Sort includes for files gdb/[a-f]*.[chyl].
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
1 /* GDB-specific functions for operating on agent expressions.
2
3 Copyright (C) 1998-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 /* Local non-gdb includes. */
23 #include "arch-utils.h"
24 #include "ax-gdb.h"
25 #include "ax.h"
26 #include "block.h"
27 #include "breakpoint.h"
28 #include "c-lang.h"
29 #include "cli/cli-utils.h"
30 #include "command.h"
31 #include "common/format.h"
32 #include "cp-support.h"
33 #include "dictionary.h"
34 #include "expression.h"
35 #include "frame.h"
36 #include "gdbcmd.h"
37 #include "gdbtypes.h"
38 #include "language.h"
39 #include "linespec.h"
40 #include "location.h"
41 #include "objfiles.h"
42 #include "regcache.h"
43 #include "symfile.h"
44 #include "symtab.h"
45 #include "target.h"
46 #include "tracepoint.h"
47 #include "typeprint.h"
48 #include "user-regs.h"
49 #include "valprint.h"
50 #include "value.h"
51
52 /* To make sense of this file, you should read doc/agentexpr.texi.
53 Then look at the types and enums in ax-gdb.h. For the code itself,
54 look at gen_expr, towards the bottom; that's the main function that
55 looks at the GDB expressions and calls everything else to generate
56 code.
57
58 I'm beginning to wonder whether it wouldn't be nicer to internally
59 generate trees, with types, and then spit out the bytecode in
60 linear form afterwards; we could generate fewer `swap', `ext', and
61 `zero_ext' bytecodes that way; it would make good constant folding
62 easier, too. But at the moment, I think we should be willing to
63 pay for the simplicity of this code with less-than-optimal bytecode
64 strings.
65
66 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
67 \f
68
69
70 /* Prototypes for local functions. */
71
72 /* There's a standard order to the arguments of these functions:
73 union exp_element ** --- pointer into expression
74 struct agent_expr * --- agent expression buffer to generate code into
75 struct axs_value * --- describes value left on top of stack */
76
77 static struct value *const_var_ref (struct symbol *var);
78 static struct value *const_expr (union exp_element **pc);
79 static struct value *maybe_const_expr (union exp_element **pc);
80
81 static void gen_traced_pop (struct agent_expr *, struct axs_value *);
82
83 static void gen_sign_extend (struct agent_expr *, struct type *);
84 static void gen_extend (struct agent_expr *, struct type *);
85 static void gen_fetch (struct agent_expr *, struct type *);
86 static void gen_left_shift (struct agent_expr *, int);
87
88
89 static void gen_frame_args_address (struct agent_expr *);
90 static void gen_frame_locals_address (struct agent_expr *);
91 static void gen_offset (struct agent_expr *ax, int offset);
92 static void gen_sym_offset (struct agent_expr *, struct symbol *);
93 static void gen_var_ref (struct agent_expr *ax, struct axs_value *value,
94 struct symbol *var);
95
96
97 static void gen_int_literal (struct agent_expr *ax,
98 struct axs_value *value,
99 LONGEST k, struct type *type);
100
101 static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
102 static int type_wider_than (struct type *type1, struct type *type2);
103 static struct type *max_type (struct type *type1, struct type *type2);
104 static void gen_conversion (struct agent_expr *ax,
105 struct type *from, struct type *to);
106 static int is_nontrivial_conversion (struct type *from, struct type *to);
107 static void gen_usual_arithmetic (struct agent_expr *ax,
108 struct axs_value *value1,
109 struct axs_value *value2);
110 static void gen_integral_promotions (struct agent_expr *ax,
111 struct axs_value *value);
112 static void gen_cast (struct agent_expr *ax,
113 struct axs_value *value, struct type *type);
114 static void gen_scale (struct agent_expr *ax,
115 enum agent_op op, struct type *type);
116 static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
117 struct axs_value *value1, struct axs_value *value2);
118 static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
119 struct axs_value *value1, struct axs_value *value2);
120 static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
121 struct axs_value *value1, struct axs_value *value2,
122 struct type *result_type);
123 static void gen_binop (struct agent_expr *ax,
124 struct axs_value *value,
125 struct axs_value *value1,
126 struct axs_value *value2,
127 enum agent_op op,
128 enum agent_op op_unsigned, int may_carry,
129 const char *name);
130 static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
131 struct type *result_type);
132 static void gen_complement (struct agent_expr *ax, struct axs_value *value);
133 static void gen_deref (struct axs_value *);
134 static void gen_address_of (struct axs_value *);
135 static void gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
136 struct type *type, int start, int end);
137 static void gen_primitive_field (struct agent_expr *ax,
138 struct axs_value *value,
139 int offset, int fieldno, struct type *type);
140 static int gen_struct_ref_recursive (struct agent_expr *ax,
141 struct axs_value *value,
142 const char *field, int offset,
143 struct type *type);
144 static void gen_struct_ref (struct agent_expr *ax,
145 struct axs_value *value,
146 const char *field,
147 const char *operator_name,
148 const char *operand_name);
149 static void gen_static_field (struct agent_expr *ax, struct axs_value *value,
150 struct type *type, int fieldno);
151 static void gen_repeat (struct expression *exp, union exp_element **pc,
152 struct agent_expr *ax, struct axs_value *value);
153 static void gen_sizeof (struct expression *exp, union exp_element **pc,
154 struct agent_expr *ax, struct axs_value *value,
155 struct type *size_type);
156 static void gen_expr_binop_rest (struct expression *exp,
157 enum exp_opcode op, union exp_element **pc,
158 struct agent_expr *ax,
159 struct axs_value *value,
160 struct axs_value *value1,
161 struct axs_value *value2);
162 \f
163
164 /* Detecting constant expressions. */
165
166 /* If the variable reference at *PC is a constant, return its value.
167 Otherwise, return zero.
168
169 Hey, Wally! How can a variable reference be a constant?
170
171 Well, Beav, this function really handles the OP_VAR_VALUE operator,
172 not specifically variable references. GDB uses OP_VAR_VALUE to
173 refer to any kind of symbolic reference: function names, enum
174 elements, and goto labels are all handled through the OP_VAR_VALUE
175 operator, even though they're constants. It makes sense given the
176 situation.
177
178 Gee, Wally, don'cha wonder sometimes if data representations that
179 subvert commonly accepted definitions of terms in favor of heavily
180 context-specific interpretations are really just a tool of the
181 programming hegemony to preserve their power and exclude the
182 proletariat? */
183
184 static struct value *
185 const_var_ref (struct symbol *var)
186 {
187 struct type *type = SYMBOL_TYPE (var);
188
189 switch (SYMBOL_CLASS (var))
190 {
191 case LOC_CONST:
192 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
193
194 case LOC_LABEL:
195 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
196
197 default:
198 return 0;
199 }
200 }
201
202
203 /* If the expression starting at *PC has a constant value, return it.
204 Otherwise, return zero. If we return a value, then *PC will be
205 advanced to the end of it. If we return zero, *PC could be
206 anywhere. */
207 static struct value *
208 const_expr (union exp_element **pc)
209 {
210 enum exp_opcode op = (*pc)->opcode;
211 struct value *v1;
212
213 switch (op)
214 {
215 case OP_LONG:
216 {
217 struct type *type = (*pc)[1].type;
218 LONGEST k = (*pc)[2].longconst;
219
220 (*pc) += 4;
221 return value_from_longest (type, k);
222 }
223
224 case OP_VAR_VALUE:
225 {
226 struct value *v = const_var_ref ((*pc)[2].symbol);
227
228 (*pc) += 4;
229 return v;
230 }
231
232 /* We could add more operators in here. */
233
234 case UNOP_NEG:
235 (*pc)++;
236 v1 = const_expr (pc);
237 if (v1)
238 return value_neg (v1);
239 else
240 return 0;
241
242 default:
243 return 0;
244 }
245 }
246
247
248 /* Like const_expr, but guarantee also that *PC is undisturbed if the
249 expression is not constant. */
250 static struct value *
251 maybe_const_expr (union exp_element **pc)
252 {
253 union exp_element *tentative_pc = *pc;
254 struct value *v = const_expr (&tentative_pc);
255
256 /* If we got a value, then update the real PC. */
257 if (v)
258 *pc = tentative_pc;
259
260 return v;
261 }
262 \f
263
264 /* Generating bytecode from GDB expressions: general assumptions */
265
266 /* Here are a few general assumptions made throughout the code; if you
267 want to make a change that contradicts one of these, then you'd
268 better scan things pretty thoroughly.
269
270 - We assume that all values occupy one stack element. For example,
271 sometimes we'll swap to get at the left argument to a binary
272 operator. If we decide that void values should occupy no stack
273 elements, or that synthetic arrays (whose size is determined at
274 run time, created by the `@' operator) should occupy two stack
275 elements (address and length), then this will cause trouble.
276
277 - We assume the stack elements are infinitely wide, and that we
278 don't have to worry what happens if the user requests an
279 operation that is wider than the actual interpreter's stack.
280 That is, it's up to the interpreter to handle directly all the
281 integer widths the user has access to. (Woe betide the language
282 with bignums!)
283
284 - We don't support side effects. Thus, we don't have to worry about
285 GCC's generalized lvalues, function calls, etc.
286
287 - We don't support floating point. Many places where we switch on
288 some type don't bother to include cases for floating point; there
289 may be even more subtle ways this assumption exists. For
290 example, the arguments to % must be integers.
291
292 - We assume all subexpressions have a static, unchanging type. If
293 we tried to support convenience variables, this would be a
294 problem.
295
296 - All values on the stack should always be fully zero- or
297 sign-extended.
