* avr-tdep.c (avr_extract_return_value): New function.
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Contributed by Theodore A. Roth, troth@openavr.org */
23
24 /* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
26
27 #include "defs.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "inferior.h"
31 #include "symfile.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "gdb_string.h"
35
36 /* AVR Background:
37
38 (AVR micros are pure Harvard Architecture processors.)
39
40 The AVR family of microcontrollers have three distinctly different memory
41 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
42 the most part to store program instructions. The sram is 8 bits wide and is
43 used for the stack and the heap. Some devices lack sram and some can have
44 an additional external sram added on as a peripheral.
45
46 The eeprom is 8 bits wide and is used to store data when the device is
47 powered down. Eeprom is not directly accessible, it can only be accessed
48 via io-registers using a special algorithm. Accessing eeprom via gdb's
49 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
50 not included at this time.
51
52 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
53 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
54 work, the remote target must be able to handle eeprom accesses and perform
55 the address translation.]
56
57 All three memory spaces have physical addresses beginning at 0x0. In
58 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
59 bytes instead of the 16 bit wide words used by the real device for the
60 Program Counter.
61
62 In order for remote targets to work correctly, extra bits must be added to
63 addresses before they are send to the target or received from the target
64 via the remote serial protocol. The extra bits are the MSBs and are used to
65 decode which memory space the address is referring to. */
66
67 #undef XMALLOC
68 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
69
70 #undef EXTRACT_INSN
71 #define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
72
73 /* Constants: prefixed with AVR_ to avoid name space clashes */
74
75 enum
76 {
77 AVR_REG_W = 24,
78 AVR_REG_X = 26,
79 AVR_REG_Y = 28,
80 AVR_FP_REGNUM = 28,
81 AVR_REG_Z = 30,
82
83 AVR_SREG_REGNUM = 32,
84 AVR_SP_REGNUM = 33,
85 AVR_PC_REGNUM = 34,
86
87 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
88 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
89
90 AVR_PC_REG_INDEX = 35, /* index into array of registers */
91
92 AVR_MAX_PROLOGUE_SIZE = 56, /* bytes */
93
94 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
95 AVR_MAX_PUSHES = 18,
96
97 /* Number of the last pushed register. r17 for current avr-gcc */
98 AVR_LAST_PUSHED_REGNUM = 17,
99
100 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
101 bits? Do these have to match the bfd vma values?. It sure would make
102 things easier in the future if they didn't need to match.
103
104 Note: I chose these values so as to be consistent with bfd vma
105 addresses.
106
107 TRoth/2002-04-08: There is already a conflict with very large programs
108 in the mega128. The mega128 has 128K instruction bytes (64K words),
109 thus the Most Significant Bit is 0x10000 which gets masked off my
110 AVR_MEM_MASK.
111
112 The problem manifests itself when trying to set a breakpoint in a
113 function which resides in the upper half of the instruction space and
114 thus requires a 17-bit address.
115
116 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
117 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
118 but could be for some remote targets by just adding the correct offset
119 to the address and letting the remote target handle the low-level
120 details of actually accessing the eeprom. */
121
122 AVR_IMEM_START = 0x00000000, /* INSN memory */
123 AVR_SMEM_START = 0x00800000, /* SRAM memory */
124 #if 1
125 /* No eeprom mask defined */
126 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
127 #else
128 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
129 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
130 #endif
131 };
132
133 /* Any function with a frame looks like this
134 ....... <-SP POINTS HERE
135 LOCALS1 <-FP POINTS HERE
136 LOCALS0
137 SAVED FP
138 SAVED R3
139 SAVED R2
140 RET PC
141 FIRST ARG
142 SECOND ARG */
143
144 struct frame_extra_info
145 {
146 CORE_ADDR return_pc;
147 CORE_ADDR args_pointer;
148 int locals_size;
149 int framereg;
150 int framesize;
151 int is_main;
152 };
153
154 struct gdbarch_tdep
155 {
156 /* FIXME: TRoth: is there anything to put here? */
157 int foo;
158 };
159
160 /* Lookup the name of a register given it's number. */
161
162 static const char *
163 avr_register_name (int regnum)
164 {
165 static char *register_names[] = {
166 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
167 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
168 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
169 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
170 "SREG", "SP", "PC"
171 };
172 if (regnum < 0)
173 return NULL;
174 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
175 return NULL;
176 return register_names[regnum];
177 }
178
179 /* Return the GDB type object for the "standard" data type
180 of data in register N. */
181
182 static struct type *
183 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
184 {
185 if (reg_nr == AVR_PC_REGNUM)
186 return builtin_type_uint32;
187 if (reg_nr == AVR_SP_REGNUM)
188 return builtin_type_void_data_ptr;
189 else
190 return builtin_type_uint8;
191 }
192
193 /* Instruction address checks and convertions. */
194
195 static CORE_ADDR
196 avr_make_iaddr (CORE_ADDR x)
197 {
198 return ((x) | AVR_IMEM_START);
199 }
200
201 static int
202 avr_iaddr_p (CORE_ADDR x)
203 {
204 return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
205 }
206
207 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
208 devices are already up to 128KBytes of flash space.
