2002-01-04 Daniel Jacobowitz <drow@mvista.com>
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
3 2001 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "symfile.h"
28 #include "gdb_string.h"
29 #include "coff/internal.h" /* Internal format of COFF symbols in BFD */
30 #include "dis-asm.h" /* For register flavors. */
31 #include <ctype.h> /* for isupper () */
32 #include "regcache.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "solib-svr4.h"
36
37 /* Each OS has a different mechanism for accessing the various
38 registers stored in the sigcontext structure.
39
40 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
41 function pointer) which may be used to determine the addresses
42 of the various saved registers in the sigcontext structure.
43
44 For the ARM target, there are three parameters to this function.
45 The first is the pc value of the frame under consideration, the
46 second the stack pointer of this frame, and the last is the
47 register number to fetch.
48
49 If the tm.h file does not define this macro, then it's assumed that
50 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
51 be 0.
52
53 When it comes time to multi-arching this code, see the identically
54 named machinery in ia64-tdep.c for an example of how it could be
55 done. It should not be necessary to modify the code below where
56 this macro is used. */
57
58 #ifdef SIGCONTEXT_REGISTER_ADDRESS
59 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
60 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
61 #endif
62 #else
63 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
64 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
65 #endif
66
67 extern void _initialize_arm_tdep (void);
68
69 /* Number of different reg name sets (options). */
70 static int num_flavor_options;
71
72 /* We have more registers than the disassembler as gdb can print the value
73 of special registers as well.
74 The general register names are overwritten by whatever is being used by
75 the disassembler at the moment. We also adjust the case of cpsr and fps. */
76
77 /* Initial value: Register names used in ARM's ISA documentation. */
78 static char * arm_register_name_strings[] =
79 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
80 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
81 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
82 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
83 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
84 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
85 "fps", "cpsr" }; /* 24 25 */
86 char **arm_register_names = arm_register_name_strings;
87
88 /* Valid register name flavors. */
89 static const char **valid_flavors;
90
91 /* Disassembly flavor to use. Default to "std" register names. */
92 static const char *disassembly_flavor;
93 static int current_option; /* Index to that option in the opcodes table. */
94
95 /* This is used to keep the bfd arch_info in sync with the disassembly
96 flavor. */
97 static void set_disassembly_flavor_sfunc(char *, int,
98 struct cmd_list_element *);
99 static void set_disassembly_flavor (void);
100
101 static void convert_from_extended (void *ptr, void *dbl);
102
103 /* Define other aspects of the stack frame. We keep the offsets of
104 all saved registers, 'cause we need 'em a lot! We also keep the
105 current size of the stack frame, and the offset of the frame
106 pointer from the stack pointer (for frameless functions, and when
107 we're still in the prologue of a function with a frame) */
108
109 struct frame_extra_info
110 {
111 struct frame_saved_regs fsr;
112 int framesize;
113 int frameoffset;
114 int framereg;
115 };
116
117 /* Addresses for calling Thumb functions have the bit 0 set.
118 Here are some macros to test, set, or clear bit 0 of addresses. */
119 #define IS_THUMB_ADDR(addr) ((addr) & 1)
120 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
121 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
122
123 /* Will a function return an aggregate type in memory or in a
124 register? Return 0 if an aggregate type can be returned in a
125 register, 1 if it must be returned in memory. */
126
127 int
128 arm_use_struct_convention (int gcc_p, struct type *type)
129 {
130 int nRc;
131 register enum type_code code;
132
133 /* In the ARM ABI, "integer" like aggregate types are returned in
134 registers. For an aggregate type to be integer like, its size
135 must be less than or equal to REGISTER_SIZE and the offset of
136 each addressable subfield must be zero. Note that bit fields are
137 not addressable, and all addressable subfields of unions always
138 start at offset zero.
139
140 This function is based on the behaviour of GCC 2.95.1.
141 See: gcc/arm.c: arm_return_in_memory() for details.
142
143 Note: All versions of GCC before GCC 2.95.2 do not set up the
144 parameters correctly for a function returning the following
145 structure: struct { float f;}; This should be returned in memory,
146 not a register. Richard Earnshaw sent me a patch, but I do not
147 know of any way to detect if a function like the above has been
148 compiled with the correct calling convention. */
149
150 /* All aggregate types that won't fit in a register must be returned
151 in memory. */
152 if (TYPE_LENGTH (type) > REGISTER_SIZE)
153 {
154 return 1;
155 }
156
157 /* The only aggregate types that can be returned in a register are
158 structs and unions. Arrays must be returned in memory. */
159 code = TYPE_CODE (type);
160 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
161 {
162 return 1;
163 }
164
165 /* Assume all other aggregate types can be returned in a register.
166 Run a check for structures, unions and arrays. */
167 nRc = 0;
168
169 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
170 {
171 int i;
172 /* Need to check if this struct/union is "integer" like. For
173 this to be true, its size must be less than or equal to
174 REGISTER_SIZE and the offset of each addressable subfield
175 must be zero. Note that bit fields are not addressable, and
176 unions always start at offset zero. If any of the subfields
177 is a floating point type, the struct/union cannot be an
178 integer type. */
179
180 /* For each field in the object, check:
181 1) Is it FP? --> yes, nRc = 1;
182 2) Is it addressable (bitpos != 0) and
183 not packed (bitsize == 0)?
184 --> yes, nRc = 1
185 */
186
187 for (i = 0; i < TYPE_NFIELDS (type); i++)
188 {
189 enum type_code field_type_code;
190 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
191
192 /* Is it a floating point type field? */
193 if (field_type_code == TYPE_CODE_FLT)
194 {
195 nRc = 1;
196 break;
197 }
198
199 /* If bitpos != 0, then we have to care about it. */
200 if (TYPE_FIELD_BITPOS (type, i) != 0)
201 {
202 /* Bitfields are not addressable. If the field bitsize is
203 zero, then the field is not packed. Hence it cannot be
204 a bitfield or any other packed type. */
205 if (TYPE_FIELD_BITSIZE (type, i) == 0)
206 {
207 nRc = 1;
208 break;
209 }
210 }
211 }
212 }
213
214 return nRc;
215 }
216
217 int
218 arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
219 {
220 return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC));
221 }
222
223 /* Set to true if the 32-bit mode is in use. */
224
225 int arm_apcs_32 = 1;
226
227 /* Flag set by arm_fix_call_dummy that tells whether the target
228 function is a Thumb function. This flag is checked by
229 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
230 its use in valops.c) to pass the function address as an additional
231 parameter. */
232
233 static int target_is_thumb;
234
235 /* Flag set by arm_fix_call_dummy that tells whether the calling
236 function is a Thumb function. This flag is checked by
237 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
238
239 static int caller_is_thumb;
240
241 /* Determine if the program counter specified in MEMADDR is in a Thumb
242 function. */
243
244 int
245 arm_pc_is_thumb (CORE_ADDR memaddr)
246 {
247 struct minimal_symbol *sym;
248
249 /* If bit 0 of the address is set, assume this is a Thumb address. */
250 if (IS_THUMB_ADDR (memaddr))
251 return 1;
252
253 /* Thumb functions have a "special" bit set in minimal symbols. */
254 sym = lookup_minimal_symbol_by_pc (memaddr);
255 if (sym)
256 {
257 return (MSYMBOL_IS_SPECIAL (sym));
258 }
259 else
260 {
261 return 0;
262 }
263 }
264
265 /* Determine if the program counter specified in MEMADDR is in a call
266 dummy being called from a Thumb function. */
267
268 int
269 arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
270 {
271 CORE_ADDR sp = read_sp ();
272
273 /* FIXME: Until we switch for the new call dummy macros, this heuristic
274 is the best we can do. We are trying to determine if the pc is on
275 the stack, which (hopefully) will only happen in a call dummy.
