869cc3469be0c9677b5073169761dee41633718f
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include <ctype.h> /* XXX for isupper () */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "gdb_string.h"
31 #include "dis-asm.h" /* For register styles. */
32 #include "regcache.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "arch-utils.h"
36 #include "osabi.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "trad-frame.h"
40 #include "objfiles.h"
41 #include "dwarf2-frame.h"
42 #include "gdbtypes.h"
43 #include "prologue-value.h"
44 #include "target-descriptions.h"
45 #include "user-regs.h"
46
47 #include "arm-tdep.h"
48 #include "gdb/sim-arm.h"
49
50 #include "elf-bfd.h"
51 #include "coff/internal.h"
52 #include "elf/arm.h"
53
54 #include "gdb_assert.h"
55
56 static int arm_debug;
57
58 /* Macros for setting and testing a bit in a minimal symbol that marks
59 it as Thumb function. The MSB of the minimal symbol's "info" field
60 is used for this purpose.
61
62 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
63 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
64
65 #define MSYMBOL_SET_SPECIAL(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
67 | 0x80000000)
68
69 #define MSYMBOL_IS_SPECIAL(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
71
72 /* The list of available "set arm ..." and "show arm ..." commands. */
73 static struct cmd_list_element *setarmcmdlist = NULL;
74 static struct cmd_list_element *showarmcmdlist = NULL;
75
76 /* The type of floating-point to use. Keep this in sync with enum
77 arm_float_model, and the help string in _initialize_arm_tdep. */
78 static const char *fp_model_strings[] =
79 {
80 "auto",
81 "softfpa",
82 "fpa",
83 "softvfp",
84 "vfp",
85 NULL
86 };
87
88 /* A variable that can be configured by the user. */
89 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
90 static const char *current_fp_model = "auto";
91
92 /* The ABI to use. Keep this in sync with arm_abi_kind. */
93 static const char *arm_abi_strings[] =
94 {
95 "auto",
96 "APCS",
97 "AAPCS",
98 NULL
99 };
100
101 /* A variable that can be configured by the user. */
102 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
103 static const char *arm_abi_string = "auto";
104
105 /* Number of different reg name sets (options). */
106 static int num_disassembly_options;
107
108 /* The standard register names, and all the valid aliases for them. */
109 static const struct
110 {
111 const char *name;
112 int regnum;
113 } arm_register_aliases[] = {
114 /* Basic register numbers. */
115 { "r0", 0 },
116 { "r1", 1 },
117 { "r2", 2 },
118 { "r3", 3 },
119 { "r4", 4 },
120 { "r5", 5 },
121 { "r6", 6 },
122 { "r7", 7 },
123 { "r8", 8 },
124 { "r9", 9 },
125 { "r10", 10 },
126 { "r11", 11 },
127 { "r12", 12 },
128 { "r13", 13 },
129 { "r14", 14 },
130 { "r15", 15 },
131 /* Synonyms (argument and variable registers). */
132 { "a1", 0 },
133 { "a2", 1 },
134 { "a3", 2 },
135 { "a4", 3 },
136 { "v1", 4 },
137 { "v2", 5 },
138 { "v3", 6 },
139 { "v4", 7 },
140 { "v5", 8 },
141 { "v6", 9 },
142 { "v7", 10 },
143 { "v8", 11 },
144 /* Other platform-specific names for r9. */
145 { "sb", 9 },
146 { "tr", 9 },
147 /* Special names. */
148 { "ip", 12 },
149 { "sp", 13 },
150 { "lr", 14 },
151 { "pc", 15 },
152 /* Names used by GCC (not listed in the ARM EABI). */
153 { "sl", 10 },
154 { "fp", 11 },
155 /* A special name from the older ATPCS. */
156 { "wr", 7 },
157 };
158
159 static const char *const arm_register_names[] =
160 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
161 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
162 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
163 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
164 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
165 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
166 "fps", "cpsr" }; /* 24 25 */
167
168 /* Valid register name styles. */
169 static const char **valid_disassembly_styles;
170
171 /* Disassembly style to use. Default to "std" register names. */
172 static const char *disassembly_style;
173
174 /* This is used to keep the bfd arch_info in sync with the disassembly
175 style. */
176 static void set_disassembly_style_sfunc(char *, int,
177 struct cmd_list_element *);
178 static void set_disassembly_style (void);
179
180 static void convert_from_extended (const struct floatformat *, const void *,
181 void *);
182 static void convert_to_extended (const struct floatformat *, void *,
183 const void *);
184
185 struct arm_prologue_cache
186 {
187 /* The stack pointer at the time this frame was created; i.e. the
188 caller's stack pointer when this function was called. It is used
189 to identify this frame. */
190 CORE_ADDR prev_sp;
191
192 /* The frame base for this frame is just prev_sp + frame offset -
193 frame size. FRAMESIZE is the size of this stack frame, and
194 FRAMEOFFSET if the initial offset from the stack pointer (this
195 frame's stack pointer, not PREV_SP) to the frame base. */
196
197 int framesize;
198 int frameoffset;
199
200 /* The register used to hold the frame pointer for this frame. */
201 int framereg;
202
203 /* Saved register offsets. */
204 struct trad_frame_saved_reg *saved_regs;
205 };
206
207 /* Addresses for calling Thumb functions have the bit 0 set.
208 Here are some macros to test, set, or clear bit 0 of addresses. */
209 #define IS_THUMB_ADDR(addr) ((addr) & 1)
210 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
211 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
212
213 /* Set to true if the 32-bit mode is in use. */
214
215 int arm_apcs_32 = 1;
216
217 /* Determine if the program counter specified in MEMADDR is in a Thumb
218 function. */
219
220 int
221 arm_pc_is_thumb (CORE_ADDR memaddr)
222 {
223 struct minimal_symbol *sym;
224
225 /* If bit 0 of the address is set, assume this is a Thumb address. */
226 if (IS_THUMB_ADDR (memaddr))
227 return 1;
228
229 /* Thumb functions have a "special" bit set in minimal symbols. */
230 sym = lookup_minimal_symbol_by_pc (memaddr);
231 if (sym)
232 {
233 return (MSYMBOL_IS_SPECIAL (sym));
234 }
235 else
236 {
237 return 0;
238 }
239 }
240
241 /* Remove useless bits from addresses in a running program. */
242 static CORE_ADDR
243 arm_addr_bits_remove (CORE_ADDR val)
244 {
245 if (arm_apcs_32)
246 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
247 else
248 return (val & 0x03fffffc);
249 }
250
251 /* When reading symbols, we need to zap the low bit of the address,
252 which may be set to 1 for Thumb functions. */
253 static CORE_ADDR
254 arm_smash_text_address (CORE_ADDR val)
255 {
256 return val & ~1;
257 }
258
259 /* Analyze a Thumb prologue, looking for a recognizable stack frame
260 and frame pointer. Scan until we encounter a store that could
261 clobber the stack frame unexpectedly, or an unknown instruction. */
262
263 static CORE_ADDR
264 thumb_analyze_prologue (struct gdbarch *gdbarch,
265 CORE_ADDR start, CORE_ADDR limit,
266 struct arm_prologue_cache *cache)
267 {
268 int i;
269 pv_t regs[16];
270 struct pv_area *stack;
271 struct cleanup *back_to;
272 CORE_ADDR offset;
273
274 for (i = 0; i < 16; i++)
275 regs[i] = pv_register (i, 0);
276 stack = make_pv_area (ARM_SP_REGNUM);
277 back_to = make_cleanup_free_pv_area (stack);
278
279 /* The call instruction saved PC in LR, and the current PC is not
280 interesting. Due to this file's conventions, we want the value
281 of LR at this function's entry, not at the call site, so we do
282 not record the save of the PC - when the ARM prologue analyzer
283 has also been converted to the pv mechanism, we could record the
284 save here and remove the hack in prev_register. */
285 regs[ARM_PC_REGNUM] = pv_unknown ();
286
287 while (start < limit)
288 {
289 unsigned short insn;
290
291 insn = read_memory_unsigned_integer (start, 2);
292
293 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
294 {
295 int regno;
296 int mask;
297 int stop = 0;
298
299 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
300 whether to save LR (R14). */
301 mask = (insn & 0xff) | ((insn & 0x100) << 6);
302
303 /* Calculate offsets of saved R0-R7 and LR. */
304 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
305 if (mask & (1 << regno))
306 {
307 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
308 {
309 stop = 1;
310 break;
311 }
312
313 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
314 -4);
315 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
316 }
317
318 if (stop)
319 break;
320 }
321 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
322 sub sp, #simm */
323 {
324 offset = (insn & 0x7f) << 2; /* get scaled offset */
325 if (insn & 0x80) /* Check for SUB. */
326 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
327 -offset);
328 else
329 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
330 offset);
331 }
332 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
333 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
334 (insn & 0xff) << 2);
335 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
336 {
337 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
338 int src_reg = (insn & 0x78) >> 3;
339 regs[dst_reg] = regs[src_reg];
340 }
341 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
342 {
343 /* Handle stores to the stack. Normally pushes are used,
344 but with GCC -mtpcs-frame, there may be other stores
345 in the prologue to create the frame. */
346 int regno = (insn >> 8) & 0x7;
347 pv_t addr;
348
349 offset = (insn & 0xff) << 2;
350 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
351
352 if (pv_area_store_would_trash (stack, addr))
353 break;
354
355 pv_area_store (stack, addr, 4, regs[regno]);
356 }
357 else
358 {
359 /* We don't know what this instruction is. We're finished
360 scanning. NOTE: Recognizing more safe-to-ignore
361 instructions here will improve support for optimized
362 code. */
363 break;
364 }
365
366 start += 2;
367 }
368
369 if (cache == NULL)
370 {
371 do_cleanups (back_to);
372 return start;
373 }
374
375 /* frameoffset is unused for this unwinder. */
376 cache->frameoffset = 0;
377
378 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
379 {
380 /* Frame pointer is fp. Frame size is constant. */
381 cache->framereg = ARM_FP_REGNUM;
382 cache->framesize = -regs[ARM_FP_REGNUM].k;
383 }
384 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
385 {
386 /* Frame pointer is r7. Frame size is constant. */
387 cache->framereg = THUMB_FP_REGNUM;
388 cache->framesize = -regs[THUMB_FP_REGNUM].k;
389 }
390 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
391 {
392 /* Try the stack pointer... this is a bit desperate. */
393 cache->framereg = ARM_SP_REGNUM;
394 cache->framesize = -regs[ARM_SP_REGNUM].k;
395 }
396 else
397 {
398 /* We're just out of luck. We don't know where the frame is. */
399 cache->framereg = -1;
400 cache->framesize = 0;
401 }
402
403 for (i = 0; i < 16; i++)
404 if (pv_area_find_reg (stack, gdbarch, i, &offset))
405 cache->saved_regs[i].addr = offset;
406
407 do_cleanups (back_to);
408 return start;
409 }
410
411 /* Advance the PC across any function entry prologue instructions to
412 reach some "real" code.
413
414 The APCS (ARM Procedure Call Standard) defines the following
415 prologue:
416
417 mov ip, sp
418 [stmfd sp!, {a1,a2,a3,a4}]
419 stmfd sp!, {...,fp,ip,lr,pc}
420 [stfe f7, [sp, #-12]!]
421 [stfe f6, [sp, #-12]!]
422 [stfe f5, [sp, #-12]!]
