065 this to be true, its size must be less than or equal to
8066 INT_REGISTER_SIZE and the offset of each addressable
8067 subfield must be zero. Note that bit fields are not
8068 addressable, and unions always start at offset zero. If any
8069 of the subfields is a floating point type, the struct/union
8070 cannot be an integer type. */
8071
8072 /* For each field in the object, check:
8073 1) Is it FP? --> yes, nRc = 1;
8074 2) Is it addressable (bitpos != 0) and
8075 not packed (bitsize == 0)?
8076 --> yes, nRc = 1
8077 */
8078
8079 for (i = 0; i < TYPE_NFIELDS (type); i++)
8080 {
8081 enum type_code field_type_code;
8082
8083 field_type_code
8084 = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
8085 i)));
8086
8087 /* Is it a floating point type field? */
8088 if (field_type_code == TYPE_CODE_FLT)
8089 {
8090 nRc = 1;
8091 break;
8092 }
8093
8094 /* If bitpos != 0, then we have to care about it. */
8095 if (TYPE_FIELD_BITPOS (type, i) != 0)
8096 {
8097 /* Bitfields are not addressable. If the field bitsize is
8098 zero, then the field is not packed. Hence it cannot be
8099 a bitfield or any other packed type. */
8100 if (TYPE_FIELD_BITSIZE (type, i) == 0)
8101 {
8102 nRc = 1;
8103 break;
8104 }
8105 }
8106 }
8107 }
8108
8109 return nRc;
8110 }
8111 }
8112
8113 /* Write into appropriate registers a function return value of type
8114 TYPE, given in virtual format. */
8115
8116 static void
8117 arm_store_return_value (struct type *type, struct regcache *regs,
8118 const gdb_byte *valbuf)
8119 {
8120 struct gdbarch *gdbarch = get_regcache_arch (regs);
8121 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8122
8123 if (TYPE_CODE (type) == TYPE_CODE_FLT)
8124 {
8125 gdb_byte buf[MAX_REGISTER_SIZE];
8126
8127 switch (gdbarch_tdep (gdbarch)->fp_model)
8128 {
8129 case ARM_FLOAT_FPA:
8130
8131 convert_to_extended (floatformat_from_type (type), buf, valbuf,
8132 gdbarch_byte_order (gdbarch));
8133 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
8134 break;
8135
8136 case ARM_FLOAT_SOFT_FPA:
8137 case ARM_FLOAT_SOFT_VFP:
8138 /* ARM_FLOAT_VFP can arise if this is a variadic function so
8139 not using the VFP ABI code. */
8140 case ARM_FLOAT_VFP:
8141 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
8142 if (TYPE_LENGTH (type) > 4)
8143 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
8144 valbuf + INT_REGISTER_SIZE);
8145 break;
8146
8147 default:
8148 internal_error (__FILE__, __LINE__,
8149 _("arm_store_return_value: Floating "
8150 "point model not supported"));
8151 break;
8152 }
8153 }
8154 else if (TYPE_CODE (type) == TYPE_CODE_INT
8155 || TYPE_CODE (type) == TYPE_CODE_CHAR
8156 || TYPE_CODE (type) == TYPE_CODE_BOOL
8157 || TYPE_CODE (type) == TYPE_CODE_PTR
8158 || TYPE_CODE (type) == TYPE_CODE_REF
8159 || TYPE_CODE (type) == TYPE_CODE_ENUM)
8160 {
8161 if (TYPE_LENGTH (type) <= 4)
8162 {
8163 /* Values of one word or less are zero/sign-extended and
8164 returned in r0. */
8165 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8166 LONGEST val = unpack_long (type, valbuf);
8167
8168 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
8169 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
8170 }
8171 else
8172 {
8173 /* Integral values greater than one word are stored in consecutive
8174 registers starting with r0. This will always be a multiple of
8175 the regiser size. */
8176 int len = TYPE_LENGTH (type);
8177 int regno = ARM_A1_REGNUM;
8178
8179 while (len > 0)
8180 {
8181 regcache_cooked_write (regs, regno++, valbuf);
8182 len -= INT_REGISTER_SIZE;
8183 valbuf += INT_REGISTER_SIZE;
8184 }
8185 }
8186 }
8187 else
8188 {
8189 /* For a structure or union the behaviour is as if the value had
8190 been stored to word-aligned memory and then loaded into
8191 registers with 32-bit load instruction(s). */
8192 int len = TYPE_LENGTH (type);
8193 int regno = ARM_A1_REGNUM;
8194 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8195
8196 while (len > 0)
8197 {
8198 memcpy (tmpbuf, valbuf,
8199 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
8200 regcache_cooked_write (regs, regno++, tmpbuf);
8201 len -= INT_REGISTER_SIZE;
8202 valbuf += INT_REGISTER_SIZE;
8203 }
8204 }
8205 }
8206
8207
8208 /* Handle function return values. */
8209
8210 static enum return_value_convention
8211 arm_return_value (struct gdbarch *gdbarch, struct value *function,
8212 struct type *valtype, struct regcache *regcache,
8213 gdb_byte *readbuf, const gdb_byte *writebuf)
8214 {
8215 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8216 struct type *func_type = function ? value_type (function) : NULL;
8217 enum arm_vfp_cprc_base_type vfp_base_type;
8218 int vfp_base_count;
8219
8220 if (arm_vfp_abi_for_function (gdbarch, func_type)
8221 && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
8222 {
8223 int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
8224 int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
8225 int i;
8226 for (i = 0; i < vfp_base_count; i++)
8227 {
8228 if (reg_char == 'q')
8229 {
8230 if (writebuf)
8231 arm_neon_quad_write (gdbarch, regcache, i,
8232 writebuf + i * unit_length);
8233
8234 if (readbuf)
8235 arm_neon_quad_read (gdbarch, regcache, i,
8236 readbuf + i * unit_length);
8237 }
8238 else
8239 {
8240 char name_buf[4];
8241 int regnum;
8242
8243 xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i);
8244 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8245 strlen (name_buf));
8246 if (writebuf)
8247 regcache_cooked_write (regcache, regnum,
8248 writebuf + i * unit_length);
8249 if (readbuf)
8250 regcache_cooked_read (regcache, regnum,
8251 readbuf + i * unit_length);
8252 }
8253 }
8254 return RETURN_VALUE_REGISTER_CONVENTION;
8255 }
8256
8257 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
8258 || TYPE_CODE (valtype) == TYPE_CODE_UNION
8259 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
8260 {
8261 if (tdep->struct_return == pcc_struct_return
8262 || arm_return_in_memory (gdbarch, valtype))
8263 return RETURN_VALUE_STRUCT_CONVENTION;
8264 }
8265 else if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX)
8266 {
8267 if (arm_return_in_memory (gdbarch, valtype))
8268 return RETURN_VALUE_STRUCT_CONVENTION;
8269 }
8270
8271 if (writebuf)
8272 arm_store_return_value (valtype, regcache, writebuf);
8273
8274 if (readbuf)
8275 arm_extract_return_value (valtype, regcache, readbuf);
8276
8277 return RETURN_VALUE_REGISTER_CONVENTION;
8278 }
8279
8280
8281 static int
8282 arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
8283 {
8284 struct gdbarch *gdbarch = get_frame_arch (frame);
8285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8286 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8287 CORE_ADDR jb_addr;
8288 gdb_byte buf[INT_REGISTER_SIZE];
8289
8290 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
8291
8292 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
8293 INT_REGISTER_SIZE))
8294 return 0;
8295
8296 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
8297 return 1;
8298 }
8299
8300 /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
8301 return the target PC. Otherwise return 0. */
8302
8303 CORE_ADDR
8304 arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
8305 {
8306 const char *name;
8307 int namelen;
8308 CORE_ADDR start_addr;
8309
8310 /* Find the starting address and name of the function containing the PC. */
8311 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
8312 {
8313 /* Trampoline 'bx reg' doesn't belong to any functions. Do the
8314 check here. */
8315 start_addr = arm_skip_bx_reg (frame, pc);
8316 if (start_addr != 0)
8317 return start_addr;
8318
8319 return 0;
8320 }
8321
8322 /* If PC is in a Thumb call or return stub, return the address of the
8323 target PC, which is in a register. The thunk functions are called
8324 _call_via_xx, where x is the register name. The possible names
8325 are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
8326 functions, named __ARM_call_via_r[0-7]. */
8327 if (startswith (name, "_call_via_")
8328 || startswith (name, "__ARM_call_via_"))
8329 {
8330 /* Use the name suffix to determine which register contains the
8331 target PC. */
8332 static char *table[15] =
8333 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8334 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
8335 };
8336 int regno;
8337 int offset = strlen (name) - 2;
8338
8339 for (regno = 0; regno <= 14; regno++)
8340 if (strcmp (&name[offset], table[regno]) == 0)
8341 return get_frame_register_unsigned (frame, regno);
8342 }
8343
8344 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
8345 non-interworking calls to foo. We could decode the stubs
8346 to find the target but it's easier to use the symbol table. */
8347 namelen = strlen (name);
8348 if (name[0] == '_' && name[1] == '_'
8349 && ((namelen > 2 + strlen ("_from_thumb")
8350 && startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb"))
8351 || (namelen > 2 + strlen ("_from_arm")
8352 && startswith (name + namelen - strlen ("_from_arm"), "_from_arm"))))
8353 {
8354 char *target_name;
8355 int target_len = namelen - 2;
8356 struct bound_minimal_symbol minsym;
8357 struct objfile *objfile;
8358 struct obj_section *sec;
8359
8360 if (name[namelen - 1] == 'b')
8361 target_len -= strlen ("_from_thumb");
8362 else
8363 target_len -= strlen ("_from_arm");
8364
8365 target_name = (char *) alloca (target_len + 1);
8366 memcpy (target_name, name + 2, target_len);
8367 target_name[target_len] = '\0';
8368
8369 sec = find_pc_section (pc);
8370 objfile = (sec == NULL) ? NULL : sec->objfile;
8371 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
8372 if (minsym.minsym != NULL)
8373 return BMSYMBOL_VALUE_ADDRESS (minsym);
8374 else
8375 return 0;
8376 }
8377
8378 return 0; /* not a stub */
8379 }
8380
8381 static void
8382 set_arm_command (char *args, int from_tty)
8383 {
8384 printf_unfiltered (_("\
8385 \"set arm\" must be followed by an apporpriate subcommand.\n"));
8386 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
8387 }
8388
8389 static void
8390 show_arm_command (char *args, int from_tty)
8391 {
8392 cmd_show_list (showarmcmdlist, from_tty, "");
8393 }
8394
8395 static void
8396 arm_update_current_architecture (void)
8397 {
8398 struct gdbarch_info info;
8399
8400 /* If the current architecture is not ARM, we have nothing to do. */
8401 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_arm)
8402 return;
8403
8404 /* Update the architecture. */
8405 gdbarch_info_init (&info);
8406
8407 if (!gdbarch_update_p (info))
8408 internal_error (__FILE__, __LINE__, _("could not update architecture"));
8409 }
8410
8411 static void
8412 set_fp_model_sfunc (char *args, int from_tty,
8413 struct cmd_list_element *c)
8414 {
8415 int fp_model;
8416
8417 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
8418 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
8419 {
8420 arm_fp_model = (enum arm_float_model) fp_model;
8421 break;
8422 }
8423
8424 if (fp_model == ARM_FLOAT_LAST)
8425 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
8426 current_fp_model);
8427
8428 arm_update_current_architecture ();
8429 }
8430
8431 static void
8432 show_fp_model (struct ui_file *file, int from_tty,
8433 struct cmd_list_element *c, const char *value)
8434 {
8435 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
8436
8437 if (arm_fp_model == ARM_FLOAT_AUTO
8438 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
8439 fprintf_filtered (file, _("\
8440 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
8441 fp_model_strings[tdep->fp_model]);
8442 else
8443 fprintf_filtered (file, _("\
8444 The current ARM floating point model is \"%s\".\n"),
8445 fp_model_strings[arm_fp_model]);
8446 }
8447
8448 static void
8449 arm_set_abi (char *args, int from_tty,
8450 struct cmd_list_element *c)
8451 {
8452 int arm_abi;
8453
8454 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
8455 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
8456 {
8457 arm_abi_global = (enum arm_abi_kind) arm_abi;
8458 break;
8459 }
8460
8461 if (arm_abi == ARM_ABI_LAST)
8462 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
8463 arm_abi_string);
8464
8465 arm_update_current_architecture ();
8466 }
8467
8468 static void
8469 arm_show_abi (struct ui_file *file, int from_tty,
8470 struct cmd_list_element *c, const char *value)
8471 {
8472 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
8473
8474 if (arm_abi_global == ARM_ABI_AUTO
8475 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
8476 fprintf_filtered (file, _("\
8477 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
8478 arm_abi_strings[tdep->arm_abi]);
8479 else
8480 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
8481 arm_abi_string);
8482 }
8483
8484 static void
8485 arm_show_fallback_mode (struct ui_file *file, int from_tty,
8486 struct cmd_list_element *c, const char *value)
8487 {
8488 fprintf_filtered (file,
8489 _("The current execution mode assumed "
8490 "(when symbols are unavailable) is \"%s\".\n"),
8491 arm_fallback_mode_string);
8492 }
8493
8494 static void
8495 arm_show_force_mode (struct ui_file *file, int from_tty,
8496 struct cmd_list_element *c, const char *value)
8497 {
8498 fprintf_filtered (file,
8499 _("The current execution mode assumed "
8500 "(even when symbols are available) is \"%s\".\n"),
8501 arm_force_mode_string);
8502 }
8503
8504 /* If the user changes the register disassembly style used for info
8505 register and other commands, we have to also switch the style used
8506 in opcodes for disassembly output. This function is run in the "set
8507 arm disassembly" command, and does that. */
8508
8509 static void
8510 set_disassembly_style_sfunc (char *args, int from_tty,
8511 struct cmd_list_element *c)
8512 {
8513 set_disassembly_style ();
8514 }
8515 \f
8516 /* Return the ARM register name corresponding to register I. */
8517 static const char *
8518 arm_register_name (struct gdbarch *gdbarch, int i)
8519 {
8520 const int num_regs = gdbarch_num_regs (gdbarch);
8521
8522 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
8523 && i >= num_regs && i < num_regs + 32)
8524 {
8525 static const char *const vfp_pseudo_names[] = {
8526 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
8527 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
8528 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
8529 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
8530 };
8531
8532 return vfp_pseudo_names[i - num_regs];
8533 }
8534
8535 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
8536 && i >= num_regs + 32 && i < num_regs + 32 + 16)
8537 {
8538 static const char *const neon_pseudo_names[] = {
8539 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
8540 "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
8541 };
8542
8543 return neon_pseudo_names[i - num_regs - 32];
8544 }
8545
8546 if (i >= ARRAY_SIZE (arm_register_names))
8547 /* These registers are only supported on targets which supply
8548 an XML description. */
8549 return "";
8550
8551 return arm_register_names[i];
8552 }
8553
8554 static void
8555 set_disassembly_style (void)
8556 {
8557 int current;
8558
8559 /* Find the style that the user wants. */
8560 for (current = 0; current < num_disassembly_options; current++)
8561 if (disassembly_style == valid_disassembly_styles[current])
8562 break;
8563 gdb_assert (current < num_disassembly_options);
8564
8565 /* Synchronize the disassembler. */
8566 set_arm_regname_option (current);
8567 }
8568
8569 /* Test whether the coff symbol specific value corresponds to a Thumb
8570 function. */
8571
8572 static int
8573 coff_sym_is_thumb (int val)
8574 {
8575 return (val == C_THUMBEXT
8576 || val == C_THUMBSTAT
8577 || val == C_THUMBEXTFUNC
8578 || val == C_THUMBSTATFUNC
8579 || val == C_THUMBLABEL);
8580 }
8581
8582 /* arm_coff_make_msymbol_special()
8583 arm_elf_make_msymbol_special()
8584
8585 These functions test whether the COFF or ELF symbol corresponds to
8586 an address in thumb code, and set a "special" bit in a minimal
8587 symbol to indicate that it does. */
8588
8589 static void
8590 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
8591 {
8592 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
8593
8594 if (ARM_GET_SYM_BRANCH_TYPE (elfsym->internal_elf_sym.st_target_internal)
8595 == ST_BRANCH_TO_THUMB)
8596 MSYMBOL_SET_SPECIAL (msym);
8597 }
8598
8599 static void
8600 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
8601 {
8602 if (coff_sym_is_thumb (val))
8603 MSYMBOL_SET_SPECIAL (msym);
8604 }
8605
8606 static void
8607 arm_objfile_data_free (struct objfile *objfile, void *arg)
8608 {
8609 struct arm_per_objfile *data = (struct arm_per_objfile *) arg;
8610 unsigned int i;
8611
8612 for (i = 0; i < objfile->obfd->section_count; i++)
8613 VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
8614 }
8615
8616 static void
8617 arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
8618 asymbol *sym)
8619 {
8620 const char *name = bfd_asymbol_name (sym);
8621 struct arm_per_objfile *data;
8622 VEC(arm_mapping_symbol_s) **map_p;
8623 struct arm_mapping_symbol new_map_sym;
8624
8625 gdb_assert (name[0] == '$');
8626 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
8627 return;
8628
8629 data = (struct arm_per_objfile *) objfile_data (objfile,
8630 arm_objfile_data_key);
8631 if (data == NULL)
8632 {
8633 data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8634 struct arm_per_objfile);
8635 set_objfile_data (objfile, arm_objfile_data_key, data);
8636 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
8637 objfile->obfd->section_count,
8638 VEC(arm_mapping_symbol_s) *);
8639 }
8640 map_p = &data->section_maps[bfd_get_section (sym)->index];
8641
8642 new_map_sym.value = sym->value;
8643 new_map_sym.type = name[1];
8644
8645 /* Assume that most mapping symbols appear in order of increasing
8646 value. If they were randomly distributed, it would be faster to
8647 always push here and then sort at first use. */
8648 if (!VEC_empty (arm_mapping_symbol_s, *map_p))
8649 {
8650 struct arm_mapping_symbol *prev_map_sym;
8651
8652 prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
8653 if (prev_map_sym->value >= sym->value)
8654 {
8655 unsigned int idx;
8656 idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
8657 arm_compare_mapping_symbols);
8658 VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
8659 return;
8660 }
8661 }
8662
8663 VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
8664 }
8665
8666 static void
8667 arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
8668 {
8669 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8670 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
8671
8672 /* If necessary, set the T bit. */
8673 if (arm_apcs_32)
8674 {
8675 ULONGEST val, t_bit;
8676 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
8677 t_bit = arm_psr_thumb_bit (gdbarch);
8678 if (arm_pc_is_thumb (gdbarch, pc))
8679 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8680 val | t_bit);
8681 else
8682 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8683 val & ~t_bit);
8684 }
8685 }
8686
8687 /* Read the contents of a NEON quad register, by reading from two
8688 double registers. This is used to implement the quad pseudo
8689 registers, and for argument passing in case the quad registers are
