2009-11-10 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* Contributed by Theodore A. Roth, troth@openavr.org */
22
23 /* Portions of this file were taken from the original gdb-4.18 patch developed
24 by Denis Chertykov, denisc@overta.ru */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "gdb_string.h"
39 #include "dis-asm.h"
40
41 /* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
62 All three memory spaces have physical addresses beginning at 0x0. In
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
71
72 #undef XMALLOC
73 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
74
75 /* Constants: prefixed with AVR_ to avoid name space clashes */
76
77 enum
78 {
79 AVR_REG_W = 24,
80 AVR_REG_X = 26,
81 AVR_REG_Y = 28,
82 AVR_FP_REGNUM = 28,
83 AVR_REG_Z = 30,
84
85 AVR_SREG_REGNUM = 32,
86 AVR_SP_REGNUM = 33,
87 AVR_PC_REGNUM = 34,
88
89 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
90 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
91
92 AVR_PC_REG_INDEX = 35, /* index into array of registers */
93
94 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
95
96 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
97 AVR_MAX_PUSHES = 18,
98
99 /* Number of the last pushed register. r17 for current avr-gcc */
100 AVR_LAST_PUSHED_REGNUM = 17,
101
102 AVR_ARG1_REGNUM = 24, /* Single byte argument */
103 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
104
105 AVR_RET1_REGNUM = 24, /* Single byte return value */
106 AVR_RETN_REGNUM = 25, /* Multi byte return value */
107
108 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
109 bits? Do these have to match the bfd vma values?. It sure would make
110 things easier in the future if they didn't need to match.
111
112 Note: I chose these values so as to be consistent with bfd vma
113 addresses.
114
115 TRoth/2002-04-08: There is already a conflict with very large programs
116 in the mega128. The mega128 has 128K instruction bytes (64K words),
117 thus the Most Significant Bit is 0x10000 which gets masked off my
118 AVR_MEM_MASK.
119
120 The problem manifests itself when trying to set a breakpoint in a
121 function which resides in the upper half of the instruction space and
122 thus requires a 17-bit address.
123
124 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
125 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
126 but could be for some remote targets by just adding the correct offset
127 to the address and letting the remote target handle the low-level
128 details of actually accessing the eeprom. */
129
130 AVR_IMEM_START = 0x00000000, /* INSN memory */
131 AVR_SMEM_START = 0x00800000, /* SRAM memory */
132 #if 1
133 /* No eeprom mask defined */
134 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
135 #else
136 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
137 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
138 #endif
139 };
140
141 /* Prologue types:
142
143 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
144 causes the generation of the CALL type prologues). */
145
146 enum {
147 AVR_PROLOGUE_NONE, /* No prologue */
148 AVR_PROLOGUE_NORMAL,
149 AVR_PROLOGUE_CALL, /* -mcall-prologues */
150 AVR_PROLOGUE_MAIN,
151 AVR_PROLOGUE_INTR, /* interrupt handler */
152 AVR_PROLOGUE_SIG, /* signal handler */
153 };
154
155 /* Any function with a frame looks like this
156 ....... <-SP POINTS HERE
157 LOCALS1 <-FP POINTS HERE
158 LOCALS0
159 SAVED FP
160 SAVED R3
161 SAVED R2
162 RET PC
163 FIRST ARG
164 SECOND ARG */
165
166 struct avr_unwind_cache
167 {
168 /* The previous frame's inner most stack address. Used as this
169 frame ID's stack_addr. */
170 CORE_ADDR prev_sp;
171 /* The frame's base, optionally used by the high-level debug info. */
172 CORE_ADDR base;
173 int size;
174 int prologue_type;
175 /* Table indicating the location of each and every register. */
176 struct trad_frame_saved_reg *saved_regs;
177 };
178
179 struct gdbarch_tdep
180 {
181 /* Number of bytes stored to the stack by call instructions.
182 2 bytes for avr1-5, 3 bytes for avr6. */
183 int call_length;
184 };
185
186 /* Lookup the name of a register given it's number. */
187
188 static const char *
189 avr_register_name (struct gdbarch *gdbarch, int regnum)
190 {
191 static const char * const register_names[] = {
192 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
193 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
194 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
195 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
196 "SREG", "SP", "PC"
197 };
198 if (regnum < 0)
199 return NULL;
200 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
201 return NULL;
202 return register_names[regnum];
203 }
204
205 /* Return the GDB type object for the "standard" data type
206 of data in register N. */
207
208 static struct type *
209 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
210 {
211 if (reg_nr == AVR_PC_REGNUM)
212 return builtin_type (gdbarch)->builtin_uint32;
213 if (reg_nr == AVR_SP_REGNUM)
214 return builtin_type (gdbarch)->builtin_data_ptr;
215 else
216 return builtin_type (gdbarch)->builtin_uint8;
217 }
218
219 /* Instruction address checks and convertions. */
220
221 static CORE_ADDR
222 avr_make_iaddr (CORE_ADDR x)
223 {
224 return ((x) | AVR_IMEM_START);
225 }
226
227 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
228 devices are already up to 128KBytes of flash space.
