* Makefile.in: Add support for AVR target.
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Contributed by Theodore A. Roth, troth@verinet.com */
23
24 /* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
26
27 #include "defs.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "inferior.h"
31 #include "symfile.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34
35 /* AVR Background:
36
37 (AVR micros are pure Harvard Architecture processors.)
38
39 The AVR family of microcontrollers have three distinctly different memory
40 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
41 the most part to store program instructions. The sram is 8 bits wide and is
42 used for the stack and the heap. Some devices lack sram and some can have
43 an additional external sram added on as a peripheral.
44
45 The eeprom is 8 bits wide and is used to store data when the device is
46 powered down. Eeprom is not directly accessible, it can only be accessed
47 via io-registers using a special algorithm. Accessing eeprom via gdb's
48 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
49 not included at this time.
50
51 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
52 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
53 work, the remote target must be able to handle eeprom accesses and perform
54 the address translation.]
55
56 All three memory spaces have physical addresses beginning at 0x0. In
57 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
58 bytes instead of the 16 bit wide words used by the real device for the
59 Program Counter.
60
61 In order for remote targets to work correctly, extra bits must be added to
62 addresses before they are send to the target or received from the target
63 via the remote serial protocol. The extra bits are the MSBs and are used to
64 decode which memory space the address is referring to. */
65
66 #undef XMALLOC
67 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
68
69 #undef EXTRACT_INSN
70 #define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
71
72 /* Constants: prefixed with AVR_ to avoid name space clashes */
73
74 enum
75 {
76 AVR_REG_W = 24,
77 AVR_REG_X = 26,
78 AVR_REG_Y = 28,
79 AVR_FP_REGNUM = 28,
80 AVR_REG_Z = 30,
81
82 AVR_SREG_REGNUM = 32,
83 AVR_SP_REGNUM = 33,
84 AVR_PC_REGNUM = 34,
85
86 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
87 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
88
89 AVR_PC_REG_INDEX = 35, /* index into array of registers */
90
91 AVR_MAX_PROLOGUE_SIZE = 56, /* bytes */
92
93 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
94 AVR_MAX_PUSHES = 18,
95
96 /* Number of the last pushed register. r17 for current avr-gcc */
97 AVR_LAST_PUSHED_REGNUM = 17,
98
99 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
100 bits? Do these have to match the bfd vma values?. It sure would make
101 things easier in the future if they didn't need to match.
102
103 Note: I chose these values so as to be consistent with bfd vma
104 addresses.
105
106 TRoth/2002-04-08: There is already a conflict with very large programs
107 in the mega128. The mega128 has 128K instruction bytes (64K words),
108 thus the Most Significant Bit is 0x10000 which gets masked off my
109 AVR_MEM_MASK.
110
111 The problem manifests itself when trying to set a breakpoint in a
112 function which resides in the upper half of the instruction space and
113 thus requires a 17-bit address.
114
115 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
116 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
117 but could be for some remote targets by just adding the correct offset
118 to the address and letting the remote target handle the low-level
119 details of actually accessing the eeprom. */
120
121 AVR_IMEM_START = 0x00000000, /* INSN memory */
122 AVR_SMEM_START = 0x00800000, /* SRAM memory */
123 #if 1
124 /* No eeprom mask defined */
125 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
126 #else
127 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
128 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
129 #endif
130 };
131
132 /* Any function with a frame looks like this
133 ....... <-SP POINTS HERE
134 LOCALS1 <-FP POINTS HERE
135 LOCALS0
136 SAVED FP
137 SAVED R3
138 SAVED R2
139 RET PC
140 FIRST ARG
141 SECOND ARG */
142
143 struct frame_extra_info
144 {
145 CORE_ADDR return_pc;
146 CORE_ADDR args_pointer;
147 int locals_size;
148 int framereg;
149 int framesize;
150 int is_main;
151 };
152
153 struct gdbarch_tdep
154 {
155 /* FIXME: TRoth: is there anything to put here? */
156 int foo;
157 };
158
159 /* Lookup the name of a register given it's number. */
160
161 static char *
162 avr_register_name (int regnum)
163 {
164 static char *register_names[] =
165 {
166 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
167 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
168 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
169 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
170 "SREG", "SP", "PC"
171 };
172 if (regnum < 0)
173 return NULL;
174 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
175 return NULL;
176 return register_names[regnum];
177 }
178
179 /* Index within `registers' of the first byte of the space for
180 register REGNUM. */
181
182 static int
183 avr_register_byte (int regnum)
184 {
185 if (regnum < AVR_PC_REGNUM)
186 return regnum;
187 else
188 return AVR_PC_REG_INDEX;
189 }
190
191 /* Number of bytes of storage in the actual machine representation for
192 register REGNUM. */
193
194 static int
195 avr_register_raw_size (int regnum)
196 {
197 switch (regnum)
198 {
199 case AVR_PC_REGNUM:
200 return 4;
201 case AVR_SP_REGNUM:
202 case AVR_FP_REGNUM:
203 return 2;
204 default:
205 return 1;
206 }
207 }
208
209 /* Number of bytes of storage in the program's representation
210 for register N. */
211
212 static int
213 avr_register_virtual_size (int regnum)
214 {
215 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum));
216 }
217
218 /* Return the GDB type object for the "standard" data type
219 of data in register N. */
220
221 static struct type *
222 avr_register_virtual_type (int regnum)
223 {
224 switch (regnum)
225 {
226 case AVR_PC_REGNUM:
227 return builtin_type_unsigned_long;
228 case AVR_SP_REGNUM:
229 return builtin_type_unsigned_short;
230 default:
231 return builtin_type_unsigned_char;
232 }
233 }
234
235 /* Instruction address checks and convertions. */
236
237 static CORE_ADDR
238 avr_make_iaddr (CORE_ADDR x)
239 {
240 return ((x) | AVR_IMEM_START);
241 }
242
243 static int
244 avr_iaddr_p (CORE_ADDR x)
245 {
246 return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
247 }
248
249 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
250 devices are already up to 128KBytes of flash space.
