2010-05-05 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
1 /* GDB-specific functions for operating on agent expressions.
2
3 Copyright (C) 1998, 1999, 2000, 2001, 2003, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "symfile.h"
24 #include "gdbtypes.h"
25 #include "language.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "ax.h"
33 #include "ax-gdb.h"
34 #include "gdb_string.h"
35 #include "block.h"
36 #include "regcache.h"
37 #include "user-regs.h"
38 #include "language.h"
39 #include "dictionary.h"
40 #include "breakpoint.h"
41 #include "tracepoint.h"
42 #include "cp-support.h"
43
44 /* To make sense of this file, you should read doc/agentexpr.texi.
45 Then look at the types and enums in ax-gdb.h. For the code itself,
46 look at gen_expr, towards the bottom; that's the main function that
47 looks at the GDB expressions and calls everything else to generate
48 code.
49
50 I'm beginning to wonder whether it wouldn't be nicer to internally
51 generate trees, with types, and then spit out the bytecode in
52 linear form afterwards; we could generate fewer `swap', `ext', and
53 `zero_ext' bytecodes that way; it would make good constant folding
54 easier, too. But at the moment, I think we should be willing to
55 pay for the simplicity of this code with less-than-optimal bytecode
56 strings.
57
58 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
59 \f
60
61
62 /* Prototypes for local functions. */
63
64 /* There's a standard order to the arguments of these functions:
65 union exp_element ** --- pointer into expression
66 struct agent_expr * --- agent expression buffer to generate code into
67 struct axs_value * --- describes value left on top of stack */
68
69 static struct value *const_var_ref (struct symbol *var);
70 static struct value *const_expr (union exp_element **pc);
71 static struct value *maybe_const_expr (union exp_element **pc);
72
73 static void gen_traced_pop (struct gdbarch *, struct agent_expr *, struct axs_value *);
74
75 static void gen_sign_extend (struct agent_expr *, struct type *);
76 static void gen_extend (struct agent_expr *, struct type *);
77 static void gen_fetch (struct agent_expr *, struct type *);
78 static void gen_left_shift (struct agent_expr *, int);
79
80
81 static void gen_frame_args_address (struct gdbarch *, struct agent_expr *);
82 static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *);
83 static void gen_offset (struct agent_expr *ax, int offset);
84 static void gen_sym_offset (struct agent_expr *, struct symbol *);
85 static void gen_var_ref (struct gdbarch *, struct agent_expr *ax,
86 struct axs_value *value, struct symbol *var);
87
88
89 static void gen_int_literal (struct agent_expr *ax,
90 struct axs_value *value,
91 LONGEST k, struct type *type);
92
93
94 static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
95 static void gen_usual_unary (struct expression *exp, struct agent_expr *ax,
96 struct axs_value *value);
97 static int type_wider_than (struct type *type1, struct type *type2);
98 static struct type *max_type (struct type *type1, struct type *type2);
99 static void gen_conversion (struct agent_expr *ax,
100 struct type *from, struct type *to);
101 static int is_nontrivial_conversion (struct type *from, struct type *to);
102 static void gen_usual_arithmetic (struct expression *exp,
103 struct agent_expr *ax,
104 struct axs_value *value1,
105 struct axs_value *value2);
106 static void gen_integral_promotions (struct expression *exp,
107 struct agent_expr *ax,
108 struct axs_value *value);
109 static void gen_cast (struct agent_expr *ax,
110 struct axs_value *value, struct type *type);
111 static void gen_scale (struct agent_expr *ax,
112 enum agent_op op, struct type *type);
113 static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
114 struct axs_value *value1, struct axs_value *value2);
115 static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
116 struct axs_value *value1, struct axs_value *value2);
117 static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
118 struct axs_value *value1, struct axs_value *value2,
119 struct type *result_type);
120 static void gen_binop (struct agent_expr *ax,
121 struct axs_value *value,
122 struct axs_value *value1,
123 struct axs_value *value2,
124 enum agent_op op,
125 enum agent_op op_unsigned, int may_carry, char *name);
126 static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
127 struct type *result_type);
128 static void gen_complement (struct agent_expr *ax, struct axs_value *value);
129 static void gen_deref (struct agent_expr *, struct axs_value *);
130 static void gen_address_of (struct agent_expr *, struct axs_value *);
131 static void gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
132 struct axs_value *value,
133 struct type *type, int start, int end);
134 static void gen_primitive_field (struct expression *exp,
135 struct agent_expr *ax,
136 struct axs_value *value,
137 int offset, int fieldno, struct type *type);
138 static int gen_struct_ref_recursive (struct expression *exp,
139 struct agent_expr *ax,
140 struct axs_value *value,
141 char *field, int offset,
142 struct type *type);
143 static void gen_struct_ref (struct expression *exp, struct agent_expr *ax,
144 struct axs_value *value,
145 char *field,
146 char *operator_name, char *operand_name);
147 static void gen_static_field (struct gdbarch *gdbarch,
148 struct agent_expr *ax, struct axs_value *value,
149 struct type *type, int fieldno);
150 static void gen_repeat (struct expression *exp, union exp_element **pc,
151 struct agent_expr *ax, struct axs_value *value);
152 static void gen_sizeof (struct expression *exp, union exp_element **pc,
153 struct agent_expr *ax, struct axs_value *value,
154 struct type *size_type);
155 static void gen_expr (struct expression *exp, union exp_element **pc,
156 struct agent_expr *ax, struct axs_value *value);
157 static void gen_expr_binop_rest (struct expression *exp,
158 enum exp_opcode op, union exp_element **pc,
159 struct agent_expr *ax,
160 struct axs_value *value,
161 struct axs_value *value1,
162 struct axs_value *value2);
163
164 static void agent_command (char *exp, int from_tty);
165 \f
166
167 /* Detecting constant expressions. */
168
169 /* If the variable reference at *PC is a constant, return its value.
170 Otherwise, return zero.
171
172 Hey, Wally! How can a variable reference be a constant?
173
174 Well, Beav, this function really handles the OP_VAR_VALUE operator,
175 not specifically variable references. GDB uses OP_VAR_VALUE to
176 refer to any kind of symbolic reference: function names, enum
177 elements, and goto labels are all handled through the OP_VAR_VALUE
178 operator, even though they're constants. It makes sense given the
179 situation.
180
181 Gee, Wally, don'cha wonder sometimes if data representations that
182 subvert commonly accepted definitions of terms in favor of heavily
183 context-specific interpretations are really just a tool of the
184 programming hegemony to preserve their power and exclude the
185 proletariat? */
186
187 static struct value *
188 const_var_ref (struct symbol *var)
189 {
190 struct type *type = SYMBOL_TYPE (var);
191
192 switch (SYMBOL_CLASS (var))
193 {
194 case LOC_CONST:
195 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
196
197 case LOC_LABEL:
198 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
199
200 default:
201 return 0;
202 }
203 }
204
205
206 /* If the expression starting at *PC has a constant value, return it.
207 Otherwise, return zero. If we return a value, then *PC will be
208 advanced to the end of it. If we return zero, *PC could be
209 anywhere. */
210 static struct value *
211 const_expr (union exp_element **pc)
212 {
213 enum exp_opcode op = (*pc)->opcode;
214 struct value *v1;
215
216 switch (op)
217 {
218 case OP_LONG:
219 {
220 struct type *type = (*pc)[1].type;
221 LONGEST k = (*pc)[2].longconst;
222 (*pc) += 4;
223 return value_from_longest (type, k);
224 }
225
226 case OP_VAR_VALUE:
227 {
228 struct value *v = const_var_ref ((*pc)[2].symbol);
229 (*pc) += 4;
230 return v;
231 }
232
233 /* We could add more operators in here. */
234
235 case UNOP_NEG:
236 (*pc)++;
237 v1 = const_expr (pc);
238 if (v1)
239 return value_neg (v1);
240 else
241 return 0;
242
243 default:
244 return 0;
245 }
246 }
247
248
249 /* Like const_expr, but guarantee also that *PC is undisturbed if the
250 expression is not constant. */
251 static struct value *
252 maybe_const_expr (union exp_element **pc)
253 {
254 union exp_element *tentative_pc = *pc;
255 struct value *v = const_expr (&tentative_pc);
256
257 /* If we got a value, then update the real PC. */
258 if (v)
259 *pc = tentative_pc;
260
261 return v;
262 }
263 \f
264
265 /* Generating bytecode from GDB expressions: general assumptions */
266
267 /* Here are a few general assumptions made throughout the code; if you
268 want to make a change that contradicts one of these, then you'd
269 better scan things pretty thoroughly.
270
271 - We assume that all values occupy one stack element. For example,
272 sometimes we'll swap to get at the left argument to a binary
273 operator. If we decide that void values should occupy no stack
274 elements, or that synthetic arrays (whose size is determined at
275 run time, created by the `@' operator) should occupy two stack
276 elements (address and length), then this will cause trouble.
277
278 - We assume the stack elements are infinitely wide, and that we
279 don't have to worry what happens if the user requests an
280 operation that is wider than the actual interpreter's stack.
281 That is, it's up to the interpreter to handle directly all the
282 integer widths the user has access to. (Woe betide the language
283 with bignums!)
284
285 - We don't support side effects. Thus, we don't have to worry about
286 GCC's generalized lvalues, function calls, etc.
287
288 - We don't support floating point. Many places where we switch on
289 some type don't bother to include cases for floating point; there
290 may be even more subtle ways this assumption exists. For
291 example, the arguments to % must be integers.
292
293 - We assume all subexpressions have a static, unchanging type. If
294 we tried to support convenience variables, this would be a
295 problem.
296
297 - All values on the stack should always be fully zero- or
298 sign-extended.
299
300 (I wasn't sure whether to choose this or its opposite --- that
301 only addresses are assumed extended --- but it turns out that
302 neither convention completely eliminates spurious extend
303 operations (if everything is always extended, then you have to
304 extend after add, because it could overflow; if nothing is
305 extended, then you end up producing extends whenever you change
306 sizes), and this is simpler.) */
307 \f
308
309 /* Generating bytecode from GDB expressions: the `trace' kludge */
310
311 /* The compiler in this file is a general-purpose mechanism for
312 translating GDB expressions into bytecode. One ought to be able to
313 find a million and one uses for it.
314
315 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
316 of expediency. Let he who is without sin cast the first stone.
317
318 For the data tracing facility, we need to insert `trace' bytecodes
319 before each data fetch; this records all the memory that the
320 expression touches in the course of evaluation, so that memory will
321 be available when the user later tries to evaluate the expression
322 in GDB.