229
230 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
231
232 static CORE_ADDR
233 avr_convert_iaddr_to_raw (CORE_ADDR x)
234 {
235 return ((x) & 0xffffffff);
236 }
237
238 /* SRAM address checks and convertions. */
239
240 static CORE_ADDR
241 avr_make_saddr (CORE_ADDR x)
242 {
243 /* Return 0 for NULL. */
244 if (x == 0)
245 return 0;
246
247 return ((x) | AVR_SMEM_START);
248 }
249
250 static CORE_ADDR
251 avr_convert_saddr_to_raw (CORE_ADDR x)
252 {
253 return ((x) & 0xffffffff);
254 }
255
256 /* EEPROM address checks and convertions. I don't know if these will ever
257 actually be used, but I've added them just the same. TRoth */
258
259 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
260 programs in the mega128. */
261
262 /* static CORE_ADDR */
263 /* avr_make_eaddr (CORE_ADDR x) */
264 /* { */
265 /* return ((x) | AVR_EMEM_START); */
266 /* } */
267
268 /* static int */
269 /* avr_eaddr_p (CORE_ADDR x) */
270 /* { */
271 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
272 /* } */
273
274 /* static CORE_ADDR */
275 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
276 /* { */
277 /* return ((x) & 0xffffffff); */
278 /* } */
279
280 /* Convert from address to pointer and vice-versa. */
281
282 static void
283 avr_address_to_pointer (struct gdbarch *gdbarch,
284 struct type *type, gdb_byte *buf, CORE_ADDR addr)
285 {
286 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
287
288 /* Is it a code address? */
289 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
290 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
291 {
292 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
293 avr_convert_iaddr_to_raw (addr >> 1));
294 }
295 else
296 {
297 /* Strip off any upper segment bits. */
298 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
299 avr_convert_saddr_to_raw (addr));
300 }
301 }
302
303 static CORE_ADDR
304 avr_pointer_to_address (struct gdbarch *gdbarch,
305 struct type *type, const gdb_byte *buf)
306 {
307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308 CORE_ADDR addr
309 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
310
311 /* Is it a code address? */
312 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
313 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
314 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
315 return avr_make_iaddr (addr << 1);
316 else
317 return avr_make_saddr (addr);
318 }
319
320 static CORE_ADDR
321 avr_read_pc (struct regcache *regcache)
322 {
323 ULONGEST pc;
324 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
325 return avr_make_iaddr (pc);
326 }
327
328 static void
329 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
330 {
331 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
332 avr_convert_iaddr_to_raw (val));
333 }
334
335 /* Function: avr_scan_prologue
336
337 This function decodes an AVR function prologue to determine:
338 1) the size of the stack frame
339 2) which registers are saved on it
340 3) the offsets of saved regs
341 This information is stored in the avr_unwind_cache structure.
342
343 Some devices lack the sbiw instruction, so on those replace this:
344 sbiw r28, XX
345 with this:
346 subi r28,lo8(XX)
347 sbci r29,hi8(XX)
348
349 A typical AVR function prologue with a frame pointer might look like this:
350 push rXX ; saved regs
351 ...
352 push r28
353 push r29
354 in r28,__SP_L__
355 in r29,__SP_H__
356 sbiw r28,<LOCALS_SIZE>
357 in __tmp_reg__,__SREG__
358 cli
359 out __SP_H__,r29
360 out __SREG__,__tmp_reg__
361 out __SP_L__,r28
362
363 A typical AVR function prologue without a frame pointer might look like
364 this:
365 push rXX ; saved regs
366 ...
367
368 A main function prologue looks like this:
369 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
370 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
371 out __SP_H__,r29
372 out __SP_L__,r28
373
374 A signal handler prologue looks like this:
375 push __zero_reg__
376 push __tmp_reg__
377 in __tmp_reg__, __SREG__
378 push __tmp_reg__
379 clr __zero_reg__
380 push rXX ; save registers r18:r27, r30:r31
381 ...
382 push r28 ; save frame pointer
383 push r29
384 in r28, __SP_L__
385 in r29, __SP_H__
386 sbiw r28, <LOCALS_SIZE>
387 out __SP_H__, r29
388 out __SP_L__, r28
389
390 A interrupt handler prologue looks like this:
391 sei
392 push __zero_reg__
393 push __tmp_reg__
394 in __tmp_reg__, __SREG__
395 push __tmp_reg__
396 clr __zero_reg__
397 push rXX ; save registers r18:r27, r30:r31
398 ...
399 push r28 ; save frame pointer
400 push r29
401 in r28, __SP_L__
402 in r29, __SP_H__
403 sbiw r28, <LOCALS_SIZE>
404 cli
405 out __SP_H__, r29
406 sei
407 out __SP_L__, r28
408
409 A `-mcall-prologues' prologue looks like this (Note that the megas use a
410 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
411 32 bit insn and rjmp is a 16 bit insn):
412 ldi r26,lo8(<LOCALS_SIZE>)
413 ldi r27,hi8(<LOCALS_SIZE>)
414 ldi r30,pm_lo8(.L_foo_body)
415 ldi r31,pm_hi8(.L_foo_body)
416 rjmp __prologue_saves__+RRR
417 .L_foo_body: */
418
419 /* Not really part of a prologue, but still need to scan for it, is when a
420 function prologue moves values passed via registers as arguments to new
421 registers. In this case, all local variables live in registers, so there
422 may be some register saves. This is what it looks like:
423 movw rMM, rNN
424 ...