209
210 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
211
212 static CORE_ADDR
213 avr_convert_iaddr_to_raw (CORE_ADDR x)
214 {
215 return ((x) & 0xffffffff);
216 }
217
218 /* SRAM address checks and convertions. */
219
220 static CORE_ADDR
221 avr_make_saddr (CORE_ADDR x)
222 {
223 return ((x) | AVR_SMEM_START);
224 }
225
226 static int
227 avr_saddr_p (CORE_ADDR x)
228 {
229 return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
230 }
231
232 static CORE_ADDR
233 avr_convert_saddr_to_raw (CORE_ADDR x)
234 {
235 return ((x) & 0xffffffff);
236 }
237
238 /* EEPROM address checks and convertions. I don't know if these will ever
239 actually be used, but I've added them just the same. TRoth */
240
241 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
242 programs in the mega128. */
243
244 /* static CORE_ADDR */
245 /* avr_make_eaddr (CORE_ADDR x) */
246 /* { */
247 /* return ((x) | AVR_EMEM_START); */
248 /* } */
249
250 /* static int */
251 /* avr_eaddr_p (CORE_ADDR x) */
252 /* { */
253 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
254 /* } */
255
256 /* static CORE_ADDR */
257 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
258 /* { */
259 /* return ((x) & 0xffffffff); */
260 /* } */
261
262 /* Convert from address to pointer and vice-versa. */
263
264 static void
265 avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
266 {
267 /* Is it a code address? */
268 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
269 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
270 {
271 store_unsigned_integer (buf, TYPE_LENGTH (type),
272 avr_convert_iaddr_to_raw (addr >> 1));
273 }
274 else
275 {
276 /* Strip off any upper segment bits. */
277 store_unsigned_integer (buf, TYPE_LENGTH (type),
278 avr_convert_saddr_to_raw (addr));
279 }
280 }
281
282 static CORE_ADDR
283 avr_pointer_to_address (struct type *type, const void *buf)
284 {
285 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
286
287 /* Is it a code address? */
288 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
289 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
290 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
291 return avr_make_iaddr (addr << 1);
292 else
293 return avr_make_saddr (addr);
294 }
295
296 static CORE_ADDR
297 avr_read_pc (ptid_t ptid)
298 {
299 ptid_t save_ptid;
300 CORE_ADDR pc;
301 CORE_ADDR retval;
302
303 save_ptid = inferior_ptid;
304 inferior_ptid = ptid;
305 pc = (int) read_register (AVR_PC_REGNUM);
306 inferior_ptid = save_ptid;
307 retval = avr_make_iaddr (pc);
308 return retval;
309 }
310
311 static void
312 avr_write_pc (CORE_ADDR val, ptid_t ptid)
313 {
314 ptid_t save_ptid;
315
316 save_ptid = inferior_ptid;
317 inferior_ptid = ptid;
318 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
319 inferior_ptid = save_ptid;
320 }
321
322 static CORE_ADDR
323 avr_read_sp (void)
324 {
325 return (avr_make_saddr (read_register (AVR_SP_REGNUM)));
326 }
327
328 static void
329 avr_write_sp (CORE_ADDR val)
330 {
331 write_register (AVR_SP_REGNUM, avr_convert_saddr_to_raw (val));
332 }
333
334 static CORE_ADDR
335 avr_read_fp (void)
336 {
337 CORE_ADDR fp;
338
339 fp = read_register (AVR_FP_REGNUM);
340 fp += (read_register (AVR_FP_REGNUM+1) << 8);
341
342 return (avr_make_saddr (fp));
343 }
344
345 /* avr_scan_prologue is also used as the
346 deprecated_frame_init_saved_regs().
347
348 Put here the code to store, into fi->saved_regs, the addresses of
349 the saved registers of frame described by FRAME_INFO. This
350 includes special registers such as pc and fp saved in special ways
351 in the stack frame. sp is even more special: the address we return
352 for it IS the sp for the next frame. */
353
354 /* Function: avr_scan_prologue (helper function for avr_init_extra_frame_info)
355 This function decodes a AVR function prologue to determine:
356 1) the size of the stack frame
357 2) which registers are saved on it
358 3) the offsets of saved regs
359 This information is stored in the "extra_info" field of the frame_info.
360
361 Some devices lack the sbiw instruction, so on those replace this:
362 sbiw r28, XX
363 with this:
364 subi r28,lo8(XX)
365 sbci r29,hi8(XX)
366
367 A typical AVR function prologue with a frame pointer might look like this:
368 push rXX ; saved regs
369 ...
370 push r28
371 push r29
372 in r28,__SP_L__
373 in r29,__SP_H__
374 sbiw r28,<LOCALS_SIZE>
375 in __tmp_reg__,__SREG__
376 cli
377 out __SP_H__,r29
378 out __SREG__,__tmp_reg__
379 out __SP_L__,r28
380
381 A typical AVR function prologue without a frame pointer might look like
382 this:
383 push rXX ; saved regs
384 ...
385
386 A main function prologue looks like this:
387 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
388 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
389 out __SP_H__,r29
390 out __SP_L__,r28
391
392 A signal handler prologue looks like this:
393 push __zero_reg__
394 push __tmp_reg__
395 in __tmp_reg__, __SREG__
396 push __tmp_reg__
397 clr __zero_reg__
398 push rXX ; save registers r18:r27, r30:r31
399 ...
