* avr-tdep.c: Include frame.h, frame-unwind.h, frame-base.h, and
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Contributed by Theodore A. Roth, troth@openavr.org */
23
24 /* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
26
27 #include "defs.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "frame-base.h"
31 #include "trad-frame.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "gdb_string.h"
39
40 /* AVR Background:
41
42 (AVR micros are pure Harvard Architecture processors.)
43
44 The AVR family of microcontrollers have three distinctly different memory
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
48 an additional external sram added on as a peripheral.
49
50 The eeprom is 8 bits wide and is used to store data when the device is
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
55
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
60
61 All three memory spaces have physical addresses beginning at 0x0. In
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
64 Program Counter.
65
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
70
71 #undef XMALLOC
72 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
73
74 #undef EXTRACT_INSN
75 #define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
76
77 /* Constants: prefixed with AVR_ to avoid name space clashes */
78
79 enum
80 {
81 AVR_REG_W = 24,
82 AVR_REG_X = 26,
83 AVR_REG_Y = 28,
84 AVR_FP_REGNUM = 28,
85 AVR_REG_Z = 30,
86
87 AVR_SREG_REGNUM = 32,
88 AVR_SP_REGNUM = 33,
89 AVR_PC_REGNUM = 34,
90
91 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
92 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
93
94 AVR_PC_REG_INDEX = 35, /* index into array of registers */
95
96 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
97
98 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
99 AVR_MAX_PUSHES = 18,
100
101 /* Number of the last pushed register. r17 for current avr-gcc */
102 AVR_LAST_PUSHED_REGNUM = 17,
103
104 AVR_ARG1_REGNUM = 24, /* Single byte argument */
105 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
106
107 AVR_RET1_REGNUM = 24, /* Single byte return value */
108 AVR_RETN_REGNUM = 25, /* Multi byte return value */
109
110 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
111 bits? Do these have to match the bfd vma values?. It sure would make
112 things easier in the future if they didn't need to match.
113
114 Note: I chose these values so as to be consistent with bfd vma
115 addresses.
116
117 TRoth/2002-04-08: There is already a conflict with very large programs
118 in the mega128. The mega128 has 128K instruction bytes (64K words),
119 thus the Most Significant Bit is 0x10000 which gets masked off my
120 AVR_MEM_MASK.
121
122 The problem manifests itself when trying to set a breakpoint in a
123 function which resides in the upper half of the instruction space and
124 thus requires a 17-bit address.
125
126 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
127 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
128 but could be for some remote targets by just adding the correct offset
129 to the address and letting the remote target handle the low-level
130 details of actually accessing the eeprom. */
131
132 AVR_IMEM_START = 0x00000000, /* INSN memory */
133 AVR_SMEM_START = 0x00800000, /* SRAM memory */
134 #if 1
135 /* No eeprom mask defined */
136 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
137 #else
138 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
139 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
140 #endif
141 };
142
143 /* Prologue types:
144
145 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
146 causes the generation of the CALL type prologues). */
147
148 enum {
149 AVR_PROLOGUE_NONE, /* No prologue */
150 AVR_PROLOGUE_NORMAL,
151 AVR_PROLOGUE_CALL, /* -mcall-prologues */
152 AVR_PROLOGUE_MAIN,
153 AVR_PROLOGUE_INTR, /* interrupt handler */
154 AVR_PROLOGUE_SIG, /* signal handler */
155 };
156
157 /* Any function with a frame looks like this
158 ....... <-SP POINTS HERE
159 LOCALS1 <-FP POINTS HERE
160 LOCALS0
161 SAVED FP
162 SAVED R3
163 SAVED R2
164 RET PC
165 FIRST ARG
166 SECOND ARG */
167
168 struct avr_unwind_cache
169 {
170 /* The previous frame's inner most stack address. Used as this
171 frame ID's stack_addr. */
172 CORE_ADDR prev_sp;
173 /* The frame's base, optionally used by the high-level debug info. */
174 CORE_ADDR base;
175 int size;
176 int prologue_type;
177 /* Table indicating the location of each and every register. */
178 struct trad_frame_saved_reg *saved_regs;
179 };
180
181 struct gdbarch_tdep
182 {
183 /* FIXME: TRoth: is there anything to put here? */
184 int foo;
185 };
186
187 /* Lookup the name of a register given it's number. */
188
189 static const char *
190 avr_register_name (int regnum)
191 {
192 static char *register_names[] = {
193 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
194 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
195 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
196 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
197 "SREG", "SP", "PC"
198 };
199 if (regnum < 0)
200 return NULL;
201 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
202 return NULL;
203 return register_names[regnum];
204 }
205
206 /* Return the GDB type object for the "standard" data type
207 of data in register N. */
208
209 static struct type *
210 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
211 {
212 if (reg_nr == AVR_PC_REGNUM)
213 return builtin_type_uint32;
214 if (reg_nr == AVR_SP_REGNUM)
215 return builtin_type_void_data_ptr;
216 else
217 return builtin_type_uint8;
218 }
219
220 /* Instruction address checks and convertions. */
221
222 static CORE_ADDR
223 avr_make_iaddr (CORE_ADDR x)
224 {
225 return ((x) | AVR_IMEM_START);
226 }
227
228 static int
229 avr_iaddr_p (CORE_ADDR x)
230 {
231 return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
232 }
233
234 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
235 devices are already up to 128KBytes of flash space.