423 [stfe f4, [sp, #-12]!]
424 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
425
426 static CORE_ADDR
427 arm_skip_prologue (CORE_ADDR pc)
428 {
429 unsigned long inst;
430 CORE_ADDR skip_pc;
431 CORE_ADDR func_addr, func_end = 0;
432 char *func_name;
433 struct symtab_and_line sal;
434
435 /* If we're in a dummy frame, don't even try to skip the prologue. */
436 if (deprecated_pc_in_call_dummy (pc))
437 return pc;
438
439 /* See what the symbol table says. */
440
441 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
442 {
443 struct symbol *sym;
444
445 /* Found a function. */
446 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
447 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
448 {
449 /* Don't use this trick for assembly source files. */
450 sal = find_pc_line (func_addr, 0);
451 if ((sal.line != 0) && (sal.end < func_end))
452 return sal.end;
453 }
454 }
455
456 /* Can't find the prologue end in the symbol table, try it the hard way
457 by disassembling the instructions. */
458
459 /* Like arm_scan_prologue, stop no later than pc + 64. */
460 if (func_end == 0 || func_end > pc + 64)
461 func_end = pc + 64;
462
463 /* Check if this is Thumb code. */
464 if (arm_pc_is_thumb (pc))
465 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
466
467 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
468 {
469 inst = read_memory_unsigned_integer (skip_pc, 4);
470
471 /* "mov ip, sp" is no longer a required part of the prologue. */
472 if (inst == 0xe1a0c00d) /* mov ip, sp */
473 continue;
474
475 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
479 continue;
480
481 /* Some prologues begin with "str lr, [sp, #-4]!". */
482 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
483 continue;
484
485 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
486 continue;
487
488 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
489 continue;
490
491 /* Any insns after this point may float into the code, if it makes
492 for better instruction scheduling, so we skip them only if we
493 find them, but still consider the function to be frame-ful. */
494
495 /* We may have either one sfmfd instruction here, or several stfe
496 insns, depending on the version of floating point code we
497 support. */
498 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
499 continue;
500
501 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
502 continue;
503
504 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
505 continue;
506
507 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
508 continue;
509
510 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
511 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
512 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
513 continue;
514
515 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
516 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
517 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
518 continue;
519
520 /* Un-recognized instruction; stop scanning. */
521 break;
522 }
523
524 return skip_pc; /* End of prologue */
525 }
526
527 /* *INDENT-OFF* */
528 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
529 This function decodes a Thumb function prologue to determine:
530 1) the size of the stack frame
531 2) which registers are saved on it
532 3) the offsets of saved regs
533 4) the offset from the stack pointer to the frame pointer
534
535 A typical Thumb function prologue would create this stack frame
536 (offsets relative to FP)
537 old SP -> 24 stack parameters
538 20 LR
539 16 R7
540 R7 -> 0 local variables (16 bytes)
541 SP -> -12 additional stack space (12 bytes)
542 The frame size would thus be 36 bytes, and the frame offset would be
543 12 bytes. The frame register is R7.
544
545 The comments for thumb_skip_prolog() describe the algorithm we use
546 to detect the end of the prolog. */
547 /* *INDENT-ON* */
548
549 static void
550 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
551 {
552 CORE_ADDR prologue_start;
553 CORE_ADDR prologue_end;
554 CORE_ADDR current_pc;
555 /* Which register has been copied to register n? */
556 int saved_reg[16];
557 /* findmask:
558 bit 0 - push { rlist }
559 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
560 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
561 */
562 int findmask = 0;
563 int i;
564
565 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
566 {
567 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
568
569 if (sal.line == 0) /* no line info, use current PC */
570 prologue_end = prev_pc;
571 else if (sal.end < prologue_end) /* next line begins after fn end */
572 prologue_end = sal.end; /* (probably means no prologue) */
573 }
574 else
575 /* We're in the boondocks: we have no idea where the start of the
576 function is. */
577 return;
578
579 prologue_end = min (prologue_end, prev_pc);
580
581 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
582 cache);
583 }
584
585 /* This function decodes an ARM function prologue to determine:
586 1) the size of the stack frame
587 2) which registers are saved on it
588 3) the offsets of saved regs
589 4) the offset from the stack pointer to the frame pointer
590 This information is stored in the "extra" fields of the frame_info.
591
592 There are two basic forms for the ARM prologue. The fixed argument
593 function call will look like:
594
595 mov ip, sp
596 stmfd sp!, {fp, ip, lr, pc}
597 sub fp, ip, #4
598 [sub sp, sp, #4]
599
600 Which would create this stack frame (offsets relative to FP):
601 IP -> 4 (caller's stack)
602 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
603 -4 LR (return address in caller)
604 -8 IP (copy of caller's SP)
605 -12 FP (caller's FP)
606 SP -> -28 Local variables
607
608 The frame size would thus be 32 bytes, and the frame offset would be
609 28 bytes. The stmfd call can also save any of the vN registers it
610 plans to use, which increases the frame size accordingly.
611
612 Note: The stored PC is 8 off of the STMFD instruction that stored it
613 because the ARM Store instructions always store PC + 8 when you read
614 the PC register.
615
616 A variable argument function call will look like:
617
618 mov ip, sp
619 stmfd sp!, {a1, a2, a3, a4}
620 stmfd sp!, {fp, ip, lr, pc}
621 sub fp, ip, #20
622
623 Which would create this stack frame (offsets relative to FP):
624 IP -> 20 (caller's stack)
625 16 A4
626 12 A3
627 8 A2
628 4 A1
629 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
630 -4 LR (return address in caller)
631 -8 IP (copy of caller's SP)
632 -12 FP (caller's FP)
633 SP -> -28 Local variables
634
635 The frame size would thus be 48 bytes, and the frame offset would be
636 28 bytes.
637
638 There is another potential complication, which is that the optimizer
639 will try to separate the store of fp in the "stmfd" instruction from
640 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
641 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
642
643 Also, note, the original version of the ARM toolchain claimed that there
644 should be an
645
646 instruction at the end of the prologue. I have never seen GCC produce
647 this, and the ARM docs don't mention it. We still test for it below in
648 case it happens...
649
650 */
651
652 static void
653 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
654 {
655 int regno, sp_offset, fp_offset, ip_offset;
656 CORE_ADDR prologue_start, prologue_end, current_pc;
657 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
658
659 /* Assume there is no frame until proven otherwise. */
660 cache->framereg = ARM_SP_REGNUM;
661 cache->framesize = 0;
662 cache->frameoffset = 0;
663
664 /* Check for Thumb prologue. */
665 if (arm_pc_is_thumb (prev_pc))
666 {
667 thumb_scan_prologue (prev_pc, cache);
668 return;
669 }
670
671 /* Find the function prologue. If we can't find the function in
672 the symbol table, peek in the stack frame to find the PC. */
673 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
674 {
675 /* One way to find the end of the prologue (which works well
676 for unoptimized code) is to do the following:
677
678 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
679
680 if (sal.line == 0)
681 prologue_end = prev_pc;
682 else if (sal.end < prologue_end)
683 prologue_end = sal.end;
684
685 This mechanism is very accurate so long as the optimizer
686 doesn't move any instructions from the function body into the
687 prologue. If this happens, sal.end will be the last
688 instruction in the first hunk of prologue code just before
689 the first instruction that the scheduler has moved from
690 the body to the prologue.
691
692 In order to make sure that we scan all of the prologue
693 instructions, we use a slightly less accurate mechanism which
694 may scan more than necessary. To help compensate for this
695 lack of accuracy, the prologue scanning loop below contains
696 several clauses which'll cause the loop to terminate early if
697 an implausible prologue instruction is encountered.
698
699 The expression
700
701 prologue_start + 64
702
703 is a suitable endpoint since it accounts for the largest
704 possible prologue plus up to five instructions inserted by
705 the scheduler. */
706
707 if (prologue_end > prologue_start + 64)
708 {
709 prologue_end = prologue_start + 64; /* See above. */
710 }
711 }
712 else
713 {
714 /* We have no symbol information. Our only option is to assume this
715 function has a standard stack frame and the normal frame register.
716 Then, we can find the value of our frame pointer on entrance to
717 the callee (or at the present moment if this is the innermost frame).
718 The value stored there should be the address of the stmfd + 8. */
719 CORE_ADDR frame_loc;
720 LONGEST return_value;
721
722 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
723 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
724 return;
725 else
726 {
727 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
728 prologue_end = prologue_start + 64; /* See above. */
729 }
730 }
731
732 if (prev_pc < prologue_end)
733 prologue_end = prev_pc;
734
735 /* Now search the prologue looking for instructions that set up the
736 frame pointer, adjust the stack pointer, and save registers.
737
738 Be careful, however, and if it doesn't look like a prologue,
739 don't try to scan it. If, for instance, a frameless function
740 begins with stmfd sp!, then we will tell ourselves there is
741 a frame, which will confuse stack traceback, as well as "finish"
742 and other operations that rely on a knowledge of the stack
743 traceback.
744
745 In the APCS, the prologue should start with "mov ip, sp" so
746 if we don't see this as the first insn, we will stop.
747
748 [Note: This doesn't seem to be true any longer, so it's now an
749 optional part of the prologue. - Kevin Buettner, 2001-11-20]
750
751 [Note further: The "mov ip,sp" only seems to be missing in
752 frameless functions at optimization level "-O2" or above,
753 in which case it is often (but not always) replaced by
754 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
755
756 sp_offset = fp_offset = ip_offset = 0;
757
758 for (current_pc = prologue_start;
759 current_pc < prologue_end;
760 current_pc += 4)
761 {
762 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
763
764 if (insn == 0xe1a0c00d) /* mov ip, sp */
765 {
766 ip_offset = 0;
767 continue;
768 }
769 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
770 {
771 unsigned imm = insn & 0xff; /* immediate value */
772 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
773 imm = (imm >> rot) | (imm << (32 - rot));
774 ip_offset = imm;
775 continue;
776 }
777 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
778 {
779 unsigned imm = insn & 0xff; /* immediate value */
780 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
781 imm = (imm >> rot) | (imm << (32 - rot));
782 ip_offset = -imm;
783 continue;
784 }
785 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
786 {
787 sp_offset -= 4;
788 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
789 continue;
790 }
791 else if ((insn & 0xffff0000) == 0xe92d0000)
792 /* stmfd sp!, {..., fp, ip, lr, pc}
793 or
794 stmfd sp!, {a1, a2, a3, a4} */
795 {
796 int mask = insn & 0xffff;
797
798 /* Calculate offsets of saved registers. */
799 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
800 if (mask & (1 << regno))
801 {
802 sp_offset -= 4;
803 cache->saved_regs[regno].addr = sp_offset;
804 }
805 }
806 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
807 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
808 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
809 {
810 /* No need to add this to saved_regs -- it's just an arg reg. */
811 continue;
812 }
813 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
814 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
815 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
816 {
817 /* No need to add this to saved_regs -- it's just an arg reg. */
818 continue;
819 }
820 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
821 {
822 unsigned imm = insn & 0xff; /* immediate value */
823 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
824 imm = (imm >> rot) | (imm << (32 - rot));
825 fp_offset = -imm + ip_offset;
826 cache->framereg = ARM_FP_REGNUM;
827 }
828 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
829 {
830 unsigned imm = insn & 0xff; /* immediate value */
831 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
832 imm = (imm >> rot) | (imm << (32 - rot));
833 sp_offset -= imm;
834 }
835 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
836 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
837 {
838 sp_offset -= 12;
839 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
840 cache->saved_regs[regno].addr = sp_offset;
841 }
842 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
843 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
844 {
845 int n_saved_fp_regs;
846 unsigned int fp_start_reg, fp_bound_reg;
847
848 if ((insn & 0x800) == 0x800) /* N0 is set */
849 {
850 if ((insn & 0x40000) == 0x40000) /* N1 is set */
851 n_saved_fp_regs = 3;
852 else
853 n_saved_fp_regs = 1;
854 }
855 else
856 {
857 if ((insn & 0x40000) == 0x40000) /* N1 is set */
858 n_saved_fp_regs = 2;
859 else
860 n_saved_fp_regs = 4;
861 }
862
863 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
864 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
865 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
866 {
867 sp_offset -= 12;
868 cache->saved_regs[fp_start_reg++].addr = sp_offset;
869 }
870 }
871 else if ((insn & 0xf0000000) != 0xe0000000)
872 break; /* Condition not true, exit early */
873 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
874 break; /* Don't scan past a block load */
875 else
876 /* The optimizer might shove anything into the prologue,
877 so we just skip what we don't recognize. */
878 continue;
879 }
880
881 /* The frame size is just the negative of the offset (from the
882 original SP) of the last thing thing we pushed on the stack.
