03b21cbf217dffbf7be936b33cc60da4aae8d514
[deliverable/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include <string.h>
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "ax-gdb.h"
70 #include "dummy-frame.h"
71
72 #include "format.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83
84 /* Enums for exception-handling support. */
85 enum exception_event_kind
86 {
87 EX_EVENT_THROW,
88 EX_EVENT_RETHROW,
89 EX_EVENT_CATCH
90 };
91
92 /* Prototypes for local functions. */
93
94 static void enable_delete_command (char *, int);
95
96 static void enable_once_command (char *, int);
97
98 static void enable_count_command (char *, int);
99
100 static void disable_command (char *, int);
101
102 static void enable_command (char *, int);
103
104 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
105 void *),
106 void *);
107
108 static void ignore_command (char *, int);
109
110 static int breakpoint_re_set_one (void *);
111
112 static void breakpoint_re_set_default (struct breakpoint *);
113
114 static void create_sals_from_address_default (char **,
115 struct linespec_result *,
116 enum bptype, char *,
117 char **);
118
119 static void create_breakpoints_sal_default (struct gdbarch *,
120 struct linespec_result *,
121 char *, char *, enum bptype,
122 enum bpdisp, int, int,
123 int,
124 const struct breakpoint_ops *,
125 int, int, int, unsigned);
126
127 static void decode_linespec_default (struct breakpoint *, char **,
128 struct symtabs_and_lines *);
129
130 static void clear_command (char *, int);
131
132 static void catch_command (char *, int);
133
134 static int can_use_hardware_watchpoint (struct value *);
135
136 static void break_command_1 (char *, int, int);
137
138 static void mention (struct breakpoint *);
139
140 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
141 enum bptype,
142 const struct breakpoint_ops *);
143 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
144 const struct symtab_and_line *);
145
146 /* This function is used in gdbtk sources and thus can not be made
147 static. */
148 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
149 struct symtab_and_line,
150 enum bptype,
151 const struct breakpoint_ops *);
152
153 static struct breakpoint *
154 momentary_breakpoint_from_master (struct breakpoint *orig,
155 enum bptype type,
156 const struct breakpoint_ops *ops);
157
158 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
159
160 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
161 CORE_ADDR bpaddr,
162 enum bptype bptype);
163
164 static void describe_other_breakpoints (struct gdbarch *,
165 struct program_space *, CORE_ADDR,
166 struct obj_section *, int);
167
168 static int watchpoint_locations_match (struct bp_location *loc1,
169 struct bp_location *loc2);
170
171 static int breakpoint_location_address_match (struct bp_location *bl,
172 struct address_space *aspace,
173 CORE_ADDR addr);
174
175 static void breakpoints_info (char *, int);
176
177 static void watchpoints_info (char *, int);
178
179 static int breakpoint_1 (char *, int,
180 int (*) (const struct breakpoint *));
181
182 static int breakpoint_cond_eval (void *);
183
184 static void cleanup_executing_breakpoints (void *);
185
186 static void commands_command (char *, int);
187
188 static void condition_command (char *, int);
189
190 typedef enum
191 {
192 mark_inserted,
193 mark_uninserted
194 }
195 insertion_state_t;
196
197 static int remove_breakpoint (struct bp_location *, insertion_state_t);
198 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
199
200 static enum print_stop_action print_bp_stop_message (bpstat bs);
201
202 static int watchpoint_check (void *);
203
204 static void maintenance_info_breakpoints (char *, int);
205
206 static int hw_breakpoint_used_count (void);
207
208 static int hw_watchpoint_use_count (struct breakpoint *);
209
210 static int hw_watchpoint_used_count_others (struct breakpoint *except,
211 enum bptype type,
212 int *other_type_used);
213
214 static void hbreak_command (char *, int);
215
216 static void thbreak_command (char *, int);
217
218 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
219 int count);
220
221 static void stop_command (char *arg, int from_tty);
222
223 static void stopin_command (char *arg, int from_tty);
224
225 static void stopat_command (char *arg, int from_tty);
226
227 static void tcatch_command (char *arg, int from_tty);
228
229 static void detach_single_step_breakpoints (void);
230
231 static int single_step_breakpoint_inserted_here_p (struct address_space *,
232 CORE_ADDR pc);
233
234 static void free_bp_location (struct bp_location *loc);
235 static void incref_bp_location (struct bp_location *loc);
236 static void decref_bp_location (struct bp_location **loc);
237
238 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
239
240 static void update_global_location_list (int);
241
242 static void update_global_location_list_nothrow (int);
243
244 static int is_hardware_watchpoint (const struct breakpoint *bpt);
245
246 static void insert_breakpoint_locations (void);
247
248 static int syscall_catchpoint_p (struct breakpoint *b);
249
250 static void tracepoints_info (char *, int);
251
252 static void delete_trace_command (char *, int);
253
254 static void enable_trace_command (char *, int);
255
256 static void disable_trace_command (char *, int);
257
258 static void trace_pass_command (char *, int);
259
260 static void set_tracepoint_count (int num);
261
262 static int is_masked_watchpoint (const struct breakpoint *b);
263
264 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
265
266 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
267 otherwise. */
268
269 static int strace_marker_p (struct breakpoint *b);
270
271 /* The abstract base class all breakpoint_ops structures inherit
272 from. */
273 struct breakpoint_ops base_breakpoint_ops;
274
275 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
276 that are implemented on top of software or hardware breakpoints
277 (user breakpoints, internal and momentary breakpoints, etc.). */
278 static struct breakpoint_ops bkpt_base_breakpoint_ops;
279
280 /* Internal breakpoints class type. */
281 static struct breakpoint_ops internal_breakpoint_ops;
282
283 /* Momentary breakpoints class type. */
284 static struct breakpoint_ops momentary_breakpoint_ops;
285
286 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
287 static struct breakpoint_ops longjmp_breakpoint_ops;
288
289 /* The breakpoint_ops structure to be used in regular user created
290 breakpoints. */
291 struct breakpoint_ops bkpt_breakpoint_ops;
292
293 /* Breakpoints set on probes. */
294 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
295
296 /* Dynamic printf class type. */
297 struct breakpoint_ops dprintf_breakpoint_ops;
298
299 /* The style in which to perform a dynamic printf. This is a user
300 option because different output options have different tradeoffs;
301 if GDB does the printing, there is better error handling if there
302 is a problem with any of the arguments, but using an inferior
303 function lets you have special-purpose printers and sending of
304 output to the same place as compiled-in print functions. */
305
306 static const char dprintf_style_gdb[] = "gdb";
307 static const char dprintf_style_call[] = "call";
308 static const char dprintf_style_agent[] = "agent";
309 static const char *const dprintf_style_enums[] = {
310 dprintf_style_gdb,
311 dprintf_style_call,
312 dprintf_style_agent,
313 NULL
314 };
315 static const char *dprintf_style = dprintf_style_gdb;
316
317 /* The function to use for dynamic printf if the preferred style is to
318 call into the inferior. The value is simply a string that is
319 copied into the command, so it can be anything that GDB can
320 evaluate to a callable address, not necessarily a function name. */
321
322 static char *dprintf_function = "";
323
324 /* The channel to use for dynamic printf if the preferred style is to
325 call into the inferior; if a nonempty string, it will be passed to
326 the call as the first argument, with the format string as the
327 second. As with the dprintf function, this can be anything that
328 GDB knows how to evaluate, so in addition to common choices like
329 "stderr", this could be an app-specific expression like
330 "mystreams[curlogger]". */
331
332 static char *dprintf_channel = "";
333
334 /* True if dprintf commands should continue to operate even if GDB
335 has disconnected. */
336 static int disconnected_dprintf = 1;
337
338 /* A reference-counted struct command_line. This lets multiple
339 breakpoints share a single command list. */
340 struct counted_command_line
341 {
342 /* The reference count. */
343 int refc;
344
345 /* The command list. */
346 struct command_line *commands;
347 };
348
349 struct command_line *
350 breakpoint_commands (struct breakpoint *b)
351 {
352 return b->commands ? b->commands->commands : NULL;
353 }
354
355 /* Flag indicating that a command has proceeded the inferior past the
356 current breakpoint. */
357
358 static int breakpoint_proceeded;
359
360 const char *
361 bpdisp_text (enum bpdisp disp)
362 {
363 /* NOTE: the following values are a part of MI protocol and
364 represent values of 'disp' field returned when inferior stops at
365 a breakpoint. */
366 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
367
368 return bpdisps[(int) disp];
369 }
370
371 /* Prototypes for exported functions. */
372 /* If FALSE, gdb will not use hardware support for watchpoints, even
373 if such is available. */
374 static int can_use_hw_watchpoints;
375
376 static void
377 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
378 struct cmd_list_element *c,
379 const char *value)
380 {
381 fprintf_filtered (file,
382 _("Debugger's willingness to use "
383 "watchpoint hardware is %s.\n"),
384 value);
385 }
386
387 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
388 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
389 for unrecognized breakpoint locations.
390 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
391 static enum auto_boolean pending_break_support;
392 static void
393 show_pending_break_support (struct ui_file *file, int from_tty,
394 struct cmd_list_element *c,
395 const char *value)
396 {
397 fprintf_filtered (file,
398 _("Debugger's behavior regarding "
399 "pending breakpoints is %s.\n"),
400 value);
401 }
402
403 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
404 set with "break" but falling in read-only memory.
405 If 0, gdb will warn about such breakpoints, but won't automatically
406 use hardware breakpoints. */
407 static int automatic_hardware_breakpoints;
408 static void
409 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
410 struct cmd_list_element *c,
411 const char *value)
412 {
413 fprintf_filtered (file,
414 _("Automatic usage of hardware breakpoints is %s.\n"),
415 value);
416 }
417
418 /* If on, gdb will keep breakpoints inserted even as inferior is
419 stopped, and immediately insert any new breakpoints. If off, gdb
420 will insert breakpoints into inferior only when resuming it, and
421 will remove breakpoints upon stop. If auto, GDB will behave as ON
422 if in non-stop mode, and as OFF if all-stop mode.*/
423
424 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
425
426 static void
427 show_always_inserted_mode (struct ui_file *file, int from_tty,
428 struct cmd_list_element *c, const char *value)
429 {
430 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
431 fprintf_filtered (file,
432 _("Always inserted breakpoint "
433 "mode is %s (currently %s).\n"),
434 value,
435 breakpoints_always_inserted_mode () ? "on" : "off");
436 else
437 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
438 value);
439 }
440
441 int
442 breakpoints_always_inserted_mode (void)
443 {
444 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
445 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
446 }
447
448 static const char condition_evaluation_both[] = "host or target";
449
450 /* Modes for breakpoint condition evaluation. */
451 static const char condition_evaluation_auto[] = "auto";
452 static const char condition_evaluation_host[] = "host";
453 static const char condition_evaluation_target[] = "target";
454 static const char *const condition_evaluation_enums[] = {
455 condition_evaluation_auto,
456 condition_evaluation_host,
457 condition_evaluation_target,
458 NULL
459 };
460
461 /* Global that holds the current mode for breakpoint condition evaluation. */
462 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
463
464 /* Global that we use to display information to the user (gets its value from
465 condition_evaluation_mode_1. */
466 static const char *condition_evaluation_mode = condition_evaluation_auto;
467
468 /* Translate a condition evaluation mode MODE into either "host"
469 or "target". This is used mostly to translate from "auto" to the
470 real setting that is being used. It returns the translated
471 evaluation mode. */
472
473 static const char *
474 translate_condition_evaluation_mode (const char *mode)
475 {
476 if (mode == condition_evaluation_auto)
477 {
478 if (target_supports_evaluation_of_breakpoint_conditions ())
479 return condition_evaluation_target;
480 else
481 return condition_evaluation_host;
482 }
483 else
484 return mode;
485 }
486
487 /* Discovers what condition_evaluation_auto translates to. */
488
489 static const char *
490 breakpoint_condition_evaluation_mode (void)
491 {
492 return translate_condition_evaluation_mode (condition_evaluation_mode);
493 }
494
495 /* Return true if GDB should evaluate breakpoint conditions or false
496 otherwise. */
497
498 static int
499 gdb_evaluates_breakpoint_condition_p (void)
500 {
501 const char *mode = breakpoint_condition_evaluation_mode ();
502
503 return (mode == condition_evaluation_host);
504 }
505
506 void _initialize_breakpoint (void);
507
508 /* Are we executing breakpoint commands? */
509 static int executing_breakpoint_commands;
510
511 /* Are overlay event breakpoints enabled? */
512 static int overlay_events_enabled;
513
514 /* See description in breakpoint.h. */
515 int target_exact_watchpoints = 0;
516
517 /* Walk the following statement or block through all breakpoints.
518 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
519 current breakpoint. */
520
521 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
522
523 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
524 for (B = breakpoint_chain; \
525 B ? (TMP=B->next, 1): 0; \
526 B = TMP)
527
528 /* Similar iterator for the low-level breakpoints. SAFE variant is
529 not provided so update_global_location_list must not be called
530 while executing the block of ALL_BP_LOCATIONS. */
531
532 #define ALL_BP_LOCATIONS(B,BP_TMP) \
533 for (BP_TMP = bp_location; \
534 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
535 BP_TMP++)
536
537 /* Iterates through locations with address ADDRESS for the currently selected
538 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
539 to where the loop should start from.
540 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
541 appropriate location to start with. */
542
543 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
544 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
545 BP_LOCP_TMP = BP_LOCP_START; \
546 BP_LOCP_START \
547 && (BP_LOCP_TMP < bp_location + bp_location_count \
548 && (*BP_LOCP_TMP)->address == ADDRESS); \
549 BP_LOCP_TMP++)
550
551 /* Iterator for tracepoints only. */
552
553 #define ALL_TRACEPOINTS(B) \
554 for (B = breakpoint_chain; B; B = B->next) \
555 if (is_tracepoint (B))
556
557 /* Chains of all breakpoints defined. */
558
559 struct breakpoint *breakpoint_chain;
560
561 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
562
563 static struct bp_location **bp_location;
564
565 /* Number of elements of BP_LOCATION. */
566
567 static unsigned bp_location_count;
568
569 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
570 ADDRESS for the current elements of BP_LOCATION which get a valid
571 result from bp_location_has_shadow. You can use it for roughly
572 limiting the subrange of BP_LOCATION to scan for shadow bytes for
573 an address you need to read. */
574
575 static CORE_ADDR bp_location_placed_address_before_address_max;
576
577 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
578 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
579 BP_LOCATION which get a valid result from bp_location_has_shadow.
580 You can use it for roughly limiting the subrange of BP_LOCATION to
581 scan for shadow bytes for an address you need to read. */
582
583 static CORE_ADDR bp_location_shadow_len_after_address_max;
584
585 /* The locations that no longer correspond to any breakpoint, unlinked
586 from bp_location array, but for which a hit may still be reported
587 by a target. */
588 VEC(bp_location_p) *moribund_locations = NULL;
589
590 /* Number of last breakpoint made. */
591
592 static int breakpoint_count;
593
594 /* The value of `breakpoint_count' before the last command that
595 created breakpoints. If the last (break-like) command created more
596 than one breakpoint, then the difference between BREAKPOINT_COUNT
597 and PREV_BREAKPOINT_COUNT is more than one. */
598 static int prev_breakpoint_count;
599
600 /* Number of last tracepoint made. */
601
602 static int tracepoint_count;
603
604 static struct cmd_list_element *breakpoint_set_cmdlist;
605 static struct cmd_list_element *breakpoint_show_cmdlist;
606 struct cmd_list_element *save_cmdlist;
607
608 /* Return whether a breakpoint is an active enabled breakpoint. */
609 static int
610 breakpoint_enabled (struct breakpoint *b)
611 {
612 return (b->enable_state == bp_enabled);
613 }
614
615 /* Set breakpoint count to NUM. */
616
617 static void
618 set_breakpoint_count (int num)
619 {
620 prev_breakpoint_count = breakpoint_count;
621 breakpoint_count = num;
622 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
623 }
624
625 /* Used by `start_rbreak_breakpoints' below, to record the current
626 breakpoint count before "rbreak" creates any breakpoint. */
627 static int rbreak_start_breakpoint_count;
628
629 /* Called at the start an "rbreak" command to record the first
630 breakpoint made. */
631
632 void
633 start_rbreak_breakpoints (void)
634 {
635 rbreak_start_breakpoint_count = breakpoint_count;
636 }
637
638 /* Called at the end of an "rbreak" command to record the last
639 breakpoint made. */
640
641 void
642 end_rbreak_breakpoints (void)
643 {
644 prev_breakpoint_count = rbreak_start_breakpoint_count;
645 }
646
647 /* Used in run_command to zero the hit count when a new run starts. */
648
649 void
650 clear_breakpoint_hit_counts (void)
651 {
652 struct breakpoint *b;
653
654 ALL_BREAKPOINTS (b)
655 b->hit_count = 0;
656 }
657
658 /* Allocate a new counted_command_line with reference count of 1.
659 The new structure owns COMMANDS. */
660
661 static struct counted_command_line *
662 alloc_counted_command_line (struct command_line *commands)
663 {
664 struct counted_command_line *result
665 = xmalloc (sizeof (struct counted_command_line));
666
667 result->refc = 1;
668 result->commands = commands;
669 return result;
670 }
671
672 /* Increment reference count. This does nothing if CMD is NULL. */
673
674 static void
675 incref_counted_command_line (struct counted_command_line *cmd)
676 {
677 if (cmd)
678 ++cmd->refc;
679 }
680
681 /* Decrement reference count. If the reference count reaches 0,
682 destroy the counted_command_line. Sets *CMDP to NULL. This does
683 nothing if *CMDP is NULL. */
684
685 static void
686 decref_counted_command_line (struct counted_command_line **cmdp)
687 {
688 if (*cmdp)
689 {
690 if (--(*cmdp)->refc == 0)
691 {
692 free_command_lines (&(*cmdp)->commands);
693 xfree (*cmdp);
694 }
695 *cmdp = NULL;
696 }
697 }
698
699 /* A cleanup function that calls decref_counted_command_line. */
700
701 static void
702 do_cleanup_counted_command_line (void *arg)
703 {
704 decref_counted_command_line (arg);
705 }
706
707 /* Create a cleanup that calls decref_counted_command_line on the
708 argument. */
709
710 static struct cleanup *
711 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
712 {
713 return make_cleanup (do_cleanup_counted_command_line, cmdp);
714 }
715
716 \f
717 /* Return the breakpoint with the specified number, or NULL
718 if the number does not refer to an existing breakpoint. */
719
720 struct breakpoint *
721 get_breakpoint (int num)
722 {
723 struct breakpoint *b;
724
725 ALL_BREAKPOINTS (b)
726 if (b->number == num)
727 return b;
728
729 return NULL;
730 }
731
732 \f
733
734 /* Mark locations as "conditions have changed" in case the target supports
735 evaluating conditions on its side. */
736
737 static void
738 mark_breakpoint_modified (struct breakpoint *b)
739 {
740 struct bp_location *loc;
741
742 /* This is only meaningful if the target is
743 evaluating conditions and if the user has
744 opted for condition evaluation on the target's
745 side. */
746 if (gdb_evaluates_breakpoint_condition_p ()
747 || !target_supports_evaluation_of_breakpoint_conditions ())
748 return;
749
750 if (!is_breakpoint (b))
751 return;
752
753 for (loc = b->loc; loc; loc = loc->next)
754 loc->condition_changed = condition_modified;
755 }
756
757 /* Mark location as "conditions have changed" in case the target supports
758 evaluating conditions on its side. */
759
760 static void
761 mark_breakpoint_location_modified (struct bp_location *loc)
762 {
763 /* This is only meaningful if the target is
764 evaluating conditions and if the user has
765 opted for condition evaluation on the target's
766 side. */
767 if (gdb_evaluates_breakpoint_condition_p ()
768 || !target_supports_evaluation_of_breakpoint_conditions ())
769
770 return;
771
772 if (!is_breakpoint (loc->owner))
773 return;
774
775 loc->condition_changed = condition_modified;
776 }
777
778 /* Sets the condition-evaluation mode using the static global
779 condition_evaluation_mode. */
780
781 static void
782 set_condition_evaluation_mode (char *args, int from_tty,
783 struct cmd_list_element *c)
784 {
785 const char *old_mode, *new_mode;
786
787 if ((condition_evaluation_mode_1 == condition_evaluation_target)
788 && !target_supports_evaluation_of_breakpoint_conditions ())
789 {
790 condition_evaluation_mode_1 = condition_evaluation_mode;
791 warning (_("Target does not support breakpoint condition evaluation.\n"
792 "Using host evaluation mode instead."));
793 return;
794 }
795
796 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
797 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
798
799 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
800 settings was "auto". */
801 condition_evaluation_mode = condition_evaluation_mode_1;
802
803 /* Only update the mode if the user picked a different one. */
804 if (new_mode != old_mode)
805 {
806 struct bp_location *loc, **loc_tmp;
807 /* If the user switched to a different evaluation mode, we
808 need to synch the changes with the target as follows:
809
810 "host" -> "target": Send all (valid) conditions to the target.
811 "target" -> "host": Remove all the conditions from the target.
812 */
813
814 if (new_mode == condition_evaluation_target)
815 {
816 /* Mark everything modified and synch conditions with the
817 target. */
818 ALL_BP_LOCATIONS (loc, loc_tmp)
819 mark_breakpoint_location_modified (loc);
820 }
821 else
822 {
823 /* Manually mark non-duplicate locations to synch conditions
824 with the target. We do this to remove all the conditions the
825 target knows about. */
826 ALL_BP_LOCATIONS (loc, loc_tmp)
827 if (is_breakpoint (loc->owner) && loc->inserted)
828 loc->needs_update = 1;
829 }
830
831 /* Do the update. */
832 update_global_location_list (1);
833 }
834
835 return;
836 }
837
838 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
839 what "auto" is translating to. */
840
841 static void
842 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
843 struct cmd_list_element *c, const char *value)
844 {
845 if (condition_evaluation_mode == condition_evaluation_auto)
846 fprintf_filtered (file,
847 _("Breakpoint condition evaluation "
848 "mode is %s (currently %s).\n"),
849 value,
850 breakpoint_condition_evaluation_mode ());
851 else
852 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
853 value);
854 }
855
856 /* A comparison function for bp_location AP and BP that is used by
857 bsearch. This comparison function only cares about addresses, unlike
858 the more general bp_location_compare function. */
859
860 static int
861 bp_location_compare_addrs (const void *ap, const void *bp)
862 {
863 struct bp_location *a = *(void **) ap;
864 struct bp_location *b = *(void **) bp;
865
866 if (a->address == b->address)
867 return 0;
868 else
869 return ((a->address > b->address) - (a->address < b->address));
870 }
871
872 /* Helper function to skip all bp_locations with addresses
873 less than ADDRESS. It returns the first bp_location that
874 is greater than or equal to ADDRESS. If none is found, just
875 return NULL. */
876
877 static struct bp_location **
878 get_first_locp_gte_addr (CORE_ADDR address)
879 {
880 struct bp_location dummy_loc;
881 struct bp_location *dummy_locp = &dummy_loc;
882 struct bp_location **locp_found = NULL;
883
884 /* Initialize the dummy location's address field. */
885 memset (&dummy_loc, 0, sizeof (struct bp_location));
886 dummy_loc.address = address;
887
888 /* Find a close match to the first location at ADDRESS. */
889 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
890 sizeof (struct bp_location **),
891 bp_location_compare_addrs);
892
893 /* Nothing was found, nothing left to do. */
894 if (locp_found == NULL)
895 return NULL;
896
897 /* We may have found a location that is at ADDRESS but is not the first in the
898 location's list. Go backwards (if possible) and locate the first one. */
899 while ((locp_found - 1) >= bp_location
900 && (*(locp_found - 1))->address == address)
901 locp_found--;
902
903 return locp_found;
904 }
905
906 void
907 set_breakpoint_condition (struct breakpoint *b, char *exp,
908 int from_tty)
909 {
910 xfree (b->cond_string);
911 b->cond_string = NULL;
912
913 if (is_watchpoint (b))
914 {
915 struct watchpoint *w = (struct watchpoint *) b;
916
917 xfree (w->cond_exp);
918 w->cond_exp = NULL;
919 }
920 else
921 {
922 struct bp_location *loc;
923
924 for (loc = b->loc; loc; loc = loc->next)
925 {
926 xfree (loc->cond);
927 loc->cond = NULL;
928
929 /* No need to free the condition agent expression
930 bytecode (if we have one). We will handle this
931 when we go through update_global_location_list. */
932 }
933 }
934
935 if (*exp == 0)
936 {
937 if (from_tty)
938 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
939 }
940 else
941 {
942 const char *arg = exp;
943
944 /* I don't know if it matters whether this is the string the user
945 typed in or the decompiled expression. */
946 b->cond_string = xstrdup (arg);
947 b->condition_not_parsed = 0;
948
949 if (is_watchpoint (b))
950 {
951 struct watchpoint *w = (struct watchpoint *) b;
952
953 innermost_block = NULL;
954 arg = exp;
955 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
956 if (*arg)
957 error (_("Junk at end of expression"));
958 w->cond_exp_valid_block = innermost_block;
959 }
960 else
961 {
962 struct bp_location *loc;
963
964 for (loc = b->loc; loc; loc = loc->next)
965 {
966 arg = exp;
967 loc->cond =
968 parse_exp_1 (&arg, loc->address,
969 block_for_pc (loc->address), 0);
970 if (*arg)
971 error (_("Junk at end of expression"));
972 }
973 }
974 }
975 mark_breakpoint_modified (b);
976
977 observer_notify_breakpoint_modified (b);
978 }
979
980 /* Completion for the "condition" command. */
981
982 static VEC (char_ptr) *
983 condition_completer (struct cmd_list_element *cmd,
984 const char *text, const char *word)
985 {
986 const char *space;
987
988 text = skip_spaces_const (text);
989 space = skip_to_space_const (text);
990 if (*space == '\0')
991 {
992 int len;
993 struct breakpoint *b;
994 VEC (char_ptr) *result = NULL;
995
996 if (text[0] == '$')
997 {
998 /* We don't support completion of history indices. */
999 if (isdigit (text[1]))
1000 return NULL;
1001 return complete_internalvar (&text[1]);
1002 }
1003
1004 /* We're completing the breakpoint number. */
1005 len = strlen (text);
1006
1007 ALL_BREAKPOINTS (b)
1008 {
1009 char number[50];
1010
1011 xsnprintf (number, sizeof (number), "%d", b->number);
1012
1013 if (strncmp (number, text, len) == 0)
1014 VEC_safe_push (char_ptr, result, xstrdup (number));
1015 }
1016
1017 return result;
1018 }
1019
1020 /* We're completing the expression part. */
1021 text = skip_spaces_const (space);
1022 return expression_completer (cmd, text, word);
1023 }
1024
1025 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1026
1027 static void
1028 condition_command (char *arg, int from_tty)
1029 {
1030 struct breakpoint *b;
1031 char *p;
1032 int bnum;
1033
1034 if (arg == 0)
1035 error_no_arg (_("breakpoint number"));
1036
1037 p = arg;
1038 bnum = get_number (&p);
1039 if (bnum == 0)
1040 error (_("Bad breakpoint argument: '%s'"), arg);
1041
1042 ALL_BREAKPOINTS (b)
1043 if (b->number == bnum)
1044 {
1045 /* Check if this breakpoint has a "stop" method implemented in an
1046 extension language. This method and conditions entered into GDB
1047 from the CLI are mutually exclusive. */
1048 const struct extension_language_defn *extlang
1049 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1050
1051 if (extlang != NULL)
1052 {
1053 error (_("Only one stop condition allowed. There is currently"
1054 " a %s stop condition defined for this breakpoint."),
1055 ext_lang_capitalized_name (extlang));
1056 }
1057 set_breakpoint_condition (b, p, from_tty);
1058
1059 if (is_breakpoint (b))
1060 update_global_location_list (1);
1061
1062 return;
1063 }
1064
1065 error (_("No breakpoint number %d."), bnum);
1066 }
1067
1068 /* Check that COMMAND do not contain commands that are suitable
1069 only for tracepoints and not suitable for ordinary breakpoints.
1070 Throw if any such commands is found. */
1071
1072 static void
1073 check_no_tracepoint_commands (struct command_line *commands)
1074 {
1075 struct command_line *c;
1076
1077 for (c = commands; c; c = c->next)
1078 {
1079 int i;
1080
1081 if (c->control_type == while_stepping_control)
1082 error (_("The 'while-stepping' command can "
1083 "only be used for tracepoints"));
1084
1085 for (i = 0; i < c->body_count; ++i)
1086 check_no_tracepoint_commands ((c->body_list)[i]);
1087
1088 /* Not that command parsing removes leading whitespace and comment
1089 lines and also empty lines. So, we only need to check for
1090 command directly. */
1091 if (strstr (c->line, "collect ") == c->line)
1092 error (_("The 'collect' command can only be used for tracepoints"));
1093
1094 if (strstr (c->line, "teval ") == c->line)
1095 error (_("The 'teval' command can only be used for tracepoints"));
1096 }
1097 }
1098
1099 /* Encapsulate tests for different types of tracepoints. */
1100
1101 static int
1102 is_tracepoint_type (enum bptype type)
1103 {
1104 return (type == bp_tracepoint
1105 || type == bp_fast_tracepoint
1106 || type == bp_static_tracepoint);
1107 }
1108
1109 int
1110 is_tracepoint (const struct breakpoint *b)
1111 {
1112 return is_tracepoint_type (b->type);
1113 }
1114
1115 /* A helper function that validates that COMMANDS are valid for a
1116 breakpoint. This function will throw an exception if a problem is
1117 found. */
1118
1119 static void
1120 validate_commands_for_breakpoint (struct breakpoint *b,
1121 struct command_line *commands)
1122 {
1123 if (is_tracepoint (b))
1124 {
1125 struct tracepoint *t = (struct tracepoint *) b;
1126 struct command_line *c;
1127 struct command_line *while_stepping = 0;
1128
1129 /* Reset the while-stepping step count. The previous commands
1130 might have included a while-stepping action, while the new
1131 ones might not. */
1132 t->step_count = 0;
1133
1134 /* We need to verify that each top-level element of commands is
1135 valid for tracepoints, that there's at most one
1136 while-stepping element, and that the while-stepping's body
1137 has valid tracing commands excluding nested while-stepping.
1138 We also need to validate the tracepoint action line in the
1139 context of the tracepoint --- validate_actionline actually
1140 has side effects, like setting the tracepoint's
1141 while-stepping STEP_COUNT, in addition to checking if the
1142 collect/teval actions parse and make sense in the
1143 tracepoint's context. */
1144 for (c = commands; c; c = c->next)
1145 {
1146 if (c->control_type == while_stepping_control)
1147 {
1148 if (b->type == bp_fast_tracepoint)
1149 error (_("The 'while-stepping' command "
1150 "cannot be used for fast tracepoint"));
1151 else if (b->type == bp_static_tracepoint)
1152 error (_("The 'while-stepping' command "
1153 "cannot be used for static tracepoint"));
1154
1155 if (while_stepping)
1156 error (_("The 'while-stepping' command "
1157 "can be used only once"));
1158 else
1159 while_stepping = c;
1160 }
1161
1162 validate_actionline (c->line, b);
1163 }
1164 if (while_stepping)
1165 {
1166 struct command_line *c2;
1167
1168 gdb_assert (while_stepping->body_count == 1);
1169 c2 = while_stepping->body_list[0];
1170 for (; c2; c2 = c2->next)
1171 {
1172 if (c2->control_type == while_stepping_control)
1173 error (_("The 'while-stepping' command cannot be nested"));
1174 }
1175 }
1176 }
1177 else
1178 {
1179 check_no_tracepoint_commands (commands);
1180 }
1181 }
1182
1183 /* Return a vector of all the static tracepoints set at ADDR. The
1184 caller is responsible for releasing the vector. */
1185
1186 VEC(breakpoint_p) *
1187 static_tracepoints_here (CORE_ADDR addr)
1188 {
1189 struct breakpoint *b;
1190 VEC(breakpoint_p) *found = 0;
1191 struct bp_location *loc;
1192
1193 ALL_BREAKPOINTS (b)
1194 if (b->type == bp_static_tracepoint)
1195 {
1196 for (loc = b->loc; loc; loc = loc->next)
1197 if (loc->address == addr)
1198 VEC_safe_push(breakpoint_p, found, b);
1199 }
1200
1201 return found;
1202 }
1203
1204 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1205 validate that only allowed commands are included. */
1206
1207 void
1208 breakpoint_set_commands (struct breakpoint *b,
1209 struct command_line *commands)
1210 {
1211 validate_commands_for_breakpoint (b, commands);
1212
1213 decref_counted_command_line (&b->commands);
1214 b->commands = alloc_counted_command_line (commands);
1215 observer_notify_breakpoint_modified (b);
1216 }
1217
1218 /* Set the internal `silent' flag on the breakpoint. Note that this
1219 is not the same as the "silent" that may appear in the breakpoint's
1220 commands. */
1221
1222 void
1223 breakpoint_set_silent (struct breakpoint *b, int silent)
1224 {
1225 int old_silent = b->silent;
1226
1227 b->silent = silent;
1228 if (old_silent != silent)
1229 observer_notify_breakpoint_modified (b);
1230 }
1231
1232 /* Set the thread for this breakpoint. If THREAD is -1, make the
1233 breakpoint work for any thread. */
1234
1235 void
1236 breakpoint_set_thread (struct breakpoint *b, int thread)
1237 {
1238 int old_thread = b->thread;
1239
1240 b->thread = thread;
1241 if (old_thread != thread)
1242 observer_notify_breakpoint_modified (b);
1243 }
1244
1245 /* Set the task for this breakpoint. If TASK is 0, make the
1246 breakpoint work for any task. */
1247
1248 void
1249 breakpoint_set_task (struct breakpoint *b, int task)
1250 {
1251 int old_task = b->task;
1252
1253 b->task = task;
1254 if (old_task != task)
1255 observer_notify_breakpoint_modified (b);
1256 }
1257
1258 void
1259 check_tracepoint_command (char *line, void *closure)
1260 {
1261 struct breakpoint *b = closure;
1262
1263 validate_actionline (line, b);
1264 }
1265
1266 /* A structure used to pass information through
1267 map_breakpoint_numbers. */
1268
1269 struct commands_info
1270 {
1271 /* True if the command was typed at a tty. */
1272 int from_tty;
1273
1274 /* The breakpoint range spec. */
1275 char *arg;
1276
1277 /* Non-NULL if the body of the commands are being read from this
1278 already-parsed command. */
1279 struct command_line *control;
1280
1281 /* The command lines read from the user, or NULL if they have not
1282 yet been read. */
1283 struct counted_command_line *cmd;
1284 };
1285
1286 /* A callback for map_breakpoint_numbers that sets the commands for
1287 commands_command. */
1288
1289 static void
1290 do_map_commands_command (struct breakpoint *b, void *data)
1291 {
1292 struct commands_info *info = data;
1293
1294 if (info->cmd == NULL)
1295 {
1296 struct command_line *l;
1297
1298 if (info->control != NULL)
1299 l = copy_command_lines (info->control->body_list[0]);
1300 else
1301 {
1302 struct cleanup *old_chain;
1303 char *str;
1304
1305 str = xstrprintf (_("Type commands for breakpoint(s) "
1306 "%s, one per line."),
1307 info->arg);
1308
1309 old_chain = make_cleanup (xfree, str);
1310
1311 l = read_command_lines (str,
1312 info->from_tty, 1,
1313 (is_tracepoint (b)
1314 ? check_tracepoint_command : 0),
1315 b);
1316
1317 do_cleanups (old_chain);
1318 }
1319
1320 info->cmd = alloc_counted_command_line (l);
1321 }
1322
1323 /* If a breakpoint was on the list more than once, we don't need to
1324 do anything. */
1325 if (b->commands != info->cmd)
1326 {
1327 validate_commands_for_breakpoint (b, info->cmd->commands);
1328 incref_counted_command_line (info->cmd);
1329 decref_counted_command_line (&b->commands);
1330 b->commands = info->cmd;
1331 observer_notify_breakpoint_modified (b);
1332 }
1333 }
1334
1335 static void
1336 commands_command_1 (char *arg, int from_tty,
1337 struct command_line *control)
1338 {
1339 struct cleanup *cleanups;
1340 struct commands_info info;
1341
1342 info.from_tty = from_tty;
1343 info.control = control;
1344 info.cmd = NULL;
1345 /* If we read command lines from the user, then `info' will hold an
1346 extra reference to the commands that we must clean up. */
1347 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1348
1349 if (arg == NULL || !*arg)
1350 {
1351 if (breakpoint_count - prev_breakpoint_count > 1)
1352 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1353 breakpoint_count);
1354 else if (breakpoint_count > 0)
1355 arg = xstrprintf ("%d", breakpoint_count);
1356 else
1357 {
1358 /* So that we don't try to free the incoming non-NULL
1359 argument in the cleanup below. Mapping breakpoint
1360 numbers will fail in this case. */
1361 arg = NULL;
1362 }
1363 }
1364 else
1365 /* The command loop has some static state, so we need to preserve
1366 our argument. */
1367 arg = xstrdup (arg);
1368
1369 if (arg != NULL)
1370 make_cleanup (xfree, arg);
1371
1372 info.arg = arg;
1373
1374 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1375
1376 if (info.cmd == NULL)
1377 error (_("No breakpoints specified."));
1378
1379 do_cleanups (cleanups);
1380 }
1381
1382 static void
1383 commands_command (char *arg, int from_tty)
1384 {
1385 commands_command_1 (arg, from_tty, NULL);
1386 }
1387
1388 /* Like commands_command, but instead of reading the commands from
1389 input stream, takes them from an already parsed command structure.
1390
1391 This is used by cli-script.c to DTRT with breakpoint commands
1392 that are part of if and while bodies. */
1393 enum command_control_type
1394 commands_from_control_command (char *arg, struct command_line *cmd)
1395 {
1396 commands_command_1 (arg, 0, cmd);
1397 return simple_control;
1398 }
1399
1400 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1401
1402 static int
1403 bp_location_has_shadow (struct bp_location *bl)
1404 {
1405 if (bl->loc_type != bp_loc_software_breakpoint)
1406 return 0;
1407 if (!bl->inserted)
1408 return 0;
1409 if (bl->target_info.shadow_len == 0)
1410 /* BL isn't valid, or doesn't shadow memory. */
1411 return 0;
1412 return 1;
1413 }
1414
1415 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1416 by replacing any memory breakpoints with their shadowed contents.
1417
1418 If READBUF is not NULL, this buffer must not overlap with any of
1419 the breakpoint location's shadow_contents buffers. Otherwise,
1420 a failed assertion internal error will be raised.
1421
1422 The range of shadowed area by each bp_location is:
1423 bl->address - bp_location_placed_address_before_address_max
1424 up to bl->address + bp_location_shadow_len_after_address_max
1425 The range we were requested to resolve shadows for is:
1426 memaddr ... memaddr + len
1427 Thus the safe cutoff boundaries for performance optimization are
1428 memaddr + len <= (bl->address
1429 - bp_location_placed_address_before_address_max)
1430 and:
1431 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1432
1433 void
1434 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1435 const gdb_byte *writebuf_org,
1436 ULONGEST memaddr, LONGEST len)
1437 {
1438 /* Left boundary, right boundary and median element of our binary
1439 search. */
1440 unsigned bc_l, bc_r, bc;
1441
1442 /* Find BC_L which is a leftmost element which may affect BUF
1443 content. It is safe to report lower value but a failure to
1444 report higher one. */
1445
1446 bc_l = 0;
1447 bc_r = bp_location_count;
1448 while (bc_l + 1 < bc_r)
1449 {
1450 struct bp_location *bl;
1451
1452 bc = (bc_l + bc_r) / 2;
1453 bl = bp_location[bc];
1454
1455 /* Check first BL->ADDRESS will not overflow due to the added
1456 constant. Then advance the left boundary only if we are sure
1457 the BC element can in no way affect the BUF content (MEMADDR
1458 to MEMADDR + LEN range).
1459
1460 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1461 offset so that we cannot miss a breakpoint with its shadow
1462 range tail still reaching MEMADDR. */
1463
1464 if ((bl->address + bp_location_shadow_len_after_address_max
1465 >= bl->address)
1466 && (bl->address + bp_location_shadow_len_after_address_max
1467 <= memaddr))
1468 bc_l = bc;
1469 else
1470 bc_r = bc;
1471 }
1472
1473 /* Due to the binary search above, we need to make sure we pick the
1474 first location that's at BC_L's address. E.g., if there are
1475 multiple locations at the same address, BC_L may end up pointing
1476 at a duplicate location, and miss the "master"/"inserted"
1477 location. Say, given locations L1, L2 and L3 at addresses A and
1478 B:
1479
1480 L1@A, L2@A, L3@B, ...
1481
1482 BC_L could end up pointing at location L2, while the "master"
1483 location could be L1. Since the `loc->inserted' flag is only set
1484 on "master" locations, we'd forget to restore the shadow of L1
1485 and L2. */
1486 while (bc_l > 0
1487 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1488 bc_l--;
1489
1490 /* Now do full processing of the found relevant range of elements. */
1491
1492 for (bc = bc_l; bc < bp_location_count; bc++)
1493 {
1494 struct bp_location *bl = bp_location[bc];
1495 CORE_ADDR bp_addr = 0;
1496 int bp_size = 0;
1497 int bptoffset = 0;
1498
1499 /* bp_location array has BL->OWNER always non-NULL. */
1500 if (bl->owner->type == bp_none)
1501 warning (_("reading through apparently deleted breakpoint #%d?"),
1502 bl->owner->number);
1503
1504 /* Performance optimization: any further element can no longer affect BUF
1505 content. */
1506
1507 if (bl->address >= bp_location_placed_address_before_address_max
1508 && memaddr + len <= (bl->address
1509 - bp_location_placed_address_before_address_max))
1510 break;
1511
1512 if (!bp_location_has_shadow (bl))
1513 continue;
1514 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1515 current_program_space->aspace, 0))
1516 continue;
1517
1518 /* Addresses and length of the part of the breakpoint that
1519 we need to copy. */
1520 bp_addr = bl->target_info.placed_address;
1521 bp_size = bl->target_info.shadow_len;
1522
1523 if (bp_addr + bp_size <= memaddr)
1524 /* The breakpoint is entirely before the chunk of memory we
1525 are reading. */
1526 continue;
1527
1528 if (bp_addr >= memaddr + len)
1529 /* The breakpoint is entirely after the chunk of memory we are
1530 reading. */
1531 continue;
1532
1533 /* Offset within shadow_contents. */
1534 if (bp_addr < memaddr)
1535 {
1536 /* Only copy the second part of the breakpoint. */
1537 bp_size -= memaddr - bp_addr;
1538 bptoffset = memaddr - bp_addr;
1539 bp_addr = memaddr;
1540 }
1541
1542 if (bp_addr + bp_size > memaddr + len)
1543 {
1544 /* Only copy the first part of the breakpoint. */
1545 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1546 }
1547
1548 if (readbuf != NULL)
1549 {
1550 /* Verify that the readbuf buffer does not overlap with
1551 the shadow_contents buffer. */
1552 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1553 || readbuf >= (bl->target_info.shadow_contents
1554 + bl->target_info.shadow_len));
1555
1556 /* Update the read buffer with this inserted breakpoint's
1557 shadow. */
1558 memcpy (readbuf + bp_addr - memaddr,
1559 bl->target_info.shadow_contents + bptoffset, bp_size);
1560 }
1561 else
1562 {
1563 struct gdbarch *gdbarch = bl->gdbarch;
1564 const unsigned char *bp;
1565 CORE_ADDR placed_address = bl->target_info.placed_address;
1566 int placed_size = bl->target_info.placed_size;
1567
1568 /* Update the shadow with what we want to write to memory. */
1569 memcpy (bl->target_info.shadow_contents + bptoffset,
1570 writebuf_org + bp_addr - memaddr, bp_size);
1571
1572 /* Determine appropriate breakpoint contents and size for this
1573 address. */
1574 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1575
1576 /* Update the final write buffer with this inserted
1577 breakpoint's INSN. */
1578 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1579 }
1580 }
1581 }
1582 \f
1583
1584 /* Return true if BPT is either a software breakpoint or a hardware
1585 breakpoint. */
1586
1587 int
1588 is_breakpoint (const struct breakpoint *bpt)
1589 {
1590 return (bpt->type == bp_breakpoint
1591 || bpt->type == bp_hardware_breakpoint
1592 || bpt->type == bp_dprintf);
1593 }
1594
1595 /* Return true if BPT is of any hardware watchpoint kind. */
1596
1597 static int
1598 is_hardware_watchpoint (const struct breakpoint *bpt)
1599 {
1600 return (bpt->type == bp_hardware_watchpoint
1601 || bpt->type == bp_read_watchpoint
1602 || bpt->type == bp_access_watchpoint);
1603 }
1604
1605 /* Return true if BPT is of any watchpoint kind, hardware or
1606 software. */
1607
1608 int
1609 is_watchpoint (const struct breakpoint *bpt)
1610 {
1611 return (is_hardware_watchpoint (bpt)
1612 || bpt->type == bp_watchpoint);
1613 }
1614
1615 /* Returns true if the current thread and its running state are safe
1616 to evaluate or update watchpoint B. Watchpoints on local
1617 expressions need to be evaluated in the context of the thread that
1618 was current when the watchpoint was created, and, that thread needs
1619 to be stopped to be able to select the correct frame context.
1620 Watchpoints on global expressions can be evaluated on any thread,
1621 and in any state. It is presently left to the target allowing
1622 memory accesses when threads are running. */
1623
1624 static int
1625 watchpoint_in_thread_scope (struct watchpoint *b)
1626 {
1627 return (b->base.pspace == current_program_space
1628 && (ptid_equal (b->watchpoint_thread, null_ptid)
1629 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1630 && !is_executing (inferior_ptid))));
1631 }
1632
1633 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1634 associated bp_watchpoint_scope breakpoint. */
1635
1636 static void
1637 watchpoint_del_at_next_stop (struct watchpoint *w)
1638 {
1639 struct breakpoint *b = &w->base;
1640
1641 if (b->related_breakpoint != b)
1642 {
1643 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1644 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1645 b->related_breakpoint->disposition = disp_del_at_next_stop;
1646 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1647 b->related_breakpoint = b;
1648 }
1649 b->disposition = disp_del_at_next_stop;
1650 }
1651
1652 /* Assuming that B is a watchpoint:
1653 - Reparse watchpoint expression, if REPARSE is non-zero
1654 - Evaluate expression and store the result in B->val
1655 - Evaluate the condition if there is one, and store the result
1656 in b->loc->cond.
1657 - Update the list of values that must be watched in B->loc.
1658
1659 If the watchpoint disposition is disp_del_at_next_stop, then do
1660 nothing. If this is local watchpoint that is out of scope, delete
1661 it.
1662
1663 Even with `set breakpoint always-inserted on' the watchpoints are
1664 removed + inserted on each stop here. Normal breakpoints must
1665 never be removed because they might be missed by a running thread
1666 when debugging in non-stop mode. On the other hand, hardware
1667 watchpoints (is_hardware_watchpoint; processed here) are specific
1668 to each LWP since they are stored in each LWP's hardware debug
1669 registers. Therefore, such LWP must be stopped first in order to
1670 be able to modify its hardware watchpoints.
1671
1672 Hardware watchpoints must be reset exactly once after being
1673 presented to the user. It cannot be done sooner, because it would
1674 reset the data used to present the watchpoint hit to the user. And
1675 it must not be done later because it could display the same single
1676 watchpoint hit during multiple GDB stops. Note that the latter is
1677 relevant only to the hardware watchpoint types bp_read_watchpoint
1678 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1679 not user-visible - its hit is suppressed if the memory content has
1680 not changed.
1681
1682 The following constraints influence the location where we can reset
1683 hardware watchpoints:
1684
1685 * target_stopped_by_watchpoint and target_stopped_data_address are
1686 called several times when GDB stops.
1687
1688 [linux]
1689 * Multiple hardware watchpoints can be hit at the same time,
1690 causing GDB to stop. GDB only presents one hardware watchpoint
1691 hit at a time as the reason for stopping, and all the other hits
1692 are presented later, one after the other, each time the user
1693 requests the execution to be resumed. Execution is not resumed
1694 for the threads still having pending hit event stored in
1695 LWP_INFO->STATUS. While the watchpoint is already removed from
1696 the inferior on the first stop the thread hit event is kept being
1697 reported from its cached value by linux_nat_stopped_data_address
1698 until the real thread resume happens after the watchpoint gets
1699 presented and thus its LWP_INFO->STATUS gets reset.
1700
1701 Therefore the hardware watchpoint hit can get safely reset on the
1702 watchpoint removal from inferior. */
1703
1704 static void
1705 update_watchpoint (struct watchpoint *b, int reparse)
1706 {
1707 int within_current_scope;
1708 struct frame_id saved_frame_id;
1709 int frame_saved;
1710
1711 /* If this is a local watchpoint, we only want to check if the
1712 watchpoint frame is in scope if the current thread is the thread
1713 that was used to create the watchpoint. */
1714 if (!watchpoint_in_thread_scope (b))
1715 return;
1716
1717 if (b->base.disposition == disp_del_at_next_stop)
1718 return;
1719
1720 frame_saved = 0;
1721
1722 /* Determine if the watchpoint is within scope. */
1723 if (b->exp_valid_block == NULL)
1724 within_current_scope = 1;
1725 else
1726 {
1727 struct frame_info *fi = get_current_frame ();
1728 struct gdbarch *frame_arch = get_frame_arch (fi);
1729 CORE_ADDR frame_pc = get_frame_pc (fi);
1730
1731 /* If we're in a function epilogue, unwinding may not work
1732 properly, so do not attempt to recreate locations at this
1733 point. See similar comments in watchpoint_check. */
1734 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1735 return;
1736
1737 /* Save the current frame's ID so we can restore it after
1738 evaluating the watchpoint expression on its own frame. */
1739 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1740 took a frame parameter, so that we didn't have to change the
1741 selected frame. */
1742 frame_saved = 1;
1743 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1744
1745 fi = frame_find_by_id (b->watchpoint_frame);
1746 within_current_scope = (fi != NULL);
1747 if (within_current_scope)
1748 select_frame (fi);
1749 }
1750
1751 /* We don't free locations. They are stored in the bp_location array
1752 and update_global_location_list will eventually delete them and
1753 remove breakpoints if needed. */
1754 b->base.loc = NULL;
1755
1756 if (within_current_scope && reparse)
1757 {
1758 const char *s;
1759
1760 if (b->exp)
1761 {
1762 xfree (b->exp);
1763 b->exp = NULL;
1764 }
1765 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1766 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1767 /* If the meaning of expression itself changed, the old value is
1768 no longer relevant. We don't want to report a watchpoint hit
1769 to the user when the old value and the new value may actually
1770 be completely different objects. */
1771 value_free (b->val);
1772 b->val = NULL;
1773 b->val_valid = 0;
1774
1775 /* Note that unlike with breakpoints, the watchpoint's condition
1776 expression is stored in the breakpoint object, not in the
1777 locations (re)created below. */
1778 if (b->base.cond_string != NULL)
1779 {
1780 if (b->cond_exp != NULL)
1781 {
1782 xfree (b->cond_exp);
1783 b->cond_exp = NULL;
1784 }
1785
1786 s = b->base.cond_string;
1787 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1788 }
1789 }
1790
1791 /* If we failed to parse the expression, for example because
1792 it refers to a global variable in a not-yet-loaded shared library,
1793 don't try to insert watchpoint. We don't automatically delete
1794 such watchpoint, though, since failure to parse expression
1795 is different from out-of-scope watchpoint. */
1796 if (!target_has_execution)
1797 {
1798 /* Without execution, memory can't change. No use to try and
1799 set watchpoint locations. The watchpoint will be reset when
1800 the target gains execution, through breakpoint_re_set. */
1801 if (!can_use_hw_watchpoints)
1802 {
1803 if (b->base.ops->works_in_software_mode (&b->base))
1804 b->base.type = bp_watchpoint;
1805 else
1806 error (_("Can't set read/access watchpoint when "
1807 "hardware watchpoints are disabled."));
1808 }
1809 }
1810 else if (within_current_scope && b->exp)
1811 {
1812 int pc = 0;
1813 struct value *val_chain, *v, *result, *next;
1814 struct program_space *frame_pspace;
1815
1816 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1817
1818 /* Avoid setting b->val if it's already set. The meaning of
1819 b->val is 'the last value' user saw, and we should update
1820 it only if we reported that last value to user. As it
1821 happens, the code that reports it updates b->val directly.
1822 We don't keep track of the memory value for masked
1823 watchpoints. */
1824 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1825 {
1826 b->val = v;
1827 b->val_valid = 1;
1828 }
1829
1830 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1831
1832 /* Look at each value on the value chain. */
1833 for (v = val_chain; v; v = value_next (v))
1834 {
1835 /* If it's a memory location, and GDB actually needed
1836 its contents to evaluate the expression, then we
1837 must watch it. If the first value returned is
1838 still lazy, that means an error occurred reading it;
1839 watch it anyway in case it becomes readable. */
1840 if (VALUE_LVAL (v) == lval_memory
1841 && (v == val_chain || ! value_lazy (v)))
1842 {
1843 struct type *vtype = check_typedef (value_type (v));
1844
1845 /* We only watch structs and arrays if user asked
1846 for it explicitly, never if they just happen to
1847 appear in the middle of some value chain. */
1848 if (v == result
1849 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1850 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1851 {
1852 CORE_ADDR addr;
1853 int type;
1854 struct bp_location *loc, **tmp;
1855
1856 addr = value_address (v);
1857 type = hw_write;
1858 if (b->base.type == bp_read_watchpoint)
1859 type = hw_read;
1860 else if (b->base.type == bp_access_watchpoint)
1861 type = hw_access;
1862
1863 loc = allocate_bp_location (&b->base);
1864 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1865 ;
1866 *tmp = loc;
1867 loc->gdbarch = get_type_arch (value_type (v));
1868
1869 loc->pspace = frame_pspace;
1870 loc->address = addr;
1871 loc->length = TYPE_LENGTH (value_type (v));
1872 loc->watchpoint_type = type;
1873 }
1874 }
1875 }
1876
1877 /* Change the type of breakpoint between hardware assisted or
1878 an ordinary watchpoint depending on the hardware support
1879 and free hardware slots. REPARSE is set when the inferior
1880 is started. */
1881 if (reparse)
1882 {
1883 int reg_cnt;
1884 enum bp_loc_type loc_type;
1885 struct bp_location *bl;
1886
1887 reg_cnt = can_use_hardware_watchpoint (val_chain);
1888
1889 if (reg_cnt)
1890 {
1891 int i, target_resources_ok, other_type_used;
1892 enum bptype type;
1893
1894 /* Use an exact watchpoint when there's only one memory region to be
1895 watched, and only one debug register is needed to watch it. */
1896 b->exact = target_exact_watchpoints && reg_cnt == 1;
1897
1898 /* We need to determine how many resources are already
1899 used for all other hardware watchpoints plus this one
1900 to see if we still have enough resources to also fit
1901 this watchpoint in as well. */
1902
1903 /* If this is a software watchpoint, we try to turn it
1904 to a hardware one -- count resources as if B was of
1905 hardware watchpoint type. */
1906 type = b->base.type;
1907 if (type == bp_watchpoint)
1908 type = bp_hardware_watchpoint;
1909
1910 /* This watchpoint may or may not have been placed on
1911 the list yet at this point (it won't be in the list
1912 if we're trying to create it for the first time,
1913 through watch_command), so always account for it
1914 manually. */
1915
1916 /* Count resources used by all watchpoints except B. */
1917 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1918
1919 /* Add in the resources needed for B. */
1920 i += hw_watchpoint_use_count (&b->base);
1921
1922 target_resources_ok
1923 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1924 if (target_resources_ok <= 0)
1925 {
1926 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1927
1928 if (target_resources_ok == 0 && !sw_mode)
1929 error (_("Target does not support this type of "
1930 "hardware watchpoint."));
1931 else if (target_resources_ok < 0 && !sw_mode)
1932 error (_("There are not enough available hardware "
1933 "resources for this watchpoint."));
1934
1935 /* Downgrade to software watchpoint. */
1936 b->base.type = bp_watchpoint;
1937 }
1938 else
1939 {
1940 /* If this was a software watchpoint, we've just
1941 found we have enough resources to turn it to a
1942 hardware watchpoint. Otherwise, this is a
1943 nop. */
1944 b->base.type = type;
1945 }
1946 }
1947 else if (!b->base.ops->works_in_software_mode (&b->base))
1948 {
1949 if (!can_use_hw_watchpoints)
1950 error (_("Can't set read/access watchpoint when "
1951 "hardware watchpoints are disabled."));
1952 else
1953 error (_("Expression cannot be implemented with "
1954 "read/access watchpoint."));
1955 }
1956 else
1957 b->base.type = bp_watchpoint;
1958
1959 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1960 : bp_loc_hardware_watchpoint);
1961 for (bl = b->base.loc; bl; bl = bl->next)
1962 bl->loc_type = loc_type;
1963 }
1964
1965 for (v = val_chain; v; v = next)
1966 {
1967 next = value_next (v);
1968 if (v != b->val)
1969 value_free (v);
1970 }
1971
1972 /* If a software watchpoint is not watching any memory, then the
1973 above left it without any location set up. But,
1974 bpstat_stop_status requires a location to be able to report
1975 stops, so make sure there's at least a dummy one. */
1976 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1977 {
1978 struct breakpoint *base = &b->base;
1979 base->loc = allocate_bp_location (base);
1980 base->loc->pspace = frame_pspace;
1981 base->loc->address = -1;
1982 base->loc->length = -1;
1983 base->loc->watchpoint_type = -1;
1984 }
1985 }
1986 else if (!within_current_scope)
1987 {
1988 printf_filtered (_("\
1989 Watchpoint %d deleted because the program has left the block\n\
1990 in which its expression is valid.\n"),
1991 b->base.number);
1992 watchpoint_del_at_next_stop (b);
1993 }
1994
1995 /* Restore the selected frame. */
1996 if (frame_saved)
1997 select_frame (frame_find_by_id (saved_frame_id));
1998 }
1999
2000
2001 /* Returns 1 iff breakpoint location should be
2002 inserted in the inferior. We don't differentiate the type of BL's owner
2003 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2004 breakpoint_ops is not defined, because in insert_bp_location,
2005 tracepoint's insert_location will not be called. */
2006 static int
2007 should_be_inserted (struct bp_location *bl)
2008 {
2009 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2010 return 0;
2011
2012 if (bl->owner->disposition == disp_del_at_next_stop)
2013 return 0;
2014
2015 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2016 return 0;
2017
2018 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2019 return 0;
2020
2021 /* This is set for example, when we're attached to the parent of a
2022 vfork, and have detached from the child. The child is running
2023 free, and we expect it to do an exec or exit, at which point the
2024 OS makes the parent schedulable again (and the target reports
2025 that the vfork is done). Until the child is done with the shared
2026 memory region, do not insert breakpoints in the parent, otherwise
2027 the child could still trip on the parent's breakpoints. Since
2028 the parent is blocked anyway, it won't miss any breakpoint. */
2029 if (bl->pspace->breakpoints_not_allowed)
2030 return 0;
2031
2032 /* Don't insert a breakpoint if we're trying to step past its
2033 location. */
2034 if ((bl->loc_type == bp_loc_software_breakpoint
2035 || bl->loc_type == bp_loc_hardware_breakpoint)
2036 && stepping_past_instruction_at (bl->pspace->aspace,
2037 bl->address))
2038 return 0;
2039
2040 return 1;
2041 }
2042
2043 /* Same as should_be_inserted but does the check assuming
2044 that the location is not duplicated. */
2045
2046 static int
2047 unduplicated_should_be_inserted (struct bp_location *bl)
2048 {
2049 int result;
2050 const int save_duplicate = bl->duplicate;
2051
2052 bl->duplicate = 0;
2053 result = should_be_inserted (bl);
2054 bl->duplicate = save_duplicate;
2055 return result;
2056 }
2057
2058 /* Parses a conditional described by an expression COND into an
2059 agent expression bytecode suitable for evaluation
2060 by the bytecode interpreter. Return NULL if there was
2061 any error during parsing. */
2062
2063 static struct agent_expr *
2064 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2065 {
2066 struct agent_expr *aexpr = NULL;
2067 volatile struct gdb_exception ex;
2068
2069 if (!cond)
2070 return NULL;
2071
2072 /* We don't want to stop processing, so catch any errors
2073 that may show up. */
2074 TRY_CATCH (ex, RETURN_MASK_ERROR)
2075 {
2076 aexpr = gen_eval_for_expr (scope, cond);
2077 }
2078
2079 if (ex.reason < 0)
2080 {
2081 /* If we got here, it means the condition could not be parsed to a valid
2082 bytecode expression and thus can't be evaluated on the target's side.
2083 It's no use iterating through the conditions. */
2084 return NULL;
2085 }
2086
2087 /* We have a valid agent expression. */
2088 return aexpr;
2089 }
2090
2091 /* Based on location BL, create a list of breakpoint conditions to be
2092 passed on to the target. If we have duplicated locations with different
2093 conditions, we will add such conditions to the list. The idea is that the
2094 target will evaluate the list of conditions and will only notify GDB when
2095 one of them is true. */
2096
2097 static void
2098 build_target_condition_list (struct bp_location *bl)
2099 {
2100 struct bp_location **locp = NULL, **loc2p;
2101 int null_condition_or_parse_error = 0;
2102 int modified = bl->needs_update;
2103 struct bp_location *loc;
2104
2105 /* Release conditions left over from a previous insert. */
2106 VEC_free (agent_expr_p, bl->target_info.conditions);
2107
2108 /* This is only meaningful if the target is
2109 evaluating conditions and if the user has
2110 opted for condition evaluation on the target's
2111 side. */
2112 if (gdb_evaluates_breakpoint_condition_p ()
2113 || !target_supports_evaluation_of_breakpoint_conditions ())
2114 return;
2115
2116 /* Do a first pass to check for locations with no assigned
2117 conditions or conditions that fail to parse to a valid agent expression
2118 bytecode. If any of these happen, then it's no use to send conditions
2119 to the target since this location will always trigger and generate a
2120 response back to GDB. */
2121 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2122 {
2123 loc = (*loc2p);
2124 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2125 {
2126 if (modified)
2127 {
2128 struct agent_expr *aexpr;
2129
2130 /* Re-parse the conditions since something changed. In that
2131 case we already freed the condition bytecodes (see
2132 force_breakpoint_reinsertion). We just
2133 need to parse the condition to bytecodes again. */
2134 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2135 loc->cond_bytecode = aexpr;
2136
2137 /* Check if we managed to parse the conditional expression
2138 correctly. If not, we will not send this condition
2139 to the target. */
2140 if (aexpr)
2141 continue;
2142 }
2143
2144 /* If we have a NULL bytecode expression, it means something
2145 went wrong or we have a null condition expression. */
2146 if (!loc->cond_bytecode)
2147 {
2148 null_condition_or_parse_error = 1;
2149 break;
2150 }
2151 }
2152 }
2153
2154 /* If any of these happened, it means we will have to evaluate the conditions
2155 for the location's address on gdb's side. It is no use keeping bytecodes
2156 for all the other duplicate locations, thus we free all of them here.
2157
2158 This is so we have a finer control over which locations' conditions are
2159 being evaluated by GDB or the remote stub. */
2160 if (null_condition_or_parse_error)
2161 {
2162 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2163 {
2164 loc = (*loc2p);
2165 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2166 {
2167 /* Only go as far as the first NULL bytecode is
2168 located. */
2169 if (!loc->cond_bytecode)
2170 return;
2171
2172 free_agent_expr (loc->cond_bytecode);
2173 loc->cond_bytecode = NULL;
2174 }
2175 }
2176 }
2177
2178 /* No NULL conditions or failed bytecode generation. Build a condition list
2179 for this location's address. */
2180 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2181 {
2182 loc = (*loc2p);
2183 if (loc->cond
2184 && is_breakpoint (loc->owner)
2185 && loc->pspace->num == bl->pspace->num
2186 && loc->owner->enable_state == bp_enabled
2187 && loc->enabled)
2188 /* Add the condition to the vector. This will be used later to send the
2189 conditions to the target. */
2190 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2191 loc->cond_bytecode);
2192 }
2193
2194 return;
2195 }
2196
2197 /* Parses a command described by string CMD into an agent expression
2198 bytecode suitable for evaluation by the bytecode interpreter.