400 push r28 ; save frame pointer
401 push r29
402 in r28, __SP_L__
403 in r29, __SP_H__
404 sbiw r28, <LOCALS_SIZE>
405 out __SP_H__, r29
406 out __SP_L__, r28
407
408 A interrupt handler prologue looks like this:
409 sei
410 push __zero_reg__
411 push __tmp_reg__
412 in __tmp_reg__, __SREG__
413 push __tmp_reg__
414 clr __zero_reg__
415 push rXX ; save registers r18:r27, r30:r31
416 ...
417 push r28 ; save frame pointer
418 push r29
419 in r28, __SP_L__
420 in r29, __SP_H__
421 sbiw r28, <LOCALS_SIZE>
422 cli
423 out __SP_H__, r29
424 sei
425 out __SP_L__, r28
426
427 A `-mcall-prologues' prologue looks like this (Note that the megas use a
428 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
429 32 bit insn and rjmp is a 16 bit insn):
430 ldi r26,lo8(<LOCALS_SIZE>)
431 ldi r27,hi8(<LOCALS_SIZE>)
432 ldi r30,pm_lo8(.L_foo_body)
433 ldi r31,pm_hi8(.L_foo_body)
434 rjmp __prologue_saves__+RRR
435 .L_foo_body: */
436
437 static void
438 avr_scan_prologue (struct frame_info *fi)
439 {
440 CORE_ADDR prologue_start;
441 CORE_ADDR prologue_end;
442 int i;
443 unsigned short insn;
444 int regno;
445 int scan_stage = 0;
446 char *name;
447 struct minimal_symbol *msymbol;
448 int prologue_len;
449 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
450 int vpc = 0;
451
452 get_frame_extra_info (fi)->framereg = AVR_SP_REGNUM;
453
454 if (find_pc_partial_function
455 (get_frame_pc (fi), &name, &prologue_start, &prologue_end))
456 {
457 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
458
459 if (sal.line == 0) /* no line info, use current PC */
460 prologue_end = get_frame_pc (fi);
461 else if (sal.end < prologue_end) /* next line begins after fn end */
462 prologue_end = sal.end; /* (probably means no prologue) */
463 }
464 else
465 /* We're in the boondocks: allow for */
466 /* 19 pushes, an add, and "mv fp,sp" */
467 prologue_end = prologue_start + AVR_MAX_PROLOGUE_SIZE;
468
469 prologue_end = min (prologue_end, get_frame_pc (fi));
470
471 /* Search the prologue looking for instructions that set up the
472 frame pointer, adjust the stack pointer, and save registers. */
473
474 get_frame_extra_info (fi)->framesize = 0;
475 prologue_len = min (prologue_end - prologue_start, AVR_MAX_PROLOGUE_SIZE);
476 read_memory (prologue_start, prologue, prologue_len);
477
478 /* Scanning main()'s prologue
479 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
480 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
481 out __SP_H__,r29
482 out __SP_L__,r28 */
483
484 if (name && strcmp ("main", name) == 0 && prologue_len == 8)
485 {
486 CORE_ADDR locals;
487 unsigned char img[] = {
488 0xde, 0xbf, /* out __SP_H__,r29 */
489 0xcd, 0xbf /* out __SP_L__,r28 */
490 };
491
492 get_frame_extra_info (fi)->framereg = AVR_FP_REGNUM;
493 insn = EXTRACT_INSN (&prologue[vpc]);
494 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
495 if ((insn & 0xf0f0) == 0xe0c0)
496 {
497 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
498 insn = EXTRACT_INSN (&prologue[vpc + 2]);
499 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
500 if ((insn & 0xf0f0) == 0xe0d0)
501 {
502 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
503 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
504 {
505 deprecated_update_frame_base_hack (fi, locals);
506
507 get_frame_extra_info (fi)->is_main = 1;
508 return;
509 }
510 }
511 }
512 }
513
514 /* Scanning `-mcall-prologues' prologue */
515
516 while (1) /* Using a while to avoid many goto's */
517 {
518 int loc_size;
519 int body_addr;
520 unsigned num_pushes;
521
522 insn = EXTRACT_INSN (&prologue[vpc]);
523 /* ldi r26,<LOCALS_SIZE> */
524 if ((insn & 0xf0f0) != 0xe0a0)
525 break;
526 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
527
528 insn = EXTRACT_INSN (&prologue[vpc + 2]);
529 /* ldi r27,<LOCALS_SIZE> / 256 */
530 if ((insn & 0xf0f0) != 0xe0b0)
531 break;
532 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
533
534 insn = EXTRACT_INSN (&prologue[vpc + 4]);
535 /* ldi r30,pm_lo8(.L_foo_body) */
536 if ((insn & 0xf0f0) != 0xe0e0)
537 break;
538 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
539
540 insn = EXTRACT_INSN (&prologue[vpc + 6]);
541 /* ldi r31,pm_hi8(.L_foo_body) */
542 if ((insn & 0xf0f0) != 0xe0f0)
543 break;
544 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
545
546 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
547 if (!msymbol)
548 break;
549
550 /* FIXME: prologue for mega have a JMP instead of RJMP */
551 insn = EXTRACT_INSN (&prologue[vpc + 8]);
552 /* rjmp __prologue_saves__+RRR */
553 if ((insn & 0xf000) == 0xc000)
554 {
555 /* Extract PC relative offset from RJMP */
556 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
557 /* Convert offset to byte addressable mode */
558 i *= 2;
559 /* Destination address */
560 i += prologue_start + 10;
561
562 if (body_addr != (prologue_start + 10) / 2)
563 break;
564 }
565 /* jmp __prologue_saves__+RRR */
566 else if ((insn & 0xfe0e) == 0x940c)
567 {
568 /* Extract absolute PC address from JMP */
569 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
570 | (EXTRACT_INSN (&prologue[vpc + 10]) & 0xffff));
571 /* Convert address to byte addressable mode */
572 i *= 2;
573
574 if (body_addr != (prologue_start + 12)/2)
575 break;
576 }
577 else
578 break;
579
580 /* Resovle offset (in words) from __prologue_saves__ symbol.