251
252 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
253
254 static CORE_ADDR
255 avr_convert_iaddr_to_raw (CORE_ADDR x)
256 {
257 return ((x) & 0xffffffff);
258 }
259
260 /* SRAM address checks and convertions. */
261
262 static CORE_ADDR
263 avr_make_saddr (CORE_ADDR x)
264 {
265 return ((x) | AVR_SMEM_START);
266 }
267
268 static int
269 avr_saddr_p (CORE_ADDR x)
270 {
271 return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
272 }
273
274 static CORE_ADDR
275 avr_convert_saddr_to_raw (CORE_ADDR x)
276 {
277 return ((x) & 0xffffffff);
278 }
279
280 /* EEPROM address checks and convertions. I don't know if these will ever
281 actually be used, but I've added them just the same. TRoth */
282
283 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
284 programs in the mega128. */
285
286 /* static CORE_ADDR */
287 /* avr_make_eaddr (CORE_ADDR x) */
288 /* { */
289 /* return ((x) | AVR_EMEM_START); */
290 /* } */
291
292 /* static int */
293 /* avr_eaddr_p (CORE_ADDR x) */
294 /* { */
295 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
296 /* } */
297
298 /* static CORE_ADDR */
299 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
300 /* { */
301 /* return ((x) & 0xffffffff); */
302 /* } */
303
304 /* Convert from address to pointer and vice-versa. */
305
306 static void
307 avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
308 {
309 /* Is it a code address? */
310 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
311 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
312 {
313 store_unsigned_integer (buf, TYPE_LENGTH (type),
314 avr_convert_iaddr_to_raw (addr));
315 }
316 else
317 {
318 /* Strip off any upper segment bits. */
319 store_unsigned_integer (buf, TYPE_LENGTH (type),
320 avr_convert_saddr_to_raw (addr));
321 }
322 }
323
324 static CORE_ADDR
325 avr_pointer_to_address (struct type *type, void *buf)
326 {
327 CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
328
329 if ( TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)) )
330 {
331 fprintf_unfiltered (gdb_stderr, "CODE_SPACE ---->> ptr->addr: 0x%lx\n", addr);
332 fprintf_unfiltered (gdb_stderr, "+++ If you see this, please send me an email <troth@verinet.com>\n");
333 }
334
335 /* Is it a code address? */
336 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
337 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
338 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))
339 )
340 return avr_make_iaddr (addr);
341 else
342 return avr_make_saddr (addr);
343 }
344
345 static CORE_ADDR
346 avr_read_pc (ptid_t ptid)
347 {
348 ptid_t save_ptid;
349 CORE_ADDR pc;
350 CORE_ADDR retval;
351
352 save_ptid = inferior_ptid;
353 inferior_ptid = ptid;
354 pc = (int) read_register (AVR_PC_REGNUM);
355 inferior_ptid = save_ptid;
356 retval = avr_make_iaddr (pc);
357 return retval;
358 }
359
360 static void
361 avr_write_pc (CORE_ADDR val, ptid_t ptid)
362 {
363 ptid_t save_ptid;
364
365 save_ptid = inferior_ptid;
366 inferior_ptid = ptid;
367 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
368 inferior_ptid = save_ptid;
369 }
370
371 static CORE_ADDR
372 avr_read_sp (void)
373 {
374 return (avr_make_saddr (read_register (AVR_SP_REGNUM)));
375 }
376
377 static void
378 avr_write_sp (CORE_ADDR val)
379 {
380 write_register (AVR_SP_REGNUM, avr_convert_saddr_to_raw (val));
381 }
382
383 static CORE_ADDR
384 avr_read_fp (void)
385 {
386 return (avr_make_saddr (read_register (AVR_FP_REGNUM)));
387 }
388
389 /* Translate a GDB virtual ADDR/LEN into a format the remote target
390 understands. Returns number of bytes that can be transfered
391 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
392 (segmentation fault).
393
394 TRoth/2002-04-08: Could this be used to check for dereferencing an invalid
395 pointer? */
396
397 static void
398 avr_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
399 CORE_ADDR *targ_addr, int *targ_len)
400 {
401 long out_addr;
402 long out_len;
403
404 /* FIXME: TRoth: Do nothing for now. Will need to examine memaddr at this
405 point and see if the high bit are set with the masks that we want. */
406
407 *targ_addr = memaddr;
408 *targ_len = nr_bytes;
409 }
410
411 /* Function pointers obtained from the target are half of what gdb expects so
412 multiply by 2. */
413
414 static CORE_ADDR
415 avr_convert_from_func_ptr_addr (CORE_ADDR addr)
416 {
417 return addr * 2;
418 }
419
420 /* avr_scan_prologue is also used as the frame_init_saved_regs().
