2010-12-31 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / ax-general.c
1 /* Functions for manipulating expressions designed to be executed on the agent
2 Copyright (C) 1998, 1999, 2000, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Despite what the above comment says about this file being part of
21 GDB, we would like to keep these functions free of GDB
22 dependencies, since we want to be able to use them in contexts
23 outside of GDB (test suites, the stub, etc.) */
24
25 #include "defs.h"
26 #include "ax.h"
27
28 #include "value.h"
29 #include "gdb_string.h"
30
31 #include "user-regs.h"
32
33 static void grow_expr (struct agent_expr *x, int n);
34
35 static void append_const (struct agent_expr *x, LONGEST val, int n);
36
37 static LONGEST read_const (struct agent_expr *x, int o, int n);
38
39 static void generic_ext (struct agent_expr *x, enum agent_op op, int n);
40 \f
41 /* Functions for building expressions. */
42
43 /* Allocate a new, empty agent expression. */
44 struct agent_expr *
45 new_agent_expr (struct gdbarch *gdbarch, CORE_ADDR scope)
46 {
47 struct agent_expr *x = xmalloc (sizeof (*x));
48
49 x->len = 0;
50 x->size = 1; /* Change this to a larger value once
51 reallocation code is tested. */
52 x->buf = xmalloc (x->size);
53
54 x->gdbarch = gdbarch;
55 x->scope = scope;
56
57 /* Bit vector for registers used. */
58 x->reg_mask_len = 1;
59 x->reg_mask = xmalloc (x->reg_mask_len * sizeof (x->reg_mask[0]));
60 memset (x->reg_mask, 0, x->reg_mask_len * sizeof (x->reg_mask[0]));
61
62 return x;
63 }
64
65 /* Free a agent expression. */
66 void
67 free_agent_expr (struct agent_expr *x)
68 {
69 xfree (x->buf);
70 xfree (x->reg_mask);
71 xfree (x);
72 }
73
74 static void
75 do_free_agent_expr_cleanup (void *x)
76 {
77 free_agent_expr (x);
78 }
79
80 struct cleanup *
81 make_cleanup_free_agent_expr (struct agent_expr *x)
82 {
83 return make_cleanup (do_free_agent_expr_cleanup, x);
84 }
85
86
87 /* Make sure that X has room for at least N more bytes. This doesn't
88 affect the length, just the allocated size. */
89 static void
90 grow_expr (struct agent_expr *x, int n)
91 {
92 if (x->len + n > x->size)
93 {
94 x->size *= 2;
95 if (x->size < x->len + n)
96 x->size = x->len + n + 10;
97 x->buf = xrealloc (x->buf, x->size);
98 }
99 }
100
101
102 /* Append the low N bytes of VAL as an N-byte integer to the
103 expression X, in big-endian order. */
104 static void
105 append_const (struct agent_expr *x, LONGEST val, int n)
106 {
107 int i;
108
109 grow_expr (x, n);
110 for (i = n - 1; i >= 0; i--)
111 {
112 x->buf[x->len + i] = val & 0xff;
113 val >>= 8;
114 }
115 x->len += n;
116 }
117
118
119 /* Extract an N-byte big-endian unsigned integer from expression X at
120 offset O. */
121 static LONGEST
122 read_const (struct agent_expr *x, int o, int n)
123 {
124 int i;
125 LONGEST accum = 0;
126
127 /* Make sure we're not reading off the end of the expression. */
128 if (o + n > x->len)
129 error (_("GDB bug: ax-general.c (read_const): incomplete constant"));
130
131 for (i = 0; i < n; i++)
132 accum = (accum << 8) | x->buf[o + i];
133
134 return accum;
135 }
136
137
138 /* Append a simple operator OP to EXPR. */
139 void
140 ax_simple (struct agent_expr *x, enum agent_op op)
141 {
142 grow_expr (x, 1);
143 x->buf[x->len++] = op;
144 }
145
146
147 /* Append a sign-extension or zero-extension instruction to EXPR, to