298
299 (I wasn't sure whether to choose this or its opposite --- that
300 only addresses are assumed extended --- but it turns out that
301 neither convention completely eliminates spurious extend
302 operations (if everything is always extended, then you have to
303 extend after add, because it could overflow; if nothing is
304 extended, then you end up producing extends whenever you change
305 sizes), and this is simpler.) */
306 \f
307
308 /* Scan for all static fields in the given class, including any base
309 classes, and generate tracing bytecodes for each. */
310
311 static void
312 gen_trace_static_fields (struct agent_expr *ax,
313 struct type *type)
314 {
315 int i, nbases = TYPE_N_BASECLASSES (type);
316 struct axs_value value;
317
318 type = check_typedef (type);
319
320 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
321 {
322 if (field_is_static (&TYPE_FIELD (type, i)))
323 {
324 gen_static_field (ax, &value, type, i);
325 if (value.optimized_out)
326 continue;
327 switch (value.kind)
328 {
329 case axs_lvalue_memory:
330 {
331 /* Initialize the TYPE_LENGTH if it is a typedef. */
332 check_typedef (value.type);
333 ax_const_l (ax, TYPE_LENGTH (value.type));
334 ax_simple (ax, aop_trace);
335 }
336 break;
337
338 case axs_lvalue_register:
339 /* We don't actually need the register's value to be pushed,
340 just note that we need it to be collected. */
341 ax_reg_mask (ax, value.u.reg);
342
343 default:
344 break;
345 }
346 }
347 }
348
349 /* Now scan through base classes recursively. */
350 for (i = 0; i < nbases; i++)
351 {
352 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
353
354 gen_trace_static_fields (ax, basetype);
355 }
356 }
357
358 /* Trace the lvalue on the stack, if it needs it. In either case, pop
359 the value. Useful on the left side of a comma, and at the end of
360 an expression being used for tracing. */
361 static void
362 gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
363 {
364 int string_trace = 0;
365 if (ax->trace_string
366 && TYPE_CODE (value->type) == TYPE_CODE_PTR
367 && c_textual_element_type (check_typedef (TYPE_TARGET_TYPE (value->type)),
368 's'))
369 string_trace = 1;
370
371 if (ax->tracing)
372 switch (value->kind)
373 {
374 case axs_rvalue:
375 if (string_trace)
376 {
377 ax_const_l (ax, ax->trace_string);
378 ax_simple (ax, aop_tracenz);
379 }
380 else
381 /* We don't trace rvalues, just the lvalues necessary to
382 produce them. So just dispose of this value. */
383 ax_simple (ax, aop_pop);
384 break;
385
386 case axs_lvalue_memory:
387 {
388 /* Initialize the TYPE_LENGTH if it is a typedef. */
389 check_typedef (value->type);
390
391 if (string_trace)
392 {
393 gen_fetch (ax, value->type);
394 ax_const_l (ax, ax->trace_string);
395 ax_simple (ax, aop_tracenz);
396 }
397 else
398 {
399 /* There's no point in trying to use a trace_quick bytecode
400 here, since "trace_quick SIZE pop" is three bytes, whereas
401 "const8 SIZE trace" is also three bytes, does the same
402 thing, and the simplest code which generates that will also
403 work correctly for objects with large sizes. */
404 ax_const_l (ax, TYPE_LENGTH (value->type));
405 ax_simple (ax, aop_trace);
406 }
407 }
408 break;
409
410 case axs_lvalue_register:
411 /* We don't actually need the register's value to be on the
412 stack, and the target will get heartburn if the register is
413 larger than will fit in a stack, so just mark it for
414 collection and be done with it. */
415 ax_reg_mask (ax, value->u.reg);
416
417 /* But if the register points to a string, assume the value
418 will fit on the stack and push it anyway. */
419 if (string_trace)
420 {
421 ax_reg (ax, value->u.reg);
422 ax_const_l (ax, ax->trace_string);
423 ax_simple (ax, aop_tracenz);
424 }
425 break;
426 }
427 else
428 /* If we're not tracing, just pop the value. */
429 ax_simple (ax, aop_pop);
430
431 /* To trace C++ classes with static fields stored elsewhere. */
432 if (ax->tracing
433 && (TYPE_CODE (value->type) == TYPE_CODE_STRUCT
434 || TYPE_CODE (value->type) == TYPE_CODE_UNION))
435 gen_trace_static_fields (ax, value->type);
436 }
437 \f
438
439
440 /* Generating bytecode from GDB expressions: helper functions */
441
442 /* Assume that the lower bits of the top of the stack is a value of
443 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
444 static void
445 gen_sign_extend (struct agent_expr *ax, struct type *type)
446 {
447 /* Do we need to sign-extend this? */
448 if (!TYPE_UNSIGNED (type))
449 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
450 }
451
452
453 /* Assume the lower bits of the top of the stack hold a value of type
454 TYPE, and the upper bits are garbage. Sign-extend or truncate as
455 needed. */
456 static void
457 gen_extend (struct agent_expr *ax, struct type *type)
458 {
459 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
460
461 /* I just had to. */
462 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
463 }
464
465
466 /* Assume that the top of the stack contains a value of type "pointer
467 to TYPE"; generate code to fetch its value. Note that TYPE is the
468 target type, not the pointer type. */
469 static void
470 gen_fetch (struct agent_expr *ax, struct type *type)
471 {
472 if (ax->tracing)
473 {
474 /* Record the area of memory we're about to fetch. */
475 ax_trace_quick (ax, TYPE_LENGTH (type));
476 }
477
478 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
479 type = TYPE_TARGET_TYPE (type);
480
481 switch (TYPE_CODE (type))
482 {
483 case TYPE_CODE_PTR:
484 case TYPE_CODE_REF:
485 case TYPE_CODE_RVALUE_REF:
486 case TYPE_CODE_ENUM:
487 case TYPE_CODE_INT:
488 case TYPE_CODE_CHAR:
489 case TYPE_CODE_BOOL:
490 /* It's a scalar value, so we know how to dereference it. How
491 many bytes long is it? */
492 switch (TYPE_LENGTH (type))
493 {
494 case 8 / TARGET_CHAR_BIT:
495 ax_simple (ax, aop_ref8);
496 break;
497 case 16 / TARGET_CHAR_BIT:
498 ax_simple (ax, aop_ref16);
499 break;
500 case 32 / TARGET_CHAR_BIT:
501 ax_simple (ax, aop_ref32);
502 break;
503 case 64 / TARGET_CHAR_BIT:
504 ax_simple (ax, aop_ref64);
505 break;
506
507 /* Either our caller shouldn't have asked us to dereference
508 that pointer (other code's fault), or we're not
509 implementing something we should be (this code's fault).
510 In any case, it's a bug the user shouldn't see. */
511 default:
512 internal_error (__FILE__, __LINE__,
513 _("gen_fetch: strange size"));
514 }
515
516 gen_sign_extend (ax, type);
517 break;
518
519 default:
520 /* Our caller requested us to dereference a pointer from an unsupported
521 type. Error out and give callers a chance to handle the failure
522 gracefully. */
523 error (_("gen_fetch: Unsupported type code `%s'."),
524 TYPE_NAME (type));
525 }
526 }
527
528
529 /* Generate code to left shift the top of the stack by DISTANCE bits, or
530 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
531 unsigned (logical) right shifts. */
532 static void
533 gen_left_shift (struct agent_expr *ax, int distance)
534 {
535 if (distance > 0)
536 {
537 ax_const_l (ax, distance);
538 ax_simple (ax, aop_lsh);
539 }
540 else if (distance < 0)
541 {
542 ax_const_l (ax, -distance);
543 ax_simple (ax, aop_rsh_unsigned);
544 }
545 }
546 \f
547
548
549 /* Generating bytecode from GDB expressions: symbol references */
550
551 /* Generate code to push the base address of the argument portion of
552 the top stack frame. */
553 static void
554 gen_frame_args_address (struct agent_expr *ax)
555 {
556 int frame_reg;
557 LONGEST frame_offset;
558
559 gdbarch_virtual_frame_pointer (ax->gdbarch,
560 ax->scope, &frame_reg, &frame_offset);
561 ax_reg (ax, frame_reg);
562 gen_offset (ax, frame_offset);
563 }
564
565
566 /* Generate code to push the base address of the locals portion of the
567 top stack frame. */
568 static void
569 gen_frame_locals_address (struct agent_expr *ax)
570 {
571 int frame_reg;
572 LONGEST frame_offset;
573
574 gdbarch_virtual_frame_pointer (ax->gdbarch,
575 ax->scope, &frame_reg, &frame_offset);
576 ax_reg (ax, frame_reg);
577 gen_offset (ax, frame_offset);
578 }
579
580
581 /* Generate code to add OFFSET to the top of the stack. Try to
582 generate short and readable code. We use this for getting to
583 variables on the stack, and structure members. If we were
584 programming in ML, it would be clearer why these are the same
585 thing. */
586 static void
587 gen_offset (struct agent_expr *ax, int offset)
588 {
589 /* It would suffice to simply push the offset and add it, but this
590 makes it easier to read positive and negative offsets in the
591 bytecode. */
592 if (offset > 0)
593 {
594 ax_const_l (ax, offset);
595 ax_simple (ax, aop_add);
596 }
597 else if (offset < 0)
598 {
599 ax_const_l (ax, -offset);
600 ax_simple (ax, aop_sub);
601 }
602 }
603
604
605 /* In many cases, a symbol's value is the offset from some other
606 address (stack frame, base register, etc.) Generate code to add
607 VAR's value to the top of the stack. */
608 static void
609 gen_sym_offset (struct agent_expr *ax, struct symbol *var)
610 {
611 gen_offset (ax, SYMBOL_VALUE (var));
612 }
613
614
615 /* Generate code for a variable reference to AX. The variable is the
616 symbol VAR. Set VALUE to describe the result. */
617
618 static void
619 gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
620 {
621 /* Dereference any typedefs. */
622 value->type = check_typedef (SYMBOL_TYPE (var));
623 value->optimized_out = 0;
624
625 if (SYMBOL_COMPUTED_OPS (var) != NULL)
626 {
627 SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, ax, value);
628 return;
629 }
630
631 /* I'm imitating the code in read_var_value. */
632 switch (SYMBOL_CLASS (var))
633 {
634 case LOC_CONST: /* A constant, like an enum value. */
635 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
636 value->kind = axs_rvalue;
637 break;
638
639 case LOC_LABEL: /* A goto label, being used as a value. */
640 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
641 value->kind = axs_rvalue;
642 break;
643
644 case LOC_CONST_BYTES:
645 internal_error (__FILE__, __LINE__,
646 _("gen_var_ref: LOC_CONST_BYTES "
647 "symbols are not supported"));
648
649 /* Variable at a fixed location in memory. Easy. */
650 case LOC_STATIC:
651 /* Push the address of the variable. */
652 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
653 value->kind = axs_lvalue_memory;
654 break;
655
656 case LOC_ARG: /* var lives in argument area of frame */
657 gen_frame_args_address (ax);
658 gen_sym_offset (ax, var);
659 value->kind = axs_lvalue_memory;
660 break;
661
662 case LOC_REF_ARG: /* As above, but the frame slot really
663 holds the address of the variable. */
664 gen_frame_args_address (ax);
665 gen_sym_offset (ax, var);
666 /* Don't assume any particular pointer size. */
667 gen_fetch (ax, builtin_type (ax->gdbarch)->builtin_data_ptr);
668 value->kind = axs_lvalue_memory;
669 break;
670
671 case LOC_LOCAL: /* var lives in locals area of frame */
672 gen_frame_locals_address (ax);
673 gen_sym_offset (ax, var);
674 value->kind = axs_lvalue_memory;
675 break;
676
677 case LOC_TYPEDEF:
678 error (_("Cannot compute value of typedef `%s'."),
679 SYMBOL_PRINT_NAME (var));
680 break;
681
682 case LOC_BLOCK:
683 ax_const_l (ax, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (var)));
684 value->kind = axs_rvalue;
685 break;
686
687 case LOC_REGISTER:
688 /* Don't generate any code at all; in the process of treating
689 this as an lvalue or rvalue, the caller will generate the
690 right code. */
691 value->kind = axs_lvalue_register;
692 value->u.reg
693 = SYMBOL_REGISTER_OPS (var)->register_number (var, ax->gdbarch);
694 break;
695
696 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
697 register, not on the stack. Simpler than LOC_REGISTER
698 because it's just like any other case where the thing
699 has a real address. */
700 case LOC_REGPARM_ADDR:
701 ax_reg (ax,
702 SYMBOL_REGISTER_OPS (var)->register_number (var, ax->gdbarch));
703 value->kind = axs_lvalue_memory;
704 break;
705
706 case LOC_UNRESOLVED:
707 {
708 struct bound_minimal_symbol msym
709 = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL);
710
711 if (!msym.minsym)
712 error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
713
714 /* Push the address of the variable. */
715 ax_const_l (ax, BMSYMBOL_VALUE_ADDRESS (msym));
716 value->kind = axs_lvalue_memory;
717 }
718 break;
719
720 case LOC_COMPUTED:
721 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
722
723 case LOC_OPTIMIZED_OUT:
724 /* Flag this, but don't say anything; leave it up to callers to
725 warn the user. */
726 value->optimized_out = 1;
727 break;
728
729 default:
730 error (_("Cannot find value of botched symbol `%s'."),
731 SYMBOL_PRINT_NAME (var));
732 break;
733 }
734 }
735
736 /* Generate code for a minimal symbol variable reference to AX. The
737 variable is the symbol MINSYM, of OBJFILE. Set VALUE to describe
738 the result. */
739
740 static void
741 gen_msym_var_ref (agent_expr *ax, axs_value *value,
742 minimal_symbol *msymbol, objfile *objf)
743 {
744 CORE_ADDR address;
745 type *t = find_minsym_type_and_address (msymbol, objf, &address);
746 value->type = t;
747 value->optimized_out = false;
748 ax_const_l (ax, address);
749 value->kind = axs_lvalue_memory;
750 }
751
752 \f
753
754
755 /* Generating bytecode from GDB expressions: literals */
756
757 static void
758 gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
759 struct type *type)
760 {
761 ax_const_l (ax, k);
762 value->kind = axs_rvalue;
763 value->type = check_typedef (type);
764 }
765 \f
766
767
768 /* Generating bytecode from GDB expressions: unary conversions, casts */
769
770 /* Take what's on the top of the stack (as described by VALUE), and
771 try to make an rvalue out of it. Signal an error if we can't do
772 that. */
773 void
774 require_rvalue (struct agent_expr *ax, struct axs_value *value)
775 {
776 /* Only deal with scalars, structs and such may be too large
777 to fit in a stack entry. */
778 value->type = check_typedef (value->type);
779 if (TYPE_CODE (value->type) == TYPE_CODE_ARRAY
780 || TYPE_CODE (value->type) == TYPE_CODE_STRUCT
781 || TYPE_CODE (value->type) == TYPE_CODE_UNION
782 || TYPE_CODE (value->type) == TYPE_CODE_FUNC)
783 error (_("Value not scalar: cannot be an rvalue."));
784
785 switch (value->kind)
786 {
787 case axs_rvalue:
788 /* It's already an rvalue. */
789 break;
790
791 case axs_lvalue_memory:
792 /* The top of stack is the address of the object. Dereference. */
793 gen_fetch (ax, value->type);
794 break;
795
796 case axs_lvalue_register:
797 /* There's nothing on the stack, but value->u.reg is the
798 register number containing the value.
