Updated copyright notices for most files.
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include <ctype.h> /* XXX for isupper () */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "gdb_string.h"
30 #include "dis-asm.h" /* For register styles. */
31 #include "regcache.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "arch-utils.h"
35 #include "osabi.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "trad-frame.h"
39 #include "objfiles.h"
40 #include "dwarf2-frame.h"
41 #include "gdbtypes.h"
42 #include "prologue-value.h"
43 #include "target-descriptions.h"
44 #include "user-regs.h"
45
46 #include "arm-tdep.h"
47 #include "gdb/sim-arm.h"
48
49 #include "elf-bfd.h"
50 #include "coff/internal.h"
51 #include "elf/arm.h"
52
53 #include "gdb_assert.h"
54
55 static int arm_debug;
56
57 /* Macros for setting and testing a bit in a minimal symbol that marks
58 it as Thumb function. The MSB of the minimal symbol's "info" field
59 is used for this purpose.
60
61 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
62 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
63
64 #define MSYMBOL_SET_SPECIAL(msym) \
65 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
66 | 0x80000000)
67
68 #define MSYMBOL_IS_SPECIAL(msym) \
69 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
70
71 /* The list of available "set arm ..." and "show arm ..." commands. */
72 static struct cmd_list_element *setarmcmdlist = NULL;
73 static struct cmd_list_element *showarmcmdlist = NULL;
74
75 /* The type of floating-point to use. Keep this in sync with enum
76 arm_float_model, and the help string in _initialize_arm_tdep. */
77 static const char *fp_model_strings[] =
78 {
79 "auto",
80 "softfpa",
81 "fpa",
82 "softvfp",
83 "vfp",
84 NULL
85 };
86
87 /* A variable that can be configured by the user. */
88 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
89 static const char *current_fp_model = "auto";
90
91 /* The ABI to use. Keep this in sync with arm_abi_kind. */
92 static const char *arm_abi_strings[] =
93 {
94 "auto",
95 "APCS",
96 "AAPCS",
97 NULL
98 };
99
100 /* A variable that can be configured by the user. */
101 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
102 static const char *arm_abi_string = "auto";
103
104 /* Number of different reg name sets (options). */
105 static int num_disassembly_options;
106
107 /* The standard register names, and all the valid aliases for them. */
108 static const struct
109 {
110 const char *name;
111 int regnum;
112 } arm_register_aliases[] = {
113 /* Basic register numbers. */
114 { "r0", 0 },
115 { "r1", 1 },
116 { "r2", 2 },
117 { "r3", 3 },
118 { "r4", 4 },
119 { "r5", 5 },
120 { "r6", 6 },
121 { "r7", 7 },
122 { "r8", 8 },
123 { "r9", 9 },
124 { "r10", 10 },
125 { "r11", 11 },
126 { "r12", 12 },
127 { "r13", 13 },
128 { "r14", 14 },
129 { "r15", 15 },
130 /* Synonyms (argument and variable registers). */
131 { "a1", 0 },
132 { "a2", 1 },
133 { "a3", 2 },
134 { "a4", 3 },
135 { "v1", 4 },
136 { "v2", 5 },
137 { "v3", 6 },
138 { "v4", 7 },
139 { "v5", 8 },
140 { "v6", 9 },
141 { "v7", 10 },
142 { "v8", 11 },
143 /* Other platform-specific names for r9. */
144 { "sb", 9 },
145 { "tr", 9 },
146 /* Special names. */
147 { "ip", 12 },
148 { "sp", 13 },
149 { "lr", 14 },
150 { "pc", 15 },
151 /* Names used by GCC (not listed in the ARM EABI). */
152 { "sl", 10 },
153 { "fp", 11 },
154 /* A special name from the older ATPCS. */
155 { "wr", 7 },
156 };
157
158 static const char *const arm_register_names[] =
159 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
160 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
161 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
162 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
163 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
164 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
165 "fps", "cpsr" }; /* 24 25 */
166
167 /* Valid register name styles. */
168 static const char **valid_disassembly_styles;
169
170 /* Disassembly style to use. Default to "std" register names. */
171 static const char *disassembly_style;
172
173 /* This is used to keep the bfd arch_info in sync with the disassembly
174 style. */
175 static void set_disassembly_style_sfunc(char *, int,
176 struct cmd_list_element *);
177 static void set_disassembly_style (void);
178
179 static void convert_from_extended (const struct floatformat *, const void *,
180 void *);
181 static void convert_to_extended (const struct floatformat *, void *,
182 const void *);
183
184 struct arm_prologue_cache
185 {
186 /* The stack pointer at the time this frame was created; i.e. the
187 caller's stack pointer when this function was called. It is used
188 to identify this frame. */
189 CORE_ADDR prev_sp;
190
191 /* The frame base for this frame is just prev_sp - frame size.
192 FRAMESIZE is the distance from the frame pointer to the
193 initial stack pointer. */
194
195 int framesize;
196
197 /* The register used to hold the frame pointer for this frame. */
198 int framereg;
199
200 /* Saved register offsets. */
201 struct trad_frame_saved_reg *saved_regs;
202 };
203
204 /* Addresses for calling Thumb functions have the bit 0 set.
205 Here are some macros to test, set, or clear bit 0 of addresses. */
206 #define IS_THUMB_ADDR(addr) ((addr) & 1)
207 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
208 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
209
210 /* Set to true if the 32-bit mode is in use. */
211
212 int arm_apcs_32 = 1;
213
214 /* Determine if the program counter specified in MEMADDR is in a Thumb
215 function. */
216
217 static int
218 arm_pc_is_thumb (CORE_ADDR memaddr)
219 {
220 struct minimal_symbol *sym;
221
222 /* If bit 0 of the address is set, assume this is a Thumb address. */
223 if (IS_THUMB_ADDR (memaddr))
224 return 1;
225
226 /* Thumb functions have a "special" bit set in minimal symbols. */
227 sym = lookup_minimal_symbol_by_pc (memaddr);
228 if (sym)
229 {
230 return (MSYMBOL_IS_SPECIAL (sym));
231 }
232 else
233 {
234 return 0;
235 }
236 }
237
238 /* Remove useless bits from addresses in a running program. */
239 static CORE_ADDR
240 arm_addr_bits_remove (CORE_ADDR val)
241 {
242 if (arm_apcs_32)
243 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
244 else
245 return (val & 0x03fffffc);
246 }
247
248 /* When reading symbols, we need to zap the low bit of the address,
249 which may be set to 1 for Thumb functions. */
250 static CORE_ADDR
251 arm_smash_text_address (CORE_ADDR val)
252 {
253 return val & ~1;
254 }
255
256 /* Analyze a Thumb prologue, looking for a recognizable stack frame
257 and frame pointer. Scan until we encounter a store that could
258 clobber the stack frame unexpectedly, or an unknown instruction. */
259
260 static CORE_ADDR
261 thumb_analyze_prologue (struct gdbarch *gdbarch,
262 CORE_ADDR start, CORE_ADDR limit,
263 struct arm_prologue_cache *cache)
264 {
265 int i;
266 pv_t regs[16];
267 struct pv_area *stack;
268 struct cleanup *back_to;
269 CORE_ADDR offset;
270
271 for (i = 0; i < 16; i++)
272 regs[i] = pv_register (i, 0);
273 stack = make_pv_area (ARM_SP_REGNUM);
274 back_to = make_cleanup_free_pv_area (stack);
275
276 /* The call instruction saved PC in LR, and the current PC is not
277 interesting. Due to this file's conventions, we want the value
278 of LR at this function's entry, not at the call site, so we do
279 not record the save of the PC - when the ARM prologue analyzer
280 has also been converted to the pv mechanism, we could record the
281 save here and remove the hack in prev_register. */
282 regs[ARM_PC_REGNUM] = pv_unknown ();
283
284 while (start < limit)
285 {
286 unsigned short insn;
287
288 insn = read_memory_unsigned_integer (start, 2);
289
290 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
291 {
292 int regno;
293 int mask;
294
295 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
296 break;
297
298 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
299 whether to save LR (R14). */
300 mask = (insn & 0xff) | ((insn & 0x100) << 6);
301
302 /* Calculate offsets of saved R0-R7 and LR. */
303 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
304 if (mask & (1 << regno))
305 {
306 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
307 -4);
308 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
309 }
310 }
311 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
312 sub sp, #simm */
313 {
314 offset = (insn & 0x7f) << 2; /* get scaled offset */
315 if (insn & 0x80) /* Check for SUB. */
316 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
317 -offset);
318 else
319 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
320 offset);
321 }
322 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
323 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
324 (insn & 0xff) << 2);
325 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
326 {
327 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
328 int src_reg = (insn & 0x78) >> 3;
329 regs[dst_reg] = regs[src_reg];
330 }
331 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
332 {
333 /* Handle stores to the stack. Normally pushes are used,
334 but with GCC -mtpcs-frame, there may be other stores
335 in the prologue to create the frame. */
336 int regno = (insn >> 8) & 0x7;
337 pv_t addr;
338
339 offset = (insn & 0xff) << 2;
340 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
341
342 if (pv_area_store_would_trash (stack, addr))
343 break;
344
345 pv_area_store (stack, addr, 4, regs[regno]);
346 }
347 else
348 {
349 /* We don't know what this instruction is. We're finished
350 scanning. NOTE: Recognizing more safe-to-ignore
351 instructions here will improve support for optimized
352 code. */
353 break;
354 }
355
356 start += 2;
357 }
358
359 if (cache == NULL)
360 {
361 do_cleanups (back_to);
362 return start;
363 }
364
365 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
366 {
367 /* Frame pointer is fp. Frame size is constant. */
368 cache->framereg = ARM_FP_REGNUM;
369 cache->framesize = -regs[ARM_FP_REGNUM].k;
370 }
371 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
372 {
373 /* Frame pointer is r7. Frame size is constant. */
374 cache->framereg = THUMB_FP_REGNUM;
375 cache->framesize = -regs[THUMB_FP_REGNUM].k;
376 }
377 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
378 {
379 /* Try the stack pointer... this is a bit desperate. */
380 cache->framereg = ARM_SP_REGNUM;
381 cache->framesize = -regs[ARM_SP_REGNUM].k;
382 }
383 else
384 {
385 /* We're just out of luck. We don't know where the frame is. */
386 cache->framereg = -1;
387 cache->framesize = 0;
388 }
389
390 for (i = 0; i < 16; i++)
391 if (pv_area_find_reg (stack, gdbarch, i, &offset))
392 cache->saved_regs[i].addr = offset;
393
394 do_cleanups (back_to);
395 return start;
396 }
397
398 /* Advance the PC across any function entry prologue instructions to
399 reach some "real" code.
400
401 The APCS (ARM Procedure Call Standard) defines the following
402 prologue:
403
404 mov ip, sp
405 [stmfd sp!, {a1,a2,a3,a4}]
406 stmfd sp!, {...,fp,ip,lr,pc}
407 [stfe f7, [sp, #-12]!]
408 [stfe f6, [sp, #-12]!]
409 [stfe f5, [sp, #-12]!]
410 [stfe f4, [sp, #-12]!]