276 We hope the current stack pointer is not so far alway from the dummy
277 frame location (true if we have not pushed large data structures or
278 gone too many levels deep) and that our 1024 is not enough to consider
279 code regions as part of the stack (true for most practical purposes) */
280 if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
281 return caller_is_thumb;
282 else
283 return 0;
284 }
285
286 CORE_ADDR
287 arm_addr_bits_remove (CORE_ADDR val)
288 {
289 if (arm_pc_is_thumb (val))
290 return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe));
291 else
292 return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc));
293 }
294
295 CORE_ADDR
296 arm_saved_pc_after_call (struct frame_info *frame)
297 {
298 return ADDR_BITS_REMOVE (read_register (LR_REGNUM));
299 }
300
301 int
302 arm_frameless_function_invocation (struct frame_info *fi)
303 {
304 CORE_ADDR func_start, after_prologue;
305 int frameless;
306
307 func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET);
308 after_prologue = SKIP_PROLOGUE (func_start);
309
310 /* There are some frameless functions whose first two instructions
311 follow the standard APCS form, in which case after_prologue will
312 be func_start + 8. */
313
314 frameless = (after_prologue < func_start + 12);
315 return frameless;
316 }
317
318 /* A typical Thumb prologue looks like this:
319 push {r7, lr}
320 add sp, sp, #-28
321 add r7, sp, #12
322 Sometimes the latter instruction may be replaced by:
323 mov r7, sp
324
325 or like this:
326 push {r7, lr}
327 mov r7, sp
328 sub sp, #12
329
330 or, on tpcs, like this:
331 sub sp,#16
332 push {r7, lr}
333 (many instructions)
334 mov r7, sp
335 sub sp, #12
336
337 There is always one instruction of three classes:
338 1 - push
339 2 - setting of r7
340 3 - adjusting of sp
341
342 When we have found at least one of each class we are done with the prolog.
343 Note that the "sub sp, #NN" before the push does not count.
344 */
345
346 static CORE_ADDR
347 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
348 {
349 CORE_ADDR current_pc;
350 int findmask = 0; /* findmask:
351 bit 0 - push { rlist }
352 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
353 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
354 */
355
356 for (current_pc = pc; current_pc + 2 < func_end && current_pc < pc + 40; current_pc += 2)
357 {
358 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
359
360 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
361 {
362 findmask |= 1; /* push found */
363 }
364 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
365 {
366 if ((findmask & 1) == 0) /* before push ? */
367 continue;
368 else
369 findmask |= 4; /* add/sub sp found */
370 }
371 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
372 {
373 findmask |= 2; /* setting of r7 found */
374 }
375 else if (insn == 0x466f) /* mov r7, sp */
376 {
377 findmask |= 2; /* setting of r7 found */
378 }
379 else
380 continue; /* something in the prolog that we don't care about or some
381 instruction from outside the prolog scheduled here for optimization */
382 }
383
384 return current_pc;
385 }
386
387 /* The APCS (ARM Procedure Call Standard) defines the following
388 prologue:
389
390 mov ip, sp
391 [stmfd sp!, {a1,a2,a3,a4}]
392 stmfd sp!, {...,fp,ip,lr,pc}
393 [stfe f7, [sp, #-12]!]
394 [stfe f6, [sp, #-12]!]
395 [stfe f5, [sp, #-12]!]
396 [stfe f4, [sp, #-12]!]
397 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
398
399 CORE_ADDR
400 arm_skip_prologue (CORE_ADDR pc)
401 {
402 unsigned long inst;
403 CORE_ADDR skip_pc;
404 CORE_ADDR func_addr, func_end;
405 char *func_name;
406 struct symtab_and_line sal;
407
408 /* See what the symbol table says. */
409
410 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
411 {
412 struct symbol *sym;
413
414 /* Found a function. */
415 sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL);
416 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
417 {
418 /* Don't use this trick for assembly source files. */
419 sal = find_pc_line (func_addr, 0);
420 if ((sal.line != 0) && (sal.end < func_end))
421 return sal.end;
422 }
423 }
424
425 /* Check if this is Thumb code. */
426 if (arm_pc_is_thumb (pc))
427 return thumb_skip_prologue (pc, func_end);
428
429 /* Can't find the prologue end in the symbol table, try it the hard way
430 by disassembling the instructions. */
431 skip_pc = pc;
432 inst = read_memory_integer (skip_pc, 4);
433 if (inst != 0xe1a0c00d) /* mov ip, sp */
434 return pc;
435
436 skip_pc += 4;
437 inst = read_memory_integer (skip_pc, 4);
438 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
439 {
440 skip_pc += 4;
441 inst = read_memory_integer (skip_pc, 4);
442 }
443
444 if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */
445 return pc;
446
447 skip_pc += 4;
448 inst = read_memory_integer (skip_pc, 4);
449
450 /* Any insns after this point may float into the code, if it makes
451 for better instruction scheduling, so we skip them only if we
452 find them, but still consdier the function to be frame-ful. */
453
454 /* We may have either one sfmfd instruction here, or several stfe
455 insns, depending on the version of floating point code we
456 support. */
457 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
458 {
459 skip_pc += 4;
460 inst = read_memory_integer (skip_pc, 4);
461 }
462 else
463 {
464 while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
465 {
466 skip_pc += 4;
467 inst = read_memory_integer (skip_pc, 4);
468 }
469 }
470
471 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
472 skip_pc += 4;
473
474 return skip_pc;
475 }
476 /* *INDENT-OFF* */
477 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
478 This function decodes a Thumb function prologue to determine:
479 1) the size of the stack frame
480 2) which registers are saved on it
481 3) the offsets of saved regs
482 4) the offset from the stack pointer to the frame pointer
483 This information is stored in the "extra" fields of the frame_info.
484
485 A typical Thumb function prologue would create this stack frame
486 (offsets relative to FP)
487 old SP -> 24 stack parameters
488 20 LR
489 16 R7
490 R7 -> 0 local variables (16 bytes)
491 SP -> -12 additional stack space (12 bytes)
492 The frame size would thus be 36 bytes, and the frame offset would be
493 12 bytes. The frame register is R7.
494
495 The comments for thumb_skip_prolog() describe the algorithm we use to detect
496 the end of the prolog */
497 /* *INDENT-ON* */
498
499 static void
500 thumb_scan_prologue (struct frame_info *fi)
501 {
502 CORE_ADDR prologue_start;
503 CORE_ADDR prologue_end;
504 CORE_ADDR current_pc;
505 int saved_reg[16]; /* which register has been copied to register n? */
506 int findmask = 0; /* findmask:
507 bit 0 - push { rlist }
508 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
509 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
510 */
511 int i;
512
513 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
514 {
515 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
516
517 if (sal.line == 0) /* no line info, use current PC */
518 prologue_end = fi->pc;
519 else if (sal.end < prologue_end) /* next line begins after fn end */
520 prologue_end = sal.end; /* (probably means no prologue) */
521 }
522 else
523 prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */
524 /* 16 pushes, an add, and "mv fp,sp" */
525
526 prologue_end = min (prologue_end, fi->pc);
527
528 /* Initialize the saved register map. When register H is copied to
529 register L, we will put H in saved_reg[L]. */
530 for (i = 0; i < 16; i++)
531 saved_reg[i] = i;
532
533 /* Search the prologue looking for instructions that set up the
534 frame pointer, adjust the stack pointer, and save registers.
535 Do this until all basic prolog instructions are found. */
536
537 fi->framesize = 0;
538 for (current_pc = prologue_start;
539 (current_pc < prologue_end) && ((findmask & 7) != 7);
540 current_pc += 2)
541 {
542 unsigned short insn;
543 int regno;
544 int offset;
545
546 insn = read_memory_unsigned_integer (current_pc, 2);
547
548 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
549 {
550 int mask;
551 findmask |= 1; /* push found */
552 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
553 whether to save LR (R14). */
554 mask = (insn & 0xff) | ((insn & 0x100) << 6);
555
556 /* Calculate offsets of saved R0-R7 and LR. */
557 for (regno = LR_REGNUM; regno >= 0; regno--)
558 if (mask & (1 << regno))
559 {
560 fi->framesize += 4;
561 fi->fsr.regs[saved_reg[regno]] = -(fi->framesize);
562 saved_reg[regno] = regno; /* reset saved register map */
563 }
564 }
565 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
566 {
567 if ((findmask & 1) == 0) /* before push ? */
568 continue;
569 else
570 findmask |= 4; /* add/sub sp found */
571
572 offset = (insn & 0x7f) << 2; /* get scaled offset */
573 if (insn & 0x80) /* is it signed? (==subtracting) */
574 {
575 fi->frameoffset += offset;
576 offset = -offset;
577 }
578 fi->framesize -= offset;
579 }
580 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
581 {
582 findmask |= 2; /* setting of r7 found */
583 fi->framereg = THUMB_FP_REGNUM;
584 fi->frameoffset = (insn & 0xff) << 2; /* get scaled offset */
585 }
586 else if (insn == 0x466f) /* mov r7, sp */
587 {
588 findmask |= 2; /* setting of r7 found */
589 fi->framereg = THUMB_FP_REGNUM;
590 fi->frameoffset = 0;
591 saved_reg[THUMB_FP_REGNUM] = SP_REGNUM;
592 }
593 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
594 {
595 int lo_reg = insn & 7; /* dest. register (r0-r7) */
596 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
597 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
598 }
599 else
600 continue; /* something in the prolog that we don't care about or some
601 instruction from outside the prolog scheduled here for optimization */
602 }
603 }
604
605 /* Check if prologue for this frame's PC has already been scanned. If
606 it has, copy the relevant information about that prologue and
607 return non-zero. Otherwise do not copy anything and return zero.