8690 missing; vectors are passed in quad registers when using the VFP
8691 ABI, even if a NEON unit is not present. REGNUM is the index of
8692 the quad register, in [0, 15]. */
8693
8694 static enum register_status
8695 arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache,
8696 int regnum, gdb_byte *buf)
8697 {
8698 char name_buf[4];
8699 gdb_byte reg_buf[8];
8700 int offset, double_regnum;
8701 enum register_status status;
8702
8703 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
8704 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8705 strlen (name_buf));
8706
8707 /* d0 is always the least significant half of q0. */
8708 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8709 offset = 8;
8710 else
8711 offset = 0;
8712
8713 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8714 if (status != REG_VALID)
8715 return status;
8716 memcpy (buf + offset, reg_buf, 8);
8717
8718 offset = 8 - offset;
8719 status = regcache_raw_read (regcache, double_regnum + 1, reg_buf);
8720 if (status != REG_VALID)
8721 return status;
8722 memcpy (buf + offset, reg_buf, 8);
8723
8724 return REG_VALID;
8725 }
8726
8727 static enum register_status
8728 arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache,
8729 int regnum, gdb_byte *buf)
8730 {
8731 const int num_regs = gdbarch_num_regs (gdbarch);
8732 char name_buf[4];
8733 gdb_byte reg_buf[8];
8734 int offset, double_regnum;
8735
8736 gdb_assert (regnum >= num_regs);
8737 regnum -= num_regs;
8738
8739 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8740 /* Quad-precision register. */
8741 return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
8742 else
8743 {
8744 enum register_status status;
8745
8746 /* Single-precision register. */
8747 gdb_assert (regnum < 32);
8748
8749 /* s0 is always the least significant half of d0. */
8750 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8751 offset = (regnum & 1) ? 0 : 4;
8752 else
8753 offset = (regnum & 1) ? 4 : 0;
8754
8755 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
8756 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8757 strlen (name_buf));
8758
8759 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8760 if (status == REG_VALID)
8761 memcpy (buf, reg_buf + offset, 4);
8762 return status;
8763 }
8764 }
8765
8766 /* Store the contents of BUF to a NEON quad register, by writing to
8767 two double registers. This is used to implement the quad pseudo
8768 registers, and for argument passing in case the quad registers are
8769 missing; vectors are passed in quad registers when using the VFP
8770 ABI, even if a NEON unit is not present. REGNUM is the index
8771 of the quad register, in [0, 15]. */
8772
8773 static void
8774 arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
8775 int regnum, const gdb_byte *buf)
8776 {
8777 char name_buf[4];
8778 int offset, double_regnum;
8779
8780 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
8781 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8782 strlen (name_buf));
8783
8784 /* d0 is always the least significant half of q0. */
8785 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8786 offset = 8;
8787 else
8788 offset = 0;
8789
8790 regcache_raw_write (regcache, double_regnum, buf + offset);
8791 offset = 8 - offset;
8792 regcache_raw_write (regcache, double_regnum + 1, buf + offset);
8793 }
8794
8795 static void
8796 arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
8797 int regnum, const gdb_byte *buf)
8798 {
8799 const int num_regs = gdbarch_num_regs (gdbarch);
8800 char name_buf[4];
8801 gdb_byte reg_buf[8];
8802 int offset, double_regnum;
8803
8804 gdb_assert (regnum >= num_regs);
8805 regnum -= num_regs;
8806
8807 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8808 /* Quad-precision register. */
8809 arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
8810 else
8811 {
8812 /* Single-precision register. */
8813 gdb_assert (regnum < 32);
8814
8815 /* s0 is always the least significant half of d0. */
8816 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8817 offset = (regnum & 1) ? 0 : 4;
8818 else
8819 offset = (regnum & 1) ? 4 : 0;
8820
8821 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
8822 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8823 strlen (name_buf));
8824
8825 regcache_raw_read (regcache, double_regnum, reg_buf);
8826 memcpy (reg_buf + offset, buf, 4);
8827 regcache_raw_write (regcache, double_regnum, reg_buf);
8828 }
8829 }
8830
8831 static struct value *
8832 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
8833 {
8834 const int *reg_p = (const int *) baton;
8835 return value_of_register (*reg_p, frame);
8836 }
8837 \f
8838 static enum gdb_osabi
8839 arm_elf_osabi_sniffer (bfd *abfd)
8840 {
8841 unsigned int elfosabi;
8842 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
8843
8844 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
8845
8846 if (elfosabi == ELFOSABI_ARM)
8847 /* GNU tools use this value. Check note sections in this case,
8848 as well. */
8849 bfd_map_over_sections (abfd,
8850 generic_elf_osabi_sniff_abi_tag_sections,
8851 &osabi);
8852
8853 /* Anything else will be handled by the generic ELF sniffer. */
8854 return osabi;
8855 }
8856
8857 static int
8858 arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
8859 struct reggroup *group)
8860 {
8861 /* FPS register's type is INT, but belongs to float_reggroup. Beside
8862 this, FPS register belongs to save_regroup, restore_reggroup, and
8863 all_reggroup, of course. */
8864 if (regnum == ARM_FPS_REGNUM)
8865 return (group == float_reggroup
8866 || group == save_reggroup
8867 || group == restore_reggroup
8868 || group == all_reggroup);
8869 else
8870 return default_register_reggroup_p (gdbarch, regnum, group);
8871 }
8872
8873 \f
8874 /* For backward-compatibility we allow two 'g' packet lengths with
8875 the remote protocol depending on whether FPA registers are
8876 supplied. M-profile targets do not have FPA registers, but some
8877 stubs already exist in the wild which use a 'g' packet which
8878 supplies them albeit with dummy values. The packet format which
8879 includes FPA registers should be considered deprecated for
8880 M-profile targets. */
8881
8882 static void
8883 arm_register_g_packet_guesses (struct gdbarch *gdbarch)
8884 {
8885 if (gdbarch_tdep (gdbarch)->is_m)
8886 {
8887 /* If we know from the executable this is an M-profile target,
8888 cater for remote targets whose register set layout is the
8889 same as the FPA layout. */
8890 register_remote_g_packet_guess (gdbarch,
8891 /* r0-r12,sp,lr,pc; f0-f7; fps,xpsr */
8892 (16 * INT_REGISTER_SIZE)
8893 + (8 * FP_REGISTER_SIZE)
8894 + (2 * INT_REGISTER_SIZE),
8895 tdesc_arm_with_m_fpa_layout);
8896
8897 /* The regular M-profile layout. */
8898 register_remote_g_packet_guess (gdbarch,
8899 /* r0-r12,sp,lr,pc; xpsr */
8900 (16 * INT_REGISTER_SIZE)
8901 + INT_REGISTER_SIZE,
8902 tdesc_arm_with_m);
8903
8904 /* M-profile plus M4F VFP. */
8905 register_remote_g_packet_guess (gdbarch,
8906 /* r0-r12,sp,lr,pc; d0-d15; fpscr,xpsr */
8907 (16 * INT_REGISTER_SIZE)
8908 + (16 * VFP_REGISTER_SIZE)
8909 + (2 * INT_REGISTER_SIZE),
8910 tdesc_arm_with_m_vfp_d16);
8911 }
8912
8913 /* Otherwise we don't have a useful guess. */
8914 }
8915
8916 /* Implement the code_of_frame_writable gdbarch method. */
8917
8918 static int
8919 arm_code_of_frame_writable (struct gdbarch *gdbarch, struct frame_info *frame)
8920 {
8921 if (gdbarch_tdep (gdbarch)->is_m
8922 && get_frame_type (frame) == SIGTRAMP_FRAME)
8923 {
8924 /* M-profile exception frames return to some magic PCs, where
8925 isn't writable at all. */
8926 return 0;
8927 }
8928 else
8929 return 1;
8930 }
8931
8932 \f
8933 /* Initialize the current architecture based on INFO. If possible,
8934 re-use an architecture from ARCHES, which is a list of
8935 architectures already created during this debugging session.
8936
8937 Called e.g. at program startup, when reading a core file, and when
8938 reading a binary file. */
8939
8940 static struct gdbarch *
8941 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8942 {
8943 struct gdbarch_tdep *tdep;
8944 struct gdbarch *gdbarch;
8945 struct gdbarch_list *best_arch;
8946 enum arm_abi_kind arm_abi = arm_abi_global;
8947 enum arm_float_model fp_model = arm_fp_model;
8948 struct tdesc_arch_data *tdesc_data = NULL;
8949 int i, is_m = 0;
8950 int vfp_register_count = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
8951 int have_wmmx_registers = 0;
8952 int have_neon = 0;
8953 int have_fpa_registers = 1;
8954 const struct target_desc *tdesc = info.target_desc;
8955
8956 /* If we have an object to base this architecture on, try to determine
8957 its ABI. */
8958
8959 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
8960 {
8961 int ei_osabi, e_flags;
8962
8963 switch (bfd_get_flavour (info.abfd))
8964 {
8965 case bfd_target_aout_flavour:
8966 /* Assume it's an old APCS-style ABI. */
8967 arm_abi = ARM_ABI_APCS;
8968 break;
8969
8970 case bfd_target_coff_flavour:
8971 /* Assume it's an old APCS-style ABI. */
8972 /* XXX WinCE? */
8973 arm_abi = ARM_ABI_APCS;
8974 break;
8975
8976 case bfd_target_elf_flavour:
8977 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
8978 e_flags = elf_elfheader (info.abfd)->e_flags;
8979
8980 if (ei_osabi == ELFOSABI_ARM)
8981 {
8982 /* GNU tools used to use this value, but do not for EABI
8983 objects. There's nowhere to tag an EABI version
8984 anyway, so assume APCS. */
8985 arm_abi = ARM_ABI_APCS;
8986 }
8987 else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU)
8988 {
8989 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
8990 int attr_arch, attr_profile;
8991
8992 switch (eabi_ver)
8993 {
8994 case EF_ARM_EABI_UNKNOWN:
8995 /* Assume GNU tools. */
8996 arm_abi = ARM_ABI_APCS;
8997 break;
8998
8999 case EF_ARM_EABI_VER4:
9000 case EF_ARM_EABI_VER5:
9001 arm_abi = ARM_ABI_AAPCS;
9002 /* EABI binaries default to VFP float ordering.
9003 They may also contain build attributes that can
9004 be used to identify if the VFP argument-passing
9005 ABI is in use. */
9006 if (fp_model == ARM_FLOAT_AUTO)
9007 {
9008 #ifdef HAVE_ELF
9009 switch (bfd_elf_get_obj_attr_int (info.abfd,
9010 OBJ_ATTR_PROC,
9011 Tag_ABI_VFP_args))
9012 {
9013 case AEABI_VFP_args_base:
9014 /* "The user intended FP parameter/result
9015 passing to conform to AAPCS, base
9016 variant". */
9017 fp_model = ARM_FLOAT_SOFT_VFP;
9018 break;
9019 case AEABI_VFP_args_vfp:
9020 /* "The user intended FP parameter/result
9021 passing to conform to AAPCS, VFP
9022 variant". */
9023 fp_model = ARM_FLOAT_VFP;
9024 break;
9025 case AEABI_VFP_args_toolchain:
9026 /* "The user intended FP parameter/result
9027 passing to conform to tool chain-specific
9028 conventions" - we don't know any such
9029 conventions, so leave it as "auto". */
9030 break;
9031 case AEABI_VFP_args_compatible:
9032 /* "Code is compatible with both the base
9033 and VFP variants; the user did not permit
9034 non-variadic functions to pass FP
9035 parameters/results" - leave it as
9036 "auto". */
9037 break;
9038 default:
9039 /* Attribute value not mentioned in the
9040 November 2012 ABI, so leave it as
9041 "auto". */
9042 break;
9043 }
9044 #else
9045 fp_model = ARM_FLOAT_SOFT_VFP;
9046 #endif
9047 }
9048 break;
9049
9050 default:
9051 /* Leave it as "auto". */
9052 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
9053 break;
9054 }
9055
9056 #ifdef HAVE_ELF
9057 /* Detect M-profile programs. This only works if the
9058 executable file includes build attributes; GCC does
9059 copy them to the executable, but e.g. RealView does
9060 not. */
9061 attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
9062 Tag_CPU_arch);
9063 attr_profile = bfd_elf_get_obj_attr_int (info.abfd,
9064 OBJ_ATTR_PROC,
9065 Tag_CPU_arch_profile);
9066 /* GCC specifies the profile for v6-M; RealView only
9067 specifies the profile for architectures starting with
9068 V7 (as opposed to architectures with a tag
9069 numerically greater than TAG_CPU_ARCH_V7). */
9070 if (!tdesc_has_registers (tdesc)
9071 && (attr_arch == TAG_CPU_ARCH_V6_M
9072 || attr_arch == TAG_CPU_ARCH_V6S_M
9073 || attr_profile == 'M'))
9074 is_m = 1;
9075 #endif
9076 }
9077
9078 if (fp_model == ARM_FLOAT_AUTO)
9079 {
9080 int e_flags = elf_elfheader (info.abfd)->e_flags;
9081
9082 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
9083 {
9084 case 0:
9085 /* Leave it as "auto". Strictly speaking this case
9086 means FPA, but almost nobody uses that now, and
9087 many toolchains fail to set the appropriate bits
9088 for the floating-point model they use. */
9089 break;
9090 case EF_ARM_SOFT_FLOAT:
9091 fp_model = ARM_FLOAT_SOFT_FPA;
9092 break;
9093 case EF_ARM_VFP_FLOAT:
9094 fp_model = ARM_FLOAT_VFP;
9095 break;
9096 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
9097 fp_model = ARM_FLOAT_SOFT_VFP;
9098 break;
9099 }
9100 }
9101
9102 if (e_flags & EF_ARM_BE8)
9103 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
9104
9105 break;
9106
9107 default:
9108 /* Leave it as "auto". */
9109 break;
9110 }
9111 }
9112
9113 /* Check any target description for validity. */
9114 if (tdesc_has_registers (tdesc))
9115 {
9116 /* For most registers we require GDB's default names; but also allow
9117 the numeric names for sp / lr / pc, as a convenience. */
9118 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
9119 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
9120 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
9121
9122 const struct tdesc_feature *feature;
9123 int valid_p;
9124
9125 feature = tdesc_find_feature (tdesc,
9126 "org.gnu.gdb.arm.core");
9127 if (feature == NULL)
9128 {
9129 feature = tdesc_find_feature (tdesc,
9130 "org.gnu.gdb.arm.m-profile");
9131 if (feature == NULL)
9132 return NULL;
9133 else
9134 is_m = 1;
9135 }
9136
9137 tdesc_data = tdesc_data_alloc ();
9138
9139 valid_p = 1;
9140 for (i = 0; i < ARM_SP_REGNUM; i++)
9141 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9142 arm_register_names[i]);
9143 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9144 ARM_SP_REGNUM,
9145 arm_sp_names);
9146 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9147 ARM_LR_REGNUM,
9148 arm_lr_names);
9149 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9150 ARM_PC_REGNUM,
9151 arm_pc_names);
9152 if (is_m)
9153 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9154 ARM_PS_REGNUM, "xpsr");
9155 else
9156 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9157 ARM_PS_REGNUM, "cpsr");
9158
9159 if (!valid_p)
9160 {
9161 tdesc_data_cleanup (tdesc_data);
9162 return NULL;
9163 }
9164
9165 feature = tdesc_find_feature (tdesc,
9166 "org.gnu.gdb.arm.fpa");
9167 if (feature != NULL)
9168 {
9169 valid_p = 1;
9170 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
9171 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9172 arm_register_names[i]);
9173 if (!valid_p)
9174 {
9175 tdesc_data_cleanup (tdesc_data);
9176 return NULL;
9177 }
9178 }
9179 else
9180 have_fpa_registers = 0;
9181
9182 feature = tdesc_find_feature (tdesc,
9183 "org.gnu.gdb.xscale.iwmmxt");
9184 if (feature != NULL)
9185 {
9186 static const char *const iwmmxt_names[] = {
9187 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
9188 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
9189 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
9190 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
9191 };
9192
9193 valid_p = 1;
9194 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
9195 valid_p
9196 &= tdesc_numbered_register (feature, tdesc_data, i,
9197 iwmmxt_names[i - ARM_WR0_REGNUM]);
9198
9199 /* Check for the control registers, but do not fail if they
9200 are missing. */
9201 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
9202 tdesc_numbered_register (feature, tdesc_data, i,
9203 iwmmxt_names[i - ARM_WR0_REGNUM]);
9204
9205 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
9206 valid_p
9207 &= tdesc_numbered_register (feature, tdesc_data, i,
9208 iwmmxt_names[i - ARM_WR0_REGNUM]);
9209
9210 if (!valid_p)
9211 {
9212 tdesc_data_cleanup (tdesc_data);
9213 return NULL;
9214 }
9215
9216 have_wmmx_registers = 1;
9217 }
9218
9219 /* If we have a VFP unit, check whether the single precision registers
9220 are present. If not, then we will synthesize them as pseudo
9221 registers. */
9222 feature = tdesc_find_feature (tdesc,
9223 "org.gnu.gdb.arm.vfp");
9224 if (feature != NULL)
9225 {
9226 static const char *const vfp_double_names[] = {
9227 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
9228 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
9229 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
9230 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
9231 };
9232
9233 /* Require the double precision registers. There must be either
9234 16 or 32. */
9235 valid_p = 1;
9236 for (i = 0; i < 32; i++)
9237 {
9238 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9239 ARM_D0_REGNUM + i,
9240 vfp_double_names[i]);
9241 if (!valid_p)
9242 break;
9243 }
9244 if (!valid_p && i == 16)
9245 valid_p = 1;
9246
9247 /* Also require FPSCR. */
9248 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9249 ARM_FPSCR_REGNUM, "fpscr");
9250 if (!valid_p)
9251 {
9252 tdesc_data_cleanup (tdesc_data);
9253 return NULL;
9254 }
9255
9256 if (tdesc_unnumbered_register (feature, "s0") == 0)
9257 have_vfp_pseudos = 1;
9258
9259 vfp_register_count = i;
9260
9261 /* If we have VFP, also check for NEON. The architecture allows
9262 NEON without VFP (integer vector operations only), but GDB
9263 does not support that. */
9264 feature = tdesc_find_feature (tdesc,
9265 "org.gnu.gdb.arm.neon");
9266 if (feature != NULL)
9267 {
9268 /* NEON requires 32 double-precision registers. */
9269 if (i != 32)
9270 {
9271 tdesc_data_cleanup (tdesc_data);
9272 return NULL;
9273 }
9274
9275 /* If there are quad registers defined by the stub, use
9276 their type; otherwise (normally) provide them with
9277 the default type. */
9278 if (tdesc_unnumbered_register (feature, "q0") == 0)
9279 have_neon_pseudos = 1;
9280
9281 have_neon = 1;
9282 }
9283 }
9284 }
9285
9286 /* If there is already a candidate, use it. */
9287 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
9288 best_arch != NULL;
9289 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
9290 {
9291 if (arm_abi != ARM_ABI_AUTO
9292 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
9293 continue;
9294
9295 if (fp_model != ARM_FLOAT_AUTO
9296 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
9297 continue;
9298
9299 /* There are various other properties in tdep that we do not
9300 need to check here: those derived from a target description,
9301 since gdbarches with a different target description are
9302 automatically disqualified. */
9303
9304 /* Do check is_m, though, since it might come from the binary. */
9305 if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m)
9306 continue;
9307
9308 /* Found a match. */
9309 break;
9310 }
9311
9312 if (best_arch != NULL)
9313 {
9314 if (tdesc_data != NULL)
9315 tdesc_data_cleanup (tdesc_data);
9316 return best_arch->gdbarch;
9317 }
9318
9319 tdep = XCNEW (struct gdbarch_tdep);
9320 gdbarch = gdbarch_alloc (&info, tdep);
9321
9322 /* Record additional information about the architecture we are defining.