411 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
412
413 static CORE_ADDR
414 arm_skip_prologue (CORE_ADDR pc)
415 {
416 unsigned long inst;
417 CORE_ADDR skip_pc;
418 CORE_ADDR func_addr, func_end = 0;
419 char *func_name;
420 struct symtab_and_line sal;
421
422 /* If we're in a dummy frame, don't even try to skip the prologue. */
423 if (deprecated_pc_in_call_dummy (pc))
424 return pc;
425
426 /* See what the symbol table says. */
427
428 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
429 {
430 struct symbol *sym;
431
432 /* Found a function. */
433 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
434 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
435 {
436 /* Don't use this trick for assembly source files. */
437 sal = find_pc_line (func_addr, 0);
438 if ((sal.line != 0) && (sal.end < func_end))
439 return sal.end;
440 }
441 }
442
443 /* Can't find the prologue end in the symbol table, try it the hard way
444 by disassembling the instructions. */
445
446 /* Like arm_scan_prologue, stop no later than pc + 64. */
447 if (func_end == 0 || func_end > pc + 64)
448 func_end = pc + 64;
449
450 /* Check if this is Thumb code. */
451 if (arm_pc_is_thumb (pc))
452 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
453
454 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
455 {
456 inst = read_memory_unsigned_integer (skip_pc, 4);
457
458 /* "mov ip, sp" is no longer a required part of the prologue. */
459 if (inst == 0xe1a0c00d) /* mov ip, sp */
460 continue;
461
462 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
463 continue;
464
465 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
466 continue;
467
468 /* Some prologues begin with "str lr, [sp, #-4]!". */
469 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
470 continue;
471
472 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
473 continue;
474
475 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
476 continue;
477
478 /* Any insns after this point may float into the code, if it makes
479 for better instruction scheduling, so we skip them only if we
480 find them, but still consider the function to be frame-ful. */
481
482 /* We may have either one sfmfd instruction here, or several stfe
483 insns, depending on the version of floating point code we
484 support. */
485 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
486 continue;
487
488 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
489 continue;
490
491 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
492 continue;
493
494 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
495 continue;
496
497 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
498 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
499 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
500 continue;
501
502 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
503 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
504 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
505 continue;
506
507 /* Un-recognized instruction; stop scanning. */
508 break;
509 }
510
511 return skip_pc; /* End of prologue */
512 }
513
514 /* *INDENT-OFF* */
515 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
516 This function decodes a Thumb function prologue to determine:
517 1) the size of the stack frame
518 2) which registers are saved on it
519 3) the offsets of saved regs
520 4) the offset from the stack pointer to the frame pointer
521
522 A typical Thumb function prologue would create this stack frame
523 (offsets relative to FP)
524 old SP -> 24 stack parameters
525 20 LR
526 16 R7
527 R7 -> 0 local variables (16 bytes)
528 SP -> -12 additional stack space (12 bytes)
529 The frame size would thus be 36 bytes, and the frame offset would be
530 12 bytes. The frame register is R7.
531
532 The comments for thumb_skip_prolog() describe the algorithm we use
533 to detect the end of the prolog. */
534 /* *INDENT-ON* */
535
536 static void
537 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
538 {
539 CORE_ADDR prologue_start;
540 CORE_ADDR prologue_end;
541 CORE_ADDR current_pc;
542 /* Which register has been copied to register n? */
543 int saved_reg[16];
544 /* findmask:
545 bit 0 - push { rlist }
546 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
547 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
548 */
549 int findmask = 0;
550 int i;
551
552 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
553 {
554 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
555
556 if (sal.line == 0) /* no line info, use current PC */
557 prologue_end = prev_pc;
558 else if (sal.end < prologue_end) /* next line begins after fn end */
559 prologue_end = sal.end; /* (probably means no prologue) */
560 }
561 else
562 /* We're in the boondocks: we have no idea where the start of the
563 function is. */
564 return;
565
566 prologue_end = min (prologue_end, prev_pc);
567
568 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
569 cache);
570 }
571
572 /* This function decodes an ARM function prologue to determine:
573 1) the size of the stack frame
574 2) which registers are saved on it
575 3) the offsets of saved regs
576 4) the offset from the stack pointer to the frame pointer
577 This information is stored in the "extra" fields of the frame_info.
578
579 There are two basic forms for the ARM prologue. The fixed argument
580 function call will look like:
581
582 mov ip, sp
583 stmfd sp!, {fp, ip, lr, pc}
584 sub fp, ip, #4
585 [sub sp, sp, #4]
586
587 Which would create this stack frame (offsets relative to FP):
588 IP -> 4 (caller's stack)
589 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
590 -4 LR (return address in caller)
591 -8 IP (copy of caller's SP)
592 -12 FP (caller's FP)
593 SP -> -28 Local variables
594
595 The frame size would thus be 32 bytes, and the frame offset would be
596 28 bytes. The stmfd call can also save any of the vN registers it
597 plans to use, which increases the frame size accordingly.
598
599 Note: The stored PC is 8 off of the STMFD instruction that stored it
600 because the ARM Store instructions always store PC + 8 when you read
601 the PC register.
602
603 A variable argument function call will look like:
604
605 mov ip, sp
606 stmfd sp!, {a1, a2, a3, a4}
607 stmfd sp!, {fp, ip, lr, pc}
608 sub fp, ip, #20
609
610 Which would create this stack frame (offsets relative to FP):
611 IP -> 20 (caller's stack)
612 16 A4
613 12 A3
614 8 A2
615 4 A1
616 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
617 -4 LR (return address in caller)
618 -8 IP (copy of caller's SP)
619 -12 FP (caller's FP)
620 SP -> -28 Local variables
621
622 The frame size would thus be 48 bytes, and the frame offset would be
623 28 bytes.
624
625 There is another potential complication, which is that the optimizer
626 will try to separate the store of fp in the "stmfd" instruction from
627 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
628 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
629
630 Also, note, the original version of the ARM toolchain claimed that there
631 should be an
632
633 instruction at the end of the prologue. I have never seen GCC produce
634 this, and the ARM docs don't mention it. We still test for it below in
635 case it happens...
636
637 */
638
639 static void
640 arm_scan_prologue (struct frame_info *next_frame,
641 struct arm_prologue_cache *cache)
642 {
643 struct gdbarch *gdbarch = get_frame_arch (next_frame);
644 int regno;
645 CORE_ADDR prologue_start, prologue_end, current_pc;
646 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
647 pv_t regs[ARM_FPS_REGNUM];
648 struct pv_area *stack;
649 struct cleanup *back_to;
650 CORE_ADDR offset;
651
652 /* Assume there is no frame until proven otherwise. */
653 cache->framereg = ARM_SP_REGNUM;
654 cache->framesize = 0;
655
656 /* Check for Thumb prologue. */
657 if (arm_pc_is_thumb (prev_pc))
658 {
659 thumb_scan_prologue (prev_pc, cache);
660 return;
661 }
662
663 /* Find the function prologue. If we can't find the function in
664 the symbol table, peek in the stack frame to find the PC. */
665 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
666 {
667 /* One way to find the end of the prologue (which works well
668 for unoptimized code) is to do the following:
669
670 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
671
672 if (sal.line == 0)
673 prologue_end = prev_pc;
674 else if (sal.end < prologue_end)
675 prologue_end = sal.end;
676
677 This mechanism is very accurate so long as the optimizer
678 doesn't move any instructions from the function body into the
679 prologue. If this happens, sal.end will be the last
680 instruction in the first hunk of prologue code just before
681 the first instruction that the scheduler has moved from
682 the body to the prologue.
683
684 In order to make sure that we scan all of the prologue
685 instructions, we use a slightly less accurate mechanism which
686 may scan more than necessary. To help compensate for this
687 lack of accuracy, the prologue scanning loop below contains
688 several clauses which'll cause the loop to terminate early if
689 an implausible prologue instruction is encountered.
690
691 The expression
692
693 prologue_start + 64
694
695 is a suitable endpoint since it accounts for the largest
696 possible prologue plus up to five instructions inserted by
697 the scheduler. */
698
699 if (prologue_end > prologue_start + 64)
700 {
701 prologue_end = prologue_start + 64; /* See above. */
702 }
703 }
704 else
705 {
706 /* We have no symbol information. Our only option is to assume this
707 function has a standard stack frame and the normal frame register.
708 Then, we can find the value of our frame pointer on entrance to
709 the callee (or at the present moment if this is the innermost frame).
710 The value stored there should be the address of the stmfd + 8. */
711 CORE_ADDR frame_loc;
712 LONGEST return_value;
713
714 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
715 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
716 return;
717 else
718 {
719 prologue_start = gdbarch_addr_bits_remove
720 (gdbarch, return_value) - 8;
721 prologue_end = prologue_start + 64; /* See above. */
722 }
723 }
724
725 if (prev_pc < prologue_end)
726 prologue_end = prev_pc;
727
728 /* Now search the prologue looking for instructions that set up the
729 frame pointer, adjust the stack pointer, and save registers.
730
731 Be careful, however, and if it doesn't look like a prologue,
732 don't try to scan it. If, for instance, a frameless function
733 begins with stmfd sp!, then we will tell ourselves there is
734 a frame, which will confuse stack traceback, as well as "finish"
735 and other operations that rely on a knowledge of the stack
736 traceback.
737
738 In the APCS, the prologue should start with "mov ip, sp" so
739 if we don't see this as the first insn, we will stop.