2199 Return NULL if there was any error during parsing. */
2200
2201 static struct agent_expr *
2202 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2203 {
2204 struct cleanup *old_cleanups = 0;
2205 struct expression *expr, **argvec;
2206 struct agent_expr *aexpr = NULL;
2207 volatile struct gdb_exception ex;
2208 const char *cmdrest;
2209 const char *format_start, *format_end;
2210 struct format_piece *fpieces;
2211 int nargs;
2212 struct gdbarch *gdbarch = get_current_arch ();
2213
2214 if (!cmd)
2215 return NULL;
2216
2217 cmdrest = cmd;
2218
2219 if (*cmdrest == ',')
2220 ++cmdrest;
2221 cmdrest = skip_spaces_const (cmdrest);
2222
2223 if (*cmdrest++ != '"')
2224 error (_("No format string following the location"));
2225
2226 format_start = cmdrest;
2227
2228 fpieces = parse_format_string (&cmdrest);
2229
2230 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2231
2232 format_end = cmdrest;
2233
2234 if (*cmdrest++ != '"')
2235 error (_("Bad format string, non-terminated '\"'."));
2236
2237 cmdrest = skip_spaces_const (cmdrest);
2238
2239 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2240 error (_("Invalid argument syntax"));
2241
2242 if (*cmdrest == ',')
2243 cmdrest++;
2244 cmdrest = skip_spaces_const (cmdrest);
2245
2246 /* For each argument, make an expression. */
2247
2248 argvec = (struct expression **) alloca (strlen (cmd)
2249 * sizeof (struct expression *));
2250
2251 nargs = 0;
2252 while (*cmdrest != '\0')
2253 {
2254 const char *cmd1;
2255
2256 cmd1 = cmdrest;
2257 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2258 argvec[nargs++] = expr;
2259 cmdrest = cmd1;
2260 if (*cmdrest == ',')
2261 ++cmdrest;
2262 }
2263
2264 /* We don't want to stop processing, so catch any errors
2265 that may show up. */
2266 TRY_CATCH (ex, RETURN_MASK_ERROR)
2267 {
2268 aexpr = gen_printf (scope, gdbarch, 0, 0,
2269 format_start, format_end - format_start,
2270 fpieces, nargs, argvec);
2271 }
2272
2273 do_cleanups (old_cleanups);
2274
2275 if (ex.reason < 0)
2276 {
2277 /* If we got here, it means the command could not be parsed to a valid
2278 bytecode expression and thus can't be evaluated on the target's side.
2279 It's no use iterating through the other commands. */
2280 return NULL;
2281 }
2282
2283 /* We have a valid agent expression, return it. */
2284 return aexpr;
2285 }
2286
2287 /* Based on location BL, create a list of breakpoint commands to be
2288 passed on to the target. If we have duplicated locations with
2289 different commands, we will add any such to the list. */
2290
2291 static void
2292 build_target_command_list (struct bp_location *bl)
2293 {
2294 struct bp_location **locp = NULL, **loc2p;
2295 int null_command_or_parse_error = 0;
2296 int modified = bl->needs_update;
2297 struct bp_location *loc;
2298
2299 /* Release commands left over from a previous insert. */
2300 VEC_free (agent_expr_p, bl->target_info.tcommands);
2301
2302 /* For now, limit to agent-style dprintf breakpoints. */
2303 if (bl->owner->type != bp_dprintf
2304 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2305 return;
2306
2307 if (!target_can_run_breakpoint_commands ())
2308 return;
2309
2310 /* Do a first pass to check for locations with no assigned
2311 conditions or conditions that fail to parse to a valid agent expression
2312 bytecode. If any of these happen, then it's no use to send conditions
2313 to the target since this location will always trigger and generate a
2314 response back to GDB. */
2315 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2316 {
2317 loc = (*loc2p);
2318 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2319 {
2320 if (modified)
2321 {
2322 struct agent_expr *aexpr;
2323
2324 /* Re-parse the commands since something changed. In that
2325 case we already freed the command bytecodes (see
2326 force_breakpoint_reinsertion). We just
2327 need to parse the command to bytecodes again. */
2328 aexpr = parse_cmd_to_aexpr (bl->address,
2329 loc->owner->extra_string);
2330 loc->cmd_bytecode = aexpr;
2331
2332 if (!aexpr)
2333 continue;
2334 }
2335
2336 /* If we have a NULL bytecode expression, it means something
2337 went wrong or we have a null command expression. */
2338 if (!loc->cmd_bytecode)
2339 {
2340 null_command_or_parse_error = 1;
2341 break;
2342 }
2343 }
2344 }
2345
2346 /* If anything failed, then we're not doing target-side commands,
2347 and so clean up. */
2348 if (null_command_or_parse_error)
2349 {
2350 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2351 {
2352 loc = (*loc2p);
2353 if (is_breakpoint (loc->owner)
2354 && loc->pspace->num == bl->pspace->num)
2355 {
2356 /* Only go as far as the first NULL bytecode is
2357 located. */
2358 if (loc->cmd_bytecode == NULL)
2359 return;
2360
2361 free_agent_expr (loc->cmd_bytecode);
2362 loc->cmd_bytecode = NULL;
2363 }
2364 }
2365 }
2366
2367 /* No NULL commands or failed bytecode generation. Build a command list
2368 for this location's address. */
2369 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2370 {
2371 loc = (*loc2p);
2372 if (loc->owner->extra_string
2373 && is_breakpoint (loc->owner)
2374 && loc->pspace->num == bl->pspace->num
2375 && loc->owner->enable_state == bp_enabled
2376 && loc->enabled)
2377 /* Add the command to the vector. This will be used later
2378 to send the commands to the target. */
2379 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2380 loc->cmd_bytecode);
2381 }
2382
2383 bl->target_info.persist = 0;
2384 /* Maybe flag this location as persistent. */
2385 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2386 bl->target_info.persist = 1;
2387 }
2388
2389 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2390 location. Any error messages are printed to TMP_ERROR_STREAM; and
2391 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2392 Returns 0 for success, 1 if the bp_location type is not supported or
2393 -1 for failure.
2394
2395 NOTE drow/2003-09-09: This routine could be broken down to an
2396 object-style method for each breakpoint or catchpoint type. */
2397 static int
2398 insert_bp_location (struct bp_location *bl,
2399 struct ui_file *tmp_error_stream,
2400 int *disabled_breaks,
2401 int *hw_breakpoint_error,
2402 int *hw_bp_error_explained_already)
2403 {
2404 enum errors bp_err = GDB_NO_ERROR;
2405 const char *bp_err_message = NULL;
2406 volatile struct gdb_exception e;
2407
2408 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2409 return 0;
2410
2411 /* Note we don't initialize bl->target_info, as that wipes out
2412 the breakpoint location's shadow_contents if the breakpoint
2413 is still inserted at that location. This in turn breaks
2414 target_read_memory which depends on these buffers when
2415 a memory read is requested at the breakpoint location:
2416 Once the target_info has been wiped, we fail to see that
2417 we have a breakpoint inserted at that address and thus
2418 read the breakpoint instead of returning the data saved in
2419 the breakpoint location's shadow contents. */
2420 bl->target_info.placed_address = bl->address;
2421 bl->target_info.placed_address_space = bl->pspace->aspace;
2422 bl->target_info.length = bl->length;
2423
2424 /* When working with target-side conditions, we must pass all the conditions
2425 for the same breakpoint address down to the target since GDB will not
2426 insert those locations. With a list of breakpoint conditions, the target
2427 can decide when to stop and notify GDB. */
2428
2429 if (is_breakpoint (bl->owner))
2430 {
2431 build_target_condition_list (bl);
2432 build_target_command_list (bl);
2433 /* Reset the modification marker. */
2434 bl->needs_update = 0;
2435 }
2436
2437 if (bl->loc_type == bp_loc_software_breakpoint
2438 || bl->loc_type == bp_loc_hardware_breakpoint)
2439 {
2440 if (bl->owner->type != bp_hardware_breakpoint)
2441 {
2442 /* If the explicitly specified breakpoint type
2443 is not hardware breakpoint, check the memory map to see
2444 if the breakpoint address is in read only memory or not.
2445
2446 Two important cases are:
2447 - location type is not hardware breakpoint, memory
2448 is readonly. We change the type of the location to
2449 hardware breakpoint.
2450 - location type is hardware breakpoint, memory is
2451 read-write. This means we've previously made the
2452 location hardware one, but then the memory map changed,
2453 so we undo.
2454
2455 When breakpoints are removed, remove_breakpoints will use
2456 location types we've just set here, the only possible
2457 problem is that memory map has changed during running
2458 program, but it's not going to work anyway with current
2459 gdb. */
2460 struct mem_region *mr
2461 = lookup_mem_region (bl->target_info.placed_address);
2462
2463 if (mr)
2464 {
2465 if (automatic_hardware_breakpoints)
2466 {
2467 enum bp_loc_type new_type;
2468
2469 if (mr->attrib.mode != MEM_RW)
2470 new_type = bp_loc_hardware_breakpoint;
2471 else
2472 new_type = bp_loc_software_breakpoint;
2473
2474 if (new_type != bl->loc_type)
2475 {
2476 static int said = 0;
2477
2478 bl->loc_type = new_type;
2479 if (!said)
2480 {
2481 fprintf_filtered (gdb_stdout,
2482 _("Note: automatically using "
2483 "hardware breakpoints for "
2484 "read-only addresses.\n"));
2485 said = 1;
2486 }
2487 }
2488 }
2489 else if (bl->loc_type == bp_loc_software_breakpoint
2490 && mr->attrib.mode != MEM_RW)
2491 warning (_("cannot set software breakpoint "
2492 "at readonly address %s"),
2493 paddress (bl->gdbarch, bl->address));
2494 }
2495 }
2496
2497 /* First check to see if we have to handle an overlay. */
2498 if (overlay_debugging == ovly_off
2499 || bl->section == NULL
2500 || !(section_is_overlay (bl->section)))
2501 {
2502 /* No overlay handling: just set the breakpoint. */
2503 TRY_CATCH (e, RETURN_MASK_ALL)
2504 {
2505 int val;
2506
2507 val = bl->owner->ops->insert_location (bl);
2508 if (val)
2509 bp_err = GENERIC_ERROR;
2510 }
2511 if (e.reason < 0)
2512 {
2513 bp_err = e.error;
2514 bp_err_message = e.message;
2515 }
2516 }
2517 else
2518 {
2519 /* This breakpoint is in an overlay section.
2520 Shall we set a breakpoint at the LMA? */
2521 if (!overlay_events_enabled)
2522 {
2523 /* Yes -- overlay event support is not active,
2524 so we must try to set a breakpoint at the LMA.
2525 This will not work for a hardware breakpoint. */
2526 if (bl->loc_type == bp_loc_hardware_breakpoint)
2527 warning (_("hardware breakpoint %d not supported in overlay!"),
2528 bl->owner->number);
2529 else
2530 {
2531 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2532 bl->section);
2533 /* Set a software (trap) breakpoint at the LMA. */
2534 bl->overlay_target_info = bl->target_info;
2535 bl->overlay_target_info.placed_address = addr;
2536
2537 /* No overlay handling: just set the breakpoint. */
2538 TRY_CATCH (e, RETURN_MASK_ALL)
2539 {
2540 int val;
2541
2542 val = target_insert_breakpoint (bl->gdbarch,
2543 &bl->overlay_target_info);
2544 if (val)
2545 bp_err = GENERIC_ERROR;
2546 }
2547 if (e.reason < 0)
2548 {
2549 bp_err = e.error;
2550 bp_err_message = e.message;
2551 }
2552
2553 if (bp_err != GDB_NO_ERROR)
2554 fprintf_unfiltered (tmp_error_stream,
2555 "Overlay breakpoint %d "
2556 "failed: in ROM?\n",
2557 bl->owner->number);
2558 }
2559 }
2560 /* Shall we set a breakpoint at the VMA? */
2561 if (section_is_mapped (bl->section))
2562 {
2563 /* Yes. This overlay section is mapped into memory. */
2564 TRY_CATCH (e, RETURN_MASK_ALL)
2565 {
2566 int val;
2567
2568 val = bl->owner->ops->insert_location (bl);
2569 if (val)
2570 bp_err = GENERIC_ERROR;
2571 }
2572 if (e.reason < 0)
2573 {
2574 bp_err = e.error;
2575 bp_err_message = e.message;
2576 }
2577 }
2578 else
2579 {
2580 /* No. This breakpoint will not be inserted.
2581 No error, but do not mark the bp as 'inserted'. */
2582 return 0;
2583 }
2584 }
2585
2586 if (bp_err != GDB_NO_ERROR)
2587 {
2588 /* Can't set the breakpoint. */
2589
2590 /* In some cases, we might not be able to insert a
2591 breakpoint in a shared library that has already been
2592 removed, but we have not yet processed the shlib unload
2593 event. Unfortunately, some targets that implement
2594 breakpoint insertion themselves (necessary if this is a
2595 HW breakpoint, but SW breakpoints likewise) can't tell
2596 why the breakpoint insertion failed (e.g., the remote
2597 target doesn't define error codes), so we must treat
2598 generic errors as memory errors. */
2599 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2600 && solib_name_from_address (bl->pspace, bl->address))
2601 {
2602 /* See also: disable_breakpoints_in_shlibs. */
2603 bl->shlib_disabled = 1;
2604 observer_notify_breakpoint_modified (bl->owner);
2605 if (!*disabled_breaks)
2606 {
2607 fprintf_unfiltered (tmp_error_stream,
2608 "Cannot insert breakpoint %d.\n",
2609 bl->owner->number);
2610 fprintf_unfiltered (tmp_error_stream,
2611 "Temporarily disabling shared "
2612 "library breakpoints:\n");
2613 }
2614 *disabled_breaks = 1;
2615 fprintf_unfiltered (tmp_error_stream,
2616 "breakpoint #%d\n", bl->owner->number);
2617 return 0;
2618 }
2619 else
2620 {
2621 if (bl->loc_type == bp_loc_hardware_breakpoint)
2622 {
2623 *hw_breakpoint_error = 1;
2624 *hw_bp_error_explained_already = bp_err_message != NULL;
2625 fprintf_unfiltered (tmp_error_stream,
2626 "Cannot insert hardware breakpoint %d%s",
2627 bl->owner->number, bp_err_message ? ":" : ".\n");
2628 if (bp_err_message != NULL)
2629 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2630 }
2631 else
2632 {
2633 if (bp_err_message == NULL)
2634 {
2635 char *message
2636 = memory_error_message (TARGET_XFER_E_IO,
2637 bl->gdbarch, bl->address);
2638 struct cleanup *old_chain = make_cleanup (xfree, message);
2639
2640 fprintf_unfiltered (tmp_error_stream,
2641 "Cannot insert breakpoint %d.\n"
2642 "%s\n",
2643 bl->owner->number, message);
2644 do_cleanups (old_chain);
2645 }
2646 else
2647 {
2648 fprintf_unfiltered (tmp_error_stream,
2649 "Cannot insert breakpoint %d: %s\n",
2650 bl->owner->number,
2651 bp_err_message);
2652 }
2653 }
2654 return 1;
2655
2656 }
2657 }
2658 else
2659 bl->inserted = 1;
2660
2661 return 0;
2662 }
2663
2664 else if (bl->loc_type == bp_loc_hardware_watchpoint
2665 /* NOTE drow/2003-09-08: This state only exists for removing
2666 watchpoints. It's not clear that it's necessary... */
2667 && bl->owner->disposition != disp_del_at_next_stop)
2668 {
2669 int val;
2670
2671 gdb_assert (bl->owner->ops != NULL
2672 && bl->owner->ops->insert_location != NULL);
2673
2674 val = bl->owner->ops->insert_location (bl);
2675
2676 /* If trying to set a read-watchpoint, and it turns out it's not
2677 supported, try emulating one with an access watchpoint. */
2678 if (val == 1 && bl->watchpoint_type == hw_read)
2679 {
2680 struct bp_location *loc, **loc_temp;
2681
2682 /* But don't try to insert it, if there's already another
2683 hw_access location that would be considered a duplicate
2684 of this one. */
2685 ALL_BP_LOCATIONS (loc, loc_temp)
2686 if (loc != bl
2687 && loc->watchpoint_type == hw_access
2688 && watchpoint_locations_match (bl, loc))
2689 {
2690 bl->duplicate = 1;
2691 bl->inserted = 1;
2692 bl->target_info = loc->target_info;
2693 bl->watchpoint_type = hw_access;
2694 val = 0;
2695 break;
2696 }
2697
2698 if (val == 1)
2699 {
2700 bl->watchpoint_type = hw_access;
2701 val = bl->owner->ops->insert_location (bl);
2702
2703 if (val)
2704 /* Back to the original value. */
2705 bl->watchpoint_type = hw_read;
2706 }
2707 }
2708
2709 bl->inserted = (val == 0);
2710 }
2711
2712 else if (bl->owner->type == bp_catchpoint)
2713 {
2714 int val;
2715
2716 gdb_assert (bl->owner->ops != NULL
2717 && bl->owner->ops->insert_location != NULL);
2718
2719 val = bl->owner->ops->insert_location (bl);
2720 if (val)
2721 {
2722 bl->owner->enable_state = bp_disabled;
2723
2724 if (val == 1)
2725 warning (_("\
2726 Error inserting catchpoint %d: Your system does not support this type\n\
2727 of catchpoint."), bl->owner->number);
2728 else
2729 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2730 }
2731
2732 bl->inserted = (val == 0);
2733
2734 /* We've already printed an error message if there was a problem
2735 inserting this catchpoint, and we've disabled the catchpoint,
2736 so just return success. */
2737 return 0;
2738 }
2739
2740 return 0;
2741 }
2742
2743 /* This function is called when program space PSPACE is about to be
2744 deleted. It takes care of updating breakpoints to not reference
2745 PSPACE anymore. */
2746
2747 void
2748 breakpoint_program_space_exit (struct program_space *pspace)
2749 {
2750 struct breakpoint *b, *b_temp;
2751 struct bp_location *loc, **loc_temp;
2752
2753 /* Remove any breakpoint that was set through this program space. */
2754 ALL_BREAKPOINTS_SAFE (b, b_temp)
2755 {
2756 if (b->pspace == pspace)
2757 delete_breakpoint (b);
2758 }
2759
2760 /* Breakpoints set through other program spaces could have locations
2761 bound to PSPACE as well. Remove those. */
2762 ALL_BP_LOCATIONS (loc, loc_temp)
2763 {
2764 struct bp_location *tmp;
2765
2766 if (loc->pspace == pspace)
2767 {
2768 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2769 if (loc->owner->loc == loc)
2770 loc->owner->loc = loc->next;
2771 else
2772 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2773 if (tmp->next == loc)
2774 {
2775 tmp->next = loc->next;
2776 break;
2777 }
2778 }
2779 }
2780
2781 /* Now update the global location list to permanently delete the
2782 removed locations above. */
2783 update_global_location_list (0);
2784 }
2785
2786 /* Make sure all breakpoints are inserted in inferior.
2787 Throws exception on any error.
2788 A breakpoint that is already inserted won't be inserted
2789 again, so calling this function twice is safe. */
2790 void
2791 insert_breakpoints (void)
2792 {
2793 struct breakpoint *bpt;
2794
2795 ALL_BREAKPOINTS (bpt)
2796 if (is_hardware_watchpoint (bpt))
2797 {
2798 struct watchpoint *w = (struct watchpoint *) bpt;
2799
2800 update_watchpoint (w, 0 /* don't reparse. */);
2801 }
2802
2803 update_global_location_list (1);
2804
2805 /* update_global_location_list does not insert breakpoints when
2806 always_inserted_mode is not enabled. Explicitly insert them
2807 now. */
2808 if (!breakpoints_always_inserted_mode ())
2809 insert_breakpoint_locations ();
2810 }
2811
2812 /* Invoke CALLBACK for each of bp_location. */
2813
2814 void
2815 iterate_over_bp_locations (walk_bp_location_callback callback)
2816 {
2817 struct bp_location *loc, **loc_tmp;
2818
2819 ALL_BP_LOCATIONS (loc, loc_tmp)
2820 {
2821 callback (loc, NULL);
2822 }
2823 }
2824
2825 /* This is used when we need to synch breakpoint conditions between GDB and the
2826 target. It is the case with deleting and disabling of breakpoints when using
2827 always-inserted mode. */
2828
2829 static void
2830 update_inserted_breakpoint_locations (void)
2831 {
2832 struct bp_location *bl, **blp_tmp;
2833 int error_flag = 0;
2834 int val = 0;
2835 int disabled_breaks = 0;
2836 int hw_breakpoint_error = 0;
2837 int hw_bp_details_reported = 0;
2838
2839 struct ui_file *tmp_error_stream = mem_fileopen ();
2840 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2841
2842 /* Explicitly mark the warning -- this will only be printed if
2843 there was an error. */
2844 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2845
2846 save_current_space_and_thread ();
2847
2848 ALL_BP_LOCATIONS (bl, blp_tmp)
2849 {
2850 /* We only want to update software breakpoints and hardware
2851 breakpoints. */
2852 if (!is_breakpoint (bl->owner))
2853 continue;
2854
2855 /* We only want to update locations that are already inserted
2856 and need updating. This is to avoid unwanted insertion during
2857 deletion of breakpoints. */
2858 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2859 continue;
2860
2861 switch_to_program_space_and_thread (bl->pspace);
2862
2863 /* For targets that support global breakpoints, there's no need
2864 to select an inferior to insert breakpoint to. In fact, even
2865 if we aren't attached to any process yet, we should still
2866 insert breakpoints. */
2867 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2868 && ptid_equal (inferior_ptid, null_ptid))
2869 continue;
2870
2871 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2872 &hw_breakpoint_error, &hw_bp_details_reported);
2873 if (val)
2874 error_flag = val;
2875 }
2876
2877 if (error_flag)
2878 {
2879 target_terminal_ours_for_output ();
2880 error_stream (tmp_error_stream);
2881 }
2882
2883 do_cleanups (cleanups);
2884 }
2885
2886 /* Used when starting or continuing the program. */
2887
2888 static void
2889 insert_breakpoint_locations (void)
2890 {
2891 struct breakpoint *bpt;
2892 struct bp_location *bl, **blp_tmp;
2893 int error_flag = 0;
2894 int val = 0;
2895 int disabled_breaks = 0;
2896 int hw_breakpoint_error = 0;
2897 int hw_bp_error_explained_already = 0;
2898
2899 struct ui_file *tmp_error_stream = mem_fileopen ();
2900 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2901
2902 /* Explicitly mark the warning -- this will only be printed if
2903 there was an error. */
2904 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2905
2906 save_current_space_and_thread ();
2907
2908 ALL_BP_LOCATIONS (bl, blp_tmp)
2909 {
2910 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2911 continue;
2912
2913 /* There is no point inserting thread-specific breakpoints if
2914 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2915 has BL->OWNER always non-NULL. */
2916 if (bl->owner->thread != -1
2917 && !valid_thread_id (bl->owner->thread))
2918 continue;
2919
2920 switch_to_program_space_and_thread (bl->pspace);
2921
2922 /* For targets that support global breakpoints, there's no need
2923 to select an inferior to insert breakpoint to. In fact, even
2924 if we aren't attached to any process yet, we should still
2925 insert breakpoints. */
2926 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2927 && ptid_equal (inferior_ptid, null_ptid))
2928 continue;
2929
2930 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2931 &hw_breakpoint_error, &hw_bp_error_explained_already);
2932 if (val)
2933 error_flag = val;
2934 }
2935
2936 /* If we failed to insert all locations of a watchpoint, remove
2937 them, as half-inserted watchpoint is of limited use. */
2938 ALL_BREAKPOINTS (bpt)
2939 {
2940 int some_failed = 0;
2941 struct bp_location *loc;
2942
2943 if (!is_hardware_watchpoint (bpt))
2944 continue;
2945
2946 if (!breakpoint_enabled (bpt))
2947 continue;
2948
2949 if (bpt->disposition == disp_del_at_next_stop)
2950 continue;
2951
2952 for (loc = bpt->loc; loc; loc = loc->next)
2953 if (!loc->inserted && should_be_inserted (loc))
2954 {
2955 some_failed = 1;
2956 break;
2957 }
2958 if (some_failed)
2959 {
2960 for (loc = bpt->loc; loc; loc = loc->next)
2961 if (loc->inserted)
2962 remove_breakpoint (loc, mark_uninserted);
2963
2964 hw_breakpoint_error = 1;
2965 fprintf_unfiltered (tmp_error_stream,
2966 "Could not insert hardware watchpoint %d.\n",
2967 bpt->number);
2968 error_flag = -1;
2969 }
2970 }
2971
2972 if (error_flag)
2973 {
2974 /* If a hardware breakpoint or watchpoint was inserted, add a
2975 message about possibly exhausted resources. */
2976 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2977 {
2978 fprintf_unfiltered (tmp_error_stream,
2979 "Could not insert hardware breakpoints:\n\
2980 You may have requested too many hardware breakpoints/watchpoints.\n");
2981 }
2982 target_terminal_ours_for_output ();
2983 error_stream (tmp_error_stream);
2984 }
2985
2986 do_cleanups (cleanups);
2987 }
2988
2989 /* Used when the program stops.
2990 Returns zero if successful, or non-zero if there was a problem
2991 removing a breakpoint location. */
2992
2993 int
2994 remove_breakpoints (void)
2995 {
2996 struct bp_location *bl, **blp_tmp;
2997 int val = 0;
2998
2999 ALL_BP_LOCATIONS (bl, blp_tmp)
3000 {
3001 if (bl->inserted && !is_tracepoint (bl->owner))
3002 val |= remove_breakpoint (bl, mark_uninserted);
3003 }
3004 return val;
3005 }
3006
3007 /* When a thread exits, remove breakpoints that are related to
3008 that thread. */
3009
3010 static void
3011 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3012 {
3013 struct breakpoint *b, *b_tmp;
3014
3015 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3016 {
3017 if (b->thread == tp->num && user_breakpoint_p (b))
3018 {
3019 b->disposition = disp_del_at_next_stop;
3020
3021 printf_filtered (_("\
3022 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3023 b->number, tp->num);
3024
3025 /* Hide it from the user. */
3026 b->number = 0;
3027 }
3028 }
3029 }
3030
3031 /* Remove breakpoints of process PID. */
3032
3033 int
3034 remove_breakpoints_pid (int pid)
3035 {
3036 struct bp_location *bl, **blp_tmp;
3037 int val;
3038 struct inferior *inf = find_inferior_pid (pid);
3039
3040 ALL_BP_LOCATIONS (bl, blp_tmp)
3041 {
3042 if (bl->pspace != inf->pspace)
3043 continue;
3044
3045 if (bl->owner->type == bp_dprintf)
3046 continue;
3047
3048 if (bl->inserted)
3049 {
3050 val = remove_breakpoint (bl, mark_uninserted);
3051 if (val != 0)
3052 return val;
3053 }
3054 }
3055 return 0;
3056 }
3057
3058 int
3059 reattach_breakpoints (int pid)
3060 {
3061 struct cleanup *old_chain;
3062 struct bp_location *bl, **blp_tmp;
3063 int val;
3064 struct ui_file *tmp_error_stream;
3065 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3066 struct inferior *inf;
3067 struct thread_info *tp;
3068
3069 tp = any_live_thread_of_process (pid);
3070 if (tp == NULL)
3071 return 1;
3072
3073 inf = find_inferior_pid (pid);
3074 old_chain = save_inferior_ptid ();
3075
3076 inferior_ptid = tp->ptid;
3077
3078 tmp_error_stream = mem_fileopen ();
3079 make_cleanup_ui_file_delete (tmp_error_stream);
3080
3081 ALL_BP_LOCATIONS (bl, blp_tmp)
3082 {
3083 if (bl->pspace != inf->pspace)
3084 continue;
3085
3086 if (bl->inserted)
3087 {
3088 bl->inserted = 0;
3089 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3090 if (val != 0)
3091 {
3092 do_cleanups (old_chain);
3093 return val;
3094 }
3095 }
3096 }
3097 do_cleanups (old_chain);
3098 return 0;
3099 }
3100
3101 static int internal_breakpoint_number = -1;
3102
3103 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3104 If INTERNAL is non-zero, the breakpoint number will be populated
3105 from internal_breakpoint_number and that variable decremented.
3106 Otherwise the breakpoint number will be populated from
3107 breakpoint_count and that value incremented. Internal breakpoints
3108 do not set the internal var bpnum. */
3109 static void
3110 set_breakpoint_number (int internal, struct breakpoint *b)
3111 {
3112 if (internal)
3113 b->number = internal_breakpoint_number--;
3114 else
3115 {
3116 set_breakpoint_count (breakpoint_count + 1);
3117 b->number = breakpoint_count;
3118 }
3119 }
3120
3121 static struct breakpoint *
3122 create_internal_breakpoint (struct gdbarch *gdbarch,
3123 CORE_ADDR address, enum bptype type,
3124 const struct breakpoint_ops *ops)
3125 {
3126 struct symtab_and_line sal;
3127 struct breakpoint *b;
3128
3129 init_sal (&sal); /* Initialize to zeroes. */
3130
3131 sal.pc = address;
3132 sal.section = find_pc_overlay (sal.pc);
3133 sal.pspace = current_program_space;
3134
3135 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3136 b->number = internal_breakpoint_number--;
3137 b->disposition = disp_donttouch;
3138
3139 return b;
3140 }
3141
3142 static const char *const longjmp_names[] =
3143 {
3144 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3145 };
3146 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3147
3148 /* Per-objfile data private to breakpoint.c. */
3149 struct breakpoint_objfile_data
3150 {
3151 /* Minimal symbol for "_ovly_debug_event" (if any). */
3152 struct bound_minimal_symbol overlay_msym;
3153
3154 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3155 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3156
3157 /* True if we have looked for longjmp probes. */
3158 int longjmp_searched;
3159
3160 /* SystemTap probe points for longjmp (if any). */
3161 VEC (probe_p) *longjmp_probes;
3162
3163 /* Minimal symbol for "std::terminate()" (if any). */
3164 struct bound_minimal_symbol terminate_msym;
3165
3166 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3167 struct bound_minimal_symbol exception_msym;
3168
3169 /* True if we have looked for exception probes. */
3170 int exception_searched;
3171
3172 /* SystemTap probe points for unwinding (if any). */
3173 VEC (probe_p) *exception_probes;
3174 };
3175
3176 static const struct objfile_data *breakpoint_objfile_key;
3177
3178 /* Minimal symbol not found sentinel. */
3179 static struct minimal_symbol msym_not_found;
3180
3181 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3182
3183 static int
3184 msym_not_found_p (const struct minimal_symbol *msym)
3185 {
3186 return msym == &msym_not_found;
3187 }
3188
3189 /* Return per-objfile data needed by breakpoint.c.
3190 Allocate the data if necessary. */
3191
3192 static struct breakpoint_objfile_data *
3193 get_breakpoint_objfile_data (struct objfile *objfile)
3194 {
3195 struct breakpoint_objfile_data *bp_objfile_data;
3196
3197 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3198 if (bp_objfile_data == NULL)
3199 {
3200 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3201 sizeof (*bp_objfile_data));
3202
3203 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3204 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3205 }
3206 return bp_objfile_data;
3207 }
3208
3209 static void
3210 free_breakpoint_probes (struct objfile *obj, void *data)
3211 {
3212 struct breakpoint_objfile_data *bp_objfile_data = data;
3213
3214 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3215 VEC_free (probe_p, bp_objfile_data->exception_probes);
3216 }
3217
3218 static void
3219 create_overlay_event_breakpoint (void)
3220 {
3221 struct objfile *objfile;
3222 const char *const func_name = "_ovly_debug_event";
3223
3224 ALL_OBJFILES (objfile)
3225 {
3226 struct breakpoint *b;
3227 struct breakpoint_objfile_data *bp_objfile_data;
3228 CORE_ADDR addr;
3229
3230 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3231
3232 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3233 continue;
3234
3235 if (bp_objfile_data->overlay_msym.minsym == NULL)
3236 {
3237 struct bound_minimal_symbol m;
3238
3239 m = lookup_minimal_symbol_text (func_name, objfile);
3240 if (m.minsym == NULL)
3241 {
3242 /* Avoid future lookups in this objfile. */
3243 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3244 continue;
3245 }
3246 bp_objfile_data->overlay_msym = m;
3247 }
3248
3249 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3250 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3251 bp_overlay_event,
3252 &internal_breakpoint_ops);
3253 b->addr_string = xstrdup (func_name);
3254
3255 if (overlay_debugging == ovly_auto)
3256 {
3257 b->enable_state = bp_enabled;
3258 overlay_events_enabled = 1;
3259 }
3260 else
3261 {
3262 b->enable_state = bp_disabled;
3263 overlay_events_enabled = 0;
3264 }
3265 }
3266 update_global_location_list (1);
3267 }
3268
3269 static void
3270 create_longjmp_master_breakpoint (void)
3271 {
3272 struct program_space *pspace;
3273 struct cleanup *old_chain;
3274
3275 old_chain = save_current_program_space ();
3276
3277 ALL_PSPACES (pspace)
3278 {
3279 struct objfile *objfile;
3280
3281 set_current_program_space (pspace);
3282
3283 ALL_OBJFILES (objfile)
3284 {
3285 int i;
3286 struct gdbarch *gdbarch;
3287 struct breakpoint_objfile_data *bp_objfile_data;
3288
3289 gdbarch = get_objfile_arch (objfile);
3290
3291 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3292
3293 if (!bp_objfile_data->longjmp_searched)
3294 {
3295 VEC (probe_p) *ret;
3296
3297 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3298 if (ret != NULL)
3299 {
3300 /* We are only interested in checking one element. */
3301 struct probe *p = VEC_index (probe_p, ret, 0);
3302
3303 if (!can_evaluate_probe_arguments (p))
3304 {
3305 /* We cannot use the probe interface here, because it does
3306 not know how to evaluate arguments. */
3307 VEC_free (probe_p, ret);
3308 ret = NULL;
3309 }
3310 }
3311 bp_objfile_data->longjmp_probes = ret;
3312 bp_objfile_data->longjmp_searched = 1;
3313 }
3314
3315 if (bp_objfile_data->longjmp_probes != NULL)
3316 {
3317 int i;
3318 struct probe *probe;
3319 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3320
3321 for (i = 0;
3322 VEC_iterate (probe_p,
3323 bp_objfile_data->longjmp_probes,
3324 i, probe);
3325 ++i)
3326 {
3327 struct breakpoint *b;
3328
3329 b = create_internal_breakpoint (gdbarch,
3330 get_probe_address (probe,
3331 objfile),
3332 bp_longjmp_master,
3333 &internal_breakpoint_ops);
3334 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3335 b->enable_state = bp_disabled;
3336 }
3337
3338 continue;
3339 }
3340
3341 if (!gdbarch_get_longjmp_target_p (gdbarch))
3342 continue;
3343
3344 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3345 {
3346 struct breakpoint *b;
3347 const char *func_name;
3348 CORE_ADDR addr;
3349
3350 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3351 continue;
3352
3353 func_name = longjmp_names[i];
3354 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3355 {
3356 struct bound_minimal_symbol m;
3357
3358 m = lookup_minimal_symbol_text (func_name, objfile);
3359 if (m.minsym == NULL)
3360 {
3361 /* Prevent future lookups in this objfile. */
3362 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3363 continue;
3364 }
3365 bp_objfile_data->longjmp_msym[i] = m;
3366 }
3367
3368 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3369 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3370 &internal_breakpoint_ops);
3371 b->addr_string = xstrdup (func_name);
3372 b->enable_state = bp_disabled;
3373 }
3374 }
3375 }
3376 update_global_location_list (1);
3377
3378 do_cleanups (old_chain);
3379 }
3380
3381 /* Create a master std::terminate breakpoint. */
3382 static void
3383 create_std_terminate_master_breakpoint (void)
3384 {
3385 struct program_space *pspace;
3386 struct cleanup *old_chain;
3387 const char *const func_name = "std::terminate()";
3388
3389 old_chain = save_current_program_space ();
3390
3391 ALL_PSPACES (pspace)
3392 {
3393 struct objfile *objfile;
3394 CORE_ADDR addr;
3395
3396 set_current_program_space (pspace);
3397
3398 ALL_OBJFILES (objfile)
3399 {
3400 struct breakpoint *b;
3401 struct breakpoint_objfile_data *bp_objfile_data;
3402
3403 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3404
3405 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3406 continue;
3407
3408 if (bp_objfile_data->terminate_msym.minsym == NULL)
3409 {
3410 struct bound_minimal_symbol m;
3411
3412 m = lookup_minimal_symbol (func_name, NULL, objfile);
3413 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3414 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3415 {
3416 /* Prevent future lookups in this objfile. */
3417 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3418 continue;
3419 }
3420 bp_objfile_data->terminate_msym = m;
3421 }
3422
3423 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3424 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3425 bp_std_terminate_master,
3426 &internal_breakpoint_ops);
3427 b->addr_string = xstrdup (func_name);
3428 b->enable_state = bp_disabled;
3429 }
3430 }
3431
3432 update_global_location_list (1);
3433
3434 do_cleanups (old_chain);
3435 }
3436
3437 /* Install a master breakpoint on the unwinder's debug hook. */
3438
3439 static void
3440 create_exception_master_breakpoint (void)
3441 {
3442 struct objfile *objfile;
3443 const char *const func_name = "_Unwind_DebugHook";
3444
3445 ALL_OBJFILES (objfile)
3446 {
3447 struct breakpoint *b;
3448 struct gdbarch *gdbarch;
3449 struct breakpoint_objfile_data *bp_objfile_data;
3450 CORE_ADDR addr;
3451
3452 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3453
3454 /* We prefer the SystemTap probe point if it exists. */
3455 if (!bp_objfile_data->exception_searched)
3456 {
3457 VEC (probe_p) *ret;
3458
3459 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3460
3461 if (ret != NULL)
3462 {
3463 /* We are only interested in checking one element. */
3464 struct probe *p = VEC_index (probe_p, ret, 0);
3465
3466 if (!can_evaluate_probe_arguments (p))
3467 {
3468 /* We cannot use the probe interface here, because it does
3469 not know how to evaluate arguments. */
3470 VEC_free (probe_p, ret);
3471 ret = NULL;
3472 }
3473 }
3474 bp_objfile_data->exception_probes = ret;
3475 bp_objfile_data->exception_searched = 1;
3476 }
3477
3478 if (bp_objfile_data->exception_probes != NULL)
3479 {
3480 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3481 int i;
3482 struct probe *probe;
3483
3484 for (i = 0;
3485 VEC_iterate (probe_p,
3486 bp_objfile_data->exception_probes,
3487 i, probe);
3488 ++i)
3489 {
3490 struct breakpoint *b;
3491
3492 b = create_internal_breakpoint (gdbarch,
3493 get_probe_address (probe,
3494 objfile),
3495 bp_exception_master,
3496 &internal_breakpoint_ops);
3497 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3498 b->enable_state = bp_disabled;
3499 }
3500
3501 continue;
3502 }
3503
3504 /* Otherwise, try the hook function. */
3505
3506 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3507 continue;
3508
3509 gdbarch = get_objfile_arch (objfile);
3510
3511 if (bp_objfile_data->exception_msym.minsym == NULL)
3512 {
3513 struct bound_minimal_symbol debug_hook;
3514
3515 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3516 if (debug_hook.minsym == NULL)
3517 {
3518 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3519 continue;
3520 }
3521
3522 bp_objfile_data->exception_msym = debug_hook;
3523 }
3524
3525 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3526 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3527 &current_target);
3528 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3529 &internal_breakpoint_ops);
3530 b->addr_string = xstrdup (func_name);
3531 b->enable_state = bp_disabled;
3532 }
3533
3534 update_global_location_list (1);
3535 }
3536
3537 void
3538 update_breakpoints_after_exec (void)
3539 {
3540 struct breakpoint *b, *b_tmp;
3541 struct bp_location *bploc, **bplocp_tmp;
3542
3543 /* We're about to delete breakpoints from GDB's lists. If the
3544 INSERTED flag is true, GDB will try to lift the breakpoints by
3545 writing the breakpoints' "shadow contents" back into memory. The
3546 "shadow contents" are NOT valid after an exec, so GDB should not
3547 do that. Instead, the target is responsible from marking
3548 breakpoints out as soon as it detects an exec. We don't do that
3549 here instead, because there may be other attempts to delete
3550 breakpoints after detecting an exec and before reaching here. */
3551 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3552 if (bploc->pspace == current_program_space)
3553 gdb_assert (!bploc->inserted);
3554
3555 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3556 {
3557 if (b->pspace != current_program_space)
3558 continue;
3559
3560 /* Solib breakpoints must be explicitly reset after an exec(). */
3561 if (b->type == bp_shlib_event)
3562 {
3563 delete_breakpoint (b);
3564 continue;
3565 }
3566
3567 /* JIT breakpoints must be explicitly reset after an exec(). */
3568 if (b->type == bp_jit_event)
3569 {
3570 delete_breakpoint (b);
3571 continue;
3572 }
3573
3574 /* Thread event breakpoints must be set anew after an exec(),
3575 as must overlay event and longjmp master breakpoints. */
3576 if (b->type == bp_thread_event || b->type == bp_overlay_event
3577 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3578 || b->type == bp_exception_master)
3579 {
3580 delete_breakpoint (b);
3581 continue;
3582 }
3583
3584 /* Step-resume breakpoints are meaningless after an exec(). */
3585 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3586 {
3587 delete_breakpoint (b);
3588 continue;
3589 }
3590
3591 /* Longjmp and longjmp-resume breakpoints are also meaningless
3592 after an exec. */
3593 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3594 || b->type == bp_longjmp_call_dummy
3595 || b->type == bp_exception || b->type == bp_exception_resume)
3596 {
3597 delete_breakpoint (b);
3598 continue;
3599 }
3600
3601 if (b->type == bp_catchpoint)
3602 {
3603 /* For now, none of the bp_catchpoint breakpoints need to
3604 do anything at this point. In the future, if some of
3605 the catchpoints need to something, we will need to add
3606 a new method, and call this method from here. */
3607 continue;
3608 }
3609
3610 /* bp_finish is a special case. The only way we ought to be able
3611 to see one of these when an exec() has happened, is if the user
3612 caught a vfork, and then said "finish". Ordinarily a finish just
3613 carries them to the call-site of the current callee, by setting
3614 a temporary bp there and resuming. But in this case, the finish
3615 will carry them entirely through the vfork & exec.
3616
3617 We don't want to allow a bp_finish to remain inserted now. But
3618 we can't safely delete it, 'cause finish_command has a handle to
3619 the bp on a bpstat, and will later want to delete it. There's a
3620 chance (and I've seen it happen) that if we delete the bp_finish
3621 here, that its storage will get reused by the time finish_command
3622 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3623 We really must allow finish_command to delete a bp_finish.
3624
3625 In the absence of a general solution for the "how do we know
3626 it's safe to delete something others may have handles to?"
3627 problem, what we'll do here is just uninsert the bp_finish, and
3628 let finish_command delete it.
3629
3630 (We know the bp_finish is "doomed" in the sense that it's
3631 momentary, and will be deleted as soon as finish_command sees
3632 the inferior stopped. So it doesn't matter that the bp's
3633 address is probably bogus in the new a.out, unlike e.g., the
3634 solib breakpoints.) */
3635
3636 if (b->type == bp_finish)
3637 {
3638 continue;
3639 }
3640
3641 /* Without a symbolic address, we have little hope of the
3642 pre-exec() address meaning the same thing in the post-exec()
3643 a.out. */
3644 if (b->addr_string == NULL)
3645 {
3646 delete_breakpoint (b);
3647 continue;
3648 }
3649 }
3650 /* FIXME what about longjmp breakpoints? Re-create them here? */
3651 create_overlay_event_breakpoint ();
3652 create_longjmp_master_breakpoint ();
3653 create_std_terminate_master_breakpoint ();
3654 create_exception_master_breakpoint ();
3655 }
3656
3657 int
3658 detach_breakpoints (ptid_t ptid)
3659 {
3660 struct bp_location *bl, **blp_tmp;
3661 int val = 0;
3662 struct cleanup *old_chain = save_inferior_ptid ();
3663 struct inferior *inf = current_inferior ();
3664
3665 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3666 error (_("Cannot detach breakpoints of inferior_ptid"));
3667
3668 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3669 inferior_ptid = ptid;
3670 ALL_BP_LOCATIONS (bl, blp_tmp)
3671 {
3672 if (bl->pspace != inf->pspace)
3673 continue;
3674
3675 /* This function must physically remove breakpoints locations
3676 from the specified ptid, without modifying the breakpoint
3677 package's state. Locations of type bp_loc_other are only
3678 maintained at GDB side. So, there is no need to remove
3679 these bp_loc_other locations. Moreover, removing these
3680 would modify the breakpoint package's state. */
3681 if (bl->loc_type == bp_loc_other)
3682 continue;
3683
3684 if (bl->inserted)
3685 val |= remove_breakpoint_1 (bl, mark_inserted);
3686 }
3687
3688 /* Detach single-step breakpoints as well. */
3689 detach_single_step_breakpoints ();
3690
3691 do_cleanups (old_chain);
3692 return val;
3693 }
3694
3695 /* Remove the breakpoint location BL from the current address space.
3696 Note that this is used to detach breakpoints from a child fork.
3697 When we get here, the child isn't in the inferior list, and neither
3698 do we have objects to represent its address space --- we should
3699 *not* look at bl->pspace->aspace here. */
3700
3701 static int
3702 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3703 {
3704 int val;
3705
3706 /* BL is never in moribund_locations by our callers. */
3707 gdb_assert (bl->owner != NULL);
3708
3709 if (bl->owner->enable_state == bp_permanent)
3710 /* Permanent breakpoints cannot be inserted or removed. */
3711 return 0;
3712
3713 /* The type of none suggests that owner is actually deleted.
3714 This should not ever happen. */
3715 gdb_assert (bl->owner->type != bp_none);
3716
3717 if (bl->loc_type == bp_loc_software_breakpoint
3718 || bl->loc_type == bp_loc_hardware_breakpoint)
3719 {
3720 /* "Normal" instruction breakpoint: either the standard
3721 trap-instruction bp (bp_breakpoint), or a
3722 bp_hardware_breakpoint. */
3723
3724 /* First check to see if we have to handle an overlay. */
3725 if (overlay_debugging == ovly_off
3726 || bl->section == NULL
3727 || !(section_is_overlay (bl->section)))
3728 {
3729 /* No overlay handling: just remove the breakpoint. */
3730 val = bl->owner->ops->remove_location (bl);
3731 }
3732 else
3733 {
3734 /* This breakpoint is in an overlay section.
3735 Did we set a breakpoint at the LMA? */
3736 if (!overlay_events_enabled)
3737 {
3738 /* Yes -- overlay event support is not active, so we
3739 should have set a breakpoint at the LMA. Remove it.
3740 */
3741 /* Ignore any failures: if the LMA is in ROM, we will
3742 have already warned when we failed to insert it. */
3743 if (bl->loc_type == bp_loc_hardware_breakpoint)
3744 target_remove_hw_breakpoint (bl->gdbarch,
3745 &bl->overlay_target_info);
3746 else
3747 target_remove_breakpoint (bl->gdbarch,
3748 &bl->overlay_target_info);
3749 }
3750 /* Did we set a breakpoint at the VMA?
3751 If so, we will have marked the breakpoint 'inserted'. */
3752 if (bl->inserted)
3753 {
3754 /* Yes -- remove it. Previously we did not bother to
3755 remove the breakpoint if the section had been
3756 unmapped, but let's not rely on that being safe. We
3757 don't know what the overlay manager might do. */
3758
3759 /* However, we should remove *software* breakpoints only
3760 if the section is still mapped, or else we overwrite
3761 wrong code with the saved shadow contents. */
3762 if (bl->loc_type == bp_loc_hardware_breakpoint
3763 || section_is_mapped (bl->section))
3764 val = bl->owner->ops->remove_location (bl);
3765 else
3766 val = 0;
3767 }
3768 else
3769 {
3770 /* No -- not inserted, so no need to remove. No error. */
3771 val = 0;
3772 }
3773 }
3774
3775 /* In some cases, we might not be able to remove a breakpoint
3776 in a shared library that has already been removed, but we
3777 have not yet processed the shlib unload event. */
3778 if (val && solib_name_from_address (bl->pspace, bl->address))
3779 val = 0;
3780
3781 if (val)
3782 return val;
3783 bl->inserted = (is == mark_inserted);
3784 }
3785 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3786 {
3787 gdb_assert (bl->owner->ops != NULL
3788 && bl->owner->ops->remove_location != NULL);
3789
3790 bl->inserted = (is == mark_inserted);
3791 bl->owner->ops->remove_location (bl);
3792
3793 /* Failure to remove any of the hardware watchpoints comes here. */
3794 if ((is == mark_uninserted) && (bl->inserted))
3795 warning (_("Could not remove hardware watchpoint %d."),
3796 bl->owner->number);
3797 }
3798 else if (bl->owner->type == bp_catchpoint
3799 && breakpoint_enabled (bl->owner)
3800 && !bl->duplicate)
3801 {
3802 gdb_assert (bl->owner->ops != NULL
3803 && bl->owner->ops->remove_location != NULL);
3804
3805 val = bl->owner->ops->remove_location (bl);
3806 if (val)
3807 return val;
3808
3809 bl->inserted = (is == mark_inserted);
3810 }
3811
3812 return 0;
3813 }
3814
3815 static int
3816 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3817 {
3818 int ret;
3819 struct cleanup *old_chain;
3820
3821 /* BL is never in moribund_locations by our callers. */
3822 gdb_assert (bl->owner != NULL);
3823
3824 if (bl->owner->enable_state == bp_permanent)
3825 /* Permanent breakpoints cannot be inserted or removed. */
3826 return 0;
3827
3828 /* The type of none suggests that owner is actually deleted.
3829 This should not ever happen. */
3830 gdb_assert (bl->owner->type != bp_none);
3831
3832 old_chain = save_current_space_and_thread ();
3833
3834 switch_to_program_space_and_thread (bl->pspace);
3835
3836 ret = remove_breakpoint_1 (bl, is);
3837
3838 do_cleanups (old_chain);
3839 return ret;
3840 }
3841
3842 /* Clear the "inserted" flag in all breakpoints. */
3843
3844 void
3845 mark_breakpoints_out (void)
3846 {
3847 struct bp_location *bl, **blp_tmp;
3848
3849 ALL_BP_LOCATIONS (bl, blp_tmp)
3850 if (bl->pspace == current_program_space)
3851 bl->inserted = 0;
3852 }
3853
3854 /* Clear the "inserted" flag in all breakpoints and delete any
3855 breakpoints which should go away between runs of the program.
3856
3857 Plus other such housekeeping that has to be done for breakpoints
3858 between runs.
3859
3860 Note: this function gets called at the end of a run (by
3861 generic_mourn_inferior) and when a run begins (by
3862 init_wait_for_inferior). */
3863
3864
3865
3866 void
3867 breakpoint_init_inferior (enum inf_context context)
3868 {
3869 struct breakpoint *b, *b_tmp;
3870 struct bp_location *bl, **blp_tmp;
3871 int ix;
3872 struct program_space *pspace = current_program_space;
3873
3874 /* If breakpoint locations are shared across processes, then there's
3875 nothing to do. */
3876 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3877 return;
3878
3879 ALL_BP_LOCATIONS (bl, blp_tmp)
3880 {
3881 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3882 if (bl->pspace == pspace
3883 && bl->owner->enable_state != bp_permanent)
3884 bl->inserted = 0;
3885 }
3886
3887 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3888 {
3889 if (b->loc && b->loc->pspace != pspace)
3890 continue;
3891
3892 switch (b->type)
3893 {
3894 case bp_call_dummy:
3895 case bp_longjmp_call_dummy:
3896
3897 /* If the call dummy breakpoint is at the entry point it will
3898 cause problems when the inferior is rerun, so we better get
3899 rid of it. */
3900
3901 case bp_watchpoint_scope:
3902
3903 /* Also get rid of scope breakpoints. */
3904
3905 case bp_shlib_event:
3906
3907 /* Also remove solib event breakpoints. Their addresses may
3908 have changed since the last time we ran the program.
3909 Actually we may now be debugging against different target;
3910 and so the solib backend that installed this breakpoint may
3911 not be used in by the target. E.g.,
3912
3913 (gdb) file prog-linux
3914 (gdb) run # native linux target
3915 ...
3916 (gdb) kill
3917 (gdb) file prog-win.exe
3918 (gdb) tar rem :9999 # remote Windows gdbserver.
3919 */
3920
3921 case bp_step_resume:
3922
3923 /* Also remove step-resume breakpoints. */
3924
3925 delete_breakpoint (b);
3926 break;
3927
3928 case bp_watchpoint:
3929 case bp_hardware_watchpoint:
3930 case bp_read_watchpoint:
3931 case bp_access_watchpoint:
3932 {
3933 struct watchpoint *w = (struct watchpoint *) b;
3934
3935 /* Likewise for watchpoints on local expressions. */
3936 if (w->exp_valid_block != NULL)
3937 delete_breakpoint (b);
3938 else if (context == inf_starting)
3939 {
3940 /* Reset val field to force reread of starting value in
3941 insert_breakpoints. */
3942 if (w->val)
3943 value_free (w->val);
3944 w->val = NULL;
3945 w->val_valid = 0;
3946 }
3947 }
3948 break;
3949 default:
3950 break;
3951 }
3952 }
3953
3954 /* Get rid of the moribund locations. */
3955 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3956 decref_bp_location (&bl);
3957 VEC_free (bp_location_p, moribund_locations);
3958 }
3959
3960 /* These functions concern about actual breakpoints inserted in the
3961 target --- to e.g. check if we need to do decr_pc adjustment or if
3962 we need to hop over the bkpt --- so we check for address space
3963 match, not program space. */
3964
3965 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3966 exists at PC. It returns ordinary_breakpoint_here if it's an
3967 ordinary breakpoint, or permanent_breakpoint_here if it's a
3968 permanent breakpoint.
3969 - When continuing from a location with an ordinary breakpoint, we
3970 actually single step once before calling insert_breakpoints.
3971 - When continuing from a location with a permanent breakpoint, we
3972 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3973 the target, to advance the PC past the breakpoint. */
3974
3975 enum breakpoint_here
3976 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3977 {
3978 struct bp_location *bl, **blp_tmp;
3979 int any_breakpoint_here = 0;
3980
3981 ALL_BP_LOCATIONS (bl, blp_tmp)
3982 {
3983 if (bl->loc_type != bp_loc_software_breakpoint
3984 && bl->loc_type != bp_loc_hardware_breakpoint)
3985 continue;
3986
3987 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3988 if ((breakpoint_enabled (bl->owner)
3989 || bl->owner->enable_state == bp_permanent)
3990 && breakpoint_location_address_match (bl, aspace, pc))
3991 {
3992 if (overlay_debugging
3993 && section_is_overlay (bl->section)
3994 && !section_is_mapped (bl->section))
3995 continue; /* unmapped overlay -- can't be a match */
3996 else if (bl->owner->enable_state == bp_permanent)
3997 return permanent_breakpoint_here;
3998 else
3999 any_breakpoint_here = 1;
4000 }
4001 }
4002
4003 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
4004 }
4005
4006 /* Return true if there's a moribund breakpoint at PC. */
4007
4008 int
4009 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4010 {
4011 struct bp_location *loc;
4012 int ix;
4013
4014 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4015 if (breakpoint_location_address_match (loc, aspace, pc))
4016 return 1;
4017
4018 return 0;
4019 }
4020
4021 /* Returns non-zero if there's a breakpoint inserted at PC, which is
4022 inserted using regular breakpoint_chain / bp_location array
4023 mechanism. This does not check for single-step breakpoints, which
4024 are inserted and removed using direct target manipulation. */
4025
4026 int
4027 regular_breakpoint_inserted_here_p (struct address_space *aspace,
4028 CORE_ADDR pc)
4029 {
4030 struct bp_location *bl, **blp_tmp;
4031
4032 ALL_BP_LOCATIONS (bl, blp_tmp)
4033 {
4034 if (bl->loc_type != bp_loc_software_breakpoint
4035 && bl->loc_type != bp_loc_hardware_breakpoint)
4036 continue;
4037
4038 if (bl->inserted
4039 && breakpoint_location_address_match (bl, aspace, pc))
4040 {
4041 if (overlay_debugging
4042 && section_is_overlay (bl->section)
4043 && !section_is_mapped (bl->section))
4044 continue; /* unmapped overlay -- can't be a match */
4045 else
4046 return 1;
4047 }
4048 }
4049 return 0;
4050 }
4051
4052 /* Returns non-zero iff there's either regular breakpoint
4053 or a single step breakpoint inserted at PC. */
4054
4055 int
4056 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4057 {
4058 if (regular_breakpoint_inserted_here_p (aspace, pc))
4059 return 1;
4060
4061 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4062 return 1;
4063
4064 return 0;
4065 }
4066
4067 /* This function returns non-zero iff there is a software breakpoint
4068 inserted at PC. */
4069
4070 int
4071 software_breakpoint_inserted_here_p (struct address_space *aspace,
4072 CORE_ADDR pc)
4073 {
4074 struct bp_location *bl, **blp_tmp;
4075
4076 ALL_BP_LOCATIONS (bl, blp_tmp)
4077 {
4078 if (bl->loc_type != bp_loc_software_breakpoint)
4079 continue;
4080
4081 if (bl->inserted
4082 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4083 aspace, pc))
4084 {
4085 if (overlay_debugging
4086 && section_is_overlay (bl->section)
4087 && !section_is_mapped (bl->section))
4088 continue; /* unmapped overlay -- can't be a match */
4089 else
4090 return 1;
4091 }
4092 }
4093
4094 /* Also check for software single-step breakpoints. */
4095 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4096 return 1;
4097
4098 return 0;
4099 }
4100
4101 int
4102 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4103 CORE_ADDR addr, ULONGEST len)
4104 {
4105 struct breakpoint *bpt;
4106
4107 ALL_BREAKPOINTS (bpt)
4108 {
4109 struct bp_location *loc;
4110
4111 if (bpt->type != bp_hardware_watchpoint
4112 && bpt->type != bp_access_watchpoint)
4113 continue;
4114
4115 if (!breakpoint_enabled (bpt))
4116 continue;
4117
4118 for (loc = bpt->loc; loc; loc = loc->next)
4119 if (loc->pspace->aspace == aspace && loc->inserted)
4120 {
4121 CORE_ADDR l, h;
4122
4123 /* Check for intersection. */
4124 l = max (loc->address, addr);
4125 h = min (loc->address + loc->length, addr + len);
4126 if (l < h)
4127 return 1;
4128 }
4129 }
4130 return 0;
4131 }
4132
4133 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4134 PC is valid for process/thread PTID. */
4135
4136 int
4137 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4138 ptid_t ptid)
4139 {
4140 struct bp_location *bl, **blp_tmp;
4141 /* The thread and task IDs associated to PTID, computed lazily. */
4142 int thread = -1;
4143 int task = 0;
4144
4145 ALL_BP_LOCATIONS (bl, blp_tmp)
4146 {
4147 if (bl->loc_type != bp_loc_software_breakpoint
4148 && bl->loc_type != bp_loc_hardware_breakpoint)
4149 continue;
4150
4151 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4152 if (!breakpoint_enabled (bl->owner)
4153 && bl->owner->enable_state != bp_permanent)
4154 continue;
4155
4156 if (!breakpoint_location_address_match (bl, aspace, pc))
4157 continue;
4158
4159 if (bl->owner->thread != -1)
4160 {
4161 /* This is a thread-specific breakpoint. Check that ptid
4162 matches that thread. If thread hasn't been computed yet,
4163 it is now time to do so. */
4164 if (thread == -1)
4165 thread = pid_to_thread_id (ptid);
4166 if (bl->owner->thread != thread)
4167 continue;
4168 }
4169
4170 if (bl->owner->task != 0)
4171 {
4172 /* This is a task-specific breakpoint. Check that ptid
4173 matches that task. If task hasn't been computed yet,
4174 it is now time to do so. */
4175 if (task == 0)
4176 task = ada_get_task_number (ptid);
4177 if (bl->owner->task != task)
4178 continue;
4179 }
4180
4181 if (overlay_debugging
4182 && section_is_overlay (bl->section)
4183 && !section_is_mapped (bl->section))
4184 continue; /* unmapped overlay -- can't be a match */
4185
4186 return 1;
4187 }
4188
4189 return 0;
4190 }
4191 \f
4192
4193 /* bpstat stuff. External routines' interfaces are documented
4194 in breakpoint.h. */
4195
4196 int
4197 is_catchpoint (struct breakpoint *ep)
4198 {
4199 return (ep->type == bp_catchpoint);
4200 }
4201
4202 /* Frees any storage that is part of a bpstat. Does not walk the
4203 'next' chain. */
4204
4205 static void
4206 bpstat_free (bpstat bs)
4207 {
4208 if (bs->old_val != NULL)
4209 value_free (bs->old_val);
4210 decref_counted_command_line (&bs->commands);
4211 decref_bp_location (&bs->bp_location_at);
4212 xfree (bs);
4213 }
4214
4215 /* Clear a bpstat so that it says we are not at any breakpoint.
4216 Also free any storage that is part of a bpstat. */
4217
4218 void
4219 bpstat_clear (bpstat *bsp)
4220 {
4221 bpstat p;
4222 bpstat q;
4223
4224 if (bsp == 0)
4225 return;
4226 p = *bsp;
4227 while (p != NULL)
4228 {
4229 q = p->next;
4230 bpstat_free (p);
4231 p = q;
4232 }
4233 *bsp = NULL;
4234 }
4235
4236 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4237 is part of the bpstat is copied as well. */
4238
4239 bpstat
4240 bpstat_copy (bpstat bs)
4241 {
4242 bpstat p = NULL;
4243 bpstat tmp;
4244 bpstat retval = NULL;
4245
4246 if (bs == NULL)
4247 return bs;
4248
4249 for (; bs != NULL; bs = bs->next)
4250 {
4251 tmp = (bpstat) xmalloc (sizeof (*tmp));
4252 memcpy (tmp, bs, sizeof (*tmp));
4253 incref_counted_command_line (tmp->commands);
4254 incref_bp_location (tmp->bp_location_at);
4255 if (bs->old_val != NULL)
4256 {
4257 tmp->old_val = value_copy (bs->old_val);
4258 release_value (tmp->old_val);
4259 }
4260
4261 if (p == NULL)
4262 /* This is the first thing in the chain. */
4263 retval = tmp;
4264 else
4265 p->next = tmp;
4266 p = tmp;
4267 }
4268 p->next = NULL;
4269 return retval;
4270 }
4271
4272 /* Find the bpstat associated with this breakpoint. */
4273
4274 bpstat
4275 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4276 {
4277 if (bsp == NULL)
4278 return NULL;
4279
4280 for (; bsp != NULL; bsp = bsp->next)
4281 {
4282 if (bsp->breakpoint_at == breakpoint)
4283 return bsp;
4284 }
4285 return NULL;
4286 }
4287
4288 /* See breakpoint.h. */
4289
4290 int
4291 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4292 {
4293 for (; bsp != NULL; bsp = bsp->next)
4294 {
4295 if (bsp->breakpoint_at == NULL)
4296 {
4297 /* A moribund location can never explain a signal other than
4298 GDB_SIGNAL_TRAP. */
4299 if (sig == GDB_SIGNAL_TRAP)
4300 return 1;
4301 }
4302 else
4303 {
4304 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4305 sig))
4306 return 1;
4307 }
4308 }
4309
4310 return 0;
4311 }
4312
4313 /* Put in *NUM the breakpoint number of the first breakpoint we are
4314 stopped at. *BSP upon return is a bpstat which points to the
4315 remaining breakpoints stopped at (but which is not guaranteed to be
4316 good for anything but further calls to bpstat_num).
4317
4318 Return 0 if passed a bpstat which does not indicate any breakpoints.
4319 Return -1 if stopped at a breakpoint that has been deleted since
4320 we set it.
