* arm-tdep.c (arm_gdbarch_init): Initialize coerce_float_to_double.
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
3 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <ctype.h> /* XXX for isupper () */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "symfile.h"
30 #include "gdb_string.h"
31 #include "dis-asm.h" /* For register flavors. */
32 #include "regcache.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "arch-utils.h"
36 #include "solib-svr4.h"
37
38 #include "arm-tdep.h"
39
40 #include "elf-bfd.h"
41 #include "coff/internal.h"
42 #include "elf/arm.h"
43
44 /* Each OS has a different mechanism for accessing the various
45 registers stored in the sigcontext structure.
46
47 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
48 function pointer) which may be used to determine the addresses
49 of the various saved registers in the sigcontext structure.
50
51 For the ARM target, there are three parameters to this function.
52 The first is the pc value of the frame under consideration, the
53 second the stack pointer of this frame, and the last is the
54 register number to fetch.
55
56 If the tm.h file does not define this macro, then it's assumed that
57 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
58 be 0.
59
60 When it comes time to multi-arching this code, see the identically
61 named machinery in ia64-tdep.c for an example of how it could be
62 done. It should not be necessary to modify the code below where
63 this macro is used. */
64
65 #ifdef SIGCONTEXT_REGISTER_ADDRESS
66 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
67 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
68 #endif
69 #else
70 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
71 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
72 #endif
73
74 /* Macros for setting and testing a bit in a minimal symbol that marks
75 it as Thumb function. The MSB of the minimal symbol's "info" field
76 is used for this purpose. This field is already being used to store
77 the symbol size, so the assumption is that the symbol size cannot
78 exceed 2^31.
79
80 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
81 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
82 MSYMBOL_SIZE Returns the size of the minimal symbol,
83 i.e. the "info" field with the "special" bit
84 masked out. */
85
86 #define MSYMBOL_SET_SPECIAL(msym) \
87 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
88 | 0x80000000)
89
90 #define MSYMBOL_IS_SPECIAL(msym) \
91 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
92
93 #define MSYMBOL_SIZE(msym) \
94 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
95
96 /* This table matches the indicees assigned to enum arm_abi. Keep
97 them in sync. */
98
99 static const char * const arm_abi_names[] =
100 {
101 "<unknown>",
102 "ARM EABI (version 1)",
103 "ARM EABI (version 2)",
104 "GNU/Linux",
105 "NetBSD (a.out)",
106 "NetBSD (ELF)",
107 "APCS",
108 "FreeBSD",
109 "Windows CE",
110 NULL
111 };
112
113 /* Number of different reg name sets (options). */
114 static int num_flavor_options;
115
116 /* We have more registers than the disassembler as gdb can print the value
117 of special registers as well.
118 The general register names are overwritten by whatever is being used by
119 the disassembler at the moment. We also adjust the case of cpsr and fps. */
120
121 /* Initial value: Register names used in ARM's ISA documentation. */
122 static char * arm_register_name_strings[] =
123 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
124 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
125 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
126 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
127 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
128 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
129 "fps", "cpsr" }; /* 24 25 */
130 static char **arm_register_names = arm_register_name_strings;
131
132 /* Valid register name flavors. */
133 static const char **valid_flavors;
134
135 /* Disassembly flavor to use. Default to "std" register names. */
136 static const char *disassembly_flavor;
137 static int current_option; /* Index to that option in the opcodes table. */
138
139 /* This is used to keep the bfd arch_info in sync with the disassembly
140 flavor. */
141 static void set_disassembly_flavor_sfunc(char *, int,
142 struct cmd_list_element *);
143 static void set_disassembly_flavor (void);
144
145 static void convert_from_extended (void *ptr, void *dbl);
146
147 /* Define other aspects of the stack frame. We keep the offsets of
148 all saved registers, 'cause we need 'em a lot! We also keep the
149 current size of the stack frame, and the offset of the frame
150 pointer from the stack pointer (for frameless functions, and when
151 we're still in the prologue of a function with a frame) */
152
153 struct frame_extra_info
154 {
155 int framesize;
156 int frameoffset;
157 int framereg;
158 };
159
160 /* Addresses for calling Thumb functions have the bit 0 set.
161 Here are some macros to test, set, or clear bit 0 of addresses. */
162 #define IS_THUMB_ADDR(addr) ((addr) & 1)
163 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
164 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
165
166 static int
167 arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
168 {
169 return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC));
170 }
171
172 /* Set to true if the 32-bit mode is in use. */
173
174 int arm_apcs_32 = 1;
175
176 /* Flag set by arm_fix_call_dummy that tells whether the target
177 function is a Thumb function. This flag is checked by
178 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
179 its use in valops.c) to pass the function address as an additional
180 parameter. */
181
182 static int target_is_thumb;
183
184 /* Flag set by arm_fix_call_dummy that tells whether the calling
185 function is a Thumb function. This flag is checked by
186 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
187
188 static int caller_is_thumb;
189
190 /* Determine if the program counter specified in MEMADDR is in a Thumb
191 function. */
192
193 int
194 arm_pc_is_thumb (CORE_ADDR memaddr)
195 {
196 struct minimal_symbol *sym;
197
198 /* If bit 0 of the address is set, assume this is a Thumb address. */
199 if (IS_THUMB_ADDR (memaddr))
200 return 1;
201
202 /* Thumb functions have a "special" bit set in minimal symbols. */
203 sym = lookup_minimal_symbol_by_pc (memaddr);
204 if (sym)
205 {
206 return (MSYMBOL_IS_SPECIAL (sym));
207 }
208 else
209 {
210 return 0;
211 }
212 }
213
214 /* Determine if the program counter specified in MEMADDR is in a call
215 dummy being called from a Thumb function. */
216
217 int
218 arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
219 {
220 CORE_ADDR sp = read_sp ();
221
222 /* FIXME: Until we switch for the new call dummy macros, this heuristic
223 is the best we can do. We are trying to determine if the pc is on
224 the stack, which (hopefully) will only happen in a call dummy.
225 We hope the current stack pointer is not so far alway from the dummy
226 frame location (true if we have not pushed large data structures or
227 gone too many levels deep) and that our 1024 is not enough to consider
228 code regions as part of the stack (true for most practical purposes) */
229 if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
230 return caller_is_thumb;
231 else
232 return 0;
233 }
234
235 /* Remove useless bits from addresses in a running program. */
236 static CORE_ADDR
237 arm_addr_bits_remove (CORE_ADDR val)
238 {
239 if (arm_pc_is_thumb (val))
240 return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe));
241 else
242 return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc));
243 }
244
245 /* When reading symbols, we need to zap the low bit of the address,
246 which may be set to 1 for Thumb functions. */
247 static CORE_ADDR
248 arm_smash_text_address (CORE_ADDR val)
249 {
250 return val & ~1;
251 }
252
253 /* Immediately after a function call, return the saved pc. Can't
254 always go through the frames for this because on some machines the
255 new frame is not set up until the new function executes some
256 instructions. */
257
258 static CORE_ADDR
259 arm_saved_pc_after_call (struct frame_info *frame)
260 {
261 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
262 }
263
264 /* Determine whether the function invocation represented by FI has a
265 frame on the stack associated with it. If it does return zero,
266 otherwise return 1. */
267
268 static int
269 arm_frameless_function_invocation (struct frame_info *fi)
270 {
271 CORE_ADDR func_start, after_prologue;
272 int frameless;
273
274 /* Sometimes we have functions that do a little setup (like saving the
275 vN registers with the stmdb instruction, but DO NOT set up a frame.
276 The symbol table will report this as a prologue. However, it is
277 important not to try to parse these partial frames as frames, or we
278 will get really confused.
279
280 So I will demand 3 instructions between the start & end of the
281 prologue before I call it a real prologue, i.e. at least
282 mov ip, sp,
283 stmdb sp!, {}
284 sub sp, ip, #4. */
285
286 func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET);
287 after_prologue = SKIP_PROLOGUE (func_start);
288
289 /* There are some frameless functions whose first two instructions
290 follow the standard APCS form, in which case after_prologue will
291 be func_start + 8. */
292
293 frameless = (after_prologue < func_start + 12);
294 return frameless;
295 }
296
297 /* The address of the arguments in the frame. */
298 static CORE_ADDR
299 arm_frame_args_address (struct frame_info *fi)
300 {
301 return fi->frame;
302 }
303
304 /* The address of the local variables in the frame. */
305 static CORE_ADDR
306 arm_frame_locals_address (struct frame_info *fi)
307 {
308 return fi->frame;
309 }
310
311 /* The number of arguments being passed in the frame. */
312 static int
313 arm_frame_num_args (struct frame_info *fi)
314 {
315 /* We have no way of knowing. */
316 return -1;
317 }
318
319 /* A typical Thumb prologue looks like this:
320 push {r7, lr}
321 add sp, sp, #-28
322 add r7, sp, #12
323 Sometimes the latter instruction may be replaced by:
324 mov r7, sp
325
326 or like this:
327 push {r7, lr}
328 mov r7, sp
329 sub sp, #12
330
331 or, on tpcs, like this:
332 sub sp,#16
333 push {r7, lr}
334 (many instructions)
335 mov r7, sp
336 sub sp, #12
337
338 There is always one instruction of three classes:
339 1 - push
340 2 - setting of r7
341 3 - adjusting of sp
342
343 When we have found at least one of each class we are done with the prolog.
344 Note that the "sub sp, #NN" before the push does not count.
345 */
346
347 static CORE_ADDR
348 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
349 {
350 CORE_ADDR current_pc;
351 int findmask = 0; /* findmask:
352 bit 0 - push { rlist }
353 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
354 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
355 */
356
357 for (current_pc = pc; current_pc + 2 < func_end && current_pc < pc + 40; current_pc += 2)
358 {
359 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
360
361 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
362 {
363 findmask |= 1; /* push found */
364 }
365 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
366 {
367 if ((findmask & 1) == 0) /* before push ? */
368 continue;
369 else
370 findmask |= 4; /* add/sub sp found */
371 }
372 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
373 {
374 findmask |= 2; /* setting of r7 found */
375 }
376 else if (insn == 0x466f) /* mov r7, sp */
377 {
378 findmask |= 2; /* setting of r7 found */
379 }
380 else if (findmask == (4+2+1))
381 {
382 break; /* We have found one of each type of prologue instruction */
383 }
384 else
385 continue; /* something in the prolog that we don't care about or some
386 instruction from outside the prolog scheduled here for optimization */
387 }
388
389 return current_pc;
390 }
391
392 /* Advance the PC across any function entry prologue instructions to reach
393 some "real" code.
394
395 The APCS (ARM Procedure Call Standard) defines the following
396 prologue:
397
398 mov ip, sp
399 [stmfd sp!, {a1,a2,a3,a4}]
400 stmfd sp!, {...,fp,ip,lr,pc}
401 [stfe f7, [sp, #-12]!]
402 [stfe f6, [sp, #-12]!]
403 [stfe f5, [sp, #-12]!]
404 [stfe f4, [sp, #-12]!]