740
741 [Note: This doesn't seem to be true any longer, so it's now an
742 optional part of the prologue. - Kevin Buettner, 2001-11-20]
743
744 [Note further: The "mov ip,sp" only seems to be missing in
745 frameless functions at optimization level "-O2" or above,
746 in which case it is often (but not always) replaced by
747 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
748
749 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
750 regs[regno] = pv_register (regno, 0);
751 stack = make_pv_area (ARM_SP_REGNUM);
752 back_to = make_cleanup_free_pv_area (stack);
753
754 regs[ARM_PC_REGNUM] = pv_unknown ();
755
756 for (current_pc = prologue_start;
757 current_pc < prologue_end;
758 current_pc += 4)
759 {
760 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
761
762 if (insn == 0xe1a0c00d) /* mov ip, sp */
763 {
764 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
765 continue;
766 }
767 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
768 {
769 unsigned imm = insn & 0xff; /* immediate value */
770 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
771 imm = (imm >> rot) | (imm << (32 - rot));
772 regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], imm);
773 continue;
774 }
775 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
776 {
777 unsigned imm = insn & 0xff; /* immediate value */
778 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
779 imm = (imm >> rot) | (imm << (32 - rot));
780 regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
781 continue;
782 }
783 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
784 {
785 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
786 break;
787 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
788 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[ARM_LR_REGNUM]);
789 continue;
790 }
791 else if ((insn & 0xffff0000) == 0xe92d0000)
792 /* stmfd sp!, {..., fp, ip, lr, pc}
793 or
794 stmfd sp!, {a1, a2, a3, a4} */
795 {
796 int mask = insn & 0xffff;
797
798 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
799 break;
800
801 /* Calculate offsets of saved registers. */
802 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
803 if (mask & (1 << regno))
804 {
805 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
806 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
807 }
808 }
809 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
810 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
811 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
812 {
813 /* No need to add this to saved_regs -- it's just an arg reg. */
814 continue;
815 }
816 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
817 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
818 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
819 {
820 /* No need to add this to saved_regs -- it's just an arg reg. */
821 continue;
822 }
823 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
824 {
825 unsigned imm = insn & 0xff; /* immediate value */
826 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
827 imm = (imm >> rot) | (imm << (32 - rot));
828 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
829 }
830 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
831 {
832 unsigned imm = insn & 0xff; /* immediate value */
833 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
834 imm = (imm >> rot) | (imm << (32 - rot));
835 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
836 }
837 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
838 && gdbarch_tdep (gdbarch)->have_fpa_registers)
839 {
840 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
841 break;
842
843 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
844 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
845 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
846 }
847 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
848 && gdbarch_tdep (gdbarch)->have_fpa_registers)
849 {
850 int n_saved_fp_regs;
851 unsigned int fp_start_reg, fp_bound_reg;
852
853 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
854 break;
855
856 if ((insn & 0x800) == 0x800) /* N0 is set */
857 {
858 if ((insn & 0x40000) == 0x40000) /* N1 is set */
859 n_saved_fp_regs = 3;
860 else
861 n_saved_fp_regs = 1;
862 }
863 else
864 {
865 if ((insn & 0x40000) == 0x40000) /* N1 is set */
866 n_saved_fp_regs = 2;
867 else
868 n_saved_fp_regs = 4;
869 }
870
871 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
872 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
873 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
874 {
875 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
876 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
877 regs[fp_start_reg++]);
878 }
879 }
880 else if ((insn & 0xf0000000) != 0xe0000000)
881 break; /* Condition not true, exit early */
882 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
883 break; /* Don't scan past a block load */
884 else
885 /* The optimizer might shove anything into the prologue,
886 so we just skip what we don't recognize. */
887 continue;
888 }
889
890 /* The frame size is just the distance from the frame register
891 to the original stack pointer. */
892 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
893 {
894 /* Frame pointer is fp. */
895 cache->framereg = ARM_FP_REGNUM;
896 cache->framesize = -regs[ARM_FP_REGNUM].k;
897 }
898 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
899 {
900 /* Try the stack pointer... this is a bit desperate. */
901 cache->framereg = ARM_SP_REGNUM;
902 cache->framesize = -regs[ARM_SP_REGNUM].k;
903 }
904 else
905 {
906 /* We're just out of luck. We don't know where the frame is. */
907 cache->framereg = -1;
908 cache->framesize = 0;
909 }
910
911 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
912 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
913 cache->saved_regs[regno].addr = offset;
914
915 do_cleanups (back_to);
916 }
917
918 static struct arm_prologue_cache *
919 arm_make_prologue_cache (struct frame_info *next_frame)
920 {
921 int reg;
922 struct arm_prologue_cache *cache;
923 CORE_ADDR unwound_fp;
924
925 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
926 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
927
928 arm_scan_prologue (next_frame, cache);
929
930 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
931 if (unwound_fp == 0)
932 return cache;
933
934 cache->prev_sp = unwound_fp + cache->framesize;
935
936 /* Calculate actual addresses of saved registers using offsets
937 determined by arm_scan_prologue. */
938 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (next_frame)); reg++)
939 if (trad_frame_addr_p (cache->saved_regs, reg))
940 cache->saved_regs[reg].addr += cache->prev_sp;
941
942 return cache;
943 }
944
945 /* Our frame ID for a normal frame is the current function's starting PC
946 and the caller's SP when we were called. */
947
948 static void
949 arm_prologue_this_id (struct frame_info *next_frame,
950 void **this_cache,
951 struct frame_id *this_id)
952 {
953 struct arm_prologue_cache *cache;
954 struct frame_id id;
955 CORE_ADDR func;
956
957 if (*this_cache == NULL)
958 *this_cache = arm_make_prologue_cache (next_frame);
959 cache = *this_cache;
960
961 func = frame_func_unwind (next_frame, NORMAL_FRAME);
962
963 /* This is meant to halt the backtrace at "_start". Make sure we
964 don't halt it at a generic dummy frame. */
965 if (func <= gdbarch_tdep (get_frame_arch (next_frame))->lowest_pc)
966 return;
967
968 /* If we've hit a wall, stop. */
969 if (cache->prev_sp == 0)
970 return;
971
972 id = frame_id_build (cache->prev_sp, func);
973 *this_id = id;
974 }
975
976 static void
977 arm_prologue_prev_register (struct frame_info *next_frame,
978 void **this_cache,
979 int prev_regnum,
980 int *optimized,
981 enum lval_type *lvalp,
982 CORE_ADDR *addrp,
983 int *realnump,
984 gdb_byte *valuep)
985 {
986 struct arm_prologue_cache *cache;
987
988 if (*this_cache == NULL)
989 *this_cache = arm_make_prologue_cache (next_frame);
990 cache = *this_cache;
991
992 /* If we are asked to unwind the PC, then we need to return the LR
993 instead. The saved value of PC points into this frame's
994 prologue, not the next frame's resume location. */
995 if (prev_regnum == ARM_PC_REGNUM)
996 prev_regnum = ARM_LR_REGNUM;
997
998 /* SP is generally not saved to the stack, but this frame is
999 identified by NEXT_FRAME's stack pointer at the time of the call.
1000 The value was already reconstructed into PREV_SP. */
1001 if (prev_regnum == ARM_SP_REGNUM)
1002 {
1003 *lvalp = not_lval;
1004 if (valuep)
1005 store_unsigned_integer (valuep, 4, cache->prev_sp);
1006 return;
1007 }
1008
1009 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
1010 optimized, lvalp, addrp, realnump, valuep);
1011 }
1012
1013 struct frame_unwind arm_prologue_unwind = {
1014 NORMAL_FRAME,
1015 arm_prologue_this_id,
1016 arm_prologue_prev_register
1017 };
1018
1019 static const struct frame_unwind *
1020 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
1021 {
1022 return &arm_prologue_unwind;
1023 }
1024
1025 static struct arm_prologue_cache *
1026 arm_make_stub_cache (struct frame_info *next_frame)
1027 {
1028 int reg;
1029 struct arm_prologue_cache *cache;
1030 CORE_ADDR unwound_fp;
1031
1032 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1033 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1034
1035 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1036
1037 return cache;
1038 }
1039
1040 /* Our frame ID for a stub frame is the current SP and LR. */
1041
1042 static void
1043 arm_stub_this_id (struct frame_info *next_frame,
1044 void **this_cache,
1045 struct frame_id *this_id)
1046 {
1047 struct arm_prologue_cache *cache;
1048
1049 if (*this_cache == NULL)
1050 *this_cache = arm_make_stub_cache (next_frame);
1051 cache = *this_cache;
1052
1053 *this_id = frame_id_build (cache->prev_sp,
1054 frame_pc_unwind (next_frame));
1055 }
1056
1057 struct frame_unwind arm_stub_unwind = {
1058 NORMAL_FRAME,
1059 arm_stub_this_id,
1060 arm_prologue_prev_register
1061 };
1062
1063 static const struct frame_unwind *
1064 arm_stub_unwind_sniffer (struct frame_info *next_frame)
1065 {
1066 CORE_ADDR addr_in_block;
1067 char dummy[4];
1068
1069 addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1070 if (in_plt_section (addr_in_block, NULL)
1071 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1072 return &arm_stub_unwind;
1073
1074 return NULL;
1075 }
1076
1077 static CORE_ADDR
1078 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1079 {
1080 struct arm_prologue_cache *cache;
1081
1082 if (*this_cache == NULL)
1083 *this_cache = arm_make_prologue_cache (next_frame);
1084 cache = *this_cache;
1085
1086 return cache->prev_sp - cache->framesize;
1087 }
1088
1089 struct frame_base arm_normal_base = {
1090 &arm_prologue_unwind,
1091 arm_normal_frame_base,
1092 arm_normal_frame_base,
1093 arm_normal_frame_base
1094 };
1095
1096 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1097 dummy frame. The frame ID's base needs to match the TOS value
1098 saved by save_dummy_frame_tos() and returned from
1099 arm_push_dummy_call, and the PC needs to match the dummy frame's
1100 breakpoint. */
1101
1102 static struct frame_id
1103 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1104 {
1105 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1106 frame_pc_unwind (next_frame));
1107 }
1108
1109 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1110 be used to construct the previous frame's ID, after looking up the
1111 containing function). */
1112
1113 static CORE_ADDR
1114 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1115 {
1116 CORE_ADDR pc;
1117 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1118 return arm_addr_bits_remove (pc);
1119 }
1120
1121 static CORE_ADDR
1122 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1123 {
1124 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1125 }
1126
1127 /* When arguments must be pushed onto the stack, they go on in reverse
1128 order. The code below implements a FILO (stack) to do this. */
1129
1130 struct stack_item
1131 {
1132 int len;
1133 struct stack_item *prev;
1134 void *data;
1135 };
1136
1137 static struct stack_item *
1138 push_stack_item (struct stack_item *prev, void *contents, int len)
1139 {
1140 struct stack_item *si;
1141 si = xmalloc (sizeof (struct stack_item));
1142 si->data = xmalloc (len);
1143 si->len = len;
1144 si->prev = prev;
1145 memcpy (si->data, contents, len);
1146 return si;
1147 }
1148
1149 static struct stack_item *
1150 pop_stack_item (struct stack_item *si)
1151 {
1152 struct stack_item *dead = si;
1153 si = si->prev;
1154 xfree (dead->data);
1155 xfree (dead);
1156 return si;
1157 }
1158
1159
1160 /* Return the alignment (in bytes) of the given type. */