421
422 Put here the code to store, into fi->saved_regs, the addresses of
423 the saved registers of frame described by FRAME_INFO. This
424 includes special registers such as pc and fp saved in special ways
425 in the stack frame. sp is even more special: the address we return
426 for it IS the sp for the next frame. */
427
428 /* Function: avr_scan_prologue (helper function for avr_init_extra_frame_info)
429 This function decodes a AVR function prologue to determine:
430 1) the size of the stack frame
431 2) which registers are saved on it
432 3) the offsets of saved regs
433 This information is stored in the "extra_info" field of the frame_info.
434
435 A typical AVR function prologue might look like this:
436 push rXX
437 push r28
438 push r29
439 in r28,__SP_L__
440 in r29,__SP_H__
441 sbiw r28,<LOCALS_SIZE>
442 in __tmp_reg__,__SREG__
443 cli
444 out __SP_L__,r28
445 out __SREG__,__tmp_reg__
446 out __SP_H__,r29
447
448 A `-mcall-prologues' prologue look like this:
449 ldi r26,<LOCALS_SIZE>
450 ldi r27,<LOCALS_SIZE>/265
451 ldi r30,pm_lo8(.L_foo_body)
452 ldi r31,pm_hi8(.L_foo_body)
453 rjmp __prologue_saves__+RRR
454 .L_foo_body: */
455
456 static void
457 avr_scan_prologue (struct frame_info *fi)
458 {
459 CORE_ADDR prologue_start;
460 CORE_ADDR prologue_end;
461 int i;
462 unsigned short insn;
463 int regno;
464 int scan_stage=0;
465 char *name;
466 struct minimal_symbol *msymbol;
467 int prologue_len;
468 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
469 int vpc = 0;
470
471 fi->extra_info->framereg = AVR_SP_REGNUM;
472
473 if (find_pc_partial_function (fi->pc, &name, &prologue_start, &prologue_end))
474 {
475 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
476
477 if (sal.line == 0) /* no line info, use current PC */
478 prologue_end = fi->pc;
479 else if (sal.end < prologue_end) /* next line begins after fn end */
480 prologue_end = sal.end; /* (probably means no prologue) */
481 }
482 else
483 /* We're in the boondocks: allow for */
484 /* 19 pushes, an add, and "mv fp,sp" */
485 prologue_end = prologue_start + AVR_MAX_PROLOGUE_SIZE;
486
487 prologue_end = min (prologue_end, fi->pc);
488
489 /* Search the prologue looking for instructions that set up the
490 frame pointer, adjust the stack pointer, and save registers. */
491
492 fi->extra_info->framesize = 0;
493 prologue_len = prologue_end - prologue_start;
494 read_memory (prologue_start, prologue, prologue_len);
495
496 /* Scanning main()'s prologue
497 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
498 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
499 out __SP_H__,r29
500 out __SP_L__,r28 */
501
502 if (name && strcmp ("main", name) == 0 && prologue_len == 8)
503 {
504 CORE_ADDR locals;
505 unsigned char img[] =
506 {
507 0xde,0xbf, /* out __SP_H__,r29 */
508 0xcd,0xbf /* out __SP_L__,r28 */
509 };
510
511 fi->extra_info->framereg = AVR_FP_REGNUM;
512 insn = EXTRACT_INSN (&prologue[vpc]);
513 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
514 if ((insn & 0xf0f0) == 0xe0c0)
515 {
516 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
517 insn = EXTRACT_INSN (&prologue[vpc+2]);
518 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
519 if ((insn & 0xf0f0) == 0xe0d0)
520 {
521 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
522 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
523 {
524 fi->frame = locals;
525
526 /* TRoth: Does -1 mean we're in main? */
527 fi->extra_info->is_main = 1;
528 return;
529 }
530 }
531 }
532 }
533
534 /* Scanning `-mcall-prologues' prologue
535 FIXME: mega prologue have a 12 bytes long */
536
537 while (prologue_len <= 12) /* I'm use while to avoit many goto's */
538 {
539 int loc_size;
540 int body_addr;
541 unsigned num_pushes;
542
543 insn = EXTRACT_INSN (&prologue[vpc]);
544 /* ldi r26,<LOCALS_SIZE> */
545 if ((insn & 0xf0f0) != 0xe0a0)
546 break;
547 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
548
549 insn = EXTRACT_INSN (&prologue[vpc + 2]);
550 /* ldi r27,<LOCALS_SIZE> / 256 */
551 if ((insn & 0xf0f0) != 0xe0b0)
552 break;
553 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
554
555 insn = EXTRACT_INSN (&prologue[vpc + 4]);
556 /* ldi r30,pm_lo8(.L_foo_body) */
557 if ((insn & 0xf0f0) != 0xe0e0)
558 break;
559 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
560
561 insn = EXTRACT_INSN (&prologue[vpc + 6]);
562 /* ldi r31,pm_hi8(.L_foo_body) */
563 if ((insn & 0xf0f0) != 0xe0f0)
564 break;
565 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
566
567 if (body_addr != (prologue_start + 10) / 2)
568 break;
569
570 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
571 if (!msymbol)
572 break;
573
574 /* FIXME: prologue for mega have a JMP instead of RJMP */
575 insn = EXTRACT_INSN (&prologue[vpc + 8]);
576 /* rjmp __prologue_saves__+RRR */
577 if ((insn & 0xf000) != 0xc000)
578 break;
579
580 /* Extract PC relative offset from RJMP */
581 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
582 /* Convert offset to byte addressable mode */
583 i *= 2;
584 /* Destination address */
585 i += vpc + prologue_start + 10;
586 /* Resovle offset (in words) from __prologue_saves__ symbol.