799
800 When we add floating-point support, this is going to have to
801 change. What about SPARC register pairs, for example? */
802 ax_reg (ax, value->u.reg);
803 gen_extend (ax, value->type);
804 break;
805 }
806
807 value->kind = axs_rvalue;
808 }
809
810
811 /* Assume the top of the stack is described by VALUE, and perform the
812 usual unary conversions. This is motivated by ANSI 6.2.2, but of
813 course GDB expressions are not ANSI; they're the mishmash union of
814 a bunch of languages. Rah.
815
816 NOTE! This function promises to produce an rvalue only when the
817 incoming value is of an appropriate type. In other words, the
818 consumer of the value this function produces may assume the value
819 is an rvalue only after checking its type.
820
821 The immediate issue is that if the user tries to use a structure or
822 union as an operand of, say, the `+' operator, we don't want to try
823 to convert that structure to an rvalue; require_rvalue will bomb on
824 structs and unions. Rather, we want to simply pass the struct
825 lvalue through unchanged, and let `+' raise an error. */
826
827 static void
828 gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
829 {
830 /* We don't have to generate any code for the usual integral
831 conversions, since values are always represented as full-width on
832 the stack. Should we tweak the type? */
833
834 /* Some types require special handling. */
835 switch (TYPE_CODE (value->type))
836 {
837 /* Functions get converted to a pointer to the function. */
838 case TYPE_CODE_FUNC:
839 value->type = lookup_pointer_type (value->type);
840 value->kind = axs_rvalue; /* Should always be true, but just in case. */
841 break;
842
843 /* Arrays get converted to a pointer to their first element, and
844 are no longer an lvalue. */
845 case TYPE_CODE_ARRAY:
846 {
847 struct type *elements = TYPE_TARGET_TYPE (value->type);
848
849 value->type = lookup_pointer_type (elements);
850 value->kind = axs_rvalue;
851 /* We don't need to generate any code; the address of the array
852 is also the address of its first element. */
853 }
854 break;
855
856 /* Don't try to convert structures and unions to rvalues. Let the
857 consumer signal an error. */
858 case TYPE_CODE_STRUCT:
859 case TYPE_CODE_UNION:
860 return;
861 }
862
863 /* If the value is an lvalue, dereference it. */
864 require_rvalue (ax, value);
865 }
866
867
868 /* Return non-zero iff the type TYPE1 is considered "wider" than the
869 type TYPE2, according to the rules described in gen_usual_arithmetic. */
870 static int
871 type_wider_than (struct type *type1, struct type *type2)
872 {
873 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
874 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
875 && TYPE_UNSIGNED (type1)
876 && !TYPE_UNSIGNED (type2)));
877 }
878
879
880 /* Return the "wider" of the two types TYPE1 and TYPE2. */
881 static struct type *
882 max_type (struct type *type1, struct type *type2)
883 {
884 return type_wider_than (type1, type2) ? type1 : type2;
885 }
886
887
888 /* Generate code to convert a scalar value of type FROM to type TO. */
889 static void
890 gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
891 {
892 /* Perhaps there is a more graceful way to state these rules. */
893
894 /* If we're converting to a narrower type, then we need to clear out
895 the upper bits. */
896 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
897 gen_extend (ax, to);
898
899 /* If the two values have equal width, but different signednesses,
900 then we need to extend. */
901 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
902 {
903 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
904 gen_extend (ax, to);
905 }
906
907 /* If we're converting to a wider type, and becoming unsigned, then
908 we need to zero out any possible sign bits. */
909 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
910 {
911 if (TYPE_UNSIGNED (to))
912 gen_extend (ax, to);
913 }
914 }
915
916
917 /* Return non-zero iff the type FROM will require any bytecodes to be
918 emitted to be converted to the type TO. */
919 static int
920 is_nontrivial_conversion (struct type *from, struct type *to)
921 {
922 agent_expr_up ax (new agent_expr (NULL, 0));
923 int nontrivial;
924
925 /* Actually generate the code, and see if anything came out. At the
926 moment, it would be trivial to replicate the code in
927 gen_conversion here, but in the future, when we're supporting
928 floating point and the like, it may not be. Doing things this
929 way allows this function to be independent of the logic in
930 gen_conversion. */
931 gen_conversion (ax.get (), from, to);
932 nontrivial = ax->len > 0;
933 return nontrivial;
934 }
935
936
937 /* Generate code to perform the "usual arithmetic conversions" (ANSI C
938 6.2.1.5) for the two operands of an arithmetic operator. This
939 effectively finds a "least upper bound" type for the two arguments,
940 and promotes each argument to that type. *VALUE1 and *VALUE2
941 describe the values as they are passed in, and as they are left. */
942 static void
943 gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
944 struct axs_value *value2)
945 {
946 /* Do the usual binary conversions. */
947 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
948 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
949 {
950 /* The ANSI integral promotions seem to work this way: Order the
951 integer types by size, and then by signedness: an n-bit
952 unsigned type is considered "wider" than an n-bit signed
953 type. Promote to the "wider" of the two types, and always
954 promote at least to int. */
955 struct type *target = max_type (builtin_type (ax->gdbarch)->builtin_int,
956 max_type (value1->type, value2->type));
957
958 /* Deal with value2, on the top of the stack. */
959 gen_conversion (ax, value2->type, target);
960
961 /* Deal with value1, not on the top of the stack. Don't
962 generate the `swap' instructions if we're not actually going
963 to do anything. */
964 if (is_nontrivial_conversion (value1->type, target))
965 {
966 ax_simple (ax, aop_swap);
967 gen_conversion (ax, value1->type, target);
968 ax_simple (ax, aop_swap);
969 }
970
971 value1->type = value2->type = check_typedef (target);
972 }
973 }
974
975
976 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
977 the value on the top of the stack, as described by VALUE. Assume
978 the value has integral type. */
979 static void
980 gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
981 {
982 const struct builtin_type *builtin = builtin_type (ax->gdbarch);
983
984 if (!type_wider_than (value->type, builtin->builtin_int))
985 {
986 gen_conversion (ax, value->type, builtin->builtin_int);
987 value->type = builtin->builtin_int;
988 }
989 else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
990 {
991 gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
992 value->type = builtin->builtin_unsigned_int;
993 }
994 }
995
996
997 /* Generate code for a cast to TYPE. */
998 static void
999 gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
1000 {
1001 /* GCC does allow casts to yield lvalues, so this should be fixed
1002 before merging these changes into the trunk. */
1003 require_rvalue (ax, value);
1004 /* Dereference typedefs. */
1005 type = check_typedef (type);
1006
1007 switch (TYPE_CODE (type))
1008 {
1009 case TYPE_CODE_PTR:
1010 case TYPE_CODE_REF:
1011 case TYPE_CODE_RVALUE_REF:
1012 /* It's implementation-defined, and I'll bet this is what GCC
1013 does. */
1014 break;
1015
1016 case TYPE_CODE_ARRAY:
1017 case TYPE_CODE_STRUCT:
1018 case TYPE_CODE_UNION:
1019 case TYPE_CODE_FUNC:
1020 error (_("Invalid type cast: intended type must be scalar."));
1021
1022 case TYPE_CODE_ENUM:
1023 case TYPE_CODE_BOOL:
1024 /* We don't have to worry about the size of the value, because
1025 all our integral values are fully sign-extended, and when
1026 casting pointers we can do anything we like. Is there any
1027 way for us to know what GCC actually does with a cast like
1028 this? */
1029 break;
1030
1031 case TYPE_CODE_INT:
1032 gen_conversion (ax, value->type, type);
1033 break;
1034
1035 case TYPE_CODE_VOID:
1036 /* We could pop the value, and rely on everyone else to check
1037 the type and notice that this value doesn't occupy a stack
1038 slot. But for now, leave the value on the stack, and
1039 preserve the "value == stack element" assumption. */
1040 break;
1041
1042 default:
1043 error (_("Casts to requested type are not yet implemented."));
1044 }
1045
1046 value->type = type;
1047 }
1048 \f
1049
1050
1051 /* Generating bytecode from GDB expressions: arithmetic */
1052
1053 /* Scale the integer on the top of the stack by the size of the target
1054 of the pointer type TYPE. */
1055 static void
1056 gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
1057 {
1058 struct type *element = TYPE_TARGET_TYPE (type);
1059
1060 if (TYPE_LENGTH (element) != 1)
1061 {
1062 ax_const_l (ax, TYPE_LENGTH (element));
1063 ax_simple (ax, op);
1064 }
1065 }
1066
1067
1068 /* Generate code for pointer arithmetic PTR + INT. */
1069 static void
1070 gen_ptradd (struct agent_expr *ax, struct axs_value *value,
1071 struct axs_value *value1, struct axs_value *value2)
1072 {
1073 gdb_assert (pointer_type (value1->type));
1074 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
1075
1076 gen_scale (ax, aop_mul, value1->type);
1077 ax_simple (ax, aop_add);
1078 gen_extend (ax, value1->type); /* Catch overflow. */
1079 value->type = value1->type;
1080 value->kind = axs_rvalue;
1081 }
1082
1083
1084 /* Generate code for pointer arithmetic PTR - INT. */
1085 static void
1086 gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
1087 struct axs_value *value1, struct axs_value *value2)
1088 {
1089 gdb_assert (pointer_type (value1->type));
1090 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
1091
1092 gen_scale (ax, aop_mul, value1->type);
1093 ax_simple (ax, aop_sub);
1094 gen_extend (ax, value1->type); /* Catch overflow. */
1095 value->type = value1->type;
1096 value->kind = axs_rvalue;
1097 }
1098
1099
1100 /* Generate code for pointer arithmetic PTR - PTR. */
1101 static void
1102 gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
1103 struct axs_value *value1, struct axs_value *value2,
1104 struct type *result_type)
1105 {
1106 gdb_assert (pointer_type (value1->type));
1107 gdb_assert (pointer_type (value2->type));
1108
1109 if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1110 != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
1111 error (_("\
1112 First argument of `-' is a pointer, but second argument is neither\n\
1113 an integer nor a pointer of the same type."));
1114
1115 ax_simple (ax, aop_sub);
1116 gen_scale (ax, aop_div_unsigned, value1->type);
1117 value->type = result_type;
1118 value->kind = axs_rvalue;
1119 }
1120
1121 static void
1122 gen_equal (struct agent_expr *ax, struct axs_value *value,
1123 struct axs_value *value1, struct axs_value *value2,
1124 struct type *result_type)
1125 {
1126 if (pointer_type (value1->type) || pointer_type (value2->type))
1127 ax_simple (ax, aop_equal);
1128 else
1129 gen_binop (ax, value, value1, value2,
1130 aop_equal, aop_equal, 0, "equal");
1131 value->type = result_type;
1132 value->kind = axs_rvalue;
1133 }
1134
1135 static void
1136 gen_less (struct agent_expr *ax, struct axs_value *value,
1137 struct axs_value *value1, struct axs_value *value2,
1138 struct type *result_type)
1139 {
1140 if (pointer_type (value1->type) || pointer_type (value2->type))
1141 ax_simple (ax, aop_less_unsigned);
1142 else
1143 gen_binop (ax, value, value1, value2,
1144 aop_less_signed, aop_less_unsigned, 0, "less than");
1145 value->type = result_type;
1146 value->kind = axs_rvalue;
1147 }
1148
1149 /* Generate code for a binary operator that doesn't do pointer magic.