405 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
406
407 static CORE_ADDR
408 arm_skip_prologue (CORE_ADDR pc)
409 {
410 unsigned long inst;
411 CORE_ADDR skip_pc;
412 CORE_ADDR func_addr, func_end;
413 char *func_name;
414 struct symtab_and_line sal;
415
416 /* See what the symbol table says. */
417
418 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
419 {
420 struct symbol *sym;
421
422 /* Found a function. */
423 sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL);
424 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
425 {
426 /* Don't use this trick for assembly source files. */
427 sal = find_pc_line (func_addr, 0);
428 if ((sal.line != 0) && (sal.end < func_end))
429 return sal.end;
430 }
431 }
432
433 /* Check if this is Thumb code. */
434 if (arm_pc_is_thumb (pc))
435 return thumb_skip_prologue (pc, func_end);
436
437 /* Can't find the prologue end in the symbol table, try it the hard way
438 by disassembling the instructions. */
439 skip_pc = pc;
440 inst = read_memory_integer (skip_pc, 4);
441 if (inst != 0xe1a0c00d) /* mov ip, sp */
442 return pc;
443
444 skip_pc += 4;
445 inst = read_memory_integer (skip_pc, 4);
446 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
447 {
448 skip_pc += 4;
449 inst = read_memory_integer (skip_pc, 4);
450 }
451
452 if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */
453 return pc;
454
455 skip_pc += 4;
456 inst = read_memory_integer (skip_pc, 4);
457
458 /* Any insns after this point may float into the code, if it makes
459 for better instruction scheduling, so we skip them only if we
460 find them, but still consdier the function to be frame-ful. */
461
462 /* We may have either one sfmfd instruction here, or several stfe
463 insns, depending on the version of floating point code we
464 support. */
465 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
466 {
467 skip_pc += 4;
468 inst = read_memory_integer (skip_pc, 4);
469 }
470 else
471 {
472 while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
473 {
474 skip_pc += 4;
475 inst = read_memory_integer (skip_pc, 4);
476 }
477 }
478
479 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
480 skip_pc += 4;
481
482 return skip_pc;
483 }
484 /* *INDENT-OFF* */
485 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
486 This function decodes a Thumb function prologue to determine:
487 1) the size of the stack frame
488 2) which registers are saved on it
489 3) the offsets of saved regs
490 4) the offset from the stack pointer to the frame pointer
491 This information is stored in the "extra" fields of the frame_info.
492
493 A typical Thumb function prologue would create this stack frame
494 (offsets relative to FP)
495 old SP -> 24 stack parameters
496 20 LR
497 16 R7
498 R7 -> 0 local variables (16 bytes)
499 SP -> -12 additional stack space (12 bytes)
500 The frame size would thus be 36 bytes, and the frame offset would be
501 12 bytes. The frame register is R7.
502
503 The comments for thumb_skip_prolog() describe the algorithm we use to detect
504 the end of the prolog */
505 /* *INDENT-ON* */
506
507 static void
508 thumb_scan_prologue (struct frame_info *fi)
509 {
510 CORE_ADDR prologue_start;
511 CORE_ADDR prologue_end;
512 CORE_ADDR current_pc;
513 int saved_reg[16]; /* which register has been copied to register n? */
514 int findmask = 0; /* findmask:
515 bit 0 - push { rlist }
516 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
517 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
518 */
519 int i;
520
521 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
522 {
523 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
524
525 if (sal.line == 0) /* no line info, use current PC */
526 prologue_end = fi->pc;
527 else if (sal.end < prologue_end) /* next line begins after fn end */
528 prologue_end = sal.end; /* (probably means no prologue) */
529 }
530 else
531 prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */
532 /* 16 pushes, an add, and "mv fp,sp" */
533
534 prologue_end = min (prologue_end, fi->pc);
535
536 /* Initialize the saved register map. When register H is copied to
537 register L, we will put H in saved_reg[L]. */
538 for (i = 0; i < 16; i++)
539 saved_reg[i] = i;
540
541 /* Search the prologue looking for instructions that set up the
542 frame pointer, adjust the stack pointer, and save registers.
543 Do this until all basic prolog instructions are found. */
544
545 fi->extra_info->framesize = 0;
546 for (current_pc = prologue_start;
547 (current_pc < prologue_end) && ((findmask & 7) != 7);
548 current_pc += 2)
549 {
550 unsigned short insn;
551 int regno;
552 int offset;
553
554 insn = read_memory_unsigned_integer (current_pc, 2);
555
556 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
557 {
558 int mask;
559 findmask |= 1; /* push found */
560 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
561 whether to save LR (R14). */
562 mask = (insn & 0xff) | ((insn & 0x100) << 6);
563
564 /* Calculate offsets of saved R0-R7 and LR. */
565 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
566 if (mask & (1 << regno))
567 {
568 fi->extra_info->framesize += 4;
569 fi->saved_regs[saved_reg[regno]] =
570 -(fi->extra_info->framesize);
571 saved_reg[regno] = regno; /* reset saved register map */
572 }
573 }
574 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
575 {
576 if ((findmask & 1) == 0) /* before push ? */
577 continue;
578 else
579 findmask |= 4; /* add/sub sp found */
580
581 offset = (insn & 0x7f) << 2; /* get scaled offset */
582 if (insn & 0x80) /* is it signed? (==subtracting) */
583 {
584 fi->extra_info->frameoffset += offset;
585 offset = -offset;
586 }
587 fi->extra_info->framesize -= offset;
588 }
589 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
590 {
591 findmask |= 2; /* setting of r7 found */
592 fi->extra_info->framereg = THUMB_FP_REGNUM;
593 /* get scaled offset */
594 fi->extra_info->frameoffset = (insn & 0xff) << 2;
595 }
596 else if (insn == 0x466f) /* mov r7, sp */
597 {
598 findmask |= 2; /* setting of r7 found */
599 fi->extra_info->framereg = THUMB_FP_REGNUM;
600 fi->extra_info->frameoffset = 0;
601 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
602 }
603 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
604 {
605 int lo_reg = insn & 7; /* dest. register (r0-r7) */
606 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
607 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
608 }
609 else
610 continue; /* something in the prolog that we don't care about or some
611 instruction from outside the prolog scheduled here for optimization */
612 }
613 }
614
615 /* Check if prologue for this frame's PC has already been scanned. If
616 it has, copy the relevant information about that prologue and
617 return non-zero. Otherwise do not copy anything and return zero.
618
619 The information saved in the cache includes:
620 * the frame register number;
621 * the size of the stack frame;
622 * the offsets of saved regs (relative to the old SP); and
623 * the offset from the stack pointer to the frame pointer
624
625 The cache contains only one entry, since this is adequate for the
626 typical sequence of prologue scan requests we get. When performing
627 a backtrace, GDB will usually ask to scan the same function twice
628 in a row (once to get the frame chain, and once to fill in the
629 extra frame information). */
630
631 static struct frame_info prologue_cache;
632
633 static int
634 check_prologue_cache (struct frame_info *fi)
635 {
636 int i;
637
638 if (fi->pc == prologue_cache.pc)
639 {
640 fi->extra_info->framereg = prologue_cache.extra_info->framereg;
641 fi->extra_info->framesize = prologue_cache.extra_info->framesize;
642 fi->extra_info->frameoffset = prologue_cache.extra_info->frameoffset;
643 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
644 fi->saved_regs[i] = prologue_cache.saved_regs[i];
645 return 1;
646 }
647 else
648 return 0;
649 }
650
651
652 /* Copy the prologue information from fi to the prologue cache. */
653
654 static void
655 save_prologue_cache (struct frame_info *fi)
656 {
657 int i;
658
659 prologue_cache.pc = fi->pc;
660 prologue_cache.extra_info->framereg = fi->extra_info->framereg;
661 prologue_cache.extra_info->framesize = fi->extra_info->framesize;
662 prologue_cache.extra_info->frameoffset = fi->extra_info->frameoffset;
663
664 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
665 prologue_cache.saved_regs[i] = fi->saved_regs[i];
666 }
667
668
669 /* This function decodes an ARM function prologue to determine:
670 1) the size of the stack frame
671 2) which registers are saved on it
672 3) the offsets of saved regs
673 4) the offset from the stack pointer to the frame pointer
674 This information is stored in the "extra" fields of the frame_info.
675
676 There are two basic forms for the ARM prologue. The fixed argument
677 function call will look like:
678
679 mov ip, sp
680 stmfd sp!, {fp, ip, lr, pc}
681 sub fp, ip, #4
682 [sub sp, sp, #4]
683
684 Which would create this stack frame (offsets relative to FP):
685 IP -> 4 (caller's stack)
686 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
687 -4 LR (return address in caller)
688 -8 IP (copy of caller's SP)
689 -12 FP (caller's FP)
690 SP -> -28 Local variables
691
692 The frame size would thus be 32 bytes, and the frame offset would be
693 28 bytes. The stmfd call can also save any of the vN registers it
694 plans to use, which increases the frame size accordingly.
695
696 Note: The stored PC is 8 off of the STMFD instruction that stored it
697 because the ARM Store instructions always store PC + 8 when you read
698 the PC register.
699
700 A variable argument function call will look like:
701
702 mov ip, sp
703 stmfd sp!, {a1, a2, a3, a4}
704 stmfd sp!, {fp, ip, lr, pc}
705 sub fp, ip, #20
706
707 Which would create this stack frame (offsets relative to FP):
708 IP -> 20 (caller's stack)
709 16 A4
710 12 A3
711 8 A2
712 4 A1
713 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
714 -4 LR (return address in caller)
715 -8 IP (copy of caller's SP)
716 -12 FP (caller's FP)
717 SP -> -28 Local variables
718
719 The frame size would thus be 48 bytes, and the frame offset would be
720 28 bytes.
721
722 There is another potential complication, which is that the optimizer
723 will try to separate the store of fp in the "stmfd" instruction from
724 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
725 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
726
727 Also, note, the original version of the ARM toolchain claimed that there
728 should be an
729
730 instruction at the end of the prologue. I have never seen GCC produce
731 this, and the ARM docs don't mention it. We still test for it below in
732 case it happens...
733
734 */
735
736 static void
737 arm_scan_prologue (struct frame_info *fi)
738 {
739 int regno, sp_offset, fp_offset;
740 LONGEST return_value;
741 CORE_ADDR prologue_start, prologue_end, current_pc;
742
743 /* Check if this function is already in the cache of frame information. */
744 if (check_prologue_cache (fi))
745 return;
746
747 /* Assume there is no frame until proven otherwise. */
748 fi->extra_info->framereg = ARM_SP_REGNUM;
749 fi->extra_info->framesize = 0;
750 fi->extra_info->frameoffset = 0;
751
752 /* Check for Thumb prologue. */
753 if (arm_pc_is_thumb (fi->pc))
754 {
755 thumb_scan_prologue (fi);
756 save_prologue_cache (fi);
757 return;
758 }
759
760 /* Find the function prologue. If we can't find the function in
761 the symbol table, peek in the stack frame to find the PC. */
762 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
763 {
764 /* One way to find the end of the prologue (which works well
765 for unoptimized code) is to do the following:
766
767 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
768
769 if (sal.line == 0)
770 prologue_end = fi->pc;
771 else if (sal.end < prologue_end)
772 prologue_end = sal.end;
773
774 This mechanism is very accurate so long as the optimizer
775 doesn't move any instructions from the function body into the
776 prologue. If this happens, sal.end will be the last
777 instruction in the first hunk of prologue code just before
778 the first instruction that the scheduler has moved from
779 the body to the prologue.
780
781 In order to make sure that we scan all of the prologue
782 instructions, we use a slightly less accurate mechanism which
783 may scan more than necessary. To help compensate for this
784 lack of accuracy, the prologue scanning loop below contains
785 several clauses which'll cause the loop to terminate early if
786 an implausible prologue instruction is encountered.
787
788 The expression
789
790 prologue_start + 64
791
792 is a suitable endpoint since it accounts for the largest
793 possible prologue plus up to five instructions inserted by
794 the scheduler. */
795
796 if (prologue_end > prologue_start + 64)
797 {
798 prologue_end = prologue_start + 64; /* See above. */
799 }
800 }
801 else
802 {
803 /* Get address of the stmfd in the prologue of the callee; the saved
804 PC is the address of the stmfd + 8. */
805 if (!safe_read_memory_integer (fi->frame, 4, &return_value))
806 return;
807 else
808 {
809 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
810 prologue_end = prologue_start + 64; /* See above. */
811 }
812 }
813
814 /* Now search the prologue looking for instructions that set up the
815 frame pointer, adjust the stack pointer, and save registers.
816
817 Be careful, however, and if it doesn't look like a prologue,
818 don't try to scan it. If, for instance, a frameless function
819 begins with stmfd sp!, then we will tell ourselves there is
820 a frame, which will confuse stack traceback, as well ad"finish"
821 and other operations that rely on a knowledge of the stack
822 traceback.