608
609 The information saved in the cache includes:
610 * the frame register number;
611 * the size of the stack frame;
612 * the offsets of saved regs (relative to the old SP); and
613 * the offset from the stack pointer to the frame pointer
614
615 The cache contains only one entry, since this is adequate for the
616 typical sequence of prologue scan requests we get. When performing
617 a backtrace, GDB will usually ask to scan the same function twice
618 in a row (once to get the frame chain, and once to fill in the
619 extra frame information). */
620
621 static struct frame_info prologue_cache;
622
623 static int
624 check_prologue_cache (struct frame_info *fi)
625 {
626 int i;
627
628 if (fi->pc == prologue_cache.pc)
629 {
630 fi->framereg = prologue_cache.framereg;
631 fi->framesize = prologue_cache.framesize;
632 fi->frameoffset = prologue_cache.frameoffset;
633 for (i = 0; i < NUM_REGS; i++)
634 fi->fsr.regs[i] = prologue_cache.fsr.regs[i];
635 return 1;
636 }
637 else
638 return 0;
639 }
640
641
642 /* Copy the prologue information from fi to the prologue cache. */
643
644 static void
645 save_prologue_cache (struct frame_info *fi)
646 {
647 int i;
648
649 prologue_cache.pc = fi->pc;
650 prologue_cache.framereg = fi->framereg;
651 prologue_cache.framesize = fi->framesize;
652 prologue_cache.frameoffset = fi->frameoffset;
653
654 for (i = 0; i < NUM_REGS; i++)
655 prologue_cache.fsr.regs[i] = fi->fsr.regs[i];
656 }
657
658
659 /* This function decodes an ARM function prologue to determine:
660 1) the size of the stack frame
661 2) which registers are saved on it
662 3) the offsets of saved regs
663 4) the offset from the stack pointer to the frame pointer
664 This information is stored in the "extra" fields of the frame_info.
665
666 There are two basic forms for the ARM prologue. The fixed argument
667 function call will look like:
668
669 mov ip, sp
670 stmfd sp!, {fp, ip, lr, pc}
671 sub fp, ip, #4
672 [sub sp, sp, #4]
673
674 Which would create this stack frame (offsets relative to FP):
675 IP -> 4 (caller's stack)
676 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
677 -4 LR (return address in caller)
678 -8 IP (copy of caller's SP)
679 -12 FP (caller's FP)
680 SP -> -28 Local variables
681
682 The frame size would thus be 32 bytes, and the frame offset would be
683 28 bytes. The stmfd call can also save any of the vN registers it
684 plans to use, which increases the frame size accordingly.
685
686 Note: The stored PC is 8 off of the STMFD instruction that stored it
687 because the ARM Store instructions always store PC + 8 when you read
688 the PC register.
689
690 A variable argument function call will look like:
691
692 mov ip, sp
693 stmfd sp!, {a1, a2, a3, a4}
694 stmfd sp!, {fp, ip, lr, pc}
695 sub fp, ip, #20
696
697 Which would create this stack frame (offsets relative to FP):
698 IP -> 20 (caller's stack)
699 16 A4
700 12 A3
701 8 A2
702 4 A1
703 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
704 -4 LR (return address in caller)
705 -8 IP (copy of caller's SP)
706 -12 FP (caller's FP)
707 SP -> -28 Local variables
708
709 The frame size would thus be 48 bytes, and the frame offset would be
710 28 bytes.
711
712 There is another potential complication, which is that the optimizer
713 will try to separate the store of fp in the "stmfd" instruction from
714 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
715 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
716
717 Also, note, the original version of the ARM toolchain claimed that there
718 should be an
719
720 instruction at the end of the prologue. I have never seen GCC produce
721 this, and the ARM docs don't mention it. We still test for it below in
722 case it happens...
723
724 */
725
726 static void
727 arm_scan_prologue (struct frame_info *fi)
728 {
729 int regno, sp_offset, fp_offset;
730 LONGEST return_value;
731 CORE_ADDR prologue_start, prologue_end, current_pc;
732
733 /* Check if this function is already in the cache of frame information. */
734 if (check_prologue_cache (fi))
735 return;
736
737 /* Assume there is no frame until proven otherwise. */
738 fi->framereg = SP_REGNUM;
739 fi->framesize = 0;
740 fi->frameoffset = 0;
741
742 /* Check for Thumb prologue. */
743 if (arm_pc_is_thumb (fi->pc))
744 {
745 thumb_scan_prologue (fi);
746 save_prologue_cache (fi);
747 return;
748 }
749
750 /* Find the function prologue. If we can't find the function in
751 the symbol table, peek in the stack frame to find the PC. */
752 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
753 {
754 /* One way to find the end of the prologue (which works well
755 for unoptimized code) is to do the following:
756
757 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
758
759 if (sal.line == 0)
760 prologue_end = fi->pc;
761 else if (sal.end < prologue_end)
762 prologue_end = sal.end;
763
764 This mechanism is very accurate so long as the optimizer
765 doesn't move any instructions from the function body into the
766 prologue. If this happens, sal.end will be the last
767 instruction in the first hunk of prologue code just before
768 the first instruction that the scheduler has moved from
769 the body to the prologue.
770
771 In order to make sure that we scan all of the prologue
772 instructions, we use a slightly less accurate mechanism which
773 may scan more than necessary. To help compensate for this
774 lack of accuracy, the prologue scanning loop below contains
775 several clauses which'll cause the loop to terminate early if
776 an implausible prologue instruction is encountered.
777
778 The expression
779
780 prologue_start + 64
781
782 is a suitable endpoint since it accounts for the largest
783 possible prologue plus up to five instructions inserted by
784 the scheduler. */
785
786 if (prologue_end > prologue_start + 64)
787 {
788 prologue_end = prologue_start + 64; /* See above. */
789 }
790 }
791 else
792 {
793 /* Get address of the stmfd in the prologue of the callee; the saved
794 PC is the address of the stmfd + 8. */
795 if (!safe_read_memory_integer (fi->frame, 4, &return_value))
796 return;
797 else
798 {
799 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
800 prologue_end = prologue_start + 64; /* See above. */
801 }
802 }
803
804 /* Now search the prologue looking for instructions that set up the
805 frame pointer, adjust the stack pointer, and save registers.
806
807 Be careful, however, and if it doesn't look like a prologue,
808 don't try to scan it. If, for instance, a frameless function
809 begins with stmfd sp!, then we will tell ourselves there is
810 a frame, which will confuse stack traceback, as well ad"finish"
811 and other operations that rely on a knowledge of the stack
812 traceback.
813
814 In the APCS, the prologue should start with "mov ip, sp" so
815 if we don't see this as the first insn, we will stop. [Note:
816 This doesn't seem to be true any longer, so it's now an optional
817 part of the prologue. - Kevin Buettner, 2001-11-20] */
818
819 sp_offset = fp_offset = 0;
820
821 if (read_memory_unsigned_integer (prologue_start, 4)
822 == 0xe1a0c00d) /* mov ip, sp */
823 current_pc = prologue_start + 4;
824 else
825 current_pc = prologue_start;
826
827 for (; current_pc < prologue_end; current_pc += 4)
828 {
829 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
830
831 if ((insn & 0xffff0000) == 0xe92d0000)
832 /* stmfd sp!, {..., fp, ip, lr, pc}
833 or
834 stmfd sp!, {a1, a2, a3, a4} */
835 {
836 int mask = insn & 0xffff;
837
838 /* Calculate offsets of saved registers. */
839 for (regno = PC_REGNUM; regno >= 0; regno--)
840 if (mask & (1 << regno))
841 {
842 sp_offset -= 4;
843 fi->fsr.regs[regno] = sp_offset;
844 }
845 }
846 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
847 {
848 unsigned imm = insn & 0xff; /* immediate value */
849 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
850 imm = (imm >> rot) | (imm << (32 - rot));
851 fp_offset = -imm;
852 fi->framereg = FP_REGNUM;
853 }
854 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
855 {
856 unsigned imm = insn & 0xff; /* immediate value */
857 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
858 imm = (imm >> rot) | (imm << (32 - rot));
859 sp_offset -= imm;
860 }
861 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
862 {
863 sp_offset -= 12;
864 regno = F0_REGNUM + ((insn >> 12) & 0x07);
865 fi->fsr.regs[regno] = sp_offset;
866 }
867 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
868 {
869 int n_saved_fp_regs;
870 unsigned int fp_start_reg, fp_bound_reg;
871
872 if ((insn & 0x800) == 0x800) /* N0 is set */
873 {
874 if ((insn & 0x40000) == 0x40000) /* N1 is set */
875 n_saved_fp_regs = 3;
876 else
877 n_saved_fp_regs = 1;
878 }
879 else
880 {
881 if ((insn & 0x40000) == 0x40000) /* N1 is set */
882 n_saved_fp_regs = 2;
883 else
884 n_saved_fp_regs = 4;
885 }
886
887 fp_start_reg = F0_REGNUM + ((insn >> 12) & 0x7);
888 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
889 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
890 {
891 sp_offset -= 12;
892 fi->fsr.regs[fp_start_reg++] = sp_offset;
893 }
894 }
895 else if ((insn & 0xf0000000) != 0xe0000000)
896 break; /* Condition not true, exit early */
897 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
898 break; /* Don't scan past a block load */
899 else
900 /* The optimizer might shove anything into the prologue,
901 so we just skip what we don't recognize. */
902 continue;
903 }
904
905 /* The frame size is just the negative of the offset (from the original SP)
906 of the last thing thing we pushed on the stack. The frame offset is
907 [new FP] - [new SP]. */
908 fi->framesize = -sp_offset;
909 if (fi->framereg == FP_REGNUM)
910 fi->frameoffset = fp_offset - sp_offset;
911 else
912 fi->frameoffset = 0;
913
914 save_prologue_cache (fi);
915 }
916
917 /* Find REGNUM on the stack. Otherwise, it's in an active register.