4321 Return 1 otherwise. */
4322
4323 int
4324 bpstat_num (bpstat *bsp, int *num)
4325 {
4326 struct breakpoint *b;
4327
4328 if ((*bsp) == NULL)
4329 return 0; /* No more breakpoint values */
4330
4331 /* We assume we'll never have several bpstats that correspond to a
4332 single breakpoint -- otherwise, this function might return the
4333 same number more than once and this will look ugly. */
4334 b = (*bsp)->breakpoint_at;
4335 *bsp = (*bsp)->next;
4336 if (b == NULL)
4337 return -1; /* breakpoint that's been deleted since */
4338
4339 *num = b->number; /* We have its number */
4340 return 1;
4341 }
4342
4343 /* See breakpoint.h. */
4344
4345 void
4346 bpstat_clear_actions (void)
4347 {
4348 struct thread_info *tp;
4349 bpstat bs;
4350
4351 if (ptid_equal (inferior_ptid, null_ptid))
4352 return;
4353
4354 tp = find_thread_ptid (inferior_ptid);
4355 if (tp == NULL)
4356 return;
4357
4358 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4359 {
4360 decref_counted_command_line (&bs->commands);
4361
4362 if (bs->old_val != NULL)
4363 {
4364 value_free (bs->old_val);
4365 bs->old_val = NULL;
4366 }
4367 }
4368 }
4369
4370 /* Called when a command is about to proceed the inferior. */
4371
4372 static void
4373 breakpoint_about_to_proceed (void)
4374 {
4375 if (!ptid_equal (inferior_ptid, null_ptid))
4376 {
4377 struct thread_info *tp = inferior_thread ();
4378
4379 /* Allow inferior function calls in breakpoint commands to not
4380 interrupt the command list. When the call finishes
4381 successfully, the inferior will be standing at the same
4382 breakpoint as if nothing happened. */
4383 if (tp->control.in_infcall)
4384 return;
4385 }
4386
4387 breakpoint_proceeded = 1;
4388 }
4389
4390 /* Stub for cleaning up our state if we error-out of a breakpoint
4391 command. */
4392 static void
4393 cleanup_executing_breakpoints (void *ignore)
4394 {
4395 executing_breakpoint_commands = 0;
4396 }
4397
4398 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4399 or its equivalent. */
4400
4401 static int
4402 command_line_is_silent (struct command_line *cmd)
4403 {
4404 return cmd && (strcmp ("silent", cmd->line) == 0
4405 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4406 }
4407
4408 /* Execute all the commands associated with all the breakpoints at
4409 this location. Any of these commands could cause the process to
4410 proceed beyond this point, etc. We look out for such changes by
4411 checking the global "breakpoint_proceeded" after each command.
4412
4413 Returns true if a breakpoint command resumed the inferior. In that
4414 case, it is the caller's responsibility to recall it again with the
4415 bpstat of the current thread. */
4416
4417 static int
4418 bpstat_do_actions_1 (bpstat *bsp)
4419 {
4420 bpstat bs;
4421 struct cleanup *old_chain;
4422 int again = 0;
4423
4424 /* Avoid endless recursion if a `source' command is contained
4425 in bs->commands. */
4426 if (executing_breakpoint_commands)
4427 return 0;
4428
4429 executing_breakpoint_commands = 1;
4430 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4431
4432 prevent_dont_repeat ();
4433
4434 /* This pointer will iterate over the list of bpstat's. */
4435 bs = *bsp;
4436
4437 breakpoint_proceeded = 0;
4438 for (; bs != NULL; bs = bs->next)
4439 {
4440 struct counted_command_line *ccmd;
4441 struct command_line *cmd;
4442 struct cleanup *this_cmd_tree_chain;
4443
4444 /* Take ownership of the BSP's command tree, if it has one.
4445
4446 The command tree could legitimately contain commands like
4447 'step' and 'next', which call clear_proceed_status, which
4448 frees stop_bpstat's command tree. To make sure this doesn't
4449 free the tree we're executing out from under us, we need to
4450 take ownership of the tree ourselves. Since a given bpstat's
4451 commands are only executed once, we don't need to copy it; we
4452 can clear the pointer in the bpstat, and make sure we free
4453 the tree when we're done. */
4454 ccmd = bs->commands;
4455 bs->commands = NULL;
4456 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4457 cmd = ccmd ? ccmd->commands : NULL;
4458 if (command_line_is_silent (cmd))
4459 {
4460 /* The action has been already done by bpstat_stop_status. */
4461 cmd = cmd->next;
4462 }
4463
4464 while (cmd != NULL)
4465 {
4466 execute_control_command (cmd);
4467
4468 if (breakpoint_proceeded)
4469 break;
4470 else
4471 cmd = cmd->next;
4472 }
4473
4474 /* We can free this command tree now. */
4475 do_cleanups (this_cmd_tree_chain);
4476
4477 if (breakpoint_proceeded)
4478 {
4479 if (target_can_async_p ())
4480 /* If we are in async mode, then the target might be still
4481 running, not stopped at any breakpoint, so nothing for
4482 us to do here -- just return to the event loop. */
4483 ;
4484 else
4485 /* In sync mode, when execute_control_command returns
4486 we're already standing on the next breakpoint.
4487 Breakpoint commands for that stop were not run, since
4488 execute_command does not run breakpoint commands --
4489 only command_line_handler does, but that one is not
4490 involved in execution of breakpoint commands. So, we
4491 can now execute breakpoint commands. It should be
4492 noted that making execute_command do bpstat actions is
4493 not an option -- in this case we'll have recursive
4494 invocation of bpstat for each breakpoint with a
4495 command, and can easily blow up GDB stack. Instead, we
4496 return true, which will trigger the caller to recall us
4497 with the new stop_bpstat. */
4498 again = 1;
4499 break;
4500 }
4501 }
4502 do_cleanups (old_chain);
4503 return again;
4504 }
4505
4506 void
4507 bpstat_do_actions (void)
4508 {
4509 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4510
4511 /* Do any commands attached to breakpoint we are stopped at. */
4512 while (!ptid_equal (inferior_ptid, null_ptid)
4513 && target_has_execution
4514 && !is_exited (inferior_ptid)
4515 && !is_executing (inferior_ptid))
4516 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4517 and only return when it is stopped at the next breakpoint, we
4518 keep doing breakpoint actions until it returns false to
4519 indicate the inferior was not resumed. */
4520 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4521 break;
4522
4523 discard_cleanups (cleanup_if_error);
4524 }
4525
4526 /* Print out the (old or new) value associated with a watchpoint. */
4527
4528 static void
4529 watchpoint_value_print (struct value *val, struct ui_file *stream)
4530 {
4531 if (val == NULL)
4532 fprintf_unfiltered (stream, _("<unreadable>"));
4533 else
4534 {
4535 struct value_print_options opts;
4536 get_user_print_options (&opts);
4537 value_print (val, stream, &opts);
4538 }
4539 }
4540
4541 /* Generic routine for printing messages indicating why we
4542 stopped. The behavior of this function depends on the value
4543 'print_it' in the bpstat structure. Under some circumstances we
4544 may decide not to print anything here and delegate the task to
4545 normal_stop(). */
4546
4547 static enum print_stop_action
4548 print_bp_stop_message (bpstat bs)
4549 {
4550 switch (bs->print_it)
4551 {
4552 case print_it_noop:
4553 /* Nothing should be printed for this bpstat entry. */
4554 return PRINT_UNKNOWN;
4555 break;
4556
4557 case print_it_done:
4558 /* We still want to print the frame, but we already printed the
4559 relevant messages. */
4560 return PRINT_SRC_AND_LOC;
4561 break;
4562
4563 case print_it_normal:
4564 {
4565 struct breakpoint *b = bs->breakpoint_at;
4566
4567 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4568 which has since been deleted. */
4569 if (b == NULL)
4570 return PRINT_UNKNOWN;
4571
4572 /* Normal case. Call the breakpoint's print_it method. */
4573 return b->ops->print_it (bs);
4574 }
4575 break;
4576
4577 default:
4578 internal_error (__FILE__, __LINE__,
4579 _("print_bp_stop_message: unrecognized enum value"));
4580 break;
4581 }
4582 }
4583
4584 /* A helper function that prints a shared library stopped event. */
4585
4586 static void
4587 print_solib_event (int is_catchpoint)
4588 {
4589 int any_deleted
4590 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4591 int any_added
4592 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4593
4594 if (!is_catchpoint)
4595 {
4596 if (any_added || any_deleted)
4597 ui_out_text (current_uiout,
4598 _("Stopped due to shared library event:\n"));
4599 else
4600 ui_out_text (current_uiout,
4601 _("Stopped due to shared library event (no "
4602 "libraries added or removed)\n"));
4603 }
4604
4605 if (ui_out_is_mi_like_p (current_uiout))
4606 ui_out_field_string (current_uiout, "reason",
4607 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4608
4609 if (any_deleted)
4610 {
4611 struct cleanup *cleanup;
4612 char *name;
4613 int ix;
4614
4615 ui_out_text (current_uiout, _(" Inferior unloaded "));
4616 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4617 "removed");
4618 for (ix = 0;
4619 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4620 ix, name);
4621 ++ix)
4622 {
4623 if (ix > 0)
4624 ui_out_text (current_uiout, " ");
4625 ui_out_field_string (current_uiout, "library", name);
4626 ui_out_text (current_uiout, "\n");
4627 }
4628
4629 do_cleanups (cleanup);
4630 }
4631
4632 if (any_added)
4633 {
4634 struct so_list *iter;
4635 int ix;
4636 struct cleanup *cleanup;
4637
4638 ui_out_text (current_uiout, _(" Inferior loaded "));
4639 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4640 "added");
4641 for (ix = 0;
4642 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4643 ix, iter);
4644 ++ix)
4645 {
4646 if (ix > 0)
4647 ui_out_text (current_uiout, " ");
4648 ui_out_field_string (current_uiout, "library", iter->so_name);
4649 ui_out_text (current_uiout, "\n");
4650 }
4651
4652 do_cleanups (cleanup);
4653 }
4654 }
4655
4656 /* Print a message indicating what happened. This is called from
4657 normal_stop(). The input to this routine is the head of the bpstat
4658 list - a list of the eventpoints that caused this stop. KIND is
4659 the target_waitkind for the stopping event. This
4660 routine calls the generic print routine for printing a message
4661 about reasons for stopping. This will print (for example) the
4662 "Breakpoint n," part of the output. The return value of this
4663 routine is one of:
4664
4665 PRINT_UNKNOWN: Means we printed nothing.
4666 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4667 code to print the location. An example is
4668 "Breakpoint 1, " which should be followed by
4669 the location.
4670 PRINT_SRC_ONLY: Means we printed something, but there is no need
4671 to also print the location part of the message.
4672 An example is the catch/throw messages, which
4673 don't require a location appended to the end.
4674 PRINT_NOTHING: We have done some printing and we don't need any
4675 further info to be printed. */
4676
4677 enum print_stop_action
4678 bpstat_print (bpstat bs, int kind)
4679 {
4680 int val;
4681
4682 /* Maybe another breakpoint in the chain caused us to stop.
4683 (Currently all watchpoints go on the bpstat whether hit or not.
4684 That probably could (should) be changed, provided care is taken
4685 with respect to bpstat_explains_signal). */
4686 for (; bs; bs = bs->next)
4687 {
4688 val = print_bp_stop_message (bs);
4689 if (val == PRINT_SRC_ONLY
4690 || val == PRINT_SRC_AND_LOC
4691 || val == PRINT_NOTHING)
4692 return val;
4693 }
4694
4695 /* If we had hit a shared library event breakpoint,
4696 print_bp_stop_message would print out this message. If we hit an
4697 OS-level shared library event, do the same thing. */
4698 if (kind == TARGET_WAITKIND_LOADED)
4699 {
4700 print_solib_event (0);
4701 return PRINT_NOTHING;
4702 }
4703
4704 /* We reached the end of the chain, or we got a null BS to start
4705 with and nothing was printed. */
4706 return PRINT_UNKNOWN;
4707 }
4708
4709 /* Evaluate the expression EXP and return 1 if value is zero.
4710 This returns the inverse of the condition because it is called
4711 from catch_errors which returns 0 if an exception happened, and if an
4712 exception happens we want execution to stop.
4713 The argument is a "struct expression *" that has been cast to a
4714 "void *" to make it pass through catch_errors. */
4715
4716 static int
4717 breakpoint_cond_eval (void *exp)
4718 {
4719 struct value *mark = value_mark ();
4720 int i = !value_true (evaluate_expression ((struct expression *) exp));
4721
4722 value_free_to_mark (mark);
4723 return i;
4724 }
4725
4726 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4727
4728 static bpstat
4729 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4730 {
4731 bpstat bs;
4732
4733 bs = (bpstat) xmalloc (sizeof (*bs));
4734 bs->next = NULL;
4735 **bs_link_pointer = bs;
4736 *bs_link_pointer = &bs->next;
4737 bs->breakpoint_at = bl->owner;
4738 bs->bp_location_at = bl;
4739 incref_bp_location (bl);
4740 /* If the condition is false, etc., don't do the commands. */
4741 bs->commands = NULL;
4742 bs->old_val = NULL;
4743 bs->print_it = print_it_normal;
4744 return bs;
4745 }
4746 \f
4747 /* The target has stopped with waitstatus WS. Check if any hardware
4748 watchpoints have triggered, according to the target. */
4749
4750 int
4751 watchpoints_triggered (struct target_waitstatus *ws)
4752 {
4753 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4754 CORE_ADDR addr;
4755 struct breakpoint *b;
4756
4757 if (!stopped_by_watchpoint)
4758 {
4759 /* We were not stopped by a watchpoint. Mark all watchpoints
4760 as not triggered. */
4761 ALL_BREAKPOINTS (b)
4762 if (is_hardware_watchpoint (b))
4763 {
4764 struct watchpoint *w = (struct watchpoint *) b;
4765
4766 w->watchpoint_triggered = watch_triggered_no;
4767 }
4768
4769 return 0;
4770 }
4771
4772 if (!target_stopped_data_address (&current_target, &addr))
4773 {
4774 /* We were stopped by a watchpoint, but we don't know where.
4775 Mark all watchpoints as unknown. */
4776 ALL_BREAKPOINTS (b)
4777 if (is_hardware_watchpoint (b))
4778 {
4779 struct watchpoint *w = (struct watchpoint *) b;
4780
4781 w->watchpoint_triggered = watch_triggered_unknown;
4782 }
4783
4784 return 1;
4785 }
4786
4787 /* The target could report the data address. Mark watchpoints
4788 affected by this data address as triggered, and all others as not
4789 triggered. */
4790
4791 ALL_BREAKPOINTS (b)
4792 if (is_hardware_watchpoint (b))
4793 {
4794 struct watchpoint *w = (struct watchpoint *) b;
4795 struct bp_location *loc;
4796
4797 w->watchpoint_triggered = watch_triggered_no;
4798 for (loc = b->loc; loc; loc = loc->next)
4799 {
4800 if (is_masked_watchpoint (b))
4801 {
4802 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4803 CORE_ADDR start = loc->address & w->hw_wp_mask;
4804
4805 if (newaddr == start)
4806 {
4807 w->watchpoint_triggered = watch_triggered_yes;
4808 break;
4809 }
4810 }
4811 /* Exact match not required. Within range is sufficient. */
4812 else if (target_watchpoint_addr_within_range (&current_target,
4813 addr, loc->address,
4814 loc->length))
4815 {
4816 w->watchpoint_triggered = watch_triggered_yes;
4817 break;
4818 }
4819 }
4820 }
4821
4822 return 1;
4823 }
4824
4825 /* Possible return values for watchpoint_check (this can't be an enum
4826 because of check_errors). */
4827 /* The watchpoint has been deleted. */
4828 #define WP_DELETED 1
4829 /* The value has changed. */
4830 #define WP_VALUE_CHANGED 2
4831 /* The value has not changed. */
4832 #define WP_VALUE_NOT_CHANGED 3
4833 /* Ignore this watchpoint, no matter if the value changed or not. */
4834 #define WP_IGNORE 4
4835
4836 #define BP_TEMPFLAG 1
4837 #define BP_HARDWAREFLAG 2
4838
4839 /* Evaluate watchpoint condition expression and check if its value
4840 changed.
4841
4842 P should be a pointer to struct bpstat, but is defined as a void *
4843 in order for this function to be usable with catch_errors. */
4844
4845 static int
4846 watchpoint_check (void *p)
4847 {
4848 bpstat bs = (bpstat) p;
4849 struct watchpoint *b;
4850 struct frame_info *fr;
4851 int within_current_scope;
4852
4853 /* BS is built from an existing struct breakpoint. */
4854 gdb_assert (bs->breakpoint_at != NULL);
4855 b = (struct watchpoint *) bs->breakpoint_at;
4856
4857 /* If this is a local watchpoint, we only want to check if the
4858 watchpoint frame is in scope if the current thread is the thread
4859 that was used to create the watchpoint. */
4860 if (!watchpoint_in_thread_scope (b))
4861 return WP_IGNORE;
4862
4863 if (b->exp_valid_block == NULL)
4864 within_current_scope = 1;
4865 else
4866 {
4867 struct frame_info *frame = get_current_frame ();
4868 struct gdbarch *frame_arch = get_frame_arch (frame);
4869 CORE_ADDR frame_pc = get_frame_pc (frame);
4870
4871 /* in_function_epilogue_p() returns a non-zero value if we're
4872 still in the function but the stack frame has already been
4873 invalidated. Since we can't rely on the values of local
4874 variables after the stack has been destroyed, we are treating
4875 the watchpoint in that state as `not changed' without further
4876 checking. Don't mark watchpoints as changed if the current
4877 frame is in an epilogue - even if they are in some other
4878 frame, our view of the stack is likely to be wrong and
4879 frame_find_by_id could error out. */
4880 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4881 return WP_IGNORE;
4882
4883 fr = frame_find_by_id (b->watchpoint_frame);
4884 within_current_scope = (fr != NULL);
4885
4886 /* If we've gotten confused in the unwinder, we might have
4887 returned a frame that can't describe this variable. */
4888 if (within_current_scope)
4889 {
4890 struct symbol *function;
4891
4892 function = get_frame_function (fr);
4893 if (function == NULL
4894 || !contained_in (b->exp_valid_block,
4895 SYMBOL_BLOCK_VALUE (function)))
4896 within_current_scope = 0;
4897 }
4898
4899 if (within_current_scope)
4900 /* If we end up stopping, the current frame will get selected
4901 in normal_stop. So this call to select_frame won't affect
4902 the user. */
4903 select_frame (fr);
4904 }
4905
4906 if (within_current_scope)
4907 {
4908 /* We use value_{,free_to_}mark because it could be a *long*
4909 time before we return to the command level and call
4910 free_all_values. We can't call free_all_values because we
4911 might be in the middle of evaluating a function call. */
4912
4913 int pc = 0;
4914 struct value *mark;
4915 struct value *new_val;
4916
4917 if (is_masked_watchpoint (&b->base))
4918 /* Since we don't know the exact trigger address (from
4919 stopped_data_address), just tell the user we've triggered
4920 a mask watchpoint. */
4921 return WP_VALUE_CHANGED;
4922
4923 mark = value_mark ();
4924 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
4925
4926 /* We use value_equal_contents instead of value_equal because
4927 the latter coerces an array to a pointer, thus comparing just
4928 the address of the array instead of its contents. This is
4929 not what we want. */
4930 if ((b->val != NULL) != (new_val != NULL)
4931 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4932 {
4933 if (new_val != NULL)
4934 {
4935 release_value (new_val);
4936 value_free_to_mark (mark);
4937 }
4938 bs->old_val = b->val;
4939 b->val = new_val;
4940 b->val_valid = 1;
4941 return WP_VALUE_CHANGED;
4942 }
4943 else
4944 {
4945 /* Nothing changed. */
4946 value_free_to_mark (mark);
4947 return WP_VALUE_NOT_CHANGED;
4948 }
4949 }
4950 else
4951 {
4952 struct ui_out *uiout = current_uiout;
4953
4954 /* This seems like the only logical thing to do because
4955 if we temporarily ignored the watchpoint, then when
4956 we reenter the block in which it is valid it contains
4957 garbage (in the case of a function, it may have two
4958 garbage values, one before and one after the prologue).
4959 So we can't even detect the first assignment to it and
4960 watch after that (since the garbage may or may not equal
4961 the first value assigned). */
4962 /* We print all the stop information in
4963 breakpoint_ops->print_it, but in this case, by the time we
4964 call breakpoint_ops->print_it this bp will be deleted
4965 already. So we have no choice but print the information
4966 here. */
4967 if (ui_out_is_mi_like_p (uiout))
4968 ui_out_field_string
4969 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4970 ui_out_text (uiout, "\nWatchpoint ");
4971 ui_out_field_int (uiout, "wpnum", b->base.number);
4972 ui_out_text (uiout,
4973 " deleted because the program has left the block in\n\
4974 which its expression is valid.\n");
4975
4976 /* Make sure the watchpoint's commands aren't executed. */
4977 decref_counted_command_line (&b->base.commands);
4978 watchpoint_del_at_next_stop (b);
4979
4980 return WP_DELETED;
4981 }
4982 }
4983
4984 /* Return true if it looks like target has stopped due to hitting
4985 breakpoint location BL. This function does not check if we should
4986 stop, only if BL explains the stop. */
4987
4988 static int
4989 bpstat_check_location (const struct bp_location *bl,
4990 struct address_space *aspace, CORE_ADDR bp_addr,
4991 const struct target_waitstatus *ws)
4992 {
4993 struct breakpoint *b = bl->owner;
4994
4995 /* BL is from an existing breakpoint. */
4996 gdb_assert (b != NULL);
4997
4998 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4999 }
5000
5001 /* Determine if the watched values have actually changed, and we
5002 should stop. If not, set BS->stop to 0. */
5003
5004 static void
5005 bpstat_check_watchpoint (bpstat bs)
5006 {
5007 const struct bp_location *bl;
5008 struct watchpoint *b;
5009
5010 /* BS is built for existing struct breakpoint. */
5011 bl = bs->bp_location_at;
5012 gdb_assert (bl != NULL);
5013 b = (struct watchpoint *) bs->breakpoint_at;
5014 gdb_assert (b != NULL);
5015
5016 {
5017 int must_check_value = 0;
5018
5019 if (b->base.type == bp_watchpoint)
5020 /* For a software watchpoint, we must always check the
5021 watched value. */
5022 must_check_value = 1;
5023 else if (b->watchpoint_triggered == watch_triggered_yes)
5024 /* We have a hardware watchpoint (read, write, or access)
5025 and the target earlier reported an address watched by
5026 this watchpoint. */
5027 must_check_value = 1;
5028 else if (b->watchpoint_triggered == watch_triggered_unknown
5029 && b->base.type == bp_hardware_watchpoint)
5030 /* We were stopped by a hardware watchpoint, but the target could
5031 not report the data address. We must check the watchpoint's
5032 value. Access and read watchpoints are out of luck; without
5033 a data address, we can't figure it out. */
5034 must_check_value = 1;
5035
5036 if (must_check_value)
5037 {
5038 char *message
5039 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5040 b->base.number);
5041 struct cleanup *cleanups = make_cleanup (xfree, message);
5042 int e = catch_errors (watchpoint_check, bs, message,
5043 RETURN_MASK_ALL);
5044 do_cleanups (cleanups);
5045 switch (e)
5046 {
5047 case WP_DELETED:
5048 /* We've already printed what needs to be printed. */
5049 bs->print_it = print_it_done;
5050 /* Stop. */
5051 break;
5052 case WP_IGNORE:
5053 bs->print_it = print_it_noop;
5054 bs->stop = 0;
5055 break;
5056 case WP_VALUE_CHANGED:
5057 if (b->base.type == bp_read_watchpoint)
5058 {
5059 /* There are two cases to consider here:
5060
5061 1. We're watching the triggered memory for reads.
5062 In that case, trust the target, and always report
5063 the watchpoint hit to the user. Even though
5064 reads don't cause value changes, the value may
5065 have changed since the last time it was read, and
5066 since we're not trapping writes, we will not see
5067 those, and as such we should ignore our notion of
5068 old value.
5069
5070 2. We're watching the triggered memory for both
5071 reads and writes. There are two ways this may
5072 happen:
5073
5074 2.1. This is a target that can't break on data
5075 reads only, but can break on accesses (reads or
5076 writes), such as e.g., x86. We detect this case
5077 at the time we try to insert read watchpoints.
5078
5079 2.2. Otherwise, the target supports read
5080 watchpoints, but, the user set an access or write
5081 watchpoint watching the same memory as this read
5082 watchpoint.
5083
5084 If we're watching memory writes as well as reads,
5085 ignore watchpoint hits when we find that the
5086 value hasn't changed, as reads don't cause
5087 changes. This still gives false positives when
5088 the program writes the same value to memory as
5089 what there was already in memory (we will confuse
5090 it for a read), but it's much better than
5091 nothing. */
5092
5093 int other_write_watchpoint = 0;
5094
5095 if (bl->watchpoint_type == hw_read)
5096 {
5097 struct breakpoint *other_b;
5098
5099 ALL_BREAKPOINTS (other_b)
5100 if (other_b->type == bp_hardware_watchpoint
5101 || other_b->type == bp_access_watchpoint)
5102 {
5103 struct watchpoint *other_w =
5104 (struct watchpoint *) other_b;
5105
5106 if (other_w->watchpoint_triggered
5107 == watch_triggered_yes)
5108 {
5109 other_write_watchpoint = 1;
5110 break;
5111 }
5112 }
5113 }
5114
5115 if (other_write_watchpoint
5116 || bl->watchpoint_type == hw_access)
5117 {
5118 /* We're watching the same memory for writes,
5119 and the value changed since the last time we
5120 updated it, so this trap must be for a write.
5121 Ignore it. */
5122 bs->print_it = print_it_noop;
5123 bs->stop = 0;
5124 }
5125 }
5126 break;
5127 case WP_VALUE_NOT_CHANGED:
5128 if (b->base.type == bp_hardware_watchpoint
5129 || b->base.type == bp_watchpoint)
5130 {
5131 /* Don't stop: write watchpoints shouldn't fire if
5132 the value hasn't changed. */
5133 bs->print_it = print_it_noop;
5134 bs->stop = 0;
5135 }
5136 /* Stop. */
5137 break;
5138 default:
5139 /* Can't happen. */
5140 case 0:
5141 /* Error from catch_errors. */
5142 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5143 watchpoint_del_at_next_stop (b);
5144 /* We've already printed what needs to be printed. */
5145 bs->print_it = print_it_done;
5146 break;
5147 }
5148 }
5149 else /* must_check_value == 0 */
5150 {
5151 /* This is a case where some watchpoint(s) triggered, but
5152 not at the address of this watchpoint, or else no
5153 watchpoint triggered after all. So don't print
5154 anything for this watchpoint. */
5155 bs->print_it = print_it_noop;
5156 bs->stop = 0;
5157 }
5158 }
5159 }
5160
5161 /* For breakpoints that are currently marked as telling gdb to stop,
5162 check conditions (condition proper, frame, thread and ignore count)
5163 of breakpoint referred to by BS. If we should not stop for this
5164 breakpoint, set BS->stop to 0. */
5165
5166 static void
5167 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5168 {
5169 const struct bp_location *bl;
5170 struct breakpoint *b;
5171 int value_is_zero = 0;
5172 struct expression *cond;
5173
5174 gdb_assert (bs->stop);
5175
5176 /* BS is built for existing struct breakpoint. */
5177 bl = bs->bp_location_at;
5178 gdb_assert (bl != NULL);
5179 b = bs->breakpoint_at;
5180 gdb_assert (b != NULL);
5181
5182 /* Even if the target evaluated the condition on its end and notified GDB, we
5183 need to do so again since GDB does not know if we stopped due to a
5184 breakpoint or a single step breakpoint. */
5185
5186 if (frame_id_p (b->frame_id)
5187 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5188 {
5189 bs->stop = 0;
5190 return;
5191 }
5192
5193 /* If this is a thread/task-specific breakpoint, don't waste cpu
5194 evaluating the condition if this isn't the specified
5195 thread/task. */
5196 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5197 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5198
5199 {
5200 bs->stop = 0;
5201 return;
5202 }
5203
5204 /* Evaluate extension language breakpoints that have a "stop" method
5205 implemented. */
5206 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5207
5208 if (is_watchpoint (b))
5209 {
5210 struct watchpoint *w = (struct watchpoint *) b;
5211
5212 cond = w->cond_exp;
5213 }
5214 else
5215 cond = bl->cond;
5216
5217 if (cond && b->disposition != disp_del_at_next_stop)
5218 {
5219 int within_current_scope = 1;
5220 struct watchpoint * w;
5221
5222 /* We use value_mark and value_free_to_mark because it could
5223 be a long time before we return to the command level and
5224 call free_all_values. We can't call free_all_values
5225 because we might be in the middle of evaluating a
5226 function call. */
5227 struct value *mark = value_mark ();
5228
5229 if (is_watchpoint (b))
5230 w = (struct watchpoint *) b;
5231 else
5232 w = NULL;
5233
5234 /* Need to select the frame, with all that implies so that
5235 the conditions will have the right context. Because we
5236 use the frame, we will not see an inlined function's
5237 variables when we arrive at a breakpoint at the start
5238 of the inlined function; the current frame will be the
5239 call site. */
5240 if (w == NULL || w->cond_exp_valid_block == NULL)
5241 select_frame (get_current_frame ());
5242 else
5243 {
5244 struct frame_info *frame;
5245
5246 /* For local watchpoint expressions, which particular
5247 instance of a local is being watched matters, so we
5248 keep track of the frame to evaluate the expression
5249 in. To evaluate the condition however, it doesn't
5250 really matter which instantiation of the function
5251 where the condition makes sense triggers the
5252 watchpoint. This allows an expression like "watch
5253 global if q > 10" set in `func', catch writes to
5254 global on all threads that call `func', or catch
5255 writes on all recursive calls of `func' by a single
5256 thread. We simply always evaluate the condition in
5257 the innermost frame that's executing where it makes
5258 sense to evaluate the condition. It seems
5259 intuitive. */
5260 frame = block_innermost_frame (w->cond_exp_valid_block);
5261 if (frame != NULL)
5262 select_frame (frame);
5263 else
5264 within_current_scope = 0;
5265 }
5266 if (within_current_scope)
5267 value_is_zero
5268 = catch_errors (breakpoint_cond_eval, cond,
5269 "Error in testing breakpoint condition:\n",
5270 RETURN_MASK_ALL);
5271 else
5272 {
5273 warning (_("Watchpoint condition cannot be tested "
5274 "in the current scope"));
5275 /* If we failed to set the right context for this
5276 watchpoint, unconditionally report it. */
5277 value_is_zero = 0;
5278 }
5279 /* FIXME-someday, should give breakpoint #. */
5280 value_free_to_mark (mark);
5281 }
5282
5283 if (cond && value_is_zero)
5284 {
5285 bs->stop = 0;
5286 }
5287 else if (b->ignore_count > 0)
5288 {
5289 b->ignore_count--;
5290 bs->stop = 0;
5291 /* Increase the hit count even though we don't stop. */
5292 ++(b->hit_count);
5293 observer_notify_breakpoint_modified (b);
5294 }
5295 }
5296
5297
5298 /* Get a bpstat associated with having just stopped at address
5299 BP_ADDR in thread PTID.
5300
5301 Determine whether we stopped at a breakpoint, etc, or whether we
5302 don't understand this stop. Result is a chain of bpstat's such
5303 that:
5304
5305 if we don't understand the stop, the result is a null pointer.
5306
5307 if we understand why we stopped, the result is not null.
5308
5309 Each element of the chain refers to a particular breakpoint or
5310 watchpoint at which we have stopped. (We may have stopped for
5311 several reasons concurrently.)
5312
5313 Each element of the chain has valid next, breakpoint_at,
5314 commands, FIXME??? fields. */
5315
5316 bpstat
5317 bpstat_stop_status (struct address_space *aspace,
5318 CORE_ADDR bp_addr, ptid_t ptid,
5319 const struct target_waitstatus *ws)
5320 {
5321 struct breakpoint *b = NULL;
5322 struct bp_location *bl;
5323 struct bp_location *loc;
5324 /* First item of allocated bpstat's. */
5325 bpstat bs_head = NULL, *bs_link = &bs_head;
5326 /* Pointer to the last thing in the chain currently. */
5327 bpstat bs;
5328 int ix;
5329 int need_remove_insert;
5330 int removed_any;
5331
5332 /* First, build the bpstat chain with locations that explain a
5333 target stop, while being careful to not set the target running,
5334 as that may invalidate locations (in particular watchpoint
5335 locations are recreated). Resuming will happen here with
5336 breakpoint conditions or watchpoint expressions that include
5337 inferior function calls. */
5338
5339 ALL_BREAKPOINTS (b)
5340 {
5341 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5342 continue;
5343
5344 for (bl = b->loc; bl != NULL; bl = bl->next)
5345 {
5346 /* For hardware watchpoints, we look only at the first
5347 location. The watchpoint_check function will work on the
5348 entire expression, not the individual locations. For
5349 read watchpoints, the watchpoints_triggered function has
5350 checked all locations already. */
5351 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5352 break;
5353
5354 if (!bl->enabled || bl->shlib_disabled)
5355 continue;
5356
5357 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5358 continue;
5359
5360 /* Come here if it's a watchpoint, or if the break address
5361 matches. */
5362
5363 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5364 explain stop. */
5365
5366 /* Assume we stop. Should we find a watchpoint that is not
5367 actually triggered, or if the condition of the breakpoint
5368 evaluates as false, we'll reset 'stop' to 0. */
5369 bs->stop = 1;
5370 bs->print = 1;
5371
5372 /* If this is a scope breakpoint, mark the associated
5373 watchpoint as triggered so that we will handle the
5374 out-of-scope event. We'll get to the watchpoint next
5375 iteration. */
5376 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5377 {
5378 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5379
5380 w->watchpoint_triggered = watch_triggered_yes;
5381 }
5382 }
5383 }
5384
5385 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5386 {
5387 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5388 {
5389 bs = bpstat_alloc (loc, &bs_link);
5390 /* For hits of moribund locations, we should just proceed. */
5391 bs->stop = 0;
5392 bs->print = 0;
5393 bs->print_it = print_it_noop;
5394 }
5395 }
5396
5397 /* A bit of special processing for shlib breakpoints. We need to
5398 process solib loading here, so that the lists of loaded and
5399 unloaded libraries are correct before we handle "catch load" and
5400 "catch unload". */
5401 for (bs = bs_head; bs != NULL; bs = bs->next)
5402 {
5403 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5404 {
5405 handle_solib_event ();
5406 break;
5407 }
5408 }
5409
5410 /* Now go through the locations that caused the target to stop, and
5411 check whether we're interested in reporting this stop to higher
5412 layers, or whether we should resume the target transparently. */
5413
5414 removed_any = 0;
5415
5416 for (bs = bs_head; bs != NULL; bs = bs->next)
5417 {
5418 if (!bs->stop)
5419 continue;
5420
5421 b = bs->breakpoint_at;
5422 b->ops->check_status (bs);
5423 if (bs->stop)
5424 {
5425 bpstat_check_breakpoint_conditions (bs, ptid);
5426
5427 if (bs->stop)
5428 {
5429 ++(b->hit_count);
5430 observer_notify_breakpoint_modified (b);
5431
5432 /* We will stop here. */
5433 if (b->disposition == disp_disable)
5434 {
5435 --(b->enable_count);
5436 if (b->enable_count <= 0
5437 && b->enable_state != bp_permanent)
5438 b->enable_state = bp_disabled;
5439 removed_any = 1;
5440 }
5441 if (b->silent)
5442 bs->print = 0;
5443 bs->commands = b->commands;
5444 incref_counted_command_line (bs->commands);
5445 if (command_line_is_silent (bs->commands
5446 ? bs->commands->commands : NULL))
5447 bs->print = 0;
5448
5449 b->ops->after_condition_true (bs);
5450 }
5451
5452 }
5453
5454 /* Print nothing for this entry if we don't stop or don't
5455 print. */
5456 if (!bs->stop || !bs->print)
5457 bs->print_it = print_it_noop;
5458 }
5459
5460 /* If we aren't stopping, the value of some hardware watchpoint may
5461 not have changed, but the intermediate memory locations we are
5462 watching may have. Don't bother if we're stopping; this will get
5463 done later. */
5464 need_remove_insert = 0;
5465 if (! bpstat_causes_stop (bs_head))
5466 for (bs = bs_head; bs != NULL; bs = bs->next)
5467 if (!bs->stop
5468 && bs->breakpoint_at
5469 && is_hardware_watchpoint (bs->breakpoint_at))
5470 {
5471 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5472
5473 update_watchpoint (w, 0 /* don't reparse. */);
5474 need_remove_insert = 1;
5475 }
5476
5477 if (need_remove_insert)
5478 update_global_location_list (1);
5479 else if (removed_any)
5480 update_global_location_list (0);
5481
5482 return bs_head;
5483 }
5484
5485 static void
5486 handle_jit_event (void)
5487 {
5488 struct frame_info *frame;
5489 struct gdbarch *gdbarch;
5490
5491 /* Switch terminal for any messages produced by
5492 breakpoint_re_set. */
5493 target_terminal_ours_for_output ();
5494
5495 frame = get_current_frame ();
5496 gdbarch = get_frame_arch (frame);
5497
5498 jit_event_handler (gdbarch);
5499
5500 target_terminal_inferior ();
5501 }
5502
5503 /* Prepare WHAT final decision for infrun. */
5504
5505 /* Decide what infrun needs to do with this bpstat. */
5506
5507 struct bpstat_what
5508 bpstat_what (bpstat bs_head)
5509 {
5510 struct bpstat_what retval;
5511 int jit_event = 0;
5512 bpstat bs;
5513
5514 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5515 retval.call_dummy = STOP_NONE;
5516 retval.is_longjmp = 0;
5517
5518 for (bs = bs_head; bs != NULL; bs = bs->next)
5519 {
5520 /* Extract this BS's action. After processing each BS, we check
5521 if its action overrides all we've seem so far. */
5522 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5523 enum bptype bptype;
5524
5525 if (bs->breakpoint_at == NULL)
5526 {
5527 /* I suspect this can happen if it was a momentary
5528 breakpoint which has since been deleted. */
5529 bptype = bp_none;
5530 }
5531 else
5532 bptype = bs->breakpoint_at->type;
5533
5534 switch (bptype)
5535 {
5536 case bp_none:
5537 break;
5538 case bp_breakpoint:
5539 case bp_hardware_breakpoint:
5540 case bp_until:
5541 case bp_finish:
5542 case bp_shlib_event:
5543 if (bs->stop)
5544 {
5545 if (bs->print)
5546 this_action = BPSTAT_WHAT_STOP_NOISY;
5547 else
5548 this_action = BPSTAT_WHAT_STOP_SILENT;
5549 }
5550 else
5551 this_action = BPSTAT_WHAT_SINGLE;
5552 break;
5553 case bp_watchpoint:
5554 case bp_hardware_watchpoint:
5555 case bp_read_watchpoint:
5556 case bp_access_watchpoint:
5557 if (bs->stop)
5558 {
5559 if (bs->print)
5560 this_action = BPSTAT_WHAT_STOP_NOISY;
5561 else
5562 this_action = BPSTAT_WHAT_STOP_SILENT;
5563 }
5564 else
5565 {
5566 /* There was a watchpoint, but we're not stopping.
5567 This requires no further action. */
5568 }
5569 break;
5570 case bp_longjmp:
5571 case bp_longjmp_call_dummy:
5572 case bp_exception:
5573 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5574 retval.is_longjmp = bptype != bp_exception;
5575 break;
5576 case bp_longjmp_resume:
5577 case bp_exception_resume:
5578 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5579 retval.is_longjmp = bptype == bp_longjmp_resume;
5580 break;
5581 case bp_step_resume:
5582 if (bs->stop)
5583 this_action = BPSTAT_WHAT_STEP_RESUME;
5584 else
5585 {
5586 /* It is for the wrong frame. */
5587 this_action = BPSTAT_WHAT_SINGLE;
5588 }
5589 break;
5590 case bp_hp_step_resume:
5591 if (bs->stop)
5592 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5593 else
5594 {
5595 /* It is for the wrong frame. */
5596 this_action = BPSTAT_WHAT_SINGLE;
5597 }
5598 break;
5599 case bp_watchpoint_scope:
5600 case bp_thread_event:
5601 case bp_overlay_event:
5602 case bp_longjmp_master:
5603 case bp_std_terminate_master:
5604 case bp_exception_master:
5605 this_action = BPSTAT_WHAT_SINGLE;
5606 break;
5607 case bp_catchpoint:
5608 if (bs->stop)
5609 {
5610 if (bs->print)
5611 this_action = BPSTAT_WHAT_STOP_NOISY;
5612 else
5613 this_action = BPSTAT_WHAT_STOP_SILENT;
5614 }
5615 else
5616 {
5617 /* There was a catchpoint, but we're not stopping.
5618 This requires no further action. */
5619 }
5620 break;
5621 case bp_jit_event:
5622 jit_event = 1;
5623 this_action = BPSTAT_WHAT_SINGLE;
5624 break;
5625 case bp_call_dummy:
5626 /* Make sure the action is stop (silent or noisy),
5627 so infrun.c pops the dummy frame. */
5628 retval.call_dummy = STOP_STACK_DUMMY;
5629 this_action = BPSTAT_WHAT_STOP_SILENT;
5630 break;
5631 case bp_std_terminate:
5632 /* Make sure the action is stop (silent or noisy),
5633 so infrun.c pops the dummy frame. */
5634 retval.call_dummy = STOP_STD_TERMINATE;
5635 this_action = BPSTAT_WHAT_STOP_SILENT;
5636 break;
5637 case bp_tracepoint:
5638 case bp_fast_tracepoint:
5639 case bp_static_tracepoint:
5640 /* Tracepoint hits should not be reported back to GDB, and
5641 if one got through somehow, it should have been filtered
5642 out already. */
5643 internal_error (__FILE__, __LINE__,
5644 _("bpstat_what: tracepoint encountered"));
5645 break;
5646 case bp_gnu_ifunc_resolver:
5647 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5648 this_action = BPSTAT_WHAT_SINGLE;
5649 break;
5650 case bp_gnu_ifunc_resolver_return:
5651 /* The breakpoint will be removed, execution will restart from the
5652 PC of the former breakpoint. */
5653 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5654 break;
5655
5656 case bp_dprintf:
5657 if (bs->stop)
5658 this_action = BPSTAT_WHAT_STOP_SILENT;
5659 else
5660 this_action = BPSTAT_WHAT_SINGLE;
5661 break;
5662
5663 default:
5664 internal_error (__FILE__, __LINE__,
5665 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5666 }
5667
5668 retval.main_action = max (retval.main_action, this_action);
5669 }
5670
5671 /* These operations may affect the bs->breakpoint_at state so they are
5672 delayed after MAIN_ACTION is decided above. */
5673
5674 if (jit_event)
5675 {
5676 if (debug_infrun)
5677 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5678
5679 handle_jit_event ();
5680 }
5681
5682 for (bs = bs_head; bs != NULL; bs = bs->next)
5683 {
5684 struct breakpoint *b = bs->breakpoint_at;
5685
5686 if (b == NULL)
5687 continue;
5688 switch (b->type)
5689 {
5690 case bp_gnu_ifunc_resolver:
5691 gnu_ifunc_resolver_stop (b);
5692 break;
5693 case bp_gnu_ifunc_resolver_return:
5694 gnu_ifunc_resolver_return_stop (b);
5695 break;
5696 }
5697 }
5698
5699 return retval;
5700 }
5701
5702 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5703 without hardware support). This isn't related to a specific bpstat,
5704 just to things like whether watchpoints are set. */
5705
5706 int
5707 bpstat_should_step (void)
5708 {
5709 struct breakpoint *b;
5710
5711 ALL_BREAKPOINTS (b)
5712 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5713 return 1;
5714 return 0;
5715 }
5716
5717 int
5718 bpstat_causes_stop (bpstat bs)
5719 {
5720 for (; bs != NULL; bs = bs->next)
5721 if (bs->stop)
5722 return 1;
5723
5724 return 0;
5725 }
5726
5727 \f
5728
5729 /* Compute a string of spaces suitable to indent the next line
5730 so it starts at the position corresponding to the table column
5731 named COL_NAME in the currently active table of UIOUT. */
5732
5733 static char *
5734 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5735 {
5736 static char wrap_indent[80];
5737 int i, total_width, width, align;
5738 char *text;
5739
5740 total_width = 0;
5741 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5742 {
5743 if (strcmp (text, col_name) == 0)
5744 {
5745 gdb_assert (total_width < sizeof wrap_indent);
5746 memset (wrap_indent, ' ', total_width);
5747 wrap_indent[total_width] = 0;
5748
5749 return wrap_indent;
5750 }
5751
5752 total_width += width + 1;
5753 }
5754
5755 return NULL;
5756 }
5757
5758 /* Determine if the locations of this breakpoint will have their conditions
5759 evaluated by the target, host or a mix of both. Returns the following:
5760
5761 "host": Host evals condition.
5762 "host or target": Host or Target evals condition.
5763 "target": Target evals condition.
5764 */
5765
5766 static const char *
5767 bp_condition_evaluator (struct breakpoint *b)
5768 {
5769 struct bp_location *bl;
5770 char host_evals = 0;
5771 char target_evals = 0;
5772
5773 if (!b)
5774 return NULL;
5775
5776 if (!is_breakpoint (b))
5777 return NULL;
5778
5779 if (gdb_evaluates_breakpoint_condition_p ()
5780 || !target_supports_evaluation_of_breakpoint_conditions ())
5781 return condition_evaluation_host;
5782
5783 for (bl = b->loc; bl; bl = bl->next)
5784 {
5785 if (bl->cond_bytecode)
5786 target_evals++;
5787 else
5788 host_evals++;
5789 }
5790
5791 if (host_evals && target_evals)
5792 return condition_evaluation_both;
5793 else if (target_evals)
5794 return condition_evaluation_target;
5795 else
5796 return condition_evaluation_host;
5797 }
5798
5799 /* Determine the breakpoint location's condition evaluator. This is
5800 similar to bp_condition_evaluator, but for locations. */
5801
5802 static const char *
5803 bp_location_condition_evaluator (struct bp_location *bl)
5804 {
5805 if (bl && !is_breakpoint (bl->owner))
5806 return NULL;
5807
5808 if (gdb_evaluates_breakpoint_condition_p ()
5809 || !target_supports_evaluation_of_breakpoint_conditions ())
5810 return condition_evaluation_host;
5811
5812 if (bl && bl->cond_bytecode)
5813 return condition_evaluation_target;
5814 else
5815 return condition_evaluation_host;
5816 }
5817
5818 /* Print the LOC location out of the list of B->LOC locations. */
5819
5820 static void
5821 print_breakpoint_location (struct breakpoint *b,
5822 struct bp_location *loc)
5823 {
5824 struct ui_out *uiout = current_uiout;
5825 struct cleanup *old_chain = save_current_program_space ();
5826
5827 if (loc != NULL && loc->shlib_disabled)
5828 loc = NULL;
5829
5830 if (loc != NULL)
5831 set_current_program_space (loc->pspace);
5832
5833 if (b->display_canonical)
5834 ui_out_field_string (uiout, "what", b->addr_string);
5835 else if (loc && loc->symtab)
5836 {
5837 struct symbol *sym
5838 = find_pc_sect_function (loc->address, loc->section);
5839 if (sym)
5840 {
5841 ui_out_text (uiout, "in ");
5842 ui_out_field_string (uiout, "func",
5843 SYMBOL_PRINT_NAME (sym));
5844 ui_out_text (uiout, " ");
5845 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5846 ui_out_text (uiout, "at ");
5847 }
5848 ui_out_field_string (uiout, "file",
5849 symtab_to_filename_for_display (loc->symtab));
5850 ui_out_text (uiout, ":");
5851
5852 if (ui_out_is_mi_like_p (uiout))
5853 ui_out_field_string (uiout, "fullname",
5854 symtab_to_fullname (loc->symtab));
5855
5856 ui_out_field_int (uiout, "line", loc->line_number);
5857 }
5858 else if (loc)
5859 {
5860 struct ui_file *stb = mem_fileopen ();
5861 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5862
5863 print_address_symbolic (loc->gdbarch, loc->address, stb,
5864 demangle, "");
5865 ui_out_field_stream (uiout, "at", stb);
5866
5867 do_cleanups (stb_chain);
5868 }
5869 else
5870 ui_out_field_string (uiout, "pending", b->addr_string);
5871
5872 if (loc && is_breakpoint (b)
5873 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5874 && bp_condition_evaluator (b) == condition_evaluation_both)
5875 {
5876 ui_out_text (uiout, " (");
5877 ui_out_field_string (uiout, "evaluated-by",
5878 bp_location_condition_evaluator (loc));
5879 ui_out_text (uiout, ")");
5880 }
5881
5882 do_cleanups (old_chain);
5883 }
5884
5885 static const char *
5886 bptype_string (enum bptype type)
5887 {
5888 struct ep_type_description
5889 {
5890 enum bptype type;
5891 char *description;
5892 };
5893 static struct ep_type_description bptypes[] =
5894 {
5895 {bp_none, "?deleted?"},
5896 {bp_breakpoint, "breakpoint"},
5897 {bp_hardware_breakpoint, "hw breakpoint"},
5898 {bp_until, "until"},
5899 {bp_finish, "finish"},
5900 {bp_watchpoint, "watchpoint"},
5901 {bp_hardware_watchpoint, "hw watchpoint"},
5902 {bp_read_watchpoint, "read watchpoint"},
5903 {bp_access_watchpoint, "acc watchpoint"},
5904 {bp_longjmp, "longjmp"},
5905 {bp_longjmp_resume, "longjmp resume"},
5906 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5907 {bp_exception, "exception"},
5908 {bp_exception_resume, "exception resume"},
5909 {bp_step_resume, "step resume"},
5910 {bp_hp_step_resume, "high-priority step resume"},
5911 {bp_watchpoint_scope, "watchpoint scope"},
5912 {bp_call_dummy, "call dummy"},
5913 {bp_std_terminate, "std::terminate"},
5914 {bp_shlib_event, "shlib events"},
5915 {bp_thread_event, "thread events"},
5916 {bp_overlay_event, "overlay events"},
5917 {bp_longjmp_master, "longjmp master"},
5918 {bp_std_terminate_master, "std::terminate master"},
5919 {bp_exception_master, "exception master"},
5920 {bp_catchpoint, "catchpoint"},
5921 {bp_tracepoint, "tracepoint"},
5922 {bp_fast_tracepoint, "fast tracepoint"},
5923 {bp_static_tracepoint, "static tracepoint"},
5924 {bp_dprintf, "dprintf"},
5925 {bp_jit_event, "jit events"},
5926 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5927 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5928 };
5929
5930 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5931 || ((int) type != bptypes[(int) type].type))
5932 internal_error (__FILE__, __LINE__,
5933 _("bptypes table does not describe type #%d."),
5934 (int) type);
5935
5936 return bptypes[(int) type].description;
5937 }
5938
5939 /* For MI, output a field named 'thread-groups' with a list as the value.
5940 For CLI, prefix the list with the string 'inf'. */
5941
5942 static void
5943 output_thread_groups (struct ui_out *uiout,
5944 const char *field_name,
5945 VEC(int) *inf_num,
5946 int mi_only)
5947 {
5948 struct cleanup *back_to;
5949 int is_mi = ui_out_is_mi_like_p (uiout);
5950 int inf;
5951 int i;
5952
5953 /* For backward compatibility, don't display inferiors in CLI unless
5954 there are several. Always display them for MI. */
5955 if (!is_mi && mi_only)
5956 return;
5957
5958 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
5959
5960 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5961 {
5962 if (is_mi)
5963 {
5964 char mi_group[10];
5965
5966 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5967 ui_out_field_string (uiout, NULL, mi_group);
5968 }
5969 else
5970 {
5971 if (i == 0)
5972 ui_out_text (uiout, " inf ");
5973 else
5974 ui_out_text (uiout, ", ");
5975
5976 ui_out_text (uiout, plongest (inf));
5977 }
5978 }
5979
5980 do_cleanups (back_to);
5981 }
5982
5983 /* Print B to gdb_stdout. */
5984
5985 static void
5986 print_one_breakpoint_location (struct breakpoint *b,
5987 struct bp_location *loc,
5988 int loc_number,
5989 struct bp_location **last_loc,
5990 int allflag)
5991 {
5992 struct command_line *l;
5993 static char bpenables[] = "nynny";
5994
5995 struct ui_out *uiout = current_uiout;
5996 int header_of_multiple = 0;
5997 int part_of_multiple = (loc != NULL);
5998 struct value_print_options opts;
5999
6000 get_user_print_options (&opts);
6001
6002 gdb_assert (!loc || loc_number != 0);
6003 /* See comment in print_one_breakpoint concerning treatment of
6004 breakpoints with single disabled location. */
6005 if (loc == NULL
6006 && (b->loc != NULL
6007 && (b->loc->next != NULL || !b->loc->enabled)))
6008 header_of_multiple = 1;
6009 if (loc == NULL)
6010 loc = b->loc;
6011
6012 annotate_record ();
6013
6014 /* 1 */
6015 annotate_field (0);
6016 if (part_of_multiple)
6017 {
6018 char *formatted;
6019 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6020 ui_out_field_string (uiout, "number", formatted);
6021 xfree (formatted);
6022 }
6023 else
6024 {
6025 ui_out_field_int (uiout, "number", b->number);
6026 }
6027
6028 /* 2 */
6029 annotate_field (1);
6030 if (part_of_multiple)
6031 ui_out_field_skip (uiout, "type");
6032 else
6033 ui_out_field_string (uiout, "type", bptype_string (b->type));
6034
6035 /* 3 */
6036 annotate_field (2);
6037 if (part_of_multiple)
6038 ui_out_field_skip (uiout, "disp");
6039 else
6040 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6041
6042
6043 /* 4 */
6044 annotate_field (3);
6045 if (part_of_multiple)
6046 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6047 else
6048 ui_out_field_fmt (uiout, "enabled", "%c",
6049 bpenables[(int) b->enable_state]);
6050 ui_out_spaces (uiout, 2);
6051
6052
6053 /* 5 and 6 */
6054 if (b->ops != NULL && b->ops->print_one != NULL)
6055 {
6056 /* Although the print_one can possibly print all locations,
6057 calling it here is not likely to get any nice result. So,
6058 make sure there's just one location. */
6059 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6060 b->ops->print_one (b, last_loc);
6061 }
6062 else
6063 switch (b->type)
6064 {
6065 case bp_none:
6066 internal_error (__FILE__, __LINE__,
6067 _("print_one_breakpoint: bp_none encountered\n"));
6068 break;
6069
6070 case bp_watchpoint:
6071 case bp_hardware_watchpoint:
6072 case bp_read_watchpoint:
6073 case bp_access_watchpoint:
6074 {
6075 struct watchpoint *w = (struct watchpoint *) b;
6076
6077 /* Field 4, the address, is omitted (which makes the columns
6078 not line up too nicely with the headers, but the effect
6079 is relatively readable). */
6080 if (opts.addressprint)
6081 ui_out_field_skip (uiout, "addr");
6082 annotate_field (5);
6083 ui_out_field_string (uiout, "what", w->exp_string);
6084 }
6085 break;
6086
6087 case bp_breakpoint:
6088 case bp_hardware_breakpoint:
6089 case bp_until:
6090 case bp_finish:
6091 case bp_longjmp:
6092 case bp_longjmp_resume:
6093 case bp_longjmp_call_dummy:
6094 case bp_exception:
6095 case bp_exception_resume:
6096 case bp_step_resume:
6097 case bp_hp_step_resume:
6098 case bp_watchpoint_scope:
6099 case bp_call_dummy:
6100 case bp_std_terminate:
6101 case bp_shlib_event:
6102 case bp_thread_event:
6103 case bp_overlay_event:
6104 case bp_longjmp_master:
6105 case bp_std_terminate_master:
6106 case bp_exception_master:
6107 case bp_tracepoint:
6108 case bp_fast_tracepoint:
6109 case bp_static_tracepoint:
6110 case bp_dprintf:
6111 case bp_jit_event:
6112 case bp_gnu_ifunc_resolver:
6113 case bp_gnu_ifunc_resolver_return:
6114 if (opts.addressprint)
6115 {
6116 annotate_field (4);
6117 if (header_of_multiple)
6118 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6119 else if (b->loc == NULL || loc->shlib_disabled)
6120 ui_out_field_string (uiout, "addr", "<PENDING>");
6121 else
6122 ui_out_field_core_addr (uiout, "addr",
6123 loc->gdbarch, loc->address);
6124 }
6125 annotate_field (5);
6126 if (!header_of_multiple)
6127 print_breakpoint_location (b, loc);
6128 if (b->loc)
6129 *last_loc = b->loc;
6130 break;
6131 }
6132
6133
6134 if (loc != NULL && !header_of_multiple)
6135 {
6136 struct inferior *inf;
6137 VEC(int) *inf_num = NULL;
6138 int mi_only = 1;
6139
6140 ALL_INFERIORS (inf)
6141 {
6142 if (inf->pspace == loc->pspace)
6143 VEC_safe_push (int, inf_num, inf->num);
6144 }
6145
6146 /* For backward compatibility, don't display inferiors in CLI unless
6147 there are several. Always display for MI. */
6148 if (allflag
6149 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6150 && (number_of_program_spaces () > 1
6151 || number_of_inferiors () > 1)
6152 /* LOC is for existing B, it cannot be in
6153 moribund_locations and thus having NULL OWNER. */
6154 && loc->owner->type != bp_catchpoint))
6155 mi_only = 0;
6156 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6157 VEC_free (int, inf_num);
6158 }
6159
6160 if (!part_of_multiple)
6161 {
6162 if (b->thread != -1)
6163 {
6164 /* FIXME: This seems to be redundant and lost here; see the
6165 "stop only in" line a little further down. */
6166 ui_out_text (uiout, " thread ");
6167 ui_out_field_int (uiout, "thread", b->thread);
6168 }
6169 else if (b->task != 0)
6170 {
6171 ui_out_text (uiout, " task ");
6172 ui_out_field_int (uiout, "task", b->task);
6173 }
6174 }
6175
6176 ui_out_text (uiout, "\n");
6177
6178 if (!part_of_multiple)
6179 b->ops->print_one_detail (b, uiout);
6180
6181 if (part_of_multiple && frame_id_p (b->frame_id))
6182 {
6183 annotate_field (6);
6184 ui_out_text (uiout, "\tstop only in stack frame at ");
6185 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6186 the frame ID. */
6187 ui_out_field_core_addr (uiout, "frame",
6188 b->gdbarch, b->frame_id.stack_addr);
6189 ui_out_text (uiout, "\n");
6190 }
6191
6192 if (!part_of_multiple && b->cond_string)
6193 {
6194 annotate_field (7);
6195 if (is_tracepoint (b))
6196 ui_out_text (uiout, "\ttrace only if ");
6197 else
6198 ui_out_text (uiout, "\tstop only if ");
6199 ui_out_field_string (uiout, "cond", b->cond_string);
6200
6201 /* Print whether the target is doing the breakpoint's condition
6202 evaluation. If GDB is doing the evaluation, don't print anything. */
6203 if (is_breakpoint (b)
6204 && breakpoint_condition_evaluation_mode ()
6205 == condition_evaluation_target)
6206 {
6207 ui_out_text (uiout, " (");
6208 ui_out_field_string (uiout, "evaluated-by",
6209 bp_condition_evaluator (b));
6210 ui_out_text (uiout, " evals)");
6211 }
6212 ui_out_text (uiout, "\n");
6213 }
6214
6215 if (!part_of_multiple && b->thread != -1)
6216 {
6217 /* FIXME should make an annotation for this. */
6218 ui_out_text (uiout, "\tstop only in thread ");
6219 ui_out_field_int (uiout, "thread", b->thread);
6220 ui_out_text (uiout, "\n");
6221 }
6222
6223 if (!part_of_multiple)
6224 {
6225 if (b->hit_count)
6226 {
6227 /* FIXME should make an annotation for this. */
6228 if (is_catchpoint (b))
6229 ui_out_text (uiout, "\tcatchpoint");
6230 else if (is_tracepoint (b))
6231 ui_out_text (uiout, "\ttracepoint");
6232 else
6233 ui_out_text (uiout, "\tbreakpoint");
6234 ui_out_text (uiout, " already hit ");
6235 ui_out_field_int (uiout, "times", b->hit_count);
6236 if (b->hit_count == 1)
6237 ui_out_text (uiout, " time\n");
6238 else
6239 ui_out_text (uiout, " times\n");
6240 }
6241 else
6242 {
6243 /* Output the count also if it is zero, but only if this is mi. */
6244 if (ui_out_is_mi_like_p (uiout))
6245 ui_out_field_int (uiout, "times", b->hit_count);
6246 }
6247 }
6248
6249 if (!part_of_multiple && b->ignore_count)
6250 {
6251 annotate_field (8);
6252 ui_out_text (uiout, "\tignore next ");
6253 ui_out_field_int (uiout, "ignore", b->ignore_count);
6254 ui_out_text (uiout, " hits\n");
6255 }
6256
6257 /* Note that an enable count of 1 corresponds to "enable once"
6258 behavior, which is reported by the combination of enablement and
6259 disposition, so we don't need to mention it here. */
6260 if (!part_of_multiple && b->enable_count > 1)
6261 {
6262 annotate_field (8);
6263 ui_out_text (uiout, "\tdisable after ");
6264 /* Tweak the wording to clarify that ignore and enable counts
6265 are distinct, and have additive effect. */
6266 if (b->ignore_count)
6267 ui_out_text (uiout, "additional ");
6268 else
6269 ui_out_text (uiout, "next ");
6270 ui_out_field_int (uiout, "enable", b->enable_count);
6271 ui_out_text (uiout, " hits\n");
6272 }
6273
6274 if (!part_of_multiple && is_tracepoint (b))
6275 {
6276 struct tracepoint *tp = (struct tracepoint *) b;
6277
6278 if (tp->traceframe_usage)
6279 {
6280 ui_out_text (uiout, "\ttrace buffer usage ");
6281 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6282 ui_out_text (uiout, " bytes\n");
6283 }
6284 }
6285
6286 l = b->commands ? b->commands->commands : NULL;
6287 if (!part_of_multiple && l)
6288 {
6289 struct cleanup *script_chain;
6290
6291 annotate_field (9);
6292 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6293 print_command_lines (uiout, l, 4);
6294 do_cleanups (script_chain);
6295 }
6296
6297 if (is_tracepoint (b))
6298 {
6299 struct tracepoint *t = (struct tracepoint *) b;
6300
6301 if (!part_of_multiple && t->pass_count)
6302 {
6303 annotate_field (10);
6304 ui_out_text (uiout, "\tpass count ");
6305 ui_out_field_int (uiout, "pass", t->pass_count);
6306 ui_out_text (uiout, " \n");
6307 }
6308
6309 /* Don't display it when tracepoint or tracepoint location is
6310 pending. */
6311 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6312 {
6313 annotate_field (11);
6314
6315 if (ui_out_is_mi_like_p (uiout))
6316 ui_out_field_string (uiout, "installed",
6317 loc->inserted ? "y" : "n");
6318 else
6319 {
6320 if (loc->inserted)
6321 ui_out_text (uiout, "\t");
6322 else
6323 ui_out_text (uiout, "\tnot ");
6324 ui_out_text (uiout, "installed on target\n");
6325 }
6326 }
6327 }
6328
6329 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6330 {
6331 if (is_watchpoint (b))
6332 {
6333 struct watchpoint *w = (struct watchpoint *) b;
6334
6335 ui_out_field_string (uiout, "original-location", w->exp_string);
6336 }
6337 else if (b->addr_string)
6338 ui_out_field_string (uiout, "original-location", b->addr_string);
6339 }
6340 }
6341
6342 static void
6343 print_one_breakpoint (struct breakpoint *b,
6344 struct bp_location **last_loc,
6345 int allflag)
6346 {
6347 struct cleanup *bkpt_chain;
6348 struct ui_out *uiout = current_uiout;
6349
6350 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6351
6352 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6353 do_cleanups (bkpt_chain);
6354
6355 /* If this breakpoint has custom print function,
6356 it's already printed. Otherwise, print individual
6357 locations, if any. */
6358 if (b->ops == NULL || b->ops->print_one == NULL)
6359 {
6360 /* If breakpoint has a single location that is disabled, we
6361 print it as if it had several locations, since otherwise it's
6362 hard to represent "breakpoint enabled, location disabled"
6363 situation.
