6d6d4886a473051ff6fbafa2be31ee01afd9f298
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* Contributed by Theodore A. Roth, troth@openavr.org */
22
23 /* Portions of this file were taken from the original gdb-4.18 patch developed
24 by Denis Chertykov, denisc@overta.ru */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "gdb_string.h"
39 #include "dis-asm.h"
40
41 /* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
62 All three memory spaces have physical addresses beginning at 0x0. In
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
71
72 #undef XMALLOC
73 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
74
75 /* Constants: prefixed with AVR_ to avoid name space clashes */
76
77 enum
78 {
79 AVR_REG_W = 24,
80 AVR_REG_X = 26,
81 AVR_REG_Y = 28,
82 AVR_FP_REGNUM = 28,
83 AVR_REG_Z = 30,
84
85 AVR_SREG_REGNUM = 32,
86 AVR_SP_REGNUM = 33,
87 AVR_PC_REGNUM = 34,
88
89 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
90 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
91
92 AVR_PC_REG_INDEX = 35, /* index into array of registers */
93
94 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
95
96 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
97 AVR_MAX_PUSHES = 18,
98
99 /* Number of the last pushed register. r17 for current avr-gcc */
100 AVR_LAST_PUSHED_REGNUM = 17,
101
102 AVR_ARG1_REGNUM = 24, /* Single byte argument */
103 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
104
105 AVR_RET1_REGNUM = 24, /* Single byte return value */
106 AVR_RETN_REGNUM = 25, /* Multi byte return value */
107
108 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
109 bits? Do these have to match the bfd vma values?. It sure would make
110 things easier in the future if they didn't need to match.
111
112 Note: I chose these values so as to be consistent with bfd vma
113 addresses.
114
115 TRoth/2002-04-08: There is already a conflict with very large programs
116 in the mega128. The mega128 has 128K instruction bytes (64K words),
117 thus the Most Significant Bit is 0x10000 which gets masked off my
118 AVR_MEM_MASK.
119
120 The problem manifests itself when trying to set a breakpoint in a
121 function which resides in the upper half of the instruction space and
122 thus requires a 17-bit address.
123
124 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
125 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
126 but could be for some remote targets by just adding the correct offset
127 to the address and letting the remote target handle the low-level
128 details of actually accessing the eeprom. */
129
130 AVR_IMEM_START = 0x00000000, /* INSN memory */
131 AVR_SMEM_START = 0x00800000, /* SRAM memory */
132 #if 1
133 /* No eeprom mask defined */
134 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
135 #else
136 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
137 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
138 #endif
139 };
140
141 /* Prologue types:
142
143 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
144 causes the generation of the CALL type prologues). */
145
146 enum {
147 AVR_PROLOGUE_NONE, /* No prologue */
148 AVR_PROLOGUE_NORMAL,
149 AVR_PROLOGUE_CALL, /* -mcall-prologues */
150 AVR_PROLOGUE_MAIN,
151 AVR_PROLOGUE_INTR, /* interrupt handler */
152 AVR_PROLOGUE_SIG, /* signal handler */
153 };
154
155 /* Any function with a frame looks like this
156 ....... <-SP POINTS HERE
157 LOCALS1 <-FP POINTS HERE
158 LOCALS0
159 SAVED FP
160 SAVED R3
161 SAVED R2
162 RET PC
163 FIRST ARG
164 SECOND ARG */
165
166 struct avr_unwind_cache
167 {
168 /* The previous frame's inner most stack address. Used as this
169 frame ID's stack_addr. */
170 CORE_ADDR prev_sp;
171 /* The frame's base, optionally used by the high-level debug info. */
172 CORE_ADDR base;
173 int size;
174 int prologue_type;
175 /* Table indicating the location of each and every register. */
176 struct trad_frame_saved_reg *saved_regs;
177 };
178
179 struct gdbarch_tdep
180 {
181 /* Number of bytes stored to the stack by call instructions.
182 2 bytes for avr1-5, 3 bytes for avr6. */
183 int call_length;
184 };
185
186 /* Lookup the name of a register given it's number. */
187
188 static const char *
189 avr_register_name (struct gdbarch *gdbarch, int regnum)
190 {
191 static const char * const register_names[] = {
192 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
193 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
194 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
195 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
196 "SREG", "SP", "PC"
197 };
198 if (regnum < 0)
199 return NULL;
200 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
201 return NULL;
202 return register_names[regnum];
203 }
204
205 /* Return the GDB type object for the "standard" data type
206 of data in register N. */
207
208 static struct type *
209 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
210 {
211 if (reg_nr == AVR_PC_REGNUM)
212 return builtin_type (gdbarch)->builtin_uint32;
213 if (reg_nr == AVR_SP_REGNUM)
214 return builtin_type (gdbarch)->builtin_data_ptr;
215 else
216 return builtin_type (gdbarch)->builtin_uint8;
217 }
218
219 /* Instruction address checks and convertions. */
220
221 static CORE_ADDR
222 avr_make_iaddr (CORE_ADDR x)
223 {
224 return ((x) | AVR_IMEM_START);
225 }
226
227 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
228 devices are already up to 128KBytes of flash space.