918 One thing we might want to do here is to check REGNUM against the
919 clobber mask, and somehow flag it as invalid if it isn't saved on
920 the stack somewhere. This would provide a graceful failure mode
921 when trying to get the value of caller-saves registers for an inner
922 frame. */
923
924 static CORE_ADDR
925 arm_find_callers_reg (struct frame_info *fi, int regnum)
926 {
927 for (; fi; fi = fi->next)
928
929 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
930 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
931 return generic_read_register_dummy (fi->pc, fi->frame, regnum);
932 else
933 #endif
934 if (fi->fsr.regs[regnum] != 0)
935 return read_memory_integer (fi->fsr.regs[regnum],
936 REGISTER_RAW_SIZE (regnum));
937 return read_register (regnum);
938 }
939 /* *INDENT-OFF* */
940 /* Function: frame_chain
941 Given a GDB frame, determine the address of the calling function's frame.
942 This will be used to create a new GDB frame struct, and then
943 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
944 For ARM, we save the frame size when we initialize the frame_info.
945
946 The original definition of this function was a macro in tm-arm.h:
947 { In the case of the ARM, the frame's nominal address is the FP value,
948 and 12 bytes before comes the saved previous FP value as a 4-byte word. }
949
950 #define FRAME_CHAIN(thisframe) \
951 ((thisframe)->pc >= LOWEST_PC ? \
952 read_memory_integer ((thisframe)->frame - 12, 4) :\
953 0)
954 */
955 /* *INDENT-ON* */
956
957 CORE_ADDR
958 arm_frame_chain (struct frame_info *fi)
959 {
960 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
961 CORE_ADDR fn_start, callers_pc, fp;
962
963 /* is this a dummy frame? */
964 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
965 return fi->frame; /* dummy frame same as caller's frame */
966
967 /* is caller-of-this a dummy frame? */
968 callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
969 fp = arm_find_callers_reg (fi, FP_REGNUM);
970 if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
971 return fp; /* dummy frame's frame may bear no relation to ours */
972
973 if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
974 if (fn_start == entry_point_address ())
975 return 0; /* in _start fn, don't chain further */
976 #endif
977 CORE_ADDR caller_pc, fn_start;
978 struct frame_info caller_fi;
979 int framereg = fi->framereg;
980
981 if (fi->pc < LOWEST_PC)
982 return 0;
983
984 /* If the caller is the startup code, we're at the end of the chain. */
985 caller_pc = FRAME_SAVED_PC (fi);
986 if (find_pc_partial_function (caller_pc, 0, &fn_start, 0))
987 if (fn_start == entry_point_address ())
988 return 0;
989
990 /* If the caller is Thumb and the caller is ARM, or vice versa,
991 the frame register of the caller is different from ours.
992 So we must scan the prologue of the caller to determine its
993 frame register number. */
994 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc))
995 {
996 memset (&caller_fi, 0, sizeof (caller_fi));
997 caller_fi.pc = caller_pc;
998 arm_scan_prologue (&caller_fi);
999 framereg = caller_fi.framereg;
1000 }
1001
1002 /* If the caller used a frame register, return its value.
1003 Otherwise, return the caller's stack pointer. */
1004 if (framereg == FP_REGNUM || framereg == THUMB_FP_REGNUM)
1005 return arm_find_callers_reg (fi, framereg);
1006 else
1007 return fi->frame + fi->framesize;
1008 }
1009
1010 /* This function actually figures out the frame address for a given pc
1011 and sp. This is tricky because we sometimes don't use an explicit
1012 frame pointer, and the previous stack pointer isn't necessarily
1013 recorded on the stack. The only reliable way to get this info is
1014 to examine the prologue. FROMLEAF is a little confusing, it means
1015 this is the next frame up the chain AFTER a frameless function. If
1016 this is true, then the frame value for this frame is still in the
1017 fp register. */
1018
1019 void
1020 arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1021 {
1022 int reg;
1023 CORE_ADDR sp;
1024
1025 if (fi->next)
1026 fi->pc = FRAME_SAVED_PC (fi->next);
1027
1028 memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
1029
1030 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
1031 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1032 {
1033 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
1034 by assuming it's always FP. */
1035 fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
1036 fi->framesize = 0;
1037 fi->frameoffset = 0;
1038 return;
1039 }
1040 else
1041 #endif
1042
1043 /* Compute stack pointer for this frame. We use this value for both the
1044 sigtramp and call dummy cases. */
1045 if (!fi->next)
1046 sp = read_sp();
1047 else
1048 sp = fi->next->frame - fi->next->frameoffset + fi->next->framesize;
1049
1050 /* Determine whether or not we're in a sigtramp frame.
1051 Unfortunately, it isn't sufficient to test
1052 fi->signal_handler_caller because this value is sometimes set
1053 after invoking INIT_EXTRA_FRAME_INFO. So we test *both*
1054 fi->signal_handler_caller and IN_SIGTRAMP to determine if we need
1055 to use the sigcontext addresses for the saved registers.
1056
1057 Note: If an ARM IN_SIGTRAMP method ever needs to compare against
1058 the name of the function, the code below will have to be changed
1059 to first fetch the name of the function and then pass this name
1060 to IN_SIGTRAMP. */
1061
1062 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1063 && (fi->signal_handler_caller || IN_SIGTRAMP (fi->pc, 0)))
1064 {
1065 for (reg = 0; reg < NUM_REGS; reg++)
1066 fi->fsr.regs[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, fi->pc, reg);
1067
1068 /* FIXME: What about thumb mode? */
1069 fi->framereg = SP_REGNUM;
1070 fi->frame = read_memory_integer (fi->fsr.regs[fi->framereg],
1071 REGISTER_RAW_SIZE (fi->framereg));
1072 fi->framesize = 0;
1073 fi->frameoffset = 0;
1074
1075 }
1076 else if (PC_IN_CALL_DUMMY (fi->pc, sp, fi->frame))
1077 {
1078 CORE_ADDR rp;
1079 CORE_ADDR callers_sp;
1080
1081 /* Set rp point at the high end of the saved registers. */
1082 rp = fi->frame - REGISTER_SIZE;
1083
1084 /* Fill in addresses of saved registers. */
1085 fi->fsr.regs[PS_REGNUM] = rp;
1086 rp -= REGISTER_RAW_SIZE (PS_REGNUM);
1087 for (reg = PC_REGNUM; reg >= 0; reg--)
1088 {
1089 fi->fsr.regs[reg] = rp;
1090 rp -= REGISTER_RAW_SIZE (reg);
1091 }
1092
1093 callers_sp = read_memory_integer (fi->fsr.regs[SP_REGNUM],
1094 REGISTER_RAW_SIZE (SP_REGNUM));
1095 fi->framereg = FP_REGNUM;
1096 fi->framesize = callers_sp - sp;
1097 fi->frameoffset = fi->frame - sp;
1098 }
1099 else
1100 {
1101 arm_scan_prologue (fi);
1102
1103 if (!fi->next)
1104 /* this is the innermost frame? */
1105 fi->frame = read_register (fi->framereg);
1106 else if (fi->framereg == FP_REGNUM || fi->framereg == THUMB_FP_REGNUM)
1107 {
1108 /* not the innermost frame */
1109 /* If we have an FP, the callee saved it. */
1110 if (fi->next->fsr.regs[fi->framereg] != 0)
1111 fi->frame =
1112 read_memory_integer (fi->next->fsr.regs[fi->framereg], 4);
1113 else if (fromleaf)
1114 /* If we were called by a frameless fn. then our frame is
1115 still in the frame pointer register on the board... */
1116 fi->frame = read_fp ();
1117 }
1118
1119 /* Calculate actual addresses of saved registers using offsets
1120 determined by arm_scan_prologue. */
1121 for (reg = 0; reg < NUM_REGS; reg++)
1122 if (fi->fsr.regs[reg] != 0)
1123 fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset;
1124 }
1125 }
1126
1127
1128 /* Find the caller of this frame. We do this by seeing if LR_REGNUM
1129 is saved in the stack anywhere, otherwise we get it from the
1130 registers.