425
426 There could be multiple movw's. If the target doesn't have a movw insn, it
427 will use two mov insns. This could be done after any of the above prologue
428 types. */
429
430 static CORE_ADDR
431 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
432 struct avr_unwind_cache *info)
433 {
434 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
435 int i;
436 unsigned short insn;
437 int scan_stage = 0;
438 struct minimal_symbol *msymbol;
439 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
440 int vpc = 0;
441 int len;
442
443 len = pc_end - pc_beg;
444 if (len > AVR_MAX_PROLOGUE_SIZE)
445 len = AVR_MAX_PROLOGUE_SIZE;
446
447 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
448 reading in the bytes of the prologue. The problem is that the figuring
449 out where the end of the prologue is is a bit difficult. The old code
450 tried to do that, but failed quite often. */
451 read_memory (pc_beg, prologue, len);
452
453 /* Scanning main()'s prologue
454 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
455 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
456 out __SP_H__,r29
457 out __SP_L__,r28 */
458
459 if (len >= 4)
460 {
461 CORE_ADDR locals;
462 static const unsigned char img[] = {
463 0xde, 0xbf, /* out __SP_H__,r29 */
464 0xcd, 0xbf /* out __SP_L__,r28 */
465 };
466
467 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
468 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
469 if ((insn & 0xf0f0) == 0xe0c0)
470 {
471 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
472 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
473 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
474 if ((insn & 0xf0f0) == 0xe0d0)
475 {
476 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
477 if (vpc + 4 + sizeof (img) < len
478 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
479 {
480 info->prologue_type = AVR_PROLOGUE_MAIN;
481 info->base = locals;
482 return pc_beg + 4;
483 }
484 }
485 }
486 }
487
488 /* Scanning `-mcall-prologues' prologue
489 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
490
491 while (1) /* Using a while to avoid many goto's */
492 {
493 int loc_size;
494 int body_addr;
495 unsigned num_pushes;
496 int pc_offset = 0;
497
498 /* At least the fifth instruction must have been executed to
499 modify frame shape. */
500 if (len < 10)
501 break;
502
503 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
504 /* ldi r26,<LOCALS_SIZE> */
505 if ((insn & 0xf0f0) != 0xe0a0)
506 break;
507 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
508 pc_offset += 2;
509
510 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
511 /* ldi r27,<LOCALS_SIZE> / 256 */
512 if ((insn & 0xf0f0) != 0xe0b0)
513 break;
514 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
515 pc_offset += 2;
516
517 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
518 /* ldi r30,pm_lo8(.L_foo_body) */
519 if ((insn & 0xf0f0) != 0xe0e0)
520 break;
521 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
522 pc_offset += 2;
523
524 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
525 /* ldi r31,pm_hi8(.L_foo_body) */
526 if ((insn & 0xf0f0) != 0xe0f0)
527 break;
528 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
529 pc_offset += 2;
530
531 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
532 if (!msymbol)
533 break;
534
535 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
536 /* rjmp __prologue_saves__+RRR */
537 if ((insn & 0xf000) == 0xc000)
538 {
539 /* Extract PC relative offset from RJMP */
540 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
541 /* Convert offset to byte addressable mode */
542 i *= 2;
543 /* Destination address */
544 i += pc_beg + 10;
545
546 if (body_addr != (pc_beg + 10)/2)
547 break;
548
549 pc_offset += 2;
550 }
551 else if ((insn & 0xfe0e) == 0x940c)
552 {
553 /* Extract absolute PC address from JMP */
554 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
555 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
556 & 0xffff));
557 /* Convert address to byte addressable mode */
558 i *= 2;
559
560 if (body_addr != (pc_beg + 12)/2)
561 break;
562
563 pc_offset += 4;
564 }
565 else
566 break;
567
568 /* Resolve offset (in words) from __prologue_saves__ symbol.