6364
6365 Note that while hardware watchpoints have several locations
6366 internally, that's not a property exposed to user. */
6367 if (b->loc
6368 && !is_hardware_watchpoint (b)
6369 && (b->loc->next || !b->loc->enabled))
6370 {
6371 struct bp_location *loc;
6372 int n = 1;
6373
6374 for (loc = b->loc; loc; loc = loc->next, ++n)
6375 {
6376 struct cleanup *inner2 =
6377 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6378 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6379 do_cleanups (inner2);
6380 }
6381 }
6382 }
6383 }
6384
6385 static int
6386 breakpoint_address_bits (struct breakpoint *b)
6387 {
6388 int print_address_bits = 0;
6389 struct bp_location *loc;
6390
6391 for (loc = b->loc; loc; loc = loc->next)
6392 {
6393 int addr_bit;
6394
6395 /* Software watchpoints that aren't watching memory don't have
6396 an address to print. */
6397 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6398 continue;
6399
6400 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6401 if (addr_bit > print_address_bits)
6402 print_address_bits = addr_bit;
6403 }
6404
6405 return print_address_bits;
6406 }
6407
6408 struct captured_breakpoint_query_args
6409 {
6410 int bnum;
6411 };
6412
6413 static int
6414 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6415 {
6416 struct captured_breakpoint_query_args *args = data;
6417 struct breakpoint *b;
6418 struct bp_location *dummy_loc = NULL;
6419
6420 ALL_BREAKPOINTS (b)
6421 {
6422 if (args->bnum == b->number)
6423 {
6424 print_one_breakpoint (b, &dummy_loc, 0);
6425 return GDB_RC_OK;
6426 }
6427 }
6428 return GDB_RC_NONE;
6429 }
6430
6431 enum gdb_rc
6432 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6433 char **error_message)
6434 {
6435 struct captured_breakpoint_query_args args;
6436
6437 args.bnum = bnum;
6438 /* For the moment we don't trust print_one_breakpoint() to not throw
6439 an error. */
6440 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6441 error_message, RETURN_MASK_ALL) < 0)
6442 return GDB_RC_FAIL;
6443 else
6444 return GDB_RC_OK;
6445 }
6446
6447 /* Return true if this breakpoint was set by the user, false if it is
6448 internal or momentary. */
6449
6450 int
6451 user_breakpoint_p (struct breakpoint *b)
6452 {
6453 return b->number > 0;
6454 }
6455
6456 /* Print information on user settable breakpoint (watchpoint, etc)
6457 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6458 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6459 FILTER is non-NULL, call it on each breakpoint and only include the
6460 ones for which it returns non-zero. Return the total number of
6461 breakpoints listed. */
6462
6463 static int
6464 breakpoint_1 (char *args, int allflag,
6465 int (*filter) (const struct breakpoint *))
6466 {
6467 struct breakpoint *b;
6468 struct bp_location *last_loc = NULL;
6469 int nr_printable_breakpoints;
6470 struct cleanup *bkpttbl_chain;
6471 struct value_print_options opts;
6472 int print_address_bits = 0;
6473 int print_type_col_width = 14;
6474 struct ui_out *uiout = current_uiout;
6475
6476 get_user_print_options (&opts);
6477
6478 /* Compute the number of rows in the table, as well as the size
6479 required for address fields. */
6480 nr_printable_breakpoints = 0;
6481 ALL_BREAKPOINTS (b)
6482 {
6483 /* If we have a filter, only list the breakpoints it accepts. */
6484 if (filter && !filter (b))
6485 continue;
6486
6487 /* If we have an "args" string, it is a list of breakpoints to
6488 accept. Skip the others. */
6489 if (args != NULL && *args != '\0')
6490 {
6491 if (allflag && parse_and_eval_long (args) != b->number)
6492 continue;
6493 if (!allflag && !number_is_in_list (args, b->number))
6494 continue;
6495 }
6496
6497 if (allflag || user_breakpoint_p (b))
6498 {
6499 int addr_bit, type_len;
6500
6501 addr_bit = breakpoint_address_bits (b);
6502 if (addr_bit > print_address_bits)
6503 print_address_bits = addr_bit;
6504
6505 type_len = strlen (bptype_string (b->type));
6506 if (type_len > print_type_col_width)
6507 print_type_col_width = type_len;
6508
6509 nr_printable_breakpoints++;
6510 }
6511 }
6512
6513 if (opts.addressprint)
6514 bkpttbl_chain
6515 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6516 nr_printable_breakpoints,
6517 "BreakpointTable");
6518 else
6519 bkpttbl_chain
6520 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6521 nr_printable_breakpoints,
6522 "BreakpointTable");
6523
6524 if (nr_printable_breakpoints > 0)
6525 annotate_breakpoints_headers ();
6526 if (nr_printable_breakpoints > 0)
6527 annotate_field (0);
6528 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6529 if (nr_printable_breakpoints > 0)
6530 annotate_field (1);
6531 ui_out_table_header (uiout, print_type_col_width, ui_left,
6532 "type", "Type"); /* 2 */
6533 if (nr_printable_breakpoints > 0)
6534 annotate_field (2);
6535 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6536 if (nr_printable_breakpoints > 0)
6537 annotate_field (3);
6538 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6539 if (opts.addressprint)
6540 {
6541 if (nr_printable_breakpoints > 0)
6542 annotate_field (4);
6543 if (print_address_bits <= 32)
6544 ui_out_table_header (uiout, 10, ui_left,
6545 "addr", "Address"); /* 5 */
6546 else
6547 ui_out_table_header (uiout, 18, ui_left,
6548 "addr", "Address"); /* 5 */
6549 }
6550 if (nr_printable_breakpoints > 0)
6551 annotate_field (5);
6552 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6553 ui_out_table_body (uiout);
6554 if (nr_printable_breakpoints > 0)
6555 annotate_breakpoints_table ();
6556
6557 ALL_BREAKPOINTS (b)
6558 {
6559 QUIT;
6560 /* If we have a filter, only list the breakpoints it accepts. */
6561 if (filter && !filter (b))
6562 continue;
6563
6564 /* If we have an "args" string, it is a list of breakpoints to
6565 accept. Skip the others. */
6566
6567 if (args != NULL && *args != '\0')
6568 {
6569 if (allflag) /* maintenance info breakpoint */
6570 {
6571 if (parse_and_eval_long (args) != b->number)
6572 continue;
6573 }
6574 else /* all others */
6575 {
6576 if (!number_is_in_list (args, b->number))
6577 continue;
6578 }
6579 }
6580 /* We only print out user settable breakpoints unless the
6581 allflag is set. */
6582 if (allflag || user_breakpoint_p (b))
6583 print_one_breakpoint (b, &last_loc, allflag);
6584 }
6585
6586 do_cleanups (bkpttbl_chain);
6587
6588 if (nr_printable_breakpoints == 0)
6589 {
6590 /* If there's a filter, let the caller decide how to report
6591 empty list. */
6592 if (!filter)
6593 {
6594 if (args == NULL || *args == '\0')
6595 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6596 else
6597 ui_out_message (uiout, 0,
6598 "No breakpoint or watchpoint matching '%s'.\n",
6599 args);
6600 }
6601 }
6602 else
6603 {
6604 if (last_loc && !server_command)
6605 set_next_address (last_loc->gdbarch, last_loc->address);
6606 }
6607
6608 /* FIXME? Should this be moved up so that it is only called when
6609 there have been breakpoints? */
6610 annotate_breakpoints_table_end ();
6611
6612 return nr_printable_breakpoints;
6613 }
6614
6615 /* Display the value of default-collect in a way that is generally
6616 compatible with the breakpoint list. */
6617
6618 static void
6619 default_collect_info (void)
6620 {
6621 struct ui_out *uiout = current_uiout;
6622
6623 /* If it has no value (which is frequently the case), say nothing; a
6624 message like "No default-collect." gets in user's face when it's
6625 not wanted. */
6626 if (!*default_collect)
6627 return;
6628
6629 /* The following phrase lines up nicely with per-tracepoint collect
6630 actions. */
6631 ui_out_text (uiout, "default collect ");
6632 ui_out_field_string (uiout, "default-collect", default_collect);
6633 ui_out_text (uiout, " \n");
6634 }
6635
6636 static void
6637 breakpoints_info (char *args, int from_tty)
6638 {
6639 breakpoint_1 (args, 0, NULL);
6640
6641 default_collect_info ();
6642 }
6643
6644 static void
6645 watchpoints_info (char *args, int from_tty)
6646 {
6647 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6648 struct ui_out *uiout = current_uiout;
6649
6650 if (num_printed == 0)
6651 {
6652 if (args == NULL || *args == '\0')
6653 ui_out_message (uiout, 0, "No watchpoints.\n");
6654 else
6655 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6656 }
6657 }
6658
6659 static void
6660 maintenance_info_breakpoints (char *args, int from_tty)
6661 {
6662 breakpoint_1 (args, 1, NULL);
6663
6664 default_collect_info ();
6665 }
6666
6667 static int
6668 breakpoint_has_pc (struct breakpoint *b,
6669 struct program_space *pspace,
6670 CORE_ADDR pc, struct obj_section *section)
6671 {
6672 struct bp_location *bl = b->loc;
6673
6674 for (; bl; bl = bl->next)
6675 {
6676 if (bl->pspace == pspace
6677 && bl->address == pc
6678 && (!overlay_debugging || bl->section == section))
6679 return 1;
6680 }
6681 return 0;
6682 }
6683
6684 /* Print a message describing any user-breakpoints set at PC. This
6685 concerns with logical breakpoints, so we match program spaces, not
6686 address spaces. */
6687
6688 static void
6689 describe_other_breakpoints (struct gdbarch *gdbarch,
6690 struct program_space *pspace, CORE_ADDR pc,
6691 struct obj_section *section, int thread)
6692 {
6693 int others = 0;
6694 struct breakpoint *b;
6695
6696 ALL_BREAKPOINTS (b)
6697 others += (user_breakpoint_p (b)
6698 && breakpoint_has_pc (b, pspace, pc, section));
6699 if (others > 0)
6700 {
6701 if (others == 1)
6702 printf_filtered (_("Note: breakpoint "));
6703 else /* if (others == ???) */
6704 printf_filtered (_("Note: breakpoints "));
6705 ALL_BREAKPOINTS (b)
6706 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6707 {
6708 others--;
6709 printf_filtered ("%d", b->number);
6710 if (b->thread == -1 && thread != -1)
6711 printf_filtered (" (all threads)");
6712 else if (b->thread != -1)
6713 printf_filtered (" (thread %d)", b->thread);
6714 printf_filtered ("%s%s ",
6715 ((b->enable_state == bp_disabled
6716 || b->enable_state == bp_call_disabled)
6717 ? " (disabled)"
6718 : b->enable_state == bp_permanent
6719 ? " (permanent)"
6720 : ""),
6721 (others > 1) ? ","
6722 : ((others == 1) ? " and" : ""));
6723 }
6724 printf_filtered (_("also set at pc "));
6725 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6726 printf_filtered (".\n");
6727 }
6728 }
6729 \f
6730
6731 /* Return true iff it is meaningful to use the address member of
6732 BPT. For some breakpoint types, the address member is irrelevant
6733 and it makes no sense to attempt to compare it to other addresses
6734 (or use it for any other purpose either).
6735
6736 More specifically, each of the following breakpoint types will
6737 always have a zero valued address and we don't want to mark
6738 breakpoints of any of these types to be a duplicate of an actual
6739 breakpoint at address zero:
6740
6741 bp_watchpoint
6742 bp_catchpoint
6743
6744 */
6745
6746 static int
6747 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6748 {
6749 enum bptype type = bpt->type;
6750
6751 return (type != bp_watchpoint && type != bp_catchpoint);
6752 }
6753
6754 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6755 true if LOC1 and LOC2 represent the same watchpoint location. */
6756
6757 static int
6758 watchpoint_locations_match (struct bp_location *loc1,
6759 struct bp_location *loc2)
6760 {
6761 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6762 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6763
6764 /* Both of them must exist. */
6765 gdb_assert (w1 != NULL);
6766 gdb_assert (w2 != NULL);
6767
6768 /* If the target can evaluate the condition expression in hardware,
6769 then we we need to insert both watchpoints even if they are at
6770 the same place. Otherwise the watchpoint will only trigger when
6771 the condition of whichever watchpoint was inserted evaluates to
6772 true, not giving a chance for GDB to check the condition of the
6773 other watchpoint. */
6774 if ((w1->cond_exp
6775 && target_can_accel_watchpoint_condition (loc1->address,
6776 loc1->length,
6777 loc1->watchpoint_type,
6778 w1->cond_exp))
6779 || (w2->cond_exp
6780 && target_can_accel_watchpoint_condition (loc2->address,
6781 loc2->length,
6782 loc2->watchpoint_type,
6783 w2->cond_exp)))
6784 return 0;
6785
6786 /* Note that this checks the owner's type, not the location's. In
6787 case the target does not support read watchpoints, but does
6788 support access watchpoints, we'll have bp_read_watchpoint
6789 watchpoints with hw_access locations. Those should be considered
6790 duplicates of hw_read locations. The hw_read locations will
6791 become hw_access locations later. */
6792 return (loc1->owner->type == loc2->owner->type
6793 && loc1->pspace->aspace == loc2->pspace->aspace
6794 && loc1->address == loc2->address
6795 && loc1->length == loc2->length);
6796 }
6797
6798 /* See breakpoint.h. */
6799
6800 int
6801 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6802 struct address_space *aspace2, CORE_ADDR addr2)
6803 {
6804 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6805 || aspace1 == aspace2)
6806 && addr1 == addr2);
6807 }
6808
6809 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6810 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6811 matches ASPACE2. On targets that have global breakpoints, the address
6812 space doesn't really matter. */
6813
6814 static int
6815 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6816 int len1, struct address_space *aspace2,
6817 CORE_ADDR addr2)
6818 {
6819 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6820 || aspace1 == aspace2)
6821 && addr2 >= addr1 && addr2 < addr1 + len1);
6822 }
6823
6824 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6825 a ranged breakpoint. In most targets, a match happens only if ASPACE
6826 matches the breakpoint's address space. On targets that have global
6827 breakpoints, the address space doesn't really matter. */
6828
6829 static int
6830 breakpoint_location_address_match (struct bp_location *bl,
6831 struct address_space *aspace,
6832 CORE_ADDR addr)
6833 {
6834 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6835 aspace, addr)
6836 || (bl->length
6837 && breakpoint_address_match_range (bl->pspace->aspace,
6838 bl->address, bl->length,
6839 aspace, addr)));
6840 }
6841
6842 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6843 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6844 true, otherwise returns false. */
6845
6846 static int
6847 tracepoint_locations_match (struct bp_location *loc1,
6848 struct bp_location *loc2)
6849 {
6850 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6851 /* Since tracepoint locations are never duplicated with others', tracepoint
6852 locations at the same address of different tracepoints are regarded as
6853 different locations. */
6854 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6855 else
6856 return 0;
6857 }
6858
6859 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6860 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6861 represent the same location. */
6862
6863 static int
6864 breakpoint_locations_match (struct bp_location *loc1,
6865 struct bp_location *loc2)
6866 {
6867 int hw_point1, hw_point2;
6868
6869 /* Both of them must not be in moribund_locations. */
6870 gdb_assert (loc1->owner != NULL);
6871 gdb_assert (loc2->owner != NULL);
6872
6873 hw_point1 = is_hardware_watchpoint (loc1->owner);
6874 hw_point2 = is_hardware_watchpoint (loc2->owner);
6875
6876 if (hw_point1 != hw_point2)
6877 return 0;
6878 else if (hw_point1)
6879 return watchpoint_locations_match (loc1, loc2);
6880 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6881 return tracepoint_locations_match (loc1, loc2);
6882 else
6883 /* We compare bp_location.length in order to cover ranged breakpoints. */
6884 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6885 loc2->pspace->aspace, loc2->address)
6886 && loc1->length == loc2->length);
6887 }
6888
6889 static void
6890 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6891 int bnum, int have_bnum)
6892 {
6893 /* The longest string possibly returned by hex_string_custom
6894 is 50 chars. These must be at least that big for safety. */
6895 char astr1[64];
6896 char astr2[64];
6897
6898 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6899 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6900 if (have_bnum)
6901 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6902 bnum, astr1, astr2);
6903 else
6904 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6905 }
6906
6907 /* Adjust a breakpoint's address to account for architectural
6908 constraints on breakpoint placement. Return the adjusted address.
6909 Note: Very few targets require this kind of adjustment. For most
6910 targets, this function is simply the identity function. */
6911
6912 static CORE_ADDR
6913 adjust_breakpoint_address (struct gdbarch *gdbarch,
6914 CORE_ADDR bpaddr, enum bptype bptype)
6915 {
6916 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6917 {
6918 /* Very few targets need any kind of breakpoint adjustment. */
6919 return bpaddr;
6920 }
6921 else if (bptype == bp_watchpoint
6922 || bptype == bp_hardware_watchpoint
6923 || bptype == bp_read_watchpoint
6924 || bptype == bp_access_watchpoint
6925 || bptype == bp_catchpoint)
6926 {
6927 /* Watchpoints and the various bp_catch_* eventpoints should not
6928 have their addresses modified. */
6929 return bpaddr;
6930 }
6931 else
6932 {
6933 CORE_ADDR adjusted_bpaddr;
6934
6935 /* Some targets have architectural constraints on the placement
6936 of breakpoint instructions. Obtain the adjusted address. */
6937 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6938
6939 /* An adjusted breakpoint address can significantly alter
6940 a user's expectations. Print a warning if an adjustment
6941 is required. */
6942 if (adjusted_bpaddr != bpaddr)
6943 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6944
6945 return adjusted_bpaddr;
6946 }
6947 }
6948
6949 void
6950 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6951 struct breakpoint *owner)
6952 {
6953 memset (loc, 0, sizeof (*loc));
6954
6955 gdb_assert (ops != NULL);
6956
6957 loc->ops = ops;
6958 loc->owner = owner;
6959 loc->cond = NULL;
6960 loc->cond_bytecode = NULL;
6961 loc->shlib_disabled = 0;
6962 loc->enabled = 1;
6963
6964 switch (owner->type)
6965 {
6966 case bp_breakpoint:
6967 case bp_until:
6968 case bp_finish:
6969 case bp_longjmp:
6970 case bp_longjmp_resume:
6971 case bp_longjmp_call_dummy:
6972 case bp_exception:
6973 case bp_exception_resume:
6974 case bp_step_resume:
6975 case bp_hp_step_resume:
6976 case bp_watchpoint_scope:
6977 case bp_call_dummy:
6978 case bp_std_terminate:
6979 case bp_shlib_event:
6980 case bp_thread_event:
6981 case bp_overlay_event:
6982 case bp_jit_event:
6983 case bp_longjmp_master:
6984 case bp_std_terminate_master:
6985 case bp_exception_master:
6986 case bp_gnu_ifunc_resolver:
6987 case bp_gnu_ifunc_resolver_return:
6988 case bp_dprintf:
6989 loc->loc_type = bp_loc_software_breakpoint;
6990 mark_breakpoint_location_modified (loc);
6991 break;
6992 case bp_hardware_breakpoint:
6993 loc->loc_type = bp_loc_hardware_breakpoint;
6994 mark_breakpoint_location_modified (loc);
6995 break;
6996 case bp_hardware_watchpoint:
6997 case bp_read_watchpoint:
6998 case bp_access_watchpoint:
6999 loc->loc_type = bp_loc_hardware_watchpoint;
7000 break;
7001 case bp_watchpoint:
7002 case bp_catchpoint:
7003 case bp_tracepoint:
7004 case bp_fast_tracepoint:
7005 case bp_static_tracepoint:
7006 loc->loc_type = bp_loc_other;
7007 break;
7008 default:
7009 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7010 }
7011
7012 loc->refc = 1;
7013 }
7014
7015 /* Allocate a struct bp_location. */
7016
7017 static struct bp_location *
7018 allocate_bp_location (struct breakpoint *bpt)
7019 {
7020 return bpt->ops->allocate_location (bpt);
7021 }
7022
7023 static void
7024 free_bp_location (struct bp_location *loc)
7025 {
7026 loc->ops->dtor (loc);
7027 xfree (loc);
7028 }
7029
7030 /* Increment reference count. */
7031
7032 static void
7033 incref_bp_location (struct bp_location *bl)
7034 {
7035 ++bl->refc;
7036 }
7037
7038 /* Decrement reference count. If the reference count reaches 0,
7039 destroy the bp_location. Sets *BLP to NULL. */
7040
7041 static void
7042 decref_bp_location (struct bp_location **blp)
7043 {
7044 gdb_assert ((*blp)->refc > 0);
7045
7046 if (--(*blp)->refc == 0)
7047 free_bp_location (*blp);
7048 *blp = NULL;
7049 }
7050
7051 /* Add breakpoint B at the end of the global breakpoint chain. */
7052
7053 static void
7054 add_to_breakpoint_chain (struct breakpoint *b)
7055 {
7056 struct breakpoint *b1;
7057
7058 /* Add this breakpoint to the end of the chain so that a list of
7059 breakpoints will come out in order of increasing numbers. */
7060
7061 b1 = breakpoint_chain;
7062 if (b1 == 0)
7063 breakpoint_chain = b;
7064 else
7065 {
7066 while (b1->next)
7067 b1 = b1->next;
7068 b1->next = b;
7069 }
7070 }
7071
7072 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7073
7074 static void
7075 init_raw_breakpoint_without_location (struct breakpoint *b,
7076 struct gdbarch *gdbarch,
7077 enum bptype bptype,
7078 const struct breakpoint_ops *ops)
7079 {
7080 memset (b, 0, sizeof (*b));
7081
7082 gdb_assert (ops != NULL);
7083
7084 b->ops = ops;
7085 b->type = bptype;
7086 b->gdbarch = gdbarch;
7087 b->language = current_language->la_language;
7088 b->input_radix = input_radix;
7089 b->thread = -1;
7090 b->enable_state = bp_enabled;
7091 b->next = 0;
7092 b->silent = 0;
7093 b->ignore_count = 0;
7094 b->commands = NULL;
7095 b->frame_id = null_frame_id;
7096 b->condition_not_parsed = 0;
7097 b->py_bp_object = NULL;
7098 b->related_breakpoint = b;
7099 }
7100
7101 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7102 that has type BPTYPE and has no locations as yet. */
7103
7104 static struct breakpoint *
7105 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7106 enum bptype bptype,
7107 const struct breakpoint_ops *ops)
7108 {
7109 struct breakpoint *b = XNEW (struct breakpoint);
7110
7111 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7112 add_to_breakpoint_chain (b);
7113 return b;
7114 }
7115
7116 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7117 resolutions should be made as the user specified the location explicitly
7118 enough. */
7119
7120 static void
7121 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7122 {
7123 gdb_assert (loc->owner != NULL);
7124
7125 if (loc->owner->type == bp_breakpoint
7126 || loc->owner->type == bp_hardware_breakpoint
7127 || is_tracepoint (loc->owner))
7128 {
7129 int is_gnu_ifunc;
7130 const char *function_name;
7131 CORE_ADDR func_addr;
7132
7133 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7134 &func_addr, NULL, &is_gnu_ifunc);
7135
7136 if (is_gnu_ifunc && !explicit_loc)
7137 {
7138 struct breakpoint *b = loc->owner;
7139
7140 gdb_assert (loc->pspace == current_program_space);
7141 if (gnu_ifunc_resolve_name (function_name,
7142 &loc->requested_address))
7143 {
7144 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7145 loc->address = adjust_breakpoint_address (loc->gdbarch,
7146 loc->requested_address,
7147 b->type);
7148 }
7149 else if (b->type == bp_breakpoint && b->loc == loc
7150 && loc->next == NULL && b->related_breakpoint == b)
7151 {
7152 /* Create only the whole new breakpoint of this type but do not
7153 mess more complicated breakpoints with multiple locations. */
7154 b->type = bp_gnu_ifunc_resolver;
7155 /* Remember the resolver's address for use by the return
7156 breakpoint. */
7157 loc->related_address = func_addr;
7158 }
7159 }
7160
7161 if (function_name)
7162 loc->function_name = xstrdup (function_name);
7163 }
7164 }
7165
7166 /* Attempt to determine architecture of location identified by SAL. */
7167 struct gdbarch *
7168 get_sal_arch (struct symtab_and_line sal)
7169 {
7170 if (sal.section)
7171 return get_objfile_arch (sal.section->objfile);
7172 if (sal.symtab)
7173 return get_objfile_arch (sal.symtab->objfile);
7174
7175 return NULL;
7176 }
7177
7178 /* Low level routine for partially initializing a breakpoint of type
7179 BPTYPE. The newly created breakpoint's address, section, source
7180 file name, and line number are provided by SAL.
7181
7182 It is expected that the caller will complete the initialization of
7183 the newly created breakpoint struct as well as output any status
7184 information regarding the creation of a new breakpoint. */
7185
7186 static void
7187 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7188 struct symtab_and_line sal, enum bptype bptype,
7189 const struct breakpoint_ops *ops)
7190 {
7191 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7192
7193 add_location_to_breakpoint (b, &sal);
7194
7195 if (bptype != bp_catchpoint)
7196 gdb_assert (sal.pspace != NULL);
7197
7198 /* Store the program space that was used to set the breakpoint,
7199 except for ordinary breakpoints, which are independent of the
7200 program space. */
7201 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7202 b->pspace = sal.pspace;
7203 }
7204
7205 /* set_raw_breakpoint is a low level routine for allocating and
7206 partially initializing a breakpoint of type BPTYPE. The newly
7207 created breakpoint's address, section, source file name, and line
7208 number are provided by SAL. The newly created and partially
7209 initialized breakpoint is added to the breakpoint chain and
7210 is also returned as the value of this function.
7211
7212 It is expected that the caller will complete the initialization of
7213 the newly created breakpoint struct as well as output any status
7214 information regarding the creation of a new breakpoint. In
7215 particular, set_raw_breakpoint does NOT set the breakpoint
7216 number! Care should be taken to not allow an error to occur
7217 prior to completing the initialization of the breakpoint. If this
7218 should happen, a bogus breakpoint will be left on the chain. */
7219
7220 struct breakpoint *
7221 set_raw_breakpoint (struct gdbarch *gdbarch,
7222 struct symtab_and_line sal, enum bptype bptype,
7223 const struct breakpoint_ops *ops)
7224 {
7225 struct breakpoint *b = XNEW (struct breakpoint);
7226
7227 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7228 add_to_breakpoint_chain (b);
7229 return b;
7230 }
7231
7232
7233 /* Note that the breakpoint object B describes a permanent breakpoint
7234 instruction, hard-wired into the inferior's code. */
7235 void
7236 make_breakpoint_permanent (struct breakpoint *b)
7237 {
7238 struct bp_location *bl;
7239
7240 b->enable_state = bp_permanent;
7241
7242 /* By definition, permanent breakpoints are already present in the
7243 code. Mark all locations as inserted. For now,
7244 make_breakpoint_permanent is called in just one place, so it's
7245 hard to say if it's reasonable to have permanent breakpoint with
7246 multiple locations or not, but it's easy to implement. */
7247 for (bl = b->loc; bl; bl = bl->next)
7248 bl->inserted = 1;
7249 }
7250
7251 /* Call this routine when stepping and nexting to enable a breakpoint
7252 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7253 initiated the operation. */
7254
7255 void
7256 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7257 {
7258 struct breakpoint *b, *b_tmp;
7259 int thread = tp->num;
7260
7261 /* To avoid having to rescan all objfile symbols at every step,
7262 we maintain a list of continually-inserted but always disabled
7263 longjmp "master" breakpoints. Here, we simply create momentary
7264 clones of those and enable them for the requested thread. */
7265 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7266 if (b->pspace == current_program_space
7267 && (b->type == bp_longjmp_master
7268 || b->type == bp_exception_master))
7269 {
7270 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7271 struct breakpoint *clone;
7272
7273 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7274 after their removal. */
7275 clone = momentary_breakpoint_from_master (b, type,
7276 &longjmp_breakpoint_ops);
7277 clone->thread = thread;
7278 }
7279
7280 tp->initiating_frame = frame;
7281 }
7282
7283 /* Delete all longjmp breakpoints from THREAD. */
7284 void
7285 delete_longjmp_breakpoint (int thread)
7286 {
7287 struct breakpoint *b, *b_tmp;
7288
7289 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7290 if (b->type == bp_longjmp || b->type == bp_exception)
7291 {
7292 if (b->thread == thread)
7293 delete_breakpoint (b);
7294 }
7295 }
7296
7297 void
7298 delete_longjmp_breakpoint_at_next_stop (int thread)
7299 {
7300 struct breakpoint *b, *b_tmp;
7301
7302 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7303 if (b->type == bp_longjmp || b->type == bp_exception)
7304 {
7305 if (b->thread == thread)
7306 b->disposition = disp_del_at_next_stop;
7307 }
7308 }
7309
7310 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7311 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7312 pointer to any of them. Return NULL if this system cannot place longjmp
7313 breakpoints. */
7314
7315 struct breakpoint *
7316 set_longjmp_breakpoint_for_call_dummy (void)
7317 {
7318 struct breakpoint *b, *retval = NULL;
7319
7320 ALL_BREAKPOINTS (b)
7321 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7322 {
7323 struct breakpoint *new_b;
7324
7325 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7326 &momentary_breakpoint_ops);
7327 new_b->thread = pid_to_thread_id (inferior_ptid);
7328
7329 /* Link NEW_B into the chain of RETVAL breakpoints. */
7330
7331 gdb_assert (new_b->related_breakpoint == new_b);
7332 if (retval == NULL)
7333 retval = new_b;
7334 new_b->related_breakpoint = retval;
7335 while (retval->related_breakpoint != new_b->related_breakpoint)
7336 retval = retval->related_breakpoint;
7337 retval->related_breakpoint = new_b;
7338 }
7339
7340 return retval;
7341 }
7342
7343 /* Verify all existing dummy frames and their associated breakpoints for
7344 THREAD. Remove those which can no longer be found in the current frame
7345 stack.
7346
7347 You should call this function only at places where it is safe to currently
7348 unwind the whole stack. Failed stack unwind would discard live dummy
7349 frames. */
7350
7351 void
7352 check_longjmp_breakpoint_for_call_dummy (int thread)
7353 {
7354 struct breakpoint *b, *b_tmp;
7355
7356 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7357 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7358 {
7359 struct breakpoint *dummy_b = b->related_breakpoint;
7360
7361 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7362 dummy_b = dummy_b->related_breakpoint;
7363 if (dummy_b->type != bp_call_dummy
7364 || frame_find_by_id (dummy_b->frame_id) != NULL)
7365 continue;
7366
7367 dummy_frame_discard (dummy_b->frame_id);
7368
7369 while (b->related_breakpoint != b)
7370 {
7371 if (b_tmp == b->related_breakpoint)
7372 b_tmp = b->related_breakpoint->next;
7373 delete_breakpoint (b->related_breakpoint);
7374 }
7375 delete_breakpoint (b);
7376 }
7377 }
7378
7379 void
7380 enable_overlay_breakpoints (void)
7381 {
7382 struct breakpoint *b;
7383
7384 ALL_BREAKPOINTS (b)
7385 if (b->type == bp_overlay_event)
7386 {
7387 b->enable_state = bp_enabled;
7388 update_global_location_list (1);
7389 overlay_events_enabled = 1;
7390 }
7391 }
7392
7393 void
7394 disable_overlay_breakpoints (void)
7395 {
7396 struct breakpoint *b;
7397
7398 ALL_BREAKPOINTS (b)
7399 if (b->type == bp_overlay_event)
7400 {
7401 b->enable_state = bp_disabled;
7402 update_global_location_list (0);
7403 overlay_events_enabled = 0;
7404 }
7405 }
7406
7407 /* Set an active std::terminate breakpoint for each std::terminate
7408 master breakpoint. */
7409 void
7410 set_std_terminate_breakpoint (void)
7411 {
7412 struct breakpoint *b, *b_tmp;
7413
7414 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7415 if (b->pspace == current_program_space
7416 && b->type == bp_std_terminate_master)
7417 {
7418 momentary_breakpoint_from_master (b, bp_std_terminate,
7419 &momentary_breakpoint_ops);
7420 }
7421 }
7422
7423 /* Delete all the std::terminate breakpoints. */
7424 void
7425 delete_std_terminate_breakpoint (void)
7426 {
7427 struct breakpoint *b, *b_tmp;
7428
7429 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7430 if (b->type == bp_std_terminate)
7431 delete_breakpoint (b);
7432 }
7433
7434 struct breakpoint *
7435 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7436 {
7437 struct breakpoint *b;
7438
7439 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7440 &internal_breakpoint_ops);
7441
7442 b->enable_state = bp_enabled;
7443 /* addr_string has to be used or breakpoint_re_set will delete me. */
7444 b->addr_string
7445 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7446
7447 update_global_location_list_nothrow (1);
7448
7449 return b;
7450 }
7451
7452 void
7453 remove_thread_event_breakpoints (void)
7454 {
7455 struct breakpoint *b, *b_tmp;
7456
7457 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7458 if (b->type == bp_thread_event
7459 && b->loc->pspace == current_program_space)
7460 delete_breakpoint (b);
7461 }
7462
7463 struct lang_and_radix
7464 {
7465 enum language lang;
7466 int radix;
7467 };
7468
7469 /* Create a breakpoint for JIT code registration and unregistration. */
7470
7471 struct breakpoint *
7472 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7473 {
7474 struct breakpoint *b;
7475
7476 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7477 &internal_breakpoint_ops);
7478 update_global_location_list_nothrow (1);
7479 return b;
7480 }
7481
7482 /* Remove JIT code registration and unregistration breakpoint(s). */
7483
7484 void
7485 remove_jit_event_breakpoints (void)
7486 {
7487 struct breakpoint *b, *b_tmp;
7488
7489 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7490 if (b->type == bp_jit_event
7491 && b->loc->pspace == current_program_space)
7492 delete_breakpoint (b);
7493 }
7494
7495 void
7496 remove_solib_event_breakpoints (void)
7497 {
7498 struct breakpoint *b, *b_tmp;
7499
7500 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7501 if (b->type == bp_shlib_event
7502 && b->loc->pspace == current_program_space)
7503 delete_breakpoint (b);
7504 }
7505
7506 struct breakpoint *
7507 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7508 {
7509 struct breakpoint *b;
7510
7511 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7512 &internal_breakpoint_ops);
7513 update_global_location_list_nothrow (1);
7514 return b;
7515 }
7516
7517 /* Disable any breakpoints that are on code in shared libraries. Only
7518 apply to enabled breakpoints, disabled ones can just stay disabled. */
7519
7520 void
7521 disable_breakpoints_in_shlibs (void)
7522 {
7523 struct bp_location *loc, **locp_tmp;
7524
7525 ALL_BP_LOCATIONS (loc, locp_tmp)
7526 {
7527 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7528 struct breakpoint *b = loc->owner;
7529
7530 /* We apply the check to all breakpoints, including disabled for
7531 those with loc->duplicate set. This is so that when breakpoint
7532 becomes enabled, or the duplicate is removed, gdb will try to
7533 insert all breakpoints. If we don't set shlib_disabled here,
7534 we'll try to insert those breakpoints and fail. */
7535 if (((b->type == bp_breakpoint)
7536 || (b->type == bp_jit_event)
7537 || (b->type == bp_hardware_breakpoint)
7538 || (is_tracepoint (b)))
7539 && loc->pspace == current_program_space
7540 && !loc->shlib_disabled
7541 && solib_name_from_address (loc->pspace, loc->address)
7542 )
7543 {
7544 loc->shlib_disabled = 1;
7545 }
7546 }
7547 }
7548
7549 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7550 notification of unloaded_shlib. Only apply to enabled breakpoints,
7551 disabled ones can just stay disabled. */
7552
7553 static void
7554 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7555 {
7556 struct bp_location *loc, **locp_tmp;
7557 int disabled_shlib_breaks = 0;
7558
7559 /* SunOS a.out shared libraries are always mapped, so do not
7560 disable breakpoints; they will only be reported as unloaded
7561 through clear_solib when GDB discards its shared library
7562 list. See clear_solib for more information. */
7563 if (exec_bfd != NULL
7564 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7565 return;
7566
7567 ALL_BP_LOCATIONS (loc, locp_tmp)
7568 {
7569 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7570 struct breakpoint *b = loc->owner;
7571
7572 if (solib->pspace == loc->pspace
7573 && !loc->shlib_disabled
7574 && (((b->type == bp_breakpoint
7575 || b->type == bp_jit_event
7576 || b->type == bp_hardware_breakpoint)
7577 && (loc->loc_type == bp_loc_hardware_breakpoint
7578 || loc->loc_type == bp_loc_software_breakpoint))
7579 || is_tracepoint (b))
7580 && solib_contains_address_p (solib, loc->address))
7581 {
7582 loc->shlib_disabled = 1;
7583 /* At this point, we cannot rely on remove_breakpoint
7584 succeeding so we must mark the breakpoint as not inserted
7585 to prevent future errors occurring in remove_breakpoints. */
7586 loc->inserted = 0;
7587
7588 /* This may cause duplicate notifications for the same breakpoint. */
7589 observer_notify_breakpoint_modified (b);
7590
7591 if (!disabled_shlib_breaks)
7592 {
7593 target_terminal_ours_for_output ();
7594 warning (_("Temporarily disabling breakpoints "
7595 "for unloaded shared library \"%s\""),
7596 solib->so_name);
7597 }
7598 disabled_shlib_breaks = 1;
7599 }
7600 }
7601 }
7602
7603 /* Disable any breakpoints and tracepoints in OBJFILE upon
7604 notification of free_objfile. Only apply to enabled breakpoints,
7605 disabled ones can just stay disabled. */
7606
7607 static void
7608 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7609 {
7610 struct breakpoint *b;
7611
7612 if (objfile == NULL)
7613 return;
7614
7615 /* If the file is a shared library not loaded by the user then
7616 solib_unloaded was notified and disable_breakpoints_in_unloaded_shlib
7617 was called. In that case there is no need to take action again. */
7618 if ((objfile->flags & OBJF_SHARED) && !(objfile->flags & OBJF_USERLOADED))
7619 return;
7620
7621 ALL_BREAKPOINTS (b)
7622 {
7623 struct bp_location *loc;
7624 int bp_modified = 0;
7625
7626 if (!is_breakpoint (b) && !is_tracepoint (b))
7627 continue;
7628
7629 for (loc = b->loc; loc != NULL; loc = loc->next)
7630 {
7631 CORE_ADDR loc_addr = loc->address;
7632
7633 if (loc->loc_type != bp_loc_hardware_breakpoint
7634 && loc->loc_type != bp_loc_software_breakpoint)
7635 continue;
7636
7637 if (loc->shlib_disabled != 0)
7638 continue;
7639
7640 if (objfile->pspace != loc->pspace)
7641 continue;
7642
7643 if (loc->loc_type != bp_loc_hardware_breakpoint
7644 && loc->loc_type != bp_loc_software_breakpoint)
7645 continue;
7646
7647 if (is_addr_in_objfile (loc_addr, objfile))
7648 {
7649 loc->shlib_disabled = 1;
7650 loc->inserted = 0;
7651
7652 mark_breakpoint_location_modified (loc);
7653
7654 bp_modified = 1;
7655 }
7656 }
7657
7658 if (bp_modified)
7659 observer_notify_breakpoint_modified (b);
7660 }
7661 }
7662
7663 /* FORK & VFORK catchpoints. */
7664
7665 /* An instance of this type is used to represent a fork or vfork
7666 catchpoint. It includes a "struct breakpoint" as a kind of base
7667 class; users downcast to "struct breakpoint *" when needed. A
7668 breakpoint is really of this type iff its ops pointer points to
7669 CATCH_FORK_BREAKPOINT_OPS. */
7670
7671 struct fork_catchpoint
7672 {
7673 /* The base class. */
7674 struct breakpoint base;
7675
7676 /* Process id of a child process whose forking triggered this
7677 catchpoint. This field is only valid immediately after this
7678 catchpoint has triggered. */
7679 ptid_t forked_inferior_pid;
7680 };
7681
7682 /* Implement the "insert" breakpoint_ops method for fork
7683 catchpoints. */
7684
7685 static int
7686 insert_catch_fork (struct bp_location *bl)
7687 {
7688 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7689 }
7690
7691 /* Implement the "remove" breakpoint_ops method for fork
7692 catchpoints. */
7693
7694 static int
7695 remove_catch_fork (struct bp_location *bl)
7696 {
7697 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7698 }
7699
7700 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7701 catchpoints. */
7702
7703 static int
7704 breakpoint_hit_catch_fork (const struct bp_location *bl,
7705 struct address_space *aspace, CORE_ADDR bp_addr,
7706 const struct target_waitstatus *ws)
7707 {
7708 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7709
7710 if (ws->kind != TARGET_WAITKIND_FORKED)
7711 return 0;
7712
7713 c->forked_inferior_pid = ws->value.related_pid;
7714 return 1;
7715 }
7716
7717 /* Implement the "print_it" breakpoint_ops method for fork
7718 catchpoints. */
7719
7720 static enum print_stop_action
7721 print_it_catch_fork (bpstat bs)
7722 {
7723 struct ui_out *uiout = current_uiout;
7724 struct breakpoint *b = bs->breakpoint_at;
7725 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7726
7727 annotate_catchpoint (b->number);
7728 if (b->disposition == disp_del)
7729 ui_out_text (uiout, "\nTemporary catchpoint ");
7730 else
7731 ui_out_text (uiout, "\nCatchpoint ");
7732 if (ui_out_is_mi_like_p (uiout))
7733 {
7734 ui_out_field_string (uiout, "reason",
7735 async_reason_lookup (EXEC_ASYNC_FORK));
7736 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7737 }
7738 ui_out_field_int (uiout, "bkptno", b->number);
7739 ui_out_text (uiout, " (forked process ");
7740 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7741 ui_out_text (uiout, "), ");
7742 return PRINT_SRC_AND_LOC;
7743 }
7744
7745 /* Implement the "print_one" breakpoint_ops method for fork
7746 catchpoints. */
7747
7748 static void
7749 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7750 {
7751 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7752 struct value_print_options opts;
7753 struct ui_out *uiout = current_uiout;
7754
7755 get_user_print_options (&opts);
7756
7757 /* Field 4, the address, is omitted (which makes the columns not
7758 line up too nicely with the headers, but the effect is relatively
7759 readable). */
7760 if (opts.addressprint)
7761 ui_out_field_skip (uiout, "addr");
7762 annotate_field (5);
7763 ui_out_text (uiout, "fork");
7764 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7765 {
7766 ui_out_text (uiout, ", process ");
7767 ui_out_field_int (uiout, "what",
7768 ptid_get_pid (c->forked_inferior_pid));
7769 ui_out_spaces (uiout, 1);
7770 }
7771
7772 if (ui_out_is_mi_like_p (uiout))
7773 ui_out_field_string (uiout, "catch-type", "fork");
7774 }
7775
7776 /* Implement the "print_mention" breakpoint_ops method for fork
7777 catchpoints. */
7778
7779 static void
7780 print_mention_catch_fork (struct breakpoint *b)
7781 {
7782 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7783 }
7784
7785 /* Implement the "print_recreate" breakpoint_ops method for fork
7786 catchpoints. */
7787
7788 static void
7789 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7790 {
7791 fprintf_unfiltered (fp, "catch fork");
7792 print_recreate_thread (b, fp);
7793 }
7794
7795 /* The breakpoint_ops structure to be used in fork catchpoints. */
7796
7797 static struct breakpoint_ops catch_fork_breakpoint_ops;
7798
7799 /* Implement the "insert" breakpoint_ops method for vfork
7800 catchpoints. */
7801
7802 static int
7803 insert_catch_vfork (struct bp_location *bl)
7804 {
7805 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7806 }
7807
7808 /* Implement the "remove" breakpoint_ops method for vfork
7809 catchpoints. */
7810
7811 static int
7812 remove_catch_vfork (struct bp_location *bl)
7813 {
7814 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7815 }
7816
7817 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7818 catchpoints. */
7819
7820 static int
7821 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7822 struct address_space *aspace, CORE_ADDR bp_addr,
7823 const struct target_waitstatus *ws)
7824 {
7825 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7826
7827 if (ws->kind != TARGET_WAITKIND_VFORKED)
7828 return 0;
7829
7830 c->forked_inferior_pid = ws->value.related_pid;
7831 return 1;
7832 }
7833
7834 /* Implement the "print_it" breakpoint_ops method for vfork
7835 catchpoints. */
7836
7837 static enum print_stop_action
7838 print_it_catch_vfork (bpstat bs)
7839 {
7840 struct ui_out *uiout = current_uiout;
7841 struct breakpoint *b = bs->breakpoint_at;
7842 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7843
7844 annotate_catchpoint (b->number);
7845 if (b->disposition == disp_del)
7846 ui_out_text (uiout, "\nTemporary catchpoint ");
7847 else
7848 ui_out_text (uiout, "\nCatchpoint ");
7849 if (ui_out_is_mi_like_p (uiout))
7850 {
7851 ui_out_field_string (uiout, "reason",
7852 async_reason_lookup (EXEC_ASYNC_VFORK));
7853 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7854 }
7855 ui_out_field_int (uiout, "bkptno", b->number);
7856 ui_out_text (uiout, " (vforked process ");
7857 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7858 ui_out_text (uiout, "), ");
7859 return PRINT_SRC_AND_LOC;
7860 }
7861
7862 /* Implement the "print_one" breakpoint_ops method for vfork
7863 catchpoints. */
7864
7865 static void
7866 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7867 {
7868 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7869 struct value_print_options opts;
7870 struct ui_out *uiout = current_uiout;
7871
7872 get_user_print_options (&opts);
7873 /* Field 4, the address, is omitted (which makes the columns not
7874 line up too nicely with the headers, but the effect is relatively
7875 readable). */
7876 if (opts.addressprint)
7877 ui_out_field_skip (uiout, "addr");
7878 annotate_field (5);
7879 ui_out_text (uiout, "vfork");
7880 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7881 {
7882 ui_out_text (uiout, ", process ");
7883 ui_out_field_int (uiout, "what",
7884 ptid_get_pid (c->forked_inferior_pid));
7885 ui_out_spaces (uiout, 1);
7886 }
7887
7888 if (ui_out_is_mi_like_p (uiout))
7889 ui_out_field_string (uiout, "catch-type", "vfork");
7890 }
7891
7892 /* Implement the "print_mention" breakpoint_ops method for vfork
7893 catchpoints. */
7894
7895 static void
7896 print_mention_catch_vfork (struct breakpoint *b)
7897 {
7898 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7899 }
7900
7901 /* Implement the "print_recreate" breakpoint_ops method for vfork
7902 catchpoints. */
7903
7904 static void
7905 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7906 {
7907 fprintf_unfiltered (fp, "catch vfork");
7908 print_recreate_thread (b, fp);
7909 }
7910
7911 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7912
7913 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7914
7915 /* An instance of this type is used to represent an solib catchpoint.
7916 It includes a "struct breakpoint" as a kind of base class; users
7917 downcast to "struct breakpoint *" when needed. A breakpoint is
7918 really of this type iff its ops pointer points to
7919 CATCH_SOLIB_BREAKPOINT_OPS. */
7920
7921 struct solib_catchpoint
7922 {
7923 /* The base class. */
7924 struct breakpoint base;
7925
7926 /* True for "catch load", false for "catch unload". */
7927 unsigned char is_load;
7928
7929 /* Regular expression to match, if any. COMPILED is only valid when
7930 REGEX is non-NULL. */
7931 char *regex;
7932 regex_t compiled;
7933 };
7934
7935 static void
7936 dtor_catch_solib (struct breakpoint *b)
7937 {
7938 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7939
7940 if (self->regex)
7941 regfree (&self->compiled);
7942 xfree (self->regex);
7943
7944 base_breakpoint_ops.dtor (b);
7945 }
7946
7947 static int
7948 insert_catch_solib (struct bp_location *ignore)
7949 {
7950 return 0;
7951 }
7952
7953 static int
7954 remove_catch_solib (struct bp_location *ignore)
7955 {
7956 return 0;
7957 }
7958
7959 static int
7960 breakpoint_hit_catch_solib (const struct bp_location *bl,
7961 struct address_space *aspace,
7962 CORE_ADDR bp_addr,
7963 const struct target_waitstatus *ws)
7964 {
7965 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7966 struct breakpoint *other;
7967
7968 if (ws->kind == TARGET_WAITKIND_LOADED)
7969 return 1;
7970
7971 ALL_BREAKPOINTS (other)
7972 {
7973 struct bp_location *other_bl;
7974
7975 if (other == bl->owner)
7976 continue;
7977
7978 if (other->type != bp_shlib_event)
7979 continue;
7980
7981 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7982 continue;
7983
7984 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7985 {
7986 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7987 return 1;
7988 }
7989 }
7990
7991 return 0;
7992 }
7993
7994 static void
7995 check_status_catch_solib (struct bpstats *bs)
7996 {
7997 struct solib_catchpoint *self
7998 = (struct solib_catchpoint *) bs->breakpoint_at;
7999 int ix;
8000
8001 if (self->is_load)
8002 {
8003 struct so_list *iter;
8004
8005 for (ix = 0;
8006 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8007 ix, iter);
8008 ++ix)
8009 {
8010 if (!self->regex
8011 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8012 return;
8013 }
8014 }
8015 else
8016 {
8017 char *iter;
8018
8019 for (ix = 0;
8020 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8021 ix, iter);
8022 ++ix)
8023 {
8024 if (!self->regex
8025 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8026 return;
8027 }
8028 }
8029
8030 bs->stop = 0;
8031 bs->print_it = print_it_noop;
8032 }
8033
8034 static enum print_stop_action
8035 print_it_catch_solib (bpstat bs)
8036 {
8037 struct breakpoint *b = bs->breakpoint_at;
8038 struct ui_out *uiout = current_uiout;
8039
8040 annotate_catchpoint (b->number);
8041 if (b->disposition == disp_del)
8042 ui_out_text (uiout, "\nTemporary catchpoint ");
8043 else
8044 ui_out_text (uiout, "\nCatchpoint ");
8045 ui_out_field_int (uiout, "bkptno", b->number);
8046 ui_out_text (uiout, "\n");
8047 if (ui_out_is_mi_like_p (uiout))
8048 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8049 print_solib_event (1);
8050 return PRINT_SRC_AND_LOC;
8051 }
8052
8053 static void
8054 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8055 {
8056 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8057 struct value_print_options opts;
8058 struct ui_out *uiout = current_uiout;
8059 char *msg;
8060
8061 get_user_print_options (&opts);
8062 /* Field 4, the address, is omitted (which makes the columns not
8063 line up too nicely with the headers, but the effect is relatively
8064 readable). */
8065 if (opts.addressprint)
8066 {
8067 annotate_field (4);
8068 ui_out_field_skip (uiout, "addr");
8069 }
8070
8071 annotate_field (5);
8072 if (self->is_load)
8073 {
8074 if (self->regex)
8075 msg = xstrprintf (_("load of library matching %s"), self->regex);
8076 else
8077 msg = xstrdup (_("load of library"));
8078 }
8079 else
8080 {
8081 if (self->regex)
8082 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8083 else
8084 msg = xstrdup (_("unload of library"));
8085 }
8086 ui_out_field_string (uiout, "what", msg);
8087 xfree (msg);
8088
8089 if (ui_out_is_mi_like_p (uiout))
8090 ui_out_field_string (uiout, "catch-type",
8091 self->is_load ? "load" : "unload");
8092 }
8093
8094 static void
8095 print_mention_catch_solib (struct breakpoint *b)
8096 {
8097 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8098
8099 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8100 self->is_load ? "load" : "unload");
8101 }
8102
8103 static void
8104 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8105 {
8106 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8107
8108 fprintf_unfiltered (fp, "%s %s",
8109 b->disposition == disp_del ? "tcatch" : "catch",
8110 self->is_load ? "load" : "unload");
8111 if (self->regex)
8112 fprintf_unfiltered (fp, " %s", self->regex);
8113 fprintf_unfiltered (fp, "\n");
8114 }
8115
8116 static struct breakpoint_ops catch_solib_breakpoint_ops;
8117
8118 /* Shared helper function (MI and CLI) for creating and installing
8119 a shared object event catchpoint. If IS_LOAD is non-zero then
8120 the events to be caught are load events, otherwise they are
8121 unload events. If IS_TEMP is non-zero the catchpoint is a
8122 temporary one. If ENABLED is non-zero the catchpoint is
8123 created in an enabled state. */
8124
8125 void
8126 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8127 {
8128 struct solib_catchpoint *c;
8129 struct gdbarch *gdbarch = get_current_arch ();
8130 struct cleanup *cleanup;
8131
8132 if (!arg)
8133 arg = "";
8134 arg = skip_spaces (arg);
8135
8136 c = XCNEW (struct solib_catchpoint);
8137 cleanup = make_cleanup (xfree, c);
8138
8139 if (*arg != '\0')
8140 {
8141 int errcode;
8142
8143 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8144 if (errcode != 0)
8145 {
8146 char *err = get_regcomp_error (errcode, &c->compiled);
8147
8148 make_cleanup (xfree, err);
8149 error (_("Invalid regexp (%s): %s"), err, arg);
8150 }
8151 c->regex = xstrdup (arg);
8152 }
8153
8154 c->is_load = is_load;
8155 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8156 &catch_solib_breakpoint_ops);
8157
8158 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8159
8160 discard_cleanups (cleanup);
8161 install_breakpoint (0, &c->base, 1);
8162 }
8163
8164 /* A helper function that does all the work for "catch load" and
8165 "catch unload". */
8166
8167 static void
8168 catch_load_or_unload (char *arg, int from_tty, int is_load,
8169 struct cmd_list_element *command)
8170 {
8171 int tempflag;
8172 const int enabled = 1;
8173
8174 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8175
8176 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8177 }
8178
8179 static void
8180 catch_load_command_1 (char *arg, int from_tty,
8181 struct cmd_list_element *command)
8182 {
8183 catch_load_or_unload (arg, from_tty, 1, command);
8184 }
8185
8186 static void
8187 catch_unload_command_1 (char *arg, int from_tty,
8188 struct cmd_list_element *command)
8189 {
8190 catch_load_or_unload (arg, from_tty, 0, command);
8191 }
8192
8193 /* An instance of this type is used to represent a syscall catchpoint.
8194 It includes a "struct breakpoint" as a kind of base class; users
8195 downcast to "struct breakpoint *" when needed. A breakpoint is
8196 really of this type iff its ops pointer points to
8197 CATCH_SYSCALL_BREAKPOINT_OPS. */
8198
8199 struct syscall_catchpoint
8200 {
8201 /* The base class. */
8202 struct breakpoint base;
8203
8204 /* Syscall numbers used for the 'catch syscall' feature. If no
8205 syscall has been specified for filtering, its value is NULL.
8206 Otherwise, it holds a list of all syscalls to be caught. The
8207 list elements are allocated with xmalloc. */
8208 VEC(int) *syscalls_to_be_caught;
8209 };
8210
8211 /* Implement the "dtor" breakpoint_ops method for syscall
8212 catchpoints. */
8213
8214 static void
8215 dtor_catch_syscall (struct breakpoint *b)
8216 {
8217 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8218
8219 VEC_free (int, c->syscalls_to_be_caught);
8220
8221 base_breakpoint_ops.dtor (b);
8222 }
8223
8224 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8225
8226 struct catch_syscall_inferior_data
8227 {
8228 /* We keep a count of the number of times the user has requested a
8229 particular syscall to be tracked, and pass this information to the
8230 target. This lets capable targets implement filtering directly. */
8231
8232 /* Number of times that "any" syscall is requested. */
8233 int any_syscall_count;
8234
8235 /* Count of each system call. */
8236 VEC(int) *syscalls_counts;
8237
8238 /* This counts all syscall catch requests, so we can readily determine
8239 if any catching is necessary. */
8240 int total_syscalls_count;
8241 };
8242
8243 static struct catch_syscall_inferior_data*
8244 get_catch_syscall_inferior_data (struct inferior *inf)
8245 {
8246 struct catch_syscall_inferior_data *inf_data;
8247
8248 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8249 if (inf_data == NULL)
8250 {
8251 inf_data = XCNEW (struct catch_syscall_inferior_data);
8252 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8253 }
8254
8255 return inf_data;
8256 }
8257
8258 static void
8259 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8260 {
8261 xfree (arg);
8262 }
8263
8264
8265 /* Implement the "insert" breakpoint_ops method for syscall
8266 catchpoints. */
8267
8268 static int
8269 insert_catch_syscall (struct bp_location *bl)
8270 {
8271 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8272 struct inferior *inf = current_inferior ();
8273 struct catch_syscall_inferior_data *inf_data
8274 = get_catch_syscall_inferior_data (inf);
8275
8276 ++inf_data->total_syscalls_count;
8277 if (!c->syscalls_to_be_caught)
8278 ++inf_data->any_syscall_count;
8279 else
8280 {
8281 int i, iter;
8282
8283 for (i = 0;
8284 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8285 i++)
8286 {
8287 int elem;
8288
8289 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8290 {
8291 int old_size = VEC_length (int, inf_data->syscalls_counts);
8292 uintptr_t vec_addr_offset
8293 = old_size * ((uintptr_t) sizeof (int));
8294 uintptr_t vec_addr;
8295 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8296 vec_addr = ((uintptr_t) VEC_address (int,
8297 inf_data->syscalls_counts)
8298 + vec_addr_offset);
8299 memset ((void *) vec_addr, 0,
8300 (iter + 1 - old_size) * sizeof (int));
8301 }
8302 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8303 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8304 }
8305 }
8306
8307 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8308 inf_data->total_syscalls_count != 0,
8309 inf_data->any_syscall_count,
8310 VEC_length (int,
8311 inf_data->syscalls_counts),
8312 VEC_address (int,
8313 inf_data->syscalls_counts));
8314 }
8315
8316 /* Implement the "remove" breakpoint_ops method for syscall
8317 catchpoints. */
8318
8319 static int
8320 remove_catch_syscall (struct bp_location *bl)
8321 {
8322 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8323 struct inferior *inf = current_inferior ();
8324 struct catch_syscall_inferior_data *inf_data
8325 = get_catch_syscall_inferior_data (inf);
8326
8327 --inf_data->total_syscalls_count;
8328 if (!c->syscalls_to_be_caught)
8329 --inf_data->any_syscall_count;
8330 else
8331 {
8332 int i, iter;
8333
8334 for (i = 0;
8335 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8336 i++)
8337 {
8338 int elem;
8339 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8340 /* Shouldn't happen. */
8341 continue;
8342 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8343 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8344 }
8345 }
8346
8347 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8348 inf_data->total_syscalls_count != 0,
8349 inf_data->any_syscall_count,
8350 VEC_length (int,
8351 inf_data->syscalls_counts),
8352 VEC_address (int,
8353 inf_data->syscalls_counts));
8354 }
8355
8356 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8357 catchpoints. */
8358
8359 static int
8360 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8361 struct address_space *aspace, CORE_ADDR bp_addr,
8362 const struct target_waitstatus *ws)
8363 {
8364 /* We must check if we are catching specific syscalls in this
8365 breakpoint. If we are, then we must guarantee that the called
8366 syscall is the same syscall we are catching. */
8367 int syscall_number = 0;
8368 const struct syscall_catchpoint *c
8369 = (const struct syscall_catchpoint *) bl->owner;
8370
8371 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8372 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8373 return 0;
8374
8375 syscall_number = ws->value.syscall_number;
8376
8377 /* Now, checking if the syscall is the same. */
8378 if (c->syscalls_to_be_caught)
8379 {
8380 int i, iter;
8381
8382 for (i = 0;
8383 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8384 i++)
8385 if (syscall_number == iter)
8386 return 1;
8387
8388 return 0;
8389 }
8390
8391 return 1;
8392 }
8393
8394 /* Implement the "print_it" breakpoint_ops method for syscall
8395 catchpoints. */
8396
8397 static enum print_stop_action
8398 print_it_catch_syscall (bpstat bs)
8399 {
8400 struct ui_out *uiout = current_uiout;
8401 struct breakpoint *b = bs->breakpoint_at;
8402 /* These are needed because we want to know in which state a
8403 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8404 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8405 must print "called syscall" or "returned from syscall". */
8406 ptid_t ptid;
8407 struct target_waitstatus last;
8408 struct syscall s;
8409
8410 get_last_target_status (&ptid, &last);
8411
8412 get_syscall_by_number (last.value.syscall_number, &s);
8413
8414 annotate_catchpoint (b->number);
8415
8416 if (b->disposition == disp_del)
8417 ui_out_text (uiout, "\nTemporary catchpoint ");
8418 else
8419 ui_out_text (uiout, "\nCatchpoint ");
8420 if (ui_out_is_mi_like_p (uiout))
8421 {
8422 ui_out_field_string (uiout, "reason",
8423 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8424 ? EXEC_ASYNC_SYSCALL_ENTRY
8425 : EXEC_ASYNC_SYSCALL_RETURN));
8426 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8427 }
8428 ui_out_field_int (uiout, "bkptno", b->number);
8429
8430 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8431 ui_out_text (uiout, " (call to syscall ");
8432 else
8433 ui_out_text (uiout, " (returned from syscall ");
8434
8435 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8436 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8437 if (s.name != NULL)
8438 ui_out_field_string (uiout, "syscall-name", s.name);
8439
8440 ui_out_text (uiout, "), ");
8441
8442 return PRINT_SRC_AND_LOC;
8443 }
8444
8445 /* Implement the "print_one" breakpoint_ops method for syscall
8446 catchpoints. */
8447
8448 static void
8449 print_one_catch_syscall (struct breakpoint *b,
8450 struct bp_location **last_loc)
8451 {
8452 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8453 struct value_print_options opts;
8454 struct ui_out *uiout = current_uiout;
8455
8456 get_user_print_options (&opts);
8457 /* Field 4, the address, is omitted (which makes the columns not
8458 line up too nicely with the headers, but the effect is relatively
8459 readable). */
8460 if (opts.addressprint)
8461 ui_out_field_skip (uiout, "addr");
8462 annotate_field (5);
8463
8464 if (c->syscalls_to_be_caught
8465 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8466 ui_out_text (uiout, "syscalls \"");
8467 else
8468 ui_out_text (uiout, "syscall \"");
8469
8470 if (c->syscalls_to_be_caught)
8471 {
8472 int i, iter;
8473 char *text = xstrprintf ("%s", "");
8474
8475 for (i = 0;
8476 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8477 i++)
8478 {
8479 char *x = text;
8480 struct syscall s;
8481 get_syscall_by_number (iter, &s);
8482
8483 if (s.name != NULL)
8484 text = xstrprintf ("%s%s, ", text, s.name);
8485 else
8486 text = xstrprintf ("%s%d, ", text, iter);
8487
8488 /* We have to xfree the last 'text' (now stored at 'x')
8489 because xstrprintf dynamically allocates new space for it
8490 on every call. */
8491 xfree (x);
8492 }
8493 /* Remove the last comma. */
8494 text[strlen (text) - 2] = '\0';
8495 ui_out_field_string (uiout, "what", text);
8496 }
8497 else
8498 ui_out_field_string (uiout, "what", "<any syscall>");
8499 ui_out_text (uiout, "\" ");
8500
8501 if (ui_out_is_mi_like_p (uiout))
8502 ui_out_field_string (uiout, "catch-type", "syscall");
8503 }
8504
8505 /* Implement the "print_mention" breakpoint_ops method for syscall
8506 catchpoints. */
8507
8508 static void
8509 print_mention_catch_syscall (struct breakpoint *b)
8510 {
8511 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8512
8513 if (c->syscalls_to_be_caught)
8514 {
8515 int i, iter;
8516
8517 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8518 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8519 else
8520 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8521
8522 for (i = 0;
8523 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8524 i++)
8525 {
8526 struct syscall s;
8527 get_syscall_by_number (iter, &s);
8528
8529 if (s.name)
8530 printf_filtered (" '%s' [%d]", s.name, s.number);
8531 else
8532 printf_filtered (" %d", s.number);
8533 }
8534 printf_filtered (")");
8535 }
8536 else
8537 printf_filtered (_("Catchpoint %d (any syscall)"),
8538 b->number);
8539 }
8540
8541 /* Implement the "print_recreate" breakpoint_ops method for syscall
8542 catchpoints. */
8543
8544 static void
8545 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8546 {
8547 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8548
8549 fprintf_unfiltered (fp, "catch syscall");
8550
8551 if (c->syscalls_to_be_caught)
8552 {
8553 int i, iter;
8554
8555 for (i = 0;
8556 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8557 i++)
8558 {
8559 struct syscall s;
8560
8561 get_syscall_by_number (iter, &s);
8562 if (s.name)
8563 fprintf_unfiltered (fp, " %s", s.name);
8564 else
8565 fprintf_unfiltered (fp, " %d", s.number);
8566 }
8567 }
8568 print_recreate_thread (b, fp);
8569 }
8570
8571 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8572
8573 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8574
8575 /* Returns non-zero if 'b' is a syscall catchpoint. */
8576
8577 static int
8578 syscall_catchpoint_p (struct breakpoint *b)
8579 {
8580 return (b->ops == &catch_syscall_breakpoint_ops);
8581 }
8582
8583 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8584 is non-zero, then make the breakpoint temporary. If COND_STRING is
8585 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8586 the breakpoint_ops structure associated to the catchpoint. */
8587
8588 void
8589 init_catchpoint (struct breakpoint *b,
8590 struct gdbarch *gdbarch, int tempflag,
8591 char *cond_string,
8592 const struct breakpoint_ops *ops)
8593 {
8594 struct symtab_and_line sal;
8595
8596 init_sal (&sal);
8597 sal.pspace = current_program_space;
8598
8599 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8600
8601 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8602 b->disposition = tempflag ? disp_del : disp_donttouch;
8603 }
8604
8605 void
8606 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8607 {
8608 add_to_breakpoint_chain (b);
8609 set_breakpoint_number (internal, b);
8610 if (is_tracepoint (b))
8611 set_tracepoint_count (breakpoint_count);
8612 if (!internal)
8613 mention (b);
8614 observer_notify_breakpoint_created (b);
8615
8616 if (update_gll)
8617 update_global_location_list (1);
8618 }
8619
8620 static void
8621 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8622 int tempflag, char *cond_string,
8623 const struct breakpoint_ops *ops)
8624 {
8625 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8626
8627 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8628
8629 c->forked_inferior_pid = null_ptid;
8630
8631 install_breakpoint (0, &c->base, 1);
8632 }
8633
8634 /* Exec catchpoints. */
8635
8636 /* An instance of this type is used to represent an exec catchpoint.