236
237 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
238
239 static CORE_ADDR
240 avr_convert_iaddr_to_raw (CORE_ADDR x)
241 {
242 return ((x) & 0xffffffff);
243 }
244
245 /* SRAM address checks and convertions. */
246
247 static CORE_ADDR
248 avr_make_saddr (CORE_ADDR x)
249 {
250 return ((x) | AVR_SMEM_START);
251 }
252
253 static int
254 avr_saddr_p (CORE_ADDR x)
255 {
256 return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
257 }
258
259 static CORE_ADDR
260 avr_convert_saddr_to_raw (CORE_ADDR x)
261 {
262 return ((x) & 0xffffffff);
263 }
264
265 /* EEPROM address checks and convertions. I don't know if these will ever
266 actually be used, but I've added them just the same. TRoth */
267
268 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
269 programs in the mega128. */
270
271 /* static CORE_ADDR */
272 /* avr_make_eaddr (CORE_ADDR x) */
273 /* { */
274 /* return ((x) | AVR_EMEM_START); */
275 /* } */
276
277 /* static int */
278 /* avr_eaddr_p (CORE_ADDR x) */
279 /* { */
280 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
281 /* } */
282
283 /* static CORE_ADDR */
284 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
285 /* { */
286 /* return ((x) & 0xffffffff); */
287 /* } */
288
289 /* Convert from address to pointer and vice-versa. */
290
291 static void
292 avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
293 {
294 /* Is it a code address? */
295 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
296 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
297 {
298 store_unsigned_integer (buf, TYPE_LENGTH (type),
299 avr_convert_iaddr_to_raw (addr >> 1));
300 }
301 else
302 {
303 /* Strip off any upper segment bits. */
304 store_unsigned_integer (buf, TYPE_LENGTH (type),
305 avr_convert_saddr_to_raw (addr));
306 }
307 }
308
309 static CORE_ADDR
310 avr_pointer_to_address (struct type *type, const void *buf)
311 {
312 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
313
314 /* Is it a code address? */
315 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
316 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
317 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
318 return avr_make_iaddr (addr << 1);
319 else
320 return avr_make_saddr (addr);
321 }
322
323 static CORE_ADDR
324 avr_read_pc (ptid_t ptid)
325 {
326 ptid_t save_ptid;
327 CORE_ADDR pc;
328 CORE_ADDR retval;
329
330 save_ptid = inferior_ptid;
331 inferior_ptid = ptid;
332 pc = (int) read_register (AVR_PC_REGNUM);
333 inferior_ptid = save_ptid;
334 retval = avr_make_iaddr (pc);
335 return retval;
336 }
337
338 static void
339 avr_write_pc (CORE_ADDR val, ptid_t ptid)
340 {
341 ptid_t save_ptid;
342
343 save_ptid = inferior_ptid;
344 inferior_ptid = ptid;
345 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
346 inferior_ptid = save_ptid;
347 }
348
349 static CORE_ADDR
350 avr_read_sp (void)
351 {
352 return (avr_make_saddr (read_register (AVR_SP_REGNUM)));
353 }
354
355 static int
356 avr_scan_arg_moves (int vpc, unsigned char *prologue)
357 {
358 unsigned short insn;
359
360 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
361 {
362 insn = EXTRACT_INSN (&prologue[vpc]);
363 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
364 continue;
365 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
366 continue;
367 else
368 break;
369 }
370
371 return vpc;
372 }
373
374 /* Function: avr_scan_prologue
375
376 This function decodes an AVR function prologue to determine:
377 1) the size of the stack frame
378 2) which registers are saved on it
379 3) the offsets of saved regs
380 This information is stored in the avr_unwind_cache structure.
381
382 Some devices lack the sbiw instruction, so on those replace this:
383 sbiw r28, XX
384 with this:
385 subi r28,lo8(XX)
386 sbci r29,hi8(XX)
387
388 A typical AVR function prologue with a frame pointer might look like this:
389 push rXX ; saved regs
390 ...
391 push r28
392 push r29
393 in r28,__SP_L__
394 in r29,__SP_H__
395 sbiw r28,<LOCALS_SIZE>
396 in __tmp_reg__,__SREG__
397 cli
398 out __SP_H__,r29
399 out __SREG__,__tmp_reg__
400 out __SP_L__,r28
401
402 A typical AVR function prologue without a frame pointer might look like
403 this:
404 push rXX ; saved regs
405 ...
406
407 A main function prologue looks like this:
408 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
409 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
410 out __SP_H__,r29
411 out __SP_L__,r28
412
413 A signal handler prologue looks like this:
414 push __zero_reg__
415 push __tmp_reg__
416 in __tmp_reg__, __SREG__
417 push __tmp_reg__
418 clr __zero_reg__
419 push rXX ; save registers r18:r27, r30:r31
420 ...
421 push r28 ; save frame pointer
422 push r29
423 in r28, __SP_L__
424 in r29, __SP_H__
425 sbiw r28, <LOCALS_SIZE>
426 out __SP_H__, r29
427 out __SP_L__, r28
428
429 A interrupt handler prologue looks like this:
430 sei
431 push __zero_reg__
432 push __tmp_reg__
433 in __tmp_reg__, __SREG__
434 push __tmp_reg__
435 clr __zero_reg__
436 push rXX ; save registers r18:r27, r30:r31
437 ...