323
324 This should be done (I think) in a post-processing pass, that walks
325 an arbitrary agent expression and inserts `trace' operations at the
326 appropriate points. But it's much faster to just hack them
327 directly into the code. And since we're in a crunch, that's what
328 I've done.
329
330 Setting the flag trace_kludge to non-zero enables the code that
331 emits the trace bytecodes at the appropriate points. */
332 int trace_kludge;
333
334 /* Scan for all static fields in the given class, including any base
335 classes, and generate tracing bytecodes for each. */
336
337 static void
338 gen_trace_static_fields (struct gdbarch *gdbarch,
339 struct agent_expr *ax,
340 struct type *type)
341 {
342 int i, nbases = TYPE_N_BASECLASSES (type);
343 struct axs_value value;
344
345 CHECK_TYPEDEF (type);
346
347 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
348 {
349 if (field_is_static (&TYPE_FIELD (type, i)))
350 {
351 gen_static_field (gdbarch, ax, &value, type, i);
352 if (value.optimized_out)
353 continue;
354 switch (value.kind)
355 {
356 case axs_lvalue_memory:
357 {
358 int length = TYPE_LENGTH (check_typedef (value.type));
359
360 ax_const_l (ax, length);
361 ax_simple (ax, aop_trace);
362 }
363 break;
364
365 case axs_lvalue_register:
366 /* We don't actually need the register's value to be pushed,
367 just note that we need it to be collected. */
368 ax_reg_mask (ax, value.u.reg);
369
370 default:
371 break;
372 }
373 }
374 }
375
376 /* Now scan through base classes recursively. */
377 for (i = 0; i < nbases; i++)
378 {
379 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
380
381 gen_trace_static_fields (gdbarch, ax, basetype);
382 }
383 }
384
385 /* Trace the lvalue on the stack, if it needs it. In either case, pop
386 the value. Useful on the left side of a comma, and at the end of
387 an expression being used for tracing. */
388 static void
389 gen_traced_pop (struct gdbarch *gdbarch,
390 struct agent_expr *ax, struct axs_value *value)
391 {
392 if (trace_kludge)
393 switch (value->kind)
394 {
395 case axs_rvalue:
396 /* We don't trace rvalues, just the lvalues necessary to
397 produce them. So just dispose of this value. */
398 ax_simple (ax, aop_pop);
399 break;
400
401 case axs_lvalue_memory:
402 {
403 int length = TYPE_LENGTH (check_typedef (value->type));
404
405 /* There's no point in trying to use a trace_quick bytecode
406 here, since "trace_quick SIZE pop" is three bytes, whereas
407 "const8 SIZE trace" is also three bytes, does the same
408 thing, and the simplest code which generates that will also
409 work correctly for objects with large sizes. */
410 ax_const_l (ax, length);
411 ax_simple (ax, aop_trace);
412 }
413 break;
414
415 case axs_lvalue_register:
416 /* We don't actually need the register's value to be on the
417 stack, and the target will get heartburn if the register is
418 larger than will fit in a stack, so just mark it for
419 collection and be done with it. */
420 ax_reg_mask (ax, value->u.reg);
421 break;
422 }
423 else
424 /* If we're not tracing, just pop the value. */
425 ax_simple (ax, aop_pop);
426
427 /* To trace C++ classes with static fields stored elsewhere. */
428 if (trace_kludge
429 && (TYPE_CODE (value->type) == TYPE_CODE_STRUCT
430 || TYPE_CODE (value->type) == TYPE_CODE_UNION))
431 gen_trace_static_fields (gdbarch, ax, value->type);
432 }
433 \f
434
435
436 /* Generating bytecode from GDB expressions: helper functions */
437
438 /* Assume that the lower bits of the top of the stack is a value of
439 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
440 static void
441 gen_sign_extend (struct agent_expr *ax, struct type *type)
442 {
443 /* Do we need to sign-extend this? */
444 if (!TYPE_UNSIGNED (type))
445 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
446 }
447
448
449 /* Assume the lower bits of the top of the stack hold a value of type
450 TYPE, and the upper bits are garbage. Sign-extend or truncate as
451 needed. */
452 static void
453 gen_extend (struct agent_expr *ax, struct type *type)
454 {
455 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
456 /* I just had to. */
457 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
458 }
459
460
461 /* Assume that the top of the stack contains a value of type "pointer
462 to TYPE"; generate code to fetch its value. Note that TYPE is the
463 target type, not the pointer type. */
464 static void
465 gen_fetch (struct agent_expr *ax, struct type *type)
466 {
467 if (trace_kludge)
468 {
469 /* Record the area of memory we're about to fetch. */
470 ax_trace_quick (ax, TYPE_LENGTH (type));
471 }
472
473 switch (TYPE_CODE (type))
474 {
475 case TYPE_CODE_PTR:
476 case TYPE_CODE_REF:
477 case TYPE_CODE_ENUM:
478 case TYPE_CODE_INT:
479 case TYPE_CODE_CHAR:
480 case TYPE_CODE_BOOL:
481 /* It's a scalar value, so we know how to dereference it. How
482 many bytes long is it? */
483 switch (TYPE_LENGTH (type))
484 {
485 case 8 / TARGET_CHAR_BIT:
486 ax_simple (ax, aop_ref8);
487 break;
488 case 16 / TARGET_CHAR_BIT:
489 ax_simple (ax, aop_ref16);
490 break;
491 case 32 / TARGET_CHAR_BIT:
492 ax_simple (ax, aop_ref32);
493 break;
494 case 64 / TARGET_CHAR_BIT:
495 ax_simple (ax, aop_ref64);
496 break;
497
498 /* Either our caller shouldn't have asked us to dereference
499 that pointer (other code's fault), or we're not
500 implementing something we should be (this code's fault).
501 In any case, it's a bug the user shouldn't see. */
502 default:
503 internal_error (__FILE__, __LINE__,
504 _("gen_fetch: strange size"));
505 }
506
507 gen_sign_extend (ax, type);
508 break;
509
510 default:
511 /* Either our caller shouldn't have asked us to dereference that
512 pointer (other code's fault), or we're not implementing
513 something we should be (this code's fault). In any case,
514 it's a bug the user shouldn't see. */
515 internal_error (__FILE__, __LINE__,
516 _("gen_fetch: bad type code"));
517 }
518 }
519
520
521 /* Generate code to left shift the top of the stack by DISTANCE bits, or
522 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
523 unsigned (logical) right shifts. */
524 static void
525 gen_left_shift (struct agent_expr *ax, int distance)
526 {
527 if (distance > 0)
528 {
529 ax_const_l (ax, distance);
530 ax_simple (ax, aop_lsh);
531 }
532 else if (distance < 0)
533 {
534 ax_const_l (ax, -distance);
535 ax_simple (ax, aop_rsh_unsigned);
536 }
537 }
538 \f
539
540
541 /* Generating bytecode from GDB expressions: symbol references */
542
543 /* Generate code to push the base address of the argument portion of
544 the top stack frame. */
545 static void
546 gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax)
547 {
548 int frame_reg;
549 LONGEST frame_offset;
550
551 gdbarch_virtual_frame_pointer (gdbarch,
552 ax->scope, &frame_reg, &frame_offset);
553 ax_reg (ax, frame_reg);
554 gen_offset (ax, frame_offset);
555 }
556
557
558 /* Generate code to push the base address of the locals portion of the
559 top stack frame. */
560 static void
561 gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax)
562 {
563 int frame_reg;
564 LONGEST frame_offset;
565
566 gdbarch_virtual_frame_pointer (gdbarch,
567 ax->scope, &frame_reg, &frame_offset);
568 ax_reg (ax, frame_reg);
569 gen_offset (ax, frame_offset);
570 }
571
572
573 /* Generate code to add OFFSET to the top of the stack. Try to
574 generate short and readable code. We use this for getting to
575 variables on the stack, and structure members. If we were
576 programming in ML, it would be clearer why these are the same
577 thing. */
578 static void
579 gen_offset (struct agent_expr *ax, int offset)
580 {
581 /* It would suffice to simply push the offset and add it, but this
582 makes it easier to read positive and negative offsets in the
583 bytecode. */
584 if (offset > 0)
585 {
586 ax_const_l (ax, offset);
587 ax_simple (ax, aop_add);
588 }
589 else if (offset < 0)
590 {
591 ax_const_l (ax, -offset);
592 ax_simple (ax, aop_sub);
593 }
594 }
595
596
597 /* In many cases, a symbol's value is the offset from some other
598 address (stack frame, base register, etc.) Generate code to add
599 VAR's value to the top of the stack. */
600 static void
601 gen_sym_offset (struct agent_expr *ax, struct symbol *var)
602 {
603 gen_offset (ax, SYMBOL_VALUE (var));
604 }
605
606
607 /* Generate code for a variable reference to AX. The variable is the
608 symbol VAR. Set VALUE to describe the result. */
609
610 static void
611 gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax,
612 struct axs_value *value, struct symbol *var)
613 {
614 /* Dereference any typedefs. */
615 value->type = check_typedef (SYMBOL_TYPE (var));
616 value->optimized_out = 0;
617
618 /* I'm imitating the code in read_var_value. */
619 switch (SYMBOL_CLASS (var))
620 {
621 case LOC_CONST: /* A constant, like an enum value. */
622 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
623 value->kind = axs_rvalue;
624 break;
625
626 case LOC_LABEL: /* A goto label, being used as a value. */
627 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
628 value->kind = axs_rvalue;
629 break;
630
631 case LOC_CONST_BYTES:
632 internal_error (__FILE__, __LINE__,
633 _("gen_var_ref: LOC_CONST_BYTES symbols are not supported"));
634
635 /* Variable at a fixed location in memory. Easy. */
636 case LOC_STATIC:
637 /* Push the address of the variable. */
638 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
639 value->kind = axs_lvalue_memory;
640 break;
641
642 case LOC_ARG: /* var lives in argument area of frame */
643 gen_frame_args_address (gdbarch, ax);
644 gen_sym_offset (ax, var);
645 value->kind = axs_lvalue_memory;
646 break;
647
648 case LOC_REF_ARG: /* As above, but the frame slot really
649 holds the address of the variable. */
650 gen_frame_args_address (gdbarch, ax);
651 gen_sym_offset (ax, var);
652 /* Don't assume any particular pointer size. */
653 gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr);
654 value->kind = axs_lvalue_memory;
655 break;
656
657 case LOC_LOCAL: /* var lives in locals area of frame */
658 gen_frame_locals_address (gdbarch, ax);
659 gen_sym_offset (ax, var);
660 value->kind = axs_lvalue_memory;
661 break;
662
663 case LOC_TYPEDEF:
664 error (_("Cannot compute value of typedef `%s'."),
665 SYMBOL_PRINT_NAME (var));
666 break;
667
668 case LOC_BLOCK:
669 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
670 value->kind = axs_rvalue;
671 break;
672
673 case LOC_REGISTER:
674 /* Don't generate any code at all; in the process of treating
675 this as an lvalue or rvalue, the caller will generate the
676 right code. */
677 value->kind = axs_lvalue_register;
678 value->u.reg = SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch);
679 break;
680
681 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
682 register, not on the stack. Simpler than LOC_REGISTER
683 because it's just like any other case where the thing
684 has a real address. */
685 case LOC_REGPARM_ADDR:
686 ax_reg (ax, SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch));
687 value->kind = axs_lvalue_memory;
688 break;
689
690 case LOC_UNRESOLVED:
691 {
692 struct minimal_symbol *msym
693 = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL);
694 if (!msym)
695 error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
696
697 /* Push the address of the variable. */
698 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
699 value->kind = axs_lvalue_memory;
700 }
701 break;
702
703 case LOC_COMPUTED:
704 /* FIXME: cagney/2004-01-26: It should be possible to
705 unconditionally call the SYMBOL_COMPUTED_OPS method when available.