9323 These are gdbarch discriminators, like the OSABI. */
9324 tdep->arm_abi = arm_abi;
9325 tdep->fp_model = fp_model;
9326 tdep->is_m = is_m;
9327 tdep->have_fpa_registers = have_fpa_registers;
9328 tdep->have_wmmx_registers = have_wmmx_registers;
9329 gdb_assert (vfp_register_count == 0
9330 || vfp_register_count == 16
9331 || vfp_register_count == 32);
9332 tdep->vfp_register_count = vfp_register_count;
9333 tdep->have_vfp_pseudos = have_vfp_pseudos;
9334 tdep->have_neon_pseudos = have_neon_pseudos;
9335 tdep->have_neon = have_neon;
9336
9337 arm_register_g_packet_guesses (gdbarch);
9338
9339 /* Breakpoints. */
9340 switch (info.byte_order_for_code)
9341 {
9342 case BFD_ENDIAN_BIG:
9343 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
9344 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
9345 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
9346 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
9347
9348 break;
9349
9350 case BFD_ENDIAN_LITTLE:
9351 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
9352 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
9353 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
9354 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
9355
9356 break;
9357
9358 default:
9359 internal_error (__FILE__, __LINE__,
9360 _("arm_gdbarch_init: bad byte order for float format"));
9361 }
9362
9363 /* On ARM targets char defaults to unsigned. */
9364 set_gdbarch_char_signed (gdbarch, 0);
9365
9366 /* Note: for displaced stepping, this includes the breakpoint, and one word
9367 of additional scratch space. This setting isn't used for anything beside
9368 displaced stepping at present. */
9369 set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS);
9370
9371 /* This should be low enough for everything. */
9372 tdep->lowest_pc = 0x20;
9373 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
9374
9375 /* The default, for both APCS and AAPCS, is to return small
9376 structures in registers. */
9377 tdep->struct_return = reg_struct_return;
9378
9379 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
9380 set_gdbarch_frame_align (gdbarch, arm_frame_align);
9381
9382 if (is_m)
9383 set_gdbarch_code_of_frame_writable (gdbarch, arm_code_of_frame_writable);
9384
9385 set_gdbarch_write_pc (gdbarch, arm_write_pc);
9386
9387 /* Frame handling. */
9388 set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
9389 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
9390 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
9391
9392 frame_base_set_default (gdbarch, &arm_normal_base);
9393
9394 /* Address manipulation. */
9395 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
9396
9397 /* Advance PC across function entry code. */
9398 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
9399
9400 /* Detect whether PC is at a point where the stack has been destroyed. */
9401 set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p);
9402
9403 /* Skip trampolines. */
9404 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
9405
9406 /* The stack grows downward. */
9407 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9408
9409 /* Breakpoint manipulation. */
9410 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
9411 set_gdbarch_remote_breakpoint_from_pc (gdbarch,
9412 arm_remote_breakpoint_from_pc);
9413
9414 /* Information about registers, etc. */
9415 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
9416 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
9417 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
9418 set_gdbarch_register_type (gdbarch, arm_register_type);
9419 set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
9420
9421 /* This "info float" is FPA-specific. Use the generic version if we
9422 do not have FPA. */
9423 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
9424 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
9425
9426 /* Internal <-> external register number maps. */
9427 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
9428 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
9429
9430 set_gdbarch_register_name (gdbarch, arm_register_name);
9431
9432 /* Returning results. */
9433 set_gdbarch_return_value (gdbarch, arm_return_value);
9434
9435 /* Disassembly. */
9436 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
9437
9438 /* Minsymbol frobbing. */
9439 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
9440 set_gdbarch_coff_make_msymbol_special (gdbarch,
9441 arm_coff_make_msymbol_special);
9442 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
9443
9444 /* Thumb-2 IT block support. */
9445 set_gdbarch_adjust_breakpoint_address (gdbarch,
9446 arm_adjust_breakpoint_address);
9447
9448 /* Virtual tables. */
9449 set_gdbarch_vbit_in_delta (gdbarch, 1);
9450
9451 /* Hook in the ABI-specific overrides, if they have been registered. */
9452 gdbarch_init_osabi (info, gdbarch);
9453
9454 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
9455
9456 /* Add some default predicates. */
9457 if (is_m)
9458 frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind);
9459 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
9460 dwarf2_append_unwinders (gdbarch);
9461 frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
9462 frame_unwind_append_unwinder (gdbarch, &arm_epilogue_frame_unwind);
9463 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
9464
9465 /* Now we have tuned the configuration, set a few final things,
9466 based on what the OS ABI has told us. */
9467
9468 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
9469 binaries are always marked. */
9470 if (tdep->arm_abi == ARM_ABI_AUTO)
9471 tdep->arm_abi = ARM_ABI_APCS;
9472
9473 /* Watchpoints are not steppable. */
9474 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
9475
9476 /* We used to default to FPA for generic ARM, but almost nobody
9477 uses that now, and we now provide a way for the user to force
9478 the model. So default to the most useful variant. */
9479 if (tdep->fp_model == ARM_FLOAT_AUTO)
9480 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
9481
9482 if (tdep->jb_pc >= 0)
9483 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
9484
9485 /* Floating point sizes and format. */
9486 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
9487 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
9488 {
9489 set_gdbarch_double_format
9490 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9491 set_gdbarch_long_double_format
9492 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9493 }
9494 else
9495 {
9496 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
9497 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
9498 }
9499
9500 if (have_vfp_pseudos)
9501 {
9502 /* NOTE: These are the only pseudo registers used by
9503 the ARM target at the moment. If more are added, a
9504 little more care in numbering will be needed. */
9505
9506 int num_pseudos = 32;
9507 if (have_neon_pseudos)
9508 num_pseudos += 16;
9509 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
9510 set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
9511 set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
9512 }
9513
9514 if (tdesc_data)
9515 {
9516 set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
9517
9518 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
9519
9520 /* Override tdesc_register_type to adjust the types of VFP
9521 registers for NEON. */
9522 set_gdbarch_register_type (gdbarch, arm_register_type);
9523 }
9524
9525 /* Add standard register aliases. We add aliases even for those
9526 nanes which are used by the current architecture - it's simpler,
9527 and does no harm, since nothing ever lists user registers. */
9528 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
9529 user_reg_add (gdbarch, arm_register_aliases[i].name,
9530 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
9531
9532 return gdbarch;
9533 }
9534
9535 static void
9536 arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
9537 {
9538 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9539
9540 if (tdep == NULL)
9541 return;
9542
9543 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
9544 (unsigned long) tdep->lowest_pc);
9545 }
9546
9547 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
9548
9549 void
9550 _initialize_arm_tdep (void)
9551 {
9552 struct ui_file *stb;
9553 long length;
9554 const char *setname;
9555 const char *setdesc;
9556 const char *const *regnames;
9557 int i;
9558 static char *helptext;
9559 char regdesc[1024], *rdptr = regdesc;
9560 size_t rest = sizeof (regdesc);
9561
9562 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
9563
9564 arm_objfile_data_key
9565 = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free);
9566
9567 /* Add ourselves to objfile event chain. */
9568 observer_attach_new_objfile (arm_exidx_new_objfile);
9569 arm_exidx_data_key
9570 = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free);
9571
9572 /* Register an ELF OS ABI sniffer for ARM binaries. */
9573 gdbarch_register_osabi_sniffer (bfd_arch_arm,
9574 bfd_target_elf_flavour,
9575 arm_elf_osabi_sniffer);
9576
9577 /* Initialize the standard target descriptions. */
9578 initialize_tdesc_arm_with_m ();
9579 initialize_tdesc_arm_with_m_fpa_layout ();
9580 initialize_tdesc_arm_with_m_vfp_d16 ();
9581 initialize_tdesc_arm_with_iwmmxt ();
9582 initialize_tdesc_arm_with_vfpv2 ();
9583 initialize_tdesc_arm_with_vfpv3 ();
9584 initialize_tdesc_arm_with_neon ();
9585
9586 /* Get the number of possible sets of register names defined in opcodes. */
9587 num_disassembly_options = get_arm_regname_num_options ();
9588
9589 /* Add root prefix command for all "set arm"/"show arm" commands. */
9590 add_prefix_cmd ("arm", no_class, set_arm_command,
9591 _("Various ARM-specific commands."),
9592 &setarmcmdlist, "set arm ", 0, &setlist);
9593
9594 add_prefix_cmd ("arm", no_class, show_arm_command,
9595 _("Various ARM-specific commands."),
9596 &showarmcmdlist, "show arm ", 0, &showlist);
9597
9598 /* Sync the opcode insn printer with our register viewer. */
9599 parse_arm_disassembler_option ("reg-names-std");
9600
9601 /* Initialize the array that will be passed to
9602 add_setshow_enum_cmd(). */
9603 valid_disassembly_styles = XNEWVEC (const char *,
9604 num_disassembly_options + 1);
9605 for (i = 0; i < num_disassembly_options; i++)
9606 {
9607 get_arm_regnames (i, &setname, &setdesc, &regnames);
9608 valid_disassembly_styles[i] = setname;
9609 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
9610 rdptr += length;
9611 rest -= length;
9612 /* When we find the default names, tell the disassembler to use
9613 them. */
9614 if (!strcmp (setname, "std"))
9615 {
9616 disassembly_style = setname;
9617 set_arm_regname_option (i);
9618 }
9619 }
9620 /* Mark the end of valid options. */
9621 valid_disassembly_styles[num_disassembly_options] = NULL;
9622
9623 /* Create the help text. */
9624 stb = mem_fileopen ();
9625 fprintf_unfiltered (stb, "%s%s%s",
9626 _("The valid values are:\n"),
9627 regdesc,
9628 _("The default is \"std\"."));
9629 helptext = ui_file_xstrdup (stb, NULL);
9630 ui_file_delete (stb);
9631
9632 add_setshow_enum_cmd("disassembler", no_class,
9633 valid_disassembly_styles, &disassembly_style,
9634 _("Set the disassembly style."),
9635 _("Show the disassembly style."),
9636 helptext,
9637 set_disassembly_style_sfunc,
9638 NULL, /* FIXME: i18n: The disassembly style is
9639 \"%s\". */
9640 &setarmcmdlist, &showarmcmdlist);
9641
9642 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
9643 _("Set usage of ARM 32-bit mode."),
9644 _("Show usage of ARM 32-bit mode."),
9645 _("When off, a 26-bit PC will be used."),
9646 NULL,
9647 NULL, /* FIXME: i18n: Usage of ARM 32-bit
9648 mode is %s. */
9649 &setarmcmdlist, &showarmcmdlist);
9650
9651 /* Add a command to allow the user to force the FPU model. */
9652 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
9653 _("Set the floating point type."),
9654 _("Show the floating point type."),
9655 _("auto - Determine the FP typefrom the OS-ABI.\n\
9656 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
9657 fpa - FPA co-processor (GCC compiled).\n\
9658 softvfp - Software FP with pure-endian doubles.\n\
9659 vfp - VFP co-processor."),
9660 set_fp_model_sfunc, show_fp_model,
9661 &setarmcmdlist, &showarmcmdlist);
9662
9663 /* Add a command to allow the user to force the ABI. */
9664 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
9665 _("Set the ABI."),
9666 _("Show the ABI."),
9667 NULL, arm_set_abi, arm_show_abi,
9668 &setarmcmdlist, &showarmcmdlist);
9669
9670 /* Add two commands to allow the user to force the assumed
9671 execution mode. */
9672 add_setshow_enum_cmd ("fallback-mode", class_support,
9673 arm_mode_strings, &arm_fallback_mode_string,
9674 _("Set the mode assumed when symbols are unavailable."),
9675 _("Show the mode assumed when symbols are unavailable."),
9676 NULL, NULL, arm_show_fallback_mode,
9677 &setarmcmdlist, &showarmcmdlist);
9678 add_setshow_enum_cmd ("force-mode", class_support,
9679 arm_mode_strings, &arm_force_mode_string,
9680 _("Set the mode assumed even when symbols are available."),
9681 _("Show the mode assumed even when symbols are available."),
9682 NULL, NULL, arm_show_force_mode,
9683 &setarmcmdlist, &showarmcmdlist);
9684
9685 /* Debugging flag. */
9686 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
9687 _("Set ARM debugging."),
9688 _("Show ARM debugging."),
9689 _("When on, arm-specific debugging is enabled."),
9690 NULL,
9691 NULL, /* FIXME: i18n: "ARM debugging is %s. */
9692 &setdebuglist, &showdebuglist);
9693 }
9694
9695 /* ARM-reversible process record data structures. */
9696
9697 #define ARM_INSN_SIZE_BYTES 4
9698 #define THUMB_INSN_SIZE_BYTES 2
9699 #define THUMB2_INSN_SIZE_BYTES 4
9700
9701
9702 /* Position of the bit within a 32-bit ARM instruction
9703 that defines whether the instruction is a load or store. */
9704 #define INSN_S_L_BIT_NUM 20
9705
9706 #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
9707 do \
9708 { \
9709 unsigned int reg_len = LENGTH; \
9710 if (reg_len) \
9711 { \
9712 REGS = XNEWVEC (uint32_t, reg_len); \
9713 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
9714 } \
9715 } \
9716 while (0)
9717
9718 #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
9719 do \
9720 { \
9721 unsigned int mem_len = LENGTH; \
9722 if (mem_len) \
9723 { \
9724 MEMS = XNEWVEC (struct arm_mem_r, mem_len); \
9725 memcpy(&MEMS->len, &RECORD_BUF[0], \
9726 sizeof(struct arm_mem_r) * LENGTH); \
9727 } \
9728 } \
9729 while (0)
9730
9731 /* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */
9732 #define INSN_RECORDED(ARM_RECORD) \
9733 (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count)
9734
9735 /* ARM memory record structure. */
9736 struct arm_mem_r
9737 {
9738 uint32_t len; /* Record length. */
9739 uint32_t addr; /* Memory address. */
9740 };
9741
9742 /* ARM instruction record contains opcode of current insn
9743 and execution state (before entry to decode_insn()),
9744 contains list of to-be-modified registers and
9745 memory blocks (on return from decode_insn()). */
9746
9747 typedef struct insn_decode_record_t
9748 {
9749 struct gdbarch *gdbarch;
9750 struct regcache *regcache;
9751 CORE_ADDR this_addr; /* Address of the insn being decoded. */
9752 uint32_t arm_insn; /* Should accommodate thumb. */
9753 uint32_t cond; /* Condition code. */
9754 uint32_t opcode; /* Insn opcode. */
9755 uint32_t decode; /* Insn decode bits. */
9756 uint32_t mem_rec_count; /* No of mem records. */
9757 uint32_t reg_rec_count; /* No of reg records. */
9758 uint32_t *arm_regs; /* Registers to be saved for this record. */
9759 struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */
9760 } insn_decode_record;
9761
9762
9763 /* Checks ARM SBZ and SBO mandatory fields. */
9764
9765 static int
9766 sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo)
9767 {
9768 uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1));
9769
9770 if (!len)
9771 return 1;
9772
9773 if (!sbo)
9774 ones = ~ones;
9775
9776 while (ones)
9777 {
9778 if (!(ones & sbo))
9779 {
9780 return 0;
9781 }
9782 ones = ones >> 1;
9783 }
9784 return 1;
9785 }
9786
9787 enum arm_record_result
9788 {
9789 ARM_RECORD_SUCCESS = 0,
9790 ARM_RECORD_FAILURE = 1
9791 };
9792
9793 typedef enum
9794 {
9795 ARM_RECORD_STRH=1,
9796 ARM_RECORD_STRD
9797 } arm_record_strx_t;
9798
9799 typedef enum
9800 {
9801 ARM_RECORD=1,
9802 THUMB_RECORD,
9803 THUMB2_RECORD
9804 } record_type_t;
9805
9806
9807 static int
9808 arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf,
9809 uint32_t *record_buf_mem, arm_record_strx_t str_type)
9810 {
9811
9812 struct regcache *reg_cache = arm_insn_r->regcache;
9813 ULONGEST u_regval[2]= {0};
9814
9815 uint32_t reg_src1 = 0, reg_src2 = 0;
9816 uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0;
9817
9818 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
9819 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
9820
9821 if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
9822 {
9823 /* 1) Handle misc store, immediate offset. */
9824 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9825 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9826 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9827 regcache_raw_read_unsigned (reg_cache, reg_src1,
9828 &u_regval[0]);
9829 if (ARM_PC_REGNUM == reg_src1)
9830 {
9831 /* If R15 was used as Rn, hence current PC+8. */
9832 u_regval[0] = u_regval[0] + 8;
9833 }
9834 offset_8 = (immed_high << 4) | immed_low;
9835 /* Calculate target store address. */
9836 if (14 == arm_insn_r->opcode)
9837 {
9838 tgt_mem_addr = u_regval[0] + offset_8;
9839 }
9840 else
9841 {
9842 tgt_mem_addr = u_regval[0] - offset_8;
9843 }
9844 if (ARM_RECORD_STRH == str_type)
9845 {
9846 record_buf_mem[0] = 2;
9847 record_buf_mem[1] = tgt_mem_addr;
9848 arm_insn_r->mem_rec_count = 1;
9849 }
9850 else if (ARM_RECORD_STRD == str_type)
9851 {
9852 record_buf_mem[0] = 4;
9853 record_buf_mem[1] = tgt_mem_addr;
9854 record_buf_mem[2] = 4;
9855 record_buf_mem[3] = tgt_mem_addr + 4;
9856 arm_insn_r->mem_rec_count = 2;
9857 }
9858 }
9859 else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode)
9860 {
9861 /* 2) Store, register offset. */
9862 /* Get Rm. */
9863 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9864 /* Get Rn. */
9865 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9866 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9867 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9868 if (15 == reg_src2)
9869 {
9870 /* If R15 was used as Rn, hence current PC+8. */
9871 u_regval[0] = u_regval[0] + 8;
9872 }
9873 /* Calculate target store address, Rn +/- Rm, register offset. */
9874 if (12 == arm_insn_r->opcode)
9875 {
9876 tgt_mem_addr = u_regval[0] + u_regval[1];
9877 }
9878 else
9879 {
9880 tgt_mem_addr = u_regval[1] - u_regval[0];
9881 }
9882 if (ARM_RECORD_STRH == str_type)
9883 {
9884 record_buf_mem[0] = 2;
9885 record_buf_mem[1] = tgt_mem_addr;
9886 arm_insn_r->mem_rec_count = 1;
9887 }
9888 else if (ARM_RECORD_STRD == str_type)
9889 {
9890 record_buf_mem[0] = 4;