883 The frame offset is [new FP] - [new SP]. */
884 cache->framesize = -sp_offset;
885 if (cache->framereg == ARM_FP_REGNUM)
886 cache->frameoffset = fp_offset - sp_offset;
887 else
888 cache->frameoffset = 0;
889 }
890
891 static struct arm_prologue_cache *
892 arm_make_prologue_cache (struct frame_info *next_frame)
893 {
894 int reg;
895 struct arm_prologue_cache *cache;
896 CORE_ADDR unwound_fp;
897
898 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
899 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
900
901 arm_scan_prologue (next_frame, cache);
902
903 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
904 if (unwound_fp == 0)
905 return cache;
906
907 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
908
909 /* Calculate actual addresses of saved registers using offsets
910 determined by arm_scan_prologue. */
911 for (reg = 0; reg < NUM_REGS; reg++)
912 if (trad_frame_addr_p (cache->saved_regs, reg))
913 cache->saved_regs[reg].addr += cache->prev_sp;
914
915 return cache;
916 }
917
918 /* Our frame ID for a normal frame is the current function's starting PC
919 and the caller's SP when we were called. */
920
921 static void
922 arm_prologue_this_id (struct frame_info *next_frame,
923 void **this_cache,
924 struct frame_id *this_id)
925 {
926 struct arm_prologue_cache *cache;
927 struct frame_id id;
928 CORE_ADDR func;
929
930 if (*this_cache == NULL)
931 *this_cache = arm_make_prologue_cache (next_frame);
932 cache = *this_cache;
933
934 func = frame_func_unwind (next_frame);
935
936 /* This is meant to halt the backtrace at "_start". Make sure we
937 don't halt it at a generic dummy frame. */
938 if (func <= LOWEST_PC)
939 return;
940
941 /* If we've hit a wall, stop. */
942 if (cache->prev_sp == 0)
943 return;
944
945 id = frame_id_build (cache->prev_sp, func);
946 *this_id = id;
947 }
948
949 static void
950 arm_prologue_prev_register (struct frame_info *next_frame,
951 void **this_cache,
952 int prev_regnum,
953 int *optimized,
954 enum lval_type *lvalp,
955 CORE_ADDR *addrp,
956 int *realnump,
957 gdb_byte *valuep)
958 {
959 struct arm_prologue_cache *cache;
960
961 if (*this_cache == NULL)
962 *this_cache = arm_make_prologue_cache (next_frame);
963 cache = *this_cache;
964
965 /* If we are asked to unwind the PC, then we need to return the LR
966 instead. The saved value of PC points into this frame's
967 prologue, not the next frame's resume location. */
968 if (prev_regnum == ARM_PC_REGNUM)
969 prev_regnum = ARM_LR_REGNUM;
970
971 /* SP is generally not saved to the stack, but this frame is
972 identified by NEXT_FRAME's stack pointer at the time of the call.
973 The value was already reconstructed into PREV_SP. */
974 if (prev_regnum == ARM_SP_REGNUM)
975 {
976 *lvalp = not_lval;
977 if (valuep)
978 store_unsigned_integer (valuep, 4, cache->prev_sp);
979 return;
980 }
981
982 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
983 optimized, lvalp, addrp, realnump, valuep);
984 }
985
986 struct frame_unwind arm_prologue_unwind = {
987 NORMAL_FRAME,
988 arm_prologue_this_id,
989 arm_prologue_prev_register
990 };
991
992 static const struct frame_unwind *
993 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
994 {
995 return &arm_prologue_unwind;
996 }
997
998 static struct arm_prologue_cache *
999 arm_make_stub_cache (struct frame_info *next_frame)
1000 {
1001 int reg;
1002 struct arm_prologue_cache *cache;
1003 CORE_ADDR unwound_fp;
1004
1005 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1006 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1007
1008 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1009
1010 return cache;
1011 }
1012
1013 /* Our frame ID for a stub frame is the current SP and LR. */
1014
1015 static void
1016 arm_stub_this_id (struct frame_info *next_frame,
1017 void **this_cache,
1018 struct frame_id *this_id)
1019 {
1020 struct arm_prologue_cache *cache;
1021
1022 if (*this_cache == NULL)
1023 *this_cache = arm_make_stub_cache (next_frame);
1024 cache = *this_cache;
1025
1026 *this_id = frame_id_build (cache->prev_sp,
1027 frame_pc_unwind (next_frame));
1028 }
1029
1030 struct frame_unwind arm_stub_unwind = {
1031 NORMAL_FRAME,
1032 arm_stub_this_id,
1033 arm_prologue_prev_register
1034 };
1035
1036 static const struct frame_unwind *
1037 arm_stub_unwind_sniffer (struct frame_info *next_frame)
1038 {
1039 char dummy[4];
1040
1041 if (in_plt_section (frame_unwind_address_in_block (next_frame), NULL)
1042 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1043 return &arm_stub_unwind;
1044
1045 return NULL;
1046 }
1047
1048 static CORE_ADDR
1049 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1050 {
1051 struct arm_prologue_cache *cache;
1052
1053 if (*this_cache == NULL)
1054 *this_cache = arm_make_prologue_cache (next_frame);
1055 cache = *this_cache;
1056
1057 return cache->prev_sp + cache->frameoffset - cache->framesize;
1058 }
1059
1060 struct frame_base arm_normal_base = {
1061 &arm_prologue_unwind,
1062 arm_normal_frame_base,
1063 arm_normal_frame_base,
1064 arm_normal_frame_base
1065 };
1066
1067 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1068 dummy frame. The frame ID's base needs to match the TOS value
1069 saved by save_dummy_frame_tos() and returned from
1070 arm_push_dummy_call, and the PC needs to match the dummy frame's
1071 breakpoint. */
1072
1073 static struct frame_id
1074 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1075 {
1076 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1077 frame_pc_unwind (next_frame));
1078 }
1079
1080 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1081 be used to construct the previous frame's ID, after looking up the
1082 containing function). */
1083
1084 static CORE_ADDR
1085 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1086 {
1087 CORE_ADDR pc;
1088 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1089 return arm_addr_bits_remove (pc);
1090 }
1091
1092 static CORE_ADDR
1093 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1094 {
1095 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1096 }
1097
1098 /* When arguments must be pushed onto the stack, they go on in reverse
1099 order. The code below implements a FILO (stack) to do this. */
1100
1101 struct stack_item
1102 {
1103 int len;
1104 struct stack_item *prev;
1105 void *data;
1106 };
1107
1108 static struct stack_item *
1109 push_stack_item (struct stack_item *prev, void *contents, int len)
1110 {
1111 struct stack_item *si;
1112 si = xmalloc (sizeof (struct stack_item));
1113 si->data = xmalloc (len);
1114 si->len = len;
1115 si->prev = prev;
1116 memcpy (si->data, contents, len);
1117 return si;
1118 }
1119
1120 static struct stack_item *
1121 pop_stack_item (struct stack_item *si)
1122 {
1123 struct stack_item *dead = si;
1124 si = si->prev;
1125 xfree (dead->data);
1126 xfree (dead);
1127 return si;
1128 }
1129
1130
1131 /* Return the alignment (in bytes) of the given type. */
1132
1133 static int
1134 arm_type_align (struct type *t)
1135 {
1136 int n;
1137 int align;
1138 int falign;
1139
1140 t = check_typedef (t);
1141 switch (TYPE_CODE (t))
1142 {
1143 default:
1144 /* Should never happen. */
1145 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1146 return 4;
1147
1148 case TYPE_CODE_PTR:
1149 case TYPE_CODE_ENUM:
1150 case TYPE_CODE_INT:
1151 case TYPE_CODE_FLT:
1152 case TYPE_CODE_SET:
1153 case TYPE_CODE_RANGE:
1154 case TYPE_CODE_BITSTRING:
1155 case TYPE_CODE_REF:
1156 case TYPE_CODE_CHAR:
1157 case TYPE_CODE_BOOL:
1158 return TYPE_LENGTH (t);
1159
1160 case TYPE_CODE_ARRAY:
1161 case TYPE_CODE_COMPLEX:
1162 /* TODO: What about vector types? */
1163 return arm_type_align (TYPE_TARGET_TYPE (t));
1164
1165 case TYPE_CODE_STRUCT:
1166 case TYPE_CODE_UNION:
1167 align = 1;
1168 for (n = 0; n < TYPE_NFIELDS (t); n++)
1169 {
1170 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1171 if (falign > align)
1172 align = falign;
1173 }
1174 return align;
1175 }
1176 }
1177
1178 /* We currently only support passing parameters in integer registers. This
1179 conforms with GCC's default model. Several other variants exist and
1180 we should probably support some of them based on the selected ABI. */
1181
1182 static CORE_ADDR
1183 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1184 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1185 struct value **args, CORE_ADDR sp, int struct_return,
1186 CORE_ADDR struct_addr)
1187 {
1188 int argnum;
1189 int argreg;
1190 int nstack;
1191 struct stack_item *si = NULL;
1192
1193 /* Set the return address. For the ARM, the return breakpoint is
1194 always at BP_ADDR. */
1195 /* XXX Fix for Thumb. */
1196 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1197
1198 /* Walk through the list of args and determine how large a temporary
1199 stack is required. Need to take care here as structs may be
1200 passed on the stack, and we have to to push them. */
1201 nstack = 0;
1202
1203 argreg = ARM_A1_REGNUM;
1204 nstack = 0;
1205
1206 /* The struct_return pointer occupies the first parameter
1207 passing register. */
1208 if (struct_return)
1209 {
1210 if (arm_debug)
1211 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1212 REGISTER_NAME (argreg), paddr (struct_addr));
1213 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1214 argreg++;
1215 }
1216
1217 for (argnum = 0; argnum < nargs; argnum++)
1218 {
1219 int len;
1220 struct type *arg_type;
1221 struct type *target_type;
1222 enum type_code typecode;
1223 bfd_byte *val;
1224 int align;
1225
1226 arg_type = check_typedef (value_type (args[argnum]));
1227 len = TYPE_LENGTH (arg_type);
1228 target_type = TYPE_TARGET_TYPE (arg_type);
1229 typecode = TYPE_CODE (arg_type);
1230 val = value_contents_writeable (args[argnum]);
1231
1232 align = arm_type_align (arg_type);
1233 /* Round alignment up to a whole number of words. */
1234 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1235 /* Different ABIs have different maximum alignments. */
1236 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1237 {
1238 /* The APCS ABI only requires word alignment. */
1239 align = INT_REGISTER_SIZE;
1240 }
1241 else
1242 {
1243 /* The AAPCS requires at most doubleword alignment. */
1244 if (align > INT_REGISTER_SIZE * 2)
1245 align = INT_REGISTER_SIZE * 2;
1246 }
1247
1248 /* Push stack padding for dowubleword alignment. */
1249 if (nstack & (align - 1))
1250 {
1251 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1252 nstack += INT_REGISTER_SIZE;