1150 We set VALUE to describe the result value; we assume VALUE1 and
1151 VALUE2 describe the two operands, and that they've undergone the
1152 usual binary conversions. MAY_CARRY should be non-zero iff the
1153 result needs to be extended. NAME is the English name of the
1154 operator, used in error messages */
1155 static void
1156 gen_binop (struct agent_expr *ax, struct axs_value *value,
1157 struct axs_value *value1, struct axs_value *value2,
1158 enum agent_op op, enum agent_op op_unsigned,
1159 int may_carry, const char *name)
1160 {
1161 /* We only handle INT op INT. */
1162 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1163 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
1164 error (_("Invalid combination of types in %s."), name);
1165
1166 ax_simple (ax,
1167 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1168 if (may_carry)
1169 gen_extend (ax, value1->type); /* catch overflow */
1170 value->type = value1->type;
1171 value->kind = axs_rvalue;
1172 }
1173
1174
1175 static void
1176 gen_logical_not (struct agent_expr *ax, struct axs_value *value,
1177 struct type *result_type)
1178 {
1179 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1180 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1181 error (_("Invalid type of operand to `!'."));
1182
1183 ax_simple (ax, aop_log_not);
1184 value->type = result_type;
1185 }
1186
1187
1188 static void
1189 gen_complement (struct agent_expr *ax, struct axs_value *value)
1190 {
1191 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1192 error (_("Invalid type of operand to `~'."));
1193
1194 ax_simple (ax, aop_bit_not);
1195 gen_extend (ax, value->type);
1196 }
1197 \f
1198
1199
1200 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1201
1202 /* Dereference the value on the top of the stack. */
1203 static void
1204 gen_deref (struct axs_value *value)
1205 {
1206 /* The caller should check the type, because several operators use
1207 this, and we don't know what error message to generate. */
1208 if (!pointer_type (value->type))
1209 internal_error (__FILE__, __LINE__,
1210 _("gen_deref: expected a pointer"));
1211
1212 /* We've got an rvalue now, which is a pointer. We want to yield an
1213 lvalue, whose address is exactly that pointer. So we don't
1214 actually emit any code; we just change the type from "Pointer to
1215 T" to "T", and mark the value as an lvalue in memory. Leave it
1216 to the consumer to actually dereference it. */
1217 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1218 if (TYPE_CODE (value->type) == TYPE_CODE_VOID)
1219 error (_("Attempt to dereference a generic pointer."));
1220 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1221 ? axs_rvalue : axs_lvalue_memory);
1222 }
1223
1224
1225 /* Produce the address of the lvalue on the top of the stack. */
1226 static void
1227 gen_address_of (struct axs_value *value)
1228 {
1229 /* Special case for taking the address of a function. The ANSI
1230 standard describes this as a special case, too, so this
1231 arrangement is not without motivation. */
1232 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1233 /* The value's already an rvalue on the stack, so we just need to
1234 change the type. */
1235 value->type = lookup_pointer_type (value->type);
1236 else
1237 switch (value->kind)
1238 {
1239 case axs_rvalue:
1240 error (_("Operand of `&' is an rvalue, which has no address."));
1241
1242 case axs_lvalue_register:
1243 error (_("Operand of `&' is in a register, and has no address."));
1244
1245 case axs_lvalue_memory:
1246 value->kind = axs_rvalue;
1247 value->type = lookup_pointer_type (value->type);
1248 break;
1249 }
1250 }
1251
1252 /* Generate code to push the value of a bitfield of a structure whose
1253 address is on the top of the stack. START and END give the
1254 starting and one-past-ending *bit* numbers of the field within the
1255 structure. */
1256 static void
1257 gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
1258 struct type *type, int start, int end)
1259 {
1260 /* Note that ops[i] fetches 8 << i bits. */
1261 static enum agent_op ops[]
1262 = {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1263 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1264
1265 /* We don't want to touch any byte that the bitfield doesn't
1266 actually occupy; we shouldn't make any accesses we're not
1267 explicitly permitted to. We rely here on the fact that the
1268 bytecode `ref' operators work on unaligned addresses.
1269
1270 It takes some fancy footwork to get the stack to work the way
1271 we'd like. Say we're retrieving a bitfield that requires three
1272 fetches. Initially, the stack just contains the address:
1273 addr
1274 For the first fetch, we duplicate the address
1275 addr addr
1276 then add the byte offset, do the fetch, and shift and mask as
1277 needed, yielding a fragment of the value, properly aligned for
1278 the final bitwise or:
1279 addr frag1
1280 then we swap, and repeat the process:
1281 frag1 addr --- address on top
1282 frag1 addr addr --- duplicate it
1283 frag1 addr frag2 --- get second fragment
1284 frag1 frag2 addr --- swap again
1285 frag1 frag2 frag3 --- get third fragment
1286 Notice that, since the third fragment is the last one, we don't
1287 bother duplicating the address this time. Now we have all the
1288 fragments on the stack, and we can simply `or' them together,
1289 yielding the final value of the bitfield. */
1290
1291 /* The first and one-after-last bits in the field, but rounded down
1292 and up to byte boundaries. */
1293 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1294 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1295 / TARGET_CHAR_BIT)
1296 * TARGET_CHAR_BIT);
1297
1298 /* current bit offset within the structure */
1299 int offset;
1300
1301 /* The index in ops of the opcode we're considering. */
1302 int op;
1303
1304 /* The number of fragments we generated in the process. Probably
1305 equal to the number of `one' bits in bytesize, but who cares? */
1306 int fragment_count;
1307
1308 /* Dereference any typedefs. */
1309 type = check_typedef (type);
1310
1311 /* Can we fetch the number of bits requested at all? */
1312 if ((end - start) > ((1 << num_ops) * 8))
1313 internal_error (__FILE__, __LINE__,
1314 _("gen_bitfield_ref: bitfield too wide"));
1315
1316 /* Note that we know here that we only need to try each opcode once.
1317 That may not be true on machines with weird byte sizes. */
1318 offset = bound_start;
1319 fragment_count = 0;
1320 for (op = num_ops - 1; op >= 0; op--)
1321 {
1322 /* number of bits that ops[op] would fetch */
1323 int op_size = 8 << op;
1324
1325 /* The stack at this point, from bottom to top, contains zero or
1326 more fragments, then the address. */
1327
1328 /* Does this fetch fit within the bitfield? */
1329 if (offset + op_size <= bound_end)
1330 {
1331 /* Is this the last fragment? */
1332 int last_frag = (offset + op_size == bound_end);
1333
1334 if (!last_frag)
1335 ax_simple (ax, aop_dup); /* keep a copy of the address */
1336
1337 /* Add the offset. */
1338 gen_offset (ax, offset / TARGET_CHAR_BIT);
1339
1340 if (ax->tracing)
1341 {
1342 /* Record the area of memory we're about to fetch. */
1343 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1344 }
1345
1346 /* Perform the fetch. */
1347 ax_simple (ax, ops[op]);
1348
1349 /* Shift the bits we have to their proper position.
1350 gen_left_shift will generate right shifts when the operand
1351 is negative.
1352
1353 A big-endian field diagram to ponder:
1354 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1355 +------++------++------++------++------++------++------++------+
1356 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1357 ^ ^ ^ ^
1358 bit number 16 32 48 53
1359 These are bit numbers as supplied by GDB. Note that the
1360 bit numbers run from right to left once you've fetched the
1361 value!
1362
1363 A little-endian field diagram to ponder:
1364 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1365 +------++------++------++------++------++------++------++------+
1366 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1367 ^ ^ ^ ^ ^
1368 bit number 48 32 16 4 0
1369
1370 In both cases, the most significant end is on the left
1371 (i.e. normal numeric writing order), which means that you
1372 don't go crazy thinking about `left' and `right' shifts.
1373
1374 We don't have to worry about masking yet:
1375 - If they contain garbage off the least significant end, then we
1376 must be looking at the low end of the field, and the right
1377 shift will wipe them out.
1378 - If they contain garbage off the most significant end, then we
1379 must be looking at the most significant end of the word, and
1380 the sign/zero extension will wipe them out.