587 Which is a pushes count in `-mcall-prologues' mode */
588 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
589
590 if (num_pushes > AVR_MAX_PUSHES)
591 num_pushes = 0;
592
593 if (num_pushes)
594 {
595 int from;
596 fi->saved_regs[AVR_FP_REGNUM+1] = num_pushes;
597 if (num_pushes >= 2)
598 fi->saved_regs[AVR_FP_REGNUM] = num_pushes - 1;
599 i = 0;
600 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
601 from <= AVR_LAST_PUSHED_REGNUM; ++from)
602 fi->saved_regs[from] = ++i;
603 }
604 fi->extra_info->locals_size = loc_size;
605 fi->extra_info->framesize = loc_size + num_pushes;
606 fi->extra_info->framereg = AVR_FP_REGNUM;
607 return;
608 }
609
610 /* Scan interrupt or signal function */
611
612 if (prologue_len >= 12)
613 {
614 unsigned char img[] =
615 {
616 0x78,0x94, /* sei */
617 0x1f,0x92, /* push r1 */
618 0x0f,0x92, /* push r0 */
619 0x0f,0xb6, /* in r0,0x3f SREG */
620 0x0f,0x92, /* push r0 */
621 0x11,0x24 /* clr r1 */
622 };
623 if (memcmp (prologue, img, sizeof (img)) == 0)
624 {
625 vpc += sizeof (img);
626 fi->saved_regs[0] = 2;
627 fi->saved_regs[1] = 1;
628 fi->extra_info->framesize += 3;
629 }
630 else if (memcmp (img + 1, prologue, sizeof (img) - 1) == 0)
631 {
632 vpc += sizeof (img) - 1;
633 fi->saved_regs[0] = 2;
634 fi->saved_regs[1] = 1;
635 fi->extra_info->framesize += 3;
636 }
637 }
638
639 /* First stage of the prologue scanning.
640 Scan pushes */
641
642 for (; vpc <= prologue_len; vpc += 2)
643 {
644 insn = EXTRACT_INSN (&prologue[vpc]);
645 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
646 {
647 /* Bits 4-9 contain a mask for registers R0-R32. */
648 regno = (insn & 0x1f0) >> 4;
649 ++fi->extra_info->framesize;
650 fi->saved_regs[regno] = fi->extra_info->framesize;
651 scan_stage = 1;
652 }
653 else
654 break;
655 }
656
657 /* Second stage of the prologue scanning.
658 Scan:
659 in r28,__SP_L__
660 in r29,__SP_H__ */
661
662 if (scan_stage == 1 && vpc + 4 <= prologue_len)
663 {
664 unsigned char img[] =
665 {
666 0xcd,0xb7, /* in r28,__SP_L__ */
667 0xde,0xb7 /* in r29,__SP_H__ */
668 };
669 unsigned short insn1;
670
671 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
672 {
673 vpc += 4;
674 fi->extra_info->framereg = AVR_FP_REGNUM;
675 scan_stage = 2;
676 }
677 }
678
679 /* Third stage of the prologue scanning. (Really two stages)
680 Scan for:
681 sbiw r28,XX or subi r28,lo8(XX)
682 sbci r29,hi8(XX)
683 in __tmp_reg__,__SREG__
684 cli
685 out __SP_L__,r28
686 out __SREG__,__tmp_reg__
687 out __SP_H__,r29 */
688
689 if (scan_stage == 2 && vpc + 12 <= prologue_len)
690 {
691 int locals_size = 0;
692 unsigned char img[] =
693 {
694 0x0f,0xb6, /* in r0,0x3f */
695 0xf8,0x94, /* cli */
696 0xcd,0xbf, /* out 0x3d,r28 ; SPL */
697 0x0f,0xbe, /* out 0x3f,r0 ; SREG*/
698 0xde,0xbf /* out 0x3e,r29 ; SPH */
699 };
700 unsigned char img_sig[] =
701 {
702 0xcd,0xbf, /* out 0x3d,r28 ; SPL */
703 0xde,0xbf /* out 0x3e,r29 ; SPH */
704 };
705 unsigned char img_int[] =
706 {
707 0xf8,0x94, /* cli */
708 0xcd,0xbf, /* out 0x3d,r28 ; SPL */
709 0x78,0x94, /* sei */
710 0xde,0xbf /* out 0x3e,r29 ; SPH */
711 };
712
713 insn = EXTRACT_INSN (&prologue[vpc]);
714 vpc += 2;
715 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
716 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
717 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
718 {
719 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
720 insn = EXTRACT_INSN (&prologue[vpc]);
721 vpc += 2;
722 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
723 }
724 else
725 return;
726 fi->extra_info->locals_size = locals_size;
727 fi->extra_info->framesize += locals_size;
728 }
729 }
730
731 /* This function actually figures out the frame address for a given pc and
732 sp. This is tricky because we sometimes don't use an explicit
733 frame pointer, and the previous stack pointer isn't necessarily recorded
734 on the stack. The only reliable way to get this info is to
735 examine the prologue. */
736
737 static void
738 avr_init_extra_frame_info (int fromleaf, struct frame_info *fi)
739 {
740 int reg;
741
742 if (fi->next)
743 fi->pc = FRAME_SAVED_PC (fi->next);
744
745 fi->extra_info = (struct frame_extra_info *)
746 frame_obstack_alloc (sizeof (struct frame_extra_info));
747 frame_saved_regs_zalloc (fi);
748
749 fi->extra_info->return_pc = 0;
750 fi->extra_info->args_pointer = 0;
751 fi->extra_info->locals_size = 0;
752 fi->extra_info->framereg = 0;
753 fi->extra_info->framesize = 0;
754 fi->extra_info->is_main = 0;
755
756 avr_scan_prologue (fi);
757
758 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
759 {
760 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
761 by assuming it's always FP. */
762 fi->frame = generic_read_register_dummy (fi->pc, fi->frame,
763 fi->frame);
764 }
765 else if (!fi->next) /* this is the innermost frame? */