1253 }
1254
1255 /* Doubleword aligned quantities must go in even register pairs. */
1256 if (argreg <= ARM_LAST_ARG_REGNUM
1257 && align > INT_REGISTER_SIZE
1258 && argreg & 1)
1259 argreg++;
1260
1261 /* If the argument is a pointer to a function, and it is a
1262 Thumb function, create a LOCAL copy of the value and set
1263 the THUMB bit in it. */
1264 if (TYPE_CODE_PTR == typecode
1265 && target_type != NULL
1266 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1267 {
1268 CORE_ADDR regval = extract_unsigned_integer (val, len);
1269 if (arm_pc_is_thumb (regval))
1270 {
1271 val = alloca (len);
1272 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1273 }
1274 }
1275
1276 /* Copy the argument to general registers or the stack in
1277 register-sized pieces. Large arguments are split between
1278 registers and stack. */
1279 while (len > 0)
1280 {
1281 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
1282
1283 if (argreg <= ARM_LAST_ARG_REGNUM)
1284 {
1285 /* The argument is being passed in a general purpose
1286 register. */
1287 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1288 if (arm_debug)
1289 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1290 argnum, REGISTER_NAME (argreg),
1291 phex (regval, DEPRECATED_REGISTER_SIZE));
1292 regcache_cooked_write_unsigned (regcache, argreg, regval);
1293 argreg++;
1294 }
1295 else
1296 {
1297 /* Push the arguments onto the stack. */
1298 if (arm_debug)
1299 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1300 argnum, nstack);
1301 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1302 nstack += DEPRECATED_REGISTER_SIZE;
1303 }
1304
1305 len -= partial_len;
1306 val += partial_len;
1307 }
1308 }
1309 /* If we have an odd number of words to push, then decrement the stack
1310 by one word now, so first stack argument will be dword aligned. */
1311 if (nstack & 4)
1312 sp -= 4;
1313
1314 while (si)
1315 {
1316 sp -= si->len;
1317 write_memory (sp, si->data, si->len);
1318 si = pop_stack_item (si);
1319 }
1320
1321 /* Finally, update teh SP register. */
1322 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1323
1324 return sp;
1325 }
1326
1327
1328 /* Always align the frame to an 8-byte boundary. This is required on
1329 some platforms and harmless on the rest. */
1330
1331 static CORE_ADDR
1332 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1333 {
1334 /* Align the stack to eight bytes. */
1335 return sp & ~ (CORE_ADDR) 7;
1336 }
1337
1338 static void
1339 print_fpu_flags (int flags)
1340 {
1341 if (flags & (1 << 0))
1342 fputs ("IVO ", stdout);
1343 if (flags & (1 << 1))
1344 fputs ("DVZ ", stdout);
1345 if (flags & (1 << 2))
1346 fputs ("OFL ", stdout);
1347 if (flags & (1 << 3))
1348 fputs ("UFL ", stdout);
1349 if (flags & (1 << 4))
1350 fputs ("INX ", stdout);
1351 putchar ('\n');
1352 }
1353
1354 /* Print interesting information about the floating point processor
1355 (if present) or emulator. */
1356 static void
1357 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1358 struct frame_info *frame, const char *args)
1359 {
1360 unsigned long status = read_register (ARM_FPS_REGNUM);
1361 int type;
1362
1363 type = (status >> 24) & 127;
1364 if (status & (1 << 31))
1365 printf (_("Hardware FPU type %d\n"), type);
1366 else
1367 printf (_("Software FPU type %d\n"), type);
1368 /* i18n: [floating point unit] mask */
1369 fputs (_("mask: "), stdout);
1370 print_fpu_flags (status >> 16);
1371 /* i18n: [floating point unit] flags */
1372 fputs (_("flags: "), stdout);
1373 print_fpu_flags (status);
1374 }
1375
1376 /* Return the GDB type object for the "standard" data type of data in
1377 register N. */
1378
1379 static struct type *
1380 arm_register_type (struct gdbarch *gdbarch, int regnum)
1381 {
1382 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1383 return builtin_type_arm_ext;
1384 else if (regnum == ARM_SP_REGNUM)
1385 return builtin_type_void_data_ptr;
1386 else if (regnum == ARM_PC_REGNUM)
1387 return builtin_type_void_func_ptr;
1388 else if (regnum >= ARRAY_SIZE (arm_register_names))
1389 /* These registers are only supported on targets which supply
1390 an XML description. */
1391 return builtin_type_int0;
1392 else
1393 return builtin_type_uint32;
1394 }
1395
1396 /* Map a DWARF register REGNUM onto the appropriate GDB register
1397 number. */
1398
1399 static int
1400 arm_dwarf_reg_to_regnum (int reg)
1401 {
1402 /* Core integer regs. */
1403 if (reg >= 0 && reg <= 15)
1404 return reg;
1405
1406 /* Legacy FPA encoding. These were once used in a way which
1407 overlapped with VFP register numbering, so their use is
1408 discouraged, but GDB doesn't support the ARM toolchain
1409 which used them for VFP. */
1410 if (reg >= 16 && reg <= 23)
1411 return ARM_F0_REGNUM + reg - 16;
1412
1413 /* New assignments for the FPA registers. */
1414 if (reg >= 96 && reg <= 103)
1415 return ARM_F0_REGNUM + reg - 96;
1416
1417 /* WMMX register assignments. */
1418 if (reg >= 104 && reg <= 111)
1419 return ARM_WCGR0_REGNUM + reg - 104;
1420
1421 if (reg >= 112 && reg <= 127)
1422 return ARM_WR0_REGNUM + reg - 112;
1423
1424 if (reg >= 192 && reg <= 199)
1425 return ARM_WC0_REGNUM + reg - 192;
1426
1427 return -1;
1428 }
1429
1430 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1431 static int
1432 arm_register_sim_regno (int regnum)
1433 {
1434 int reg = regnum;
1435 gdb_assert (reg >= 0 && reg < NUM_REGS);
1436
1437 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1438 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1439
1440 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1441 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1442
1443 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1444 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1445
1446 if (reg < NUM_GREGS)
1447 return SIM_ARM_R0_REGNUM + reg;
1448 reg -= NUM_GREGS;
1449
1450 if (reg < NUM_FREGS)
1451 return SIM_ARM_FP0_REGNUM + reg;
1452 reg -= NUM_FREGS;
1453
1454 if (reg < NUM_SREGS)
1455 return SIM_ARM_FPS_REGNUM + reg;
1456 reg -= NUM_SREGS;
1457
1458 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1459 }
1460
1461 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1462 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1463 It is thought that this is is the floating-point register format on
1464 little-endian systems. */
1465
1466 static void
1467 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1468 void *dbl)
1469 {
1470 DOUBLEST d;
1471 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1472 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1473 else
1474 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1475 ptr, &d);
1476 floatformat_from_doublest (fmt, &d, dbl);
1477 }
1478
1479 static void
1480 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1481 {
1482 DOUBLEST d;
1483 floatformat_to_doublest (fmt, ptr, &d);
1484 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1485 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1486 else
1487 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1488 &d, dbl);
1489 }
1490
1491 static int
1492 condition_true (unsigned long cond, unsigned long status_reg)
1493 {
1494 if (cond == INST_AL || cond == INST_NV)
1495 return 1;
1496
1497 switch (cond)
1498 {
1499 case INST_EQ:
1500 return ((status_reg & FLAG_Z) != 0);
1501 case INST_NE:
1502 return ((status_reg & FLAG_Z) == 0);
1503 case INST_CS:
1504 return ((status_reg & FLAG_C) != 0);
1505 case INST_CC:
1506 return ((status_reg & FLAG_C) == 0);
1507 case INST_MI:
1508 return ((status_reg & FLAG_N) != 0);
1509 case INST_PL:
1510 return ((status_reg & FLAG_N) == 0);
1511 case INST_VS:
1512 return ((status_reg & FLAG_V) != 0);
1513 case INST_VC:
1514 return ((status_reg & FLAG_V) == 0);
1515 case INST_HI:
1516 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1517 case INST_LS:
1518 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1519 case INST_GE:
1520 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1521 case INST_LT:
1522 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1523 case INST_GT:
1524 return (((status_reg & FLAG_Z) == 0) &&
1525 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1526 case INST_LE:
1527 return (((status_reg & FLAG_Z) != 0) ||
1528 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1529 }
1530 return 1;
1531 }
1532
1533 /* Support routines for single stepping. Calculate the next PC value. */
1534 #define submask(x) ((1L << ((x) + 1)) - 1)
1535 #define bit(obj,st) (((obj) >> (st)) & 1)
1536 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1537 #define sbits(obj,st,fn) \
1538 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1539 #define BranchDest(addr,instr) \
1540 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1541 #define ARM_PC_32 1
1542
1543 static unsigned long
1544 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1545 unsigned long status_reg)
1546 {
1547 unsigned long res, shift;
1548 int rm = bits (inst, 0, 3);
1549 unsigned long shifttype = bits (inst, 5, 6);
1550
1551 if (bit (inst, 4))
1552 {
1553 int rs = bits (inst, 8, 11);
1554 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1555 }
1556 else
1557 shift = bits (inst, 7, 11);
1558
1559 res = (rm == 15
1560 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1561 + (bit (inst, 4) ? 12 : 8))
1562 : read_register (rm));
1563
1564 switch (shifttype)
1565 {
1566 case 0: /* LSL */
1567 res = shift >= 32 ? 0 : res << shift;
1568 break;
1569
1570 case 1: /* LSR */
1571 res = shift >= 32 ? 0 : res >> shift;
1572 break;
1573
1574 case 2: /* ASR */
1575 if (shift >= 32)
1576 shift = 31;
1577 res = ((res & 0x80000000L)
1578 ? ~((~res) >> shift) : res >> shift);
1579 break;
1580
1581 case 3: /* ROR/RRX */
1582 shift &= 31;
1583 if (shift == 0)
1584 res = (res >> 1) | (carry ? 0x80000000L : 0);
1585 else
1586 res = (res >> shift) | (res << (32 - shift));
1587 break;
1588 }
1589
1590 return res & 0xffffffff;
1591 }
1592
1593 /* Return number of 1-bits in VAL. */
1594
1595 static int
1596 bitcount (unsigned long val)
1597 {
1598 int nbits;
1599 for (nbits = 0; val != 0; nbits++)
1600 val &= val - 1; /* delete rightmost 1-bit in val */
1601 return nbits;
1602 }
1603
1604 CORE_ADDR
1605 thumb_get_next_pc (CORE_ADDR pc)
1606 {
1607 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1608 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
1609 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1610 unsigned long offset;