569 Which is a pushes count in `-mcall-prologues' mode */
570 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
571
572 if (num_pushes > AVR_MAX_PUSHES)
573 {
574 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
575 num_pushes);
576 num_pushes = 0;
577 }
578
579 if (num_pushes)
580 {
581 int from;
582
583 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
584 if (num_pushes >= 2)
585 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
586
587 i = 0;
588 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
589 from <= AVR_LAST_PUSHED_REGNUM; ++from)
590 info->saved_regs [from].addr = ++i;
591 }
592 info->size = loc_size + num_pushes;
593 info->prologue_type = AVR_PROLOGUE_CALL;
594
595 return pc_beg + pc_offset;
596 }
597
598 /* Scan for the beginning of the prologue for an interrupt or signal
599 function. Note that we have to set the prologue type here since the
600 third stage of the prologue may not be present (e.g. no saved registered
601 or changing of the SP register). */
602
603 if (1)
604 {
605 static const unsigned char img[] = {
606 0x78, 0x94, /* sei */
607 0x1f, 0x92, /* push r1 */
608 0x0f, 0x92, /* push r0 */
609 0x0f, 0xb6, /* in r0,0x3f SREG */
610 0x0f, 0x92, /* push r0 */
611 0x11, 0x24 /* clr r1 */
612 };
613 if (len >= sizeof (img)
614 && memcmp (prologue, img, sizeof (img)) == 0)
615 {
616 info->prologue_type = AVR_PROLOGUE_INTR;
617 vpc += sizeof (img);
618 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
619 info->saved_regs[0].addr = 2;
620 info->saved_regs[1].addr = 1;
621 info->size += 3;
622 }
623 else if (len >= sizeof (img) - 2
624 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
625 {
626 info->prologue_type = AVR_PROLOGUE_SIG;
627 vpc += sizeof (img) - 2;
628 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
629 info->saved_regs[0].addr = 2;
630 info->saved_regs[1].addr = 1;
631 info->size += 3;
632 }
633 }
634
635 /* First stage of the prologue scanning.
636 Scan pushes (saved registers) */
637
638 for (; vpc < len; vpc += 2)
639 {
640 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
641 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
642 {
643 /* Bits 4-9 contain a mask for registers R0-R32. */
644 int regno = (insn & 0x1f0) >> 4;
645 info->size++;
646 info->saved_regs[regno].addr = info->size;
647 scan_stage = 1;
648 }
649 else
650 break;
651 }
652
653 if (vpc >= AVR_MAX_PROLOGUE_SIZE)
654 fprintf_unfiltered (gdb_stderr,
655 _("Hit end of prologue while scanning pushes\n"));
656
657 /* Second stage of the prologue scanning.
658 Scan:
659 in r28,__SP_L__
660 in r29,__SP_H__ */
661
662 if (scan_stage == 1 && vpc < len)
663 {
664 static const unsigned char img[] = {
665 0xcd, 0xb7, /* in r28,__SP_L__ */
666 0xde, 0xb7 /* in r29,__SP_H__ */
667 };
668 unsigned short insn1;
669
670 if (vpc + sizeof (img) < len
671 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
672 {
673 vpc += 4;
674 scan_stage = 2;
675 }
676 }
677
678 /* Third stage of the prologue scanning. (Really two stages)
679 Scan for:
680 sbiw r28,XX or subi r28,lo8(XX)
681 sbci r29,hi8(XX)
682 in __tmp_reg__,__SREG__
683 cli
684 out __SP_H__,r29
685 out __SREG__,__tmp_reg__
686 out __SP_L__,r28 */
687
688 if (scan_stage == 2 && vpc < len)
689 {
690 int locals_size = 0;
691 static const unsigned char img[] = {
692 0x0f, 0xb6, /* in r0,0x3f */
693 0xf8, 0x94, /* cli */
694 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
695 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
696 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
697 };
698 static const unsigned char img_sig[] = {
699 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
700 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
701 };
702 static const unsigned char img_int[] = {
703 0xf8, 0x94, /* cli */
704 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
705 0x78, 0x94, /* sei */
706 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
707 };
708
709 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
710 vpc += 2;
711 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
712 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
713 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
714 {
715 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
716 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
717 vpc += 2;
718 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
719 }
720 else
721 return pc_beg + vpc;
722
723 /* Scan the last part of the prologue. May not be present for interrupt
724 or signal handler functions, which is why we set the prologue type
725 when we saw the beginning of the prologue previously. */
726
727 if (vpc + sizeof (img_sig) < len
728 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
729 {
730 vpc += sizeof (img_sig);
731 }
732 else if (vpc + sizeof (img_int) < len
733 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
734 {
735 vpc += sizeof (img_int);
736 }
737 if (vpc + sizeof (img) < len
738 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
739 {
740 info->prologue_type = AVR_PROLOGUE_NORMAL;
741 vpc += sizeof (img);
742 }
743
744 info->size += locals_size;
745
746 /* Fall through. */
747 }
748
749 /* If we got this far, we could not scan the prologue, so just return the pc
750 of the frame plus an adjustment for argument move insns. */
751
752 for (; vpc < len; vpc += 2)
753 {
754 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
755 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
756 continue;
757 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
758 continue;
759 else
760 break;
761 }
762
763 return pc_beg + vpc;
764 }
765
766 static CORE_ADDR
767 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
768 {
769 CORE_ADDR func_addr, func_end;
770 CORE_ADDR prologue_end = pc;
771
772 /* See what the symbol table says */
773
774 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
775 {
776 struct symtab_and_line sal;
777 struct avr_unwind_cache info = {0};
778 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
779
780 info.saved_regs = saved_regs;
781
782 /* Need to run the prologue scanner to figure out if the function has a
783 prologue and possibly skip over moving arguments passed via registers
784 to other registers. */
785
786 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
787
788 if (info.prologue_type == AVR_PROLOGUE_NONE)
789 return pc;
790 else
791 {
792 sal = find_pc_line (func_addr, 0);
793
794 if (sal.line != 0 && sal.end < func_end)
795 return sal.end;
796 }
797 }
798
799 /* Either we didn't find the start of this function (nothing we can do),
800 or there's no line info, or the line after the prologue is after
801 the end of the function (there probably isn't a prologue). */
802
803 return prologue_end;
804 }
805
806 /* Not all avr devices support the BREAK insn. Those that don't should treat
807 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
808 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
809
810 static const unsigned char *
811 avr_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
812 {
813 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
814 *lenptr = sizeof (avr_break_insn);
815 return avr_break_insn;
816 }
817
818 /* Given a return value in `regcache' with a type `type',
819 extract and copy its value into `valbuf'.