438 push r28 ; save frame pointer
439 push r29
440 in r28, __SP_L__
441 in r29, __SP_H__
442 sbiw r28, <LOCALS_SIZE>
443 cli
444 out __SP_H__, r29
445 sei
446 out __SP_L__, r28
447
448 A `-mcall-prologues' prologue looks like this (Note that the megas use a
449 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
450 32 bit insn and rjmp is a 16 bit insn):
451 ldi r26,lo8(<LOCALS_SIZE>)
452 ldi r27,hi8(<LOCALS_SIZE>)
453 ldi r30,pm_lo8(.L_foo_body)
454 ldi r31,pm_hi8(.L_foo_body)
455 rjmp __prologue_saves__+RRR
456 .L_foo_body: */
457
458 /* Not really part of a prologue, but still need to scan for it, is when a
459 function prologue moves values passed via registers as arguments to new
460 registers. In this case, all local variables live in registers, so there
461 may be some register saves. This is what it looks like:
462 movw rMM, rNN
463 ...
464
465 There could be multiple movw's. If the target doesn't have a movw insn, it
466 will use two mov insns. This could be done after any of the above prologue
467 types. */
468
469 static CORE_ADDR
470 avr_scan_prologue (CORE_ADDR pc, struct avr_unwind_cache *info)
471 {
472 int i;
473 unsigned short insn;
474 int scan_stage = 0;
475 struct minimal_symbol *msymbol;
476 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
477 int vpc = 0;
478
479 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
480 reading in the bytes of the prologue. The problem is that the figuring
481 out where the end of the prologue is is a bit difficult. The old code
482 tried to do that, but failed quite often. */
483 read_memory (pc, prologue, AVR_MAX_PROLOGUE_SIZE);
484
485 /* Scanning main()'s prologue
486 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
487 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
488 out __SP_H__,r29
489 out __SP_L__,r28 */
490
491 if (1)
492 {
493 CORE_ADDR locals;
494 unsigned char img[] = {
495 0xde, 0xbf, /* out __SP_H__,r29 */
496 0xcd, 0xbf /* out __SP_L__,r28 */
497 };
498
499 insn = EXTRACT_INSN (&prologue[vpc]);
500 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
501 if ((insn & 0xf0f0) == 0xe0c0)
502 {
503 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
504 insn = EXTRACT_INSN (&prologue[vpc + 2]);
505 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
506 if ((insn & 0xf0f0) == 0xe0d0)
507 {
508 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
509 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
510 {
511 info->prologue_type = AVR_PROLOGUE_MAIN;
512 info->base = locals;
513 return pc + 4;
514 }
515 }
516 }
517 }
518
519 /* Scanning `-mcall-prologues' prologue
520 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
521
522 while (1) /* Using a while to avoid many goto's */
523 {
524 int loc_size;
525 int body_addr;
526 unsigned num_pushes;
527 int pc_offset = 0;
528
529 insn = EXTRACT_INSN (&prologue[vpc]);
530 /* ldi r26,<LOCALS_SIZE> */
531 if ((insn & 0xf0f0) != 0xe0a0)
532 break;
533 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
534 pc_offset += 2;
535
536 insn = EXTRACT_INSN (&prologue[vpc + 2]);
537 /* ldi r27,<LOCALS_SIZE> / 256 */
538 if ((insn & 0xf0f0) != 0xe0b0)
539 break;
540 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
541 pc_offset += 2;
542
543 insn = EXTRACT_INSN (&prologue[vpc + 4]);
544 /* ldi r30,pm_lo8(.L_foo_body) */
545 if ((insn & 0xf0f0) != 0xe0e0)
546 break;
547 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
548 pc_offset += 2;
549
550 insn = EXTRACT_INSN (&prologue[vpc + 6]);
551 /* ldi r31,pm_hi8(.L_foo_body) */
552 if ((insn & 0xf0f0) != 0xe0f0)
553 break;
554 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
555 pc_offset += 2;
556
557 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
558 if (!msymbol)
559 break;
560
561 insn = EXTRACT_INSN (&prologue[vpc + 8]);
562 /* rjmp __prologue_saves__+RRR */
563 if ((insn & 0xf000) == 0xc000)
564 {
565 /* Extract PC relative offset from RJMP */
566 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
567 /* Convert offset to byte addressable mode */
568 i *= 2;
569 /* Destination address */
570 i += pc + 10;
571
572 if (body_addr != (pc + 10)/2)
573 break;
574
575 pc_offset += 2;
576 }
577 else if ((insn & 0xfe0e) == 0x940c)
578 {
579 /* Extract absolute PC address from JMP */
580 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
581 | (EXTRACT_INSN (&prologue[vpc + 10]) & 0xffff));
582 /* Convert address to byte addressable mode */
583 i *= 2;
584
585 if (body_addr != (pc + 12)/2)
586 break;
587
588 pc_offset += 4;
589 }
590 else
591 break;
592
593 /* Resolve offset (in words) from __prologue_saves__ symbol.