1611
1612 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1613 {
1614 CORE_ADDR sp;
1615
1616 /* Fetch the saved PC from the stack. It's stored above
1617 all of the other registers. */
1618 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
1619 sp = read_register (ARM_SP_REGNUM);
1620 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
1621 nextpc = ADDR_BITS_REMOVE (nextpc);
1622 if (nextpc == pc)
1623 error (_("Infinite loop detected"));
1624 }
1625 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1626 {
1627 unsigned long status = read_register (ARM_PS_REGNUM);
1628 unsigned long cond = bits (inst1, 8, 11);
1629 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1630 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1631 }
1632 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1633 {
1634 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1635 }
1636 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1637 {
1638 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
1639 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1640 nextpc = pc_val + offset;
1641 /* For BLX make sure to clear the low bits. */
1642 if (bits (inst2, 11, 12) == 1)
1643 nextpc = nextpc & 0xfffffffc;
1644 }
1645 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1646 {
1647 if (bits (inst1, 3, 6) == 0x0f)
1648 nextpc = pc_val;
1649 else
1650 nextpc = read_register (bits (inst1, 3, 6));
1651
1652 nextpc = ADDR_BITS_REMOVE (nextpc);
1653 if (nextpc == pc)
1654 error (_("Infinite loop detected"));
1655 }
1656
1657 return nextpc;
1658 }
1659
1660 CORE_ADDR
1661 arm_get_next_pc (CORE_ADDR pc)
1662 {
1663 unsigned long pc_val;
1664 unsigned long this_instr;
1665 unsigned long status;
1666 CORE_ADDR nextpc;
1667
1668 if (arm_pc_is_thumb (pc))
1669 return thumb_get_next_pc (pc);
1670
1671 pc_val = (unsigned long) pc;
1672 this_instr = read_memory_unsigned_integer (pc, 4);
1673 status = read_register (ARM_PS_REGNUM);
1674 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1675
1676 if (condition_true (bits (this_instr, 28, 31), status))
1677 {
1678 switch (bits (this_instr, 24, 27))
1679 {
1680 case 0x0:
1681 case 0x1: /* data processing */
1682 case 0x2:
1683 case 0x3:
1684 {
1685 unsigned long operand1, operand2, result = 0;
1686 unsigned long rn;
1687 int c;
1688
1689 if (bits (this_instr, 12, 15) != 15)
1690 break;
1691
1692 if (bits (this_instr, 22, 25) == 0
1693 && bits (this_instr, 4, 7) == 9) /* multiply */
1694 error (_("Invalid update to pc in instruction"));
1695
1696 /* BX <reg>, BLX <reg> */
1697 if (bits (this_instr, 4, 27) == 0x12fff1
1698 || bits (this_instr, 4, 27) == 0x12fff3)
1699 {
1700 rn = bits (this_instr, 0, 3);
1701 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1702 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1703
1704 if (nextpc == pc)
1705 error (_("Infinite loop detected"));
1706
1707 return nextpc;
1708 }
1709
1710 /* Multiply into PC */
1711 c = (status & FLAG_C) ? 1 : 0;
1712 rn = bits (this_instr, 16, 19);
1713 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1714
1715 if (bit (this_instr, 25))
1716 {
1717 unsigned long immval = bits (this_instr, 0, 7);
1718 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1719 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1720 & 0xffffffff;
1721 }
1722 else /* operand 2 is a shifted register */
1723 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1724
1725 switch (bits (this_instr, 21, 24))
1726 {
1727 case 0x0: /*and */
1728 result = operand1 & operand2;
1729 break;
1730
1731 case 0x1: /*eor */
1732 result = operand1 ^ operand2;
1733 break;
1734
1735 case 0x2: /*sub */
1736 result = operand1 - operand2;
1737 break;
1738
1739 case 0x3: /*rsb */
1740 result = operand2 - operand1;
1741 break;
1742
1743 case 0x4: /*add */
1744 result = operand1 + operand2;
1745 break;
1746
1747 case 0x5: /*adc */
1748 result = operand1 + operand2 + c;
1749 break;
1750
1751 case 0x6: /*sbc */
1752 result = operand1 - operand2 + c;
1753 break;
1754
1755 case 0x7: /*rsc */
1756 result = operand2 - operand1 + c;
1757 break;
1758
1759 case 0x8:
1760 case 0x9:
1761 case 0xa:
1762 case 0xb: /* tst, teq, cmp, cmn */
1763 result = (unsigned long) nextpc;
1764 break;
1765
1766 case 0xc: /*orr */
1767 result = operand1 | operand2;
1768 break;
1769
1770 case 0xd: /*mov */
1771 /* Always step into a function. */
1772 result = operand2;
1773 break;
1774
1775 case 0xe: /*bic */
1776 result = operand1 & ~operand2;
1777 break;
1778
1779 case 0xf: /*mvn */
1780 result = ~operand2;
1781 break;
1782 }
1783 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1784
1785 if (nextpc == pc)
1786 error (_("Infinite loop detected"));
1787 break;
1788 }
1789
1790 case 0x4:
1791 case 0x5: /* data transfer */
1792 case 0x6:
1793 case 0x7:
1794 if (bit (this_instr, 20))
1795 {
1796 /* load */
1797 if (bits (this_instr, 12, 15) == 15)
1798 {
1799 /* rd == pc */
1800 unsigned long rn;
1801 unsigned long base;
1802
1803 if (bit (this_instr, 22))
1804 error (_("Invalid update to pc in instruction"));
1805
1806 /* byte write to PC */
1807 rn = bits (this_instr, 16, 19);
1808 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1809 if (bit (this_instr, 24))
1810 {
1811 /* pre-indexed */
1812 int c = (status & FLAG_C) ? 1 : 0;
1813 unsigned long offset =
1814 (bit (this_instr, 25)
1815 ? shifted_reg_val (this_instr, c, pc_val, status)
1816 : bits (this_instr, 0, 11));
1817
1818 if (bit (this_instr, 23))
1819 base += offset;
1820 else
1821 base -= offset;
1822 }
1823 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1824 4);
1825
1826 nextpc = ADDR_BITS_REMOVE (nextpc);
1827
1828 if (nextpc == pc)
1829 error (_("Infinite loop detected"));
1830 }
1831 }
1832 break;
1833
1834 case 0x8:
1835 case 0x9: /* block transfer */
1836 if (bit (this_instr, 20))
1837 {
1838 /* LDM */
1839 if (bit (this_instr, 15))
1840 {
1841 /* loading pc */
1842 int offset = 0;
1843
1844 if (bit (this_instr, 23))
1845 {
1846 /* up */
1847 unsigned long reglist = bits (this_instr, 0, 14);
1848 offset = bitcount (reglist) * 4;
1849 if (bit (this_instr, 24)) /* pre */
1850 offset += 4;
1851 }
1852 else if (bit (this_instr, 24))
1853 offset = -4;
1854
1855 {
1856 unsigned long rn_val =
1857 read_register (bits (this_instr, 16, 19));
1858 nextpc =
1859 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1860 + offset),
1861 4);
1862 }
1863 nextpc = ADDR_BITS_REMOVE (nextpc);
1864 if (nextpc == pc)
1865 error (_("Infinite loop detected"));
1866 }
1867 }
1868 break;
1869
1870 case 0xb: /* branch & link */
1871 case 0xa: /* branch */
1872 {
1873 nextpc = BranchDest (pc, this_instr);
1874
1875 /* BLX */
1876 if (bits (this_instr, 28, 31) == INST_NV)
1877 nextpc |= bit (this_instr, 24) << 1;
1878
1879 nextpc = ADDR_BITS_REMOVE (nextpc);
1880 if (nextpc == pc)
1881 error (_("Infinite loop detected"));
1882 break;
1883 }
1884
1885 case 0xc:
1886 case 0xd:
1887 case 0xe: /* coproc ops */
1888 case 0xf: /* SWI */
1889 break;
1890
1891 default:
1892 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
1893 return (pc);
1894 }
1895 }
1896
1897 return nextpc;
1898 }
1899
1900 /* single_step() is called just before we want to resume the inferior,
1901 if we want to single-step it but there is no hardware or kernel
1902 single-step support. We find the target of the coming instruction
1903 and breakpoint it.
1904
1905 single_step() is also called just after the inferior stops. If we
1906 had set up a simulated single-step, we undo our damage. */
1907
1908 static void
1909 arm_software_single_step (enum target_signal sig, int insert_bpt)
1910 {
1911 /* NOTE: This may insert the wrong breakpoint instruction when
1912 single-stepping over a mode-changing instruction, if the
1913 CPSR heuristics are used. */
1914
1915 if (insert_bpt)
1916 {
1917 CORE_ADDR next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1918
1919 insert_single_step_breakpoint (next_pc);
1920 }
1921 else
1922 remove_single_step_breakpoints ();
1923 }
1924
1925 #include "bfd-in2.h"
1926 #include "libcoff.h"
1927
1928 static int
1929 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1930 {
1931 if (arm_pc_is_thumb (memaddr))
1932 {
1933 static asymbol *asym;
1934 static combined_entry_type ce;
1935 static struct coff_symbol_struct csym;
1936 static struct bfd fake_bfd;
1937 static bfd_target fake_target;
1938
1939 if (csym.native == NULL)
1940 {
1941 /* Create a fake symbol vector containing a Thumb symbol.
1942 This is solely so that the code in print_insn_little_arm()
1943 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1944 the presence of a Thumb symbol and switch to decoding
1945 Thumb instructions. */
1946
1947 fake_target.flavour = bfd_target_coff_flavour;
1948 fake_bfd.xvec = &fake_target;
1949 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1950 csym.native = &ce;
1951 csym.symbol.the_bfd = &fake_bfd;
1952 csym.symbol.name = "fake";
1953 asym = (asymbol *) & csym;
1954 }
1955
1956 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1957 info->symbols = &asym;
1958 }
1959 else
1960 info->symbols = NULL;
1961
1962 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1963 return print_insn_big_arm (memaddr, info);
1964 else
1965 return print_insn_little_arm (memaddr, info);
1966 }
1967
1968 /* The following define instruction sequences that will cause ARM
1969 cpu's to take an undefined instruction trap. These are used to
1970 signal a breakpoint to GDB.
1971
1972 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1973 modes. A different instruction is required for each mode. The ARM
1974 cpu's can also be big or little endian. Thus four different
1975 instructions are needed to support all cases.
1976
1977 Note: ARMv4 defines several new instructions that will take the
1978 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1979 not in fact add the new instructions. The new undefined
1980 instructions in ARMv4 are all instructions that had no defined
1981 behaviour in earlier chips. There is no guarantee that they will
1982 raise an exception, but may be treated as NOP's. In practice, it
1983 may only safe to rely on instructions matching:
1984
1985 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1986 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1987 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1988
1989 Even this may only true if the condition predicate is true. The
1990 following use a condition predicate of ALWAYS so it is always TRUE.