706 Unfortunately DWARF 2 stores the frame-base (instead of the
707 function) location in a function's symbol. Oops! For the
708 moment enable this when/where applicable. */
709 SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, gdbarch, ax, value);
710 break;
711
712 case LOC_OPTIMIZED_OUT:
713 /* Flag this, but don't say anything; leave it up to callers to
714 warn the user. */
715 value->optimized_out = 1;
716 break;
717
718 default:
719 error (_("Cannot find value of botched symbol `%s'."),
720 SYMBOL_PRINT_NAME (var));
721 break;
722 }
723 }
724 \f
725
726
727 /* Generating bytecode from GDB expressions: literals */
728
729 static void
730 gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
731 struct type *type)
732 {
733 ax_const_l (ax, k);
734 value->kind = axs_rvalue;
735 value->type = check_typedef (type);
736 }
737 \f
738
739
740 /* Generating bytecode from GDB expressions: unary conversions, casts */
741
742 /* Take what's on the top of the stack (as described by VALUE), and
743 try to make an rvalue out of it. Signal an error if we can't do
744 that. */
745 static void
746 require_rvalue (struct agent_expr *ax, struct axs_value *value)
747 {
748 /* Only deal with scalars, structs and such may be too large
749 to fit in a stack entry. */
750 value->type = check_typedef (value->type);
751 if (TYPE_CODE (value->type) == TYPE_CODE_ARRAY
752 || TYPE_CODE (value->type) == TYPE_CODE_STRUCT
753 || TYPE_CODE (value->type) == TYPE_CODE_UNION
754 || TYPE_CODE (value->type) == TYPE_CODE_FUNC)
755 error (_("Value not scalar: cannot be an rvalue."));
756
757 switch (value->kind)
758 {
759 case axs_rvalue:
760 /* It's already an rvalue. */
761 break;
762
763 case axs_lvalue_memory:
764 /* The top of stack is the address of the object. Dereference. */
765 gen_fetch (ax, value->type);
766 break;
767
768 case axs_lvalue_register:
769 /* There's nothing on the stack, but value->u.reg is the
770 register number containing the value.
771
772 When we add floating-point support, this is going to have to
773 change. What about SPARC register pairs, for example? */
774 ax_reg (ax, value->u.reg);
775 gen_extend (ax, value->type);
776 break;
777 }
778
779 value->kind = axs_rvalue;
780 }
781
782
783 /* Assume the top of the stack is described by VALUE, and perform the
784 usual unary conversions. This is motivated by ANSI 6.2.2, but of
785 course GDB expressions are not ANSI; they're the mishmash union of
786 a bunch of languages. Rah.
787
788 NOTE! This function promises to produce an rvalue only when the
789 incoming value is of an appropriate type. In other words, the
790 consumer of the value this function produces may assume the value
791 is an rvalue only after checking its type.
792
793 The immediate issue is that if the user tries to use a structure or
794 union as an operand of, say, the `+' operator, we don't want to try
795 to convert that structure to an rvalue; require_rvalue will bomb on
796 structs and unions. Rather, we want to simply pass the struct
797 lvalue through unchanged, and let `+' raise an error. */
798
799 static void
800 gen_usual_unary (struct expression *exp, struct agent_expr *ax,
801 struct axs_value *value)
802 {
803 /* We don't have to generate any code for the usual integral
804 conversions, since values are always represented as full-width on
805 the stack. Should we tweak the type? */
806
807 /* Some types require special handling. */
808 switch (TYPE_CODE (value->type))
809 {
810 /* Functions get converted to a pointer to the function. */
811 case TYPE_CODE_FUNC:
812 value->type = lookup_pointer_type (value->type);
813 value->kind = axs_rvalue; /* Should always be true, but just in case. */
814 break;
815
816 /* Arrays get converted to a pointer to their first element, and
817 are no longer an lvalue. */
818 case TYPE_CODE_ARRAY:
819 {
820 struct type *elements = TYPE_TARGET_TYPE (value->type);
821 value->type = lookup_pointer_type (elements);
822 value->kind = axs_rvalue;
823 /* We don't need to generate any code; the address of the array
824 is also the address of its first element. */
825 }
826 break;
827
828 /* Don't try to convert structures and unions to rvalues. Let the
829 consumer signal an error. */
830 case TYPE_CODE_STRUCT:
831 case TYPE_CODE_UNION:
832 return;
833
834 /* If the value is an enum or a bool, call it an integer. */
835 case TYPE_CODE_ENUM:
836 case TYPE_CODE_BOOL:
837 value->type = builtin_type (exp->gdbarch)->builtin_int;
838 break;
839 }
840
841 /* If the value is an lvalue, dereference it. */
842 require_rvalue (ax, value);
843 }
844
845
846 /* Return non-zero iff the type TYPE1 is considered "wider" than the
847 type TYPE2, according to the rules described in gen_usual_arithmetic. */
848 static int
849 type_wider_than (struct type *type1, struct type *type2)
850 {
851 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
852 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
853 && TYPE_UNSIGNED (type1)
854 && !TYPE_UNSIGNED (type2)));
855 }
856
857
858 /* Return the "wider" of the two types TYPE1 and TYPE2. */
859 static struct type *
860 max_type (struct type *type1, struct type *type2)
861 {
862 return type_wider_than (type1, type2) ? type1 : type2;
863 }
864
865
866 /* Generate code to convert a scalar value of type FROM to type TO. */
867 static void
868 gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
869 {
870 /* Perhaps there is a more graceful way to state these rules. */
871
872 /* If we're converting to a narrower type, then we need to clear out
873 the upper bits. */
874 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
875 gen_extend (ax, from);
876
877 /* If the two values have equal width, but different signednesses,
878 then we need to extend. */
879 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
880 {
881 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
882 gen_extend (ax, to);
883 }
884
885 /* If we're converting to a wider type, and becoming unsigned, then
886 we need to zero out any possible sign bits. */
887 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
888 {
889 if (TYPE_UNSIGNED (to))
890 gen_extend (ax, to);
891 }
892 }
893
894
895 /* Return non-zero iff the type FROM will require any bytecodes to be
896 emitted to be converted to the type TO. */
897 static int
898 is_nontrivial_conversion (struct type *from, struct type *to)
899 {
900 struct agent_expr *ax = new_agent_expr (NULL, 0);
901 int nontrivial;
902
903 /* Actually generate the code, and see if anything came out. At the
904 moment, it would be trivial to replicate the code in
905 gen_conversion here, but in the future, when we're supporting
906 floating point and the like, it may not be. Doing things this
907 way allows this function to be independent of the logic in
908 gen_conversion. */
909 gen_conversion (ax, from, to);
910 nontrivial = ax->len > 0;
911 free_agent_expr (ax);
912 return nontrivial;
913 }
914
915
916 /* Generate code to perform the "usual arithmetic conversions" (ANSI C
917 6.2.1.5) for the two operands of an arithmetic operator. This
918 effectively finds a "least upper bound" type for the two arguments,
919 and promotes each argument to that type. *VALUE1 and *VALUE2
920 describe the values as they are passed in, and as they are left. */
921 static void
922 gen_usual_arithmetic (struct expression *exp, struct agent_expr *ax,
923 struct axs_value *value1, struct axs_value *value2)
924 {
925 /* Do the usual binary conversions. */
926 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
927 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
928 {
929 /* The ANSI integral promotions seem to work this way: Order the
930 integer types by size, and then by signedness: an n-bit
931 unsigned type is considered "wider" than an n-bit signed
932 type. Promote to the "wider" of the two types, and always
933 promote at least to int. */
934 struct type *target = max_type (builtin_type (exp->gdbarch)->builtin_int,
935 max_type (value1->type, value2->type));
936
937 /* Deal with value2, on the top of the stack. */
938 gen_conversion (ax, value2->type, target);
939
940 /* Deal with value1, not on the top of the stack. Don't
941 generate the `swap' instructions if we're not actually going
942 to do anything. */
943 if (is_nontrivial_conversion (value1->type, target))
944 {
945 ax_simple (ax, aop_swap);
946 gen_conversion (ax, value1->type, target);
947 ax_simple (ax, aop_swap);
948 }
949
950 value1->type = value2->type = check_typedef (target);
951 }
952 }
953
954
955 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
956 the value on the top of the stack, as described by VALUE. Assume
957 the value has integral type. */
958 static void
959 gen_integral_promotions (struct expression *exp, struct agent_expr *ax,
960 struct axs_value *value)
961 {
962 const struct builtin_type *builtin = builtin_type (exp->gdbarch);
963
964 if (!type_wider_than (value->type, builtin->builtin_int))
965 {
966 gen_conversion (ax, value->type, builtin->builtin_int);
967 value->type = builtin->builtin_int;
968 }
969 else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
970 {
971 gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
972 value->type = builtin->builtin_unsigned_int;
973 }
974 }
975
976
977 /* Generate code for a cast to TYPE. */
978 static void
979 gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
980 {
981 /* GCC does allow casts to yield lvalues, so this should be fixed
982 before merging these changes into the trunk. */
983 require_rvalue (ax, value);
984 /* Dereference typedefs. */
985 type = check_typedef (type);
986
987 switch (TYPE_CODE (type))
988 {
989 case TYPE_CODE_PTR:
990 case TYPE_CODE_REF:
991 /* It's implementation-defined, and I'll bet this is what GCC
992 does. */
993 break;
994
995 case TYPE_CODE_ARRAY:
996 case TYPE_CODE_STRUCT:
997 case TYPE_CODE_UNION:
998 case TYPE_CODE_FUNC:
999 error (_("Invalid type cast: intended type must be scalar."));
1000
1001 case TYPE_CODE_ENUM:
1002 case TYPE_CODE_BOOL:
1003 /* We don't have to worry about the size of the value, because
1004 all our integral values are fully sign-extended, and when
1005 casting pointers we can do anything we like. Is there any
1006 way for us to know what GCC actually does with a cast like
1007 this? */
1008 break;
1009
1010 case TYPE_CODE_INT:
1011 gen_conversion (ax, value->type, type);
1012 break;
1013
1014 case TYPE_CODE_VOID:
1015 /* We could pop the value, and rely on everyone else to check
1016 the type and notice that this value doesn't occupy a stack
1017 slot. But for now, leave the value on the stack, and
1018 preserve the "value == stack element" assumption. */
1019 break;
1020
1021 default:
1022 error (_("Casts to requested type are not yet implemented."));
1023 }
1024
1025 value->type = type;