594 Which is a pushes count in `-mcall-prologues' mode */
595 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
596
597 if (num_pushes > AVR_MAX_PUSHES)
598 {
599 fprintf_unfiltered (gdb_stderr, "Num pushes too large: %d\n",
600 num_pushes);
601 num_pushes = 0;
602 }
603
604 if (num_pushes)
605 {
606 int from;
607
608 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
609 if (num_pushes >= 2)
610 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
611
612 i = 0;
613 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
614 from <= AVR_LAST_PUSHED_REGNUM; ++from)
615 info->saved_regs [from].addr = ++i;
616 }
617 info->size = loc_size + num_pushes;
618 info->prologue_type = AVR_PROLOGUE_CALL;
619
620 return pc + pc_offset;
621 }
622
623 /* Scan for the beginning of the prologue for an interrupt or signal
624 function. Note that we have to set the prologue type here since the
625 third stage of the prologue may not be present (e.g. no saved registered
626 or changing of the SP register). */
627
628 if (1)
629 {
630 unsigned char img[] = {
631 0x78, 0x94, /* sei */
632 0x1f, 0x92, /* push r1 */
633 0x0f, 0x92, /* push r0 */
634 0x0f, 0xb6, /* in r0,0x3f SREG */
635 0x0f, 0x92, /* push r0 */
636 0x11, 0x24 /* clr r1 */
637 };
638 if (memcmp (prologue, img, sizeof (img)) == 0)
639 {
640 info->prologue_type = AVR_PROLOGUE_INTR;
641 vpc += sizeof (img);
642 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
643 info->saved_regs[0].addr = 2;
644 info->saved_regs[1].addr = 1;
645 info->size += 3;
646 }
647 else if (memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
648 {
649 info->prologue_type = AVR_PROLOGUE_SIG;
650 vpc += sizeof (img) - 2;
651 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
652 info->saved_regs[0].addr = 2;
653 info->saved_regs[1].addr = 1;
654 info->size += 3;
655 }
656 }
657
658 /* First stage of the prologue scanning.
659 Scan pushes (saved registers) */
660
661 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
662 {
663 insn = EXTRACT_INSN (&prologue[vpc]);
664 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
665 {
666 /* Bits 4-9 contain a mask for registers R0-R32. */
667 int regno = (insn & 0x1f0) >> 4;
668 info->size++;
669 info->saved_regs[regno].addr = info->size;
670 scan_stage = 1;
671 }
672 else
673 break;
674 }
675
676 if (vpc >= AVR_MAX_PROLOGUE_SIZE)
677 fprintf_unfiltered (gdb_stderr,
678 "Hit end of prologue while scanning pushes\n");
679
680 /* Second stage of the prologue scanning.
681 Scan:
682 in r28,__SP_L__
683 in r29,__SP_H__ */
684
685 if (scan_stage == 1 && vpc < AVR_MAX_PROLOGUE_SIZE)
686 {
687 unsigned char img[] = {
688 0xcd, 0xb7, /* in r28,__SP_L__ */
689 0xde, 0xb7 /* in r29,__SP_H__ */
690 };
691 unsigned short insn1;
692
693 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
694 {
695 vpc += 4;
696 scan_stage = 2;
697 }
698 }
699
700 /* Third stage of the prologue scanning. (Really two stages)
701 Scan for:
702 sbiw r28,XX or subi r28,lo8(XX)
703 sbci r29,hi8(XX)
704 in __tmp_reg__,__SREG__
705 cli
706 out __SP_H__,r29
707 out __SREG__,__tmp_reg__
708 out __SP_L__,r28 */
709
710 if (scan_stage == 2 && vpc < AVR_MAX_PROLOGUE_SIZE)
711 {
712 int locals_size = 0;
713 unsigned char img[] = {
714 0x0f, 0xb6, /* in r0,0x3f */
715 0xf8, 0x94, /* cli */
716 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
717 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
718 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
719 };
720 unsigned char img_sig[] = {
721 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
722 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
723 };
724 unsigned char img_int[] = {
725 0xf8, 0x94, /* cli */
726 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
727 0x78, 0x94, /* sei */
728 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
729 };
730
731 insn = EXTRACT_INSN (&prologue[vpc]);
732 vpc += 2;
733 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
734 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
735 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
736 {
737 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
738 insn = EXTRACT_INSN (&prologue[vpc]);
739 vpc += 2;
740 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
741 }
742 else
743 return pc + vpc;
744
745 /* Scan the last part of the prologue. May not be present for interrupt
746 or signal handler functions, which is why we set the prologue type
747 when we saw the beginning of the prologue previously. */
748
749 if (memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
750 {
751 vpc += sizeof (img_sig);
752 }
753 else if (memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
754 {
755 vpc += sizeof (img_int);
756 }
757 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
758 {
759 info->prologue_type = AVR_PROLOGUE_NORMAL;
760 vpc += sizeof (img);
761 }
762
763 info->size += locals_size;
764
765 return pc + avr_scan_arg_moves (vpc, prologue);
766 }
767
768 /* If we got this far, we could not scan the prologue, so just return the pc
769 of the frame plus an adjustment for argument move insns. */
770
771 return pc + avr_scan_arg_moves (vpc, prologue);;
772 }
773
774 /* Returns the return address for a dummy. */
775
776 static CORE_ADDR
777 avr_call_dummy_address (void)
778 {
779 return entry_point_address ();
780 }
781
782 static CORE_ADDR
783 avr_skip_prologue (CORE_ADDR pc)
784 {
785 CORE_ADDR func_addr, func_end;
786 CORE_ADDR prologue_end = pc;
787
788 /* See what the symbol table says */
789
790 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
791 {
792 struct symtab_and_line sal;
793 struct avr_unwind_cache info = {0};
794 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
795
796 info.saved_regs = saved_regs;
797
798 /* Need to run the prologue scanner to figure out if the function has a
799 prologue and possibly skip over moving arguments passed via registers
800 to other registers. */
801
802 prologue_end = avr_scan_prologue (pc, &info);
803
804 if (info.prologue_type != AVR_PROLOGUE_NONE)
805 {
806 sal = find_pc_line (func_addr, 0);
807
808 if (sal.line != 0 && sal.end < func_end)
809 return sal.end;
810 }
811 }
812
813 /* Either we didn't find the start of this function (nothing we can do),
814 or there's no line info, or the line after the prologue is after
815 the end of the function (there probably isn't a prologue). */
816
817 return prologue_end;
818 }
819
820 static CORE_ADDR
821 avr_frame_address (struct frame_info *fi)
822 {
823 return avr_make_saddr (get_frame_base (fi));
824 }
825
826 /* Not all avr devices support the BREAK insn. Those that don't should treat
827 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
828 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
829
830 static const unsigned char *
831 avr_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
832 {
833 static unsigned char avr_break_insn [] = { 0x98, 0x95 };
834 *lenptr = sizeof (avr_break_insn);
835 return avr_break_insn;
836 }
837
838 /* Given a return value in `regbuf' with a type `valtype',
839 extract and copy its value into `valbuf'.