9891 record_buf_mem[1] = tgt_mem_addr;
9892 record_buf_mem[2] = 4;
9893 record_buf_mem[3] = tgt_mem_addr + 4;
9894 arm_insn_r->mem_rec_count = 2;
9895 }
9896 }
9897 else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
9898 || 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9899 {
9900 /* 3) Store, immediate pre-indexed. */
9901 /* 5) Store, immediate post-indexed. */
9902 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9903 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9904 offset_8 = (immed_high << 4) | immed_low;
9905 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9906 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9907 /* Calculate target store address, Rn +/- Rm, register offset. */
9908 if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9909 {
9910 tgt_mem_addr = u_regval[0] + offset_8;
9911 }
9912 else
9913 {
9914 tgt_mem_addr = u_regval[0] - offset_8;
9915 }
9916 if (ARM_RECORD_STRH == str_type)
9917 {
9918 record_buf_mem[0] = 2;
9919 record_buf_mem[1] = tgt_mem_addr;
9920 arm_insn_r->mem_rec_count = 1;
9921 }
9922 else if (ARM_RECORD_STRD == str_type)
9923 {
9924 record_buf_mem[0] = 4;
9925 record_buf_mem[1] = tgt_mem_addr;
9926 record_buf_mem[2] = 4;
9927 record_buf_mem[3] = tgt_mem_addr + 4;
9928 arm_insn_r->mem_rec_count = 2;
9929 }
9930 /* Record Rn also as it changes. */
9931 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9932 arm_insn_r->reg_rec_count = 1;
9933 }
9934 else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode
9935 || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9936 {
9937 /* 4) Store, register pre-indexed. */
9938 /* 6) Store, register post -indexed. */
9939 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9940 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9941 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9942 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9943 /* Calculate target store address, Rn +/- Rm, register offset. */
9944 if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9945 {
9946 tgt_mem_addr = u_regval[0] + u_regval[1];
9947 }
9948 else
9949 {
9950 tgt_mem_addr = u_regval[1] - u_regval[0];
9951 }
9952 if (ARM_RECORD_STRH == str_type)
9953 {
9954 record_buf_mem[0] = 2;
9955 record_buf_mem[1] = tgt_mem_addr;
9956 arm_insn_r->mem_rec_count = 1;
9957 }
9958 else if (ARM_RECORD_STRD == str_type)
9959 {
9960 record_buf_mem[0] = 4;
9961 record_buf_mem[1] = tgt_mem_addr;
9962 record_buf_mem[2] = 4;
9963 record_buf_mem[3] = tgt_mem_addr + 4;
9964 arm_insn_r->mem_rec_count = 2;
9965 }
9966 /* Record Rn also as it changes. */
9967 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9968 arm_insn_r->reg_rec_count = 1;
9969 }
9970 return 0;
9971 }
9972
9973 /* Handling ARM extension space insns. */
9974
9975 static int
9976 arm_record_extension_space (insn_decode_record *arm_insn_r)
9977 {
9978 uint32_t ret = 0; /* Return value: -1:record failure ; 0:success */
9979 uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0;
9980 uint32_t record_buf[8], record_buf_mem[8];
9981 uint32_t reg_src1 = 0;
9982 struct regcache *reg_cache = arm_insn_r->regcache;
9983 ULONGEST u_regval = 0;
9984
9985 gdb_assert (!INSN_RECORDED(arm_insn_r));
9986 /* Handle unconditional insn extension space. */
9987
9988 opcode1 = bits (arm_insn_r->arm_insn, 20, 27);
9989 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
9990 if (arm_insn_r->cond)
9991 {
9992 /* PLD has no affect on architectural state, it just affects
9993 the caches. */
9994 if (5 == ((opcode1 & 0xE0) >> 5))
9995 {
9996 /* BLX(1) */
9997 record_buf[0] = ARM_PS_REGNUM;
9998 record_buf[1] = ARM_LR_REGNUM;
9999 arm_insn_r->reg_rec_count = 2;
10000 }
10001 /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */
10002 }
10003
10004
10005 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10006 if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4))
10007 {
10008 ret = -1;
10009 /* Undefined instruction on ARM V5; need to handle if later
10010 versions define it. */
10011 }
10012
10013 opcode1 = bits (arm_insn_r->arm_insn, 24, 27);
10014 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10015 insn_op1 = bits (arm_insn_r->arm_insn, 20, 23);
10016
10017 /* Handle arithmetic insn extension space. */
10018 if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond
10019 && !INSN_RECORDED(arm_insn_r))
10020 {
10021 /* Handle MLA(S) and MUL(S). */
10022 if (0 <= insn_op1 && 3 >= insn_op1)
10023 {
10024 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10025 record_buf[1] = ARM_PS_REGNUM;
10026 arm_insn_r->reg_rec_count = 2;
10027 }
10028 else if (4 <= insn_op1 && 15 >= insn_op1)
10029 {
10030 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
10031 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10032 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10033 record_buf[2] = ARM_PS_REGNUM;
10034 arm_insn_r->reg_rec_count = 3;
10035 }
10036 }
10037
10038 opcode1 = bits (arm_insn_r->arm_insn, 26, 27);
10039 opcode2 = bits (arm_insn_r->arm_insn, 23, 24);
10040 insn_op1 = bits (arm_insn_r->arm_insn, 21, 22);
10041
10042 /* Handle control insn extension space. */
10043
10044 if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20)
10045 && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r))
10046 {
10047 if (!bit (arm_insn_r->arm_insn,25))
10048 {
10049 if (!bits (arm_insn_r->arm_insn, 4, 7))
10050 {
10051 if ((0 == insn_op1) || (2 == insn_op1))
10052 {
10053 /* MRS. */
10054 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10055 arm_insn_r->reg_rec_count = 1;
10056 }
10057 else if (1 == insn_op1)
10058 {
10059 /* CSPR is going to be changed. */
10060 record_buf[0] = ARM_PS_REGNUM;
10061 arm_insn_r->reg_rec_count = 1;
10062 }
10063 else if (3 == insn_op1)
10064 {
10065 /* SPSR is going to be changed. */
10066 /* We need to get SPSR value, which is yet to be done. */
10067 return -1;
10068 }
10069 }
10070 else if (1 == bits (arm_insn_r->arm_insn, 4, 7))
10071 {
10072 if (1 == insn_op1)
10073 {
10074 /* BX. */
10075 record_buf[0] = ARM_PS_REGNUM;
10076 arm_insn_r->reg_rec_count = 1;
10077 }
10078 else if (3 == insn_op1)
10079 {
10080 /* CLZ. */
10081 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10082 arm_insn_r->reg_rec_count = 1;
10083 }
10084 }
10085 else if (3 == bits (arm_insn_r->arm_insn, 4, 7))
10086 {
10087 /* BLX. */
10088 record_buf[0] = ARM_PS_REGNUM;
10089 record_buf[1] = ARM_LR_REGNUM;
10090 arm_insn_r->reg_rec_count = 2;
10091 }
10092 else if (5 == bits (arm_insn_r->arm_insn, 4, 7))
10093 {
10094 /* QADD, QSUB, QDADD, QDSUB */
10095 record_buf[0] = ARM_PS_REGNUM;
10096 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10097 arm_insn_r->reg_rec_count = 2;
10098 }
10099 else if (7 == bits (arm_insn_r->arm_insn, 4, 7))
10100 {
10101 /* BKPT. */
10102 record_buf[0] = ARM_PS_REGNUM;
10103 record_buf[1] = ARM_LR_REGNUM;
10104 arm_insn_r->reg_rec_count = 2;
10105
10106 /* Save SPSR also;how? */
10107 return -1;
10108 }
10109 else if(8 == bits (arm_insn_r->arm_insn, 4, 7)
10110 || 10 == bits (arm_insn_r->arm_insn, 4, 7)
10111 || 12 == bits (arm_insn_r->arm_insn, 4, 7)
10112 || 14 == bits (arm_insn_r->arm_insn, 4, 7)
10113 )
10114 {
10115 if (0 == insn_op1 || 1 == insn_op1)
10116 {
10117 /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */
10118 /* We dont do optimization for SMULW<y> where we
10119 need only Rd. */
10120 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10121 record_buf[1] = ARM_PS_REGNUM;
10122 arm_insn_r->reg_rec_count = 2;
10123 }
10124 else if (2 == insn_op1)
10125 {
10126 /* SMLAL<x><y>. */
10127 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10128 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
10129 arm_insn_r->reg_rec_count = 2;
10130 }
10131 else if (3 == insn_op1)
10132 {
10133 /* SMUL<x><y>. */
10134 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10135 arm_insn_r->reg_rec_count = 1;
10136 }
10137 }
10138 }
10139 else
10140 {
10141 /* MSR : immediate form. */
10142 if (1 == insn_op1)
10143 {
10144 /* CSPR is going to be changed. */
10145 record_buf[0] = ARM_PS_REGNUM;
10146 arm_insn_r->reg_rec_count = 1;
10147 }
10148 else if (3 == insn_op1)
10149 {
10150 /* SPSR is going to be changed. */
10151 /* we need to get SPSR value, which is yet to be done */
10152 return -1;
10153 }
10154 }
10155 }
10156
10157 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10158 opcode2 = bits (arm_insn_r->arm_insn, 20, 24);
10159 insn_op1 = bits (arm_insn_r->arm_insn, 5, 6);
10160
10161 /* Handle load/store insn extension space. */
10162
10163 if (!opcode1 && bit (arm_insn_r->arm_insn, 7)
10164 && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond
10165 && !INSN_RECORDED(arm_insn_r))
10166 {
10167 /* SWP/SWPB. */
10168 if (0 == insn_op1)
10169 {
10170 /* These insn, changes register and memory as well. */
10171 /* SWP or SWPB insn. */
10172 /* Get memory address given by Rn. */
10173 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10174 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
10175 /* SWP insn ?, swaps word. */
10176 if (8 == arm_insn_r->opcode)
10177 {
10178 record_buf_mem[0] = 4;
10179 }
10180 else
10181 {
10182 /* SWPB insn, swaps only byte. */
10183 record_buf_mem[0] = 1;
10184 }
10185 record_buf_mem[1] = u_regval;
10186 arm_insn_r->mem_rec_count = 1;
10187 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10188 arm_insn_r->reg_rec_count = 1;
10189 }
10190 else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10191 {
10192 /* STRH. */
10193 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10194 ARM_RECORD_STRH);
10195 }
10196 else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10197 {
10198 /* LDRD. */
10199 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10200 record_buf[1] = record_buf[0] + 1;
10201 arm_insn_r->reg_rec_count = 2;
10202 }
10203 else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10204 {
10205 /* STRD. */
10206 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10207 ARM_RECORD_STRD);
10208 }
10209 else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3)
10210 {
10211 /* LDRH, LDRSB, LDRSH. */
10212 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10213 arm_insn_r->reg_rec_count = 1;
10214 }
10215
10216 }
10217
10218 opcode1 = bits (arm_insn_r->arm_insn, 23, 27);
10219 if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21)
10220 && !INSN_RECORDED(arm_insn_r))
10221 {
10222 ret = -1;
10223 /* Handle coprocessor insn extension space. */
10224 }
10225
10226 /* To be done for ARMv5 and later; as of now we return -1. */
10227 if (-1 == ret)
10228 return ret;
10229
10230 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10231 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10232
10233 return ret;
10234 }
10235
10236 /* Handling opcode 000 insns. */
10237
10238 static int
10239 arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r)
10240 {
10241 struct regcache *reg_cache = arm_insn_r->regcache;
10242 uint32_t record_buf[8], record_buf_mem[8];
10243 ULONGEST u_regval[2] = {0};
10244
10245 uint32_t reg_src1 = 0, reg_dest = 0;
10246 uint32_t opcode1 = 0;
10247
10248 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10249 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10250 opcode1 = bits (arm_insn_r->arm_insn, 20, 24);
10251
10252 /* Data processing insn /multiply insn. */
10253 if (9 == arm_insn_r->decode
10254 && ((4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10255 || (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)))
10256 {
10257 /* Handle multiply instructions. */
10258 /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */
10259 if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)
10260 {
10261 /* Handle MLA and MUL. */
10262 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10263 record_buf[1] = ARM_PS_REGNUM;
10264 arm_insn_r->reg_rec_count = 2;
10265 }
10266 else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10267 {
10268 /* Handle SMLAL, SMULL, UMLAL, UMULL. */
10269 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10270 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10271 record_buf[2] = ARM_PS_REGNUM;
10272 arm_insn_r->reg_rec_count = 3;
10273 }
10274 }
10275 else if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10276 && (11 == arm_insn_r->decode || 13 == arm_insn_r->decode))
10277 {
10278 /* Handle misc load insns, as 20th bit (L = 1). */
10279 /* LDR insn has a capability to do branching, if
10280 MOV LR, PC is precceded by LDR insn having Rn as R15
10281 in that case, it emulates branch and link insn, and hence we
10282 need to save CSPR and PC as well. I am not sure this is right
10283 place; as opcode = 010 LDR insn make this happen, if R15 was
10284 used. */
10285 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10286 if (15 != reg_dest)
10287 {
10288 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10289 arm_insn_r->reg_rec_count = 1;
10290 }
10291 else
10292 {
10293 record_buf[0] = reg_dest;
10294 record_buf[1] = ARM_PS_REGNUM;
10295 arm_insn_r->reg_rec_count = 2;
10296 }
10297 }
10298 else if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10299 && sbo_sbz (arm_insn_r->arm_insn, 5, 12, 0)
10300 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10301 && 2 == bits (arm_insn_r->arm_insn, 20, 21))
10302 {
10303 /* Handle MSR insn. */
10304 if (9 == arm_insn_r->opcode)
10305 {
10306 /* CSPR is going to be changed. */
10307 record_buf[0] = ARM_PS_REGNUM;
10308 arm_insn_r->reg_rec_count = 1;
10309 }
10310 else
10311 {
10312 /* SPSR is going to be changed. */
10313 /* How to read SPSR value? */
10314 return -1;
10315 }
10316 }
10317 else if (9 == arm_insn_r->decode
10318 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10319 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10320 {
10321 /* Handling SWP, SWPB. */
10322 /* These insn, changes register and memory as well. */
10323 /* SWP or SWPB insn. */
10324
10325 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10326 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10327 /* SWP insn ?, swaps word. */
10328 if (8 == arm_insn_r->opcode)
10329 {
10330 record_buf_mem[0] = 4;
10331 }
10332 else
10333 {
10334 /* SWPB insn, swaps only byte. */
10335 record_buf_mem[0] = 1;
10336 }
10337 record_buf_mem[1] = u_regval[0];
10338 arm_insn_r->mem_rec_count = 1;
10339 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10340 arm_insn_r->reg_rec_count = 1;
10341 }
10342 else if (3 == arm_insn_r->decode && 0x12 == opcode1
10343 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10344 {
10345 /* Handle BLX, branch and link/exchange. */
10346 if (9 == arm_insn_r->opcode)
10347 {
10348 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm,
10349 and R14 stores the return address. */
10350 record_buf[0] = ARM_PS_REGNUM;
10351 record_buf[1] = ARM_LR_REGNUM;
10352 arm_insn_r->reg_rec_count = 2;
10353 }
10354 }
10355 else if (7 == arm_insn_r->decode && 0x12 == opcode1)
10356 {
10357 /* Handle enhanced software breakpoint insn, BKPT. */
10358 /* CPSR is changed to be executed in ARM state, disabling normal
10359 interrupts, entering abort mode. */
10360 /* According to high vector configuration PC is set. */
10361 /* user hit breakpoint and type reverse, in
10362 that case, we need to go back with previous CPSR and
10363 Program Counter. */
10364 record_buf[0] = ARM_PS_REGNUM;
10365 record_buf[1] = ARM_LR_REGNUM;
10366 arm_insn_r->reg_rec_count = 2;
10367
10368 /* Save SPSR also; how? */
10369 return -1;
10370 }
10371 else if (11 == arm_insn_r->decode
10372 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10373 {
10374 /* Handle enhanced store insns and DSP insns (e.g. LDRD). */
10375
10376 /* Handle str(x) insn */
10377 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10378 ARM_RECORD_STRH);
10379 }
10380 else if (1 == arm_insn_r->decode && 0x12 == opcode1
10381 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10382 {
10383 /* Handle BX, branch and link/exchange. */
10384 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */
10385 record_buf[0] = ARM_PS_REGNUM;
10386 arm_insn_r->reg_rec_count = 1;
10387 }
10388 else if (1 == arm_insn_r->decode && 0x16 == opcode1
10389 && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1)
10390 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1))
10391 {
10392 /* Count leading zeros: CLZ. */
10393 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10394 arm_insn_r->reg_rec_count = 1;
10395 }
10396 else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10397 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10398 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)
10399 && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0)
10400 )
10401 {
10402 /* Handle MRS insn. */
10403 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10404 arm_insn_r->reg_rec_count = 1;
10405 }
10406 else if (arm_insn_r->opcode <= 15)
10407 {
10408 /* Normal data processing insns. */
10409 /* Out of 11 shifter operands mode, all the insn modifies destination
10410 register, which is specified by 13-16 decode. */
10411 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10412 record_buf[1] = ARM_PS_REGNUM;
10413 arm_insn_r->reg_rec_count = 2;
10414 }
10415 else
10416 {
10417 return -1;
10418 }
10419
10420 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10421 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10422 return 0;
10423 }
10424
10425 /* Handling opcode 001 insns. */
10426
10427 static int
10428 arm_record_data_proc_imm (insn_decode_record *arm_insn_r)
10429 {
10430 uint32_t record_buf[8], record_buf_mem[8];
10431
10432 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10433 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10434
10435 if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10436 && 2 == bits (arm_insn_r->arm_insn, 20, 21)
10437 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10438 )
10439 {
10440 /* Handle MSR insn. */
10441 if (9 == arm_insn_r->opcode)
10442 {
10443 /* CSPR is going to be changed. */
10444 record_buf[0] = ARM_PS_REGNUM;
10445 arm_insn_r->reg_rec_count = 1;
10446 }
10447 else
10448 {
10449 /* SPSR is going to be changed. */
10450 }
10451 }
10452 else if (arm_insn_r->opcode <= 15)
10453 {
10454 /* Normal data processing insns. */
10455 /* Out of 11 shifter operands mode, all the insn modifies destination
10456 register, which is specified by 13-16 decode. */
10457 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10458 record_buf[1] = ARM_PS_REGNUM;
10459 arm_insn_r->reg_rec_count = 2;
10460 }
10461 else
10462 {
10463 return -1;
10464 }
10465
10466 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10467 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10468 return 0;
10469 }
10470
10471 static int
10472 arm_record_media (insn_decode_record *arm_insn_r)
10473 {
10474 uint32_t record_buf[8];
10475
10476 switch (bits (arm_insn_r->arm_insn, 22, 24))
10477 {
10478 case 0:
10479 /* Parallel addition and subtraction, signed */
10480 case 1:
10481 /* Parallel addition and subtraction, unsigned */
10482 case 2:
10483 case 3:
10484 /* Packing, unpacking, saturation and reversal */
10485 {