581 Which is a pushes count in `-mcall-prologues' mode */
582 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
583
584 if (num_pushes > AVR_MAX_PUSHES)
585 num_pushes = 0;
586
587 if (num_pushes)
588 {
589 int from;
590 get_frame_saved_regs (fi)[AVR_FP_REGNUM + 1] = num_pushes;
591 if (num_pushes >= 2)
592 get_frame_saved_regs (fi)[AVR_FP_REGNUM] = num_pushes - 1;
593 i = 0;
594 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
595 from <= AVR_LAST_PUSHED_REGNUM; ++from)
596 get_frame_saved_regs (fi)[from] = ++i;
597 }
598 get_frame_extra_info (fi)->locals_size = loc_size;
599 get_frame_extra_info (fi)->framesize = loc_size + num_pushes;
600 get_frame_extra_info (fi)->framereg = AVR_FP_REGNUM;
601 return;
602 }
603
604 /* Scan interrupt or signal function */
605
606 if (prologue_len >= 12)
607 {
608 unsigned char img[] = {
609 0x78, 0x94, /* sei */
610 0x1f, 0x92, /* push r1 */
611 0x0f, 0x92, /* push r0 */
612 0x0f, 0xb6, /* in r0,0x3f SREG */
613 0x0f, 0x92, /* push r0 */
614 0x11, 0x24 /* clr r1 */
615 };
616 if (memcmp (prologue, img, sizeof (img)) == 0)
617 {
618 vpc += sizeof (img);
619 get_frame_saved_regs (fi)[0] = 2;
620 get_frame_saved_regs (fi)[1] = 1;
621 get_frame_extra_info (fi)->framesize += 3;
622 }
623 else if (memcmp (img + 1, prologue, sizeof (img) - 1) == 0)
624 {
625 vpc += sizeof (img) - 1;
626 get_frame_saved_regs (fi)[0] = 2;
627 get_frame_saved_regs (fi)[1] = 1;
628 get_frame_extra_info (fi)->framesize += 3;
629 }
630 }
631
632 /* First stage of the prologue scanning.
633 Scan pushes */
634
635 for (; vpc <= prologue_len; vpc += 2)
636 {
637 insn = EXTRACT_INSN (&prologue[vpc]);
638 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
639 {
640 /* Bits 4-9 contain a mask for registers R0-R32. */
641 regno = (insn & 0x1f0) >> 4;
642 ++get_frame_extra_info (fi)->framesize;
643 get_frame_saved_regs (fi)[regno] = get_frame_extra_info (fi)->framesize;
644 scan_stage = 1;
645 }
646 else
647 break;
648 }
649
650 /* Second stage of the prologue scanning.
651 Scan:
652 in r28,__SP_L__
653 in r29,__SP_H__ */
654
655 if (scan_stage == 1 && vpc + 4 <= prologue_len)
656 {
657 unsigned char img[] = {
658 0xcd, 0xb7, /* in r28,__SP_L__ */
659 0xde, 0xb7 /* in r29,__SP_H__ */
660 };
661 unsigned short insn1;
662
663 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
664 {
665 vpc += 4;
666 get_frame_extra_info (fi)->framereg = AVR_FP_REGNUM;
667 scan_stage = 2;
668 }
669 }
670
671 /* Third stage of the prologue scanning. (Really two stages)
672 Scan for:
673 sbiw r28,XX or subi r28,lo8(XX)
674 sbci r29,hi8(XX)
675 in __tmp_reg__,__SREG__
676 cli
677 out __SP_H__,r29
678 out __SREG__,__tmp_reg__
679 out __SP_L__,r28 */
680
681 if (scan_stage == 2 && vpc + 12 <= prologue_len)
682 {
683 int locals_size = 0;
684 unsigned char img[] = {
685 0x0f, 0xb6, /* in r0,0x3f */
686 0xf8, 0x94, /* cli */
687 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
688 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
689 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
690 };
691 unsigned char img_sig[] = {
692 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
693 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
694 };
695 unsigned char img_int[] = {
696 0xf8, 0x94, /* cli */
697 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
698 0x78, 0x94, /* sei */
699 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
700 };
701
702 insn = EXTRACT_INSN (&prologue[vpc]);
703 vpc += 2;
704 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
705 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
706 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
707 {
708 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
709 insn = EXTRACT_INSN (&prologue[vpc]);
710 vpc += 2;
711 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
712 }
713 else
714 return;
715 get_frame_extra_info (fi)->locals_size = locals_size;
716 get_frame_extra_info (fi)->framesize += locals_size;
717 }
718 }
719
720 /* This function actually figures out the frame address for a given pc and
721 sp. This is tricky because we sometimes don't use an explicit
722 frame pointer, and the previous stack pointer isn't necessarily recorded
723 on the stack. The only reliable way to get this info is to
724 examine the prologue. */
725
726 static void
727 avr_init_extra_frame_info (int fromleaf, struct frame_info *fi)
728 {
729 int reg;
730
731 if (get_next_frame (fi))
732 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
733
734 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
735 frame_saved_regs_zalloc (fi);
736
737 get_frame_extra_info (fi)->return_pc = 0;