823
824 In the APCS, the prologue should start with "mov ip, sp" so
825 if we don't see this as the first insn, we will stop. [Note:
826 This doesn't seem to be true any longer, so it's now an optional
827 part of the prologue. - Kevin Buettner, 2001-11-20] */
828
829 sp_offset = fp_offset = 0;
830
831 if (read_memory_unsigned_integer (prologue_start, 4)
832 == 0xe1a0c00d) /* mov ip, sp */
833 current_pc = prologue_start + 4;
834 else
835 current_pc = prologue_start;
836
837 for (; current_pc < prologue_end; current_pc += 4)
838 {
839 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
840
841 if ((insn & 0xffff0000) == 0xe92d0000)
842 /* stmfd sp!, {..., fp, ip, lr, pc}
843 or
844 stmfd sp!, {a1, a2, a3, a4} */
845 {
846 int mask = insn & 0xffff;
847
848 /* Calculate offsets of saved registers. */
849 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
850 if (mask & (1 << regno))
851 {
852 sp_offset -= 4;
853 fi->saved_regs[regno] = sp_offset;
854 }
855 }
856 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
857 {
858 unsigned imm = insn & 0xff; /* immediate value */
859 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
860 imm = (imm >> rot) | (imm << (32 - rot));
861 fp_offset = -imm;
862 fi->extra_info->framereg = ARM_FP_REGNUM;
863 }
864 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
865 {
866 unsigned imm = insn & 0xff; /* immediate value */
867 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
868 imm = (imm >> rot) | (imm << (32 - rot));
869 sp_offset -= imm;
870 }
871 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
872 {
873 sp_offset -= 12;
874 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
875 fi->saved_regs[regno] = sp_offset;
876 }
877 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
878 {
879 int n_saved_fp_regs;
880 unsigned int fp_start_reg, fp_bound_reg;
881
882 if ((insn & 0x800) == 0x800) /* N0 is set */
883 {
884 if ((insn & 0x40000) == 0x40000) /* N1 is set */
885 n_saved_fp_regs = 3;
886 else
887 n_saved_fp_regs = 1;
888 }
889 else
890 {
891 if ((insn & 0x40000) == 0x40000) /* N1 is set */
892 n_saved_fp_regs = 2;
893 else
894 n_saved_fp_regs = 4;
895 }
896
897 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
898 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
899 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
900 {
901 sp_offset -= 12;
902 fi->saved_regs[fp_start_reg++] = sp_offset;
903 }
904 }
905 else if ((insn & 0xf0000000) != 0xe0000000)
906 break; /* Condition not true, exit early */
907 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
908 break; /* Don't scan past a block load */
909 else
910 /* The optimizer might shove anything into the prologue,
911 so we just skip what we don't recognize. */
912 continue;
913 }
914
915 /* The frame size is just the negative of the offset (from the original SP)
916 of the last thing thing we pushed on the stack. The frame offset is
917 [new FP] - [new SP]. */
918 fi->extra_info->framesize = -sp_offset;
919 if (fi->extra_info->framereg == ARM_FP_REGNUM)
920 fi->extra_info->frameoffset = fp_offset - sp_offset;
921 else
922 fi->extra_info->frameoffset = 0;
923
924 save_prologue_cache (fi);
925 }
926
927 /* Find REGNUM on the stack. Otherwise, it's in an active register.
928 One thing we might want to do here is to check REGNUM against the
929 clobber mask, and somehow flag it as invalid if it isn't saved on
930 the stack somewhere. This would provide a graceful failure mode
931 when trying to get the value of caller-saves registers for an inner
932 frame. */
933
934 static CORE_ADDR
935 arm_find_callers_reg (struct frame_info *fi, int regnum)
936 {
937 for (; fi; fi = fi->next)
938
939 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
940 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
941 return generic_read_register_dummy (fi->pc, fi->frame, regnum);
942 else
943 #endif
944 if (fi->saved_regs[regnum] != 0)
945 return read_memory_integer (fi->saved_regs[regnum],
946 REGISTER_RAW_SIZE (regnum));
947 return read_register (regnum);
948 }
949 /* Function: frame_chain Given a GDB frame, determine the address of
950 the calling function's frame. This will be used to create a new
951 GDB frame struct, and then INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC
952 will be called for the new frame. For ARM, we save the frame size
953 when we initialize the frame_info. */
954
955 static CORE_ADDR
956 arm_frame_chain (struct frame_info *fi)
957 {
958 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
959 CORE_ADDR fn_start, callers_pc, fp;
960
961 /* is this a dummy frame? */
962 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
963 return fi->frame; /* dummy frame same as caller's frame */
964
965 /* is caller-of-this a dummy frame? */
966 callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
967 fp = arm_find_callers_reg (fi, ARM_FP_REGNUM);
968 if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
969 return fp; /* dummy frame's frame may bear no relation to ours */
970
971 if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
972 if (fn_start == entry_point_address ())
973 return 0; /* in _start fn, don't chain further */
974 #endif
975 CORE_ADDR caller_pc, fn_start;
976 int framereg = fi->extra_info->framereg;
977
978 if (fi->pc < LOWEST_PC)
979 return 0;
980
981 /* If the caller is the startup code, we're at the end of the chain. */
982 caller_pc = FRAME_SAVED_PC (fi);
983 if (find_pc_partial_function (caller_pc, 0, &fn_start, 0))
984 if (fn_start == entry_point_address ())
985 return 0;
986
987 /* If the caller is Thumb and the caller is ARM, or vice versa,
988 the frame register of the caller is different from ours.
989 So we must scan the prologue of the caller to determine its
990 frame register number. */
991 /* XXX Fixme, we should try to do this without creating a temporary
992 caller_fi. */
993 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc))
994 {
995 struct frame_info caller_fi;
996 struct cleanup *old_chain;
997
998 /* Create a temporary frame suitable for scanning the caller's
999 prologue. (Ugh.) */
1000 memset (&caller_fi, 0, sizeof (caller_fi));
1001 caller_fi.extra_info = (struct frame_extra_info *)
1002 xcalloc (1, sizeof (struct frame_extra_info));
1003 old_chain = make_cleanup (xfree, caller_fi.extra_info);
1004 caller_fi.saved_regs = (CORE_ADDR *)
1005 xcalloc (1, SIZEOF_FRAME_SAVED_REGS);
1006 make_cleanup (xfree, caller_fi.saved_regs);
1007
1008 /* Now, scan the prologue and obtain the frame register. */
1009 caller_fi.pc = caller_pc;
1010 arm_scan_prologue (&caller_fi);
1011 framereg = caller_fi.extra_info->framereg;
1012
1013 /* Deallocate the storage associated with the temporary frame
1014 created above. */
1015 do_cleanups (old_chain);
1016 }
1017
1018 /* If the caller used a frame register, return its value.
1019 Otherwise, return the caller's stack pointer. */
1020 if (framereg == ARM_FP_REGNUM || framereg == THUMB_FP_REGNUM)
1021 return arm_find_callers_reg (fi, framereg);
1022 else
1023 return fi->frame + fi->extra_info->framesize;
1024 }
1025
1026 /* This function actually figures out the frame address for a given pc
1027 and sp. This is tricky because we sometimes don't use an explicit
1028 frame pointer, and the previous stack pointer isn't necessarily
1029 recorded on the stack. The only reliable way to get this info is
1030 to examine the prologue. FROMLEAF is a little confusing, it means
1031 this is the next frame up the chain AFTER a frameless function. If
1032 this is true, then the frame value for this frame is still in the
1033 fp register. */
1034
1035 static void
1036 arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1037 {
1038 int reg;
1039 CORE_ADDR sp;
1040
1041 if (fi->saved_regs == NULL)
1042 frame_saved_regs_zalloc (fi);
1043
1044 fi->extra_info = (struct frame_extra_info *)
1045 frame_obstack_alloc (sizeof (struct frame_extra_info));
1046
1047 fi->extra_info->framesize = 0;
1048 fi->extra_info->frameoffset = 0;
1049 fi->extra_info->framereg = 0;
1050
1051 if (fi->next)
1052 fi->pc = FRAME_SAVED_PC (fi->next);
1053
1054 memset (fi->saved_regs, '\000', sizeof fi->saved_regs);
1055
1056 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
1057 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1058 {
1059 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
1060 by assuming it's always FP. */
1061 fi->frame = generic_read_register_dummy (fi->pc, fi->frame,
1062 ARM_SP_REGNUM);
1063 fi->extra_info->framesize = 0;
1064 fi->extra_info->frameoffset = 0;
1065 return;
1066 }
1067 else
1068 #endif
1069
1070 /* Compute stack pointer for this frame. We use this value for both the
1071 sigtramp and call dummy cases. */
1072 if (!fi->next)
1073 sp = read_sp();
1074 else
1075 sp = (fi->next->frame - fi->next->extra_info->frameoffset
1076 + fi->next->extra_info->framesize);
1077
1078 /* Determine whether or not we're in a sigtramp frame.
1079 Unfortunately, it isn't sufficient to test
1080 fi->signal_handler_caller because this value is sometimes set
1081 after invoking INIT_EXTRA_FRAME_INFO. So we test *both*
1082 fi->signal_handler_caller and IN_SIGTRAMP to determine if we need
1083 to use the sigcontext addresses for the saved registers.
1084
1085 Note: If an ARM IN_SIGTRAMP method ever needs to compare against
1086 the name of the function, the code below will have to be changed
1087 to first fetch the name of the function and then pass this name
1088 to IN_SIGTRAMP. */
1089
1090 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1091 && (fi->signal_handler_caller || IN_SIGTRAMP (fi->pc, (char *)0)))
1092 {
1093 for (reg = 0; reg < NUM_REGS; reg++)
1094 fi->saved_regs[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, fi->pc, reg);
1095
1096 /* FIXME: What about thumb mode? */
1097 fi->extra_info->framereg = ARM_SP_REGNUM;
1098 fi->frame =
1099 read_memory_integer (fi->saved_regs[fi->extra_info->framereg],
1100 REGISTER_RAW_SIZE (fi->extra_info->framereg));
1101 fi->extra_info->framesize = 0;
1102 fi->extra_info->frameoffset = 0;
1103
1104 }
1105 else if (PC_IN_CALL_DUMMY (fi->pc, sp, fi->frame))
1106 {
1107 CORE_ADDR rp;
1108 CORE_ADDR callers_sp;
1109
1110 /* Set rp point at the high end of the saved registers. */
1111 rp = fi->frame - REGISTER_SIZE;
1112
1113 /* Fill in addresses of saved registers. */
1114 fi->saved_regs[ARM_PS_REGNUM] = rp;
1115 rp -= REGISTER_RAW_SIZE (ARM_PS_REGNUM);
1116 for (reg = ARM_PC_REGNUM; reg >= 0; reg--)
1117 {
1118 fi->saved_regs[reg] = rp;
1119 rp -= REGISTER_RAW_SIZE (reg);
1120 }
1121
1122 callers_sp = read_memory_integer (fi->saved_regs[ARM_SP_REGNUM],
1123 REGISTER_RAW_SIZE (ARM_SP_REGNUM));
1124 fi->extra_info->framereg = ARM_FP_REGNUM;
1125 fi->extra_info->framesize = callers_sp - sp;
1126 fi->extra_info->frameoffset = fi->frame - sp;
1127 }
1128 else
1129 {
1130 arm_scan_prologue (fi);
1131
1132 if (!fi->next)
1133 /* this is the innermost frame? */
1134 fi->frame = read_register (fi->extra_info->framereg);
1135 else if (fi->extra_info->framereg == ARM_FP_REGNUM
1136 || fi->extra_info->framereg == THUMB_FP_REGNUM)
1137 {
1138 /* not the innermost frame */
1139 /* If we have an FP, the callee saved it. */
1140 if (fi->next->saved_regs[fi->extra_info->framereg] != 0)
1141 fi->frame =
1142 read_memory_integer (fi->next
1143 ->saved_regs[fi->extra_info->framereg], 4);
1144 else if (fromleaf)
1145 /* If we were called by a frameless fn. then our frame is
1146 still in the frame pointer register on the board... */
1147 fi->frame = read_fp ();
1148 }
1149
1150 /* Calculate actual addresses of saved registers using offsets
1151 determined by arm_scan_prologue. */
1152 for (reg = 0; reg < NUM_REGS; reg++)
1153 if (fi->saved_regs[reg] != 0)
1154 fi->saved_regs[reg] += (fi->frame + fi->extra_info->framesize
1155 - fi->extra_info->frameoffset);
1156 }
1157 }
1158
1159
1160 /* Find the caller of this frame. We do this by seeing if ARM_LR_REGNUM
1161 is saved in the stack anywhere, otherwise we get it from the
1162 registers.