10486 int rd = bits (arm_insn_r->arm_insn, 12, 15);
10487
10488 record_buf[arm_insn_r->reg_rec_count++] = rd;
10489 }
10490 break;
10491
10492 case 4:
10493 case 5:
10494 /* Signed multiplies */
10495 {
10496 int rd = bits (arm_insn_r->arm_insn, 16, 19);
10497 unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 22);
10498
10499 record_buf[arm_insn_r->reg_rec_count++] = rd;
10500 if (op1 == 0x0)
10501 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10502 else if (op1 == 0x4)
10503 record_buf[arm_insn_r->reg_rec_count++]
10504 = bits (arm_insn_r->arm_insn, 12, 15);
10505 }
10506 break;
10507
10508 case 6:
10509 {
10510 if (bit (arm_insn_r->arm_insn, 21)
10511 && bits (arm_insn_r->arm_insn, 5, 6) == 0x2)
10512 {
10513 /* SBFX */
10514 record_buf[arm_insn_r->reg_rec_count++]
10515 = bits (arm_insn_r->arm_insn, 12, 15);
10516 }
10517 else if (bits (arm_insn_r->arm_insn, 20, 21) == 0x0
10518 && bits (arm_insn_r->arm_insn, 5, 7) == 0x0)
10519 {
10520 /* USAD8 and USADA8 */
10521 record_buf[arm_insn_r->reg_rec_count++]
10522 = bits (arm_insn_r->arm_insn, 16, 19);
10523 }
10524 }
10525 break;
10526
10527 case 7:
10528 {
10529 if (bits (arm_insn_r->arm_insn, 20, 21) == 0x3
10530 && bits (arm_insn_r->arm_insn, 5, 7) == 0x7)
10531 {
10532 /* Permanently UNDEFINED */
10533 return -1;
10534 }
10535 else
10536 {
10537 /* BFC, BFI and UBFX */
10538 record_buf[arm_insn_r->reg_rec_count++]
10539 = bits (arm_insn_r->arm_insn, 12, 15);
10540 }
10541 }
10542 break;
10543
10544 default:
10545 return -1;
10546 }
10547
10548 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10549
10550 return 0;
10551 }
10552
10553 /* Handle ARM mode instructions with opcode 010. */
10554
10555 static int
10556 arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r)
10557 {
10558 struct regcache *reg_cache = arm_insn_r->regcache;
10559
10560 uint32_t reg_base , reg_dest;
10561 uint32_t offset_12, tgt_mem_addr;
10562 uint32_t record_buf[8], record_buf_mem[8];
10563 unsigned char wback;
10564 ULONGEST u_regval;
10565
10566 /* Calculate wback. */
10567 wback = (bit (arm_insn_r->arm_insn, 24) == 0)
10568 || (bit (arm_insn_r->arm_insn, 21) == 1);
10569
10570 arm_insn_r->reg_rec_count = 0;
10571 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
10572
10573 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10574 {
10575 /* LDR (immediate), LDR (literal), LDRB (immediate), LDRB (literal), LDRBT
10576 and LDRT. */
10577
10578 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10579 record_buf[arm_insn_r->reg_rec_count++] = reg_dest;
10580
10581 /* The LDR instruction is capable of doing branching. If MOV LR, PC
10582 preceeds a LDR instruction having R15 as reg_base, it
10583 emulates a branch and link instruction, and hence we need to save
10584 CPSR and PC as well. */
10585 if (ARM_PC_REGNUM == reg_dest)
10586 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10587
10588 /* If wback is true, also save the base register, which is going to be
10589 written to. */
10590 if (wback)
10591 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10592 }
10593 else
10594 {
10595 /* STR (immediate), STRB (immediate), STRBT and STRT. */
10596
10597 offset_12 = bits (arm_insn_r->arm_insn, 0, 11);
10598 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10599
10600 /* Handle bit U. */
10601 if (bit (arm_insn_r->arm_insn, 23))
10602 {
10603 /* U == 1: Add the offset. */
10604 tgt_mem_addr = (uint32_t) u_regval + offset_12;
10605 }
10606 else
10607 {
10608 /* U == 0: subtract the offset. */
10609 tgt_mem_addr = (uint32_t) u_regval - offset_12;
10610 }
10611
10612 /* Bit 22 tells us whether the store instruction writes 1 byte or 4
10613 bytes. */
10614 if (bit (arm_insn_r->arm_insn, 22))
10615 {
10616 /* STRB and STRBT: 1 byte. */
10617 record_buf_mem[0] = 1;
10618 }
10619 else
10620 {
10621 /* STR and STRT: 4 bytes. */
10622 record_buf_mem[0] = 4;
10623 }
10624
10625 /* Handle bit P. */
10626 if (bit (arm_insn_r->arm_insn, 24))
10627 record_buf_mem[1] = tgt_mem_addr;
10628 else
10629 record_buf_mem[1] = (uint32_t) u_regval;
10630
10631 arm_insn_r->mem_rec_count = 1;
10632
10633 /* If wback is true, also save the base register, which is going to be
10634 written to. */
10635 if (wback)
10636 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10637 }
10638
10639 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10640 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10641 return 0;
10642 }
10643
10644 /* Handling opcode 011 insns. */
10645
10646 static int
10647 arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r)
10648 {
10649 struct regcache *reg_cache = arm_insn_r->regcache;
10650
10651 uint32_t shift_imm = 0;
10652 uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0;
10653 uint32_t offset_12 = 0, tgt_mem_addr = 0;
10654 uint32_t record_buf[8], record_buf_mem[8];
10655
10656 LONGEST s_word;
10657 ULONGEST u_regval[2];
10658
10659 if (bit (arm_insn_r->arm_insn, 4))
10660 return arm_record_media (arm_insn_r);
10661
10662 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10663 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10664
10665 /* Handle enhanced store insns and LDRD DSP insn,
10666 order begins according to addressing modes for store insns
10667 STRH insn. */
10668
10669 /* LDR or STR? */
10670 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10671 {
10672 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10673 /* LDR insn has a capability to do branching, if
10674 MOV LR, PC is precedded by LDR insn having Rn as R15
10675 in that case, it emulates branch and link insn, and hence we
10676 need to save CSPR and PC as well. */
10677 if (15 != reg_dest)
10678 {
10679 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10680 arm_insn_r->reg_rec_count = 1;
10681 }
10682 else
10683 {
10684 record_buf[0] = reg_dest;
10685 record_buf[1] = ARM_PS_REGNUM;
10686 arm_insn_r->reg_rec_count = 2;
10687 }
10688 }
10689 else
10690 {
10691 if (! bits (arm_insn_r->arm_insn, 4, 11))
10692 {
10693 /* Store insn, register offset and register pre-indexed,
10694 register post-indexed. */
10695 /* Get Rm. */
10696 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10697 /* Get Rn. */
10698 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10699 regcache_raw_read_unsigned (reg_cache, reg_src1
10700 , &u_regval[0]);
10701 regcache_raw_read_unsigned (reg_cache, reg_src2
10702 , &u_regval[1]);
10703 if (15 == reg_src2)
10704 {
10705 /* If R15 was used as Rn, hence current PC+8. */
10706 /* Pre-indexed mode doesnt reach here ; illegal insn. */
10707 u_regval[0] = u_regval[0] + 8;
10708 }
10709 /* Calculate target store address, Rn +/- Rm, register offset. */
10710 /* U == 1. */
10711 if (bit (arm_insn_r->arm_insn, 23))
10712 {
10713 tgt_mem_addr = u_regval[0] + u_regval[1];
10714 }
10715 else
10716 {
10717 tgt_mem_addr = u_regval[1] - u_regval[0];
10718 }
10719
10720 switch (arm_insn_r->opcode)
10721 {
10722 /* STR. */
10723 case 8:
10724 case 12:
10725 /* STR. */
10726 case 9:
10727 case 13:
10728 /* STRT. */
10729 case 1:
10730 case 5:
10731 /* STR. */
10732 case 0:
10733 case 4:
10734 record_buf_mem[0] = 4;
10735 break;
10736
10737 /* STRB. */
10738 case 10:
10739 case 14:
10740 /* STRB. */
10741 case 11:
10742 case 15:
10743 /* STRBT. */
10744 case 3:
10745 case 7:
10746 /* STRB. */
10747 case 2:
10748 case 6:
10749 record_buf_mem[0] = 1;
10750 break;
10751
10752 default:
10753 gdb_assert_not_reached ("no decoding pattern found");
10754 break;
10755 }
10756 record_buf_mem[1] = tgt_mem_addr;
10757 arm_insn_r->mem_rec_count = 1;
10758
10759 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10760 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10761 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10762 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10763 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10764 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10765 )
10766 {
10767 /* Rn is going to be changed in pre-indexed mode and
10768 post-indexed mode as well. */
10769 record_buf[0] = reg_src2;
10770 arm_insn_r->reg_rec_count = 1;
10771 }
10772 }
10773 else
10774 {
10775 /* Store insn, scaled register offset; scaled pre-indexed. */
10776 offset_12 = bits (arm_insn_r->arm_insn, 5, 6);
10777 /* Get Rm. */
10778 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10779 /* Get Rn. */
10780 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10781 /* Get shift_imm. */
10782 shift_imm = bits (arm_insn_r->arm_insn, 7, 11);
10783 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10784 regcache_raw_read_signed (reg_cache, reg_src1, &s_word);
10785 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10786 /* Offset_12 used as shift. */
10787 switch (offset_12)
10788 {
10789 case 0:
10790 /* Offset_12 used as index. */
10791 offset_12 = u_regval[0] << shift_imm;
10792 break;
10793
10794 case 1:
10795 offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm;
10796 break;
10797
10798 case 2:
10799 if (!shift_imm)
10800 {
10801 if (bit (u_regval[0], 31))
10802 {
10803 offset_12 = 0xFFFFFFFF;
10804 }
10805 else
10806 {
10807 offset_12 = 0;
10808 }
10809 }
10810 else
10811 {
10812 /* This is arithmetic shift. */
10813 offset_12 = s_word >> shift_imm;
10814 }
10815 break;
10816
10817 case 3:
10818 if (!shift_imm)
10819 {
10820 regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM,
10821 &u_regval[1]);
10822 /* Get C flag value and shift it by 31. */
10823 offset_12 = (((bit (u_regval[1], 29)) << 31) \
10824 | (u_regval[0]) >> 1);
10825 }
10826 else
10827 {
10828 offset_12 = (u_regval[0] >> shift_imm) \
10829 | (u_regval[0] <<
10830 (sizeof(uint32_t) - shift_imm));
10831 }
10832 break;
10833
10834 default:
10835 gdb_assert_not_reached ("no decoding pattern found");
10836 break;
10837 }
10838
10839 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10840 /* bit U set. */
10841 if (bit (arm_insn_r->arm_insn, 23))
10842 {
10843 tgt_mem_addr = u_regval[1] + offset_12;
10844 }
10845 else
10846 {
10847 tgt_mem_addr = u_regval[1] - offset_12;
10848 }
10849
10850 switch (arm_insn_r->opcode)
10851 {
10852 /* STR. */
10853 case 8:
10854 case 12:
10855 /* STR. */
10856 case 9:
10857 case 13:
10858 /* STRT. */
10859 case 1:
10860 case 5:
10861 /* STR. */
10862 case 0:
10863 case 4:
10864 record_buf_mem[0] = 4;
10865 break;
10866
10867 /* STRB. */
10868 case 10:
10869 case 14:
10870 /* STRB. */
10871 case 11:
10872 case 15:
10873 /* STRBT. */
10874 case 3:
10875 case 7:
10876 /* STRB. */
10877 case 2:
10878 case 6:
10879 record_buf_mem[0] = 1;
10880 break;
10881
10882 default:
10883 gdb_assert_not_reached ("no decoding pattern found");
10884 break;
10885 }
10886 record_buf_mem[1] = tgt_mem_addr;
10887 arm_insn_r->mem_rec_count = 1;
10888
10889 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10890 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10891 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10892 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10893 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10894 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10895 )
10896 {
10897 /* Rn is going to be changed in register scaled pre-indexed
10898 mode,and scaled post indexed mode. */
10899 record_buf[0] = reg_src2;
10900 arm_insn_r->reg_rec_count = 1;
10901 }
10902 }
10903 }
10904
10905 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10906 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10907 return 0;
10908 }
10909
10910 /* Handle ARM mode instructions with opcode 100. */
10911
10912 static int
10913 arm_record_ld_st_multiple (insn_decode_record *arm_insn_r)
10914 {
10915 struct regcache *reg_cache = arm_insn_r->regcache;
10916 uint32_t register_count = 0, register_bits;
10917 uint32_t reg_base, addr_mode;
10918 uint32_t record_buf[24], record_buf_mem[48];
10919 uint32_t wback;
10920 ULONGEST u_regval;
10921
10922 /* Fetch the list of registers. */
10923 register_bits = bits (arm_insn_r->arm_insn, 0, 15);
10924 arm_insn_r->reg_rec_count = 0;
10925
10926 /* Fetch the base register that contains the address we are loading data
10927 to. */
10928 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
10929
10930 /* Calculate wback. */
10931 wback = (bit (arm_insn_r->arm_insn, 21) == 1);
10932
10933 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10934 {
10935 /* LDM/LDMIA/LDMFD, LDMDA/LDMFA, LDMDB and LDMIB. */
10936
10937 /* Find out which registers are going to be loaded from memory. */
10938 while (register_bits)
10939 {
10940 if (register_bits & 0x00000001)
10941 record_buf[arm_insn_r->reg_rec_count++] = register_count;
10942 register_bits = register_bits >> 1;
10943 register_count++;
10944 }
10945
10946
10947 /* If wback is true, also save the base register, which is going to be
10948 written to. */
10949 if (wback)
10950 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10951
10952 /* Save the CPSR register. */
10953 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10954 }
10955 else
10956 {
10957 /* STM (STMIA, STMEA), STMDA (STMED), STMDB (STMFD) and STMIB (STMFA). */
10958
10959 addr_mode = bits (arm_insn_r->arm_insn, 23, 24);
10960
10961 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10962
10963 /* Find out how many registers are going to be stored to memory. */
10964 while (register_bits)
10965 {
10966 if (register_bits & 0x00000001)
10967 register_count++;
10968 register_bits = register_bits >> 1;
10969 }
10970
10971 switch (addr_mode)
10972 {
10973 /* STMDA (STMED): Decrement after. */
10974 case 0:
10975 record_buf_mem[1] = (uint32_t) u_regval
10976 - register_count * INT_REGISTER_SIZE + 4;
10977 break;
10978 /* STM (STMIA, STMEA): Increment after. */
10979 case 1:
10980 record_buf_mem[1] = (uint32_t) u_regval;
10981 break;
10982 /* STMDB (STMFD): Decrement before. */
10983 case 2:
10984 record_buf_mem[1] = (uint32_t) u_regval
10985 - register_count * INT_REGISTER_SIZE;
10986 break;
10987 /* STMIB (STMFA): Increment before. */
10988 case 3:
10989 record_buf_mem[1] = (uint32_t) u_regval + INT_REGISTER_SIZE;
10990 break;
10991 default:
10992 gdb_assert_not_reached ("no decoding pattern found");
10993 break;
10994 }
10995
10996 record_buf_mem[0] = register_count * INT_REGISTER_SIZE;
10997 arm_insn_r->mem_rec_count = 1;
10998
10999 /* If wback is true, also save the base register, which is going to be
11000 written to. */
11001 if (wback)
11002 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
11003 }
11004
11005 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11006 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11007 return 0;
11008 }
11009
11010 /* Handling opcode 101 insns. */
11011
11012 static int
11013 arm_record_b_bl (insn_decode_record *arm_insn_r)
11014 {
11015 uint32_t record_buf[8];
11016
11017 /* Handle B, BL, BLX(1) insns. */
11018 /* B simply branches so we do nothing here. */
11019 /* Note: BLX(1) doesnt fall here but instead it falls into
11020 extension space. */
11021 if (bit (arm_insn_r->arm_insn, 24))
11022 {
11023 record_buf[0] = ARM_LR_REGNUM;
11024 arm_insn_r->reg_rec_count = 1;
11025 }
11026
11027 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11028
11029 return 0;
11030 }
11031
11032 static int
11033 arm_record_unsupported_insn (insn_decode_record *arm_insn_r)
11034 {
11035 printf_unfiltered (_("Process record does not support instruction "
11036 "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
11037 paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
11038
11039 return -1;
11040 }
11041
11042 /* Record handler for vector data transfer instructions. */
11043
11044 static int
11045 arm_record_vdata_transfer_insn (insn_decode_record *arm_insn_r)
11046 {
11047 uint32_t bits_a, bit_c, bit_l, reg_t, reg_v;
11048 uint32_t record_buf[4];
11049
11050 reg_t = bits (arm_insn_r->arm_insn, 12, 15);
11051 reg_v = bits (arm_insn_r->arm_insn, 21, 23);
11052 bits_a = bits (arm_insn_r->arm_insn, 21, 23);
11053 bit_l = bit (arm_insn_r->arm_insn, 20);
11054 bit_c = bit (arm_insn_r->arm_insn, 8);
11055
11056 /* Handle VMOV instruction. */
11057 if (bit_l && bit_c)
11058 {
11059 record_buf[0] = reg_t;
11060 arm_insn_r->reg_rec_count = 1;
11061 }
11062 else if (bit_l && !bit_c)
11063 {
11064 /* Handle VMOV instruction. */
11065 if (bits_a == 0x00)
11066 {
11067 record_buf[0] = reg_t;
11068 arm_insn_r->reg_rec_count = 1;
11069 }
11070 /* Handle VMRS instruction. */
11071 else if (bits_a == 0x07)
11072 {
11073 if (reg_t == 15)
11074 reg_t = ARM_PS_REGNUM;
11075
11076 record_buf[0] = reg_t;
11077 arm_insn_r->reg_rec_count = 1;
11078 }
11079 }
11080 else if (!bit_l && !bit_c)
11081 {
11082 /* Handle VMOV instruction. */
11083 if (bits_a == 0x00)
11084 {
11085 record_buf[0] = ARM_D0_REGNUM + reg_v;
11086
11087 arm_insn_r->reg_rec_count = 1;
11088 }
11089 /* Handle VMSR instruction. */
11090 else if (bits_a == 0x07)
11091 {
11092 record_buf[0] = ARM_FPSCR_REGNUM;
11093 arm_insn_r->reg_rec_count = 1;
11094 }
11095 }
11096 else if (!bit_l && bit_c)
11097 {
11098 /* Handle VMOV instruction. */
11099 if (!(bits_a & 0x04))
11100 {
11101 record_buf[0] = (reg_v | (bit (arm_insn_r->arm_insn, 7) << 4))
11102 + ARM_D0_REGNUM;
11103 arm_insn_r->reg_rec_count = 1;
11104 }
11105 /* Handle VDUP instruction. */
11106 else
11107 {
11108 if (bit (arm_insn_r->arm_insn, 21))
11109 {
11110 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11111 record_buf[0] = reg_v + ARM_D0_REGNUM;
11112 record_buf[1] = reg_v + ARM_D0_REGNUM + 1;
11113 arm_insn_r->reg_rec_count = 2;
11114 }
11115 else
11116 {
11117 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11118 record_buf[0] = reg_v + ARM_D0_REGNUM;
11119 arm_insn_r->reg_rec_count = 1;
11120 }
11121 }
11122 }
11123
11124 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11125 return 0;
11126 }
11127
11128 /* Record handler for extension register load/store instructions. */
11129
11130 static int
11131 arm_record_exreg_ld_st_insn (insn_decode_record *arm_insn_r)
11132 {
11133 uint32_t opcode, single_reg;
11134 uint8_t op_vldm_vstm;
11135 uint32_t record_buf[8], record_buf_mem[128];
11136 ULONGEST u_regval = 0;
11137
11138 struct regcache *reg_cache = arm_insn_r->regcache;
11139
11140 opcode = bits (arm_insn_r->arm_insn, 20, 24);
11141 single_reg = !bit (arm_insn_r->arm_insn, 8);
11142 op_vldm_vstm = opcode & 0x1b;
11143
11144 /* Handle VMOV instructions. */
11145 if ((opcode & 0x1e) == 0x04)
11146 {
11147 if (bit (arm_insn_r->arm_insn, 20)) /* to_arm_registers bit 20? */
11148 {
11149 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11150 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
11151 arm_insn_r->reg_rec_count = 2;
11152 }
11153 else
11154 {
11155 uint8_t reg_m = bits (arm_insn_r->arm_insn, 0, 3);
11156 uint8_t bit_m = bit (arm_insn_r->arm_insn, 5);
11157
11158 if (single_reg)
11159 {
11160 /* The first S register number m is REG_M:M (M is bit 5),
11161 the corresponding D register number is REG_M:M / 2, which
11162 is REG_M. */
11163 record_buf[arm_insn_r->reg_rec_count++] = ARM_D0_REGNUM + reg_m;
11164 /* The second S register number is REG_M:M + 1, the
11165 corresponding D register number is (REG_M:M + 1) / 2.