766 fi->frame = read_register (fi->extra_info->framereg);
767 else if (fi->extra_info->is_main != 1) /* not the innermost frame, not `main' */
768 /* If we have an next frame, the callee saved it. */
769 {
770 struct frame_info * next_fi = fi->next;
771 if (fi->extra_info->framereg == AVR_SP_REGNUM)
772 fi->frame = next_fi->frame + 2 /* ret addr */ + next_fi->extra_info->framesize;
773 /* FIXME: I don't analyse va_args functions */
774 else
775 {
776 CORE_ADDR fp = 0;
777 CORE_ADDR fp1 = 0;
778 unsigned int fp_low, fp_high;
779
780 /* Scan all frames */
781 for (; next_fi; next_fi = next_fi->next)
782 {
783 /* look for saved AVR_FP_REGNUM */
784 if (next_fi->saved_regs[AVR_FP_REGNUM] && !fp)
785 fp = next_fi->saved_regs[AVR_FP_REGNUM];
786 /* look for saved AVR_FP_REGNUM + 1 */
787 if (next_fi->saved_regs[AVR_FP_REGNUM + 1] && !fp1)
788 fp1 = next_fi->saved_regs[AVR_FP_REGNUM + 1];
789 }
790 fp_low = (fp ? read_memory_unsigned_integer (avr_make_saddr (fp), 1)
791 : read_register (AVR_FP_REGNUM)) & 0xff;
792 fp_high = (fp1 ? read_memory_unsigned_integer (avr_make_saddr (fp1), 1)
793 : read_register (AVR_FP_REGNUM + 1)) & 0xff;
794 fi->frame = fp_low | (fp_high << 8);
795 }
796 }
797
798 /* TRoth: Do we want to do this if we are in main? I don't think we should
799 since return_pc makes no sense when we are in main. */
800
801 if ((fi->pc) && (fi->extra_info->is_main == 0)) /* We are not in CALL_DUMMY */
802 {
803 CORE_ADDR addr;
804 int i;
805
806 addr = fi->frame + fi->extra_info->framesize + 1;
807
808 /* Return address in stack in different endianness */
809
810 fi->extra_info->return_pc =
811 read_memory_unsigned_integer (avr_make_saddr (addr), 1) << 8;
812 fi->extra_info->return_pc |=
813 read_memory_unsigned_integer (avr_make_saddr (addr + 1), 1);
814
815 /* This return address in words,
816 must be converted to the bytes address */
817 fi->extra_info->return_pc *= 2;
818
819 /* Resolve a pushed registers addresses */
820 for (i = 0; i < NUM_REGS; i++)
821 {
822 if (fi->saved_regs[i])
823 fi->saved_regs[i] = addr - fi->saved_regs[i];
824 }
825 }
826 }
827
828 /* Restore the machine to the state it had before the current frame was
829 created. Usually used either by the "RETURN" command, or by
830 call_function_by_hand after the dummy_frame is finished. */
831
832 static void
833 avr_pop_frame (void)
834 {
835 unsigned regnum;
836 CORE_ADDR saddr;
837 struct frame_info *frame = get_current_frame ();
838
839 if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
840 {
841 generic_pop_dummy_frame();
842 }
843 else
844 {
845 /* TRoth: Why only loop over 8 registers? */
846
847 for (regnum = 0; regnum < 8; regnum++)
848 {
849 /* Don't forget AVR_SP_REGNUM in a frame_saved_regs struct is the
850 actual value we want, not the address of the value we want. */
851 if (frame->saved_regs[regnum] && regnum != AVR_SP_REGNUM)
852 {
853 saddr = avr_make_saddr (frame->saved_regs[regnum]);
854 write_register (regnum, read_memory_unsigned_integer (saddr, 1));
855 }
856 else if (frame->saved_regs[regnum] && regnum == AVR_SP_REGNUM)
857 write_register (regnum, frame->frame + 2);
858 }
859
860 /* Don't forget the update the PC too! */
861 write_pc (frame->extra_info->return_pc);
862 }
863 flush_cached_frames ();
864 }
865
866 /* Return the saved PC from this frame. */
867
868 static CORE_ADDR
869 avr_frame_saved_pc (struct frame_info *frame)
870 {
871 if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
872 return generic_read_register_dummy (frame->pc, frame->frame, AVR_PC_REGNUM);
873 else
874 return frame->extra_info->return_pc;
875 }
876
877 static CORE_ADDR
878 avr_saved_pc_after_call (struct frame_info *frame)
879 {
880 unsigned char m1, m2;
881 unsigned int sp = read_register (AVR_SP_REGNUM);
882 m1 = read_memory_unsigned_integer (avr_make_saddr (sp + 1), 1);
883 m2 = read_memory_unsigned_integer (avr_make_saddr (sp + 2), 1);
884 return (m2 | (m1 << 8)) * 2;
885 }
886
887 /* Figure out where in REGBUF the called function has left its return value.
888 Copy that into VALBUF. */
889
890 static void
891 avr_extract_return_value (struct type *type, char *regbuf, char *valbuf)
892 {
893 int wordsize, len;
894
895 wordsize = 2;
896
897 len = TYPE_LENGTH(type);
898
899 switch (len) {
900 case 1: /* (char) */
901 case 2: /* (short), (int) */
902 memcpy (valbuf, regbuf + REGISTER_BYTE(24), 2);
903 break;
904 case 4: /* (long), (float) */
905 memcpy (valbuf, regbuf + REGISTER_BYTE(22), 4);
906 break;
907 case 8: /* (double) (doesn't seem to happen, which is good,
908 because this almost certainly isn't right. */
909 error ("I don't know how a double is returned.");
910 break;
911 }
912 }
913
914 /* Returns the return address for a dummy. */
915
916 static CORE_ADDR
917 avr_call_dummy_address (void)
918 {
919 return entry_point_address ();
920 }
921
922 /* Place the appropriate value in the appropriate registers.