1026 }
1027 \f
1028
1029
1030 /* Generating bytecode from GDB expressions: arithmetic */
1031
1032 /* Scale the integer on the top of the stack by the size of the target
1033 of the pointer type TYPE. */
1034 static void
1035 gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
1036 {
1037 struct type *element = TYPE_TARGET_TYPE (type);
1038
1039 if (TYPE_LENGTH (element) != 1)
1040 {
1041 ax_const_l (ax, TYPE_LENGTH (element));
1042 ax_simple (ax, op);
1043 }
1044 }
1045
1046
1047 /* Generate code for pointer arithmetic PTR + INT. */
1048 static void
1049 gen_ptradd (struct agent_expr *ax, struct axs_value *value,
1050 struct axs_value *value1, struct axs_value *value2)
1051 {
1052 gdb_assert (pointer_type (value1->type));
1053 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
1054
1055 gen_scale (ax, aop_mul, value1->type);
1056 ax_simple (ax, aop_add);
1057 gen_extend (ax, value1->type); /* Catch overflow. */
1058 value->type = value1->type;
1059 value->kind = axs_rvalue;
1060 }
1061
1062
1063 /* Generate code for pointer arithmetic PTR - INT. */
1064 static void
1065 gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
1066 struct axs_value *value1, struct axs_value *value2)
1067 {
1068 gdb_assert (pointer_type (value1->type));
1069 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
1070
1071 gen_scale (ax, aop_mul, value1->type);
1072 ax_simple (ax, aop_sub);
1073 gen_extend (ax, value1->type); /* Catch overflow. */
1074 value->type = value1->type;
1075 value->kind = axs_rvalue;
1076 }
1077
1078
1079 /* Generate code for pointer arithmetic PTR - PTR. */
1080 static void
1081 gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
1082 struct axs_value *value1, struct axs_value *value2,
1083 struct type *result_type)
1084 {
1085 gdb_assert (pointer_type (value1->type));
1086 gdb_assert (pointer_type (value2->type));
1087
1088 if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1089 != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
1090 error (_("\
1091 First argument of `-' is a pointer, but second argument is neither\n\
1092 an integer nor a pointer of the same type."));
1093
1094 ax_simple (ax, aop_sub);
1095 gen_scale (ax, aop_div_unsigned, value1->type);
1096 value->type = result_type;
1097 value->kind = axs_rvalue;
1098 }
1099
1100 static void
1101 gen_equal (struct agent_expr *ax, struct axs_value *value,
1102 struct axs_value *value1, struct axs_value *value2,
1103 struct type *result_type)
1104 {
1105 if (pointer_type (value1->type) || pointer_type (value2->type))
1106 ax_simple (ax, aop_equal);
1107 else
1108 gen_binop (ax, value, value1, value2,
1109 aop_equal, aop_equal, 0, "equal");
1110 value->type = result_type;
1111 value->kind = axs_rvalue;
1112 }
1113
1114 static void
1115 gen_less (struct agent_expr *ax, struct axs_value *value,
1116 struct axs_value *value1, struct axs_value *value2,
1117 struct type *result_type)
1118 {
1119 if (pointer_type (value1->type) || pointer_type (value2->type))
1120 ax_simple (ax, aop_less_unsigned);
1121 else
1122 gen_binop (ax, value, value1, value2,
1123 aop_less_signed, aop_less_unsigned, 0, "less than");
1124 value->type = result_type;
1125 value->kind = axs_rvalue;
1126 }
1127
1128 /* Generate code for a binary operator that doesn't do pointer magic.
1129 We set VALUE to describe the result value; we assume VALUE1 and
1130 VALUE2 describe the two operands, and that they've undergone the
1131 usual binary conversions. MAY_CARRY should be non-zero iff the
1132 result needs to be extended. NAME is the English name of the
1133 operator, used in error messages */
1134 static void
1135 gen_binop (struct agent_expr *ax, struct axs_value *value,
1136 struct axs_value *value1, struct axs_value *value2, enum agent_op op,
1137 enum agent_op op_unsigned, int may_carry, char *name)
1138 {
1139 /* We only handle INT op INT. */
1140 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1141 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
1142 error (_("Invalid combination of types in %s."), name);
1143
1144 ax_simple (ax,
1145 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1146 if (may_carry)
1147 gen_extend (ax, value1->type); /* catch overflow */
1148 value->type = value1->type;
1149 value->kind = axs_rvalue;
1150 }
1151
1152
1153 static void
1154 gen_logical_not (struct agent_expr *ax, struct axs_value *value,
1155 struct type *result_type)
1156 {
1157 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1158 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1159 error (_("Invalid type of operand to `!'."));
1160
1161 ax_simple (ax, aop_log_not);
1162 value->type = result_type;
1163 }
1164
1165
1166 static void
1167 gen_complement (struct agent_expr *ax, struct axs_value *value)
1168 {
1169 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1170 error (_("Invalid type of operand to `~'."));
1171
1172 ax_simple (ax, aop_bit_not);
1173 gen_extend (ax, value->type);
1174 }
1175 \f
1176
1177
1178 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1179
1180 /* Dereference the value on the top of the stack. */
1181 static void
1182 gen_deref (struct agent_expr *ax, struct axs_value *value)
1183 {
1184 /* The caller should check the type, because several operators use
1185 this, and we don't know what error message to generate. */
1186 if (!pointer_type (value->type))
1187 internal_error (__FILE__, __LINE__,
1188 _("gen_deref: expected a pointer"));
1189
1190 /* We've got an rvalue now, which is a pointer. We want to yield an
1191 lvalue, whose address is exactly that pointer. So we don't
1192 actually emit any code; we just change the type from "Pointer to
1193 T" to "T", and mark the value as an lvalue in memory. Leave it
1194 to the consumer to actually dereference it. */
1195 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1196 if (TYPE_CODE (value->type) == TYPE_CODE_VOID)
1197 error (_("Attempt to dereference a generic pointer."));
1198 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1199 ? axs_rvalue : axs_lvalue_memory);
1200 }
1201
1202
1203 /* Produce the address of the lvalue on the top of the stack. */
1204 static void
1205 gen_address_of (struct agent_expr *ax, struct axs_value *value)
1206 {
1207 /* Special case for taking the address of a function. The ANSI
1208 standard describes this as a special case, too, so this
1209 arrangement is not without motivation. */
1210 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1211 /* The value's already an rvalue on the stack, so we just need to
1212 change the type. */
1213 value->type = lookup_pointer_type (value->type);
1214 else
1215 switch (value->kind)
1216 {
1217 case axs_rvalue:
1218 error (_("Operand of `&' is an rvalue, which has no address."));
1219
1220 case axs_lvalue_register:
1221 error (_("Operand of `&' is in a register, and has no address."));
1222
1223 case axs_lvalue_memory:
1224 value->kind = axs_rvalue;
1225 value->type = lookup_pointer_type (value->type);
1226 break;
1227 }
1228 }
1229
1230 /* Generate code to push the value of a bitfield of a structure whose
1231 address is on the top of the stack. START and END give the
1232 starting and one-past-ending *bit* numbers of the field within the
1233 structure. */
1234 static void
1235 gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
1236 struct axs_value *value, struct type *type,
1237 int start, int end)
1238 {
1239 /* Note that ops[i] fetches 8 << i bits. */
1240 static enum agent_op ops[]
1241 =
1242 {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1243 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1244
1245 /* We don't want to touch any byte that the bitfield doesn't
1246 actually occupy; we shouldn't make any accesses we're not
1247 explicitly permitted to. We rely here on the fact that the
1248 bytecode `ref' operators work on unaligned addresses.
1249
1250 It takes some fancy footwork to get the stack to work the way
1251 we'd like. Say we're retrieving a bitfield that requires three
1252 fetches. Initially, the stack just contains the address:
1253 addr
1254 For the first fetch, we duplicate the address
1255 addr addr
1256 then add the byte offset, do the fetch, and shift and mask as
1257 needed, yielding a fragment of the value, properly aligned for
1258 the final bitwise or:
1259 addr frag1
1260 then we swap, and repeat the process:
1261 frag1 addr --- address on top
1262 frag1 addr addr --- duplicate it
1263 frag1 addr frag2 --- get second fragment
1264 frag1 frag2 addr --- swap again
1265 frag1 frag2 frag3 --- get third fragment
1266 Notice that, since the third fragment is the last one, we don't
1267 bother duplicating the address this time. Now we have all the
1268 fragments on the stack, and we can simply `or' them together,
1269 yielding the final value of the bitfield. */
1270
1271 /* The first and one-after-last bits in the field, but rounded down
1272 and up to byte boundaries. */
1273 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1274 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1275 / TARGET_CHAR_BIT)
1276 * TARGET_CHAR_BIT);
1277
1278 /* current bit offset within the structure */
1279 int offset;
1280
1281 /* The index in ops of the opcode we're considering. */
1282 int op;
1283
1284 /* The number of fragments we generated in the process. Probably
1285 equal to the number of `one' bits in bytesize, but who cares? */
1286 int fragment_count;
1287
1288 /* Dereference any typedefs. */
1289 type = check_typedef (type);
1290
1291 /* Can we fetch the number of bits requested at all? */
1292 if ((end - start) > ((1 << num_ops) * 8))
1293 internal_error (__FILE__, __LINE__,
1294 _("gen_bitfield_ref: bitfield too wide"));
1295
1296 /* Note that we know here that we only need to try each opcode once.
1297 That may not be true on machines with weird byte sizes. */
1298 offset = bound_start;
1299 fragment_count = 0;
1300 for (op = num_ops - 1; op >= 0; op--)
1301 {
1302 /* number of bits that ops[op] would fetch */
1303 int op_size = 8 << op;
1304
1305 /* The stack at this point, from bottom to top, contains zero or
1306 more fragments, then the address. */
1307
1308 /* Does this fetch fit within the bitfield? */
1309 if (offset + op_size <= bound_end)
1310 {
1311 /* Is this the last fragment? */
1312 int last_frag = (offset + op_size == bound_end);
1313
1314 if (!last_frag)
1315 ax_simple (ax, aop_dup); /* keep a copy of the address */
1316
1317 /* Add the offset. */
1318 gen_offset (ax, offset / TARGET_CHAR_BIT);
1319
1320 if (trace_kludge)
1321 {
1322 /* Record the area of memory we're about to fetch. */
1323 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1324 }
1325
1326 /* Perform the fetch. */
1327 ax_simple (ax, ops[op]);
1328
1329 /* Shift the bits we have to their proper position.