229
230 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
231
232 static CORE_ADDR
233 avr_convert_iaddr_to_raw (CORE_ADDR x)
234 {
235 return ((x) & 0xffffffff);
236 }
237
238 /* SRAM address checks and convertions. */
239
240 static CORE_ADDR
241 avr_make_saddr (CORE_ADDR x)
242 {
243 /* Return 0 for NULL. */
244 if (x == 0)
245 return 0;
246
247 return ((x) | AVR_SMEM_START);
248 }
249
250 static CORE_ADDR
251 avr_convert_saddr_to_raw (CORE_ADDR x)
252 {
253 return ((x) & 0xffffffff);
254 }
255
256 /* EEPROM address checks and convertions. I don't know if these will ever
257 actually be used, but I've added them just the same. TRoth */
258
259 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
260 programs in the mega128. */
261
262 /* static CORE_ADDR */
263 /* avr_make_eaddr (CORE_ADDR x) */
264 /* { */
265 /* return ((x) | AVR_EMEM_START); */
266 /* } */
267
268 /* static int */
269 /* avr_eaddr_p (CORE_ADDR x) */
270 /* { */
271 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
272 /* } */
273
274 /* static CORE_ADDR */
275 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
276 /* { */
277 /* return ((x) & 0xffffffff); */
278 /* } */
279
280 /* Convert from address to pointer and vice-versa. */
281
282 static void
283 avr_address_to_pointer (struct gdbarch *gdbarch,
284 struct type *type, gdb_byte *buf, CORE_ADDR addr)
285 {
286 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
287
288 /* Is it a code address? */
289 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
290 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
291 {
292 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
293 avr_convert_iaddr_to_raw (addr >> 1));
294 }
295 else
296 {
297 /* Strip off any upper segment bits. */
298 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
299 avr_convert_saddr_to_raw (addr));
300 }
301 }
302
303 static CORE_ADDR
304 avr_pointer_to_address (struct gdbarch *gdbarch,
305 struct type *type, const gdb_byte *buf)
306 {
307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308 CORE_ADDR addr
309 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
310
311 /* Is it a code address? */
312 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
313 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
314 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
315 return avr_make_iaddr (addr << 1);
316 else
317 return avr_make_saddr (addr);
318 }
319
320 static CORE_ADDR
321 avr_integer_to_address (struct gdbarch *gdbarch,
322 struct type *type, const gdb_byte *buf)
323 {
324 ULONGEST addr = unpack_long (type, buf);
325
326 return avr_make_saddr (addr);
327 }
328
329 static CORE_ADDR
330 avr_read_pc (struct regcache *regcache)
331 {
332 ULONGEST pc;
333 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
334 return avr_make_iaddr (pc);
335 }
336
337 static void
338 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
339 {
340 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
341 avr_convert_iaddr_to_raw (val));
342 }
343
344 /* Function: avr_scan_prologue
345
346 This function decodes an AVR function prologue to determine:
347 1) the size of the stack frame
348 2) which registers are saved on it
349 3) the offsets of saved regs
350 This information is stored in the avr_unwind_cache structure.
351
352 Some devices lack the sbiw instruction, so on those replace this:
353 sbiw r28, XX
354 with this:
355 subi r28,lo8(XX)
356 sbci r29,hi8(XX)
357
358 A typical AVR function prologue with a frame pointer might look like this:
359 push rXX ; saved regs
360 ...
361 push r28
362 push r29
363 in r28,__SP_L__
364 in r29,__SP_H__
365 sbiw r28,<LOCALS_SIZE>
366 in __tmp_reg__,__SREG__
367 cli
368 out __SP_H__,r29
369 out __SREG__,__tmp_reg__
370 out __SP_L__,r28
371
372 A typical AVR function prologue without a frame pointer might look like
373 this:
374 push rXX ; saved regs
375 ...
376
377 A main function prologue looks like this:
378 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
379 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
380 out __SP_H__,r29
381 out __SP_L__,r28
382
383 A signal handler prologue looks like this:
384 push __zero_reg__
385 push __tmp_reg__
386 in __tmp_reg__, __SREG__
387 push __tmp_reg__
388 clr __zero_reg__
389 push rXX ; save registers r18:r27, r30:r31
390 ...
391 push r28 ; save frame pointer
392 push r29
393 in r28, __SP_L__
394 in r29, __SP_H__
395 sbiw r28, <LOCALS_SIZE>
396 out __SP_H__, r29
397 out __SP_L__, r28
398
399 A interrupt handler prologue looks like this:
400 sei
401 push __zero_reg__
402 push __tmp_reg__
403 in __tmp_reg__, __SREG__
404 push __tmp_reg__
405 clr __zero_reg__
406 push rXX ; save registers r18:r27, r30:r31
407 ...