8637 It includes a "struct breakpoint" as a kind of base class; users
8638 downcast to "struct breakpoint *" when needed. A breakpoint is
8639 really of this type iff its ops pointer points to
8640 CATCH_EXEC_BREAKPOINT_OPS. */
8641
8642 struct exec_catchpoint
8643 {
8644 /* The base class. */
8645 struct breakpoint base;
8646
8647 /* Filename of a program whose exec triggered this catchpoint.
8648 This field is only valid immediately after this catchpoint has
8649 triggered. */
8650 char *exec_pathname;
8651 };
8652
8653 /* Implement the "dtor" breakpoint_ops method for exec
8654 catchpoints. */
8655
8656 static void
8657 dtor_catch_exec (struct breakpoint *b)
8658 {
8659 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8660
8661 xfree (c->exec_pathname);
8662
8663 base_breakpoint_ops.dtor (b);
8664 }
8665
8666 static int
8667 insert_catch_exec (struct bp_location *bl)
8668 {
8669 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8670 }
8671
8672 static int
8673 remove_catch_exec (struct bp_location *bl)
8674 {
8675 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8676 }
8677
8678 static int
8679 breakpoint_hit_catch_exec (const struct bp_location *bl,
8680 struct address_space *aspace, CORE_ADDR bp_addr,
8681 const struct target_waitstatus *ws)
8682 {
8683 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8684
8685 if (ws->kind != TARGET_WAITKIND_EXECD)
8686 return 0;
8687
8688 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8689 return 1;
8690 }
8691
8692 static enum print_stop_action
8693 print_it_catch_exec (bpstat bs)
8694 {
8695 struct ui_out *uiout = current_uiout;
8696 struct breakpoint *b = bs->breakpoint_at;
8697 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8698
8699 annotate_catchpoint (b->number);
8700 if (b->disposition == disp_del)
8701 ui_out_text (uiout, "\nTemporary catchpoint ");
8702 else
8703 ui_out_text (uiout, "\nCatchpoint ");
8704 if (ui_out_is_mi_like_p (uiout))
8705 {
8706 ui_out_field_string (uiout, "reason",
8707 async_reason_lookup (EXEC_ASYNC_EXEC));
8708 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8709 }
8710 ui_out_field_int (uiout, "bkptno", b->number);
8711 ui_out_text (uiout, " (exec'd ");
8712 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8713 ui_out_text (uiout, "), ");
8714
8715 return PRINT_SRC_AND_LOC;
8716 }
8717
8718 static void
8719 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8720 {
8721 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8722 struct value_print_options opts;
8723 struct ui_out *uiout = current_uiout;
8724
8725 get_user_print_options (&opts);
8726
8727 /* Field 4, the address, is omitted (which makes the columns
8728 not line up too nicely with the headers, but the effect
8729 is relatively readable). */
8730 if (opts.addressprint)
8731 ui_out_field_skip (uiout, "addr");
8732 annotate_field (5);
8733 ui_out_text (uiout, "exec");
8734 if (c->exec_pathname != NULL)
8735 {
8736 ui_out_text (uiout, ", program \"");
8737 ui_out_field_string (uiout, "what", c->exec_pathname);
8738 ui_out_text (uiout, "\" ");
8739 }
8740
8741 if (ui_out_is_mi_like_p (uiout))
8742 ui_out_field_string (uiout, "catch-type", "exec");
8743 }
8744
8745 static void
8746 print_mention_catch_exec (struct breakpoint *b)
8747 {
8748 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8749 }
8750
8751 /* Implement the "print_recreate" breakpoint_ops method for exec
8752 catchpoints. */
8753
8754 static void
8755 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8756 {
8757 fprintf_unfiltered (fp, "catch exec");
8758 print_recreate_thread (b, fp);
8759 }
8760
8761 static struct breakpoint_ops catch_exec_breakpoint_ops;
8762
8763 static void
8764 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8765 const struct breakpoint_ops *ops)
8766 {
8767 struct syscall_catchpoint *c;
8768 struct gdbarch *gdbarch = get_current_arch ();
8769
8770 c = XNEW (struct syscall_catchpoint);
8771 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8772 c->syscalls_to_be_caught = filter;
8773
8774 install_breakpoint (0, &c->base, 1);
8775 }
8776
8777 static int
8778 hw_breakpoint_used_count (void)
8779 {
8780 int i = 0;
8781 struct breakpoint *b;
8782 struct bp_location *bl;
8783
8784 ALL_BREAKPOINTS (b)
8785 {
8786 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8787 for (bl = b->loc; bl; bl = bl->next)
8788 {
8789 /* Special types of hardware breakpoints may use more than
8790 one register. */
8791 i += b->ops->resources_needed (bl);
8792 }
8793 }
8794
8795 return i;
8796 }
8797
8798 /* Returns the resources B would use if it were a hardware
8799 watchpoint. */
8800
8801 static int
8802 hw_watchpoint_use_count (struct breakpoint *b)
8803 {
8804 int i = 0;
8805 struct bp_location *bl;
8806
8807 if (!breakpoint_enabled (b))
8808 return 0;
8809
8810 for (bl = b->loc; bl; bl = bl->next)
8811 {
8812 /* Special types of hardware watchpoints may use more than
8813 one register. */
8814 i += b->ops->resources_needed (bl);
8815 }
8816
8817 return i;
8818 }
8819
8820 /* Returns the sum the used resources of all hardware watchpoints of
8821 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8822 the sum of the used resources of all hardware watchpoints of other
8823 types _not_ TYPE. */
8824
8825 static int
8826 hw_watchpoint_used_count_others (struct breakpoint *except,
8827 enum bptype type, int *other_type_used)
8828 {
8829 int i = 0;
8830 struct breakpoint *b;
8831
8832 *other_type_used = 0;
8833 ALL_BREAKPOINTS (b)
8834 {
8835 if (b == except)
8836 continue;
8837 if (!breakpoint_enabled (b))
8838 continue;
8839
8840 if (b->type == type)
8841 i += hw_watchpoint_use_count (b);
8842 else if (is_hardware_watchpoint (b))
8843 *other_type_used = 1;
8844 }
8845
8846 return i;
8847 }
8848
8849 void
8850 disable_watchpoints_before_interactive_call_start (void)
8851 {
8852 struct breakpoint *b;
8853
8854 ALL_BREAKPOINTS (b)
8855 {
8856 if (is_watchpoint (b) && breakpoint_enabled (b))
8857 {
8858 b->enable_state = bp_call_disabled;
8859 update_global_location_list (0);
8860 }
8861 }
8862 }
8863
8864 void
8865 enable_watchpoints_after_interactive_call_stop (void)
8866 {
8867 struct breakpoint *b;
8868
8869 ALL_BREAKPOINTS (b)
8870 {
8871 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8872 {
8873 b->enable_state = bp_enabled;
8874 update_global_location_list (1);
8875 }
8876 }
8877 }
8878
8879 void
8880 disable_breakpoints_before_startup (void)
8881 {
8882 current_program_space->executing_startup = 1;
8883 update_global_location_list (0);
8884 }
8885
8886 void
8887 enable_breakpoints_after_startup (void)
8888 {
8889 current_program_space->executing_startup = 0;
8890 breakpoint_re_set ();
8891 }
8892
8893
8894 /* Set a breakpoint that will evaporate an end of command
8895 at address specified by SAL.
8896 Restrict it to frame FRAME if FRAME is nonzero. */
8897
8898 struct breakpoint *
8899 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8900 struct frame_id frame_id, enum bptype type)
8901 {
8902 struct breakpoint *b;
8903
8904 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8905 tail-called one. */
8906 gdb_assert (!frame_id_artificial_p (frame_id));
8907
8908 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8909 b->enable_state = bp_enabled;
8910 b->disposition = disp_donttouch;
8911 b->frame_id = frame_id;
8912
8913 /* If we're debugging a multi-threaded program, then we want
8914 momentary breakpoints to be active in only a single thread of
8915 control. */
8916 if (in_thread_list (inferior_ptid))
8917 b->thread = pid_to_thread_id (inferior_ptid);
8918
8919 update_global_location_list_nothrow (1);
8920
8921 return b;
8922 }
8923
8924 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8925 The new breakpoint will have type TYPE, and use OPS as it
8926 breakpoint_ops. */
8927
8928 static struct breakpoint *
8929 momentary_breakpoint_from_master (struct breakpoint *orig,
8930 enum bptype type,
8931 const struct breakpoint_ops *ops)
8932 {
8933 struct breakpoint *copy;
8934
8935 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8936 copy->loc = allocate_bp_location (copy);
8937 set_breakpoint_location_function (copy->loc, 1);
8938
8939 copy->loc->gdbarch = orig->loc->gdbarch;
8940 copy->loc->requested_address = orig->loc->requested_address;
8941 copy->loc->address = orig->loc->address;
8942 copy->loc->section = orig->loc->section;
8943 copy->loc->pspace = orig->loc->pspace;
8944 copy->loc->probe = orig->loc->probe;
8945 copy->loc->line_number = orig->loc->line_number;
8946 copy->loc->symtab = orig->loc->symtab;
8947 copy->frame_id = orig->frame_id;
8948 copy->thread = orig->thread;
8949 copy->pspace = orig->pspace;
8950
8951 copy->enable_state = bp_enabled;
8952 copy->disposition = disp_donttouch;
8953 copy->number = internal_breakpoint_number--;
8954
8955 update_global_location_list_nothrow (0);
8956 return copy;
8957 }
8958
8959 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8960 ORIG is NULL. */
8961
8962 struct breakpoint *
8963 clone_momentary_breakpoint (struct breakpoint *orig)
8964 {
8965 /* If there's nothing to clone, then return nothing. */
8966 if (orig == NULL)
8967 return NULL;
8968
8969 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8970 }
8971
8972 struct breakpoint *
8973 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8974 enum bptype type)
8975 {
8976 struct symtab_and_line sal;
8977
8978 sal = find_pc_line (pc, 0);
8979 sal.pc = pc;
8980 sal.section = find_pc_overlay (pc);
8981 sal.explicit_pc = 1;
8982
8983 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8984 }
8985 \f
8986
8987 /* Tell the user we have just set a breakpoint B. */
8988
8989 static void
8990 mention (struct breakpoint *b)
8991 {
8992 b->ops->print_mention (b);
8993 if (ui_out_is_mi_like_p (current_uiout))
8994 return;
8995 printf_filtered ("\n");
8996 }
8997 \f
8998
8999 static struct bp_location *
9000 add_location_to_breakpoint (struct breakpoint *b,
9001 const struct symtab_and_line *sal)
9002 {
9003 struct bp_location *loc, **tmp;
9004 CORE_ADDR adjusted_address;
9005 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9006
9007 if (loc_gdbarch == NULL)
9008 loc_gdbarch = b->gdbarch;
9009
9010 /* Adjust the breakpoint's address prior to allocating a location.
9011 Once we call allocate_bp_location(), that mostly uninitialized
9012 location will be placed on the location chain. Adjustment of the
9013 breakpoint may cause target_read_memory() to be called and we do
9014 not want its scan of the location chain to find a breakpoint and
9015 location that's only been partially initialized. */
9016 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9017 sal->pc, b->type);
9018
9019 /* Sort the locations by their ADDRESS. */
9020 loc = allocate_bp_location (b);
9021 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9022 tmp = &((*tmp)->next))
9023 ;
9024 loc->next = *tmp;
9025 *tmp = loc;
9026
9027 loc->requested_address = sal->pc;
9028 loc->address = adjusted_address;
9029 loc->pspace = sal->pspace;
9030 loc->probe.probe = sal->probe;
9031 loc->probe.objfile = sal->objfile;
9032 gdb_assert (loc->pspace != NULL);
9033 loc->section = sal->section;
9034 loc->gdbarch = loc_gdbarch;
9035 loc->line_number = sal->line;
9036 loc->symtab = sal->symtab;
9037
9038 set_breakpoint_location_function (loc,
9039 sal->explicit_pc || sal->explicit_line);
9040 return loc;
9041 }
9042 \f
9043
9044 /* Return 1 if LOC is pointing to a permanent breakpoint,
9045 return 0 otherwise. */
9046
9047 static int
9048 bp_loc_is_permanent (struct bp_location *loc)
9049 {
9050 int len;
9051 CORE_ADDR addr;
9052 const gdb_byte *bpoint;
9053 gdb_byte *target_mem;
9054 struct cleanup *cleanup;
9055 int retval = 0;
9056
9057 gdb_assert (loc != NULL);
9058
9059 addr = loc->address;
9060 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
9061
9062 /* Software breakpoints unsupported? */
9063 if (bpoint == NULL)
9064 return 0;
9065
9066 target_mem = alloca (len);
9067
9068 /* Enable the automatic memory restoration from breakpoints while
9069 we read the memory. Otherwise we could say about our temporary
9070 breakpoints they are permanent. */
9071 cleanup = save_current_space_and_thread ();
9072
9073 switch_to_program_space_and_thread (loc->pspace);
9074 make_show_memory_breakpoints_cleanup (0);
9075
9076 if (target_read_memory (loc->address, target_mem, len) == 0
9077 && memcmp (target_mem, bpoint, len) == 0)
9078 retval = 1;
9079
9080 do_cleanups (cleanup);
9081
9082 return retval;
9083 }
9084
9085 /* Build a command list for the dprintf corresponding to the current
9086 settings of the dprintf style options. */
9087
9088 static void
9089 update_dprintf_command_list (struct breakpoint *b)
9090 {
9091 char *dprintf_args = b->extra_string;
9092 char *printf_line = NULL;
9093
9094 if (!dprintf_args)
9095 return;
9096
9097 dprintf_args = skip_spaces (dprintf_args);
9098
9099 /* Allow a comma, as it may have terminated a location, but don't
9100 insist on it. */
9101 if (*dprintf_args == ',')
9102 ++dprintf_args;
9103 dprintf_args = skip_spaces (dprintf_args);
9104
9105 if (*dprintf_args != '"')
9106 error (_("Bad format string, missing '\"'."));
9107
9108 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9109 printf_line = xstrprintf ("printf %s", dprintf_args);
9110 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9111 {
9112 if (!dprintf_function)
9113 error (_("No function supplied for dprintf call"));
9114
9115 if (dprintf_channel && strlen (dprintf_channel) > 0)
9116 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9117 dprintf_function,
9118 dprintf_channel,
9119 dprintf_args);
9120 else
9121 printf_line = xstrprintf ("call (void) %s (%s)",
9122 dprintf_function,
9123 dprintf_args);
9124 }
9125 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9126 {
9127 if (target_can_run_breakpoint_commands ())
9128 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9129 else
9130 {
9131 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9132 printf_line = xstrprintf ("printf %s", dprintf_args);
9133 }
9134 }
9135 else
9136 internal_error (__FILE__, __LINE__,
9137 _("Invalid dprintf style."));
9138
9139 gdb_assert (printf_line != NULL);
9140 /* Manufacture a printf sequence. */
9141 {
9142 struct command_line *printf_cmd_line
9143 = xmalloc (sizeof (struct command_line));
9144
9145 printf_cmd_line = xmalloc (sizeof (struct command_line));
9146 printf_cmd_line->control_type = simple_control;
9147 printf_cmd_line->body_count = 0;
9148 printf_cmd_line->body_list = NULL;
9149 printf_cmd_line->next = NULL;
9150 printf_cmd_line->line = printf_line;
9151
9152 breakpoint_set_commands (b, printf_cmd_line);
9153 }
9154 }
9155
9156 /* Update all dprintf commands, making their command lists reflect
9157 current style settings. */
9158
9159 static void
9160 update_dprintf_commands (char *args, int from_tty,
9161 struct cmd_list_element *c)
9162 {
9163 struct breakpoint *b;
9164
9165 ALL_BREAKPOINTS (b)
9166 {
9167 if (b->type == bp_dprintf)
9168 update_dprintf_command_list (b);
9169 }
9170 }
9171
9172 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9173 as textual description of the location, and COND_STRING
9174 as condition expression. */
9175
9176 static void
9177 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9178 struct symtabs_and_lines sals, char *addr_string,
9179 char *filter, char *cond_string,
9180 char *extra_string,
9181 enum bptype type, enum bpdisp disposition,
9182 int thread, int task, int ignore_count,
9183 const struct breakpoint_ops *ops, int from_tty,
9184 int enabled, int internal, unsigned flags,
9185 int display_canonical)
9186 {
9187 int i;
9188
9189 if (type == bp_hardware_breakpoint)
9190 {
9191 int target_resources_ok;
9192
9193 i = hw_breakpoint_used_count ();
9194 target_resources_ok =
9195 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9196 i + 1, 0);
9197 if (target_resources_ok == 0)
9198 error (_("No hardware breakpoint support in the target."));
9199 else if (target_resources_ok < 0)
9200 error (_("Hardware breakpoints used exceeds limit."));
9201 }
9202
9203 gdb_assert (sals.nelts > 0);
9204
9205 for (i = 0; i < sals.nelts; ++i)
9206 {
9207 struct symtab_and_line sal = sals.sals[i];
9208 struct bp_location *loc;
9209
9210 if (from_tty)
9211 {
9212 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9213 if (!loc_gdbarch)
9214 loc_gdbarch = gdbarch;
9215
9216 describe_other_breakpoints (loc_gdbarch,
9217 sal.pspace, sal.pc, sal.section, thread);
9218 }
9219
9220 if (i == 0)
9221 {
9222 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9223 b->thread = thread;
9224 b->task = task;
9225
9226 b->cond_string = cond_string;
9227 b->extra_string = extra_string;
9228 b->ignore_count = ignore_count;
9229 b->enable_state = enabled ? bp_enabled : bp_disabled;
9230 b->disposition = disposition;
9231
9232 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9233 b->loc->inserted = 1;
9234
9235 if (type == bp_static_tracepoint)
9236 {
9237 struct tracepoint *t = (struct tracepoint *) b;
9238 struct static_tracepoint_marker marker;
9239
9240 if (strace_marker_p (b))
9241 {
9242 /* We already know the marker exists, otherwise, we
9243 wouldn't see a sal for it. */
9244 char *p = &addr_string[3];
9245 char *endp;
9246 char *marker_str;
9247
9248 p = skip_spaces (p);
9249
9250 endp = skip_to_space (p);
9251
9252 marker_str = savestring (p, endp - p);
9253 t->static_trace_marker_id = marker_str;
9254
9255 printf_filtered (_("Probed static tracepoint "
9256 "marker \"%s\"\n"),
9257 t->static_trace_marker_id);
9258 }
9259 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9260 {
9261 t->static_trace_marker_id = xstrdup (marker.str_id);
9262 release_static_tracepoint_marker (&marker);
9263
9264 printf_filtered (_("Probed static tracepoint "
9265 "marker \"%s\"\n"),
9266 t->static_trace_marker_id);
9267 }
9268 else
9269 warning (_("Couldn't determine the static "
9270 "tracepoint marker to probe"));
9271 }
9272
9273 loc = b->loc;
9274 }
9275 else
9276 {
9277 loc = add_location_to_breakpoint (b, &sal);
9278 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9279 loc->inserted = 1;
9280 }
9281
9282 if (bp_loc_is_permanent (loc))
9283 make_breakpoint_permanent (b);
9284
9285 if (b->cond_string)
9286 {
9287 const char *arg = b->cond_string;
9288
9289 loc->cond = parse_exp_1 (&arg, loc->address,
9290 block_for_pc (loc->address), 0);
9291 if (*arg)
9292 error (_("Garbage '%s' follows condition"), arg);
9293 }
9294
9295 /* Dynamic printf requires and uses additional arguments on the
9296 command line, otherwise it's an error. */
9297 if (type == bp_dprintf)
9298 {
9299 if (b->extra_string)
9300 update_dprintf_command_list (b);
9301 else
9302 error (_("Format string required"));
9303 }
9304 else if (b->extra_string)
9305 error (_("Garbage '%s' at end of command"), b->extra_string);
9306 }
9307
9308 b->display_canonical = display_canonical;
9309 if (addr_string)
9310 b->addr_string = addr_string;
9311 else
9312 /* addr_string has to be used or breakpoint_re_set will delete
9313 me. */
9314 b->addr_string
9315 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9316 b->filter = filter;
9317 }
9318
9319 static void
9320 create_breakpoint_sal (struct gdbarch *gdbarch,
9321 struct symtabs_and_lines sals, char *addr_string,
9322 char *filter, char *cond_string,
9323 char *extra_string,
9324 enum bptype type, enum bpdisp disposition,
9325 int thread, int task, int ignore_count,
9326 const struct breakpoint_ops *ops, int from_tty,
9327 int enabled, int internal, unsigned flags,
9328 int display_canonical)
9329 {
9330 struct breakpoint *b;
9331 struct cleanup *old_chain;
9332
9333 if (is_tracepoint_type (type))
9334 {
9335 struct tracepoint *t;
9336
9337 t = XCNEW (struct tracepoint);
9338 b = &t->base;
9339 }
9340 else
9341 b = XNEW (struct breakpoint);
9342
9343 old_chain = make_cleanup (xfree, b);
9344
9345 init_breakpoint_sal (b, gdbarch,
9346 sals, addr_string,
9347 filter, cond_string, extra_string,
9348 type, disposition,
9349 thread, task, ignore_count,
9350 ops, from_tty,
9351 enabled, internal, flags,
9352 display_canonical);
9353 discard_cleanups (old_chain);
9354
9355 install_breakpoint (internal, b, 0);
9356 }
9357
9358 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9359 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9360 value. COND_STRING, if not NULL, specified the condition to be
9361 used for all breakpoints. Essentially the only case where
9362 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9363 function. In that case, it's still not possible to specify
9364 separate conditions for different overloaded functions, so
9365 we take just a single condition string.
9366
9367 NOTE: If the function succeeds, the caller is expected to cleanup
9368 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9369 array contents). If the function fails (error() is called), the
9370 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9371 COND and SALS arrays and each of those arrays contents. */
9372
9373 static void
9374 create_breakpoints_sal (struct gdbarch *gdbarch,
9375 struct linespec_result *canonical,
9376 char *cond_string, char *extra_string,
9377 enum bptype type, enum bpdisp disposition,
9378 int thread, int task, int ignore_count,
9379 const struct breakpoint_ops *ops, int from_tty,
9380 int enabled, int internal, unsigned flags)
9381 {
9382 int i;
9383 struct linespec_sals *lsal;
9384
9385 if (canonical->pre_expanded)
9386 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9387
9388 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9389 {
9390 /* Note that 'addr_string' can be NULL in the case of a plain
9391 'break', without arguments. */
9392 char *addr_string = (canonical->addr_string
9393 ? xstrdup (canonical->addr_string)
9394 : NULL);
9395 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9396 struct cleanup *inner = make_cleanup (xfree, addr_string);
9397
9398 make_cleanup (xfree, filter_string);
9399 create_breakpoint_sal (gdbarch, lsal->sals,
9400 addr_string,
9401 filter_string,
9402 cond_string, extra_string,
9403 type, disposition,
9404 thread, task, ignore_count, ops,
9405 from_tty, enabled, internal, flags,
9406 canonical->special_display);
9407 discard_cleanups (inner);
9408 }
9409 }
9410
9411 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9412 followed by conditionals. On return, SALS contains an array of SAL
9413 addresses found. ADDR_STRING contains a vector of (canonical)
9414 address strings. ADDRESS points to the end of the SAL.
9415
9416 The array and the line spec strings are allocated on the heap, it is
9417 the caller's responsibility to free them. */
9418
9419 static void
9420 parse_breakpoint_sals (char **address,
9421 struct linespec_result *canonical)
9422 {
9423 /* If no arg given, or if first arg is 'if ', use the default
9424 breakpoint. */
9425 if ((*address) == NULL
9426 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9427 {
9428 /* The last displayed codepoint, if it's valid, is our default breakpoint
9429 address. */
9430 if (last_displayed_sal_is_valid ())
9431 {
9432 struct linespec_sals lsal;
9433 struct symtab_and_line sal;
9434 CORE_ADDR pc;
9435
9436 init_sal (&sal); /* Initialize to zeroes. */
9437 lsal.sals.sals = (struct symtab_and_line *)
9438 xmalloc (sizeof (struct symtab_and_line));
9439
9440 /* Set sal's pspace, pc, symtab, and line to the values
9441 corresponding to the last call to print_frame_info.
9442 Be sure to reinitialize LINE with NOTCURRENT == 0
9443 as the breakpoint line number is inappropriate otherwise.
9444 find_pc_line would adjust PC, re-set it back. */
9445 get_last_displayed_sal (&sal);
9446 pc = sal.pc;
9447 sal = find_pc_line (pc, 0);
9448
9449 /* "break" without arguments is equivalent to "break *PC"
9450 where PC is the last displayed codepoint's address. So
9451 make sure to set sal.explicit_pc to prevent GDB from
9452 trying to expand the list of sals to include all other
9453 instances with the same symtab and line. */
9454 sal.pc = pc;
9455 sal.explicit_pc = 1;
9456
9457 lsal.sals.sals[0] = sal;
9458 lsal.sals.nelts = 1;
9459 lsal.canonical = NULL;
9460
9461 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9462 }
9463 else
9464 error (_("No default breakpoint address now."));
9465 }
9466 else
9467 {
9468 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9469
9470 /* Force almost all breakpoints to be in terms of the
9471 current_source_symtab (which is decode_line_1's default).
9472 This should produce the results we want almost all of the
9473 time while leaving default_breakpoint_* alone.
9474
9475 ObjC: However, don't match an Objective-C method name which
9476 may have a '+' or '-' succeeded by a '['. */
9477 if (last_displayed_sal_is_valid ()
9478 && (!cursal.symtab
9479 || ((strchr ("+-", (*address)[0]) != NULL)
9480 && ((*address)[1] != '['))))
9481 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9482 get_last_displayed_symtab (),
9483 get_last_displayed_line (),
9484 canonical, NULL, NULL);
9485 else
9486 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9487 cursal.symtab, cursal.line, canonical, NULL, NULL);
9488 }
9489 }
9490
9491
9492 /* Convert each SAL into a real PC. Verify that the PC can be
9493 inserted as a breakpoint. If it can't throw an error. */
9494
9495 static void
9496 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9497 {
9498 int i;
9499
9500 for (i = 0; i < sals->nelts; i++)
9501 resolve_sal_pc (&sals->sals[i]);
9502 }
9503
9504 /* Fast tracepoints may have restrictions on valid locations. For
9505 instance, a fast tracepoint using a jump instead of a trap will
9506 likely have to overwrite more bytes than a trap would, and so can
9507 only be placed where the instruction is longer than the jump, or a
9508 multi-instruction sequence does not have a jump into the middle of
9509 it, etc. */
9510
9511 static void
9512 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9513 struct symtabs_and_lines *sals)
9514 {
9515 int i, rslt;
9516 struct symtab_and_line *sal;
9517 char *msg;
9518 struct cleanup *old_chain;
9519
9520 for (i = 0; i < sals->nelts; i++)
9521 {
9522 struct gdbarch *sarch;
9523
9524 sal = &sals->sals[i];
9525
9526 sarch = get_sal_arch (*sal);
9527 /* We fall back to GDBARCH if there is no architecture
9528 associated with SAL. */
9529 if (sarch == NULL)
9530 sarch = gdbarch;
9531 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9532 NULL, &msg);
9533 old_chain = make_cleanup (xfree, msg);
9534
9535 if (!rslt)
9536 error (_("May not have a fast tracepoint at 0x%s%s"),
9537 paddress (sarch, sal->pc), (msg ? msg : ""));
9538
9539 do_cleanups (old_chain);
9540 }
9541 }
9542
9543 /* Issue an invalid thread ID error. */
9544
9545 static void ATTRIBUTE_NORETURN
9546 invalid_thread_id_error (int id)
9547 {
9548 error (_("Unknown thread %d."), id);
9549 }
9550
9551 /* Given TOK, a string specification of condition and thread, as
9552 accepted by the 'break' command, extract the condition
9553 string and thread number and set *COND_STRING and *THREAD.
9554 PC identifies the context at which the condition should be parsed.
9555 If no condition is found, *COND_STRING is set to NULL.
9556 If no thread is found, *THREAD is set to -1. */
9557
9558 static void
9559 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9560 char **cond_string, int *thread, int *task,
9561 char **rest)
9562 {
9563 *cond_string = NULL;
9564 *thread = -1;
9565 *task = 0;
9566 *rest = NULL;
9567
9568 while (tok && *tok)
9569 {
9570 const char *end_tok;
9571 int toklen;
9572 const char *cond_start = NULL;
9573 const char *cond_end = NULL;
9574
9575 tok = skip_spaces_const (tok);
9576
9577 if ((*tok == '"' || *tok == ',') && rest)
9578 {
9579 *rest = savestring (tok, strlen (tok));
9580 return;
9581 }
9582
9583 end_tok = skip_to_space_const (tok);
9584
9585 toklen = end_tok - tok;
9586
9587 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9588 {
9589 struct expression *expr;
9590
9591 tok = cond_start = end_tok + 1;
9592 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9593 xfree (expr);
9594 cond_end = tok;
9595 *cond_string = savestring (cond_start, cond_end - cond_start);
9596 }
9597 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9598 {
9599 char *tmptok;
9600
9601 tok = end_tok + 1;
9602 *thread = strtol (tok, &tmptok, 0);
9603 if (tok == tmptok)
9604 error (_("Junk after thread keyword."));
9605 if (!valid_thread_id (*thread))
9606 invalid_thread_id_error (*thread);
9607 tok = tmptok;
9608 }
9609 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9610 {
9611 char *tmptok;
9612
9613 tok = end_tok + 1;
9614 *task = strtol (tok, &tmptok, 0);
9615 if (tok == tmptok)
9616 error (_("Junk after task keyword."));
9617 if (!valid_task_id (*task))
9618 error (_("Unknown task %d."), *task);
9619 tok = tmptok;
9620 }
9621 else if (rest)
9622 {
9623 *rest = savestring (tok, strlen (tok));
9624 return;
9625 }
9626 else
9627 error (_("Junk at end of arguments."));
9628 }
9629 }
9630
9631 /* Decode a static tracepoint marker spec. */
9632
9633 static struct symtabs_and_lines
9634 decode_static_tracepoint_spec (char **arg_p)
9635 {
9636 VEC(static_tracepoint_marker_p) *markers = NULL;
9637 struct symtabs_and_lines sals;
9638 struct cleanup *old_chain;
9639 char *p = &(*arg_p)[3];
9640 char *endp;
9641 char *marker_str;
9642 int i;
9643
9644 p = skip_spaces (p);
9645
9646 endp = skip_to_space (p);
9647
9648 marker_str = savestring (p, endp - p);
9649 old_chain = make_cleanup (xfree, marker_str);
9650
9651 markers = target_static_tracepoint_markers_by_strid (marker_str);
9652 if (VEC_empty(static_tracepoint_marker_p, markers))
9653 error (_("No known static tracepoint marker named %s"), marker_str);
9654
9655 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9656 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9657
9658 for (i = 0; i < sals.nelts; i++)
9659 {
9660 struct static_tracepoint_marker *marker;
9661
9662 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9663
9664 init_sal (&sals.sals[i]);
9665
9666 sals.sals[i] = find_pc_line (marker->address, 0);
9667 sals.sals[i].pc = marker->address;
9668
9669 release_static_tracepoint_marker (marker);
9670 }
9671
9672 do_cleanups (old_chain);
9673
9674 *arg_p = endp;
9675 return sals;
9676 }
9677
9678 /* Set a breakpoint. This function is shared between CLI and MI
9679 functions for setting a breakpoint. This function has two major
9680 modes of operations, selected by the PARSE_ARG parameter. If
9681 non-zero, the function will parse ARG, extracting location,
9682 condition, thread and extra string. Otherwise, ARG is just the
9683 breakpoint's location, with condition, thread, and extra string
9684 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9685 If INTERNAL is non-zero, the breakpoint number will be allocated
9686 from the internal breakpoint count. Returns true if any breakpoint
9687 was created; false otherwise. */
9688
9689 int
9690 create_breakpoint (struct gdbarch *gdbarch,
9691 char *arg, char *cond_string,
9692 int thread, char *extra_string,
9693 int parse_arg,
9694 int tempflag, enum bptype type_wanted,
9695 int ignore_count,
9696 enum auto_boolean pending_break_support,
9697 const struct breakpoint_ops *ops,
9698 int from_tty, int enabled, int internal,
9699 unsigned flags)
9700 {
9701 volatile struct gdb_exception e;
9702 char *copy_arg = NULL;
9703 char *addr_start = arg;
9704 struct linespec_result canonical;
9705 struct cleanup *old_chain;
9706 struct cleanup *bkpt_chain = NULL;
9707 int pending = 0;
9708 int task = 0;
9709 int prev_bkpt_count = breakpoint_count;
9710
9711 gdb_assert (ops != NULL);
9712
9713 init_linespec_result (&canonical);
9714
9715 TRY_CATCH (e, RETURN_MASK_ALL)
9716 {
9717 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9718 addr_start, &copy_arg);
9719 }
9720
9721 /* If caller is interested in rc value from parse, set value. */
9722 switch (e.reason)
9723 {
9724 case GDB_NO_ERROR:
9725 if (VEC_empty (linespec_sals, canonical.sals))
9726 return 0;
9727 break;
9728 case RETURN_ERROR:
9729 switch (e.error)
9730 {
9731 case NOT_FOUND_ERROR:
9732
9733 /* If pending breakpoint support is turned off, throw
9734 error. */
9735
9736 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9737 throw_exception (e);
9738
9739 exception_print (gdb_stderr, e);
9740
9741 /* If pending breakpoint support is auto query and the user
9742 selects no, then simply return the error code. */
9743 if (pending_break_support == AUTO_BOOLEAN_AUTO
9744 && !nquery (_("Make %s pending on future shared library load? "),
9745 bptype_string (type_wanted)))
9746 return 0;
9747
9748 /* At this point, either the user was queried about setting
9749 a pending breakpoint and selected yes, or pending
9750 breakpoint behavior is on and thus a pending breakpoint
9751 is defaulted on behalf of the user. */
9752 {
9753 struct linespec_sals lsal;
9754
9755 copy_arg = xstrdup (addr_start);
9756 lsal.canonical = xstrdup (copy_arg);
9757 lsal.sals.nelts = 1;
9758 lsal.sals.sals = XNEW (struct symtab_and_line);
9759 init_sal (&lsal.sals.sals[0]);
9760 pending = 1;
9761 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9762 }
9763 break;
9764 default:
9765 throw_exception (e);
9766 }
9767 break;
9768 default:
9769 throw_exception (e);
9770 }
9771
9772 /* Create a chain of things that always need to be cleaned up. */
9773 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9774
9775 /* ----------------------------- SNIP -----------------------------
9776 Anything added to the cleanup chain beyond this point is assumed
9777 to be part of a breakpoint. If the breakpoint create succeeds
9778 then the memory is not reclaimed. */
9779 bkpt_chain = make_cleanup (null_cleanup, 0);
9780
9781 /* Resolve all line numbers to PC's and verify that the addresses
9782 are ok for the target. */
9783 if (!pending)
9784 {
9785 int ix;
9786 struct linespec_sals *iter;
9787
9788 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9789 breakpoint_sals_to_pc (&iter->sals);
9790 }
9791
9792 /* Fast tracepoints may have additional restrictions on location. */
9793 if (!pending && type_wanted == bp_fast_tracepoint)
9794 {
9795 int ix;
9796 struct linespec_sals *iter;
9797
9798 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9799 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9800 }
9801
9802 /* Verify that condition can be parsed, before setting any
9803 breakpoints. Allocate a separate condition expression for each
9804 breakpoint. */
9805 if (!pending)
9806 {
9807 if (parse_arg)
9808 {
9809 char *rest;
9810 struct linespec_sals *lsal;
9811
9812 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9813
9814 /* Here we only parse 'arg' to separate condition
9815 from thread number, so parsing in context of first
9816 sal is OK. When setting the breakpoint we'll
9817 re-parse it in context of each sal. */
9818
9819 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9820 &thread, &task, &rest);
9821 if (cond_string)
9822 make_cleanup (xfree, cond_string);
9823 if (rest)
9824 make_cleanup (xfree, rest);
9825 if (rest)
9826 extra_string = rest;
9827 }
9828 else
9829 {
9830 if (*arg != '\0')
9831 error (_("Garbage '%s' at end of location"), arg);
9832
9833 /* Create a private copy of condition string. */
9834 if (cond_string)
9835 {
9836 cond_string = xstrdup (cond_string);
9837 make_cleanup (xfree, cond_string);
9838 }
9839 /* Create a private copy of any extra string. */
9840 if (extra_string)
9841 {
9842 extra_string = xstrdup (extra_string);
9843 make_cleanup (xfree, extra_string);
9844 }
9845 }
9846
9847 ops->create_breakpoints_sal (gdbarch, &canonical,
9848 cond_string, extra_string, type_wanted,
9849 tempflag ? disp_del : disp_donttouch,
9850 thread, task, ignore_count, ops,
9851 from_tty, enabled, internal, flags);
9852 }
9853 else
9854 {
9855 struct breakpoint *b;
9856
9857 make_cleanup (xfree, copy_arg);
9858
9859 if (is_tracepoint_type (type_wanted))
9860 {
9861 struct tracepoint *t;
9862
9863 t = XCNEW (struct tracepoint);
9864 b = &t->base;
9865 }
9866 else
9867 b = XNEW (struct breakpoint);
9868
9869 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9870
9871 b->addr_string = copy_arg;
9872 if (parse_arg)
9873 b->cond_string = NULL;
9874 else
9875 {
9876 /* Create a private copy of condition string. */
9877 if (cond_string)
9878 {
9879 cond_string = xstrdup (cond_string);
9880 make_cleanup (xfree, cond_string);
9881 }
9882 b->cond_string = cond_string;
9883 }
9884 b->extra_string = NULL;
9885 b->ignore_count = ignore_count;
9886 b->disposition = tempflag ? disp_del : disp_donttouch;
9887 b->condition_not_parsed = 1;
9888 b->enable_state = enabled ? bp_enabled : bp_disabled;
9889 if ((type_wanted != bp_breakpoint
9890 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9891 b->pspace = current_program_space;
9892
9893 install_breakpoint (internal, b, 0);
9894 }
9895
9896 if (VEC_length (linespec_sals, canonical.sals) > 1)
9897 {
9898 warning (_("Multiple breakpoints were set.\nUse the "
9899 "\"delete\" command to delete unwanted breakpoints."));
9900 prev_breakpoint_count = prev_bkpt_count;
9901 }
9902
9903 /* That's it. Discard the cleanups for data inserted into the
9904 breakpoint. */
9905 discard_cleanups (bkpt_chain);
9906 /* But cleanup everything else. */
9907 do_cleanups (old_chain);
9908
9909 /* error call may happen here - have BKPT_CHAIN already discarded. */
9910 update_global_location_list (1);
9911
9912 return 1;
9913 }
9914
9915 /* Set a breakpoint.
9916 ARG is a string describing breakpoint address,
9917 condition, and thread.
9918 FLAG specifies if a breakpoint is hardware on,
9919 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9920 and BP_TEMPFLAG. */
9921
9922 static void
9923 break_command_1 (char *arg, int flag, int from_tty)
9924 {
9925 int tempflag = flag & BP_TEMPFLAG;
9926 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9927 ? bp_hardware_breakpoint
9928 : bp_breakpoint);
9929 struct breakpoint_ops *ops;
9930 const char *arg_cp = arg;
9931
9932 /* Matching breakpoints on probes. */
9933 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9934 ops = &bkpt_probe_breakpoint_ops;
9935 else
9936 ops = &bkpt_breakpoint_ops;
9937
9938 create_breakpoint (get_current_arch (),
9939 arg,
9940 NULL, 0, NULL, 1 /* parse arg */,
9941 tempflag, type_wanted,
9942 0 /* Ignore count */,
9943 pending_break_support,
9944 ops,
9945 from_tty,
9946 1 /* enabled */,
9947 0 /* internal */,
9948 0);
9949 }
9950
9951 /* Helper function for break_command_1 and disassemble_command. */
9952
9953 void
9954 resolve_sal_pc (struct symtab_and_line *sal)
9955 {
9956 CORE_ADDR pc;
9957
9958 if (sal->pc == 0 && sal->symtab != NULL)
9959 {
9960 if (!find_line_pc (sal->symtab, sal->line, &pc))
9961 error (_("No line %d in file \"%s\"."),
9962 sal->line, symtab_to_filename_for_display (sal->symtab));
9963 sal->pc = pc;
9964
9965 /* If this SAL corresponds to a breakpoint inserted using a line
9966 number, then skip the function prologue if necessary. */
9967 if (sal->explicit_line)
9968 skip_prologue_sal (sal);
9969 }
9970
9971 if (sal->section == 0 && sal->symtab != NULL)
9972 {
9973 struct blockvector *bv;
9974 struct block *b;
9975 struct symbol *sym;
9976
9977 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9978 if (bv != NULL)
9979 {
9980 sym = block_linkage_function (b);
9981 if (sym != NULL)
9982 {
9983 fixup_symbol_section (sym, sal->symtab->objfile);
9984 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9985 }
9986 else
9987 {
9988 /* It really is worthwhile to have the section, so we'll
9989 just have to look harder. This case can be executed
9990 if we have line numbers but no functions (as can
9991 happen in assembly source). */
9992
9993 struct bound_minimal_symbol msym;
9994 struct cleanup *old_chain = save_current_space_and_thread ();
9995
9996 switch_to_program_space_and_thread (sal->pspace);
9997
9998 msym = lookup_minimal_symbol_by_pc (sal->pc);
9999 if (msym.minsym)
10000 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10001
10002 do_cleanups (old_chain);
10003 }
10004 }
10005 }
10006 }
10007
10008 void
10009 break_command (char *arg, int from_tty)
10010 {
10011 break_command_1 (arg, 0, from_tty);
10012 }
10013
10014 void
10015 tbreak_command (char *arg, int from_tty)
10016 {
10017 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10018 }
10019
10020 static void
10021 hbreak_command (char *arg, int from_tty)
10022 {
10023 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10024 }
10025
10026 static void
10027 thbreak_command (char *arg, int from_tty)
10028 {
10029 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10030 }
10031
10032 static void
10033 stop_command (char *arg, int from_tty)
10034 {
10035 printf_filtered (_("Specify the type of breakpoint to set.\n\
10036 Usage: stop in <function | address>\n\
10037 stop at <line>\n"));
10038 }
10039
10040 static void
10041 stopin_command (char *arg, int from_tty)
10042 {
10043 int badInput = 0;
10044
10045 if (arg == (char *) NULL)
10046 badInput = 1;
10047 else if (*arg != '*')
10048 {
10049 char *argptr = arg;
10050 int hasColon = 0;
10051
10052 /* Look for a ':'. If this is a line number specification, then
10053 say it is bad, otherwise, it should be an address or
10054 function/method name. */
10055 while (*argptr && !hasColon)
10056 {
10057 hasColon = (*argptr == ':');
10058 argptr++;
10059 }
10060
10061 if (hasColon)
10062 badInput = (*argptr != ':'); /* Not a class::method */
10063 else
10064 badInput = isdigit (*arg); /* a simple line number */
10065 }
10066
10067 if (badInput)
10068 printf_filtered (_("Usage: stop in <function | address>\n"));
10069 else
10070 break_command_1 (arg, 0, from_tty);
10071 }
10072
10073 static void
10074 stopat_command (char *arg, int from_tty)
10075 {
10076 int badInput = 0;
10077
10078 if (arg == (char *) NULL || *arg == '*') /* no line number */
10079 badInput = 1;
10080 else
10081 {
10082 char *argptr = arg;
10083 int hasColon = 0;
10084
10085 /* Look for a ':'. If there is a '::' then get out, otherwise
10086 it is probably a line number. */
10087 while (*argptr && !hasColon)
10088 {
10089 hasColon = (*argptr == ':');
10090 argptr++;
10091 }
10092
10093 if (hasColon)
10094 badInput = (*argptr == ':'); /* we have class::method */
10095 else
10096 badInput = !isdigit (*arg); /* not a line number */
10097 }
10098
10099 if (badInput)
10100 printf_filtered (_("Usage: stop at <line>\n"));
10101 else
10102 break_command_1 (arg, 0, from_tty);
10103 }
10104
10105 /* The dynamic printf command is mostly like a regular breakpoint, but
10106 with a prewired command list consisting of a single output command,
10107 built from extra arguments supplied on the dprintf command
10108 line. */
10109
10110 static void
10111 dprintf_command (char *arg, int from_tty)
10112 {
10113 create_breakpoint (get_current_arch (),
10114 arg,
10115 NULL, 0, NULL, 1 /* parse arg */,
10116 0, bp_dprintf,
10117 0 /* Ignore count */,
10118 pending_break_support,
10119 &dprintf_breakpoint_ops,
10120 from_tty,
10121 1 /* enabled */,
10122 0 /* internal */,
10123 0);
10124 }
10125
10126 static void
10127 agent_printf_command (char *arg, int from_tty)
10128 {
10129 error (_("May only run agent-printf on the target"));
10130 }
10131
10132 /* Implement the "breakpoint_hit" breakpoint_ops method for
10133 ranged breakpoints. */
10134
10135 static int
10136 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10137 struct address_space *aspace,
10138 CORE_ADDR bp_addr,
10139 const struct target_waitstatus *ws)
10140 {
10141 if (ws->kind != TARGET_WAITKIND_STOPPED
10142 || ws->value.sig != GDB_SIGNAL_TRAP)
10143 return 0;
10144
10145 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10146 bl->length, aspace, bp_addr);
10147 }
10148
10149 /* Implement the "resources_needed" breakpoint_ops method for
10150 ranged breakpoints. */
10151
10152 static int
10153 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10154 {
10155 return target_ranged_break_num_registers ();
10156 }
10157
10158 /* Implement the "print_it" breakpoint_ops method for
10159 ranged breakpoints. */
10160
10161 static enum print_stop_action
10162 print_it_ranged_breakpoint (bpstat bs)
10163 {
10164 struct breakpoint *b = bs->breakpoint_at;
10165 struct bp_location *bl = b->loc;
10166 struct ui_out *uiout = current_uiout;
10167
10168 gdb_assert (b->type == bp_hardware_breakpoint);
10169
10170 /* Ranged breakpoints have only one location. */
10171 gdb_assert (bl && bl->next == NULL);
10172
10173 annotate_breakpoint (b->number);
10174 if (b->disposition == disp_del)
10175 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10176 else
10177 ui_out_text (uiout, "\nRanged breakpoint ");
10178 if (ui_out_is_mi_like_p (uiout))
10179 {
10180 ui_out_field_string (uiout, "reason",
10181 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10182 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10183 }
10184 ui_out_field_int (uiout, "bkptno", b->number);
10185 ui_out_text (uiout, ", ");
10186
10187 return PRINT_SRC_AND_LOC;
10188 }
10189
10190 /* Implement the "print_one" breakpoint_ops method for
10191 ranged breakpoints. */
10192
10193 static void
10194 print_one_ranged_breakpoint (struct breakpoint *b,
10195 struct bp_location **last_loc)
10196 {
10197 struct bp_location *bl = b->loc;
10198 struct value_print_options opts;
10199 struct ui_out *uiout = current_uiout;
10200
10201 /* Ranged breakpoints have only one location. */
10202 gdb_assert (bl && bl->next == NULL);
10203
10204 get_user_print_options (&opts);
10205
10206 if (opts.addressprint)
10207 /* We don't print the address range here, it will be printed later
10208 by print_one_detail_ranged_breakpoint. */
10209 ui_out_field_skip (uiout, "addr");
10210 annotate_field (5);
10211 print_breakpoint_location (b, bl);
10212 *last_loc = bl;
10213 }
10214
10215 /* Implement the "print_one_detail" breakpoint_ops method for
10216 ranged breakpoints. */
10217
10218 static void
10219 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10220 struct ui_out *uiout)
10221 {
10222 CORE_ADDR address_start, address_end;
10223 struct bp_location *bl = b->loc;
10224 struct ui_file *stb = mem_fileopen ();
10225 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10226
10227 gdb_assert (bl);
10228
10229 address_start = bl->address;
10230 address_end = address_start + bl->length - 1;
10231
10232 ui_out_text (uiout, "\taddress range: ");
10233 fprintf_unfiltered (stb, "[%s, %s]",
10234 print_core_address (bl->gdbarch, address_start),
10235 print_core_address (bl->gdbarch, address_end));
10236 ui_out_field_stream (uiout, "addr", stb);
10237 ui_out_text (uiout, "\n");
10238
10239 do_cleanups (cleanup);
10240 }
10241
10242 /* Implement the "print_mention" breakpoint_ops method for
10243 ranged breakpoints. */
10244
10245 static void
10246 print_mention_ranged_breakpoint (struct breakpoint *b)
10247 {
10248 struct bp_location *bl = b->loc;
10249 struct ui_out *uiout = current_uiout;
10250
10251 gdb_assert (bl);
10252 gdb_assert (b->type == bp_hardware_breakpoint);
10253
10254 if (ui_out_is_mi_like_p (uiout))
10255 return;
10256
10257 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10258 b->number, paddress (bl->gdbarch, bl->address),
10259 paddress (bl->gdbarch, bl->address + bl->length - 1));
10260 }
10261
10262 /* Implement the "print_recreate" breakpoint_ops method for
10263 ranged breakpoints. */
10264
10265 static void
10266 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10267 {
10268 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10269 b->addr_string_range_end);
10270 print_recreate_thread (b, fp);
10271 }
10272
10273 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10274
10275 static struct breakpoint_ops ranged_breakpoint_ops;
10276
10277 /* Find the address where the end of the breakpoint range should be
10278 placed, given the SAL of the end of the range. This is so that if
10279 the user provides a line number, the end of the range is set to the
10280 last instruction of the given line. */
10281
10282 static CORE_ADDR
10283 find_breakpoint_range_end (struct symtab_and_line sal)
10284 {
10285 CORE_ADDR end;
10286
10287 /* If the user provided a PC value, use it. Otherwise,
10288 find the address of the end of the given location. */
10289 if (sal.explicit_pc)
10290 end = sal.pc;
10291 else
10292 {
10293 int ret;
10294 CORE_ADDR start;
10295
10296 ret = find_line_pc_range (sal, &start, &end);
10297 if (!ret)
10298 error (_("Could not find location of the end of the range."));
10299
10300 /* find_line_pc_range returns the start of the next line. */
10301 end--;
10302 }
10303
10304 return end;
10305 }
10306
10307 /* Implement the "break-range" CLI command. */
10308
10309 static void
10310 break_range_command (char *arg, int from_tty)
10311 {
10312 char *arg_start, *addr_string_start, *addr_string_end;
10313 struct linespec_result canonical_start, canonical_end;
10314 int bp_count, can_use_bp, length;
10315 CORE_ADDR end;
10316 struct breakpoint *b;
10317 struct symtab_and_line sal_start, sal_end;
10318 struct cleanup *cleanup_bkpt;
10319 struct linespec_sals *lsal_start, *lsal_end;
10320
10321 /* We don't support software ranged breakpoints. */
10322 if (target_ranged_break_num_registers () < 0)
10323 error (_("This target does not support hardware ranged breakpoints."));
10324
10325 bp_count = hw_breakpoint_used_count ();
10326 bp_count += target_ranged_break_num_registers ();
10327 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10328 bp_count, 0);
10329 if (can_use_bp < 0)
10330 error (_("Hardware breakpoints used exceeds limit."));
10331
10332 arg = skip_spaces (arg);
10333 if (arg == NULL || arg[0] == '\0')
10334 error(_("No address range specified."));
10335
10336 init_linespec_result (&canonical_start);
10337
10338 arg_start = arg;
10339 parse_breakpoint_sals (&arg, &canonical_start);
10340
10341 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10342
10343 if (arg[0] != ',')
10344 error (_("Too few arguments."));
10345 else if (VEC_empty (linespec_sals, canonical_start.sals))
10346 error (_("Could not find location of the beginning of the range."));
10347
10348 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10349
10350 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10351 || lsal_start->sals.nelts != 1)
10352 error (_("Cannot create a ranged breakpoint with multiple locations."));
10353
10354 sal_start = lsal_start->sals.sals[0];
10355 addr_string_start = savestring (arg_start, arg - arg_start);
10356 make_cleanup (xfree, addr_string_start);
10357
10358 arg++; /* Skip the comma. */
10359 arg = skip_spaces (arg);
10360
10361 /* Parse the end location. */
10362
10363 init_linespec_result (&canonical_end);
10364 arg_start = arg;
10365
10366 /* We call decode_line_full directly here instead of using
10367 parse_breakpoint_sals because we need to specify the start location's
10368 symtab and line as the default symtab and line for the end of the
10369 range. This makes it possible to have ranges like "foo.c:27, +14",
10370 where +14 means 14 lines from the start location. */
10371 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10372 sal_start.symtab, sal_start.line,
10373 &canonical_end, NULL, NULL);
10374
10375 make_cleanup_destroy_linespec_result (&canonical_end);
10376
10377 if (VEC_empty (linespec_sals, canonical_end.sals))
10378 error (_("Could not find location of the end of the range."));
10379
10380 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10381 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10382 || lsal_end->sals.nelts != 1)
10383 error (_("Cannot create a ranged breakpoint with multiple locations."));
10384
10385 sal_end = lsal_end->sals.sals[0];
10386 addr_string_end = savestring (arg_start, arg - arg_start);
10387 make_cleanup (xfree, addr_string_end);
10388
10389 end = find_breakpoint_range_end (sal_end);
10390 if (sal_start.pc > end)
10391 error (_("Invalid address range, end precedes start."));
10392
10393 length = end - sal_start.pc + 1;
10394 if (length < 0)
10395 /* Length overflowed. */
10396 error (_("Address range too large."));
10397 else if (length == 1)
10398 {
10399 /* This range is simple enough to be handled by
10400 the `hbreak' command. */
10401 hbreak_command (addr_string_start, 1);
10402
10403 do_cleanups (cleanup_bkpt);
10404
10405 return;
10406 }
10407
10408 /* Now set up the breakpoint. */
10409 b = set_raw_breakpoint (get_current_arch (), sal_start,
10410 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10411 set_breakpoint_count (breakpoint_count + 1);
10412 b->number = breakpoint_count;
10413 b->disposition = disp_donttouch;
10414 b->addr_string = xstrdup (addr_string_start);
10415 b->addr_string_range_end = xstrdup (addr_string_end);
10416 b->loc->length = length;
10417
10418 do_cleanups (cleanup_bkpt);
10419
10420 mention (b);
10421 observer_notify_breakpoint_created (b);
10422 update_global_location_list (1);
10423 }
10424
10425 /* Return non-zero if EXP is verified as constant. Returned zero
10426 means EXP is variable. Also the constant detection may fail for
10427 some constant expressions and in such case still falsely return
10428 zero. */
10429
10430 static int
10431 watchpoint_exp_is_const (const struct expression *exp)
10432 {
10433 int i = exp->nelts;
10434
10435 while (i > 0)
10436 {
10437 int oplenp, argsp;
10438
10439 /* We are only interested in the descriptor of each element. */
10440 operator_length (exp, i, &oplenp, &argsp);
10441 i -= oplenp;
10442
10443 switch (exp->elts[i].opcode)
10444 {
10445 case BINOP_ADD:
10446 case BINOP_SUB:
10447 case BINOP_MUL:
10448 case BINOP_DIV:
10449 case BINOP_REM:
10450 case BINOP_MOD:
10451 case BINOP_LSH:
10452 case BINOP_RSH:
10453 case BINOP_LOGICAL_AND:
10454 case BINOP_LOGICAL_OR:
10455 case BINOP_BITWISE_AND:
10456 case BINOP_BITWISE_IOR:
10457 case BINOP_BITWISE_XOR:
10458 case BINOP_EQUAL:
10459 case BINOP_NOTEQUAL:
10460 case BINOP_LESS:
10461 case BINOP_GTR:
10462 case BINOP_LEQ:
10463 case BINOP_GEQ:
10464 case BINOP_REPEAT:
10465 case BINOP_COMMA:
10466 case BINOP_EXP:
10467 case BINOP_MIN:
10468 case BINOP_MAX:
10469 case BINOP_INTDIV:
10470 case BINOP_CONCAT:
10471 case BINOP_IN:
10472 case BINOP_RANGE:
10473 case TERNOP_COND:
10474 case TERNOP_SLICE:
10475
10476 case OP_LONG:
10477 case OP_DOUBLE:
10478 case OP_DECFLOAT:
10479 case OP_LAST:
10480 case OP_COMPLEX:
10481 case OP_STRING:
10482 case OP_ARRAY:
10483 case OP_TYPE:
10484 case OP_TYPEOF:
10485 case OP_DECLTYPE:
10486 case OP_TYPEID:
10487 case OP_NAME:
10488 case OP_OBJC_NSSTRING:
10489
10490 case UNOP_NEG:
10491 case UNOP_LOGICAL_NOT:
10492 case UNOP_COMPLEMENT:
10493 case UNOP_ADDR:
10494 case UNOP_HIGH:
10495 case UNOP_CAST:
10496
10497 case UNOP_CAST_TYPE:
10498 case UNOP_REINTERPRET_CAST:
10499 case UNOP_DYNAMIC_CAST:
10500 /* Unary, binary and ternary operators: We have to check
10501 their operands. If they are constant, then so is the
10502 result of that operation. For instance, if A and B are
10503 determined to be constants, then so is "A + B".
10504
10505 UNOP_IND is one exception to the rule above, because the
10506 value of *ADDR is not necessarily a constant, even when
10507 ADDR is. */
10508 break;
10509
10510 case OP_VAR_VALUE:
10511 /* Check whether the associated symbol is a constant.
10512
10513 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10514 possible that a buggy compiler could mark a variable as
10515 constant even when it is not, and TYPE_CONST would return
10516 true in this case, while SYMBOL_CLASS wouldn't.
10517
10518 We also have to check for function symbols because they
10519 are always constant. */
10520 {
10521 struct symbol *s = exp->elts[i + 2].symbol;
10522
10523 if (SYMBOL_CLASS (s) != LOC_BLOCK
10524 && SYMBOL_CLASS (s) != LOC_CONST
10525 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10526 return 0;
10527 break;
10528 }
10529
10530 /* The default action is to return 0 because we are using
10531 the optimistic approach here: If we don't know something,
10532 then it is not a constant. */
10533 default:
10534 return 0;
10535 }
10536 }
10537
10538 return 1;
10539 }
10540
10541 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10542
10543 static void
10544 dtor_watchpoint (struct breakpoint *self)
10545 {
10546 struct watchpoint *w = (struct watchpoint *) self;
10547
10548 xfree (w->cond_exp);
10549 xfree (w->exp);
10550 xfree (w->exp_string);
10551 xfree (w->exp_string_reparse);
10552 value_free (w->val);
10553
10554 base_breakpoint_ops.dtor (self);
10555 }
10556
10557 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10558
10559 static void
10560 re_set_watchpoint (struct breakpoint *b)
10561 {
10562 struct watchpoint *w = (struct watchpoint *) b;
10563
10564 /* Watchpoint can be either on expression using entirely global
10565 variables, or it can be on local variables.
10566
10567 Watchpoints of the first kind are never auto-deleted, and even
10568 persist across program restarts. Since they can use variables
10569 from shared libraries, we need to reparse expression as libraries
10570 are loaded and unloaded.
10571
10572 Watchpoints on local variables can also change meaning as result
10573 of solib event. For example, if a watchpoint uses both a local
10574 and a global variables in expression, it's a local watchpoint,
10575 but unloading of a shared library will make the expression
10576 invalid. This is not a very common use case, but we still
10577 re-evaluate expression, to avoid surprises to the user.
10578
10579 Note that for local watchpoints, we re-evaluate it only if
10580 watchpoints frame id is still valid. If it's not, it means the
10581 watchpoint is out of scope and will be deleted soon. In fact,
10582 I'm not sure we'll ever be called in this case.
10583
10584 If a local watchpoint's frame id is still valid, then
10585 w->exp_valid_block is likewise valid, and we can safely use it.