1131
1132 The old definition of this function was a macro:
1133 #define FRAME_SAVED_PC(FRAME) \
1134 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
1135
1136 CORE_ADDR
1137 arm_frame_saved_pc (struct frame_info *fi)
1138 {
1139 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
1140 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1141 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1142 else
1143 #endif
1144 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame - fi->frameoffset, fi->frame))
1145 {
1146 return read_memory_integer (fi->fsr.regs[PC_REGNUM], REGISTER_RAW_SIZE (PC_REGNUM));
1147 }
1148 else
1149 {
1150 CORE_ADDR pc = arm_find_callers_reg (fi, LR_REGNUM);
1151 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1152 }
1153 }
1154
1155 /* Return the frame address. On ARM, it is R11; on Thumb it is R7.
1156 Examine the Program Status Register to decide which state we're in. */
1157
1158 CORE_ADDR
1159 arm_target_read_fp (void)
1160 {
1161 if (read_register (PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
1162 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
1163 else
1164 return read_register (FP_REGNUM); /* R11 if ARM */
1165 }
1166
1167 /* Calculate the frame offsets of the saved registers (ARM version). */
1168
1169 void
1170 arm_frame_find_saved_regs (struct frame_info *fi,
1171 struct frame_saved_regs *regaddr)
1172 {
1173 memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
1174 }
1175
1176 void
1177 arm_push_dummy_frame (void)
1178 {
1179 CORE_ADDR old_sp = read_register (SP_REGNUM);
1180 CORE_ADDR sp = old_sp;
1181 CORE_ADDR fp, prologue_start;
1182 int regnum;
1183
1184 /* Push the two dummy prologue instructions in reverse order,
1185 so that they'll be in the correct low-to-high order in memory. */
1186 /* sub fp, ip, #4 */
1187 sp = push_word (sp, 0xe24cb004);
1188 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
1189 prologue_start = sp = push_word (sp, 0xe92ddfff);
1190
1191 /* Push a pointer to the dummy prologue + 12, because when stm
1192 instruction stores the PC, it stores the address of the stm
1193 instruction itself plus 12. */
1194 fp = sp = push_word (sp, prologue_start + 12);
1195
1196 /* Push the processor status. */
1197 sp = push_word (sp, read_register (PS_REGNUM));
1198
1199 /* Push all 16 registers starting with r15. */
1200 for (regnum = PC_REGNUM; regnum >= 0; regnum--)
1201 sp = push_word (sp, read_register (regnum));
1202
1203 /* Update fp (for both Thumb and ARM) and sp. */
1204 write_register (FP_REGNUM, fp);
1205 write_register (THUMB_FP_REGNUM, fp);
1206 write_register (SP_REGNUM, sp);
1207 }
1208
1209 /* Fix up the call dummy, based on whether the processor is currently
1210 in Thumb or ARM mode, and whether the target function is Thumb or
1211 ARM. There are three different situations requiring three
1212 different dummies:
1213
1214 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
1215 been copied into the dummy parameter to this function.
1216 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
1217 "mov pc,r4" instruction patched to be a "bx r4" instead.
1218 * Thumb calling anything: uses the Thumb dummy defined below, which
1219 works for calling both ARM and Thumb functions.
1220
1221 All three call dummies expect to receive the target function
1222 address in R4, with the low bit set if it's a Thumb function. */
1223
1224 void
1225 arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1226 struct value **args, struct type *type, int gcc_p)
1227 {
1228 static short thumb_dummy[4] =
1229 {
1230 0xf000, 0xf801, /* bl label */
1231 0xdf18, /* swi 24 */
1232 0x4720, /* label: bx r4 */
1233 };
1234 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
1235
1236 /* Set flag indicating whether the current PC is in a Thumb function. */
1237 caller_is_thumb = arm_pc_is_thumb (read_pc ());
1238
1239 /* If the target function is Thumb, set the low bit of the function
1240 address. And if the CPU is currently in ARM mode, patch the
1241 second instruction of call dummy to use a BX instruction to
1242 switch to Thumb mode. */
1243 target_is_thumb = arm_pc_is_thumb (fun);
1244 if (target_is_thumb)
1245 {
1246 fun |= 1;
1247 if (!caller_is_thumb)
1248 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
1249 }
1250
1251 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
1252 instead of the ARM one that's already been copied. This will
1253 work for both Thumb and ARM target functions. */
1254 if (caller_is_thumb)
1255 {
1256 int i;
1257 char *p = dummy;
1258 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
1259
1260 for (i = 0; i < len; i++)
1261 {
1262 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
1263 p += sizeof (thumb_dummy[0]);
1264 }
1265 }
1266
1267 /* Put the target address in r4; the call dummy will copy this to
1268 the PC. */
1269 write_register (4, fun);
1270 }
1271
1272 /* Return the offset in the call dummy of the instruction that needs
1273 to have a breakpoint placed on it. This is the offset of the 'swi
1274 24' instruction, which is no longer actually used, but simply acts
1275 as a place-holder now.
1276
1277 This implements the CALL_DUMMY_BREAK_OFFSET macro. */
1278
1279 int
1280 arm_call_dummy_breakpoint_offset (void)
1281 {
1282 if (caller_is_thumb)
1283 return 4;
1284 else
1285 return 8;
1286 }
1287
1288 /* Note: ScottB
1289
1290 This function does not support passing parameters using the FPA
1291 variant of the APCS. It passes any floating point arguments in the
1292 general registers and/or on the stack. */
1293
1294 CORE_ADDR
1295 arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1296 int struct_return, CORE_ADDR struct_addr)
1297 {
1298 char *fp;
1299 int argnum, argreg, nstack_size;
1300
1301 /* Walk through the list of args and determine how large a temporary
1302 stack is required. Need to take care here as structs may be
1303 passed on the stack, and we have to to push them. */
1304 nstack_size = -4 * REGISTER_SIZE; /* Some arguments go into A1-A4. */
1305 if (struct_return) /* The struct address goes in A1. */
1306 nstack_size += REGISTER_SIZE;
1307
1308 /* Walk through the arguments and add their size to nstack_size. */
1309 for (argnum = 0; argnum < nargs; argnum++)
1310 {
1311 int len;
1312 struct type *arg_type;
1313
1314 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1315 len = TYPE_LENGTH (arg_type);
1316
1317 /* ANSI C code passes float arguments as integers, K&R code
1318 passes float arguments as doubles. Correct for this here. */
1319 if (TYPE_CODE_FLT == TYPE_CODE (arg_type) && REGISTER_SIZE == len)
1320 nstack_size += FP_REGISTER_VIRTUAL_SIZE;
1321 else
1322 nstack_size += len;
1323 }
1324
1325 /* Allocate room on the stack, and initialize our stack frame
1326 pointer. */
1327 fp = NULL;
1328 if (nstack_size > 0)
1329 {
1330 sp -= nstack_size;
1331 fp = (char *) sp;
1332 }
1333
1334 /* Initialize the integer argument register pointer. */
1335 argreg = A1_REGNUM;
1336
1337 /* The struct_return pointer occupies the first parameter passing
1338 register. */
1339 if (struct_return)
1340 write_register (argreg++, struct_addr);
1341
1342 /* Process arguments from left to right. Store as many as allowed
1343 in the parameter passing registers (A1-A4), and save the rest on
1344 the temporary stack. */
1345 for (argnum = 0; argnum < nargs; argnum++)
1346 {
1347 int len;
1348 char *val;
1349 CORE_ADDR regval;
1350 enum type_code typecode;
1351 struct type *arg_type, *target_type;
1352
1353 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1354 target_type = TYPE_TARGET_TYPE (arg_type);
1355 len = TYPE_LENGTH (arg_type);
1356 typecode = TYPE_CODE (arg_type);
1357 val = (char *) VALUE_CONTENTS (args[argnum]);
1358
1359 /* ANSI C code passes float arguments as integers, K&R code
1360 passes float arguments as doubles. The .stabs record for
1361 for ANSI prototype floating point arguments records the
1362 type as FP_INTEGER, while a K&R style (no prototype)
1363 .stabs records the type as FP_FLOAT. In this latter case
1364 the compiler converts the float arguments to double before
1365 calling the function. */
1366 if (TYPE_CODE_FLT == typecode && REGISTER_SIZE == len)
1367 {
1368 DOUBLEST dblval;
1369 dblval = extract_floating (val, len);
1370 len = TARGET_DOUBLE_BIT / TARGET_CHAR_BIT;
1371 val = alloca (len);
1372 store_floating (val, len, dblval);
1373 }
1374 #if 1
1375 /* I don't know why this code was disable. The only logical use
1376 for a function pointer is to call that function, so setting
1377 the mode bit is perfectly fine. FN */
1378 /* If the argument is a pointer to a function, and it is a Thumb
1379 function, set the low bit of the pointer. */
1380 if (TYPE_CODE_PTR == typecode
1381 && NULL != target_type
1382 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1383 {
1384 CORE_ADDR regval = extract_address (val, len);
1385 if (arm_pc_is_thumb (regval))
1386 store_address (val, len, MAKE_THUMB_ADDR (regval));
1387 }
1388 #endif
1389 /* Copy the argument to general registers or the stack in
1390 register-sized pieces. Large arguments are split between
1391 registers and stack. */
1392 while (len > 0)
1393 {
1394 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
1395
1396 if (argreg <= ARM_LAST_ARG_REGNUM)
1397 {
1398 /* It's an argument being passed in a general register. */