1991
1992 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1993 and NetBSD all use a software interrupt rather than an undefined
1994 instruction to force a trap. This can be handled by by the
1995 abi-specific code during establishment of the gdbarch vector. */
1996
1997
1998 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1999 override these definitions. */
2000 #ifndef ARM_LE_BREAKPOINT
2001 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2002 #endif
2003 #ifndef ARM_BE_BREAKPOINT
2004 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2005 #endif
2006 #ifndef THUMB_LE_BREAKPOINT
2007 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2008 #endif
2009 #ifndef THUMB_BE_BREAKPOINT
2010 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2011 #endif
2012
2013 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2014 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2015 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2016 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2017
2018 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2019 the program counter value to determine whether a 16-bit or 32-bit
2020 breakpoint should be used. It returns a pointer to a string of
2021 bytes that encode a breakpoint instruction, stores the length of
2022 the string to *lenptr, and adjusts the program counter (if
2023 necessary) to point to the actual memory location where the
2024 breakpoint should be inserted. */
2025
2026 static const unsigned char *
2027 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2028 {
2029 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2030
2031 if (arm_pc_is_thumb (*pcptr))
2032 {
2033 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2034 *lenptr = tdep->thumb_breakpoint_size;
2035 return tdep->thumb_breakpoint;
2036 }
2037 else
2038 {
2039 *lenptr = tdep->arm_breakpoint_size;
2040 return tdep->arm_breakpoint;
2041 }
2042 }
2043
2044 /* Extract from an array REGBUF containing the (raw) register state a
2045 function return value of type TYPE, and copy that, in virtual
2046 format, into VALBUF. */
2047
2048 static void
2049 arm_extract_return_value (struct type *type, struct regcache *regs,
2050 gdb_byte *valbuf)
2051 {
2052 if (TYPE_CODE_FLT == TYPE_CODE (type))
2053 {
2054 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2055 {
2056 case ARM_FLOAT_FPA:
2057 {
2058 /* The value is in register F0 in internal format. We need to
2059 extract the raw value and then convert it to the desired
2060 internal type. */
2061 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2062
2063 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2064 convert_from_extended (floatformat_from_type (type), tmpbuf,
2065 valbuf);
2066 }
2067 break;
2068
2069 case ARM_FLOAT_SOFT_FPA:
2070 case ARM_FLOAT_SOFT_VFP:
2071 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2072 if (TYPE_LENGTH (type) > 4)
2073 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2074 valbuf + INT_REGISTER_SIZE);
2075 break;
2076
2077 default:
2078 internal_error
2079 (__FILE__, __LINE__,
2080 _("arm_extract_return_value: Floating point model not supported"));
2081 break;
2082 }
2083 }
2084 else if (TYPE_CODE (type) == TYPE_CODE_INT
2085 || TYPE_CODE (type) == TYPE_CODE_CHAR
2086 || TYPE_CODE (type) == TYPE_CODE_BOOL
2087 || TYPE_CODE (type) == TYPE_CODE_PTR
2088 || TYPE_CODE (type) == TYPE_CODE_REF
2089 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2090 {
2091 /* If the the type is a plain integer, then the access is
2092 straight-forward. Otherwise we have to play around a bit more. */
2093 int len = TYPE_LENGTH (type);
2094 int regno = ARM_A1_REGNUM;
2095 ULONGEST tmp;
2096
2097 while (len > 0)
2098 {
2099 /* By using store_unsigned_integer we avoid having to do
2100 anything special for small big-endian values. */
2101 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2102 store_unsigned_integer (valbuf,
2103 (len > INT_REGISTER_SIZE
2104 ? INT_REGISTER_SIZE : len),
2105 tmp);
2106 len -= INT_REGISTER_SIZE;
2107 valbuf += INT_REGISTER_SIZE;
2108 }
2109 }
2110 else
2111 {
2112 /* For a structure or union the behaviour is as if the value had
2113 been stored to word-aligned memory and then loaded into
2114 registers with 32-bit load instruction(s). */
2115 int len = TYPE_LENGTH (type);
2116 int regno = ARM_A1_REGNUM;
2117 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2118
2119 while (len > 0)
2120 {
2121 regcache_cooked_read (regs, regno++, tmpbuf);
2122 memcpy (valbuf, tmpbuf,
2123 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2124 len -= INT_REGISTER_SIZE;
2125 valbuf += INT_REGISTER_SIZE;
2126 }
2127 }
2128 }
2129
2130
2131 /* Will a function return an aggregate type in memory or in a
2132 register? Return 0 if an aggregate type can be returned in a
2133 register, 1 if it must be returned in memory. */
2134
2135 static int
2136 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2137 {
2138 int nRc;
2139 enum type_code code;
2140
2141 CHECK_TYPEDEF (type);
2142
2143 /* In the ARM ABI, "integer" like aggregate types are returned in
2144 registers. For an aggregate type to be integer like, its size
2145 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2146 offset of each addressable subfield must be zero. Note that bit
2147 fields are not addressable, and all addressable subfields of
2148 unions always start at offset zero.
2149
2150 This function is based on the behaviour of GCC 2.95.1.
2151 See: gcc/arm.c: arm_return_in_memory() for details.
2152
2153 Note: All versions of GCC before GCC 2.95.2 do not set up the
2154 parameters correctly for a function returning the following
2155 structure: struct { float f;}; This should be returned in memory,
2156 not a register. Richard Earnshaw sent me a patch, but I do not
2157 know of any way to detect if a function like the above has been
2158 compiled with the correct calling convention. */
2159
2160 /* All aggregate types that won't fit in a register must be returned
2161 in memory. */
2162 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
2163 {
2164 return 1;
2165 }
2166
2167 /* The AAPCS says all aggregates not larger than a word are returned
2168 in a register. */
2169 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2170 return 0;
2171
2172 /* The only aggregate types that can be returned in a register are
2173 structs and unions. Arrays must be returned in memory. */
2174 code = TYPE_CODE (type);
2175 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2176 {
2177 return 1;
2178 }
2179
2180 /* Assume all other aggregate types can be returned in a register.
2181 Run a check for structures, unions and arrays. */
2182 nRc = 0;
2183
2184 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2185 {
2186 int i;
2187 /* Need to check if this struct/union is "integer" like. For
2188 this to be true, its size must be less than or equal to
2189 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2190 subfield must be zero. Note that bit fields are not
2191 addressable, and unions always start at offset zero. If any
2192 of the subfields is a floating point type, the struct/union
2193 cannot be an integer type. */
2194
2195 /* For each field in the object, check:
2196 1) Is it FP? --> yes, nRc = 1;
2197 2) Is it addressable (bitpos != 0) and
2198 not packed (bitsize == 0)?
2199 --> yes, nRc = 1
2200 */
2201
2202 for (i = 0; i < TYPE_NFIELDS (type); i++)
2203 {
2204 enum type_code field_type_code;
2205 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2206
2207 /* Is it a floating point type field? */
2208 if (field_type_code == TYPE_CODE_FLT)
2209 {
2210 nRc = 1;
2211 break;
2212 }
2213
2214 /* If bitpos != 0, then we have to care about it. */
2215 if (TYPE_FIELD_BITPOS (type, i) != 0)
2216 {
2217 /* Bitfields are not addressable. If the field bitsize is
2218 zero, then the field is not packed. Hence it cannot be
2219 a bitfield or any other packed type. */
2220 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2221 {
2222 nRc = 1;
2223 break;
2224 }
2225 }
2226 }
2227 }
2228
2229 return nRc;
2230 }
2231
2232 /* Write into appropriate registers a function return value of type
2233 TYPE, given in virtual format. */
2234
2235 static void
2236 arm_store_return_value (struct type *type, struct regcache *regs,
2237 const gdb_byte *valbuf)
2238 {
2239 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2240 {
2241 char buf[MAX_REGISTER_SIZE];
2242
2243 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2244 {
2245 case ARM_FLOAT_FPA:
2246
2247 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2248 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2249 break;
2250
2251 case ARM_FLOAT_SOFT_FPA:
2252 case ARM_FLOAT_SOFT_VFP:
2253 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2254 if (TYPE_LENGTH (type) > 4)
2255 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2256 valbuf + INT_REGISTER_SIZE);
2257 break;
2258
2259 default:
2260 internal_error
2261 (__FILE__, __LINE__,
2262 _("arm_store_return_value: Floating point model not supported"));
2263 break;
2264 }
2265 }
2266 else if (TYPE_CODE (type) == TYPE_CODE_INT
2267 || TYPE_CODE (type) == TYPE_CODE_CHAR
2268 || TYPE_CODE (type) == TYPE_CODE_BOOL
2269 || TYPE_CODE (type) == TYPE_CODE_PTR
2270 || TYPE_CODE (type) == TYPE_CODE_REF
2271 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2272 {
2273 if (TYPE_LENGTH (type) <= 4)
2274 {
2275 /* Values of one word or less are zero/sign-extended and
2276 returned in r0. */
2277 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2278 LONGEST val = unpack_long (type, valbuf);
2279
2280 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2281 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2282 }
2283 else
2284 {
2285 /* Integral values greater than one word are stored in consecutive
2286 registers starting with r0. This will always be a multiple of
2287 the regiser size. */
2288 int len = TYPE_LENGTH (type);
2289 int regno = ARM_A1_REGNUM;
2290
2291 while (len > 0)
2292 {
2293 regcache_cooked_write (regs, regno++, valbuf);
2294 len -= INT_REGISTER_SIZE;
2295 valbuf += INT_REGISTER_SIZE;
2296 }
2297 }
2298 }
2299 else
2300 {
2301 /* For a structure or union the behaviour is as if the value had
2302 been stored to word-aligned memory and then loaded into
2303 registers with 32-bit load instruction(s). */
2304 int len = TYPE_LENGTH (type);
2305 int regno = ARM_A1_REGNUM;
2306 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2307
2308 while (len > 0)
2309 {
2310 memcpy (tmpbuf, valbuf,
2311 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2312 regcache_cooked_write (regs, regno++, tmpbuf);
2313 len -= INT_REGISTER_SIZE;
2314 valbuf += INT_REGISTER_SIZE;
2315 }
2316 }
2317 }
2318
2319
2320 /* Handle function return values. */
2321
2322 static enum return_value_convention
2323 arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
2324 struct regcache *regcache, gdb_byte *readbuf,
2325 const gdb_byte *writebuf)
2326 {
2327 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2328
2329 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2330 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2331 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2332 {
2333 if (tdep->struct_return == pcc_struct_return
2334 || arm_return_in_memory (gdbarch, valtype))
2335 return RETURN_VALUE_STRUCT_CONVENTION;
2336 }
2337
2338 if (writebuf)
2339 arm_store_return_value (valtype, regcache, writebuf);
2340
2341 if (readbuf)
2342 arm_extract_return_value (valtype, regcache, readbuf);
2343
2344 return RETURN_VALUE_REGISTER_CONVENTION;
2345 }
2346
2347
2348 static int
2349 arm_get_longjmp_target (CORE_ADDR *pc)
2350 {
2351 CORE_ADDR jb_addr;
2352 char buf[INT_REGISTER_SIZE];
2353 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2354
2355 jb_addr = read_register (ARM_A1_REGNUM);
2356
2357 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2358 INT_REGISTER_SIZE))
2359 return 0;
2360
2361 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2362 return 1;
2363 }
2364
2365 /* Return non-zero if the PC is inside a thumb call thunk. */
2366
2367 int
2368 arm_in_call_stub (CORE_ADDR pc, char *name)
2369 {
2370 CORE_ADDR start_addr;
2371
2372 /* Find the starting address of the function containing the PC. If
2373 the caller didn't give us a name, look it up at the same time. */
2374 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2375 &start_addr, NULL))
2376 return 0;
2377
2378 return strncmp (name, "_call_via_r", 11) == 0;
2379 }
2380
2381 /* If PC is in a Thumb call or return stub, return the address of the
2382 target PC, which is in a register. The thunk functions are called
2383 _called_via_xx, where x is the register name. The possible names
2384 are r0-r9, sl, fp, ip, sp, and lr. */
2385
2386 CORE_ADDR
2387 arm_skip_stub (CORE_ADDR pc)
2388 {
2389 char *name;
2390 CORE_ADDR start_addr;
2391
2392 /* Find the starting address and name of the function containing the PC. */
2393 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2394 return 0;
2395
2396 /* Call thunks always start with "_call_via_". */
2397 if (strncmp (name, "_call_via_", 10) == 0)
2398 {
2399 /* Use the name suffix to determine which register contains the
2400 target PC. */
2401 static char *table[15] =
2402 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2403 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2404 };
2405 int regno;
2406
2407 for (regno = 0; regno <= 14; regno++)
2408 if (strcmp (&name[10], table[regno]) == 0)
2409 return read_register (regno);
2410 }
2411
2412 return 0; /* not a stub */
2413 }
2414
2415 static void
2416 set_arm_command (char *args, int from_tty)