840
841 Return values are always passed via registers r25:r24:... */
842
843 static void
844 avr_extract_return_value (struct type *type, struct regcache *regcache,
845 void *valbuf)
846 {
847 ULONGEST r24, r25;
848 ULONGEST c;
849 int len;
850 if (TYPE_LENGTH (type) == 1)
851 {
852 regcache_cooked_read_unsigned (regcache, 24, &c);
853 store_unsigned_integer (valbuf, 1, c);
854 }
855 else
856 {
857 int i;
858 /* The MSB of the return value is always in r25, calculate which
859 register holds the LSB. */
860 int lsb_reg = 25 - TYPE_LENGTH (type) + 1;
861
862 for (i=0; i< TYPE_LENGTH (type); i++)
863 {
864 regcache_cooked_read (regcache, lsb_reg + i,
865 (bfd_byte *) valbuf + i);
866 fprintf_unfiltered (gdb_stderr, "reg = %d (0x%02x)\n",
867 lsb_reg+i, *((unsigned char *)valbuf+i));
868 }
869 }
870 }
871
872 static void
873 avr_saved_regs_unwinder (struct frame_info *next_frame,
874 struct trad_frame_saved_reg *this_saved_regs,
875 int regnum, int *optimizedp,
876 enum lval_type *lvalp, CORE_ADDR *addrp,
877 int *realnump, void *bufferp)
878 {
879 if (this_saved_regs[regnum].addr != 0)
880 {
881 *optimizedp = 0;
882 *lvalp = lval_memory;
883 *addrp = this_saved_regs[regnum].addr;
884 *realnump = -1;
885 if (bufferp != NULL)
886 {
887 /* Read the value in from memory. */
888
889 if (regnum == AVR_PC_REGNUM)
890 {
891 /* Reading the return PC from the PC register is slightly
892 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
893 but in reality, only two bytes (3 in upcoming mega256) are
894 stored on the stack.
895
896 Also, note that the value on the stack is an addr to a word
897 not a byte, so we will need to multiply it by two at some
898 point.
899
900 And to confuse matters even more, the return address stored
901 on the stack is in big endian byte order, even though most
902 everything else about the avr is little endian. Ick! */
903
904 /* FIXME: number of bytes read here will need updated for the
905 mega256 when it is available. */
906
907 ULONGEST pc;
908 unsigned char tmp;
909 unsigned char buf[2];
910
911 read_memory (this_saved_regs[regnum].addr, buf, 2);
912
913 /* Convert the PC read from memory as a big-endian to
914 little-endian order. */
915 tmp = buf[0];
916 buf[0] = buf[1];
917 buf[1] = tmp;
918
919 pc = (extract_unsigned_integer (buf, 2) * 2);
920 store_unsigned_integer (bufferp,
921 register_size (current_gdbarch, regnum),
922 pc);
923 }
924 else
925 {
926 read_memory (this_saved_regs[regnum].addr, bufferp,
927 register_size (current_gdbarch, regnum));
928 }
929 }
930
931 return;
932 }
933
934 /* No luck, assume this and the next frame have the same register
935 value. If a value is needed, pass the request on down the chain;
936 otherwise just return an indication that the value is in the same
937 register as the next frame. */
938 frame_register_unwind (next_frame, regnum, optimizedp, lvalp, addrp,
939 realnump, bufferp);
940 }
941
942 /* Put here the code to store, into fi->saved_regs, the addresses of
943 the saved registers of frame described by FRAME_INFO. This
944 includes special registers such as pc and fp saved in special ways
945 in the stack frame. sp is even more special: the address we return
946 for it IS the sp for the next frame. */
947
948 struct avr_unwind_cache *
949 avr_frame_unwind_cache (struct frame_info *next_frame,
950 void **this_prologue_cache)
951 {
952 CORE_ADDR pc;
953 ULONGEST prev_sp;
954 ULONGEST this_base;
955 struct avr_unwind_cache *info;
956 int i;
957
958 if ((*this_prologue_cache))
959 return (*this_prologue_cache);
960
961 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
962 (*this_prologue_cache) = info;
963 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
964
965 info->size = 0;
966 info->prologue_type = AVR_PROLOGUE_NONE;
967
968 pc = frame_func_unwind (next_frame);
969
970 if ((pc > 0) && (pc < frame_pc_unwind (next_frame)))
971 avr_scan_prologue (pc, info);
972
973 if (info->prologue_type != AVR_PROLOGUE_NONE)
974 {
975 ULONGEST high_base; /* High byte of FP */
976
977 /* The SP was moved to the FP. This indicates that a new frame
978 was created. Get THIS frame's FP value by unwinding it from
979 the next frame. */
980 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM, &this_base);
981 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM+1, &high_base);
982 this_base += (high_base << 8);
983
984 /* The FP points at the last saved register. Adjust the FP back
985 to before the first saved register giving the SP. */
986 prev_sp = this_base + info->size;
987 }
988 else
989 {
990 /* Assume that the FP is this frame's SP but with that pushed
991 stack space added back. */
992 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &this_base);
993 prev_sp = this_base + info->size;
994 }
995
996 /* Add 1 here to adjust for the post-decrement nature of the push
997 instruction.*/
998 info->prev_sp = avr_make_saddr (prev_sp+1);
999
1000 info->base = avr_make_saddr (this_base);
1001
1002 /* Adjust all the saved registers so that they contain addresses and not
1003 offsets. We need to add one to the addresses since push ops are post
1004 decrement on the avr. */