11166 IOW, if bit M is 1, the first and second S registers
11167 are mapped to different D registers, otherwise, they are
11168 in the same D register. */
11169 if (bit_m)
11170 {
11171 record_buf[arm_insn_r->reg_rec_count++]
11172 = ARM_D0_REGNUM + reg_m + 1;
11173 }
11174 }
11175 else
11176 {
11177 record_buf[0] = ((bit_m << 4) + reg_m + ARM_D0_REGNUM);
11178 arm_insn_r->reg_rec_count = 1;
11179 }
11180 }
11181 }
11182 /* Handle VSTM and VPUSH instructions. */
11183 else if (op_vldm_vstm == 0x08 || op_vldm_vstm == 0x0a
11184 || op_vldm_vstm == 0x12)
11185 {
11186 uint32_t start_address, reg_rn, imm_off32, imm_off8, memory_count;
11187 uint32_t memory_index = 0;
11188
11189 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11190 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11191 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
11192 imm_off32 = imm_off8 << 2;
11193 memory_count = imm_off8;
11194
11195 if (bit (arm_insn_r->arm_insn, 23))
11196 start_address = u_regval;
11197 else
11198 start_address = u_regval - imm_off32;
11199
11200 if (bit (arm_insn_r->arm_insn, 21))
11201 {
11202 record_buf[0] = reg_rn;
11203 arm_insn_r->reg_rec_count = 1;
11204 }
11205
11206 while (memory_count > 0)
11207 {
11208 if (single_reg)
11209 {
11210 record_buf_mem[memory_index] = 4;
11211 record_buf_mem[memory_index + 1] = start_address;
11212 start_address = start_address + 4;
11213 memory_index = memory_index + 2;
11214 }
11215 else
11216 {
11217 record_buf_mem[memory_index] = 4;
11218 record_buf_mem[memory_index + 1] = start_address;
11219 record_buf_mem[memory_index + 2] = 4;
11220 record_buf_mem[memory_index + 3] = start_address + 4;
11221 start_address = start_address + 8;
11222 memory_index = memory_index + 4;
11223 }
11224 memory_count--;
11225 }
11226 arm_insn_r->mem_rec_count = (memory_index >> 1);
11227 }
11228 /* Handle VLDM instructions. */
11229 else if (op_vldm_vstm == 0x09 || op_vldm_vstm == 0x0b
11230 || op_vldm_vstm == 0x13)
11231 {
11232 uint32_t reg_count, reg_vd;
11233 uint32_t reg_index = 0;
11234 uint32_t bit_d = bit (arm_insn_r->arm_insn, 22);
11235
11236 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11237 reg_count = bits (arm_insn_r->arm_insn, 0, 7);
11238
11239 /* REG_VD is the first D register number. If the instruction
11240 loads memory to S registers (SINGLE_REG is TRUE), the register
11241 number is (REG_VD << 1 | bit D), so the corresponding D
11242 register number is (REG_VD << 1 | bit D) / 2 = REG_VD. */
11243 if (!single_reg)
11244 reg_vd = reg_vd | (bit_d << 4);
11245
11246 if (bit (arm_insn_r->arm_insn, 21) /* write back */)
11247 record_buf[reg_index++] = bits (arm_insn_r->arm_insn, 16, 19);
11248
11249 /* If the instruction loads memory to D register, REG_COUNT should
11250 be divided by 2, according to the ARM Architecture Reference
11251 Manual. If the instruction loads memory to S register, divide by
11252 2 as well because two S registers are mapped to D register. */
11253 reg_count = reg_count / 2;
11254 if (single_reg && bit_d)
11255 {
11256 /* Increase the register count if S register list starts from
11257 an odd number (bit d is one). */
11258 reg_count++;
11259 }
11260
11261 while (reg_count > 0)
11262 {
11263 record_buf[reg_index++] = ARM_D0_REGNUM + reg_vd + reg_count - 1;
11264 reg_count--;
11265 }
11266 arm_insn_r->reg_rec_count = reg_index;
11267 }
11268 /* VSTR Vector store register. */
11269 else if ((opcode & 0x13) == 0x10)
11270 {
11271 uint32_t start_address, reg_rn, imm_off32, imm_off8;
11272 uint32_t memory_index = 0;
11273
11274 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11275 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11276 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
11277 imm_off32 = imm_off8 << 2;
11278
11279 if (bit (arm_insn_r->arm_insn, 23))
11280 start_address = u_regval + imm_off32;
11281 else
11282 start_address = u_regval - imm_off32;
11283
11284 if (single_reg)
11285 {
11286 record_buf_mem[memory_index] = 4;
11287 record_buf_mem[memory_index + 1] = start_address;
11288 arm_insn_r->mem_rec_count = 1;
11289 }
11290 else
11291 {
11292 record_buf_mem[memory_index] = 4;
11293 record_buf_mem[memory_index + 1] = start_address;
11294 record_buf_mem[memory_index + 2] = 4;
11295 record_buf_mem[memory_index + 3] = start_address + 4;
11296 arm_insn_r->mem_rec_count = 2;
11297 }
11298 }
11299 /* VLDR Vector load register. */
11300 else if ((opcode & 0x13) == 0x11)
11301 {
11302 uint32_t reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11303
11304 if (!single_reg)
11305 {
11306 reg_vd = reg_vd | (bit (arm_insn_r->arm_insn, 22) << 4);
11307 record_buf[0] = ARM_D0_REGNUM + reg_vd;
11308 }
11309 else
11310 {
11311 reg_vd = (reg_vd << 1) | bit (arm_insn_r->arm_insn, 22);
11312 /* Record register D rather than pseudo register S. */
11313 record_buf[0] = ARM_D0_REGNUM + reg_vd / 2;
11314 }
11315 arm_insn_r->reg_rec_count = 1;
11316 }
11317
11318 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11319 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11320 return 0;
11321 }
11322
11323 /* Record handler for arm/thumb mode VFP data processing instructions. */
11324
11325 static int
11326 arm_record_vfp_data_proc_insn (insn_decode_record *arm_insn_r)
11327 {
11328 uint32_t opc1, opc2, opc3, dp_op_sz, bit_d, reg_vd;
11329 uint32_t record_buf[4];
11330 enum insn_types {INSN_T0, INSN_T1, INSN_T2, INSN_T3, INSN_INV};
11331 enum insn_types curr_insn_type = INSN_INV;
11332
11333 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11334 opc1 = bits (arm_insn_r->arm_insn, 20, 23);
11335 opc2 = bits (arm_insn_r->arm_insn, 16, 19);
11336 opc3 = bits (arm_insn_r->arm_insn, 6, 7);
11337 dp_op_sz = bit (arm_insn_r->arm_insn, 8);
11338 bit_d = bit (arm_insn_r->arm_insn, 22);
11339 opc1 = opc1 & 0x04;
11340
11341 /* Handle VMLA, VMLS. */
11342 if (opc1 == 0x00)
11343 {
11344 if (bit (arm_insn_r->arm_insn, 10))
11345 {
11346 if (bit (arm_insn_r->arm_insn, 6))
11347 curr_insn_type = INSN_T0;
11348 else
11349 curr_insn_type = INSN_T1;
11350 }
11351 else
11352 {
11353 if (dp_op_sz)
11354 curr_insn_type = INSN_T1;
11355 else
11356 curr_insn_type = INSN_T2;
11357 }
11358 }
11359 /* Handle VNMLA, VNMLS, VNMUL. */
11360 else if (opc1 == 0x01)
11361 {
11362 if (dp_op_sz)
11363 curr_insn_type = INSN_T1;
11364 else
11365 curr_insn_type = INSN_T2;
11366 }
11367 /* Handle VMUL. */
11368 else if (opc1 == 0x02 && !(opc3 & 0x01))
11369 {
11370 if (bit (arm_insn_r->arm_insn, 10))
11371 {
11372 if (bit (arm_insn_r->arm_insn, 6))
11373 curr_insn_type = INSN_T0;
11374 else
11375 curr_insn_type = INSN_T1;
11376 }
11377 else
11378 {
11379 if (dp_op_sz)
11380 curr_insn_type = INSN_T1;
11381 else
11382 curr_insn_type = INSN_T2;
11383 }
11384 }
11385 /* Handle VADD, VSUB. */
11386 else if (opc1 == 0x03)
11387 {
11388 if (!bit (arm_insn_r->arm_insn, 9))
11389 {
11390 if (bit (arm_insn_r->arm_insn, 6))
11391 curr_insn_type = INSN_T0;
11392 else
11393 curr_insn_type = INSN_T1;
11394 }
11395 else
11396 {
11397 if (dp_op_sz)
11398 curr_insn_type = INSN_T1;
11399 else
11400 curr_insn_type = INSN_T2;
11401 }
11402 }
11403 /* Handle VDIV. */
11404 else if (opc1 == 0x0b)
11405 {
11406 if (dp_op_sz)
11407 curr_insn_type = INSN_T1;
11408 else
11409 curr_insn_type = INSN_T2;
11410 }
11411 /* Handle all other vfp data processing instructions. */
11412 else if (opc1 == 0x0b)
11413 {
11414 /* Handle VMOV. */
11415 if (!(opc3 & 0x01) || (opc2 == 0x00 && opc3 == 0x01))
11416 {
11417 if (bit (arm_insn_r->arm_insn, 4))
11418 {
11419 if (bit (arm_insn_r->arm_insn, 6))
11420 curr_insn_type = INSN_T0;
11421 else
11422 curr_insn_type = INSN_T1;
11423 }
11424 else
11425 {
11426 if (dp_op_sz)
11427 curr_insn_type = INSN_T1;
11428 else
11429 curr_insn_type = INSN_T2;
11430 }
11431 }
11432 /* Handle VNEG and VABS. */
11433 else if ((opc2 == 0x01 && opc3 == 0x01)
11434 || (opc2 == 0x00 && opc3 == 0x03))
11435 {
11436 if (!bit (arm_insn_r->arm_insn, 11))
11437 {
11438 if (bit (arm_insn_r->arm_insn, 6))
11439 curr_insn_type = INSN_T0;
11440 else
11441 curr_insn_type = INSN_T1;
11442 }
11443 else
11444 {
11445 if (dp_op_sz)
11446 curr_insn_type = INSN_T1;
11447 else
11448 curr_insn_type = INSN_T2;
11449 }
11450 }
11451 /* Handle VSQRT. */
11452 else if (opc2 == 0x01 && opc3 == 0x03)
11453 {
11454 if (dp_op_sz)
11455 curr_insn_type = INSN_T1;
11456 else
11457 curr_insn_type = INSN_T2;
11458 }
11459 /* Handle VCVT. */
11460 else if (opc2 == 0x07 && opc3 == 0x03)
11461 {
11462 if (!dp_op_sz)
11463 curr_insn_type = INSN_T1;
11464 else
11465 curr_insn_type = INSN_T2;
11466 }
11467 else if (opc3 & 0x01)
11468 {
11469 /* Handle VCVT. */
11470 if ((opc2 == 0x08) || (opc2 & 0x0e) == 0x0c)
11471 {
11472 if (!bit (arm_insn_r->arm_insn, 18))
11473 curr_insn_type = INSN_T2;
11474 else
11475 {
11476 if (dp_op_sz)
11477 curr_insn_type = INSN_T1;
11478 else
11479 curr_insn_type = INSN_T2;
11480 }
11481 }
11482 /* Handle VCVT. */
11483 else if ((opc2 & 0x0e) == 0x0a || (opc2 & 0x0e) == 0x0e)
11484 {
11485 if (dp_op_sz)
11486 curr_insn_type = INSN_T1;
11487 else
11488 curr_insn_type = INSN_T2;
11489 }
11490 /* Handle VCVTB, VCVTT. */
11491 else if ((opc2 & 0x0e) == 0x02)
11492 curr_insn_type = INSN_T2;
11493 /* Handle VCMP, VCMPE. */
11494 else if ((opc2 & 0x0e) == 0x04)
11495 curr_insn_type = INSN_T3;
11496 }
11497 }
11498
11499 switch (curr_insn_type)
11500 {
11501 case INSN_T0:
11502 reg_vd = reg_vd | (bit_d << 4);
11503 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11504 record_buf[1] = reg_vd + ARM_D0_REGNUM + 1;
11505 arm_insn_r->reg_rec_count = 2;
11506 break;
11507
11508 case INSN_T1:
11509 reg_vd = reg_vd | (bit_d << 4);
11510 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11511 arm_insn_r->reg_rec_count = 1;
11512 break;
11513
11514 case INSN_T2:
11515 reg_vd = (reg_vd << 1) | bit_d;
11516 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11517 arm_insn_r->reg_rec_count = 1;
11518 break;
11519
11520 case INSN_T3:
11521 record_buf[0] = ARM_FPSCR_REGNUM;
11522 arm_insn_r->reg_rec_count = 1;
11523 break;
11524
11525 default:
11526 gdb_assert_not_reached ("no decoding pattern found");
11527 break;
11528 }
11529
11530 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11531 return 0;
11532 }
11533
11534 /* Handling opcode 110 insns. */
11535
11536 static int
11537 arm_record_asimd_vfp_coproc (insn_decode_record *arm_insn_r)
11538 {
11539 uint32_t op1, op1_ebit, coproc;
11540
11541 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11542 op1 = bits (arm_insn_r->arm_insn, 20, 25);
11543 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11544
11545 if ((coproc & 0x0e) == 0x0a)
11546 {
11547 /* Handle extension register ld/st instructions. */
11548 if (!(op1 & 0x20))
11549 return arm_record_exreg_ld_st_insn (arm_insn_r);
11550
11551 /* 64-bit transfers between arm core and extension registers. */
11552 if ((op1 & 0x3e) == 0x04)
11553 return arm_record_exreg_ld_st_insn (arm_insn_r);
11554 }
11555 else
11556 {
11557 /* Handle coprocessor ld/st instructions. */
11558 if (!(op1 & 0x3a))
11559 {
11560 /* Store. */
11561 if (!op1_ebit)
11562 return arm_record_unsupported_insn (arm_insn_r);
11563 else
11564 /* Load. */
11565 return arm_record_unsupported_insn (arm_insn_r);
11566 }
11567
11568 /* Move to coprocessor from two arm core registers. */
11569 if (op1 == 0x4)
11570 return arm_record_unsupported_insn (arm_insn_r);
11571
11572 /* Move to two arm core registers from coprocessor. */
11573 if (op1 == 0x5)
11574 {
11575 uint32_t reg_t[2];
11576
11577 reg_t[0] = bits (arm_insn_r->arm_insn, 12, 15);
11578 reg_t[1] = bits (arm_insn_r->arm_insn, 16, 19);
11579 arm_insn_r->reg_rec_count = 2;
11580
11581 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, reg_t);
11582 return 0;
11583 }
11584 }
11585 return arm_record_unsupported_insn (arm_insn_r);
11586 }
11587
11588 /* Handling opcode 111 insns. */
11589
11590 static int
11591 arm_record_coproc_data_proc (insn_decode_record *arm_insn_r)
11592 {
11593 uint32_t op, op1_sbit, op1_ebit, coproc;
11594 struct gdbarch_tdep *tdep = gdbarch_tdep (arm_insn_r->gdbarch);
11595 struct regcache *reg_cache = arm_insn_r->regcache;
11596
11597 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27);
11598 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11599 op1_sbit = bit (arm_insn_r->arm_insn, 24);
11600 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11601 op = bit (arm_insn_r->arm_insn, 4);
11602
11603 /* Handle arm SWI/SVC system call instructions. */
11604 if (op1_sbit)
11605 {
11606 if (tdep->arm_syscall_record != NULL)
11607 {
11608 ULONGEST svc_operand, svc_number;
11609
11610 svc_operand = (0x00ffffff & arm_insn_r->arm_insn);
11611
11612 if (svc_operand) /* OABI. */
11613 svc_number = svc_operand - 0x900000;
11614 else /* EABI. */
11615 regcache_raw_read_unsigned (reg_cache, 7, &svc_number);
11616
11617 return tdep->arm_syscall_record (reg_cache, svc_number);
11618 }
11619 else
11620 {
11621 printf_unfiltered (_("no syscall record support\n"));
11622 return -1;
11623 }
11624 }
11625
11626 if ((coproc & 0x0e) == 0x0a)
11627 {
11628 /* VFP data-processing instructions. */
11629 if (!op1_sbit && !op)
11630 return arm_record_vfp_data_proc_insn (arm_insn_r);
11631
11632 /* Advanced SIMD, VFP instructions. */
11633 if (!op1_sbit && op)
11634 return arm_record_vdata_transfer_insn (arm_insn_r);
11635 }
11636 else
11637 {
11638 /* Coprocessor data operations. */
11639 if (!op1_sbit && !op)
11640 return arm_record_unsupported_insn (arm_insn_r);
11641
11642 /* Move to Coprocessor from ARM core register. */
11643 if (!op1_sbit && !op1_ebit && op)
11644 return arm_record_unsupported_insn (arm_insn_r);
11645
11646 /* Move to arm core register from coprocessor. */
11647 if (!op1_sbit && op1_ebit && op)
11648 {
11649 uint32_t record_buf[1];
11650
11651 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11652 if (record_buf[0] == 15)
11653 record_buf[0] = ARM_PS_REGNUM;
11654
11655 arm_insn_r->reg_rec_count = 1;
11656 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count,
11657 record_buf);
11658 return 0;
11659 }
11660 }
11661
11662 return arm_record_unsupported_insn (arm_insn_r);
11663 }
11664
11665 /* Handling opcode 000 insns. */
11666
11667 static int
11668 thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r)
11669 {
11670 uint32_t record_buf[8];
11671 uint32_t reg_src1 = 0;
11672
11673 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11674
11675 record_buf[0] = ARM_PS_REGNUM;
11676 record_buf[1] = reg_src1;
11677 thumb_insn_r->reg_rec_count = 2;
11678
11679 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11680
11681 return 0;
11682 }
11683
11684
11685 /* Handling opcode 001 insns. */
11686
11687 static int
11688 thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r)
11689 {
11690 uint32_t record_buf[8];
11691 uint32_t reg_src1 = 0;
11692
11693 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11694
11695 record_buf[0] = ARM_PS_REGNUM;
11696 record_buf[1] = reg_src1;
11697 thumb_insn_r->reg_rec_count = 2;
11698
11699 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11700
11701 return 0;
11702 }
11703
11704 /* Handling opcode 010 insns. */
11705
11706 static int
11707 thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r)
11708 {
11709 struct regcache *reg_cache = thumb_insn_r->regcache;
11710 uint32_t record_buf[8], record_buf_mem[8];
11711
11712 uint32_t reg_src1 = 0, reg_src2 = 0;
11713 uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0;
11714
11715 ULONGEST u_regval[2] = {0};
11716
11717 opcode1 = bits (thumb_insn_r->arm_insn, 10, 12);
11718
11719 if (bit (thumb_insn_r->arm_insn, 12))
11720 {
11721 /* Handle load/store register offset. */
11722 opcode2 = bits (thumb_insn_r->arm_insn, 9, 10);
11723 if (opcode2 >= 12 && opcode2 <= 15)
11724 {
11725 /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */
11726 reg_src1 = bits (thumb_insn_r->arm_insn,0, 2);
11727 record_buf[0] = reg_src1;
11728 thumb_insn_r->reg_rec_count = 1;
11729 }
11730 else if (opcode2 >= 8 && opcode2 <= 10)
11731 {
11732 /* STR(2), STRB(2), STRH(2) . */
11733 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11734 reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8);
11735 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11736 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
11737 if (8 == opcode2)
11738 record_buf_mem[0] = 4; /* STR (2). */
11739 else if (10 == opcode2)
11740 record_buf_mem[0] = 1; /* STRB (2). */
11741 else if (9 == opcode2)
11742 record_buf_mem[0] = 2; /* STRH (2). */
11743 record_buf_mem[1] = u_regval[0] + u_regval[1];
11744 thumb_insn_r->mem_rec_count = 1;
11745 }
11746 }
11747 else if (bit (thumb_insn_r->arm_insn, 11))
11748 {
11749 /* Handle load from literal pool. */
11750 /* LDR(3). */
11751 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11752 record_buf[0] = reg_src1;
11753 thumb_insn_r->reg_rec_count = 1;
11754 }
11755 else if (opcode1)
11756 {
11757 opcode2 = bits (thumb_insn_r->arm_insn, 8, 9);
11758 opcode3 = bits (thumb_insn_r->arm_insn, 0, 2);
11759 if ((3 == opcode2) && (!opcode3))
11760 {
11761 /* Branch with exchange. */
11762 record_buf[0] = ARM_PS_REGNUM;
11763 thumb_insn_r->reg_rec_count = 1;
11764 }
11765 else
11766 {
11767 /* Format 8; special data processing insns. */
11768 record_buf[0] = ARM_PS_REGNUM;
11769 record_buf[1] = (bit (thumb_insn_r->arm_insn, 7) << 3
11770 | bits (thumb_insn_r->arm_insn, 0, 2));
11771 thumb_insn_r->reg_rec_count = 2;
11772 }
11773 }
11774 else
11775 {
11776 /* Format 5; data processing insns. */
11777 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11778 if (bit (thumb_insn_r->arm_insn, 7))
11779 {
11780 reg_src1 = reg_src1 + 8;
11781 }
11782 record_buf[0] = ARM_PS_REGNUM;
11783 record_buf[1] = reg_src1;
11784 thumb_insn_r->reg_rec_count = 2;
11785 }
11786
11787 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11788 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11789 record_buf_mem);
11790
11791 return 0;
11792 }
11793
11794 /* Handling opcode 001 insns. */
11795
11796 static int
11797 thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r)
11798 {
11799 struct regcache *reg_cache = thumb_insn_r->regcache;
11800 uint32_t record_buf[8], record_buf_mem[8];
11801
11802 uint32_t reg_src1 = 0;
11803 uint32_t opcode = 0, immed_5 = 0;
11804
11805 ULONGEST u_regval = 0;
11806
11807 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11808
11809 if (opcode)
11810 {
11811 /* LDR(1). */
11812 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11813 record_buf[0] = reg_src1;
11814 thumb_insn_r->reg_rec_count = 1;
11815 }
11816 else
11817 {
11818 /* STR(1). */
11819 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11820 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11821 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11822 record_buf_mem[0] = 4;
11823 record_buf_mem[1] = u_regval + (immed_5 * 4);
11824 thumb_insn_r->mem_rec_count = 1;
11825 }
11826
11827 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11828 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11829 record_buf_mem);
11830
11831 return 0;
11832 }