1399 regval = extract_address (val, partial_len);
1400 write_register (argreg++, regval);
1401 }
1402 else
1403 {
1404 /* Push the arguments onto the stack. */
1405 write_memory ((CORE_ADDR) fp, val, REGISTER_SIZE);
1406 fp += REGISTER_SIZE;
1407 }
1408
1409 len -= partial_len;
1410 val += partial_len;
1411 }
1412 }
1413
1414 /* Return adjusted stack pointer. */
1415 return sp;
1416 }
1417
1418 /* Pop the current frame. So long as the frame info has been initialized
1419 properly (see arm_init_extra_frame_info), this code works for dummy frames
1420 as well as regular frames. I.e, there's no need to have a special case
1421 for dummy frames. */
1422 void
1423 arm_pop_frame (void)
1424 {
1425 int regnum;
1426 struct frame_info *frame = get_current_frame ();
1427 CORE_ADDR old_SP = frame->frame - frame->frameoffset + frame->framesize;
1428
1429 for (regnum = 0; regnum < NUM_REGS; regnum++)
1430 if (frame->fsr.regs[regnum] != 0)
1431 write_register (regnum,
1432 read_memory_integer (frame->fsr.regs[regnum],
1433 REGISTER_RAW_SIZE (regnum)));
1434
1435 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
1436 write_register (SP_REGNUM, old_SP);
1437
1438 flush_cached_frames ();
1439 }
1440
1441 static void
1442 print_fpu_flags (int flags)
1443 {
1444 if (flags & (1 << 0))
1445 fputs ("IVO ", stdout);
1446 if (flags & (1 << 1))
1447 fputs ("DVZ ", stdout);
1448 if (flags & (1 << 2))
1449 fputs ("OFL ", stdout);
1450 if (flags & (1 << 3))
1451 fputs ("UFL ", stdout);
1452 if (flags & (1 << 4))
1453 fputs ("INX ", stdout);
1454 putchar ('\n');
1455 }
1456
1457 void
1458 arm_float_info (void)
1459 {
1460 register unsigned long status = read_register (FPS_REGNUM);
1461 int type;
1462
1463 type = (status >> 24) & 127;
1464 printf ("%s FPU type %d\n",
1465 (status & (1 << 31)) ? "Hardware" : "Software",
1466 type);
1467 fputs ("mask: ", stdout);
1468 print_fpu_flags (status >> 16);
1469 fputs ("flags: ", stdout);
1470 print_fpu_flags (status);
1471 }
1472
1473 struct type *
1474 arm_register_type (int regnum)
1475 {
1476 if (regnum >= F0_REGNUM && regnum < F0_REGNUM + NUM_FREGS)
1477 {
1478 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1479 return builtin_type_arm_ext_big;
1480 else
1481 return builtin_type_arm_ext_littlebyte_bigword;
1482 }
1483 else
1484 return builtin_type_int32;
1485 }
1486
1487 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1488 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1489 It is thought that this is is the floating-point register format on
1490 little-endian systems. */
1491
1492 static void
1493 convert_from_extended (void *ptr, void *dbl)
1494 {
1495 DOUBLEST d;
1496 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1497 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1498 else
1499 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1500 ptr, &d);
1501 floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &d, dbl);
1502 }
1503
1504 void
1505 convert_to_extended (void *dbl, void *ptr)
1506 {
1507 DOUBLEST d;
1508 floatformat_to_doublest (TARGET_DOUBLE_FORMAT, ptr, &d);
1509 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1510 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1511 else
1512 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1513 &d, dbl);
1514 }
1515
1516 static int
1517 condition_true (unsigned long cond, unsigned long status_reg)
1518 {
1519 if (cond == INST_AL || cond == INST_NV)
1520 return 1;
1521
1522 switch (cond)
1523 {
1524 case INST_EQ:
1525 return ((status_reg & FLAG_Z) != 0);
1526 case INST_NE:
1527 return ((status_reg & FLAG_Z) == 0);
1528 case INST_CS:
1529 return ((status_reg & FLAG_C) != 0);
1530 case INST_CC:
1531 return ((status_reg & FLAG_C) == 0);
1532 case INST_MI:
1533 return ((status_reg & FLAG_N) != 0);
1534 case INST_PL:
1535 return ((status_reg & FLAG_N) == 0);
1536 case INST_VS:
1537 return ((status_reg & FLAG_V) != 0);
1538 case INST_VC:
1539 return ((status_reg & FLAG_V) == 0);
1540 case INST_HI:
1541 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1542 case INST_LS:
1543 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1544 case INST_GE:
1545 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1546 case INST_LT:
1547 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1548 case INST_GT:
1549 return (((status_reg & FLAG_Z) == 0) &&
1550 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1551 case INST_LE:
1552 return (((status_reg & FLAG_Z) != 0) ||
1553 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1554 }
1555 return 1;
1556 }
1557
1558 /* Support routines for single stepping. Calculate the next PC value. */
1559 #define submask(x) ((1L << ((x) + 1)) - 1)
1560 #define bit(obj,st) (((obj) >> (st)) & 1)
1561 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1562 #define sbits(obj,st,fn) \
1563 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1564 #define BranchDest(addr,instr) \
1565 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1566 #define ARM_PC_32 1
1567
1568 static unsigned long
1569 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1570 unsigned long status_reg)
1571 {
1572 unsigned long res, shift;
1573 int rm = bits (inst, 0, 3);
1574 unsigned long shifttype = bits (inst, 5, 6);
1575
1576 if (bit (inst, 4))
1577 {
1578 int rs = bits (inst, 8, 11);
1579 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1580 }
1581 else
1582 shift = bits (inst, 7, 11);
1583
1584 res = (rm == 15
1585 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1586 + (bit (inst, 4) ? 12 : 8))
1587 : read_register (rm));
1588
1589 switch (shifttype)
1590 {
1591 case 0: /* LSL */
1592 res = shift >= 32 ? 0 : res << shift;
1593 break;
1594
1595 case 1: /* LSR */
1596 res = shift >= 32 ? 0 : res >> shift;
1597 break;
1598
1599 case 2: /* ASR */
1600 if (shift >= 32)
1601 shift = 31;
1602 res = ((res & 0x80000000L)
1603 ? ~((~res) >> shift) : res >> shift);
1604 break;
1605
1606 case 3: /* ROR/RRX */
1607 shift &= 31;
1608 if (shift == 0)
1609 res = (res >> 1) | (carry ? 0x80000000L : 0);
1610 else
1611 res = (res >> shift) | (res << (32 - shift));
1612 break;
1613 }
1614
1615 return res & 0xffffffff;
1616 }
1617
1618 /* Return number of 1-bits in VAL. */
1619
1620 static int
1621 bitcount (unsigned long val)
1622 {
1623 int nbits;
1624 for (nbits = 0; val != 0; nbits++)
1625 val &= val - 1; /* delete rightmost 1-bit in val */
1626 return nbits;
1627 }
1628
1629 static CORE_ADDR
1630 thumb_get_next_pc (CORE_ADDR pc)
1631 {
1632 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1633 unsigned short inst1 = read_memory_integer (pc, 2);
1634 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1635 unsigned long offset;
1636
1637 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1638 {
1639 CORE_ADDR sp;
1640
1641 /* Fetch the saved PC from the stack. It's stored above
1642 all of the other registers. */
1643 offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
1644 sp = read_register (SP_REGNUM);
1645 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1646 nextpc = ADDR_BITS_REMOVE (nextpc);
1647 if (nextpc == pc)
1648 error ("Infinite loop detected");
1649 }
1650 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1651 {
1652 unsigned long status = read_register (PS_REGNUM);
1653 unsigned long cond = bits (inst1, 8, 11);
1654 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1655 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1656 }
1657 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1658 {
1659 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1660 }
1661 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1662 {
1663 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1664 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1665 nextpc = pc_val + offset;
1666 }
1667
1668 return nextpc;
1669 }
1670
1671 CORE_ADDR
1672 arm_get_next_pc (CORE_ADDR pc)
1673 {
1674 unsigned long pc_val;
1675 unsigned long this_instr;
1676 unsigned long status;
1677 CORE_ADDR nextpc;
1678
1679 if (arm_pc_is_thumb (pc))
1680 return thumb_get_next_pc (pc);
1681
1682 pc_val = (unsigned long) pc;
1683 this_instr = read_memory_integer (pc, 4);
1684 status = read_register (PS_REGNUM);
1685 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1686
1687 if (condition_true (bits (this_instr, 28, 31), status))
1688 {
1689 switch (bits (this_instr, 24, 27))
1690 {
1691 case 0x0:
1692 case 0x1: /* data processing */
1693 case 0x2:
1694 case 0x3:
1695 {
1696 unsigned long operand1, operand2, result = 0;
1697 unsigned long rn;
1698 int c;
1699
1700 if (bits (this_instr, 12, 15) != 15)
1701 break;
1702
1703 if (bits (this_instr, 22, 25) == 0
1704 && bits (this_instr, 4, 7) == 9) /* multiply */
1705 error ("Illegal update to pc in instruction");
1706
1707 /* Multiply into PC */
1708 c = (status & FLAG_C) ? 1 : 0;
1709 rn = bits (this_instr, 16, 19);
1710 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1711
1712 if (bit (this_instr, 25))
1713 {
1714 unsigned long immval = bits (this_instr, 0, 7);
1715 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1716 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1717 & 0xffffffff;
1718 }
1719 else /* operand 2 is a shifted register */
1720 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1721
1722 switch (bits (this_instr, 21, 24))
1723 {
1724 case 0x0: /*and */