148 extend an N-bit value. */
149 static void
150 generic_ext (struct agent_expr *x, enum agent_op op, int n)
151 {
152 /* N must fit in a byte. */
153 if (n < 0 || n > 255)
154 error (_("GDB bug: ax-general.c (generic_ext): bit count out of range"));
155 /* That had better be enough range. */
156 if (sizeof (LONGEST) * 8 > 255)
157 error (_("GDB bug: ax-general.c (generic_ext): opcode has inadequate range"));
158
159 grow_expr (x, 2);
160 x->buf[x->len++] = op;
161 x->buf[x->len++] = n;
162 }
163
164
165 /* Append a sign-extension instruction to EXPR, to extend an N-bit value. */
166 void
167 ax_ext (struct agent_expr *x, int n)
168 {
169 generic_ext (x, aop_ext, n);
170 }
171
172
173 /* Append a zero-extension instruction to EXPR, to extend an N-bit value. */
174 void
175 ax_zero_ext (struct agent_expr *x, int n)
176 {
177 generic_ext (x, aop_zero_ext, n);
178 }
179
180
181 /* Append a trace_quick instruction to EXPR, to record N bytes. */
182 void
183 ax_trace_quick (struct agent_expr *x, int n)
184 {
185 /* N must fit in a byte. */
186 if (n < 0 || n > 255)
187 error (_("GDB bug: ax-general.c (ax_trace_quick): size out of range for trace_quick"));
188
189 grow_expr (x, 2);
190 x->buf[x->len++] = aop_trace_quick;
191 x->buf[x->len++] = n;
192 }
193
194
195 /* Append a goto op to EXPR. OP is the actual op (must be aop_goto or
196 aop_if_goto). We assume we don't know the target offset yet,
197 because it's probably a forward branch, so we leave space in EXPR
198 for the target, and return the offset in EXPR of that space, so we
199 can backpatch it once we do know the target offset. Use ax_label
200 to do the backpatching. */
201 int
202 ax_goto (struct agent_expr *x, enum agent_op op)
203 {
204 grow_expr (x, 3);
205 x->buf[x->len + 0] = op;
206 x->buf[x->len + 1] = 0xff;
207 x->buf[x->len + 2] = 0xff;
208 x->len += 3;
209 return x->len - 2;
210 }
211
212 /* Suppose a given call to ax_goto returns some value PATCH. When you
213 know the offset TARGET that goto should jump to, call
214 ax_label (EXPR, PATCH, TARGET)
215 to patch TARGET into the ax_goto instruction. */
216 void
217 ax_label (struct agent_expr *x, int patch, int target)
218 {
219 /* Make sure the value is in range. Don't accept 0xffff as an
220 offset; that's our magic sentinel value for unpatched branches. */
221 if (target < 0 || target >= 0xffff)
222 error (_("GDB bug: ax-general.c (ax_label): label target out of range"));
223
224 x->buf[patch] = (target >> 8) & 0xff;
225 x->buf[patch + 1] = target & 0xff;
226 }
227
228
229 /* Assemble code to push a constant on the stack. */
230 void
231 ax_const_l (struct agent_expr *x, LONGEST l)
232 {
233 static enum agent_op ops[]
234 =
235 {aop_const8, aop_const16, aop_const32, aop_const64};
236 int size;
237 int op;
238
239 /* How big is the number? 'op' keeps track of which opcode to use.
240 Notice that we don't really care whether the original number was
241 signed or unsigned; we always reproduce the value exactly, and
242 use the shortest representation. */
243 for (op = 0, size = 8; size < 64; size *= 2, op++)
244 {
245 LONGEST lim = ((LONGEST) 1) << (size - 1);
246
247 if (-lim <= l && l <= lim - 1)
248 break;
249 }
250
251 /* Emit the right opcode... */
252 ax_simple (x, ops[op]);
253
254 /* Emit the low SIZE bytes as an unsigned number. We know that
255 sign-extending this will yield l. */
256 append_const (x, l, size / 8);
257