1163
1164 The old definition of this function was a macro:
1165 #define FRAME_SAVED_PC(FRAME) \
1166 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
1167
1168 static CORE_ADDR
1169 arm_frame_saved_pc (struct frame_info *fi)
1170 {
1171 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
1172 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1173 return generic_read_register_dummy (fi->pc, fi->frame, ARM_PC_REGNUM);
1174 else
1175 #endif
1176 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame - fi->extra_info->frameoffset,
1177 fi->frame))
1178 {
1179 return read_memory_integer (fi->saved_regs[ARM_PC_REGNUM],
1180 REGISTER_RAW_SIZE (ARM_PC_REGNUM));
1181 }
1182 else
1183 {
1184 CORE_ADDR pc = arm_find_callers_reg (fi, ARM_LR_REGNUM);
1185 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1186 }
1187 }
1188
1189 /* Return the frame address. On ARM, it is R11; on Thumb it is R7.
1190 Examine the Program Status Register to decide which state we're in. */
1191
1192 static CORE_ADDR
1193 arm_read_fp (void)
1194 {
1195 if (read_register (ARM_PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
1196 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
1197 else
1198 return read_register (ARM_FP_REGNUM); /* R11 if ARM */
1199 }
1200
1201 /* Store into a struct frame_saved_regs the addresses of the saved
1202 registers of frame described by FRAME_INFO. This includes special
1203 registers such as PC and FP saved in special ways in the stack
1204 frame. SP is even more special: the address we return for it IS
1205 the sp for the next frame. */
1206
1207 static void
1208 arm_frame_init_saved_regs (struct frame_info *fip)
1209 {
1210
1211 if (fip->saved_regs)
1212 return;
1213
1214 arm_init_extra_frame_info (0, fip);
1215 }
1216
1217 /* Push an empty stack frame, to record the current PC, etc. */
1218
1219 static void
1220 arm_push_dummy_frame (void)
1221 {
1222 CORE_ADDR old_sp = read_register (ARM_SP_REGNUM);
1223 CORE_ADDR sp = old_sp;
1224 CORE_ADDR fp, prologue_start;
1225 int regnum;
1226
1227 /* Push the two dummy prologue instructions in reverse order,
1228 so that they'll be in the correct low-to-high order in memory. */
1229 /* sub fp, ip, #4 */
1230 sp = push_word (sp, 0xe24cb004);
1231 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
1232 prologue_start = sp = push_word (sp, 0xe92ddfff);
1233
1234 /* Push a pointer to the dummy prologue + 12, because when stm
1235 instruction stores the PC, it stores the address of the stm
1236 instruction itself plus 12. */
1237 fp = sp = push_word (sp, prologue_start + 12);
1238
1239 /* Push the processor status. */
1240 sp = push_word (sp, read_register (ARM_PS_REGNUM));
1241
1242 /* Push all 16 registers starting with r15. */
1243 for (regnum = ARM_PC_REGNUM; regnum >= 0; regnum--)
1244 sp = push_word (sp, read_register (regnum));
1245
1246 /* Update fp (for both Thumb and ARM) and sp. */
1247 write_register (ARM_FP_REGNUM, fp);
1248 write_register (THUMB_FP_REGNUM, fp);
1249 write_register (ARM_SP_REGNUM, sp);
1250 }
1251
1252 /* CALL_DUMMY_WORDS:
1253 This sequence of words is the instructions
1254
1255 mov lr,pc
1256 mov pc,r4
1257 illegal
1258
1259 Note this is 12 bytes. */
1260
1261 static LONGEST arm_call_dummy_words[] =
1262 {
1263 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1264 };
1265
1266 /* Fix up the call dummy, based on whether the processor is currently
1267 in Thumb or ARM mode, and whether the target function is Thumb or
1268 ARM. There are three different situations requiring three
1269 different dummies:
1270
1271 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
1272 been copied into the dummy parameter to this function.
1273 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
1274 "mov pc,r4" instruction patched to be a "bx r4" instead.
1275 * Thumb calling anything: uses the Thumb dummy defined below, which
1276 works for calling both ARM and Thumb functions.
1277
1278 All three call dummies expect to receive the target function
1279 address in R4, with the low bit set if it's a Thumb function. */
1280
1281 static void
1282 arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1283 struct value **args, struct type *type, int gcc_p)
1284 {
1285 static short thumb_dummy[4] =
1286 {
1287 0xf000, 0xf801, /* bl label */
1288 0xdf18, /* swi 24 */
1289 0x4720, /* label: bx r4 */
1290 };
1291 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
1292
1293 /* Set flag indicating whether the current PC is in a Thumb function. */
1294 caller_is_thumb = arm_pc_is_thumb (read_pc ());
1295
1296 /* If the target function is Thumb, set the low bit of the function
1297 address. And if the CPU is currently in ARM mode, patch the
1298 second instruction of call dummy to use a BX instruction to
1299 switch to Thumb mode. */
1300 target_is_thumb = arm_pc_is_thumb (fun);
1301 if (target_is_thumb)
1302 {
1303 fun |= 1;
1304 if (!caller_is_thumb)
1305 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
1306 }
1307
1308 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
1309 instead of the ARM one that's already been copied. This will
1310 work for both Thumb and ARM target functions. */
1311 if (caller_is_thumb)
1312 {
1313 int i;
1314 char *p = dummy;
1315 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
1316
1317 for (i = 0; i < len; i++)
1318 {
1319 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
1320 p += sizeof (thumb_dummy[0]);
1321 }
1322 }
1323
1324 /* Put the target address in r4; the call dummy will copy this to
1325 the PC. */
1326 write_register (4, fun);
1327 }
1328
1329 /* Return the offset in the call dummy of the instruction that needs
1330 to have a breakpoint placed on it. This is the offset of the 'swi
1331 24' instruction, which is no longer actually used, but simply acts
1332 as a place-holder now.
1333
1334 This implements the CALL_DUMMY_BREAK_OFFSET macro. */
1335
1336 int
1337 arm_call_dummy_breakpoint_offset (void)
1338 {
1339 if (caller_is_thumb)
1340 return 4;
1341 else
1342 return 8;
1343 }
1344
1345 /* Note: ScottB
1346
1347 This function does not support passing parameters using the FPA
1348 variant of the APCS. It passes any floating point arguments in the
1349 general registers and/or on the stack. */
1350
1351 static CORE_ADDR
1352 arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1353 int struct_return, CORE_ADDR struct_addr)
1354 {
1355 char *fp;
1356 int argnum, argreg, nstack_size;
1357
1358 /* Walk through the list of args and determine how large a temporary
1359 stack is required. Need to take care here as structs may be
1360 passed on the stack, and we have to to push them. */
1361 nstack_size = -4 * REGISTER_SIZE; /* Some arguments go into A1-A4. */
1362 if (struct_return) /* The struct address goes in A1. */
1363 nstack_size += REGISTER_SIZE;
1364
1365 /* Walk through the arguments and add their size to nstack_size. */
1366 for (argnum = 0; argnum < nargs; argnum++)
1367 {
1368 int len;
1369 struct type *arg_type;
1370
1371 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1372 len = TYPE_LENGTH (arg_type);
1373
1374 nstack_size += len;
1375 }
1376
1377 /* Allocate room on the stack, and initialize our stack frame
1378 pointer. */
1379 fp = NULL;
1380 if (nstack_size > 0)
1381 {
1382 sp -= nstack_size;
1383 fp = (char *) sp;
1384 }
1385
1386 /* Initialize the integer argument register pointer. */
1387 argreg = ARM_A1_REGNUM;
1388
1389 /* The struct_return pointer occupies the first parameter passing
1390 register. */
1391 if (struct_return)
1392 write_register (argreg++, struct_addr);
1393
1394 /* Process arguments from left to right. Store as many as allowed
1395 in the parameter passing registers (A1-A4), and save the rest on
1396 the temporary stack. */
1397 for (argnum = 0; argnum < nargs; argnum++)
1398 {
1399 int len;
1400 char *val;
1401 CORE_ADDR regval;
1402 enum type_code typecode;
1403 struct type *arg_type, *target_type;
1404
1405 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1406 target_type = TYPE_TARGET_TYPE (arg_type);
1407 len = TYPE_LENGTH (arg_type);
1408 typecode = TYPE_CODE (arg_type);
1409 val = (char *) VALUE_CONTENTS (args[argnum]);
1410
1411 #if 1
1412 /* I don't know why this code was disable. The only logical use
1413 for a function pointer is to call that function, so setting
1414 the mode bit is perfectly fine. FN */
1415 /* If the argument is a pointer to a function, and it is a Thumb
1416 function, set the low bit of the pointer. */
1417 if (TYPE_CODE_PTR == typecode
1418 && NULL != target_type
1419 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1420 {
1421 CORE_ADDR regval = extract_address (val, len);
1422 if (arm_pc_is_thumb (regval))
1423 store_address (val, len, MAKE_THUMB_ADDR (regval));
1424 }
1425 #endif
1426 /* Copy the argument to general registers or the stack in
1427 register-sized pieces. Large arguments are split between
1428 registers and stack. */
1429 while (len > 0)
1430 {
1431 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
1432
1433 if (argreg <= ARM_LAST_ARG_REGNUM)
1434 {
1435 /* It's an argument being passed in a general register. */
1436 regval = extract_address (val, partial_len);
1437 write_register (argreg++, regval);
1438 }
1439 else
1440 {
1441 /* Push the arguments onto the stack. */
1442 write_memory ((CORE_ADDR) fp, val, REGISTER_SIZE);
1443 fp += REGISTER_SIZE;
1444 }
1445
1446 len -= partial_len;
1447 val += partial_len;
1448 }
1449 }
1450
1451 /* Return adjusted stack pointer. */
1452 return sp;
1453 }
1454
1455 /* Pop the current frame. So long as the frame info has been initialized
1456 properly (see arm_init_extra_frame_info), this code works for dummy frames
1457 as well as regular frames. I.e, there's no need to have a special case
1458 for dummy frames. */
1459 static void
1460 arm_pop_frame (void)
1461 {
1462 int regnum;
1463 struct frame_info *frame = get_current_frame ();
1464 CORE_ADDR old_SP = (frame->frame - frame->extra_info->frameoffset
1465 + frame->extra_info->framesize);
1466
1467 for (regnum = 0; regnum < NUM_REGS; regnum++)
1468 if (frame->saved_regs[regnum] != 0)
1469 write_register (regnum,
1470 read_memory_integer (frame->saved_regs[regnum],
1471 REGISTER_RAW_SIZE (regnum)));
1472
1473 write_register (ARM_PC_REGNUM, FRAME_SAVED_PC (frame));
1474 write_register (ARM_SP_REGNUM, old_SP);
1475
1476 flush_cached_frames ();
1477 }
1478
1479 static void
1480 print_fpu_flags (int flags)
1481 {
1482 if (flags & (1 << 0))
1483 fputs ("IVO ", stdout);
1484 if (flags & (1 << 1))
1485 fputs ("DVZ ", stdout);
1486 if (flags & (1 << 2))
1487 fputs ("OFL ", stdout);
1488 if (flags & (1 << 3))
1489 fputs ("UFL ", stdout);
1490 if (flags & (1 << 4))
1491 fputs ("INX ", stdout);
1492 putchar ('\n');
1493 }
1494
1495 /* Print interesting information about the floating point processor
1496 (if present) or emulator. */
1497 static void
1498 arm_print_float_info (void)
1499 {
1500 register unsigned long status = read_register (ARM_FPS_REGNUM);
1501 int type;
1502
1503 type = (status >> 24) & 127;
1504 printf ("%s FPU type %d\n",
1505 (status & (1 << 31)) ? "Hardware" : "Software",
1506 type);
1507 fputs ("mask: ", stdout);
1508 print_fpu_flags (status >> 16);
1509 fputs ("flags: ", stdout);
1510 print_fpu_flags (status);
1511 }
1512
1513 /* Return the GDB type object for the "standard" data type of data in
1514 register N. */
1515
1516 static struct type *
1517 arm_register_type (int regnum)
1518 {
1519 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1520 {
1521 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1522 return builtin_type_arm_ext_big;
1523 else
1524 return builtin_type_arm_ext_littlebyte_bigword;
1525 }
1526 else
1527 return builtin_type_int32;
1528 }
1529
1530 /* Index within `registers' of the first byte of the space for
1531 register N. */
1532
1533 static int
1534 arm_register_byte (int regnum)
1535 {
1536 if (regnum < ARM_F0_REGNUM)