10586
10587 Don't do anything about disabled watchpoints, since they will be
10588 reevaluated again when enabled. */
10589 update_watchpoint (w, 1 /* reparse */);
10590 }
10591
10592 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10593
10594 static int
10595 insert_watchpoint (struct bp_location *bl)
10596 {
10597 struct watchpoint *w = (struct watchpoint *) bl->owner;
10598 int length = w->exact ? 1 : bl->length;
10599
10600 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10601 w->cond_exp);
10602 }
10603
10604 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10605
10606 static int
10607 remove_watchpoint (struct bp_location *bl)
10608 {
10609 struct watchpoint *w = (struct watchpoint *) bl->owner;
10610 int length = w->exact ? 1 : bl->length;
10611
10612 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10613 w->cond_exp);
10614 }
10615
10616 static int
10617 breakpoint_hit_watchpoint (const struct bp_location *bl,
10618 struct address_space *aspace, CORE_ADDR bp_addr,
10619 const struct target_waitstatus *ws)
10620 {
10621 struct breakpoint *b = bl->owner;
10622 struct watchpoint *w = (struct watchpoint *) b;
10623
10624 /* Continuable hardware watchpoints are treated as non-existent if the
10625 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10626 some data address). Otherwise gdb won't stop on a break instruction
10627 in the code (not from a breakpoint) when a hardware watchpoint has
10628 been defined. Also skip watchpoints which we know did not trigger
10629 (did not match the data address). */
10630 if (is_hardware_watchpoint (b)
10631 && w->watchpoint_triggered == watch_triggered_no)
10632 return 0;
10633
10634 return 1;
10635 }
10636
10637 static void
10638 check_status_watchpoint (bpstat bs)
10639 {
10640 gdb_assert (is_watchpoint (bs->breakpoint_at));
10641
10642 bpstat_check_watchpoint (bs);
10643 }
10644
10645 /* Implement the "resources_needed" breakpoint_ops method for
10646 hardware watchpoints. */
10647
10648 static int
10649 resources_needed_watchpoint (const struct bp_location *bl)
10650 {
10651 struct watchpoint *w = (struct watchpoint *) bl->owner;
10652 int length = w->exact? 1 : bl->length;
10653
10654 return target_region_ok_for_hw_watchpoint (bl->address, length);
10655 }
10656
10657 /* Implement the "works_in_software_mode" breakpoint_ops method for
10658 hardware watchpoints. */
10659
10660 static int
10661 works_in_software_mode_watchpoint (const struct breakpoint *b)
10662 {
10663 /* Read and access watchpoints only work with hardware support. */
10664 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10665 }
10666
10667 static enum print_stop_action
10668 print_it_watchpoint (bpstat bs)
10669 {
10670 struct cleanup *old_chain;
10671 struct breakpoint *b;
10672 struct ui_file *stb;
10673 enum print_stop_action result;
10674 struct watchpoint *w;
10675 struct ui_out *uiout = current_uiout;
10676
10677 gdb_assert (bs->bp_location_at != NULL);
10678
10679 b = bs->breakpoint_at;
10680 w = (struct watchpoint *) b;
10681
10682 stb = mem_fileopen ();
10683 old_chain = make_cleanup_ui_file_delete (stb);
10684
10685 switch (b->type)
10686 {
10687 case bp_watchpoint:
10688 case bp_hardware_watchpoint:
10689 annotate_watchpoint (b->number);
10690 if (ui_out_is_mi_like_p (uiout))
10691 ui_out_field_string
10692 (uiout, "reason",
10693 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10694 mention (b);
10695 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10696 ui_out_text (uiout, "\nOld value = ");
10697 watchpoint_value_print (bs->old_val, stb);
10698 ui_out_field_stream (uiout, "old", stb);
10699 ui_out_text (uiout, "\nNew value = ");
10700 watchpoint_value_print (w->val, stb);
10701 ui_out_field_stream (uiout, "new", stb);
10702 ui_out_text (uiout, "\n");
10703 /* More than one watchpoint may have been triggered. */
10704 result = PRINT_UNKNOWN;
10705 break;
10706
10707 case bp_read_watchpoint:
10708 if (ui_out_is_mi_like_p (uiout))
10709 ui_out_field_string
10710 (uiout, "reason",
10711 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10712 mention (b);
10713 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10714 ui_out_text (uiout, "\nValue = ");
10715 watchpoint_value_print (w->val, stb);
10716 ui_out_field_stream (uiout, "value", stb);
10717 ui_out_text (uiout, "\n");
10718 result = PRINT_UNKNOWN;
10719 break;
10720
10721 case bp_access_watchpoint:
10722 if (bs->old_val != NULL)
10723 {
10724 annotate_watchpoint (b->number);
10725 if (ui_out_is_mi_like_p (uiout))
10726 ui_out_field_string
10727 (uiout, "reason",
10728 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10729 mention (b);
10730 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10731 ui_out_text (uiout, "\nOld value = ");
10732 watchpoint_value_print (bs->old_val, stb);
10733 ui_out_field_stream (uiout, "old", stb);
10734 ui_out_text (uiout, "\nNew value = ");
10735 }
10736 else
10737 {
10738 mention (b);
10739 if (ui_out_is_mi_like_p (uiout))
10740 ui_out_field_string
10741 (uiout, "reason",
10742 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10743 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10744 ui_out_text (uiout, "\nValue = ");
10745 }
10746 watchpoint_value_print (w->val, stb);
10747 ui_out_field_stream (uiout, "new", stb);
10748 ui_out_text (uiout, "\n");
10749 result = PRINT_UNKNOWN;
10750 break;
10751 default:
10752 result = PRINT_UNKNOWN;
10753 }
10754
10755 do_cleanups (old_chain);
10756 return result;
10757 }
10758
10759 /* Implement the "print_mention" breakpoint_ops method for hardware
10760 watchpoints. */
10761
10762 static void
10763 print_mention_watchpoint (struct breakpoint *b)
10764 {
10765 struct cleanup *ui_out_chain;
10766 struct watchpoint *w = (struct watchpoint *) b;
10767 struct ui_out *uiout = current_uiout;
10768
10769 switch (b->type)
10770 {
10771 case bp_watchpoint:
10772 ui_out_text (uiout, "Watchpoint ");
10773 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10774 break;
10775 case bp_hardware_watchpoint:
10776 ui_out_text (uiout, "Hardware watchpoint ");
10777 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10778 break;
10779 case bp_read_watchpoint:
10780 ui_out_text (uiout, "Hardware read watchpoint ");
10781 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10782 break;
10783 case bp_access_watchpoint:
10784 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10785 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10786 break;
10787 default:
10788 internal_error (__FILE__, __LINE__,
10789 _("Invalid hardware watchpoint type."));
10790 }
10791
10792 ui_out_field_int (uiout, "number", b->number);
10793 ui_out_text (uiout, ": ");
10794 ui_out_field_string (uiout, "exp", w->exp_string);
10795 do_cleanups (ui_out_chain);
10796 }
10797
10798 /* Implement the "print_recreate" breakpoint_ops method for
10799 watchpoints. */
10800
10801 static void
10802 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10803 {
10804 struct watchpoint *w = (struct watchpoint *) b;
10805
10806 switch (b->type)
10807 {
10808 case bp_watchpoint:
10809 case bp_hardware_watchpoint:
10810 fprintf_unfiltered (fp, "watch");
10811 break;
10812 case bp_read_watchpoint:
10813 fprintf_unfiltered (fp, "rwatch");
10814 break;
10815 case bp_access_watchpoint:
10816 fprintf_unfiltered (fp, "awatch");
10817 break;
10818 default:
10819 internal_error (__FILE__, __LINE__,
10820 _("Invalid watchpoint type."));
10821 }
10822
10823 fprintf_unfiltered (fp, " %s", w->exp_string);
10824 print_recreate_thread (b, fp);
10825 }
10826
10827 /* Implement the "explains_signal" breakpoint_ops method for
10828 watchpoints. */
10829
10830 static int
10831 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10832 {
10833 /* A software watchpoint cannot cause a signal other than
10834 GDB_SIGNAL_TRAP. */
10835 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10836 return 0;
10837
10838 return 1;
10839 }
10840
10841 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10842
10843 static struct breakpoint_ops watchpoint_breakpoint_ops;
10844
10845 /* Implement the "insert" breakpoint_ops method for
10846 masked hardware watchpoints. */
10847
10848 static int
10849 insert_masked_watchpoint (struct bp_location *bl)
10850 {
10851 struct watchpoint *w = (struct watchpoint *) bl->owner;
10852
10853 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10854 bl->watchpoint_type);
10855 }
10856
10857 /* Implement the "remove" breakpoint_ops method for
10858 masked hardware watchpoints. */
10859
10860 static int
10861 remove_masked_watchpoint (struct bp_location *bl)
10862 {
10863 struct watchpoint *w = (struct watchpoint *) bl->owner;
10864
10865 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10866 bl->watchpoint_type);
10867 }
10868
10869 /* Implement the "resources_needed" breakpoint_ops method for
10870 masked hardware watchpoints. */
10871
10872 static int
10873 resources_needed_masked_watchpoint (const struct bp_location *bl)
10874 {
10875 struct watchpoint *w = (struct watchpoint *) bl->owner;
10876
10877 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10878 }
10879
10880 /* Implement the "works_in_software_mode" breakpoint_ops method for
10881 masked hardware watchpoints. */
10882
10883 static int
10884 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10885 {
10886 return 0;
10887 }
10888
10889 /* Implement the "print_it" breakpoint_ops method for
10890 masked hardware watchpoints. */
10891
10892 static enum print_stop_action
10893 print_it_masked_watchpoint (bpstat bs)
10894 {
10895 struct breakpoint *b = bs->breakpoint_at;
10896 struct ui_out *uiout = current_uiout;
10897
10898 /* Masked watchpoints have only one location. */
10899 gdb_assert (b->loc && b->loc->next == NULL);
10900
10901 switch (b->type)
10902 {
10903 case bp_hardware_watchpoint:
10904 annotate_watchpoint (b->number);
10905 if (ui_out_is_mi_like_p (uiout))
10906 ui_out_field_string
10907 (uiout, "reason",
10908 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10909 break;
10910
10911 case bp_read_watchpoint:
10912 if (ui_out_is_mi_like_p (uiout))
10913 ui_out_field_string
10914 (uiout, "reason",
10915 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10916 break;
10917
10918 case bp_access_watchpoint:
10919 if (ui_out_is_mi_like_p (uiout))
10920 ui_out_field_string
10921 (uiout, "reason",
10922 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10923 break;
10924 default:
10925 internal_error (__FILE__, __LINE__,
10926 _("Invalid hardware watchpoint type."));
10927 }
10928
10929 mention (b);
10930 ui_out_text (uiout, _("\n\
10931 Check the underlying instruction at PC for the memory\n\
10932 address and value which triggered this watchpoint.\n"));
10933 ui_out_text (uiout, "\n");
10934
10935 /* More than one watchpoint may have been triggered. */
10936 return PRINT_UNKNOWN;
10937 }
10938
10939 /* Implement the "print_one_detail" breakpoint_ops method for
10940 masked hardware watchpoints. */
10941
10942 static void
10943 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10944 struct ui_out *uiout)
10945 {
10946 struct watchpoint *w = (struct watchpoint *) b;
10947
10948 /* Masked watchpoints have only one location. */
10949 gdb_assert (b->loc && b->loc->next == NULL);
10950
10951 ui_out_text (uiout, "\tmask ");
10952 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10953 ui_out_text (uiout, "\n");
10954 }
10955
10956 /* Implement the "print_mention" breakpoint_ops method for
10957 masked hardware watchpoints. */
10958
10959 static void
10960 print_mention_masked_watchpoint (struct breakpoint *b)
10961 {
10962 struct watchpoint *w = (struct watchpoint *) b;
10963 struct ui_out *uiout = current_uiout;
10964 struct cleanup *ui_out_chain;
10965
10966 switch (b->type)
10967 {
10968 case bp_hardware_watchpoint:
10969 ui_out_text (uiout, "Masked hardware watchpoint ");
10970 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10971 break;
10972 case bp_read_watchpoint:
10973 ui_out_text (uiout, "Masked hardware read watchpoint ");
10974 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10975 break;
10976 case bp_access_watchpoint:
10977 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10978 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10979 break;
10980 default:
10981 internal_error (__FILE__, __LINE__,
10982 _("Invalid hardware watchpoint type."));
10983 }
10984
10985 ui_out_field_int (uiout, "number", b->number);
10986 ui_out_text (uiout, ": ");
10987 ui_out_field_string (uiout, "exp", w->exp_string);
10988 do_cleanups (ui_out_chain);
10989 }
10990
10991 /* Implement the "print_recreate" breakpoint_ops method for
10992 masked hardware watchpoints. */
10993
10994 static void
10995 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10996 {
10997 struct watchpoint *w = (struct watchpoint *) b;
10998 char tmp[40];
10999
11000 switch (b->type)
11001 {
11002 case bp_hardware_watchpoint:
11003 fprintf_unfiltered (fp, "watch");
11004 break;
11005 case bp_read_watchpoint:
11006 fprintf_unfiltered (fp, "rwatch");
11007 break;
11008 case bp_access_watchpoint:
11009 fprintf_unfiltered (fp, "awatch");
11010 break;
11011 default:
11012 internal_error (__FILE__, __LINE__,
11013 _("Invalid hardware watchpoint type."));
11014 }
11015
11016 sprintf_vma (tmp, w->hw_wp_mask);
11017 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11018 print_recreate_thread (b, fp);
11019 }
11020
11021 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11022
11023 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11024
11025 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11026
11027 static int
11028 is_masked_watchpoint (const struct breakpoint *b)
11029 {
11030 return b->ops == &masked_watchpoint_breakpoint_ops;
11031 }
11032
11033 /* accessflag: hw_write: watch write,
11034 hw_read: watch read,
11035 hw_access: watch access (read or write) */
11036 static void
11037 watch_command_1 (const char *arg, int accessflag, int from_tty,
11038 int just_location, int internal)
11039 {
11040 volatile struct gdb_exception e;
11041 struct breakpoint *b, *scope_breakpoint = NULL;
11042 struct expression *exp;
11043 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11044 struct value *val, *mark, *result;
11045 struct frame_info *frame;
11046 const char *exp_start = NULL;
11047 const char *exp_end = NULL;
11048 const char *tok, *end_tok;
11049 int toklen = -1;
11050 const char *cond_start = NULL;
11051 const char *cond_end = NULL;
11052 enum bptype bp_type;
11053 int thread = -1;
11054 int pc = 0;
11055 /* Flag to indicate whether we are going to use masks for
11056 the hardware watchpoint. */
11057 int use_mask = 0;
11058 CORE_ADDR mask = 0;
11059 struct watchpoint *w;
11060 char *expression;
11061 struct cleanup *back_to;
11062
11063 /* Make sure that we actually have parameters to parse. */
11064 if (arg != NULL && arg[0] != '\0')
11065 {
11066 const char *value_start;
11067
11068 exp_end = arg + strlen (arg);
11069
11070 /* Look for "parameter value" pairs at the end
11071 of the arguments string. */
11072 for (tok = exp_end - 1; tok > arg; tok--)
11073 {
11074 /* Skip whitespace at the end of the argument list. */
11075 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11076 tok--;
11077
11078 /* Find the beginning of the last token.
11079 This is the value of the parameter. */
11080 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11081 tok--;
11082 value_start = tok + 1;
11083
11084 /* Skip whitespace. */
11085 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11086 tok--;
11087
11088 end_tok = tok;
11089
11090 /* Find the beginning of the second to last token.
11091 This is the parameter itself. */
11092 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11093 tok--;
11094 tok++;
11095 toklen = end_tok - tok + 1;
11096
11097 if (toklen == 6 && !strncmp (tok, "thread", 6))
11098 {
11099 /* At this point we've found a "thread" token, which means
11100 the user is trying to set a watchpoint that triggers
11101 only in a specific thread. */
11102 char *endp;
11103
11104 if (thread != -1)
11105 error(_("You can specify only one thread."));
11106
11107 /* Extract the thread ID from the next token. */
11108 thread = strtol (value_start, &endp, 0);
11109
11110 /* Check if the user provided a valid numeric value for the
11111 thread ID. */
11112 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11113 error (_("Invalid thread ID specification %s."), value_start);
11114
11115 /* Check if the thread actually exists. */
11116 if (!valid_thread_id (thread))
11117 invalid_thread_id_error (thread);
11118 }
11119 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11120 {
11121 /* We've found a "mask" token, which means the user wants to
11122 create a hardware watchpoint that is going to have the mask
11123 facility. */
11124 struct value *mask_value, *mark;
11125
11126 if (use_mask)
11127 error(_("You can specify only one mask."));
11128
11129 use_mask = just_location = 1;
11130
11131 mark = value_mark ();
11132 mask_value = parse_to_comma_and_eval (&value_start);
11133 mask = value_as_address (mask_value);
11134 value_free_to_mark (mark);
11135 }
11136 else
11137 /* We didn't recognize what we found. We should stop here. */
11138 break;
11139
11140 /* Truncate the string and get rid of the "parameter value" pair before
11141 the arguments string is parsed by the parse_exp_1 function. */
11142 exp_end = tok;
11143 }
11144 }
11145 else
11146 exp_end = arg;
11147
11148 /* Parse the rest of the arguments. From here on out, everything
11149 is in terms of a newly allocated string instead of the original
11150 ARG. */
11151 innermost_block = NULL;
11152 expression = savestring (arg, exp_end - arg);
11153 back_to = make_cleanup (xfree, expression);
11154 exp_start = arg = expression;
11155 exp = parse_exp_1 (&arg, 0, 0, 0);
11156 exp_end = arg;
11157 /* Remove trailing whitespace from the expression before saving it.
11158 This makes the eventual display of the expression string a bit
11159 prettier. */
11160 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11161 --exp_end;
11162
11163 /* Checking if the expression is not constant. */
11164 if (watchpoint_exp_is_const (exp))
11165 {
11166 int len;
11167
11168 len = exp_end - exp_start;
11169 while (len > 0 && isspace (exp_start[len - 1]))
11170 len--;
11171 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11172 }
11173
11174 exp_valid_block = innermost_block;
11175 mark = value_mark ();
11176 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11177
11178 if (just_location)
11179 {
11180 int ret;
11181
11182 exp_valid_block = NULL;
11183 val = value_addr (result);
11184 release_value (val);
11185 value_free_to_mark (mark);
11186
11187 if (use_mask)
11188 {
11189 ret = target_masked_watch_num_registers (value_as_address (val),
11190 mask);
11191 if (ret == -1)
11192 error (_("This target does not support masked watchpoints."));
11193 else if (ret == -2)
11194 error (_("Invalid mask or memory region."));
11195 }
11196 }
11197 else if (val != NULL)
11198 release_value (val);
11199
11200 tok = skip_spaces_const (arg);
11201 end_tok = skip_to_space_const (tok);
11202
11203 toklen = end_tok - tok;
11204 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11205 {
11206 struct expression *cond;
11207
11208 innermost_block = NULL;
11209 tok = cond_start = end_tok + 1;
11210 cond = parse_exp_1 (&tok, 0, 0, 0);
11211
11212 /* The watchpoint expression may not be local, but the condition
11213 may still be. E.g.: `watch global if local > 0'. */
11214 cond_exp_valid_block = innermost_block;
11215
11216 xfree (cond);
11217 cond_end = tok;
11218 }
11219 if (*tok)
11220 error (_("Junk at end of command."));
11221
11222 frame = block_innermost_frame (exp_valid_block);
11223
11224 /* If the expression is "local", then set up a "watchpoint scope"
11225 breakpoint at the point where we've left the scope of the watchpoint
11226 expression. Create the scope breakpoint before the watchpoint, so
11227 that we will encounter it first in bpstat_stop_status. */
11228 if (exp_valid_block && frame)
11229 {
11230 if (frame_id_p (frame_unwind_caller_id (frame)))
11231 {
11232 scope_breakpoint
11233 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11234 frame_unwind_caller_pc (frame),
11235 bp_watchpoint_scope,
11236 &momentary_breakpoint_ops);
11237
11238 scope_breakpoint->enable_state = bp_enabled;
11239
11240 /* Automatically delete the breakpoint when it hits. */
11241 scope_breakpoint->disposition = disp_del;
11242
11243 /* Only break in the proper frame (help with recursion). */
11244 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11245
11246 /* Set the address at which we will stop. */
11247 scope_breakpoint->loc->gdbarch
11248 = frame_unwind_caller_arch (frame);
11249 scope_breakpoint->loc->requested_address
11250 = frame_unwind_caller_pc (frame);
11251 scope_breakpoint->loc->address
11252 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11253 scope_breakpoint->loc->requested_address,
11254 scope_breakpoint->type);
11255 }
11256 }
11257
11258 /* Now set up the breakpoint. We create all watchpoints as hardware
11259 watchpoints here even if hardware watchpoints are turned off, a call
11260 to update_watchpoint later in this function will cause the type to
11261 drop back to bp_watchpoint (software watchpoint) if required. */
11262
11263 if (accessflag == hw_read)
11264 bp_type = bp_read_watchpoint;
11265 else if (accessflag == hw_access)
11266 bp_type = bp_access_watchpoint;
11267 else
11268 bp_type = bp_hardware_watchpoint;
11269
11270 w = XCNEW (struct watchpoint);
11271 b = &w->base;
11272 if (use_mask)
11273 init_raw_breakpoint_without_location (b, NULL, bp_type,
11274 &masked_watchpoint_breakpoint_ops);
11275 else
11276 init_raw_breakpoint_without_location (b, NULL, bp_type,
11277 &watchpoint_breakpoint_ops);
11278 b->thread = thread;
11279 b->disposition = disp_donttouch;
11280 b->pspace = current_program_space;
11281 w->exp = exp;
11282 w->exp_valid_block = exp_valid_block;
11283 w->cond_exp_valid_block = cond_exp_valid_block;
11284 if (just_location)
11285 {
11286 struct type *t = value_type (val);
11287 CORE_ADDR addr = value_as_address (val);
11288 char *name;
11289
11290 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11291 name = type_to_string (t);
11292
11293 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11294 core_addr_to_string (addr));
11295 xfree (name);
11296
11297 w->exp_string = xstrprintf ("-location %.*s",
11298 (int) (exp_end - exp_start), exp_start);
11299
11300 /* The above expression is in C. */
11301 b->language = language_c;
11302 }
11303 else
11304 w->exp_string = savestring (exp_start, exp_end - exp_start);
11305
11306 if (use_mask)
11307 {
11308 w->hw_wp_mask = mask;
11309 }
11310 else
11311 {
11312 w->val = val;
11313 w->val_valid = 1;
11314 }
11315
11316 if (cond_start)
11317 b->cond_string = savestring (cond_start, cond_end - cond_start);
11318 else
11319 b->cond_string = 0;
11320
11321 if (frame)
11322 {
11323 w->watchpoint_frame = get_frame_id (frame);
11324 w->watchpoint_thread = inferior_ptid;
11325 }
11326 else
11327 {
11328 w->watchpoint_frame = null_frame_id;
11329 w->watchpoint_thread = null_ptid;
11330 }
11331
11332 if (scope_breakpoint != NULL)
11333 {
11334 /* The scope breakpoint is related to the watchpoint. We will
11335 need to act on them together. */
11336 b->related_breakpoint = scope_breakpoint;
11337 scope_breakpoint->related_breakpoint = b;
11338 }
11339
11340 if (!just_location)
11341 value_free_to_mark (mark);
11342
11343 TRY_CATCH (e, RETURN_MASK_ALL)
11344 {
11345 /* Finally update the new watchpoint. This creates the locations
11346 that should be inserted. */
11347 update_watchpoint (w, 1);
11348 }
11349 if (e.reason < 0)
11350 {
11351 delete_breakpoint (b);
11352 throw_exception (e);
11353 }
11354
11355 install_breakpoint (internal, b, 1);
11356 do_cleanups (back_to);
11357 }
11358
11359 /* Return count of debug registers needed to watch the given expression.
11360 If the watchpoint cannot be handled in hardware return zero. */
11361
11362 static int
11363 can_use_hardware_watchpoint (struct value *v)
11364 {
11365 int found_memory_cnt = 0;
11366 struct value *head = v;
11367
11368 /* Did the user specifically forbid us to use hardware watchpoints? */
11369 if (!can_use_hw_watchpoints)
11370 return 0;
11371
11372 /* Make sure that the value of the expression depends only upon
11373 memory contents, and values computed from them within GDB. If we
11374 find any register references or function calls, we can't use a
11375 hardware watchpoint.
11376
11377 The idea here is that evaluating an expression generates a series
11378 of values, one holding the value of every subexpression. (The
11379 expression a*b+c has five subexpressions: a, b, a*b, c, and
11380 a*b+c.) GDB's values hold almost enough information to establish
11381 the criteria given above --- they identify memory lvalues,
11382 register lvalues, computed values, etcetera. So we can evaluate
11383 the expression, and then scan the chain of values that leaves
11384 behind to decide whether we can detect any possible change to the
11385 expression's final value using only hardware watchpoints.
11386
11387 However, I don't think that the values returned by inferior
11388 function calls are special in any way. So this function may not
11389 notice that an expression involving an inferior function call
11390 can't be watched with hardware watchpoints. FIXME. */
11391 for (; v; v = value_next (v))
11392 {
11393 if (VALUE_LVAL (v) == lval_memory)
11394 {
11395 if (v != head && value_lazy (v))
11396 /* A lazy memory lvalue in the chain is one that GDB never
11397 needed to fetch; we either just used its address (e.g.,
11398 `a' in `a.b') or we never needed it at all (e.g., `a'
11399 in `a,b'). This doesn't apply to HEAD; if that is
11400 lazy then it was not readable, but watch it anyway. */
11401 ;
11402 else
11403 {
11404 /* Ahh, memory we actually used! Check if we can cover
11405 it with hardware watchpoints. */
11406 struct type *vtype = check_typedef (value_type (v));
11407
11408 /* We only watch structs and arrays if user asked for it
11409 explicitly, never if they just happen to appear in a
11410 middle of some value chain. */
11411 if (v == head
11412 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11413 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11414 {
11415 CORE_ADDR vaddr = value_address (v);
11416 int len;
11417 int num_regs;
11418
11419 len = (target_exact_watchpoints
11420 && is_scalar_type_recursive (vtype))?
11421 1 : TYPE_LENGTH (value_type (v));
11422
11423 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11424 if (!num_regs)
11425 return 0;
11426 else
11427 found_memory_cnt += num_regs;
11428 }
11429 }
11430 }
11431 else if (VALUE_LVAL (v) != not_lval
11432 && deprecated_value_modifiable (v) == 0)
11433 return 0; /* These are values from the history (e.g., $1). */
11434 else if (VALUE_LVAL (v) == lval_register)
11435 return 0; /* Cannot watch a register with a HW watchpoint. */
11436 }
11437
11438 /* The expression itself looks suitable for using a hardware
11439 watchpoint, but give the target machine a chance to reject it. */
11440 return found_memory_cnt;
11441 }
11442
11443 void
11444 watch_command_wrapper (char *arg, int from_tty, int internal)
11445 {
11446 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11447 }
11448
11449 /* A helper function that looks for the "-location" argument and then
11450 calls watch_command_1. */
11451
11452 static void
11453 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11454 {
11455 int just_location = 0;
11456
11457 if (arg
11458 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11459 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11460 {
11461 arg = skip_spaces (arg);
11462 just_location = 1;
11463 }
11464
11465 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11466 }
11467
11468 static void
11469 watch_command (char *arg, int from_tty)
11470 {
11471 watch_maybe_just_location (arg, hw_write, from_tty);
11472 }
11473
11474 void
11475 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11476 {
11477 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11478 }
11479
11480 static void
11481 rwatch_command (char *arg, int from_tty)
11482 {
11483 watch_maybe_just_location (arg, hw_read, from_tty);
11484 }
11485
11486 void
11487 awatch_command_wrapper (char *arg, int from_tty, int internal)
11488 {
11489 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11490 }
11491
11492 static void
11493 awatch_command (char *arg, int from_tty)
11494 {
11495 watch_maybe_just_location (arg, hw_access, from_tty);
11496 }
11497 \f
11498
11499 /* Helper routines for the until_command routine in infcmd.c. Here
11500 because it uses the mechanisms of breakpoints. */
11501
11502 struct until_break_command_continuation_args
11503 {
11504 struct breakpoint *breakpoint;
11505 struct breakpoint *breakpoint2;
11506 int thread_num;
11507 };
11508
11509 /* This function is called by fetch_inferior_event via the
11510 cmd_continuation pointer, to complete the until command. It takes
11511 care of cleaning up the temporary breakpoints set up by the until
11512 command. */
11513 static void
11514 until_break_command_continuation (void *arg, int err)
11515 {
11516 struct until_break_command_continuation_args *a = arg;
11517
11518 delete_breakpoint (a->breakpoint);
11519 if (a->breakpoint2)
11520 delete_breakpoint (a->breakpoint2);
11521 delete_longjmp_breakpoint (a->thread_num);
11522 }
11523
11524 void
11525 until_break_command (char *arg, int from_tty, int anywhere)
11526 {
11527 struct symtabs_and_lines sals;
11528 struct symtab_and_line sal;
11529 struct frame_info *frame;
11530 struct gdbarch *frame_gdbarch;
11531 struct frame_id stack_frame_id;
11532 struct frame_id caller_frame_id;
11533 struct breakpoint *breakpoint;
11534 struct breakpoint *breakpoint2 = NULL;
11535 struct cleanup *old_chain;
11536 int thread;
11537 struct thread_info *tp;
11538
11539 clear_proceed_status ();
11540
11541 /* Set a breakpoint where the user wants it and at return from
11542 this function. */
11543
11544 if (last_displayed_sal_is_valid ())
11545 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11546 get_last_displayed_symtab (),
11547 get_last_displayed_line ());
11548 else
11549 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11550 (struct symtab *) NULL, 0);
11551
11552 if (sals.nelts != 1)
11553 error (_("Couldn't get information on specified line."));
11554
11555 sal = sals.sals[0];
11556 xfree (sals.sals); /* malloc'd, so freed. */
11557
11558 if (*arg)
11559 error (_("Junk at end of arguments."));
11560
11561 resolve_sal_pc (&sal);
11562
11563 tp = inferior_thread ();
11564 thread = tp->num;
11565
11566 old_chain = make_cleanup (null_cleanup, NULL);
11567
11568 /* Note linespec handling above invalidates the frame chain.
11569 Installing a breakpoint also invalidates the frame chain (as it
11570 may need to switch threads), so do any frame handling before
11571 that. */
11572
11573 frame = get_selected_frame (NULL);
11574 frame_gdbarch = get_frame_arch (frame);
11575 stack_frame_id = get_stack_frame_id (frame);
11576 caller_frame_id = frame_unwind_caller_id (frame);
11577
11578 /* Keep within the current frame, or in frames called by the current
11579 one. */
11580
11581 if (frame_id_p (caller_frame_id))
11582 {
11583 struct symtab_and_line sal2;
11584
11585 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11586 sal2.pc = frame_unwind_caller_pc (frame);
11587 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11588 sal2,
11589 caller_frame_id,
11590 bp_until);
11591 make_cleanup_delete_breakpoint (breakpoint2);
11592
11593 set_longjmp_breakpoint (tp, caller_frame_id);
11594 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11595 }
11596
11597 /* set_momentary_breakpoint could invalidate FRAME. */
11598 frame = NULL;
11599
11600 if (anywhere)
11601 /* If the user told us to continue until a specified location,
11602 we don't specify a frame at which we need to stop. */
11603 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11604 null_frame_id, bp_until);
11605 else
11606 /* Otherwise, specify the selected frame, because we want to stop
11607 only at the very same frame. */
11608 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11609 stack_frame_id, bp_until);
11610 make_cleanup_delete_breakpoint (breakpoint);
11611
11612 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11613
11614 /* If we are running asynchronously, and proceed call above has
11615 actually managed to start the target, arrange for breakpoints to
11616 be deleted when the target stops. Otherwise, we're already
11617 stopped and delete breakpoints via cleanup chain. */
11618
11619 if (target_can_async_p () && is_running (inferior_ptid))
11620 {
11621 struct until_break_command_continuation_args *args;
11622 args = xmalloc (sizeof (*args));
11623
11624 args->breakpoint = breakpoint;
11625 args->breakpoint2 = breakpoint2;
11626 args->thread_num = thread;
11627
11628 discard_cleanups (old_chain);
11629 add_continuation (inferior_thread (),
11630 until_break_command_continuation, args,
11631 xfree);
11632 }
11633 else
11634 do_cleanups (old_chain);
11635 }
11636
11637 /* This function attempts to parse an optional "if <cond>" clause
11638 from the arg string. If one is not found, it returns NULL.
11639
11640 Else, it returns a pointer to the condition string. (It does not
11641 attempt to evaluate the string against a particular block.) And,
11642 it updates arg to point to the first character following the parsed
11643 if clause in the arg string. */
11644
11645 char *
11646 ep_parse_optional_if_clause (char **arg)
11647 {
11648 char *cond_string;
11649
11650 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11651 return NULL;
11652
11653 /* Skip the "if" keyword. */
11654 (*arg) += 2;
11655
11656 /* Skip any extra leading whitespace, and record the start of the
11657 condition string. */
11658 *arg = skip_spaces (*arg);
11659 cond_string = *arg;
11660
11661 /* Assume that the condition occupies the remainder of the arg
11662 string. */
11663 (*arg) += strlen (cond_string);
11664
11665 return cond_string;
11666 }
11667
11668 /* Commands to deal with catching events, such as signals, exceptions,
11669 process start/exit, etc. */
11670
11671 typedef enum
11672 {
11673 catch_fork_temporary, catch_vfork_temporary,
11674 catch_fork_permanent, catch_vfork_permanent
11675 }
11676 catch_fork_kind;
11677
11678 static void
11679 catch_fork_command_1 (char *arg, int from_tty,
11680 struct cmd_list_element *command)
11681 {
11682 struct gdbarch *gdbarch = get_current_arch ();
11683 char *cond_string = NULL;
11684 catch_fork_kind fork_kind;
11685 int tempflag;
11686
11687 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11688 tempflag = (fork_kind == catch_fork_temporary
11689 || fork_kind == catch_vfork_temporary);
11690
11691 if (!arg)
11692 arg = "";
11693 arg = skip_spaces (arg);
11694
11695 /* The allowed syntax is:
11696 catch [v]fork
11697 catch [v]fork if <cond>
11698
11699 First, check if there's an if clause. */
11700 cond_string = ep_parse_optional_if_clause (&arg);
11701
11702 if ((*arg != '\0') && !isspace (*arg))
11703 error (_("Junk at end of arguments."));
11704
11705 /* If this target supports it, create a fork or vfork catchpoint
11706 and enable reporting of such events. */
11707 switch (fork_kind)
11708 {
11709 case catch_fork_temporary:
11710 case catch_fork_permanent:
11711 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11712 &catch_fork_breakpoint_ops);
11713 break;
11714 case catch_vfork_temporary:
11715 case catch_vfork_permanent:
11716 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11717 &catch_vfork_breakpoint_ops);
11718 break;
11719 default:
11720 error (_("unsupported or unknown fork kind; cannot catch it"));
11721 break;
11722 }
11723 }
11724
11725 static void
11726 catch_exec_command_1 (char *arg, int from_tty,
11727 struct cmd_list_element *command)
11728 {
11729 struct exec_catchpoint *c;
11730 struct gdbarch *gdbarch = get_current_arch ();
11731 int tempflag;
11732 char *cond_string = NULL;
11733
11734 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11735
11736 if (!arg)
11737 arg = "";
11738 arg = skip_spaces (arg);
11739
11740 /* The allowed syntax is:
11741 catch exec
11742 catch exec if <cond>
11743
11744 First, check if there's an if clause. */
11745 cond_string = ep_parse_optional_if_clause (&arg);
11746
11747 if ((*arg != '\0') && !isspace (*arg))
11748 error (_("Junk at end of arguments."));
11749
11750 c = XNEW (struct exec_catchpoint);
11751 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11752 &catch_exec_breakpoint_ops);
11753 c->exec_pathname = NULL;
11754
11755 install_breakpoint (0, &c->base, 1);
11756 }
11757
11758 void
11759 init_ada_exception_breakpoint (struct breakpoint *b,
11760 struct gdbarch *gdbarch,
11761 struct symtab_and_line sal,
11762 char *addr_string,
11763 const struct breakpoint_ops *ops,
11764 int tempflag,
11765 int enabled,
11766 int from_tty)
11767 {
11768 if (from_tty)
11769 {
11770 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11771 if (!loc_gdbarch)
11772 loc_gdbarch = gdbarch;
11773
11774 describe_other_breakpoints (loc_gdbarch,
11775 sal.pspace, sal.pc, sal.section, -1);
11776 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11777 version for exception catchpoints, because two catchpoints
11778 used for different exception names will use the same address.
11779 In this case, a "breakpoint ... also set at..." warning is
11780 unproductive. Besides, the warning phrasing is also a bit
11781 inappropriate, we should use the word catchpoint, and tell
11782 the user what type of catchpoint it is. The above is good
11783 enough for now, though. */
11784 }
11785
11786 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11787
11788 b->enable_state = enabled ? bp_enabled : bp_disabled;
11789 b->disposition = tempflag ? disp_del : disp_donttouch;
11790 b->addr_string = addr_string;
11791 b->language = language_ada;
11792 }
11793
11794 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11795 filter list, or NULL if no filtering is required. */
11796 static VEC(int) *
11797 catch_syscall_split_args (char *arg)
11798 {
11799 VEC(int) *result = NULL;
11800 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11801
11802 while (*arg != '\0')
11803 {
11804 int i, syscall_number;
11805 char *endptr;
11806 char cur_name[128];
11807 struct syscall s;
11808
11809 /* Skip whitespace. */
11810 arg = skip_spaces (arg);
11811
11812 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11813 cur_name[i] = arg[i];
11814 cur_name[i] = '\0';
11815 arg += i;
11816
11817 /* Check if the user provided a syscall name or a number. */
11818 syscall_number = (int) strtol (cur_name, &endptr, 0);
11819 if (*endptr == '\0')
11820 get_syscall_by_number (syscall_number, &s);
11821 else
11822 {
11823 /* We have a name. Let's check if it's valid and convert it
11824 to a number. */
11825 get_syscall_by_name (cur_name, &s);
11826
11827 if (s.number == UNKNOWN_SYSCALL)
11828 /* Here we have to issue an error instead of a warning,
11829 because GDB cannot do anything useful if there's no
11830 syscall number to be caught. */
11831 error (_("Unknown syscall name '%s'."), cur_name);
11832 }
11833
11834 /* Ok, it's valid. */
11835 VEC_safe_push (int, result, s.number);
11836 }
11837
11838 discard_cleanups (cleanup);
11839 return result;
11840 }
11841
11842 /* Implement the "catch syscall" command. */
11843
11844 static void
11845 catch_syscall_command_1 (char *arg, int from_tty,
11846 struct cmd_list_element *command)
11847 {
11848 int tempflag;
11849 VEC(int) *filter;
11850 struct syscall s;
11851 struct gdbarch *gdbarch = get_current_arch ();
11852
11853 /* Checking if the feature if supported. */
11854 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11855 error (_("The feature 'catch syscall' is not supported on \
11856 this architecture yet."));
11857
11858 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11859
11860 arg = skip_spaces (arg);
11861
11862 /* We need to do this first "dummy" translation in order
11863 to get the syscall XML file loaded or, most important,
11864 to display a warning to the user if there's no XML file
11865 for his/her architecture. */
11866 get_syscall_by_number (0, &s);
11867
11868 /* The allowed syntax is:
11869 catch syscall
11870 catch syscall <name | number> [<name | number> ... <name | number>]
11871
11872 Let's check if there's a syscall name. */
11873
11874 if (arg != NULL)
11875 filter = catch_syscall_split_args (arg);
11876 else
11877 filter = NULL;
11878
11879 create_syscall_event_catchpoint (tempflag, filter,
11880 &catch_syscall_breakpoint_ops);
11881 }
11882
11883 static void
11884 catch_command (char *arg, int from_tty)
11885 {
11886 error (_("Catch requires an event name."));
11887 }
11888 \f
11889
11890 static void
11891 tcatch_command (char *arg, int from_tty)
11892 {
11893 error (_("Catch requires an event name."));
11894 }
11895
11896 /* A qsort comparison function that sorts breakpoints in order. */
11897
11898 static int
11899 compare_breakpoints (const void *a, const void *b)
11900 {
11901 const breakpoint_p *ba = a;
11902 uintptr_t ua = (uintptr_t) *ba;
11903 const breakpoint_p *bb = b;
11904 uintptr_t ub = (uintptr_t) *bb;
11905
11906 if ((*ba)->number < (*bb)->number)
11907 return -1;
11908 else if ((*ba)->number > (*bb)->number)
11909 return 1;
11910
11911 /* Now sort by address, in case we see, e..g, two breakpoints with
11912 the number 0. */
11913 if (ua < ub)
11914 return -1;
11915 return ua > ub ? 1 : 0;
11916 }
11917
11918 /* Delete breakpoints by address or line. */
11919
11920 static void
11921 clear_command (char *arg, int from_tty)
11922 {
11923 struct breakpoint *b, *prev;
11924 VEC(breakpoint_p) *found = 0;
11925 int ix;
11926 int default_match;
11927 struct symtabs_and_lines sals;
11928 struct symtab_and_line sal;
11929 int i;
11930 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11931
11932 if (arg)
11933 {
11934 sals = decode_line_with_current_source (arg,
11935 (DECODE_LINE_FUNFIRSTLINE
11936 | DECODE_LINE_LIST_MODE));
11937 make_cleanup (xfree, sals.sals);
11938 default_match = 0;
11939 }
11940 else
11941 {
11942 sals.sals = (struct symtab_and_line *)
11943 xmalloc (sizeof (struct symtab_and_line));
11944 make_cleanup (xfree, sals.sals);
11945 init_sal (&sal); /* Initialize to zeroes. */
11946
11947 /* Set sal's line, symtab, pc, and pspace to the values
11948 corresponding to the last call to print_frame_info. If the
11949 codepoint is not valid, this will set all the fields to 0. */
11950 get_last_displayed_sal (&sal);
11951 if (sal.symtab == 0)
11952 error (_("No source file specified."));
11953
11954 sals.sals[0] = sal;
11955 sals.nelts = 1;
11956
11957 default_match = 1;
11958 }
11959
11960 /* We don't call resolve_sal_pc here. That's not as bad as it
11961 seems, because all existing breakpoints typically have both
11962 file/line and pc set. So, if clear is given file/line, we can
11963 match this to existing breakpoint without obtaining pc at all.
11964
11965 We only support clearing given the address explicitly
11966 present in breakpoint table. Say, we've set breakpoint
11967 at file:line. There were several PC values for that file:line,
11968 due to optimization, all in one block.
11969
11970 We've picked one PC value. If "clear" is issued with another
11971 PC corresponding to the same file:line, the breakpoint won't
11972 be cleared. We probably can still clear the breakpoint, but
11973 since the other PC value is never presented to user, user
11974 can only find it by guessing, and it does not seem important
11975 to support that. */
11976
11977 /* For each line spec given, delete bps which correspond to it. Do
11978 it in two passes, solely to preserve the current behavior that
11979 from_tty is forced true if we delete more than one
11980 breakpoint. */
11981
11982 found = NULL;
11983 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11984 for (i = 0; i < sals.nelts; i++)
11985 {
11986 const char *sal_fullname;
11987
11988 /* If exact pc given, clear bpts at that pc.
11989 If line given (pc == 0), clear all bpts on specified line.
11990 If defaulting, clear all bpts on default line
11991 or at default pc.
11992
11993 defaulting sal.pc != 0 tests to do
11994
11995 0 1 pc
11996 1 1 pc _and_ line
11997 0 0 line
11998 1 0 <can't happen> */
11999
12000 sal = sals.sals[i];
12001 sal_fullname = (sal.symtab == NULL
12002 ? NULL : symtab_to_fullname (sal.symtab));
12003
12004 /* Find all matching breakpoints and add them to 'found'. */
12005 ALL_BREAKPOINTS (b)
12006 {
12007 int match = 0;
12008 /* Are we going to delete b? */
12009 if (b->type != bp_none && !is_watchpoint (b))
12010 {
12011 struct bp_location *loc = b->loc;
12012 for (; loc; loc = loc->next)
12013 {
12014 /* If the user specified file:line, don't allow a PC
12015 match. This matches historical gdb behavior. */
12016 int pc_match = (!sal.explicit_line
12017 && sal.pc
12018 && (loc->pspace == sal.pspace)
12019 && (loc->address == sal.pc)
12020 && (!section_is_overlay (loc->section)
12021 || loc->section == sal.section));
12022 int line_match = 0;
12023
12024 if ((default_match || sal.explicit_line)
12025 && loc->symtab != NULL
12026 && sal_fullname != NULL
12027 && sal.pspace == loc->pspace
12028 && loc->line_number == sal.line
12029 && filename_cmp (symtab_to_fullname (loc->symtab),
12030 sal_fullname) == 0)
12031 line_match = 1;
12032
12033 if (pc_match || line_match)
12034 {
12035 match = 1;
12036 break;
12037 }
12038 }
12039 }
12040
12041 if (match)
12042 VEC_safe_push(breakpoint_p, found, b);
12043 }
12044 }
12045
12046 /* Now go thru the 'found' chain and delete them. */
12047 if (VEC_empty(breakpoint_p, found))
12048 {
12049 if (arg)
12050 error (_("No breakpoint at %s."), arg);
12051 else
12052 error (_("No breakpoint at this line."));
12053 }
12054
12055 /* Remove duplicates from the vec. */
12056 qsort (VEC_address (breakpoint_p, found),
12057 VEC_length (breakpoint_p, found),
12058 sizeof (breakpoint_p),
12059 compare_breakpoints);
12060 prev = VEC_index (breakpoint_p, found, 0);
12061 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12062 {
12063 if (b == prev)
12064 {
12065 VEC_ordered_remove (breakpoint_p, found, ix);
12066 --ix;
12067 }
12068 }
12069
12070 if (VEC_length(breakpoint_p, found) > 1)
12071 from_tty = 1; /* Always report if deleted more than one. */
12072 if (from_tty)
12073 {
12074 if (VEC_length(breakpoint_p, found) == 1)
12075 printf_unfiltered (_("Deleted breakpoint "));
12076 else
12077 printf_unfiltered (_("Deleted breakpoints "));
12078 }
12079
12080 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12081 {
12082 if (from_tty)
12083 printf_unfiltered ("%d ", b->number);
12084 delete_breakpoint (b);
12085 }
12086 if (from_tty)
12087 putchar_unfiltered ('\n');
12088
12089 do_cleanups (cleanups);
12090 }
12091 \f
12092 /* Delete breakpoint in BS if they are `delete' breakpoints and
12093 all breakpoints that are marked for deletion, whether hit or not.
12094 This is called after any breakpoint is hit, or after errors. */
12095
12096 void
12097 breakpoint_auto_delete (bpstat bs)
12098 {
12099 struct breakpoint *b, *b_tmp;
12100
12101 for (; bs; bs = bs->next)
12102 if (bs->breakpoint_at
12103 && bs->breakpoint_at->disposition == disp_del
12104 && bs->stop)
12105 delete_breakpoint (bs->breakpoint_at);
12106
12107 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12108 {
12109 if (b->disposition == disp_del_at_next_stop)
12110 delete_breakpoint (b);
12111 }
12112 }
12113
12114 /* A comparison function for bp_location AP and BP being interfaced to
12115 qsort. Sort elements primarily by their ADDRESS (no matter what
12116 does breakpoint_address_is_meaningful say for its OWNER),
12117 secondarily by ordering first bp_permanent OWNERed elements and
12118 terciarily just ensuring the array is sorted stable way despite
12119 qsort being an unstable algorithm. */
12120
12121 static int
12122 bp_location_compare (const void *ap, const void *bp)
12123 {
12124 struct bp_location *a = *(void **) ap;
12125 struct bp_location *b = *(void **) bp;
12126 /* A and B come from existing breakpoints having non-NULL OWNER. */
12127 int a_perm = a->owner->enable_state == bp_permanent;
12128 int b_perm = b->owner->enable_state == bp_permanent;
12129
12130 if (a->address != b->address)
12131 return (a->address > b->address) - (a->address < b->address);
12132
12133 /* Sort locations at the same address by their pspace number, keeping
12134 locations of the same inferior (in a multi-inferior environment)
12135 grouped. */
12136
12137 if (a->pspace->num != b->pspace->num)
12138 return ((a->pspace->num > b->pspace->num)
12139 - (a->pspace->num < b->pspace->num));
12140
12141 /* Sort permanent breakpoints first. */
12142 if (a_perm != b_perm)
12143 return (a_perm < b_perm) - (a_perm > b_perm);
12144
12145 /* Make the internal GDB representation stable across GDB runs
12146 where A and B memory inside GDB can differ. Breakpoint locations of
12147 the same type at the same address can be sorted in arbitrary order. */
12148
12149 if (a->owner->number != b->owner->number)
12150 return ((a->owner->number > b->owner->number)
12151 - (a->owner->number < b->owner->number));
12152
12153 return (a > b) - (a < b);
12154 }
12155
12156 /* Set bp_location_placed_address_before_address_max and
12157 bp_location_shadow_len_after_address_max according to the current
12158 content of the bp_location array. */
12159
12160 static void
12161 bp_location_target_extensions_update (void)
12162 {
12163 struct bp_location *bl, **blp_tmp;
12164
12165 bp_location_placed_address_before_address_max = 0;
12166 bp_location_shadow_len_after_address_max = 0;
12167
12168 ALL_BP_LOCATIONS (bl, blp_tmp)
12169 {
12170 CORE_ADDR start, end, addr;
12171
12172 if (!bp_location_has_shadow (bl))
12173 continue;
12174
12175 start = bl->target_info.placed_address;
12176 end = start + bl->target_info.shadow_len;
12177
12178 gdb_assert (bl->address >= start);
12179 addr = bl->address - start;
12180 if (addr > bp_location_placed_address_before_address_max)
12181 bp_location_placed_address_before_address_max = addr;
12182
12183 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12184
12185 gdb_assert (bl->address < end);
12186 addr = end - bl->address;
12187 if (addr > bp_location_shadow_len_after_address_max)
12188 bp_location_shadow_len_after_address_max = addr;
12189 }
12190 }
12191
12192 /* Download tracepoint locations if they haven't been. */
12193
12194 static void
12195 download_tracepoint_locations (void)
12196 {
12197 struct breakpoint *b;
12198 struct cleanup *old_chain;
12199
12200 if (!target_can_download_tracepoint ())
12201 return;
12202
12203 old_chain = save_current_space_and_thread ();
12204
12205 ALL_TRACEPOINTS (b)
12206 {
12207 struct bp_location *bl;
12208 struct tracepoint *t;
12209 int bp_location_downloaded = 0;
12210
12211 if ((b->type == bp_fast_tracepoint
12212 ? !may_insert_fast_tracepoints
12213 : !may_insert_tracepoints))
12214 continue;
12215
12216 for (bl = b->loc; bl; bl = bl->next)
12217 {
12218 /* In tracepoint, locations are _never_ duplicated, so
12219 should_be_inserted is equivalent to
12220 unduplicated_should_be_inserted. */
12221 if (!should_be_inserted (bl) || bl->inserted)
12222 continue;
12223
12224 switch_to_program_space_and_thread (bl->pspace);
12225
12226 target_download_tracepoint (bl);
12227
12228 bl->inserted = 1;
12229 bp_location_downloaded = 1;
12230 }
12231 t = (struct tracepoint *) b;
12232 t->number_on_target = b->number;
12233 if (bp_location_downloaded)
12234 observer_notify_breakpoint_modified (b);
12235 }
12236
12237 do_cleanups (old_chain);
12238 }
12239
12240 /* Swap the insertion/duplication state between two locations. */
12241
12242 static void
12243 swap_insertion (struct bp_location *left, struct bp_location *right)
12244 {
12245 const int left_inserted = left->inserted;
12246 const int left_duplicate = left->duplicate;
12247 const int left_needs_update = left->needs_update;
12248 const struct bp_target_info left_target_info = left->target_info;
12249
12250 /* Locations of tracepoints can never be duplicated. */
12251 if (is_tracepoint (left->owner))
12252 gdb_assert (!left->duplicate);
12253 if (is_tracepoint (right->owner))
12254 gdb_assert (!right->duplicate);
12255
12256 left->inserted = right->inserted;
12257 left->duplicate = right->duplicate;
12258 left->needs_update = right->needs_update;
12259 left->target_info = right->target_info;
12260 right->inserted = left_inserted;
12261 right->duplicate = left_duplicate;
12262 right->needs_update = left_needs_update;
12263 right->target_info = left_target_info;
12264 }
12265
12266 /* Force the re-insertion of the locations at ADDRESS. This is called
12267 once a new/deleted/modified duplicate location is found and we are evaluating
12268 conditions on the target's side. Such conditions need to be updated on
12269 the target. */
12270
12271 static void
12272 force_breakpoint_reinsertion (struct bp_location *bl)
12273 {
12274 struct bp_location **locp = NULL, **loc2p;
12275 struct bp_location *loc;
12276 CORE_ADDR address = 0;
12277 int pspace_num;
12278
12279 address = bl->address;
12280 pspace_num = bl->pspace->num;
12281
12282 /* This is only meaningful if the target is
12283 evaluating conditions and if the user has
12284 opted for condition evaluation on the target's
12285 side. */
12286 if (gdb_evaluates_breakpoint_condition_p ()
12287 || !target_supports_evaluation_of_breakpoint_conditions ())
12288 return;
12289
12290 /* Flag all breakpoint locations with this address and
12291 the same program space as the location
12292 as "its condition has changed". We need to
12293 update the conditions on the target's side. */
12294 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12295 {
12296 loc = *loc2p;
12297
12298 if (!is_breakpoint (loc->owner)
12299 || pspace_num != loc->pspace->num)
12300 continue;
12301
12302 /* Flag the location appropriately. We use a different state to
12303 let everyone know that we already updated the set of locations
12304 with addr bl->address and program space bl->pspace. This is so
12305 we don't have to keep calling these functions just to mark locations
12306 that have already been marked. */
12307 loc->condition_changed = condition_updated;
12308
12309 /* Free the agent expression bytecode as well. We will compute
12310 it later on. */
12311 if (loc->cond_bytecode)
12312 {
12313 free_agent_expr (loc->cond_bytecode);
12314 loc->cond_bytecode = NULL;
12315 }
12316 }
12317 }
12318
12319 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12320 into the inferior, only remove already-inserted locations that no
12321 longer should be inserted. Functions that delete a breakpoint or
12322 breakpoints should pass false, so that deleting a breakpoint
12323 doesn't have the side effect of inserting the locations of other
12324 breakpoints that are marked not-inserted, but should_be_inserted
12325 returns true on them.
12326
12327 This behaviour is useful is situations close to tear-down -- e.g.,
12328 after an exec, while the target still has execution, but breakpoint
12329 shadows of the previous executable image should *NOT* be restored
12330 to the new image; or before detaching, where the target still has
12331 execution and wants to delete breakpoints from GDB's lists, and all
12332 breakpoints had already been removed from the inferior. */
12333
12334 static void
12335 update_global_location_list (int should_insert)
12336 {
12337 struct breakpoint *b;
12338 struct bp_location **locp, *loc;
12339 struct cleanup *cleanups;
12340 /* Last breakpoint location address that was marked for update. */
12341 CORE_ADDR last_addr = 0;
12342 /* Last breakpoint location program space that was marked for update. */
12343 int last_pspace_num = -1;
12344
12345 /* Used in the duplicates detection below. When iterating over all
12346 bp_locations, points to the first bp_location of a given address.
12347 Breakpoints and watchpoints of different types are never
12348 duplicates of each other. Keep one pointer for each type of
12349 breakpoint/watchpoint, so we only need to loop over all locations
12350 once. */
12351 struct bp_location *bp_loc_first; /* breakpoint */
12352 struct bp_location *wp_loc_first; /* hardware watchpoint */
12353 struct bp_location *awp_loc_first; /* access watchpoint */
12354 struct bp_location *rwp_loc_first; /* read watchpoint */
12355
12356 /* Saved former bp_location array which we compare against the newly
12357 built bp_location from the current state of ALL_BREAKPOINTS. */
12358 struct bp_location **old_location, **old_locp;
12359 unsigned old_location_count;
12360
12361 old_location = bp_location;
12362 old_location_count = bp_location_count;
12363 bp_location = NULL;
12364 bp_location_count = 0;
12365 cleanups = make_cleanup (xfree, old_location);
12366
12367 ALL_BREAKPOINTS (b)
12368 for (loc = b->loc; loc; loc = loc->next)
12369 bp_location_count++;
12370
12371 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12372 locp = bp_location;
12373 ALL_BREAKPOINTS (b)
12374 for (loc = b->loc; loc; loc = loc->next)
12375 *locp++ = loc;
12376 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12377 bp_location_compare);
12378
12379 bp_location_target_extensions_update ();
12380
12381 /* Identify bp_location instances that are no longer present in the
12382 new list, and therefore should be freed. Note that it's not
12383 necessary that those locations should be removed from inferior --
12384 if there's another location at the same address (previously
12385 marked as duplicate), we don't need to remove/insert the
12386 location.
12387
12388 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12389 and former bp_location array state respectively. */
12390
12391 locp = bp_location;
12392 for (old_locp = old_location; old_locp < old_location + old_location_count;
12393 old_locp++)
12394 {
12395 struct bp_location *old_loc = *old_locp;
12396 struct bp_location **loc2p;
12397
12398 /* Tells if 'old_loc' is found among the new locations. If
12399 not, we have to free it. */
12400 int found_object = 0;
12401 /* Tells if the location should remain inserted in the target. */
12402 int keep_in_target = 0;
12403 int removed = 0;
12404
12405 /* Skip LOCP entries which will definitely never be needed.
12406 Stop either at or being the one matching OLD_LOC. */
12407 while (locp < bp_location + bp_location_count
12408 && (*locp)->address < old_loc->address)
12409 locp++;
12410
12411 for (loc2p = locp;
12412 (loc2p < bp_location + bp_location_count
12413 && (*loc2p)->address == old_loc->address);
12414 loc2p++)
12415 {
12416 /* Check if this is a new/duplicated location or a duplicated
12417 location that had its condition modified. If so, we want to send
12418 its condition to the target if evaluation of conditions is taking
12419 place there. */
12420 if ((*loc2p)->condition_changed == condition_modified
12421 && (last_addr != old_loc->address
12422 || last_pspace_num != old_loc->pspace->num))
12423 {
12424 force_breakpoint_reinsertion (*loc2p);
12425 last_pspace_num = old_loc->pspace->num;
12426 }
12427
12428 if (*loc2p == old_loc)
12429 found_object = 1;
12430 }
12431
12432 /* We have already handled this address, update it so that we don't
12433 have to go through updates again. */
12434 last_addr = old_loc->address;
12435
12436 /* Target-side condition evaluation: Handle deleted locations. */
12437 if (!found_object)
12438 force_breakpoint_reinsertion (old_loc);
12439
12440 /* If this location is no longer present, and inserted, look if
12441 there's maybe a new location at the same address. If so,
12442 mark that one inserted, and don't remove this one. This is
12443 needed so that we don't have a time window where a breakpoint
12444 at certain location is not inserted. */
12445
12446 if (old_loc->inserted)
12447 {
12448 /* If the location is inserted now, we might have to remove
12449 it. */
12450
12451 if (found_object && should_be_inserted (old_loc))
12452 {
12453 /* The location is still present in the location list,
12454 and still should be inserted. Don't do anything. */
12455 keep_in_target = 1;
12456 }
12457 else
12458 {
12459 /* This location still exists, but it won't be kept in the
12460 target since it may have been disabled. We proceed to
12461 remove its target-side condition. */
12462
12463 /* The location is either no longer present, or got
12464 disabled. See if there's another location at the
12465 same address, in which case we don't need to remove
12466 this one from the target. */
12467
12468 /* OLD_LOC comes from existing struct breakpoint. */
12469 if (breakpoint_address_is_meaningful (old_loc->owner))
12470 {
12471 for (loc2p = locp;
12472 (loc2p < bp_location + bp_location_count
12473 && (*loc2p)->address == old_loc->address);
12474 loc2p++)
12475 {
12476 struct bp_location *loc2 = *loc2p;
12477
12478 if (breakpoint_locations_match (loc2, old_loc))
12479 {
12480 /* Read watchpoint locations are switched to
12481 access watchpoints, if the former are not
12482 supported, but the latter are. */
12483 if (is_hardware_watchpoint (old_loc->owner))
12484 {
12485 gdb_assert (is_hardware_watchpoint (loc2->owner));
12486 loc2->watchpoint_type = old_loc->watchpoint_type;
12487 }
12488
12489 /* loc2 is a duplicated location. We need to check
12490 if it should be inserted in case it will be
12491 unduplicated. */
12492 if (loc2 != old_loc
12493 && unduplicated_should_be_inserted (loc2))
12494 {
12495 swap_insertion (old_loc, loc2);
12496 keep_in_target = 1;
12497 break;
12498 }
12499 }
12500 }
12501 }
12502 }
12503
12504 if (!keep_in_target)
12505 {
12506 if (remove_breakpoint (old_loc, mark_uninserted))
12507 {
12508 /* This is just about all we can do. We could keep
12509 this location on the global list, and try to
12510 remove it next time, but there's no particular
12511 reason why we will succeed next time.
12512
12513 Note that at this point, old_loc->owner is still
12514 valid, as delete_breakpoint frees the breakpoint
12515 only after calling us. */
12516 printf_filtered (_("warning: Error removing "
12517 "breakpoint %d\n"),
12518 old_loc->owner->number);
12519 }
12520 removed = 1;
12521 }
12522 }
12523
12524 if (!found_object)
12525 {
12526 if (removed && non_stop
12527 && breakpoint_address_is_meaningful (old_loc->owner)
12528 && !is_hardware_watchpoint (old_loc->owner))
12529 {
12530 /* This location was removed from the target. In
12531 non-stop mode, a race condition is possible where
12532 we've removed a breakpoint, but stop events for that
12533 breakpoint are already queued and will arrive later.
12534 We apply an heuristic to be able to distinguish such
12535 SIGTRAPs from other random SIGTRAPs: we keep this
12536 breakpoint location for a bit, and will retire it
12537 after we see some number of events. The theory here
12538 is that reporting of events should, "on the average",
12539 be fair, so after a while we'll see events from all
12540 threads that have anything of interest, and no longer
12541 need to keep this breakpoint location around. We
12542 don't hold locations forever so to reduce chances of
12543 mistaking a non-breakpoint SIGTRAP for a breakpoint
12544 SIGTRAP.
12545
12546 The heuristic failing can be disastrous on
12547 decr_pc_after_break targets.
12548
12549 On decr_pc_after_break targets, like e.g., x86-linux,
12550 if we fail to recognize a late breakpoint SIGTRAP,
12551 because events_till_retirement has reached 0 too
12552 soon, we'll fail to do the PC adjustment, and report
12553 a random SIGTRAP to the user. When the user resumes
12554 the inferior, it will most likely immediately crash
12555 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12556 corrupted, because of being resumed e.g., in the
12557 middle of a multi-byte instruction, or skipped a
12558 one-byte instruction. This was actually seen happen
12559 on native x86-linux, and should be less rare on
12560 targets that do not support new thread events, like
12561 remote, due to the heuristic depending on
12562 thread_count.
12563
12564 Mistaking a random SIGTRAP for a breakpoint trap
12565 causes similar symptoms (PC adjustment applied when
12566 it shouldn't), but then again, playing with SIGTRAPs
12567 behind the debugger's back is asking for trouble.
12568
12569 Since hardware watchpoint traps are always
12570 distinguishable from other traps, so we don't need to
12571 apply keep hardware watchpoint moribund locations
12572 around. We simply always ignore hardware watchpoint
12573 traps we can no longer explain. */
12574
12575 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12576 old_loc->owner = NULL;
12577
12578 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12579 }
12580 else
12581 {
12582 old_loc->owner = NULL;
12583 decref_bp_location (&old_loc);
12584 }
12585 }
12586 }
12587
12588 /* Rescan breakpoints at the same address and section, marking the
12589 first one as "first" and any others as "duplicates". This is so
12590 that the bpt instruction is only inserted once. If we have a
12591 permanent breakpoint at the same place as BPT, make that one the
12592 official one, and the rest as duplicates. Permanent breakpoints
12593 are sorted first for the same address.
12594
12595 Do the same for hardware watchpoints, but also considering the
12596 watchpoint's type (regular/access/read) and length. */
12597
12598 bp_loc_first = NULL;
12599 wp_loc_first = NULL;
12600 awp_loc_first = NULL;
12601 rwp_loc_first = NULL;
12602 ALL_BP_LOCATIONS (loc, locp)
12603 {
12604 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12605 non-NULL. */
12606 struct bp_location **loc_first_p;
12607 b = loc->owner;
12608
12609 if (!unduplicated_should_be_inserted (loc)
12610 || !breakpoint_address_is_meaningful (b)
12611 /* Don't detect duplicate for tracepoint locations because they are
12612 never duplicated. See the comments in field `duplicate' of
12613 `struct bp_location'. */
12614 || is_tracepoint (b))
12615 {
12616 /* Clear the condition modification flag. */
12617 loc->condition_changed = condition_unchanged;
12618 continue;
12619 }
12620
12621 /* Permanent breakpoint should always be inserted. */
12622 if (b->enable_state == bp_permanent && ! loc->inserted)
12623 internal_error (__FILE__, __LINE__,
12624 _("allegedly permanent breakpoint is not "
12625 "actually inserted"));
12626
12627 if (b->type == bp_hardware_watchpoint)
12628 loc_first_p = &wp_loc_first;
12629 else if (b->type == bp_read_watchpoint)
12630 loc_first_p = &rwp_loc_first;
12631 else if (b->type == bp_access_watchpoint)
12632 loc_first_p = &awp_loc_first;
12633 else
12634 loc_first_p = &bp_loc_first;
12635
12636 if (*loc_first_p == NULL
12637 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12638 || !breakpoint_locations_match (loc, *loc_first_p))
12639 {
12640 *loc_first_p = loc;
12641 loc->duplicate = 0;
12642
12643 if (is_breakpoint (loc->owner) && loc->condition_changed)
12644 {
12645 loc->needs_update = 1;
12646 /* Clear the condition modification flag. */
12647 loc->condition_changed = condition_unchanged;
12648 }
12649 continue;
12650 }
12651
12652
12653 /* This and the above ensure the invariant that the first location
12654 is not duplicated, and is the inserted one.