2417 {
2418 printf_unfiltered (_("\
2419 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2420 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2421 }
2422
2423 static void
2424 show_arm_command (char *args, int from_tty)
2425 {
2426 cmd_show_list (showarmcmdlist, from_tty, "");
2427 }
2428
2429 static void
2430 arm_update_current_architecture (void)
2431 {
2432 struct gdbarch_info info;
2433
2434 /* If the current architecture is not ARM, we have nothing to do. */
2435 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2436 return;
2437
2438 /* Update the architecture. */
2439 gdbarch_info_init (&info);
2440
2441 if (!gdbarch_update_p (info))
2442 internal_error (__FILE__, __LINE__, "could not update architecture");
2443 }
2444
2445 static void
2446 set_fp_model_sfunc (char *args, int from_tty,
2447 struct cmd_list_element *c)
2448 {
2449 enum arm_float_model fp_model;
2450
2451 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2452 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2453 {
2454 arm_fp_model = fp_model;
2455 break;
2456 }
2457
2458 if (fp_model == ARM_FLOAT_LAST)
2459 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2460 current_fp_model);
2461
2462 arm_update_current_architecture ();
2463 }
2464
2465 static void
2466 show_fp_model (struct ui_file *file, int from_tty,
2467 struct cmd_list_element *c, const char *value)
2468 {
2469 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2470
2471 if (arm_fp_model == ARM_FLOAT_AUTO
2472 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2473 fprintf_filtered (file, _("\
2474 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2475 fp_model_strings[tdep->fp_model]);
2476 else
2477 fprintf_filtered (file, _("\
2478 The current ARM floating point model is \"%s\".\n"),
2479 fp_model_strings[arm_fp_model]);
2480 }
2481
2482 static void
2483 arm_set_abi (char *args, int from_tty,
2484 struct cmd_list_element *c)
2485 {
2486 enum arm_abi_kind arm_abi;
2487
2488 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2489 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2490 {
2491 arm_abi_global = arm_abi;
2492 break;
2493 }
2494
2495 if (arm_abi == ARM_ABI_LAST)
2496 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2497 arm_abi_string);
2498
2499 arm_update_current_architecture ();
2500 }
2501
2502 static void
2503 arm_show_abi (struct ui_file *file, int from_tty,
2504 struct cmd_list_element *c, const char *value)
2505 {
2506 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2507
2508 if (arm_abi_global == ARM_ABI_AUTO
2509 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2510 fprintf_filtered (file, _("\
2511 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2512 arm_abi_strings[tdep->arm_abi]);
2513 else
2514 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2515 arm_abi_string);
2516 }
2517
2518 /* If the user changes the register disassembly style used for info
2519 register and other commands, we have to also switch the style used
2520 in opcodes for disassembly output. This function is run in the "set
2521 arm disassembly" command, and does that. */
2522
2523 static void
2524 set_disassembly_style_sfunc (char *args, int from_tty,
2525 struct cmd_list_element *c)
2526 {
2527 set_disassembly_style ();
2528 }
2529 \f
2530 /* Return the ARM register name corresponding to register I. */
2531 static const char *
2532 arm_register_name (int i)
2533 {
2534 if (i >= ARRAY_SIZE (arm_register_names))
2535 /* These registers are only supported on targets which supply
2536 an XML description. */
2537 return "";
2538
2539 return arm_register_names[i];
2540 }
2541
2542 static void
2543 set_disassembly_style (void)
2544 {
2545 int current;
2546
2547 /* Find the style that the user wants. */
2548 for (current = 0; current < num_disassembly_options; current++)
2549 if (disassembly_style == valid_disassembly_styles[current])
2550 break;
2551 gdb_assert (current < num_disassembly_options);
2552
2553 /* Synchronize the disassembler. */
2554 set_arm_regname_option (current);
2555 }
2556
2557 /* Test whether the coff symbol specific value corresponds to a Thumb
2558 function. */
2559
2560 static int
2561 coff_sym_is_thumb (int val)
2562 {
2563 return (val == C_THUMBEXT ||
2564 val == C_THUMBSTAT ||
2565 val == C_THUMBEXTFUNC ||
2566 val == C_THUMBSTATFUNC ||
2567 val == C_THUMBLABEL);
2568 }
2569
2570 /* arm_coff_make_msymbol_special()
2571 arm_elf_make_msymbol_special()
2572
2573 These functions test whether the COFF or ELF symbol corresponds to
2574 an address in thumb code, and set a "special" bit in a minimal
2575 symbol to indicate that it does. */
2576
2577 static void
2578 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2579 {
2580 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2581 STT_ARM_TFUNC). */
2582 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2583 == STT_LOPROC)
2584 MSYMBOL_SET_SPECIAL (msym);
2585 }
2586
2587 static void
2588 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2589 {
2590 if (coff_sym_is_thumb (val))
2591 MSYMBOL_SET_SPECIAL (msym);
2592 }
2593
2594 static void
2595 arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2596 {
2597 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2598
2599 /* If necessary, set the T bit. */
2600 if (arm_apcs_32)
2601 {
2602 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2603 if (arm_pc_is_thumb (pc))
2604 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2605 else
2606 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2607 }
2608 }
2609
2610 static struct value *
2611 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2612 {
2613 const int *reg_p = baton;
2614 return value_of_register (*reg_p, frame);
2615 }
2616 \f
2617 static enum gdb_osabi
2618 arm_elf_osabi_sniffer (bfd *abfd)
2619 {
2620 unsigned int elfosabi;
2621 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2622
2623 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2624
2625 if (elfosabi == ELFOSABI_ARM)
2626 /* GNU tools use this value. Check note sections in this case,
2627 as well. */
2628 bfd_map_over_sections (abfd,
2629 generic_elf_osabi_sniff_abi_tag_sections,
2630 &osabi);
2631
2632 /* Anything else will be handled by the generic ELF sniffer. */
2633 return osabi;
2634 }
2635
2636 \f
2637 /* Initialize the current architecture based on INFO. If possible,
2638 re-use an architecture from ARCHES, which is a list of
2639 architectures already created during this debugging session.
2640
2641 Called e.g. at program startup, when reading a core file, and when
2642 reading a binary file. */
2643
2644 static struct gdbarch *
2645 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2646 {
2647 struct gdbarch_tdep *tdep;
2648 struct gdbarch *gdbarch;
2649 struct gdbarch_list *best_arch;
2650 enum arm_abi_kind arm_abi = arm_abi_global;
2651 enum arm_float_model fp_model = arm_fp_model;
2652 struct tdesc_arch_data *tdesc_data = NULL;
2653 int i;
2654 int have_fpa_registers = 1;
2655
2656 /* Check any target description for validity. */
2657 if (tdesc_has_registers (info.target_desc))
2658 {
2659 /* For most registers we require GDB's default names; but also allow
2660 the numeric names for sp / lr / pc, as a convenience. */
2661 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2662 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2663 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2664
2665 const struct tdesc_feature *feature;
2666 int i, valid_p;
2667
2668 feature = tdesc_find_feature (info.target_desc,
2669 "org.gnu.gdb.arm.core");
2670 if (feature == NULL)
2671 return NULL;
2672
2673 tdesc_data = tdesc_data_alloc ();
2674
2675 valid_p = 1;
2676 for (i = 0; i < ARM_SP_REGNUM; i++)
2677 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2678 arm_register_names[i]);
2679 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2680 ARM_SP_REGNUM,
2681 arm_sp_names);
2682 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2683 ARM_LR_REGNUM,
2684 arm_lr_names);
2685 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2686 ARM_PC_REGNUM,
2687 arm_pc_names);
2688 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2689 ARM_PS_REGNUM, "cpsr");
2690
2691 if (!valid_p)
2692 {
2693 tdesc_data_cleanup (tdesc_data);
2694 return NULL;
2695 }
2696
2697 feature = tdesc_find_feature (info.target_desc,
2698 "org.gnu.gdb.arm.fpa");
2699 if (feature != NULL)
2700 {
2701 valid_p = 1;
2702 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2703 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2704 arm_register_names[i]);
2705 if (!valid_p)
2706 {
2707 tdesc_data_cleanup (tdesc_data);
2708 return NULL;
2709 }
2710 }
2711 else
2712 have_fpa_registers = 0;
2713
2714 feature = tdesc_find_feature (info.target_desc,
2715 "org.gnu.gdb.xscale.iwmmxt");
2716 if (feature != NULL)
2717 {
2718 static const char *const iwmmxt_names[] = {
2719 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2720 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2721 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2722 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2723 };
2724
2725 valid_p = 1;
2726 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2727 valid_p
2728 &= tdesc_numbered_register (feature, tdesc_data, i,
2729 iwmmxt_names[i - ARM_WR0_REGNUM]);
2730
2731 /* Check for the control registers, but do not fail if they
2732 are missing. */
2733 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2734 tdesc_numbered_register (feature, tdesc_data, i,
2735 iwmmxt_names[i - ARM_WR0_REGNUM]);
2736
2737 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2738 valid_p
2739 &= tdesc_numbered_register (feature, tdesc_data, i,
2740 iwmmxt_names[i - ARM_WR0_REGNUM]);
2741
2742 if (!valid_p)
2743 {
2744 tdesc_data_cleanup (tdesc_data);
2745 return NULL;
2746 }
2747 }
2748 }
2749
2750 /* If we have an object to base this architecture on, try to determine
2751 its ABI. */
2752
2753 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
2754 {
2755 int ei_osabi, e_flags;
2756
2757 switch (bfd_get_flavour (info.abfd))
2758 {
2759 case bfd_target_aout_flavour:
2760 /* Assume it's an old APCS-style ABI. */
2761 arm_abi = ARM_ABI_APCS;
2762 break;
2763
2764 case bfd_target_coff_flavour:
2765 /* Assume it's an old APCS-style ABI. */
2766 /* XXX WinCE? */
2767 arm_abi = ARM_ABI_APCS;
2768 break;
2769
2770 case bfd_target_elf_flavour:
2771 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2772 e_flags = elf_elfheader (info.abfd)->e_flags;
2773
2774 if (ei_osabi == ELFOSABI_ARM)
2775 {
2776 /* GNU tools used to use this value, but do not for EABI
2777 objects. There's nowhere to tag an EABI version
2778 anyway, so assume APCS. */
2779 arm_abi = ARM_ABI_APCS;
2780 }
2781 else if (ei_osabi == ELFOSABI_NONE)
2782 {
2783 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2784
2785 switch (eabi_ver)
2786 {
2787 case EF_ARM_EABI_UNKNOWN:
2788 /* Assume GNU tools. */
2789 arm_abi = ARM_ABI_APCS;
2790 break;
2791
2792 case EF_ARM_EABI_VER4:
2793 case EF_ARM_EABI_VER5:
2794 arm_abi = ARM_ABI_AAPCS;
2795 /* EABI binaries default to VFP float ordering. */
2796 if (fp_model == ARM_FLOAT_AUTO)
2797 fp_model = ARM_FLOAT_SOFT_VFP;
2798 break;
2799
2800 default:
2801 /* Leave it as "auto". */
2802 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2803 break;
2804 }
2805 }
2806
2807 if (fp_model == ARM_FLOAT_AUTO)
2808 {
2809 int e_flags = elf_elfheader (info.abfd)->e_flags;
2810
2811 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2812 {
2813 case 0:
2814 /* Leave it as "auto". Strictly speaking this case
2815 means FPA, but almost nobody uses that now, and
2816 many toolchains fail to set the appropriate bits
2817 for the floating-point model they use. */
2818 break;
2819 case EF_ARM_SOFT_FLOAT:
2820 fp_model = ARM_FLOAT_SOFT_FPA;
2821 break;
2822 case EF_ARM_VFP_FLOAT:
2823 fp_model = ARM_FLOAT_VFP;
2824 break;
2825 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2826 fp_model = ARM_FLOAT_SOFT_VFP;
2827 break;
2828 }
2829 }
2830 break;
2831
2832 default:
2833 /* Leave it as "auto". */
2834 break;
2835 }
2836 }
2837
2838 /* Now that we have inferred any architecture settings that we
2839 can, try to inherit from the last ARM ABI. */
2840 if (arches != NULL)
2841 {
2842 if (arm_abi == ARM_ABI_AUTO)
2843 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2844
2845 if (fp_model == ARM_FLOAT_AUTO)
2846 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2847 }
2848 else
2849 {
2850 /* There was no prior ARM architecture; fill in default values. */
2851
2852 if (arm_abi == ARM_ABI_AUTO)
2853 arm_abi = ARM_ABI_APCS;
2854
2855 /* We used to default to FPA for generic ARM, but almost nobody
2856 uses that now, and we now provide a way for the user to force
2857 the model. So default to the most useful variant. */
2858 if (fp_model == ARM_FLOAT_AUTO)
2859 fp_model = ARM_FLOAT_SOFT_FPA;
2860 }
2861
2862 /* If there is already a candidate, use it. */
2863 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2864 best_arch != NULL;
2865 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2866 {
2867 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2868 continue;
2869
2870 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2871 continue;
2872
2873 /* Found a match. */
2874 break;
2875 }
2876
2877 if (best_arch != NULL)
2878 {
2879 if (tdesc_data != NULL)
2880 tdesc_data_cleanup (tdesc_data);
2881 return best_arch->gdbarch;
2882 }
2883
2884 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2885 gdbarch = gdbarch_alloc (&info, tdep);
2886
2887 /* Record additional information about the architecture we are defining.