1537 return regnum * INT_REGISTER_RAW_SIZE;
1538 else if (regnum < ARM_PS_REGNUM)
1539 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1540 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE);
1541 else
1542 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1543 + NUM_FREGS * FP_REGISTER_RAW_SIZE
1544 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1545 }
1546
1547 /* Number of bytes of storage in the actual machine representation for
1548 register N. All registers are 4 bytes, except fp0 - fp7, which are
1549 12 bytes in length. */
1550
1551 static int
1552 arm_register_raw_size (int regnum)
1553 {
1554 if (regnum < ARM_F0_REGNUM)
1555 return INT_REGISTER_RAW_SIZE;
1556 else if (regnum < ARM_FPS_REGNUM)
1557 return FP_REGISTER_RAW_SIZE;
1558 else
1559 return STATUS_REGISTER_SIZE;
1560 }
1561
1562 /* Number of bytes of storage in a program's representation
1563 for register N. */
1564 static int
1565 arm_register_virtual_size (int regnum)
1566 {
1567 if (regnum < ARM_F0_REGNUM)
1568 return INT_REGISTER_VIRTUAL_SIZE;
1569 else if (regnum < ARM_FPS_REGNUM)
1570 return FP_REGISTER_VIRTUAL_SIZE;
1571 else
1572 return STATUS_REGISTER_SIZE;
1573 }
1574
1575
1576 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1577 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1578 It is thought that this is is the floating-point register format on
1579 little-endian systems. */
1580
1581 static void
1582 convert_from_extended (void *ptr, void *dbl)
1583 {
1584 DOUBLEST d;
1585 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1586 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1587 else
1588 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1589 ptr, &d);
1590 floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &d, dbl);
1591 }
1592
1593 static void
1594 convert_to_extended (void *dbl, void *ptr)
1595 {
1596 DOUBLEST d;
1597 floatformat_to_doublest (TARGET_DOUBLE_FORMAT, ptr, &d);
1598 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1599 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1600 else
1601 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1602 &d, dbl);
1603 }
1604
1605 static int
1606 condition_true (unsigned long cond, unsigned long status_reg)
1607 {
1608 if (cond == INST_AL || cond == INST_NV)
1609 return 1;
1610
1611 switch (cond)
1612 {
1613 case INST_EQ:
1614 return ((status_reg & FLAG_Z) != 0);
1615 case INST_NE:
1616 return ((status_reg & FLAG_Z) == 0);
1617 case INST_CS:
1618 return ((status_reg & FLAG_C) != 0);
1619 case INST_CC:
1620 return ((status_reg & FLAG_C) == 0);
1621 case INST_MI:
1622 return ((status_reg & FLAG_N) != 0);
1623 case INST_PL:
1624 return ((status_reg & FLAG_N) == 0);
1625 case INST_VS:
1626 return ((status_reg & FLAG_V) != 0);
1627 case INST_VC:
1628 return ((status_reg & FLAG_V) == 0);
1629 case INST_HI:
1630 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1631 case INST_LS:
1632 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1633 case INST_GE:
1634 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1635 case INST_LT:
1636 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1637 case INST_GT:
1638 return (((status_reg & FLAG_Z) == 0) &&
1639 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1640 case INST_LE:
1641 return (((status_reg & FLAG_Z) != 0) ||
1642 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1643 }
1644 return 1;
1645 }
1646
1647 /* Support routines for single stepping. Calculate the next PC value. */
1648 #define submask(x) ((1L << ((x) + 1)) - 1)
1649 #define bit(obj,st) (((obj) >> (st)) & 1)
1650 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1651 #define sbits(obj,st,fn) \
1652 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1653 #define BranchDest(addr,instr) \
1654 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1655 #define ARM_PC_32 1
1656
1657 static unsigned long
1658 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1659 unsigned long status_reg)
1660 {
1661 unsigned long res, shift;
1662 int rm = bits (inst, 0, 3);
1663 unsigned long shifttype = bits (inst, 5, 6);
1664
1665 if (bit (inst, 4))
1666 {
1667 int rs = bits (inst, 8, 11);
1668 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1669 }
1670 else
1671 shift = bits (inst, 7, 11);
1672
1673 res = (rm == 15
1674 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1675 + (bit (inst, 4) ? 12 : 8))
1676 : read_register (rm));
1677
1678 switch (shifttype)
1679 {
1680 case 0: /* LSL */
1681 res = shift >= 32 ? 0 : res << shift;
1682 break;
1683
1684 case 1: /* LSR */
1685 res = shift >= 32 ? 0 : res >> shift;
1686 break;
1687
1688 case 2: /* ASR */
1689 if (shift >= 32)
1690 shift = 31;
1691 res = ((res & 0x80000000L)
1692 ? ~((~res) >> shift) : res >> shift);
1693 break;
1694
1695 case 3: /* ROR/RRX */
1696 shift &= 31;
1697 if (shift == 0)
1698 res = (res >> 1) | (carry ? 0x80000000L : 0);
1699 else
1700 res = (res >> shift) | (res << (32 - shift));
1701 break;
1702 }
1703
1704 return res & 0xffffffff;
1705 }
1706
1707 /* Return number of 1-bits in VAL. */
1708
1709 static int
1710 bitcount (unsigned long val)
1711 {
1712 int nbits;
1713 for (nbits = 0; val != 0; nbits++)
1714 val &= val - 1; /* delete rightmost 1-bit in val */
1715 return nbits;
1716 }
1717
1718 CORE_ADDR
1719 thumb_get_next_pc (CORE_ADDR pc)
1720 {
1721 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1722 unsigned short inst1 = read_memory_integer (pc, 2);
1723 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1724 unsigned long offset;
1725
1726 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1727 {
1728 CORE_ADDR sp;
1729
1730 /* Fetch the saved PC from the stack. It's stored above
1731 all of the other registers. */
1732 offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
1733 sp = read_register (ARM_SP_REGNUM);
1734 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1735 nextpc = ADDR_BITS_REMOVE (nextpc);
1736 if (nextpc == pc)
1737 error ("Infinite loop detected");
1738 }
1739 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1740 {
1741 unsigned long status = read_register (ARM_PS_REGNUM);
1742 unsigned long cond = bits (inst1, 8, 11);
1743 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1744 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1745 }
1746 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1747 {
1748 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1749 }
1750 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1751 {
1752 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1753 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1754 nextpc = pc_val + offset;
1755 }
1756
1757 return nextpc;
1758 }
1759
1760 CORE_ADDR
1761 arm_get_next_pc (CORE_ADDR pc)
1762 {
1763 unsigned long pc_val;
1764 unsigned long this_instr;
1765 unsigned long status;
1766 CORE_ADDR nextpc;
1767
1768 if (arm_pc_is_thumb (pc))
1769 return thumb_get_next_pc (pc);
1770
1771 pc_val = (unsigned long) pc;
1772 this_instr = read_memory_integer (pc, 4);
1773 status = read_register (ARM_PS_REGNUM);
1774 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1775
1776 if (condition_true (bits (this_instr, 28, 31), status))
1777 {
1778 switch (bits (this_instr, 24, 27))
1779 {
1780 case 0x0:
1781 case 0x1: /* data processing */
1782 case 0x2:
1783 case 0x3:
1784 {
1785 unsigned long operand1, operand2, result = 0;
1786 unsigned long rn;
1787 int c;
1788
1789 if (bits (this_instr, 12, 15) != 15)
1790 break;
1791
1792 if (bits (this_instr, 22, 25) == 0
1793 && bits (this_instr, 4, 7) == 9) /* multiply */
1794 error ("Illegal update to pc in instruction");
1795
1796 /* Multiply into PC */
1797 c = (status & FLAG_C) ? 1 : 0;
1798 rn = bits (this_instr, 16, 19);
1799 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1800
1801 if (bit (this_instr, 25))
1802 {
1803 unsigned long immval = bits (this_instr, 0, 7);
1804 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1805 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1806 & 0xffffffff;
1807 }
1808 else /* operand 2 is a shifted register */
1809 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1810
1811 switch (bits (this_instr, 21, 24))
1812 {
1813 case 0x0: /*and */
1814 result = operand1 & operand2;
1815 break;
1816
1817 case 0x1: /*eor */
1818 result = operand1 ^ operand2;
1819 break;
1820
1821 case 0x2: /*sub */
1822 result = operand1 - operand2;
1823 break;
1824
1825 case 0x3: /*rsb */
1826 result = operand2 - operand1;
1827 break;
1828
1829 case 0x4: /*add */
1830 result = operand1 + operand2;
1831 break;
1832
1833 case 0x5: /*adc */
1834 result = operand1 + operand2 + c;
1835 break;
1836
1837 case 0x6: /*sbc */
1838 result = operand1 - operand2 + c;
1839 break;
1840
1841 case 0x7: /*rsc */
1842 result = operand2 - operand1 + c;
1843 break;
1844
1845 case 0x8:
1846 case 0x9:
1847 case 0xa:
1848 case 0xb: /* tst, teq, cmp, cmn */
1849 result = (unsigned long) nextpc;
1850 break;
1851
1852 case 0xc: /*orr */
1853 result = operand1 | operand2;
1854 break;
1855
1856 case 0xd: /*mov */
1857 /* Always step into a function. */
1858 result = operand2;
1859 break;
1860
1861 case 0xe: /*bic */
1862 result = operand1 & ~operand2;
1863 break;
1864
1865 case 0xf: /*mvn */
1866 result = ~operand2;
1867 break;
1868 }
1869 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1870
1871 if (nextpc == pc)
1872 error ("Infinite loop detected");
1873 break;
1874 }
1875
1876 case 0x4:
1877 case 0x5: /* data transfer */
1878 case 0x6:
1879 case 0x7:
1880 if (bit (this_instr, 20))
1881 {
1882 /* load */
1883 if (bits (this_instr, 12, 15) == 15)
1884 {
1885 /* rd == pc */
1886 unsigned long rn;
1887 unsigned long base;
1888
1889 if (bit (this_instr, 22))
1890 error ("Illegal update to pc in instruction");
1891
1892 /* byte write to PC */
1893 rn = bits (this_instr, 16, 19);
1894 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1895 if (bit (this_instr, 24))
1896 {
1897 /* pre-indexed */
1898 int c = (status & FLAG_C) ? 1 : 0;
1899 unsigned long offset =
1900 (bit (this_instr, 25)
1901 ? shifted_reg_val (this_instr, c, pc_val, status)
1902 : bits (this_instr, 0, 11));
1903
1904 if (bit (this_instr, 23))
1905 base += offset;
1906 else
1907 base -= offset;
1908 }
1909 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1910 4);
1911
1912 nextpc = ADDR_BITS_REMOVE (nextpc);
1913
1914 if (nextpc == pc)
1915 error ("Infinite loop detected");
1916 }
1917 }
1918 break;
1919
1920 case 0x8:
1921 case 0x9: /* block transfer */
1922 if (bit (this_instr, 20))
1923 {
1924 /* LDM */
1925 if (bit (this_instr, 15))
1926 {
1927 /* loading pc */
1928 int offset = 0;
1929
1930 if (bit (this_instr, 23))
1931 {
1932 /* up */
1933 unsigned long reglist = bits (this_instr, 0, 14);
1934 offset = bitcount (reglist) * 4;
1935 if (bit (this_instr, 24)) /* pre */
1936 offset += 4;
1937 }
1938 else if (bit (this_instr, 24))
1939 offset = -4;
1940
1941 {
1942 unsigned long rn_val =
1943 read_register (bits (this_instr, 16, 19));
1944 nextpc =
1945 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1946 + offset),
1947 4);
1948 }
1949 nextpc = ADDR_BITS_REMOVE (nextpc);
1950 if (nextpc == pc)
1951 error ("Infinite loop detected");
1952 }
1953 }
1954 break;
1955
1956 case 0xb: /* branch & link */
1957 case 0xa: /* branch */
1958 {
1959 nextpc = BranchDest (pc, this_instr);
1960
1961 nextpc = ADDR_BITS_REMOVE (nextpc);
1962 if (nextpc == pc)
1963 error ("Infinite loop detected");
1964 break;
1965 }
1966
1967 case 0xc:
1968 case 0xd:
1969 case 0xe: /* coproc ops */
1970 case 0xf: /* SWI */
1971 break;
1972
1973 default:
1974 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
1975 return (pc);
1976 }
1977 }
1978
1979 return nextpc;
1980 }
1981
1982 /* single_step() is called just before we want to resume the inferior,
1983 if we want to single-step it but there is no hardware or kernel
1984 single-step support. We find the target of the coming instruction
1985 and breakpoint it.