1161
1162 static int
1163 arm_type_align (struct type *t)
1164 {
1165 int n;
1166 int align;
1167 int falign;
1168
1169 t = check_typedef (t);
1170 switch (TYPE_CODE (t))
1171 {
1172 default:
1173 /* Should never happen. */
1174 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1175 return 4;
1176
1177 case TYPE_CODE_PTR:
1178 case TYPE_CODE_ENUM:
1179 case TYPE_CODE_INT:
1180 case TYPE_CODE_FLT:
1181 case TYPE_CODE_SET:
1182 case TYPE_CODE_RANGE:
1183 case TYPE_CODE_BITSTRING:
1184 case TYPE_CODE_REF:
1185 case TYPE_CODE_CHAR:
1186 case TYPE_CODE_BOOL:
1187 return TYPE_LENGTH (t);
1188
1189 case TYPE_CODE_ARRAY:
1190 case TYPE_CODE_COMPLEX:
1191 /* TODO: What about vector types? */
1192 return arm_type_align (TYPE_TARGET_TYPE (t));
1193
1194 case TYPE_CODE_STRUCT:
1195 case TYPE_CODE_UNION:
1196 align = 1;
1197 for (n = 0; n < TYPE_NFIELDS (t); n++)
1198 {
1199 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1200 if (falign > align)
1201 align = falign;
1202 }
1203 return align;
1204 }
1205 }
1206
1207 /* We currently only support passing parameters in integer registers. This
1208 conforms with GCC's default model. Several other variants exist and
1209 we should probably support some of them based on the selected ABI. */
1210
1211 static CORE_ADDR
1212 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1213 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1214 struct value **args, CORE_ADDR sp, int struct_return,
1215 CORE_ADDR struct_addr)
1216 {
1217 int argnum;
1218 int argreg;
1219 int nstack;
1220 struct stack_item *si = NULL;
1221
1222 /* Set the return address. For the ARM, the return breakpoint is
1223 always at BP_ADDR. */
1224 /* XXX Fix for Thumb. */
1225 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1226
1227 /* Walk through the list of args and determine how large a temporary
1228 stack is required. Need to take care here as structs may be
1229 passed on the stack, and we have to to push them. */
1230 nstack = 0;
1231
1232 argreg = ARM_A1_REGNUM;
1233 nstack = 0;
1234
1235 /* The struct_return pointer occupies the first parameter
1236 passing register. */
1237 if (struct_return)
1238 {
1239 if (arm_debug)
1240 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1241 gdbarch_register_name (gdbarch, argreg),
1242 paddr (struct_addr));
1243 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1244 argreg++;
1245 }
1246
1247 for (argnum = 0; argnum < nargs; argnum++)
1248 {
1249 int len;
1250 struct type *arg_type;
1251 struct type *target_type;
1252 enum type_code typecode;
1253 bfd_byte *val;
1254 int align;
1255
1256 arg_type = check_typedef (value_type (args[argnum]));
1257 len = TYPE_LENGTH (arg_type);
1258 target_type = TYPE_TARGET_TYPE (arg_type);
1259 typecode = TYPE_CODE (arg_type);
1260 val = value_contents_writeable (args[argnum]);
1261
1262 align = arm_type_align (arg_type);
1263 /* Round alignment up to a whole number of words. */
1264 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1265 /* Different ABIs have different maximum alignments. */
1266 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1267 {
1268 /* The APCS ABI only requires word alignment. */
1269 align = INT_REGISTER_SIZE;
1270 }
1271 else
1272 {
1273 /* The AAPCS requires at most doubleword alignment. */
1274 if (align > INT_REGISTER_SIZE * 2)
1275 align = INT_REGISTER_SIZE * 2;
1276 }
1277
1278 /* Push stack padding for dowubleword alignment. */
1279 if (nstack & (align - 1))
1280 {
1281 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1282 nstack += INT_REGISTER_SIZE;
1283 }
1284
1285 /* Doubleword aligned quantities must go in even register pairs. */
1286 if (argreg <= ARM_LAST_ARG_REGNUM
1287 && align > INT_REGISTER_SIZE
1288 && argreg & 1)
1289 argreg++;
1290
1291 /* If the argument is a pointer to a function, and it is a
1292 Thumb function, create a LOCAL copy of the value and set
1293 the THUMB bit in it. */
1294 if (TYPE_CODE_PTR == typecode
1295 && target_type != NULL
1296 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1297 {
1298 CORE_ADDR regval = extract_unsigned_integer (val, len);
1299 if (arm_pc_is_thumb (regval))
1300 {
1301 val = alloca (len);
1302 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1303 }
1304 }
1305
1306 /* Copy the argument to general registers or the stack in
1307 register-sized pieces. Large arguments are split between
1308 registers and stack. */
1309 while (len > 0)
1310 {
1311 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
1312
1313 if (argreg <= ARM_LAST_ARG_REGNUM)
1314 {
1315 /* The argument is being passed in a general purpose
1316 register. */
1317 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1318 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1319 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
1320 if (arm_debug)
1321 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1322 argnum,
1323 gdbarch_register_name
1324 (gdbarch, argreg),
1325 phex (regval, INT_REGISTER_SIZE));
1326 regcache_cooked_write_unsigned (regcache, argreg, regval);
1327 argreg++;
1328 }
1329 else
1330 {
1331 /* Push the arguments onto the stack. */
1332 if (arm_debug)
1333 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1334 argnum, nstack);
1335 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1336 nstack += INT_REGISTER_SIZE;
1337 }
1338
1339 len -= partial_len;
1340 val += partial_len;
1341 }
1342 }
1343 /* If we have an odd number of words to push, then decrement the stack
1344 by one word now, so first stack argument will be dword aligned. */
1345 if (nstack & 4)
1346 sp -= 4;
1347
1348 while (si)
1349 {
1350 sp -= si->len;
1351 write_memory (sp, si->data, si->len);
1352 si = pop_stack_item (si);
1353 }
1354
1355 /* Finally, update teh SP register. */
1356 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1357
1358 return sp;
1359 }
1360
1361
1362 /* Always align the frame to an 8-byte boundary. This is required on
1363 some platforms and harmless on the rest. */
1364
1365 static CORE_ADDR
1366 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1367 {
1368 /* Align the stack to eight bytes. */
1369 return sp & ~ (CORE_ADDR) 7;
1370 }
1371
1372 static void
1373 print_fpu_flags (int flags)
1374 {
1375 if (flags & (1 << 0))
1376 fputs ("IVO ", stdout);
1377 if (flags & (1 << 1))
1378 fputs ("DVZ ", stdout);
1379 if (flags & (1 << 2))
1380 fputs ("OFL ", stdout);
1381 if (flags & (1 << 3))
1382 fputs ("UFL ", stdout);
1383 if (flags & (1 << 4))
1384 fputs ("INX ", stdout);
1385 putchar ('\n');
1386 }
1387
1388 /* Print interesting information about the floating point processor
1389 (if present) or emulator. */
1390 static void
1391 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1392 struct frame_info *frame, const char *args)
1393 {
1394 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
1395 int type;
1396
1397 type = (status >> 24) & 127;
1398 if (status & (1 << 31))
1399 printf (_("Hardware FPU type %d\n"), type);
1400 else
1401 printf (_("Software FPU type %d\n"), type);
1402 /* i18n: [floating point unit] mask */
1403 fputs (_("mask: "), stdout);
1404 print_fpu_flags (status >> 16);
1405 /* i18n: [floating point unit] flags */
1406 fputs (_("flags: "), stdout);
1407 print_fpu_flags (status);
1408 }
1409
1410 /* Return the GDB type object for the "standard" data type of data in
1411 register N. */
1412
1413 static struct type *
1414 arm_register_type (struct gdbarch *gdbarch, int regnum)
1415 {
1416 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1417 return builtin_type_arm_ext;
1418 else if (regnum == ARM_SP_REGNUM)
1419 return builtin_type_void_data_ptr;
1420 else if (regnum == ARM_PC_REGNUM)
1421 return builtin_type_void_func_ptr;
1422 else if (regnum >= ARRAY_SIZE (arm_register_names))
1423 /* These registers are only supported on targets which supply
1424 an XML description. */
1425 return builtin_type_int0;
1426 else
1427 return builtin_type_uint32;
1428 }
1429
1430 /* Map a DWARF register REGNUM onto the appropriate GDB register
1431 number. */
1432
1433 static int
1434 arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1435 {
1436 /* Core integer regs. */
1437 if (reg >= 0 && reg <= 15)
1438 return reg;
1439
1440 /* Legacy FPA encoding. These were once used in a way which
1441 overlapped with VFP register numbering, so their use is
1442 discouraged, but GDB doesn't support the ARM toolchain
1443 which used them for VFP. */
1444 if (reg >= 16 && reg <= 23)
1445 return ARM_F0_REGNUM + reg - 16;
1446
1447 /* New assignments for the FPA registers. */
1448 if (reg >= 96 && reg <= 103)
1449 return ARM_F0_REGNUM + reg - 96;
1450
1451 /* WMMX register assignments. */
1452 if (reg >= 104 && reg <= 111)
1453 return ARM_WCGR0_REGNUM + reg - 104;
1454
1455 if (reg >= 112 && reg <= 127)
1456 return ARM_WR0_REGNUM + reg - 112;
1457
1458 if (reg >= 192 && reg <= 199)
1459 return ARM_WC0_REGNUM + reg - 192;
1460
1461 return -1;
1462 }
1463
1464 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1465 static int
1466 arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
1467 {
1468 int reg = regnum;
1469 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
1470
1471 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1472 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1473
1474 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1475 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1476
1477 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1478 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1479
1480 if (reg < NUM_GREGS)
1481 return SIM_ARM_R0_REGNUM + reg;
1482 reg -= NUM_GREGS;
1483
1484 if (reg < NUM_FREGS)
1485 return SIM_ARM_FP0_REGNUM + reg;
1486 reg -= NUM_FREGS;
1487
1488 if (reg < NUM_SREGS)
1489 return SIM_ARM_FPS_REGNUM + reg;
1490 reg -= NUM_SREGS;
1491
1492 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1493 }
1494
1495 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1496 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1497 It is thought that this is is the floating-point register format on
1498 little-endian systems. */
1499
1500 static void
1501 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1502 void *dbl)
1503 {
1504 DOUBLEST d;
1505 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1506 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1507 else
1508 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1509 ptr, &d);
1510 floatformat_from_doublest (fmt, &d, dbl);
1511 }
1512
1513 static void
1514 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1515 {
1516 DOUBLEST d;
1517 floatformat_to_doublest (fmt, ptr, &d);
1518 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1519 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1520 else
1521 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1522 &d, dbl);
1523 }
1524
1525 static int
1526 condition_true (unsigned long cond, unsigned long status_reg)
1527 {
1528 if (cond == INST_AL || cond == INST_NV)
1529 return 1;
1530
1531 switch (cond)
1532 {
1533 case INST_EQ:
1534 return ((status_reg & FLAG_Z) != 0);
1535 case INST_NE:
1536 return ((status_reg & FLAG_Z) == 0);
1537 case INST_CS:
1538 return ((status_reg & FLAG_C) != 0);
1539 case INST_CC:
1540 return ((status_reg & FLAG_C) == 0);
1541 case INST_MI:
1542 return ((status_reg & FLAG_N) != 0);
1543 case INST_PL:
1544 return ((status_reg & FLAG_N) == 0);
1545 case INST_VS:
1546 return ((status_reg & FLAG_V) != 0);
1547 case INST_VC:
1548 return ((status_reg & FLAG_V) == 0);
1549 case INST_HI:
1550 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1551 case INST_LS:
1552 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1553 case INST_GE:
1554 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1555 case INST_LT:
1556 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1557 case INST_GT:
1558 return (((status_reg & FLAG_Z) == 0) &&
1559 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1560 case INST_LE:
1561 return (((status_reg & FLAG_Z) != 0) ||
1562 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1563 }
1564 return 1;
1565 }
1566
1567 /* Support routines for single stepping. Calculate the next PC value. */
1568 #define submask(x) ((1L << ((x) + 1)) - 1)
1569 #define bit(obj,st) (((obj) >> (st)) & 1)
1570 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1571 #define sbits(obj,st,fn) \
1572 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1573 #define BranchDest(addr,instr) \
1574 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1575 #define ARM_PC_32 1
1576
1577 static unsigned long
1578 shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
1579 unsigned long pc_val, unsigned long status_reg)
1580 {
1581 unsigned long res, shift;
1582 int rm = bits (inst, 0, 3);