820
821 Return values are always passed via registers r25:r24:... */
822
823 static void
824 avr_extract_return_value (struct type *type, struct regcache *regcache,
825 gdb_byte *valbuf)
826 {
827 struct gdbarch *gdbarch = get_regcache_arch (regcache);
828 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
829 ULONGEST r24, r25;
830 ULONGEST c;
831 int len;
832 if (TYPE_LENGTH (type) == 1)
833 {
834 regcache_cooked_read_unsigned (regcache, 24, &c);
835 store_unsigned_integer (valbuf, 1, byte_order, c);
836 }
837 else
838 {
839 int i;
840 /* The MSB of the return value is always in r25, calculate which
841 register holds the LSB. */
842 int lsb_reg = 25 - TYPE_LENGTH (type) + 1;
843
844 for (i=0; i< TYPE_LENGTH (type); i++)
845 {
846 regcache_cooked_read (regcache, lsb_reg + i,
847 (bfd_byte *) valbuf + i);
848 }
849 }
850 }
851
852 /* Determine, for architecture GDBARCH, how a return value of TYPE
853 should be returned. If it is supposed to be returned in registers,
854 and READBUF is non-zero, read the appropriate value from REGCACHE,
855 and copy it into READBUF. If WRITEBUF is non-zero, write the value
856 from WRITEBUF into REGCACHE. */
857
858 static enum return_value_convention
859 avr_return_value (struct gdbarch *gdbarch, struct type *func_type,
860 struct type *valtype, struct regcache *regcache,
861 gdb_byte *readbuf, const gdb_byte *writebuf)
862 {
863 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
864 || TYPE_CODE (valtype) == TYPE_CODE_UNION
865 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
866 && !(TYPE_LENGTH (valtype) == 1
867 || TYPE_LENGTH (valtype) == 2
868 || TYPE_LENGTH (valtype) == 4
869 || TYPE_LENGTH (valtype) == 8));
870
871 if (writebuf != NULL)
872 {
873 gdb_assert (!struct_return);
874 error (_("Cannot store return value."));
875 }
876
877 if (readbuf != NULL)
878 {
879 gdb_assert (!struct_return);
880 avr_extract_return_value (valtype, regcache, readbuf);
881 }
882
883 if (struct_return)
884 return RETURN_VALUE_STRUCT_CONVENTION;
885 else
886 return RETURN_VALUE_REGISTER_CONVENTION;
887 }
888
889
890 /* Put here the code to store, into fi->saved_regs, the addresses of
891 the saved registers of frame described by FRAME_INFO. This
892 includes special registers such as pc and fp saved in special ways
893 in the stack frame. sp is even more special: the address we return
894 for it IS the sp for the next frame. */
895
896 static struct avr_unwind_cache *
897 avr_frame_unwind_cache (struct frame_info *this_frame,
898 void **this_prologue_cache)
899 {
900 CORE_ADDR start_pc, current_pc;
901 ULONGEST prev_sp;
902 ULONGEST this_base;
903 struct avr_unwind_cache *info;
904 struct gdbarch *gdbarch;
905 struct gdbarch_tdep *tdep;
906 int i;
907
908 if (*this_prologue_cache)
909 return *this_prologue_cache;
910
911 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
912 *this_prologue_cache = info;
913 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
914
915 info->size = 0;
916 info->prologue_type = AVR_PROLOGUE_NONE;
917
918 start_pc = get_frame_func (this_frame);
919 current_pc = get_frame_pc (this_frame);
920 if ((start_pc > 0) && (start_pc <= current_pc))
921 avr_scan_prologue (get_frame_arch (this_frame),
922 start_pc, current_pc, info);
923
924 if ((info->prologue_type != AVR_PROLOGUE_NONE)
925 && (info->prologue_type != AVR_PROLOGUE_MAIN))
926 {
927 ULONGEST high_base; /* High byte of FP */
928
929 /* The SP was moved to the FP. This indicates that a new frame
930 was created. Get THIS frame's FP value by unwinding it from
931 the next frame. */
932 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
933 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
934 this_base += (high_base << 8);
935
936 /* The FP points at the last saved register. Adjust the FP back
937 to before the first saved register giving the SP. */
938 prev_sp = this_base + info->size;
939 }
940 else
941 {
942 /* Assume that the FP is this frame's SP but with that pushed
943 stack space added back. */
944 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
945 prev_sp = this_base + info->size;
946 }
947
948 /* Add 1 here to adjust for the post-decrement nature of the push
949 instruction.*/
950 info->prev_sp = avr_make_saddr (prev_sp + 1);
951 info->base = avr_make_saddr (this_base);
952
953 gdbarch = get_frame_arch (this_frame);
954
955 /* Adjust all the saved registers so that they contain addresses and not
956 offsets. */
957 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
958 if (info->saved_regs[i].addr > 0)
959 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
960
961 /* Except for the main and startup code, the return PC is always saved on
962 the stack and is at the base of the frame. */
963
964 if (info->prologue_type != AVR_PROLOGUE_MAIN)
965 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
966
967 /* The previous frame's SP needed to be computed. Save the computed
968 value. */
969 tdep = gdbarch_tdep (gdbarch);