1986
1987 single_step is also called just after the inferior stops. If we had
1988 set up a simulated single-step, we undo our damage. */
1989
1990 static void
1991 arm_software_single_step (enum target_signal sig, int insert_bpt)
1992 {
1993 static int next_pc; /* State between setting and unsetting. */
1994 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1995
1996 if (insert_bpt)
1997 {
1998 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1999 target_insert_breakpoint (next_pc, break_mem);
2000 }
2001 else
2002 target_remove_breakpoint (next_pc, break_mem);
2003 }
2004
2005 #include "bfd-in2.h"
2006 #include "libcoff.h"
2007
2008 static int
2009 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
2010 {
2011 if (arm_pc_is_thumb (memaddr))
2012 {
2013 static asymbol *asym;
2014 static combined_entry_type ce;
2015 static struct coff_symbol_struct csym;
2016 static struct _bfd fake_bfd;
2017 static bfd_target fake_target;
2018
2019 if (csym.native == NULL)
2020 {
2021 /* Create a fake symbol vector containing a Thumb symbol. This is
2022 solely so that the code in print_insn_little_arm() and
2023 print_insn_big_arm() in opcodes/arm-dis.c will detect the presence
2024 of a Thumb symbol and switch to decoding Thumb instructions. */
2025
2026 fake_target.flavour = bfd_target_coff_flavour;
2027 fake_bfd.xvec = &fake_target;
2028 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
2029 csym.native = &ce;
2030 csym.symbol.the_bfd = &fake_bfd;
2031 csym.symbol.name = "fake";
2032 asym = (asymbol *) & csym;
2033 }
2034
2035 memaddr = UNMAKE_THUMB_ADDR (memaddr);
2036 info->symbols = &asym;
2037 }
2038 else
2039 info->symbols = NULL;
2040
2041 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2042 return print_insn_big_arm (memaddr, info);
2043 else
2044 return print_insn_little_arm (memaddr, info);
2045 }
2046
2047 /* The following define instruction sequences that will cause ARM
2048 cpu's to take an undefined instruction trap. These are used to
2049 signal a breakpoint to GDB.
2050
2051 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2052 modes. A different instruction is required for each mode. The ARM
2053 cpu's can also be big or little endian. Thus four different
2054 instructions are needed to support all cases.
2055
2056 Note: ARMv4 defines several new instructions that will take the
2057 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2058 not in fact add the new instructions. The new undefined
2059 instructions in ARMv4 are all instructions that had no defined
2060 behaviour in earlier chips. There is no guarantee that they will
2061 raise an exception, but may be treated as NOP's. In practice, it
2062 may only safe to rely on instructions matching:
2063
2064 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2065 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2066 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2067
2068 Even this may only true if the condition predicate is true. The
2069 following use a condition predicate of ALWAYS so it is always TRUE.
2070
2071 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2072 and NetBSD all use a software interrupt rather than an undefined
2073 instruction to force a trap. This can be handled by by the
2074 abi-specific code during establishment of the gdbarch vector. */
2075
2076
2077 /* XXX for now we allow a non-multi-arch gdb to override these
2078 definitions. */
2079 #ifndef ARM_LE_BREAKPOINT
2080 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2081 #endif
2082 #ifndef ARM_BE_BREAKPOINT
2083 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2084 #endif
2085 #ifndef THUMB_LE_BREAKPOINT
2086 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2087 #endif
2088 #ifndef THUMB_BE_BREAKPOINT
2089 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2090 #endif
2091
2092 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2093 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2094 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2095 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2096
2097 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2098 the program counter value to determine whether a 16-bit or 32-bit
2099 breakpoint should be used. It returns a pointer to a string of
2100 bytes that encode a breakpoint instruction, stores the length of
2101 the string to *lenptr, and adjusts the program counter (if
2102 necessary) to point to the actual memory location where the
2103 breakpoint should be inserted. */
2104
2105 /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2106 breakpoints and storing their handles instread of what was in
2107 memory. It is nice that this is the same size as a handle -
2108 otherwise remote-rdp will have to change. */
2109
2110 unsigned char *
2111 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2112 {
2113 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2114
2115 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2116 {
2117 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2118 *lenptr = tdep->thumb_breakpoint_size;
2119 return tdep->thumb_breakpoint;
2120 }
2121 else
2122 {
2123 *lenptr = tdep->arm_breakpoint_size;
2124 return tdep->arm_breakpoint;
2125 }
2126 }
2127
2128 /* Extract from an array REGBUF containing the (raw) register state a
2129 function return value of type TYPE, and copy that, in virtual
2130 format, into VALBUF. */
2131
2132 static void
2133 arm_extract_return_value (struct type *type,
2134 char regbuf[REGISTER_BYTES],
2135 char *valbuf)
2136 {
2137 if (TYPE_CODE_FLT == TYPE_CODE (type))
2138 convert_from_extended (&regbuf[REGISTER_BYTE (ARM_F0_REGNUM)], valbuf);
2139 else
2140 memcpy (valbuf, &regbuf[REGISTER_BYTE (ARM_A1_REGNUM)],
2141 TYPE_LENGTH (type));
2142 }
2143
2144 /* Extract from an array REGBUF containing the (raw) register state
2145 the address in which a function should return its structure value. */
2146
2147 static CORE_ADDR
2148 arm_extract_struct_value_address (char *regbuf)
2149 {
2150 return extract_address (regbuf, REGISTER_RAW_SIZE(ARM_A1_REGNUM));
2151 }
2152
2153 /* Will a function return an aggregate type in memory or in a
2154 register? Return 0 if an aggregate type can be returned in a
2155 register, 1 if it must be returned in memory. */
2156
2157 static int
2158 arm_use_struct_convention (int gcc_p, struct type *type)
2159 {
2160 int nRc;
2161 register enum type_code code;
2162
2163 /* In the ARM ABI, "integer" like aggregate types are returned in
2164 registers. For an aggregate type to be integer like, its size
2165 must be less than or equal to REGISTER_SIZE and the offset of
2166 each addressable subfield must be zero. Note that bit fields are
2167 not addressable, and all addressable subfields of unions always
2168 start at offset zero.
2169
2170 This function is based on the behaviour of GCC 2.95.1.
2171 See: gcc/arm.c: arm_return_in_memory() for details.
2172
2173 Note: All versions of GCC before GCC 2.95.2 do not set up the
2174 parameters correctly for a function returning the following
2175 structure: struct { float f;}; This should be returned in memory,
2176 not a register. Richard Earnshaw sent me a patch, but I do not
2177 know of any way to detect if a function like the above has been
2178 compiled with the correct calling convention. */
2179
2180 /* All aggregate types that won't fit in a register must be returned
2181 in memory. */
2182 if (TYPE_LENGTH (type) > REGISTER_SIZE)
2183 {
2184 return 1;
2185 }
2186
2187 /* The only aggregate types that can be returned in a register are
2188 structs and unions. Arrays must be returned in memory. */
2189 code = TYPE_CODE (type);
2190 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2191 {
2192 return 1;
2193 }
2194
2195 /* Assume all other aggregate types can be returned in a register.
2196 Run a check for structures, unions and arrays. */
2197 nRc = 0;
2198
2199 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2200 {
2201 int i;
2202 /* Need to check if this struct/union is "integer" like. For
2203 this to be true, its size must be less than or equal to
2204 REGISTER_SIZE and the offset of each addressable subfield
2205 must be zero. Note that bit fields are not addressable, and
2206 unions always start at offset zero. If any of the subfields
2207 is a floating point type, the struct/union cannot be an
2208 integer type. */
2209
2210 /* For each field in the object, check:
2211 1) Is it FP? --> yes, nRc = 1;
2212 2) Is it addressable (bitpos != 0) and
2213 not packed (bitsize == 0)?
2214 --> yes, nRc = 1
2215 */
2216
2217 for (i = 0; i < TYPE_NFIELDS (type); i++)
2218 {
2219 enum type_code field_type_code;
2220 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
2221
2222 /* Is it a floating point type field? */
2223 if (field_type_code == TYPE_CODE_FLT)
2224 {
2225 nRc = 1;
2226 break;
2227 }
2228
2229 /* If bitpos != 0, then we have to care about it. */
2230 if (TYPE_FIELD_BITPOS (type, i) != 0)
2231 {
2232 /* Bitfields are not addressable. If the field bitsize is
2233 zero, then the field is not packed. Hence it cannot be
2234 a bitfield or any other packed type. */
2235 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2236 {
2237 nRc = 1;
2238 break;
2239 }
2240 }
2241 }
2242 }
2243
2244 return nRc;
2245 }
2246
2247 /* Write into appropriate registers a function return value of type
2248 TYPE, given in virtual format. */
2249
2250 static void
2251 arm_store_return_value (struct type *type, char *valbuf)
2252 {
2253 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2254 {
2255 char buf[MAX_REGISTER_RAW_SIZE];
2256
2257 convert_to_extended (valbuf, buf);
2258 /* XXX Is this correct for soft-float? */
2259 write_register_bytes (REGISTER_BYTE (ARM_F0_REGNUM), buf,
2260 MAX_REGISTER_RAW_SIZE);
2261 }
2262 else
2263 write_register_bytes (0, valbuf, TYPE_LENGTH (type));
2264 }
2265
2266 /* Store the address of the place in which to copy the structure the
2267 subroutine will return. This is called from call_function. */
2268
2269 static void
2270 arm_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2271 {
2272 write_register (ARM_A1_REGNUM, addr);
2273 }
2274
2275 static int
2276 arm_get_longjmp_target (CORE_ADDR *pc)
2277 {
2278 CORE_ADDR jb_addr;
2279 char buf[INT_REGISTER_RAW_SIZE];
2280 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2281
2282 jb_addr = read_register (ARM_A1_REGNUM);
2283
2284 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2285 INT_REGISTER_RAW_SIZE))
2286 return 0;
2287
2288 *pc = extract_address (buf, INT_REGISTER_RAW_SIZE);
2289 return 1;
2290 }
2291
2292 /* Return non-zero if the PC is inside a thumb call thunk. */
2293
2294 int
2295 arm_in_call_stub (CORE_ADDR pc, char *name)
2296 {
2297 CORE_ADDR start_addr;
2298
2299 /* Find the starting address of the function containing the PC. If
2300 the caller didn't give us a name, look it up at the same time. */
2301 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
2302 return 0;
2303
2304 return strncmp (name, "_call_via_r", 11) == 0;
2305 }
2306
2307 /* If PC is in a Thumb call or return stub, return the address of the
2308 target PC, which is in a register. The thunk functions are called
2309 _called_via_xx, where x is the register name. The possible names
2310 are r0-r9, sl, fp, ip, sp, and lr. */
2311
2312 CORE_ADDR
2313 arm_skip_stub (CORE_ADDR pc)
2314 {
2315 char *name;
2316 CORE_ADDR start_addr;
2317
2318 /* Find the starting address and name of the function containing the PC. */
2319 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2320 return 0;
2321
2322 /* Call thunks always start with "_call_via_". */
2323 if (strncmp (name, "_call_via_", 10) == 0)
2324 {
2325 /* Use the name suffix to determine which register contains the
2326 target PC. */
2327 static char *table[15] =
2328 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2329 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2330 };
2331 int regno;
2332
2333 for (regno = 0; regno <= 14; regno++)
2334 if (strcmp (&name[10], table[regno]) == 0)
2335 return read_register (regno);
2336 }
2337
2338 return 0; /* not a stub */
2339 }
2340
2341 /* If the user changes the register disassembly flavor used for info register
2342 and other commands, we have to also switch the flavor used in opcodes
2343 for disassembly output.