12655 All following are marked as duplicated, and are not inserted. */
12656 if (loc->inserted)
12657 swap_insertion (loc, *loc_first_p);
12658 loc->duplicate = 1;
12659
12660 /* Clear the condition modification flag. */
12661 loc->condition_changed = condition_unchanged;
12662
12663 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12664 && b->enable_state != bp_permanent)
12665 internal_error (__FILE__, __LINE__,
12666 _("another breakpoint was inserted on top of "
12667 "a permanent breakpoint"));
12668 }
12669
12670 if (breakpoints_always_inserted_mode ()
12671 && (have_live_inferiors ()
12672 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12673 {
12674 if (should_insert)
12675 insert_breakpoint_locations ();
12676 else
12677 {
12678 /* Though should_insert is false, we may need to update conditions
12679 on the target's side if it is evaluating such conditions. We
12680 only update conditions for locations that are marked
12681 "needs_update". */
12682 update_inserted_breakpoint_locations ();
12683 }
12684 }
12685
12686 if (should_insert)
12687 download_tracepoint_locations ();
12688
12689 do_cleanups (cleanups);
12690 }
12691
12692 void
12693 breakpoint_retire_moribund (void)
12694 {
12695 struct bp_location *loc;
12696 int ix;
12697
12698 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12699 if (--(loc->events_till_retirement) == 0)
12700 {
12701 decref_bp_location (&loc);
12702 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12703 --ix;
12704 }
12705 }
12706
12707 static void
12708 update_global_location_list_nothrow (int inserting)
12709 {
12710 volatile struct gdb_exception e;
12711
12712 TRY_CATCH (e, RETURN_MASK_ERROR)
12713 update_global_location_list (inserting);
12714 }
12715
12716 /* Clear BKP from a BPS. */
12717
12718 static void
12719 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12720 {
12721 bpstat bs;
12722
12723 for (bs = bps; bs; bs = bs->next)
12724 if (bs->breakpoint_at == bpt)
12725 {
12726 bs->breakpoint_at = NULL;
12727 bs->old_val = NULL;
12728 /* bs->commands will be freed later. */
12729 }
12730 }
12731
12732 /* Callback for iterate_over_threads. */
12733 static int
12734 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12735 {
12736 struct breakpoint *bpt = data;
12737
12738 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12739 return 0;
12740 }
12741
12742 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12743 callbacks. */
12744
12745 static void
12746 say_where (struct breakpoint *b)
12747 {
12748 struct value_print_options opts;
12749
12750 get_user_print_options (&opts);
12751
12752 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12753 single string. */
12754 if (b->loc == NULL)
12755 {
12756 printf_filtered (_(" (%s) pending."), b->addr_string);
12757 }
12758 else
12759 {
12760 if (opts.addressprint || b->loc->symtab == NULL)
12761 {
12762 printf_filtered (" at ");
12763 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12764 gdb_stdout);
12765 }
12766 if (b->loc->symtab != NULL)
12767 {
12768 /* If there is a single location, we can print the location
12769 more nicely. */
12770 if (b->loc->next == NULL)
12771 printf_filtered (": file %s, line %d.",
12772 symtab_to_filename_for_display (b->loc->symtab),
12773 b->loc->line_number);
12774 else
12775 /* This is not ideal, but each location may have a
12776 different file name, and this at least reflects the
12777 real situation somewhat. */
12778 printf_filtered (": %s.", b->addr_string);
12779 }
12780
12781 if (b->loc->next)
12782 {
12783 struct bp_location *loc = b->loc;
12784 int n = 0;
12785 for (; loc; loc = loc->next)
12786 ++n;
12787 printf_filtered (" (%d locations)", n);
12788 }
12789 }
12790 }
12791
12792 /* Default bp_location_ops methods. */
12793
12794 static void
12795 bp_location_dtor (struct bp_location *self)
12796 {
12797 xfree (self->cond);
12798 if (self->cond_bytecode)
12799 free_agent_expr (self->cond_bytecode);
12800 xfree (self->function_name);
12801
12802 VEC_free (agent_expr_p, self->target_info.conditions);
12803 VEC_free (agent_expr_p, self->target_info.tcommands);
12804 }
12805
12806 static const struct bp_location_ops bp_location_ops =
12807 {
12808 bp_location_dtor
12809 };
12810
12811 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12812 inherit from. */
12813
12814 static void
12815 base_breakpoint_dtor (struct breakpoint *self)
12816 {
12817 decref_counted_command_line (&self->commands);
12818 xfree (self->cond_string);
12819 xfree (self->extra_string);
12820 xfree (self->addr_string);
12821 xfree (self->filter);
12822 xfree (self->addr_string_range_end);
12823 }
12824
12825 static struct bp_location *
12826 base_breakpoint_allocate_location (struct breakpoint *self)
12827 {
12828 struct bp_location *loc;
12829
12830 loc = XNEW (struct bp_location);
12831 init_bp_location (loc, &bp_location_ops, self);
12832 return loc;
12833 }
12834
12835 static void
12836 base_breakpoint_re_set (struct breakpoint *b)
12837 {
12838 /* Nothing to re-set. */
12839 }
12840
12841 #define internal_error_pure_virtual_called() \
12842 gdb_assert_not_reached ("pure virtual function called")
12843
12844 static int
12845 base_breakpoint_insert_location (struct bp_location *bl)
12846 {
12847 internal_error_pure_virtual_called ();
12848 }
12849
12850 static int
12851 base_breakpoint_remove_location (struct bp_location *bl)
12852 {
12853 internal_error_pure_virtual_called ();
12854 }
12855
12856 static int
12857 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12858 struct address_space *aspace,
12859 CORE_ADDR bp_addr,
12860 const struct target_waitstatus *ws)
12861 {
12862 internal_error_pure_virtual_called ();
12863 }
12864
12865 static void
12866 base_breakpoint_check_status (bpstat bs)
12867 {
12868 /* Always stop. */
12869 }
12870
12871 /* A "works_in_software_mode" breakpoint_ops method that just internal
12872 errors. */
12873
12874 static int
12875 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12876 {
12877 internal_error_pure_virtual_called ();
12878 }
12879
12880 /* A "resources_needed" breakpoint_ops method that just internal
12881 errors. */
12882
12883 static int
12884 base_breakpoint_resources_needed (const struct bp_location *bl)
12885 {
12886 internal_error_pure_virtual_called ();
12887 }
12888
12889 static enum print_stop_action
12890 base_breakpoint_print_it (bpstat bs)
12891 {
12892 internal_error_pure_virtual_called ();
12893 }
12894
12895 static void
12896 base_breakpoint_print_one_detail (const struct breakpoint *self,
12897 struct ui_out *uiout)
12898 {
12899 /* nothing */
12900 }
12901
12902 static void
12903 base_breakpoint_print_mention (struct breakpoint *b)
12904 {
12905 internal_error_pure_virtual_called ();
12906 }
12907
12908 static void
12909 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12910 {
12911 internal_error_pure_virtual_called ();
12912 }
12913
12914 static void
12915 base_breakpoint_create_sals_from_address (char **arg,
12916 struct linespec_result *canonical,
12917 enum bptype type_wanted,
12918 char *addr_start,
12919 char **copy_arg)
12920 {
12921 internal_error_pure_virtual_called ();
12922 }
12923
12924 static void
12925 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12926 struct linespec_result *c,
12927 char *cond_string,
12928 char *extra_string,
12929 enum bptype type_wanted,
12930 enum bpdisp disposition,
12931 int thread,
12932 int task, int ignore_count,
12933 const struct breakpoint_ops *o,
12934 int from_tty, int enabled,
12935 int internal, unsigned flags)
12936 {
12937 internal_error_pure_virtual_called ();
12938 }
12939
12940 static void
12941 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12942 struct symtabs_and_lines *sals)
12943 {
12944 internal_error_pure_virtual_called ();
12945 }
12946
12947 /* The default 'explains_signal' method. */
12948
12949 static int
12950 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12951 {
12952 return 1;
12953 }
12954
12955 /* The default "after_condition_true" method. */
12956
12957 static void
12958 base_breakpoint_after_condition_true (struct bpstats *bs)
12959 {
12960 /* Nothing to do. */
12961 }
12962
12963 struct breakpoint_ops base_breakpoint_ops =
12964 {
12965 base_breakpoint_dtor,
12966 base_breakpoint_allocate_location,
12967 base_breakpoint_re_set,
12968 base_breakpoint_insert_location,
12969 base_breakpoint_remove_location,
12970 base_breakpoint_breakpoint_hit,
12971 base_breakpoint_check_status,
12972 base_breakpoint_resources_needed,
12973 base_breakpoint_works_in_software_mode,
12974 base_breakpoint_print_it,
12975 NULL,
12976 base_breakpoint_print_one_detail,
12977 base_breakpoint_print_mention,
12978 base_breakpoint_print_recreate,
12979 base_breakpoint_create_sals_from_address,
12980 base_breakpoint_create_breakpoints_sal,
12981 base_breakpoint_decode_linespec,
12982 base_breakpoint_explains_signal,
12983 base_breakpoint_after_condition_true,
12984 };
12985
12986 /* Default breakpoint_ops methods. */
12987
12988 static void
12989 bkpt_re_set (struct breakpoint *b)
12990 {
12991 /* FIXME: is this still reachable? */
12992 if (b->addr_string == NULL)
12993 {
12994 /* Anything without a string can't be re-set. */
12995 delete_breakpoint (b);
12996 return;
12997 }
12998
12999 breakpoint_re_set_default (b);
13000 }
13001
13002 static int
13003 bkpt_insert_location (struct bp_location *bl)
13004 {
13005 if (bl->loc_type == bp_loc_hardware_breakpoint)
13006 return target_insert_hw_breakpoint (bl->gdbarch,
13007 &bl->target_info);
13008 else
13009 return target_insert_breakpoint (bl->gdbarch,
13010 &bl->target_info);
13011 }
13012
13013 static int
13014 bkpt_remove_location (struct bp_location *bl)
13015 {
13016 if (bl->loc_type == bp_loc_hardware_breakpoint)
13017 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13018 else
13019 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
13020 }
13021
13022 static int
13023 bkpt_breakpoint_hit (const struct bp_location *bl,
13024 struct address_space *aspace, CORE_ADDR bp_addr,
13025 const struct target_waitstatus *ws)
13026 {
13027 if (ws->kind != TARGET_WAITKIND_STOPPED
13028 || ws->value.sig != GDB_SIGNAL_TRAP)
13029 return 0;
13030
13031 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13032 aspace, bp_addr))
13033 return 0;
13034
13035 if (overlay_debugging /* unmapped overlay section */
13036 && section_is_overlay (bl->section)
13037 && !section_is_mapped (bl->section))
13038 return 0;
13039
13040 return 1;
13041 }
13042
13043 static int
13044 bkpt_resources_needed (const struct bp_location *bl)
13045 {
13046 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13047
13048 return 1;
13049 }
13050
13051 static enum print_stop_action
13052 bkpt_print_it (bpstat bs)
13053 {
13054 struct breakpoint *b;
13055 const struct bp_location *bl;
13056 int bp_temp;
13057 struct ui_out *uiout = current_uiout;
13058
13059 gdb_assert (bs->bp_location_at != NULL);
13060
13061 bl = bs->bp_location_at;
13062 b = bs->breakpoint_at;
13063
13064 bp_temp = b->disposition == disp_del;
13065 if (bl->address != bl->requested_address)
13066 breakpoint_adjustment_warning (bl->requested_address,
13067 bl->address,
13068 b->number, 1);
13069 annotate_breakpoint (b->number);
13070 if (bp_temp)
13071 ui_out_text (uiout, "\nTemporary breakpoint ");
13072 else
13073 ui_out_text (uiout, "\nBreakpoint ");
13074 if (ui_out_is_mi_like_p (uiout))
13075 {
13076 ui_out_field_string (uiout, "reason",
13077 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13078 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13079 }
13080 ui_out_field_int (uiout, "bkptno", b->number);
13081 ui_out_text (uiout, ", ");
13082
13083 return PRINT_SRC_AND_LOC;
13084 }
13085
13086 static void
13087 bkpt_print_mention (struct breakpoint *b)
13088 {
13089 if (ui_out_is_mi_like_p (current_uiout))
13090 return;
13091
13092 switch (b->type)
13093 {
13094 case bp_breakpoint:
13095 case bp_gnu_ifunc_resolver:
13096 if (b->disposition == disp_del)
13097 printf_filtered (_("Temporary breakpoint"));
13098 else
13099 printf_filtered (_("Breakpoint"));
13100 printf_filtered (_(" %d"), b->number);
13101 if (b->type == bp_gnu_ifunc_resolver)
13102 printf_filtered (_(" at gnu-indirect-function resolver"));
13103 break;
13104 case bp_hardware_breakpoint:
13105 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13106 break;
13107 case bp_dprintf:
13108 printf_filtered (_("Dprintf %d"), b->number);
13109 break;
13110 }
13111
13112 say_where (b);
13113 }
13114
13115 static void
13116 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13117 {
13118 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13119 fprintf_unfiltered (fp, "tbreak");
13120 else if (tp->type == bp_breakpoint)
13121 fprintf_unfiltered (fp, "break");
13122 else if (tp->type == bp_hardware_breakpoint
13123 && tp->disposition == disp_del)
13124 fprintf_unfiltered (fp, "thbreak");
13125 else if (tp->type == bp_hardware_breakpoint)
13126 fprintf_unfiltered (fp, "hbreak");
13127 else
13128 internal_error (__FILE__, __LINE__,
13129 _("unhandled breakpoint type %d"), (int) tp->type);
13130
13131 fprintf_unfiltered (fp, " %s", tp->addr_string);
13132 print_recreate_thread (tp, fp);
13133 }
13134
13135 static void
13136 bkpt_create_sals_from_address (char **arg,
13137 struct linespec_result *canonical,
13138 enum bptype type_wanted,
13139 char *addr_start, char **copy_arg)
13140 {
13141 create_sals_from_address_default (arg, canonical, type_wanted,
13142 addr_start, copy_arg);
13143 }
13144
13145 static void
13146 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13147 struct linespec_result *canonical,
13148 char *cond_string,
13149 char *extra_string,
13150 enum bptype type_wanted,
13151 enum bpdisp disposition,
13152 int thread,
13153 int task, int ignore_count,
13154 const struct breakpoint_ops *ops,
13155 int from_tty, int enabled,
13156 int internal, unsigned flags)
13157 {
13158 create_breakpoints_sal_default (gdbarch, canonical,
13159 cond_string, extra_string,
13160 type_wanted,
13161 disposition, thread, task,
13162 ignore_count, ops, from_tty,
13163 enabled, internal, flags);
13164 }
13165
13166 static void
13167 bkpt_decode_linespec (struct breakpoint *b, char **s,
13168 struct symtabs_and_lines *sals)
13169 {
13170 decode_linespec_default (b, s, sals);
13171 }
13172
13173 /* Virtual table for internal breakpoints. */
13174
13175 static void
13176 internal_bkpt_re_set (struct breakpoint *b)
13177 {
13178 switch (b->type)
13179 {
13180 /* Delete overlay event and longjmp master breakpoints; they
13181 will be reset later by breakpoint_re_set. */
13182 case bp_overlay_event:
13183 case bp_longjmp_master:
13184 case bp_std_terminate_master:
13185 case bp_exception_master:
13186 delete_breakpoint (b);
13187 break;
13188
13189 /* This breakpoint is special, it's set up when the inferior
13190 starts and we really don't want to touch it. */
13191 case bp_shlib_event:
13192
13193 /* Like bp_shlib_event, this breakpoint type is special. Once
13194 it is set up, we do not want to touch it. */
13195 case bp_thread_event:
13196 break;
13197 }
13198 }
13199
13200 static void
13201 internal_bkpt_check_status (bpstat bs)
13202 {
13203 if (bs->breakpoint_at->type == bp_shlib_event)
13204 {
13205 /* If requested, stop when the dynamic linker notifies GDB of
13206 events. This allows the user to get control and place
13207 breakpoints in initializer routines for dynamically loaded
13208 objects (among other things). */
13209 bs->stop = stop_on_solib_events;
13210 bs->print = stop_on_solib_events;
13211 }
13212 else
13213 bs->stop = 0;
13214 }
13215
13216 static enum print_stop_action
13217 internal_bkpt_print_it (bpstat bs)
13218 {
13219 struct breakpoint *b;
13220
13221 b = bs->breakpoint_at;
13222
13223 switch (b->type)
13224 {
13225 case bp_shlib_event:
13226 /* Did we stop because the user set the stop_on_solib_events
13227 variable? (If so, we report this as a generic, "Stopped due
13228 to shlib event" message.) */
13229 print_solib_event (0);
13230 break;
13231
13232 case bp_thread_event:
13233 /* Not sure how we will get here.
13234 GDB should not stop for these breakpoints. */
13235 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13236 break;
13237
13238 case bp_overlay_event:
13239 /* By analogy with the thread event, GDB should not stop for these. */
13240 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13241 break;
13242
13243 case bp_longjmp_master:
13244 /* These should never be enabled. */
13245 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13246 break;
13247
13248 case bp_std_terminate_master:
13249 /* These should never be enabled. */
13250 printf_filtered (_("std::terminate Master Breakpoint: "
13251 "gdb should not stop!\n"));
13252 break;
13253
13254 case bp_exception_master:
13255 /* These should never be enabled. */
13256 printf_filtered (_("Exception Master Breakpoint: "
13257 "gdb should not stop!\n"));
13258 break;
13259 }
13260
13261 return PRINT_NOTHING;
13262 }
13263
13264 static void
13265 internal_bkpt_print_mention (struct breakpoint *b)
13266 {
13267 /* Nothing to mention. These breakpoints are internal. */
13268 }
13269
13270 /* Virtual table for momentary breakpoints */
13271
13272 static void
13273 momentary_bkpt_re_set (struct breakpoint *b)
13274 {
13275 /* Keep temporary breakpoints, which can be encountered when we step
13276 over a dlopen call and solib_add is resetting the breakpoints.
13277 Otherwise these should have been blown away via the cleanup chain
13278 or by breakpoint_init_inferior when we rerun the executable. */
13279 }
13280
13281 static void
13282 momentary_bkpt_check_status (bpstat bs)
13283 {
13284 /* Nothing. The point of these breakpoints is causing a stop. */
13285 }
13286
13287 static enum print_stop_action
13288 momentary_bkpt_print_it (bpstat bs)
13289 {
13290 struct ui_out *uiout = current_uiout;
13291
13292 if (ui_out_is_mi_like_p (uiout))
13293 {
13294 struct breakpoint *b = bs->breakpoint_at;
13295
13296 switch (b->type)
13297 {
13298 case bp_finish:
13299 ui_out_field_string
13300 (uiout, "reason",
13301 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13302 break;
13303
13304 case bp_until:
13305 ui_out_field_string
13306 (uiout, "reason",
13307 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13308 break;
13309 }
13310 }
13311
13312 return PRINT_UNKNOWN;
13313 }
13314
13315 static void
13316 momentary_bkpt_print_mention (struct breakpoint *b)
13317 {
13318 /* Nothing to mention. These breakpoints are internal. */
13319 }
13320
13321 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13322
13323 It gets cleared already on the removal of the first one of such placed
13324 breakpoints. This is OK as they get all removed altogether. */
13325
13326 static void
13327 longjmp_bkpt_dtor (struct breakpoint *self)
13328 {
13329 struct thread_info *tp = find_thread_id (self->thread);
13330
13331 if (tp)
13332 tp->initiating_frame = null_frame_id;
13333
13334 momentary_breakpoint_ops.dtor (self);
13335 }
13336
13337 /* Specific methods for probe breakpoints. */
13338
13339 static int
13340 bkpt_probe_insert_location (struct bp_location *bl)
13341 {
13342 int v = bkpt_insert_location (bl);
13343
13344 if (v == 0)
13345 {
13346 /* The insertion was successful, now let's set the probe's semaphore
13347 if needed. */
13348 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13349 bl->probe.objfile,
13350 bl->gdbarch);
13351 }
13352
13353 return v;
13354 }
13355
13356 static int
13357 bkpt_probe_remove_location (struct bp_location *bl)
13358 {
13359 /* Let's clear the semaphore before removing the location. */
13360 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13361 bl->probe.objfile,
13362 bl->gdbarch);
13363
13364 return bkpt_remove_location (bl);
13365 }
13366
13367 static void
13368 bkpt_probe_create_sals_from_address (char **arg,
13369 struct linespec_result *canonical,
13370 enum bptype type_wanted,
13371 char *addr_start, char **copy_arg)
13372 {
13373 struct linespec_sals lsal;
13374
13375 lsal.sals = parse_probes (arg, canonical);
13376
13377 *copy_arg = xstrdup (canonical->addr_string);
13378 lsal.canonical = xstrdup (*copy_arg);
13379
13380 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13381 }
13382
13383 static void
13384 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13385 struct symtabs_and_lines *sals)
13386 {
13387 *sals = parse_probes (s, NULL);
13388 if (!sals->sals)
13389 error (_("probe not found"));
13390 }
13391
13392 /* The breakpoint_ops structure to be used in tracepoints. */
13393
13394 static void
13395 tracepoint_re_set (struct breakpoint *b)
13396 {
13397 breakpoint_re_set_default (b);
13398 }
13399
13400 static int
13401 tracepoint_breakpoint_hit (const struct bp_location *bl,
13402 struct address_space *aspace, CORE_ADDR bp_addr,
13403 const struct target_waitstatus *ws)
13404 {
13405 /* By definition, the inferior does not report stops at
13406 tracepoints. */
13407 return 0;
13408 }
13409
13410 static void
13411 tracepoint_print_one_detail (const struct breakpoint *self,
13412 struct ui_out *uiout)
13413 {
13414 struct tracepoint *tp = (struct tracepoint *) self;
13415 if (tp->static_trace_marker_id)
13416 {
13417 gdb_assert (self->type == bp_static_tracepoint);
13418
13419 ui_out_text (uiout, "\tmarker id is ");
13420 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13421 tp->static_trace_marker_id);
13422 ui_out_text (uiout, "\n");
13423 }
13424 }
13425
13426 static void
13427 tracepoint_print_mention (struct breakpoint *b)
13428 {
13429 if (ui_out_is_mi_like_p (current_uiout))
13430 return;
13431
13432 switch (b->type)
13433 {
13434 case bp_tracepoint:
13435 printf_filtered (_("Tracepoint"));
13436 printf_filtered (_(" %d"), b->number);
13437 break;
13438 case bp_fast_tracepoint:
13439 printf_filtered (_("Fast tracepoint"));
13440 printf_filtered (_(" %d"), b->number);
13441 break;
13442 case bp_static_tracepoint:
13443 printf_filtered (_("Static tracepoint"));
13444 printf_filtered (_(" %d"), b->number);
13445 break;
13446 default:
13447 internal_error (__FILE__, __LINE__,
13448 _("unhandled tracepoint type %d"), (int) b->type);
13449 }
13450
13451 say_where (b);
13452 }
13453
13454 static void
13455 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13456 {
13457 struct tracepoint *tp = (struct tracepoint *) self;
13458
13459 if (self->type == bp_fast_tracepoint)
13460 fprintf_unfiltered (fp, "ftrace");
13461 if (self->type == bp_static_tracepoint)
13462 fprintf_unfiltered (fp, "strace");
13463 else if (self->type == bp_tracepoint)
13464 fprintf_unfiltered (fp, "trace");
13465 else
13466 internal_error (__FILE__, __LINE__,
13467 _("unhandled tracepoint type %d"), (int) self->type);
13468
13469 fprintf_unfiltered (fp, " %s", self->addr_string);
13470 print_recreate_thread (self, fp);
13471
13472 if (tp->pass_count)
13473 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13474 }
13475
13476 static void
13477 tracepoint_create_sals_from_address (char **arg,
13478 struct linespec_result *canonical,
13479 enum bptype type_wanted,
13480 char *addr_start, char **copy_arg)
13481 {
13482 create_sals_from_address_default (arg, canonical, type_wanted,
13483 addr_start, copy_arg);
13484 }
13485
13486 static void
13487 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13488 struct linespec_result *canonical,
13489 char *cond_string,
13490 char *extra_string,
13491 enum bptype type_wanted,
13492 enum bpdisp disposition,
13493 int thread,
13494 int task, int ignore_count,
13495 const struct breakpoint_ops *ops,
13496 int from_tty, int enabled,
13497 int internal, unsigned flags)
13498 {
13499 create_breakpoints_sal_default (gdbarch, canonical,
13500 cond_string, extra_string,
13501 type_wanted,
13502 disposition, thread, task,
13503 ignore_count, ops, from_tty,
13504 enabled, internal, flags);
13505 }
13506
13507 static void
13508 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13509 struct symtabs_and_lines *sals)
13510 {
13511 decode_linespec_default (b, s, sals);
13512 }
13513
13514 struct breakpoint_ops tracepoint_breakpoint_ops;
13515
13516 /* The breakpoint_ops structure to be use on tracepoints placed in a
13517 static probe. */
13518
13519 static void
13520 tracepoint_probe_create_sals_from_address (char **arg,
13521 struct linespec_result *canonical,
13522 enum bptype type_wanted,
13523 char *addr_start, char **copy_arg)
13524 {
13525 /* We use the same method for breakpoint on probes. */
13526 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13527 addr_start, copy_arg);
13528 }
13529
13530 static void
13531 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13532 struct symtabs_and_lines *sals)
13533 {
13534 /* We use the same method for breakpoint on probes. */
13535 bkpt_probe_decode_linespec (b, s, sals);
13536 }
13537
13538 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13539
13540 /* Dprintf breakpoint_ops methods. */
13541
13542 static void
13543 dprintf_re_set (struct breakpoint *b)
13544 {
13545 breakpoint_re_set_default (b);
13546
13547 /* This breakpoint could have been pending, and be resolved now, and
13548 if so, we should now have the extra string. If we don't, the
13549 dprintf was malformed when created, but we couldn't tell because
13550 we can't extract the extra string until the location is
13551 resolved. */
13552 if (b->loc != NULL && b->extra_string == NULL)
13553 error (_("Format string required"));
13554
13555 /* 1 - connect to target 1, that can run breakpoint commands.
13556 2 - create a dprintf, which resolves fine.
13557 3 - disconnect from target 1
13558 4 - connect to target 2, that can NOT run breakpoint commands.
13559
13560 After steps #3/#4, you'll want the dprintf command list to
13561 be updated, because target 1 and 2 may well return different
13562 answers for target_can_run_breakpoint_commands().
13563 Given absence of finer grained resetting, we get to do
13564 it all the time. */
13565 if (b->extra_string != NULL)
13566 update_dprintf_command_list (b);
13567 }
13568
13569 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13570
13571 static void
13572 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13573 {
13574 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13575 tp->extra_string);
13576 print_recreate_thread (tp, fp);
13577 }
13578
13579 /* Implement the "after_condition_true" breakpoint_ops method for
13580 dprintf.
13581
13582 dprintf's are implemented with regular commands in their command
13583 list, but we run the commands here instead of before presenting the
13584 stop to the user, as dprintf's don't actually cause a stop. This
13585 also makes it so that the commands of multiple dprintfs at the same
13586 address are all handled. */
13587
13588 static void
13589 dprintf_after_condition_true (struct bpstats *bs)
13590 {
13591 struct cleanup *old_chain;
13592 struct bpstats tmp_bs = { NULL };
13593 struct bpstats *tmp_bs_p = &tmp_bs;
13594
13595 /* dprintf's never cause a stop. This wasn't set in the
13596 check_status hook instead because that would make the dprintf's
13597 condition not be evaluated. */
13598 bs->stop = 0;
13599
13600 /* Run the command list here. Take ownership of it instead of
13601 copying. We never want these commands to run later in
13602 bpstat_do_actions, if a breakpoint that causes a stop happens to
13603 be set at same address as this dprintf, or even if running the
13604 commands here throws. */
13605 tmp_bs.commands = bs->commands;
13606 bs->commands = NULL;
13607 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13608
13609 bpstat_do_actions_1 (&tmp_bs_p);
13610
13611 /* 'tmp_bs.commands' will usually be NULL by now, but
13612 bpstat_do_actions_1 may return early without processing the whole
13613 list. */
13614 do_cleanups (old_chain);
13615 }
13616
13617 /* The breakpoint_ops structure to be used on static tracepoints with
13618 markers (`-m'). */
13619
13620 static void
13621 strace_marker_create_sals_from_address (char **arg,
13622 struct linespec_result *canonical,
13623 enum bptype type_wanted,
13624 char *addr_start, char **copy_arg)
13625 {
13626 struct linespec_sals lsal;
13627
13628 lsal.sals = decode_static_tracepoint_spec (arg);
13629
13630 *copy_arg = savestring (addr_start, *arg - addr_start);
13631
13632 canonical->addr_string = xstrdup (*copy_arg);
13633 lsal.canonical = xstrdup (*copy_arg);
13634 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13635 }
13636
13637 static void
13638 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13639 struct linespec_result *canonical,
13640 char *cond_string,
13641 char *extra_string,
13642 enum bptype type_wanted,
13643 enum bpdisp disposition,
13644 int thread,
13645 int task, int ignore_count,
13646 const struct breakpoint_ops *ops,
13647 int from_tty, int enabled,
13648 int internal, unsigned flags)
13649 {
13650 int i;
13651 struct linespec_sals *lsal = VEC_index (linespec_sals,
13652 canonical->sals, 0);
13653
13654 /* If the user is creating a static tracepoint by marker id
13655 (strace -m MARKER_ID), then store the sals index, so that
13656 breakpoint_re_set can try to match up which of the newly
13657 found markers corresponds to this one, and, don't try to
13658 expand multiple locations for each sal, given than SALS
13659 already should contain all sals for MARKER_ID. */
13660
13661 for (i = 0; i < lsal->sals.nelts; ++i)
13662 {
13663 struct symtabs_and_lines expanded;
13664 struct tracepoint *tp;
13665 struct cleanup *old_chain;
13666 char *addr_string;
13667
13668 expanded.nelts = 1;
13669 expanded.sals = &lsal->sals.sals[i];
13670
13671 addr_string = xstrdup (canonical->addr_string);
13672 old_chain = make_cleanup (xfree, addr_string);
13673
13674 tp = XCNEW (struct tracepoint);
13675 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13676 addr_string, NULL,
13677 cond_string, extra_string,
13678 type_wanted, disposition,
13679 thread, task, ignore_count, ops,
13680 from_tty, enabled, internal, flags,
13681 canonical->special_display);
13682 /* Given that its possible to have multiple markers with
13683 the same string id, if the user is creating a static
13684 tracepoint by marker id ("strace -m MARKER_ID"), then
13685 store the sals index, so that breakpoint_re_set can
13686 try to match up which of the newly found markers
13687 corresponds to this one */
13688 tp->static_trace_marker_id_idx = i;
13689
13690 install_breakpoint (internal, &tp->base, 0);
13691
13692 discard_cleanups (old_chain);
13693 }
13694 }
13695
13696 static void
13697 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13698 struct symtabs_and_lines *sals)
13699 {
13700 struct tracepoint *tp = (struct tracepoint *) b;
13701
13702 *sals = decode_static_tracepoint_spec (s);
13703 if (sals->nelts > tp->static_trace_marker_id_idx)
13704 {
13705 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13706 sals->nelts = 1;
13707 }
13708 else
13709 error (_("marker %s not found"), tp->static_trace_marker_id);
13710 }
13711
13712 static struct breakpoint_ops strace_marker_breakpoint_ops;
13713
13714 static int
13715 strace_marker_p (struct breakpoint *b)
13716 {
13717 return b->ops == &strace_marker_breakpoint_ops;
13718 }
13719
13720 /* Delete a breakpoint and clean up all traces of it in the data
13721 structures. */
13722
13723 void
13724 delete_breakpoint (struct breakpoint *bpt)
13725 {
13726 struct breakpoint *b;
13727
13728 gdb_assert (bpt != NULL);
13729
13730 /* Has this bp already been deleted? This can happen because
13731 multiple lists can hold pointers to bp's. bpstat lists are
13732 especial culprits.
13733
13734 One example of this happening is a watchpoint's scope bp. When
13735 the scope bp triggers, we notice that the watchpoint is out of
13736 scope, and delete it. We also delete its scope bp. But the
13737 scope bp is marked "auto-deleting", and is already on a bpstat.
13738 That bpstat is then checked for auto-deleting bp's, which are
13739 deleted.
13740
13741 A real solution to this problem might involve reference counts in
13742 bp's, and/or giving them pointers back to their referencing
13743 bpstat's, and teaching delete_breakpoint to only free a bp's
13744 storage when no more references were extent. A cheaper bandaid
13745 was chosen. */
13746 if (bpt->type == bp_none)
13747 return;
13748
13749 /* At least avoid this stale reference until the reference counting
13750 of breakpoints gets resolved. */
13751 if (bpt->related_breakpoint != bpt)
13752 {
13753 struct breakpoint *related;
13754 struct watchpoint *w;
13755
13756 if (bpt->type == bp_watchpoint_scope)
13757 w = (struct watchpoint *) bpt->related_breakpoint;
13758 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13759 w = (struct watchpoint *) bpt;
13760 else
13761 w = NULL;
13762 if (w != NULL)
13763 watchpoint_del_at_next_stop (w);
13764
13765 /* Unlink bpt from the bpt->related_breakpoint ring. */
13766 for (related = bpt; related->related_breakpoint != bpt;
13767 related = related->related_breakpoint);
13768 related->related_breakpoint = bpt->related_breakpoint;
13769 bpt->related_breakpoint = bpt;
13770 }
13771
13772 /* watch_command_1 creates a watchpoint but only sets its number if
13773 update_watchpoint succeeds in creating its bp_locations. If there's
13774 a problem in that process, we'll be asked to delete the half-created
13775 watchpoint. In that case, don't announce the deletion. */
13776 if (bpt->number)
13777 observer_notify_breakpoint_deleted (bpt);
13778
13779 if (breakpoint_chain == bpt)
13780 breakpoint_chain = bpt->next;
13781
13782 ALL_BREAKPOINTS (b)
13783 if (b->next == bpt)
13784 {
13785 b->next = bpt->next;
13786 break;
13787 }
13788
13789 /* Be sure no bpstat's are pointing at the breakpoint after it's
13790 been freed. */
13791 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13792 in all threads for now. Note that we cannot just remove bpstats
13793 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13794 commands are associated with the bpstat; if we remove it here,
13795 then the later call to bpstat_do_actions (&stop_bpstat); in
13796 event-top.c won't do anything, and temporary breakpoints with
13797 commands won't work. */
13798
13799 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13800
13801 /* Now that breakpoint is removed from breakpoint list, update the
13802 global location list. This will remove locations that used to
13803 belong to this breakpoint. Do this before freeing the breakpoint
13804 itself, since remove_breakpoint looks at location's owner. It
13805 might be better design to have location completely
13806 self-contained, but it's not the case now. */
13807 update_global_location_list (0);
13808
13809 bpt->ops->dtor (bpt);
13810 /* On the chance that someone will soon try again to delete this
13811 same bp, we mark it as deleted before freeing its storage. */
13812 bpt->type = bp_none;
13813 xfree (bpt);
13814 }
13815
13816 static void
13817 do_delete_breakpoint_cleanup (void *b)
13818 {
13819 delete_breakpoint (b);
13820 }
13821
13822 struct cleanup *
13823 make_cleanup_delete_breakpoint (struct breakpoint *b)
13824 {
13825 return make_cleanup (do_delete_breakpoint_cleanup, b);
13826 }
13827
13828 /* Iterator function to call a user-provided callback function once
13829 for each of B and its related breakpoints. */
13830
13831 static void
13832 iterate_over_related_breakpoints (struct breakpoint *b,
13833 void (*function) (struct breakpoint *,
13834 void *),
13835 void *data)
13836 {
13837 struct breakpoint *related;
13838
13839 related = b;
13840 do
13841 {
13842 struct breakpoint *next;
13843
13844 /* FUNCTION may delete RELATED. */
13845 next = related->related_breakpoint;
13846
13847 if (next == related)
13848 {
13849 /* RELATED is the last ring entry. */
13850 function (related, data);
13851
13852 /* FUNCTION may have deleted it, so we'd never reach back to
13853 B. There's nothing left to do anyway, so just break
13854 out. */
13855 break;
13856 }
13857 else
13858 function (related, data);
13859
13860 related = next;
13861 }
13862 while (related != b);
13863 }
13864
13865 static void
13866 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13867 {
13868 delete_breakpoint (b);
13869 }
13870
13871 /* A callback for map_breakpoint_numbers that calls
13872 delete_breakpoint. */
13873
13874 static void
13875 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13876 {
13877 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13878 }
13879
13880 void
13881 delete_command (char *arg, int from_tty)
13882 {
13883 struct breakpoint *b, *b_tmp;
13884
13885 dont_repeat ();
13886
13887 if (arg == 0)
13888 {
13889 int breaks_to_delete = 0;
13890
13891 /* Delete all breakpoints if no argument. Do not delete
13892 internal breakpoints, these have to be deleted with an
13893 explicit breakpoint number argument. */
13894 ALL_BREAKPOINTS (b)
13895 if (user_breakpoint_p (b))
13896 {
13897 breaks_to_delete = 1;
13898 break;
13899 }
13900
13901 /* Ask user only if there are some breakpoints to delete. */
13902 if (!from_tty
13903 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13904 {
13905 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13906 if (user_breakpoint_p (b))
13907 delete_breakpoint (b);
13908 }
13909 }
13910 else
13911 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13912 }
13913
13914 static int
13915 all_locations_are_pending (struct bp_location *loc)
13916 {
13917 for (; loc; loc = loc->next)
13918 if (!loc->shlib_disabled
13919 && !loc->pspace->executing_startup)
13920 return 0;
13921 return 1;
13922 }
13923
13924 /* Subroutine of update_breakpoint_locations to simplify it.
13925 Return non-zero if multiple fns in list LOC have the same name.
13926 Null names are ignored. */
13927
13928 static int
13929 ambiguous_names_p (struct bp_location *loc)
13930 {
13931 struct bp_location *l;
13932 htab_t htab = htab_create_alloc (13, htab_hash_string,
13933 (int (*) (const void *,
13934 const void *)) streq,
13935 NULL, xcalloc, xfree);
13936
13937 for (l = loc; l != NULL; l = l->next)
13938 {
13939 const char **slot;
13940 const char *name = l->function_name;
13941
13942 /* Allow for some names to be NULL, ignore them. */
13943 if (name == NULL)
13944 continue;
13945
13946 slot = (const char **) htab_find_slot (htab, (const void *) name,
13947 INSERT);
13948 /* NOTE: We can assume slot != NULL here because xcalloc never
13949 returns NULL. */
13950 if (*slot != NULL)
13951 {
13952 htab_delete (htab);
13953 return 1;
13954 }
13955 *slot = name;
13956 }
13957
13958 htab_delete (htab);
13959 return 0;
13960 }
13961
13962 /* When symbols change, it probably means the sources changed as well,
13963 and it might mean the static tracepoint markers are no longer at
13964 the same address or line numbers they used to be at last we
13965 checked. Losing your static tracepoints whenever you rebuild is
13966 undesirable. This function tries to resync/rematch gdb static
13967 tracepoints with the markers on the target, for static tracepoints
13968 that have not been set by marker id. Static tracepoint that have
13969 been set by marker id are reset by marker id in breakpoint_re_set.
13970 The heuristic is:
13971
13972 1) For a tracepoint set at a specific address, look for a marker at
13973 the old PC. If one is found there, assume to be the same marker.
13974 If the name / string id of the marker found is different from the
13975 previous known name, assume that means the user renamed the marker
13976 in the sources, and output a warning.
13977
13978 2) For a tracepoint set at a given line number, look for a marker
13979 at the new address of the old line number. If one is found there,
13980 assume to be the same marker. If the name / string id of the
13981 marker found is different from the previous known name, assume that
13982 means the user renamed the marker in the sources, and output a
13983 warning.
13984
13985 3) If a marker is no longer found at the same address or line, it
13986 may mean the marker no longer exists. But it may also just mean
13987 the code changed a bit. Maybe the user added a few lines of code
13988 that made the marker move up or down (in line number terms). Ask
13989 the target for info about the marker with the string id as we knew
13990 it. If found, update line number and address in the matching
13991 static tracepoint. This will get confused if there's more than one
13992 marker with the same ID (possible in UST, although unadvised
13993 precisely because it confuses tools). */
13994
13995 static struct symtab_and_line
13996 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13997 {
13998 struct tracepoint *tp = (struct tracepoint *) b;
13999 struct static_tracepoint_marker marker;
14000 CORE_ADDR pc;
14001
14002 pc = sal.pc;
14003 if (sal.line)
14004 find_line_pc (sal.symtab, sal.line, &pc);
14005
14006 if (target_static_tracepoint_marker_at (pc, &marker))
14007 {
14008 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14009 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14010 b->number,
14011 tp->static_trace_marker_id, marker.str_id);
14012
14013 xfree (tp->static_trace_marker_id);
14014 tp->static_trace_marker_id = xstrdup (marker.str_id);
14015 release_static_tracepoint_marker (&marker);
14016
14017 return sal;
14018 }
14019
14020 /* Old marker wasn't found on target at lineno. Try looking it up
14021 by string ID. */
14022 if (!sal.explicit_pc
14023 && sal.line != 0
14024 && sal.symtab != NULL
14025 && tp->static_trace_marker_id != NULL)
14026 {
14027 VEC(static_tracepoint_marker_p) *markers;
14028
14029 markers
14030 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14031
14032 if (!VEC_empty(static_tracepoint_marker_p, markers))
14033 {
14034 struct symtab_and_line sal2;
14035 struct symbol *sym;
14036 struct static_tracepoint_marker *tpmarker;
14037 struct ui_out *uiout = current_uiout;
14038
14039 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14040
14041 xfree (tp->static_trace_marker_id);
14042 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14043
14044 warning (_("marker for static tracepoint %d (%s) not "
14045 "found at previous line number"),
14046 b->number, tp->static_trace_marker_id);
14047
14048 init_sal (&sal2);
14049
14050 sal2.pc = tpmarker->address;
14051
14052 sal2 = find_pc_line (tpmarker->address, 0);
14053 sym = find_pc_sect_function (tpmarker->address, NULL);
14054 ui_out_text (uiout, "Now in ");
14055 if (sym)
14056 {
14057 ui_out_field_string (uiout, "func",
14058 SYMBOL_PRINT_NAME (sym));
14059 ui_out_text (uiout, " at ");
14060 }
14061 ui_out_field_string (uiout, "file",
14062 symtab_to_filename_for_display (sal2.symtab));
14063 ui_out_text (uiout, ":");
14064
14065 if (ui_out_is_mi_like_p (uiout))
14066 {
14067 const char *fullname = symtab_to_fullname (sal2.symtab);
14068
14069 ui_out_field_string (uiout, "fullname", fullname);
14070 }
14071
14072 ui_out_field_int (uiout, "line", sal2.line);
14073 ui_out_text (uiout, "\n");
14074
14075 b->loc->line_number = sal2.line;
14076 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14077
14078 xfree (b->addr_string);
14079 b->addr_string = xstrprintf ("%s:%d",
14080 symtab_to_filename_for_display (sal2.symtab),
14081 b->loc->line_number);
14082
14083 /* Might be nice to check if function changed, and warn if
14084 so. */
14085
14086 release_static_tracepoint_marker (tpmarker);
14087 }
14088 }
14089 return sal;
14090 }
14091
14092 /* Returns 1 iff locations A and B are sufficiently same that
14093 we don't need to report breakpoint as changed. */
14094
14095 static int
14096 locations_are_equal (struct bp_location *a, struct bp_location *b)
14097 {
14098 while (a && b)
14099 {
14100 if (a->address != b->address)
14101 return 0;
14102
14103 if (a->shlib_disabled != b->shlib_disabled)
14104 return 0;
14105
14106 if (a->enabled != b->enabled)
14107 return 0;
14108
14109 a = a->next;
14110 b = b->next;
14111 }
14112
14113 if ((a == NULL) != (b == NULL))
14114 return 0;
14115
14116 return 1;
14117 }
14118
14119 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14120 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14121 a ranged breakpoint. */
14122
14123 void
14124 update_breakpoint_locations (struct breakpoint *b,
14125 struct symtabs_and_lines sals,
14126 struct symtabs_and_lines sals_end)
14127 {
14128 int i;
14129 struct bp_location *existing_locations = b->loc;
14130
14131 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14132 {
14133 /* Ranged breakpoints have only one start location and one end
14134 location. */
14135 b->enable_state = bp_disabled;
14136 update_global_location_list (1);
14137 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14138 "multiple locations found\n"),
14139 b->number);
14140 return;
14141 }
14142
14143 /* If there's no new locations, and all existing locations are
14144 pending, don't do anything. This optimizes the common case where
14145 all locations are in the same shared library, that was unloaded.
14146 We'd like to retain the location, so that when the library is
14147 loaded again, we don't loose the enabled/disabled status of the
14148 individual locations. */
14149 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14150 return;
14151
14152 b->loc = NULL;
14153
14154 for (i = 0; i < sals.nelts; ++i)
14155 {
14156 struct bp_location *new_loc;
14157
14158 switch_to_program_space_and_thread (sals.sals[i].pspace);
14159
14160 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14161
14162 /* Reparse conditions, they might contain references to the
14163 old symtab. */
14164 if (b->cond_string != NULL)
14165 {
14166 const char *s;
14167 volatile struct gdb_exception e;
14168
14169 s = b->cond_string;
14170 TRY_CATCH (e, RETURN_MASK_ERROR)
14171 {
14172 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14173 block_for_pc (sals.sals[i].pc),
14174 0);
14175 }
14176 if (e.reason < 0)
14177 {
14178 warning (_("failed to reevaluate condition "
14179 "for breakpoint %d: %s"),
14180 b->number, e.message);
14181 new_loc->enabled = 0;
14182 }
14183 }
14184
14185 if (sals_end.nelts)
14186 {
14187 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14188
14189 new_loc->length = end - sals.sals[0].pc + 1;
14190 }
14191 }
14192
14193 /* Update locations of permanent breakpoints. */
14194 if (b->enable_state == bp_permanent)
14195 make_breakpoint_permanent (b);
14196
14197 /* If possible, carry over 'disable' status from existing
14198 breakpoints. */
14199 {
14200 struct bp_location *e = existing_locations;
14201 /* If there are multiple breakpoints with the same function name,
14202 e.g. for inline functions, comparing function names won't work.
14203 Instead compare pc addresses; this is just a heuristic as things
14204 may have moved, but in practice it gives the correct answer
14205 often enough until a better solution is found. */
14206 int have_ambiguous_names = ambiguous_names_p (b->loc);
14207
14208 for (; e; e = e->next)
14209 {
14210 if (!e->enabled && e->function_name)
14211 {
14212 struct bp_location *l = b->loc;
14213 if (have_ambiguous_names)
14214 {
14215 for (; l; l = l->next)
14216 if (breakpoint_locations_match (e, l))
14217 {
14218 l->enabled = 0;
14219 break;
14220 }
14221 }
14222 else
14223 {
14224 for (; l; l = l->next)
14225 if (l->function_name
14226 && strcmp (e->function_name, l->function_name) == 0)
14227 {
14228 l->enabled = 0;
14229 break;
14230 }
14231 }
14232 }
14233 }
14234 }
14235
14236 if (!locations_are_equal (existing_locations, b->loc))
14237 observer_notify_breakpoint_modified (b);
14238
14239 update_global_location_list (1);
14240 }
14241
14242 /* Find the SaL locations corresponding to the given ADDR_STRING.
14243 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14244
14245 static struct symtabs_and_lines
14246 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14247 {
14248 char *s;
14249 struct symtabs_and_lines sals = {0};
14250 volatile struct gdb_exception e;
14251
14252 gdb_assert (b->ops != NULL);
14253 s = addr_string;
14254
14255 TRY_CATCH (e, RETURN_MASK_ERROR)
14256 {
14257 b->ops->decode_linespec (b, &s, &sals);
14258 }
14259 if (e.reason < 0)
14260 {
14261 int not_found_and_ok = 0;
14262 /* For pending breakpoints, it's expected that parsing will
14263 fail until the right shared library is loaded. User has
14264 already told to create pending breakpoints and don't need
14265 extra messages. If breakpoint is in bp_shlib_disabled
14266 state, then user already saw the message about that
14267 breakpoint being disabled, and don't want to see more
14268 errors. */
14269 if (e.error == NOT_FOUND_ERROR
14270 && (b->condition_not_parsed
14271 || (b->loc && b->loc->shlib_disabled)
14272 || (b->loc && b->loc->pspace->executing_startup)
14273 || b->enable_state == bp_disabled))
14274 not_found_and_ok = 1;
14275
14276 if (!not_found_and_ok)
14277 {
14278 /* We surely don't want to warn about the same breakpoint
14279 10 times. One solution, implemented here, is disable
14280 the breakpoint on error. Another solution would be to
14281 have separate 'warning emitted' flag. Since this
14282 happens only when a binary has changed, I don't know
14283 which approach is better. */
14284 b->enable_state = bp_disabled;
14285 throw_exception (e);
14286 }
14287 }
14288
14289 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14290 {
14291 int i;
14292
14293 for (i = 0; i < sals.nelts; ++i)
14294 resolve_sal_pc (&sals.sals[i]);
14295 if (b->condition_not_parsed && s && s[0])
14296 {
14297 char *cond_string, *extra_string;
14298 int thread, task;
14299
14300 find_condition_and_thread (s, sals.sals[0].pc,
14301 &cond_string, &thread, &task,
14302 &extra_string);
14303 if (cond_string)
14304 b->cond_string = cond_string;
14305 b->thread = thread;
14306 b->task = task;
14307 if (extra_string)
14308 b->extra_string = extra_string;
14309 b->condition_not_parsed = 0;
14310 }
14311
14312 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14313 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14314
14315 *found = 1;
14316 }
14317 else
14318 *found = 0;
14319
14320 return sals;
14321 }
14322
14323 /* The default re_set method, for typical hardware or software
14324 breakpoints. Reevaluate the breakpoint and recreate its
14325 locations. */
14326
14327 static void
14328 breakpoint_re_set_default (struct breakpoint *b)
14329 {
14330 int found;
14331 struct symtabs_and_lines sals, sals_end;
14332 struct symtabs_and_lines expanded = {0};
14333 struct symtabs_and_lines expanded_end = {0};
14334
14335 sals = addr_string_to_sals (b, b->addr_string, &found);
14336 if (found)
14337 {
14338 make_cleanup (xfree, sals.sals);
14339 expanded = sals;
14340 }
14341
14342 if (b->addr_string_range_end)
14343 {
14344 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14345 if (found)
14346 {
14347 make_cleanup (xfree, sals_end.sals);
14348 expanded_end = sals_end;
14349 }
14350 }
14351
14352 update_breakpoint_locations (b, expanded, expanded_end);
14353 }
14354
14355 /* Default method for creating SALs from an address string. It basically
14356 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14357
14358 static void
14359 create_sals_from_address_default (char **arg,
14360 struct linespec_result *canonical,
14361 enum bptype type_wanted,
14362 char *addr_start, char **copy_arg)
14363 {
14364 parse_breakpoint_sals (arg, canonical);
14365 }
14366
14367 /* Call create_breakpoints_sal for the given arguments. This is the default
14368 function for the `create_breakpoints_sal' method of
14369 breakpoint_ops. */
14370
14371 static void
14372 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14373 struct linespec_result *canonical,
14374 char *cond_string,
14375 char *extra_string,
14376 enum bptype type_wanted,
14377 enum bpdisp disposition,
14378 int thread,
14379 int task, int ignore_count,
14380 const struct breakpoint_ops *ops,
14381 int from_tty, int enabled,
14382 int internal, unsigned flags)
14383 {
14384 create_breakpoints_sal (gdbarch, canonical, cond_string,
14385 extra_string,
14386 type_wanted, disposition,
14387 thread, task, ignore_count, ops, from_tty,
14388 enabled, internal, flags);
14389 }
14390
14391 /* Decode the line represented by S by calling decode_line_full. This is the
14392 default function for the `decode_linespec' method of breakpoint_ops. */
14393
14394 static void
14395 decode_linespec_default (struct breakpoint *b, char **s,
14396 struct symtabs_and_lines *sals)
14397 {
14398 struct linespec_result canonical;
14399
14400 init_linespec_result (&canonical);
14401 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14402 (struct symtab *) NULL, 0,
14403 &canonical, multiple_symbols_all,
14404 b->filter);
14405
14406 /* We should get 0 or 1 resulting SALs. */
14407 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14408
14409 if (VEC_length (linespec_sals, canonical.sals) > 0)
14410 {
14411 struct linespec_sals *lsal;
14412
14413 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14414 *sals = lsal->sals;
14415 /* Arrange it so the destructor does not free the
14416 contents. */
14417 lsal->sals.sals = NULL;
14418 }
14419
14420 destroy_linespec_result (&canonical);
14421 }
14422
14423 /* Prepare the global context for a re-set of breakpoint B. */
14424
14425 static struct cleanup *
14426 prepare_re_set_context (struct breakpoint *b)
14427 {
14428 struct cleanup *cleanups;
14429
14430 input_radix = b->input_radix;
14431 cleanups = save_current_space_and_thread ();
14432 if (b->pspace != NULL)
14433 switch_to_program_space_and_thread (b->pspace);
14434 set_language (b->language);
14435
14436 return cleanups;
14437 }
14438
14439 /* Reset a breakpoint given it's struct breakpoint * BINT.
14440 The value we return ends up being the return value from catch_errors.
14441 Unused in this case. */
14442
14443 static int
14444 breakpoint_re_set_one (void *bint)
14445 {
14446 /* Get past catch_errs. */
14447 struct breakpoint *b = (struct breakpoint *) bint;
14448 struct cleanup *cleanups;
14449
14450 cleanups = prepare_re_set_context (b);
14451 b->ops->re_set (b);
14452 do_cleanups (cleanups);
14453 return 0;
14454 }
14455
14456 /* Re-set all breakpoints after symbols have been re-loaded. */
14457 void
14458 breakpoint_re_set (void)
14459 {
14460 struct breakpoint *b, *b_tmp;
14461 enum language save_language;
14462 int save_input_radix;
14463 struct cleanup *old_chain;
14464
14465 save_language = current_language->la_language;
14466 save_input_radix = input_radix;
14467 old_chain = save_current_program_space ();
14468
14469 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14470 {
14471 /* Format possible error msg. */
14472 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14473 b->number);
14474 struct cleanup *cleanups = make_cleanup (xfree, message);
14475 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14476 do_cleanups (cleanups);
14477 }
14478 set_language (save_language);
14479 input_radix = save_input_radix;
14480
14481 jit_breakpoint_re_set ();
14482
14483 do_cleanups (old_chain);
14484
14485 create_overlay_event_breakpoint ();
14486 create_longjmp_master_breakpoint ();
14487 create_std_terminate_master_breakpoint ();
14488 create_exception_master_breakpoint ();
14489 }
14490 \f
14491 /* Reset the thread number of this breakpoint:
14492
14493 - If the breakpoint is for all threads, leave it as-is.
14494 - Else, reset it to the current thread for inferior_ptid. */
14495 void
14496 breakpoint_re_set_thread (struct breakpoint *b)
14497 {
14498 if (b->thread != -1)
14499 {
14500 if (in_thread_list (inferior_ptid))
14501 b->thread = pid_to_thread_id (inferior_ptid);
14502
14503 /* We're being called after following a fork. The new fork is
14504 selected as current, and unless this was a vfork will have a
14505 different program space from the original thread. Reset that
14506 as well. */
14507 b->loc->pspace = current_program_space;
14508 }
14509 }
14510
14511 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14512 If from_tty is nonzero, it prints a message to that effect,
14513 which ends with a period (no newline). */
14514
14515 void
14516 set_ignore_count (int bptnum, int count, int from_tty)
14517 {
14518 struct breakpoint *b;
14519
14520 if (count < 0)
14521 count = 0;
14522
14523 ALL_BREAKPOINTS (b)
14524 if (b->number == bptnum)
14525 {
14526 if (is_tracepoint (b))
14527 {
14528 if (from_tty && count != 0)
14529 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14530 bptnum);
14531 return;
14532 }
14533
14534 b->ignore_count = count;
14535 if (from_tty)
14536 {
14537 if (count == 0)
14538 printf_filtered (_("Will stop next time "
14539 "breakpoint %d is reached."),
14540 bptnum);
14541 else if (count == 1)
14542 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14543 bptnum);
14544 else
14545 printf_filtered (_("Will ignore next %d "
14546 "crossings of breakpoint %d."),
14547 count, bptnum);
14548 }
14549 observer_notify_breakpoint_modified (b);
14550 return;
14551 }
14552
14553 error (_("No breakpoint number %d."), bptnum);
14554 }
14555
14556 /* Command to set ignore-count of breakpoint N to COUNT. */
14557
14558 static void
14559 ignore_command (char *args, int from_tty)
14560 {
14561 char *p = args;
14562 int num;
14563
14564 if (p == 0)
14565 error_no_arg (_("a breakpoint number"));
14566
14567 num = get_number (&p);
14568 if (num == 0)
14569 error (_("bad breakpoint number: '%s'"), args);
14570 if (*p == 0)
14571 error (_("Second argument (specified ignore-count) is missing."));
14572
14573 set_ignore_count (num,
14574 longest_to_int (value_as_long (parse_and_eval (p))),
14575 from_tty);
14576 if (from_tty)
14577 printf_filtered ("\n");
14578 }
14579 \f
14580 /* Call FUNCTION on each of the breakpoints
14581 whose numbers are given in ARGS. */
14582
14583 static void
14584 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14585 void *),
14586 void *data)
14587 {
14588 int num;
14589 struct breakpoint *b, *tmp;
14590 int match;
14591 struct get_number_or_range_state state;
14592
14593 if (args == 0)
14594 error_no_arg (_("one or more breakpoint numbers"));
14595
14596 init_number_or_range (&state, args);
14597
14598 while (!state.finished)
14599 {
14600 char *p = state.string;
14601
14602 match = 0;
14603
14604 num = get_number_or_range (&state);
14605 if (num == 0)
14606 {
14607 warning (_("bad breakpoint number at or near '%s'"), p);
14608 }
14609 else
14610 {
14611 ALL_BREAKPOINTS_SAFE (b, tmp)
14612 if (b->number == num)
14613 {
14614 match = 1;
14615 function (b, data);
14616 break;
14617 }
14618 if (match == 0)
14619 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14620 }
14621 }
14622 }
14623
14624 static struct bp_location *
14625 find_location_by_number (char *number)
14626 {
14627 char *dot = strchr (number, '.');
14628 char *p1;
14629 int bp_num;
14630 int loc_num;
14631 struct breakpoint *b;
14632 struct bp_location *loc;
14633
14634 *dot = '\0';
14635
14636 p1 = number;
14637 bp_num = get_number (&p1);
14638 if (bp_num == 0)
14639 error (_("Bad breakpoint number '%s'"), number);
14640
14641 ALL_BREAKPOINTS (b)
14642 if (b->number == bp_num)
14643 {
14644 break;
14645 }
14646
14647 if (!b || b->number != bp_num)
14648 error (_("Bad breakpoint number '%s'"), number);
14649
14650 p1 = dot+1;
14651 loc_num = get_number (&p1);
14652 if (loc_num == 0)
14653 error (_("Bad breakpoint location number '%s'"), number);
14654
14655 --loc_num;
14656 loc = b->loc;
14657 for (;loc_num && loc; --loc_num, loc = loc->next)
14658 ;
14659 if (!loc)
14660 error (_("Bad breakpoint location number '%s'"), dot+1);
14661
14662 return loc;
14663 }
14664
14665
14666 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14667 If from_tty is nonzero, it prints a message to that effect,
14668 which ends with a period (no newline). */
14669
14670 void
14671 disable_breakpoint (struct breakpoint *bpt)
14672 {
14673 /* Never disable a watchpoint scope breakpoint; we want to
14674 hit them when we leave scope so we can delete both the
14675 watchpoint and its scope breakpoint at that time. */
14676 if (bpt->type == bp_watchpoint_scope)
14677 return;
14678
14679 /* You can't disable permanent breakpoints. */
14680 if (bpt->enable_state == bp_permanent)
14681 return;
14682
14683 bpt->enable_state = bp_disabled;
14684
14685 /* Mark breakpoint locations modified. */
14686 mark_breakpoint_modified (bpt);
14687
14688 if (target_supports_enable_disable_tracepoint ()
14689 && current_trace_status ()->running && is_tracepoint (bpt))
14690 {
14691 struct bp_location *location;
14692
14693 for (location = bpt->loc; location; location = location->next)
14694 target_disable_tracepoint (location);
14695 }
14696
14697 update_global_location_list (0);
14698
14699 observer_notify_breakpoint_modified (bpt);
14700 }
14701
14702 /* A callback for iterate_over_related_breakpoints. */
14703
14704 static void
14705 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14706 {
14707 disable_breakpoint (b);
14708 }
14709
14710 /* A callback for map_breakpoint_numbers that calls
14711 disable_breakpoint. */
14712
14713 static void
14714 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14715 {
14716 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14717 }
14718
14719 static void
14720 disable_command (char *args, int from_tty)
14721 {
14722 if (args == 0)
14723 {
14724 struct breakpoint *bpt;
14725
14726 ALL_BREAKPOINTS (bpt)
14727 if (user_breakpoint_p (bpt))
14728 disable_breakpoint (bpt);
14729 }
14730 else
14731 {
14732 char *num = extract_arg (&args);
14733
14734 while (num)
14735 {
14736 if (strchr (num, '.'))
14737 {
14738 struct bp_location *loc = find_location_by_number (num);
14739
14740 if (loc)
14741 {
14742 if (loc->enabled)
14743 {
14744 loc->enabled = 0;
14745 mark_breakpoint_location_modified (loc);
14746 }
14747 if (target_supports_enable_disable_tracepoint ()
14748 && current_trace_status ()->running && loc->owner
14749 && is_tracepoint (loc->owner))
14750 target_disable_tracepoint (loc);
14751 }
14752 update_global_location_list (0);
14753 }
14754 else
14755 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14756 num = extract_arg (&args);
14757 }
14758 }
14759 }
14760
14761 static void
14762 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14763 int count)
14764 {
14765 int target_resources_ok;
14766
14767 if (bpt->type == bp_hardware_breakpoint)
14768 {
14769 int i;
14770 i = hw_breakpoint_used_count ();
14771 target_resources_ok =
14772 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14773 i + 1, 0);
14774 if (target_resources_ok == 0)
14775 error (_("No hardware breakpoint support in the target."));
14776 else if (target_resources_ok < 0)
14777 error (_("Hardware breakpoints used exceeds limit."));
14778 }
14779
14780 if (is_watchpoint (bpt))
14781 {
14782 /* Initialize it just to avoid a GCC false warning. */
14783 enum enable_state orig_enable_state = 0;
14784 volatile struct gdb_exception e;
14785
14786 TRY_CATCH (e, RETURN_MASK_ALL)
14787 {
14788 struct watchpoint *w = (struct watchpoint *) bpt;
14789
14790 orig_enable_state = bpt->enable_state;
14791 bpt->enable_state = bp_enabled;
14792 update_watchpoint (w, 1 /* reparse */);
14793 }
14794 if (e.reason < 0)
14795 {
14796 bpt->enable_state = orig_enable_state;
14797 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14798 bpt->number);
14799 return;
14800 }
14801 }
14802
14803 if (bpt->enable_state != bp_permanent)
14804 bpt->enable_state = bp_enabled;
14805
14806 bpt->enable_state = bp_enabled;
14807
14808 /* Mark breakpoint locations modified. */
14809 mark_breakpoint_modified (bpt);
14810
14811 if (target_supports_enable_disable_tracepoint ()
14812 && current_trace_status ()->running && is_tracepoint (bpt))
14813 {
14814 struct bp_location *location;
14815
14816 for (location = bpt->loc; location; location = location->next)
14817 target_enable_tracepoint (location);
14818 }
14819
14820 bpt->disposition = disposition;
14821 bpt->enable_count = count;
14822 update_global_location_list (1);
14823
14824 observer_notify_breakpoint_modified (bpt);
14825 }
14826
14827
14828 void
14829 enable_breakpoint (struct breakpoint *bpt)
14830 {
14831 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14832 }
14833
14834 static void
14835 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14836 {
14837 enable_breakpoint (bpt);
14838 }
14839
14840 /* A callback for map_breakpoint_numbers that calls
14841 enable_breakpoint. */
14842
14843 static void
14844 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14845 {
14846 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14847 }
14848
14849 /* The enable command enables the specified breakpoints (or all defined
14850 breakpoints) so they once again become (or continue to be) effective
14851 in stopping the inferior. */
14852
14853 static void
14854 enable_command (char *args, int from_tty)
14855 {
14856 if (args == 0)
14857 {
14858 struct breakpoint *bpt;
14859
14860 ALL_BREAKPOINTS (bpt)
14861 if (user_breakpoint_p (bpt))
14862 enable_breakpoint (bpt);
14863 }
14864 else
14865 {
14866 char *num = extract_arg (&args);
14867
14868 while (num)
14869 {
14870 if (strchr (num, '.'))