11833
11834 /* Handling opcode 100 insns. */
11835
11836 static int
11837 thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r)
11838 {
11839 struct regcache *reg_cache = thumb_insn_r->regcache;
11840 uint32_t record_buf[8], record_buf_mem[8];
11841
11842 uint32_t reg_src1 = 0;
11843 uint32_t opcode = 0, immed_8 = 0, immed_5 = 0;
11844
11845 ULONGEST u_regval = 0;
11846
11847 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11848
11849 if (3 == opcode)
11850 {
11851 /* LDR(4). */
11852 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11853 record_buf[0] = reg_src1;
11854 thumb_insn_r->reg_rec_count = 1;
11855 }
11856 else if (1 == opcode)
11857 {
11858 /* LDRH(1). */
11859 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11860 record_buf[0] = reg_src1;
11861 thumb_insn_r->reg_rec_count = 1;
11862 }
11863 else if (2 == opcode)
11864 {
11865 /* STR(3). */
11866 immed_8 = bits (thumb_insn_r->arm_insn, 0, 7);
11867 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11868 record_buf_mem[0] = 4;
11869 record_buf_mem[1] = u_regval + (immed_8 * 4);
11870 thumb_insn_r->mem_rec_count = 1;
11871 }
11872 else if (0 == opcode)
11873 {
11874 /* STRH(1). */
11875 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11876 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11877 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11878 record_buf_mem[0] = 2;
11879 record_buf_mem[1] = u_regval + (immed_5 * 2);
11880 thumb_insn_r->mem_rec_count = 1;
11881 }
11882
11883 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11884 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11885 record_buf_mem);
11886
11887 return 0;
11888 }
11889
11890 /* Handling opcode 101 insns. */
11891
11892 static int
11893 thumb_record_misc (insn_decode_record *thumb_insn_r)
11894 {
11895 struct regcache *reg_cache = thumb_insn_r->regcache;
11896
11897 uint32_t opcode = 0, opcode1 = 0, opcode2 = 0;
11898 uint32_t register_bits = 0, register_count = 0;
11899 uint32_t index = 0, start_address = 0;
11900 uint32_t record_buf[24], record_buf_mem[48];
11901 uint32_t reg_src1;
11902
11903 ULONGEST u_regval = 0;
11904
11905 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11906 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
11907 opcode2 = bits (thumb_insn_r->arm_insn, 9, 12);
11908
11909 if (14 == opcode2)
11910 {
11911 /* POP. */
11912 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
11913 while (register_bits)
11914 {
11915 if (register_bits & 0x00000001)
11916 record_buf[index++] = register_count;
11917 register_bits = register_bits >> 1;
11918 register_count++;
11919 }
11920 record_buf[index++] = ARM_PS_REGNUM;
11921 record_buf[index++] = ARM_SP_REGNUM;
11922 thumb_insn_r->reg_rec_count = index;
11923 }
11924 else if (10 == opcode2)
11925 {
11926 /* PUSH. */
11927 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
11928 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11929 while (register_bits)
11930 {
11931 if (register_bits & 0x00000001)
11932 register_count++;
11933 register_bits = register_bits >> 1;
11934 }
11935 start_address = u_regval - \
11936 (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count));
11937 thumb_insn_r->mem_rec_count = register_count;
11938 while (register_count)
11939 {
11940 record_buf_mem[(register_count * 2) - 1] = start_address;
11941 record_buf_mem[(register_count * 2) - 2] = 4;
11942 start_address = start_address + 4;
11943 register_count--;
11944 }
11945 record_buf[0] = ARM_SP_REGNUM;
11946 thumb_insn_r->reg_rec_count = 1;
11947 }
11948 else if (0x1E == opcode1)
11949 {
11950 /* BKPT insn. */
11951 /* Handle enhanced software breakpoint insn, BKPT. */
11952 /* CPSR is changed to be executed in ARM state, disabling normal
11953 interrupts, entering abort mode. */
11954 /* According to high vector configuration PC is set. */
11955 /* User hits breakpoint and type reverse, in that case, we need to go back with
11956 previous CPSR and Program Counter. */
11957 record_buf[0] = ARM_PS_REGNUM;
11958 record_buf[1] = ARM_LR_REGNUM;
11959 thumb_insn_r->reg_rec_count = 2;
11960 /* We need to save SPSR value, which is not yet done. */
11961 printf_unfiltered (_("Process record does not support instruction "
11962 "0x%0x at address %s.\n"),
11963 thumb_insn_r->arm_insn,
11964 paddress (thumb_insn_r->gdbarch,
11965 thumb_insn_r->this_addr));
11966 return -1;
11967 }
11968 else if ((0 == opcode) || (1 == opcode))
11969 {
11970 /* ADD(5), ADD(6). */
11971 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11972 record_buf[0] = reg_src1;
11973 thumb_insn_r->reg_rec_count = 1;
11974 }
11975 else if (2 == opcode)
11976 {
11977 /* ADD(7), SUB(4). */
11978 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11979 record_buf[0] = ARM_SP_REGNUM;
11980 thumb_insn_r->reg_rec_count = 1;
11981 }
11982
11983 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11984 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11985 record_buf_mem);
11986
11987 return 0;
11988 }
11989
11990 /* Handling opcode 110 insns. */
11991
11992 static int
11993 thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r)
11994 {
11995 struct gdbarch_tdep *tdep = gdbarch_tdep (thumb_insn_r->gdbarch);
11996 struct regcache *reg_cache = thumb_insn_r->regcache;
11997
11998 uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */
11999 uint32_t reg_src1 = 0;
12000 uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0;
12001 uint32_t index = 0, start_address = 0;
12002 uint32_t record_buf[24], record_buf_mem[48];
12003
12004 ULONGEST u_regval = 0;
12005
12006 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
12007 opcode2 = bits (thumb_insn_r->arm_insn, 11, 12);
12008
12009 if (1 == opcode2)
12010 {
12011
12012 /* LDMIA. */
12013 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12014 /* Get Rn. */
12015 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12016 while (register_bits)
12017 {
12018 if (register_bits & 0x00000001)
12019 record_buf[index++] = register_count;
12020 register_bits = register_bits >> 1;
12021 register_count++;
12022 }
12023 record_buf[index++] = reg_src1;
12024 thumb_insn_r->reg_rec_count = index;
12025 }
12026 else if (0 == opcode2)
12027 {
12028 /* It handles both STMIA. */
12029 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12030 /* Get Rn. */
12031 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12032 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
12033 while (register_bits)
12034 {
12035 if (register_bits & 0x00000001)
12036 register_count++;
12037 register_bits = register_bits >> 1;
12038 }
12039 start_address = u_regval;
12040 thumb_insn_r->mem_rec_count = register_count;
12041 while (register_count)
12042 {
12043 record_buf_mem[(register_count * 2) - 1] = start_address;
12044 record_buf_mem[(register_count * 2) - 2] = 4;
12045 start_address = start_address + 4;
12046 register_count--;
12047 }
12048 }
12049 else if (0x1F == opcode1)
12050 {
12051 /* Handle arm syscall insn. */
12052 if (tdep->arm_syscall_record != NULL)
12053 {
12054 regcache_raw_read_unsigned (reg_cache, 7, &u_regval);
12055 ret = tdep->arm_syscall_record (reg_cache, u_regval);
12056 }
12057 else
12058 {
12059 printf_unfiltered (_("no syscall record support\n"));
12060 return -1;
12061 }
12062 }
12063
12064 /* B (1), conditional branch is automatically taken care in process_record,
12065 as PC is saved there. */
12066
12067 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12068 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12069 record_buf_mem);
12070
12071 return ret;
12072 }
12073
12074 /* Handling opcode 111 insns. */
12075
12076 static int
12077 thumb_record_branch (insn_decode_record *thumb_insn_r)
12078 {
12079 uint32_t record_buf[8];
12080 uint32_t bits_h = 0;
12081
12082 bits_h = bits (thumb_insn_r->arm_insn, 11, 12);
12083
12084 if (2 == bits_h || 3 == bits_h)
12085 {
12086 /* BL */
12087 record_buf[0] = ARM_LR_REGNUM;
12088 thumb_insn_r->reg_rec_count = 1;
12089 }
12090 else if (1 == bits_h)
12091 {
12092 /* BLX(1). */
12093 record_buf[0] = ARM_PS_REGNUM;
12094 record_buf[1] = ARM_LR_REGNUM;
12095 thumb_insn_r->reg_rec_count = 2;
12096 }
12097
12098 /* B(2) is automatically taken care in process_record, as PC is
12099 saved there. */
12100
12101 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12102
12103 return 0;
12104 }
12105
12106 /* Handler for thumb2 load/store multiple instructions. */
12107
12108 static int
12109 thumb2_record_ld_st_multiple (insn_decode_record *thumb2_insn_r)
12110 {
12111 struct regcache *reg_cache = thumb2_insn_r->regcache;
12112
12113 uint32_t reg_rn, op;
12114 uint32_t register_bits = 0, register_count = 0;
12115 uint32_t index = 0, start_address = 0;
12116 uint32_t record_buf[24], record_buf_mem[48];
12117
12118 ULONGEST u_regval = 0;
12119
12120 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12121 op = bits (thumb2_insn_r->arm_insn, 23, 24);
12122
12123 if (0 == op || 3 == op)
12124 {
12125 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12126 {
12127 /* Handle RFE instruction. */
12128 record_buf[0] = ARM_PS_REGNUM;
12129 thumb2_insn_r->reg_rec_count = 1;
12130 }
12131 else
12132 {
12133 /* Handle SRS instruction after reading banked SP. */
12134 return arm_record_unsupported_insn (thumb2_insn_r);
12135 }
12136 }
12137 else if (1 == op || 2 == op)
12138 {
12139 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12140 {
12141 /* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions. */
12142 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12143 while (register_bits)
12144 {
12145 if (register_bits & 0x00000001)
12146 record_buf[index++] = register_count;
12147
12148 register_count++;
12149 register_bits = register_bits >> 1;
12150 }
12151 record_buf[index++] = reg_rn;
12152 record_buf[index++] = ARM_PS_REGNUM;
12153 thumb2_insn_r->reg_rec_count = index;
12154 }
12155 else
12156 {
12157 /* Handle STM/STMIA/STMEA and STMDB/STMFD. */
12158 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12159 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12160 while (register_bits)
12161 {
12162 if (register_bits & 0x00000001)
12163 register_count++;
12164
12165 register_bits = register_bits >> 1;
12166 }
12167
12168 if (1 == op)
12169 {
12170 /* Start address calculation for LDMDB/LDMEA. */
12171 start_address = u_regval;
12172 }
12173 else if (2 == op)
12174 {
12175 /* Start address calculation for LDMDB/LDMEA. */
12176 start_address = u_regval - register_count * 4;
12177 }
12178
12179 thumb2_insn_r->mem_rec_count = register_count;
12180 while (register_count)
12181 {
12182 record_buf_mem[register_count * 2 - 1] = start_address;
12183 record_buf_mem[register_count * 2 - 2] = 4;
12184 start_address = start_address + 4;
12185 register_count--;
12186 }
12187 record_buf[0] = reg_rn;
12188 record_buf[1] = ARM_PS_REGNUM;
12189 thumb2_insn_r->reg_rec_count = 2;
12190 }
12191 }
12192
12193 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12194 record_buf_mem);
12195 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12196 record_buf);
12197 return ARM_RECORD_SUCCESS;
12198 }
12199
12200 /* Handler for thumb2 load/store (dual/exclusive) and table branch
12201 instructions. */
12202
12203 static int
12204 thumb2_record_ld_st_dual_ex_tbb (insn_decode_record *thumb2_insn_r)
12205 {
12206 struct regcache *reg_cache = thumb2_insn_r->regcache;
12207
12208 uint32_t reg_rd, reg_rn, offset_imm;
12209 uint32_t reg_dest1, reg_dest2;
12210 uint32_t address, offset_addr;
12211 uint32_t record_buf[8], record_buf_mem[8];
12212 uint32_t op1, op2, op3;
12213
12214 ULONGEST u_regval[2];
12215
12216 op1 = bits (thumb2_insn_r->arm_insn, 23, 24);
12217 op2 = bits (thumb2_insn_r->arm_insn, 20, 21);
12218 op3 = bits (thumb2_insn_r->arm_insn, 4, 7);
12219
12220 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12221 {
12222 if(!(1 == op1 && 1 == op2 && (0 == op3 || 1 == op3)))
12223 {
12224 reg_dest1 = bits (thumb2_insn_r->arm_insn, 12, 15);
12225 record_buf[0] = reg_dest1;
12226 record_buf[1] = ARM_PS_REGNUM;
12227 thumb2_insn_r->reg_rec_count = 2;
12228 }
12229
12230 if (3 == op2 || (op1 & 2) || (1 == op1 && 1 == op2 && 7 == op3))
12231 {
12232 reg_dest2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12233 record_buf[2] = reg_dest2;
12234 thumb2_insn_r->reg_rec_count = 3;
12235 }
12236 }
12237 else
12238 {
12239 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12240 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12241
12242 if (0 == op1 && 0 == op2)
12243 {
12244 /* Handle STREX. */
12245 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12246 address = u_regval[0] + (offset_imm * 4);
12247 record_buf_mem[0] = 4;
12248 record_buf_mem[1] = address;
12249 thumb2_insn_r->mem_rec_count = 1;
12250 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12251 record_buf[0] = reg_rd;
12252 thumb2_insn_r->reg_rec_count = 1;
12253 }
12254 else if (1 == op1 && 0 == op2)
12255 {
12256 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12257 record_buf[0] = reg_rd;
12258 thumb2_insn_r->reg_rec_count = 1;
12259 address = u_regval[0];
12260 record_buf_mem[1] = address;
12261
12262 if (4 == op3)
12263 {
12264 /* Handle STREXB. */
12265 record_buf_mem[0] = 1;
12266 thumb2_insn_r->mem_rec_count = 1;
12267 }
12268 else if (5 == op3)
12269 {
12270 /* Handle STREXH. */
12271 record_buf_mem[0] = 2 ;
12272 thumb2_insn_r->mem_rec_count = 1;
12273 }
12274 else if (7 == op3)
12275 {
12276 /* Handle STREXD. */
12277 address = u_regval[0];
12278 record_buf_mem[0] = 4;
12279 record_buf_mem[2] = 4;
12280 record_buf_mem[3] = address + 4;
12281 thumb2_insn_r->mem_rec_count = 2;
12282 }
12283 }
12284 else
12285 {
12286 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12287
12288 if (bit (thumb2_insn_r->arm_insn, 24))
12289 {
12290 if (bit (thumb2_insn_r->arm_insn, 23))
12291 offset_addr = u_regval[0] + (offset_imm * 4);
12292 else
12293 offset_addr = u_regval[0] - (offset_imm * 4);
12294
12295 address = offset_addr;
12296 }
12297 else
12298 address = u_regval[0];
12299
12300 record_buf_mem[0] = 4;
12301 record_buf_mem[1] = address;
12302 record_buf_mem[2] = 4;
12303 record_buf_mem[3] = address + 4;
12304 thumb2_insn_r->mem_rec_count = 2;
12305 record_buf[0] = reg_rn;
12306 thumb2_insn_r->reg_rec_count = 1;
12307 }
12308 }
12309
12310 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12311 record_buf);
12312 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12313 record_buf_mem);
12314 return ARM_RECORD_SUCCESS;
12315 }
12316
12317 /* Handler for thumb2 data processing (shift register and modified immediate)
12318 instructions. */
12319
12320 static int
12321 thumb2_record_data_proc_sreg_mimm (insn_decode_record *thumb2_insn_r)
12322 {
12323 uint32_t reg_rd, op;
12324 uint32_t record_buf[8];
12325
12326 op = bits (thumb2_insn_r->arm_insn, 21, 24);
12327 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12328
12329 if ((0 == op || 4 == op || 8 == op || 13 == op) && 15 == reg_rd)
12330 {
12331 record_buf[0] = ARM_PS_REGNUM;
12332 thumb2_insn_r->reg_rec_count = 1;
12333 }
12334 else
12335 {
12336 record_buf[0] = reg_rd;
12337 record_buf[1] = ARM_PS_REGNUM;
12338 thumb2_insn_r->reg_rec_count = 2;
12339 }
12340
12341 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12342 record_buf);
12343 return ARM_RECORD_SUCCESS;
12344 }
12345
12346 /* Generic handler for thumb2 instructions which effect destination and PS
12347 registers. */
12348
12349 static int
12350 thumb2_record_ps_dest_generic (insn_decode_record *thumb2_insn_r)
12351 {
12352 uint32_t reg_rd;
12353 uint32_t record_buf[8];
12354
12355 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12356
12357 record_buf[0] = reg_rd;
12358 record_buf[1] = ARM_PS_REGNUM;
12359 thumb2_insn_r->reg_rec_count = 2;
12360
12361 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12362 record_buf);
12363 return ARM_RECORD_SUCCESS;
12364 }
12365
12366 /* Handler for thumb2 branch and miscellaneous control instructions. */
12367
12368 static int
12369 thumb2_record_branch_misc_cntrl (insn_decode_record *thumb2_insn_r)
12370 {
12371 uint32_t op, op1, op2;
12372 uint32_t record_buf[8];
12373
12374 op = bits (thumb2_insn_r->arm_insn, 20, 26);
12375 op1 = bits (thumb2_insn_r->arm_insn, 12, 14);
12376 op2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12377
12378 /* Handle MSR insn. */
12379 if (!(op1 & 0x2) && 0x38 == op)
12380 {
12381 if (!(op2 & 0x3))
12382 {
12383 /* CPSR is going to be changed. */
12384 record_buf[0] = ARM_PS_REGNUM;
12385 thumb2_insn_r->reg_rec_count = 1;
12386 }
12387 else
12388 {
12389 arm_record_unsupported_insn(thumb2_insn_r);
12390 return -1;
12391 }
12392 }
12393 else if (4 == (op1 & 0x5) || 5 == (op1 & 0x5))
12394 {
12395 /* BLX. */
12396 record_buf[0] = ARM_PS_REGNUM;
12397 record_buf[1] = ARM_LR_REGNUM;
12398 thumb2_insn_r->reg_rec_count = 2;
12399 }
12400
12401 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12402 record_buf);
12403 return ARM_RECORD_SUCCESS;
12404 }
12405
12406 /* Handler for thumb2 store single data item instructions. */
12407
12408 static int
12409 thumb2_record_str_single_data (insn_decode_record *thumb2_insn_r)
12410 {
12411 struct regcache *reg_cache = thumb2_insn_r->regcache;
12412
12413 uint32_t reg_rn, reg_rm, offset_imm, shift_imm;
12414 uint32_t address, offset_addr;
12415 uint32_t record_buf[8], record_buf_mem[8];
12416 uint32_t op1, op2;
12417
12418 ULONGEST u_regval[2];
12419
12420 op1 = bits (thumb2_insn_r->arm_insn, 21, 23);
12421 op2 = bits (thumb2_insn_r->arm_insn, 6, 11);
12422 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12423 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12424
12425 if (bit (thumb2_insn_r->arm_insn, 23))
12426 {
12427 /* T2 encoding. */
12428 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 11);
12429 offset_addr = u_regval[0] + offset_imm;
12430 address = offset_addr;
12431 }
12432 else
12433 {
12434 /* T3 encoding. */
12435 if ((0 == op1 || 1 == op1 || 2 == op1) && !(op2 & 0x20))
12436 {
12437 /* Handle STRB (register). */
12438 reg_rm = bits (thumb2_insn_r->arm_insn, 0, 3);
12439 regcache_raw_read_unsigned (reg_cache, reg_rm, &u_regval[1]);
12440 shift_imm = bits (thumb2_insn_r->arm_insn, 4, 5);
12441 offset_addr = u_regval[1] << shift_imm;
12442 address = u_regval[0] + offset_addr;
12443 }
12444 else
12445 {
12446 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12447 if (bit (thumb2_insn_r->arm_insn, 10))
12448 {
12449 if (bit (thumb2_insn_r->arm_insn, 9))
12450 offset_addr = u_regval[0] + offset_imm;
12451 else
12452 offset_addr = u_regval[0] - offset_imm;
12453
12454 address = offset_addr;
12455 }
12456 else
12457 address = u_regval[0];
12458 }
12459 }
12460
12461 switch (op1)
12462 {
12463 /* Store byte instructions. */
12464 case 4:
12465 case 0:
12466 record_buf_mem[0] = 1;
12467 break;
12468 /* Store half word instructions. */
12469 case 1:
12470 case 5:
12471 record_buf_mem[0] = 2;
12472 break;
12473 /* Store word instructions. */
12474 case 2:
12475 case 6:
12476 record_buf_mem[0] = 4;
12477 break;
12478
12479 default:
12480 gdb_assert_not_reached ("no decoding pattern found");
12481 break;