1725 result = operand1 & operand2;
1726 break;
1727
1728 case 0x1: /*eor */
1729 result = operand1 ^ operand2;
1730 break;
1731
1732 case 0x2: /*sub */
1733 result = operand1 - operand2;
1734 break;
1735
1736 case 0x3: /*rsb */
1737 result = operand2 - operand1;
1738 break;
1739
1740 case 0x4: /*add */
1741 result = operand1 + operand2;
1742 break;
1743
1744 case 0x5: /*adc */
1745 result = operand1 + operand2 + c;
1746 break;
1747
1748 case 0x6: /*sbc */
1749 result = operand1 - operand2 + c;
1750 break;
1751
1752 case 0x7: /*rsc */
1753 result = operand2 - operand1 + c;
1754 break;
1755
1756 case 0x8:
1757 case 0x9:
1758 case 0xa:
1759 case 0xb: /* tst, teq, cmp, cmn */
1760 result = (unsigned long) nextpc;
1761 break;
1762
1763 case 0xc: /*orr */
1764 result = operand1 | operand2;
1765 break;
1766
1767 case 0xd: /*mov */
1768 /* Always step into a function. */
1769 result = operand2;
1770 break;
1771
1772 case 0xe: /*bic */
1773 result = operand1 & ~operand2;
1774 break;
1775
1776 case 0xf: /*mvn */
1777 result = ~operand2;
1778 break;
1779 }
1780 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1781
1782 if (nextpc == pc)
1783 error ("Infinite loop detected");
1784 break;
1785 }
1786
1787 case 0x4:
1788 case 0x5: /* data transfer */
1789 case 0x6:
1790 case 0x7:
1791 if (bit (this_instr, 20))
1792 {
1793 /* load */
1794 if (bits (this_instr, 12, 15) == 15)
1795 {
1796 /* rd == pc */
1797 unsigned long rn;
1798 unsigned long base;
1799
1800 if (bit (this_instr, 22))
1801 error ("Illegal update to pc in instruction");
1802
1803 /* byte write to PC */
1804 rn = bits (this_instr, 16, 19);
1805 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1806 if (bit (this_instr, 24))
1807 {
1808 /* pre-indexed */
1809 int c = (status & FLAG_C) ? 1 : 0;
1810 unsigned long offset =
1811 (bit (this_instr, 25)
1812 ? shifted_reg_val (this_instr, c, pc_val, status)
1813 : bits (this_instr, 0, 11));
1814
1815 if (bit (this_instr, 23))
1816 base += offset;
1817 else
1818 base -= offset;
1819 }
1820 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1821 4);
1822
1823 nextpc = ADDR_BITS_REMOVE (nextpc);
1824
1825 if (nextpc == pc)
1826 error ("Infinite loop detected");
1827 }
1828 }
1829 break;
1830
1831 case 0x8:
1832 case 0x9: /* block transfer */
1833 if (bit (this_instr, 20))
1834 {
1835 /* LDM */
1836 if (bit (this_instr, 15))
1837 {
1838 /* loading pc */
1839 int offset = 0;
1840
1841 if (bit (this_instr, 23))
1842 {
1843 /* up */
1844 unsigned long reglist = bits (this_instr, 0, 14);
1845 offset = bitcount (reglist) * 4;
1846 if (bit (this_instr, 24)) /* pre */
1847 offset += 4;
1848 }
1849 else if (bit (this_instr, 24))
1850 offset = -4;
1851
1852 {
1853 unsigned long rn_val =
1854 read_register (bits (this_instr, 16, 19));
1855 nextpc =
1856 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1857 + offset),
1858 4);
1859 }
1860 nextpc = ADDR_BITS_REMOVE (nextpc);
1861 if (nextpc == pc)
1862 error ("Infinite loop detected");
1863 }
1864 }
1865 break;
1866
1867 case 0xb: /* branch & link */
1868 case 0xa: /* branch */
1869 {
1870 nextpc = BranchDest (pc, this_instr);
1871
1872 nextpc = ADDR_BITS_REMOVE (nextpc);
1873 if (nextpc == pc)
1874 error ("Infinite loop detected");
1875 break;
1876 }
1877
1878 case 0xc:
1879 case 0xd:
1880 case 0xe: /* coproc ops */
1881 case 0xf: /* SWI */
1882 break;
1883
1884 default:
1885 fprintf (stderr, "Bad bit-field extraction\n");
1886 return (pc);
1887 }
1888 }
1889
1890 return nextpc;
1891 }
1892
1893 /* single_step() is called just before we want to resume the inferior,
1894 if we want to single-step it but there is no hardware or kernel
1895 single-step support. We find the target of the coming instruction
1896 and breakpoint it.
1897
1898 single_step is also called just after the inferior stops. If we had
1899 set up a simulated single-step, we undo our damage. */
1900
1901 void
1902 arm_software_single_step (ignore, insert_bpt)
1903 int ignore; /* Signal, not needed */
1904 int insert_bpt;
1905 {
1906 static int next_pc; /* State between setting and unsetting. */
1907 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1908
1909 if (insert_bpt)
1910 {
1911 next_pc = arm_get_next_pc (read_register (PC_REGNUM));
1912 target_insert_breakpoint (next_pc, break_mem);
1913 }
1914 else
1915 target_remove_breakpoint (next_pc, break_mem);
1916 }
1917
1918 #include "bfd-in2.h"
1919 #include "libcoff.h"
1920
1921 static int
1922 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1923 {
1924 if (arm_pc_is_thumb (memaddr))
1925 {
1926 static asymbol *asym;
1927 static combined_entry_type ce;
1928 static struct coff_symbol_struct csym;
1929 static struct _bfd fake_bfd;
1930 static bfd_target fake_target;
1931
1932 if (csym.native == NULL)
1933 {
1934 /* Create a fake symbol vector containing a Thumb symbol. This is
1935 solely so that the code in print_insn_little_arm() and
1936 print_insn_big_arm() in opcodes/arm-dis.c will detect the presence
1937 of a Thumb symbol and switch to decoding Thumb instructions. */
1938
1939 fake_target.flavour = bfd_target_coff_flavour;
1940 fake_bfd.xvec = &fake_target;
1941 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1942 csym.native = &ce;
1943 csym.symbol.the_bfd = &fake_bfd;
1944 csym.symbol.name = "fake";
1945 asym = (asymbol *) & csym;
1946 }
1947
1948 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1949 info->symbols = &asym;
1950 }
1951 else
1952 info->symbols = NULL;
1953
1954 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1955 return print_insn_big_arm (memaddr, info);
1956 else
1957 return print_insn_little_arm (memaddr, info);
1958 }
1959
1960 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the
1961 program counter value to determine whether a 16-bit or 32-bit
1962 breakpoint should be used. It returns a pointer to a string of
1963 bytes that encode a breakpoint instruction, stores the length of
1964 the string to *lenptr, and adjusts the program counter (if
1965 necessary) to point to the actual memory location where the
1966 breakpoint should be inserted. */
1967
1968 unsigned char *
1969 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1970 {
1971 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
1972 {
1973 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1974 {
1975 static char thumb_breakpoint[] = THUMB_BE_BREAKPOINT;
1976 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1977 *lenptr = sizeof (thumb_breakpoint);
1978 return thumb_breakpoint;
1979 }
1980 else
1981 {
1982 static char thumb_breakpoint[] = THUMB_LE_BREAKPOINT;
1983 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1984 *lenptr = sizeof (thumb_breakpoint);
1985 return thumb_breakpoint;
1986 }
1987 }
1988 else
1989 {
1990 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1991 {
1992 static char arm_breakpoint[] = ARM_BE_BREAKPOINT;
1993 *lenptr = sizeof (arm_breakpoint);
1994 return arm_breakpoint;
1995 }
1996 else
1997 {
1998 static char arm_breakpoint[] = ARM_LE_BREAKPOINT;
1999 *lenptr = sizeof (arm_breakpoint);
2000 return arm_breakpoint;
2001 }
2002 }
2003 }
2004
2005 /* Extract from an array REGBUF containing the (raw) register state a
2006 function return value of type TYPE, and copy that, in virtual
2007 format, into VALBUF. */
2008
2009 void
2010 arm_extract_return_value (struct type *type,
2011 char regbuf[REGISTER_BYTES],
2012 char *valbuf)
2013 {
2014 if (TYPE_CODE_FLT == TYPE_CODE (type))
2015 convert_from_extended (&regbuf[REGISTER_BYTE (F0_REGNUM)], valbuf);
2016 else
2017 memcpy (valbuf, &regbuf[REGISTER_BYTE (A1_REGNUM)], TYPE_LENGTH (type));
2018 }
2019
2020 /* Return non-zero if the PC is inside a thumb call thunk. */
2021
2022 int
2023 arm_in_call_stub (CORE_ADDR pc, char *name)
2024 {
2025 CORE_ADDR start_addr;
2026
2027 /* Find the starting address of the function containing the PC. If
2028 the caller didn't give us a name, look it up at the same time. */
2029 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
2030 return 0;
2031
2032 return strncmp (name, "_call_via_r", 11) == 0;
2033 }
2034
2035 /* If PC is in a Thumb call or return stub, return the address of the
2036 target PC, which is in a register. The thunk functions are called
2037 _called_via_xx, where x is the register name. The possible names
2038 are r0-r9, sl, fp, ip, sp, and lr. */
2039
2040 CORE_ADDR
2041 arm_skip_stub (CORE_ADDR pc)
2042 {
2043 char *name;
2044 CORE_ADDR start_addr;
2045
2046 /* Find the starting address and name of the function containing the PC. */
2047 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2048 return 0;
2049
2050 /* Call thunks always start with "_call_via_". */
2051 if (strncmp (name, "_call_via_", 10) == 0)
2052 {
2053 /* Use the name suffix to determine which register contains the
2054 target PC. */
2055 static char *table[15] =
2056 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2057 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2058 };
2059 int regno;
2060
2061 for (regno = 0; regno <= 14; regno++)
2062 if (strcmp (&name[10], table[regno]) == 0)
2063 return read_register (regno);
2064 }
2065
2066 return 0; /* not a stub */
2067 }
2068
2069 /* If the user changes the register disassembly flavor used for info register
2070 and other commands, we have to also switch the flavor used in opcodes
2071 for disassembly output.