1583 unsigned long shifttype = bits (inst, 5, 6);
1584
1585 if (bit (inst, 4))
1586 {
1587 int rs = bits (inst, 8, 11);
1588 shift = (rs == 15 ? pc_val + 8
1589 : get_frame_register_unsigned (frame, rs)) & 0xFF;
1590 }
1591 else
1592 shift = bits (inst, 7, 11);
1593
1594 res = (rm == 15
1595 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1596 + (bit (inst, 4) ? 12 : 8))
1597 : get_frame_register_unsigned (frame, rm));
1598
1599 switch (shifttype)
1600 {
1601 case 0: /* LSL */
1602 res = shift >= 32 ? 0 : res << shift;
1603 break;
1604
1605 case 1: /* LSR */
1606 res = shift >= 32 ? 0 : res >> shift;
1607 break;
1608
1609 case 2: /* ASR */
1610 if (shift >= 32)
1611 shift = 31;
1612 res = ((res & 0x80000000L)
1613 ? ~((~res) >> shift) : res >> shift);
1614 break;
1615
1616 case 3: /* ROR/RRX */
1617 shift &= 31;
1618 if (shift == 0)
1619 res = (res >> 1) | (carry ? 0x80000000L : 0);
1620 else
1621 res = (res >> shift) | (res << (32 - shift));
1622 break;
1623 }
1624
1625 return res & 0xffffffff;
1626 }
1627
1628 /* Return number of 1-bits in VAL. */
1629
1630 static int
1631 bitcount (unsigned long val)
1632 {
1633 int nbits;
1634 for (nbits = 0; val != 0; nbits++)
1635 val &= val - 1; /* delete rightmost 1-bit in val */
1636 return nbits;
1637 }
1638
1639 static CORE_ADDR
1640 thumb_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
1641 {
1642 struct gdbarch *gdbarch = get_frame_arch (frame);
1643 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1644 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
1645 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1646 unsigned long offset;
1647
1648 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1649 {
1650 CORE_ADDR sp;
1651
1652 /* Fetch the saved PC from the stack. It's stored above
1653 all of the other registers. */
1654 offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
1655 sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
1656 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
1657 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1658 if (nextpc == pc)
1659 error (_("Infinite loop detected"));
1660 }
1661 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1662 {
1663 unsigned long status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
1664 unsigned long cond = bits (inst1, 8, 11);
1665 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1666 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1667 }
1668 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1669 {
1670 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1671 }
1672 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1673 {
1674 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
1675 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1676 nextpc = pc_val + offset;
1677 /* For BLX make sure to clear the low bits. */
1678 if (bits (inst2, 11, 12) == 1)
1679 nextpc = nextpc & 0xfffffffc;
1680 }
1681 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1682 {
1683 if (bits (inst1, 3, 6) == 0x0f)
1684 nextpc = pc_val;
1685 else
1686 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
1687
1688 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1689 if (nextpc == pc)
1690 error (_("Infinite loop detected"));
1691 }
1692
1693 return nextpc;
1694 }
1695
1696 CORE_ADDR
1697 arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
1698 {
1699 struct gdbarch *gdbarch = get_frame_arch (frame);
1700 unsigned long pc_val;
1701 unsigned long this_instr;
1702 unsigned long status;
1703 CORE_ADDR nextpc;
1704
1705 if (arm_pc_is_thumb (pc))
1706 return thumb_get_next_pc (frame, pc);
1707
1708 pc_val = (unsigned long) pc;
1709 this_instr = read_memory_unsigned_integer (pc, 4);
1710 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
1711 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1712
1713 if (bits (this_instr, 28, 31) == INST_NV)
1714 switch (bits (this_instr, 24, 27))
1715 {
1716 case 0xa:
1717 case 0xb:
1718 {
1719 /* Branch with Link and change to Thumb. */
1720 nextpc = BranchDest (pc, this_instr);
1721 nextpc |= bit (this_instr, 24) << 1;
1722
1723 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1724 if (nextpc == pc)
1725 error (_("Infinite loop detected"));
1726 break;
1727 }
1728 case 0xc:
1729 case 0xd:
1730 case 0xe:
1731 /* Coprocessor register transfer. */
1732 if (bits (this_instr, 12, 15) == 15)
1733 error (_("Invalid update to pc in instruction"));
1734 break;
1735 }
1736 else if (condition_true (bits (this_instr, 28, 31), status))
1737 {
1738 switch (bits (this_instr, 24, 27))
1739 {
1740 case 0x0:
1741 case 0x1: /* data processing */
1742 case 0x2:
1743 case 0x3:
1744 {
1745 unsigned long operand1, operand2, result = 0;
1746 unsigned long rn;
1747 int c;
1748
1749 if (bits (this_instr, 12, 15) != 15)
1750 break;
1751
1752 if (bits (this_instr, 22, 25) == 0
1753 && bits (this_instr, 4, 7) == 9) /* multiply */
1754 error (_("Invalid update to pc in instruction"));
1755
1756 /* BX <reg>, BLX <reg> */
1757 if (bits (this_instr, 4, 27) == 0x12fff1
1758 || bits (this_instr, 4, 27) == 0x12fff3)
1759 {
1760 rn = bits (this_instr, 0, 3);
1761 result = (rn == 15) ? pc_val + 8
1762 : get_frame_register_unsigned (frame, rn);
1763 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1764 (gdbarch, result);
1765
1766 if (nextpc == pc)
1767 error (_("Infinite loop detected"));
1768
1769 return nextpc;
1770 }
1771
1772 /* Multiply into PC */
1773 c = (status & FLAG_C) ? 1 : 0;
1774 rn = bits (this_instr, 16, 19);
1775 operand1 = (rn == 15) ? pc_val + 8
1776 : get_frame_register_unsigned (frame, rn);
1777
1778 if (bit (this_instr, 25))
1779 {
1780 unsigned long immval = bits (this_instr, 0, 7);
1781 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1782 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1783 & 0xffffffff;
1784 }
1785 else /* operand 2 is a shifted register */
1786 operand2 = shifted_reg_val (frame, this_instr, c, pc_val, status);
1787
1788 switch (bits (this_instr, 21, 24))
1789 {
1790 case 0x0: /*and */
1791 result = operand1 & operand2;
1792 break;
1793
1794 case 0x1: /*eor */
1795 result = operand1 ^ operand2;
1796 break;
1797
1798 case 0x2: /*sub */
1799 result = operand1 - operand2;
1800 break;
1801
1802 case 0x3: /*rsb */
1803 result = operand2 - operand1;
1804 break;
1805
1806 case 0x4: /*add */
1807 result = operand1 + operand2;
1808 break;
1809
1810 case 0x5: /*adc */
1811 result = operand1 + operand2 + c;
1812 break;
1813
1814 case 0x6: /*sbc */
1815 result = operand1 - operand2 + c;
1816 break;
1817
1818 case 0x7: /*rsc */
1819 result = operand2 - operand1 + c;
1820 break;
1821
1822 case 0x8:
1823 case 0x9:
1824 case 0xa:
1825 case 0xb: /* tst, teq, cmp, cmn */
1826 result = (unsigned long) nextpc;
1827 break;
1828
1829 case 0xc: /*orr */
1830 result = operand1 | operand2;
1831 break;
1832
1833 case 0xd: /*mov */
1834 /* Always step into a function. */
1835 result = operand2;
1836 break;
1837
1838 case 0xe: /*bic */
1839 result = operand1 & ~operand2;
1840 break;
1841
1842 case 0xf: /*mvn */
1843 result = ~operand2;
1844 break;
1845 }
1846 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1847 (gdbarch, result);
1848
1849 if (nextpc == pc)
1850 error (_("Infinite loop detected"));
1851 break;
1852 }
1853
1854 case 0x4:
1855 case 0x5: /* data transfer */
1856 case 0x6:
1857 case 0x7:
1858 if (bit (this_instr, 20))
1859 {
1860 /* load */
1861 if (bits (this_instr, 12, 15) == 15)
1862 {
1863 /* rd == pc */
1864 unsigned long rn;
1865 unsigned long base;
1866
1867 if (bit (this_instr, 22))
1868 error (_("Invalid update to pc in instruction"));
1869
1870 /* byte write to PC */
1871 rn = bits (this_instr, 16, 19);
1872 base = (rn == 15) ? pc_val + 8
1873 : get_frame_register_unsigned (frame, rn);
1874 if (bit (this_instr, 24))
1875 {
1876 /* pre-indexed */
1877 int c = (status & FLAG_C) ? 1 : 0;
1878 unsigned long offset =
1879 (bit (this_instr, 25)
1880 ? shifted_reg_val (frame, this_instr, c, pc_val, status)
1881 : bits (this_instr, 0, 11));
1882
1883 if (bit (this_instr, 23))
1884 base += offset;
1885 else
1886 base -= offset;
1887 }
1888 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1889 4);
1890
1891 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1892
1893 if (nextpc == pc)
1894 error (_("Infinite loop detected"));
1895 }
1896 }
1897 break;
1898
1899 case 0x8:
1900 case 0x9: /* block transfer */
1901 if (bit (this_instr, 20))
1902 {
1903 /* LDM */
1904 if (bit (this_instr, 15))
1905 {
1906 /* loading pc */
1907 int offset = 0;
1908
1909 if (bit (this_instr, 23))
1910 {
1911 /* up */
1912 unsigned long reglist = bits (this_instr, 0, 14);
1913 offset = bitcount (reglist) * 4;
1914 if (bit (this_instr, 24)) /* pre */
1915 offset += 4;
1916 }
1917 else if (bit (this_instr, 24))
1918 offset = -4;
1919
1920 {
1921 unsigned long rn_val =
1922 get_frame_register_unsigned (frame,
1923 bits (this_instr, 16, 19));
1924 nextpc =
1925 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1926 + offset),
1927 4);
1928 }
1929 nextpc = gdbarch_addr_bits_remove
1930 (gdbarch, nextpc);
1931 if (nextpc == pc)
1932 error (_("Infinite loop detected"));
1933 }
1934 }
1935 break;
1936
1937 case 0xb: /* branch & link */
1938 case 0xa: /* branch */
1939 {
1940 nextpc = BranchDest (pc, this_instr);
1941
1942 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1943 if (nextpc == pc)
1944 error (_("Infinite loop detected"));
1945 break;
1946 }
1947
1948 case 0xc:
1949 case 0xd:
1950 case 0xe: /* coproc ops */
1951 case 0xf: /* SWI */
1952 break;
1953
1954 default:
1955 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
1956 return (pc);
1957 }
1958 }
1959
1960 return nextpc;
1961 }
1962
1963 /* single_step() is called just before we want to resume the inferior,
1964 if we want to single-step it but there is no hardware or kernel
1965 single-step support. We find the target of the coming instruction
1966 and breakpoint it. */
1967
1968 int
1969 arm_software_single_step (struct frame_info *frame)
1970 {
1971 /* NOTE: This may insert the wrong breakpoint instruction when
1972 single-stepping over a mode-changing instruction, if the
1973 CPSR heuristics are used. */
1974
1975 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
1976 insert_single_step_breakpoint (next_pc);
1977
1978 return 1;
1979 }
1980
1981 #include "bfd-in2.h"
1982 #include "libcoff.h"
1983
1984 static int
1985 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1986 {
1987 if (arm_pc_is_thumb (memaddr))
1988 {
1989 static asymbol *asym;
1990 static combined_entry_type ce;
1991 static struct coff_symbol_struct csym;
1992 static struct bfd fake_bfd;
1993 static bfd_target fake_target;
1994
1995 if (csym.native == NULL)
1996 {
1997 /* Create a fake symbol vector containing a Thumb symbol.
1998 This is solely so that the code in print_insn_little_arm()
1999 and print_insn_big_arm() in opcodes/arm-dis.c will detect
2000 the presence of a Thumb symbol and switch to decoding
2001 Thumb instructions. */
2002
2003 fake_target.flavour = bfd_target_coff_flavour;
2004 fake_bfd.xvec = &fake_target;
2005 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
2006 csym.native = &ce;
2007 csym.symbol.the_bfd = &fake_bfd;
2008 csym.symbol.name = "fake";
2009 asym = (asymbol *) & csym;
2010 }
2011
2012 memaddr = UNMAKE_THUMB_ADDR (memaddr);
2013 info->symbols = &asym;
2014 }
2015 else
2016 info->symbols = NULL;
2017
2018 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2019 return print_insn_big_arm (memaddr, info);
2020 else
2021 return print_insn_little_arm (memaddr, info);
2022 }
2023
2024 /* The following define instruction sequences that will cause ARM
2025 cpu's to take an undefined instruction trap. These are used to
2026 signal a breakpoint to GDB.
2027
2028 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2029 modes. A different instruction is required for each mode. The ARM
2030 cpu's can also be big or little endian. Thus four different
2031 instructions are needed to support all cases.
2032
2033 Note: ARMv4 defines several new instructions that will take the
2034 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2035 not in fact add the new instructions. The new undefined
2036 instructions in ARMv4 are all instructions that had no defined
2037 behaviour in earlier chips. There is no guarantee that they will
2038 raise an exception, but may be treated as NOP's. In practice, it
2039 may only safe to rely on instructions matching:
2040
2041 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2042 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2043 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2044
2045 Even this may only true if the condition predicate is true. The
2046 following use a condition predicate of ALWAYS so it is always TRUE.