738 get_frame_extra_info (fi)->args_pointer = 0;
739 get_frame_extra_info (fi)->locals_size = 0;
740 get_frame_extra_info (fi)->framereg = 0;
741 get_frame_extra_info (fi)->framesize = 0;
742 get_frame_extra_info (fi)->is_main = 0;
743
744 avr_scan_prologue (fi);
745
746 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
747 get_frame_base (fi)))
748 {
749 /* We need to setup fi->frame here because call_function_by_hand
750 gets it wrong by assuming it's always FP. */
751 deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), get_frame_base (fi),
752 AVR_PC_REGNUM));
753 }
754 else if (!get_next_frame (fi))
755 /* this is the innermost frame? */
756 deprecated_update_frame_base_hack (fi, read_register (get_frame_extra_info (fi)->framereg));
757 else if (get_frame_extra_info (fi)->is_main != 1)
758 /* not the innermost frame, not `main' */
759 /* If we have an next frame, the callee saved it. */
760 {
761 struct frame_info *next_fi = get_next_frame (fi);
762 if (get_frame_extra_info (fi)->framereg == AVR_SP_REGNUM)
763 deprecated_update_frame_base_hack (fi, (get_frame_base (next_fi)
764 + 2 /* ret addr */
765 + get_frame_extra_info (next_fi)->framesize));
766 /* FIXME: I don't analyse va_args functions */
767 else
768 {
769 CORE_ADDR fp = 0;
770 CORE_ADDR fp1 = 0;
771 unsigned int fp_low, fp_high;
772
773 /* Scan all frames */
774 for (; next_fi; next_fi = get_next_frame (next_fi))
775 {
776 /* look for saved AVR_FP_REGNUM */
777 if (get_frame_saved_regs (next_fi)[AVR_FP_REGNUM] && !fp)
778 fp = get_frame_saved_regs (next_fi)[AVR_FP_REGNUM];
779 /* look for saved AVR_FP_REGNUM + 1 */
780 if (get_frame_saved_regs (next_fi)[AVR_FP_REGNUM + 1] && !fp1)
781 fp1 = get_frame_saved_regs (next_fi)[AVR_FP_REGNUM + 1];
782 }
783 fp_low = (fp ? read_memory_unsigned_integer (avr_make_saddr (fp), 1)
784 : read_register (AVR_FP_REGNUM)) & 0xff;
785 fp_high =
786 (fp1 ? read_memory_unsigned_integer (avr_make_saddr (fp1), 1) :
787 read_register (AVR_FP_REGNUM + 1)) & 0xff;
788 deprecated_update_frame_base_hack (fi, fp_low | (fp_high << 8));
789 }
790 }
791
792 /* TRoth: Do we want to do this if we are in main? I don't think we should
793 since return_pc makes no sense when we are in main. */
794
795 if ((get_frame_pc (fi)) && (get_frame_extra_info (fi)->is_main == 0))
796 /* We are not in CALL_DUMMY */
797 {
798 CORE_ADDR addr;
799 int i;
800
801 addr = get_frame_base (fi) + get_frame_extra_info (fi)->framesize + 1;
802
803 /* Return address in stack in different endianness */
804
805 get_frame_extra_info (fi)->return_pc =
806 read_memory_unsigned_integer (avr_make_saddr (addr), 1) << 8;
807 get_frame_extra_info (fi)->return_pc |=
808 read_memory_unsigned_integer (avr_make_saddr (addr + 1), 1);
809
810 /* This return address in words,
811 must be converted to the bytes address */
812 get_frame_extra_info (fi)->return_pc *= 2;
813
814 /* Resolve a pushed registers addresses */
815 for (i = 0; i < NUM_REGS; i++)
816 {
817 if (get_frame_saved_regs (fi)[i])
818 get_frame_saved_regs (fi)[i] = addr - get_frame_saved_regs (fi)[i];
819 }
820 }
821 }
822
823 /* Restore the machine to the state it had before the current frame was
824 created. Usually used either by the "RETURN" command, or by
825 call_function_by_hand after the dummy_frame is finished. */
826
827 static void
828 avr_pop_frame (void)
829 {
830 unsigned regnum;
831 CORE_ADDR saddr;
832 struct frame_info *frame = get_current_frame ();
833
834 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
835 get_frame_base (frame),
836 get_frame_base (frame)))
837 {
838 generic_pop_dummy_frame ();
839 }
840 else
841 {
842 /* TRoth: Why only loop over 8 registers? */
843
844 for (regnum = 0; regnum < 8; regnum++)
845 {
846 /* Don't forget AVR_SP_REGNUM in a frame_saved_regs struct is the
847 actual value we want, not the address of the value we want. */
848 if (get_frame_saved_regs (frame)[regnum] && regnum != AVR_SP_REGNUM)
849 {
850 saddr = avr_make_saddr (get_frame_saved_regs (frame)[regnum]);
851 write_register (regnum,
852 read_memory_unsigned_integer (saddr, 1));
853 }
854 else if (get_frame_saved_regs (frame)[regnum] && regnum == AVR_SP_REGNUM)
855 write_register (regnum, get_frame_base (frame) + 2);
856 }
857
858 /* Don't forget the update the PC too! */
859 write_pc (get_frame_extra_info (frame)->return_pc);
860 }
861 flush_cached_frames ();
862 }
863
864 /* Return the saved PC from this frame. */
865
866 static CORE_ADDR
867 avr_frame_saved_pc (struct frame_info *frame)
868 {
869 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
870 get_frame_base (frame),
871 get_frame_base (frame)))
872 return deprecated_read_register_dummy (get_frame_pc (frame),