408 push r28 ; save frame pointer
409 push r29
410 in r28, __SP_L__
411 in r29, __SP_H__
412 sbiw r28, <LOCALS_SIZE>
413 cli
414 out __SP_H__, r29
415 sei
416 out __SP_L__, r28
417
418 A `-mcall-prologues' prologue looks like this (Note that the megas use a
419 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
420 32 bit insn and rjmp is a 16 bit insn):
421 ldi r26,lo8(<LOCALS_SIZE>)
422 ldi r27,hi8(<LOCALS_SIZE>)
423 ldi r30,pm_lo8(.L_foo_body)
424 ldi r31,pm_hi8(.L_foo_body)
425 rjmp __prologue_saves__+RRR
426 .L_foo_body: */
427
428 /* Not really part of a prologue, but still need to scan for it, is when a
429 function prologue moves values passed via registers as arguments to new
430 registers. In this case, all local variables live in registers, so there
431 may be some register saves. This is what it looks like:
432 movw rMM, rNN
433 ...
434
435 There could be multiple movw's. If the target doesn't have a movw insn, it
436 will use two mov insns. This could be done after any of the above prologue
437 types. */
438
439 static CORE_ADDR
440 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
441 struct avr_unwind_cache *info)
442 {
443 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
444 int i;
445 unsigned short insn;
446 int scan_stage = 0;
447 struct minimal_symbol *msymbol;
448 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
449 int vpc = 0;
450 int len;
451
452 len = pc_end - pc_beg;
453 if (len > AVR_MAX_PROLOGUE_SIZE)
454 len = AVR_MAX_PROLOGUE_SIZE;
455
456 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
457 reading in the bytes of the prologue. The problem is that the figuring
458 out where the end of the prologue is is a bit difficult. The old code
459 tried to do that, but failed quite often. */
460 read_memory (pc_beg, prologue, len);
461
462 /* Scanning main()'s prologue
463 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
464 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
465 out __SP_H__,r29
466 out __SP_L__,r28 */
467
468 if (len >= 4)
469 {
470 CORE_ADDR locals;
471 static const unsigned char img[] = {
472 0xde, 0xbf, /* out __SP_H__,r29 */
473 0xcd, 0xbf /* out __SP_L__,r28 */
474 };
475
476 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
477 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
478 if ((insn & 0xf0f0) == 0xe0c0)
479 {
480 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
481 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
482 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
483 if ((insn & 0xf0f0) == 0xe0d0)
484 {
485 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
486 if (vpc + 4 + sizeof (img) < len
487 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
488 {
489 info->prologue_type = AVR_PROLOGUE_MAIN;
490 info->base = locals;
491 return pc_beg + 4;
492 }
493 }
494 }
495 }
496
497 /* Scanning `-mcall-prologues' prologue
498 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
499
500 while (1) /* Using a while to avoid many goto's */
501 {
502 int loc_size;
503 int body_addr;
504 unsigned num_pushes;
505 int pc_offset = 0;
506
507 /* At least the fifth instruction must have been executed to
508 modify frame shape. */
509 if (len < 10)
510 break;
511
512 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
513 /* ldi r26,<LOCALS_SIZE> */
514 if ((insn & 0xf0f0) != 0xe0a0)
515 break;
516 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
517 pc_offset += 2;
518
519 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
520 /* ldi r27,<LOCALS_SIZE> / 256 */
521 if ((insn & 0xf0f0) != 0xe0b0)
522 break;
523 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
524 pc_offset += 2;
525
526 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
527 /* ldi r30,pm_lo8(.L_foo_body) */
528 if ((insn & 0xf0f0) != 0xe0e0)
529 break;
530 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
531 pc_offset += 2;
532
533 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
534 /* ldi r31,pm_hi8(.L_foo_body) */
535 if ((insn & 0xf0f0) != 0xe0f0)
536 break;
537 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
538 pc_offset += 2;
539
540 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
541 if (!msymbol)
542 break;
543
544 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
545 /* rjmp __prologue_saves__+RRR */
546 if ((insn & 0xf000) == 0xc000)
547 {
548 /* Extract PC relative offset from RJMP */
549 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
550 /* Convert offset to byte addressable mode */
551 i *= 2;
552 /* Destination address */
553 i += pc_beg + 10;
554
555 if (body_addr != (pc_beg + 10)/2)
556 break;
557
558 pc_offset += 2;
559 }
560 else if ((insn & 0xfe0e) == 0x940c)
561 {
562 /* Extract absolute PC address from JMP */
563 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
564 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
565 & 0xffff));
566 /* Convert address to byte addressable mode */
567 i *= 2;
568
569 if (body_addr != (pc_beg + 12)/2)
570 break;
571
572 pc_offset += 4;
573 }
574 else
575 break;
576
577 /* Resolve offset (in words) from __prologue_saves__ symbol.