1005 for (i = 0; i < NUM_REGS - 1; i++)
1006 if (info->saved_regs[i].addr)
1007 {
1008 info->saved_regs[i].addr = (info->prev_sp - info->saved_regs[i].addr);
1009 }
1010
1011 /* Except for the main and startup code, the return PC is always saved on
1012 the stack and is at the base of the frame. */
1013
1014 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1015 {
1016 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1017 }
1018
1019 return info;
1020 }
1021
1022 static CORE_ADDR
1023 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1024 {
1025 ULONGEST pc;
1026
1027 frame_unwind_unsigned_register (next_frame, AVR_PC_REGNUM, &pc);
1028
1029 return avr_make_iaddr (pc);
1030 }
1031
1032 /* Given a GDB frame, determine the address of the calling function's
1033 frame. This will be used to create a new GDB frame struct. */
1034
1035 static void
1036 avr_frame_this_id (struct frame_info *next_frame,
1037 void **this_prologue_cache,
1038 struct frame_id *this_id)
1039 {
1040 struct avr_unwind_cache *info
1041 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
1042 CORE_ADDR base;
1043 CORE_ADDR func;
1044 struct frame_id id;
1045
1046 /* The FUNC is easy. */
1047 func = frame_func_unwind (next_frame);
1048
1049 /* This is meant to halt the backtrace at "_start". Make sure we
1050 don't halt it at a generic dummy frame. */
1051 if (inside_entry_file (func))
1052 return;
1053
1054 /* Hopefully the prologue analysis either correctly determined the
1055 frame's base (which is the SP from the previous frame), or set
1056 that base to "NULL". */
1057 base = info->prev_sp;
1058 if (base == 0)
1059 return;
1060
1061 id = frame_id_build (base, func);
1062
1063 /* Check that we're not going round in circles with the same frame
1064 ID (but avoid applying the test to sentinel frames which do go
1065 round in circles). Can't use frame_id_eq() as that doesn't yet
1066 compare the frame's PC value. */
1067 if (frame_relative_level (next_frame) >= 0
1068 && get_frame_type (next_frame) != DUMMY_FRAME
1069 && frame_id_eq (get_frame_id (next_frame), id))
1070 return;
1071
1072 (*this_id) = id;
1073 }
1074
1075 static void
1076 avr_frame_prev_register (struct frame_info *next_frame,
1077 void **this_prologue_cache,
1078 int regnum, int *optimizedp,
1079 enum lval_type *lvalp, CORE_ADDR *addrp,
1080 int *realnump, void *bufferp)
1081 {
1082 struct avr_unwind_cache *info
1083 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
1084
1085 avr_saved_regs_unwinder (next_frame, info->saved_regs, regnum, optimizedp,
1086 lvalp, addrp, realnump, bufferp);
1087 }
1088
1089 static const struct frame_unwind avr_frame_unwind = {
1090 NORMAL_FRAME,
1091 avr_frame_this_id,
1092 avr_frame_prev_register
1093 };
1094
1095 const struct frame_unwind *
1096 avr_frame_p (CORE_ADDR pc)
1097 {
1098 return &avr_frame_unwind;
1099 }
1100
1101 static CORE_ADDR
1102 avr_frame_base_address (struct frame_info *next_frame, void **this_cache)
1103 {
1104 struct avr_unwind_cache *info
1105 = avr_frame_unwind_cache (next_frame, this_cache);
1106
1107 return info->base;
1108 }
1109
1110 static const struct frame_base avr_frame_base = {
1111 &avr_frame_unwind,
1112 avr_frame_base_address,
1113 avr_frame_base_address,
1114 avr_frame_base_address
1115 };
1116
1117 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1118 dummy frame. The frame ID's base needs to match the TOS value
1119 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1120 breakpoint. */
1121
1122 static struct frame_id
1123 avr_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1124 {
1125 ULONGEST base;
1126
1127 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &base);
1128 return frame_id_build (avr_make_saddr (base), frame_pc_unwind (next_frame));
1129 }
1130
1131 static CORE_ADDR
1132 avr_push_dummy_code (struct gdbarch *gdbarch,
1133 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
1134 struct value **args, int nargs,
1135 struct type *value_type,
1136 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
1137 {
1138 fprintf_unfiltered (gdb_stderr, " ----->>>> push_dummy_code\n");
1139 }
1140
1141 /* When arguments must be pushed onto the stack, they go on in reverse
1142 order. The below implements a FILO (stack) to do this. */
1143
1144 struct stack_item
1145 {
1146 int len;
1147 struct stack_item *prev;
1148 void *data;
1149 };
1150
1151 static struct stack_item *push_stack_item (struct stack_item *prev,
1152 void *contents, int len);
1153 static struct stack_item *
1154 push_stack_item (struct stack_item *prev, void *contents, int len)
1155 {
1156 struct stack_item *si;
1157 si = xmalloc (sizeof (struct stack_item));
1158 si->data = xmalloc (len);
1159 si->len = len;
1160 si->prev = prev;
1161 memcpy (si->data, contents, len);
1162 return si;
1163 }
1164
1165 static struct stack_item *pop_stack_item (struct stack_item *si);
1166 static struct stack_item *
1167 pop_stack_item (struct stack_item *si)
1168 {
1169 struct stack_item *dead = si;
1170 si = si->prev;
1171 xfree (dead->data);
1172 xfree (dead);
1173 return si;
1174 }
1175
1176 /* Setup the function arguments for calling a function in the inferior.