2344 This function is run in the set disassembly_flavor command, and does that. */
2345
2346 static void
2347 set_disassembly_flavor_sfunc (char *args, int from_tty,
2348 struct cmd_list_element *c)
2349 {
2350 set_disassembly_flavor ();
2351 }
2352 \f
2353 /* Return the ARM register name corresponding to register I. */
2354 static char *
2355 arm_register_name (int i)
2356 {
2357 return arm_register_names[i];
2358 }
2359
2360 static void
2361 set_disassembly_flavor (void)
2362 {
2363 const char *setname, *setdesc, **regnames;
2364 int numregs, j;
2365
2366 /* Find the flavor that the user wants in the opcodes table. */
2367 int current = 0;
2368 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2369 while ((disassembly_flavor != setname)
2370 && (current < num_flavor_options))
2371 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2372 current_option = current;
2373
2374 /* Fill our copy. */
2375 for (j = 0; j < numregs; j++)
2376 arm_register_names[j] = (char *) regnames[j];
2377
2378 /* Adjust case. */
2379 if (isupper (*regnames[ARM_PC_REGNUM]))
2380 {
2381 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2382 arm_register_names[ARM_PS_REGNUM] = "CPSR";
2383 }
2384 else
2385 {
2386 arm_register_names[ARM_FPS_REGNUM] = "fps";
2387 arm_register_names[ARM_PS_REGNUM] = "cpsr";
2388 }
2389
2390 /* Synchronize the disassembler. */
2391 set_arm_regname_option (current);
2392 }
2393
2394 /* arm_othernames implements the "othernames" command. This is kind
2395 of hacky, and I prefer the set-show disassembly-flavor which is
2396 also used for the x86 gdb. I will keep this around, however, in
2397 case anyone is actually using it. */
2398
2399 static void
2400 arm_othernames (char *names, int n)
2401 {
2402 /* Circle through the various flavors. */
2403 current_option = (current_option + 1) % num_flavor_options;
2404
2405 disassembly_flavor = valid_flavors[current_option];
2406 set_disassembly_flavor ();
2407 }
2408
2409 /* Fetch, and possibly build, an appropriate link_map_offsets structure
2410 for ARM linux targets using the struct offsets defined in <link.h>.
2411 Note, however, that link.h is not actually referred to in this file.
2412 Instead, the relevant structs offsets were obtained from examining
2413 link.h. (We can't refer to link.h from this file because the host
2414 system won't necessarily have it, or if it does, the structs which
2415 it defines will refer to the host system, not the target.) */
2416
2417 struct link_map_offsets *
2418 arm_linux_svr4_fetch_link_map_offsets (void)
2419 {
2420 static struct link_map_offsets lmo;
2421 static struct link_map_offsets *lmp = 0;
2422
2423 if (lmp == 0)
2424 {
2425 lmp = &lmo;
2426
2427 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
2428 need. */
2429
2430 lmo.r_map_offset = 4;
2431 lmo.r_map_size = 4;
2432
2433 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
2434 need. */
2435
2436 lmo.l_addr_offset = 0;
2437 lmo.l_addr_size = 4;
2438
2439 lmo.l_name_offset = 4;
2440 lmo.l_name_size = 4;
2441
2442 lmo.l_next_offset = 12;
2443 lmo.l_next_size = 4;
2444
2445 lmo.l_prev_offset = 16;
2446 lmo.l_prev_size = 4;
2447 }
2448
2449 return lmp;
2450 }
2451
2452 /* Test whether the coff symbol specific value corresponds to a Thumb
2453 function. */
2454
2455 static int
2456 coff_sym_is_thumb (int val)
2457 {
2458 return (val == C_THUMBEXT ||
2459 val == C_THUMBSTAT ||
2460 val == C_THUMBEXTFUNC ||
2461 val == C_THUMBSTATFUNC ||
2462 val == C_THUMBLABEL);
2463 }
2464
2465 /* arm_coff_make_msymbol_special()
2466 arm_elf_make_msymbol_special()
2467
2468 These functions test whether the COFF or ELF symbol corresponds to
2469 an address in thumb code, and set a "special" bit in a minimal
2470 symbol to indicate that it does. */
2471
2472 static void
2473 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2474 {
2475 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2476 STT_ARM_TFUNC). */
2477 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2478 == STT_LOPROC)
2479 MSYMBOL_SET_SPECIAL (msym);
2480 }
2481
2482 static void
2483 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2484 {
2485 if (coff_sym_is_thumb (val))
2486 MSYMBOL_SET_SPECIAL (msym);
2487 }
2488
2489 \f
2490 static void
2491 process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2492 {
2493 enum arm_abi *os_ident_ptr = obj;
2494 const char *name;
2495 unsigned int sectsize;
2496
2497 name = bfd_get_section_name (abfd, sect);
2498 sectsize = bfd_section_size (abfd, sect);
2499
2500 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2501 {
2502 unsigned int name_length, data_length, note_type;
2503 char *note;
2504
2505 /* If the section is larger than this, it's probably not what we are
2506 looking for. */
2507 if (sectsize > 128)
2508 sectsize = 128;
2509
2510 note = alloca (sectsize);
2511
2512 bfd_get_section_contents (abfd, sect, note,
2513 (file_ptr) 0, (bfd_size_type) sectsize);
2514
2515 name_length = bfd_h_get_32 (abfd, note);
2516 data_length = bfd_h_get_32 (abfd, note + 4);
2517 note_type = bfd_h_get_32 (abfd, note + 8);
2518
2519 if (name_length == 4 && data_length == 16 && note_type == 1
2520 && strcmp (note + 12, "GNU") == 0)
2521 {
2522 int os_number = bfd_h_get_32 (abfd, note + 16);
2523
2524 /* The case numbers are from abi-tags in glibc. */
2525 switch (os_number)
2526 {
2527 case 0 :
2528 *os_ident_ptr = ARM_ABI_LINUX;
2529 break;
2530
2531 case 1 :
2532 internal_error
2533 (__FILE__, __LINE__,
2534 "process_note_abi_sections: Hurd objects not supported");
2535 break;
2536
2537 case 2 :
2538 internal_error
2539 (__FILE__, __LINE__,
2540 "process_note_abi_sections: Solaris objects not supported");
2541 break;
2542
2543 default :
2544 internal_error
2545 (__FILE__, __LINE__,
2546 "process_note_abi_sections: unknown OS number %d",
2547 os_number);
2548 break;
2549 }
2550 }
2551 }
2552 /* NetBSD uses a similar trick. */
2553 else if (strcmp (name, ".note.netbsd.ident") == 0 && sectsize > 0)
2554 {
2555 unsigned int name_length, desc_length, note_type;
2556 char *note;
2557
2558 /* If the section is larger than this, it's probably not what we are
2559 looking for. */
2560 if (sectsize > 128)
2561 sectsize = 128;
2562
2563 note = alloca (sectsize);
2564
2565 bfd_get_section_contents (abfd, sect, note,
2566 (file_ptr) 0, (bfd_size_type) sectsize);
2567
2568 name_length = bfd_h_get_32 (abfd, note);
2569 desc_length = bfd_h_get_32 (abfd, note + 4);
2570 note_type = bfd_h_get_32 (abfd, note + 8);
2571
2572 if (name_length == 7 && desc_length == 4 && note_type == 1
2573 && strcmp (note + 12, "NetBSD") == 0)
2574 /* XXX Should we check the version here?
2575 Probably not necessary yet. */
2576 *os_ident_ptr = ARM_ABI_NETBSD_ELF;
2577 }
2578 }
2579
2580 /* Return one of the ELFOSABI_ constants for BFDs representing ELF
2581 executables. If it's not an ELF executable or if the OS/ABI couldn't
2582 be determined, simply return -1. */
2583
2584 static int
2585 get_elfosabi (bfd *abfd)
2586 {
2587 int elfosabi;
2588 enum arm_abi arm_abi = ARM_ABI_UNKNOWN;
2589
2590 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2591
2592 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2593 that we're on a SYSV system. However, GNU/Linux uses a note section
2594 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2595 have to check the note sections too.
2596
2597 GNU/ARM tools set the EI_OSABI field to ELFOSABI_ARM, so handle that
2598 as well. */
2599 if (elfosabi == 0 || elfosabi == ELFOSABI_ARM)
2600 {
2601 bfd_map_over_sections (abfd,
2602 process_note_abi_tag_sections,
2603 &arm_abi);
2604 }
2605
2606 if (arm_abi != ARM_ABI_UNKNOWN)
2607 return arm_abi;
2608
2609 switch (elfosabi)
2610 {
2611 case ELFOSABI_NONE:
2612 /* Existing ARM Tools don't set this field, so look at the EI_FLAGS
2613 field for more information. */
2614
2615 switch (EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags))
2616 {
2617 case EF_ARM_EABI_VER1:
2618 return ARM_ABI_EABI_V1;
2619
2620 case EF_ARM_EABI_VER2:
2621 return ARM_ABI_EABI_V2;
2622
2623 case EF_ARM_EABI_UNKNOWN:
2624 /* Assume GNU tools. */
2625 return ARM_ABI_APCS;
2626
2627 default:
2628 internal_error (__FILE__, __LINE__,
2629 "get_elfosabi: Unknown ARM EABI version 0x%lx",
2630 EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags));
2631
2632 }
2633 break;
2634
2635 case ELFOSABI_NETBSD:
2636 return ARM_ABI_NETBSD_ELF;
2637
2638 case ELFOSABI_FREEBSD:
2639 return ARM_ABI_FREEBSD;
2640
2641 case ELFOSABI_LINUX:
2642 return ARM_ABI_LINUX;
2643
2644 case ELFOSABI_ARM:
2645 /* Assume GNU tools with the old APCS abi. */
2646 return ARM_ABI_APCS;
2647
2648 default:
2649 }
2650
2651 return ARM_ABI_UNKNOWN;
2652 }
2653
2654 struct arm_abi_handler
2655 {
2656 struct arm_abi_handler *next;
2657 enum arm_abi abi;
2658 void (*init_abi)(struct gdbarch_info, struct gdbarch *);
2659 };
2660
2661 struct arm_abi_handler *arm_abi_handler_list = NULL;
2662
2663 void
2664 arm_gdbarch_register_os_abi (enum arm_abi abi,
2665 void (*init_abi)(struct gdbarch_info,
2666 struct gdbarch *))
2667 {
2668 struct arm_abi_handler **handler_p;
2669
2670 for (handler_p = &arm_abi_handler_list; *handler_p != NULL;
2671 handler_p = &(*handler_p)->next)
2672 {
2673 if ((*handler_p)->abi == abi)
2674 {
2675 internal_error
2676 (__FILE__, __LINE__,
2677 "arm_gdbarch_register_os_abi: A handler for this ABI variant (%d)"
2678 " has already been registered", (int)abi);
2679 /* If user wants to continue, override previous definition. */
2680 (*handler_p)->init_abi = init_abi;
2681 return;
2682 }
2683 }
2684
2685 (*handler_p)
2686 = (struct arm_abi_handler *) xmalloc (sizeof (struct arm_abi_handler));
2687 (*handler_p)->next = NULL;
2688 (*handler_p)->abi = abi;
2689 (*handler_p)->init_abi = init_abi;
2690 }
2691
2692 /* Initialize the current architecture based on INFO. If possible, re-use an
2693 architecture from ARCHES, which is a list of architectures already created
2694 during this debugging session.