1330 gen_left_shift will generate right shifts when the operand
1331 is negative.
1332
1333 A big-endian field diagram to ponder:
1334 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1335 +------++------++------++------++------++------++------++------+
1336 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1337 ^ ^ ^ ^
1338 bit number 16 32 48 53
1339 These are bit numbers as supplied by GDB. Note that the
1340 bit numbers run from right to left once you've fetched the
1341 value!
1342
1343 A little-endian field diagram to ponder:
1344 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1345 +------++------++------++------++------++------++------++------+
1346 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1347 ^ ^ ^ ^ ^
1348 bit number 48 32 16 4 0
1349
1350 In both cases, the most significant end is on the left
1351 (i.e. normal numeric writing order), which means that you
1352 don't go crazy thinking about `left' and `right' shifts.
1353
1354 We don't have to worry about masking yet:
1355 - If they contain garbage off the least significant end, then we
1356 must be looking at the low end of the field, and the right
1357 shift will wipe them out.
1358 - If they contain garbage off the most significant end, then we
1359 must be looking at the most significant end of the word, and
1360 the sign/zero extension will wipe them out.
1361 - If we're in the interior of the word, then there is no garbage
1362 on either end, because the ref operators zero-extend. */
1363 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
1364 gen_left_shift (ax, end - (offset + op_size));
1365 else
1366 gen_left_shift (ax, offset - start);
1367
1368 if (!last_frag)
1369 /* Bring the copy of the address up to the top. */
1370 ax_simple (ax, aop_swap);
1371
1372 offset += op_size;
1373 fragment_count++;
1374 }
1375 }
1376
1377 /* Generate enough bitwise `or' operations to combine all the
1378 fragments we left on the stack. */
1379 while (fragment_count-- > 1)
1380 ax_simple (ax, aop_bit_or);
1381
1382 /* Sign- or zero-extend the value as appropriate. */
1383 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1384
1385 /* This is *not* an lvalue. Ugh. */
1386 value->kind = axs_rvalue;
1387 value->type = type;
1388 }
1389
1390 /* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET
1391 is an accumulated offset (in bytes), will be nonzero for objects
1392 embedded in other objects, like C++ base classes. Behavior should
1393 generally follow value_primitive_field. */
1394
1395 static void
1396 gen_primitive_field (struct expression *exp,
1397 struct agent_expr *ax, struct axs_value *value,
1398 int offset, int fieldno, struct type *type)
1399 {
1400 /* Is this a bitfield? */
1401 if (TYPE_FIELD_PACKED (type, fieldno))
1402 gen_bitfield_ref (exp, ax, value, TYPE_FIELD_TYPE (type, fieldno),
1403 (offset * TARGET_CHAR_BIT
1404 + TYPE_FIELD_BITPOS (type, fieldno)),
1405 (offset * TARGET_CHAR_BIT
1406 + TYPE_FIELD_BITPOS (type, fieldno)
1407 + TYPE_FIELD_BITSIZE (type, fieldno)));
1408 else
1409 {
1410 gen_offset (ax, offset
1411 + TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT);
1412 value->kind = axs_lvalue_memory;
1413 value->type = TYPE_FIELD_TYPE (type, fieldno);
1414 }
1415 }
1416
1417 /* Search for the given field in either the given type or one of its
1418 base classes. Return 1 if found, 0 if not. */
1419
1420 static int
1421 gen_struct_ref_recursive (struct expression *exp, struct agent_expr *ax,
1422 struct axs_value *value,
1423 char *field, int offset, struct type *type)
1424 {
1425 int i, rslt;
1426 int nbases = TYPE_N_BASECLASSES (type);
1427
1428 CHECK_TYPEDEF (type);
1429
1430 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1431 {
1432 char *this_name = TYPE_FIELD_NAME (type, i);
1433
1434 if (this_name)
1435 {
1436 if (strcmp (field, this_name) == 0)
1437 {
1438 /* Note that bytecodes for the struct's base (aka
1439 "this") will have been generated already, which will
1440 be unnecessary but not harmful if the static field is
1441 being handled as a global. */
1442 if (field_is_static (&TYPE_FIELD (type, i)))
1443 {
1444 gen_static_field (exp->gdbarch, ax, value, type, i);
1445 if (value->optimized_out)
1446 error (_("static field `%s' has been optimized out, cannot use"),
1447 field);
1448 return 1;
1449 }
1450
1451 gen_primitive_field (exp, ax, value, offset, i, type);
1452 return 1;
1453 }
1454 #if 0 /* is this right? */
1455 if (this_name[0] == '\0')
1456 internal_error (__FILE__, __LINE__,
1457 _("find_field: anonymous unions not supported"));
1458 #endif
1459 }
1460 }
1461
1462 /* Now scan through base classes recursively. */
1463 for (i = 0; i < nbases; i++)
1464 {
1465 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1466
1467 rslt = gen_struct_ref_recursive (exp, ax, value, field,
1468 offset + TYPE_BASECLASS_BITPOS (type, i) / TARGET_CHAR_BIT,
1469 basetype);
1470 if (rslt)
1471 return 1;
1472 }
1473
1474 /* Not found anywhere, flag so caller can complain. */
1475 return 0;
1476 }
1477
1478 /* Generate code to reference the member named FIELD of a structure or
1479 union. The top of the stack, as described by VALUE, should have
1480 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1481 the operator being compiled, and OPERAND_NAME is the kind of thing
1482 it operates on; we use them in error messages. */
1483 static void
1484 gen_struct_ref (struct expression *exp, struct agent_expr *ax,
1485 struct axs_value *value, char *field,
1486 char *operator_name, char *operand_name)
1487 {
1488 struct type *type;
1489 int found;
1490
1491 /* Follow pointers until we reach a non-pointer. These aren't the C
1492 semantics, but they're what the normal GDB evaluator does, so we
1493 should at least be consistent. */
1494 while (pointer_type (value->type))
1495 {
1496 require_rvalue (ax, value);
1497 gen_deref (ax, value);
1498 }
1499 type = check_typedef (value->type);
1500
1501 /* This must yield a structure or a union. */
1502 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1503 && TYPE_CODE (type) != TYPE_CODE_UNION)
1504 error (_("The left operand of `%s' is not a %s."),
1505 operator_name, operand_name);
1506
1507 /* And it must be in memory; we don't deal with structure rvalues,
1508 or structures living in registers. */
1509 if (value->kind != axs_lvalue_memory)
1510 error (_("Structure does not live in memory."));
1511
1512 /* Search through fields and base classes recursively. */
1513 found = gen_struct_ref_recursive (exp, ax, value, field, 0, type);
1514
1515 if (!found)
1516 error (_("Couldn't find member named `%s' in struct/union/class `%s'"),
1517 field, TYPE_TAG_NAME (type));
1518 }
1519
1520 static int
1521 gen_namespace_elt (struct expression *exp,
1522 struct agent_expr *ax, struct axs_value *value,
1523 const struct type *curtype, char *name);
1524 static int
1525 gen_maybe_namespace_elt (struct expression *exp,
1526 struct agent_expr *ax, struct axs_value *value,
1527 const struct type *curtype, char *name);
1528
1529 static void
1530 gen_static_field (struct gdbarch *gdbarch,
1531 struct agent_expr *ax, struct axs_value *value,
1532 struct type *type, int fieldno)
1533 {
1534 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1535 {
1536 ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1537 value->kind = axs_lvalue_memory;
1538 value->type = TYPE_FIELD_TYPE (type, fieldno);
1539 value->optimized_out = 0;
1540 }
1541 else
1542 {
1543 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1544 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1545
1546 if (sym)
1547 {
1548 gen_var_ref (gdbarch, ax, value, sym);
1549
1550 /* Don't error if the value was optimized out, we may be
1551 scanning all static fields and just want to pass over this
1552 and continue with the rest. */
1553 }
1554 else
1555 {
1556 /* Silently assume this was optimized out; class printing
1557 will let the user know why the data is missing. */
1558 value->optimized_out = 1;
1559 }
1560 }
1561 }
1562
1563 static int
1564 gen_struct_elt_for_reference (struct expression *exp,
1565 struct agent_expr *ax, struct axs_value *value,
1566 struct type *type, char *fieldname)
1567 {
1568 struct type *t = type;
1569 int i;
1570
1571 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1572 && TYPE_CODE (t) != TYPE_CODE_UNION)
1573 internal_error (__FILE__, __LINE__,
1574 _("non-aggregate type to gen_struct_elt_for_reference"));
1575
1576 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1577 {
1578 char *t_field_name = TYPE_FIELD_NAME (t, i);
1579
1580 if (t_field_name && strcmp (t_field_name, fieldname) == 0)
1581 {
1582 if (field_is_static (&TYPE_FIELD (t, i)))
1583 {
1584 gen_static_field (exp->gdbarch, ax, value, t, i);
1585 if (value->optimized_out)
1586 error (_("static field `%s' has been optimized out, cannot use"),
1587 fieldname);
1588 return 1;
1589 }
1590 if (TYPE_FIELD_PACKED (t, i))
1591 error (_("pointers to bitfield members not allowed"));
1592
1593 /* FIXME we need a way to do "want_address" equivalent */
1594
1595 error (_("Cannot reference non-static field \"%s\""), fieldname);
1596 }
1597 }
1598
1599 /* FIXME add other scoped-reference cases here */
1600
1601 /* Do a last-ditch lookup. */
1602 return gen_maybe_namespace_elt (exp, ax, value, type, fieldname);
1603 }
1604
1605 /* C++: Return the member NAME of the namespace given by the type
1606 CURTYPE. */
1607
1608 static int
1609 gen_namespace_elt (struct expression *exp,
1610 struct agent_expr *ax, struct axs_value *value,
1611 const struct type *curtype, char *name)
1612 {
1613 int found = gen_maybe_namespace_elt (exp, ax, value, curtype, name);
1614
1615 if (!found)
1616 error (_("No symbol \"%s\" in namespace \"%s\"."),
1617 name, TYPE_TAG_NAME (curtype));
1618
1619 return found;
1620 }
1621
1622 /* A helper function used by value_namespace_elt and
1623 value_struct_elt_for_reference. It looks up NAME inside the
1624 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
1625 is a class and NAME refers to a type in CURTYPE itself (as opposed
1626 to, say, some base class of CURTYPE). */
1627
1628 static int
1629 gen_maybe_namespace_elt (struct expression *exp,
1630 struct agent_expr *ax, struct axs_value *value,
1631 const struct type *curtype, char *name)
1632 {
1633 const char *namespace_name = TYPE_TAG_NAME (curtype);
1634 struct symbol *sym;
1635
1636 sym = cp_lookup_symbol_namespace (namespace_name, name,
1637 block_for_pc (ax->scope),
1638 VAR_DOMAIN);
1639
1640 if (sym == NULL)
1641 return 0;
1642
1643 gen_var_ref (exp->gdbarch, ax, value, sym);
1644
1645 if (value->optimized_out)
1646 error (_("`%s' has been optimized out, cannot use"),
1647 SYMBOL_PRINT_NAME (sym));
1648
1649 return 1;
1650 }
1651
1652
1653 static int
1654 gen_aggregate_elt_ref (struct expression *exp,
1655 struct agent_expr *ax, struct axs_value *value,
1656 struct type *type, char *field,
1657 char *operator_name, char *operand_name)
1658 {
1659 switch (TYPE_CODE (type))
1660 {
1661 case TYPE_CODE_STRUCT:
1662 case TYPE_CODE_UNION:
1663 return gen_struct_elt_for_reference (exp, ax, value, type, field);
1664 break;
1665 case TYPE_CODE_NAMESPACE:
1666 return gen_namespace_elt (exp, ax, value, type, field);
1667 break;
1668 default:
1669 internal_error (__FILE__, __LINE__,
1670 _("non-aggregate type in gen_aggregate_elt_ref"));
1671 }
1672
1673 return 0;
1674 }
1675
1676 /* Generate code for GDB's magical `repeat' operator.