923 Primarily used by the RETURN command. */
924
925 static void
926 avr_store_return_value (struct type *type, char *valbuf)
927 {
928 int wordsize, len, regval;
929
930 wordsize = 2;
931
932 len = TYPE_LENGTH(type);
933 switch (len) {
934 case 1: /* char */
935 case 2: /* short, int */
936 regval = extract_address(valbuf, len);
937 write_register (0, regval);
938 break;
939 case 4: /* long, float */
940 regval = extract_address(valbuf, len);
941 write_register (0, regval >> 16);
942 write_register (1, regval & 0xffff);
943 break;
944 case 8: /* presumeably double, but doesn't seem to happen */
945 error ("I don't know how to return a double.");
946 break;
947 }
948 }
949
950 /* Setup the return address for a dummy frame, as called by
951 call_function_by_hand. Only necessary when you are using an empty
952 CALL_DUMMY. */
953
954 static CORE_ADDR
955 avr_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
956 {
957 unsigned char buf[2];
958 int wordsize = 2;
959 struct minimal_symbol *msymbol;
960 CORE_ADDR mon_brk;
961
962 fprintf_unfiltered (gdb_stderr, "avr_push_return_address() was called\n");
963
964 buf[0] = 0;
965 buf[1] = 0;
966 sp -= wordsize;
967 write_memory (sp + 1, buf, 2);
968
969 #if 0
970 /* FIXME: TRoth/2002-02-18: This should probably be removed since it's a
971 left-over from Denis' original patch which used avr-mon for the target
972 instead of the generic remote target. */
973 if ((strcmp (target_shortname, "avr-mon") == 0)
974 && (msymbol = lookup_minimal_symbol ("gdb_break", NULL, NULL)))
975 {
976 mon_brk = SYMBOL_VALUE_ADDRESS (msymbol);
977 store_unsigned_integer (buf, wordsize, mon_brk / 2);
978 sp -= wordsize;
979 write_memory (sp + 1, buf + 1, 1);
980 write_memory (sp + 2, buf, 1);
981 }
982 #endif
983 return sp;
984 }
985
986 static CORE_ADDR
987 avr_skip_prologue (CORE_ADDR pc)
988 {
989 CORE_ADDR func_addr, func_end;
990 struct symtab_and_line sal;
991
992 /* See what the symbol table says */
993
994 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
995 {
996 sal = find_pc_line (func_addr, 0);
997
998 if (sal.line != 0 && sal.end < func_end)
999 return sal.end;
1000 }
1001
1002 /* Either we didn't find the start of this function (nothing we can do),
1003 or there's no line info, or the line after the prologue is after
1004 the end of the function (there probably isn't a prologue). */
1005
1006 return pc;
1007 }
1008
1009 static CORE_ADDR
1010 avr_frame_address (struct frame_info *fi)
1011 {
1012 return avr_make_saddr (fi->frame);
1013 }
1014
1015 /* Given a GDB frame, determine the address of the calling function's frame.
1016 This will be used to create a new GDB frame struct, and then
1017 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1018
1019 For us, the frame address is its stack pointer value, so we look up
1020 the function prologue to determine the caller's sp value, and return it. */
1021
1022 static CORE_ADDR
1023 avr_frame_chain (struct frame_info *frame)
1024 {
1025 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1026 {
1027 /* initialize the return_pc now */
1028 frame->extra_info->return_pc = generic_read_register_dummy (frame->pc,
1029 frame->frame,
1030 AVR_PC_REGNUM);
1031 return frame->frame;
1032 }
1033 return (frame->extra_info->is_main ? 0
1034 : frame->frame + frame->extra_info->framesize + 2 /* ret addr */);
1035 }
1036
1037 /* Store the address of the place in which to copy the structure the
1038 subroutine will return. This is called from call_function.
1039
1040 We store structs through a pointer passed in the first Argument
1041 register. */
1042
1043 static void
1044 avr_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1045 {
1046 write_register (0, addr);
1047 }
1048
1049 /* Extract from an array REGBUF containing the (raw) register state
1050 the address in which a function should return its structure value,
1051 as a CORE_ADDR (or an expression that can be used as one). */
1052
1053 static CORE_ADDR
1054 avr_extract_struct_value_address (char *regbuf)
1055 {
1056 return (extract_address ((regbuf) + REGISTER_BYTE (0),
1057 REGISTER_RAW_SIZE (0))
1058 | AVR_SMEM_START);
1059 }
1060
1061 /* Setup the function arguments for calling a function in the inferior.
1062
1063 On the AVR architecture, there are 18 registers (R25 to R8) which are
1064 dedicated for passing function arguments. Up to the first 18 arguments
1065 (depending on size) may go into these registers. The rest go on the stack.
1066
1067 Arguments that are larger than WORDSIZE bytes will be split between two or
1068 more registers as available, but will NOT be split between a register and
1069 the stack.
1070
1071 An exceptional case exists for struct arguments (and possibly other
1072 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1073 not a multiple of WORDSIZE bytes. In this case the argument is never split
1074 between the registers and the stack, but instead is copied in its entirety
1075 onto the stack, AND also copied into as many registers as there is room
1076 for. In other words, space in registers permitting, two copies of the same
1077 argument are passed in. As far as I can tell, only the one on the stack is
1078 used, although that may be a function of the level of compiler
1079 optimization. I suspect this is a compiler bug. Arguments of these odd
1080 sizes are left-justified within the word (as opposed to arguments smaller
1081 than WORDSIZE bytes, which are right-justified).