2695
2696 Called e.g. at program startup, when reading a core file, and when reading
2697 a binary file. */
2698
2699 static struct gdbarch *
2700 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2701 {
2702 struct gdbarch_tdep *tdep;
2703 struct gdbarch *gdbarch;
2704 enum arm_abi arm_abi = ARM_ABI_UNKNOWN;
2705 struct arm_abi_handler *abi_handler;
2706
2707 /* Try to deterimine the ABI of the object we are loading. */
2708
2709 if (info.abfd != NULL)
2710 {
2711 switch (bfd_get_flavour (info.abfd))
2712 {
2713 case bfd_target_elf_flavour:
2714 arm_abi = get_elfosabi (info.abfd);
2715 break;
2716
2717 case bfd_target_aout_flavour:
2718 if (strcmp (bfd_get_target(info.abfd), "a.out-arm-netbsd") == 0)
2719 arm_abi = ARM_ABI_NETBSD_AOUT;
2720 else
2721 /* Assume it's an old APCS-style ABI. */
2722 arm_abi = ARM_ABI_APCS;
2723 break;
2724
2725 case bfd_target_coff_flavour:
2726 /* Assume it's an old APCS-style ABI. */
2727 /* XXX WinCE? */
2728 arm_abi = ARM_ABI_APCS;
2729 break;
2730
2731 default:
2732 /* Not sure what to do here, leave the ABI as unknown. */
2733 break;
2734 }
2735 }
2736
2737 /* Find a candidate among extant architectures. */
2738 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2739 arches != NULL;
2740 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2741 {
2742 /* Make sure the ABI selection matches. */
2743 tdep = gdbarch_tdep (arches->gdbarch);
2744 if (tdep && tdep->arm_abi == arm_abi)
2745 return arches->gdbarch;
2746 }
2747
2748 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2749 gdbarch = gdbarch_alloc (&info, tdep);
2750
2751 tdep->arm_abi = arm_abi;
2752 if (arm_abi < ARM_ABI_INVALID)
2753 tdep->abi_name = arm_abi_names[arm_abi];
2754 else
2755 {
2756 internal_error (__FILE__, __LINE__, "Invalid setting of arm_abi %d",
2757 (int) arm_abi);
2758 tdep->abi_name = "<invalid>";
2759 }
2760
2761 /* Breakpoints and floating point sizes and format. */
2762 switch (info.byte_order)
2763 {
2764 case BFD_ENDIAN_BIG:
2765 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2766 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2767 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2768 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2769
2770 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2771 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2772 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2773
2774 break;
2775
2776 case BFD_ENDIAN_LITTLE:
2777 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2778 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2779 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2780 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2781
2782 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2783 set_gdbarch_double_format (gdbarch,
2784 &floatformat_ieee_double_littlebyte_bigword);
2785 set_gdbarch_long_double_format (gdbarch,
2786 &floatformat_ieee_double_littlebyte_bigword);
2787
2788 break;
2789
2790 default:
2791 internal_error (__FILE__, __LINE__,
2792 "arm_gdbarch_init: bad byte order for float format");
2793 }
2794
2795 /* This should be low enough for everything. */
2796 tdep->lowest_pc = 0x20;
2797 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2798
2799 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
2800
2801 /* Call dummy code. */
2802 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2803 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2804 set_gdbarch_call_dummy_p (gdbarch, 1);
2805 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2806
2807 set_gdbarch_call_dummy_words (gdbarch, arm_call_dummy_words);
2808 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (arm_call_dummy_words));
2809 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2810
2811 set_gdbarch_fix_call_dummy (gdbarch, arm_fix_call_dummy);
2812
2813 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
2814
2815 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2816 set_gdbarch_push_arguments (gdbarch, arm_push_arguments);
2817 set_gdbarch_coerce_float_to_double (gdbarch,
2818 standard_coerce_float_to_double);
2819
2820 /* Frame handling. */
2821 set_gdbarch_frame_chain_valid (gdbarch, arm_frame_chain_valid);
2822 set_gdbarch_init_extra_frame_info (gdbarch, arm_init_extra_frame_info);
2823 set_gdbarch_read_fp (gdbarch, arm_read_fp);
2824 set_gdbarch_frame_chain (gdbarch, arm_frame_chain);
2825 set_gdbarch_frameless_function_invocation
2826 (gdbarch, arm_frameless_function_invocation);
2827 set_gdbarch_frame_saved_pc (gdbarch, arm_frame_saved_pc);
2828 set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address);
2829 set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address);
2830 set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args);
2831 set_gdbarch_frame_args_skip (gdbarch, 0);
2832 set_gdbarch_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs);
2833 set_gdbarch_push_dummy_frame (gdbarch, arm_push_dummy_frame);
2834 set_gdbarch_pop_frame (gdbarch, arm_pop_frame);
2835
2836 /* Address manipulation. */
2837 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2838 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2839
2840 /* Offset from address of function to start of its code. */
2841 set_gdbarch_function_start_offset (gdbarch, 0);
2842
2843 /* Advance PC across function entry code. */
2844 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2845
2846 /* Get the PC when a frame might not be available. */
2847 set_gdbarch_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2848
2849 /* The stack grows downward. */
2850 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2851
2852 /* Breakpoint manipulation. */
2853 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2854 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2855
2856 /* Information about registers, etc. */
2857 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2858 set_gdbarch_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2859 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2860 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2861 set_gdbarch_register_byte (gdbarch, arm_register_byte);
2862 set_gdbarch_register_bytes (gdbarch,
2863 (NUM_GREGS * INT_REGISTER_RAW_SIZE
2864 + NUM_FREGS * FP_REGISTER_RAW_SIZE
2865 + NUM_SREGS * STATUS_REGISTER_SIZE));
2866 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2867 set_gdbarch_register_raw_size (gdbarch, arm_register_raw_size);
2868 set_gdbarch_register_virtual_size (gdbarch, arm_register_virtual_size);
2869 set_gdbarch_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE);
2870 set_gdbarch_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE);
2871 set_gdbarch_register_virtual_type (gdbarch, arm_register_type);
2872
2873 /* Integer registers are 4 bytes. */
2874 set_gdbarch_register_size (gdbarch, 4);
2875 set_gdbarch_register_name (gdbarch, arm_register_name);
2876
2877 /* Returning results. */
2878 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2879 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
2880 set_gdbarch_store_struct_return (gdbarch, arm_store_struct_return);
2881 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
2882 set_gdbarch_extract_struct_value_address (gdbarch,
2883 arm_extract_struct_value_address);
2884
2885 /* Single stepping. */
2886 /* XXX For an RDI target we should ask the target if it can single-step. */
2887 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2888
2889 /* Minsymbol frobbing. */
2890 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2891 set_gdbarch_coff_make_msymbol_special (gdbarch,
2892 arm_coff_make_msymbol_special);
2893
2894 /* Hook in the ABI-specific overrides, if they have been registered. */
2895 if (arm_abi == ARM_ABI_UNKNOWN)
2896 {
2897 fprintf_filtered
2898 (gdb_stderr, "GDB doesn't recognize the ABI of the inferior. "
2899 "Attempting to continue with the default ARM settings");
2900 }
2901 else
2902 {
2903 for (abi_handler = arm_abi_handler_list; abi_handler != NULL;
2904 abi_handler = abi_handler->next)
2905 if (abi_handler->abi == arm_abi)
2906 break;
2907
2908 if (abi_handler)
2909 abi_handler->init_abi (info, gdbarch);
2910 else
2911 {
2912 /* We assume that if GDB_MULTI_ARCH is less than
2913 GDB_MULTI_ARCH_TM that an ABI variant can be supported by
2914 overriding definitions in this file. */
2915 if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)
2916 fprintf_filtered
2917 (gdb_stderr,
2918 "A handler for the ABI variant \"%s\" is not built into this "
2919 "configuration of GDB. "
2920 "Attempting to continue with the default ARM settings",
2921 arm_abi_names[arm_abi]);
2922 }
2923 }
2924
2925 /* Now we have tuned the configuration, set a few final things,
2926 based on what the OS ABI has told us. */
2927
2928 if (tdep->jb_pc >= 0)
2929 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2930
2931 /* We can't use SIZEOF_FRAME_SAVED_REGS here, since that still
2932 references the old architecture vector, not the one we are
2933 building here. */
2934 if (prologue_cache.saved_regs != NULL)
2935 xfree (prologue_cache.saved_regs);
2936
2937 prologue_cache.saved_regs = (CORE_ADDR *)
2938 xcalloc (1, (sizeof (CORE_ADDR)
2939 * (gdbarch_num_regs (gdbarch) + NUM_PSEUDO_REGS)));
2940
2941 return gdbarch;
2942 }
2943
2944 static void
2945 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2946 {
2947 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2948
2949 if (tdep == NULL)
2950 return;
2951
2952 if (tdep->abi_name != NULL)
2953 fprintf_unfiltered (file, "arm_dump_tdep: ABI = %s\n", tdep->abi_name);
2954 else
2955 internal_error (__FILE__, __LINE__,
2956 "arm_dump_tdep: illegal setting of tdep->arm_abi (%d)",
2957 (int) tdep->arm_abi);
2958
2959 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
2960 (unsigned long) tdep->lowest_pc);
2961 }
2962
2963 static void
2964 arm_init_abi_eabi_v1 (struct gdbarch_info info,
2965 struct gdbarch *gdbarch)
2966 {
2967 /* Place-holder. */
2968 }
2969
2970 static void
2971 arm_init_abi_eabi_v2 (struct gdbarch_info info,
2972 struct gdbarch *gdbarch)
2973 {
2974 /* Place-holder. */
2975 }
2976
2977 static void
2978 arm_init_abi_apcs (struct gdbarch_info info,
2979 struct gdbarch *gdbarch)
2980 {
2981 /* Place-holder. */
2982 }
2983
2984 void
2985 _initialize_arm_tdep (void)
2986 {
2987 struct ui_file *stb;
2988 long length;
2989 struct cmd_list_element *new_cmd;
2990 const char *setname;
2991 const char *setdesc;
2992 const char **regnames;
2993 int numregs, i, j;
2994 static char *helptext;
2995
2996 if (GDB_MULTI_ARCH)
2997 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
2998
2999 /* Register some ABI variants for embedded systems. */
3000 arm_gdbarch_register_os_abi (ARM_ABI_EABI_V1, arm_init_abi_eabi_v1);
3001 arm_gdbarch_register_os_abi (ARM_ABI_EABI_V2, arm_init_abi_eabi_v2);
3002 arm_gdbarch_register_os_abi (ARM_ABI_APCS, arm_init_abi_apcs);
3003
3004 tm_print_insn = gdb_print_insn_arm;
3005
3006 /* Get the number of possible sets of register names defined in opcodes. */
3007 num_flavor_options = get_arm_regname_num_options ();
3008
3009 /* Sync the opcode insn printer with our register viewer: */
3010 parse_arm_disassembler_option ("reg-names-std");
3011
3012 /* Begin creating the help text. */
3013 stb = mem_fileopen ();
3014 fprintf_unfiltered (stb, "Set the disassembly flavor.\n\
3015 The valid values are:\n");
3016
3017 /* Initialize the array that will be passed to add_set_enum_cmd(). */
3018 valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *));
3019 for (i = 0; i < num_flavor_options; i++)
3020 {
3021 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3022 valid_flavors[i] = setname;
3023 fprintf_unfiltered (stb, "%s - %s\n", setname,
3024 setdesc);
3025 /* Copy the default names (if found) and synchronize disassembler. */
3026 if (!strcmp (setname, "std"))
3027 {
3028 disassembly_flavor = setname;
3029 current_option = i;
3030 for (j = 0; j < numregs; j++)
3031 arm_register_names[j] = (char *) regnames[j];
3032 set_arm_regname_option (i);
3033 }
3034 }
3035 /* Mark the end of valid options. */
3036 valid_flavors[num_flavor_options] = NULL;
3037
3038 /* Finish the creation of the help text. */
3039 fprintf_unfiltered (stb, "The default is \"std\".");
3040 helptext = ui_file_xstrdup (stb, &length);
3041 ui_file_delete (stb);
3042
3043 /* Add the disassembly-flavor command */
3044 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
3045 valid_flavors,
3046 &disassembly_flavor,
3047 helptext,
3048 &setlist);
3049 set_cmd_sfunc (new_cmd, set_disassembly_flavor_sfunc);
3050 add_show_from_set (new_cmd, &showlist);
3051
3052 /* ??? Maybe this should be a boolean. */
3053 add_show_from_set (add_set_cmd ("apcs32", no_class,
3054 var_zinteger, (char *) &arm_apcs_32,
3055 "Set usage of ARM 32-bit mode.\n", &setlist),
3056 &showlist);
3057
3058 /* Add the deprecated "othernames" command */
3059
3060 add_com ("othernames", class_obscure, arm_othernames,
3061 "Switch to the next set of register names.");
3062
3063 /* Fill in the prologue_cache fields. */
3064 prologue_cache.saved_regs = NULL;
3065 prologue_cache.extra_info = (struct frame_extra_info *)
3066 xcalloc (1, sizeof (struct frame_extra_info));
3067 }
This page took 0.094078 seconds and 5 git commands to generate.