2072 This function is run in the set disassembly_flavor command, and does that. */
2073
2074 static void
2075 set_disassembly_flavor_sfunc (char *args, int from_tty,
2076 struct cmd_list_element *c)
2077 {
2078 set_disassembly_flavor ();
2079 }
2080 \f
2081 static void
2082 set_disassembly_flavor (void)
2083 {
2084 const char *setname, *setdesc, **regnames;
2085 int numregs, j;
2086
2087 /* Find the flavor that the user wants in the opcodes table. */
2088 int current = 0;
2089 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2090 while ((disassembly_flavor != setname)
2091 && (current < num_flavor_options))
2092 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2093 current_option = current;
2094
2095 /* Fill our copy. */
2096 for (j = 0; j < numregs; j++)
2097 arm_register_names[j] = (char *) regnames[j];
2098
2099 /* Adjust case. */
2100 if (isupper (*regnames[PC_REGNUM]))
2101 {
2102 arm_register_names[FPS_REGNUM] = "FPS";
2103 arm_register_names[PS_REGNUM] = "CPSR";
2104 }
2105 else
2106 {
2107 arm_register_names[FPS_REGNUM] = "fps";
2108 arm_register_names[PS_REGNUM] = "cpsr";
2109 }
2110
2111 /* Synchronize the disassembler. */
2112 set_arm_regname_option (current);
2113 }
2114
2115 /* arm_othernames implements the "othernames" command. This is kind
2116 of hacky, and I prefer the set-show disassembly-flavor which is
2117 also used for the x86 gdb. I will keep this around, however, in
2118 case anyone is actually using it. */
2119
2120 static void
2121 arm_othernames (char *names, int n)
2122 {
2123 /* Circle through the various flavors. */
2124 current_option = (current_option + 1) % num_flavor_options;
2125
2126 disassembly_flavor = valid_flavors[current_option];
2127 set_disassembly_flavor ();
2128 }
2129
2130 /* Fetch, and possibly build, an appropriate link_map_offsets structure
2131 for ARM linux targets using the struct offsets defined in <link.h>.
2132 Note, however, that link.h is not actually referred to in this file.
2133 Instead, the relevant structs offsets were obtained from examining
2134 link.h. (We can't refer to link.h from this file because the host
2135 system won't necessarily have it, or if it does, the structs which
2136 it defines will refer to the host system, not the target.) */
2137
2138 struct link_map_offsets *
2139 arm_linux_svr4_fetch_link_map_offsets (void)
2140 {
2141 static struct link_map_offsets lmo;
2142 static struct link_map_offsets *lmp = 0;
2143
2144 if (lmp == 0)
2145 {
2146 lmp = &lmo;
2147
2148 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
2149 need. */
2150
2151 lmo.r_map_offset = 4;
2152 lmo.r_map_size = 4;
2153
2154 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
2155 need. */
2156
2157 lmo.l_addr_offset = 0;
2158 lmo.l_addr_size = 4;
2159
2160 lmo.l_name_offset = 4;
2161 lmo.l_name_size = 4;
2162
2163 lmo.l_next_offset = 12;
2164 lmo.l_next_size = 4;
2165
2166 lmo.l_prev_offset = 16;
2167 lmo.l_prev_size = 4;
2168 }
2169
2170 return lmp;
2171 }
2172
2173 void
2174 _initialize_arm_tdep (void)
2175 {
2176 struct ui_file *stb;
2177 long length;
2178 struct cmd_list_element *new_cmd;
2179 const char *setname;
2180 const char *setdesc;
2181 const char **regnames;
2182 int numregs, i, j;
2183 static char *helptext;
2184
2185 tm_print_insn = gdb_print_insn_arm;
2186
2187 /* Get the number of possible sets of register names defined in opcodes. */
2188 num_flavor_options = get_arm_regname_num_options ();
2189
2190 /* Sync the opcode insn printer with our register viewer: */
2191 parse_arm_disassembler_option ("reg-names-std");
2192
2193 /* Begin creating the help text. */
2194 stb = mem_fileopen ();
2195 fprintf_unfiltered (stb, "Set the disassembly flavor.\n\
2196 The valid values are:\n");
2197
2198 /* Initialize the array that will be passed to add_set_enum_cmd(). */
2199 valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *));
2200 for (i = 0; i < num_flavor_options; i++)
2201 {
2202 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
2203 valid_flavors[i] = setname;
2204 fprintf_unfiltered (stb, "%s - %s\n", setname,
2205 setdesc);
2206 /* Copy the default names (if found) and synchronize disassembler. */
2207 if (!strcmp (setname, "std"))
2208 {
2209 disassembly_flavor = setname;
2210 current_option = i;
2211 for (j = 0; j < numregs; j++)
2212 arm_register_names[j] = (char *) regnames[j];
2213 set_arm_regname_option (i);
2214 }
2215 }
2216 /* Mark the end of valid options. */
2217 valid_flavors[num_flavor_options] = NULL;
2218
2219 /* Finish the creation of the help text. */
2220 fprintf_unfiltered (stb, "The default is \"std\".");
2221 helptext = ui_file_xstrdup (stb, &length);
2222 ui_file_delete (stb);
2223
2224 /* Add the disassembly-flavor command */
2225 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
2226 valid_flavors,
2227 &disassembly_flavor,
2228 helptext,
2229 &setlist);
2230 new_cmd->function.sfunc = set_disassembly_flavor_sfunc;
2231 add_show_from_set (new_cmd, &showlist);
2232
2233 /* ??? Maybe this should be a boolean. */
2234 add_show_from_set (add_set_cmd ("apcs32", no_class,
2235 var_zinteger, (char *) &arm_apcs_32,
2236 "Set usage of ARM 32-bit mode.\n", &setlist),
2237 &showlist);
2238
2239 /* Add the deprecated "othernames" command */
2240
2241 add_com ("othernames", class_obscure, arm_othernames,
2242 "Switch to the next set of register names.");
2243 }
2244
2245 /* Test whether the coff symbol specific value corresponds to a Thumb
2246 function. */
2247
2248 int
2249 coff_sym_is_thumb (int val)
2250 {
2251 return (val == C_THUMBEXT ||
2252 val == C_THUMBSTAT ||
2253 val == C_THUMBEXTFUNC ||
2254 val == C_THUMBSTATFUNC ||
2255 val == C_THUMBLABEL);
2256 }
This page took 0.124166 seconds and 4 git commands to generate.