1381 - If we're in the interior of the word, then there is no garbage
1382 on either end, because the ref operators zero-extend. */
1383 if (gdbarch_byte_order (ax->gdbarch) == BFD_ENDIAN_BIG)
1384 gen_left_shift (ax, end - (offset + op_size));
1385 else
1386 gen_left_shift (ax, offset - start);
1387
1388 if (!last_frag)
1389 /* Bring the copy of the address up to the top. */
1390 ax_simple (ax, aop_swap);
1391
1392 offset += op_size;
1393 fragment_count++;
1394 }
1395 }
1396
1397 /* Generate enough bitwise `or' operations to combine all the
1398 fragments we left on the stack. */
1399 while (fragment_count-- > 1)
1400 ax_simple (ax, aop_bit_or);
1401
1402 /* Sign- or zero-extend the value as appropriate. */
1403 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1404
1405 /* This is *not* an lvalue. Ugh. */
1406 value->kind = axs_rvalue;
1407 value->type = type;
1408 }
1409
1410 /* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET
1411 is an accumulated offset (in bytes), will be nonzero for objects
1412 embedded in other objects, like C++ base classes. Behavior should
1413 generally follow value_primitive_field. */
1414
1415 static void
1416 gen_primitive_field (struct agent_expr *ax, struct axs_value *value,
1417 int offset, int fieldno, struct type *type)
1418 {
1419 /* Is this a bitfield? */
1420 if (TYPE_FIELD_PACKED (type, fieldno))
1421 gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, fieldno),
1422 (offset * TARGET_CHAR_BIT
1423 + TYPE_FIELD_BITPOS (type, fieldno)),
1424 (offset * TARGET_CHAR_BIT
1425 + TYPE_FIELD_BITPOS (type, fieldno)
1426 + TYPE_FIELD_BITSIZE (type, fieldno)));
1427 else
1428 {
1429 gen_offset (ax, offset
1430 + TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT);
1431 value->kind = axs_lvalue_memory;
1432 value->type = TYPE_FIELD_TYPE (type, fieldno);
1433 }
1434 }
1435
1436 /* Search for the given field in either the given type or one of its
1437 base classes. Return 1 if found, 0 if not. */
1438
1439 static int
1440 gen_struct_ref_recursive (struct agent_expr *ax, struct axs_value *value,
1441 const char *field, int offset, struct type *type)
1442 {
1443 int i, rslt;
1444 int nbases = TYPE_N_BASECLASSES (type);
1445
1446 type = check_typedef (type);
1447
1448 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1449 {
1450 const char *this_name = TYPE_FIELD_NAME (type, i);
1451
1452 if (this_name)
1453 {
1454 if (strcmp (field, this_name) == 0)
1455 {
1456 /* Note that bytecodes for the struct's base (aka
1457 "this") will have been generated already, which will
1458 be unnecessary but not harmful if the static field is
1459 being handled as a global. */
1460 if (field_is_static (&TYPE_FIELD (type, i)))
1461 {
1462 gen_static_field (ax, value, type, i);
1463 if (value->optimized_out)
1464 error (_("static field `%s' has been "
1465 "optimized out, cannot use"),
1466 field);
1467 return 1;
1468 }
1469
1470 gen_primitive_field (ax, value, offset, i, type);
1471 return 1;
1472 }
1473 #if 0 /* is this right? */
1474 if (this_name[0] == '\0')
1475 internal_error (__FILE__, __LINE__,
1476 _("find_field: anonymous unions not supported"));
1477 #endif
1478 }
1479 }
1480
1481 /* Now scan through base classes recursively. */
1482 for (i = 0; i < nbases; i++)
1483 {
1484 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1485
1486 rslt = gen_struct_ref_recursive (ax, value, field,
1487 offset + TYPE_BASECLASS_BITPOS (type, i)
1488 / TARGET_CHAR_BIT,
1489 basetype);
1490 if (rslt)
1491 return 1;
1492 }
1493
1494 /* Not found anywhere, flag so caller can complain. */
1495 return 0;
1496 }
1497
1498 /* Generate code to reference the member named FIELD of a structure or
1499 union. The top of the stack, as described by VALUE, should have
1500 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1501 the operator being compiled, and OPERAND_NAME is the kind of thing
1502 it operates on; we use them in error messages. */
1503 static void
1504 gen_struct_ref (struct agent_expr *ax, struct axs_value *value,
1505 const char *field, const char *operator_name,
1506 const char *operand_name)
1507 {
1508 struct type *type;
1509 int found;
1510
1511 /* Follow pointers until we reach a non-pointer. These aren't the C
1512 semantics, but they're what the normal GDB evaluator does, so we
1513 should at least be consistent. */
1514 while (pointer_type (value->type))
1515 {
1516 require_rvalue (ax, value);
1517 gen_deref (value);
1518 }
1519 type = check_typedef (value->type);
1520
1521 /* This must yield a structure or a union. */
1522 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1523 && TYPE_CODE (type) != TYPE_CODE_UNION)
1524 error (_("The left operand of `%s' is not a %s."),
1525 operator_name, operand_name);
1526
1527 /* And it must be in memory; we don't deal with structure rvalues,
1528 or structures living in registers. */
1529 if (value->kind != axs_lvalue_memory)
1530 error (_("Structure does not live in memory."));
1531
1532 /* Search through fields and base classes recursively. */
1533 found = gen_struct_ref_recursive (ax, value, field, 0, type);
1534
1535 if (!found)
1536 error (_("Couldn't find member named `%s' in struct/union/class `%s'"),
1537 field, TYPE_NAME (type));
1538 }
1539
1540 static int
1541 gen_namespace_elt (struct agent_expr *ax, struct axs_value *value,
1542 const struct type *curtype, char *name);
1543 static int
1544 gen_maybe_namespace_elt (struct agent_expr *ax, struct axs_value *value,
1545 const struct type *curtype, char *name);
1546
1547 static void
1548 gen_static_field (struct agent_expr *ax, struct axs_value *value,
1549 struct type *type, int fieldno)
1550 {
1551 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1552 {
1553 ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1554 value->kind = axs_lvalue_memory;
1555 value->type = TYPE_FIELD_TYPE (type, fieldno);
1556 value->optimized_out = 0;
1557 }
1558 else
1559 {
1560 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1561 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0).symbol;
1562
1563 if (sym)
1564 {
1565 gen_var_ref (ax, value, sym);
1566
1567 /* Don't error if the value was optimized out, we may be
1568 scanning all static fields and just want to pass over this
1569 and continue with the rest. */
1570 }
1571 else
1572 {
1573 /* Silently assume this was optimized out; class printing
1574 will let the user know why the data is missing. */
1575 value->optimized_out = 1;
1576 }
1577 }
1578 }
1579
1580 static int
1581 gen_struct_elt_for_reference (struct agent_expr *ax, struct axs_value *value,
1582 struct type *type, char *fieldname)
1583 {
1584 struct type *t = type;
1585 int i;
1586
1587 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1588 && TYPE_CODE (t) != TYPE_CODE_UNION)
1589 internal_error (__FILE__, __LINE__,
1590 _("non-aggregate type to gen_struct_elt_for_reference"));
1591
1592 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1593 {
1594 const char *t_field_name = TYPE_FIELD_NAME (t, i);
1595
1596 if (t_field_name && strcmp (t_field_name, fieldname) == 0)
1597 {
1598 if (field_is_static (&TYPE_FIELD (t, i)))
1599 {
1600 gen_static_field (ax, value, t, i);
1601 if (value->optimized_out)
1602 error (_("static field `%s' has been "
1603 "optimized out, cannot use"),
1604 fieldname);
1605 return 1;
1606 }
1607 if (TYPE_FIELD_PACKED (t, i))
1608 error (_("pointers to bitfield members not allowed"));
1609
1610 /* FIXME we need a way to do "want_address" equivalent */
1611
1612 error (_("Cannot reference non-static field \"%s\""), fieldname);
1613 }
1614 }
1615
1616 /* FIXME add other scoped-reference cases here */
1617
1618 /* Do a last-ditch lookup. */
1619 return gen_maybe_namespace_elt (ax, value, type, fieldname);
1620 }
1621
1622 /* C++: Return the member NAME of the namespace given by the type
1623 CURTYPE. */
1624
1625 static int
1626 gen_namespace_elt (struct agent_expr *ax, struct axs_value *value,
1627 const struct type *curtype, char *name)
1628 {
1629 int found = gen_maybe_namespace_elt (ax, value, curtype, name);
1630
1631 if (!found)
1632 error (_("No symbol \"%s\" in namespace \"%s\"."),
1633 name, TYPE_NAME (curtype));
1634
1635 return found;
1636 }
1637
1638 /* A helper function used by value_namespace_elt and
1639 value_struct_elt_for_reference. It looks up NAME inside the
1640 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
1641 is a class and NAME refers to a type in CURTYPE itself (as opposed
1642 to, say, some base class of CURTYPE). */
1643
1644 static int
1645 gen_maybe_namespace_elt (struct agent_expr *ax, struct axs_value *value,
1646 const struct type *curtype, char *name)
1647 {
1648 const char *namespace_name = TYPE_NAME (curtype);
1649 struct block_symbol sym;
1650
1651 sym = cp_lookup_symbol_namespace (namespace_name, name,
1652 block_for_pc (ax->scope),
1653 VAR_DOMAIN);
1654
1655 if (sym.symbol == NULL)
1656 return 0;
1657
1658 gen_var_ref (ax, value, sym.symbol);
1659
1660 if (value->optimized_out)
1661 error (_("`%s' has been optimized out, cannot use"),
1662 SYMBOL_PRINT_NAME (sym.symbol));
1663
1664 return 1;
1665 }
1666
1667
1668 static int
1669 gen_aggregate_elt_ref (struct agent_expr *ax, struct axs_value *value,
1670 struct type *type, char *field)
1671 {
1672 switch (TYPE_CODE (type))
1673 {
1674 case TYPE_CODE_STRUCT:
1675 case TYPE_CODE_UNION:
1676 return gen_struct_elt_for_reference (ax, value, type, field);
1677 break;
1678 case TYPE_CODE_NAMESPACE:
1679 return gen_namespace_elt (ax, value, type, field);
1680 break;
1681 default:
1682 internal_error (__FILE__, __LINE__,
1683 _("non-aggregate type in gen_aggregate_elt_ref"));
1684 }
1685
1686 return 0;
1687 }
1688
1689 /* Generate code for GDB's magical `repeat' operator.
1690 LVALUE @ INT creates an array INT elements long, and whose elements
1691 have the same type as LVALUE, located in memory so that LVALUE is
1692 its first element. For example, argv[0]@argc gives you the array
1693 of command-line arguments.
1694
1695 Unfortunately, because we have to know the types before we actually
1696 have a value for the expression, we can't implement this perfectly
1697 without changing the type system, having values that occupy two
1698 stack slots, doing weird things with sizeof, etc. So we require
1699 the right operand to be a constant expression. */
1700 static void
1701 gen_repeat (struct expression *exp, union exp_element **pc,
1702 struct agent_expr *ax, struct axs_value *value)
1703 {
1704 struct axs_value value1;
1705
1706 /* We don't want to turn this into an rvalue, so no conversions
1707 here. */
1708 gen_expr (exp, pc, ax, &value1);
1709 if (value1.kind != axs_lvalue_memory)
1710 error (_("Left operand of `@' must be an object in memory."));
1711
1712 /* Evaluate the length; it had better be a constant. */
1713 {
1714 struct value *v = const_expr (pc);
1715 int length;
1716
1717 if (!v)
1718 error (_("Right operand of `@' must be a "
1719 "constant, in agent expressions."));
1720 if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
1721 error (_("Right operand of `@' must be an integer."));
1722 length = value_as_long (v);
1723 if (length <= 0)
1724 error (_("Right operand of `@' must be positive."));
1725
1726 /* The top of the stack is already the address of the object, so
1727 all we need to do is frob the type of the lvalue. */
1728 {
1729 /* FIXME-type-allocation: need a way to free this type when we are
1730 done with it. */
1731 struct type *array
1732 = lookup_array_range_type (value1.type, 0, length - 1);
1733
1734 value->kind = axs_lvalue_memory;
1735 value->type = array;
1736 }
1737 }
1738 }
1739
1740
1741 /* Emit code for the `sizeof' operator.
1742 *PC should point at the start of the operand expression; we advance it
1743 to the first instruction after the operand. */
1744 static void
1745 gen_sizeof (struct expression *exp, union exp_element **pc,
1746 struct agent_expr *ax, struct axs_value *value,
1747 struct type *size_type)
1748 {
1749 /* We don't care about the value of the operand expression; we only
1750 care about its type. However, in the current arrangement, the
1751 only way to find an expression's type is to generate code for it.
1752 So we generate code for the operand, and then throw it away,
1753 replacing it with code that simply pushes its size. */
1754 int start = ax->len;
1755
1756 gen_expr (exp, pc, ax, value);
1757
1758 /* Throw away the code we just generated. */
1759 ax->len = start;
1760
1761 ax_const_l (ax, TYPE_LENGTH (value->type));
1762 value->kind = axs_rvalue;
1763 value->type = size_type;
1764 }
1765 \f
1766
1767 /* Generate bytecode for a cast to TO_TYPE. Advance *PC over the
1768 subexpression. */
1769
1770 static void
1771 gen_expr_for_cast (struct expression *exp, union exp_element **pc,
1772 struct agent_expr *ax, struct axs_value *value,
1773 struct type *to_type)
1774 {
1775 enum exp_opcode op = (*pc)[0].opcode;
1776
1777 /* Don't let symbols be handled with gen_expr because that throws an
1778 "unknown type" error for no-debug data symbols. Instead, we want
1779 the cast to reinterpret such symbols. */
1780 if (op == OP_VAR_MSYM_VALUE || op == OP_VAR_VALUE)
1781 {
1782 if (op == OP_VAR_VALUE)
1783 {
1784 gen_var_ref (ax, value, (*pc)[2].symbol);
1785
1786 if (value->optimized_out)
1787 error (_("`%s' has been optimized out, cannot use"),
1788 SYMBOL_PRINT_NAME ((*pc)[2].symbol));
1789 }
1790 else
1791 gen_msym_var_ref (ax, value, (*pc)[2].msymbol, (*pc)[1].objfile);
1792 if (TYPE_CODE (value->type) == TYPE_CODE_ERROR)
1793 value->type = to_type;
1794 (*pc) += 4;
1795 }
1796 else
1797 gen_expr (exp, pc, ax, value);
1798 gen_cast (ax, value, to_type);
1799 }
1800
1801 /* Generating bytecode from GDB expressions: general recursive thingy */
1802
1803 /* XXX: i18n */
1804 /* A gen_expr function written by a Gen-X'er guy.