970 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
971 info->prev_sp - 1 + tdep->call_length);
972
973 return info;
974 }
975
976 static CORE_ADDR
977 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
978 {
979 ULONGEST pc;
980
981 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
982
983 return avr_make_iaddr (pc);
984 }
985
986 static CORE_ADDR
987 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
988 {
989 ULONGEST sp;
990
991 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
992
993 return avr_make_saddr (sp);
994 }
995
996 /* Given a GDB frame, determine the address of the calling function's
997 frame. This will be used to create a new GDB frame struct. */
998
999 static void
1000 avr_frame_this_id (struct frame_info *this_frame,
1001 void **this_prologue_cache,
1002 struct frame_id *this_id)
1003 {
1004 struct avr_unwind_cache *info
1005 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1006 CORE_ADDR base;
1007 CORE_ADDR func;
1008 struct frame_id id;
1009
1010 /* The FUNC is easy. */
1011 func = get_frame_func (this_frame);
1012
1013 /* Hopefully the prologue analysis either correctly determined the
1014 frame's base (which is the SP from the previous frame), or set
1015 that base to "NULL". */
1016 base = info->prev_sp;
1017 if (base == 0)
1018 return;
1019
1020 id = frame_id_build (base, func);
1021 (*this_id) = id;
1022 }
1023
1024 static struct value *
1025 avr_frame_prev_register (struct frame_info *this_frame,
1026 void **this_prologue_cache, int regnum)
1027 {
1028 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1029 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1030 struct avr_unwind_cache *info
1031 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1032
1033 if (regnum == AVR_PC_REGNUM)
1034 {
1035 if (trad_frame_addr_p (info->saved_regs, regnum))
1036 {
1037 /* Reading the return PC from the PC register is slightly
1038 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1039 but in reality, only two bytes (3 in upcoming mega256) are
1040 stored on the stack.
1041
1042 Also, note that the value on the stack is an addr to a word
1043 not a byte, so we will need to multiply it by two at some
1044 point.
1045
1046 And to confuse matters even more, the return address stored
1047 on the stack is in big endian byte order, even though most
1048 everything else about the avr is little endian. Ick! */
1049 ULONGEST pc;
1050 int i;
1051 unsigned char buf[3];
1052 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1053 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1054
1055 read_memory (info->saved_regs[regnum].addr, buf, tdep->call_length);
1056
1057 /* Extract the PC read from memory as a big-endian. */
1058 pc = 0;
1059 for (i = 0; i < tdep->call_length; i++)
1060 pc = (pc << 8) | buf[i];
1061
1062 return frame_unwind_got_constant (this_frame, regnum, pc << 1);
1063 }
1064
1065 return frame_unwind_got_optimized (this_frame, regnum);
1066 }
1067
1068 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1069 }
1070
1071 static const struct frame_unwind avr_frame_unwind = {
1072 NORMAL_FRAME,
1073 avr_frame_this_id,
1074 avr_frame_prev_register,
1075 NULL,
1076 default_frame_sniffer
1077 };
1078
1079 static CORE_ADDR
1080 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1081 {
1082 struct avr_unwind_cache *info
1083 = avr_frame_unwind_cache (this_frame, this_cache);
1084
1085 return info->base;
1086 }
1087
1088 static const struct frame_base avr_frame_base = {
1089 &avr_frame_unwind,
1090 avr_frame_base_address,
1091 avr_frame_base_address,
1092 avr_frame_base_address
1093 };
1094
1095 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1096 frame. The frame ID's base needs to match the TOS value saved by
1097 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1098
1099 static struct frame_id
1100 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1101 {
1102 ULONGEST base;
1103
1104 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1105 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1106 }
1107
1108 /* When arguments must be pushed onto the stack, they go on in reverse
1109 order. The below implements a FILO (stack) to do this. */
1110
1111 struct stack_item
1112 {
1113 int len;
1114 struct stack_item *prev;
1115 void *data;
1116 };
1117
1118 static struct stack_item *
1119 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1120 {
1121 struct stack_item *si;
1122 si = xmalloc (sizeof (struct stack_item));
1123 si->data = xmalloc (len);
1124 si->len = len;
1125 si->prev = prev;
1126 memcpy (si->data, contents, len);
1127 return si;
1128 }
1129
1130 static struct stack_item *pop_stack_item (struct stack_item *si);
1131 static struct stack_item *
1132 pop_stack_item (struct stack_item *si)
1133 {
1134 struct stack_item *dead = si;
1135 si = si->prev;
1136 xfree (dead->data);
1137 xfree (dead);
1138 return si;
1139 }
1140
1141 /* Setup the function arguments for calling a function in the inferior.