1677 LVALUE @ INT creates an array INT elements long, and whose elements
1678 have the same type as LVALUE, located in memory so that LVALUE is
1679 its first element. For example, argv[0]@argc gives you the array
1680 of command-line arguments.
1681
1682 Unfortunately, because we have to know the types before we actually
1683 have a value for the expression, we can't implement this perfectly
1684 without changing the type system, having values that occupy two
1685 stack slots, doing weird things with sizeof, etc. So we require
1686 the right operand to be a constant expression. */
1687 static void
1688 gen_repeat (struct expression *exp, union exp_element **pc,
1689 struct agent_expr *ax, struct axs_value *value)
1690 {
1691 struct axs_value value1;
1692 /* We don't want to turn this into an rvalue, so no conversions
1693 here. */
1694 gen_expr (exp, pc, ax, &value1);
1695 if (value1.kind != axs_lvalue_memory)
1696 error (_("Left operand of `@' must be an object in memory."));
1697
1698 /* Evaluate the length; it had better be a constant. */
1699 {
1700 struct value *v = const_expr (pc);
1701 int length;
1702
1703 if (!v)
1704 error (_("Right operand of `@' must be a constant, in agent expressions."));
1705 if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
1706 error (_("Right operand of `@' must be an integer."));
1707 length = value_as_long (v);
1708 if (length <= 0)
1709 error (_("Right operand of `@' must be positive."));
1710
1711 /* The top of the stack is already the address of the object, so
1712 all we need to do is frob the type of the lvalue. */
1713 {
1714 /* FIXME-type-allocation: need a way to free this type when we are
1715 done with it. */
1716 struct type *array
1717 = lookup_array_range_type (value1.type, 0, length - 1);
1718
1719 value->kind = axs_lvalue_memory;
1720 value->type = array;
1721 }
1722 }
1723 }
1724
1725
1726 /* Emit code for the `sizeof' operator.
1727 *PC should point at the start of the operand expression; we advance it
1728 to the first instruction after the operand. */
1729 static void
1730 gen_sizeof (struct expression *exp, union exp_element **pc,
1731 struct agent_expr *ax, struct axs_value *value,
1732 struct type *size_type)
1733 {
1734 /* We don't care about the value of the operand expression; we only
1735 care about its type. However, in the current arrangement, the
1736 only way to find an expression's type is to generate code for it.
1737 So we generate code for the operand, and then throw it away,
1738 replacing it with code that simply pushes its size. */
1739 int start = ax->len;
1740 gen_expr (exp, pc, ax, value);
1741
1742 /* Throw away the code we just generated. */
1743 ax->len = start;
1744
1745 ax_const_l (ax, TYPE_LENGTH (value->type));
1746 value->kind = axs_rvalue;
1747 value->type = size_type;
1748 }
1749 \f
1750
1751 /* Generating bytecode from GDB expressions: general recursive thingy */
1752
1753 /* XXX: i18n */
1754 /* A gen_expr function written by a Gen-X'er guy.
1755 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1756 static void
1757 gen_expr (struct expression *exp, union exp_element **pc,
1758 struct agent_expr *ax, struct axs_value *value)
1759 {
1760 /* Used to hold the descriptions of operand expressions. */
1761 struct axs_value value1, value2, value3;
1762 enum exp_opcode op = (*pc)[0].opcode, op2;
1763 int if1, go1, if2, go2, end;
1764 struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
1765
1766 /* If we're looking at a constant expression, just push its value. */
1767 {
1768 struct value *v = maybe_const_expr (pc);
1769
1770 if (v)
1771 {
1772 ax_const_l (ax, value_as_long (v));
1773 value->kind = axs_rvalue;
1774 value->type = check_typedef (value_type (v));
1775 return;
1776 }
1777 }
1778
1779 /* Otherwise, go ahead and generate code for it. */
1780 switch (op)
1781 {
1782 /* Binary arithmetic operators. */
1783 case BINOP_ADD:
1784 case BINOP_SUB:
1785 case BINOP_MUL:
1786 case BINOP_DIV:
1787 case BINOP_REM:
1788 case BINOP_LSH:
1789 case BINOP_RSH:
1790 case BINOP_SUBSCRIPT:
1791 case BINOP_BITWISE_AND:
1792 case BINOP_BITWISE_IOR:
1793 case BINOP_BITWISE_XOR:
1794 case BINOP_EQUAL:
1795 case BINOP_NOTEQUAL:
1796 case BINOP_LESS:
1797 case BINOP_GTR:
1798 case BINOP_LEQ:
1799 case BINOP_GEQ:
1800 (*pc)++;
1801 gen_expr (exp, pc, ax, &value1);
1802 gen_usual_unary (exp, ax, &value1);
1803 gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2);
1804 break;
1805
1806 case BINOP_LOGICAL_AND:
1807 (*pc)++;
1808 /* Generate the obvious sequence of tests and jumps. */
1809 gen_expr (exp, pc, ax, &value1);
1810 gen_usual_unary (exp, ax, &value1);
1811 if1 = ax_goto (ax, aop_if_goto);
1812 go1 = ax_goto (ax, aop_goto);
1813 ax_label (ax, if1, ax->len);
1814 gen_expr (exp, pc, ax, &value2);
1815 gen_usual_unary (exp, ax, &value2);
1816 if2 = ax_goto (ax, aop_if_goto);
1817 go2 = ax_goto (ax, aop_goto);
1818 ax_label (ax, if2, ax->len);
1819 ax_const_l (ax, 1);
1820 end = ax_goto (ax, aop_goto);
1821 ax_label (ax, go1, ax->len);
1822 ax_label (ax, go2, ax->len);
1823 ax_const_l (ax, 0);
1824 ax_label (ax, end, ax->len);
1825 value->kind = axs_rvalue;
1826 value->type = int_type;
1827 break;
1828
1829 case BINOP_LOGICAL_OR:
1830 (*pc)++;
1831 /* Generate the obvious sequence of tests and jumps. */
1832 gen_expr (exp, pc, ax, &value1);
1833 gen_usual_unary (exp, ax, &value1);
1834 if1 = ax_goto (ax, aop_if_goto);
1835 gen_expr (exp, pc, ax, &value2);
1836 gen_usual_unary (exp, ax, &value2);
1837 if2 = ax_goto (ax, aop_if_goto);
1838 ax_const_l (ax, 0);
1839 end = ax_goto (ax, aop_goto);
1840 ax_label (ax, if1, ax->len);
1841 ax_label (ax, if2, ax->len);
1842 ax_const_l (ax, 1);
1843 ax_label (ax, end, ax->len);
1844 value->kind = axs_rvalue;
1845 value->type = int_type;
1846 break;
1847
1848 case TERNOP_COND:
1849 (*pc)++;
1850 gen_expr (exp, pc, ax, &value1);
1851 gen_usual_unary (exp, ax, &value1);
1852 /* For (A ? B : C), it's easiest to generate subexpression
1853 bytecodes in order, but if_goto jumps on true, so we invert
1854 the sense of A. Then we can do B by dropping through, and
1855 jump to do C. */
1856 gen_logical_not (ax, &value1, int_type);
1857 if1 = ax_goto (ax, aop_if_goto);
1858 gen_expr (exp, pc, ax, &value2);
1859 gen_usual_unary (exp, ax, &value2);
1860 end = ax_goto (ax, aop_goto);
1861 ax_label (ax, if1, ax->len);
1862 gen_expr (exp, pc, ax, &value3);
1863 gen_usual_unary (exp, ax, &value3);
1864 ax_label (ax, end, ax->len);
1865 /* This is arbitary - what if B and C are incompatible types? */
1866 value->type = value2.type;
1867 value->kind = value2.kind;
1868 break;
1869
1870 case BINOP_ASSIGN:
1871 (*pc)++;
1872 if ((*pc)[0].opcode == OP_INTERNALVAR)
1873 {
1874 char *name = internalvar_name ((*pc)[1].internalvar);
1875 struct trace_state_variable *tsv;
1876 (*pc) += 3;
1877 gen_expr (exp, pc, ax, value);
1878 tsv = find_trace_state_variable (name);
1879 if (tsv)
1880 {
1881 ax_tsv (ax, aop_setv, tsv->number);
1882 if (trace_kludge)
1883 ax_tsv (ax, aop_tracev, tsv->number);
1884 }
1885 else
1886 error (_("$%s is not a trace state variable, may not assign to it"), name);
1887 }
1888 else
1889 error (_("May only assign to trace state variables"));
1890 break;
1891
1892 case BINOP_ASSIGN_MODIFY:
1893 (*pc)++;
1894 op2 = (*pc)[0].opcode;
1895 (*pc)++;
1896 (*pc)++;
1897 if ((*pc)[0].opcode == OP_INTERNALVAR)
1898 {
1899 char *name = internalvar_name ((*pc)[1].internalvar);
1900 struct trace_state_variable *tsv;
1901 (*pc) += 3;
1902 tsv = find_trace_state_variable (name);
1903 if (tsv)
1904 {
1905 /* The tsv will be the left half of the binary operation. */
1906 ax_tsv (ax, aop_getv, tsv->number);
1907 if (trace_kludge)
1908 ax_tsv (ax, aop_tracev, tsv->number);
1909 /* Trace state variables are always 64-bit integers. */
1910 value1.kind = axs_rvalue;
1911 value1.type = builtin_type (exp->gdbarch)->builtin_long_long;
1912 /* Now do right half of expression. */
1913 gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2);
1914 /* We have a result of the binary op, set the tsv. */
1915 ax_tsv (ax, aop_setv, tsv->number);
1916 if (trace_kludge)
1917 ax_tsv (ax, aop_tracev, tsv->number);
1918 }
1919 else
1920 error (_("$%s is not a trace state variable, may not assign to it"), name);
1921 }
1922 else
1923 error (_("May only assign to trace state variables"));
1924 break;
1925
1926 /* Note that we need to be a little subtle about generating code
1927 for comma. In C, we can do some optimizations here because
1928 we know the left operand is only being evaluated for effect.