1805 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1806 void
1807 gen_expr (struct expression *exp, union exp_element **pc,
1808 struct agent_expr *ax, struct axs_value *value)
1809 {
1810 /* Used to hold the descriptions of operand expressions. */
1811 struct axs_value value1, value2, value3;
1812 enum exp_opcode op = (*pc)[0].opcode, op2;
1813 int if1, go1, if2, go2, end;
1814 struct type *int_type = builtin_type (ax->gdbarch)->builtin_int;
1815
1816 /* If we're looking at a constant expression, just push its value. */
1817 {
1818 struct value *v = maybe_const_expr (pc);
1819
1820 if (v)
1821 {
1822 ax_const_l (ax, value_as_long (v));
1823 value->kind = axs_rvalue;
1824 value->type = check_typedef (value_type (v));
1825 return;
1826 }
1827 }
1828
1829 /* Otherwise, go ahead and generate code for it. */
1830 switch (op)
1831 {
1832 /* Binary arithmetic operators. */
1833 case BINOP_ADD:
1834 case BINOP_SUB:
1835 case BINOP_MUL:
1836 case BINOP_DIV:
1837 case BINOP_REM:
1838 case BINOP_LSH:
1839 case BINOP_RSH:
1840 case BINOP_SUBSCRIPT:
1841 case BINOP_BITWISE_AND:
1842 case BINOP_BITWISE_IOR:
1843 case BINOP_BITWISE_XOR:
1844 case BINOP_EQUAL:
1845 case BINOP_NOTEQUAL:
1846 case BINOP_LESS:
1847 case BINOP_GTR:
1848 case BINOP_LEQ:
1849 case BINOP_GEQ:
1850 (*pc)++;
1851 gen_expr (exp, pc, ax, &value1);
1852 gen_usual_unary (ax, &value1);
1853 gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2);
1854 break;
1855
1856 case BINOP_LOGICAL_AND:
1857 (*pc)++;
1858 /* Generate the obvious sequence of tests and jumps. */
1859 gen_expr (exp, pc, ax, &value1);
1860 gen_usual_unary (ax, &value1);
1861 if1 = ax_goto (ax, aop_if_goto);
1862 go1 = ax_goto (ax, aop_goto);
1863 ax_label (ax, if1, ax->len);
1864 gen_expr (exp, pc, ax, &value2);
1865 gen_usual_unary (ax, &value2);
1866 if2 = ax_goto (ax, aop_if_goto);
1867 go2 = ax_goto (ax, aop_goto);
1868 ax_label (ax, if2, ax->len);
1869 ax_const_l (ax, 1);
1870 end = ax_goto (ax, aop_goto);
1871 ax_label (ax, go1, ax->len);
1872 ax_label (ax, go2, ax->len);
1873 ax_const_l (ax, 0);
1874 ax_label (ax, end, ax->len);
1875 value->kind = axs_rvalue;
1876 value->type = int_type;
1877 break;
1878
1879 case BINOP_LOGICAL_OR:
1880 (*pc)++;
1881 /* Generate the obvious sequence of tests and jumps. */
1882 gen_expr (exp, pc, ax, &value1);
1883 gen_usual_unary (ax, &value1);
1884 if1 = ax_goto (ax, aop_if_goto);
1885 gen_expr (exp, pc, ax, &value2);
1886 gen_usual_unary (ax, &value2);
1887 if2 = ax_goto (ax, aop_if_goto);
1888 ax_const_l (ax, 0);
1889 end = ax_goto (ax, aop_goto);
1890 ax_label (ax, if1, ax->len);
1891 ax_label (ax, if2, ax->len);
1892 ax_const_l (ax, 1);
1893 ax_label (ax, end, ax->len);
1894 value->kind = axs_rvalue;
1895 value->type = int_type;
1896 break;
1897
1898 case TERNOP_COND:
1899 (*pc)++;
1900 gen_expr (exp, pc, ax, &value1);
1901 gen_usual_unary (ax, &value1);
1902 /* For (A ? B : C), it's easiest to generate subexpression
1903 bytecodes in order, but if_goto jumps on true, so we invert
1904 the sense of A. Then we can do B by dropping through, and
1905 jump to do C. */
1906 gen_logical_not (ax, &value1, int_type);
1907 if1 = ax_goto (ax, aop_if_goto);
1908 gen_expr (exp, pc, ax, &value2);
1909 gen_usual_unary (ax, &value2);
1910 end = ax_goto (ax, aop_goto);
1911 ax_label (ax, if1, ax->len);
1912 gen_expr (exp, pc, ax, &value3);
1913 gen_usual_unary (ax, &value3);
1914 ax_label (ax, end, ax->len);
1915 /* This is arbitary - what if B and C are incompatible types? */
1916 value->type = value2.type;
1917 value->kind = value2.kind;
1918 break;
1919
1920 case BINOP_ASSIGN:
1921 (*pc)++;
1922 if ((*pc)[0].opcode == OP_INTERNALVAR)
1923 {
1924 char *name = internalvar_name ((*pc)[1].internalvar);
1925 struct trace_state_variable *tsv;
1926
1927 (*pc) += 3;
1928 gen_expr (exp, pc, ax, value);
1929 tsv = find_trace_state_variable (name);
1930 if (tsv)
1931 {
1932 ax_tsv (ax, aop_setv, tsv->number);
1933 if (ax->tracing)
1934 ax_tsv (ax, aop_tracev, tsv->number);
1935 }
1936 else
1937 error (_("$%s is not a trace state variable, "
1938 "may not assign to it"), name);
1939 }
1940 else
1941 error (_("May only assign to trace state variables"));
1942 break;
1943
1944 case BINOP_ASSIGN_MODIFY:
1945 (*pc)++;
1946 op2 = (*pc)[0].opcode;
1947 (*pc)++;
1948 (*pc)++;
1949 if ((*pc)[0].opcode == OP_INTERNALVAR)
1950 {
1951 char *name = internalvar_name ((*pc)[1].internalvar);
1952 struct trace_state_variable *tsv;
1953
1954 (*pc) += 3;
1955 tsv = find_trace_state_variable (name);
1956 if (tsv)
1957 {
1958 /* The tsv will be the left half of the binary operation. */
1959 ax_tsv (ax, aop_getv, tsv->number);
1960 if (ax->tracing)
1961 ax_tsv (ax, aop_tracev, tsv->number);
1962 /* Trace state variables are always 64-bit integers. */
1963 value1.kind = axs_rvalue;
1964 value1.type = builtin_type (ax->gdbarch)->builtin_long_long;
1965 /* Now do right half of expression. */
1966 gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2);
1967 /* We have a result of the binary op, set the tsv. */
1968 ax_tsv (ax, aop_setv, tsv->number);
1969 if (ax->tracing)
1970 ax_tsv (ax, aop_tracev, tsv->number);
1971 }
1972 else
1973 error (_("$%s is not a trace state variable, "
1974 "may not assign to it"), name);
1975 }
1976 else
1977 error (_("May only assign to trace state variables"));
1978 break;
1979
1980 /* Note that we need to be a little subtle about generating code
1981 for comma. In C, we can do some optimizations here because
1982 we know the left operand is only being evaluated for effect.
1983 However, if the tracing kludge is in effect, then we always
1984 need to evaluate the left hand side fully, so that all the
1985 variables it mentions get traced. */
1986 case BINOP_COMMA:
1987 (*pc)++;
1988 gen_expr (exp, pc, ax, &value1);
1989 /* Don't just dispose of the left operand. We might be tracing,
1990 in which case we want to emit code to trace it if it's an
1991 lvalue. */
1992 gen_traced_pop (ax, &value1);
1993 gen_expr (exp, pc, ax, value);
1994 /* It's the consumer's responsibility to trace the right operand. */
1995 break;
1996
1997 case OP_LONG: /* some integer constant */
1998 {
1999 struct type *type = (*pc)[1].type;
2000 LONGEST k = (*pc)[2].longconst;
2001
2002 (*pc) += 4;
2003 gen_int_literal (ax, value, k, type);
2004 }
2005 break;
2006
2007 case OP_VAR_VALUE:
2008 gen_var_ref (ax, value, (*pc)[2].symbol);
2009
2010 if (value->optimized_out)
2011 error (_("`%s' has been optimized out, cannot use"),
2012 SYMBOL_PRINT_NAME ((*pc)[2].symbol));
2013
2014 if (TYPE_CODE (value->type) == TYPE_CODE_ERROR)
2015 error_unknown_type (SYMBOL_PRINT_NAME ((*pc)[2].symbol));
2016
2017 (*pc) += 4;
2018 break;
2019
2020 case OP_VAR_MSYM_VALUE:
2021 gen_msym_var_ref (ax, value, (*pc)[2].msymbol, (*pc)[1].objfile);
2022
2023 if (TYPE_CODE (value->type) == TYPE_CODE_ERROR)
2024 error_unknown_type (MSYMBOL_PRINT_NAME ((*pc)[2].msymbol));
2025
2026 (*pc) += 4;
2027 break;
2028
2029 case OP_REGISTER:
2030 {
2031 const char *name = &(*pc)[2].string;
2032 int reg;
2033
2034 (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
2035 reg = user_reg_map_name_to_regnum (ax->gdbarch, name, strlen (name));
2036 if (reg == -1)
2037 internal_error (__FILE__, __LINE__,
2038 _("Register $%s not available"), name);
2039 /* No support for tracing user registers yet. */
2040 if (reg >= gdbarch_num_cooked_regs (ax->gdbarch))
2041 error (_("'%s' is a user-register; "
2042 "GDB cannot yet trace user-register contents."),
2043 name);
2044 value->kind = axs_lvalue_register;
2045 value->u.reg = reg;
2046 value->type = register_type (ax->gdbarch, reg);
2047 }
2048 break;
2049
2050 case OP_INTERNALVAR:
2051 {
2052 struct internalvar *var = (*pc)[1].internalvar;
2053 const char *name = internalvar_name (var);
2054 struct trace_state_variable *tsv;
2055
2056 (*pc) += 3;
2057 tsv = find_trace_state_variable (name);
2058 if (tsv)
2059 {
2060 ax_tsv (ax, aop_getv, tsv->number);
2061 if (ax->tracing)
2062 ax_tsv (ax, aop_tracev, tsv->number);
2063 /* Trace state variables are always 64-bit integers. */
2064 value->kind = axs_rvalue;
2065 value->type = builtin_type (ax->gdbarch)->builtin_long_long;
2066 }
2067 else if (! compile_internalvar_to_ax (var, ax, value))
2068 error (_("$%s is not a trace state variable; GDB agent "
2069 "expressions cannot use convenience variables."), name);
2070 }
2071 break;
2072
2073 /* Weirdo operator: see comments for gen_repeat for details. */
2074 case BINOP_REPEAT:
2075 /* Note that gen_repeat handles its own argument evaluation. */
2076 (*pc)++;
2077 gen_repeat (exp, pc, ax, value);
2078 break;
2079
2080 case UNOP_CAST:
2081 {
2082 struct type *type = (*pc)[1].type;
2083
2084 (*pc) += 3;
2085 gen_expr_for_cast (exp, pc, ax, value, type);
2086 }
2087 break;
2088
2089 case UNOP_CAST_TYPE:
2090 {
2091 int offset;
2092 struct value *val;
2093 struct type *type;
2094
2095 ++*pc;
2096 offset = *pc - exp->elts;
2097 val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS);
2098 type = value_type (val);
2099 *pc = &exp->elts[offset];
2100 gen_expr_for_cast (exp, pc, ax, value, type);
2101 }
2102 break;
2103
2104 case UNOP_MEMVAL:
2105 {
2106 struct type *type = check_typedef ((*pc)[1].type);
2107
2108 (*pc) += 3;
2109 gen_expr (exp, pc, ax, value);
2110
2111 /* If we have an axs_rvalue or an axs_lvalue_memory, then we
2112 already have the right value on the stack. For
2113 axs_lvalue_register, we must convert. */
2114 if (value->kind == axs_lvalue_register)
2115 require_rvalue (ax, value);
2116
2117 value->type = type;
2118 value->kind = axs_lvalue_memory;
2119 }
2120 break;
2121
2122 case UNOP_MEMVAL_TYPE:
2123 {
2124 int offset;
2125 struct value *val;
2126 struct type *type;
2127
2128 ++*pc;
2129 offset = *pc - exp->elts;
2130 val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS);
2131 type = value_type (val);