1142
1143 On the AVR architecture, there are 18 registers (R25 to R8) which are
1144 dedicated for passing function arguments. Up to the first 18 arguments
1145 (depending on size) may go into these registers. The rest go on the stack.
1146
1147 All arguments are aligned to start in even-numbered registers (odd-sized
1148 arguments, including char, have one free register above them). For example,
1149 an int in arg1 and a char in arg2 would be passed as such:
1150
1151 arg1 -> r25:r24
1152 arg2 -> r22
1153
1154 Arguments that are larger than 2 bytes will be split between two or more
1155 registers as available, but will NOT be split between a register and the
1156 stack. Arguments that go onto the stack are pushed last arg first (this is
1157 similar to the d10v). */
1158
1159 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1160 inaccurate.
1161
1162 An exceptional case exists for struct arguments (and possibly other
1163 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1164 not a multiple of WORDSIZE bytes. In this case the argument is never split
1165 between the registers and the stack, but instead is copied in its entirety
1166 onto the stack, AND also copied into as many registers as there is room
1167 for. In other words, space in registers permitting, two copies of the same
1168 argument are passed in. As far as I can tell, only the one on the stack is
1169 used, although that may be a function of the level of compiler
1170 optimization. I suspect this is a compiler bug. Arguments of these odd
1171 sizes are left-justified within the word (as opposed to arguments smaller
1172 than WORDSIZE bytes, which are right-justified).
1173
1174 If the function is to return an aggregate type such as a struct, the caller
1175 must allocate space into which the callee will copy the return value. In
1176 this case, a pointer to the return value location is passed into the callee
1177 in register R0, which displaces one of the other arguments passed in via
1178 registers R0 to R2. */
1179
1180 static CORE_ADDR
1181 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1182 struct regcache *regcache, CORE_ADDR bp_addr,
1183 int nargs, struct value **args, CORE_ADDR sp,
1184 int struct_return, CORE_ADDR struct_addr)
1185 {
1186 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1187 int i;
1188 unsigned char buf[3];
1189 int call_length = gdbarch_tdep (gdbarch)->call_length;
1190 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1191 int regnum = AVR_ARGN_REGNUM;
1192 struct stack_item *si = NULL;
1193
1194 #if 0
1195 /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */
1196 if (struct_return)
1197 {
1198 fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr);
1199 regcache_cooked_write_unsigned (regcache, argreg--, struct_addr & 0xff);
1200 regcache_cooked_write_unsigned (regcache, argreg--, (struct_addr >>8) & 0xff);
1201 }
1202 #endif
1203
1204 for (i = 0; i < nargs; i++)
1205 {
1206 int last_regnum;
1207 int j;
1208 struct value *arg = args[i];
1209 struct type *type = check_typedef (value_type (arg));
1210 const bfd_byte *contents = value_contents (arg);
1211 int len = TYPE_LENGTH (type);
1212
1213 /* Calculate the potential last register needed. */
1214 last_regnum = regnum - (len + (len & 1));
1215
1216 /* If there are registers available, use them. Once we start putting
1217 stuff on the stack, all subsequent args go on stack. */
1218 if ((si == NULL) && (last_regnum >= 8))
1219 {
1220 ULONGEST val;
1221
1222 /* Skip a register for odd length args. */
1223 if (len & 1)
1224 regnum--;
1225
1226 val = extract_unsigned_integer (contents, len, byte_order);
1227 for (j = 0; j < len; j++)
1228 regcache_cooked_write_unsigned
1229 (regcache, regnum--, val >> (8 * (len - j - 1)));
1230 }
1231 /* No registers available, push the args onto the stack. */
1232 else
1233 {
1234 /* From here on, we don't care about regnum. */
1235 si = push_stack_item (si, contents, len);
1236 }
1237 }
1238
1239 /* Push args onto the stack. */
1240 while (si)
1241 {
1242 sp -= si->len;
1243 /* Add 1 to sp here to account for post decr nature of pushes. */
1244 write_memory (sp + 1, si->data, si->len);
1245 si = pop_stack_item (si);
1246 }
1247
1248 /* Set the return address. For the avr, the return address is the BP_ADDR.