2047
2048 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2049 and NetBSD all use a software interrupt rather than an undefined
2050 instruction to force a trap. This can be handled by by the
2051 abi-specific code during establishment of the gdbarch vector. */
2052
2053 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2054 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2055 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
2056 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
2057
2058 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2059 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2060 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2061 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2062
2063 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2064 the program counter value to determine whether a 16-bit or 32-bit
2065 breakpoint should be used. It returns a pointer to a string of
2066 bytes that encode a breakpoint instruction, stores the length of
2067 the string to *lenptr, and adjusts the program counter (if
2068 necessary) to point to the actual memory location where the
2069 breakpoint should be inserted. */
2070
2071 static const unsigned char *
2072 arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
2073 {
2074 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2075
2076 if (arm_pc_is_thumb (*pcptr))
2077 {
2078 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2079 *lenptr = tdep->thumb_breakpoint_size;
2080 return tdep->thumb_breakpoint;
2081 }
2082 else
2083 {
2084 *lenptr = tdep->arm_breakpoint_size;
2085 return tdep->arm_breakpoint;
2086 }
2087 }
2088
2089 /* Extract from an array REGBUF containing the (raw) register state a
2090 function return value of type TYPE, and copy that, in virtual
2091 format, into VALBUF. */
2092
2093 static void
2094 arm_extract_return_value (struct type *type, struct regcache *regs,
2095 gdb_byte *valbuf)
2096 {
2097 if (TYPE_CODE_FLT == TYPE_CODE (type))
2098 {
2099 switch (gdbarch_tdep (get_regcache_arch (regs))->fp_model)
2100 {
2101 case ARM_FLOAT_FPA:
2102 {
2103 /* The value is in register F0 in internal format. We need to
2104 extract the raw value and then convert it to the desired
2105 internal type. */
2106 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2107
2108 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2109 convert_from_extended (floatformat_from_type (type), tmpbuf,
2110 valbuf);
2111 }
2112 break;
2113
2114 case ARM_FLOAT_SOFT_FPA:
2115 case ARM_FLOAT_SOFT_VFP:
2116 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2117 if (TYPE_LENGTH (type) > 4)
2118 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2119 valbuf + INT_REGISTER_SIZE);
2120 break;
2121
2122 default:
2123 internal_error
2124 (__FILE__, __LINE__,
2125 _("arm_extract_return_value: Floating point model not supported"));
2126 break;
2127 }
2128 }
2129 else if (TYPE_CODE (type) == TYPE_CODE_INT
2130 || TYPE_CODE (type) == TYPE_CODE_CHAR
2131 || TYPE_CODE (type) == TYPE_CODE_BOOL
2132 || TYPE_CODE (type) == TYPE_CODE_PTR
2133 || TYPE_CODE (type) == TYPE_CODE_REF
2134 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2135 {
2136 /* If the the type is a plain integer, then the access is
2137 straight-forward. Otherwise we have to play around a bit more. */
2138 int len = TYPE_LENGTH (type);
2139 int regno = ARM_A1_REGNUM;
2140 ULONGEST tmp;
2141
2142 while (len > 0)
2143 {
2144 /* By using store_unsigned_integer we avoid having to do
2145 anything special for small big-endian values. */
2146 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2147 store_unsigned_integer (valbuf,
2148 (len > INT_REGISTER_SIZE
2149 ? INT_REGISTER_SIZE : len),
2150 tmp);
2151 len -= INT_REGISTER_SIZE;
2152 valbuf += INT_REGISTER_SIZE;
2153 }
2154 }
2155 else
2156 {
2157 /* For a structure or union the behaviour is as if the value had
2158 been stored to word-aligned memory and then loaded into
2159 registers with 32-bit load instruction(s). */
2160 int len = TYPE_LENGTH (type);
2161 int regno = ARM_A1_REGNUM;
2162 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2163
2164 while (len > 0)
2165 {
2166 regcache_cooked_read (regs, regno++, tmpbuf);
2167 memcpy (valbuf, tmpbuf,
2168 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2169 len -= INT_REGISTER_SIZE;
2170 valbuf += INT_REGISTER_SIZE;
2171 }
2172 }
2173 }
2174
2175
2176 /* Will a function return an aggregate type in memory or in a
2177 register? Return 0 if an aggregate type can be returned in a
2178 register, 1 if it must be returned in memory. */
2179
2180 static int
2181 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2182 {
2183 int nRc;
2184 enum type_code code;
2185
2186 CHECK_TYPEDEF (type);
2187
2188 /* In the ARM ABI, "integer" like aggregate types are returned in
2189 registers. For an aggregate type to be integer like, its size
2190 must be less than or equal to INT_REGISTER_SIZE and the
2191 offset of each addressable subfield must be zero. Note that bit
2192 fields are not addressable, and all addressable subfields of
2193 unions always start at offset zero.
2194
2195 This function is based on the behaviour of GCC 2.95.1.
2196 See: gcc/arm.c: arm_return_in_memory() for details.
2197
2198 Note: All versions of GCC before GCC 2.95.2 do not set up the
2199 parameters correctly for a function returning the following
2200 structure: struct { float f;}; This should be returned in memory,
2201 not a register. Richard Earnshaw sent me a patch, but I do not
2202 know of any way to detect if a function like the above has been
2203 compiled with the correct calling convention. */
2204
2205 /* All aggregate types that won't fit in a register must be returned
2206 in memory. */
2207 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
2208 {
2209 return 1;
2210 }
2211
2212 /* The AAPCS says all aggregates not larger than a word are returned
2213 in a register. */
2214 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2215 return 0;
2216
2217 /* The only aggregate types that can be returned in a register are
2218 structs and unions. Arrays must be returned in memory. */
2219 code = TYPE_CODE (type);
2220 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2221 {
2222 return 1;
2223 }
2224
2225 /* Assume all other aggregate types can be returned in a register.
2226 Run a check for structures, unions and arrays. */
2227 nRc = 0;
2228
2229 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2230 {
2231 int i;
2232 /* Need to check if this struct/union is "integer" like. For
2233 this to be true, its size must be less than or equal to
2234 INT_REGISTER_SIZE and the offset of each addressable
2235 subfield must be zero. Note that bit fields are not
2236 addressable, and unions always start at offset zero. If any
2237 of the subfields is a floating point type, the struct/union
2238 cannot be an integer type. */
2239
2240 /* For each field in the object, check:
2241 1) Is it FP? --> yes, nRc = 1;
2242 2) Is it addressable (bitpos != 0) and
2243 not packed (bitsize == 0)?
2244 --> yes, nRc = 1
2245 */
2246
2247 for (i = 0; i < TYPE_NFIELDS (type); i++)
2248 {
2249 enum type_code field_type_code;
2250 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2251
2252 /* Is it a floating point type field? */
2253 if (field_type_code == TYPE_CODE_FLT)
2254 {
2255 nRc = 1;
2256 break;
2257 }
2258
2259 /* If bitpos != 0, then we have to care about it. */
2260 if (TYPE_FIELD_BITPOS (type, i) != 0)
2261 {
2262 /* Bitfields are not addressable. If the field bitsize is
2263 zero, then the field is not packed. Hence it cannot be
2264 a bitfield or any other packed type. */
2265 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2266 {
2267 nRc = 1;
2268 break;
2269 }
2270 }
2271 }
2272 }
2273
2274 return nRc;
2275 }
2276
2277 /* Write into appropriate registers a function return value of type
2278 TYPE, given in virtual format. */
2279
2280 static void
2281 arm_store_return_value (struct type *type, struct regcache *regs,
2282 const gdb_byte *valbuf)
2283 {
2284 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2285 {
2286 char buf[MAX_REGISTER_SIZE];
2287
2288 switch (gdbarch_tdep (get_regcache_arch (regs))->fp_model)
2289 {
2290 case ARM_FLOAT_FPA:
2291
2292 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2293 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2294 break;
2295
2296 case ARM_FLOAT_SOFT_FPA:
2297 case ARM_FLOAT_SOFT_VFP:
2298 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2299 if (TYPE_LENGTH (type) > 4)
2300 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2301 valbuf + INT_REGISTER_SIZE);
2302 break;
2303
2304 default:
2305 internal_error
2306 (__FILE__, __LINE__,
2307 _("arm_store_return_value: Floating point model not supported"));
2308 break;
2309 }
2310 }
2311 else if (TYPE_CODE (type) == TYPE_CODE_INT
2312 || TYPE_CODE (type) == TYPE_CODE_CHAR
2313 || TYPE_CODE (type) == TYPE_CODE_BOOL
2314 || TYPE_CODE (type) == TYPE_CODE_PTR
2315 || TYPE_CODE (type) == TYPE_CODE_REF
2316 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2317 {
2318 if (TYPE_LENGTH (type) <= 4)
2319 {
2320 /* Values of one word or less are zero/sign-extended and
2321 returned in r0. */
2322 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2323 LONGEST val = unpack_long (type, valbuf);
2324
2325 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2326 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2327 }
2328 else
2329 {
2330 /* Integral values greater than one word are stored in consecutive
2331 registers starting with r0. This will always be a multiple of
2332 the regiser size. */
2333 int len = TYPE_LENGTH (type);
2334 int regno = ARM_A1_REGNUM;
2335
2336 while (len > 0)
2337 {
2338 regcache_cooked_write (regs, regno++, valbuf);
2339 len -= INT_REGISTER_SIZE;
2340 valbuf += INT_REGISTER_SIZE;
2341 }
2342 }
2343 }
2344 else
2345 {
2346 /* For a structure or union the behaviour is as if the value had
2347 been stored to word-aligned memory and then loaded into
2348 registers with 32-bit load instruction(s). */
2349 int len = TYPE_LENGTH (type);
2350 int regno = ARM_A1_REGNUM;
2351 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2352
2353 while (len > 0)
2354 {
2355 memcpy (tmpbuf, valbuf,
2356 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2357 regcache_cooked_write (regs, regno++, tmpbuf);
2358 len -= INT_REGISTER_SIZE;
2359 valbuf += INT_REGISTER_SIZE;
2360 }
2361 }
2362 }
2363
2364
2365 /* Handle function return values. */
2366
2367 static enum return_value_convention
2368 arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
2369 struct regcache *regcache, gdb_byte *readbuf,
2370 const gdb_byte *writebuf)
2371 {
2372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2373
2374 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2375 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2376 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2377 {
2378 if (tdep->struct_return == pcc_struct_return
2379 || arm_return_in_memory (gdbarch, valtype))
2380 return RETURN_VALUE_STRUCT_CONVENTION;
2381 }
2382
2383 if (writebuf)
2384 arm_store_return_value (valtype, regcache, writebuf);
2385
2386 if (readbuf)
2387 arm_extract_return_value (valtype, regcache, readbuf);
2388
2389 return RETURN_VALUE_REGISTER_CONVENTION;
2390 }
2391
2392
2393 static int
2394 arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2395 {
2396 CORE_ADDR jb_addr;
2397 char buf[INT_REGISTER_SIZE];
2398 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
2399
2400 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
2401
2402 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2403 INT_REGISTER_SIZE))
2404 return 0;
2405
2406 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2407 return 1;
2408 }
2409
2410 /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
2411 return the target PC. Otherwise return 0. */
2412
2413 CORE_ADDR
2414 arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
2415 {
2416 char *name;
2417 int namelen;
2418 CORE_ADDR start_addr;
2419
2420 /* Find the starting address and name of the function containing the PC. */
2421 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2422 return 0;
2423
2424 /* If PC is in a Thumb call or return stub, return the address of the
2425 target PC, which is in a register. The thunk functions are called
2426 _call_via_xx, where x is the register name. The possible names
2427 are r0-r9, sl, fp, ip, sp, and lr. */
2428 if (strncmp (name, "_call_via_", 10) == 0)
2429 {
2430 /* Use the name suffix to determine which register contains the
2431 target PC. */
2432 static char *table[15] =
2433 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2434 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2435 };
2436 int regno;
2437 int offset = strlen (name) - 2;
2438
2439 for (regno = 0; regno <= 14; regno++)
2440 if (strcmp (&name[offset], table[regno]) == 0)
2441 return get_frame_register_unsigned (frame, regno);
2442 }
2443
2444 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
2445 non-interworking calls to foo. We could decode the stubs
2446 to find the target but it's easier to use the symbol table. */
2447 namelen = strlen (name);
2448 if (name[0] == '_' && name[1] == '_'
2449 && ((namelen > 2 + strlen ("_from_thumb")
2450 && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
2451 strlen ("_from_thumb")) == 0)
2452 || (namelen > 2 + strlen ("_from_arm")
2453 && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
2454 strlen ("_from_arm")) == 0)))
2455 {
2456 char *target_name;
2457 int target_len = namelen - 2;
2458 struct minimal_symbol *minsym;
2459 struct objfile *objfile;