258 /* Now, if it was negative, and not full-sized, sign-extend it. */
259 if (l < 0 && size < 64)
260 ax_ext (x, size);
261 }
262
263
264 void
265 ax_const_d (struct agent_expr *x, LONGEST d)
266 {
267 /* FIXME: floating-point support not present yet. */
268 error (_("GDB bug: ax-general.c (ax_const_d): floating point not supported yet"));
269 }
270
271
272 /* Assemble code to push the value of register number REG on the
273 stack. */
274 void
275 ax_reg (struct agent_expr *x, int reg)
276 {
277 if (reg >= gdbarch_num_regs (x->gdbarch))
278 {
279 /* This is a pseudo-register. */
280 if (!gdbarch_ax_pseudo_register_push_stack_p (x->gdbarch))
281 error (_("'%s' is a pseudo-register; "
282 "GDB cannot yet trace its contents."),
283 user_reg_map_regnum_to_name (x->gdbarch, reg));
284 if (gdbarch_ax_pseudo_register_push_stack (x->gdbarch, x, reg))
285 error (_("Trace '%s' failed."),
286 user_reg_map_regnum_to_name (x->gdbarch, reg));
287 }
288 else
289 {
290 /* Make sure the register number is in range. */
291 if (reg < 0 || reg > 0xffff)
292 error (_("GDB bug: ax-general.c (ax_reg): register number out of range"));
293 grow_expr (x, 3);
294 x->buf[x->len] = aop_reg;
295 x->buf[x->len + 1] = (reg >> 8) & 0xff;
296 x->buf[x->len + 2] = (reg) & 0xff;
297 x->len += 3;
298 }
299 }
300
301 /* Assemble code to operate on a trace state variable. */
302
303 void
304 ax_tsv (struct agent_expr *x, enum agent_op op, int num)
305 {
306 /* Make sure the tsv number is in range. */
307 if (num < 0 || num > 0xffff)
308 internal_error (__FILE__, __LINE__, _("ax-general.c (ax_tsv): variable number is %d, out of range"), num);
309
310 grow_expr (x, 3);
311 x->buf[x->len] = op;
312 x->buf[x->len + 1] = (num >> 8) & 0xff;
313 x->buf[x->len + 2] = (num) & 0xff;
314 x->len += 3;
315 }
316 \f
317
318
319 /* Functions for disassembling agent expressions, and otherwise
320 debugging the expression compiler. */
321
322 struct aop_map aop_map[] =
323 {
324 {0, 0, 0, 0, 0},
325 {"float", 0, 0, 0, 0}, /* 0x01 */
326 {"add", 0, 0, 2, 1}, /* 0x02 */
327 {"sub", 0, 0, 2, 1}, /* 0x03 */
328 {"mul", 0, 0, 2, 1}, /* 0x04 */
329 {"div_signed", 0, 0, 2, 1}, /* 0x05 */
330 {"div_unsigned", 0, 0, 2, 1}, /* 0x06 */
331 {"rem_signed", 0, 0, 2, 1}, /* 0x07 */
332 {"rem_unsigned", 0, 0, 2, 1}, /* 0x08 */
333 {"lsh", 0, 0, 2, 1}, /* 0x09 */
334 {"rsh_signed", 0, 0, 2, 1}, /* 0x0a */
335 {"rsh_unsigned", 0, 0, 2, 1}, /* 0x0b */
336 {"trace", 0, 0, 2, 0}, /* 0x0c */
337 {"trace_quick", 1, 0, 1, 1}, /* 0x0d */
338 {"log_not", 0, 0, 1, 1}, /* 0x0e */
339 {"bit_and", 0, 0, 2, 1}, /* 0x0f */
340 {"bit_or", 0, 0, 2, 1}, /* 0x10 */
341 {"bit_xor", 0, 0, 2, 1}, /* 0x11 */
342 {"bit_not", 0, 0, 1, 1}, /* 0x12 */
343 {"equal", 0, 0, 2, 1}, /* 0x13 */
344 {"less_signed", 0, 0, 2, 1}, /* 0x14 */
345 {"less_unsigned", 0, 0, 2, 1}, /* 0x15 */
346 {"ext", 1, 0, 1, 1}, /* 0x16 */
347 {"ref8", 0, 8, 1, 1}, /* 0x17 */
348 {"ref16", 0, 16, 1, 1}, /* 0x18 */
349 {"ref32", 0, 32, 1, 1}, /* 0x19 */
350 {"ref64", 0, 64, 1, 1}, /* 0x1a */
351 {"ref_float", 0, 0, 1, 1}, /* 0x1b */
352 {"ref_double", 0, 0, 1, 1}, /* 0x1c */
353 {"ref_long_double", 0, 0, 1, 1}, /* 0x1d */
354 {"l_to_d", 0, 0, 1, 1}, /* 0x1e */
355 {"d_to_l", 0, 0, 1, 1}, /* 0x1f */
356 {"if_goto", 2, 0, 1, 0}, /* 0x20 */
357 {"goto", 2, 0, 0, 0}, /* 0x21 */
358 {"const8", 1, 8, 0, 1}, /* 0x22 */
359 {"const16", 2, 16, 0, 1}, /* 0x23 */