578 Which is a pushes count in `-mcall-prologues' mode */
579 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
580
581 if (num_pushes > AVR_MAX_PUSHES)
582 {
583 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
584 num_pushes);
585 num_pushes = 0;
586 }
587
588 if (num_pushes)
589 {
590 int from;
591
592 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
593 if (num_pushes >= 2)
594 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
595
596 i = 0;
597 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
598 from <= AVR_LAST_PUSHED_REGNUM; ++from)
599 info->saved_regs [from].addr = ++i;
600 }
601 info->size = loc_size + num_pushes;
602 info->prologue_type = AVR_PROLOGUE_CALL;
603
604 return pc_beg + pc_offset;
605 }
606
607 /* Scan for the beginning of the prologue for an interrupt or signal
608 function. Note that we have to set the prologue type here since the
609 third stage of the prologue may not be present (e.g. no saved registered
610 or changing of the SP register). */
611
612 if (1)
613 {
614 static const unsigned char img[] = {
615 0x78, 0x94, /* sei */
616 0x1f, 0x92, /* push r1 */
617 0x0f, 0x92, /* push r0 */
618 0x0f, 0xb6, /* in r0,0x3f SREG */
619 0x0f, 0x92, /* push r0 */
620 0x11, 0x24 /* clr r1 */
621 };
622 if (len >= sizeof (img)
623 && memcmp (prologue, img, sizeof (img)) == 0)
624 {
625 info->prologue_type = AVR_PROLOGUE_INTR;
626 vpc += sizeof (img);
627 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
628 info->saved_regs[0].addr = 2;
629 info->saved_regs[1].addr = 1;
630 info->size += 3;
631 }
632 else if (len >= sizeof (img) - 2
633 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
634 {
635 info->prologue_type = AVR_PROLOGUE_SIG;
636 vpc += sizeof (img) - 2;
637 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
638 info->saved_regs[0].addr = 2;
639 info->saved_regs[1].addr = 1;
640 info->size += 3;
641 }
642 }
643
644 /* First stage of the prologue scanning.
645 Scan pushes (saved registers) */
646
647 for (; vpc < len; vpc += 2)
648 {
649 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
650 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
651 {
652 /* Bits 4-9 contain a mask for registers R0-R32. */
653 int regno = (insn & 0x1f0) >> 4;
654 info->size++;
655 info->saved_regs[regno].addr = info->size;
656 scan_stage = 1;
657 }
658 else
659 break;
660 }
661
662 if (vpc >= AVR_MAX_PROLOGUE_SIZE)
663 fprintf_unfiltered (gdb_stderr,
664 _("Hit end of prologue while scanning pushes\n"));
665
666 /* Handle static small stack allocation using rcall or push. */
667
668 while (scan_stage == 1 && vpc < len)
669 {
670 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
671 if (insn == 0xd000) /* rcall .+0 */
672 {
673 info->size += gdbarch_tdep (gdbarch)->call_length;
674 vpc += 2;
675 }
676 else if (insn == 0x920f) /* push r0 */
677 {
678 info->size += 1;
679 vpc += 2;
680 }
681 else
682 break;
683 }
684
685 /* Second stage of the prologue scanning.
686 Scan:
687 in r28,__SP_L__
688 in r29,__SP_H__ */
689
690 if (scan_stage == 1 && vpc < len)
691 {
692 static const unsigned char img[] = {
693 0xcd, 0xb7, /* in r28,__SP_L__ */
694 0xde, 0xb7 /* in r29,__SP_H__ */
695 };
696 unsigned short insn1;
697
698 if (vpc + sizeof (img) < len
699 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
700 {
701 vpc += 4;
702 scan_stage = 2;
703 }
704 }
705
706 /* Third stage of the prologue scanning. (Really two stages)
707 Scan for:
708 sbiw r28,XX or subi r28,lo8(XX)
709 sbci r29,hi8(XX)
710 in __tmp_reg__,__SREG__
711 cli
712 out __SP_H__,r29
713 out __SREG__,__tmp_reg__
714 out __SP_L__,r28 */
715
716 if (scan_stage == 2 && vpc < len)
717 {
718 int locals_size = 0;
719 static const unsigned char img[] = {
720 0x0f, 0xb6, /* in r0,0x3f */
721 0xf8, 0x94, /* cli */
722 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
723 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
724 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
725 };
726 static const unsigned char img_sig[] = {
727 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
728 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
729 };
730 static const unsigned char img_int[] = {
731 0xf8, 0x94, /* cli */
732 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
733 0x78, 0x94, /* sei */
734 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
735 };
736
737 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
738 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
739 {
740 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
741 vpc += 2;
742 }
743 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
744 {
745 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
746 vpc += 2;
747 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
748 vpc += 2;
749 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
750 }
751 else
752 return pc_beg + vpc;
753
754 /* Scan the last part of the prologue. May not be present for interrupt
755 or signal handler functions, which is why we set the prologue type
756 when we saw the beginning of the prologue previously. */
757
758 if (vpc + sizeof (img_sig) < len
759 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
760 {
761 vpc += sizeof (img_sig);
762 }
763 else if (vpc + sizeof (img_int) < len
764 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
765 {
766 vpc += sizeof (img_int);
767 }
768 if (vpc + sizeof (img) < len
769 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
770 {
771 info->prologue_type = AVR_PROLOGUE_NORMAL;
772 vpc += sizeof (img);
773 }
774
775 info->size += locals_size;
776
777 /* Fall through. */
778 }
779
780 /* If we got this far, we could not scan the prologue, so just return the pc