1929 However, if the tracing kludge is in effect, then we always
1930 need to evaluate the left hand side fully, so that all the
1931 variables it mentions get traced. */
1932 case BINOP_COMMA:
1933 (*pc)++;
1934 gen_expr (exp, pc, ax, &value1);
1935 /* Don't just dispose of the left operand. We might be tracing,
1936 in which case we want to emit code to trace it if it's an
1937 lvalue. */
1938 gen_traced_pop (exp->gdbarch, ax, &value1);
1939 gen_expr (exp, pc, ax, value);
1940 /* It's the consumer's responsibility to trace the right operand. */
1941 break;
1942
1943 case OP_LONG: /* some integer constant */
1944 {
1945 struct type *type = (*pc)[1].type;
1946 LONGEST k = (*pc)[2].longconst;
1947 (*pc) += 4;
1948 gen_int_literal (ax, value, k, type);
1949 }
1950 break;
1951
1952 case OP_VAR_VALUE:
1953 gen_var_ref (exp->gdbarch, ax, value, (*pc)[2].symbol);
1954
1955 if (value->optimized_out)
1956 error (_("`%s' has been optimized out, cannot use"),
1957 SYMBOL_PRINT_NAME ((*pc)[2].symbol));
1958
1959 (*pc) += 4;
1960 break;
1961
1962 case OP_REGISTER:
1963 {
1964 const char *name = &(*pc)[2].string;
1965 int reg;
1966 (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
1967 reg = user_reg_map_name_to_regnum (exp->gdbarch, name, strlen (name));
1968 if (reg == -1)
1969 internal_error (__FILE__, __LINE__,
1970 _("Register $%s not available"), name);
1971 if (reg >= gdbarch_num_regs (exp->gdbarch))
1972 error (_("'%s' is a pseudo-register; "
1973 "GDB cannot yet trace pseudoregister contents."),
1974 name);
1975 value->kind = axs_lvalue_register;
1976 value->u.reg = reg;
1977 value->type = register_type (exp->gdbarch, reg);
1978 }
1979 break;
1980
1981 case OP_INTERNALVAR:
1982 {
1983 const char *name = internalvar_name ((*pc)[1].internalvar);
1984 struct trace_state_variable *tsv;
1985 (*pc) += 3;
1986 tsv = find_trace_state_variable (name);
1987 if (tsv)
1988 {
1989 ax_tsv (ax, aop_getv, tsv->number);
1990 if (trace_kludge)
1991 ax_tsv (ax, aop_tracev, tsv->number);
1992 /* Trace state variables are always 64-bit integers. */
1993 value->kind = axs_rvalue;
1994 value->type = builtin_type (exp->gdbarch)->builtin_long_long;
1995 }
1996 else
1997 error (_("$%s is not a trace state variable; GDB agent expressions cannot use convenience variables."), name);
1998 }
1999 break;
2000
2001 /* Weirdo operator: see comments for gen_repeat for details. */
2002 case BINOP_REPEAT:
2003 /* Note that gen_repeat handles its own argument evaluation. */
2004 (*pc)++;
2005 gen_repeat (exp, pc, ax, value);
2006 break;
2007
2008 case UNOP_CAST:
2009 {
2010 struct type *type = (*pc)[1].type;
2011 (*pc) += 3;
2012 gen_expr (exp, pc, ax, value);
2013 gen_cast (ax, value, type);
2014 }
2015 break;
2016
2017 case UNOP_MEMVAL:
2018 {
2019 struct type *type = check_typedef ((*pc)[1].type);
2020 (*pc) += 3;
2021 gen_expr (exp, pc, ax, value);
2022 /* I'm not sure I understand UNOP_MEMVAL entirely. I think
2023 it's just a hack for dealing with minsyms; you take some
2024 integer constant, pretend it's the address of an lvalue of
2025 the given type, and dereference it. */
2026 if (value->kind != axs_rvalue)
2027 /* This would be weird. */
2028 internal_error (__FILE__, __LINE__,
2029 _("gen_expr: OP_MEMVAL operand isn't an rvalue???"));
2030 value->type = type;
2031 value->kind = axs_lvalue_memory;
2032 }
2033 break;
2034
2035 case UNOP_PLUS:
2036 (*pc)++;
2037 /* + FOO is equivalent to 0 + FOO, which can be optimized. */
2038 gen_expr (exp, pc, ax, value);
2039 gen_usual_unary (exp, ax, value);
2040 break;
2041
2042 case UNOP_NEG:
2043 (*pc)++;
2044 /* -FOO is equivalent to 0 - FOO. */
2045 gen_int_literal (ax, &value1, 0,
2046 builtin_type (exp->gdbarch)->builtin_int);
2047 gen_usual_unary (exp, ax, &value1); /* shouldn't do much */
2048 gen_expr (exp, pc, ax, &value2);
2049 gen_usual_unary (exp, ax, &value2);
2050 gen_usual_arithmetic (exp, ax, &value1, &value2);
2051 gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
2052 break;
2053
2054 case UNOP_LOGICAL_NOT:
2055 (*pc)++;
2056 gen_expr (exp, pc, ax, value);
2057 gen_usual_unary (exp, ax, value);
2058 gen_logical_not (ax, value, int_type);
2059 break;
2060
2061 case UNOP_COMPLEMENT:
2062 (*pc)++;
2063 gen_expr (exp, pc, ax, value);
2064 gen_usual_unary (exp, ax, value);
2065 gen_integral_promotions (exp, ax, value);
2066 gen_complement (ax, value);
2067 break;
2068
2069 case UNOP_IND:
2070 (*pc)++;
2071 gen_expr (exp, pc, ax, value);
2072 gen_usual_unary (exp, ax, value);
2073 if (!pointer_type (value->type))
2074 error (_("Argument of unary `*' is not a pointer."));
2075 gen_deref (ax, value);
2076 break;
2077
2078 case UNOP_ADDR:
2079 (*pc)++;
2080 gen_expr (exp, pc, ax, value);
2081 gen_address_of (ax, value);
2082 break;
2083
2084 case UNOP_SIZEOF:
2085 (*pc)++;
2086 /* Notice that gen_sizeof handles its own operand, unlike most
2087 of the other unary operator functions. This is because we
2088 have to throw away the code we generate. */
2089 gen_sizeof (exp, pc, ax, value,
2090 builtin_type (exp->gdbarch)->builtin_int);
2091 break;
2092
2093 case STRUCTOP_STRUCT:
2094 case STRUCTOP_PTR:
2095 {
2096 int length = (*pc)[1].longconst;
2097 char *name = &(*pc)[2].string;
2098
2099 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
2100 gen_expr (exp, pc, ax, value);
2101 if (op == STRUCTOP_STRUCT)
2102 gen_struct_ref (exp, ax, value, name, ".", "structure or union");
2103 else if (op == STRUCTOP_PTR)
2104 gen_struct_ref (exp, ax, value, name, "->",
2105 "pointer to a structure or union");
2106 else
2107 /* If this `if' chain doesn't handle it, then the case list
2108 shouldn't mention it, and we shouldn't be here. */
2109 internal_error (__FILE__, __LINE__,
2110 _("gen_expr: unhandled struct case"));
2111 }
2112 break;
2113
2114 case OP_THIS:
2115 {
2116 char *this_name;
2117 struct symbol *func, *sym;
2118 struct block *b;
2119
2120 func = block_linkage_function (block_for_pc (ax->scope));
2121 this_name = language_def (SYMBOL_LANGUAGE (func))->la_name_of_this;
2122 b = SYMBOL_BLOCK_VALUE (func);
2123
2124 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2125 symbol instead of the LOC_ARG one (if both exist). */
2126 sym = lookup_block_symbol (b, this_name, VAR_DOMAIN);
2127 if (!sym)
2128 error (_("no `%s' found"), this_name);
2129
2130 gen_var_ref (exp->gdbarch, ax, value, sym);
2131
2132 if (value->optimized_out)
2133 error (_("`%s' has been optimized out, cannot use"),
2134 SYMBOL_PRINT_NAME (sym));
2135
2136 (*pc) += 2;
2137 }
2138 break;
2139
2140 case OP_SCOPE:
2141 {
2142 struct type *type = (*pc)[1].type;
2143 int length = longest_to_int ((*pc)[2].longconst);
2144 char *name = &(*pc)[3].string;
2145 int found;
2146
2147 found = gen_aggregate_elt_ref (exp, ax, value, type, name,
2148 "?", "??");
2149 if (!found)
2150 error (_("There is no field named %s"), name);
2151 (*pc) += 5 + BYTES_TO_EXP_ELEM (length + 1);
2152 }
2153 break;
2154
2155 case OP_TYPE:
2156 error (_("Attempt to use a type name as an expression."));
2157
2158 default:
2159 error (_("Unsupported operator %s (%d) in expression."),
2160 op_string (op), op);
2161 }
2162 }
2163
2164 /* This handles the middle-to-right-side of code generation for binary
2165 expressions, which is shared between regular binary operations and
2166 assign-modify (+= and friends) expressions. */
2167
2168 static void
2169 gen_expr_binop_rest (struct expression *exp,
2170 enum exp_opcode op, union exp_element **pc,
2171 struct agent_expr *ax, struct axs_value *value,
2172 struct axs_value *value1, struct axs_value *value2)
2173 {
2174 struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
2175
2176 gen_expr (exp, pc, ax, value2);
2177 gen_usual_unary (exp, ax, value2);
2178 gen_usual_arithmetic (exp, ax, value1, value2);
2179 switch (op)
2180 {
2181 case BINOP_ADD:
2182 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
2183 && pointer_type (value2->type))
2184 {
2185 /* Swap the values and proceed normally. */
2186 ax_simple (ax, aop_swap);
2187 gen_ptradd (ax, value, value2, value1);
2188 }
2189 else if (pointer_type (value1->type)
2190 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2191 gen_ptradd (ax, value, value1, value2);
2192 else
2193 gen_binop (ax, value, value1, value2,
2194 aop_add, aop_add, 1, "addition");
2195 break;
2196 case BINOP_SUB:
2197 if (pointer_type (value1->type)
2198 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2199 gen_ptrsub (ax,value, value1, value2);
2200 else if (pointer_type (value1->type)
2201 && pointer_type (value2->type))
2202 /* FIXME --- result type should be ptrdiff_t */
2203 gen_ptrdiff (ax, value, value1, value2,
2204 builtin_type (exp->gdbarch)->builtin_long);
2205 else
2206 gen_binop (ax, value, value1, value2,
2207 aop_sub, aop_sub, 1, "subtraction");
2208 break;
2209 case BINOP_MUL:
2210 gen_binop (ax, value, value1, value2,
2211 aop_mul, aop_mul, 1, "multiplication");
2212 break;
2213 case BINOP_DIV:
2214 gen_binop (ax, value, value1, value2,
2215 aop_div_signed, aop_div_unsigned, 1, "division");
2216 break;
2217 case BINOP_REM:
2218 gen_binop (ax, value, value1, value2,
2219 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
2220 break;
2221 case BINOP_LSH:
2222 gen_binop (ax, value, value1, value2,
2223 aop_lsh, aop_lsh, 1, "left shift");