2460 struct obj_section *sec;
2461
2462 if (name[namelen - 1] == 'b')
2463 target_len -= strlen ("_from_thumb");
2464 else
2465 target_len -= strlen ("_from_arm");
2466
2467 target_name = alloca (target_len + 1);
2468 memcpy (target_name, name + 2, target_len);
2469 target_name[target_len] = '\0';
2470
2471 sec = find_pc_section (pc);
2472 objfile = (sec == NULL) ? NULL : sec->objfile;
2473 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
2474 if (minsym != NULL)
2475 return SYMBOL_VALUE_ADDRESS (minsym);
2476 else
2477 return 0;
2478 }
2479
2480 return 0; /* not a stub */
2481 }
2482
2483 static void
2484 set_arm_command (char *args, int from_tty)
2485 {
2486 printf_unfiltered (_("\
2487 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2488 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2489 }
2490
2491 static void
2492 show_arm_command (char *args, int from_tty)
2493 {
2494 cmd_show_list (showarmcmdlist, from_tty, "");
2495 }
2496
2497 static void
2498 arm_update_current_architecture (void)
2499 {
2500 struct gdbarch_info info;
2501
2502 /* If the current architecture is not ARM, we have nothing to do. */
2503 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2504 return;
2505
2506 /* Update the architecture. */
2507 gdbarch_info_init (&info);
2508
2509 if (!gdbarch_update_p (info))
2510 internal_error (__FILE__, __LINE__, "could not update architecture");
2511 }
2512
2513 static void
2514 set_fp_model_sfunc (char *args, int from_tty,
2515 struct cmd_list_element *c)
2516 {
2517 enum arm_float_model fp_model;
2518
2519 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2520 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2521 {
2522 arm_fp_model = fp_model;
2523 break;
2524 }
2525
2526 if (fp_model == ARM_FLOAT_LAST)
2527 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2528 current_fp_model);
2529
2530 arm_update_current_architecture ();
2531 }
2532
2533 static void
2534 show_fp_model (struct ui_file *file, int from_tty,
2535 struct cmd_list_element *c, const char *value)
2536 {
2537 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2538
2539 if (arm_fp_model == ARM_FLOAT_AUTO
2540 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2541 fprintf_filtered (file, _("\
2542 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2543 fp_model_strings[tdep->fp_model]);
2544 else
2545 fprintf_filtered (file, _("\
2546 The current ARM floating point model is \"%s\".\n"),
2547 fp_model_strings[arm_fp_model]);
2548 }
2549
2550 static void
2551 arm_set_abi (char *args, int from_tty,
2552 struct cmd_list_element *c)
2553 {
2554 enum arm_abi_kind arm_abi;
2555
2556 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2557 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2558 {
2559 arm_abi_global = arm_abi;
2560 break;
2561 }
2562
2563 if (arm_abi == ARM_ABI_LAST)
2564 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2565 arm_abi_string);
2566
2567 arm_update_current_architecture ();
2568 }
2569
2570 static void
2571 arm_show_abi (struct ui_file *file, int from_tty,
2572 struct cmd_list_element *c, const char *value)
2573 {
2574 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2575
2576 if (arm_abi_global == ARM_ABI_AUTO
2577 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2578 fprintf_filtered (file, _("\
2579 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2580 arm_abi_strings[tdep->arm_abi]);
2581 else
2582 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2583 arm_abi_string);
2584 }
2585
2586 /* If the user changes the register disassembly style used for info
2587 register and other commands, we have to also switch the style used
2588 in opcodes for disassembly output. This function is run in the "set
2589 arm disassembly" command, and does that. */
2590
2591 static void
2592 set_disassembly_style_sfunc (char *args, int from_tty,
2593 struct cmd_list_element *c)
2594 {
2595 set_disassembly_style ();
2596 }
2597 \f
2598 /* Return the ARM register name corresponding to register I. */
2599 static const char *
2600 arm_register_name (struct gdbarch *gdbarch, int i)
2601 {
2602 if (i >= ARRAY_SIZE (arm_register_names))
2603 /* These registers are only supported on targets which supply
2604 an XML description. */
2605 return "";
2606
2607 return arm_register_names[i];
2608 }
2609
2610 static void
2611 set_disassembly_style (void)
2612 {
2613 int current;
2614
2615 /* Find the style that the user wants. */
2616 for (current = 0; current < num_disassembly_options; current++)
2617 if (disassembly_style == valid_disassembly_styles[current])
2618 break;
2619 gdb_assert (current < num_disassembly_options);
2620
2621 /* Synchronize the disassembler. */
2622 set_arm_regname_option (current);
2623 }
2624
2625 /* Test whether the coff symbol specific value corresponds to a Thumb
2626 function. */
2627
2628 static int
2629 coff_sym_is_thumb (int val)
2630 {
2631 return (val == C_THUMBEXT ||
2632 val == C_THUMBSTAT ||
2633 val == C_THUMBEXTFUNC ||
2634 val == C_THUMBSTATFUNC ||
2635 val == C_THUMBLABEL);
2636 }
2637
2638 /* arm_coff_make_msymbol_special()
2639 arm_elf_make_msymbol_special()
2640
2641 These functions test whether the COFF or ELF symbol corresponds to
2642 an address in thumb code, and set a "special" bit in a minimal
2643 symbol to indicate that it does. */
2644
2645 static void
2646 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2647 {
2648 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2649 STT_ARM_TFUNC). */
2650 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2651 == STT_LOPROC)
2652 MSYMBOL_SET_SPECIAL (msym);
2653 }
2654
2655 static void
2656 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2657 {
2658 if (coff_sym_is_thumb (val))
2659 MSYMBOL_SET_SPECIAL (msym);
2660 }
2661
2662 static void
2663 arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
2664 {
2665 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
2666
2667 /* If necessary, set the T bit. */
2668 if (arm_apcs_32)
2669 {
2670 ULONGEST val;
2671 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
2672 if (arm_pc_is_thumb (pc))
2673 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, val | 0x20);
2674 else
2675 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
2676 val & ~(ULONGEST) 0x20);
2677 }
2678 }
2679
2680 static struct value *
2681 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2682 {
2683 const int *reg_p = baton;
2684 return value_of_register (*reg_p, frame);
2685 }
2686 \f
2687 static enum gdb_osabi
2688 arm_elf_osabi_sniffer (bfd *abfd)
2689 {
2690 unsigned int elfosabi;
2691 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2692
2693 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2694
2695 if (elfosabi == ELFOSABI_ARM)
2696 /* GNU tools use this value. Check note sections in this case,
2697 as well. */
2698 bfd_map_over_sections (abfd,
2699 generic_elf_osabi_sniff_abi_tag_sections,
2700 &osabi);
2701
2702 /* Anything else will be handled by the generic ELF sniffer. */
2703 return osabi;
2704 }
2705
2706 \f
2707 /* Initialize the current architecture based on INFO. If possible,
2708 re-use an architecture from ARCHES, which is a list of
2709 architectures already created during this debugging session.
2710
2711 Called e.g. at program startup, when reading a core file, and when
2712 reading a binary file. */
2713
2714 static struct gdbarch *
2715 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2716 {
2717 struct gdbarch_tdep *tdep;
2718 struct gdbarch *gdbarch;
2719 struct gdbarch_list *best_arch;
2720 enum arm_abi_kind arm_abi = arm_abi_global;
2721 enum arm_float_model fp_model = arm_fp_model;
2722 struct tdesc_arch_data *tdesc_data = NULL;
2723 int i;
2724 int have_fpa_registers = 1;
2725
2726 /* Check any target description for validity. */
2727 if (tdesc_has_registers (info.target_desc))
2728 {
2729 /* For most registers we require GDB's default names; but also allow
2730 the numeric names for sp / lr / pc, as a convenience. */
2731 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2732 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2733 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2734
2735 const struct tdesc_feature *feature;
2736 int i, valid_p;
2737
2738 feature = tdesc_find_feature (info.target_desc,
2739 "org.gnu.gdb.arm.core");
2740 if (feature == NULL)
2741 return NULL;
2742
2743 tdesc_data = tdesc_data_alloc ();
2744
2745 valid_p = 1;
2746 for (i = 0; i < ARM_SP_REGNUM; i++)
2747 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2748 arm_register_names[i]);
2749 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2750 ARM_SP_REGNUM,
2751 arm_sp_names);
2752 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2753 ARM_LR_REGNUM,
2754 arm_lr_names);
2755 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2756 ARM_PC_REGNUM,
2757 arm_pc_names);
2758 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2759 ARM_PS_REGNUM, "cpsr");
2760
2761 if (!valid_p)
2762 {
2763 tdesc_data_cleanup (tdesc_data);
2764 return NULL;
2765 }
2766
2767 feature = tdesc_find_feature (info.target_desc,
2768 "org.gnu.gdb.arm.fpa");
2769 if (feature != NULL)
2770 {
2771 valid_p = 1;
2772 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2773 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2774 arm_register_names[i]);
2775 if (!valid_p)
2776 {
2777 tdesc_data_cleanup (tdesc_data);
2778 return NULL;
2779 }
2780 }
2781 else
2782 have_fpa_registers = 0;
2783
2784 feature = tdesc_find_feature (info.target_desc,
2785 "org.gnu.gdb.xscale.iwmmxt");
2786 if (feature != NULL)
2787 {
2788 static const char *const iwmmxt_names[] = {
2789 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2790 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2791 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2792 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2793 };
2794
2795 valid_p = 1;
2796 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2797 valid_p
2798 &= tdesc_numbered_register (feature, tdesc_data, i,
2799 iwmmxt_names[i - ARM_WR0_REGNUM]);
2800
2801 /* Check for the control registers, but do not fail if they
2802 are missing. */
2803 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2804 tdesc_numbered_register (feature, tdesc_data, i,
2805 iwmmxt_names[i - ARM_WR0_REGNUM]);
2806
2807 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2808 valid_p
2809 &= tdesc_numbered_register (feature, tdesc_data, i,
2810 iwmmxt_names[i - ARM_WR0_REGNUM]);
2811
2812 if (!valid_p)
2813 {
2814 tdesc_data_cleanup (tdesc_data);
2815 return NULL;
2816 }
2817 }
2818 }
2819
2820 /* If we have an object to base this architecture on, try to determine
2821 its ABI. */
2822
2823 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
2824 {
2825 int ei_osabi, e_flags;
2826
2827 switch (bfd_get_flavour (info.abfd))
2828 {
2829 case bfd_target_aout_flavour:
2830 /* Assume it's an old APCS-style ABI. */
2831 arm_abi = ARM_ABI_APCS;
2832 break;
2833
2834 case bfd_target_coff_flavour:
2835 /* Assume it's an old APCS-style ABI. */
2836 /* XXX WinCE? */
2837 arm_abi = ARM_ABI_APCS;
2838 break;
2839
2840 case bfd_target_elf_flavour:
2841 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2842 e_flags = elf_elfheader (info.abfd)->e_flags;
2843
2844 if (ei_osabi == ELFOSABI_ARM)
2845 {
2846 /* GNU tools used to use this value, but do not for EABI
2847 objects. There's nowhere to tag an EABI version
2848 anyway, so assume APCS. */
2849 arm_abi = ARM_ABI_APCS;
2850 }
2851 else if (ei_osabi == ELFOSABI_NONE)
2852 {
2853 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2854
2855 switch (eabi_ver)
2856 {
2857 case EF_ARM_EABI_UNKNOWN:
2858 /* Assume GNU tools. */
2859 arm_abi = ARM_ABI_APCS;
2860 break;
2861
2862 case EF_ARM_EABI_VER4:
2863 case EF_ARM_EABI_VER5:
2864 arm_abi = ARM_ABI_AAPCS;
2865 /* EABI binaries default to VFP float ordering. */
2866 if (fp_model == ARM_FLOAT_AUTO)
2867 fp_model = ARM_FLOAT_SOFT_VFP;
2868 break;
2869
2870 default:
2871 /* Leave it as "auto". */
2872 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2873 break;
2874 }
2875 }
2876
2877 if (fp_model == ARM_FLOAT_AUTO)
2878 {
2879 int e_flags = elf_elfheader (info.abfd)->e_flags;
2880
2881 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2882 {
2883 case 0:
2884 /* Leave it as "auto". Strictly speaking this case
2885 means FPA, but almost nobody uses that now, and
2886 many toolchains fail to set the appropriate bits
2887 for the floating-point model they use. */
2888 break;
2889 case EF_ARM_SOFT_FLOAT:
2890 fp_model = ARM_FLOAT_SOFT_FPA;
2891 break;
2892 case EF_ARM_VFP_FLOAT:
2893 fp_model = ARM_FLOAT_VFP;
2894 break;
2895 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2896 fp_model = ARM_FLOAT_SOFT_VFP;
2897 break;
2898 }
2899 }
2900 break;
2901
2902 default:
2903 /* Leave it as "auto". */
2904 break;
2905 }
2906 }
2907
2908 /* If there is already a candidate, use it. */
2909 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2910 best_arch != NULL;
2911 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2912 {
2913 if (arm_abi != ARM_ABI_AUTO
2914 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2915 continue;
2916
2917 if (fp_model != ARM_FLOAT_AUTO
2918 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2919 continue;
2920
2921 /* Found a match. */
2922 break;
2923 }
2924
2925 if (best_arch != NULL)
2926 {
2927 if (tdesc_data != NULL)
2928 tdesc_data_cleanup (tdesc_data);
2929 return best_arch->gdbarch;
2930 }
2931
2932 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2933 gdbarch = gdbarch_alloc (&info, tdep);
2934
2935 /* Record additional information about the architecture we are defining.