781 of the frame plus an adjustment for argument move insns. */
782
783 for (; vpc < len; vpc += 2)
784 {
785 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
786 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
787 continue;
788 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
789 continue;
790 else
791 break;
792 }
793
794 return pc_beg + vpc;
795 }
796
797 static CORE_ADDR
798 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
799 {
800 CORE_ADDR func_addr, func_end;
801 CORE_ADDR post_prologue_pc;
802
803 /* See what the symbol table says */
804
805 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
806 return pc;
807
808 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
809 if (post_prologue_pc != 0)
810 return max (pc, post_prologue_pc);
811
812 {
813 CORE_ADDR prologue_end = pc;
814 struct avr_unwind_cache info = {0};
815 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
816
817 info.saved_regs = saved_regs;
818
819 /* Need to run the prologue scanner to figure out if the function has a
820 prologue and possibly skip over moving arguments passed via registers
821 to other registers. */
822
823 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
824
825 if (info.prologue_type != AVR_PROLOGUE_NONE)
826 return prologue_end;
827 }
828
829 /* Either we didn't find the start of this function (nothing we can do),
830 or there's no line info, or the line after the prologue is after
831 the end of the function (there probably isn't a prologue). */
832
833 return pc;
834 }
835
836 /* Not all avr devices support the BREAK insn. Those that don't should treat
837 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
838 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
839
840 static const unsigned char *
841 avr_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
842 {
843 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
844 *lenptr = sizeof (avr_break_insn);
845 return avr_break_insn;
846 }
847
848 /* Determine, for architecture GDBARCH, how a return value of TYPE
849 should be returned. If it is supposed to be returned in registers,
850 and READBUF is non-zero, read the appropriate value from REGCACHE,
851 and copy it into READBUF. If WRITEBUF is non-zero, write the value
852 from WRITEBUF into REGCACHE. */
853
854 static enum return_value_convention
855 avr_return_value (struct gdbarch *gdbarch, struct type *func_type,
856 struct type *valtype, struct regcache *regcache,
857 gdb_byte *readbuf, const gdb_byte *writebuf)
858 {
859 int i;
860 /* Single byte are returned in r24.
861 Otherwise, the MSB of the return value is always in r25, calculate which
862 register holds the LSB. */
863 int lsb_reg;
864
865 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
866 || TYPE_CODE (valtype) == TYPE_CODE_UNION
867 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
868 && TYPE_LENGTH (valtype) > 8)
869 return RETURN_VALUE_STRUCT_CONVENTION;
870
871 if (TYPE_LENGTH (valtype) <= 2)
872 lsb_reg = 24;
873 else if (TYPE_LENGTH (valtype) <= 4)
874 lsb_reg = 22;
875 else if (TYPE_LENGTH (valtype) <= 8)
876 lsb_reg = 18;
877 else
878 gdb_assert (0);
879
880 if (writebuf != NULL)
881 {
882 for (i = 0; i < TYPE_LENGTH (valtype); i++)
883 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
884 }
885
886 if (readbuf != NULL)
887 {
888 for (i = 0; i < TYPE_LENGTH (valtype); i++)
889 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
890 }
891
892 return RETURN_VALUE_REGISTER_CONVENTION;
893 }
894
895
896 /* Put here the code to store, into fi->saved_regs, the addresses of
897 the saved registers of frame described by FRAME_INFO. This
898 includes special registers such as pc and fp saved in special ways
899 in the stack frame. sp is even more special: the address we return
900 for it IS the sp for the next frame. */
901
902 static struct avr_unwind_cache *
903 avr_frame_unwind_cache (struct frame_info *this_frame,
904 void **this_prologue_cache)
905 {
906 CORE_ADDR start_pc, current_pc;
907 ULONGEST prev_sp;
908 ULONGEST this_base;
909 struct avr_unwind_cache *info;
910 struct gdbarch *gdbarch;
911 struct gdbarch_tdep *tdep;
912 int i;
913
914 if (*this_prologue_cache)
915 return *this_prologue_cache;
916
917 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
918 *this_prologue_cache = info;
919 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
920
921 info->size = 0;
922 info->prologue_type = AVR_PROLOGUE_NONE;
923
924 start_pc = get_frame_func (this_frame);
925 current_pc = get_frame_pc (this_frame);
926 if ((start_pc > 0) && (start_pc <= current_pc))
927 avr_scan_prologue (get_frame_arch (this_frame),
928 start_pc, current_pc, info);
929
930 if ((info->prologue_type != AVR_PROLOGUE_NONE)
931 && (info->prologue_type != AVR_PROLOGUE_MAIN))
932 {
933 ULONGEST high_base; /* High byte of FP */
934
935 /* The SP was moved to the FP. This indicates that a new frame
936 was created. Get THIS frame's FP value by unwinding it from
937 the next frame. */
938 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
939 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
940 this_base += (high_base << 8);
941
942 /* The FP points at the last saved register. Adjust the FP back
943 to before the first saved register giving the SP. */
944 prev_sp = this_base + info->size;
945 }
946 else
947 {
948 /* Assume that the FP is this frame's SP but with that pushed
949 stack space added back. */
950 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
951 prev_sp = this_base + info->size;
952 }
953
954 /* Add 1 here to adjust for the post-decrement nature of the push
955 instruction.*/
956 info->prev_sp = avr_make_saddr (prev_sp + 1);