360 {"const32", 4, 32, 0, 1}, /* 0x24 */
361 {"const64", 8, 64, 0, 1}, /* 0x25 */
362 {"reg", 2, 0, 0, 1}, /* 0x26 */
363 {"end", 0, 0, 0, 0}, /* 0x27 */
364 {"dup", 0, 0, 1, 2}, /* 0x28 */
365 {"pop", 0, 0, 1, 0}, /* 0x29 */
366 {"zero_ext", 1, 0, 1, 1}, /* 0x2a */
367 {"swap", 0, 0, 2, 2}, /* 0x2b */
368 {"getv", 2, 0, 0, 1}, /* 0x2c */
369 {"setv", 2, 0, 0, 1}, /* 0x2d */
370 {"tracev", 2, 0, 0, 1}, /* 0x2e */
371 {0, 0, 0, 0, 0}, /* 0x2f */
372 {"trace16", 2, 0, 1, 1}, /* 0x30 */
373 };
374
375
376 /* Disassemble the expression EXPR, writing to F. */
377 void
378 ax_print (struct ui_file *f, struct agent_expr *x)
379 {
380 int i;
381 int is_float = 0;
382
383 fprintf_filtered (f, _("Scope: %s\n"), paddress (x->gdbarch, x->scope));
384 fprintf_filtered (f, _("Reg mask:"));
385 for (i = 0; i < x->reg_mask_len; ++i)
386 fprintf_filtered (f, _(" %02x"), x->reg_mask[i]);
387 fprintf_filtered (f, _("\n"));
388
389 /* Check the size of the name array against the number of entries in
390 the enum, to catch additions that people didn't sync. */
391 if ((sizeof (aop_map) / sizeof (aop_map[0]))
392 != aop_last)
393 error (_("GDB bug: ax-general.c (ax_print): opcode map out of sync"));
394
395 for (i = 0; i < x->len;)
396 {
397 enum agent_op op = x->buf[i];
398
399 if (op >= (sizeof (aop_map) / sizeof (aop_map[0]))
400 || !aop_map[op].name)
401 {
402 fprintf_filtered (f, _("%3d <bad opcode %02x>\n"), i, op);
403 i++;
404 continue;
405 }
406 if (i + 1 + aop_map[op].op_size > x->len)
407 {
408 fprintf_filtered (f, _("%3d <incomplete opcode %s>\n"),
409 i, aop_map[op].name);
410 break;
411 }
412
413 fprintf_filtered (f, "%3d %s", i, aop_map[op].name);
414 if (aop_map[op].op_size > 0)
415 {
416 fputs_filtered (" ", f);
417
418 print_longest (f, 'd', 0,
419 read_const (x, i + 1, aop_map[op].op_size));
420 }
421 fprintf_filtered (f, "\n");
422 i += 1 + aop_map[op].op_size;
423
424 is_float = (op == aop_float);
425 }
426 }
427
428 /* Add register REG to the register mask for expression AX. */
429 void
430 ax_reg_mask (struct agent_expr *ax, int reg)
431 {
432 if (reg >= gdbarch_num_regs (ax->gdbarch))
433 {
434 /* This is a pseudo-register. */
435 if (!gdbarch_ax_pseudo_register_collect_p (ax->gdbarch))
436 error (_("'%s' is a pseudo-register; "
437 "GDB cannot yet trace its contents."),
438 user_reg_map_regnum_to_name (ax->gdbarch, reg));
439 if (gdbarch_ax_pseudo_register_collect (ax->gdbarch, ax, reg))
440 error (_("Trace '%s' failed."),
441 user_reg_map_regnum_to_name (ax->gdbarch, reg));
442 }
443 else
444 {
445 int byte = reg / 8;
446
447 /* Grow the bit mask if necessary. */
448 if (byte >= ax->reg_mask_len)
449 {
450 /* It's not appropriate to double here. This isn't a
451 string buffer. */
452 int new_len = byte + 1;
453 unsigned char *new_reg_mask = xrealloc (ax->reg_mask,
454 new_len
455 * sizeof (ax->reg_mask[0]));
456 memset (new_reg_mask + ax->reg_mask_len, 0,
457 (new_len - ax->reg_mask_len) * sizeof (ax->reg_mask[0]));
458 ax->reg_mask_len = new_len;
459 ax->reg_mask = new_reg_mask;
460 }
461
462 ax->reg_mask[byte] |= 1 << (reg % 8);
463 }
464 }
465
466 /* Given an agent expression AX, fill in requirements and other descriptive
467 bits. */
468 void
469 ax_reqs (struct agent_expr *ax)
470 {
471 int i;
472 int height;
473
474 /* Jump target table. targets[i] is non-zero iff we have found a
475 jump to offset i. */
476 char *targets = (char *) alloca (ax->len * sizeof (targets[0]));