2132 *pc = &exp->elts[offset];
2133
2134 gen_expr (exp, pc, ax, value);
2135
2136 /* If we have an axs_rvalue or an axs_lvalue_memory, then we
2137 already have the right value on the stack. For
2138 axs_lvalue_register, we must convert. */
2139 if (value->kind == axs_lvalue_register)
2140 require_rvalue (ax, value);
2141
2142 value->type = type;
2143 value->kind = axs_lvalue_memory;
2144 }
2145 break;
2146
2147 case UNOP_PLUS:
2148 (*pc)++;
2149 /* + FOO is equivalent to 0 + FOO, which can be optimized. */
2150 gen_expr (exp, pc, ax, value);
2151 gen_usual_unary (ax, value);
2152 break;
2153
2154 case UNOP_NEG:
2155 (*pc)++;
2156 /* -FOO is equivalent to 0 - FOO. */
2157 gen_int_literal (ax, &value1, 0,
2158 builtin_type (ax->gdbarch)->builtin_int);
2159 gen_usual_unary (ax, &value1); /* shouldn't do much */
2160 gen_expr (exp, pc, ax, &value2);
2161 gen_usual_unary (ax, &value2);
2162 gen_usual_arithmetic (ax, &value1, &value2);
2163 gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
2164 break;
2165
2166 case UNOP_LOGICAL_NOT:
2167 (*pc)++;
2168 gen_expr (exp, pc, ax, value);
2169 gen_usual_unary (ax, value);
2170 gen_logical_not (ax, value, int_type);
2171 break;
2172
2173 case UNOP_COMPLEMENT:
2174 (*pc)++;
2175 gen_expr (exp, pc, ax, value);
2176 gen_usual_unary (ax, value);
2177 gen_integral_promotions (ax, value);
2178 gen_complement (ax, value);
2179 break;
2180
2181 case UNOP_IND:
2182 (*pc)++;
2183 gen_expr (exp, pc, ax, value);
2184 gen_usual_unary (ax, value);
2185 if (!pointer_type (value->type))
2186 error (_("Argument of unary `*' is not a pointer."));
2187 gen_deref (value);
2188 break;
2189
2190 case UNOP_ADDR:
2191 (*pc)++;
2192 gen_expr (exp, pc, ax, value);
2193 gen_address_of (value);
2194 break;
2195
2196 case UNOP_SIZEOF:
2197 (*pc)++;
2198 /* Notice that gen_sizeof handles its own operand, unlike most
2199 of the other unary operator functions. This is because we
2200 have to throw away the code we generate. */
2201 gen_sizeof (exp, pc, ax, value,
2202 builtin_type (ax->gdbarch)->builtin_int);
2203 break;
2204
2205 case STRUCTOP_STRUCT:
2206 case STRUCTOP_PTR:
2207 {
2208 int length = (*pc)[1].longconst;
2209 char *name = &(*pc)[2].string;
2210
2211 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
2212 gen_expr (exp, pc, ax, value);
2213 if (op == STRUCTOP_STRUCT)
2214 gen_struct_ref (ax, value, name, ".", "structure or union");
2215 else if (op == STRUCTOP_PTR)
2216 gen_struct_ref (ax, value, name, "->",
2217 "pointer to a structure or union");
2218 else
2219 /* If this `if' chain doesn't handle it, then the case list
2220 shouldn't mention it, and we shouldn't be here. */
2221 internal_error (__FILE__, __LINE__,
2222 _("gen_expr: unhandled struct case"));
2223 }
2224 break;
2225
2226 case OP_THIS:
2227 {
2228 struct symbol *sym, *func;
2229 const struct block *b;
2230 const struct language_defn *lang;
2231
2232 b = block_for_pc (ax->scope);
2233 func = block_linkage_function (b);
2234 lang = language_def (SYMBOL_LANGUAGE (func));
2235
2236 sym = lookup_language_this (lang, b).symbol;
2237 if (!sym)
2238 error (_("no `%s' found"), lang->la_name_of_this);
2239
2240 gen_var_ref (ax, value, sym);
2241
2242 if (value->optimized_out)
2243 error (_("`%s' has been optimized out, cannot use"),
2244 SYMBOL_PRINT_NAME (sym));
2245
2246 (*pc) += 2;
2247 }
2248 break;
2249
2250 case OP_SCOPE:
2251 {
2252 struct type *type = (*pc)[1].type;
2253 int length = longest_to_int ((*pc)[2].longconst);
2254 char *name = &(*pc)[3].string;
2255 int found;
2256
2257 found = gen_aggregate_elt_ref (ax, value, type, name);
2258 if (!found)
2259 error (_("There is no field named %s"), name);
2260 (*pc) += 5 + BYTES_TO_EXP_ELEM (length + 1);
2261 }
2262 break;
2263
2264 case OP_TYPE:
2265 case OP_TYPEOF:
2266 case OP_DECLTYPE:
2267 error (_("Attempt to use a type name as an expression."));
2268
2269 default:
2270 error (_("Unsupported operator %s (%d) in expression."),
2271 op_name (exp, op), op);
2272 }
2273 }
2274
2275 /* This handles the middle-to-right-side of code generation for binary
2276 expressions, which is shared between regular binary operations and
2277 assign-modify (+= and friends) expressions. */
2278
2279 static void
2280 gen_expr_binop_rest (struct expression *exp,
2281 enum exp_opcode op, union exp_element **pc,
2282 struct agent_expr *ax, struct axs_value *value,
2283 struct axs_value *value1, struct axs_value *value2)
2284 {
2285 struct type *int_type = builtin_type (ax->gdbarch)->builtin_int;
2286
2287 gen_expr (exp, pc, ax, value2);
2288 gen_usual_unary (ax, value2);
2289 gen_usual_arithmetic (ax, value1, value2);
2290 switch (op)
2291 {
2292 case BINOP_ADD:
2293 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
2294 && pointer_type (value2->type))
2295 {
2296 /* Swap the values and proceed normally. */
2297 ax_simple (ax, aop_swap);
2298 gen_ptradd (ax, value, value2, value1);
2299 }
2300 else if (pointer_type (value1->type)
2301 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2302 gen_ptradd (ax, value, value1, value2);
2303 else
2304 gen_binop (ax, value, value1, value2,
2305 aop_add, aop_add, 1, "addition");
2306 break;
2307 case BINOP_SUB:
2308 if (pointer_type (value1->type)
2309 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2310 gen_ptrsub (ax,value, value1, value2);
2311 else if (pointer_type (value1->type)
2312 && pointer_type (value2->type))
2313 /* FIXME --- result type should be ptrdiff_t */
2314 gen_ptrdiff (ax, value, value1, value2,
2315 builtin_type (ax->gdbarch)->builtin_long);
2316 else
2317 gen_binop (ax, value, value1, value2,
2318 aop_sub, aop_sub, 1, "subtraction");
2319 break;
2320 case BINOP_MUL:
2321 gen_binop (ax, value, value1, value2,
2322 aop_mul, aop_mul, 1, "multiplication");
2323 break;
2324 case BINOP_DIV:
2325 gen_binop (ax, value, value1, value2,
2326 aop_div_signed, aop_div_unsigned, 1, "division");
2327 break;
2328 case BINOP_REM:
2329 gen_binop (ax, value, value1, value2,
2330 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
2331 break;
2332 case BINOP_LSH:
2333 gen_binop (ax, value, value1, value2,
2334 aop_lsh, aop_lsh, 1, "left shift");
2335 break;
2336 case BINOP_RSH:
2337 gen_binop (ax, value, value1, value2,
2338 aop_rsh_signed, aop_rsh_unsigned, 1, "right shift");
2339 break;
2340 case BINOP_SUBSCRIPT:
2341 {
2342 struct type *type;
2343
2344 if (binop_types_user_defined_p (op, value1->type, value2->type))
2345 {
2346 error (_("cannot subscript requested type: "
2347 "cannot call user defined functions"));
2348 }
2349 else
2350 {
2351 /* If the user attempts to subscript something that is not
2352 an array or pointer type (like a plain int variable for
2353 example), then report this as an error. */
2354 type = check_typedef (value1->type);
2355 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2356 && TYPE_CODE (type) != TYPE_CODE_PTR)
2357 {
2358 if (TYPE_NAME (type))
2359 error (_("cannot subscript something of type `%s'"),
2360 TYPE_NAME (type));
2361 else
2362 error (_("cannot subscript requested type"));
2363 }
2364 }
2365
2366 if (!is_integral_type (value2->type))
2367 error (_("Argument to arithmetic operation "
2368 "not a number or boolean."));
2369
2370 gen_ptradd (ax, value, value1, value2);
2371 gen_deref (value);
2372 break;
2373 }
2374 case BINOP_BITWISE_AND:
2375 gen_binop (ax, value, value1, value2,
2376 aop_bit_and, aop_bit_and, 0, "bitwise and");
2377 break;
2378
2379 case BINOP_BITWISE_IOR:
2380 gen_binop (ax, value, value1, value2,
2381 aop_bit_or, aop_bit_or, 0, "bitwise or");
2382 break;
2383
2384 case BINOP_BITWISE_XOR:
2385 gen_binop (ax, value, value1, value2,
2386 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
2387 break;
2388
2389 case BINOP_EQUAL:
2390 gen_equal (ax, value, value1, value2, int_type);
2391 break;
2392
2393 case BINOP_NOTEQUAL:
2394 gen_equal (ax, value, value1, value2, int_type);
2395 gen_logical_not (ax, value, int_type);
2396 break;
2397
2398 case BINOP_LESS:
2399 gen_less (ax, value, value1, value2, int_type);
2400 break;
2401
2402 case BINOP_GTR:
2403 ax_simple (ax, aop_swap);
2404 gen_less (ax, value, value1, value2, int_type);
2405 break;
2406
2407 case BINOP_LEQ:
2408 ax_simple (ax, aop_swap);
2409 gen_less (ax, value, value1, value2, int_type);
2410 gen_logical_not (ax, value, int_type);
2411 break;
2412
2413 case BINOP_GEQ:
2414 gen_less (ax, value, value1, value2, int_type);
2415 gen_logical_not (ax, value, int_type);
2416 break;
2417
2418 default:
2419 /* We should only list operators in the outer case statement
2420 that we actually handle in the inner case statement. */
2421 internal_error (__FILE__, __LINE__,
2422 _("gen_expr: op case sets don't match"));
2423 }
2424 }
2425 \f
2426
2427 /* Given a single variable and a scope, generate bytecodes to trace
2428 its value. This is for use in situations where we have only a
2429 variable's name, and no parsed expression; for instance, when the
2430 name comes from a list of local variables of a function. */
2431
2432 agent_expr_up
2433 gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch,
2434 struct symbol *var, int trace_string)
2435 {
2436 agent_expr_up ax (new agent_expr (gdbarch, scope));
2437 struct axs_value value;
2438
2439 ax->tracing = 1;
2440 ax->trace_string = trace_string;
2441 gen_var_ref (ax.get (), &value, var);
2442
2443 /* If there is no actual variable to trace, flag it by returning
2444 an empty agent expression. */
2445 if (value.optimized_out)
2446 return agent_expr_up ();
2447
2448 /* Make sure we record the final object, and get rid of it. */
2449 gen_traced_pop (ax.get (), &value);
2450
2451 /* Oh, and terminate. */
2452 ax_simple (ax.get (), aop_end);
2453
2454 return ax;
2455 }
2456
2457 /* Generating bytecode from GDB expressions: driver */
2458
2459 /* Given a GDB expression EXPR, return bytecode to trace its value.