12482 }
12483
12484 record_buf_mem[1] = address;
12485 thumb2_insn_r->mem_rec_count = 1;
12486 record_buf[0] = reg_rn;
12487 thumb2_insn_r->reg_rec_count = 1;
12488
12489 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12490 record_buf);
12491 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12492 record_buf_mem);
12493 return ARM_RECORD_SUCCESS;
12494 }
12495
12496 /* Handler for thumb2 load memory hints instructions. */
12497
12498 static int
12499 thumb2_record_ld_mem_hints (insn_decode_record *thumb2_insn_r)
12500 {
12501 uint32_t record_buf[8];
12502 uint32_t reg_rt, reg_rn;
12503
12504 reg_rt = bits (thumb2_insn_r->arm_insn, 12, 15);
12505 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12506
12507 if (ARM_PC_REGNUM != reg_rt)
12508 {
12509 record_buf[0] = reg_rt;
12510 record_buf[1] = reg_rn;
12511 record_buf[2] = ARM_PS_REGNUM;
12512 thumb2_insn_r->reg_rec_count = 3;
12513
12514 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12515 record_buf);
12516 return ARM_RECORD_SUCCESS;
12517 }
12518
12519 return ARM_RECORD_FAILURE;
12520 }
12521
12522 /* Handler for thumb2 load word instructions. */
12523
12524 static int
12525 thumb2_record_ld_word (insn_decode_record *thumb2_insn_r)
12526 {
12527 uint32_t record_buf[8];
12528
12529 record_buf[0] = bits (thumb2_insn_r->arm_insn, 12, 15);
12530 record_buf[1] = ARM_PS_REGNUM;
12531 thumb2_insn_r->reg_rec_count = 2;
12532
12533 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12534 record_buf);
12535 return ARM_RECORD_SUCCESS;
12536 }
12537
12538 /* Handler for thumb2 long multiply, long multiply accumulate, and
12539 divide instructions. */
12540
12541 static int
12542 thumb2_record_lmul_lmla_div (insn_decode_record *thumb2_insn_r)
12543 {
12544 uint32_t opcode1 = 0, opcode2 = 0;
12545 uint32_t record_buf[8];
12546
12547 opcode1 = bits (thumb2_insn_r->arm_insn, 20, 22);
12548 opcode2 = bits (thumb2_insn_r->arm_insn, 4, 7);
12549
12550 if (0 == opcode1 || 2 == opcode1 || (opcode1 >= 4 && opcode1 <= 6))
12551 {
12552 /* Handle SMULL, UMULL, SMULAL. */
12553 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
12554 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12555 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12556 record_buf[2] = ARM_PS_REGNUM;
12557 thumb2_insn_r->reg_rec_count = 3;
12558 }
12559 else if (1 == opcode1 || 3 == opcode2)
12560 {
12561 /* Handle SDIV and UDIV. */
12562 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12563 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12564 record_buf[2] = ARM_PS_REGNUM;
12565 thumb2_insn_r->reg_rec_count = 3;
12566 }
12567 else
12568 return ARM_RECORD_FAILURE;
12569
12570 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12571 record_buf);
12572 return ARM_RECORD_SUCCESS;
12573 }
12574
12575 /* Record handler for thumb32 coprocessor instructions. */
12576
12577 static int
12578 thumb2_record_coproc_insn (insn_decode_record *thumb2_insn_r)
12579 {
12580 if (bit (thumb2_insn_r->arm_insn, 25))
12581 return arm_record_coproc_data_proc (thumb2_insn_r);
12582 else
12583 return arm_record_asimd_vfp_coproc (thumb2_insn_r);
12584 }
12585
12586 /* Record handler for advance SIMD structure load/store instructions. */
12587
12588 static int
12589 thumb2_record_asimd_struct_ld_st (insn_decode_record *thumb2_insn_r)
12590 {
12591 struct regcache *reg_cache = thumb2_insn_r->regcache;
12592 uint32_t l_bit, a_bit, b_bits;
12593 uint32_t record_buf[128], record_buf_mem[128];
12594 uint32_t reg_rn, reg_vd, address, f_elem;
12595 uint32_t index_r = 0, index_e = 0, bf_regs = 0, index_m = 0, loop_t = 0;
12596 uint8_t f_ebytes;
12597
12598 l_bit = bit (thumb2_insn_r->arm_insn, 21);
12599 a_bit = bit (thumb2_insn_r->arm_insn, 23);
12600 b_bits = bits (thumb2_insn_r->arm_insn, 8, 11);
12601 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12602 reg_vd = bits (thumb2_insn_r->arm_insn, 12, 15);
12603 reg_vd = (bit (thumb2_insn_r->arm_insn, 22) << 4) | reg_vd;
12604 f_ebytes = (1 << bits (thumb2_insn_r->arm_insn, 6, 7));
12605 f_elem = 8 / f_ebytes;
12606
12607 if (!l_bit)
12608 {
12609 ULONGEST u_regval = 0;
12610 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12611 address = u_regval;
12612
12613 if (!a_bit)
12614 {
12615 /* Handle VST1. */
12616 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12617 {
12618 if (b_bits == 0x07)
12619 bf_regs = 1;
12620 else if (b_bits == 0x0a)
12621 bf_regs = 2;
12622 else if (b_bits == 0x06)
12623 bf_regs = 3;
12624 else if (b_bits == 0x02)
12625 bf_regs = 4;
12626 else
12627 bf_regs = 0;
12628
12629 for (index_r = 0; index_r < bf_regs; index_r++)
12630 {
12631 for (index_e = 0; index_e < f_elem; index_e++)
12632 {
12633 record_buf_mem[index_m++] = f_ebytes;
12634 record_buf_mem[index_m++] = address;
12635 address = address + f_ebytes;
12636 thumb2_insn_r->mem_rec_count += 1;
12637 }
12638 }
12639 }
12640 /* Handle VST2. */
12641 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12642 {
12643 if (b_bits == 0x09 || b_bits == 0x08)
12644 bf_regs = 1;
12645 else if (b_bits == 0x03)
12646 bf_regs = 2;
12647 else
12648 bf_regs = 0;
12649
12650 for (index_r = 0; index_r < bf_regs; index_r++)
12651 for (index_e = 0; index_e < f_elem; index_e++)
12652 {
12653 for (loop_t = 0; loop_t < 2; loop_t++)
12654 {
12655 record_buf_mem[index_m++] = f_ebytes;
12656 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12657 thumb2_insn_r->mem_rec_count += 1;
12658 }
12659 address = address + (2 * f_ebytes);
12660 }
12661 }
12662 /* Handle VST3. */
12663 else if ((b_bits & 0x0e) == 0x04)
12664 {
12665 for (index_e = 0; index_e < f_elem; index_e++)
12666 {
12667 for (loop_t = 0; loop_t < 3; loop_t++)
12668 {
12669 record_buf_mem[index_m++] = f_ebytes;
12670 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12671 thumb2_insn_r->mem_rec_count += 1;
12672 }
12673 address = address + (3 * f_ebytes);
12674 }
12675 }
12676 /* Handle VST4. */
12677 else if (!(b_bits & 0x0e))
12678 {
12679 for (index_e = 0; index_e < f_elem; index_e++)
12680 {
12681 for (loop_t = 0; loop_t < 4; loop_t++)
12682 {
12683 record_buf_mem[index_m++] = f_ebytes;
12684 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12685 thumb2_insn_r->mem_rec_count += 1;
12686 }
12687 address = address + (4 * f_ebytes);
12688 }
12689 }
12690 }
12691 else
12692 {
12693 uint8_t bft_size = bits (thumb2_insn_r->arm_insn, 10, 11);
12694
12695 if (bft_size == 0x00)
12696 f_ebytes = 1;
12697 else if (bft_size == 0x01)
12698 f_ebytes = 2;
12699 else if (bft_size == 0x02)
12700 f_ebytes = 4;
12701 else
12702 f_ebytes = 0;
12703
12704 /* Handle VST1. */
12705 if (!(b_bits & 0x0b) || b_bits == 0x08)
12706 thumb2_insn_r->mem_rec_count = 1;
12707 /* Handle VST2. */
12708 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09)
12709 thumb2_insn_r->mem_rec_count = 2;
12710 /* Handle VST3. */
12711 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a)
12712 thumb2_insn_r->mem_rec_count = 3;
12713 /* Handle VST4. */
12714 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b)
12715 thumb2_insn_r->mem_rec_count = 4;
12716
12717 for (index_m = 0; index_m < thumb2_insn_r->mem_rec_count; index_m++)
12718 {
12719 record_buf_mem[index_m] = f_ebytes;
12720 record_buf_mem[index_m] = address + (index_m * f_ebytes);
12721 }
12722 }
12723 }
12724 else
12725 {
12726 if (!a_bit)
12727 {
12728 /* Handle VLD1. */
12729 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12730 thumb2_insn_r->reg_rec_count = 1;
12731 /* Handle VLD2. */
12732 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12733 thumb2_insn_r->reg_rec_count = 2;
12734 /* Handle VLD3. */
12735 else if ((b_bits & 0x0e) == 0x04)
12736 thumb2_insn_r->reg_rec_count = 3;
12737 /* Handle VLD4. */
12738 else if (!(b_bits & 0x0e))
12739 thumb2_insn_r->reg_rec_count = 4;
12740 }
12741 else
12742 {
12743 /* Handle VLD1. */
12744 if (!(b_bits & 0x0b) || b_bits == 0x08 || b_bits == 0x0c)
12745 thumb2_insn_r->reg_rec_count = 1;
12746 /* Handle VLD2. */
12747 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09 || b_bits == 0x0d)
12748 thumb2_insn_r->reg_rec_count = 2;
12749 /* Handle VLD3. */
12750 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a || b_bits == 0x0e)
12751 thumb2_insn_r->reg_rec_count = 3;
12752 /* Handle VLD4. */
12753 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b || b_bits == 0x0f)
12754 thumb2_insn_r->reg_rec_count = 4;
12755
12756 for (index_r = 0; index_r < thumb2_insn_r->reg_rec_count; index_r++)
12757 record_buf[index_r] = reg_vd + ARM_D0_REGNUM + index_r;
12758 }
12759 }
12760
12761 if (bits (thumb2_insn_r->arm_insn, 0, 3) != 15)
12762 {
12763 record_buf[index_r] = reg_rn;
12764 thumb2_insn_r->reg_rec_count += 1;
12765 }
12766
12767 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12768 record_buf);
12769 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12770 record_buf_mem);
12771 return 0;
12772 }
12773
12774 /* Decodes thumb2 instruction type and invokes its record handler. */
12775
12776 static unsigned int
12777 thumb2_record_decode_insn_handler (insn_decode_record *thumb2_insn_r)
12778 {
12779 uint32_t op, op1, op2;
12780
12781 op = bit (thumb2_insn_r->arm_insn, 15);
12782 op1 = bits (thumb2_insn_r->arm_insn, 27, 28);
12783 op2 = bits (thumb2_insn_r->arm_insn, 20, 26);
12784
12785 if (op1 == 0x01)
12786 {
12787 if (!(op2 & 0x64 ))
12788 {
12789 /* Load/store multiple instruction. */
12790 return thumb2_record_ld_st_multiple (thumb2_insn_r);
12791 }
12792 else if (!((op2 & 0x64) ^ 0x04))
12793 {
12794 /* Load/store (dual/exclusive) and table branch instruction. */
12795 return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r);
12796 }
12797 else if (!((op2 & 0x20) ^ 0x20))
12798 {
12799 /* Data-processing (shifted register). */
12800 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12801 }
12802 else if (op2 & 0x40)
12803 {
12804 /* Co-processor instructions. */
12805 return thumb2_record_coproc_insn (thumb2_insn_r);
12806 }
12807 }
12808 else if (op1 == 0x02)
12809 {
12810 if (op)
12811 {
12812 /* Branches and miscellaneous control instructions. */
12813 return thumb2_record_branch_misc_cntrl (thumb2_insn_r);
12814 }
12815 else if (op2 & 0x20)
12816 {
12817 /* Data-processing (plain binary immediate) instruction. */
12818 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12819 }
12820 else
12821 {
12822 /* Data-processing (modified immediate). */
12823 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12824 }
12825 }
12826 else if (op1 == 0x03)
12827 {
12828 if (!(op2 & 0x71 ))
12829 {
12830 /* Store single data item. */
12831 return thumb2_record_str_single_data (thumb2_insn_r);
12832 }
12833 else if (!((op2 & 0x71) ^ 0x10))
12834 {
12835 /* Advanced SIMD or structure load/store instructions. */
12836 return thumb2_record_asimd_struct_ld_st (thumb2_insn_r);
12837 }
12838 else if (!((op2 & 0x67) ^ 0x01))
12839 {
12840 /* Load byte, memory hints instruction. */
12841 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12842 }
12843 else if (!((op2 & 0x67) ^ 0x03))
12844 {
12845 /* Load halfword, memory hints instruction. */
12846 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12847 }
12848 else if (!((op2 & 0x67) ^ 0x05))
12849 {
12850 /* Load word instruction. */
12851 return thumb2_record_ld_word (thumb2_insn_r);
12852 }
12853 else if (!((op2 & 0x70) ^ 0x20))
12854 {
12855 /* Data-processing (register) instruction. */
12856 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12857 }
12858 else if (!((op2 & 0x78) ^ 0x30))
12859 {
12860 /* Multiply, multiply accumulate, abs diff instruction. */
12861 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12862 }
12863 else if (!((op2 & 0x78) ^ 0x38))
12864 {
12865 /* Long multiply, long multiply accumulate, and divide. */
12866 return thumb2_record_lmul_lmla_div (thumb2_insn_r);
12867 }
12868 else if (op2 & 0x40)
12869 {
12870 /* Co-processor instructions. */
12871 return thumb2_record_coproc_insn (thumb2_insn_r);
12872 }
12873 }
12874
12875 return -1;
12876 }
12877
12878 /* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success
12879 and positive val on fauilure. */
12880
12881 static int
12882 extract_arm_insn (insn_decode_record *insn_record, uint32_t insn_size)
12883 {
12884 gdb_byte buf[insn_size];
12885
12886 memset (&buf[0], 0, insn_size);
12887
12888 if (target_read_memory (insn_record->this_addr, &buf[0], insn_size))
12889 return 1;
12890 insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0],
12891 insn_size,
12892 gdbarch_byte_order_for_code (insn_record->gdbarch));
12893 return 0;
12894 }
12895
12896 typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*);
12897
12898 /* Decode arm/thumb insn depending on condition cods and opcodes; and
12899 dispatch it. */
12900
12901 static int
12902 decode_insn (insn_decode_record *arm_record, record_type_t record_type,
12903 uint32_t insn_size)
12904 {
12905
12906 /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm
12907 instruction. */
12908 static const sti_arm_hdl_fp_t arm_handle_insn[8] =
12909 {
12910 arm_record_data_proc_misc_ld_str, /* 000. */
12911 arm_record_data_proc_imm, /* 001. */
12912 arm_record_ld_st_imm_offset, /* 010. */
12913 arm_record_ld_st_reg_offset, /* 011. */
12914 arm_record_ld_st_multiple, /* 100. */
12915 arm_record_b_bl, /* 101. */
12916 arm_record_asimd_vfp_coproc, /* 110. */
12917 arm_record_coproc_data_proc /* 111. */
12918 };
12919
12920 /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb
12921 instruction. */
12922 static const sti_arm_hdl_fp_t thumb_handle_insn[8] =
12923 { \
12924 thumb_record_shift_add_sub, /* 000. */
12925 thumb_record_add_sub_cmp_mov, /* 001. */
12926 thumb_record_ld_st_reg_offset, /* 010. */
12927 thumb_record_ld_st_imm_offset, /* 011. */
12928 thumb_record_ld_st_stack, /* 100. */
12929 thumb_record_misc, /* 101. */
12930 thumb_record_ldm_stm_swi, /* 110. */
12931 thumb_record_branch /* 111. */
12932 };
12933
12934 uint32_t ret = 0; /* return value: negative:failure 0:success. */
12935 uint32_t insn_id = 0;
12936
12937 if (extract_arm_insn (arm_record, insn_size))
12938 {
12939 if (record_debug)
12940 {
12941 printf_unfiltered (_("Process record: error reading memory at "
12942 "addr %s len = %d.\n"),
12943 paddress (arm_record->gdbarch,
12944 arm_record->this_addr), insn_size);
12945 }
12946 return -1;
12947 }
12948 else if (ARM_RECORD == record_type)
12949 {
12950 arm_record->cond = bits (arm_record->arm_insn, 28, 31);
12951 insn_id = bits (arm_record->arm_insn, 25, 27);
12952
12953 if (arm_record->cond == 0xf)
12954 ret = arm_record_extension_space (arm_record);
12955 else
12956 {
12957 /* If this insn has fallen into extension space
12958 then we need not decode it anymore. */
12959 ret = arm_handle_insn[insn_id] (arm_record);
12960 }
12961 if (ret != ARM_RECORD_SUCCESS)
12962 {
12963 arm_record_unsupported_insn (arm_record);
12964 ret = -1;
12965 }
12966 }
12967 else if (THUMB_RECORD == record_type)
12968 {
12969 /* As thumb does not have condition codes, we set negative. */
12970 arm_record->cond = -1;
12971 insn_id = bits (arm_record->arm_insn, 13, 15);
12972 ret = thumb_handle_insn[insn_id] (arm_record);
12973 if (ret != ARM_RECORD_SUCCESS)
12974 {
12975 arm_record_unsupported_insn (arm_record);
12976 ret = -1;
12977 }
12978 }
12979 else if (THUMB2_RECORD == record_type)
12980 {
12981 /* As thumb does not have condition codes, we set negative. */
12982 arm_record->cond = -1;
12983
12984 /* Swap first half of 32bit thumb instruction with second half. */
12985 arm_record->arm_insn
12986 = (arm_record->arm_insn >> 16) | (arm_record->arm_insn << 16);
12987
12988 ret = thumb2_record_decode_insn_handler (arm_record);
12989
12990 if (ret != ARM_RECORD_SUCCESS)
12991 {
12992 arm_record_unsupported_insn (arm_record);
12993 ret = -1;
12994 }
12995 }
12996 else
12997 {
12998 /* Throw assertion. */
12999 gdb_assert_not_reached ("not a valid instruction, could not decode");
13000 }
13001
13002 return ret;
13003 }
13004
13005
13006 /* Cleans up local record registers and memory allocations. */
13007
13008 static void
13009 deallocate_reg_mem (insn_decode_record *record)
13010 {
13011 xfree (record->arm_regs);
13012 xfree (record->arm_mems);
13013 }
13014
13015
13016 /* Parse the current instruction and record the values of the registers and
13017 memory that will be changed in current instruction to record_arch_list".
13018 Return -1 if something is wrong. */
13019
13020 int
13021 arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
13022 CORE_ADDR insn_addr)
13023 {
13024
13025 uint32_t no_of_rec = 0;
13026 uint32_t ret = 0; /* return value: -1:record failure ; 0:success */
13027 ULONGEST t_bit = 0, insn_id = 0;
13028
13029 ULONGEST u_regval = 0;
13030
13031 insn_decode_record arm_record;
13032
13033 memset (&arm_record, 0, sizeof (insn_decode_record));
13034 arm_record.regcache = regcache;
13035 arm_record.this_addr = insn_addr;
13036 arm_record.gdbarch = gdbarch;
13037
13038
13039 if (record_debug > 1)
13040 {
13041 fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record "
13042 "addr = %s\n",
13043 paddress (gdbarch, arm_record.this_addr));
13044 }
13045
13046 if (extract_arm_insn (&arm_record, 2))
13047 {
13048 if (record_debug)
13049 {
13050 printf_unfiltered (_("Process record: error reading memory at "
13051 "addr %s len = %d.\n"),
13052 paddress (arm_record.gdbarch,
13053 arm_record.this_addr), 2);
13054 }
13055 return -1;
13056 }
13057
13058 /* Check the insn, whether it is thumb or arm one. */
13059
13060 t_bit = arm_psr_thumb_bit (arm_record.gdbarch);
13061 regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval);
13062
13063
13064 if (!(u_regval & t_bit))
13065 {
13066 /* We are decoding arm insn. */
13067 ret = decode_insn (&arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES);
13068 }
13069 else
13070 {
13071 insn_id = bits (arm_record.arm_insn, 11, 15);
13072 /* is it thumb2 insn? */
13073 if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id))
13074 {
13075 ret = decode_insn (&arm_record, THUMB2_RECORD,
13076 THUMB2_INSN_SIZE_BYTES);
13077 }
13078 else
13079 {
13080 /* We are decoding thumb insn. */
13081 ret = decode_insn (&arm_record, THUMB_RECORD, THUMB_INSN_SIZE_BYTES);
13082 }
13083 }
13084
13085 if (0 == ret)
13086 {
13087 /* Record registers. */
13088 record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM);
13089 if (arm_record.arm_regs)
13090 {
13091 for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++)
13092 {
13093 if (record_full_arch_list_add_reg
13094 (arm_record.regcache , arm_record.arm_regs[no_of_rec]))
13095 ret = -1;
13096 }
13097 }
13098 /* Record memories. */
13099 if (arm_record.arm_mems)
13100 {
13101 for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++)
13102 {
13103 if (record_full_arch_list_add_mem
13104 ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr,
13105 arm_record.arm_mems[no_of_rec].len))
13106 ret = -1;
13107 }
13108 }
13109
13110 if (record_full_arch_list_add_end ())
13111 ret = -1;
13112 }
13113
13114
13115 deallocate_reg_mem (&arm_record);
13116
13117 return ret;
13118 }
This page took 0.297572 seconds and 4 git commands to generate.