1249 Need to push the return address onto the stack noting that it needs to be
1250 in big-endian order on the stack. */
1251 for (i = 1; i <= call_length; i++)
1252 {
1253 buf[call_length - i] = return_pc & 0xff;
1254 return_pc >>= 8;
1255 }
1256
1257 sp -= call_length;
1258 /* Use 'sp + 1' since pushes are post decr ops. */
1259 write_memory (sp + 1, buf, call_length);
1260
1261 /* Finally, update the SP register. */
1262 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1263 avr_convert_saddr_to_raw (sp));
1264
1265 /* Return SP value for the dummy frame, where the return address hasn't been
1266 pushed. */
1267 return sp + call_length;
1268 }
1269
1270 /* Unfortunately dwarf2 register for SP is 32. */
1271
1272 static int
1273 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1274 {
1275 if (reg >= 0 && reg < 32)
1276 return reg;
1277 if (reg == 32)
1278 return AVR_SP_REGNUM;
1279
1280 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1281
1282 return -1;
1283 }
1284
1285 /* Initialize the gdbarch structure for the AVR's. */
1286
1287 static struct gdbarch *
1288 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1289 {
1290 struct gdbarch *gdbarch;
1291 struct gdbarch_tdep *tdep;
1292 struct gdbarch_list *best_arch;
1293 int call_length;
1294
1295 /* Avr-6 call instructions save 3 bytes. */
1296 switch (info.bfd_arch_info->mach)
1297 {
1298 case bfd_mach_avr1:
1299 case bfd_mach_avr2:
1300 case bfd_mach_avr3:
1301 case bfd_mach_avr4:
1302 case bfd_mach_avr5:
1303 default:
1304 call_length = 2;
1305 break;
1306 case bfd_mach_avr6:
1307 call_length = 3;
1308 break;
1309 }
1310
1311 /* If there is already a candidate, use it. */
1312 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1313 best_arch != NULL;
1314 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1315 {
1316 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1317 return best_arch->gdbarch;
1318 }
1319
1320 /* None found, create a new architecture from the information provided. */
1321 tdep = XMALLOC (struct gdbarch_tdep);
1322 gdbarch = gdbarch_alloc (&info, tdep);
1323
1324 tdep->call_length = call_length;
1325
1326 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1327 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1328 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1329 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1330 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1331 set_gdbarch_addr_bit (gdbarch, 32);
1332
1333 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1334 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1335 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1336
1337 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1338 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1339 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1340
1341 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1342 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1343
1344 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1345
1346 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1347 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1348
1349 set_gdbarch_register_name (gdbarch, avr_register_name);
1350 set_gdbarch_register_type (gdbarch, avr_register_type);
1351
1352 set_gdbarch_return_value (gdbarch, avr_return_value);
1353 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1354
1355 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1356
1357 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1358
1359 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1360 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1361
1362 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1363 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1364
1365 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1366
1367 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1368 frame_base_set_default (gdbarch, &avr_frame_base);
1369
1370 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1371
1372 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1373 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1374
1375 return gdbarch;
1376 }
1377
1378 /* Send a query request to the avr remote target asking for values of the io
1379 registers. If args parameter is not NULL, then the user has requested info
1380 on a specific io register [This still needs implemented and is ignored for
1381 now]. The query string should be one of these forms:
1382
1383 "Ravr.io_reg" -> reply is "NN" number of io registers
1384
1385 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1386 registers to be read. The reply should be "<NAME>,VV;" for each io register
1387 where, <NAME> is a string, and VV is the hex value of the register.
1388
1389 All io registers are 8-bit. */
1390
1391 static void
1392 avr_io_reg_read_command (char *args, int from_tty)
1393 {
1394 LONGEST bufsiz = 0;
1395 gdb_byte *buf;
1396 char query[400];
1397 char *p;
1398 unsigned int nreg = 0;
1399 unsigned int val;
1400 int i, j, k, step;
1401
1402 /* Find out how many io registers the target has. */
1403 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1404 "avr.io_reg", &buf);
1405
1406 if (bufsiz <= 0)
1407 {
1408 fprintf_unfiltered (gdb_stderr,
1409 _("ERR: info io_registers NOT supported "
1410 "by current target\n"));
1411 return;
1412 }
1413
1414 if (sscanf (buf, "%x", &nreg) != 1)
1415 {
1416 fprintf_unfiltered (gdb_stderr,
1417 _("Error fetching number of io registers\n"));
1418 xfree (buf);
1419 return;
1420 }
1421
1422 xfree (buf);
1423
1424 reinitialize_more_filter ();
1425
1426 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1427
1428 /* only fetch up to 8 registers at a time to keep the buffer small */
1429 step = 8;
1430
1431 for (i = 0; i < nreg; i += step)
1432 {
1433 /* how many registers this round? */
1434 j = step;
1435 if ((i+j) >= nreg)
1436 j = nreg - i; /* last block is less than 8 registers */
1437
1438 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1439 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1440 query, &buf);
1441
1442 p = buf;
1443 for (k = i; k < (i + j); k++)
1444 {
1445 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1446 {
1447 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1448 while ((*p != ';') && (*p != '\0'))
1449 p++;
1450 p++; /* skip over ';' */
1451 if (*p == '\0')
1452 break;
1453 }
1454 }
1455
1456 xfree (buf);
1457 }
1458 }
1459
1460 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1461
1462 void
1463 _initialize_avr_tdep (void)
1464 {
1465 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1466
1467 /* Add a new command to allow the user to query the avr remote target for
1468 the values of the io space registers in a saner way than just using
1469 `x/NNNb ADDR`. */
1470
1471 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1472 io_registers' to signify it is not available on other platforms. */
1473
1474 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1475 _("query remote avr target for io space register values"),
1476 &infolist);
1477 }
This page took 0.060659 seconds and 4 git commands to generate.