957 info->base = avr_make_saddr (this_base);
958
959 gdbarch = get_frame_arch (this_frame);
960
961 /* Adjust all the saved registers so that they contain addresses and not
962 offsets. */
963 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
964 if (info->saved_regs[i].addr > 0)
965 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
966
967 /* Except for the main and startup code, the return PC is always saved on
968 the stack and is at the base of the frame. */
969
970 if (info->prologue_type != AVR_PROLOGUE_MAIN)
971 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
972
973 /* The previous frame's SP needed to be computed. Save the computed
974 value. */
975 tdep = gdbarch_tdep (gdbarch);
976 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
977 info->prev_sp - 1 + tdep->call_length);
978
979 return info;
980 }
981
982 static CORE_ADDR
983 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
984 {
985 ULONGEST pc;
986
987 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
988
989 return avr_make_iaddr (pc);
990 }
991
992 static CORE_ADDR
993 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
994 {
995 ULONGEST sp;
996
997 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
998
999 return avr_make_saddr (sp);
1000 }
1001
1002 /* Given a GDB frame, determine the address of the calling function's
1003 frame. This will be used to create a new GDB frame struct. */
1004
1005 static void
1006 avr_frame_this_id (struct frame_info *this_frame,
1007 void **this_prologue_cache,
1008 struct frame_id *this_id)
1009 {
1010 struct avr_unwind_cache *info
1011 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1012 CORE_ADDR base;
1013 CORE_ADDR func;
1014 struct frame_id id;
1015
1016 /* The FUNC is easy. */
1017 func = get_frame_func (this_frame);
1018
1019 /* Hopefully the prologue analysis either correctly determined the
1020 frame's base (which is the SP from the previous frame), or set
1021 that base to "NULL". */
1022 base = info->prev_sp;
1023 if (base == 0)
1024 return;
1025
1026 id = frame_id_build (base, func);
1027 (*this_id) = id;
1028 }
1029
1030 static struct value *
1031 avr_frame_prev_register (struct frame_info *this_frame,
1032 void **this_prologue_cache, int regnum)
1033 {
1034 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1035 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1036 struct avr_unwind_cache *info
1037 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1038
1039 if (regnum == AVR_PC_REGNUM)
1040 {
1041 if (trad_frame_addr_p (info->saved_regs, regnum))
1042 {
1043 /* Reading the return PC from the PC register is slightly
1044 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1045 but in reality, only two bytes (3 in upcoming mega256) are
1046 stored on the stack.
1047
1048 Also, note that the value on the stack is an addr to a word
1049 not a byte, so we will need to multiply it by two at some
1050 point.
1051
1052 And to confuse matters even more, the return address stored
1053 on the stack is in big endian byte order, even though most
1054 everything else about the avr is little endian. Ick! */
1055 ULONGEST pc;
1056 int i;
1057 unsigned char buf[3];
1058 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1059 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1060
1061 read_memory (info->saved_regs[regnum].addr, buf, tdep->call_length);
1062
1063 /* Extract the PC read from memory as a big-endian. */
1064 pc = 0;
1065 for (i = 0; i < tdep->call_length; i++)
1066 pc = (pc << 8) | buf[i];
1067
1068 return frame_unwind_got_constant (this_frame, regnum, pc << 1);
1069 }
1070
1071 return frame_unwind_got_optimized (this_frame, regnum);
1072 }
1073
1074 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1075 }
1076
1077 static const struct frame_unwind avr_frame_unwind = {
1078 NORMAL_FRAME,
1079 avr_frame_this_id,
1080 avr_frame_prev_register,
1081 NULL,
1082 default_frame_sniffer
1083 };
1084
1085 static CORE_ADDR
1086 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1087 {
1088 struct avr_unwind_cache *info
1089 = avr_frame_unwind_cache (this_frame, this_cache);
1090
1091 return info->base;
1092 }
1093
1094 static const struct frame_base avr_frame_base = {
1095 &avr_frame_unwind,
1096 avr_frame_base_address,
1097 avr_frame_base_address,
1098 avr_frame_base_address
1099 };
1100
1101 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1102 frame. The frame ID's base needs to match the TOS value saved by
1103 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1104
1105 static struct frame_id
1106 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1107 {
1108 ULONGEST base;
1109
1110 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1111 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1112 }
1113
1114 /* When arguments must be pushed onto the stack, they go on in reverse
1115 order. The below implements a FILO (stack) to do this. */
1116
1117 struct stack_item
1118 {
1119 int len;
1120 struct stack_item *prev;
1121 void *data;
1122 };
1123
1124 static struct stack_item *
1125 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1126 {
1127 struct stack_item *si;
1128 si = xmalloc (sizeof (struct stack_item));
1129 si->data = xmalloc (len);
1130 si->len = len;
1131 si->prev = prev;
1132 memcpy (si->data, contents, len);
1133 return si;
1134 }
1135
1136 static struct stack_item *pop_stack_item (struct stack_item *si);
1137 static struct stack_item *
1138 pop_stack_item (struct stack_item *si)
1139 {
1140 struct stack_item *dead = si;
1141 si = si->prev;
1142 xfree (dead->data);
1143 xfree (dead);
1144 return si;
1145 }
1146
1147 /* Setup the function arguments for calling a function in the inferior.