1082
1083 If the function is to return an aggregate type such as a struct, the caller
1084 must allocate space into which the callee will copy the return value. In
1085 this case, a pointer to the return value location is passed into the callee
1086 in register R0, which displaces one of the other arguments passed in via
1087 registers R0 to R2. */
1088
1089 static CORE_ADDR
1090 avr_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1091 int struct_return, CORE_ADDR struct_addr)
1092 {
1093 int stack_alloc, stack_offset;
1094 int wordsize;
1095 int argreg;
1096 int argnum;
1097 struct type *type;
1098 CORE_ADDR regval;
1099 char *val;
1100 char valbuf[4];
1101 int len;
1102
1103 wordsize = 1;
1104 #if 0
1105 /* Now make sure there's space on the stack */
1106 for (argnum = 0, stack_alloc = 0;
1107 argnum < nargs; argnum++)
1108 stack_alloc += TYPE_LENGTH(VALUE_TYPE(args[argnum]));
1109 sp -= stack_alloc; /* make room on stack for args */
1110 /* we may over-allocate a little here, but that won't hurt anything */
1111 #endif
1112 argreg = 25;
1113 if (struct_return) /* "struct return" pointer takes up one argreg */
1114 {
1115 write_register (--argreg, struct_addr);
1116 }
1117
1118 /* Now load as many as possible of the first arguments into registers, and
1119 push the rest onto the stack. There are 3N bytes in three registers
1120 available. Loop thru args from first to last. */
1121
1122 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1123 {
1124 type = VALUE_TYPE (args[argnum]);
1125 len = TYPE_LENGTH (type);
1126 val = (char *) VALUE_CONTENTS (args[argnum]);
1127
1128 /* NOTE WELL!!!!! This is not an "else if" clause!!! That's because
1129 some *&^%$ things get passed on the stack AND in the registers! */
1130 while (len > 0)
1131 { /* there's room in registers */
1132 len -= wordsize;
1133 regval = extract_address (val + len, wordsize);
1134 write_register (argreg--, regval);
1135 }
1136 }
1137 return sp;
1138 }
1139
1140 /* Initialize the gdbarch structure for the AVR's. */
1141
1142 static struct gdbarch *
1143 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches){
1144 /* FIXME: TRoth/2002-02-18: I have no idea if avr_call_dummy_words[] should
1145 be bigger or not. Initial testing seems to show that `call my_func()`
1146 works and backtrace from a breakpoint within the call looks correct.
1147 Admittedly, I haven't tested with more than a very simple program. */
1148 static LONGEST avr_call_dummy_words[] = {0};
1149
1150 struct gdbarch *gdbarch;
1151 struct gdbarch_tdep *tdep;
1152
1153 /* Find a candidate among the list of pre-declared architectures. */
1154 arches = gdbarch_list_lookup_by_info (arches, &info);
1155 if (arches != NULL)
1156 return arches->gdbarch;
1157
1158 /* None found, create a new architecture from the information provided. */
1159 tdep = XMALLOC (struct gdbarch_tdep);
1160 gdbarch = gdbarch_alloc (&info, tdep);
1161
1162 /* If we ever need to differentiate the device types, do it here. */
1163 switch (info.bfd_arch_info->mach)
1164 {
1165 case bfd_mach_avr1:
1166 case bfd_mach_avr2:
1167 case bfd_mach_avr3:
1168 case bfd_mach_avr4:
1169 case bfd_mach_avr5:
1170 break;
1171 }
1172
1173 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1174 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1175 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1176 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1177 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1178 set_gdbarch_addr_bit (gdbarch, 32);
1179 set_gdbarch_bfd_vma_bit (gdbarch, 32); /* FIXME: TRoth/2002-02-18: Is this needed? */
1180
1181 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1182 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1183 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1184
1185 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1186 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1187 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1188
1189 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1190 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1191 set_gdbarch_read_fp (gdbarch, avr_read_fp);
1192 set_gdbarch_read_sp (gdbarch, avr_read_sp);
1193 set_gdbarch_write_sp (gdbarch, avr_write_sp);
1194
1195 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1196
1197 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1198 set_gdbarch_fp_regnum (gdbarch, AVR_FP_REGNUM);
1199 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1200
1201 set_gdbarch_register_name (gdbarch, avr_register_name);
1202 set_gdbarch_register_size (gdbarch, 1);
1203 set_gdbarch_register_bytes (gdbarch, AVR_NUM_REG_BYTES);
1204 set_gdbarch_register_byte (gdbarch, avr_register_byte);
1205 set_gdbarch_register_raw_size (gdbarch, avr_register_raw_size);
1206 set_gdbarch_max_register_raw_size (gdbarch, 4);
1207 set_gdbarch_register_virtual_size (gdbarch, avr_register_virtual_size);
1208 set_gdbarch_max_register_virtual_size (gdbarch, 4);
1209 set_gdbarch_register_virtual_type (gdbarch, avr_register_virtual_type);
1210
1211 /* We might need to define our own here or define FRAME_INIT_SAVED_REGS */
1212 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1213
1214 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1215
1216 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1217 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1218 set_gdbarch_call_dummy_address (gdbarch, avr_call_dummy_address);
1219 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1220 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1221 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1222 set_gdbarch_call_dummy_length (gdbarch, 0);