1177
1178 On the AVR architecture, there are 18 registers (R25 to R8) which are
1179 dedicated for passing function arguments. Up to the first 18 arguments
1180 (depending on size) may go into these registers. The rest go on the stack.
1181
1182 All arguments are aligned to start in even-numbered registers (odd-sized
1183 arguments, including char, have one free register above them). For example,
1184 an int in arg1 and a char in arg2 would be passed as such:
1185
1186 arg1 -> r25:r24
1187 arg2 -> r22
1188
1189 Arguments that are larger than 2 bytes will be split between two or more
1190 registers as available, but will NOT be split between a register and the
1191 stack. Arguments that go onto the stack are pushed last arg first (this is
1192 similar to the d10v). */
1193
1194 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1195 inaccurate.
1196
1197 An exceptional case exists for struct arguments (and possibly other
1198 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1199 not a multiple of WORDSIZE bytes. In this case the argument is never split
1200 between the registers and the stack, but instead is copied in its entirety
1201 onto the stack, AND also copied into as many registers as there is room
1202 for. In other words, space in registers permitting, two copies of the same
1203 argument are passed in. As far as I can tell, only the one on the stack is
1204 used, although that may be a function of the level of compiler
1205 optimization. I suspect this is a compiler bug. Arguments of these odd
1206 sizes are left-justified within the word (as opposed to arguments smaller
1207 than WORDSIZE bytes, which are right-justified).
1208
1209 If the function is to return an aggregate type such as a struct, the caller
1210 must allocate space into which the callee will copy the return value. In
1211 this case, a pointer to the return value location is passed into the callee
1212 in register R0, which displaces one of the other arguments passed in via
1213 registers R0 to R2. */
1214
1215 static CORE_ADDR
1216 avr_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1217 struct regcache *regcache, CORE_ADDR bp_addr,
1218 int nargs, struct value **args, CORE_ADDR sp,
1219 int struct_return, CORE_ADDR struct_addr)
1220 {
1221 int i;
1222 unsigned char buf[2];
1223 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1224 int regnum = AVR_ARGN_REGNUM;
1225 struct stack_item *si = NULL;
1226
1227 #if 0
1228 /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */
1229 if (struct_return)
1230 {
1231 fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr);
1232 write_register (argreg--, struct_addr & 0xff);
1233 write_register (argreg--, (struct_addr >>8) & 0xff);
1234 }
1235 #endif
1236
1237 for (i = 0; i < nargs; i++)
1238 {
1239 int last_regnum;
1240 int j;
1241 struct value *arg = args[i];
1242 struct type *type = check_typedef (VALUE_TYPE (arg));
1243 char *contents = VALUE_CONTENTS (arg);
1244 int len = TYPE_LENGTH (type);
1245
1246 /* Calculate the potential last register needed. */
1247 last_regnum = regnum - (len + (len & 1));
1248
1249 /* If there are registers available, use them. Once we start putting
1250 stuff on the stack, all subsequent args go on stack. */
1251 if ((si == NULL) && (last_regnum >= 8))
1252 {
1253 ULONGEST val;
1254
1255 /* Skip a register for odd length args. */
1256 if (len & 1)
1257 regnum--;
1258
1259 val = extract_unsigned_integer (contents, len);
1260 for (j=0; j<len; j++)
1261 {
1262 regcache_cooked_write_unsigned (regcache, regnum--,
1263 val >> (8*(len-j-1)));
1264 }
1265 }
1266 /* No registers available, push the args onto the stack. */
1267 else
1268 {
1269 /* From here on, we don't care about regnum. */
1270 si = push_stack_item (si, contents, len);
1271 }
1272 }
1273
1274 /* Push args onto the stack. */
1275 while (si)
1276 {
1277 sp -= si->len;
1278 /* Add 1 to sp here to account for post decr nature of pushes. */
1279 write_memory (sp+1, si->data, si->len);
1280 si = pop_stack_item (si);
1281 }
1282
1283 /* Set the return address. For the avr, the return address is the BP_ADDR.