1148
1149 On the AVR architecture, there are 18 registers (R25 to R8) which are
1150 dedicated for passing function arguments. Up to the first 18 arguments
1151 (depending on size) may go into these registers. The rest go on the stack.
1152
1153 All arguments are aligned to start in even-numbered registers (odd-sized
1154 arguments, including char, have one free register above them). For example,
1155 an int in arg1 and a char in arg2 would be passed as such:
1156
1157 arg1 -> r25:r24
1158 arg2 -> r22
1159
1160 Arguments that are larger than 2 bytes will be split between two or more
1161 registers as available, but will NOT be split between a register and the
1162 stack. Arguments that go onto the stack are pushed last arg first (this is
1163 similar to the d10v). */
1164
1165 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1166 inaccurate.
1167
1168 An exceptional case exists for struct arguments (and possibly other
1169 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1170 not a multiple of WORDSIZE bytes. In this case the argument is never split
1171 between the registers and the stack, but instead is copied in its entirety
1172 onto the stack, AND also copied into as many registers as there is room
1173 for. In other words, space in registers permitting, two copies of the same
1174 argument are passed in. As far as I can tell, only the one on the stack is
1175 used, although that may be a function of the level of compiler
1176 optimization. I suspect this is a compiler bug. Arguments of these odd
1177 sizes are left-justified within the word (as opposed to arguments smaller
1178 than WORDSIZE bytes, which are right-justified).
1179
1180 If the function is to return an aggregate type such as a struct, the caller
1181 must allocate space into which the callee will copy the return value. In
1182 this case, a pointer to the return value location is passed into the callee
1183 in register R0, which displaces one of the other arguments passed in via
1184 registers R0 to R2. */
1185
1186 static CORE_ADDR
1187 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1188 struct regcache *regcache, CORE_ADDR bp_addr,
1189 int nargs, struct value **args, CORE_ADDR sp,
1190 int struct_return, CORE_ADDR struct_addr)
1191 {
1192 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1193 int i;
1194 unsigned char buf[3];
1195 int call_length = gdbarch_tdep (gdbarch)->call_length;
1196 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1197 int regnum = AVR_ARGN_REGNUM;
1198 struct stack_item *si = NULL;
1199
1200 if (struct_return)
1201 {
1202 regcache_cooked_write_unsigned (regcache, regnum--,
1203 struct_addr & 0xff);
1204 regcache_cooked_write_unsigned (regcache, regnum--,
1205 (struct_addr >> 8) & 0xff);
1206 }
1207
1208 for (i = 0; i < nargs; i++)
1209 {
1210 int last_regnum;
1211 int j;
1212 struct value *arg = args[i];
1213 struct type *type = check_typedef (value_type (arg));
1214 const bfd_byte *contents = value_contents (arg);
1215 int len = TYPE_LENGTH (type);
1216
1217 /* Calculate the potential last register needed. */
1218 last_regnum = regnum - (len + (len & 1));
1219
1220 /* If there are registers available, use them. Once we start putting
1221 stuff on the stack, all subsequent args go on stack. */
1222 if ((si == NULL) && (last_regnum >= 8))
1223 {
1224 ULONGEST val;
1225
1226 /* Skip a register for odd length args. */
1227 if (len & 1)
1228 regnum--;
1229
1230 val = extract_unsigned_integer (contents, len, byte_order);
1231 for (j = 0; j < len; j++)
1232 regcache_cooked_write_unsigned
1233 (regcache, regnum--, val >> (8 * (len - j - 1)));
1234 }
1235 /* No registers available, push the args onto the stack. */
1236 else
1237 {
1238 /* From here on, we don't care about regnum. */
1239 si = push_stack_item (si, contents, len);
1240 }
1241 }
1242
1243 /* Push args onto the stack. */
1244 while (si)
1245 {
1246 sp -= si->len;
1247 /* Add 1 to sp here to account for post decr nature of pushes. */
1248 write_memory (sp + 1, si->data, si->len);
1249 si = pop_stack_item (si);
1250 }
1251
1252 /* Set the return address. For the avr, the return address is the BP_ADDR.