873 get_frame_base (frame),
874 AVR_PC_REGNUM);
875 else
876 return get_frame_extra_info (frame)->return_pc;
877 }
878
879 static CORE_ADDR
880 avr_saved_pc_after_call (struct frame_info *frame)
881 {
882 unsigned char m1, m2;
883 unsigned int sp = read_register (AVR_SP_REGNUM);
884 m1 = read_memory_unsigned_integer (avr_make_saddr (sp + 1), 1);
885 m2 = read_memory_unsigned_integer (avr_make_saddr (sp + 2), 1);
886 return (m2 | (m1 << 8)) * 2;
887 }
888
889 /* Returns the return address for a dummy. */
890
891 static CORE_ADDR
892 avr_call_dummy_address (void)
893 {
894 return entry_point_address ();
895 }
896
897 /* Setup the return address for a dummy frame, as called by
898 call_function_by_hand. Only necessary when you are using an empty
899 CALL_DUMMY. */
900
901 static CORE_ADDR
902 avr_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
903 {
904 unsigned char buf[2];
905 int wordsize = 2;
906 #if 0
907 struct minimal_symbol *msymbol;
908 CORE_ADDR mon_brk;
909 #endif
910
911 buf[0] = 0;
912 buf[1] = 0;
913 sp -= wordsize;
914 write_memory (sp + 1, buf, 2);
915
916 #if 0
917 /* FIXME: TRoth/2002-02-18: This should probably be removed since it's a
918 left-over from Denis' original patch which used avr-mon for the target
919 instead of the generic remote target. */
920 if ((strcmp (target_shortname, "avr-mon") == 0)
921 && (msymbol = lookup_minimal_symbol ("gdb_break", NULL, NULL)))
922 {
923 mon_brk = SYMBOL_VALUE_ADDRESS (msymbol);
924 store_unsigned_integer (buf, wordsize, mon_brk / 2);
925 sp -= wordsize;
926 write_memory (sp + 1, buf + 1, 1);
927 write_memory (sp + 2, buf, 1);
928 }
929 #endif
930 return sp;
931 }
932
933 static CORE_ADDR
934 avr_skip_prologue (CORE_ADDR pc)
935 {
936 CORE_ADDR func_addr, func_end;
937 struct symtab_and_line sal;
938
939 /* See what the symbol table says */
940
941 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
942 {
943 sal = find_pc_line (func_addr, 0);
944
945 /* troth/2002-08-05: For some very simple functions, gcc doesn't
946 generate a prologue and the sal.end ends up being the 2-byte ``ret''
947 instruction at the end of the function, but func_end ends up being
948 the address of the first instruction of the _next_ function. By
949 adjusting func_end by 2 bytes, we can catch these functions and not
950 return sal.end if it is the ``ret'' instruction. */
951
952 if (sal.line != 0 && sal.end < (func_end-2))
953 return sal.end;
954 }
955
956 /* Either we didn't find the start of this function (nothing we can do),
957 or there's no line info, or the line after the prologue is after
958 the end of the function (there probably isn't a prologue). */
959
960 return pc;
961 }
962
963 static CORE_ADDR
964 avr_frame_address (struct frame_info *fi)
965 {
966 return avr_make_saddr (get_frame_base (fi));
967 }
968
969 /* Given a GDB frame, determine the address of the calling function's
970 frame. This will be used to create a new GDB frame struct, and
971 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
972 will be called for the new frame.
973
974 For us, the frame address is its stack pointer value, so we look up
975 the function prologue to determine the caller's sp value, and return it. */
976
977 static CORE_ADDR
978 avr_frame_chain (struct frame_info *frame)
979 {
980 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
981 get_frame_base (frame),
982 get_frame_base (frame)))
983 {
984 /* initialize the return_pc now */
985 get_frame_extra_info (frame)->return_pc
986 = deprecated_read_register_dummy (get_frame_pc (frame),
987 get_frame_base (frame),
988 AVR_PC_REGNUM);
989 return get_frame_base (frame);
990 }
991 return (get_frame_extra_info (frame)->is_main ? 0
992 : get_frame_base (frame) + get_frame_extra_info (frame)->framesize + 2 /* ret addr */ );
993 }
994
995 /* Store the address of the place in which to copy the structure the
996 subroutine will return. This is called from call_function.
997
998 We store structs through a pointer passed in the first Argument
999 register. */
1000
1001 static void
1002 avr_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1003 {
1004 write_register (0, addr);
1005 }
1006
1007 /* Setup the function arguments for calling a function in the inferior.
1008
1009 On the AVR architecture, there are 18 registers (R25 to R8) which are
1010 dedicated for passing function arguments. Up to the first 18 arguments
1011 (depending on size) may go into these registers. The rest go on the stack.
1012
1013 Arguments that are larger than WORDSIZE bytes will be split between two or
1014 more registers as available, but will NOT be split between a register and
1015 the stack.