2224 break;
2225 case BINOP_RSH:
2226 gen_binop (ax, value, value1, value2,
2227 aop_rsh_signed, aop_rsh_unsigned, 1, "right shift");
2228 break;
2229 case BINOP_SUBSCRIPT:
2230 {
2231 struct type *type;
2232
2233 if (binop_types_user_defined_p (op, value1->type, value2->type))
2234 {
2235 error (_("\
2236 cannot subscript requested type: cannot call user defined functions"));
2237 }
2238 else
2239 {
2240 /* If the user attempts to subscript something that is not
2241 an array or pointer type (like a plain int variable for
2242 example), then report this as an error. */
2243 type = check_typedef (value1->type);
2244 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2245 && TYPE_CODE (type) != TYPE_CODE_PTR)
2246 {
2247 if (TYPE_NAME (type))
2248 error (_("cannot subscript something of type `%s'"),
2249 TYPE_NAME (type));
2250 else
2251 error (_("cannot subscript requested type"));
2252 }
2253 }
2254
2255 if (!is_integral_type (value2->type))
2256 error (_("Argument to arithmetic operation not a number or boolean."));
2257
2258 gen_ptradd (ax, value, value1, value2);
2259 gen_deref (ax, value);
2260 break;
2261 }
2262 case BINOP_BITWISE_AND:
2263 gen_binop (ax, value, value1, value2,
2264 aop_bit_and, aop_bit_and, 0, "bitwise and");
2265 break;
2266
2267 case BINOP_BITWISE_IOR:
2268 gen_binop (ax, value, value1, value2,
2269 aop_bit_or, aop_bit_or, 0, "bitwise or");
2270 break;
2271
2272 case BINOP_BITWISE_XOR:
2273 gen_binop (ax, value, value1, value2,
2274 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
2275 break;
2276
2277 case BINOP_EQUAL:
2278 gen_equal (ax, value, value1, value2, int_type);
2279 break;
2280
2281 case BINOP_NOTEQUAL:
2282 gen_equal (ax, value, value1, value2, int_type);
2283 gen_logical_not (ax, value, int_type);
2284 break;
2285
2286 case BINOP_LESS:
2287 gen_less (ax, value, value1, value2, int_type);
2288 break;
2289
2290 case BINOP_GTR:
2291 ax_simple (ax, aop_swap);
2292 gen_less (ax, value, value1, value2, int_type);
2293 break;
2294
2295 case BINOP_LEQ:
2296 ax_simple (ax, aop_swap);
2297 gen_less (ax, value, value1, value2, int_type);
2298 gen_logical_not (ax, value, int_type);
2299 break;
2300
2301 case BINOP_GEQ:
2302 gen_less (ax, value, value1, value2, int_type);
2303 gen_logical_not (ax, value, int_type);
2304 break;
2305
2306 default:
2307 /* We should only list operators in the outer case statement
2308 that we actually handle in the inner case statement. */
2309 internal_error (__FILE__, __LINE__,
2310 _("gen_expr: op case sets don't match"));
2311 }
2312 }
2313 \f
2314
2315 /* Given a single variable and a scope, generate bytecodes to trace
2316 its value. This is for use in situations where we have only a
2317 variable's name, and no parsed expression; for instance, when the
2318 name comes from a list of local variables of a function. */
2319
2320 struct agent_expr *
2321 gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch,
2322 struct symbol *var)
2323 {
2324 struct cleanup *old_chain = 0;
2325 struct agent_expr *ax = new_agent_expr (gdbarch, scope);
2326 struct axs_value value;
2327
2328 old_chain = make_cleanup_free_agent_expr (ax);
2329
2330 trace_kludge = 1;
2331 gen_var_ref (gdbarch, ax, &value, var);
2332
2333 /* If there is no actual variable to trace, flag it by returning
2334 an empty agent expression. */
2335 if (value.optimized_out)
2336 {
2337 do_cleanups (old_chain);
2338 return NULL;
2339 }
2340
2341 /* Make sure we record the final object, and get rid of it. */
2342 gen_traced_pop (gdbarch, ax, &value);
2343
2344 /* Oh, and terminate. */
2345 ax_simple (ax, aop_end);
2346
2347 /* We have successfully built the agent expr, so cancel the cleanup
2348 request. If we add more cleanups that we always want done, this
2349 will have to get more complicated. */
2350 discard_cleanups (old_chain);
2351 return ax;
2352 }
2353
2354 /* Generating bytecode from GDB expressions: driver */
2355
2356 /* Given a GDB expression EXPR, return bytecode to trace its value.
2357 The result will use the `trace' and `trace_quick' bytecodes to
2358 record the value of all memory touched by the expression. The
2359 caller can then use the ax_reqs function to discover which
2360 registers it relies upon. */
2361 struct agent_expr *
2362 gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
2363 {
2364 struct cleanup *old_chain = 0;
2365 struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
2366 union exp_element *pc;
2367 struct axs_value value;
2368
2369 old_chain = make_cleanup_free_agent_expr (ax);
2370
2371 pc = expr->elts;
2372 trace_kludge = 1;
2373 value.optimized_out = 0;
2374 gen_expr (expr, &pc, ax, &value);
2375
2376 /* Make sure we record the final object, and get rid of it. */
2377 gen_traced_pop (expr->gdbarch, ax, &value);
2378
2379 /* Oh, and terminate. */
2380 ax_simple (ax, aop_end);
2381
2382 /* We have successfully built the agent expr, so cancel the cleanup
2383 request. If we add more cleanups that we always want done, this
2384 will have to get more complicated. */
2385 discard_cleanups (old_chain);
2386 return ax;
2387 }
2388
2389 /* Given a GDB expression EXPR, return a bytecode sequence that will
2390 evaluate and return a result. The bytecodes will do a direct
2391 evaluation, using the current data on the target, rather than
2392 recording blocks of memory and registers for later use, as
2393 gen_trace_for_expr does. The generated bytecode sequence leaves
2394 the result of expression evaluation on the top of the stack. */
2395
2396 struct agent_expr *
2397 gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
2398 {
2399 struct cleanup *old_chain = 0;
2400 struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
2401 union exp_element *pc;
2402 struct axs_value value;
2403
2404 old_chain = make_cleanup_free_agent_expr (ax);
2405
2406 pc = expr->elts;
2407 trace_kludge = 0;
2408 value.optimized_out = 0;
2409 gen_expr (expr, &pc, ax, &value);
2410
2411 require_rvalue (ax, &value);
2412
2413 /* Oh, and terminate. */
2414 ax_simple (ax, aop_end);
2415
2416 /* We have successfully built the agent expr, so cancel the cleanup
2417 request. If we add more cleanups that we always want done, this
2418 will have to get more complicated. */
2419 discard_cleanups (old_chain);
2420 return ax;
2421 }
2422
2423 static void
2424 agent_command (char *exp, int from_tty)
2425 {
2426 struct cleanup *old_chain = 0;
2427 struct expression *expr;
2428 struct agent_expr *agent;
2429 struct frame_info *fi = get_current_frame (); /* need current scope */
2430
2431 /* We don't deal with overlay debugging at the moment. We need to
2432 think more carefully about this. If you copy this code into
2433 another command, change the error message; the user shouldn't
2434 have to know anything about agent expressions. */
2435 if (overlay_debugging)
2436 error (_("GDB can't do agent expression translation with overlays."));
2437
2438 if (exp == 0)
2439 error_no_arg (_("expression to translate"));
2440
2441 expr = parse_expression (exp);
2442 old_chain = make_cleanup (free_current_contents, &expr);
2443 agent = gen_trace_for_expr (get_frame_pc (fi), expr);
2444 make_cleanup_free_agent_expr (agent);
2445 ax_reqs (agent);
2446 ax_print (gdb_stdout, agent);
2447
2448 /* It would be nice to call ax_reqs here to gather some general info
2449 about the expression, and then print out the result. */
2450
2451 do_cleanups (old_chain);
2452 dont_repeat ();
2453 }
2454
2455 /* Parse the given expression, compile it into an agent expression
2456 that does direct evaluation, and display the resulting
2457 expression. */
2458
2459 static void
2460 agent_eval_command (char *exp, int from_tty)
2461 {
2462 struct cleanup *old_chain = 0;
2463 struct expression *expr;
2464 struct agent_expr *agent;
2465 struct frame_info *fi = get_current_frame (); /* need current scope */
2466
2467 /* We don't deal with overlay debugging at the moment. We need to
2468 think more carefully about this. If you copy this code into
2469 another command, change the error message; the user shouldn't
2470 have to know anything about agent expressions. */
2471 if (overlay_debugging)
2472 error (_("GDB can't do agent expression translation with overlays."));
2473
2474 if (exp == 0)
2475 error_no_arg (_("expression to translate"));
2476
2477 expr = parse_expression (exp);
2478 old_chain = make_cleanup (free_current_contents, &expr);
2479 agent = gen_eval_for_expr (get_frame_pc (fi), expr);
2480 make_cleanup_free_agent_expr (agent);
2481 ax_reqs (agent);
2482 ax_print (gdb_stdout, agent);
2483
2484 /* It would be nice to call ax_reqs here to gather some general info
2485 about the expression, and then print out the result. */
2486
2487 do_cleanups (old_chain);
2488 dont_repeat ();
2489 }
2490 \f
2491
2492 /* Initialization code. */
2493
2494 void _initialize_ax_gdb (void);
2495 void
2496 _initialize_ax_gdb (void)
2497 {
2498 add_cmd ("agent", class_maintenance, agent_command,
2499 _("Translate an expression into remote agent bytecode for tracing."),
2500 &maintenancelist);
2501
2502 add_cmd ("agent-eval", class_maintenance, agent_eval_command,
2503 _("Translate an expression into remote agent bytecode for evaluation."),
2504 &maintenancelist);
2505 }
This page took 0.080727 seconds and 5 git commands to generate.