14871 {
14872 struct bp_location *loc = find_location_by_number (num);
14873
14874 if (loc)
14875 {
14876 if (!loc->enabled)
14877 {
14878 loc->enabled = 1;
14879 mark_breakpoint_location_modified (loc);
14880 }
14881 if (target_supports_enable_disable_tracepoint ()
14882 && current_trace_status ()->running && loc->owner
14883 && is_tracepoint (loc->owner))
14884 target_enable_tracepoint (loc);
14885 }
14886 update_global_location_list (1);
14887 }
14888 else
14889 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14890 num = extract_arg (&args);
14891 }
14892 }
14893 }
14894
14895 /* This struct packages up disposition data for application to multiple
14896 breakpoints. */
14897
14898 struct disp_data
14899 {
14900 enum bpdisp disp;
14901 int count;
14902 };
14903
14904 static void
14905 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14906 {
14907 struct disp_data disp_data = *(struct disp_data *) arg;
14908
14909 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14910 }
14911
14912 static void
14913 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14914 {
14915 struct disp_data disp = { disp_disable, 1 };
14916
14917 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14918 }
14919
14920 static void
14921 enable_once_command (char *args, int from_tty)
14922 {
14923 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14924 }
14925
14926 static void
14927 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14928 {
14929 struct disp_data disp = { disp_disable, *(int *) countptr };
14930
14931 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14932 }
14933
14934 static void
14935 enable_count_command (char *args, int from_tty)
14936 {
14937 int count = get_number (&args);
14938
14939 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14940 }
14941
14942 static void
14943 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14944 {
14945 struct disp_data disp = { disp_del, 1 };
14946
14947 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14948 }
14949
14950 static void
14951 enable_delete_command (char *args, int from_tty)
14952 {
14953 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14954 }
14955 \f
14956 static void
14957 set_breakpoint_cmd (char *args, int from_tty)
14958 {
14959 }
14960
14961 static void
14962 show_breakpoint_cmd (char *args, int from_tty)
14963 {
14964 }
14965
14966 /* Invalidate last known value of any hardware watchpoint if
14967 the memory which that value represents has been written to by
14968 GDB itself. */
14969
14970 static void
14971 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14972 CORE_ADDR addr, ssize_t len,
14973 const bfd_byte *data)
14974 {
14975 struct breakpoint *bp;
14976
14977 ALL_BREAKPOINTS (bp)
14978 if (bp->enable_state == bp_enabled
14979 && bp->type == bp_hardware_watchpoint)
14980 {
14981 struct watchpoint *wp = (struct watchpoint *) bp;
14982
14983 if (wp->val_valid && wp->val)
14984 {
14985 struct bp_location *loc;
14986
14987 for (loc = bp->loc; loc != NULL; loc = loc->next)
14988 if (loc->loc_type == bp_loc_hardware_watchpoint
14989 && loc->address + loc->length > addr
14990 && addr + len > loc->address)
14991 {
14992 value_free (wp->val);
14993 wp->val = NULL;
14994 wp->val_valid = 0;
14995 }
14996 }
14997 }
14998 }
14999
15000 /* Create and insert a raw software breakpoint at PC. Return an
15001 identifier, which should be used to remove the breakpoint later.
15002 In general, places which call this should be using something on the
15003 breakpoint chain instead; this function should be eliminated
15004 someday. */
15005
15006 void *
15007 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
15008 struct address_space *aspace, CORE_ADDR pc)
15009 {
15010 struct bp_target_info *bp_tgt;
15011
15012 bp_tgt = XCNEW (struct bp_target_info);
15013
15014 bp_tgt->placed_address_space = aspace;
15015 bp_tgt->placed_address = pc;
15016
15017 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
15018 {
15019 /* Could not insert the breakpoint. */
15020 xfree (bp_tgt);
15021 return NULL;
15022 }
15023
15024 return bp_tgt;
15025 }
15026
15027 /* Remove a breakpoint BP inserted by
15028 deprecated_insert_raw_breakpoint. */
15029
15030 int
15031 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
15032 {
15033 struct bp_target_info *bp_tgt = bp;
15034 int ret;
15035
15036 ret = target_remove_breakpoint (gdbarch, bp_tgt);
15037 xfree (bp_tgt);
15038
15039 return ret;
15040 }
15041
15042 /* One (or perhaps two) breakpoints used for software single
15043 stepping. */
15044
15045 static void *single_step_breakpoints[2];
15046 static struct gdbarch *single_step_gdbarch[2];
15047
15048 /* Create and insert a breakpoint for software single step. */
15049
15050 void
15051 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15052 struct address_space *aspace,
15053 CORE_ADDR next_pc)
15054 {
15055 void **bpt_p;
15056
15057 if (single_step_breakpoints[0] == NULL)
15058 {
15059 bpt_p = &single_step_breakpoints[0];
15060 single_step_gdbarch[0] = gdbarch;
15061 }
15062 else
15063 {
15064 gdb_assert (single_step_breakpoints[1] == NULL);
15065 bpt_p = &single_step_breakpoints[1];
15066 single_step_gdbarch[1] = gdbarch;
15067 }
15068
15069 /* NOTE drow/2006-04-11: A future improvement to this function would
15070 be to only create the breakpoints once, and actually put them on
15071 the breakpoint chain. That would let us use set_raw_breakpoint.
15072 We could adjust the addresses each time they were needed. Doing
15073 this requires corresponding changes elsewhere where single step
15074 breakpoints are handled, however. So, for now, we use this. */
15075
15076 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15077 if (*bpt_p == NULL)
15078 error (_("Could not insert single-step breakpoint at %s"),
15079 paddress (gdbarch, next_pc));
15080 }
15081
15082 /* Check if the breakpoints used for software single stepping
15083 were inserted or not. */
15084
15085 int
15086 single_step_breakpoints_inserted (void)
15087 {
15088 return (single_step_breakpoints[0] != NULL
15089 || single_step_breakpoints[1] != NULL);
15090 }
15091
15092 /* Remove and delete any breakpoints used for software single step. */
15093
15094 void
15095 remove_single_step_breakpoints (void)
15096 {
15097 gdb_assert (single_step_breakpoints[0] != NULL);
15098
15099 /* See insert_single_step_breakpoint for more about this deprecated
15100 call. */
15101 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15102 single_step_breakpoints[0]);
15103 single_step_gdbarch[0] = NULL;
15104 single_step_breakpoints[0] = NULL;
15105
15106 if (single_step_breakpoints[1] != NULL)
15107 {
15108 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15109 single_step_breakpoints[1]);
15110 single_step_gdbarch[1] = NULL;
15111 single_step_breakpoints[1] = NULL;
15112 }
15113 }
15114
15115 /* Delete software single step breakpoints without removing them from
15116 the inferior. This is intended to be used if the inferior's address
15117 space where they were inserted is already gone, e.g. after exit or
15118 exec. */
15119
15120 void
15121 cancel_single_step_breakpoints (void)
15122 {
15123 int i;
15124
15125 for (i = 0; i < 2; i++)
15126 if (single_step_breakpoints[i])
15127 {
15128 xfree (single_step_breakpoints[i]);
15129 single_step_breakpoints[i] = NULL;
15130 single_step_gdbarch[i] = NULL;
15131 }
15132 }
15133
15134 /* Detach software single-step breakpoints from INFERIOR_PTID without
15135 removing them. */
15136
15137 static void
15138 detach_single_step_breakpoints (void)
15139 {
15140 int i;
15141
15142 for (i = 0; i < 2; i++)
15143 if (single_step_breakpoints[i])
15144 target_remove_breakpoint (single_step_gdbarch[i],
15145 single_step_breakpoints[i]);
15146 }
15147
15148 /* Check whether a software single-step breakpoint is inserted at
15149 PC. */
15150
15151 static int
15152 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15153 CORE_ADDR pc)
15154 {
15155 int i;
15156
15157 for (i = 0; i < 2; i++)
15158 {
15159 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15160 if (bp_tgt
15161 && breakpoint_address_match (bp_tgt->placed_address_space,
15162 bp_tgt->placed_address,
15163 aspace, pc))
15164 return 1;
15165 }
15166
15167 return 0;
15168 }
15169
15170 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15171 non-zero otherwise. */
15172 static int
15173 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15174 {
15175 if (syscall_catchpoint_p (bp)
15176 && bp->enable_state != bp_disabled
15177 && bp->enable_state != bp_call_disabled)
15178 return 1;
15179 else
15180 return 0;
15181 }
15182
15183 int
15184 catch_syscall_enabled (void)
15185 {
15186 struct catch_syscall_inferior_data *inf_data
15187 = get_catch_syscall_inferior_data (current_inferior ());
15188
15189 return inf_data->total_syscalls_count != 0;
15190 }
15191
15192 int
15193 catching_syscall_number (int syscall_number)
15194 {
15195 struct breakpoint *bp;
15196
15197 ALL_BREAKPOINTS (bp)
15198 if (is_syscall_catchpoint_enabled (bp))
15199 {
15200 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15201
15202 if (c->syscalls_to_be_caught)
15203 {
15204 int i, iter;
15205 for (i = 0;
15206 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15207 i++)
15208 if (syscall_number == iter)
15209 return 1;
15210 }
15211 else
15212 return 1;
15213 }
15214
15215 return 0;
15216 }
15217
15218 /* Complete syscall names. Used by "catch syscall". */
15219 static VEC (char_ptr) *
15220 catch_syscall_completer (struct cmd_list_element *cmd,
15221 const char *text, const char *word)
15222 {
15223 const char **list = get_syscall_names ();
15224 VEC (char_ptr) *retlist
15225 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15226
15227 xfree (list);
15228 return retlist;
15229 }
15230
15231 /* Tracepoint-specific operations. */
15232
15233 /* Set tracepoint count to NUM. */
15234 static void
15235 set_tracepoint_count (int num)
15236 {
15237 tracepoint_count = num;
15238 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15239 }
15240
15241 static void
15242 trace_command (char *arg, int from_tty)
15243 {
15244 struct breakpoint_ops *ops;
15245 const char *arg_cp = arg;
15246
15247 if (arg && probe_linespec_to_ops (&arg_cp))
15248 ops = &tracepoint_probe_breakpoint_ops;
15249 else
15250 ops = &tracepoint_breakpoint_ops;
15251
15252 create_breakpoint (get_current_arch (),
15253 arg,
15254 NULL, 0, NULL, 1 /* parse arg */,
15255 0 /* tempflag */,
15256 bp_tracepoint /* type_wanted */,
15257 0 /* Ignore count */,
15258 pending_break_support,
15259 ops,
15260 from_tty,
15261 1 /* enabled */,
15262 0 /* internal */, 0);
15263 }
15264
15265 static void
15266 ftrace_command (char *arg, int from_tty)
15267 {
15268 create_breakpoint (get_current_arch (),
15269 arg,
15270 NULL, 0, NULL, 1 /* parse arg */,
15271 0 /* tempflag */,
15272 bp_fast_tracepoint /* type_wanted */,
15273 0 /* Ignore count */,
15274 pending_break_support,
15275 &tracepoint_breakpoint_ops,
15276 from_tty,
15277 1 /* enabled */,
15278 0 /* internal */, 0);
15279 }
15280
15281 /* strace command implementation. Creates a static tracepoint. */
15282
15283 static void
15284 strace_command (char *arg, int from_tty)
15285 {
15286 struct breakpoint_ops *ops;
15287
15288 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15289 or with a normal static tracepoint. */
15290 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15291 ops = &strace_marker_breakpoint_ops;
15292 else
15293 ops = &tracepoint_breakpoint_ops;
15294
15295 create_breakpoint (get_current_arch (),
15296 arg,
15297 NULL, 0, NULL, 1 /* parse arg */,
15298 0 /* tempflag */,
15299 bp_static_tracepoint /* type_wanted */,
15300 0 /* Ignore count */,
15301 pending_break_support,
15302 ops,
15303 from_tty,
15304 1 /* enabled */,
15305 0 /* internal */, 0);
15306 }
15307
15308 /* Set up a fake reader function that gets command lines from a linked
15309 list that was acquired during tracepoint uploading. */
15310
15311 static struct uploaded_tp *this_utp;
15312 static int next_cmd;
15313
15314 static char *
15315 read_uploaded_action (void)
15316 {
15317 char *rslt;
15318
15319 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15320
15321 next_cmd++;
15322
15323 return rslt;
15324 }
15325
15326 /* Given information about a tracepoint as recorded on a target (which
15327 can be either a live system or a trace file), attempt to create an
15328 equivalent GDB tracepoint. This is not a reliable process, since
15329 the target does not necessarily have all the information used when
15330 the tracepoint was originally defined. */
15331
15332 struct tracepoint *
15333 create_tracepoint_from_upload (struct uploaded_tp *utp)
15334 {
15335 char *addr_str, small_buf[100];
15336 struct tracepoint *tp;
15337
15338 if (utp->at_string)
15339 addr_str = utp->at_string;
15340 else
15341 {
15342 /* In the absence of a source location, fall back to raw
15343 address. Since there is no way to confirm that the address
15344 means the same thing as when the trace was started, warn the
15345 user. */
15346 warning (_("Uploaded tracepoint %d has no "
15347 "source location, using raw address"),
15348 utp->number);
15349 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15350 addr_str = small_buf;
15351 }
15352
15353 /* There's not much we can do with a sequence of bytecodes. */
15354 if (utp->cond && !utp->cond_string)
15355 warning (_("Uploaded tracepoint %d condition "
15356 "has no source form, ignoring it"),
15357 utp->number);
15358
15359 if (!create_breakpoint (get_current_arch (),
15360 addr_str,
15361 utp->cond_string, -1, NULL,
15362 0 /* parse cond/thread */,
15363 0 /* tempflag */,
15364 utp->type /* type_wanted */,
15365 0 /* Ignore count */,
15366 pending_break_support,
15367 &tracepoint_breakpoint_ops,
15368 0 /* from_tty */,
15369 utp->enabled /* enabled */,
15370 0 /* internal */,
15371 CREATE_BREAKPOINT_FLAGS_INSERTED))
15372 return NULL;
15373
15374 /* Get the tracepoint we just created. */
15375 tp = get_tracepoint (tracepoint_count);
15376 gdb_assert (tp != NULL);
15377
15378 if (utp->pass > 0)
15379 {
15380 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15381 tp->base.number);
15382
15383 trace_pass_command (small_buf, 0);
15384 }
15385
15386 /* If we have uploaded versions of the original commands, set up a
15387 special-purpose "reader" function and call the usual command line
15388 reader, then pass the result to the breakpoint command-setting
15389 function. */
15390 if (!VEC_empty (char_ptr, utp->cmd_strings))
15391 {
15392 struct command_line *cmd_list;
15393
15394 this_utp = utp;
15395 next_cmd = 0;
15396
15397 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15398
15399 breakpoint_set_commands (&tp->base, cmd_list);
15400 }
15401 else if (!VEC_empty (char_ptr, utp->actions)
15402 || !VEC_empty (char_ptr, utp->step_actions))
15403 warning (_("Uploaded tracepoint %d actions "
15404 "have no source form, ignoring them"),
15405 utp->number);
15406
15407 /* Copy any status information that might be available. */
15408 tp->base.hit_count = utp->hit_count;
15409 tp->traceframe_usage = utp->traceframe_usage;
15410
15411 return tp;
15412 }
15413
15414 /* Print information on tracepoint number TPNUM_EXP, or all if
15415 omitted. */
15416
15417 static void
15418 tracepoints_info (char *args, int from_tty)
15419 {
15420 struct ui_out *uiout = current_uiout;
15421 int num_printed;
15422
15423 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15424
15425 if (num_printed == 0)
15426 {
15427 if (args == NULL || *args == '\0')
15428 ui_out_message (uiout, 0, "No tracepoints.\n");
15429 else
15430 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15431 }
15432
15433 default_collect_info ();
15434 }
15435
15436 /* The 'enable trace' command enables tracepoints.
15437 Not supported by all targets. */
15438 static void
15439 enable_trace_command (char *args, int from_tty)
15440 {
15441 enable_command (args, from_tty);
15442 }
15443
15444 /* The 'disable trace' command disables tracepoints.
15445 Not supported by all targets. */
15446 static void
15447 disable_trace_command (char *args, int from_tty)
15448 {
15449 disable_command (args, from_tty);
15450 }
15451
15452 /* Remove a tracepoint (or all if no argument). */
15453 static void
15454 delete_trace_command (char *arg, int from_tty)
15455 {
15456 struct breakpoint *b, *b_tmp;
15457
15458 dont_repeat ();
15459
15460 if (arg == 0)
15461 {
15462 int breaks_to_delete = 0;
15463
15464 /* Delete all breakpoints if no argument.
15465 Do not delete internal or call-dummy breakpoints, these
15466 have to be deleted with an explicit breakpoint number
15467 argument. */
15468 ALL_TRACEPOINTS (b)
15469 if (is_tracepoint (b) && user_breakpoint_p (b))
15470 {
15471 breaks_to_delete = 1;
15472 break;
15473 }
15474
15475 /* Ask user only if there are some breakpoints to delete. */
15476 if (!from_tty
15477 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15478 {
15479 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15480 if (is_tracepoint (b) && user_breakpoint_p (b))
15481 delete_breakpoint (b);
15482 }
15483 }
15484 else
15485 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15486 }
15487
15488 /* Helper function for trace_pass_command. */
15489
15490 static void
15491 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15492 {
15493 tp->pass_count = count;
15494 observer_notify_breakpoint_modified (&tp->base);
15495 if (from_tty)
15496 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15497 tp->base.number, count);
15498 }
15499
15500 /* Set passcount for tracepoint.
15501
15502 First command argument is passcount, second is tracepoint number.
15503 If tracepoint number omitted, apply to most recently defined.
15504 Also accepts special argument "all". */
15505
15506 static void
15507 trace_pass_command (char *args, int from_tty)
15508 {
15509 struct tracepoint *t1;
15510 unsigned int count;
15511
15512 if (args == 0 || *args == 0)
15513 error (_("passcount command requires an "
15514 "argument (count + optional TP num)"));
15515
15516 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15517
15518 args = skip_spaces (args);
15519 if (*args && strncasecmp (args, "all", 3) == 0)
15520 {
15521 struct breakpoint *b;
15522
15523 args += 3; /* Skip special argument "all". */
15524 if (*args)
15525 error (_("Junk at end of arguments."));
15526
15527 ALL_TRACEPOINTS (b)
15528 {
15529 t1 = (struct tracepoint *) b;
15530 trace_pass_set_count (t1, count, from_tty);
15531 }
15532 }
15533 else if (*args == '\0')
15534 {
15535 t1 = get_tracepoint_by_number (&args, NULL);
15536 if (t1)
15537 trace_pass_set_count (t1, count, from_tty);
15538 }
15539 else
15540 {
15541 struct get_number_or_range_state state;
15542
15543 init_number_or_range (&state, args);
15544 while (!state.finished)
15545 {
15546 t1 = get_tracepoint_by_number (&args, &state);
15547 if (t1)
15548 trace_pass_set_count (t1, count, from_tty);
15549 }
15550 }
15551 }
15552
15553 struct tracepoint *
15554 get_tracepoint (int num)
15555 {
15556 struct breakpoint *t;
15557
15558 ALL_TRACEPOINTS (t)
15559 if (t->number == num)
15560 return (struct tracepoint *) t;
15561
15562 return NULL;
15563 }
15564
15565 /* Find the tracepoint with the given target-side number (which may be
15566 different from the tracepoint number after disconnecting and
15567 reconnecting). */
15568
15569 struct tracepoint *
15570 get_tracepoint_by_number_on_target (int num)
15571 {
15572 struct breakpoint *b;
15573
15574 ALL_TRACEPOINTS (b)
15575 {
15576 struct tracepoint *t = (struct tracepoint *) b;
15577
15578 if (t->number_on_target == num)
15579 return t;
15580 }
15581
15582 return NULL;
15583 }
15584
15585 /* Utility: parse a tracepoint number and look it up in the list.
15586 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15587 If the argument is missing, the most recent tracepoint
15588 (tracepoint_count) is returned. */
15589
15590 struct tracepoint *
15591 get_tracepoint_by_number (char **arg,
15592 struct get_number_or_range_state *state)
15593 {
15594 struct breakpoint *t;
15595 int tpnum;
15596 char *instring = arg == NULL ? NULL : *arg;
15597
15598 if (state)
15599 {
15600 gdb_assert (!state->finished);
15601 tpnum = get_number_or_range (state);
15602 }
15603 else if (arg == NULL || *arg == NULL || ! **arg)
15604 tpnum = tracepoint_count;
15605 else
15606 tpnum = get_number (arg);
15607
15608 if (tpnum <= 0)
15609 {
15610 if (instring && *instring)
15611 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15612 instring);
15613 else
15614 printf_filtered (_("No previous tracepoint\n"));
15615 return NULL;
15616 }
15617
15618 ALL_TRACEPOINTS (t)
15619 if (t->number == tpnum)
15620 {
15621 return (struct tracepoint *) t;
15622 }
15623
15624 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15625 return NULL;
15626 }
15627
15628 void
15629 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15630 {
15631 if (b->thread != -1)
15632 fprintf_unfiltered (fp, " thread %d", b->thread);
15633
15634 if (b->task != 0)
15635 fprintf_unfiltered (fp, " task %d", b->task);
15636
15637 fprintf_unfiltered (fp, "\n");
15638 }
15639
15640 /* Save information on user settable breakpoints (watchpoints, etc) to
15641 a new script file named FILENAME. If FILTER is non-NULL, call it
15642 on each breakpoint and only include the ones for which it returns
15643 non-zero. */
15644
15645 static void
15646 save_breakpoints (char *filename, int from_tty,
15647 int (*filter) (const struct breakpoint *))
15648 {
15649 struct breakpoint *tp;
15650 int any = 0;
15651 struct cleanup *cleanup;
15652 struct ui_file *fp;
15653 int extra_trace_bits = 0;
15654
15655 if (filename == 0 || *filename == 0)
15656 error (_("Argument required (file name in which to save)"));
15657
15658 /* See if we have anything to save. */
15659 ALL_BREAKPOINTS (tp)
15660 {
15661 /* Skip internal and momentary breakpoints. */
15662 if (!user_breakpoint_p (tp))
15663 continue;
15664
15665 /* If we have a filter, only save the breakpoints it accepts. */
15666 if (filter && !filter (tp))
15667 continue;
15668
15669 any = 1;
15670
15671 if (is_tracepoint (tp))
15672 {
15673 extra_trace_bits = 1;
15674
15675 /* We can stop searching. */
15676 break;
15677 }
15678 }
15679
15680 if (!any)
15681 {
15682 warning (_("Nothing to save."));
15683 return;
15684 }
15685
15686 filename = tilde_expand (filename);
15687 cleanup = make_cleanup (xfree, filename);
15688 fp = gdb_fopen (filename, "w");
15689 if (!fp)
15690 error (_("Unable to open file '%s' for saving (%s)"),
15691 filename, safe_strerror (errno));
15692 make_cleanup_ui_file_delete (fp);
15693
15694 if (extra_trace_bits)
15695 save_trace_state_variables (fp);
15696
15697 ALL_BREAKPOINTS (tp)
15698 {
15699 /* Skip internal and momentary breakpoints. */
15700 if (!user_breakpoint_p (tp))
15701 continue;
15702
15703 /* If we have a filter, only save the breakpoints it accepts. */
15704 if (filter && !filter (tp))
15705 continue;
15706
15707 tp->ops->print_recreate (tp, fp);
15708
15709 /* Note, we can't rely on tp->number for anything, as we can't
15710 assume the recreated breakpoint numbers will match. Use $bpnum
15711 instead. */
15712
15713 if (tp->cond_string)
15714 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15715
15716 if (tp->ignore_count)
15717 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15718
15719 if (tp->type != bp_dprintf && tp->commands)
15720 {
15721 volatile struct gdb_exception ex;
15722
15723 fprintf_unfiltered (fp, " commands\n");
15724
15725 ui_out_redirect (current_uiout, fp);
15726 TRY_CATCH (ex, RETURN_MASK_ALL)
15727 {
15728 print_command_lines (current_uiout, tp->commands->commands, 2);
15729 }
15730 ui_out_redirect (current_uiout, NULL);
15731
15732 if (ex.reason < 0)
15733 throw_exception (ex);
15734
15735 fprintf_unfiltered (fp, " end\n");
15736 }
15737
15738 if (tp->enable_state == bp_disabled)
15739 fprintf_unfiltered (fp, "disable\n");
15740
15741 /* If this is a multi-location breakpoint, check if the locations
15742 should be individually disabled. Watchpoint locations are
15743 special, and not user visible. */
15744 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15745 {
15746 struct bp_location *loc;
15747 int n = 1;
15748
15749 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15750 if (!loc->enabled)
15751 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15752 }
15753 }
15754
15755 if (extra_trace_bits && *default_collect)
15756 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15757
15758 if (from_tty)
15759 printf_filtered (_("Saved to file '%s'.\n"), filename);
15760 do_cleanups (cleanup);
15761 }
15762
15763 /* The `save breakpoints' command. */
15764
15765 static void
15766 save_breakpoints_command (char *args, int from_tty)
15767 {
15768 save_breakpoints (args, from_tty, NULL);
15769 }
15770
15771 /* The `save tracepoints' command. */
15772
15773 static void
15774 save_tracepoints_command (char *args, int from_tty)
15775 {
15776 save_breakpoints (args, from_tty, is_tracepoint);
15777 }
15778
15779 /* Create a vector of all tracepoints. */
15780
15781 VEC(breakpoint_p) *
15782 all_tracepoints (void)
15783 {
15784 VEC(breakpoint_p) *tp_vec = 0;
15785 struct breakpoint *tp;
15786
15787 ALL_TRACEPOINTS (tp)
15788 {
15789 VEC_safe_push (breakpoint_p, tp_vec, tp);
15790 }
15791
15792 return tp_vec;
15793 }
15794
15795 \f
15796 /* This help string is used for the break, hbreak, tbreak and thbreak
15797 commands. It is defined as a macro to prevent duplication.
15798 COMMAND should be a string constant containing the name of the
15799 command. */
15800 #define BREAK_ARGS_HELP(command) \
15801 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15802 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15803 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15804 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15805 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15806 If a line number is specified, break at start of code for that line.\n\
15807 If a function is specified, break at start of code for that function.\n\
15808 If an address is specified, break at that exact address.\n\
15809 With no LOCATION, uses current execution address of the selected\n\
15810 stack frame. This is useful for breaking on return to a stack frame.\n\
15811 \n\
15812 THREADNUM is the number from \"info threads\".\n\
15813 CONDITION is a boolean expression.\n\
15814 \n\
15815 Multiple breakpoints at one place are permitted, and useful if their\n\
15816 conditions are different.\n\
15817 \n\
15818 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15819
15820 /* List of subcommands for "catch". */
15821 static struct cmd_list_element *catch_cmdlist;
15822
15823 /* List of subcommands for "tcatch". */
15824 static struct cmd_list_element *tcatch_cmdlist;
15825
15826 void
15827 add_catch_command (char *name, char *docstring,
15828 void (*sfunc) (char *args, int from_tty,
15829 struct cmd_list_element *command),
15830 completer_ftype *completer,
15831 void *user_data_catch,
15832 void *user_data_tcatch)
15833 {
15834 struct cmd_list_element *command;
15835
15836 command = add_cmd (name, class_breakpoint, NULL, docstring,
15837 &catch_cmdlist);
15838 set_cmd_sfunc (command, sfunc);
15839 set_cmd_context (command, user_data_catch);
15840 set_cmd_completer (command, completer);
15841
15842 command = add_cmd (name, class_breakpoint, NULL, docstring,
15843 &tcatch_cmdlist);
15844 set_cmd_sfunc (command, sfunc);
15845 set_cmd_context (command, user_data_tcatch);
15846 set_cmd_completer (command, completer);
15847 }
15848
15849 static void
15850 clear_syscall_counts (struct inferior *inf)
15851 {
15852 struct catch_syscall_inferior_data *inf_data
15853 = get_catch_syscall_inferior_data (inf);
15854
15855 inf_data->total_syscalls_count = 0;
15856 inf_data->any_syscall_count = 0;
15857 VEC_free (int, inf_data->syscalls_counts);
15858 }
15859
15860 static void
15861 save_command (char *arg, int from_tty)
15862 {
15863 printf_unfiltered (_("\"save\" must be followed by "
15864 "the name of a save subcommand.\n"));
15865 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15866 }
15867
15868 struct breakpoint *
15869 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15870 void *data)
15871 {
15872 struct breakpoint *b, *b_tmp;
15873
15874 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15875 {
15876 if ((*callback) (b, data))
15877 return b;
15878 }
15879
15880 return NULL;
15881 }
15882
15883 /* Zero if any of the breakpoint's locations could be a location where
15884 functions have been inlined, nonzero otherwise. */
15885
15886 static int
15887 is_non_inline_function (struct breakpoint *b)
15888 {
15889 /* The shared library event breakpoint is set on the address of a
15890 non-inline function. */
15891 if (b->type == bp_shlib_event)
15892 return 1;
15893
15894 return 0;
15895 }
15896
15897 /* Nonzero if the specified PC cannot be a location where functions
15898 have been inlined. */
15899
15900 int
15901 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15902 const struct target_waitstatus *ws)
15903 {
15904 struct breakpoint *b;
15905 struct bp_location *bl;
15906
15907 ALL_BREAKPOINTS (b)
15908 {
15909 if (!is_non_inline_function (b))
15910 continue;
15911
15912 for (bl = b->loc; bl != NULL; bl = bl->next)
15913 {
15914 if (!bl->shlib_disabled
15915 && bpstat_check_location (bl, aspace, pc, ws))
15916 return 1;
15917 }
15918 }
15919
15920 return 0;
15921 }
15922
15923 /* Remove any references to OBJFILE which is going to be freed. */
15924
15925 void
15926 breakpoint_free_objfile (struct objfile *objfile)
15927 {
15928 struct bp_location **locp, *loc;
15929
15930 ALL_BP_LOCATIONS (loc, locp)
15931 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15932 loc->symtab = NULL;
15933 }
15934
15935 void
15936 initialize_breakpoint_ops (void)
15937 {
15938 static int initialized = 0;
15939
15940 struct breakpoint_ops *ops;
15941
15942 if (initialized)
15943 return;
15944 initialized = 1;
15945
15946 /* The breakpoint_ops structure to be inherit by all kinds of
15947 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15948 internal and momentary breakpoints, etc.). */
15949 ops = &bkpt_base_breakpoint_ops;
15950 *ops = base_breakpoint_ops;
15951 ops->re_set = bkpt_re_set;
15952 ops->insert_location = bkpt_insert_location;
15953 ops->remove_location = bkpt_remove_location;
15954 ops->breakpoint_hit = bkpt_breakpoint_hit;
15955 ops->create_sals_from_address = bkpt_create_sals_from_address;
15956 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15957 ops->decode_linespec = bkpt_decode_linespec;
15958
15959 /* The breakpoint_ops structure to be used in regular breakpoints. */
15960 ops = &bkpt_breakpoint_ops;
15961 *ops = bkpt_base_breakpoint_ops;
15962 ops->re_set = bkpt_re_set;
15963 ops->resources_needed = bkpt_resources_needed;
15964 ops->print_it = bkpt_print_it;
15965 ops->print_mention = bkpt_print_mention;
15966 ops->print_recreate = bkpt_print_recreate;
15967
15968 /* Ranged breakpoints. */
15969 ops = &ranged_breakpoint_ops;
15970 *ops = bkpt_breakpoint_ops;
15971 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15972 ops->resources_needed = resources_needed_ranged_breakpoint;
15973 ops->print_it = print_it_ranged_breakpoint;
15974 ops->print_one = print_one_ranged_breakpoint;
15975 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15976 ops->print_mention = print_mention_ranged_breakpoint;
15977 ops->print_recreate = print_recreate_ranged_breakpoint;
15978
15979 /* Internal breakpoints. */
15980 ops = &internal_breakpoint_ops;
15981 *ops = bkpt_base_breakpoint_ops;
15982 ops->re_set = internal_bkpt_re_set;
15983 ops->check_status = internal_bkpt_check_status;
15984 ops->print_it = internal_bkpt_print_it;
15985 ops->print_mention = internal_bkpt_print_mention;
15986
15987 /* Momentary breakpoints. */
15988 ops = &momentary_breakpoint_ops;
15989 *ops = bkpt_base_breakpoint_ops;
15990 ops->re_set = momentary_bkpt_re_set;
15991 ops->check_status = momentary_bkpt_check_status;
15992 ops->print_it = momentary_bkpt_print_it;
15993 ops->print_mention = momentary_bkpt_print_mention;
15994
15995 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15996 ops = &longjmp_breakpoint_ops;
15997 *ops = momentary_breakpoint_ops;
15998 ops->dtor = longjmp_bkpt_dtor;
15999
16000 /* Probe breakpoints. */
16001 ops = &bkpt_probe_breakpoint_ops;
16002 *ops = bkpt_breakpoint_ops;
16003 ops->insert_location = bkpt_probe_insert_location;
16004 ops->remove_location = bkpt_probe_remove_location;
16005 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
16006 ops->decode_linespec = bkpt_probe_decode_linespec;
16007
16008 /* Watchpoints. */
16009 ops = &watchpoint_breakpoint_ops;
16010 *ops = base_breakpoint_ops;
16011 ops->dtor = dtor_watchpoint;
16012 ops->re_set = re_set_watchpoint;
16013 ops->insert_location = insert_watchpoint;
16014 ops->remove_location = remove_watchpoint;
16015 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16016 ops->check_status = check_status_watchpoint;
16017 ops->resources_needed = resources_needed_watchpoint;
16018 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16019 ops->print_it = print_it_watchpoint;
16020 ops->print_mention = print_mention_watchpoint;
16021 ops->print_recreate = print_recreate_watchpoint;
16022 ops->explains_signal = explains_signal_watchpoint;
16023
16024 /* Masked watchpoints. */
16025 ops = &masked_watchpoint_breakpoint_ops;
16026 *ops = watchpoint_breakpoint_ops;
16027 ops->insert_location = insert_masked_watchpoint;
16028 ops->remove_location = remove_masked_watchpoint;
16029 ops->resources_needed = resources_needed_masked_watchpoint;
16030 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16031 ops->print_it = print_it_masked_watchpoint;
16032 ops->print_one_detail = print_one_detail_masked_watchpoint;
16033 ops->print_mention = print_mention_masked_watchpoint;
16034 ops->print_recreate = print_recreate_masked_watchpoint;
16035
16036 /* Tracepoints. */
16037 ops = &tracepoint_breakpoint_ops;
16038 *ops = base_breakpoint_ops;
16039 ops->re_set = tracepoint_re_set;
16040 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16041 ops->print_one_detail = tracepoint_print_one_detail;
16042 ops->print_mention = tracepoint_print_mention;
16043 ops->print_recreate = tracepoint_print_recreate;
16044 ops->create_sals_from_address = tracepoint_create_sals_from_address;
16045 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16046 ops->decode_linespec = tracepoint_decode_linespec;
16047
16048 /* Probe tracepoints. */
16049 ops = &tracepoint_probe_breakpoint_ops;
16050 *ops = tracepoint_breakpoint_ops;
16051 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
16052 ops->decode_linespec = tracepoint_probe_decode_linespec;
16053
16054 /* Static tracepoints with marker (`-m'). */
16055 ops = &strace_marker_breakpoint_ops;
16056 *ops = tracepoint_breakpoint_ops;
16057 ops->create_sals_from_address = strace_marker_create_sals_from_address;
16058 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16059 ops->decode_linespec = strace_marker_decode_linespec;
16060
16061 /* Fork catchpoints. */
16062 ops = &catch_fork_breakpoint_ops;
16063 *ops = base_breakpoint_ops;
16064 ops->insert_location = insert_catch_fork;
16065 ops->remove_location = remove_catch_fork;
16066 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16067 ops->print_it = print_it_catch_fork;
16068 ops->print_one = print_one_catch_fork;
16069 ops->print_mention = print_mention_catch_fork;
16070 ops->print_recreate = print_recreate_catch_fork;
16071
16072 /* Vfork catchpoints. */
16073 ops = &catch_vfork_breakpoint_ops;
16074 *ops = base_breakpoint_ops;
16075 ops->insert_location = insert_catch_vfork;
16076 ops->remove_location = remove_catch_vfork;
16077 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16078 ops->print_it = print_it_catch_vfork;
16079 ops->print_one = print_one_catch_vfork;
16080 ops->print_mention = print_mention_catch_vfork;
16081 ops->print_recreate = print_recreate_catch_vfork;
16082
16083 /* Exec catchpoints. */
16084 ops = &catch_exec_breakpoint_ops;
16085 *ops = base_breakpoint_ops;
16086 ops->dtor = dtor_catch_exec;
16087 ops->insert_location = insert_catch_exec;
16088 ops->remove_location = remove_catch_exec;
16089 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16090 ops->print_it = print_it_catch_exec;
16091 ops->print_one = print_one_catch_exec;
16092 ops->print_mention = print_mention_catch_exec;
16093 ops->print_recreate = print_recreate_catch_exec;
16094
16095 /* Syscall catchpoints. */
16096 ops = &catch_syscall_breakpoint_ops;
16097 *ops = base_breakpoint_ops;
16098 ops->dtor = dtor_catch_syscall;
16099 ops->insert_location = insert_catch_syscall;
16100 ops->remove_location = remove_catch_syscall;
16101 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16102 ops->print_it = print_it_catch_syscall;
16103 ops->print_one = print_one_catch_syscall;
16104 ops->print_mention = print_mention_catch_syscall;
16105 ops->print_recreate = print_recreate_catch_syscall;
16106
16107 /* Solib-related catchpoints. */
16108 ops = &catch_solib_breakpoint_ops;
16109 *ops = base_breakpoint_ops;
16110 ops->dtor = dtor_catch_solib;
16111 ops->insert_location = insert_catch_solib;
16112 ops->remove_location = remove_catch_solib;
16113 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16114 ops->check_status = check_status_catch_solib;
16115 ops->print_it = print_it_catch_solib;
16116 ops->print_one = print_one_catch_solib;
16117 ops->print_mention = print_mention_catch_solib;
16118 ops->print_recreate = print_recreate_catch_solib;
16119
16120 ops = &dprintf_breakpoint_ops;
16121 *ops = bkpt_base_breakpoint_ops;
16122 ops->re_set = dprintf_re_set;
16123 ops->resources_needed = bkpt_resources_needed;
16124 ops->print_it = bkpt_print_it;
16125 ops->print_mention = bkpt_print_mention;
16126 ops->print_recreate = dprintf_print_recreate;
16127 ops->after_condition_true = dprintf_after_condition_true;
16128 }
16129
16130 /* Chain containing all defined "enable breakpoint" subcommands. */
16131
16132 static struct cmd_list_element *enablebreaklist = NULL;
16133
16134 void
16135 _initialize_breakpoint (void)
16136 {
16137 struct cmd_list_element *c;
16138
16139 initialize_breakpoint_ops ();
16140
16141 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16142 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16143 observer_attach_inferior_exit (clear_syscall_counts);
16144 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16145
16146 breakpoint_objfile_key
16147 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16148
16149 catch_syscall_inferior_data
16150 = register_inferior_data_with_cleanup (NULL,
16151 catch_syscall_inferior_data_cleanup);
16152
16153 breakpoint_chain = 0;
16154 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16155 before a breakpoint is set. */
16156 breakpoint_count = 0;
16157
16158 tracepoint_count = 0;
16159
16160 add_com ("ignore", class_breakpoint, ignore_command, _("\
16161 Set ignore-count of breakpoint number N to COUNT.\n\
16162 Usage is `ignore N COUNT'."));
16163 if (xdb_commands)
16164 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16165
16166 add_com ("commands", class_breakpoint, commands_command, _("\
16167 Set commands to be executed when a breakpoint is hit.\n\
16168 Give breakpoint number as argument after \"commands\".\n\
16169 With no argument, the targeted breakpoint is the last one set.\n\
16170 The commands themselves follow starting on the next line.\n\
16171 Type a line containing \"end\" to indicate the end of them.\n\
16172 Give \"silent\" as the first line to make the breakpoint silent;\n\
16173 then no output is printed when it is hit, except what the commands print."));
16174
16175 c = add_com ("condition", class_breakpoint, condition_command, _("\
16176 Specify breakpoint number N to break only if COND is true.\n\
16177 Usage is `condition N COND', where N is an integer and COND is an\n\
16178 expression to be evaluated whenever breakpoint N is reached."));
16179 set_cmd_completer (c, condition_completer);
16180
16181 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16182 Set a temporary breakpoint.\n\
16183 Like \"break\" except the breakpoint is only temporary,\n\
16184 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16185 by using \"enable delete\" on the breakpoint number.\n\
16186 \n"
16187 BREAK_ARGS_HELP ("tbreak")));
16188 set_cmd_completer (c, location_completer);
16189
16190 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16191 Set a hardware assisted breakpoint.\n\
16192 Like \"break\" except the breakpoint requires hardware support,\n\
16193 some target hardware may not have this support.\n\
16194 \n"
16195 BREAK_ARGS_HELP ("hbreak")));
16196 set_cmd_completer (c, location_completer);
16197
16198 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16199 Set a temporary hardware assisted breakpoint.\n\
16200 Like \"hbreak\" except the breakpoint is only temporary,\n\
16201 so it will be deleted when hit.\n\
16202 \n"
16203 BREAK_ARGS_HELP ("thbreak")));
16204 set_cmd_completer (c, location_completer);
16205
16206 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16207 Enable some breakpoints.\n\
16208 Give breakpoint numbers (separated by spaces) as arguments.\n\
16209 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16210 This is used to cancel the effect of the \"disable\" command.\n\
16211 With a subcommand you can enable temporarily."),
16212 &enablelist, "enable ", 1, &cmdlist);
16213 if (xdb_commands)
16214 add_com ("ab", class_breakpoint, enable_command, _("\
16215 Enable some breakpoints.\n\
16216 Give breakpoint numbers (separated by spaces) as arguments.\n\
16217 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16218 This is used to cancel the effect of the \"disable\" command.\n\
16219 With a subcommand you can enable temporarily."));
16220
16221 add_com_alias ("en", "enable", class_breakpoint, 1);
16222
16223 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16224 Enable some breakpoints.\n\
16225 Give breakpoint numbers (separated by spaces) as arguments.\n\
16226 This is used to cancel the effect of the \"disable\" command.\n\
16227 May be abbreviated to simply \"enable\".\n"),
16228 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16229
16230 add_cmd ("once", no_class, enable_once_command, _("\
16231 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16232 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16233 &enablebreaklist);
16234
16235 add_cmd ("delete", no_class, enable_delete_command, _("\
16236 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16237 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16238 &enablebreaklist);
16239
16240 add_cmd ("count", no_class, enable_count_command, _("\
16241 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16242 If a breakpoint is hit while enabled in this fashion,\n\
16243 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16244 &enablebreaklist);
16245
16246 add_cmd ("delete", no_class, enable_delete_command, _("\
16247 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16248 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16249 &enablelist);
16250
16251 add_cmd ("once", no_class, enable_once_command, _("\
16252 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16253 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16254 &enablelist);
16255
16256 add_cmd ("count", no_class, enable_count_command, _("\
16257 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16258 If a breakpoint is hit while enabled in this fashion,\n\
16259 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16260 &enablelist);
16261
16262 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16263 Disable some breakpoints.\n\
16264 Arguments are breakpoint numbers with spaces in between.\n\
16265 To disable all breakpoints, give no argument.\n\
16266 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16267 &disablelist, "disable ", 1, &cmdlist);
16268 add_com_alias ("dis", "disable", class_breakpoint, 1);
16269 add_com_alias ("disa", "disable", class_breakpoint, 1);
16270 if (xdb_commands)
16271 add_com ("sb", class_breakpoint, disable_command, _("\
16272 Disable some breakpoints.\n\
16273 Arguments are breakpoint numbers with spaces in between.\n\
16274 To disable all breakpoints, give no argument.\n\
16275 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16276
16277 add_cmd ("breakpoints", class_alias, disable_command, _("\
16278 Disable some breakpoints.\n\
16279 Arguments are breakpoint numbers with spaces in between.\n\
16280 To disable all breakpoints, give no argument.\n\
16281 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16282 This command may be abbreviated \"disable\"."),
16283 &disablelist);
16284
16285 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16286 Delete some breakpoints or auto-display expressions.\n\
16287 Arguments are breakpoint numbers with spaces in between.\n\
16288 To delete all breakpoints, give no argument.\n\
16289 \n\
16290 Also a prefix command for deletion of other GDB objects.\n\
16291 The \"unset\" command is also an alias for \"delete\"."),
16292 &deletelist, "delete ", 1, &cmdlist);
16293 add_com_alias ("d", "delete", class_breakpoint, 1);
16294 add_com_alias ("del", "delete", class_breakpoint, 1);
16295 if (xdb_commands)
16296 add_com ("db", class_breakpoint, delete_command, _("\
16297 Delete some breakpoints.\n\
16298 Arguments are breakpoint numbers with spaces in between.\n\
16299 To delete all breakpoints, give no argument.\n"));
16300
16301 add_cmd ("breakpoints", class_alias, delete_command, _("\
16302 Delete some breakpoints or auto-display expressions.\n\
16303 Arguments are breakpoint numbers with spaces in between.\n\
16304 To delete all breakpoints, give no argument.\n\
16305 This command may be abbreviated \"delete\"."),
16306 &deletelist);
16307
16308 add_com ("clear", class_breakpoint, clear_command, _("\
16309 Clear breakpoint at specified line or function.\n\
16310 Argument may be line number, function name, or \"*\" and an address.\n\
16311 If line number is specified, all breakpoints in that line are cleared.\n\
16312 If function is specified, breakpoints at beginning of function are cleared.\n\
16313 If an address is specified, breakpoints at that address are cleared.\n\
16314 \n\
16315 With no argument, clears all breakpoints in the line that the selected frame\n\
16316 is executing in.\n\
16317 \n\
16318 See also the \"delete\" command which clears breakpoints by number."));
16319 add_com_alias ("cl", "clear", class_breakpoint, 1);
16320
16321 c = add_com ("break", class_breakpoint, break_command, _("\
16322 Set breakpoint at specified line or function.\n"
16323 BREAK_ARGS_HELP ("break")));
16324 set_cmd_completer (c, location_completer);
16325
16326 add_com_alias ("b", "break", class_run, 1);
16327 add_com_alias ("br", "break", class_run, 1);
16328 add_com_alias ("bre", "break", class_run, 1);
16329 add_com_alias ("brea", "break", class_run, 1);
16330
16331 if (xdb_commands)
16332 add_com_alias ("ba", "break", class_breakpoint, 1);
16333
16334 if (dbx_commands)
16335 {
16336 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16337 Break in function/address or break at a line in the current file."),
16338 &stoplist, "stop ", 1, &cmdlist);
16339 add_cmd ("in", class_breakpoint, stopin_command,
16340 _("Break in function or address."), &stoplist);
16341 add_cmd ("at", class_breakpoint, stopat_command,
16342 _("Break at a line in the current file."), &stoplist);
16343 add_com ("status", class_info, breakpoints_info, _("\
16344 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16345 The \"Type\" column indicates one of:\n\
16346 \tbreakpoint - normal breakpoint\n\
16347 \twatchpoint - watchpoint\n\
16348 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16349 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16350 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16351 address and file/line number respectively.\n\
16352 \n\
16353 Convenience variable \"$_\" and default examine address for \"x\"\n\
16354 are set to the address of the last breakpoint listed unless the command\n\
16355 is prefixed with \"server \".\n\n\
16356 Convenience variable \"$bpnum\" contains the number of the last\n\
16357 breakpoint set."));
16358 }
16359
16360 add_info ("breakpoints", breakpoints_info, _("\
16361 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16362 The \"Type\" column indicates one of:\n\
16363 \tbreakpoint - normal breakpoint\n\
16364 \twatchpoint - watchpoint\n\
16365 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16366 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16367 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16368 address and file/line number respectively.\n\
16369 \n\
16370 Convenience variable \"$_\" and default examine address for \"x\"\n\
16371 are set to the address of the last breakpoint listed unless the command\n\
16372 is prefixed with \"server \".\n\n\
16373 Convenience variable \"$bpnum\" contains the number of the last\n\
16374 breakpoint set."));
16375
16376 add_info_alias ("b", "breakpoints", 1);
16377
16378 if (xdb_commands)
16379 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16380 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16381 The \"Type\" column indicates one of:\n\
16382 \tbreakpoint - normal breakpoint\n\
16383 \twatchpoint - watchpoint\n\
16384 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16385 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16386 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16387 address and file/line number respectively.\n\
16388 \n\
16389 Convenience variable \"$_\" and default examine address for \"x\"\n\
16390 are set to the address of the last breakpoint listed unless the command\n\
16391 is prefixed with \"server \".\n\n\
16392 Convenience variable \"$bpnum\" contains the number of the last\n\
16393 breakpoint set."));
16394
16395 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16396 Status of all breakpoints, or breakpoint number NUMBER.\n\
16397 The \"Type\" column indicates one of:\n\
16398 \tbreakpoint - normal breakpoint\n\
16399 \twatchpoint - watchpoint\n\
16400 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16401 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16402 \tuntil - internal breakpoint used by the \"until\" command\n\
16403 \tfinish - internal breakpoint used by the \"finish\" command\n\
16404 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16405 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16406 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16407 address and file/line number respectively.\n\
16408 \n\
16409 Convenience variable \"$_\" and default examine address for \"x\"\n\
16410 are set to the address of the last breakpoint listed unless the command\n\
16411 is prefixed with \"server \".\n\n\
16412 Convenience variable \"$bpnum\" contains the number of the last\n\
16413 breakpoint set."),
16414 &maintenanceinfolist);
16415
16416 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16417 Set catchpoints to catch events."),
16418 &catch_cmdlist, "catch ",
16419 0/*allow-unknown*/, &cmdlist);
16420
16421 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16422 Set temporary catchpoints to catch events."),
16423 &tcatch_cmdlist, "tcatch ",
16424 0/*allow-unknown*/, &cmdlist);
16425
16426 add_catch_command ("fork", _("Catch calls to fork."),
16427 catch_fork_command_1,
16428 NULL,
16429 (void *) (uintptr_t) catch_fork_permanent,
16430 (void *) (uintptr_t) catch_fork_temporary);
16431 add_catch_command ("vfork", _("Catch calls to vfork."),
16432 catch_fork_command_1,
16433 NULL,
16434 (void *) (uintptr_t) catch_vfork_permanent,
16435 (void *) (uintptr_t) catch_vfork_temporary);
16436 add_catch_command ("exec", _("Catch calls to exec."),
16437 catch_exec_command_1,
16438 NULL,
16439 CATCH_PERMANENT,
16440 CATCH_TEMPORARY);
16441 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16442 Usage: catch load [REGEX]\n\
16443 If REGEX is given, only stop for libraries matching the regular expression."),
16444 catch_load_command_1,
16445 NULL,
16446 CATCH_PERMANENT,
16447 CATCH_TEMPORARY);
16448 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16449 Usage: catch unload [REGEX]\n\
16450 If REGEX is given, only stop for libraries matching the regular expression."),
16451 catch_unload_command_1,
16452 NULL,
16453 CATCH_PERMANENT,
16454 CATCH_TEMPORARY);
16455 add_catch_command ("syscall", _("\
16456 Catch system calls by their names and/or numbers.\n\
16457 Arguments say which system calls to catch. If no arguments\n\
16458 are given, every system call will be caught.\n\
16459 Arguments, if given, should be one or more system call names\n\
16460 (if your system supports that), or system call numbers."),
16461 catch_syscall_command_1,
16462 catch_syscall_completer,
16463 CATCH_PERMANENT,
16464 CATCH_TEMPORARY);
16465
16466 c = add_com ("watch", class_breakpoint, watch_command, _("\
16467 Set a watchpoint for an expression.\n\
16468 Usage: watch [-l|-location] EXPRESSION\n\
16469 A watchpoint stops execution of your program whenever the value of\n\
16470 an expression changes.\n\
16471 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16472 the memory to which it refers."));
16473 set_cmd_completer (c, expression_completer);
16474
16475 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16476 Set a read watchpoint for an expression.\n\
16477 Usage: rwatch [-l|-location] EXPRESSION\n\
16478 A watchpoint stops execution of your program whenever the value of\n\
16479 an expression is read.\n\
16480 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16481 the memory to which it refers."));
16482 set_cmd_completer (c, expression_completer);
16483
16484 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16485 Set a watchpoint for an expression.\n\
16486 Usage: awatch [-l|-location] EXPRESSION\n\
16487 A watchpoint stops execution of your program whenever the value of\n\
16488 an expression is either read or written.\n\
16489 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16490 the memory to which it refers."));
16491 set_cmd_completer (c, expression_completer);
16492
16493 add_info ("watchpoints", watchpoints_info, _("\
16494 Status of specified watchpoints (all watchpoints if no argument)."));
16495
16496 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16497 respond to changes - contrary to the description. */
16498 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16499 &can_use_hw_watchpoints, _("\
16500 Set debugger's willingness to use watchpoint hardware."), _("\
16501 Show debugger's willingness to use watchpoint hardware."), _("\
16502 If zero, gdb will not use hardware for new watchpoints, even if\n\
16503 such is available. (However, any hardware watchpoints that were\n\
16504 created before setting this to nonzero, will continue to use watchpoint\n\
16505 hardware.)"),
16506 NULL,
16507 show_can_use_hw_watchpoints,
16508 &setlist, &showlist);
16509
16510 can_use_hw_watchpoints = 1;
16511
16512 /* Tracepoint manipulation commands. */
16513
16514 c = add_com ("trace", class_breakpoint, trace_command, _("\
16515 Set a tracepoint at specified line or function.\n\
16516 \n"
16517 BREAK_ARGS_HELP ("trace") "\n\
16518 Do \"help tracepoints\" for info on other tracepoint commands."));
16519 set_cmd_completer (c, location_completer);
16520
16521 add_com_alias ("tp", "trace", class_alias, 0);
16522 add_com_alias ("tr", "trace", class_alias, 1);
16523 add_com_alias ("tra", "trace", class_alias, 1);
16524 add_com_alias ("trac", "trace", class_alias, 1);
16525
16526 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16527 Set a fast tracepoint at specified line or function.\n\
16528 \n"
16529 BREAK_ARGS_HELP ("ftrace") "\n\
16530 Do \"help tracepoints\" for info on other tracepoint commands."));
16531 set_cmd_completer (c, location_completer);
16532
16533 c = add_com ("strace", class_breakpoint, strace_command, _("\
16534 Set a static tracepoint at specified line, function or marker.\n\
16535 \n\
16536 strace [LOCATION] [if CONDITION]\n\
16537 LOCATION may be a line number, function name, \"*\" and an address,\n\
16538 or -m MARKER_ID.\n\
16539 If a line number is specified, probe the marker at start of code\n\
16540 for that line. If a function is specified, probe the marker at start\n\
16541 of code for that function. If an address is specified, probe the marker\n\
16542 at that exact address. If a marker id is specified, probe the marker\n\
16543 with that name. With no LOCATION, uses current execution address of\n\
16544 the selected stack frame.\n\
16545 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16546 This collects arbitrary user data passed in the probe point call to the\n\
16547 tracing library. You can inspect it when analyzing the trace buffer,\n\
16548 by printing the $_sdata variable like any other convenience variable.\n\
16549 \n\
16550 CONDITION is a boolean expression.\n\
16551 \n\
16552 Multiple tracepoints at one place are permitted, and useful if their\n\
16553 conditions are different.\n\
16554 \n\
16555 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16556 Do \"help tracepoints\" for info on other tracepoint commands."));
16557 set_cmd_completer (c, location_completer);
16558
16559 add_info ("tracepoints", tracepoints_info, _("\
16560 Status of specified tracepoints (all tracepoints if no argument).\n\
16561 Convenience variable \"$tpnum\" contains the number of the\n\
16562 last tracepoint set."));
16563
16564 add_info_alias ("tp", "tracepoints", 1);
16565
16566 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16567 Delete specified tracepoints.\n\
16568 Arguments are tracepoint numbers, separated by spaces.\n\
16569 No argument means delete all tracepoints."),
16570 &deletelist);
16571 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16572
16573 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16574 Disable specified tracepoints.\n\
16575 Arguments are tracepoint numbers, separated by spaces.\n\
16576 No argument means disable all tracepoints."),
16577 &disablelist);
16578 deprecate_cmd (c, "disable");
16579
16580 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16581 Enable specified tracepoints.\n\
16582 Arguments are tracepoint numbers, separated by spaces.\n\
16583 No argument means enable all tracepoints."),
16584 &enablelist);
16585 deprecate_cmd (c, "enable");
16586
16587 add_com ("passcount", class_trace, trace_pass_command, _("\
16588 Set the passcount for a tracepoint.\n\
16589 The trace will end when the tracepoint has been passed 'count' times.\n\
16590 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16591 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16592
16593 add_prefix_cmd ("save", class_breakpoint, save_command,
16594 _("Save breakpoint definitions as a script."),
16595 &save_cmdlist, "save ",
16596 0/*allow-unknown*/, &cmdlist);
16597
16598 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16599 Save current breakpoint definitions as a script.\n\
16600 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16601 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16602 session to restore them."),
16603 &save_cmdlist);
16604 set_cmd_completer (c, filename_completer);
16605
16606 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16607 Save current tracepoint definitions as a script.\n\
16608 Use the 'source' command in another debug session to restore them."),
16609 &save_cmdlist);
16610 set_cmd_completer (c, filename_completer);
16611
16612 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16613 deprecate_cmd (c, "save tracepoints");
16614
16615 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16616 Breakpoint specific settings\n\
16617 Configure various breakpoint-specific variables such as\n\
16618 pending breakpoint behavior"),
16619 &breakpoint_set_cmdlist, "set breakpoint ",
16620 0/*allow-unknown*/, &setlist);
16621 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16622 Breakpoint specific settings\n\
16623 Configure various breakpoint-specific variables such as\n\
16624 pending breakpoint behavior"),
16625 &breakpoint_show_cmdlist, "show breakpoint ",
16626 0/*allow-unknown*/, &showlist);
16627
16628 add_setshow_auto_boolean_cmd ("pending", no_class,
16629 &pending_break_support, _("\
16630 Set debugger's behavior regarding pending breakpoints."), _("\
16631 Show debugger's behavior regarding pending breakpoints."), _("\
16632 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16633 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16634 an error. If auto, an unrecognized breakpoint location results in a\n\
16635 user-query to see if a pending breakpoint should be created."),
16636 NULL,
16637 show_pending_break_support,
16638 &breakpoint_set_cmdlist,
16639 &breakpoint_show_cmdlist);
16640
16641 pending_break_support = AUTO_BOOLEAN_AUTO;
16642
16643 add_setshow_boolean_cmd ("auto-hw", no_class,
16644 &automatic_hardware_breakpoints, _("\
16645 Set automatic usage of hardware breakpoints."), _("\
16646 Show automatic usage of hardware breakpoints."), _("\
16647 If set, the debugger will automatically use hardware breakpoints for\n\
16648 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16649 a warning will be emitted for such breakpoints."),
16650 NULL,
16651 show_automatic_hardware_breakpoints,
16652 &breakpoint_set_cmdlist,
16653 &breakpoint_show_cmdlist);
16654
16655 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16656 &always_inserted_mode, _("\
16657 Set mode for inserting breakpoints."), _("\
16658 Show mode for inserting breakpoints."), _("\
16659 When this mode is off, breakpoints are inserted in inferior when it is\n\
16660 resumed, and removed when execution stops. When this mode is on,\n\
16661 breakpoints are inserted immediately and removed only when the user\n\
16662 deletes the breakpoint. When this mode is auto (which is the default),\n\
16663 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16664 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16665 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16666 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16667 NULL,
16668 &show_always_inserted_mode,
16669 &breakpoint_set_cmdlist,
16670 &breakpoint_show_cmdlist);
16671
16672 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16673 condition_evaluation_enums,
16674 &condition_evaluation_mode_1, _("\
16675 Set mode of breakpoint condition evaluation."), _("\
16676 Show mode of breakpoint condition evaluation."), _("\
16677 When this is set to \"host\", breakpoint conditions will be\n\
16678 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16679 breakpoint conditions will be downloaded to the target (if the target\n\
16680 supports such feature) and conditions will be evaluated on the target's side.\n\
16681 If this is set to \"auto\" (default), this will be automatically set to\n\
16682 \"target\" if it supports condition evaluation, otherwise it will\n\
16683 be set to \"gdb\""),
16684 &set_condition_evaluation_mode,
16685 &show_condition_evaluation_mode,
16686 &breakpoint_set_cmdlist,
16687 &breakpoint_show_cmdlist);
16688
16689 add_com ("break-range", class_breakpoint, break_range_command, _("\
16690 Set a breakpoint for an address range.\n\
16691 break-range START-LOCATION, END-LOCATION\n\
16692 where START-LOCATION and END-LOCATION can be one of the following:\n\
16693 LINENUM, for that line in the current file,\n\
16694 FILE:LINENUM, for that line in that file,\n\
16695 +OFFSET, for that number of lines after the current line\n\
16696 or the start of the range\n\
16697 FUNCTION, for the first line in that function,\n\
16698 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16699 *ADDRESS, for the instruction at that address.\n\
16700 \n\
16701 The breakpoint will stop execution of the inferior whenever it executes\n\
16702 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16703 range (including START-LOCATION and END-LOCATION)."));
16704
16705 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16706 Set a dynamic printf at specified line or function.\n\
16707 dprintf location,format string,arg1,arg2,...\n\
16708 location may be a line number, function name, or \"*\" and an address.\n\
16709 If a line number is specified, break at start of code for that line.\n\
16710 If a function is specified, break at start of code for that function."));
16711 set_cmd_completer (c, location_completer);
16712
16713 add_setshow_enum_cmd ("dprintf-style", class_support,
16714 dprintf_style_enums, &dprintf_style, _("\
16715 Set the style of usage for dynamic printf."), _("\
16716 Show the style of usage for dynamic printf."), _("\
16717 This setting chooses how GDB will do a dynamic printf.\n\
16718 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16719 console, as with the \"printf\" command.\n\
16720 If the value is \"call\", the print is done by calling a function in your\n\
16721 program; by default printf(), but you can choose a different function or\n\
16722 output stream by setting dprintf-function and dprintf-channel."),
16723 update_dprintf_commands, NULL,
16724 &setlist, &showlist);
16725
16726 dprintf_function = xstrdup ("printf");
16727 add_setshow_string_cmd ("dprintf-function", class_support,
16728 &dprintf_function, _("\
16729 Set the function to use for dynamic printf"), _("\
16730 Show the function to use for dynamic printf"), NULL,
16731 update_dprintf_commands, NULL,
16732 &setlist, &showlist);
16733
16734 dprintf_channel = xstrdup ("");
16735 add_setshow_string_cmd ("dprintf-channel", class_support,
16736 &dprintf_channel, _("\
16737 Set the channel to use for dynamic printf"), _("\
16738 Show the channel to use for dynamic printf"), NULL,
16739 update_dprintf_commands, NULL,
16740 &setlist, &showlist);
16741
16742 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16743 &disconnected_dprintf, _("\
16744 Set whether dprintf continues after GDB disconnects."), _("\
16745 Show whether dprintf continues after GDB disconnects."), _("\
16746 Use this to let dprintf commands continue to hit and produce output\n\
16747 even if GDB disconnects or detaches from the target."),
16748 NULL,
16749 NULL,
16750 &setlist, &showlist);
16751
16752 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16753 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16754 (target agent only) This is useful for formatted output in user-defined commands."));
16755
16756 automatic_hardware_breakpoints = 1;
16757
16758 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16759 observer_attach_thread_exit (remove_threaded_breakpoints);
16760 }
This page took 0.380001 seconds and 4 git commands to generate.