477
478 /* Instruction boundary table. boundary[i] is non-zero iff our scan
479 has reached an instruction starting at offset i. */
480 char *boundary = (char *) alloca (ax->len * sizeof (boundary[0]));
481
482 /* Stack height record. If either targets[i] or boundary[i] is
483 non-zero, heights[i] is the height the stack should have before
484 executing the bytecode at that point. */
485 int *heights = (int *) alloca (ax->len * sizeof (heights[0]));
486
487 /* Pointer to a description of the present op. */
488 struct aop_map *op;
489
490 memset (targets, 0, ax->len * sizeof (targets[0]));
491 memset (boundary, 0, ax->len * sizeof (boundary[0]));
492
493 ax->max_height = ax->min_height = height = 0;
494 ax->flaw = agent_flaw_none;
495 ax->max_data_size = 0;
496
497 for (i = 0; i < ax->len; i += 1 + op->op_size)
498 {
499 if (ax->buf[i] > (sizeof (aop_map) / sizeof (aop_map[0])))
500 {
501 ax->flaw = agent_flaw_bad_instruction;
502 return;
503 }
504
505 op = &aop_map[ax->buf[i]];
506
507 if (!op->name)
508 {
509 ax->flaw = agent_flaw_bad_instruction;
510 return;
511 }
512
513 if (i + 1 + op->op_size > ax->len)
514 {
515 ax->flaw = agent_flaw_incomplete_instruction;
516 return;
517 }
518
519 /* If this instruction is a forward jump target, does the
520 current stack height match the stack height at the jump
521 source? */
522 if (targets[i] && (heights[i] != height))
523 {
524 ax->flaw = agent_flaw_height_mismatch;
525 return;
526 }
527
528 boundary[i] = 1;
529 heights[i] = height;
530
531 height -= op->consumed;
532 if (height < ax->min_height)
533 ax->min_height = height;
534 height += op->produced;
535 if (height > ax->max_height)
536 ax->max_height = height;
537
538 if (op->data_size > ax->max_data_size)
539 ax->max_data_size = op->data_size;
540
541 /* For jump instructions, check that the target is a valid
542 offset. If it is, record the fact that that location is a
543 jump target, and record the height we expect there. */
544 if (aop_goto == op - aop_map
545 || aop_if_goto == op - aop_map)
546 {
547 int target = read_const (ax, i + 1, 2);
548 if (target < 0 || target >= ax->len)
549 {
550 ax->flaw = agent_flaw_bad_jump;
551 return;
552 }
553
554 /* Do we have any information about what the stack height
555 should be at the target? */
556 if (targets[target] || boundary[target])
557 {
558 if (heights[target] != height)
559 {
560 ax->flaw = agent_flaw_height_mismatch;
561 return;
562 }
563 }
564
565 /* Record the target, along with the stack height we expect. */
566 targets[target] = 1;
567 heights[target] = height;
568 }
569
570 /* For unconditional jumps with a successor, check that the
571 successor is a target, and pick up its stack height. */
572 if (aop_goto == op - aop_map
573 && i + 3 < ax->len)
574 {
575 if (!targets[i + 3])
576 {
577 ax->flaw = agent_flaw_hole;
578 return;
579 }
580
581 height = heights[i + 3];
582 }
583
584 /* For reg instructions, record the register in the bit mask. */
585 if (aop_reg == op - aop_map)
586 {
587 int reg = read_const (ax, i + 1, 2);
588
589 ax_reg_mask (ax, reg);
590 }
591 }
592
593 /* Check that all the targets are on boundaries. */
594 for (i = 0; i < ax->len; i++)
595 if (targets[i] && !boundary[i])
596 {
597 ax->flaw = agent_flaw_bad_jump;
598 return;
599 }
600
601 ax->final_height = height;
602 }
This page took 0.044967 seconds and 5 git commands to generate.