1284 Need to push the return address onto the stack noting that it needs to be
1285 in big-endian order on the stack. */
1286 buf[0] = (return_pc >> 8) & 0xff;
1287 buf[1] = return_pc & 0xff;
1288
1289 sp -= 2;
1290 write_memory (sp+1, buf, 2); /* Add one since pushes are post decr ops. */
1291
1292 /* Finally, update the SP register. */
1293 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1294 avr_convert_saddr_to_raw (sp));
1295
1296 return sp;
1297 }
1298
1299 /* Initialize the gdbarch structure for the AVR's. */
1300
1301 static struct gdbarch *
1302 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1303 {
1304 struct gdbarch *gdbarch;
1305 struct gdbarch_tdep *tdep;
1306
1307 /* Find a candidate among the list of pre-declared architectures. */
1308 arches = gdbarch_list_lookup_by_info (arches, &info);
1309 if (arches != NULL)
1310 return arches->gdbarch;
1311
1312 /* None found, create a new architecture from the information provided. */
1313 tdep = XMALLOC (struct gdbarch_tdep);
1314 gdbarch = gdbarch_alloc (&info, tdep);
1315
1316 /* If we ever need to differentiate the device types, do it here. */
1317 switch (info.bfd_arch_info->mach)
1318 {
1319 case bfd_mach_avr1:
1320 case bfd_mach_avr2:
1321 case bfd_mach_avr3:
1322 case bfd_mach_avr4:
1323 case bfd_mach_avr5:
1324 break;
1325 }
1326
1327 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1328 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1329 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1330 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1331 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1332 set_gdbarch_addr_bit (gdbarch, 32);
1333 set_gdbarch_bfd_vma_bit (gdbarch, 32); /* FIXME: TRoth/2002-02-18: Is this needed? */
1334
1335 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1336 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1337 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1338
1339 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1340 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1341 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1342
1343 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1344 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1345 set_gdbarch_read_sp (gdbarch, avr_read_sp);
1346
1347 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1348
1349 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1350 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1351
1352 set_gdbarch_register_name (gdbarch, avr_register_name);
1353 set_gdbarch_register_type (gdbarch, avr_register_type);
1354
1355 set_gdbarch_extract_return_value (gdbarch, avr_extract_return_value);
1356 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1357
1358 set_gdbarch_call_dummy_address (gdbarch, avr_call_dummy_address);
1359 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1360 set_gdbarch_push_dummy_code (gdbarch, avr_push_dummy_code);
1361
1362 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1363 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1364
1365 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
1366
1367 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1368 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1369
1370 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1371 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1372
1373 set_gdbarch_function_start_offset (gdbarch, 0);
1374
1375 set_gdbarch_frame_args_skip (gdbarch, 0);
1376 set_gdbarch_frameless_function_invocation (gdbarch,
1377 frameless_look_for_prologue);
1378 set_gdbarch_frame_args_address (gdbarch, avr_frame_address);
1379 set_gdbarch_frame_locals_address (gdbarch, avr_frame_address);
1380
1381 frame_unwind_append_predicate (gdbarch, avr_frame_p);
1382 frame_base_set_default (gdbarch, &avr_frame_base);
1383
1384 set_gdbarch_unwind_dummy_id (gdbarch, avr_unwind_dummy_id);
1385
1386 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1387
1388 return gdbarch;
1389 }
1390
1391 /* Send a query request to the avr remote target asking for values of the io
1392 registers. If args parameter is not NULL, then the user has requested info
1393 on a specific io register [This still needs implemented and is ignored for
1394 now]. The query string should be one of these forms:
1395
1396 "Ravr.io_reg" -> reply is "NN" number of io registers
1397
1398 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1399 registers to be read. The reply should be "<NAME>,VV;" for each io register
1400 where, <NAME> is a string, and VV is the hex value of the register.
1401
1402 All io registers are 8-bit. */
1403
1404 static void
1405 avr_io_reg_read_command (char *args, int from_tty)
1406 {
1407 int bufsiz = 0;
1408 char buf[400];
1409 char query[400];
1410 char *p;
1411 unsigned int nreg = 0;
1412 unsigned int val;
1413 int i, j, k, step;
1414
1415 if (!current_target.to_query)
1416 {
1417 fprintf_unfiltered (gdb_stderr,
1418 "ERR: info io_registers NOT supported by current "
1419 "target\n");
1420 return;
1421 }
1422
1423 /* Just get the maximum buffer size. */
1424 target_query ((int) 'R', 0, 0, &bufsiz);
1425 if (bufsiz > sizeof (buf))
1426 bufsiz = sizeof (buf);
1427
1428 /* Find out how many io registers the target has. */
1429 strcpy (query, "avr.io_reg");
1430 target_query ((int) 'R', query, buf, &bufsiz);
1431
1432 if (strncmp (buf, "", bufsiz) == 0)
1433 {
1434 fprintf_unfiltered (gdb_stderr,
1435 "info io_registers NOT supported by target\n");
1436 return;
1437 }
1438
1439 if (sscanf (buf, "%x", &nreg) != 1)
1440 {
1441 fprintf_unfiltered (gdb_stderr,
1442 "Error fetching number of io registers\n");
1443 return;
1444 }
1445
1446 reinitialize_more_filter ();
1447
1448 printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1449
1450 /* only fetch up to 8 registers at a time to keep the buffer small */
1451 step = 8;
1452
1453 for (i = 0; i < nreg; i += step)
1454 {
1455 /* how many registers this round? */
1456 j = step;
1457 if ((i+j) >= nreg)
1458 j = nreg - i; /* last block is less than 8 registers */
1459
1460 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1461 target_query ((int) 'R', query, buf, &bufsiz);
1462
1463 p = buf;
1464 for (k = i; k < (i + j); k++)
1465 {
1466 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1467 {
1468 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1469 while ((*p != ';') && (*p != '\0'))
1470 p++;
1471 p++; /* skip over ';' */
1472 if (*p == '\0')
1473 break;
1474 }
1475 }
1476 }
1477 }
1478
1479 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1480
1481 void
1482 _initialize_avr_tdep (void)
1483 {
1484 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1485
1486 /* Add a new command to allow the user to query the avr remote target for
1487 the values of the io space registers in a saner way than just using
1488 `x/NNNb ADDR`. */
1489
1490 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1491 io_registers' to signify it is not available on other platforms. */
1492
1493 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1494 "query remote avr target for io space register values", &infolist);
1495 }
This page took 0.851884 seconds and 5 git commands to generate.