2888 These are gdbarch discriminators, like the OSABI. */
2889 tdep->arm_abi = arm_abi;
2890 tdep->fp_model = fp_model;
2891 tdep->have_fpa_registers = have_fpa_registers;
2892
2893 /* Breakpoints. */
2894 switch (info.byte_order)
2895 {
2896 case BFD_ENDIAN_BIG:
2897 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2898 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2899 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2900 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2901
2902 break;
2903
2904 case BFD_ENDIAN_LITTLE:
2905 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2906 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2907 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2908 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2909
2910 break;
2911
2912 default:
2913 internal_error (__FILE__, __LINE__,
2914 _("arm_gdbarch_init: bad byte order for float format"));
2915 }
2916
2917 /* On ARM targets char defaults to unsigned. */
2918 set_gdbarch_char_signed (gdbarch, 0);
2919
2920 /* This should be low enough for everything. */
2921 tdep->lowest_pc = 0x20;
2922 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2923
2924 /* The default, for both APCS and AAPCS, is to return small
2925 structures in registers. */
2926 tdep->struct_return = reg_struct_return;
2927
2928 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2929 set_gdbarch_frame_align (gdbarch, arm_frame_align);
2930
2931 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2932
2933 /* Frame handling. */
2934 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2935 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2936 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2937
2938 frame_base_set_default (gdbarch, &arm_normal_base);
2939
2940 /* Address manipulation. */
2941 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2942 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2943
2944 /* Advance PC across function entry code. */
2945 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2946
2947 /* The stack grows downward. */
2948 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2949
2950 /* Breakpoint manipulation. */
2951 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2952
2953 /* Information about registers, etc. */
2954 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2955 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2956 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2957 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
2958 set_gdbarch_register_type (gdbarch, arm_register_type);
2959
2960 /* This "info float" is FPA-specific. Use the generic version if we
2961 do not have FPA. */
2962 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
2963 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2964
2965 /* Internal <-> external register number maps. */
2966 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2967 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2968 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2969
2970 /* Integer registers are 4 bytes. */
2971 set_gdbarch_deprecated_register_size (gdbarch, 4);
2972 set_gdbarch_register_name (gdbarch, arm_register_name);
2973
2974 /* Returning results. */
2975 set_gdbarch_return_value (gdbarch, arm_return_value);
2976
2977 /* Single stepping. */
2978 /* XXX For an RDI target we should ask the target if it can single-step. */
2979 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2980
2981 /* Disassembly. */
2982 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2983
2984 /* Minsymbol frobbing. */
2985 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2986 set_gdbarch_coff_make_msymbol_special (gdbarch,
2987 arm_coff_make_msymbol_special);
2988
2989 /* Virtual tables. */
2990 set_gdbarch_vbit_in_delta (gdbarch, 1);
2991
2992 /* Hook in the ABI-specific overrides, if they have been registered. */
2993 gdbarch_init_osabi (info, gdbarch);
2994
2995 /* Add some default predicates. */
2996 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
2997 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2998 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2999
3000 /* Now we have tuned the configuration, set a few final things,
3001 based on what the OS ABI has told us. */
3002
3003 if (tdep->jb_pc >= 0)
3004 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3005
3006 /* Floating point sizes and format. */
3007 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3008 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
3009 {
3010 set_gdbarch_double_format
3011 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3012 set_gdbarch_long_double_format
3013 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3014 }
3015 else
3016 {
3017 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3018 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
3019 }
3020
3021 if (tdesc_data)
3022 tdesc_use_registers (gdbarch, tdesc_data);
3023
3024 /* Add standard register aliases. We add aliases even for those
3025 nanes which are used by the current architecture - it's simpler,
3026 and does no harm, since nothing ever lists user registers. */
3027 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3028 user_reg_add (gdbarch, arm_register_aliases[i].name,
3029 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3030
3031 return gdbarch;
3032 }
3033
3034 static void
3035 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3036 {
3037 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3038
3039 if (tdep == NULL)
3040 return;
3041
3042 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
3043 (unsigned long) tdep->lowest_pc);
3044 }
3045
3046 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3047
3048 void
3049 _initialize_arm_tdep (void)
3050 {
3051 struct ui_file *stb;
3052 long length;
3053 struct cmd_list_element *new_set, *new_show;
3054 const char *setname;
3055 const char *setdesc;
3056 const char *const *regnames;
3057 int numregs, i, j;
3058 static char *helptext;
3059 char regdesc[1024], *rdptr = regdesc;
3060 size_t rest = sizeof (regdesc);
3061
3062 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3063
3064 /* Register an ELF OS ABI sniffer for ARM binaries. */
3065 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3066 bfd_target_elf_flavour,
3067 arm_elf_osabi_sniffer);
3068
3069 /* Get the number of possible sets of register names defined in opcodes. */
3070 num_disassembly_options = get_arm_regname_num_options ();
3071
3072 /* Add root prefix command for all "set arm"/"show arm" commands. */
3073 add_prefix_cmd ("arm", no_class, set_arm_command,
3074 _("Various ARM-specific commands."),
3075 &setarmcmdlist, "set arm ", 0, &setlist);
3076
3077 add_prefix_cmd ("arm", no_class, show_arm_command,
3078 _("Various ARM-specific commands."),
3079 &showarmcmdlist, "show arm ", 0, &showlist);
3080
3081 /* Sync the opcode insn printer with our register viewer. */
3082 parse_arm_disassembler_option ("reg-names-std");
3083
3084 /* Initialize the array that will be passed to
3085 add_setshow_enum_cmd(). */
3086 valid_disassembly_styles
3087 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3088 for (i = 0; i < num_disassembly_options; i++)
3089 {
3090 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3091 valid_disassembly_styles[i] = setname;
3092 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3093 rdptr += length;
3094 rest -= length;
3095 /* When we find the default names, tell the disassembler to use
3096 them. */
3097 if (!strcmp (setname, "std"))
3098 {
3099 disassembly_style = setname;
3100 set_arm_regname_option (i);
3101 }
3102 }
3103 /* Mark the end of valid options. */
3104 valid_disassembly_styles[num_disassembly_options] = NULL;
3105
3106 /* Create the help text. */
3107 stb = mem_fileopen ();
3108 fprintf_unfiltered (stb, "%s%s%s",
3109 _("The valid values are:\n"),
3110 regdesc,
3111 _("The default is \"std\"."));
3112 helptext = ui_file_xstrdup (stb, &length);
3113 ui_file_delete (stb);
3114
3115 add_setshow_enum_cmd("disassembler", no_class,
3116 valid_disassembly_styles, &disassembly_style,
3117 _("Set the disassembly style."),
3118 _("Show the disassembly style."),
3119 helptext,
3120 set_disassembly_style_sfunc,
3121 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
3122 &setarmcmdlist, &showarmcmdlist);
3123
3124 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3125 _("Set usage of ARM 32-bit mode."),
3126 _("Show usage of ARM 32-bit mode."),
3127 _("When off, a 26-bit PC will be used."),
3128 NULL,
3129 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
3130 &setarmcmdlist, &showarmcmdlist);
3131
3132 /* Add a command to allow the user to force the FPU model. */
3133 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3134 _("Set the floating point type."),
3135 _("Show the floating point type."),
3136 _("auto - Determine the FP typefrom the OS-ABI.\n\
3137 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3138 fpa - FPA co-processor (GCC compiled).\n\
3139 softvfp - Software FP with pure-endian doubles.\n\
3140 vfp - VFP co-processor."),
3141 set_fp_model_sfunc, show_fp_model,
3142 &setarmcmdlist, &showarmcmdlist);
3143
3144 /* Add a command to allow the user to force the ABI. */
3145 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3146 _("Set the ABI."),
3147 _("Show the ABI."),
3148 NULL, arm_set_abi, arm_show_abi,
3149 &setarmcmdlist, &showarmcmdlist);
3150
3151 /* Debugging flag. */
3152 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3153 _("Set ARM debugging."),
3154 _("Show ARM debugging."),
3155 _("When on, arm-specific debugging is enabled."),
3156 NULL,
3157 NULL, /* FIXME: i18n: "ARM debugging is %s. */
3158 &setdebuglist, &showdebuglist);
3159 }
This page took 0.113144 seconds and 4 git commands to generate.