2460 The result will use the `trace' and `trace_quick' bytecodes to
2461 record the value of all memory touched by the expression. The
2462 caller can then use the ax_reqs function to discover which
2463 registers it relies upon. */
2464
2465 agent_expr_up
2466 gen_trace_for_expr (CORE_ADDR scope, struct expression *expr,
2467 int trace_string)
2468 {
2469 agent_expr_up ax (new agent_expr (expr->gdbarch, scope));
2470 union exp_element *pc;
2471 struct axs_value value;
2472
2473 pc = expr->elts;
2474 ax->tracing = 1;
2475 ax->trace_string = trace_string;
2476 value.optimized_out = 0;
2477 gen_expr (expr, &pc, ax.get (), &value);
2478
2479 /* Make sure we record the final object, and get rid of it. */
2480 gen_traced_pop (ax.get (), &value);
2481
2482 /* Oh, and terminate. */
2483 ax_simple (ax.get (), aop_end);
2484
2485 return ax;
2486 }
2487
2488 /* Given a GDB expression EXPR, return a bytecode sequence that will
2489 evaluate and return a result. The bytecodes will do a direct
2490 evaluation, using the current data on the target, rather than
2491 recording blocks of memory and registers for later use, as
2492 gen_trace_for_expr does. The generated bytecode sequence leaves
2493 the result of expression evaluation on the top of the stack. */
2494
2495 agent_expr_up
2496 gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
2497 {
2498 agent_expr_up ax (new agent_expr (expr->gdbarch, scope));
2499 union exp_element *pc;
2500 struct axs_value value;
2501
2502 pc = expr->elts;
2503 ax->tracing = 0;
2504 value.optimized_out = 0;
2505 gen_expr (expr, &pc, ax.get (), &value);
2506
2507 require_rvalue (ax.get (), &value);
2508
2509 /* Oh, and terminate. */
2510 ax_simple (ax.get (), aop_end);
2511
2512 return ax;
2513 }
2514
2515 agent_expr_up
2516 gen_trace_for_return_address (CORE_ADDR scope, struct gdbarch *gdbarch,
2517 int trace_string)
2518 {
2519 agent_expr_up ax (new agent_expr (gdbarch, scope));
2520 struct axs_value value;
2521
2522 ax->tracing = 1;
2523 ax->trace_string = trace_string;
2524
2525 gdbarch_gen_return_address (gdbarch, ax.get (), &value, scope);
2526
2527 /* Make sure we record the final object, and get rid of it. */
2528 gen_traced_pop (ax.get (), &value);
2529
2530 /* Oh, and terminate. */
2531 ax_simple (ax.get (), aop_end);
2532
2533 return ax;
2534 }
2535
2536 /* Given a collection of printf-style arguments, generate code to
2537 evaluate the arguments and pass everything to a special
2538 bytecode. */
2539
2540 agent_expr_up
2541 gen_printf (CORE_ADDR scope, struct gdbarch *gdbarch,
2542 CORE_ADDR function, LONGEST channel,
2543 const char *format, int fmtlen,
2544 int nargs, struct expression **exprs)
2545 {
2546 agent_expr_up ax (new agent_expr (gdbarch, scope));
2547 union exp_element *pc;
2548 struct axs_value value;
2549 int tem;
2550
2551 /* We're computing values, not doing side effects. */
2552 ax->tracing = 0;
2553
2554 /* Evaluate and push the args on the stack in reverse order,
2555 for simplicity of collecting them on the target side. */
2556 for (tem = nargs - 1; tem >= 0; --tem)
2557 {
2558 pc = exprs[tem]->elts;
2559 value.optimized_out = 0;
2560 gen_expr (exprs[tem], &pc, ax.get (), &value);
2561 require_rvalue (ax.get (), &value);
2562 }
2563
2564 /* Push function and channel. */
2565 ax_const_l (ax.get (), channel);
2566 ax_const_l (ax.get (), function);
2567
2568 /* Issue the printf bytecode proper. */
2569 ax_simple (ax.get (), aop_printf);
2570 ax_raw_byte (ax.get (), nargs);
2571 ax_string (ax.get (), format, fmtlen);
2572
2573 /* And terminate. */
2574 ax_simple (ax.get (), aop_end);
2575
2576 return ax;
2577 }
2578
2579 static void
2580 agent_eval_command_one (const char *exp, int eval, CORE_ADDR pc)
2581 {
2582 const char *arg;
2583 int trace_string = 0;
2584
2585 if (!eval)
2586 {
2587 if (*exp == '/')
2588 exp = decode_agent_options (exp, &trace_string);
2589 }
2590
2591 agent_expr_up agent;
2592
2593 arg = exp;
2594 if (!eval && strcmp (arg, "$_ret") == 0)
2595 {
2596 agent = gen_trace_for_return_address (pc, get_current_arch (),
2597 trace_string);
2598 }
2599 else
2600 {
2601 expression_up expr = parse_exp_1 (&arg, pc, block_for_pc (pc), 0);
2602
2603 if (eval)
2604 {
2605 gdb_assert (trace_string == 0);
2606 agent = gen_eval_for_expr (pc, expr.get ());
2607 }
2608 else
2609 agent = gen_trace_for_expr (pc, expr.get (), trace_string);
2610 }
2611
2612 ax_reqs (agent.get ());
2613 ax_print (gdb_stdout, agent.get ());
2614
2615 /* It would be nice to call ax_reqs here to gather some general info
2616 about the expression, and then print out the result. */
2617
2618 dont_repeat ();
2619 }
2620
2621 static void
2622 agent_command_1 (const char *exp, int eval)
2623 {
2624 /* We don't deal with overlay debugging at the moment. We need to
2625 think more carefully about this. If you copy this code into
2626 another command, change the error message; the user shouldn't
2627 have to know anything about agent expressions. */
2628 if (overlay_debugging)
2629 error (_("GDB can't do agent expression translation with overlays."));
2630
2631 if (exp == 0)
2632 error_no_arg (_("expression to translate"));
2633
2634 if (check_for_argument (&exp, "-at", sizeof ("-at") - 1))
2635 {
2636 struct linespec_result canonical;
2637
2638 exp = skip_spaces (exp);
2639
2640 event_location_up location
2641 = new_linespec_location (&exp, symbol_name_match_type::WILD);
2642 decode_line_full (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
2643 (struct symtab *) NULL, 0, &canonical,
2644 NULL, NULL);
2645 exp = skip_spaces (exp);
2646 if (exp[0] == ',')
2647 {
2648 exp++;
2649 exp = skip_spaces (exp);
2650 }
2651 for (const auto &lsal : canonical.lsals)
2652 for (const auto &sal : lsal.sals)
2653 agent_eval_command_one (exp, eval, sal.pc);
2654 }
2655 else
2656 agent_eval_command_one (exp, eval, get_frame_pc (get_current_frame ()));
2657
2658 dont_repeat ();
2659 }
2660
2661 static void
2662 agent_command (const char *exp, int from_tty)
2663 {
2664 agent_command_1 (exp, 0);
2665 }
2666
2667 /* Parse the given expression, compile it into an agent expression
2668 that does direct evaluation, and display the resulting
2669 expression. */
2670
2671 static void
2672 agent_eval_command (const char *exp, int from_tty)
2673 {
2674 agent_command_1 (exp, 1);
2675 }
2676
2677 /* Parse the given expression, compile it into an agent expression
2678 that does a printf, and display the resulting expression. */
2679
2680 static void
2681 maint_agent_printf_command (const char *cmdrest, int from_tty)
2682 {
2683 struct frame_info *fi = get_current_frame (); /* need current scope */
2684 const char *format_start, *format_end;
2685
2686 /* We don't deal with overlay debugging at the moment. We need to
2687 think more carefully about this. If you copy this code into
2688 another command, change the error message; the user shouldn't
2689 have to know anything about agent expressions. */
2690 if (overlay_debugging)
2691 error (_("GDB can't do agent expression translation with overlays."));
2692
2693 if (cmdrest == 0)
2694 error_no_arg (_("expression to translate"));
2695
2696 cmdrest = skip_spaces (cmdrest);
2697
2698 if (*cmdrest++ != '"')
2699 error (_("Must start with a format string."));
2700
2701 format_start = cmdrest;
2702
2703 format_pieces fpieces (&cmdrest);
2704
2705 format_end = cmdrest;
2706
2707 if (*cmdrest++ != '"')
2708 error (_("Bad format string, non-terminated '\"'."));
2709
2710 cmdrest = skip_spaces (cmdrest);
2711
2712 if (*cmdrest != ',' && *cmdrest != 0)
2713 error (_("Invalid argument syntax"));
2714
2715 if (*cmdrest == ',')
2716 cmdrest++;
2717 cmdrest = skip_spaces (cmdrest);
2718
2719 std::vector<struct expression *> argvec;
2720 while (*cmdrest != '\0')
2721 {
2722 const char *cmd1;
2723
2724 cmd1 = cmdrest;
2725 expression_up expr = parse_exp_1 (&cmd1, 0, (struct block *) 0, 1);
2726 argvec.push_back (expr.release ());
2727 cmdrest = cmd1;
2728 if (*cmdrest == ',')
2729 ++cmdrest;
2730 /* else complain? */
2731 }
2732
2733
2734 agent_expr_up agent = gen_printf (get_frame_pc (fi), get_current_arch (),
2735 0, 0,
2736 format_start, format_end - format_start,
2737 argvec.size (), argvec.data ());
2738 ax_reqs (agent.get ());
2739 ax_print (gdb_stdout, agent.get ());
2740
2741 /* It would be nice to call ax_reqs here to gather some general info
2742 about the expression, and then print out the result. */
2743
2744 dont_repeat ();
2745 }
2746
2747 /* Initialization code. */
2748
2749 void
2750 _initialize_ax_gdb (void)
2751 {
2752 add_cmd ("agent", class_maintenance, agent_command,
2753 _("\
2754 Translate an expression into remote agent bytecode for tracing.\n\
2755 Usage: maint agent [-at LOCATION,] EXPRESSION\n\
2756 If -at is given, generate remote agent bytecode for this location.\n\
2757 If not, generate remote agent bytecode for current frame pc address."),
2758 &maintenancelist);
2759
2760 add_cmd ("agent-eval", class_maintenance, agent_eval_command,
2761 _("\
2762 Translate an expression into remote agent bytecode for evaluation.\n\
2763 Usage: maint agent-eval [-at LOCATION,] EXPRESSION\n\
2764 If -at is given, generate remote agent bytecode for this location.\n\
2765 If not, generate remote agent bytecode for current frame pc address."),
2766 &maintenancelist);
2767
2768 add_cmd ("agent-printf", class_maintenance, maint_agent_printf_command,
2769 _("Translate an expression into remote "
2770 "agent bytecode for evaluation and display the bytecodes."),
2771 &maintenancelist);
2772 }
This page took 0.088136 seconds and 4 git commands to generate.