1016
1017 An exceptional case exists for struct arguments (and possibly other
1018 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1019 not a multiple of WORDSIZE bytes. In this case the argument is never split
1020 between the registers and the stack, but instead is copied in its entirety
1021 onto the stack, AND also copied into as many registers as there is room
1022 for. In other words, space in registers permitting, two copies of the same
1023 argument are passed in. As far as I can tell, only the one on the stack is
1024 used, although that may be a function of the level of compiler
1025 optimization. I suspect this is a compiler bug. Arguments of these odd
1026 sizes are left-justified within the word (as opposed to arguments smaller
1027 than WORDSIZE bytes, which are right-justified).
1028
1029 If the function is to return an aggregate type such as a struct, the caller
1030 must allocate space into which the callee will copy the return value. In
1031 this case, a pointer to the return value location is passed into the callee
1032 in register R0, which displaces one of the other arguments passed in via
1033 registers R0 to R2. */
1034
1035 static CORE_ADDR
1036 avr_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1037 int struct_return, CORE_ADDR struct_addr)
1038 {
1039 int stack_alloc, stack_offset;
1040 int wordsize;
1041 int argreg;
1042 int argnum;
1043 struct type *type;
1044 CORE_ADDR regval;
1045 char *val;
1046 char valbuf[4];
1047 int len;
1048
1049 wordsize = 1;
1050 #if 0
1051 /* Now make sure there's space on the stack */
1052 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1053 stack_alloc += TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1054 sp -= stack_alloc; /* make room on stack for args */
1055 /* we may over-allocate a little here, but that won't hurt anything */
1056 #endif
1057 argreg = 25;
1058 if (struct_return) /* "struct return" pointer takes up one argreg */
1059 {
1060 write_register (--argreg, struct_addr);
1061 }
1062
1063 /* Now load as many as possible of the first arguments into registers, and
1064 push the rest onto the stack. There are 3N bytes in three registers
1065 available. Loop thru args from first to last. */
1066
1067 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1068 {
1069 type = VALUE_TYPE (args[argnum]);
1070 len = TYPE_LENGTH (type);
1071 val = (char *) VALUE_CONTENTS (args[argnum]);
1072
1073 /* NOTE WELL!!!!! This is not an "else if" clause!!! That's because
1074 some *&^%$ things get passed on the stack AND in the registers! */
1075 while (len > 0)
1076 { /* there's room in registers */
1077 len -= wordsize;
1078 regval = extract_unsigned_integer (val + len, wordsize);
1079 write_register (argreg--, regval);
1080 }
1081 }
1082 return sp;
1083 }
1084
1085 /* Not all avr devices support the BREAK insn. Those that don't should treat
1086 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
1087 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
1088
1089 static const unsigned char *
1090 avr_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
1091 {
1092 static unsigned char avr_break_insn [] = { 0x98, 0x95 };
1093 *lenptr = sizeof (avr_break_insn);
1094 return avr_break_insn;
1095 }
1096
1097 /* Given a return value in `regbuf' with a type `valtype',
1098 extract and copy its value into `valbuf'.
1099
1100 Return values are always passed via registers r25:r24:... */
1101
1102 static void
1103 avr_extract_return_value (struct type *type, struct regcache *regcache,
1104 void *valbuf)
1105 {
1106 if (TYPE_LENGTH (type) == 1)
1107 {
1108 ULONGEST c;
1109
1110 /* For single byte return values, r25 is always cleared, so we can
1111 ignore it. */
1112 regcache_cooked_read_unsigned (regcache, 24, &c);
1113 store_unsigned_integer (valbuf, 1, c);
1114 }
1115 else
1116 {
1117 int i;
1118 /* The MSB of the return value is always in r25, calculate which
1119 register holds the LSB. */
1120 int lsb_reg = 25 - TYPE_LENGTH (type) + 1;
1121
1122 for (i=0; i< TYPE_LENGTH (type); i++)
1123 {
1124 regcache_cooked_read (regcache, lsb_reg + i,
1125 (bfd_byte *) valbuf + i);
1126 }
1127 }
1128 }
1129
1130 /* Initialize the gdbarch structure for the AVR's. */
1131
1132 static struct gdbarch *
1133 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1134 {
1135 struct gdbarch *gdbarch;
1136 struct gdbarch_tdep *tdep;
1137
1138 /* Find a candidate among the list of pre-declared architectures. */
1139 arches = gdbarch_list_lookup_by_info (arches, &info);
1140 if (arches != NULL)
1141 return arches->gdbarch;
1142
1143 /* None found, create a new architecture from the information provided. */
1144 tdep = XMALLOC (struct gdbarch_tdep);
1145 gdbarch = gdbarch_alloc (&info, tdep);
1146
1147 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1148 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1149 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1150
1151 /* If we ever need to differentiate the device types, do it here. */
1152 switch (info.bfd_arch_info->mach)
1153 {
1154 case bfd_mach_avr1:
1155 case bfd_mach_avr2:
1156 case bfd_mach_avr3:
1157 case bfd_mach_avr4:
1158 case bfd_mach_avr5:
1159 break;
1160 }
1161
1162 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1163 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1164 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1165 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1166 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1167 set_gdbarch_addr_bit (gdbarch, 32);
1168 set_gdbarch_bfd_vma_bit (gdbarch, 32); /* FIXME: TRoth/2002-02-18: Is this needed? */
1169
1170 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1171 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1172 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1173