1253 Need to push the return address onto the stack noting that it needs to be
1254 in big-endian order on the stack. */
1255 for (i = 1; i <= call_length; i++)
1256 {
1257 buf[call_length - i] = return_pc & 0xff;
1258 return_pc >>= 8;
1259 }
1260
1261 sp -= call_length;
1262 /* Use 'sp + 1' since pushes are post decr ops. */
1263 write_memory (sp + 1, buf, call_length);
1264
1265 /* Finally, update the SP register. */
1266 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1267 avr_convert_saddr_to_raw (sp));
1268
1269 /* Return SP value for the dummy frame, where the return address hasn't been
1270 pushed. */
1271 return sp + call_length;
1272 }
1273
1274 /* Unfortunately dwarf2 register for SP is 32. */
1275
1276 static int
1277 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1278 {
1279 if (reg >= 0 && reg < 32)
1280 return reg;
1281 if (reg == 32)
1282 return AVR_SP_REGNUM;
1283
1284 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1285
1286 return -1;
1287 }
1288
1289 /* Initialize the gdbarch structure for the AVR's. */
1290
1291 static struct gdbarch *
1292 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1293 {
1294 struct gdbarch *gdbarch;
1295 struct gdbarch_tdep *tdep;
1296 struct gdbarch_list *best_arch;
1297 int call_length;
1298
1299 /* Avr-6 call instructions save 3 bytes. */
1300 switch (info.bfd_arch_info->mach)
1301 {
1302 case bfd_mach_avr1:
1303 case bfd_mach_avr2:
1304 case bfd_mach_avr3:
1305 case bfd_mach_avr4:
1306 case bfd_mach_avr5:
1307 default:
1308 call_length = 2;
1309 break;
1310 case bfd_mach_avr6:
1311 call_length = 3;
1312 break;
1313 }
1314
1315 /* If there is already a candidate, use it. */
1316 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1317 best_arch != NULL;
1318 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1319 {
1320 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1321 return best_arch->gdbarch;
1322 }
1323
1324 /* None found, create a new architecture from the information provided. */
1325 tdep = XMALLOC (struct gdbarch_tdep);
1326 gdbarch = gdbarch_alloc (&info, tdep);
1327
1328 tdep->call_length = call_length;
1329
1330 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1331 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1332 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1333 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1334 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1335 set_gdbarch_addr_bit (gdbarch, 32);
1336
1337 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1338 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1339 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1340
1341 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1342 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1343 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1344
1345 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1346 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1347
1348 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1349
1350 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1351 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1352
1353 set_gdbarch_register_name (gdbarch, avr_register_name);
1354 set_gdbarch_register_type (gdbarch, avr_register_type);
1355
1356 set_gdbarch_return_value (gdbarch, avr_return_value);
1357 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1358
1359 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1360
1361 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1362
1363 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1364 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1365 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1366
1367 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1368 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1369
1370 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1371
1372 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1373 frame_base_set_default (gdbarch, &avr_frame_base);
1374
1375 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1376
1377 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1378 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1379
1380 return gdbarch;
1381 }
1382
1383 /* Send a query request to the avr remote target asking for values of the io
1384 registers. If args parameter is not NULL, then the user has requested info
1385 on a specific io register [This still needs implemented and is ignored for
1386 now]. The query string should be one of these forms:
1387
1388 "Ravr.io_reg" -> reply is "NN" number of io registers
1389
1390 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1391 registers to be read. The reply should be "<NAME>,VV;" for each io register
1392 where, <NAME> is a string, and VV is the hex value of the register.
1393
1394 All io registers are 8-bit. */
1395
1396 static void
1397 avr_io_reg_read_command (char *args, int from_tty)
1398 {
1399 LONGEST bufsiz = 0;
1400 gdb_byte *buf;
1401 char query[400];
1402 char *p;
1403 unsigned int nreg = 0;
1404 unsigned int val;
1405 int i, j, k, step;
1406
1407 /* Find out how many io registers the target has. */
1408 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1409 "avr.io_reg", &buf);
1410
1411 if (bufsiz <= 0)
1412 {
1413 fprintf_unfiltered (gdb_stderr,
1414 _("ERR: info io_registers NOT supported "
1415 "by current target\n"));
1416 return;
1417 }
1418
1419 if (sscanf (buf, "%x", &nreg) != 1)
1420 {
1421 fprintf_unfiltered (gdb_stderr,
1422 _("Error fetching number of io registers\n"));
1423 xfree (buf);
1424 return;
1425 }
1426
1427 xfree (buf);
1428
1429 reinitialize_more_filter ();
1430
1431 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1432
1433 /* only fetch up to 8 registers at a time to keep the buffer small */
1434 step = 8;
1435
1436 for (i = 0; i < nreg; i += step)
1437 {
1438 /* how many registers this round? */
1439 j = step;
1440 if ((i+j) >= nreg)
1441 j = nreg - i; /* last block is less than 8 registers */
1442
1443 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1444 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1445 query, &buf);
1446
1447 p = buf;
1448 for (k = i; k < (i + j); k++)
1449 {
1450 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1451 {
1452 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1453 while ((*p != ';') && (*p != '\0'))
1454 p++;
1455 p++; /* skip over ';' */
1456 if (*p == '\0')
1457 break;
1458 }
1459 }
1460
1461 xfree (buf);
1462 }
1463 }
1464
1465 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1466
1467 void
1468 _initialize_avr_tdep (void)
1469 {
1470 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1471
1472 /* Add a new command to allow the user to query the avr remote target for
1473 the values of the io space registers in a saner way than just using
1474 `x/NNNb ADDR`. */
1475
1476 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1477 io_registers' to signify it is not available on other platforms. */
1478
1479 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1480 _("query remote avr target for io space register values"),
1481 &infolist);
1482 }
This page took 0.059656 seconds and 4 git commands to generate.