1223 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1224 set_gdbarch_call_dummy_p (gdbarch, 1);
1225 set_gdbarch_call_dummy_words (gdbarch, avr_call_dummy_words);
1226 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1227 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1228
1229 /* set_gdbarch_believe_pcc_promotion (gdbarch, 1); // TRoth: should this be set? */
1230
1231 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1232 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1233 set_gdbarch_extract_return_value (gdbarch, avr_extract_return_value);
1234 set_gdbarch_push_arguments (gdbarch, avr_push_arguments);
1235 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1236 /* set_gdbarch_push_return_address (gdbarch, avr_push_return_address); */
1237 set_gdbarch_pop_frame (gdbarch, avr_pop_frame);
1238
1239 set_gdbarch_store_return_value (gdbarch, avr_store_return_value);
1240
1241 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
1242 set_gdbarch_store_struct_return (gdbarch, avr_store_struct_return);
1243 set_gdbarch_extract_struct_value_address (gdbarch, avr_extract_struct_value_address);
1244
1245 set_gdbarch_frame_init_saved_regs (gdbarch, avr_scan_prologue);
1246 set_gdbarch_init_extra_frame_info (gdbarch, avr_init_extra_frame_info);
1247 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1248 /* set_gdbarch_prologue_frameless_p (gdbarch, avr_prologue_frameless_p); */
1249 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1250
1251 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1252
1253 set_gdbarch_function_start_offset (gdbarch, 0);
1254 set_gdbarch_remote_translate_xfer_address (gdbarch, avr_remote_translate_xfer_address);
1255 set_gdbarch_frame_args_skip (gdbarch, 0);
1256 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue); /* ??? */
1257 set_gdbarch_frame_chain (gdbarch, avr_frame_chain);
1258 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
1259 set_gdbarch_frame_saved_pc (gdbarch, avr_frame_saved_pc);
1260 set_gdbarch_frame_args_address (gdbarch, avr_frame_address);
1261 set_gdbarch_frame_locals_address (gdbarch, avr_frame_address);
1262 set_gdbarch_saved_pc_after_call (gdbarch, avr_saved_pc_after_call);
1263 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1264
1265 set_gdbarch_convert_from_func_ptr_addr (gdbarch, avr_convert_from_func_ptr_addr);
1266
1267 return gdbarch;
1268 }
1269
1270 /* Send a query request to the avr remote target asking for values of the io
1271 registers. If args parameter is not NULL, then the user has requested info
1272 on a specific io register [This still needs implemented and is ignored for
1273 now]. The query string should be one of these forms:
1274
1275 "Ravr.io_reg" -> reply is "NN" number of io registers
1276
1277 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1278 registers to be read. The reply should be "<NAME>,VV;" for each io register
1279 where, <NAME> is a string, and VV is the hex value of the register.
1280
1281 All io registers are 8-bit. */
1282
1283 static void
1284 avr_io_reg_read_command (char *args, int from_tty)
1285 {
1286 int bufsiz = 0;
1287 char buf[400];
1288 char query[400];
1289 char *p;
1290 unsigned int nreg = 0;
1291 unsigned int val;
1292 int i, j, k, step;
1293
1294 /* fprintf_unfiltered (gdb_stderr, "DEBUG: avr_io_reg_read_command (\"%s\", %d)\n", */
1295 /* args, from_tty); */
1296
1297 if (! current_target.to_query)
1298 {
1299 fprintf_unfiltered (gdb_stderr, "ERR: info io_registers NOT supported by current target\n");
1300 return;
1301 }
1302
1303 /* Just get the maximum buffer size. */
1304 target_query ((int) 'R', 0, 0, &bufsiz);
1305 if (bufsiz > sizeof(buf))
1306 bufsiz = sizeof(buf);
1307
1308 /* Find out how many io registers the target has. */
1309 strcpy (query, "avr.io_reg");
1310 target_query( (int) 'R', query, buf, &bufsiz );
1311
1312 if (strncmp (buf, "", bufsiz) == 0)
1313 {
1314 fprintf_unfiltered (gdb_stderr, "info io_registers NOT supported by target\n");
1315 return;
1316 }
1317
1318 if ( sscanf (buf, "%x", &nreg) != 1 )
1319 {
1320 fprintf_unfiltered (gdb_stderr, "Error fetching number of io registers\n");
1321 return;
1322 }
1323
1324 reinitialize_more_filter();
1325
1326 printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1327
1328 /* only fetch up to 8 registers at a time to keep the buffer small */
1329 step = 8;
1330
1331 for (i=0; i<nreg; i+=step)
1332 {
1333 j = step - (nreg % step); /* how many registers this round? */
1334
1335 snprintf (query, sizeof(query)-1, "avr.io_reg:%x,%x", i, j);
1336 target_query ((int) 'R', query, buf, &bufsiz);
1337
1338 p = buf;
1339 for (k=i; k<(i+j); k++)
1340 {
1341 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1342 {
1343 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1344 while ((*p != ';') && (*p != '\0'))
1345 p++;
1346 p++; /* skip over ';' */
1347 if (*p == '\0')
1348 break;
1349 }
1350 }
1351 }
1352 }
1353
1354 void
1355 _initialize_avr_tdep (void)
1356 {
1357 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1358
1359 /* Add a new command to allow the user to query the avr remote target for
1360 the values of the io space registers in a saner way than just using
1361 `x/NNNb ADDR`. */
1362
1363 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1364 io_registers' to signify it is not available on other platforms. */
1365
1366 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1367 "query remote avr target for io space register values",
1368 &infolist);
1369 }
This page took 0.076758 seconds and 4 git commands to generate.