1174 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1175 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1176 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1177
1178 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1179 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1180 set_gdbarch_deprecated_target_read_fp (gdbarch, avr_read_fp);
1181 set_gdbarch_read_sp (gdbarch, avr_read_sp);
1182 set_gdbarch_deprecated_dummy_write_sp (gdbarch, avr_write_sp);
1183
1184 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1185
1186 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1187 set_gdbarch_deprecated_fp_regnum (gdbarch, AVR_FP_REGNUM);
1188 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1189
1190 set_gdbarch_register_name (gdbarch, avr_register_name);
1191 set_gdbarch_register_type (gdbarch, avr_register_type);
1192
1193 set_gdbarch_extract_return_value (gdbarch, avr_extract_return_value);
1194 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1195
1196 set_gdbarch_call_dummy_address (gdbarch, avr_call_dummy_address);
1197
1198 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1199 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1200 set_gdbarch_deprecated_push_arguments (gdbarch, avr_push_arguments);
1201 set_gdbarch_deprecated_push_return_address (gdbarch, avr_push_return_address);
1202 set_gdbarch_deprecated_pop_frame (gdbarch, avr_pop_frame);
1203
1204 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
1205 set_gdbarch_deprecated_store_struct_return (gdbarch, avr_store_struct_return);
1206
1207 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, avr_scan_prologue);
1208 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, avr_init_extra_frame_info);
1209 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1210 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1211
1212 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1213 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1214
1215 set_gdbarch_function_start_offset (gdbarch, 0);
1216
1217 set_gdbarch_frame_args_skip (gdbarch, 0);
1218 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue); /* ??? */
1219 set_gdbarch_deprecated_frame_chain (gdbarch, avr_frame_chain);
1220 set_gdbarch_deprecated_frame_saved_pc (gdbarch, avr_frame_saved_pc);
1221 set_gdbarch_frame_args_address (gdbarch, avr_frame_address);
1222 set_gdbarch_frame_locals_address (gdbarch, avr_frame_address);
1223 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, avr_saved_pc_after_call);
1224
1225 return gdbarch;
1226 }
1227
1228 /* Send a query request to the avr remote target asking for values of the io
1229 registers. If args parameter is not NULL, then the user has requested info
1230 on a specific io register [This still needs implemented and is ignored for
1231 now]. The query string should be one of these forms:
1232
1233 "Ravr.io_reg" -> reply is "NN" number of io registers
1234
1235 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1236 registers to be read. The reply should be "<NAME>,VV;" for each io register
1237 where, <NAME> is a string, and VV is the hex value of the register.
1238
1239 All io registers are 8-bit. */
1240
1241 static void
1242 avr_io_reg_read_command (char *args, int from_tty)
1243 {
1244 int bufsiz = 0;
1245 char buf[400];
1246 char query[400];
1247 char *p;
1248 unsigned int nreg = 0;
1249 unsigned int val;
1250 int i, j, k, step;
1251
1252 if (!current_target.to_query)
1253 {
1254 fprintf_unfiltered (gdb_stderr,
1255 "ERR: info io_registers NOT supported by current "
1256 "target\n");
1257 return;
1258 }
1259
1260 /* Just get the maximum buffer size. */
1261 target_query ((int) 'R', 0, 0, &bufsiz);
1262 if (bufsiz > sizeof (buf))
1263 bufsiz = sizeof (buf);
1264
1265 /* Find out how many io registers the target has. */
1266 strcpy (query, "avr.io_reg");
1267 target_query ((int) 'R', query, buf, &bufsiz);
1268
1269 if (strncmp (buf, "", bufsiz) == 0)
1270 {
1271 fprintf_unfiltered (gdb_stderr,
1272 "info io_registers NOT supported by target\n");
1273 return;
1274 }
1275
1276 if (sscanf (buf, "%x", &nreg) != 1)
1277 {
1278 fprintf_unfiltered (gdb_stderr,
1279 "Error fetching number of io registers\n");
1280 return;
1281 }
1282
1283 reinitialize_more_filter ();
1284
1285 printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1286
1287 /* only fetch up to 8 registers at a time to keep the buffer small */
1288 step = 8;
1289
1290 for (i = 0; i < nreg; i += step)
1291 {
1292 /* how many registers this round? */
1293 j = step;
1294 if ((i+j) >= nreg)
1295 j = nreg - i; /* last block is less than 8 registers */
1296
1297 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1298 target_query ((int) 'R', query, buf, &bufsiz);
1299
1300 p = buf;
1301 for (k = i; k < (i + j); k++)
1302 {
1303 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1304 {
1305 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1306 while ((*p != ';') && (*p != '\0'))
1307 p++;
1308 p++; /* skip over ';' */
1309 if (*p == '\0')
1310 break;
1311 }
1312 }
1313 }
1314 }
1315
1316 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1317
1318 void
1319 _initialize_avr_tdep (void)
1320 {
1321 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1322
1323 /* Add a new command to allow the user to query the avr remote target for
1324 the values of the io space registers in a saner way than just using
1325 `x/NNNb ADDR`. */
1326
1327 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1328 io_registers' to signify it is not available on other platforms. */
1329
1330 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1331 "query remote avr target for io space register values", &infolist);
1332 }
This page took 0.06131 seconds and 5 git commands to generate.