2936 These are gdbarch discriminators, like the OSABI. */
2937 tdep->arm_abi = arm_abi;
2938 tdep->fp_model = fp_model;
2939 tdep->have_fpa_registers = have_fpa_registers;
2940
2941 /* Breakpoints. */
2942 switch (info.byte_order)
2943 {
2944 case BFD_ENDIAN_BIG:
2945 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2946 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2947 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2948 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2949
2950 break;
2951
2952 case BFD_ENDIAN_LITTLE:
2953 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2954 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2955 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2956 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2957
2958 break;
2959
2960 default:
2961 internal_error (__FILE__, __LINE__,
2962 _("arm_gdbarch_init: bad byte order for float format"));
2963 }
2964
2965 /* On ARM targets char defaults to unsigned. */
2966 set_gdbarch_char_signed (gdbarch, 0);
2967
2968 /* This should be low enough for everything. */
2969 tdep->lowest_pc = 0x20;
2970 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2971
2972 /* The default, for both APCS and AAPCS, is to return small
2973 structures in registers. */
2974 tdep->struct_return = reg_struct_return;
2975
2976 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2977 set_gdbarch_frame_align (gdbarch, arm_frame_align);
2978
2979 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2980
2981 /* Frame handling. */
2982 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2983 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2984 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2985
2986 frame_base_set_default (gdbarch, &arm_normal_base);
2987
2988 /* Address manipulation. */
2989 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2990 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2991
2992 /* Advance PC across function entry code. */
2993 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2994
2995 /* Skip trampolines. */
2996 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
2997
2998 /* The stack grows downward. */
2999 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3000
3001 /* Breakpoint manipulation. */
3002 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
3003
3004 /* Information about registers, etc. */
3005 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
3006 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
3007 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
3008 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
3009 set_gdbarch_register_type (gdbarch, arm_register_type);
3010
3011 /* This "info float" is FPA-specific. Use the generic version if we
3012 do not have FPA. */
3013 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
3014 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
3015
3016 /* Internal <-> external register number maps. */
3017 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
3018 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
3019 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
3020
3021 set_gdbarch_register_name (gdbarch, arm_register_name);
3022
3023 /* Returning results. */
3024 set_gdbarch_return_value (gdbarch, arm_return_value);
3025
3026 /* Disassembly. */
3027 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
3028
3029 /* Minsymbol frobbing. */
3030 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
3031 set_gdbarch_coff_make_msymbol_special (gdbarch,
3032 arm_coff_make_msymbol_special);
3033
3034 /* Virtual tables. */
3035 set_gdbarch_vbit_in_delta (gdbarch, 1);
3036
3037 /* Hook in the ABI-specific overrides, if they have been registered. */
3038 gdbarch_init_osabi (info, gdbarch);
3039
3040 /* Add some default predicates. */
3041 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
3042 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3043 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
3044
3045 /* Now we have tuned the configuration, set a few final things,
3046 based on what the OS ABI has told us. */
3047
3048 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
3049 binaries are always marked. */
3050 if (tdep->arm_abi == ARM_ABI_AUTO)
3051 tdep->arm_abi = ARM_ABI_APCS;
3052
3053 /* We used to default to FPA for generic ARM, but almost nobody
3054 uses that now, and we now provide a way for the user to force
3055 the model. So default to the most useful variant. */
3056 if (tdep->fp_model == ARM_FLOAT_AUTO)
3057 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
3058
3059 if (tdep->jb_pc >= 0)
3060 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3061
3062 /* Floating point sizes and format. */
3063 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3064 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
3065 {
3066 set_gdbarch_double_format
3067 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3068 set_gdbarch_long_double_format
3069 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3070 }
3071 else
3072 {
3073 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3074 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
3075 }
3076
3077 if (tdesc_data)
3078 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
3079
3080 /* Add standard register aliases. We add aliases even for those
3081 nanes which are used by the current architecture - it's simpler,
3082 and does no harm, since nothing ever lists user registers. */
3083 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3084 user_reg_add (gdbarch, arm_register_aliases[i].name,
3085 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3086
3087 return gdbarch;
3088 }
3089
3090 static void
3091 arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3092 {
3093 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3094
3095 if (tdep == NULL)
3096 return;
3097
3098 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
3099 (unsigned long) tdep->lowest_pc);
3100 }
3101
3102 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3103
3104 void
3105 _initialize_arm_tdep (void)
3106 {
3107 struct ui_file *stb;
3108 long length;
3109 struct cmd_list_element *new_set, *new_show;
3110 const char *setname;
3111 const char *setdesc;
3112 const char *const *regnames;
3113 int numregs, i, j;
3114 static char *helptext;
3115 char regdesc[1024], *rdptr = regdesc;
3116 size_t rest = sizeof (regdesc);
3117
3118 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3119
3120 /* Register an ELF OS ABI sniffer for ARM binaries. */
3121 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3122 bfd_target_elf_flavour,
3123 arm_elf_osabi_sniffer);
3124
3125 /* Get the number of possible sets of register names defined in opcodes. */
3126 num_disassembly_options = get_arm_regname_num_options ();
3127
3128 /* Add root prefix command for all "set arm"/"show arm" commands. */
3129 add_prefix_cmd ("arm", no_class, set_arm_command,
3130 _("Various ARM-specific commands."),
3131 &setarmcmdlist, "set arm ", 0, &setlist);
3132
3133 add_prefix_cmd ("arm", no_class, show_arm_command,
3134 _("Various ARM-specific commands."),
3135 &showarmcmdlist, "show arm ", 0, &showlist);
3136
3137 /* Sync the opcode insn printer with our register viewer. */
3138 parse_arm_disassembler_option ("reg-names-std");
3139
3140 /* Initialize the array that will be passed to
3141 add_setshow_enum_cmd(). */
3142 valid_disassembly_styles
3143 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3144 for (i = 0; i < num_disassembly_options; i++)
3145 {
3146 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3147 valid_disassembly_styles[i] = setname;
3148 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3149 rdptr += length;
3150 rest -= length;
3151 /* When we find the default names, tell the disassembler to use
3152 them. */
3153 if (!strcmp (setname, "std"))
3154 {
3155 disassembly_style = setname;
3156 set_arm_regname_option (i);
3157 }
3158 }
3159 /* Mark the end of valid options. */
3160 valid_disassembly_styles[num_disassembly_options] = NULL;
3161
3162 /* Create the help text. */
3163 stb = mem_fileopen ();
3164 fprintf_unfiltered (stb, "%s%s%s",
3165 _("The valid values are:\n"),
3166 regdesc,
3167 _("The default is \"std\"."));
3168 helptext = ui_file_xstrdup (stb, &length);
3169 ui_file_delete (stb);
3170
3171 add_setshow_enum_cmd("disassembler", no_class,
3172 valid_disassembly_styles, &disassembly_style,
3173 _("Set the disassembly style."),
3174 _("Show the disassembly style."),
3175 helptext,
3176 set_disassembly_style_sfunc,
3177 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
3178 &setarmcmdlist, &showarmcmdlist);
3179
3180 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3181 _("Set usage of ARM 32-bit mode."),
3182 _("Show usage of ARM 32-bit mode."),
3183 _("When off, a 26-bit PC will be used."),
3184 NULL,
3185 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
3186 &setarmcmdlist, &showarmcmdlist);
3187
3188 /* Add a command to allow the user to force the FPU model. */
3189 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3190 _("Set the floating point type."),
3191 _("Show the floating point type."),
3192 _("auto - Determine the FP typefrom the OS-ABI.\n\
3193 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3194 fpa - FPA co-processor (GCC compiled).\n\
3195 softvfp - Software FP with pure-endian doubles.\n\
3196 vfp - VFP co-processor."),
3197 set_fp_model_sfunc, show_fp_model,
3198 &setarmcmdlist, &showarmcmdlist);
3199
3200 /* Add a command to allow the user to force the ABI. */
3201 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3202 _("Set the ABI."),
3203 _("Show the ABI."),
3204 NULL, arm_set_abi, arm_show_abi,
3205 &setarmcmdlist, &showarmcmdlist);
3206
3207 /* Debugging flag. */
3208 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3209 _("Set ARM debugging."),
3210 _("Show ARM debugging."),
3211 _("When on, arm-specific debugging is enabled."),
3212 NULL,
3213 NULL, /* FIXME: i18n: "ARM debugging is %s. */
3214 &setdebuglist, &showdebuglist);
3215 }
This page took 0.135945 seconds and 5 git commands to generate.